
SECOND EDITION

M A N N I N G

Vernon L. Ceder

SECOND EDITION Covers Python 3

First edition by Daryl K. Harms
Kenneth M. McDonald

The Quick Python Book
Second Edition
Licensed to Kerri Ross <pedbro@gmail.com>

Licensed to Kerri Ross <pedbro@gmail.com>

The Quick
Python Book

SECOND EDITION

VERNON L. CEDER

FIRST EDITION BY DARYL K. HARMS
KENNETH M. McDONALD

M A N N I N G
Greenwich
(74° w. long.)

Licensed to Kerri Ross <pedbro@gmail.com>

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact:

Special Sales Department
Manning Publications Co.
Sound View Court 3B
Greenwich, CT 06830
Email: orders@manning.com

©2010 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15% recycled and processed without elemental chlorine.

Manning Publications Co. Development editor: Tara Walsh
Sound View Court 3B Copyeditor: Linda Recktenwald
Greenwich, CT 06830 Typesetter: Marija Tudor

Cover designer: Leslie Haimes

ISBN 9781935182207

Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – MAL – 15 14 13 12 11 10 09

Licensed to Kerri Ross <pedbro@gmail.com>

brief contents

PART 1 STARTING OUT ... 1

1 About Python 3

2 Getting started 10

3 The Quick Python overview 18

PART 2 THE ESSENTIALS ... 33

4 The absolute basics 35

5 Lists, tuples, and sets 45

6 Strings 63

7 Dictionaries 81

8 Control flow 90

9 Functions 103

10 Modules and scoping rules 115
v

11 Python programs 129

Licensed to Kerri Ross <pedbro@gmail.com>

BRIEF CONTENTSvi

12 Using the filesystem 147

13 Reading and writing files 159

14 Exceptions 172

15 Classes and object-oriented programming 186

16 Graphical user interfaces 209

PART 3 ADVANCED LANGUAGE FEATURES................... 223

17 Regular expressions 225

18 Packages 234

19 Data types as objects 242

20 Advanced object-oriented features 247

PART 4 WHERE CAN YOU GO FROM HERE? 263

21 Testing your code made easy(-er) 265

22 Moving from Python 2 to Python 3 274

23 Using Python libraries 282

24 Network, web, and database programming 290
Licensed to Kerri Ross <pedbro@gmail.com>

contents
preface xvii
acknowledgments xviii
about this book xx

PART 1 STARTING OUT ... 1

1 About Python 3
1.1 Why should I use Python? 3
1.2 What Python does well 4

Python is easy to use 4 ■ Python is expressive 4
Python is readable 5 ■ Python is complete—“batteries
included” 6 ■ Python is cross-platform 6 ■ Python is free 6

1.3 What Python doesn’t do as well 7
Python is not the fastest language 7 ■ Python doesn’t have the
most libraries 8 ■ Python doesn’t check variable types at
compile time 8

1.4 Why learn Python 3? 8
1.5 Summary 9
vii

Licensed to Kerri Ross <pedbro@gmail.com>

CONTENTSviii

2 Getting started 10
2.1 Installing Python 10
2.2 IDLE and the basic interactive mode 12

The basic interactive mode 12 ■ The IDLE integrated development
environment 13 ■ Choosing between basic interactive mode and
IDLE 14

2.3 Using IDLE’s Python Shell window 14
2.4 Hello, world 15
2.5 Using the interactive prompt to explore Python 15
2.6 Summary 17

3 The Quick Python overview 18
3.1 Python synopsis 19
3.2 Built-in data types 19

Numbers 19 ■ Lists 21 ■ Tuples 22 ■ Strings 23
Dictionaries 24 ■ Sets 24 ■ File objects 25

3.3 Control flow structures 25
Boolean values and expressions 25 ■ The if-elif-else
statement 26 ■ The while loop 26 ■ The for
loop 27 ■ Function definition 27 ■ Exceptions 28

3.4 Module creation 29
3.5 Object-oriented programming 30
3.6 Summary 31

PART 2 THE ESSENTIALS ... 33

4 The absolute basics 35
4.1 Indentation and block structuring 35
4.2 Differentiating comments 37
4.3 Variables and assignments 37
4.4 Expressions 38
4.5 Strings 39
4.6 Numbers 40

Built-in numeric functions 41 ■ Advanced numeric
functions 41 ■ Numeric computation 41 ■ Complex
numbers 41 ■ Advanced complex-number functions 42
4.7 The None value 43

Licensed to Kerri Ross <pedbro@gmail.com>

CONTENTS ix

4.8 Getting input from the user 43
4.9 Built-in operators 43

4.10 Basic Python style 43
4.11 Summary 44

5 Lists, tuples, and sets 45
5.1 Lists are like arrays 46
5.2 List indices 46
5.3 Modifying lists 48
5.4 Sorting lists 50

Custom sorting 51 ■ The sorted() function 52

5.5 Other common list operations 52
List membership with the in operator 52 ■ List concatenation
with the + operator 53 ■ List initialization with the *
operator 53 ■ List minimum or maximum with min and
max 53 ■ List search with index 53 ■ List matches with
count 54 ■ Summary of list operations 54

5.6 Nested lists and deep copies 55
5.7 Tuples 57

Tuple basics 57 ■ One-element tuples need a
comma 58 ■ Packing and unpacking tuples 58
Converting between lists and tuples 60

5.8 Sets 60
Set operations 60 ■ Frozensets 61

5.9 Summary 62

6 Strings 63
6.1 Strings as sequences of characters 63
6.2 Basic string operations 64
6.3 Special characters and escape sequences 64

Basic escape sequences 65 ■ Numeric (octal and hexadecimal) and
Unicode escape sequences 65 ■ Printing vs. evaluating strings
with special characters 66

6.4 String methods 67
The split and join string methods 67 ■ Converting strings to
numbers 68 ■ Getting rid of extra whitespace 69 ■ String
searching 70 ■ Modifying strings 71 ■ Modifying strings with
list manipulations 73 ■ Useful methods and constants 73
Licensed to Kerri Ross <pedbro@gmail.com>

CONTENTSx

6.5 Converting from objects to strings 74
6.6 Using the format method 76

The format method and positional parameters 76 ■ The format
method and named parameters 76 ■ Format specifiers 77

6.7 Formatting strings with % 77
Using formatting sequences 78 ■ Named parameters and
formatting sequences 78

6.8 Bytes 80
6.9 Summary 80

7 Dictionaries 81
7.1 What is a dictionary? 82

Why dictionaries are called dictionaries 83

7.2 Other dictionary operations 83
7.3 Word counting 86
7.4 What can be used as a key? 86
7.5 Sparse matrices 88
7.6 Dictionaries as caches 88
7.7 Efficiency of dictionaries 89
7.8 Summary 89

8 Control flow 90
8.1 The while loop 90

The break and continue statements 91

8.2 The if-elif-else statement 91
8.3 The for loop 92

The range function 93 ■ Using break and continue in for
loops 94 ■ The for loop and tuple unpacking 94 ■ The
enumerate function 94 ■ The zip function 95

8.4 List and dictionary comprehensions 95
8.5 Statements, blocks, and indentation 96
8.6 Boolean values and expressions 99

Most Python objects can be used as Booleans 99 ■ Comparison and
Boolean operators 100

8.7 Writing a simple program to analyze a text file 101
8.8 Summary 102
Licensed to Kerri Ross <pedbro@gmail.com>

CONTENTS xi

9 Functions 103
9.1 Basic function definitions 103
9.2 Function parameter options 105

Positional parameters 105 ■ Passing arguments by parameter
name 106 ■ Variable numbers of arguments 107 ■ Mixing
argument-passing techniques 108

9.3 Mutable objects as arguments 108
9.4 Local, nonlocal, and global variables 109
9.5 Assigning functions to variables 111
9.6 lambda expressions 111
9.7 Generator functions 112
9.8 Decorators 113
9.9 Summary 114

10 Modules and scoping rules 115
10.1 What is a module? 115
10.2 A first module 116
10.3 The import statement 119
10.4 The module search path 119

Where to place your own modules 120

10.5 Private names in modules 121
10.6 Library and third-party modules 122
10.7 Python scoping rules and namespaces 123
10.8 Summary 128

11 Python programs 129
11.1 Creating a very basic program 130

Starting a script from a command line 130 ■ Command-line
arguments 131 ■ Redirecting the input and output of a
script 131 ■ The optparse module 132 ■ Using the fileinput
module 133

11.2 Making a script directly executable on UNIX 135
11.3 Scripts on Mac OS X 135
11.4 Script execution options in Windows 135

Starting a script as a document or shortcut 136 ■ Starting a script
from the Windows Run box 137 ■ Starting a script from a
command window 137 ■ Other Windows options 138
Licensed to Kerri Ross <pedbro@gmail.com>

CONTENTSxii

11.5 Scripts on Windows vs. scripts on UNIX 138
11.6 Programs and modules 140
11.7 Distributing Python applications 145

distutils 145 ■ py2exe and py2app 145 ■ Creating executable
programs with freeze 145

11.8 Summary 146

12 Using the filesystem 147
12.1 Paths and pathnames 148

Absolute and relative paths 148 ■ The current working
directory 149 ■ Manipulating pathnames 150 ■ Useful
constants and functions 153

12.2 Getting information about files 154
12.3 More filesystem operations 155
12.4 Processing all files in a directory subtree 156
12.5 Summary 157

13 Reading and writing files 159
13.1 Opening files and file objects 159
13.2 Closing files 160
13.3 Opening files in write or other modes 160
13.4 Functions to read and write text or binary data 161

Using binary mode 163

13.5 Screen input/output and redirection 163
13.6 Reading structured binary data with the struct module 165
13.7 Pickling objects into files 167
13.8 Shelving objects 170
13.9 Summary 171

14 Exceptions 172
14.1 Introduction to exceptions 173

General philosophy of errors and exception handling 173 ■ A more
formal definition of exceptions 175 ■ User-defined exceptions 176

14.2 Exceptions in Python 176
Types of Python exceptions 177 ■ Raising exceptions 178
Catching and handling exceptions 179 ■ Defining new
exceptions 180 ■ Debugging programs with the assert

statement 181 ■ The exception inheritance hierarchy 182

Licensed to Kerri Ross <pedbro@gmail.com>

CONTENTS xiii

Example: a disk-writing program in Python 182 ■ Example:
exceptions in normal evaluation 183 ■ Where to use
exceptions 184

14.3 Using with 184
14.4 Summary 185

15 Classes and object-oriented programming 186
15.1 Defining classes 187

Using a class instance as a structure or record 187

15.2 Instance variables 188
15.3 Methods 188
15.4 Class variables 190

An oddity with class variables 191

15.5 Static methods and class methods 192
Static methods 192 ■ Class methods 193

15.6 Inheritance 194
15.7 Inheritance with class and instance variables 196
15.8 Private variables and private methods 197
15.9 Using @property for more flexible instance variables 198

15.10 Scoping rules and namespaces for class instances 199
15.11 Destructors and memory management 203
15.12 Multiple inheritance 207
15.13 Summary 208

16 Graphical user interfaces 209
16.1 Installing Tkinter 210
16.2 Starting Tk and using Tkinter 211
16.3 Principles of Tkinter 212

Widgets 212 ■ Named attributes 212 ■ Geometry management
and widget placement 213

16.4 A simple Tkinter application 214
16.5 Creating widgets 215
16.6 Widget placement 216
16.7 Using classes to manage Tkinter applications 218
16.8 What else can Tkinter do? 219

Event handling 220 ■ Canvas and text widgets 221
Licensed to Kerri Ross <pedbro@gmail.com>

CONTENTSxiv

16.9 Alternatives to Tkinter 221
16.10 Summary 222

PART 3 ADVANCED LANGUAGE FEATURES................... 223

17 Regular expressions 225
17.1 What is a regular expression? 225
17.2 Regular expressions with special characters 226
17.3 Regular expressions and raw strings 227

Raw strings to the rescue 228

17.4 Extracting matched text from strings 229
17.5 Substituting text with regular expressions 232
17.6 Summary 233

18 Packages 234
18.1 What is a package? 234
18.2 A first example 235
18.3 A concrete example 236

Basic use of the mathproj package 237 ■ Loading subpackages
and submodules 238 ■ import statements within
packages 239 ■ __init__.py files in packages 239

18.4 The __all__ attribute 240
18.5 Proper use of packages 241
18.6 Summary 241

19 Data types as objects 242
19.1 Types are objects, too 242
19.2 Using types 243
19.3 Types and user-defined classes 243
19.4 Duck typing 245
19.5 Summary 246

20 Advanced object-oriented features 247
20.1 What is a special method attribute? 248
20.2 Making an object behave like a list 249

The __getitem__ special method attribute 249 ■ How it

works 250 ■ Implementing full list functionality 251

Licensed to Kerri Ross <pedbro@gmail.com>

CONTENTS xv

20.3 Giving an object full list capability 252
20.4 Subclassing from built-in types 254

Subclassing list 254 ■ Subclassing UserList 255

20.5 When to use special method attributes 256
20.6 Metaclasses 256
20.7 Abstract base classes 258

Using abstract base classes for type checking 259 ■ Creating
abstract base classes 260 ■ Using the @abstractmethod and
@abstractproperty decorators 260

20.8 Summary 262

PART 4 WHERE CAN YOU GO FROM HERE? 263

21 Testing your code made easy(-er) 265
21.1 Why you need to have tests 265
21.2 The assert statement 266

Python’s __debug__ variable 266

21.3 Tests in docstrings: doctests 267
Avoiding doctest traps 269 ■ Tweaking doctests with
directives 269 ■ Pros and cons of doctests 270

21.4 Using unit tests to test everything, every time 270
Setting up and running a single test case 270 ■ Running the
test 272 ■ Running multiple tests 272 ■ Unit tests vs.
doctests 273

21.5 Summary 273

22 Moving from Python 2 to Python 3 274
22.1 Porting from 2 to 3 274

Steps in porting from Python 2.x to 3.x 275

22.2 Testing with Python 2.6 and -3 276
22.3 Using 2to3 to convert the code 277
22.4 Testing and common problems 279
22.5 Using the same code for 2 and 3 280

Using Python 2.5 or earlier 280 ■ Writing for Python 3.x and
converting back 281
22.6 Summary 281

Licensed to Kerri Ross <pedbro@gmail.com>

CONTENTSxvi

23 Using Python libraries 282
23.1 “Batteries included”—the standard library 282

Managing various data types 283 ■ Manipulating files and
storage 284 ■ Accessing operating system services 285 ■ Using
internet protocols and formats 286 ■ Development and debugging
tools and runtime services 286

23.2 Moving beyond the standard library 287
23.3 Adding more Python libraries 287
23.4 Installing Python libraries using setup.py 288

Installing under the home scheme 288 ■ Other installation
options 289

23.5 PyPI, a.k.a. “the Cheese Shop” 289
23.6 Summary 289

24 Network, web, and database programming 290
24.1 Accessing databases in Python 291

Using the sqlite3 database 291

24.2 Network programming in Python 293
Creating an instant HTTP server 293 ■ Writing an HTTP
client 294

24.3 Creating a Python web application 295
Using the web server gateway interface 295 ■ Using the wsgi
library to create a basic web app 295 ■ Using frameworks to create
advanced web apps 296

24.4 Sample project—creating a message wall 297
Creating the database 297 ■ Creating an application
object 298 ■ Adding a form and retrieving its contents

298 ■ Saving the form’s contents 299 ■ Parsing the URL and
retrieving messages 300 ■ Adding an HTML wrapper 303

24.5 Summary 304

appendix 305
index 323
Licensed to Kerri Ross <pedbro@gmail.com>

preface
I’ve been coding in Python for a number of years, longer than any other language I’ve
ever used. I use Python for system administration, for web applications, for database
management, and sometimes just to help myself think clearly.

 To be honest, I’m sometimes a little surprised that Python has worn so well. Based
on my earlier experience, I would have expected that by now some other language
would have come along that was faster, cooler, sexier, whatever. Indeed, other lan-
guages have come along, but none that helped me do what I needed to do quite as
effectively as Python. In fact, the more I use Python and the more I understand it, the
more I feel the quality of my programming improve and mature.

 This is a second edition, and my mantra in updating has been, “If it ain’t broke,
don’t fix it.” Much of the content has been freshened for Python 3 but is largely as
written in the first edition. Of course, the world of Python has changed since Python
1.5, so in several places I’ve had to make significant changes or add new material. On
those occasions I’ve done my best to make the new material compatible with the clear
and low-key style of the original.

 For me, the aim of this book is to share the positive experiences I’ve gotten from
coding in Python by introducing people to Python 3, the latest and, in my opinion,
the best version of Python to date. May your journey be as satisfying as mine has been.
xvii

Licensed to Kerri Ross <pedbro@gmail.com>

acknowledgments
I want to thank David Fugate of LaunchBooks for getting me into this book in the first
place and for all of the support and advice he has provided over the years. I can’t
imagine having a better agent and friend. I also need to thank Michael Stephens of
Manning for pushing the idea of doing a second edition of this book and supporting
me in my efforts to make it as good as the first. Also at Manning, many thanks to every
person who worked on this project, with special thanks to Marjan Bace for his support,
Tara Walsh for guidance in the development phases, Mary Piergies for getting the
book (and me) through the production process, Linda Recktenwald for her patience
in copy editing, and Tiffany Taylor for proofreading. I also owe a huge debt to Will
Kahn-Greene for all of the astute advice he gave both as a technical reviewer and in
doing the technical proofing. Thanks, Will, you saved me from myself more times
than I can count. Likewise, hearty thanks to the many reviewers whose insights and
feedback were of immense help: Nick Lo, Michele Galli, Andy Dingley, Mohamed
Lamkadem, Robby O'Connor, Amos Bannister, Joshua Miller, Christian Marquardt,
Andrew Rhine, Anthony Briggs, Carlton Gibson, Craig Smith, Daniel McKinnon,
David McWhirter, Edmon Begoli, Elliot Winard, Horaci Macias, Massimo Perga,
Munch Paulson, Nathan R. Yergler, Rick Wagner, Sumit Pal, and Tyson S. Maxwell.

 Because this is a second edition, I have to thank the authors of the first edition,
Daryl Harms and Kenneth MacDonald, for two things: first, for writing a book so sound
that it has remained in print well beyond the average lifespan of most tech books, and
second, for being otherwise occupied, thereby giving me a chance to update it. I hope
xviii

this version carries on the successful and long-lived tradition of the first.

Licensed to Kerri Ross <pedbro@gmail.com>

ACKNOWLEDGMENTS xix

 Thanks to my canine associates, Molly, Riker, and Aeryn, who got fewer walks,
training sessions, and games of ball than they should have but still curled up beside
my chair and kept me company and helped me keep my sense of perspective as I
worked. You’ll get those walks now, guys, I promise.

 Most important, thanks to my wife, Becky, who both encouraged me to take on this
project and had to put up with the most in the course of its completion—particularly
an often-grumpy and preoccupied spouse. I really couldn’t have done it without you.
Licensed to Kerri Ross <pedbro@gmail.com>

about this book
Who should read this book

This book is intended for people who already have experience in one or more pro-
gramming languages and want to learn the basics of Python 3 as quickly and directly
as possible. Although some basic concepts are covered, there’s no attempt to teach
basic programming skills in this book, and the basic concepts of flow control, OOP,
file access, exception handling, and the like are assumed. This book may also be of
use to users of earlier versions of Python who want a concise reference for Python 3.

How to use this book

Part 1 introduces Python and explains how to download and install it on your system.
It also includes a very general survey of the language, which will be most useful for
experienced programmers looking for a high-level view of Python.

 Part 2 is the heart of the book. It covers the ingredients necessary for obtaining a
working knowledge of Python as a general-purpose programming language. The
chapters are designed to allow readers who are beginning to learn Python to work
their way through sequentially, picking up knowledge of the key points of the lan-
guage. These chapters also contain some more advanced sections, allowing you to
return to find in one place all the necessary information about a construct or topic.

 Part 3 introduces advanced language features of Python, elements of the language
that aren’t essential to its use but that can certainly be a great help to a serious Python
programmer.
xx

Licensed to Kerri Ross <pedbro@gmail.com>

ABOUT THIS BOOK xxi

 Part 4 describes more advanced or specialized topics that are beyond the strict syn-
tax of the language. You may read these chapters or not, depending on your needs.

 A suggested plan if you’re new to Python is to start by reading chapter 3 to obtain
an overall perspective and then work through the chapters in part 2 that are applica-
ble. Enter in the interactive examples as they are introduced. This will immediately
reinforce the concepts. You can also easily go beyond the examples in the text to
answer questions about anything that may be unclear. This has the potential to
amplify the speed of your learning and the level of your comprehension. If you aren’t
familiar with OOP or don’t need it for your application, skip most of chapter 15. If you
aren’t interested in developing a GUI, skip chapter 16.

 Those familiar with Python should also start with chapter 3. It will be a good review
and will introduce differences between Python 3 and what may be more familiar. It’s a
reasonable test of whether you’re ready to move on to the advanced chapters in parts
3 and 4 of this book.

 It’s possible that some readers, although new to Python, will have enough experi-
ence with other programming languages to be able to pick up the bulk of what they
need to get going from chapter 3 and by browsing the Python standard library modules
listed in chapter 23 and the Python Library Reference in the Python documentation.

Roadmap

Chapter 1 discusses the strengths and weaknesses of Python and shows why Python 3 is
a good choice of programming language for many situations.

 Chapter 2 covers downloading, installing, and starting up the Python interpreter
and IDLE, its integrated development environment.

 Chapter 3 is a short overview of the Python language. It provides a basic idea of the
philosophy, syntax, semantics, and capabilities of the language.

 Chapter 4 starts with the basics of Python. It introduces Python variables, expres-
sions, strings, and numbers. It also introduces Python’s block-structured syntax.

 Chapters 5, 6, and 7 describe the five powerful built-in Python data types: lists,
tuples, sets, strings, and dictionaries.

 Chapter 8 introduces Python’s control flow syntax and use (loops and if-else
statements).

 Chapter 9 describes function definition in Python along with its flexible parame-
ter-passing capabilities.

 Chapter 10 describes Python modules. They provide an easy mechanism for seg-
menting the program namespace.

 Chapter 11 covers creating standalone Python programs, or scripts, and running
them on Windows, Mac OS X, and Linux platforms. The chapter also covers the sup-
port available for command-line options, arguments, and I/O redirection.
Licensed to Kerri Ross <pedbro@gmail.com>

ABOUT THIS BOOKxxii

 Chapter 12 describes how to work and navigate through the files and directories of
the filesystem. It shows how to write code that’s as independent as possible of the
actual operating system you’re working on.

 Chapter 13 introduces the mechanisms for reading and writing files in Python.
These include the basic capability to read and write strings (or byte streams), the
mechanism available for reading binary records, and the ability to read and write arbi-
trary Python objects.

 Chapter 14 discusses the use of exceptions, the error-handling mechanism used by
Python. It doesn’t assume that you have any prior knowledge of exceptions, although
if you’ve previously used them in C++ or Java, you’ll find them familiar.

 Chapter 15 introduces Python’s support for writing object-oriented programs.
 Chapter 16 focuses on the available Tkinter interface and ends with an introduc-

tion to some of the other options available for developing GUIs.
 Chapter 17 discusses the regular-expression capabilities available for Python.
 Chapter 18 introduces the package concept in Python for structuring the code of

large projects.
 Chapter 19 covers the simple mechanisms available to dynamically discover and

work with data types in Python.
 Chapter 20 introduces more advanced OOP techniques, including the use of

Python’s special method-attributes mechanism, metaclasses, and abstract base classes.
 Chapter 21 covers two strategies that Python offers for testing your code: doctests

and unit testing.
 Chapter 22 surveys the process, issues, and tools involved in porting code from ear-

lier versions of Python to Python 3.
 Chapter 23 is a brief survey of the standard library and also includes a discussion of

where to find other modules and how to install them.
 Chapter 24 is a brief introduction to using Python for database and web program-

ming. A small web application is developed to illustrate the principles involved.
 The appendix contains a comprehensive guide to obtaining and accessing

Python’s full documentation, the Pythonic style guide, PEP 8, and “The Zen of
Python,” a slightly wry summary of the philosophy behind Python.

Code conventions

The code samples in this book, and their output, appear in a fixed-width font and
are often accompanied by annotations. The code samples are deliberately kept as sim-
ple as possible, because they aren’t intended to be reusable parts that can plugged
into your code. Instead, the code samples are stripped down so that you can focus on
the principle being illustrated.

 In keeping with the idea of simplicity, the code examples are presented as interac-
tive shell sessions where possible; you should enter and experiment with these samples
as much as you can. In interactive code samples, the commands that need to be
entered are on lines that begin with the >>> prompt, and the visible results of that

code (if any) are on the line below.

Licensed to Kerri Ross <pedbro@gmail.com>

ABOUT THIS BOOK xxiii

 In some cases a longer code sample is needed, and these are identified in the text
as file listings. You should save these as files with names matching those used in the
text and run them as standalone scripts.

Source code downloads

The source code for the samples in this book is available from the publisher’s website
at www.manning.com/TheQuickPythonBookSecondEdition.

System requirements

The samples and code in this book have been written with Windows (XP through Win-
dows 7), Mac OS X, and Linux in mind. Because Python is a cross-platform language,
they should work on other platforms for the most part, except for platform-specific
issues, like the handling of files, paths, and GUIs.

Software requirements

This book is based on Python 3.1, and all examples should work on any subsequent
version of Python 3. The examples also work on Python 3.0, but I strongly recommend
using 3.1—there are no advantages to the earlier version, and 3.1 has several subtle
improvements. Note that Python 3 is required and that an earlier version of Python will
not work with the code in this book.

Author online

The purchase of The Quick Python Book, Second Edition includes free access to a private
web forum run by Manning Publications, where you can make comments about the
book, ask technical questions, and receive help from the author and from other users.
To access the forum and subscribe to it, point your web browser to www.man-
ning.com/TheQuickPythonBookSecondEdition. This page provides information
about how to get on the forum once you’re registered, what kind of help is available,
and the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It’s not a commitment to any specific amount of participation on the part of the
author, whose contribution to the book’s forum remains voluntary (and unpaid). We
suggest you try asking him some challenging questions, lest his interest stray!

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

About the author

Second edition author Vern Ceder has been programming in various languages for
over 20 years and has been a Linux system administrator since 2000. He started using
Python for a variety of projects in 2001 and is director of technology at the Canterbury

School in Fort Wayne, Indiana, where he teaches Python to high school students and

Licensed to Kerri Ross <pedbro@gmail.com>

http://www.manning.com/TheQuickPythonBookSecondEdition
http://www.manning.com/TheQuickPythonBookSecondEdition

ABOUT THIS BOOKxxiv

teachers and gives talks to whomever will listen on Python and the benefits of teaching
programming in schools. An advocate for open software and open content, Vern is a
principal organizer of the Fort Wayne Linux Users Group.

About the cover illustration

The illustration on the cover of The Quick Python Book, Second Edition is taken from a
late 18th century edition of Sylvain Maréchal’s four-volume compendium of regional
dress customs published in France. Each illustration is finely drawn and colored by
hand. The rich variety of Maréchal’s collection reminds us vividly of how culturally
apart the world’s towns and regions were just 200 years ago. Isolated from each other,
people spoke different dialects and languages. In the streets or in the countryside, it
was easy to identify where they lived and what their trade or station in life was just by
what they were wearing.

 Dress codes have changed since then and the diversity by region, so rich at the
time, has faded away. It is now hard to tell apart the inhabitants of different conti-
nents, let alone different towns or regions. Perhaps we have traded cultural diversity
for a more varied personal life—certainly for a more varied and fast-paced technolog-
ical life.

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Maréchal’s pictures.
Licensed to Kerri Ross <pedbro@gmail.com>

Part 1

Starting out

This section will tell you a little bit about Python, its strengths and weak-
nesses, and why you should consider learning Python 3. You’ll also see how to
install Python on Windows, Mac OS X, and Linux platforms and how to write a
simple program.

 Finally, chapter 3 is a quick, high-level survey of Python’s syntax and features.
If you’re looking for the quickest possible introduction to Python, read chapter 3.

Licensed to Kerri Ross <pedbro@gmail.com>

Licensed to Kerri Ross <pedbro@gmail.com>

About Python
Read this chapter if you want to know how Python compares to other languages
and its place in the grand scheme of things. Skip this chapter if you want to start
learning Python right away. The information in this chapter is a valid part of this
book—but it’s certainly not necessary for programming with Python.

1.1 Why should I use Python?
Hundreds of programming languages are available today, from mature languages
like C and C++, to newer entries like Ruby, C#, and Lua, to enterprise juggernauts
like Java. Choosing a language to learn is difficult. Although no one language is the
right choice for every possible situation, I think that Python is a good choice for a
large number of programming problems, and it’s also a good choice if you’re learn-
ing to program. Hundreds of thousands of programmers around the world use

This chapter covers
■ Why use Python?
■ What Python does well
■ What Python doesn’t do as well
■ Why learn Python 3?
3

Python, and the number grows every year.

Licensed to Kerri Ross <pedbro@gmail.com>

4 CHAPTER 1 About Python

 Python continues to attract new users for a variety of reasons. It’s a true cross-
platform language, running equally well on Windows, Linux/UNIX, and Macintosh
platforms, as well as others, ranging from supercomputers to cell phones. It can be
used to develop small applications and rapid prototypes, but it scales well to permit
development of large programs. It comes with a powerful and easy-to-use graphical
user interface (GUI) toolkit, web programming libraries, and more. And it’s free.

1.2 What Python does well
Python is a modern programming language developed by Guido van Rossum in the
1990s (and named after a famous comedic troupe). Although Python isn’t perfect for
every application, its strengths make it a good choice for many situations.

1.2.1 Python is easy to use

Programmers familiar with traditional languages will find it easy to learn Python. All
of the familiar constructs such as loops, conditional statements, arrays, and so forth
are included, but many are easier to use in Python. Here are a few of the reasons why:

� Types are associated with objects, not variables. A variable can be assigned a value of
any type, and a list can contain objects of many different types. This also means
that type casting usually isn’t necessary, and your code isn’t locked into the
straitjacket of predeclared types.

� Python typically operates at a much higher level of abstraction. This is partly the result
of the way the language is built and partly the result of an extensive standard
code library that comes with the Python distribution. A program to download a
web page can be written in two or three lines!

� Syntax rules are very simple. Although becoming an expert Pythonista takes time
and effort, even beginners can absorb enough Python syntax to write useful
code quickly.

Python is well suited for rapid application development. It isn’t unusual for coding an
application in Python to take one-fifth the time it would if coded in C or Java and to
take as little as one-fifth the number of lines of the equivalent C program. This
depends on the particular application, of course; for a numerical algorithm perform-
ing mostly integer arithmetic in for loops, there would be much less of a productivity
gain. For the average application, the productivity gain can be significant.

1.2.2 Python is expressive

Python is a very expressive language. Expressive in this context means that a single line
of Python code can do more than a single line of code in most other languages. The
advantages of a more expressive language are obvious: the fewer lines of code you
have to write, the faster you can complete the project. Not only that, but the fewer
lines of code there are, the easier the program will be to maintain and debug.
Licensed to Kerri Ross <pedbro@gmail.com>

5What Python does well

 To get an idea of how Python’s expressiveness can simplify code, let’s consider
swapping the values of two variables, var1 and var2. In a language like Java, this
requires three lines of code and an extra variable:

int temp = var1;
var1 = var2;
var2 = temp;

The variable temp is needed to save the value of var1 when var2 is put into it, and
then that saved value is put into var2. The process isn’t terribly complex, but reading
those three lines and understanding that a swap has taken place takes a certain
amount of overhead, even for experienced coders.

 In contrast, Python lets you make the same swap in one line and in a way that
makes it obvious that a swap of values has occurred:

var2, var1 = var1, var2

Of course, this is a very simple example, but you find the same advantages throughout
the language.

1.2.3 Python is readable

Another advantage of Python is that it’s easy to read. You might think that a program-
ming language needs to be read only by a computer, but humans have to read your
code as well—whoever debugs your code (quite possibly you), whoever maintains your
code (could be you again), and whoever might want to modify your code in the
future. In all of those situations, the easier the code is to read and understand, the
better it is.

 The easier code is to understand, the easier it is to debug, maintain, and modify.
Python’s main advantage in this department is its use of indentation. Unlike most lan-
guages, Python insists that blocks of code be indented. Although this strikes some as
odd, it has the benefit that your code is always formatted in a very easy-to-read style.

 Following are two short programs, one written in Perl and one in Python. Both
take two equal-sized lists of numbers and return the pairwise sum of those lists. I think
the Python code is more readable than the Perl code; it’s visually cleaner and contains
fewer inscrutable symbols:

Perl version.
sub pairwise_sum {
 my($arg1, $arg2) = @_;
 my(@result) = ();
 @list1 = @$arg1;
 @list2 = @$arg2;
 for($i=0; $i < length(@list1); $i++) {
 push(@result, $list1[$i] + $list2[$i]);
 }
 return(\@result);
}

Licensed to Kerri Ross <pedbro@gmail.com>

6 CHAPTER 1 About Python

Python version.
def pairwise_sum(list1, list2):
 result = []
 for i in range(len(list1)):
 result.append(list1[i] + list2[i])
 return result

Both pieces of code do the same thing, but the Python code wins in terms of readability.

1.2.4 Python is complete—“batteries included”

Another advantage of Python is its “batteries included” philosophy when it comes to
libraries. The idea is that when you install Python, you should have everything you
need to do real work, without the need to install additional libraries. This is why the
Python standard library comes with modules for handling email, web pages, data-
bases, operating system calls, GUI development, and more.

 For example, with Python, you can write a web server to share the files in a direc-
tory with just two lines of code:

import http.server
http.server.test(HandlerClass=http.server.SimpleHTTPRequestHandler)

There’s no need to install libraries to handle network connections and HTTP—it’s
already in Python, right out of the box.

1.2.5 Python is cross-platform

Python is also an excellent cross-platform language. Python runs on many different
platforms: Windows, Mac, Linux, UNIX, and so on. Because it’s interpreted, the same
code can run on any platform that has a Python interpreter, and almost all current
platforms have one. There are even versions of Python that run on Java (Jython) and
.NET (IronPython), giving you even more possible platforms that run Python.

1.2.6 Python is free

Python is also free. Python was originally, and continues to be, developed under the
open source model, and it’s freely available. You can download and install practically
any version of Python and use it to develop software for commercial or personal appli-
cations, and you don’t need to pay a dime.

 Although attitudes are changing, some people are still leery of free software
because of concerns about a lack of support, fearing they lack the clout of a paying
customer. But Python is used by many established companies as a key part of their
business; Google, Rackspace, Industrial Light & Magic, and Honeywell are just a few
examples. These companies and many others know Python for what it is—a very sta-
ble, reliable, and well-supported product with an active and knowledgeable user com-
munity. You’ll get an answer to even the most difficult Python question more quickly
on the Python internet newsgroup than you will on most tech-support phone lines,
and the Python answer will be free and correct.
Licensed to Kerri Ross <pedbro@gmail.com>

7What Python doesn’t do as well

Python has a lot going for it: expressiveness, readability, rich included libraries, and
cross-platform capabilities, plus it’s open source. What’s the catch?

1.3 What Python doesn’t do as well
Although Python has many advantages, no language can do everything, so Python
isn’t the perfect solution for all your needs. To decide whether Python is the right lan-
guage for your situation, you also need to consider the areas where Python doesn’t do
as well.

1.3.1 Python is not the fastest language

A possible drawback with Python is its speed of execution. It isn’t a fully compiled lan-
guage. Instead, it’s first semicompiled to an internal byte-code form, which is then
executed by a Python interpreter. There are some tasks, such as string parsing using
regular expressions, for which Python has efficient implementations and is as fast as,
or faster than, any C program you’re likely to write. Nevertheless, most of the time,
using Python results in slower programs than a language like C. But you should keep
this in perspective. Modern computers have so much computing power that for the
vast majority of applications, the speed of the program isn’t as important as the speed
of development, and Python programs can typically be written much more quickly. In
addition, it’s easy to extend Python with modules written in C or C++, which can be
used to run the CPU-intensive portions of a program.

Python and open source software

Not only is Python free of cost, but its source code is also freely available, and you’re
free to modify, improve, and extend it if you want. Because the source code is freely
available, you have the ability to go in yourself and change it (or to hire someone to
go in and do so for you). You rarely have this option at any reasonable cost with pro-
prietary software.

If this is your first foray into the world of open source software, you should understand
that not only are you free to use and modify Python, but you’re also able (and encour-
aged) to contribute to it and improve it. Depending on your circumstances, interests,
and skills, those contributions might be financial, as in a donation to the Python Soft-
ware Foundation (PSF), or they may involve participating in one of the special interest
groups (SIGs), testing and giving feedback on releases of the Python core or one of
the auxiliary modules, or contributing some of what you or your company develops
back to the community. The level of contribution (if any) is, of course, up to you; but
if you’re able to give back, definitely consider doing so. Something of significant value
is being created here, and you have an opportunity to add to it.
Licensed to Kerri Ross <pedbro@gmail.com>

8 CHAPTER 1 About Python

1.3.2 Python doesn’t have the most libraries

Although Python comes with an excellent collection of libraries, and many more are
available, Python doesn’t hold the lead in this department. Languages like C, Java, and
Perl have even larger collections of libraries available, in some cases offering a solution
where Python has none or a choice of several options where Python might have only
one. These situations tend to be fairly specialized, however, and Python is easy to
extend, either in Python itself or by using existing libraries in C and other languages.
For almost all common computing problems, Python’s library support is excellent.

1.3.3 Python doesn’t check variable types at compile time

Unlike some languages, Python’s variables are more like labels that reference various
objects: integers, strings, class instances, whatever. That means that although those
objects themselves have types, the variables referring to them aren’t bound to that par-
ticular type. It’s possible (if not necessarily desirable) to use the variable x to refer to a
string in one line and an integer in another:

>>> x = "2"
>>> print(x)
'2'
>>> x = int(x)
>>> print(x)
2

The fact that Python associates types with objects and not with variables means that
the interpreter doesn’t help you catch variable type mismatches. If you intend a vari-
able count to hold an integer, Python won’t complain if you assign the string “two” to
it. Traditional coders count this as a disadvantage, because you lose an additional free
check on your code. But errors like this usually aren’t hard to find and fix, and
Python’s testing features makes avoiding type errors manageable. Most Python pro-
grammers feel that the flexibility of dynamic typing more than outweighs the cost.

1.4 Why learn Python 3?
Python has been around for a number of years and has evolved over that time. The
first edition of this book was based on Python 1.5.2, and Python 2.x has been the dom-
inant version for several years. This book is based on Python 3.1.

 Python 3, originally whimsically dubbed Python 3000, is notable because it’s the
first version of Python in the history of the language to break backward compatibility.
What this means is that code written for earlier versions of Python probably won’t run
on Python 3 without some changes. In earlier versions of Python, for example, the
print statement didn’t require parentheses around its arguments:

print "hello"

In Python 3, print is a function and needs the parentheses:

print("hello")

x is string "2"

x is now integer 2
Licensed to Kerri Ross <pedbro@gmail.com>

9Summary

You may be thinking, “Why change details like this, if it’s going to break old code?”
Because this kind of change is a big step for any language, the core developers of
Python thought about this issue carefully. Although the changes in Python 3 break
compatibility with older code, those changes are fairly small and for the better—they
make the language more consistent, more readable, and less ambiguous. Python 3
isn’t a dramatic rewrite of the language; it’s a well-thought-out evolution. The core
developers also took care to provide a strategy and tools to safely and efficiently
migrate old code to Python 3, which will be discussed in a later chapter.

 Why learn Python 3? Because it’s the best Python so far; and as projects switch to
take advantage of its improvements, it will be the dominant Python version for years to
come. If you need a library that hasn’t been converted yet, by all means stick with
Python 2.x; but if you’re starting to learn Python or starting a project, then go with
Python 3—not only is it better, but it’s the future.

1.5 Summary
Python is a modern, high-level language, with many features:

� Dynamic typing
� Simple, consistent syntax and semantics
� Multiplatform
� Well-planned design and evolution of features
� Highly modular
� Suited for both rapid development and large-scale programming
� Reasonably fast and easily extended with C or C++ modules for higher speeds
� Easy access to various GUI toolkits
� Built-in advanced features such as persistent object storage, advanced hash

tables, expandable class syntax, universal comparison functions, and so forth
� Powerful included libraries such as numeric processing, image manipulation,

user interfaces, web scripting, and others
� Supported by a dynamic Python community
� Can be integrated with a number of other languages to let you take advantage

of the strengths of both while obviating their weaknesses

Let’s get going. The first step is to make sure you have Python 3 installed on your
machine. In the next chapter, we’ll look at how to get Python up and running on Win-
dows, Mac, and Linux platforms.
Licensed to Kerri Ross <pedbro@gmail.com>

Getting started
This chapter guides you through downloading, installing, and starting up Python
and IDLE, an integrated development environment for Python. At the time of this
writing, the Python language is fairly mature, and version 3.1 has just been
released. After going through years of refinement, Python 3 is the first version of
the language that isn’t fully backward compatible with earlier versions. It should be
several years before another such dramatic change occurs, and any future enhance-
ments will be developed with concern to avoid impacting an already significant
existing code base. Therefore, the material presented after this chapter isn’t likely
to become dated anytime soon.

2.1 Installing Python
Installing Python is a simple matter, regardless of which platform you’re using. The
first step is to obtain a recent distribution for your machine; the most recent one

This chapter covers
■ Installing Python
■ Using IDLE and the basic interactive mode
■ Writing a simple program
■ Using IDLE’s Python shell window
10

can always be found at www.python.org. This book is based on Python 3.1.

Licensed to Kerri Ross <pedbro@gmail.com>

11Installing Python

Some basic platform-specific descriptions for the Python installation are given next.
The specifics can vary quite a bit depending on your platform, so be sure to read the
instructions on the download pages and with the various versions. You’re probably
familiar with installing software on your particular machine, so I’ll keep these descrip-
tions short:

� Microsoft Windows—Python can be installed in most versions of Windows by
using the Python installer program, currently called python-3.1.msi. Just down-
load it, execute it, and follow the installer’s prompts. You may need to be
logged in as administrator to run the install. If you’re on a network and don’t
have the administrator password, ask your system administrator to do the instal-
lation for you.

� Macintosh—You need to get a version of Python 3 that matches your OS X ver-
sion and your processor. After you determine the correct version, download the
disk image file, double-click to mount it, and run the installer inside. The OS X
installer sets up everything automatically, and Python 3 will be in a subfolder
inside the Applications folder, labeled with the version number. Mac OS X ships
with various versions of Python as part of the system, but you don’t need to
worry about that—Python 3 will be installed in addition to the system version.
You can find more information about using Python on OS X by following the
links on the Python home page.

� Linux/UNIX—Most Linux distributions come with Python installed. But the ver-
sions of Python vary, and the version of Python installed may not be version 3;
for this book, you need to be sure you have the Python 3 packages installed. It’s
also possible that IDLE isn’t installed by default, and you’ll need to install that
package separately. Although it’s also possible to build Python 3 from the
source code available on the www.python.org website, a number of additional
libraries are needed, and the process isn’t for novices. If a precompiled version
of Python exists for your distribution of Linux, I recommend using that. Use

Having more than one version of Python

You may already have an earlier version of Python installed on your machine. Many
Linux distributions and Mac OS X come with Python 2.x as part of the operating system.
Because Python 3 isn’t completely compatible with Python 2, it’s reasonable to wonder
if installing both versions on the same computer will cause a conflict.

There’s no need to worry; you can have multiple versions of Python on the same com-
puter. In the case of UNIX-based systems like OS X and Linux, Python 3 installs along-
side the older version and doesn’t replace it. When your system looks for “python,”
it still finds the one it expects; and when you want to access Python 3, you can run
python3.1 or idle3.1. In Windows, the different versions are installed in separate
locations and have separate menu entries.
Licensed to Kerri Ross <pedbro@gmail.com>

12 CHAPTER 2 Getting started

the software management system for your distribution to locate and install the
correct packages for Python 3 and IDLE. Versions are also available for running
Python under many other operating systems. See www.python.org for a current
list of supported platforms and specifics on installation.

2.2 IDLE and the basic interactive mode
You have two built-in options for obtaining interactive access to the Python inter-
preter: the original basic (command-line) mode and IDLE. IDLE is available on many
platforms, including Windows, Mac, and Linux, but it may not be available on others.
You may need to do more work and install additional software packages to get IDLE
running, but it will be worth it because it’s a large step up from the basic interactive
mode. On the other hand, even if you normally use IDLE, at times you’ll likely want to
fire up the basic mode. You should be familiar enough to start and use either one.

2.2.1 The basic interactive mode

The basic interactive mode is a rather primitive environment. But the interactive
examples in this book are generally small; and later in this book, you’ll learn how to
easily bring code you’ve placed in a file into your session (using the module mecha-
nism). Let’s look at how to start a basic session on Windows, Mac OS X, and UNIX:

� Starting a basic session on Windows—For version 3.x of Python, you navigate to the
Python (command-line) entry on the Python 3.x submenu of the Programs
folder on the Start menu, and click it. Alternatively, you can directly find the
Python.exe executable (for example, in C:\Python31) and double-click it.
Doing so brings up the window shown in figure 2.1.

� Starting a basic session on Mac OS X—Open a terminal window, and type python3.
If you get a “Command not found” error, run the Update Shell Profile.

command script found in the Python3 subfolder in the Applications folder.
� Starting a basic session on UNIX—Type python3.1 at a command prompt. A ver-

sion message similar to the one shown in figure 2.1 followed by the Python
prompt >>> appears in the current window.

Figure 2.1 Basic
interactive mode on
Windows XP
Licensed to Kerri Ross <pedbro@gmail.com>

13IDLE and the basic interactive mode

Most platforms have a command-line-editing and command-history mechanism. You
can use the up and down arrows, as well as the Home, End, Page Up, and Page Down
keys, to scroll through past entries and repeat them by pressing the Enter key. (See
“Basic Python interactive mode summary” at the end of the appendix.) This is all you
need to work your way through this book as you’re learning Python. Another option is
to use the excellent Python mode available for Emacs, which, among other things,
provides access to the interactive mode of Python through an integrated shell buffer.

2.2.2 The IDLE integrated development environment

IDLE is the built-in development environment for Python. Its name is based on the
acronym for integrated development environment (of course, it may have been influenced
by the last name of a certain cast member of a particular British television show). IDLE
combines an interactive interpreter with code editing and debugging tools to give you
one-stop shopping as far as creating Python code is concerned. IDLE’s various tools
make it an attractive place to start as you learn Python. Let’s look at how you run IDLE
on Windows, Mac OS X, and Linux:

� Starting IDLE on Windows—For version 3.1 of Python, you navigate to the IDLE
(Python GUI) entry of the Python 3.1 submenu of the Programs folder of your
Start menu, and click it. Doing so brings up the window shown in figure 2.2.

� Starting IDLE on Mac OS X—Navigate to the Python 3.x subfolder in the Applica-
tions folder, and run IDLE from there.

� Starting IDLE on Linux or UNIX—Type idle3.1 at a command prompt. This
brings up a window similar to the one shown in figure 2.2. If you installed IDLE
through your distribution’s package manager, there should also be a menu
entry for IDLE under the Programming submenu or something similar.

Exiting the interactive shell

To exit from a basic session, press Ctrl-Z (if you’re on Windows) or Ctrl-D (if you’re on
Linux or UNIX) or type exit() at a command prompt.

Figure 2.2 IDLE
on Windows
Licensed to Kerri Ross <pedbro@gmail.com>

14 CHAPTER 2 Getting started

2.2.3 Choosing between basic interactive mode and IDLE

Which should you use, IDLE or the basic shell window? To begin, use either IDLE or
the Python Shell window. Both have all you need to work through the code examples
in this book until you reach chapter 10. From there, we’ll cover writing your own mod-
ules, and IDLE will be a convenient way to create and edit files. But if you have a strong
preference for another editor, you may find that a basic shell window and your favor-
ite editor serve you just as well. If you don’t have any strong editor preferences, I sug-
gest using IDLE from the beginning.

2.3 Using IDLE’s Python Shell window
The Python Shell window (figure 2.3) opens when you fire up IDLE. It provides auto-
matic indentation and colors your code as you type it in, based on Python syntax types.

 You can move around the buffer using the mouse, the arrow keys, the Page Up and
Page Down keys, and/or a number of the standard Emacs key bindings. Check the
Help menu for the details.

 Everything in your session is buffered. You can scroll or search up, place the cursor
on any line, and press Enter (creating a hard return), and that line will be copied to
the bottom of the screen, where you can edit it and then send it to the interpreter by
pressing the Enter key again. Or, leaving the cursor at the bottom, you can toggle up
and down through the previously entered commands using Alt-P and Alt-N. This will
successively bring copies of the lines to the bottom. When you have the one you want,
you can again edit it and then send it to the interpreter by pressing the Enter key. You
can complete Python keywords or user-defined values by pressing Alt-/.

Figure 2.3 Using the Python shell in IDLE. q Code is automatically colored (based on Python syntax) as
it’s typed in. w Here I typed f and then pressed Alt-/, and automatic completion finished the word
factorial. e I lost the prompt, so I pressed Ctrl-C to interrupt the interpreter and get the prompt back (a
closed bracket would have worked here as well). r Placing the cursor on any previous command and
pressing the Enter key moves the command and the cursor to the bottom, where you can edit the
command and then press Enter to send it to the interpreter. t Placing the cursor at the bottom, you can
toggle up and down through the history of previous commands using Alt-P and Alt-N. When you have the

command you want, edit it as desired and press Enter, and it will be sent to the interpreter.

Licensed to Kerri Ross <pedbro@gmail.com>

15Using the interactive prompt to explore Python

If you ever find yourself in a situation where you seem to be hung and can’t get a new
prompt, the interpreter is likely in a state where it’s waiting for you to enter something
specific. Pressing Ctrl-C sends an interrupt and should get you back to a prompt. It
can also be used to interrupt any running command. To exit IDLE, choose Exit from
the File menu.

 The Edit menu is the one you’ll likely be using the most to begin with. Like any of
the other menus, you can tear it off by double-clicking the dotted line at its top and
leaving it up beside your window.

2.4 Hello, world
Regardless of how you’re accessing Python’s interactive mode, you should see a
prompt consisting of three angle braces: >>>. This is the Python command prompt,
and it indicates that you can type in a command to be executed or an expression to be
evaluated. Start with the obligatory “Hello, World” program, which is a one-liner in
Python. (End each line you type with a hard return.)

>>> print("Hello, World")
Hello, World

Here I entered the print command at the command prompt, and the result appeared
on the screen.

 Executing the print function causes its argument to be printed to the standard
output, usually the screen. If the command had been executed while Python was run-
ning a Python program from a file, exactly the same thing would have happened:
“Hello, World” would have been printed to the screen.

 Congratulations! You’ve just written your first Python program, and we haven’t
even started talking about the language.

2.5 Using the interactive prompt to explore Python
Whether you’re in IDLE or at a standard interactive prompt, there are a couple of
handy tools to help you explore Python. The first is the help() function, which has
two modes. You can just enter help() at the prompt to enter the help system, where
you can get help on modules, keywords, or topics. When you’re in the help system,
you see a help> prompt, and you can enter a module name, such as math or some
other topic, to browse Python’s documentation on that topic.

 Usually it’s more convenient to use help() in a more targeted way. Entering a type
or variable name as a parameter for help() gives you an immediate display of that
type’s documentation:

>>> x = 2
>>> help(x)
Help on int object:

class int(object)
 | int(x[, base]) -> integer

 |

Licensed to Kerri Ross <pedbro@gmail.com>

16 CHAPTER 2 Getting started

 | Convert a string or number to an integer, if possible. A floating
 | point argument will be truncated towards zero (this does not include a
 | string representation of a floating point number!) When converting a
 | string, use the optional base. It is an error to supply a base when
 | converting a non-string.
 |
 | Methods defined here:
... (continues with a list of methods for an int)

Using help() in this way is handy for checking the exact syntax of a method or the
behavior of an object.

 The help() function is part of the pydoc library, which has several options for
accessing the documentation built into Python libraries. Because every Python instal-
lation comes with complete documentation, you can have all of the official documen-
tation at your fingertips, even if you aren’t online. See the appendix for more
information on accessing Python’s documentation.

 The other useful function is dir(), which lists the objects in a particular
namespace. Used with no parameters, it lists the current globals, but it can also list
objects for a module or even a type:

>>> dir()
['__builtins__', '__doc__', '__name__', '__package__', 'x']
>>> dir(int)
['__abs__', '__add__', '__and__', '__bool__', '__ceil__', '__class__',

'__delattr__', '__divmod__', '__doc__', '__eq__', '__float__',
'__floor__', '__floordiv__', '__format__', '__ge__', '__getattribute__',
'__getnewargs__', '__gt__', '__hash__', '__index__', '__init__',
'__int__', '__invert__', '__le__', '__lshift__', '__lt__', '__mod__',
'__mul__', '__ne__', '__neg__', '__new__', '__or__', '__pos__',
'__pow__', '__radd__', '__rand__', '__rdivmod__', '__reduce__',
'__reduce_ex__', '__repr__', '__rfloordiv__', '__rlshift__', '__rmod__',
'__rmul__', '__ror__', '__round__', '__rpow__', '__rrshift__',
'__rshift__', '__rsub__', '__rtruediv__', '__rxor__', '__setattr__',
'__sizeof__', '__str__', '__sub__', '__subclasshook__', '__truediv__',
'__trunc__', '__xor__', 'bit_length', 'conjugate', 'denominator',
'imag', 'numerator', 'real']

>>>

dir() is useful for finding out what methods and data are defined, for reminding
yourself at a glance of all the members that belong an object or module, and for
debugging, because you can see what is defined where.

 You can use two other functions to see local and global variables, respectively. They
are globals and locals:

>>> globals()
{'__builtins__': <module 'builtins' (built-in)>, '__name__': '__main__',

'__doc__': None, '__package__': None}

Unlike dir, both globals and locals show the values associated with the objects.
You’ll find out more about both of these functions in chapter 10; for now, it’s enough
Licensed to Kerri Ross <pedbro@gmail.com>

17Summary

that you’re aware that you have several options for examining what’s going on within a
Python session.

2.6 Summary
Installing Python 3 is the first step. On Windows systemsm it’s as simple as download-
ing the latest installer from python.org and running it. On Linux, UNIX, and Mac sys-
tems the steps will vary. Check for instructions on the www.python.org website, and
use your system’s software package installer where possible.

 After you’ve installed Python, you can use either the basic interactive shell (and
later, your favorite editor) or the IDLE integrated development environment. Which-
ever you decide to use, it’s time to move to chapter 3, where we’ll make a quick survey
of Python the language.
Licensed to Kerri Ross <pedbro@gmail.com>

The Quick Python overview
The purpose of this chapter is to give you a basic feeling for the syntax, semantics,
capabilities, and philosophy of the Python language. It has been designed to pro-
vide you with an initial perspective or conceptual framework on which you’ll be
able to add details as you encounter them in the rest of the book.

 On an initial read, you needn’t be concerned about working through and
understanding the details of the code segments. You’ll be doing fine if you pick up
a bit of an idea about what is being done. The subsequent chapters of this book will
walk you through the specifics of these features and won’t assume prior knowledge.
You can always return to this chapter and work through the examples in the appro-
priate sections as a review after you’ve read the later chapters.

This chapter covers
■ Surveying Python
■ Using built-in data types
■ Controlling program flow
■ Creating modules
■ Using object-oriented programming
18

Licensed to Kerri Ross <pedbro@gmail.com>

19Built-in data types

3.1 Python synopsis
Python has a number of built-in data types such as integers, floats, complex numbers,
strings, lists, tuples, dictionaries, and file objects. These can be manipulated using lan-
guage operators, built-in functions, library functions, or a data type’s own methods.

 Programmers can also define their own classes and instantiate their own class
instances.1 These can be manipulated by programmer-defined methods as well as the
language operators and built-in functions for which the programmer has defined the
appropriate special method attributes.

 Python provides conditional and iterative control flow through an if-elif-else
construct along with while and for loops. It allows function definition with flexible
argument-passing options. Exceptions (errors) can be raised using the raise state-
ment and caught and handled using the try-except-else construct.

 Variables don’t have to be declared and can have any built-in data type, user-
defined object, function, or module assigned to them.

3.2 Built-in data types
Python has several built-in data types, from scalars like numbers and Booleans, to
more complex structures like lists, dictionaries, and files.

3.2.1 Numbers

Python’s four number types are integers, floats, complex numbers, and Booleans:

� Integers—1, –3, 42, 355, 888888888888888, –7777777777
� Floats—3.0, 31e12, –6e-4
� Complex numbers—3 + 2j, –4- 2j, 4.2 + 6.3j
� Booleans—True, False

You can manipulate them using the arithmetic operators: + (addition), – (subtrac-
tion), * (multiplication), / (division), ** (exponentiation), and % (modulus).

 The following examples use integers:

>>> x = 5 + 2 - 3 * 2
>>> x
1
>>> 5 / 2
2.5
>>> 5 // 2
2
>>> 5 % 2
1
>>> 2 ** 8
256
>>> 1000000001 ** 3
1000000003000000003000000001

1 The Python documentation and this book use the term object to refer to instances of any Python data type, not just what

q

w

e

many other languages would call class instances. This is because all Python objects are instances of one class or another.

Licensed to Kerri Ross <pedbro@gmail.com>

20 CHAPTER 3 The Quick Python overview

Division of integers with / q results in a float (new in Python 3.x), and division of
integers with // w results in truncation. Note that integers are of unlimited size e;
they will grow as large as you need them to.

 These examples work with floats, which are based on the doubles in C:

>>> x = 4.3 ** 2.4
>>> x
33.137847377716483
>>> 3.5e30 * 2.77e45
9.6950000000000002e+75
>>> 1000000001.0 ** 3
1.000000003e+27

Next, the following examples use complex numbers:

>>> (3+2j) ** (2+3j)
(0.68176651908903363-2.1207457766159625j)
>>> x = (3+2j) * (4+9j)
>>> x
(-6+35j)
>>> x.real
-6.0
>>> x.imag
35.0

Complex numbers consist of both a real element and an imaginary element, suffixed
with a j. In the preceding code, variable x is assigned to a complex number q. You
can obtain its “real” part using the attribute notation x.real.

 Several built-in functions can operate on numbers. There are also the library mod-
ule cmath (which contains functions for complex numbers) and the library module
math (which contains functions for the other three types):

>>> round(3.49)
3
>>> import math
>>> math.ceil(3.49)
4

Built-in functions are always available and are called using a standard function calling
syntax. In the preceding code, round is called with a float as its input argument q.

 The functions in library modules are made available using the import statement.
At w, the math library module is imported, and its ceil function is called using attri-
bute notation: module.function(arguments).

 The following examples use Booleans:

>>> x = False
>>> x
False
>>> not x
True
>>> y = True * 2
>>> y

q

q
Built-in
function w Library module

function
2 q

Licensed to Kerri Ross <pedbro@gmail.com>

21Built-in data types

Other than their representation as True and False, Booleans behave like the numbers
1 (True) and 0 (False) q.

3.2.2 Lists

Python has a powerful built-in list type:

[]
[1]
[1, 2, 3, 4, 5, 6, 7, 8, 12]
[1, "two", 3L, 4.0, ["a", "b"], (5,6)]

A list can contain a mixture of other types as its elements, including strings, tuples,
lists, dictionaries, functions, file objects, and any type of number q.

 A list can be indexed from its front or back. You can also refer to a subsegment, or
slice, of a list using slice notation:

>>> x = ["first", "second", "third", "fourth"]
>>> x[0]
'first'
>>> x[2]
'third'
>>> x[-1]
'fourth'
>>> x[-2]
'third'
>>> x[1:-1]
['second', 'third']
>>> x[0:3]
['first', 'second', 'third']
>>> x[-2:-1]
['third']
>>> x[:3]
['first', 'second', 'third']
>>> x[-2:]
['third', 'fourth']

Index from the front q using positive indices (starting with 0 as the first element).
Index from the back w using negative indices (starting with -1 as the last element).
Obtain a slice using [m:n] e, where m is the inclusive starting point and n is the exclu-
sive ending point (see table 3.1). An [:n] slice r starts at its beginning, and an [m:]
slice goes to a list’s end.

Table 3.1 List indices

x= ["first" , "second" , "third" , "fourth"]

Positive indices 0 1 2 3

Negative indices –4 –3 –2 –1

q

q

w

e

r

Licensed to Kerri Ross <pedbro@gmail.com>

22 CHAPTER 3 The Quick Python overview

You can use this notation to add, remove, and replace elements in a list or to obtain
an element or a new list that is a slice from it:

>>> x = [1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> x[1] = "two"
>>> x[8:9] = []
>>> x
[1, 'two', 3, 4, 5, 6, 7, 8]
>>> x[5:7] = [6.0, 6.5, 7.0]
>>> x
[1, 'two', 3, 4, 5, 6.0, 6.5, 7.0, 8]
>>> x[5:]
[6.0, 6.5, 7.0, 8]

The size of the list increases or decreases if the new slice is bigger or smaller than the
slice it’s replacing q.

 Some built-in functions (len, max, and min), some operators (in, +, and *), the del
statement, and the list methods (append, count, extend, index, insert, pop, remove,
reverse, and sort) will operate on lists:

>>> x = [1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> len(x)
9
>>> [-1, 0] + x
[-1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> x.reverse()
>>> x
[9, 8, 7, 6, 5, 4, 3, 2, 1]

The operators + and * each create a new list, leaving the original unchanged q. A list’s
methods are called using attribute notation on the list itself: x.method(arguments)w.

 A number of these operations repeat functionality that can be performed with
slice notation, but they improve code readability.

3.2.3 Tuples

Tuples are similar to lists but are immutable—that is, they can’t be modified after they
have been created. The operators (in, +, and *) and built-in functions (len, max, and
min), operate on them the same way as they do on lists, because none of them modify
the original. Index and slice notation work the same way for obtaining elements or
slices but can’t be used to add, remove, or replace elements. There are also only two
tuple methods: count and index. A major purpose of tuples is for use as keys for dic-
tionaries. They’re also more efficient to use when you don’t need modifiability.

()
(1,)
(1, 2, 3, 4, 5, 6, 7, 8, 12)
(1, "two", 3L, 4.0, ["a", "b"], (5, 6))

A one-element tuple q needs a comma. A tuple, like a list, can contain a mixture of
other types as its elements, including strings, tuples, lists, dictionaries, functions, file

q

q

w

q

w

objects, and any type of number w.

Licensed to Kerri Ross <pedbro@gmail.com>

23Built-in data types

 A list can be converted to a tuple using the built-in function tuple:

>>> x = [1, 2, 3, 4]
>>> tuple(x)
(1, 2, 3, 4)

Conversely, a tuple can be converted to a list using the built-in function list:

>>> x = (1, 2, 3, 4)
>>> list(x)
[1, 2, 3, 4]

3.2.4 Strings

String processing is one of Python’s strengths. There are many options for delimiting
strings:

"A string in double quotes can contain 'single quote' characters."
'A string in single quotes can contain "double quote" characters.'
'''\This string starts with a tab and ends with a newline character.\n'''
"""This is a triple double quoted string, the only kind that can
 contain real newlines."""

Strings can be delimited by single (' '), double (" "), triple single (''' '''), or tri-
ple double (""" """) quotations and can contain tab (\t) and newline (\n) charac-
ters.

 Strings are also immutable. The operators and functions that work with them
return new strings derived from the original. The operators (in, +, and *) and built-in
functions (len, max, and min) operate on strings as they do on lists and tuples. Index
and slice notation works the same for obtaining elements or slices but can’t be used to
add, remove, or replace elements.

 Strings have several methods to work with their contents, and the re library mod-
ule also contains functions for working with strings:

>>> x = "live and let \t \tlive"
>>> x.split()
['live', 'and', 'let', 'live']
>>> x.replace(" let \t \tlive", "enjoy life")
'live and enjoy life'
>>> import re
>>> regexpr = re.compile(r"[\t]+")
>>> regexpr.sub(" ", x)
'live and let live'

The re module q provides regular expression functionality. It provides more sophis-
ticated pattern extraction and replacement capability than the string module.

 The print function outputs strings. Other Python data types can be easily con-
verted to strings and formatted:

>>> e = 2.718
>>> x = [1, "two", 3, 4.0, ["a", "b"], (5, 6)]
>>> print("The constant e is:", e, "and the list x is:", x)

q

q

Licensed to Kerri Ross <pedbro@gmail.com>

24 CHAPTER 3 The Quick Python overview

The constant e is: 2.718 and the list x is: [1, 'two', 3, 4.0,
['a', 'b'], (5, 6)]
>>> print("the value of %s is: %.2f" % ("e", e))
the value of e is: 2.72

Objects are automatically converted to string representations for printing q. The %
operator w provides a formatting capability similar to that of C’s sprintf.

3.2.5 Dictionaries

Python’s built-in dictionary data type provides associative array functionality imple-
mented using hash tables. The built-in len function returns the number of key-value
pairs in a dictionary. The del statement can be used to delete a key-value pair. As is the
case for lists, a number of dictionary methods (clear, copy, get, has_key, items, keys,
update, and values) are available.

>>> x = {1: "one", 2: "two"}
>>> x["first"] = "one"
>>> x[("Delorme", "Ryan", 1995)] = (1, 2, 3)
>>> list(x.keys())
['first', 2, 1, ('Delorme', 'Ryan', 1995)]
>>> x[1]
'one'
>>> x.get(1, "not available")
'one'
>>> x.get(4, "not available")
'not available'

Keys must be of an immutable type q. This includes numbers, strings, and tuples. Val-
ues can be any kind of object, including mutable types such as lists and dictionaries.
The dictionary method get w optionally returns a user-definable value when a key
isn’t in a dictionary.

3.2.6 Sets

A set in Python is an unordered collection of objects, used in situations where mem-
bership and uniqueness in the set are the main things you need to know about that
object. You can think of sets as a collection of dictionary keys without any associated
values:

>>> x = set([1, 2, 3, 1, 3, 5])
>>> x
{1, 2, 3, 5}
>>> 1 in x
True
>>> 4 in x
False
>>>

You can create a set by using set on a sequence, like a list q. When a sequence is
made into a set, duplicates are removed w. The in keyword e is used to check for
membership of an object in a set.

w

q

w

q
w

e

e

Licensed to Kerri Ross <pedbro@gmail.com>

25Control flow structures

3.2.7 File objects

A file is accessed through a Python file object:

>>> f = open("myfile", "w")
>>> f.write("First line with necessary newline character\n")
44
>>> f.write("Second line to write to the file\n")
33
>>> f.close()
>>> f = open("myfile", "r")
>>> line1 = f.readline()
>>> line2 = f.readline()
>>> f.close()
>>> print(line1, line2)
First line with necessary newline character
Second line to write to the file
>>> import os
>>> print(os.getcwd())
c:\My Documents\test
>>> os.chdir(os.path.join("c:", "My Documents", "images"))
>>> filename = os.path.join("c:", "My Documents",
"test", "myfile")
>>> print(filename)
c:\My Documents\test\myfile
>>> f = open(filename, "r")
>>> print(f.readline())
First line with necessary newline character
>>> f.close()

The open statement q creates a file object. Here the file myfile in the current working
directory is being opened in write ("w") mode. After writing two lines to it and closing
it w, we open the same file again, this time in the read ("r") mode. The os module e
provides a number of functions for moving around the file system and working with
the pathnames of files and directories. Here, we move to another directory r. But by
referring to the file by an absolute pathname t, we are still able to access it.

 A number of other input/output capabilities are available. You can use the built-in
input function to prompt and obtain a string from the user. The sys library module
allows access to stdin, stdout, and stderr. The struct library module provides sup-
port for reading and writing files that were generated by or are to be used by C pro-
grams. The Pickle library module delivers data persistence through the ability to
easily read and write the Python data types to and from files.

3.3 Control flow structures
Python has a full range of structures to control code execution and program flow,
including common branching and looping structures.

3.3.1 Boolean values and expressions

Python has several ways of expressing Boolean values; the Boolean constant False, 0,

q

w

e

r

t

the Python nil value None, and empty values (for example, the empty list [] or empty

Licensed to Kerri Ross <pedbro@gmail.com>

26 CHAPTER 3 The Quick Python overview

string "") are all taken as False. The Boolean constant True and everything else are
considered True.

 You can create comparison expressions using the comparison operators (<, <=, ==,
>, >=, !=, is, is not, in, not in) and the logical operators (and, not, or), which all
return True or False.

3.3.2 The if-elif-else statement

The block of code after the first true condition (of an if or an elif) is executed. If
none of the conditions is true, the block of code after the else is executed:

x = 5
if x < 5:
 y = -1
 z = 5
elif x > 5:
 y = 1
 z = 11
else:
 y = 0
 z = 10
print(x, y, z)

The elif and else clauses are optional q, and there can be any number of elif
clauses. Python uses indentation to delimit blocks w. No explicit delimiters such as
brackets or braces are necessary. Each block consists of one or more statements sepa-
rated by newlines. These statements must all be at the same level of indentation.

 The output here would be 5 0 10.

3.3.3 The while loop

The while loop is executed as long as the condition (which here is x > y) is true:

u, v, x, y = 0, 0, 100, 30
while x > y:
 u = u + y
 x = x - y
 if x < y + 2:
 v = v + x
 x = 0
 else:
 v = v + y + 2
 x = x - y - 2
print(u, v)

This is a shorthand notation. Here, u and v are assigned a value of 0, x is set to 100,
and y obtains a value of 30 q. This is the loop block w. It’s possible for it to contain
break (which ends the loop) and continue statements (which abort the current itera-
tion of the loop).

 The output here would be 60 40.

q

w

q

w

Licensed to Kerri Ross <pedbro@gmail.com>

27Control flow structures

3.3.4 The for loop

The for loop is simple but powerful because it’s possible to iterate over any iterable
type, such as a list or tuple. Unlike in many languages, Python’s for loop iterates over
each of the items in a sequence, making it more of a foreach loop. The following
loop finds the first occurrence of an integer that is divisible by 7:

item_list = [3, "string1", 23, 14.0, "string2", 49, 64, 70]
for x in item_list:
 if not isinstance(x, int):
 continue
 if not x % 7:
 print("found an integer divisible by seven: %d" % x)
 break

x is sequentially assigned each value in the list q. If x isn’t an integer, then the rest of
this iteration is aborted by the continue statement w. Flow control continues with x
set to the next item from the list. After the first appropriate integer is found, the loop
is ended by the break statement e.

 The output here would be

found an integer divisible by seven: 49

3.3.5 Function definition

Python provides flexible mechanisms for passing arguments to functions:

>>> def funct1(x, y, z):
... value = x + 2*y + z**2
... if value > 0:
... return x + 2*y + z**2
... else:
... return 0
...
>>> u, v = 3, 4
>>> funct1(u, v, 2)
15
>>> funct1(u, z=v, y=2)
23
>>> def funct2(x, y=1, z=1):
... return x + 2 * y + z ** 2
...
>>> funct2(3, z=4)
21
>>> def funct3(x, y=1, z=1, *tup):
... print((x, y, z) + tup)
...
>>> funct3(2)
(2, 1, 1)
>>> funct3(1, 2, 3, 4, 5, 6, 7, 8, 9)
(1, 2, 3, 4, 5, 6, 7, 8, 9)
>>> def funct4(x, y=1, z=1, **dictionary):
... print(x, y, z, dict)
>>> funct4(1, 2, m=5, n=9, z=3)

q

w

e

q

w

e

r

t

y

1 2 3 {'n': 9, 'm': 5}

Licensed to Kerri Ross <pedbro@gmail.com>

28 CHAPTER 3 The Quick Python overview

Functions are defined using the def statement q. The return statement w is what a
function uses to return a value. This value can be of any type. If no return statement is
encountered, Python’s None value is returned. Function arguments can be entered
either by position or by name (keyword). Here z and y are entered by name e. Func-
tion parameters can be defined with defaults that are used if a function call leaves them
out r. A special parameter can be defined that will collect all extra positional argu-
ments in a function call into a tuple t. Likewise, a special parameter can be defined
that will collect all extra keyword arguments in a function call into a dictionary y.

3.3.6 Exceptions

Exceptions (errors) can be caught and handled using the try-except-finally-else
compound statement. This statement can also catch and handle exceptions you
define and raise yourself. Any exception that isn’t caught will cause the program to
exit. Listing 3.1 shows basic exception handling.

class EmptyFileError(Exception):
 pass
filenames = ["myfile1", "nonExistent", "emptyFile", "myfile2"]
for file in filenames:
 try:
 f = open(file, 'r')
 line = f.readline()
 if line == "":
 f.close()
 raise EmptyFileError("%s: is empty" % file)
 except IOError as error:
 print("%s: could not be opened: %s" % (file, error.strerror)
 except EmptyFileError as error:
 print(error)
 else:
 print("%s: %s" % (file, f.readline()))
 finally:
 print("Done processing", file)

Here we define our own exception type inheriting from the base Exception type q. If
an IOError or EmptyFileError occurs during the execution of the statements in the
try block, the associated except block is executed w. This is where an IOError might
be raised e. Here we raise the EmptyFileError r. The else clause is optional t.
It’s executed if no exception occurs in the try block (note that in this example, con-
tinue statements in the except blocks could have been used instead). The finally
clause is optional y. It’s executed at the end of the block whether an exception was
raised or not.

Listing 3.1 File exception.py

q

ew

r

t

y

Licensed to Kerri Ross <pedbro@gmail.com>

29Module creation

3.4 Module creation
It’s easy to create your own modules, which can be imported and used in the same way
as Python’s built-in library modules. The example in listing 3.2 is a simple module
with one function that prompts the user to enter a filename and determines the num-
ber of times words occur in this file.

"""wo module. Contains function: words_occur()"""
interface functions
def words_occur():
 """words_occur() - count the occurrences of words in a file."""
 # Prompt user for the name of the file to use.
 file_name = input("Enter the name of the file: ")
 # Open the file, read it and store its words in a list.
 f = open(file_name, 'r')
 word_list = f.read().split()
 f.close()
 # Count the number of occurrences of each word in the file.
 occurs_dict = {}
 for word in word_list:
 # increment the occurrences count for this word
 occurs_dict[word] = occurs_dict.get(word, 0) + 1
 # Print out the results.
 print("File %s has %d words (%d are unique)" \
 % (file_name, len(word_list), len(occurs_dict)))
 print(occurs_dict)
if __name__ == '__main__':
 words_occur()

Documentation strings are a standard way of documenting modules, functions, meth-
ods, and classes q. Comments are anything beginning with a # character w. read
returns a string containing all the characters in a file e, and split returns a list of
the words of a string “split out” based on whitespace. You can use a \ to break a long
statement across multiple lines r. This allows the program to also be run as a script
by typing python wo.py at a command line t.

 If you place a file in one of the directories on the module search path, which can
be found in sys.path, then it can be imported like any of the built-in library modules
using the import statement:

>>> import wo
>>> wo.words_occur()

This function is called q using the same attribute syntax as used for library module
functions.

Listing 3.2 File wo.py

qw

e

r

t

q

Licensed to Kerri Ross <pedbro@gmail.com>

30 CHAPTER 3 The Quick Python overview

 Note that if you change the file wo.py on disk, import won’t bring your changes in
to the same interactive session. You use the reload function from the imp library in
this situation:

>>> import imp
>>> imp.reload(wo)
<module 'wo'>

For larger projects, there is a generalization of the module concept called packages.
This allows you to easily group a number of modules together in a directory or direc-
tory subtree and import and hierarchically refer to them using a package.subpack-
age.module syntax. This entails little more than the creation of a possibly empty
initialization file for each package or subpackage.

3.5 Object-oriented programming
Python provides full support for OOP. Listing 3.3 is an example that might be the start
of a simple shapes module for a drawing program. It’s intended mainly to serve as ref-
erence if you’re already familiar with object-oriented programming. The callout notes
relate Python’s syntax and semantics to the standard features found in other lan-
guages.

"""sh module. Contains classes Shape, Square and Circle"""
class Shape:
 """Shape class: has method move"""
 def __init__(self, x, y):
 self.x = x
 self.y = y
 def move(self, deltaX, deltaY):
 self.x = self.x + deltaX
 self.y = self.y + deltaY
class Square(Shape):
 """Square Class:inherits from Shape"""
 def __init__(self, side=1, x=0, y=0):
 Shape.__init__(self, x, y)
 self.side = side
class Circle(Shape):
 """Circle Class: inherits from Shape and has method area"""
 pi = 3.14159
 def __init__(self, r=1, x=0, y=0):
 Shape.__init__(self, x, y)
 self.radius = r
 def area(self):
 """Circle area method: returns the area of the circle."""
 return self.radius * self.radius * self.pi
 def __str__(self):
 return "Circle of radius %s at coordinates (%d, %d)"\
 % (self.radius, self.x, self.y)

Listing 3.3 File sh.py

q

w

e

r

t

y

u

i

Licensed to Kerri Ross <pedbro@gmail.com>

31Summary

Classes are defined using the class keyword q. The instance initializer method (con-
structor) for a class is always called __init__ w. Instance variables x and y are created
and initialized here e. Methods, like functions, are defined using the def keyword
r. The first argument of any method is by convention called self. When the method
is invoked, self is set to the instance that invoked the method. Class Circle inherits
from class Shape t. This is similar to but not exactly like a standard class variable y.
A class must, in its initializer, explicitly call the initializer of its base class u. The
__str__ method is used by the print function i. Other special attribute methods
permit operator overloading or are employed by built-in methods such as the length
(len) function.

 Importing this file makes these classes available:

>>> import sh
>>> c1 = sh.Circle()
>>> c2 = sh.Circle(5, 15, 20)
>>> print(c1)
Circle of radius 1 at coordinates (0, 0)
>>> print(c2)
Circle of radius 5 at coordinates (15, 20)
>>> c2.area()
78.539749999999998
>>> c2.move(5,6)
>>> print(c2)
Circle of radius 5 at coordinates (20, 26)

The initializer is implicitly called, and a circle instance is created q. The print func-
tion implicitly uses the special __str__ method w. Here we see that the move method
of Circle’s parent class Shape is available e. A method is called using attribute syntax
on the object instance: object.method(). The first (self) parameter is set implicitly.

3.6 Summary
This ends our overview of Python. Don’t worry if some parts were confusing. You need
an understanding of only the broad strokes at this point. The chapters in part 2 and
part 3 won’t assume prior knowledge of their concepts and will walk you through
these features in detail. You can also think of this as an early preview of what your level
of knowledge will be when you’re ready to move on to the chapters in part 4. You may
find it valuable to return here and work through the appropriate examples as a review
after we cover the features in subsequent chapters.

 If this chapter was mostly a review for you, or there were only a few features you
would like to learn more about, feel free to jump ahead, using the index, the table of
contents, or the appendix. You can always slow down if anything catches your eye. You
probably should have an understanding of Python to the level that you have no trou-
ble understanding most of this chapter before you move on to the chapters in part 4.

q

w

e

Licensed to Kerri Ross <pedbro@gmail.com>

32 CHAPTER 3 The Quick Python overview
Licensed to Kerri Ross <pedbro@gmail.com>

Part 2

The essentials

In the chapters that follow, we’ll show you the essentials of Python. We’ll start
from the absolute basics of what makes a Python program and move through
Python’s built-in data types and control structures, as well as defining functions
and using modules.

 The last section of this part moves on to show you how to write standalone
Python programs, manipulate files, handle errors, and use classes. The section
ends with chapter 16, which is a brief introduction to GUI programming using
Python’s tkinter module.

Licensed to Kerri Ross <pedbro@gmail.com>

Licensed to Kerri Ross <pedbro@gmail.com>

The absolute basics
This chapter describes the absolute basics in Python: assignments and expressions,
how to type a number or a string, how to indicate comments in code, and so forth.
It starts out with a discussion of how Python block structures its code, which is dif-
ferent from any other major language.

4.1 Indentation and block structuring
Python differs from most other programming languages because it uses whitespace
and indentation to determine block structure (that is, to determine what constitutes
the body of a loop, the else clause of a conditional, and so on). Most languages use

This chapter covers
■ Indenting and block structuring
■ Differentiating comments
■ Assigning variables
■ Evaluating expressions
■ Using common data types
■ Getting user input
■ Using correct Pythonic style
35

Licensed to Kerri Ross <pedbro@gmail.com>

36 CHAPTER 4 The absolute basics

braces of some sort to do this. Here is C code that calculates the factorial of 9, leaving
the result in the variable r:

/* This is C code */
int n, r;
n = 9;
r = 1;
while (n > 0) {
 r *= n;
 n--;
}

The { and } delimit the body of the while loop, the code that is executed with each
repetition of the loop. The code is usually indented more or less as shown, to make
clear what’s going on, but it could also be written like this:

/* And this is C code with arbitrary indentation */
 int n, r;
 n = 9;
 r = 1;
 while (n > 0) {
r *= n;
n--;
}

It still would execute correctly, even though it’s rather difficult to read.
 Here’s the Python equivalent:

This is Python code. (Yea!)
n = 9
r = 1
while n > 0:
 r = r * n
 n = n - 1

Python doesn’t use braces to indicate code structure; instead, the indentation itself is
used. The last two lines of the previous code are the body of the while loop because
they come immediately after the while statement and are indented one level further
than the while statement. If they weren’t indented, they wouldn’t be part of the body
of the while.

 Using indentation to structure code rather than braces may take some getting used
to, but there are significant benefits:

� It’s impossible to have missing or extra braces. You’ll never need to hunt
through your code for the brace near the bottom that matches the one a few
lines from the top.

� The visual structure of the code reflects its real structure. This makes it easy to
grasp the skeleton of code just by looking at it.

� Python coding styles are mostly uniform. In other words, you’re unlikely to go
crazy from dealing with someone’s idea of aesthetically pleasing code. Their

Python also supports
C-style r *= n Python also supports

n -= 1
code will look pretty much like yours.

Licensed to Kerri Ross <pedbro@gmail.com>

37Variables and assignments

You probably use consistent indentation in your code already, so this won’t be a big
step for you. If you’re using IDLE, it automatically indents lines. You just need to back-
space out of levels of indentation when desired. Most programming editors and IDEs,
including Emacs, VIM, and Eclipse, to name a few, provide this functionality as well.
One thing that may trip you up once or twice until you get used to it is that the Python
interpreter returns an error message if you have a space (or spaces) preceding the
commands you enter at a prompt.

4.2 Differentiating comments
For the most part, anything following a # symbol in a Python file is a comment and is
disregarded by the language. The obvious exception is a # in a string, which is just a
character of that string:

Assign 5 to x
x = 5
x = 3 # Now x is 3
x = "# This is not a comment"

We’ll put comments into Python code frequently.

4.3 Variables and assignments
The most commonly used command in Python is assignment, which looks pretty close
to what you might’ve used in other languages. Python code to create a variable called
x and assign the value 5 to that variable is

x = 5

In Python, neither a variable type declaration nor an end-of-line delimiter is necessary,
unlike in many other computer languages. The line is ended by the end of the line.
Variables are created automatically when they’re first assigned.

 Python variables can be set to any object, unlike C or many other languages’ vari-
ables, which can store only the type of value they’re declared as. The following is per-
fectly legal Python code:

>>> x = "Hello"
>>> print(x)
Hello
>>> x = 5
>>> print(x)
5

x starts out referring to the string object "Hello" and then refers to the integer object
5. Of course, this feature can be abused because arbitrarily assigning the same vari-
able name to refer successively to different data types can make code confusing to
understand.

 A new assignment overrides any previous assignments. The del statement deletes
the variable. Trying to print the variable’s contents after deleting it gives an error the

same as if the variable had never been created in the first place.

Licensed to Kerri Ross <pedbro@gmail.com>

38 CHAPTER 4 The absolute basics

>>> x = 5
>>> print(x)
5
>>> del x
>>> print(x)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
NameError: name 'x' is not defined
>>>

Here we have our first look at a traceback, which is printed when an error, called an
exception, has been detected. The last line tells us what exception was detected, which
in this case is a NameError exception on x. After its deletion, x is no longer a valid vari-
able name. In this example, the trace returns only line 1, in <module> because only
the single line has been sent in the interactive mode. In general, the full dynamic call
structure of the existing function calls at the time of the occurrence of the error is
returned. If you’re using IDLE, you obtain the same information with some small dif-
ferences; it may look something like this:
Traceback (most recent call last):

 File "<pyshell#3>", line 1, in <module>
 print(x)
NameError: name 'x' is not defined

Chapter 14 will describe this mechanism in more detail. A full list of the possible
exceptions and what causes them is in the appendix of this book. Use the index to
find any specific exception (such as NameError) you receive.

 Variable names are case sensitive and can include any alphanumeric character as
well as underscores but must start with a letter or underscore. See section 4.10 for
more guidance on the Pythonic style for creating variable names.

4.4 Expressions
Python supports arithmetic and similar expressions; these will be familiar to most
readers. The following code calculates the average of 3 and 5, leaving the result in the
variable z:

x = 3
y = 5
z = (x + y) / 2

Note that unlike the arithmetic rules of C in terms of type coercions, arithmetic oper-
ators involving only integers do not always return an integer. Even though all the val-
ues are integers, division (starting with Python 3) returns a floating-point number, so
the fractional part isn’t truncated. If you want traditional integer division returning a
truncated integer, you can use the // instead.

 Standard rules of arithmetic precedence apply; if we’d left out the parentheses in
the last line, it would’ve been calculated as x + (y / 2).
Licensed to Kerri Ross <pedbro@gmail.com>

39Strings

 Expressions don’t have to involve just numerical values; strings, Boolean values,
and many other types of objects can be used in expressions in various ways. We’ll dis-
cuss these in more detail as they’re used.

4.5 Strings
You’ve already seen that Python, like most other programming languages, indicates
strings through the use of double quotes. This line leaves the string "Hello, World"
in the variable x:

x = "Hello, World"

Backslashes can be used to escape characters, to give them special meanings. \n
means the newline character, \t means the tab character, \\ means a single normal
backslash character, and \" is a plain double-quote character. It doesn’t end the
string:

x = "\tThis string starts with a \"tab\"."
x = "This string contains a single backslash(\\)."

You can use single quotes instead of double quotes. The following two lines do the
same thing:

x = "Hello, World"
x = 'Hello, World'

The only difference is that you don’t need to backslash " characters in single-quoted
strings or ' characters in double-quoted strings:

x = "Don't need a backslash"
x = 'Can\'t get by without a backslash'
x = "Backslash your \" character!"
x = 'You can leave the " alone'

You can’t split a normal string across lines; this code won’t work:

This Python code will cause an ERROR -- you can't split the string
across two lines.
x = "This is a misguided attempt to
put a newline into a string without using backslash-n"

But Python offers triple-quoted strings, which let you do this and permit single and
double quotes to be included without backslashes:

x = """Starting and ending a string with triple " characters
permits embedded newlines, and the use of " and ' without
backslashes"""

Now x is the entire sentence between the """ delimiters. (You can also use triple sin-
gle quotes—'''—instead of triple double quotes to do the same thing.)

 Python offers enough string-related functionality that chapter 6 is devoted to the
topic.
Licensed to Kerri Ross <pedbro@gmail.com>

40 CHAPTER 4 The absolute basics

4.6 Numbers
Because you’re probably familiar with standard numeric operations from other lan-
guages, this book doesn’t contain a separate chapter describing Python’s numeric
abilities. This section describes the unique features of Python numbers, and the
Python documentation lists the available functions.

 Python offers four kinds of numbers: integers, floats, complex numbers, and Booleans.
An integer constant is written as an integer—0, –11, +33, 123456—and has unlimited
range, restricted only by the resources of your machine. A float can be written with a
decimal point or using scientific notation: 3.14, –2E-8, 2.718281828. The precision of
these values is governed by the underlying machine but is typically equal to double
(64-bit) types in C. Complex numbers are probably of limited interest and are dis-
cussed separately later in the section. Booleans are either True or False and behave
identically to 1 and 0 except for their string representations.

 Arithmetic is much like it is in C. Operations involving two integers produce an
integer, except for division (/), where a float results. If the // division symbol is used,
the result is an integer, with truncation. Operations involving a float always produce a
float. Here are a few examples:

>>> 5 + 2 - 3 * 2
1
>>> 5 / 2 # floating point result with normal division
2.5
>>> 5 / 2.0 # also a floating point result
2.5
>>> 5 // 2 # integer result with truncation when divided using '//'
2
>>> 30000000000 # This would be too large to be an int in many languages
30000000000
>>> 30000000000 * 3
90000000000
>>> 30000000000 * 3.0
90000000000.0
>>> 2.0e-8 # Scientific notation gives back a float
2e-08
>>> 3000000 * 3000000
9000000000000
>>> int(200.2)
200
>>> int(2e2)
200
>>> float(200)
200.0

These are explicit conversions between types q. int will truncate float values.
 Numbers in Python have two advantages over C or Java. First, integers can be arbi-

trarily large; and second, the division of two integers results in a float.

q

q

q

Licensed to Kerri Ross <pedbro@gmail.com>

41Numbers

4.6.1 Built-in numeric functions

Python provides the following number-related functions as part of its core:

abs, divmod, cmp, coerce, float, hex, int, long, max, min, oct,
pow, round

See the documentation for details.

4.6.2 Advanced numeric functions

More advanced numeric functions such as the trig and hyperbolic trig functions, as
well as a few useful constants, aren’t built-ins in Python but are provided in a standard
module called math. Modules will be explained in detail later; for now, it’s sufficient to
know that the math functions in this section must be made available by starting your
Python program or interactive session with the statement

from math import *

The math module provides the following functions and constants:

acos, asin, atan, atan2, ceil, cos, cosh, e, exp, fabs, floor, fmod,
frexp, hypot, ldexp, log, log10, mod, pi, pow, sin, sinh, sqrt, tan,
tanh

See the documentation for details.

4.6.3 Numeric computation

The core Python installation isn’t well suited to intensive numeric computation
because of speed constraints. But the powerful Python extension NumPy provides
highly efficient implementations of many advanced numeric operations. The empha-
sis is on array operations, including multidimensional matrices and more advanced
functions such as the Fast Fourier Transform. You should be able to find NumPy (or
links to it) at www.scipy.org.

4.6.4 Complex numbers

Complex numbers are created automatically whenever an expression of the form nj is
encountered, with n having the same form as a Python integer or float. j is, of course,
standard engineering notation for the imaginary number equal to the square root of
–1, for example:

>>> (3+2j)
(3+2j)

Note that Python expresses the resulting complex number in parentheses, as a way of
indicating that what is printed to the screen represents the value of a single object:

>>> 3 + 2j - (4+4j)
(-1-2j)
Licensed to Kerri Ross <pedbro@gmail.com>

42 CHAPTER 4 The absolute basics

>>> (1+2j) * (3+4j)
(-5+10j)
>>> 1j * 1j
(-1+0j)

Calculating j * j gives the expected answer of –1, but the result remains a Python
complex number object. Complex numbers are never converted automatically to
equivalent real or integer objects. But you can easily access their real and imaginary
parts with real and imag:

>>> z = (3+5j)
>>> z.real
3.0
>>> z.imag
5.0

Note that real and imaginary parts of a complex number are always returned as floating-
point numbers.

4.6.5 Advanced complex-number functions

The functions in the math module don’t apply to complex numbers; the rationale is
that most users want the square root of –1 to generate an error, not an answer!
Instead, similar functions, which can operate on complex numbers, are provided in
the cmath module:

acos, acosh, asin, asinh, atan, atanh, cos, cosh, e, exp, log, log10,
pi, sin, sinh, sqrt, tan, tanh.

In order to make clear in the code that these are special-purpose complex-number
functions and to avoid name conflicts with the more normal equivalents, it’s best to
import the cmath module by saying

import cmath

and then to explicitly refer to the cmath package when using the function:

>>> import cmath
>>> cmath.sqrt(-1)
1j

Minimizing from <module> import *

This is a good example of why it’s best to minimize the use of the from <module>
import * form of the import statement. If you imported first the math and then the
cmath modules using it, the commonly named functions in cmath would override those
of math. It’s also more work for someone reading your code to figure out the source
of the specific functions you use. Some modules are explicitly designed to use this
form of import.

See chapter 10 for more details on how to use modules and module names.
Licensed to Kerri Ross <pedbro@gmail.com>

43Basic Python style

The important thing to keep in mind is that by importing the cmath module, you can
do almost anything you can do with other numbers.

4.7 The None value
In addition to standard types such as strings and numbers, Python has a special basic
data type that defines a single special data object called None. As the name suggests,
None is used to represent an empty value. It appears in various guises throughout
Python. For example, a procedure in Python is just a function that doesn’t explicitly
return a value, which means that, by default, it returns None.

 None is often useful in day-to-day Python programming as a placeholder, to indi-
cate a point in a data structure where meaningful data will eventually be found, even
though that data hasn’t yet been calculated. You can easily test for the presence of
None, because there is only one instance of None in the entire Python system (all refer-
ences to None point to the same object), and None is equivalent only to itself.

4.8 Getting input from the user
You can also use the input() function to get input from the user. Use the prompt
string you want displayed to the user as input’s parameter:

>>> name = input("Name? ")
Name? Vern
>>> print(name)
Vern
>>> age = int(input("Age? "))
Age? 28
>>> print(age)
28
>>>

This is a fairly simple way to get user input. The one catch is that the input comes in as
a string, so if you want to use it as a number, you have to use the int() or float()
function to convert it.

4.9 Built-in operators
Python provides various built-in operators, from the standard (such as +, *, and so on)
to the more esoteric, such as operators for performing bit shifting, bitwise logical
functions, and so forth. Most of these operators are no more unique to Python than to
any other language, and hence I won’t explain them in the main text. You can find a
complete list of the Python built-in operators in the documentation.

4.10 Basic Python style
Python has relatively few limitations on coding style with the obvious exception of the
requirement to use indentation to organize code into blocks. Even in that case, the
amount of indentation and type of indentation (tabs versus spaces) isn’t mandated.
However, there are preferred stylistic conventions for Python, which are contained in

Converts input
from string to int
Licensed to Kerri Ross <pedbro@gmail.com>

44 CHAPTER 4 The absolute basics

Python Enhancement Proposal (PEP) 8, which is summarized in the appendix and
can be found online at www.python.org/dev/peps/pep-0008/. A selection of Pythonic
conventions is provided in table 4.1, but to fully absorb Pythonic style you’ll need to
periodically reread PEP 8.

I strongly urge you to follow the conventions of PEP 8. They’re wisely chosen and time
tested and will make your code easier for you and other Python programmers to
understand.

4.11 Summary
That’s the view of Python from 30,000 feet. If you’re an experienced programmer,
you’re probably already seeing how you can write your code in Python. If that’s the case,
you should feel free to start experimenting with your own code. Many programmers
find it surprisingly easy to pick up Python syntax, because there are relatively few sur-
prises. Once you pick up the basics of the language, it’s very predictable and consistent.

 In any case, we have just covered the broadest outlines of the language, and there
are lots of details that we still need to cover, beginning in the next chapter with one of
the workhorses of Python, lists.

Table 4.1 Pythonic coding conventions

Situation Suggestion Example

Module/package names short, all lowercase, underscores only if
needed

imp, sys

Function names all lowercase, underscores_for_readablitiy foo(), my_func()

Variable names all lowercase, underscores_for_readablitiy my_var

Class names CapitalizeEachWord MyClass

Constant names ALL_CAPS_WITH_UNDERSCORES PI, TAX_RATE

Indentation 4 spaces per level, don’t use tabs

Comparisons Don't compare explicitly to True or False if my_var:
if not my_var:
Licensed to Kerri Ross <pedbro@gmail.com>

Lists, tuples, and sets
In this chapter, we’ll discuss the two major Python sequence types: lists and tuples.
At first, lists may remind you of arrays in many other languages, but don’t be
fooled—lists are a good deal more flexible and powerful than plain arrays. This
chapter also discusses a newer Python collection type: sets. Sets are useful when an
object’s membership in the collection, as opposed to its position, is important.

 Tuples are like lists that can’t be modified—you can think of them as a
restricted type of list or as a basic record type. We’ll discuss why we need such a
restricted data type later in the chapter.

This chapter covers
■ Manipulating lists and list indices
■ Modifying lists
■ Sorting
■ Using common list operations
■ Handling nested lists and deep copies
■ Using tuples
■ Creating and using sets
45

Licensed to Kerri Ross <pedbro@gmail.com>

46 CHAPTER 5 Lists, tuples, and sets

 Most of the chapter is devoted to lists, because if you understand lists, you pretty
much understand tuples. The last part of the chapter discusses the differences
between lists and tuples, in both functional and design terms.

5.1 Lists are like arrays
A list in Python is much the same thing as an array in Java or C or any other lan-
guage. It’s an ordered collection of objects. You create a listd by enclosing a comma-
separated list of elements in square brackets, like so:

This assigns a three-element list to x
x = [1, 2, 3]

Note that you don’t have to worry about declaring the list or fixing its size ahead of
time. This line creates the list as well as assigns it, and a list automatically grows or
shrinks in size as needed.

Unlike lists in many other languages, Python lists can contain different types of ele-
ments; a list element can be any Python object. Here’s a list that contains a variety of
elements:

First element is a number, second is a string, third is another list.
x = [2, "two", [1, 2, 3]]

Probably the most basic built-in list function is the len function, which returns the
number of elements in a list:

>>> x = [2, "two", [1, 2, 3]]
>>> len(x)
3

Note that the len function doesn’t count the items in the inner, nested list.

5.2 List indices
Understanding how list indices work will make Python much more useful to you.
Please read the whole section!

 Elements can be extracted from a Python list using a notation like C’s array indexing.
Like C and many other languages, Python starts counting from 0; asking for element 0

Arrays in Python

A typed array module is available in Python that provides arrays based on C data
types. Information on its use can be found in the Python Library Reference. I suggest
you look into it only if you run into a situation where you really need the performance
improvement. If a situation calls for numerical computations, you should consider us-
ing NumPy, mentioned in section 4.6.3, available at www.scipy.org.
Licensed to Kerri Ross <pedbro@gmail.com>

47List indices

returns the first element of the list, asking for element 1 returns the second element, and
so forth. Here are a few examples:

>>> x = ["first", "second", "third", "fourth"]
>>> x[0]
'first'
>>> x[2]
'third'

But Python indexing is more flexible than C indexing; if indices are negative num-
bers, they indicate positions counting from the end of the list, with –1 being the last
position in the list, –2 being the second-to-last position, and so forth. Continuing with
the same list x, we can do the following:

>>> a = x[-1]
>>> a
'fourth'
>>> x[-2]
'third'

For operations involving a single list index, it’s generally satisfactory to think of the
index as pointing at a particular element in the list. For more advanced operations,
it’s more correct to think of list indices as indicating positions between elements. In the
list ["first", "second", "third", "fourth"], you can think of the indices as point-
ing like this:

This is irrelevant when you’re extracting a single element, but Python can extract or
assign to an entire sublist at once, an operation known as slicing. Instead of entering
list[index] to extract the item just after index, enter list[index1:index2] to
extract all items including index1 and up to (but not including) index2 into a new
list. Here are some examples:

>>> x = ["first", "second", "third", "fourth"]
>>> x[1:-1]
['second', 'third']
>>> x[0:3]
['first', 'second', 'third']
>>> x[-2:-1]
['third']

It may seem reasonable that if the second index indicates a position in the list before
the first index, this would return the elements between those indices in reverse order,
but this isn’t what happens. Instead, this return: an empty list:

>>> x[-1:2]
[]

x =["first", "second", "third", "fourth"]

Positive indices 0 1 2 3

Negative indices –4 –3 –2 –1
Licensed to Kerri Ross <pedbro@gmail.com>

48 CHAPTER 5 Lists, tuples, and sets

When slicing a list, it’s also possible to leave out index1 or index2. Leaving out index1
means “go from the beginning of the list,” and leaving out index2 means “go to the
end of the list”:

>>> x[:3]
['first', 'second', 'third']
>>> x[2:]
['third', 'fourth']

Omitting both indices makes a new list that goes from the beginning to the end of the
original list; that is, it copies the list. This is useful when you wish to make a copy that
you can modify, without affecting the original list:

>>> y = x[:]
>>> y[0] = '1 st'
>>> y
['1 st', 'second', 'third', 'fourth']
>>> x
['first', 'second', 'third', 'fourth']

5.3 Modifying lists
You can use list index notation to modify a list as well as to extract an element from it.
Put the index on the left side of the assignment operator:

>>> x = [1, 2, 3, 4]
>>> x[1] = "two"
>>> x
[1, 'two', 3, 4]

Slice notation can be used here too. Saying something like lista[index1:index2] =
listb causes all elements of lista between index1 and index2 to be replaced with
the elements in listb. listb can have more or fewer elements than are removed
from lista, in which case the length of lista will be altered. You can use slice assign-
ment to do a number of different things, as shown here:

>>> x = [1, 2, 3, 4]
>>> x[len(x):] = [5, 6, 7]
>>> x
[1, 2, 3, 4, 5, 6, 7]
>>> x[:0] = [-1, 0]
>>> x
[-1, 0, 1, 2, 3, 4, 5, 6, 7]
>>> x[1:-1] = []
>>> x
[-1, 7]

Appending a single element to a list is such a common operation that there’s a special
append method to do it:

>>> x = [1, 2, 3]
>>> x.append("four")
>>> x

Appends list
to end of list

Appends list
to front of list

Removes elements
from list
[1, 2, 3, 'four']

Licensed to Kerri Ross <pedbro@gmail.com>

49Modifying lists

One problem can occur if you try to append one list to another. The list gets
appended as a single element of the main list:

>>> x = [1, 2, 3, 4]
>>> y = [5, 6, 7]
>>> x.append(y)
>>> x
[1, 2, 3, 4, [5, 6, 7]]

The extend method is like the append method, except that it allows you to add one list
to another:

>>> x = [1, 2, 3, 4]
>>> y = [5, 6, 7]
>>> x.extend(y)
>>> x
[1, 2, 3, 4, 5, 6, 7]

There is also a special insert method to insert new list elements between two existing
elements or at the front of the list. insert is used as a method of lists and takes two
additional arguments; the first is the index position in the list where the new element
should be inserted, and the second is the new element itself:

>>> x = [1, 2, 3]
>>> x.insert(2, "hello")
>>> print(x)
[1, 2, 'hello', 3]
>>> x.insert(0, "start")
>>> print(x)
['start', 1, 2, 'hello', 3]

insert understands list indices as discussed in the section on slice notation, but for
most uses it’s easiest to think of list.insert(n, elem) as meaning insert elem just
before the nth element of list. insert is just a convenience method. Anything that can
be done with insert can also be done using slice assignment; that is, list.insert(n,
elem) is the same thing as list[n:n] = [elem] when n is nonnegative. Using insert
makes for somewhat more readable code, and insert even handles negative indices:

>>> x = [1, 2, 3]
>>> x.insert(-1, "hello")
>>> print(x)
[1, 2, 'hello', 3]

The del statement is the preferred method of deleting list items or slices. It doesn’t do
anything that can’t be done with slice assignment, but it’s usually easier to remember
and easier to read:

>>> x = ['a', 2, 'c', 7, 9, 11]
>>> del x[1]
>>> x
['a', 'c', 7, 9, 11]
>>> del x[:2]
>>> x

[7, 9, 11]

Licensed to Kerri Ross <pedbro@gmail.com>

50 CHAPTER 5 Lists, tuples, and sets

In general, del list[n] does the same thing as list[n:n+1] = [], whereas del
list[m:n] does the same thing as list[m:n] = [].

 The remove method isn’t the converse of insert. Whereas insert inserts an ele-
ment at a specified location, remove looks for the first instance of a given value in a list
and removes that value from the list:

>>> x = [1, 2, 3, 4, 3, 5]
>>> x.remove(3)
>>> x
[1, 2, 4, 3, 5]
>>> x.remove(3)
>>> x
[1, 2, 4, 5]
>>> x.remove(3)
Traceback (innermost last):
 File "<stdin>", line 1, in ?
ValueError: list.remove(x): x not in list

If remove can’t find anything to remove, it raises an error. You can catch this error using
the exception-handling abilities of Python, or you can avoid the problem by using in to
check for the presence of something in a list before attempting to remove it.

 The reverse method is a more specialized list modification method. It efficiently
reverses a list in place:

>>> x = [1, 3, 5, 6, 7]
>>> x.reverse()
>>> x
[7, 6, 5, 3, 1]

5.4 Sorting lists
Lists can be sorted using the built-in Python sort method:

>>> x = [3, 8, 4, 0, 2, 1]
>>> x.sort()
>>> x
[0, 1, 2, 3, 4, 8]

This does an in-place sort—that is, it changes the list being sorted. To sort a list with-
out changing the original list, make a copy of it first.

>>> x = [2, 4, 1, 3]
>>> y = x[:]
>>> y.sort()
>>> y
[1, 2, 3, 4]
>>> x
[2, 4, 1, 3]

Sorting works with strings, too:

>>> x = ["Life", "Is", "Enchanting"]
>>> x.sort()
>>> x

['Enchanting', 'Is', 'Life']

Licensed to Kerri Ross <pedbro@gmail.com>

51Sorting lists

The sort method can sort just about anything, because Python can compare just about
anything. But there is one caveat in sorting. The default key method used by sort
requires that all items in the list be of comparable types. That means that using the
sort method on a list containing both numbers and strings will raise an exception:

>>> x = [1, 2, 'hello', 3]
>>> x.sort()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: unorderable types: str() < int()

On the other hand, we can sort a list of lists:

>>> x = [[3, 5], [2, 9], [2, 3], [4, 1], [3, 2]]
>>> x.sort()
>>> x
[[2, 3], [2, 9], [3, 2], [3, 5], [4, 1]]

According to the built-in Python rules for comparing complex objects, the sublists are
sorted first by ascending first element and then by ascending second element.

 sort is even more flexible than this—it’s possible to use your own key function to
determine how elements of a list are sorted.

5.4.1 Custom sorting

To use custom sorting, you need to be able to define functions, something we haven’t
talked about. In this section we’ll also use the fact that len(string) returns the num-
ber of characters in a string. String operations are discussed more fully in chapter 6.

 By default, sort uses built-in Python comparison functions to determine ordering,
which is satisfactory for most purposes. There will be times, though, when you want to
sort a list in a way that doesn’t correspond to this default ordering. For example, let’s
say we wish to sort a list of words by the number of characters in each word, in contrast
to the lexicographic sort that would normally be carried out by Python.

 To do this, write a function that will return the value, or key, that we want to sort
on, and use it with the sort method. That function in the context of sort is a function
that takes one argument and returns the key or value the sort function is to use.

 For our number-of-characters ordering, a suitable key function could be

def compare_num_of_chars(string1):
 return len(string1)

This key function is trivial. It passes the length of each string back to the sort method,
rather than the strings themselves.

 After you define the key function, using it is a matter of passing it to the sort
method using the key keyword. Because functions are Python objects, they can be
passed around like any other Python object. Here’s a small program that illustrates
the difference between a default sort and our custom sort:

>>> def compare_num_of_chars(string1):

... return len(string1)

Licensed to Kerri Ross <pedbro@gmail.com>

52 CHAPTER 5 Lists, tuples, and sets

>>> word_list = ['Python', 'is', 'better', 'than', 'C']
>>> word_list.sort()
>>> print(word_list)
['C', 'Python', 'better', 'is', 'than']
>>> word_list = ['Python', 'is', 'better', 'than', 'C']
>>> word_list.sort(key=compare_num_of_chars)
>>> print(word_list)
['C', 'is', 'than', 'Python', 'better']

The first list is in lexicographic order (with uppercase coming before lowercase), and
the second list is ordered by ascending number of characters.

 Custom sorting is very useful, but if performance is critical, it may be slower than
the default. Usually this impact is minimal, but if the key function is particularly com-
plex, the effect may be more than desired, especially for sorts involving hundreds of
thousands or millions of elements.

 One particular place to avoid custom sorts is where you want to sort a list in
descending, rather than ascending, order. In this case, use the sort method’s reverse
parameter set to True. If for some reason you don’t want to do that, it’s still better to
sort the list normally and then use the reverse method to invert the order of the
resulting list. These two operations together—the standard sort and the reverse—will
still be much faster than a custom sort.

5.4.2 The sorted() function

Lists have a built-in method to sort themselves, but other iterables in Python, like the
keys of a dictionary, for example, don’t have a sort method. Python also has the built-
in function sorted(), which returns a sorted list from any iterable. sorted() uses the
same key and reverse parameters as the sort method:

>>> x = (4, 3, 1, 2)
>>> y = sorted(x)
>>> y
[1, 2, 3, 4]

5.5 Other common list operations
A number of other list methods are frequently useful, but they don’t fall into any spe-
cific category.

5.5.1 List membership with the in operator

It’s easy to test if a value is in a list using the in operator, which returns a Boolean
value. You can also use the converse, the not in operator:

>>> 3 in [1, 3, 4, 5]
True
>>> 3 not in [1, 3, 4, 5]
False
>>> 3 in ["one", "two", "three"]
False
>>> 3 not in ["one", "two", "three"]

True

Licensed to Kerri Ross <pedbro@gmail.com>

53Other common list operations

5.5.2 List concatenation with the + operator

To create a list by concatenating two existing lists, use the + (list concatenation) oper-
ator. This will leave the argument lists unchanged.

>>> z = [1, 2, 3] + [4, 5]
>>> z
[1, 2, 3, 4, 5]

5.5.3 List initialization with the * operator

Use the * operator to produce a list of a given size, which is initialized to a given value.
This is a common operation for working with large lists whose size is known ahead of
time. Although you can use append to add elements and automatically expand the list
as needed, you obtain greater efficiency by using * to correctly size the list at the start
of the program. A list that doesn’t change in size doesn’t incur any memory realloca-
tion overhead:

>>> z = [None] * 4
>>> z
[None, None, None, None]

When used with lists in this manner, * (which in this context is called the list multiplica-
tion operator) replicates the given list the indicated number of times and joins all the
copies to form a new list. This is the standard Python method for defining a list of a
given size ahead of time. A list containing a single instance of None is commonly used
in list multiplication, but the list can be anything:

>>> z = [3, 1] * 2
>>> z
[3, 1, 3, 1]

5.5.4 List minimum or maximum with min and max

You can use min and max to find the smallest and largest elements in a list. You’ll prob-
ably use these mostly with numerical lists, but they can be used with lists containing
any type of element. Trying to find the maximum or minimum object in a set of
objects of different types causes an error if it doesn’t make sense to compare those
types:

>>> min([3, 7, 0, -2, 11])
-2
>>> max([4, "Hello", [1, 2]])
Traceback (most recent call last):
 File "<pyshell#58>", line 1, in <module>
 max([4, "Hello",[1, 2]])
TypeError: unorderable types: str() > int()

5.5.5 List search with index

If you wish to find where in a list a value can be found (rather than wanting to
know only if the value is in the list), use the index method. It searches through a
Licensed to Kerri Ross <pedbro@gmail.com>

54 CHAPTER 5 Lists, tuples, and sets

list looking for a list element equivalent to a given value and returns the position
of that list element:

>>> x = [1, 3, "five", 7, -2]
>>> x.index(7)
3
>>> x.index(5)
Traceback (innermost last):
 File "<stdin>", line 1, in ?
ValueError: list.index(x): x not in list

Attempting to find the position of an element that doesn’t exist in the list at all raises
an error, as shown here. This can be handled in the same manner as the analogous
error that can occur with the remove method (that is, by testing the list with in before
using index).

5.5.6 List matches with count

count also searches through a list, looking for a given value, but it returns the number
of times that value is found in the list rather than positional information:

>>> x = [1, 2, 2, 3, 5, 2, 5]
>>> x.count(2)
3
>>> x.count(5)
2
>>> x.count(4)
0

5.5.7 Summary of list operations

You can see that lists are very powerful data structures, with possibilities that go far
beyond plain old arrays. List operations are so important in Python programming that
it’s worth laying them out for easy reference, as shown in table 5.1.

Table 5.1 List operations

List operation Explanation Example

[] Creates an empty list x = []

len Returns the length of a list len(x)

append Adds a single element to the end of a list x.append('y')

insert Inserts a new element at a given position in the list x.insert(0, 'y')

del Removes a list element or slice del(x[0])

remove Searches for and removes a given value from a list x.remove('y')

reverse Reverses a list in place x.reverse()
Licensed to Kerri Ross <pedbro@gmail.com>

55Nested lists and deep copies

Being familiar with these list operations will make your life as a Python coder much
easier.

5.6 Nested lists and deep copies
This is another advanced topic that you may want to skip if you’re just learning the
language.

 Lists can be nested. One application of this is to represent two-dimensional matri-
ces. The members of these can be referred to using two-dimensional indices. Indices
for these work as follows:

>>> m = [[0, 1, 2], [10, 11, 12], [20, 21, 22]]
>>> m[0]
[0, 1, 2]
>>> m[0][1]
1
>>> m[2]
[20, 21, 22]
>>> m[2][2]
22

This mechanism scales to higher dimensions in the manner you would expect.
 Most of the time, this is all you need to concern yourself with. But there is an issue

with nested lists that you may run into. This is the result of the combination of the way
variables refer to objects and the fact that some objects (such as lists) can be modified
(they’re mutable). An example is the best way to illustrate:

>>> nested = [0]
>>> original = [nested, 1]
>>> original
[[0], 1]

sort Sorts a list in place x.sort()

+ Adds two lists together x1 + x2

* Replicates a list x = ['y'] * 3

min Returns the smallest element in a list min(x)

max Returns the largest element in a list max(x)

index Returns the position of a value in a list x.index['y']

count Counts the number of times a value occurs in a list x.count('y')

in Returns whether an item is in a list 'y' in x

Table 5.1 List operations

List operation Explanation Example
Licensed to Kerri Ross <pedbro@gmail.com>

56 CHAPTER 5 Lists, tuples, and sets

Figure 5.1 shows what this looks like.
 The value in the nested list can now be changed using

either the nested or the original variables:

>>> nested[0] = 'zero'
>>> original
[['zero'], 1]
>>> original[0][0] = 0
>>> nested
[0]
>>> original
[[0], 1]

But if nested is set to another list, the connection between them is broken:

>>> nested = [2]
>>> original
[[0], 1]

Figure 5.2 illustrates this.
 You’ve seen that you can obtain a copy of a list by taking

a full slice (that is, x[:]). You can also obtain a copy of a list
using the + or * operator (for example, x + [] or x * 1).
These are slightly less efficient than the slice method. All
three create what is called a shallow copy of the list. This is
probably what you want most of the time. But if your list has
other lists nested in it, you may want to make a deep copy. You
can do this with the deepcopy function of the copy module:

>>> original = [[0], 1]
>>> shallow = original[:]
>>> import copy
>>> deep = copy.deepcopy(original)

See figure 5.3 for an illustration.
 The lists pointed at by the original or shallow

variables are connected. Changing the value in
the nested list through either one of them affects
the other:

>>> shallow[1] = 2
>>> shallow
[[0], 2]
>>> original
[[0], 1]
>>> shallow[0][0] = 'zero'
>>> original
[['zero'], 1]

The deep copy is independent of the original, and no change to it has any effect on
the original list:

>>> deep[0][0] = 5

Figure 5.1 A list with its
first item referring to a
nested list

Figure 5.2 The first item
of the original list is still
a nested list, but the
nested variable refers
to a different list.

Figure 5.3 A shallow copy doesn’t
copy nested lists.
>>> deep

Licensed to Kerri Ross <pedbro@gmail.com>

57Tuples

[[5], 1]
>>> original
[['zero'], 1]

This behavior is the same for any other nested objects in a list that are modifiable
(such as dictionaries).

 Now that you’ve seen what lists can do, it’s time to look at tuples.

5.7 Tuples
Tuples are data structures that are very similar to lists, but they can’t be modified. They
can only be created. Tuples are so much like lists that you may wonder why Python
bothers to include them. The reason is that tuples have important roles that can’t be
efficiently filled by lists, as keys for dictionaries.

5.7.1 Tuple basics

Creating a tuple is similar to creating a list: assign a sequence of values to a variable.
A list is a sequence that is enclosed by [and]; a tuple is a sequence that is enclosed
by (and):

>>> x = ('a', 'b', 'c')

This line creates a three-element tuple.
 After a tuple is created, using it is so much like using a list that it’s easy to forget

they’re different data types:

>>> x[2]
'c'
>>> x[1:]
('b', 'c')
>>> len(x)
3
>>> max(x)
'c'
>>> min(x)
'a'
>>> 5 in x
False
>>> 5 not in x
True

The main difference between tuples and lists is that tuples are immutable. An attempt
to modify a tuple results in a confusing error message, which is Python’s way of saying
it doesn’t know how to set an item in a tuple.

>>> x[2] = 'd'
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: 'tuple' object does not support item assignment

You can create tuples from existing ones by using the + and * operators.

>>> x + x

('a', 'b', 'c', 'a', 'b', 'c')

Licensed to Kerri Ross <pedbro@gmail.com>

58 CHAPTER 5 Lists, tuples, and sets

>>> 2 * x
('a', 'b', 'c', 'a', 'b', 'c')

A copy of a tuple can be made in any of the same ways as for lists:

>>> x[:]
('a', 'b', 'c')
>>> x * 1
('a', 'b', 'c')
>>> x + ()
('a', 'b', 'c')

If you didn’t read section 5.6, “Nested lists and deep copies,” you can skip the rest of
this paragraph. Tuples themselves can’t be modified. But if they contain any mutable
objects (for example, lists or dictionaries), these may be changed if they’re still
assigned to their own variables. Tuples that contain mutable objects aren’t allowed as
keys for dictionaries.

5.7.2 One-element tuples need a comma

A small syntactical point is associated with using tuples. Because the square brackets
used to enclose a list aren’t used elsewhere in Python, it’s clear that [] means an
empty list and [1] means a list with one element. The same thing isn’t true with the
parentheses used to enclose tuples. Parentheses can also be used to group items in
expressions in order to force a certain evaluation order. If we say (x + y) in a Python
program, do we mean that x and y should be added and then put into a one-element
tuple, or do we mean that the parentheses should be used to force x and y to be
added, before any expressions to either side come into play?

 This is only a problem for tuples with one element, because tuples with more than
one element always include commas to separate the elements, and the commas tell
Python the parentheses indicate a tuple, not a grouping. In the case of one-element
tuples, Python requires that the element in the tuple be followed by a comma, to dis-
ambiguate the situation. In the case of zero-element (empty) tuples, there’s no prob-
lem. An empty set of parentheses must be a tuple, because it’s meaningless otherwise.

>>> x = 3
>>> y = 4
>>> (x + y) # This adds x and y.
7
>>> (x + y,) # Including a comma indicates the parentheses denote a tuple.
(7,)
>>> () # To create an empty tuple, use an empty pair of parentheses.
()

5.7.3 Packing and unpacking tuples

As a convenience, Python permits tuples to appear on the left-hand side of an assign-
ment operator, in which case variables in the tuple receive the corresponding values
Licensed to Kerri Ross <pedbro@gmail.com>

59Tuples

from the tuple on the right-hand side of the assignment operator. Here’s a simple
example:

>>> (one, two, three, four) = (1, 2, 3, 4)
>>> one
1
>>> two
2

This can be written even more simply, because Python recognizes tuples in an assign-
ment context even without the enclosing parentheses. The values on the right-hand
side are packed into a tuple and then unpacked into the variables on the left-hand
side:

one, two, three, four = 1, 2, 3, 4

One line of code has replaced the following four lines of code:

one = 1
two = 2
three = 3
four = 4

This is a convenient way to swap values between variables. Instead of saying

temp = var1
var1 = var2
var2 = temp

just say

var1, var2 = var2, var1

To make things even more convenient, Python 3 has an extended unpacking feature,
allowing an element marked with a * to absorb any number elements not matching
the other elements. Again, some examples will make this clearer:

>>> x = (1, 2, 3, 4)
>>> a, b, *c = x
>>> a, b, c
(1, 2, [3, 4])
>>> a, *b, c = x
>>> a, b, c
(1, [2, 3], 4)
>>> *a, b, c = x
>>> a, b, c
([1, 2], 3, 4)
>>> a, b, c, d, *e = x
>>> a, b, c, d, e
(1, 2, 3, 4, [])

Note that the starred element receives all the surplus items as a list, and that if there
are no surplus elements, it receives an empty list.

Licensed to Kerri Ross <pedbro@gmail.com>

60 CHAPTER 5 Lists, tuples, and sets

 Packing and unpacking can be performed using list delimiters as well:

>>> [a, b] = [1, 2]
>>> [c, d] = 3, 4
>>> [e, f] = (5, 6)
>>> (g, h) = 7, 8
>>> i, j = [9, 10]
>>> k, l = (11, 12)
>>> a
1
>>> [b, c, d]
[2, 3, 4]
>>> (e, f, g)
(5, 6, 7)
>>> h, i, j, k, l
(8, 9, 10, 11, 12)

5.7.4 Converting between lists and tuples

Tuples can be easily converted to lists with the list function (which takes any
sequence as an argument and produces a new list with the same elements as the origi-
nal sequence). Similarly, lists can be converted to tuples with the tuple function
(which does the same thing but produces a new tuple instead of a new list):

>>> list((1, 2, 3, 4))
[1, 2, 3, 4]
>>> tuple([1, 2, 3, 4])
(1, 2, 3, 4)

As an interesting side note, list is a convenient way to break a string into characters:

>>> list("Hello")
['H', 'e', 'l', 'l', 'o']

This works because list (and tuple) apply to any Python sequence, and a string is
just a sequence of characters. (Strings are discussed fully in the next chapter.)

5.8 Sets
A set in Python is an unordered collection of objects used in situations where member-
ship and uniqueness in the set are main things you need to know about that object.
Just as with dictionary keys (as you’ll see in chapter 7), the items in a set must be
immutable and hashable. This means that ints, floats, strings, and tuples can be mem-
bers of a set, but lists, dictionaries, and sets themselves can’t.

5.8.1 Set operations

In addition to the operations that apply to collections in general, like in, len, and
being able to use a for loop to iterate over all of their elements, sets also have several
set-specific operations:

>>> x = set([1, 2, 3, 1, 3, 5])
>>> x

{1, 2, 3, 5} qw

Licensed to Kerri Ross <pedbro@gmail.com>

61Sets

>>> x.add(6)
>>> x
{1, 2, 3, 5, 6}
>>> x.remove(5)
>>> x
{1, 2, 3, 6}
>>> 1 in x
True
>>> 4 in x
False
>>> y = set([1, 7, 8, 9])
>>> x | y
{1, 2, 3, 6, 7, 8, 9}
>>> x & y
{1}
>>> x ^ y
{2, 3, 6, 7, 8, 9}
>>>

You can create a set by using set on a sequence, like a list q. When a sequence is
made into a set, duplicates are removed w. After creating a set using the set func-
tion, you can use add e and remove r to change the elements in the set. The in key-
word is used to check for membership of an object in a set t. You can also use | y to
get the union, or combination, of two sets, & to get their intersection u, and ^ i to
find their symmetric difference—that is, elements that are in one set or the other but
not both.

 These examples aren’t a complete listing of set operations but are enough to give
you a good idea of how sets work. For more information, refer to the official Python
documentation.

5.8.2 Frozensets

Because sets aren’t immutable and hashable, they can’t belong to other sets. To rem-
edy that situation there is another set type, frozenset, which is just like a set but can’t
be changed after creation. Because frozensets are immutable and hashable, they can
be members of other sets:

>>> x = set([1, 2, 3, 1, 3, 5])
>>> z = frozenset(x)
>>> z
frozenset({1, 2, 3, 5})
>>> z.add(6)
Traceback (most recent call last):
 File "<pyshell#79>", line 1, in <module>
 z.add(6)
AttributeError: 'frozenset' object has no attribute 'add'
>>> x.add(z)
>>> x
{1, 2, 3, 5, frozenset({1, 2, 3, 5})}

ew

rw
t

t

y

u

i

Licensed to Kerri Ross <pedbro@gmail.com>

62 CHAPTER 5 Lists, tuples, and sets

5.9 Summary
Lists are a basic and highly useful data structure built into the Python language. In
addition to demonstrating fairly standard array-like behavior, lists possess additional
functionality, such as automatic resizing, the ability to use slice notation, and a good
set of convenience functions, methods, and operators. Note that there are a few more
list methods than were covered in this chapter. You’ll find details on these in the
appendix.

 Tuples are similar to lists but can’t be modified. They take up slightly less memory
and are faster to access. They aren’t as flexible but are more efficient than lists. Their
normal use (from the point of view of a Python coder) is to serve as dictionary keys,
which is discussed in chapter 7.

 Sets are also sequence structures but with two differences from lists and tuples.
Although sets do have an order, that order is arbitrary and not under the program-
mer’s control. The second difference is that the elements in a set must be unique.

 Lists, tuples, and sets are structures that embody the idea of a sequence of ele-
ments. As you’ll see in the next chapter, strings are also sequences with some addi-
tional methods.
Licensed to Kerri Ross <pedbro@gmail.com>

Strings
Handling text—from user input, to filenames, to processing chunks of text—is a
common chore in programming. Python comes with powerful tools to handle and
format text. This chapter discusses the standard string and string-related opera-
tions in Python.

6.1 Strings as sequences of characters
For the purposes of extracting characters and substrings, strings can be considered
sequences of characters, which means you can use index or slice notation:

>>> x = "Hello"
>>> x[0]

This chapter covers
■ Understanding strings as sequences of characters
■ Using basic string operations
■ Inserting special characters and escape sequences
■ Converting from objects to strings
■ Formatting strings
■ Using the byte type
63

'H'

Licensed to Kerri Ross <pedbro@gmail.com>

64 CHAPTER 6 Strings

>>> x[-1]
'o'
>>> x[1:]
'ello'

One use for slice notation with strings is to chop the newline off the end of a string,
usually a line that’s just been read from a file:

>>> x = "Goodbye\n"
>>> x = x[:-1]
>>> x
'Goodbye'

This is just an example—you should know that Python strings have other, better meth-
ods to strip unwanted characters, but this illustrates the usefulness of slicing.

 You can also determine how many characters are in the string by using the len
function, just like finding out the number of elements in a list:

>>> len("Goodbye")
7

But strings aren’t lists of characters. The most noticeable difference between strings
and lists is that, unlike lists, strings can’t be modified. Attempting to say something like
string.append('c') or string[0] = 'H' will result in an error. You’ll notice in the
previous example that we stripped off the newline from the string by creating a string
that was a slice of the previous one, not by modifying the previous string directly. This
is a basic Python restriction, imposed for efficiency reasons.

6.2 Basic string operations
The simplest (and probably most common) way of combining Python strings is to use
the string concatenation operator +:

>>> x = "Hello " + "World"
>>> x
'Hello World'

There is an analogous string multiplication operator that I have found sometimes, but
not often, useful:

>>> 8 * "x"
'xxxxxxxx'

6.3 Special characters and escape sequences
You’ve already seen a few of the character sequences Python regards as special when
used within strings: \n represents the newline character and \t represents the tab
character. Sequences of characters that start with a backslash and that are used to rep-
resent other characters are called escape sequences. Escape sequences are generally used
to represent special characters—that is, characters (such as tab and newline) that don’t
have a standard one-character printable representation. This section covers escape

sequences, special characters, and related topics in more detail.

Licensed to Kerri Ross <pedbro@gmail.com>

65Special characters and escape sequences

6.3.1 Basic escape sequences

Python provides a brief list of two-character escape sequences to use in strings (table 6.1).

The ASCII character set, which is the character set used by Python and the standard
character set on almost all computers, defines quite a few more special characters.
They’re accessed by the numeric escape sequences, described in the next section.

6.3.2 Numeric (octal and hexadecimal) and Unicode escape sequences

You can include any ASCII character in a string by using an octal (base 8) or hexadeci-
mal (base 16) escape sequence corresponding to that character. An octal escape
sequence is a backslash followed by three digits defining an octal number; the ASCII
character corresponding to this octal number is substituted for the octal escape
sequence. A hexadecimal escape sequence is similar but starts with \x rather than just
\ and can consist of any number of hexadecimal digits. The escape sequence is termi-
nated when a character is found that’s not a hexadecimal digit. For example, in the
ASCII character table, the character m happens to have decimal value 109. This is octal
value 155 and hexadecimal value 6D, so:

>>> 'm'
'm'
>>> '\155'
'm'
>>> '\x6D'
'm'

All three expressions evaluate to a string containing the single character m. But these
forms can also be used to represent characters that have no printable representation.
The newline character \n, for example, has octal value 012 and hexadecimal value 0A:

>>> '\n'

Table 6.1 Escape sequences

Escape sequence Character represented

\' Single-quote character

\" Double-quote character

\\ Backslash character

\a Bell character

\b Backspace character

\f Formfeed character

\n Newline character

\r Carriage return character (not the same as \n)

\t Tab character

\v Vertical tab character
'\n'

Licensed to Kerri Ross <pedbro@gmail.com>

66 CHAPTER 6 Strings

>>> '\012'
'\n'
>>> '\x0A'
'\n'

Because all strings in Python 3 are Unicode strings, they can also contain almost every
character from every language available. Although a discussion of the Unicode system
is far beyond this book, the following examples illustrate that you can also escape any
Unicode character, either by number similar to that shown earlier or by Unicode name:

>>> unicode_a ='\N{LATIN SMALL LETTER A}'
>>> unicode_a
'a'
>>> unicode_a_with_acute = '\N{LATIN SMALL LETTER A WITH ACUTE}'
>>> unicode_a_with_acute
'á'
>>> "\u00E1"
'á'
>>>

The Unicode character set includes the common ASCII characters q.

6.3.3 Printing vs. evaluating strings with special characters

We talked before about the difference between evaluating a Python expression inter-
actively and printing the result of the same expression using the print function.
Although the same string is involved, the two operations can produce screen outputs
that look different. A string that is evaluated at the top level of an interactive Python
session will be shown with all of its special characters as octal escape sequences, which
makes clear what is in the string. Meanwhile, the print function passes the string
directly to the terminal program, which may interpret special characters in special
ways. For example, here’s what happens with a string consisting of an a followed by a
newline, a tab, and a b:

>>> 'a\n\tb'
'a\n\tb'
>>> print('a\n\tb')
a
 b

In the first case, the newline and tab are shown explicitly in the string; in the second,
they’re used as newline and tab characters.

 A normal print function also adds a newline to the end of the string. Sometimes
(that is, when you have lines from files that already end with newlines) you may not
want this behavior. Giving the print function an end parameter of "" causes the print
function to not append the newline:

>>> print("abc\n")
abc

>>> print("abc\n", end="")
abc

Escapes by
Unicode name

q

Escapes by number,
using \u
>>>

Licensed to Kerri Ross <pedbro@gmail.com>

67String methods

6.4 String methods
Most of the Python string methods are built into the standard Python string class, so
all string objects have them automatically. The standard string module also contains
some useful constants. Modules will be discussed in detail in chapter 10.

 For the purposes of this section, you need only remember that most string meth-
ods are attached to the string object they operate on by a dot (.), as in x.upper().
That is, they’re prepended with the string object followed by a dot.

 Because strings are immutable, the string methods are used only to obtain their
return value and don’t modify the string object they’re attached to in any way.

 We’ll begin with those string operations that are the most useful and commonly used
and then go on to discuss some less commonly used but still useful operations. At the
end, we’ll discuss a few miscellaneous points related to strings. Not all of the string meth-
ods are documented here. See the documentation for a complete list of string methods.

6.4.1 The split and join string methods

Anyone who works with strings is almost certain to find the split and join methods
invaluable. They’re the inverse of one another—split returns a list of substrings in the
string, and join takes a list of strings and puts them together to form a single string with
the original string between each element. Typically, split uses whitespace as the delim-
iter to the strings it’s splitting, but you can change that via an optional argument.

 String concatenation using + is useful but not efficient for joining large numbers
of strings into a single string, because each time + is applied, a new string object is cre-
ated. Our previous “Hello World” example produced two string objects, one of which
was immediately discarded. A better option is to use the join function:

>>> " ".join(["join", "puts", "spaces", "between", "elements"])
'join puts spaces between elements'

By changing the string used to join, you can put anything you want between the
joined strings:

>>> "::".join(["Separated", "with", "colons"])
'Separated::with::colons'

You can even use an empty string, "", to join elements in a list:

>>> "".join(["Separated", "by", "nothing"])
'Separatedbynothing'

The most common use of split is probably as a simple parsing mechanism for string-
delimited records stored in text files. By default, split splits on any whitespace, not
just a single space character, but you can also tell it to split on a particular sequence by
passing it an optional argument:

>>> x = "You\t\t can have tabs\t\n \t and newlines \n\n " \
 "mixed in"
>>> x.split()
['You', 'can', 'have', 'tabs', 'and', 'newlines', 'mixed', 'in']

>>> x = "Mississippi"

Licensed to Kerri Ross <pedbro@gmail.com>

68 CHAPTER 6 Strings

>>> x.split("ss")
['Mi', 'i', 'ippi']

Sometimes it’s useful to permit the last field in a joined string to contain arbitrary text,
including, perhaps, substrings that may match what split splits on when reading in
that data. You can do this by specifying how many splits split should perform when it’s
generating its result, via an optional second argument. If you specify n splits, then
split will go along the input string until it has performed n splits (generating a list
with n+1 substrings as elements) or until it runs out of string. Here are some examples:

>>> x = 'a b c d'
>>> x.split(' ', 1)
['a', 'b c d']
>>> x.split(' ', 2)
['a', 'b', 'c d']
>>> x.split(' ', 9)
['a', 'b', 'c', 'd']

When using split with its optional second argument, you must supply a first argu-
ment. To get it to split on runs of whitespace while using the second argument, use
None as the first argument.

 I use split and join extensively, usually when working with text files generated by
other programs. But you should know that if you’re able to define your own data file for-
mat for use solely by your Python programs, there’s a much better alternative to storing
data in text files. We’ll discuss it in chapter 13 when we talk about the Pickle module.

6.4.2 Converting strings to numbers

You can use the functions int and float to convert strings into integer or floating-
point numbers, respectively. If they’re passed a string that can’t be interpreted as a
number of the given type, they will raise a ValueError exception. Exceptions are
explained in chapter 14, “Reading and writing files.” In addition, you may pass int an
optional second argument, specifying the numeric base to use when interpreting the
input string:

>>> float('123.456')
123.456
>>> float('xxyy')
Traceback (innermost last):
 File "<stdin>", line 1, in ?
ValueError: invalid literal for float(): xxyy
>>> int('3333')
3333
>>> int('123.456')
Traceback (innermost last):
 File "<stdin>", line 1, in ?
ValueError: invalid literal for int() with base 10: 123.456
>>> int('10000', 8)
4096
>>> int('101', 2)
5

Can’t have decimal
point in integer

Interprets 10000
as octal number
>>> int('ff', 16)

Licensed to Kerri Ross <pedbro@gmail.com>

69String methods

255
>>> int('123456', 6)
Traceback (innermost last):
 File "<stdin>", line 1, in ?
ValueError: invalid literal for int() with base 6: '123456'

Did you catch the reason for that last error? We requested that the string be interpreted
as a base 6 number, but the digit 6 can never appear in a base 6 number. Sneaky!

6.4.3 Getting rid of extra whitespace

A trio of simple methods that are surprisingly useful are the strip, lstrip, and
rstrip functions. strip returns a new string that’s the same as the original string,
except that any whitespace at the beginning or end of the string has been removed.
lstrip and rstrip work similarly, except that they remove whitespace only at the left
or right end of the original string, respectively:

>>> x = " Hello, World\t\t "
>>> x.strip()
'Hello, World'
>>> x.lstrip()
'Hello, World\t\t '
>>> x.rstrip()
' Hello, World'

In this example, tab characters are considered to be whitespace. The exact meaning
may differ across operating systems, but you can always find out what Python considers
to be whitespace by accessing the string.whitespace constant. On my Windows sys-
tem, it gives the following:

import string
>>> string.whitespace
' \t\n\r\x0b\x0c'
>>> " \t\n\r\v\f"
' \t\n\r\x0b\x0c'

The characters given in backslashed hex (\xnn) format represent the vertical tab and
formfeed characters. The space character is in there as itself. It may be tempting to
change the value of this variable, to attempt to affect how strip and so forth work, but
don’t do it. Such an action isn’t guaranteed to give you the results you’re looking for.

 But you can change which characters strip, rstrip, and lstrip remove by pass-
ing a string containing the characters to be removed as an extra parameter:

>>> x = "www.python.org"
>>> x.strip("w")
'.python.org'
>>> x.strip("gor")
'www.python.'
>>> x.strip(".gorw")
'python'

Note that strip removes any and all of the characters in the extra parameter string,

Can’t interpret 123456
as base 6 number

Strips off
all ws

q
Strips off all
gs, os, and rs

Strips of all dots,
gs, os, rs and ws
no matter in which order they occur q.

Licensed to Kerri Ross <pedbro@gmail.com>

70 CHAPTER 6 Strings

 The most common use for these functions is as a quick way of cleaning up strings
that have just been read in. This is particularly helpful when you’re reading lines from
files (discussed in chapter 13), because Python always reads in an entire line, including
the trailing newline, if it exists. When you get around to processing the line read in,
you typically don’t want the trailing newline. rstrip is a convenient way to get rid of it.

6.4.4 String searching

The string objects provide a number of methods to perform simple string searches.
Before I describe them, though, let’s talk about another module in Python: re. (This
module will be discussed in depth in chapter 17, “Regular expressions.”)

The four basic string-searching methods are all similar: find, rfind, index, and
rindex. A related method, count, counts how many times a substring can be found in
another string. We’ll describe find in detail and then examine how the other meth-
ods differ from it.

 find takes one required argument: the substring being searched for. find returns
the position of the first character of the first instance of substring in the string
object, or –1 if substring doesn’t occur in the string:

>>> x = "Mississippi"
>>> x.find("ss")
2
>>> x.find("zz")
-1

find can also take one or two additional, optional arguments. The first of these, if pres-
ent, is an integer start; it causes find to ignore all characters before position start in
string when searching for substring. The second optional argument, if present, is an
integer end; it causes find to ignore characters at or after position end in string:

>>> x = "Mississippi"
>>> x.find("ss", 3)

Another method for searching strings: the re module

The re module also does string searching but in a far more flexible manner, using
regular expressions. Rather than searching for a single specified substring, an re
search can look for a string pattern. You could look for substrings that consist entirely
of digits, for example.

Why am I mentioning this, when re is discussed fully later? In my experience, many
uses of basic string searches are inappropriate. You’d benefit from a more powerful
searching mechanism but aren’t aware that one exists, and so you don’t even look
for something better. Perhaps you have an urgent project involving strings and don’t
have time to read this entire book. If basic string searching will do the job for you,
that’s great. But be aware that you have a more powerful alternative.
5

Licensed to Kerri Ross <pedbro@gmail.com>

71String methods

>>> x.find("ss", 0, 3)
-1

rfind is almost the same as find, except that it starts its search at the end of string
and so returns the position of the first character of the last occurrence of substring
in string:

>>> x = "Mississippi"
>>> x.rfind("ss")
5

rfind can also take one or two optional arguments, with the same meanings as those
for find.

 index and rindex are identical to find and rfind, respectively, except for one dif-
ference: if index or rindex fails to find an occurrence of substring in string, it
doesn’t return –1 but rather raises a ValueError exception. Exactly what this means
will be clear after you read chapter 14, “Exceptions.”

 count is used identically to any of the previous four functions but returns the num-
ber of non-overlapping times the given substring occurs in the given string:

>>> x = "Mississippi"
>>> x.count("ss")
2

You can use two other string methods to search strings: startswith and endswith.
These methods return a True or False result depending on whether the string they’re
used on starts or ends with one of the strings given as parameters:

>>> x = "Mississippi"
>>> x.startswith("Miss")
True
>>> x.startswith("Mist")
False
>>> x.endswith("pi")
True
>>> x.endswith("p")
False

Both startswith and endswith can look for more than one string at a time. If the
parameter is a tuple of strings, both methods check for all of the strings in the tuple
and return a True if any one of them is found:

>>> x.endswith(("i", "u"))
True

startswith and endswith are useful for simple searches.

6.4.5 Modifying strings

Strings are immutable, but string objects have a number of methods that can operate
on that string and return a new string that’s a modified version of the original string.
This provides much the same effect as direct modification for most purposes. You can

find a more complete description of these methods in the documentation.

Licensed to Kerri Ross <pedbro@gmail.com>

72 CHAPTER 6 Strings

 You can use the replace method to replace occurrences of substring (its first
argument) in the string with newstring (its second argument). It also takes an
optional third argument (see the documentation for details):

>>> x = "Mississippi"
>>> x.replace("ss", "+++")
'Mi+++i+++ippi'

As with the string search functions, the re module provides a much more powerful
method of substring replacement.

 The functions string.maketrans and string.translate may be used together to
translate characters in strings into different characters. Although rarely used, these
functions can simplify your life when they’re needed.

 Let’s say, for example, that you’re working on a program that translates string
expressions from one computer language into another. The first language uses ~ to
mean logical not, whereas the second language uses !; the first language uses ^ to
mean logical and, whereas the second language uses &; the first language uses (and),
where the second language uses [and]. In a given string expression, you need to
change all instances of ~ to !, all instances of ^ to &, all instances of (to [, and all
instances of) to]. You could do this using multiple invocations of replace, but an
easier and more efficient way is

>>> x = "~x ^ (y % z)"
>>> table = x.maketrans("~^()", "!&[]")
>>> x.translate(table)
'!x & [y % z]'

The first line uses maketrans to make up a translation table from its two string argu-
ments. The two arguments must each contain the same number of characters, and a
table will be made such that looking up the nth character of the first argument in that
table gives back the nth character of the second argument.

 Next, the table produced by maketrans is passed to translate. Then, translate
goes over each of the characters in its string object and checks to see if they can be
found in the table given as the second argument. If a character can be found in the
translation table, translate replaces that character with the corresponding character
looked up in the table, to produce the translated string.

 You can give an optional argument to translate, to specify characters that should
be removed from the string entirely. See the documentation for details.

 Other functions in the string module perform more specialized tasks.
string.lower converts all alphabetic characters in a string to lowercase, and upper
does the opposite. capitalize capitalizes the first character of a string, and title
capitalizes all words in a string. swapcase converts lowercase characters to uppercase
and uppercase to lowercase in the same string. expandtabs gets rid of tab characters
in a string by replacing each tab with a specified number of spaces. ljust, rjust, and
center pad a string with spaces, to justify it in a certain field width. zfill left-pads a
numeric string with zeros. Refer to the documentation for details of these methods.
Licensed to Kerri Ross <pedbro@gmail.com>

73String methods

6.4.6 Modifying strings with list manipulations

Because strings are immutable objects, there’s no way to directly manipulate them in
the same way you can lists. Although the operations that operate on strings to produce
new strings (leaving the original strings unchanged) are useful for many things, some-
times you want to be able to manipulate a string as if it were a list of characters. In that
case, just turn it into a list of characters, do whatever you want, and turn the resulting
list back into a string:

>>> text = "Hello, World"
>>> wordList = list(text)
>>> wordList[6:] = []
>>> wordList.reverse()
>>> text = "".join(wordList)
>>> print(text)
,olleH

Although you can use split to turn your string into a list of characters, the type-
conversion function list is easier to use and to remember (and, for what it’s worth,
you can turn a string into a tuple of characters using the built-in tuple function).
To turn the list back into a string, use "".join.

 You shouldn’t go overboard with this method because it causes the creation and
destruction of new string objects, which is relatively expensive. Processing hundreds
or thousands of strings in this manner probably won’t have much of an impact on
your program. Processing millions probably will.

6.4.7 Useful methods and constants

string objects also have several useful methods to report qualities of the string,
whether it consists of digits or alphabetic characters, is all uppercase or lowercase, and
so on:

>>> x = "123"
>>> x.isdigit()
True
>>> x.isalpha()
False
>>> x = "M"
>>> x.islower()
False
>>> x.isupper()
True

For a fuller list of all the possible string methods, refer to the string section of the offi-
cial Python documentation.

 Finally, the string module defines some useful constants. You’ve already seen
string.whitespace, which is a string made up of the characters Python thinks of as
whitespace on your system. string.digits is the string '0123456789'. string.hex-
digits includes all the characters in string.digits, as well as 'abcdefABCDEF', the
extra characters used in hexadecimal numbers. string.octdigits contains

Removes everything
after comma

Joins with no
space between
Licensed to Kerri Ross <pedbro@gmail.com>

74 CHAPTER 6 Strings

'01234567'—just those digits used in octal numbers. string.lowercase contains all
lowercase alphabetic characters; string.uppercase contains all uppercase alphabetic
characters; string.letters contains all of the characters in string.lowercase and
string.uppercase. You might be tempted to try assigning to these constants to
change the behavior of the language. Python would let you get away with this, but it
would probably be a bad idea.

 Remember that strings are sequences of characters, so you can use the convenient
Python in operator to test for a character’s membership in any of these strings,
although usually the existing string methods is simpler and easier.

 The most common string operations are shown in table 6.2.

Note that these methods don’t change the string itself but return either a location in
the string or a new string.

6.5 Converting from objects to strings
In Python, almost anything can be converted to some sort of a string representation,
using the built-in repr function. Lists are the only complex Python data types you’re
familiar with so far, so let’s turn some lists into their representations:

>>> repr([1, 2, 3])

Table 6.2 String operations

String operation Explanation Example

+ Adds two strings together x = "hello " + "world"

* Replicates a string x = " " * 20

upper Converts a string to uppercase x.upper()

lower Converts a string to lowercase x.lower()

title Capitalizes the first letter of each
word in a string

x.title()

find, index Searches for the target in a string x.find(y)
x.index(y)

rfind, rindex Searches for the target in a string,
from the end of the string

x.rfind(y)
x.rindex(y)

startswith, endswith Checks the beginning or end of a
string for a match

x.startswith(y)
x.endswith(y)

replace Replaces the target with a new
string

x.replace(y, z)

strip, rstrip,
lstrip

Removes whitespace or other char-
acters from the ends of a string

x.strip()

encode Converts a Unicode string to a
bytes object

x.encode("utf_8")
'[1, 2, 3]'

Licensed to Kerri Ross <pedbro@gmail.com>

75Converting from objects to strings

>>> x = [1]
>>> x.append(2)
>>> x.append([3, 4])
>>> 'the list x is ' + repr(x)
'the list x is [1, 2, [3, 4]]'

The example uses repr to convert the list x into a string representation, which is then
concatenated with the other string to form the final string. Without the use of repr,
this wouldn’t work. In an expression like "string" + [1, 2] + 3, are you trying to
add strings, or add lists, or just add numbers? Python doesn’t know what you want in
such a circumstance, and it will do the safe thing (raise an error) rather than make
any assumptions. In the previous example, all the elements had to be converted to
string representations before the string concatenation would work.

 Lists are the only complex Python objects that have been described to this point,
but repr can be used to obtain some sort of string representation for almost any
Python object. To see this, try repr around a built-in complex object—an actual
Python function:

>>> repr(len)
'<built-in function len>'

Python hasn’t produced a string containing the code that implements the len func-
tion, but it has at least returned a string—<built-in function len>—that describes
what that function is. If you keep the repr function in mind and try it on each Python
data type (dictionaries, tuples, classes, and the like) as we get to them in the book,
you’ll see that no matter what type of Python object you have, you can get a string say-
ing something about that object.

 This is great for debugging programs. If you’re in doubt as to what’s held in a vari-
able at a certain point in your program, use repr and print out the contents of that
variable.

 We’ve covered how Python can convert any object into a string that describes that
object. The truth is, Python can do this in either of two different ways. The repr func-
tion always returns what might be loosely called the formal string representation of a
Python object. More specifically, repr returns a string representation of a Python
object from which the original object can be rebuilt. For large, complex objects, this
may not be the sort of thing you wish to see in debugging output or status reports.

 Python also provides the built-in str function. In contrast to repr, str is intended
to produce printable string representations, and it can be applied to any Python object.
str returns what might be called the informal string representation of the object. A string
returned by str need not define an object fully and is intended to be read by humans,
not by Python code.

 You won’t notice any difference between repr and str when you first start using
them, because until you begin using the object-oriented features of Python, there is
no difference. str applied to any built-in Python object always calls repr to calculate
its result. It’s only when you start defining your own classes that the difference

between str and repr becomes important. This will be discussed in chapter 15.

Licensed to Kerri Ross <pedbro@gmail.com>

76 CHAPTER 6 Strings

 So why talk about this now? Basically, I wanted you to be aware that there’s more
going on behind the scenes with repr than being able to easily write print functions
for debugging. As a matter of good style, you may want to get into the habit of using
str rather than repr when creating strings for displaying information.

6.6 Using the format method
You can format strings in Python 3 in two ways. The newer way to format strings in
Python is to use the string class’s format method. The format method combines a for-
mat string containing replacement fields marked with { } with replacement values
taken from the parameters given to the format command. If you need to include a lit-
eral { or } in the string, you double it to {{ or }}. The format command is a powerful
string-formatting mini-language and offers almost endless possibilities for manipulat-
ing string formatting. On the other hand, it’s fairly simple to use for the most com-
mon use cases, so we’ll look at a few basic patterns. Then, if you need to use the more
advanced options, you can refer to the string-formatting section of the standard
library documentation.

6.6.1 The format method and positional parameters

The simplest use of the string format method uses numbered replacement fields that
correspond to the parameters passed to the format function:

>>> "{0} is the {1} of {2}".format("Ambrosia", "food", "the gods")
'Ambrosia is the food of the gods'
>>> "{{Ambrosia}} is the {0} of {1}".format("food", "the gods")
'{Ambrosia} is the food of the gods'

Note that the format method is applied to the format string, which can also be a
string variable q. Doubling the { } characters escapes them so that they don’t mark a
replacement field w.

 This example has three replacement fields, {0}, {1}, and {2}, which are in turn
filled by the first, second, and third parameters. No matter where in the format string
we place {0}, it will always be replaced by the first parameter, and so on.

 You can also use the positional parameters.

6.6.2 The format method and named parameters

The format method also recognizes named parameters and replacement fields:

>>> "{food} is the food of {user}".format(food="Ambrosia",
... user="the gods")
'Ambrosia is the food of the gods'

In this case, the replacement parameter is chosen by matching the name of the
replacement field to the name of the parameter given to the format command.

 You can also use both positional and named parameters, and you can even access
attributes and elements within those parameters:

q

w

>>> "{0} is the food of {user[1]}".format("Ambrosia",

Licensed to Kerri Ross <pedbro@gmail.com>

77Formatting strings with %

... user=["men", "the gods", "others"])
'Ambrosia is the food of the gods'

In this case, the first parameter is positional, and the second, user[1], refers to the
second element of the named parameter user.

6.6.3 Format specifiers

Format specifiers let you specify the result of the formatting with even more power
and control than the formatting sequences of the older style of string formatting. The
format specifier lets you control the fill character, alignment, sign, width, precision,
and type of the data when it’s substituted for the replacement field. As noted earlier,
the syntax of format specifiers is a mini-language in its own right and too complex to
cover completely here, but the following examples give you an idea of its usefulness:

>>> "{0:10} is the food of gods".format("Ambrosia")
'Ambrosia is the food of gods'
>>> "{0:{1}} is the food of gods".format("Ambrosia", 10)
'Ambrosia is the food of gods'
>>> "{food:{width}} is the food of gods".format(food="Ambrosia", width=10)
'Ambrosia is the food of gods'
>>> "{0:>10} is the food of gods".format("Ambrosia")
' Ambrosia is the food of gods'
>>> "{0:&>10} is the food of gods".format("Ambrosia")
'&&Ambrosia is the food of gods'

:10 is a format specifier that makes the field 10 spaces wide and pads with spaces q.
:{1} takes the width from the second parameter w. :>10 forces left justification of the
field and pads with spaces e. :&>10 forces left justification and pads with & instead of
spaces r .

6.7 Formatting strings with %
This section covers formatting strings with the string modulus (%) operator. It’s used to
combine Python values into formatted strings for printing or other use. C users will
notice a strange similarity to the printf family of functions. The use of % for string for-
matting is the old style of string formatting, and I cover it here because it was the stan-
dard in earlier versions of Python and you’re likely to see it in code that’s been ported
from earlier versions of Python or was written by coders familiar with those versions.
This style of formatting shouldn’t be used in new code, because it’s slated to be depre-
cated and then removed from the language in the future.

 Here’s an example:

>>> "%s is the %s of %s" % ("Ambrosia", "food", "the gods")
'Ambrosia is the food of the gods'

The string modulus operator (the bold % that occurs in the middle, not the three
instances of %s that come before it in the example) takes two parts: the left side, which
is a string; and the right side, which is a tuple. The string modulus operator scans the
left string for special formatting sequences and produces a new string by substituting the

q

w

e

r

Licensed to Kerri Ross <pedbro@gmail.com>

78 CHAPTER 6 Strings

values on the right side for those formatting sequences, in order. In this example, the
only formatting sequences on the left side are the three instances of %s, which stands
for “stick a string in here.”

 Passing in different values on the right side produces different strings:

>>> "%s is the %s of %s" % ("Nectar", "drink", "gods")
'Nectar is the drink of gods'
>>> "%s is the %s of the %s" % ("Brussels Sprouts", "food",
... "foolish")
'Brussels Sprouts is the food of the foolish'

The members of the tuple on the right will have str applied to them automatically by
%s, so they don’t have to already be strings:

>>> x = [1, 2, "three"]
>>> "The %s contains: %s" % ("list", x)
"The list contains: [1, 2, 'three']"

6.7.1 Using formatting sequences

All formatting sequences are substrings contained in the string on the left side of the
central %. Each formatting sequence begins with a percent sign and is followed by one
or more characters that specify what is to be substituted for the formatting sequence
and how the substitution is accomplished. The %s formatting sequence used previ-
ously is the simplest formatting sequence, and it indicates that the corresponding
string from the tuple on the right side of the central % should be substituted in place
of the %s.

 Other formatting sequences can be more complex. This one specifies the field
width (total number of characters) of a printed number to be six, specifies the num-
ber of characters after the decimal point to be two, and left-justifies the number in its
field. I’ve put in angle brackets so you can see where extra spaces are inserted into the
formatted string:

>>> "Pi is <%-6.2f>" % 3.14159 # use of the formatting sequence: %–6.2f
'Pi is <3.14 >'

All the options for characters that are allowable in formatting sequences are given in
the documentation. There are quite a few options, but none are particularly difficult
to use. Remember, you can always try a formatting sequence interactively in Python to
see if it does what you expect it to do.

6.7.2 Named parameters and formatting sequences

Finally, one additional feature is available with the % operator that can be useful in cer-
tain circumstances. Unfortunately, to describe it we’re going to have to employ a
Python feature we haven’t used yet—dictionaries, commonly called hashtables or asso-
ciative arrays by other languages. You can skip ahead to the next chapter, “Dictionar-
ies,” to learn about dictionaries, skip this section for now and come back to it later, or
read straight through, trusting to the examples to make things clear.
Licensed to Kerri Ross <pedbro@gmail.com>

79Formatting strings with %

 Formatting sequences can specify what should be substituted for them by name
rather than by position. When you do this, each formatting sequence has a name in
parentheses, immediately following the initial % of the formatting sequence, like so:

"%(pi).2f"

In addition, the argument to the right of the % operator is no longer given as a single
value or tuple of values to be printed but rather as a dictionary of values to be printed,
with each named formatting sequence having a correspondingly named key in the
dictionary. Using the previous formatting sequence with the string modulus operator,
we might produce code like this:

>>> num_dict = {'e': 2.718, 'pi': 3.14159}
>>> print("%(pi).2f - %(pi).4f - %(e).2f" % num_dict)
3.14 - 3.1416 - 2.72

This is particularly useful when you’re using format strings that perform a large num-
ber of substitutions, because you no longer have to keep track of the positional corre-
spondences of the right-side tuple of elements with the formatting sequences in the
format string. The order in which elements are defined in the dict argument is irrel-
evant, and the template string may use values from dict more than once (as it does
with the 'pi' entry).

Controlling output with the print function

Python’s built-in print function also has some options that can make handling simple
string output easier. When used with one parameter, print prints the value and a
newline character, so that a series of calls to print print each value on a separate line:

>>> print("a")
a
>>> print("b")
b

But print can do more than that. You can also give the print function a number of
arguments, and they will be printed on the same line, separated by a space and ending
with a newline:

>>> print("a", "b", "c")
a b c

If that’s not quite what you need, you can give the print function additional parameters
to control what separates each item and what ends the line:

>>> print("a", "b", "c", sep="|")
a|b|c
>>> print("a", "b", "c", end="\n\n")
a b c

>>>

In chapter 12, you’ll also see that the print function can be used to print to files as
well as console output.

Note name in
parentheses
Licensed to Kerri Ross <pedbro@gmail.com>

80 CHAPTER 6 Strings

Using the print function’s options gives you enough control for simple text output,
but more complex situations are best served by using the format method.

6.8 Bytes
A bytes object is similar to a string object but with an important difference. A
string is an immutable sequence of Unicode characters, whereas a bytes object is a
sequence of integers with values from 0 to 256. Bytes can be necessary when you’re
dealing with binary data—for example, reading from a binary data file.

 The key thing to remember is that bytes objects may look like strings, but they
can’t be used exactly like a string and they can’t be combined with strings:

>>> unicode_a_with_acute = '\N{LATIN SMALL LETTER A WITH ACUTE}'
>>> unicode_a_with_acute
'á'
>>> xb = unicode_a_with_acute.encode()
>>> xb
b'\xc3\xa1'
>>> xb += 'A'
Traceback (most recent call last):
 File "<pyshell#35>", line 1, in <module>
 xb += 'A'
TypeError: can't concat bytes to str
>>> xb.decode()
'á'

The first thing you can see is that to convert from a regular (Unicode) string to bytes,
you need to call the string’s encode method q. After it’s encoded to a bytes object,
the character is now 2 bytes and no longer prints the same way the string did w. Fur-
ther, if you attempt to add a bytes object and a string object together, you get a type
error, because the two are incompatible types e. Finally, to convert a bytes object
back to a string, you need to call that object’s decode method r.

 Most of the time, you shouldn’t need to think about Unicode or bytes at all. But
when you need to deal with international character sets, an increasingly common
issue, you must understand the difference between regular strings and bytes.

6.9 Summary
Python’s string type gives you several powerful tools for text processing. Almost all of
those tools are the methods attached to any string object, although there’s an even
more powerful set of tools in the re module. The standard string methods can search
and replace, trim off extra characters, change case, and much more. Because strings
are immutable—that is, they can’t be changed—the operations that “change” strings
return a copy with the changes, but the original remains untouched.

 After lists and strings, the next important Python data structure to consider is the
dictionary, before we move on to control structures.

qw

e

r

Licensed to Kerri Ross <pedbro@gmail.com>

Dictionaries
This chapter discusses dictionaries, Python’s name for associative arrays, which it
implements using hash tables. Dictionaries are amazingly useful, even in simple
programs.

 Because dictionaries are less familiar to many programmers than other basic
data structures such as lists and strings, some of the examples illustrating dictionary
use are slightly more complex than the corresponding examples for other built-in
data structures. It may be necessary to read parts of the next chapter, “Control
flow,” to fully understand some of the examples in this chapter.

This chapter covers
■ Defining a dictionary
■ Using dictionary operations
■ Determining what can be used as a key
■ Creating sparse matrices
■ Using dictionaries as caches
■ Trusting the efficiency of dictionaries
81

Licensed to Kerri Ross <pedbro@gmail.com>

82 CHAPTER 7 Dictionaries

7.1 What is a dictionary?
If you’ve never used associative arrays or hash tables in other languages, then a good
way to start understanding the use of dictionaries is to compare them with lists:

� Values in lists are accessed by means of integers called indices, which indicate
where in the list a given value is found.

� Dictionaries access values by means of integers, strings, or other Python objects
called keys, which indicate where in the dictionary a given value is found. In
other words, both lists and dictionaries provide indexed access to arbitrary val-
ues, but the set of items that can be used as dictionary indices is much larger
than, and contains, the set of items that can be used as list indices. Also, the
mechanism that dictionaries use to provide indexed access is quite different
than that used by lists.

� Both lists and dictionaries can store objects of any type.
� Values stored in a list are implicitly ordered by their position in the list, because

the indices that access these values are consecutive integers; you may or may not
care about this ordering, but you can use it if desired. Values stored in a diction-
ary aren’t implicitly ordered relative to one another because dictionary keys
aren’t just numbers. Note that if you’re using a dictionary, you can define an
ordering on the items in a dictionary by using another data structure (often a
list) to store such an ordering explicitly; this doesn’t change the fact that dic-
tionaries have no implicit (built-in) ordering.

In spite of the differences between them, use of dictionaries and lists often appears
alike. As a start, an empty dictionary is created much like an empty list, but with curly
braces instead of square brackets:

>>> x = []
>>> y = {}

Here, the first line creates a new, empty list and assigns it to x. The second creates a
new, empty dictionary, and assigns it to y.

 After you create a dictionary, values may be stored in it as if it were a list:

>>> y[0] = 'Hello'
>>> y[1] = 'Goodbye'

Even in these assignments, there is already a significant operational difference
between the dictionary and list usage. Trying to do the same thing with a list would
result in an error, because in Python it’s illegal to assign to a position in a list that
doesn’t already exist. For example, if we try to assign to the 0th element of the list x, we
receive an error:

>>> x[0] = 'Hello'
Traceback (innermost last):
 File "<stdin>", line 1, in ?
IndexError: list assignment index out of range
Licensed to Kerri Ross <pedbro@gmail.com>

83Other dictionary operations

This isn’t a problem with dictionaries; new positions in dictionaries are created as
necessary.

 Having stored some values in the dictionary, we can now access and use them:

>>> print(y[0])
Hello
>>> y[1] + ", Friend."
'Goodbye, Friend.'

All in all, this makes a dictionary look pretty much like a list. Now for the big differ-
ence; let’s store (and use) some values under keys that aren’t integers:

>>> y["two"] = 2
>>> y["pi"] = 3.14
>>> y["two"] * y["pi"]
6.2800000000000002

This is definitely something that can’t be done with lists! Whereas list indices must be
integers, dictionary keys are much less restricted—they may be numbers, strings, or
one of a wide range of other Python objects. This makes dictionaries a natural for jobs
that lists can’t do. For example, it makes more sense to implement a telephone direc-
tory application with dictionaries than with lists, because the phone number for a per-
son can be stored indexed by that person’s last name.

7.1.1 Why dictionaries are called dictionaries

A dictionary is a way of mapping from one set of arbitrary objects to an associated but
equally arbitrary set of objects. Actual dictionaries, thesauri, or translation books are a
good analogy in the real world. To see how natural this correspondence is, here is the
start of an English-to-French color translator:

>>> english_to_french = {}
>>> english_to_french['red'] = 'rouge
>>> english_to_french['blue'] = 'bleu'
>>> english_to_french['green'] = 'vert'
>>> print("red is", english_to_french['red'])
red is rouge

7.2 Other dictionary operations
Besides basic element assignment and access, dictionaries support a number of other
operations. You can define a dictionary explicitly as a series of key/value pairs sepa-
rated by commas:

>>> english_to_french = {'red': 'rouge', 'blue': 'bleu', 'green': 'vert'}

len returns the number of entries in a dictionary:

>>> len(english_to_french)
3

Creates empty
dictionary

Stores three
words in it

Obtains value
for 'red'
Licensed to Kerri Ross <pedbro@gmail.com>

84 CHAPTER 7 Dictionaries

You can obtain all the keys in the dictionary with the keys method. This is often used
to iterate over the contents of a dictionary using Python’s for loop, described in chap-
ter 8:

>>> list(english_to_french.keys())
['green', 'blue', 'red']

The order of the keys in a list returned by keys has no meaning—they aren’t necessar-
ily sorted, and they don’t necessarily occur in the order they were created. Your
Python may print out the keys in a different order than my Python did. If you need
keys sorted, you can store them in a list variable and then sort that list.

 It’s also possible to obtain all the values stored in a dictionary, using values:

>>> list(english_to_french.values())
 ['vert', 'bleu', 'rouge']

This method isn’t used nearly as often as keys.
 You can use the items method to return all keys and their associated values as a

sequence of tuples:

>>> list(english_to_french.items())
[('green', 'vert'), ('blue', 'bleu'), ('red', 'rouge')]

Like keys, this is often used in conjunction with a for loop to iterate over the contents
of a dictionary.

 The del statement can be used to remove an entry (key/value pair) from a dictionary:

>>> list(english_to_french.items())
[('green', 'vert'), ('blue', 'bleu'), ('red', 'rouge')]
>>> del english_to_french['green']
>>> list(english_to_french.items())
 [('blue', 'bleu'), ('red', 'rouge')]

Attempting to access a key that isn’t in a dictionary is an error in Python. To handle
this, you can test the dictionary for the presence of a key with the in keyword, which
returns True if a dictionary has a value stored under the given key and False otherwise:

>>> 'red' in english_to_french
True
>>> 'orange' in english_to_french

Dictionary view objects

The keys, values, and items methods return not lists but rather views that behave
like sequences but are dynamically updated whenever the dictionary changes. That’s
why we need to use the list function to make them appear as a list in our examples.
Otherwise, they behave like sequences, allowing code to iterate over them in a for
loop, use in to check membership in them, and so on.

The view returned by keys (and in some cases the view returned by items) also be-
haves like a set, with union, difference, and intersection operations.
False

Licensed to Kerri Ross <pedbro@gmail.com>

85Other dictionary operations

Alternatively, you can use the get function. It returns the value associated with a key, if
the dictionary contains that key, but returns its second argument if the dictionary
doesn’t contain the key:

>>> print(english_to_french.get('blue', 'No translation'))
bleu
>>> print(english_to_french.get('chartreuse', 'No translation'))
No translation

The second argument is optional. If it isn’t included, get returns None if the diction-
ary doesn’t contain the key.

 Similarly, if you want to safely get a key’s value and make sure it’s set to a default in
the dictionary, you can use the setdefault method:

>>> print(english_to_french.setdefault('chartreuse', 'No translation'))
No translation

The difference between get and setdefault is that after the setdefault call, there is
a key in the dictionary 'chartreuse' with the value 'No translation'.

 You can obtain a copy of a dictionary using the copy method:

>>> x = {0: 'zero', 1: 'one'}
>>> y = x.copy()
>>> y
{0: 'zero', 1: 'one'}

This makes a shallow copy of the dictionary. This will likely be all you need in most sit-
uations. For dictionaries that contain any modifiable objects as values (that is, lists or
other dictionaries), you may want to make a deep copy using the copy.deepcopy func-
tion. See “Nested lists and deep copies” (section 5.6) of “Lists, tuples, and sets” (chap-
ter 5) for an introduction to the concept of shallow and deep copies.

 The update method updates a first dictionary with all the key/value pairs of a sec-
ond dictionary. For keys that are common to both, the values from the second diction-
ary override those of the first:

>>> z = {1: 'One', 2: 'Two'}
>>> x = {0: 'zero', 1: 'one'}
>>> x.update(z)
>>> x
{0: 'zero', 1: 'One', 2: 'Two'}

Dictionary methods give you a full set of tools to manipulate and use dictionaries. For
quick reference, table 7.1 contains some of the main dictionary functions in table format.

Table 7.1 Dictionary operations

Dictionary operation Explanation Example

{} Creates an empty dictionary x = {}

len Returns the number of entries in a dictionary len(x)
keys Returns a view of all keys in a dictionary x.keys()

Licensed to Kerri Ross <pedbro@gmail.com>

86 CHAPTER 7 Dictionaries

This isn’t a complete list of all dictionary operations. For a complete list, see the
appendix or refer to the official Python documentation.

7.3 Word counting
Assume that we have a file that contains a list of words, one word per line. We want to
know how many times each word occurs in the file. Dictionaries can be used to do this
easily:

>>> sample_string = "To be or not to be"
>>> occurrences = {}
>>> for word in sample_string.split():
... occurrences[word] = occurrences.get(word, 0) + 1
...
>>> for word in occurrences:
... print("The word", word, "occurs", occurrences[word], \
... "times in the string")
...

We increment the occurrences count for each word q. This is a good example of the
power of dictionaries. The code is not only simple, but because dictionary operations
are highly optimized in Python, it’s also quite fast.

7.4 What can be used as a key?
The previous examples use strings as keys, but Python permits more than just strings
to be used in this manner. Any Python object that is immutable and hashable can be
used as a key to a dictionary.

 In Python, as discussed earlier, any object that can be modified is called mutable.
Lists are mutable, because list elements can be added, changed, or removed. Diction-
aries are also mutable, for the same reason. Numbers are immutable. If a variable x is

values Returns a view of all values in a dictionary x.values()

items Returns a view of all items in a dictionary x.items()

del Removes an entry from a dictionary del(x[key])

in Tests whether a key exists in a dictionary 'y' in x

get Returns the value of a key or a configurable
default

x.get('y',None)

setdefault Returns the value if the key is in the dictionary;
otherwise, sets the value for the key to the
default and returns the value

x.setdefault('y',
None)

copy Makes a copy of a dictionary y = x.copy()

update Combines the entries of two dictionaries x.update(z)

Table 7.1 Dictionary operations

Dictionary operation Explanation Example

q

(continued)
Licensed to Kerri Ross <pedbro@gmail.com>

87What can be used as a key?

holding the number 3, and you assign 4 to x, you’ve changed the value in x, but you
haven’t changed the number 3; 3 is still 3. Strings are also immutable. list[n] returns
the nth element of list, string[n] returns the nth character of string, and list[n]
= value changes the nth element of list, but string[n] = character is illegal in
Python and causes an error.

 Unfortunately, the requirement that keys be immutable and hashable means that
lists can’t be used as dictionary keys. But there are many instances when it would be
convenient to have a listlike key. For example, it’s convenient to store information
about a person under a key consisting of both their first and last names, which could
be easily done if we could use a two-element list as a key.

 Python solves this difficulty by providing tuples, which are basically immutable
lists—they’re created and used similarly to lists, except that when you have them, you
can’t modify them. But there’s one further restriction: keys must also be hashable,
which takes things a step further than just immutable. To be hashable, a value must
have a hash value (provided by a __hash__ method) that never changes throughout
the life of the value. That means that tuples containing mutable values, although they
themselves are immutable, aren’t hashable. Only tuples that don’t contain any muta-
ble objects nested within them are hashable and valid to use as keys for dictionaries.
Table 7.2 illustrates which of Python’s built-in types are immutable, hashable, and eli-
gible to be dictionary keys.

The next sections give examples illustrating how tuples and dictionaries can work
together.

Table 7.2 Python values eligible to be used as dictionary keys

Python type Immutable? Hashable? Dictionary key?

int Yes Yes Yes

float Yes Yes Yes

boolean Yes Yes Yes

complex Yes Yes Yes

str Yes Yes Yes

bytes Yes Yes Yes

bytearray No No No

list No No No

tuple Yes Sometimes Sometimes

set No No No

frozenset Yes Yes Yes

dictionary No No No
Licensed to Kerri Ross <pedbro@gmail.com>

88 CHAPTER 7 Dictionaries

7.5 Sparse matrices
In mathematical terms, a matrix is a two-dimensional grid of num-
bers, usually written in textbooks as a grid with square brackets
on each side, as shown at right.

 A fairly standard way to represent such a matrix is by means of
a list of lists. In Python, it’s presented like this:

matrix = [[3, 0, -2, 11], [0, 9, 0, 0], [0, 7, 0, 0], [0, 0, 0, -5]]

Elements in the matrix can then be accessed by row and column number:

element = matrix[rownum][colnum]

But in some applications, such as weather forecasting, it’s common for matrices to be
very large—thousands of elements to a side, meaning millions of elements in total. It’s
also common for such matrices to contain many zero elements. In some applications,
all but a small percentage of the matrix elements may be set to zero. In order to con-
serve memory, it’s common for such matrices to be stored in a form where only the
nonzero elements are actually stored. Such representations are called sparse matrices.

 It’s simple to implement sparse matrices using dictionaries with tuple indices. For
example, the previous sparse matrix can be represented as follows:

matrix = {(0, 0): 3, (0, 2): -2, (0, 3): 11,
 (1, 1): 9, (2, 1): 7, (3, 3): -5}

Now, you can access an individual matrix element at a given row and column number
by the following bit of code:

if (rownum, colnum) in matrix:
 element = matrix[(rownum, colnum)]
else:
 element = 0

A slightly less clear (but more efficient) way of doing this is to use the dictionary get
method, which you can tell to return 0 if it can’t find a key in the dictionary and other-
wise return the value associated with that key. This avoids one of the dictionary lookups:

element = matrix.get((rownum, colnum), 0)

If you’re considering doing extensive work with matrices, you may want to look into
NumPy, the numeric computation package.

7.6 Dictionaries as caches
The following is an example of how dictionaries can be used as caches, data structures
that store results to avoid recalculating those results over and over. A short while ago, I
wrote a function called sole, which took three integers as arguments and returned a
result. It looked something like this:

def sole(m, n, t):
 # . . . do some time-consuming calculations . . .

 return(result)

Licensed to Kerri Ross <pedbro@gmail.com>

89Summary

The problem with this function was that it really was time consuming, and because I
was calling sole tens of thousands of times, the program ran too slowly.

 But sole was called with only about 200 different combinations of arguments dur-
ing any program run. That is, I might call sole(12, 20, 6) some 50 or more times
during the execution of my program and similarly for many other combinations of
arguments. By eliminating the recalculation of sole on identical arguments, I’d save a
huge amount of time. I used a dictionary with tuples as keys, like so:

sole_cache = {}
def sole(m, n, t):
 if (m, n, t) in sole_cache:
 return sole_cache[(m, n, t)]
 else:
 # . . . do some time-consuming calculations . . .
 sole_cache[(m, n, t)] = result
 return result

The rewritten sole function uses a global variable to store previous results. The global
variable is a dictionary, and the keys of the dictionary are tuples corresponding to
argument combinations that have been given to sole in the past. Then, any time sole
passes an argument combination for which a result has already been calculated, it
returns that stored result, rather than recalculating it.

7.7 Efficiency of dictionaries
If you come from a traditional compiled-language background, you may hesitate to
use dictionaries, worrying that they’re less efficient than lists (arrays). The truth is that
the Python dictionary implementation is quite fast. Many of the internal language fea-
tures rely on dictionaries, and a lot of work has gone into making them efficient.
Because all of Python’s data structures are heavily optimized, you shouldn’t spend
much time worrying about which is faster or more efficient. If the problem can be
solved more easily and cleanly by using a dictionary than by using a list, do it that way,
and consider alternatives only if it’s clear that dictionaries are causing an unaccept-
able slowdown.

7.8 Summary
Dictionaries are a basic and powerful Python data structure, used for many purposes
even within Python itself. The ability to use any immutable object as a key to retrieve a
corresponding value makes dictionaries able to handle collections of data with less
code and more direct access than many other solutions.

 We’ve now surveyed the main data structures in Python, so the next step is to look
at the structures Python has to control the flow of a program.
Licensed to Kerri Ross <pedbro@gmail.com>

Control flow
Python provides a complete set of control-flow elements, with loops and condition-
als. This chapter examines each in detail.

8.1 The while loop
You’ve come across the basic while loop several times already. The full while loop
looks like this:

while condition:
 body
else:
 post-code

This chapter covers
■ Repeating code with a while loop
■ Making decisions: the if-elif-else statement
■ Iterating over a list with a for loop
■ Using list and dictionary comprehensions
■ Delimiting statements and blocks with

indentation
■ Evaluating Boolean values and expressions
90

Licensed to Kerri Ross <pedbro@gmail.com>

91The if-elif-else statement

condition is an expression that evaluates to a true or false value. As long as it’s True,
the body will be executed repeatedly. If it evaluates to False, the while loop will exe-
cute the post-code section and then terminate. If the condition starts out by being
false, the body won’t be executed at all—just the post-code section. The body and
post-code are each sequences of one or more Python statements that are separated
by newlines and are at the same level of indentation. The Python interpreter uses this
level to delimit them. No other delimiters, such as braces or brackets, are necessary.

 Note that the else part of the while loop is optional and not often used. That’s
because as long as there is no break in the body, this loop

while condition:
 body
else:
 post-code

and this loop

while condition:
 body
post-code

do the same things—and the second is simpler to understand. I probably wouldn’t
have mentioned the else clause except that if you haven’t learned about it by now,
you may have found it confusing if you found this syntax in another person’s code.
Also, it’s useful in some situations.

8.1.1 The break and continue statements

The two special statements break and continue can be used in the body of a while
loop. If break is executed, it immediately terminates the while loop, and not even the
post-code (if there is an else clause) will be executed. If continue is executed, it
causes the remainder of the body to be skipped over; the condition is evaluated
again, and the loop proceeds as normal.

8.2 The if-elif-else statement
The most general form of the if-then-else construct in Python is

if condition1:
 body1
elif condition2:
 body2
elif condition3:
 body3
.
.
.
elif condition(n-1):
 body(n-1)
Licensed to Kerri Ross <pedbro@gmail.com>

92 CHAPTER 8 Control flow

else:
 body(n)

It says: if condition1 is true, execute body1; otherwise, if condition2 is true, execute
body2; otherwise … and so on, until it either finds a condition that evaluates to True
or hits the else clause, in which case it executes body(n). As for the while loop, the
body sections are again sequences of one or more Python statements that are sepa-
rated by newlines and are at the same level of indentation.

 Of course, you don’t need all that luggage for every conditional. You can leave out
the elif parts, or the else part, or both. If a conditional can’t find any body to exe-
cute (no conditions evaluate to True, and there is no else part), it does nothing.

 The body after the if statement is required. But you can use the pass statement
here (as you can anywhere in Python where a statement is required). The pass state-
ment serves as a placeholder where a statement is needed, but it performs no action:

if x < 5:
 pass
else:
 x = 5

There is no case (or switch) statement in Python.

8.3 The for loop
A for loop in Python is different from for loops in some other languages. The tradi-
tional pattern is to increment and test a variable on each iteration, which is what C for
loops usually do. In Python, a for loop iterates over the values returned by any iter-
able object—that is, any object that can yield a sequence of values. For example, a for
loop can iterate over every element in a list, a tuple, or a string. But an iterable object
can also be a special function called range or a special type of function called a genera-
tor. This can be quite powerful. The general form is

for item in sequence:
 body
else:
 post-code

body will be executed once for each element of sequence. variable is set to be the
first element of sequence, and body is executed; then, variable is set to be the second
element of sequence, and body is executed; and so on, for each remaining element of
the sequence.

 The else part is optional. As with the else part of a while loop, it’s rarely used.
break and continue do the same thing in a for loop as in a while loop.

 This small loop prints out the reciprocal of each number in x:

x = [1.0, 2.0, 3.0]
for n in x:
 print(1 / n)
Licensed to Kerri Ross <pedbro@gmail.com>

93The for loop

8.3.1 The range function

Sometimes you need to loop with explicit indices (to use the position at which values
occur in a list). You can use the range command together with the len command on
lists to generate a sequence of indices for use by the for loop. This code prints out all
the positions in a list where it finds negative numbers:

x = [1, 3, -7, 4, 9, -5, 4]
for i in range(len(x)):
 if x[i] < 0:
 print("Found a negative number at index ", i)

Given a number n, range(n) returns a sequence 0, 1, 2, …, n–2, n–1. So, passing it the
length of a list (found using len) produces a sequence of the indices for that list’s ele-
ments. The range function doesn’t build a Python list of integers—it just appears to.
Instead, it creates a range object that produces integers on demand. This is useful
when you’re using explicit loops to iterate over really large lists. Instead of building a
list with 10 million elements in it, for example, which would take up quite a bit of mem-
ory, you can use range(10000000), which takes up only a small amount of memory and
generates a sequence of integers from 0 up to 10000000 as needed by the for loop.

CONTROLLING STARTING AND STEPPING VALUES WITH RANGE

You can use two variants on the range function to gain more control over the sequence
it produces. If you use range with two numeric arguments, the first argument is the
starting number for the resulting sequence and the second number is the number the
resulting sequence goes up to (but doesn’t include). Here are a few examples:

>>> list(range(3, 7))
[3, 4, 5, 6]
>>> list(range(2, 10))
[2, 3, 4, 5, 6, 7, 8, 9]
>>> list(range(5, 3))
[]

list() is used only to force the items range would generate to appear as a list. It’s not
normally used in actual code q.

 This still doesn’t allow you to count backward, which is why the value of range(5,
3) is an empty list. To count backward, or to count by any amount other than 1, you
need to use the optional third argument to range, which gives a step value by which
counting proceeds:

>>> list(range(0, 10, 2))
[0, 2, 4, 6, 8]
>>> list(range(5, 0, -1))
[5, 4, 3, 2, 1]

Sequences returned by range always include the starting value given as an argument
to range and never include the ending value given as an argument.

q

q

Licensed to Kerri Ross <pedbro@gmail.com>

94 CHAPTER 8 Control flow

8.3.2 Using break and continue in for loops

The two special statements break and continue can also be used in the body of a for
loop. If break is executed, it immediately terminates the for loop, and not even the
post-code (if there is an else clause) will be executed. If continue is executed in a
for loop, it causes the remainder of the body to be skipped over, and the loop pro-
ceeds as normal with the next item. .

8.3.3 The for loop and tuple unpacking

You can use tuple unpacking to make some for loops cleaner. The following code
takes a list of two-element tuples and calculates the value of the sum of the products of
the two numbers in each tuple (a moderately common mathematical operation in
some fields):

somelist = [(1, 2), (3, 7), (9, 5)]
result = 0
for t in somelist:
 result = result + (t[0] * t[1])

 Here’s the same thing, but cleaner:
somelist = [(1, 2), (3, 7), (9, 5)]
result = 0

for x, y in somelist:
 result = result + (x * y)

We use a tuple x, y immediately after the for keyword, instead of the usual single vari-
able. On each iteration of the for loop, x contains element 0 of the current tuple from
list, and y contains element 1 of the current tuple from list. Using a tuple in this
manner is a convenience of Python, and doing this indicates to Python that each ele-
ment of the list is expected to be a tuple of appropriate size to unpack into the vari-
able names mentioned in the tuple after the for.

8.3.4 The enumerate function

You can combine tuple unpacking with the enumerate function to loop over both the
items and their index. This is similar to using range but has the advantage that the
code is clearer and easier to understand. Like the previous example, the following
code prints out all the positions in a list where it finds negative numbers:

x = [1, 3, -7, 4, 9, -5, 4]
for i, n in enumerate(x):
 if n < 0:
 print("Found a negative number at index ", i)

The enumerate function returns tuples of (index, item) q. You can access the item
without the index w. The index is also available e.

q
w

e

Licensed to Kerri Ross <pedbro@gmail.com>

95List and dictionary comprehensions

8.3.5 The zip function

Sometimes it’s useful to combine two or more iterables before looping over them.
The zip function will take the corresponding elements from one or more iterables
and combine them into tuples until it reaches the end of the shortest iterable:

>>> x = [1, 2, 3, 4]
>>> y = ['a', 'b', 'c']
>>> z = zip(x, y)
>>> list(z)
[(1, 'a'), (2, 'b'), (3, 'c')]

8.4 List and dictionary comprehensions
The pattern of using a for loop to iterate through a list, modify or select individual
elements, and create a new list or dictionary is very common. Such loops often look a
lot like the following:

>>> x = [1, 2, 3, 4]
>>> x_squared = []
>>> for item in x:
... x_squared.append(item * item)
...
>>> x_squared
[1, 4, 9, 16]

This sort of situation is so common that Python has a special shortcut for such opera-
tions, called a comprehension. You can think of a list or dictionary comprehension as a
one-line for loop that creates a new list or dictionary from another list. The pattern of
a list comprehension is as follows:

new_list = [expression for variable in old_list if expression]

And a dictionary comprehension looks like this:

new_dict = {expression:expression for variable in list if expression}

In both cases, the heart of the expression is similar to the beginning of a for
loop—for variable in list—with some expression using that variable to create a
new key or value and an optional conditional expression using the value of the vari-
able to select whether it’s included in the new list or dictionary. For example, the fol-
lowing code does exactly the same thing as the previous code but is a list
comprehension:

>>> x = [1, 2, 3, 4]
>>> x_squared = [item * item for item in x]
>>> x_squared
[1, 4, 9, 16]

You can even use if statements to select items from the list:

>>> x = [1, 2, 3, 4]
>>> x_squared = [item * item for item in x if item > 2]

y is 3 elements;
x is 4 elements

z has only 3
elements
Licensed to Kerri Ross <pedbro@gmail.com>

96 CHAPTER 8 Control flow

>>> x_squared
[9, 16]

Dictionary comprehensions are similar, but you need to supply both a key and a value.
If we want to do something similar to the previous example but have the number be
the key and the number’s square be the value in a dictionary, we can use a dictionary
comprehension, like so:

>>> x = [1, 2, 3, 4]
>>> x_squared_dict = {item: item * item for item in x}
>>> x_squared_dict
{1: 1, 2: 4, 3: 9, 4: 16}

List and dictionary comprehensions are very flexible and powerful, and when you get
used to them they make list-processing operations much simpler. I recommend that
you experiment with them and try them anytime you find yourself writing a for loop
to process a list of items.

8.5 Statements, blocks, and indentation
Because the control flow constructs we encountered in this chapter are the first to
make use of blocks and indentation, this is a good time to revisit the subject.

 Python uses the indentation of the statements to determine the delimitation of the
different blocks (or bodies) of the control-flow constructs. A block consists of one or
more statements, which are usually separated by newlines. Examples of Python state-
ments are the assignment statement, function calls, the print function, the place-
holder pass statement, and the del statement. The control-flow constructs (if-elif-
else, while, and for loops) are compound statements:

compound statement clause:
 block
compound statement clause:
 block

A compound statement contains one or more clauses that are each followed by
indented blocks. Compound statements can appear in blocks just like any other state-
ments. When they do, they create nested blocks.

 You may also encounter a couple of special cases. Multiple statements may be
placed on the same line if they are separated by semicolons. A block containing a sin-
gle line may be placed on the same line after the semicolon of a clause of a compound
statement:

>>> x = 1; y = 0; z = 0
>>> if x > 0: y = 1; z = 10
... else: y = -1
...
>>> print(x, y, z)
1 1 10
Licensed to Kerri Ross <pedbro@gmail.com>

97Statements, blocks, and indentation

 Improperly indented code will result in an exception being raised. You may
encounter two forms of this. The first is

>>>
>>> x = 1
File "<stdin>", line 1
 x = 1
 ^
 IndentationError: unexpected indent
>>>

We indented a line that should not have been indented. In the basic mode, the carat (^)
indicates the spot where the problem occurred. In the IDLE Python Shell (see figure 8.1),
the invalid indent is highlighted. The same message would occur if we didn’t indent where
necessary (that is, the first line after a compound statement clause).

 One situation where this can occur can be confusing. If you’re using an editor that
displays tabs in four-space increments (or the Windows interactive mode, which
indents the first tab only four spaces from the prompt) and indent one line with four
spaces and then the next line with a tab, the two lines may appear to be at the same
level of indentation. But you’ll receive this exception because Python maps the tab to
eight spaces. The best way to avoid this problem is to use only spaces in Python code.
If you must use tabs for indentation, or if you’re dealing with code that uses tabs, be
sure never to mix them with spaces.

 On the subject of the basic interactive mode and the IDLE Python Shell, you likely
have noticed that you need an extra line after the outermost level of indentation:

>>> x = 1
>>> if x == 1:
... y = 2
... if v > 0:
... z = 2
... v = 0
...
>>> x = 2

No line is necessary after the line z = 2, but one is needed after the line v = 0. This
line is unnecessary if you’re placing your code in a module in a file.

Figure 8.1 Indentation error
Licensed to Kerri Ross <pedbro@gmail.com>

98 CHAPTER 8 Control flow

The second form of exception will occur if you indent a statement in a block less than
the legal amount:

>>> x = 1
>>> if x == 1:
 y = 2
 z = 2
File "<stdin>", line 3
 z = 2
 ^
 IndentationError: unindent does not match any outer indentation level

Here, the line containing z = 2 isn’t lined up properly under the line containing y =
2. This form is rare, but I mention it again because in a similar situation, it may be
confusing.

 Python will allow you to indent any amount and won’t complain regardless of how
much you vary it as long as you’re consistent within a single block. Please don’t take
improper advantage of this. The recommended standard is to use four spaces for each
level of indentation.

 Before leaving indentation, I’ll cover breaking up statements across multiple lines.
This of course is necessary more often as the level of indentation increases. You can
explicitly break up a line using the backslash character. You can also implicitly break
any statement between tokens when within a set of (), {}, or [] delimiters (that is,
when typing a set of values in a list, a tuple, or a dictionary, or a set of arguments in a
function call, or any expression within a set of brackets). You can indent the continua-
tion line of a statement to any level you desire:

>>> print('string1', 'string2', 'string3' \
... , 'string4', 'string5')
string1 string2 string3 string4 string5
>>> x = 100 + 200 + 300 \
... + 400 + 500
>>> x
1500
>>> v = [100, 300, 500, 700, 900,
... 1100, 1300]
>>> v
[100, 300, 500, 700, 900, 1100, 1300]
>>> max(1000, 300, 500,
... 800, 1200)
1200
>>> x = (100 + 200 + 300
... + 400 + 500)
>>> x
1500
Licensed to Kerri Ross <pedbro@gmail.com>

99Boolean values and expressions

You can break a string with a \ as well. But any indentation tabs or spaces will become
part of the string, and the line must end with the \. To avoid this, you can use the fact
that any set of string literals separated by whitespace is automatically concatenated:

>>> "strings separated by whitespace " \
... """are automatically""" ' concatenated'
'strings separated by whitespace are automatically concatenated'
>>> x = 1
>>> if x > 0:
... string1 = "this string broken by a backslash will end up \
... with the indentation tabs in it"
...
>>> string1
'this string broken by a backslash will end up \t\t\twith
 the indentation tabs in it'
>>> if x > 0:
... string1 = "this can be easily avoided by splitting the " \
... "string in this way"
...
>>> string1
'this can be easily avoided by splitting the string in this way'

8.6 Boolean values and expressions
The previous examples of control flow use conditional tests in a fairly obvious manner
but never really explain what constitutes true or false in Python or what expressions
can be used where a conditional test is needed. This section describes these aspects of
Python.

 Python has a Boolean object type that can be set to either True or False. Any
expression with a Boolean operation will return True or False.

8.6.1 Most Python objects can be used as Booleans

In addition, Python is similar to C with respect to Boolean values, in that C uses the
integer 0 to mean false and any other integer to mean true. Python generalizes this
idea; 0 or empty values are False, and any other values are True. In practical terms,
this means the following:

� The numbers 0, 0.0, and 0+0j are all False; any other number is True.
� The empty string "" is False; any other string is True.
� The empty list [] is False; any other list is True.
� The empty dictionary {} is False; any other dictionary is True.
� The empty set set() is False; any other set is True.
� The special Python value None is always False.
Licensed to Kerri Ross <pedbro@gmail.com>

100 CHAPTER 8 Control flow

There are some Python data structures we haven’t looked at yet, but generally the
same rule applies. If the data structure is empty or 0, it’s taken to mean false in a Bool-
ean context; otherwise it’s taken to mean true. Some objects, such as file objects and
code objects, don’t have a sensible definition of a 0 or empty element, and these
objects shouldn’t be used in a Boolean context.

8.6.2 Comparison and Boolean operators

You can compare objects using normal operators: <, <=, >, >=, and so forth. == is the
equality test operator, and either != or <> may be used as the “not equal to” test.
There are also in and not in operators to test membership in sequences (lists, tuples,
strings, and dictionaries) as well as is and is not operators to test whether two objects
are the same.

 Expressions that return a Boolean value may be combined into more complex
expressions using the and, or, and not operators. This code snippet checks to see if a
variable is within a certain range:

if 0 < x and x < 10:
 ...

Python offers a nice shorthand for this particular type of compound statement; you
can write it as you would in a math paper:

if 0 < x < 10:
 ...

Various rules of precedence apply; when in doubt, you can use parentheses to make
sure Python interprets an expression the way you want it to. This is probably a good
idea for complex expressions, regardless of whether it’s necessary, because it makes it
clear to future maintainers of the code exactly what’s happening. See the appendix
for more details on precedence.

 The rest of this section provides more advanced information. If this is your first
read through this book as you’re learning the language, you may want to skip over it.

 The and and or operators return objects. The and operator returns either the first
false object (that an expression evaluates to) or the last object. Similarly, the or opera-
tor returns either the first true object or the last object. As with many other languages,
evaluation stops as soon as a true expression is found for the or operator or as soon as
a false expression is found for the and operator:

>>> [2] and [3, 4]
[3, 4]
>>> [] and 5
[]
>>> [2] or [3, 4]
[2]
>>> [] or 5
5
>>>
Licensed to Kerri Ross <pedbro@gmail.com>

101Writing a simple program to analyze a text file

The == and!= operators test to see if their operands contains the same values. They
are used in most situations. The is and is not operators test to see if their operands
are the same object:

>>> x = [0]
>>> y = [x, 1]
>>> x is y[0]
True
>>> x = [0]
>>> x is y[0]
False
>>> x == y[0]
True

Revisit “Nested lists and deep copies” (section 5.6) of “Lists, tuples, and sets” (chapter
5) if this example isn’t clear to you.

8.7 Writing a simple program to analyze a text file
To give you a better sense of how a Python program works, let’s look a small sample
that roughly replicates the UNIX wc utility and reports the number of lines, words, and
characters in a file. The sample in listing 8.1 is deliberately written to be clear to pro-
grammers new to Python and as simple as possible.

#!/usr/bin/env python3.1

""" Reads a file and returns the number of lines, words,
 and characters - similar to the UNIX wc utility
"""

infile = open('word_count.tst')

lines = infile.read().split("\n")

line_count = len(lines)

word_count = 0
char_count = 0

for line in lines:

 words = line.split()
 word_count += len(words)

 char_count += len(line)

print("File has {0} lines, {1} words, {2} characters".format
 count, word_count, char_count))

Listing 8.1 word_count.py

They reference the
same object

x has been assigned to
a different object

Opens
file

Reads file; splits
into lines

Gets number of
lines with len()

Initializes
other counts

Iterates
through lines

Splits into
words

Returns number
of characters

Prints
answers
Licensed to Kerri Ross <pedbro@gmail.com>

102 CHAPTER 8 Control flow

To test, you can run this against a sample file containing the first paragraph of this
chapter’s summary, like listing 8.2.

Python provides a complete set of control flow elements,
including while and for loops, and conditionals.
Python uses the level of indentation to group blocks
of code with control elements.

On running word_count.py, you’ll get the following output:

vern@mac:~/quickpythonbook/code $ python3.1 word_count.py
File has 4 lines, 30 words, 189 characters

This code can give you an idea of a Python program. There isn’t much code, and most
of the work gets done in three lines of code in the for loop. Most Pythonistas see this
conciseness as one of Python’s great strengths.

8.8 Summary
Python provides a complete set of control-flow elements, including while and for
loops and conditionals. Python uses the level of indentation to group blocks of code
with control elements.

 Python has the Boolean values True and False, which can be referenced by vari-
ables, but it also considers any 0 or empty value to be false and any nonzero or non-
empty value to be true.

 Control flow is an important part of programming, but just as important is the abil-
ity to package and reuse blocks of code. In the next few chapters, we’ll look at ways to
do that in Python, beginning with functions.

Listing 8.2 word_count.tst
Licensed to Kerri Ross <pedbro@gmail.com>

Functions
This chapter assumes you’re familiar with function definitions in at least one other
computer language and with the concepts that correspond to function definitions,
arguments, parameters, and so forth.

9.1 Basic function definitions
The basic syntax for a Python function definition is

def name(parameter1, parameter2, . . .):
 body

As it does with control structures, Python uses indentation to delimit the body of
the function definition. The following simple example puts the factorial code from

This chapter covers
■ Defining functions
■ Using function parameters
■ Passing mutable objects as parameters
■ Understanding local and global variables
■ Creating and using lambda expressions
■ Using decorators
103

Licensed to Kerri Ross <pedbro@gmail.com>

104 CHAPTER 9 Functions

a previous section into a function body, so we can call a fact function to obtain the
factorial of a number:

>>> def fact(n):
... """Return the factorial of the given number."""
... r = 1
... while n > 0:
... r = r * n
... n = n - 1
... return r
...

The second line q is an optional documentation string or docstring. You can obtain its
value by printing fact.__doc__. The intention of docstrings is to describe the exter-
nal behavior of a function and the parameters it takes, whereas comments should doc-
ument internal information about how the code works. Docstrings are strings that
immediately follow the first line of a function definition and are usually triple quoted
to allow for multiline descriptions. Browsing tools are available that extract the first
line of document strings. It’s a standard practice for multiline documentation strings
to give a synopsis of the function in the first line, follow this with a blank second line,
and end with the rest of the information. This line shows the value after the return is
sent back to the code calling the function w.

Although all Python functions return values, it’s up to you whether a function’s return
value is used:

>>> fact(4)
24
>>> x = fact(4)
>>> x
24
>>>

The return value isn’t associated with a variable q. The fact function’s value is
printed in the interpreter only w. The return value is associated with the variable x e.

Procedure or function?

In some languages, a function that doesn’t return a value is called a procedure. Al-
though you can (and will) write functions that don’t have a return statement, they
aren’t really procedures. All Python procedures are functions; if no explicit return is
executed in the procedure body, then the special Python value None is returned, and
if return arg is executed, then the value arg is immediately returned. Nothing else
in the function body is executed once a return has been executed. Because Python
doesn’t have true procedures, we’ll refer to both types as functions.

q

w

q
w

e

Licensed to Kerri Ross <pedbro@gmail.com>

105Function parameter options

9.2 Function parameter options
Most functions need parameters, and each language has its own specifications for how
function parameters are defined. Python is flexible and provides three options for
defining function parameters. These are outlined in this section.

9.2.1 Positional parameters

The simplest way to pass parameters to a function in Python is by position. In the first
line of the function, you specify definition variable names for each parameter; when
the function is called, the parameters used in the calling code are matched to the
function’s parameter variables based on their order. The following function computes
x to the power of y:

>>> def power(x, y):
... r = 1
... while y > 0:
... r = r * x
... y = y - 1
... return r
...
>>> power(3, 3)
27

This method requires that the number of parameters used by the calling code exactly
match the number of parameters in the function definition, or a TypeError exception
will be raised:

>>> power(3)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: power() takes exactly 2 positional arguments (1 given)
>>>

Default values

Function parameters can have default values, which you declare by assigning a default
value in the first line of the function definition, like so:

def fun(arg1, arg2=default2, arg3=default3, . . .)

Any number of parameters can be given default values. Parameters with default values
must be defined as the last parameters in the parameter list. This is because Python,
like most languages, pairs arguments with parameters on a positional basis. There
must be enough arguments to a function that the last parameter in that function’s
parameter list that doesn’t have a default value gets an argument. See the next sec-
tion, “Passing arguments by parameter name,” for a more flexible mechanism.
Licensed to Kerri Ross <pedbro@gmail.com>

106 CHAPTER 9 Functions

The following function also computes x to the power of y. But if y isn’t given in a call
to the function, the default value of 2 is used, and the function is just the square function:

>>> def power(x, y=2):
... r = 1
... while y > 0:
... r = r * x
... y = y - 1
... return r
...

You can see the effect of the default argument in the following interactive session:

>>> power(3, 3)
27
>>> power(3)
9

9.2.2 Passing arguments by parameter name

You can also pass arguments into a function using the name of the corresponding
function parameter, rather than its position. Continuing with the previous interactive
example, we can type

>>> power(2, 3)
8
>>> power(3, 2)
9
>>> power(y=2, x=3)
9

Because the arguments to power in the final invocation of it are named, their order is
irrelevant; the arguments are associated with the parameters of the same name in the
definition of power, and we get back 3^2. This type of argument passing is called key-
word passing.

 Keyword passing, in combination with the default argument capability of Python
functions, can be highly useful when you’re defining functions with large numbers of
possible arguments, most of which have common defaults. For example, consider a
function that’s intended to produce a list with information about files in the current
directory and that uses Boolean arguments to indicate whether that list should
include information such as file size, last modified date, and so forth, for each file. We
can define such a function along these lines

def list_file_info(size=False, create_date=False, mod_date=False, ...):
 ...get file names...
 if size:
 # code to get file sizes goes here
 if create_date:
 # code to get create dates goes here
 .
 .
 .

 return fileinfostructure

Licensed to Kerri Ross <pedbro@gmail.com>

107Function parameter options

and then call it from other code using keyword argument passing to indicate that we
want only certain information (in this example, the file size and modification date but
not the creation date):

fileinfo = list_file_info(size=True, mod_date=True)

This type of argument handling is particularly suited for functions with very complex
behavior, and one place such functions occur is in graphical user interfaces. If you
ever use the Tkinter package to build GUIs in Python, you’ll find that the use of
optional, keyword-named arguments like this is invaluable.

9.2.3 Variable numbers of arguments

Python functions can also be defined to handle variable numbers of arguments. You
can do this two different ways. One way handles the relatively familiar case where you
wish to collect an unknown number of arguments at the end of the argument list into
a list. The other method can collect an arbitrary number of keyword-passed argu-
ments, which have no correspondingly named parameter in the function parameter
list, into a dictionary. These two mechanisms are discussed next.

DEALING WITH AN INDEFINITE NUMBER OF POSITIONAL ARGUMENTS

Prefixing the final parameter name of the function with a * causes all excess non-
keyword arguments in a call of a function (that is, those positional arguments not
assigned to another parameter) to be collected together and assigned as a tuple to
the given parameter. Here’s a simple way to implement a function to find the maxi-
mum in a list of numbers.

 First, implement the function:

>>> def maximum(*numbers):
... if len(numbers) == 0:
... return None
... else:
... maxnum = numbers[0]
... for n in numbers[1:]:
... if n > maxnum:
... maxnum = n
... return maxnum
...

Now, test out the behavior of the function:

>>> maximum(3, 2, 8)
8
>>> maximum(1, 5, 9, -2, 2)
9

DEALING WITH AN INDEFINITE NUMBER OF ARGUMENTS PASSED BY KEYWORD

An arbitrary number of keyword arguments can also be handled. If the final parame-
ter in the parameter list is prefixed with **, it will collect all excess keyword-passed argu-
ments into a dictionary. The index for each entry in the dictionary will be the keyword
(parameter name) for the excess argument. The value of that entry is the argument
Licensed to Kerri Ross <pedbro@gmail.com>

108 CHAPTER 9 Functions

itself. An argument passed by keyword is excess in this context if the keyword by which
it was passed doesn’t match one of the parameter names of the function.

 For example:

>>> def example_fun(x, y, **other):
... print("x: {0}, y: {1}, keys in 'other': {2}".format(x,
... y, list(other.keys())))
... other_total = 0
... for k in other.keys():
... other_total = other_total + other[k]
... print("The total of values in 'other' is {0}".format(other_total))

Trying out this function in an interactive session reveals that it can handle arguments
passed in under the keywords foo and bar, even though these aren’t parameter names
in the function definition:

>>> example_fun(2, y="1", foo=3, bar=4)
x: 2, y: 1, keys in 'other': ['foo', 'bar']
The total of values in 'other' is 7

9.2.4 Mixing argument-passing techniques

It’s possible to use all of the argument-passing features of Python functions at the
same time, although it can be confusing if not done with care. Rules govern what you
can do. See the documentation for the details.

9.3 Mutable objects as arguments
Arguments are passed in by object reference. The parameter becomes a new refer-
ence to the object. For immutable objects (such as tuples, strings, and numbers), what
is done with a parameter has no effect outside the function. But if you pass in a muta-
ble object (for example, a list, dictionary, or class instance), any change made to the
object will change what the argument is referencing outside the function. Reassigning
the parameter doesn’t affect the argument, as shown in figures 9.1 and 9.2:

>>> def f(n, list1, list2):
... list1.append(3)
... list2 = [4, 5, 6]
... n = n + 1
...
>>> x = 5
>>> y = [1, 2]
>>> z = [4, 5]
>>> f(x, y, z)
>>> x, y, z
(5, [1, 2, 3], [4, 5])

Figure 9.1 At the beginning of function f(), both the initial variables
and the function parameters refer to the same objects.
Licensed to Kerri Ross <pedbro@gmail.com>

109Local, nonlocal, and global variables

Figures 9.1 and 9.2 illustrate what happens
when function f is called. The variable x isn’t
changed because it’s immutable. Instead, the
function parameter n is set to refer to the new
value of 6. Likewise, variable z is unchanged
because inside function f, its corresponding
parameter list2 was set to refer to a new
object, [4, 5, 6]. Only y sees a change because
the actual list it points to was changed.

Figure 9.2 At the end of function f(), y (list1 inside
the function) has been changed internally, whereas n and
list2 refer to different objects.

9.4 Local, nonlocal, and global variables
Let’s return to our definition of fact from the beginning of this chapter:

def fact(n):
 """Return the factorial of the given number."""
 r = 1
 while n > 0:
 r = r * n
 n = n - 1
 return r

Both the variables r and n are local to any particular call of the factorial function;
changes to them made when the function is executing have no effect on any variables
outside the function. Any variables in the parameter list of a function, and any vari-
ables created within a function by an assignment (like r = 1 in fact), are local to the
function.

 You can explicitly make a variable global by declaring it so before the variable is
used, using the global statement. Global variables can be accessed and changed by
the function. They exist outside the function and can also be accessed and changed by
other functions that declare them global or by code that’s not within a function. Let’s
look at an example to see the difference between local and global variables:

>>> def fun():
... global a
... a = 1
... b = 2
...

This defines a function that treats a as a global variable and b as a local variable and
attempts to modify both a and b.

 Now, test this function:

>>> a = "one"
>>> b = "two"
Licensed to Kerri Ross <pedbro@gmail.com>

110 CHAPTER 9 Functions

>>> fun()
>>> a
1
>>> b
'two'

The assignment to a within fun is an assignment to the global variable a also existing
outside of fun. Because a is designated global in fun, the assignment modifies that
global variable to hold the value 1 instead of the value "one". The same isn’t true for
b—the local variable called b inside fun starts out referring to the same value as the
variable b outside of fun, but the assignment causes b to point to a new value that’s
local to the function fun.

 Similar to the global statement is the nonlocal statement, which causes an identi-
fier to refer to a previously bound variable in the closest enclosing scope. We’ll discuss
scopes and namespaces in more detail in the next chapter, but the point is that global
is used for a top-level variable, whereas nonlocal can refer to any variable in an
enclosing scope, as the example in listing 9.1 illustrates.

g_var = 0
nl_var = 0
print("top level-> g_var: {0} nl_var: {1}".format(g_var, nl_var))
def test():
 nl_var = 2
 print("in test-> g_var: {0} nl_var: {1}".format(g_var, nl_var))
 def inner_test():
 global g_var
 nonlocal nl_var
 g_var = 1
 nl_var = 4
 print("in inner_test-> g_var: {0} nl_var: {1}".format(g_var,
 nl_var))

 inner_test()
 print("in test-> g_var: {0} nl_var: {1}".format(g_var, nl_var))

test()
print("top level-> g_var: {0} nl_var: {1}".format(g_var, nl_var))

When run, this code prints the following:

top level-> g_var: 0 nl_var: 0
in test-> g_var: 0 nl_var: 2
in inner_test-> g_var: 1 nl_var: 4
in test-> g_var: 1 nl_var: 4
top level-> g_var: 1 nl_var: 0

Note that the value of the top-level nl_var hasn’t been affected, which would happen
if inner_test contained the line global nl_var.

Listing 9.1 File nonlocal.py

g_var in inner_test
binds top-level g_var

nl_var in inner_test
binds to nl_var in test

g_var in inner_test
binds top-level g_var

nl_var in inner_test
binds to nl_var in test
Licensed to Kerri Ross <pedbro@gmail.com>

111lambda expressions

 The bottom line is that if you want to assign to a variable existing outside a func-
tion, you must explicitly declare that variable to be nonlocal or global. But if you’re
accessing a variable that exists outside the function, you don’t need to declare it non-
local or global. If Python can’t find a variable name in the local function scope, it will
attempt to look up the name in the global scope. Hence, accesses to global variables
will automatically be sent through to the correct global variable. Personally, I don’t
recommend using this shortcut. It’s much clearer to a reader if all global variables are
explicitly declared as global. Further, you probably want to limit the use of global vari-
ables within functions to only rare occasions.

9.5 Assigning functions to variables
Functions can be assigned, like other Python objects, to variables, as shown in the fol-
lowing example:

>>> def f_to_kelvin(degrees_f):
... return 273.15 + (degrees_f - 32) * 5 / 9
...
>>> def c_to_kelvin(degrees_c):
... return 273.15 + degrees_c
...
>>> abs_temperature = f_to_kelvin
>>> abs_temperature(32)
273.14999999999998
>>> abs_temperature = c_to_kelvin
>>> abs_temperature(0)
273.14999999999998

You can place them in lists, tuples, or dictionaries:

>>> t = {'FtoK': f_to_kelvin, 'CtoK': c_to_kelvin}
>>> t['FtoK'](32)
273.14999999999998
>>> t['CtoK'](0)
273.14999999999998

A variable that refers to a function can be used in exactly the same way as the function
q. This last example shows how you can use a dictionary to call different functions by
the value of the strings used as keys. This is a common pattern in situations where dif-
ferent functions need to be selected based on a string value, and in many cases it takes
the place of the switch structure found in languages like C and Java.

9.6 lambda expressions
Short functions like those you just saw can also be defined using lambda expressions of
the form

lambda parameter1, parameter2, . . .: expression

lambda expressions are anonymous little functions that you can quickly define inline.
Often, a small function needs to be passed to another function, like the key function

Defines a
function

Defines a
function

Assigns function
to variable

Assigns function
to variable

q
Accesses a function as
value in dictionary

Accesses a function as
value in dictionary
Licensed to Kerri Ross <pedbro@gmail.com>

112 CHAPTER 9 Functions

used by a list’s sort method. In such cases, a large function is usually unnecessary, and
it would be awkward to have to define the function in a separate place from where it’s
used. Our dictionary in the previous subsection can be defined all in one place with

>>> t2 = {'FtoK': lambda deg_f: 273.15 + (deg_f – 32) * 5 / 9,
... 'CtoK': lambda deg_c: 273.15 + deg_c}
>>> t2['FtoK'](32)
273.14999999999998

This defines lambda expressions as values of the dictionary q. Note that lambda
expressions don’t have a return statement, because the value of the expression is
automatically returned.

9.7 Generator functions
A generator function is a special kind of function that you can use to define your own
iterators. When you define a generator function, you return each iteration’s value
using the yield keyword. When there are no more iterations, an empty return state-
ment or flowing off the end of the function ends the iterations. Local variables in a
generator function are saved from one call to the next, unlike in normal functions:

>>> def four():
... x = 0
... while x < 4:
... print("in generator, x =", x)
... yield x
... x += 1
...
>>> for i in four():
... print(i)
...
in generator, x = 0
0
in generator, x = 1
1
in generator, x = 2
2
in generator, x = 3
3

Note that this generator function has a while loop that limits the number of times the
generator will execute. Depending on how it's used, a generator that doesn’t have
some condition to halt it could cause an endless loop when called.

 You can also use generator functions with in to see if a value is in the series that the
generator produces:

>>> 2 in four()
in generator, x = 0
in generator, x = 1
in generator, x = 2
True

q

Sets initial value
of x to 0

Returns current
value of x

Increments
value of x
>>> 5 in four()

Licensed to Kerri Ross <pedbro@gmail.com>

113Decorators

in generator, x = 0
in generator, x = 1
in generator, x = 2
in generator, x = 3
False

9.8 Decorators
Because functions are first-class objects in Python, they can be assigned to variables, as
you’ve seen. Functions can be passed as arguments to other functions and passed back
as return values from other functions.

 For example, it’s possible to write a Python function that takes another function as
its parameter, wrap it in another function that does something related, and then return
the new function. This new combination can be used instead of the original function:

>>> def decorate(func):
... print("in decorate function, decorating", func.__name__)
... def wrapper_func(*args):
... print("Executing", func.__name__)
... return func(*args)
... return wrapper_func
...
>>> def myfunction(parameter):
... print(parameter)
...
>>> myfunction = decorate(myfunction)
in decorate function, decorating myfunction
>>> myfunction("hello")
Executing myfunction
hello

A decorator is syntactic sugar for this process and lets you wrap one function inside
another with a one-line addition. This still gives you exactly the same effect as the pre-
vious code, but the resulting code is much cleaner and easier to read.

 Very simply, using a decorator involves two parts: defining the function that will be
wrapping or “decorating” other functions and then using an @ followed by the decora-
tor immediately before the wrapped function is defined. The decorator function
should take a function as a parameter and return a function, as follows:

>>> def decorate(func):
... print("in decorate function, decorating", func.__name__)
... def wrapper_func(*args):
... print("Executing", func.__name__)
... return func(*args)
... return wrapper_func
...
>>> @decorate
... def myfunction(parameter):
... print(parameter)
...
in decorate function, decorating myfunction
>>> myfunction("hello")
Executing myfunction

q

w

e

qr

hello

Licensed to Kerri Ross <pedbro@gmail.com>

114 CHAPTER 9 Functions

The decorate function prints the name of the function it’s wrapping when the func-
tion is defined q. When it’s finished, the decorator returns the wrapped function w.
myfunction is decorated using @decorate e. The wrapped function is called after the
decorator function has completed r.

 Using a decorator to wrap one function in another can be handy for a number of
purposes. In web frameworks such as Django, decorators are used to make sure a user
is logged in before executing a function; and in graphics libraries, decorators can be
used to register a function with the graphics framework.

9.9 Summary
Defining functions in Python is simple but highly flexible. Although all variables cre-
ated during the execution of a function body are local to that function, external vari-
ables can easily be accessed using the global statement.

 Python functions provide exceedingly powerful argument-passing features:

� Arguments may be passed by position or by parameter name.
� Default values may be provided for function parameters.
� Functions can collect arguments into tuples, giving you the ability to define

functions that take an indefinite number of arguments.
� Functions can collect arguments into dictionaries, giving you the ability to

define functions that take an indefinite number of arguments passed by param-
eter name.

Functions are first-class objects in Python, which means that they can be assigned to
variables, accessed by way of variables, and decorated. Functions are essential building
blocks for writing readable, structured code. By packaging code that performs a par-
ticular function, they make reusing that code easier, and they also make the rest of
your code simpler and easier to understand. The next step along this path is packag-
ing functions (and other objects) into modules, which is the topic of the next chapter.
Licensed to Kerri Ross <pedbro@gmail.com>

Modules and scoping rules
Modules are used to organize larger Python projects. The Python standard library
is split into modules to make it more manageable. You don’t need to organize your
own code into modules, but if you’re writing any programs that are more than a
few pages long, or any code that you want to reuse, you should probably do so.

10.1 What is a module?
A module is a file containing code. A module defines a group of Python functions or
other objects, and the name of the module is derived from the name of the file.

This chapter covers:
■ Defining a module
■ Writing a first module
■ Using the import statement
■ Modifying the module search path
■ Making names private in modules
■ Importing standard library and third-party modules
■ Understanding Python scoping rules and

namespaces
115

Licensed to Kerri Ross <pedbro@gmail.com>

116 CHAPTER 10 Modules and scoping rules

 Modules most often contain Python source code, but they can also be compiled C
or C++ object files. Compiled modules and Python source modules are used the same way.

 As well as grouping related Python objects, modules help avoid name-clash prob-
lems. For example, you might write a module for your program called mymodule,
which defines a function called reverse. In the same program, you might also wish to
use somebody else’s module called othermodule, which also defines a function called
reverse, but which does something different from your reverse function. In a lan-
guage without modules, it would be impossible to use two different functions named
reverse. In Python, it’s trivial—you refer to them in your main program as mymod-
ule.reverse and othermodule.reverse.

 This is because Python uses namespaces. A namespace is essentially a dictionary of
the identifiers available to a block, function, class, module, and so on. We’ll discuss
namespaces a bit more at the end of this chapter, but be aware that each module has
its own namespace, and this helps avoid naming conflicts.

 Modules are also used to make Python itself more manageable. Most standard
Python functions aren’t built into the core of the language but instead are provided
via specific modules, which you can load as needed.

10.2 A first module
The best way to learn about modules is probably to make one, so let’s get started.

 Create a text file called mymath.py, and in that text file enter the Python code in
listing 10.1. (If you’re using IDLE, select New Window from the File menu and start
typing, as shown in figure 10.1.)

"""mymath - our example math module"""
pi = 3.14159
def area(r):
 """area(r): return the area of a circle with radius r."""
 global pi
 return(pi * r * r)

Figure 10.1 An IDLE edit window provides the same editing functionality as the
shell window, including automatic indentation and colorization.

Listing 10.1 File mymath.py
Licensed to Kerri Ross <pedbro@gmail.com>

117A first module

Save this for now in the directory where your Python executable is. This code merely
assigns pi a value and defines a function. The .py filename suffix is strongly suggested
for all Python code files. It identifies that file to the Python interpreter as consisting of
Python source code. As with functions, you have the option of putting in a document
string as the first line of your module.

 Now, start up the Python Shell and type the following:

>>> pi
Traceback (innermost last):
 File "<stdin>", line 1, in ?
NameError: name 'pi' is not defined
>>> area(2)
Traceback (innermost last):
 File "<stdin>", line 1, in ?
NameError: name 'area' is not defined

In other words, Python doesn’t have the constant pi or the function area built in.
 Now, type

>>> import mymath
>>> pi
Traceback (innermost last):
 File "<stdin>", line 1, in ?
NameError: name 'pi' is not defined
>>> mymath.pi
3.1415899999999999
>>> mymath.area(2)
12.56636
>>> mymath.__doc__
'mymath - our example math module'
>>> mymath.area.__doc__
'area(r): return the area of a circle with radius r.'

We’ve brought in the definitions for pi and area from the mymath.py file, using the
import statement (which automatically adds on the .py suffix when it searches for the
file defining the module named mymath). But the new definitions aren’t directly acces-
sible; typing pi by itself gave an error, and typing area(2) by itself would give an error.
Instead, we access pi and area by prepending them with the name of the module that
contains them. This guarantees name safety. There may be another module out there
that also defines pi (maybe the author of that module thinks that pi is 3.14 or
3.14159265), but that is of no concern. Even if that other module is imported, its ver-
sion of pi will be accessed by othermodulename.pi, which is different from mymath.pi.
This form of access is often referred to as qualification (that is, the variable pi is being
qualified by the module mymath). We may also refer to pi as an attribute of mymath.

 Definitions within a module can access other definitions within that module, with-
out prepending the module name. The mymath.area function accesses the mymath.pi
constant as just pi.

Licensed to Kerri Ross <pedbro@gmail.com>

118 CHAPTER 10 Modules and scoping rules

 If you want to, you can also specifically ask for names from a module to be imported
in such a manner that you don’t have to prepend it with the module name. Type

>>> from mymath import pi
>>> pi
3.1415899999999999
>>> area(2)
Traceback (innermost last):
 File "<stdin>", line 1, in ?
NameError: name 'area' is not defined

The name pi is now directly accessible because we specifically requested it using from
module import name.

 The function area still needs to be called as mymath.area, though, because it
wasn’t explicitly imported.

 You may want to use the basic interactive mode or IDLE’s Python shell to incre-
mentally test a module as you’re creating it. But if you change your module on disk,
retyping the import command won’t cause it to load again. You need to use the
reload function from the imp module for this. The imp module provides an interface
to the mechanisms behind importing modules:

>>> import mymath, imp
>>> imp.reload(mymath)
<module 'mymath' from '/home/doc/quickpythonbook/code/mymath.py'>

When a module is reloaded (or imported for the first time), all of its code is parsed. A
syntax exception is raised if an error is found. On the other hand, if everything is okay,
a .pyc file (for example, mymath.pyc) containing Python byte code is created.

 Reloading a module doesn’t put you back into exactly the same situation as when
you start a new session and import it for the first time. But the differences won’t nor-
mally cause you any problems. If you’re interested, you can look up reload in the sec-
tion on the imp module in the Python Language Reference to find the details.

 Of course, modules don’t need to be used from the interactive Python shell. You
can also import them into scripts, or other modules for that matter; enter suitable
import statements at the beginning of your program file. Internally to Python, the
interactive session and a script are considered modules as well.

 To summarize:

� A module is a file defining Python objects.
� If the name of the module file is modulename.py, then the Python name of the

module is modulename.
� You can bring a module named modulename into use with the import module-

name statement. After this statement is executed, objects defined in the module
can be accessed as modulename.objectname.

� Specific names from a module can be brought directly into your program using
the from modulename import objectname statement. This makes objectname
accessible to your program without needing to prepend it with modulename, and

it’s useful for bringing in names that are often used.

Licensed to Kerri Ross <pedbro@gmail.com>

119The module search path

10.3 The import statement
The import statement takes three different forms. The most basic,

import modulename

searches for a Python module of the given name, parses its contents, and makes it
available. The importing code can use the contents of the module, but any references
by that code to names within the module must still be prepended with the module
name. If the named module isn’t found, an error will be generated. Exactly where
Python looks for modules will be discussed shortly.

 The second form permits specific names from a module to be explicitly imported
into the code:

from modulename import name1, name2, name3, . . .

Each of name1, name2, and so forth from within modulename is made available to the
importing code; code after the import statement can use any of name1, name2, name3,
and so on without prepending the module name.

 Finally, there’s a general form of the from . . . import . . . statement:

from modulename import *

The * stands for all the exported names in modulename. This imports all public names
from modulename—that is, those that don’t begin with an underscore, and makes
them available to the importing code without the necessity of prepending the module
name. But if a list of names called __all__ exists in the module (or the package’s
__init__.py), then the names are the ones imported, whether they begin with an
underscore or not.

 You should take care when using this particular form of importing. If two modules
both define a name, and you import both modules using this form of importing,
you’ll end up with a name clash, and the name from the second module will replace
the name from the first. It also makes it more difficult for readers of your code to
determine where names you’re using originate. When you use either of the two previ-
ous forms of the import statement, you give your reader explicit information about
where they’re from.

 But some modules (such as tkinter, which will be covered later) name their func-
tions to make it obvious where they originate and to make it unlikely that name
clashes will occur. It’s also common to use the general import to save keystrokes when
using an interactive shell.

10.4 The module search path
Exactly where Python looks for modules is defined in a variable called path, which you
can access through a module called sys. Enter the following:

>>> import sys
>>> sys.path

list of directories in the search path

Licensed to Kerri Ross <pedbro@gmail.com>

120 CHAPTER 10 Modules and scoping rules

The value shown in place of _list of directories in the search path_ will depend
on the configuration of your system. Regardless of the details, the string indicates a list
of directories that Python searches (in order) when attempting to execute an import
statement. The first module found that satisfies the import request is used. If there’s no
satisfactory module in the module search path, an ImportError exception is raised.

 If you’re using IDLE, you can graphically look at the search path and the modules
on it using the Path Browser window, which you can start from File menu of the
Python Shell window.

 The sys.path variable is initialized from the value of the environment (operating
system) variable PYTHONPATH, if it exists, or from a default value that’s dependent on
your installation. In addition, whenever you run a Python script, the sys.path variable
for that script has the directory containing the script inserted as its first element—this
provides a convenient way of determining where the executing Python program is
located. In an interactive session such as the previous one, the first element of
sys.path is set to the empty string, which Python takes as meaning that it should first
look for modules in the current directory.

10.4.1 Where to place your own modules

In the example that started this chapter, the mymath module was accessible to Python
because (1) when you execute Python interactively, the first element of sys.path is
"", telling Python to look for modules in the current directory; and (2) you were exe-
cuting Python in the directory that contained the mymath.py file. In a production
environment, neither of these conditions will typically be true. You won’t be running
Python interactively, and Python code files won’t be located in your current directory.
In order to ensure that your programs can use modules you coded, you need to do
one of the following:

� Place your modules into one of the directories that Python normally searches
for modules.

� Place all the modules used by a Python program into the same directory as the
program.

� Create a directory (or directories) that will hold your modules, and modify the
sys.path variable so that it includes this new directory.

Of these three options, the first is apparently the easiest and is also an option that you
should never choose unless your version of Python includes local code directories in its
default module search path. Such directories are specifically intended for site-specific
code and aren’t in danger of being overwritten by a new Python install because
they’re not part of the Python installation. If your sys.path refers to such directories,
you can put your modules there.

 The second option is a good choice for modules that are associated with a particu-
lar program. Just keep them with the program.

 The third option is the right choice for site-specific modules that will be used in

more than one program at that site. You can modify sys.path in various ways. You can

Licensed to Kerri Ross <pedbro@gmail.com>

121Private names in modules

assign to it in your code, which is easy, but doing so hard-codes directory locations
into your program code; you can set the PYTHONPATH environment variable, which is
relatively easy, but it may not apply to all users at your site; or you can add to the
default search path using a .pth file.

 See the section on environment variables in the appendix for examples of how to
set PYTHONPATH. The directory or directories you set it to are prepended to the
sys.path variable. If you use it, be careful that you don’t define a module with the
same name as one of the existing library modules that you’re using or is being used
for you. Your module will be found before the library module. In some cases, this may
be what you want, but probably not often.

 You can avoid this issue using the .pth method. In this case, the directory or direc-
tories you added will be appended to sys.path. The last of these mechanisms is best
illustrated by a quick example. On Windows, you can place this in the directory
pointed to by sys.prefix. Assume your sys.prefix is c:\program files\python,
and place the file in listing 10.2 in that directory.

mymodules
c:\My Documents\python\modules

The next time a Python interpreter is started, sys.path will have c:\program
files\python\mymodules and c:\My Documents\python\modules added to it, if they
exist. You can now place your modules in these directories. Note that the mymodules
directory still runs the danger of being overwritten with a new installation. The mod-
ules directory is safer. You also may have to move or create a mymodules.pth file when
you upgrade Python. See the description of the site module in the Python Library Ref-
erence if you want more details on using .pth files.

10.5 Private names in modules
We mentioned that you can enter from module import * to import almost all names
from a module. The exception to this is that names in the module beginning with an
underscore can’t be imported in this manner so that people can write modules that
are intended for importation with from module import *. By starting all internal
names (that is, names that shouldn’t be accessed outside the module) with an under-
score, you can ensure that from module import * brings in only those names that the
user will want to access.

 To see this in action, let’s assume we have a file called modtest.py, containing the
code in listing 10.3.

"""modtest: our test module"""
def f(x):

Listing 10.2 File myModules.pth

Listing 10.3 File modtest.py
 return x

Licensed to Kerri Ross <pedbro@gmail.com>

122 CHAPTER 10 Modules and scoping rules

def _g(x):
 return x
a = 4
_b = 2

Now, start up an interactive session, and enter the following:

>>> from modtest import *
>>> f(3)
3
>>> _g(3)
Traceback (innermost last):
 File "<stdin>", line 1, in ?
NameError: name '_g' is not defined
>>> a
4
>>> _b
Traceback (innermost last):
 File "<stdin>", line 1, in ?
NameError: name '_b' is not defined

As you can see, the names f and a are imported, but the names _g and _b remain hid-
den outside of modtest. Note that this behavior occurs only with from ... import *.
We can do the following to access _g or _b:

>>> import modtest
>>> modtest._b
2
>>> from modtest import _g
>>> _g(5)
5

The convention of leading underscores to indicate private names is used throughout
Python and not just in modules. You’ll encounter it in classes and packages, later in
the book.

10.6 Library and third-party modules
At the beginning of this chapter, I mentioned that the standard Python distribution is
split into modules to make it more manageable. After you’ve installed Python, all the
functionality in these library modules is available to you. All that’s needed is to import
the appropriate modules, functions, classes, and so forth explicitly, before you use them.

 Many of the most common and useful standard modules are discussed throughout
this book. But the standard Python distribution includes far more than what this book
describes. At the very least, you should browse through the table of contents of the
Python Library Reference.

 In IDLE, you can easily browse to and look at those written in Python using the
Path Browser window. You can also search for example code that uses them with the
Find in Files dialog box, which you can open from the Edit menu of the Python Shell
window. You can search through your own modules as well in this way.
Licensed to Kerri Ross <pedbro@gmail.com>

123Python scoping rules and namespaces

 Available third-party modules, and links to them, are identified on the Python
home page. You need to download these and place them in a directory in your mod-
ule search path in order to make them available for import into your programs.

10.7 Python scoping rules and namespaces
Python’s scoping rules and namespaces will become more interesting as your experi-
ence as a Python programmer grows. If you’re new to Python, you probably don’t
need to do anything more than quickly read through the text to get the basic ideas.
For more details, look up “namespaces” in the Python Language Reference.

 The core concept here is that of a namespace. A namespace in Python is a map-
ping from identifiers to objects and is usually represented as a dictionary. When a
block of code is executed in Python, it has three namespaces: local, global, and built-in
(see figure 10.2).

 When an identifier is encountered during execution, Python first looks in the local
namespace for it. If it isn’t found, the global namespace is looked in next. If it still hasn’t
been found, the built-in namespace is checked. If it doesn’t exist there, this is consid-
ered an error and a NameError exception occurs.

 For a module, a command executed in an interactive session, or a script running
from a file, the global and local namespaces are the same. Creating any variable or
function or importing anything from another module results in a new entry, or bind-
ing, being made in this namespace.

 But when a function call is made, a local
namespace is created, and a binding is
entered in it for each parameter of the call.
A new binding is then entered into this local
namespace whenever a variable is created
within the function. The global namespace
of a function is the global namespace of the
containing block of the function (that of the
module, script file, or interactive session).
It’s independent of the dynamic context
from which it’s called.

 In all of these situations, the built-in
namespace is that of the __builtins__

module. This module contains, among
other things, all the built-in functions you’ve
encountered (such as len, min, max, int,
float, long, list, tuple, cmp, range, str,
and repr) and the other built-in classes in
Python, such as the exceptions (like
NameError).

Figure 10.2 The order in which namespaces
are checked to locate identifiers
Licensed to Kerri Ross <pedbro@gmail.com>

124 CHAPTER 10 Modules and scoping rules

One thing that sometimes catches new Python programmers is the fact that you can
override items in the built-in module. If, for example, you create a list in your pro-
gram and put it in a variable called list, you can’t subsequently use the built-in list
function. The entry for your list is found first. There’s no differentiation between
names for functions and modules and other objects. The most recent occurrence of a
binding for a given identifier is used.

 Enough talk—it’s time to explore this with some examples. We use two built-in
functions, locals and globals. They return dictionaries containing the bindings in
the local and global namespaces, respectively.

 Start a new interactive session:

>>> locals()
{'__builtins__': <module 'builtins' (built-in)>, '__name__': '__main__',
➥'__doc__': None, '__package__': None}
>>> globals()
{'__builtins__': <module 'builtins' (built-in)>, '__name__': '__main__',
➥'__doc__': None, '__package__': None}>>>

The local and global namespaces for this new interactive session are the same. They
have three initial key/value pairs that are for internal use: (1) an empty documenta-
tion string __doc__, (2) the main module name __name__ (which for interactive ses-
sions and scripts run from files is always __main__), and (3) the module used for the
built-in namespace __builtins__ (the module __builtins__).

 Now, if we continue by creating a variable and importing from modules, we’ll see a
number of bindings created:

>>> z = 2
>>> import math
>>> from cmath import cos
>>> globals()
{'cos': <built-in function cos>, '__builtins__': <module 'builtins'
➥(built-in)>, '__package__': None, '__name__': '__main__', 'z': 2,
➥'__doc__': None, 'math': <module 'math' from
➥'/usr/local/lib/python3.0/libdynload/math.so'>}
>>> locals()
{'cos': <built-in function cos>, '__builtins__':
➥ <module 'builtins' (built-in)>, '__package__': None, '__name__':
➥'__main__', 'z': 2, '__doc__': None, 'math': <module 'math' from
➥'/usr/local/lib/python3.0/libdynload/math.so'>}
>>> math.ceil(3.4)
4

As expected, the local and global namespaces continue to be equivalent. Entries have
been added for z as a number, math as a module, and cos from the cmath module as a
function.

 You can use the del statement to remove these new bindings from the namespace
(including the module bindings created with the import statements):

>>> del z, math, cos
>>> locals()
Licensed to Kerri Ross <pedbro@gmail.com>

125Python scoping rules and namespaces

{'__builtins__': <module 'builtins' (built-in)>, '__package__': None,
'__name__': '__main__', '__doc__': None}
>>> math.ceil(3.4)
Traceback (innermost last):
 File "<stdin>", line 1, in <module>
NameError: math is not defined
>>> import math
>>> math.ceil(3.4)
4

The result isn’t drastic, because we’re able to import the math module and use it
again. Using del in this manner can be handy when you’re in the interactive mode.1

 For the trigger happy, yes, it’s also possible to use del to remove the __doc__,
__main__, and __builtins__ entries. But resist doing this, because it wouldn’t be
good for the health of your session!

 Now, let’s look at a function created in an interactive session:

>>> def f(x):
... print("global: ", globals())
... print("Entry local: ", locals())
... y = x
... print("Exit local: ", locals())
...
>>> z = 2
>>> globals()
{'f': <function f at 0xb7cbfeac>, '__builtins__': <module 'builtins'
➥(built-in)>, '__package__': None, '__name__': '__main__', 'z': 2,
➥'__doc__': None}
>>> f(z)
global: {'f': <function f at 0xb7cbfeac>, '__builtins__': <module
➥'builtins' (built-in)>, '__package__': None, '__name__': '__main__',
➥'z': 2, '__doc__': None}
Entry local: {'x': 2}
Exit local: {'y': 2, 'x': 2}
>>>

If we dissect this apparent mess, we see that, as expected, upon entry the parameter x
is the original entry in f’s local namespace, but y is added later. The global namespace
is the same as that of our interactive session, because this is where f was defined. Note
that it contains z, which was defined after f.

 In a production environment, you normally call functions that are defined in mod-
ules. Their global namespace is that of the module they’re defined in. Assume that
we’ve created the file in listing 10.4.

"""scopetest: our scope test module"""
v = 6

1 Using del and then import again won’t pick up changes made to a module on disk. It isn’t removed from
memory and then loaded from disk again. The binding is taken out of and then put back into your

Listing 10.4 File scopetest.py
namespace. You still need to use imp.reload if you want to pick up changes made to a file.

Licensed to Kerri Ross <pedbro@gmail.com>

126 CHAPTER 10 Modules and scoping rules

def f(x):
 """f: scope test function"""
 print("global: ", list(globals().keys()))
 print("entry local:", locals())
 y = x
 w = v
 print("exit local:", list(locals().keys()))

Note that we’ll be printing only the keys (identifiers) of the dictionary returned by
globals. This will reduce the clutter in the results. It was necessary in this case due to
the fact that in modules as an optimization, the whole __builtins__ dictionary is
stored in the value field for the __builtins__ key:

>>> import scopetest
>>> z = 2
>>> scopetest.f(z)
global: ['f', '__builtins__', '__file__', '__package__', 'v', '__name__',
➥'__doc__']
entry local: {'x': 2}
exit local: {'y': 2, 'x': 2, 'w': 6}

The global namespace is now that of the scopetest module and includes the function
f and integer v (but not z from our interactive session). Thus, when creating a mod-
ule, you have complete control over the namespaces of its functions.

 We’ve now covered local and global namespaces. Next, let’s move on to the built-in
namespace. We’ll introduce another built-in function, dir, which, given a module,
returns a list of the names defined in it:

>>> dir(__builtins__)
['ArithmeticError', 'AssertionError', 'AttributeError', 'BaseException',

'BufferError', 'BytesWarning', 'DeprecationWarning', 'EOFError',
'Ellipsis', 'EnvironmentError', 'Exception', 'False',
'FloatingPointError', 'FutureWarning', 'GeneratorExit', 'IOError',
'ImportError', 'ImportWarning', 'IndentationError', 'IndexError',
'KeyError', 'KeyboardInterrupt', 'LookupError', 'MemoryError',
'NameError', 'None', 'NotImplemented', 'NotImplementedError', 'OSError',
'OverflowError', 'PendingDeprecationWarning', 'ReferenceError',
'RuntimeError', 'RuntimeWarning', 'StopIteration', 'SyntaxError',
'SyntaxWarning', 'SystemError', 'SystemExit', 'TabError', 'True',
'TypeError', 'UnboundLocalError', 'UnicodeDecodeError',
'UnicodeEncodeError', 'UnicodeError', 'UnicodeTranslateError',
'UnicodeWarning', 'UserWarning', 'ValueError', 'Warning',
'ZeroDivisionError', '__build_class__', '__debug__', '__doc__',
'__import__', '__name__', '__package__', 'abs', 'all', 'any', 'ascii',
'bin', 'bool', 'bytearray', 'bytes', 'chr', 'classmethod', 'cmp',
'compile', 'complex', 'copyright', 'credits', 'delattr', 'dict', 'dir',
'divmod', 'enumerate', 'eval', 'exec', 'exit', 'filter', 'float',
'format', 'frozenset', 'getattr', 'globals', 'hasattr', 'hash', 'help',
'hex', 'id', 'input', 'int', 'isinstance', 'issubclass', 'iter', 'len',
'license', 'list', 'locals', 'map', 'max', 'memoryview', 'min', 'next',
'object', 'oct', 'open', 'ord', 'pow', 'print', 'property', 'quit',
'range', 'repr', 'reversed', 'round', 'set', 'setattr', 'slice',
'sorted', 'staticmethod', 'str', 'sum', 'super', 'tuple', 'type',

'vars', 'zip']

Licensed to Kerri Ross <pedbro@gmail.com>

127Python scoping rules and namespaces

There are a lot of entries here. Those ending in Error and System Exit are the
names of the exceptions built into Python. These will be discussed in chapter 14,
“Exceptions.”

 The last group (from abs to zip) are built-in functions of Python. You’ve already
seen many of these in this book and will see more. But they won’t all be covered here.
If you’re interested, you can find details on the rest in the Python Library Reference. You
can also at any time easily obtain the documentation string for any of them, either by
using the help() function or by printing the docstring directly:

>>> print(max.__doc__)
max(iterable[, key=func]) -> value
max(a, b, c, ...[, key=func]) -> value

With a single iterable argument, return its largest item.
With two or more arguments, return the largest argument.
>>>

As mentioned earlier, it’s not unheard of for a new Python programmer to inadver-
tently override a built-in function:

>>> list("Peyto Lake")
['P', 'e', 'y', 't', 'o', ' ', 'L', 'a', 'k', 'e']
>>> list = [1, 3, 5, 7]
>>> list("Peyto Lake")
Traceback (innermost last):
 File "<stdin>", line 1, in ?
TypeError: 'list' object is not callable

The Python interpreter won’t look beyond the new binding for list as a list, even
though we’re using the built-in list function syntax.

 The same thing will, of course, happen if we try to use the same identifier twice in
a single namespace. The previous value will be overwritten, regardless of its type:

>>> import mymath
>>> mymath = mymath.area
>>> mymath.pi
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: 'function' object has no attribute 'pi'

When you’re aware of this, it isn’t a significant issue. Reusing identifiers, even for dif-
ferent types of objects, wouldn’t make for the most readable code anyway. If you do
inadvertently make one of these mistakes when in interactive mode, it’s easy to
recover. You can use del to remove your binding, to regain access to an overridden
built-in, or to import your module again to regain access:

>>> del list
>>> list("Peyto Lake")
['P', 'e', 'y', 't', 'o', ' ', 'L', 'a', 'k', 'e']
>>> import mymath
>>> mymath.pi

3.1415899999999999

Licensed to Kerri Ross <pedbro@gmail.com>

128 CHAPTER 10 Modules and scoping rules

The locals and globals functions can be useful as simple debugging tools. The dir
function doesn’t give the current settings; but if you call it without parameters, it
returns a sorted list of the identifiers in the local namespace. This helps catch the mis-
typed variable error that compilers may usually catch for you in languages that require
declarations:

>>> x1 = 6
>>> xl = x1 - 2
>>> x1
6
>>> dir()
['__builtins__', '__doc__', '__name__', '__package__', 'x1', 'xl']

The debugger that’s bundled with IDLE has settings where you can view the local and
global variable settings as you step through your code; it displays the output of the
locals and globals functions.

10.8 Summary
Python uses modules to manage Python code and objects but allows you to put related
code and objects into a file. Not only does this make managing and reusing larger
amounts of code easier, but it also helps avoid conflicting variable names, because each
object imported from a module is normally named in association with its module.

 Being able to package related functions into modules is the final piece of knowl-
edge you need to write standalone programs and scripts in Python, and that’s what
we’ll discuss in the next chapter.
Licensed to Kerri Ross <pedbro@gmail.com>

Python programs
Up until now, you’ve been using the Python interpreter mainly in interactive mode.
For production use, you’ll want to create Python programs or scripts. A number of
the sections in this chapter focus on command-line programs. If you come from a
Linux/UNIX background, you may be familiar with scripts that can be started from
a command line and given arguments and options that can be used to pass in infor-
mation and possibly redirect their input and output. If you’re from a Windows or
Mac background, these things may be new to you, and you may be more inclined to
question their value.

 It’s true that command-line scripts are less convenient to use in a GUI environ-

This chapter covers
■ Creating a very basic program
■ Making a program directly executable on Linux/UNIX
■ Writing programs on Mac OS X
■ Selecting execution options in Windows
■ Comparing programs on Windows versus Linux/UNIX
■ Combining programs and modules
■ Distributing Python applications
129

ment, but the Mac now has the option of a UNIX command-line shell, and Windows

Licensed to Kerri Ross <pedbro@gmail.com>

130 CHAPTER 11 Python programs

also offers enhanced command-line options. It will be well worth your time to read the
bulk of this chapter at some point. You may find occasions when these techniques are
useful, or you may run across code that you need to understand that uses some of
them. In particular, command-line techniques are very useful when you need to pro-
cess large numbers of files.

11.1 Creating a very basic program
Any group of Python statements placed sequentially in a file can be used as a program,
or script. But it’s more standard and useful to introduce additional structure. In its
most basic form, this is a simple matter of creating a controlling function in a file and
calling that function, as shown in listing 11.1.

def main():
 print("this is our first test script file")
main()

In this script, main is our controlling—and only—function. It’s first defined, and then
it’s called. Although it doesn’t make much difference in a small program, using this
structure can give you more options and control when you create larger applications,
so it’s a good idea to make it a habit from the beginning.

11.1.1 Starting a script from a command line

If you’re using Linux/UNIX, make sure Python is on your path and you’re in the same
directory as your script. Then type the following on your command line to start the script:

python script1.py

If you’re using a Macintosh computer running OS X, the procedure is the same as for
other UNIX systems. You need to open a terminal program, which is in the Utilities
folder of the Applications folder. There are several other options for running scripts
on OS X, which we’ll discuss shortly.

 If you’re using Windows, open Command Prompt (in the Accessories subfolder of
the All Programs folder in the Start menu). This opens in your home folder, and if
necessary you can use the cd command to change to a subdirectory. For example, run-
ning script1.py if it was saved on your desktop would look like this:

C:\Documents and Settings\vern> cd Desktop

C:\Documents and Settings\vern\Desktop> python script1.py
hello

C:\Documents and Settings\vern\Desktop>

We’ll be looking at other options for calling scripts later in this chapter, but stick with
this for now.

Listing 11.1 File script1.py

Controlling
function main

Calls main

Changes to
Desktop folder

Runs
script1.pyOutput of

script1.py
Licensed to Kerri Ross <pedbro@gmail.com>

131Creating a very basic program

11.1.2 Command-line arguments

A simple mechanism is available for passing in command-line arguments, as shown in
listing 11.2.

import sys
def main():
 print("this is our second test script file")
 print(sys.argv)
main()

If we call this with the line

python script2.py arg1 arg2 3

we get

this is our second test script file
['script2.py', 'arg1', 'arg2', '3']

You can see that the command-line arguments have been stored in sys.argv as a list of
strings.

11.1.3 Redirecting the input and output of a script

You can redirect the input and/or the output for a script using command-line
options. To show this, we’ll use the short script in listing 11.3.

import sys
def main():
 contents = sys.stdin.read()
 sys.stdout.write(contents.replace(sys.argv[1], sys.argv[2]))
main()

This script reads its standard input and writes to its standard output whatever it read, with
all occurrences of its first argument replaced with its second argument. Called as follows,
it will place in outfile a copy of infile with all occurrences of zero replaced by 0:

python replace.py zero 0 < infile > outfile

Note that this will work on UNIX; but on Windows, redirection of input and/or out-
put will work only if you start a script from a command prompt window.

 In general, the line

python script.py arg1 arg2 arg3 arg4 < infile > outfile

will have the effect of having any input or sys.stdin operations directed out of infile
and any print or sys.stdout operations directed into outfile. The effect is as if you set
sys.stdin to infile with 'r' (read) mode and sys.stdout to outfile with 'w' (write):

python replace.py a A < infile >> outfile

Listing 11.2 File script2.py

Listing 11.3 File replace.py

Reads from
stdin into
contents

Replaces first
argument
with second
Licensed to Kerri Ross <pedbro@gmail.com>

132 CHAPTER 11 Python programs

This line causes the output to be appended to outfile rather than overwrite it, as hap-
pens in the previous example.

 You can also pipe in the output of one command as the input of another command:

python replace.py 0 zero < infile | python replace.py 1 one > outfile

This results in outfile containing the contents of infile, with all occurrences of 0
changed to zero and all occurrences of 1 changed to one.

11.1.4 The optparse module

You can configure a script to accept command-line options as well as arguments. The
optparse module provides support for parsing different types of options and argu-
ments and can even generate usage messages.

 To use the optparse module, you create an instance of OptionParser, populate it
with options, and then read both the options and the arguments. The example in list-
ing 11.4 illustrates its use.

from optparse import OptionParser

def main():
 parser = OptionParser()
 parser.add_option("-f", "--file", dest="filename",
 help="write report to FILE", metavar="FILE")
 parser.add_option("-x", "--xray", dest="xray",
 help="specify xray strength factor")
 parser.add_option("-q", "--quiet",
 action="store_false", dest="verbose", default=True,
 help="don't print status messages to stdout")

 (options, args) = parser.parse_args()

 print("options:", str(options))
 print("arguments:", args)
main()

This adds a filename option with either '-f' or '—file' q. The final option added,
the "quiet" option, also adds the ability to turn off the verbose option, which is True
by default (action=store_false).

 The parse_args method returns two objects: one containing the options and their
values as key/value pairs, and a list of the positional arguments. You can get the values
of the options from the first object by using the string you specified with the dest
parameter as a dictionary key. If there’s no argument for an option, the value is None.
Any elements left on the command line after all the options have been parsed will be
in the list of positional arguments. Thus, if you call the previous script with the line

python opts.py -x100 -q -f infile arg1 arg2

Listing 11.4 File opts.py

q

Options come after script name
Licensed to Kerri Ross <pedbro@gmail.com>

133Creating a very basic program

the following output will result:

options: {'xray': '100', 'verbose': False, 'filename': 'infile'}
arguments: ['arg1', 'arg2']

If an invalid option is found, or if an option that requires an argument isn’t given one,
parse_args raises an error.

python opts.py -x100 -r

This line results in the following response:

Usage: opts.py [options]

opts.py: error: no such option: -r

11.1.5 Using the fileinput module

The fileinput module is also sometimes useful for scripts. It provides support for
processing lines of input from one or more files. It automatically reads the command-
line arguments (out of sys.argv) and takes them as its list of input files. It allows you to
then sequentially iterate through these lines. The simple example script in listing 11.5
(which will strip out any lines starting with ##) illustrates the module’s basic use.

import fileinput
def main():
 for line in fileinput.input():
 if not line.startswith('##'):
 print(line, end="")
main()

Now, assume we have the data files shown in listings 11.6 and 11.7.

sole1.tst: test data for the sole function
0 0 0
0 100 0
##
0 100 100

sole2.tst: more test data for the sole function
12 15 0
##
100 100 0

Also assume that we make the following call:

python script4.py sole1.tst sole2.tst

Listing 11.5 File script4.py

Listing 11.6 File sole1.tst

Listing 11.7 File sole2.tst
Licensed to Kerri Ross <pedbro@gmail.com>

134 CHAPTER 11 Python programs

We obtain the following result with the comment lines stripped out and the data from
the two files combined:

0 0 0
0 100 0
0 100 100
12 15 0
100 100 0

If no command-line arguments are present, the standard input is all that is read. If
one of the arguments is a hyphen (-), the standard input is read at that point.

 The module provides a number of other functions. These allow you at any point to
determine the total number of lines that have been read (lineno), the number of
lines that have been read out of the current file (filelineno), the name of the cur-
rent file (filename), whether this is the first line of a file (isfirstline), and/or
whether standard input is currently being read (isstdin). You can at any point skip to
the next file (nextfile) or close the whole stream (close). The short script in listing
11.8 (which combines the lines in its input files and adds file-start delimiters) illus-
trates how you can use these.

import fileinput
def main():
 for line in fileinput.input():
 if fileinput.isfirstline():
 print("<start of file {0}>".format(fileinput.filename()))
 print(line, end="")
main()

Using the call

python script5.py file1 file2

will result in the following (where the dotted lines indicate the lines in the original
files):

<start of file file1>
.......................
.......................
<start of file file2>
.......................
.......................

Finally, if you call fileinput.input with an argument of a single filename or a list of
filenames, they’re used as its input files rather than the arguments in sys.argv. filein-
put.input also has an inline option that leaves its output in the same file as its input
while optionally leaving the original around as a backup file. See the documentation
for a description of this last option.

Listing 11.8 File script5.py
Licensed to Kerri Ross <pedbro@gmail.com>

135Script execution options in Windows

11.2 Making a script directly executable on UNIX
If you’re on UNIX, you can easily make a script directly executable. Add the following
line to its top and change its mode appropriately (that is, chmod +x replace.py):

#! /usr/bin/env python

Note that if Python 3.x isn’t your default version of Python, you may need to change
the python above to python3.1 or something similar to specify that you want to use
Python 3.x instead of an earlier default version.

 Then, if you place your script somewhere on your path (for example, in your bin
directory), you can execute it regardless of the directory you’re in by typing its name
and the desired arguments:

replace.py zero 0 < infile > outfile

On UNIX, you’ll have input and output redirection and, if you’re using a modern
shell, command history and completion.

 If you’re writing administrative scripts on UNIX, a number of library modules are
available that you may find useful. These include grp for accessing the group data-
base, pwd for accessing the password database, resource for accessing resource usage
information, syslog for working with the syslog facility, and stat for working with
information about a file or directory obtained from an os.stat call. You can find
information on this in the Python Library Reference.

11.3 Scripts on Mac OS X
In many ways, Python scripts on Mac OS X behave the same way as they do on Linux/
UNIX. You can run Python scripts from a terminal window exactly the same way as on
any UNIX box. But on the Mac, you can also run Python programs from the Finder,
either by dragging the script file to the Python Launcher app or by configuring
Python Launcher as the default application for opening your script (or, optionally, all
files with a .py extension.)

 There are several options for using Python on a Mac. The specifics of all the
options are beyond the scope of this book, but you can get a full explanation by going
to the python.org website and checking out the Mac section of the “Using Python” sec-
tion of the documentation for your version of Python. You should also see section
11.7, “Distributing Python applications,” for more information on how to distribute
Python applications and libraries for the Mac platform.

 If you’re interested in writing administrative scripts for Mac OS X, you should look
at packages that bridge the gap between Apple’s Open Scripting Architectures (OSA)
and Python. Two such packages are appscript and PyOSA.

11.4 Script execution options in Windows
If you’re on Windows, you have a number of options for starting a script that vary in
their capability and ease of use. Unfortunately, none of them are as flexible or power-

ful as on Linux/UNIX.

Licensed to Kerri Ross <pedbro@gmail.com>

136 CHAPTER 11 Python programs

11.4.1 Starting a script as a document or shortcut

The easiest way to start a script on Windows is to use its standard document-opening
technique. When you installed Python, it should have registered the .py suffix to itself.
Verify this by confirming that your .py files are shown with a stylized python icon. If
you double-click any .py file, Python is automatically called with this file as its argu-
ment. It’s also entered onto the Documents list on your Start menu. But you’re not
able to enter any arguments, and the command window in which the interpreter is
opened will close as soon as the script exits. If you want to have the window stay up so
you can read the output, you can place the following line at the bottom of your con-
trolling function:

input("Press the Enter key to exit")

This will leave the window up until you
press Enter. You can also query the user
for any input data you might have desired
on the command line. Your current work-
ing directory at startup will be the one
where your Python interpreter is located
(C:\Python31, for example).

 If you don’t want the interpreter win-
dow to open (for example, when you’re
starting a GUI program using Tkinter),
you can give the file the suffix .pyw. This
will cause it to be opened by pythonw.exe.
But if you start a script this way, any output
to stdout or stderr will be thrown away.

 You have more flexibility and the abil-
ity to pass in more information to your
script if you set it up as a Windows short-
cut (see figure 11.1).

 Right-click the script, and select either
the Create Shortcut or the Send to Desk-
top as Shortcut option. You can move the shortcut to any location and rename it as
desired. By right-clicking it and selecting the Properties option, you can set the direc-
tory it starts in, type in arguments that it will be called with, and specify a shortcut key
that will call it. The example in listing 11.9 illustrates this.

import sys, os
def main():
 print(os.getcwd())
 print(sys.argv)
 input("Hit return to exit")

Listing 11.9 File script6.py

Figure 11.1 A Windows shortcut
main()

Licensed to Kerri Ross <pedbro@gmail.com>

137Script execution options in Windows

Creating the shortcut as shown in figure 11.1 and then calling this script (by pressing
Ctrl-Alt-j or double-clicking its icon) brings up a Python window containing code simi-
lar to the following:

C:\Documents and Settings\vern\My Documents
['C:\\Documents and Settings\\vern\\My Documents\\script6.py']
Hit return to exit

The Python interpreter is implicitly called with the target line (because it has regis-
tered for Python files). You can also explicitly put it in. You may do this if you want to
also enter options for the interpreter itself:

"C:\Python31\python.exe" -i
"C:\\Documents and Settings\\vern\\My Documents\\script6.py" arg1 arg21

Because you change the selection for the Run line to Minimized from the default Nor-
mal window, no MS-DOS window will be brought up, just as when you use the .pyw suf-
fix for a document.

 There is unfortunately no mechanism for redirecting the input or output for
shortcuts.

11.4.2 Starting a script from the Windows Run box

It’s possible to start scripts by placing the script on the desktop and typing

python script.py arg1 arg2

But as mentioned in the previous section, the output won’t remain visible when the
script ends. To see the output after the scripts ends, you similarly have to end it with
an input line.

 More flexibility is available with the Run box. Using the window that opens when
you click the Browse button, you can search for scripts residing elsewhere (by select-
ing All Files for the Files of Type box at the bottom, because this defaults to Pro-
grams). This results in the pathname to the script you selected being displayed in the
Run box (C:\My Documents\book\script1.py). You have to prefix this with python.

 Also, clicking the selection button to the right of the text box brings up a history of
your past lines of entries, from which you can select a line to edit. The current work-
ing directory for any script started from the Run box is the desktop.

11.4.3 Starting a script from a command window

To run a script from a command window, open a command prompt and navigate to
the directory of your Python executable (C:\Python31 or wherever Python was
installed). You can then enter your commands (the following examples assume that
the scripts are in a scripts subfolder of the main Python folder):

python scripts\replace.py zero 0 < scripts\infile > scripts\outfile

You don’t need to use the -i option because the script will run in your existing window.
1 Please note that this should be entered as a single line with no line breaks on the target line.

Licensed to Kerri Ross <pedbro@gmail.com>

138 CHAPTER 11 Python programs

 This is the most flexible of the ways to run a script on Windows because it allows
you to use input and output redirection. It’s not all that convenient, because you don’t
have mouse editing, command completion, or the command history that you have in
modern UNIX shells. It also doesn’t provide the full power of an executable script on
UNIX. It lacks the ability, for example, to navigate into a directory and call a script with
a set of filenames from that directory as arguments without either having to place the
script in that directory or enter the full pathname of the files or the script.

 Note that if you’re using input or output redirection, the default is for Windows to
use the text mode. If you want your script to work with binary data, you either need to
call the Python interpreter with the -u option set (python -u script.py) or set the
environment variable PYTHONUNBUFFERED=1 to turn off buffering and place it in a
binary mode.

 You can also add the directory where the Python interpreter is to your PATH envi-
ronment variable. This frees you from having to move into the same directory as the
interpreter or refer to it with a full pathname. The easiest way to do this on Windows
XP is to right-click the My Computer desktop icon, choose Properties > Advanced,
and then click the Environment Variables button. There, you can edit the PATH vari-
able to add the path to the Python executable, usually something like c:\Python31.

11.4.4 Other Windows options

Other options are available to explore. If you’re familiar with writing batch files, you
can wrap your commands in them. A port of the GNU BASH shell comes with the Cyg-
win tool set, which you can read about at www.cygwin.com/. This provides a UNIX-like
shell capability for Windows.

 On Windows, you can edit the environment variables (see the previous section) to
add .py as a magic extension, making your scripts automatically executable:

PATHEXT=.COM;.EXE;.BAT;.CMD;.VBS;.JS;.PY

11.5 Scripts on Windows vs. scripts on UNIX
The way you call scripts on Windows differs from the way scripts are called on Linux/
UNIX, and that difference can affect what kind of scripts you develop and how you
write them. Let’s revisit our initial script from the section describing the fileinput
module. Making it directly executable may be the only change we make to use it on
UNIX (see listing 11.10).

#! /usr/bin/env python3.1
import fileinput
def main():
 for line in fileinput.input():
 if not line.startswith('##'):
 print(line, end="")

Listing 11.10 File script4a.py

q

main()

Licensed to Kerri Ross <pedbro@gmail.com>

139Scripts on Windows vs. scripts on UNIX

This line allows the script to be executed on UNIX q. It has no effect on Windows. On
UNIX, after this has been made executable and placed on your path, you’re able to
navigate into any desired directory and call this with wildcards and output redirection:

script4a.py sole*.tst > sole.data

This UNIX shell will find all files in the current directory that start with sole and end
with .tst, and these will be sent in as command-line arguments.

 On Windows, it’s not so easy. As you’ve just discovered, using the convenient dou-
ble-click mechanism, you can’t pass in command-line arguments. Using the Run box,
you can pass in arguments but not redirect the output. The closest you can come is to
use the command prompt window: place the script in the desired directory, navigate
into the directory, and then type2

C:\Python31\python.exe script4a.py sole1.tst sole2.tst
➥sole4.tst sole15.tst > sole.data

Or, use the following if you set your PATH as described in the previous section:

python script4a.py sole1.tst sole2.tst sole4.tst sole15.tst > sole.data

But using the glob.glob function, you can obtain the wildcard character functionality
(see listing 11.11).

#! /usr/bin/env python3.1
import fileinput, glob, sys, os
def main():
 if os.name == 'nt':
 sys.argv[1:] = glob.glob(sys.argv[1])
 for line in fileinput.input():
 if not line.startswith('##'):
 print(line, end="")
main()

This will be true if you’re running under Windows XP, Vista, or Windows 7 q.
Replace the single wildcarded filename string in the argument list with those files into
which it expands w.

 Assuming that we’ve placed our script in the same directory as our .tst files and
navigated to that directory in a command prompt window, we can now call our script
with a single wildcarded argument:

C:\Python31\python.exe script4b.py sole*.tst > sole.data

Or, again, if PATH has been modified:

python script4b.py sole*.tst > sole.data

2 Please note that this should be entered as a single line with no line breaks. Due to space constraints, it could

Listing 11.11 File script4b.py

q
w

not be represented here in that manner.

Licensed to Kerri Ross <pedbro@gmail.com>

140 CHAPTER 11 Python programs

With the use of copy and paste and storing the command text in a file, this might be
acceptable for your situation. But the script can be set up so that it can be started
using the double-click open mechanism. This is often done for scripts that will be run
by end users.

 When you start a script with a double-click, its working directory is the directory
where the Python interpreter resides, not where the script is. Fortunately, the direc-
tory where the script is is appended as the first string in sys.path. The script in listing
11.12 uses this fact and changes into that directory. It then prompts the user for a pos-
sibly wildcarded input filename and expands it. Next, it prompts for the name of the
output file and redirects standard output to this file. Finally, it proceeds to the original
script’s functionality.

#! /usr/bin/env python3.1
import fileinput, glob, sys, os
def main():
 if os.name == 'nt':
 if sys.path[0]:
 os.chdir(sys.path[0])
 input_filename = input("Name of input file:")
 input_list = glob.glob(input_filename)
 output_filename = input("Name of output file:")
 sys.stdout = open(output_filename, 'w')
 else:
 input_list = sys.argv[1:]
 for line in fileinput.input(input_list):
 if not line.startswith('##'):
 print(line, end="")
main()

Placing this script in the directory of our .tst files, we can double-click it and enter the
requested information. The result is the same as if it had been run from a command line:

Name of input file:sole*.tst
Name of output file:sole.data

This isn’t as nice as on UNIX but in many cases may do fine.

11.6 Programs and modules
For small scripts that contain only a few lines of code, a single function works well. But
if the script grows beyond this, separating your controlling function from the rest of
the code is a good option to take. The rest of this section will illustrate this technique
and some of its benefits. We’ll start with an example using a simple controlling func-
tion. The script in listing 11.13 returns the English language name for a given number
between 0 and 99.

Listing 11.12 File script4c.py

Moves to
appropriate
directory

Redirects
standard
output
Licensed to Kerri Ross <pedbro@gmail.com>

141Programs and modules

#! /usr/bin/env python3.1
import sys
conversion mappings
_1to9dict = {'0': '', '1': 'one', '2': 'two', '3': 'three', '4': 'four',
 '5': 'five', '6': 'six', '7': 'seven', '8': 'eight',
 '9': 'nine'}
_10to19dict = {'0': 'ten', '1': 'eleven', '2': 'twelve',
 '3': 'thirteen', '4': 'fourteen', '5': 'fifteen',
 '6': 'sixteen', '7': 'seventeen', '8': 'eighteen',
 '9': 'nineteen'}
_20to90dict = {'2': 'twenty', '3': 'thirty', '4': 'forty', '5': 'fifty',
 '6': 'sixty', '7': 'seventy', '8': 'eighty', '9': 'ninety'}
def num2words(num_string):
 if num_string == '0':
 return'zero'
 if len(num_string) > 2:
 return "Sorry can only handle 1 or 2 digit numbers"
 num_string = '0' + num_string
 tens, ones = num_string[-2], num_string[-1]
 if tens == '0':
 return _1to9dict[ones]
 elif tens == '1':
 return _10to19dict[ones]
 else:
 return _20to90dict[tens] + ' ' + _1to9dict[ones]
def main():
 print(num2words(sys.argv[1]))
main()

If we call it with

python script7.py 59

we get this result:

fifty nine

Our controlling function here calls the function num2words with the appropriate argu-
ment and prints the result q. It’s standard to have the call at the bottom, but some-
times you’ll see the controlling function’s definition at the top of the file. I prefer it at
the bottom, just above the call, so I don’t have to scroll back up to find it after going to
the bottom to find out its name. This also cleanly separates the scripting plumbing
from the rest of the file. This is useful when combining scripts and modules.

 People combine scripts with modules when they want to make functions they’ve
created in a script available to other modules or scripts. Also, a module may be instru-
mented so it can run as a script either to provide a quick interface to it for users or to
provide hooks for automated module testing.

Listing 11.13 File script7.py

Pads on left
in case it’s a
single-digit number

q

Licensed to Kerri Ross <pedbro@gmail.com>

142 CHAPTER 11 Python programs

 Combining a script and a module is a simple matter of putting the following condi-
tional test around the controlling function:

if __name__ == '__main__':
 main()
else:
 # module-specific initialization code if any

If it’s called as a script, it will be run with the name __main__ and the controlling func-
tion, main, will be called. If it has been imported into an interactive session or another
module, its name will be its filename.

 When creating a script, I often set it as a module as well, right from the start. This
allows me to import it into a session and interactively test and debug my functions as I
create them. Only the controlling function needs to be debugged externally. If it
grows, or I find myself writing functions I might be able to use elsewhere, I can sepa-
rate those functions into their own module or have other modules import this module.

 The script in listing 11.14 is an extension of the last script that has been set up to
be able to be used as a module. The functionality has also been expanded to allow the
entry of a number from 0 to 999999999999999 rather than just from 0 to 99. The con-
trolling function (main) now does the checking of the validity of its argument and also
strips out any commas in it, allowing more user-readable input like 1,234,567.

#! /usr/bin/env python3.1
"""n2w: number to words conversion module: contains function
 num2words. Can also be run as a script
usage as a script: n2w num
 (Convert a number to its English word description)
 num: whole integer from 0 and 999,999,999,999,999 (commas are
 optional)
example: n2w 10,003,103
 for 10,003,103 say: ten million three thousand one hundred three
"""
import sys, string, optparse
_1to9dict = {'0': '', '1': 'one', '2': 'two', '3': 'three', '4': 'four',
 '5': 'five', '6': 'six', '7': 'seven', '8': 'eight',
 '9': 'nine'}
_10to19dict = {'0': 'ten', '1': 'eleven', '2': 'twelve',
 '3': 'thirteen', '4': 'fourteen', '5': 'fifteen',
 '6': 'sixteen', '7': 'seventeen', '8': 'eighteen',
 '9': 'nineteen'}
_20to90dict = {'2': 'twenty', '3': 'thirty', '4': 'forty', '5': 'fifty',
 '6': 'sixty', '7': 'seventy', '8': 'eighty', '9': 'ninety'}
_magnitude_list = [(0, ''), (3, ' thousand '), (6, ' million '),
 (9, ' billion '), (12, ' trillion '),(15, '')]
def num2words(num_string):
 """num2words(num_string): convert number to English words"""
 if num_string == '0':
 return 'zero'
 num_length = len(num_string)

Listing 11.14 File n2w.py

Usage message;
includes example

Conversion
mappings

Handles special
conditions
(number is zero
 max_digits = _magnitude_list[-1][0] or too large)

Licensed to Kerri Ross <pedbro@gmail.com>

143Programs and modules

 if num_length > max_digits:
 return "Sorry, can't handle numbers with more than " \
 "{0} digits".format(max_digits)
 num_string = '00' + num_string
 word_string = ''
 for mag, name in _magnitude_list:
 if mag >= num_length:
 return word_string
 else:
 hundreds, tens, ones = num_string[-mag-3], \
 num_string[-mag-2], num_string[-mag-1]
 if not (hundreds == tens == ones == '0'):
 word_string = _handle1to999(hundreds, tens, ones) + \
 name + word_string
def _handle1to999(hundreds, tens, ones):
 if hundreds == '0':
 return _handle1to99(tens, ones)
 else:
 return _1to9dict[hundreds] + ' hundred ' + _handle1to99(tens, ones)
def _handle1to99(tens, ones):
 if tens == '0':
 return _1to9dict[ones]
 elif tens == '1':
 return _10to19dict[ones]
 else:
 return _20to90dict[tens] + ' ' + _1to9dict[ones]
def test():
 values = sys.stdin.read().split()
 for val in values:
 num = val.replace(',', '')
 print("{0} = {1}".format(val, num2words(num)))
def main():
 parser = optparse.OptionParser(usage=__doc__)
 parser.add_option("-t", "--test", dest="test",
 action='store_true', default=False,
 help="Test mode: reads from stdin")
 (options, args) = parser.parse_args()
 if options.test:
 test()
 else:
 if len(args) < 1:
 parser.error("incorrect number of arguments")
 num = sys.argv[1].replace(',', '')
 try:
 result = num2words(num)
 except KeyError:
 parser.error('argument contains non-digits')
 else:
 print("For {0}, say: {1}".format(sys.argv[1], result))
if __name__ == '__main__':
 main()
else:
 print("n2w loaded as a module")

If it’s called as a script, the name will be __main__. If it’s imported as a module, it will

Pads number
on leftInitiates string

for number
Creates

string
containing

number

Function for
module
test mode

Runs in test
mode if test
variable is set

Removes commas
from number

Catches KeyErrors
due to argument
containing nondigits

q

be named n2w q.

Licensed to Kerri Ross <pedbro@gmail.com>

144 CHAPTER 11 Python programs

 This main function illustrates the purpose of a controlling function for a com-
mand-line script, which, in effect, is to create a simplistic user interface for the user. It
may handle the following tasks:

� Ensure that there is the right number of command-line arguments and that
they’re of the right types. Inform the user, giving usage information if not.
Here, it ensures that there is a single argument, but it doesn’t explicitly test to
ensure that the argument contains only digits.

� Possibly handle a special mode. Here, a '--test' argument puts us in a test
mode.

� Map the command-line arguments to those required by the functions, and call
them in the appropriate manner. Here, commas are stripped out and the single
function num2words is called.

� Possibly catch and print a more user-friendly message for exceptions that may
be expected. Here, KeyErrors are caught, which will occur if the argument con-
tains nondigits.3

� Map the output if necessary to a more user-friendly form. This is done here in
the print statement. If this were a script to run on Windows, you would proba-
bly want to let the user open it with the double-click method—that is, to use the
input to query for the parameter, rather than having it as a command-line
option and keeping the screen up to display the output by ending the script
with the line

 input("Press the Enter key to exit")

But you may still want to leave the test mode in as a command-line option.

The test mode in listing 11.15 provides a regression test capability for the module and
its num2words function. In this case, you use it by placing a set of numbers in a file.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 98 99 100
101 102 900 901 999
999,999,999,999,999
1,000,000,000,000,000

Then, type

python n2w.py --test < n2w.tst > n2w.txt

The output file can be easily checked for correctness. This was run a number of times
during its creation and can be rerun anytime num2words or any of the functions it calls
are modified. And, yes, I’m aware that full exhaustive testing certainly didn’t occur. I
admit that well over 999 trillion valid inputs for this program haven’t been checked!

3 A better way to do this would be to explicitly check for nondigits in the argument using the regular expression module that

Listing 11.15 File n2w.tst
will be introduced later. This would ensure that we don’t hide KeyErrors that occur due to other reasons.

Licensed to Kerri Ross <pedbro@gmail.com>

145Distributing Python applications

 Often, the provision of a test mode for a module is the only function of a script. I
know of at least one company where part of its development policy is to always create
one for every Python module developed. Python’s built-in data object types and meth-
ods usually make this easy, and those who practice this technique seem to be unani-
mously convinced that it’s well worth the effort. See chapter 21 to find out more about
testing your Python code.

 Another option here would have been to create a separate file with just the portion
of the main function that handles the argument and import n2w into this file. Then
only the test mode would be left in the main function of n2w.py.

11.7 Distributing Python applications
You can distribute your scripts as source files (as .py files). You can also ship them as
byte code (as .pyc or .pyo files). A byte code file will run under any platform as long as
it has been written portably.

11.7.1 distutils

The standard way of packaging and distributing Python modules and applications is
found in the distutils package. The details of creating a distribution are beyond the
scope of this book, but if you want to package and distribute your Python code, the
documentation on the python.org website has an extensive guide and a beginner’s
tutorial on the use of distutils. The heart of a distutils package is a setup.py file
that you create, basically a Python program that controls the installation. distutils
has a number of options and lets you create built distributions tailored for Windows
and several UNIX platforms.

11.7.2 py2exe and py2app

Although it’s not the purpose of this book to dwell on platform-specific tools, it’s
worth mentioning that py2exe creates Windows standalone programs and py2app
does the same on the Mac OS X platform. By standalone, I mean they’re single executa-
bles that can run on machines that don’t have Python installed. In many ways, stand-
alone executables aren’t ideal, because they tend to be larger and less flexible than
native Python applications; but in some situations they’re the best, and sometimes the
only, solution.

11.7.3 Creating executable programs with freeze

It’s also possible to create an executable Python program that will run on machines
that don’t have Python installed by using the freeze tool. You’ll find the instructions
for this in the Readme file in the freeze directory in the Tools subdirectory of the
Python source directory. If you’re planning to use freeze, you’ll probably need to
download the Python source distribution.

 In the process of “freezing” a Python program, you create C files, which are then

compiled and linked using a C compiler, which you need to have installed on your sys-

Licensed to Kerri Ross <pedbro@gmail.com>

146 CHAPTER 11 Python programs

tem. It will run only on the platform for which the C compiler you use provides its exe-
cutables. Note that it will still be possible for someone to reverse-engineer your Python
code from the resulting output. This also doesn’t always work in a straightforward
manner. This is one situation where you may end up needing to obtain support from
the Python newsgroup, depending on the specifics of your application and which C
compiler you’re using. When you have your executable, it’s generally robust.

11.8 Summary
Python scripts in their most basic form are sequences of Python statements placed in a
file. A slightly more structured way to organize scripts that contain more than a few
lines of Python code is presented here. This is a simple matter of using a control func-
tion to buffer out some of the control and interface logic. Modules can be instru-
mented to run as scripts, and scripts can be set up so they can be imported as
modules. This provides a modular way to create large scripts and a simple mechanism
to instrument a module with a regression test mode.

 Scripts can be made executable on UNIX. They can be set up to support command-
line redirection of their input and output, and with the optparse module it’s easy to
parse out complex combinations of command-line options and arguments.

 On Mac OS X, you can run scripts from a terminal window in exactly the same way
as on other UNIX platforms. In addition, you can use the Python Launcher to run
Python programs, either individually or as the default application for opening Python
files.

 On Windows, you can call scripts a number of ways: by opening them with a dou-
ble-click, using the Run window, or using a command-prompt window. It’s possible to
use command-line options and arguments in the last two of these and redirection in
the last, but this isn’t as convenient as on Linux/UNIX. Therefore, on Windows, com-
mand-line arguments and redirection are normally used only for special situations
like test modes. This is also generally true for GUI programs on all three platforms.

 Finally, as an alternative to scripts, py2exe, py2app, and the freeze tool provide the
capability to provide an executable Python program that will run on machines that
don’t contain a Python interpreter.

 Now that you have an understanding of the ways to create scripts and applications,
the next step will be to look at how Python can interact with and manipulate filesystems.
Licensed to Kerri Ross <pedbro@gmail.com>

Using the filesystem
Working with files involves one of two things: basic I/O (described in chapter 13,
“Reading and writing files”) and working with the filesystem (for example, naming,
creating, moving, or referring to files), which is a bit tricky, because different oper-
ating systems have different filesystem conventions.

 It would be easy enough to learn how to perform basic file I/O without learning
all the features Python has provided to simplify cross-platform filesystem interac-
tion—but I wouldn’t recommend it. Instead, read at least the first part of this chap-
ter. This will give you the tools you need to refer to files in a manner that doesn’t
depend on your particular operating system. Then, when you use the basic I/O
operations, you can open the relevant files in this manner.

This chapter covers
■ Managing paths and pathnames
■ Getting information about files
■ Performing filesystem operations
■ Processing all files in a directory subtree
147

Licensed to Kerri Ross <pedbro@gmail.com>

148 CHAPTER 12 Using the filesystem

12.1 Paths and pathnames
All operating systems refer to files and directories with strings naming a given file or
directory. Strings used in this manner are usually called pathnames (or sometimes just
paths), which is the word we’ll use for them. The fact that pathnames are strings intro-
duces possible complications into working with them. Python does a good job of pro-
viding functions that help avoid these complications; but to make use of these Python
functions effectively, you need an understanding of what the underlying problems are.
This section discusses these details.

 Pathname semantics across different operating systems are very similar, because
the filesystem on almost all operating systems is modeled as a tree structure, with a
disk being the root, and folders, subfolders, and so forth being branches, sub-
branches, and so on. This means that most operating systems refer to a specific file in
fundamentally the same manner: with a pathname that specifies the path to follow
from the root of the filesystem tree (the disk) to the file in question. (This character-
ization of the root corresponding to a hard disk is an oversimplification. But it’s close
enough to the truth to serve for this chapter.)

 This pathname consists of a series of folders to descend into, in order to get to the
desired file.

 Different operating systems have different conventions regarding the precise syntax
of pathnames. For example, the character used to separate sequential file or directory
names in a Linux/UNIX pathname is /, whereas the character used to separate file or
directory names in a Windows pathname is \. In addition, the UNIX filesystem has a sin-
gle root (which is referred to by having a / character as the very first character in a path-
name), whereas the Windows filesystem has a separate root for each drive, labeled A:\,
B:\, C:\, and so forth (with C: usually being the main drive). Because of these differences,
files will have different pathname representations on different operating systems. For
example, a file called C:\data\myfile in MS Windows might be called /data/myfile on
UNIX and on the Macintosh. Python provides functions and constants that allow you to
perform common pathname manipulations without worrying about such syntactic
details. With a little care, you can write your Python programs in such a manner that
they will run correctly no matter what the underlying filesystem happens to be.

12.1.1 Absolute and relative paths

These operating systems allow two different types of pathnames. Absolute pathnames
specify the exact location of a file in a filesystem, without any ambiguity; they do this by
listing the entire path to that file, starting from the root of the filesystem. Relative path-
names specify the position of a file relative to some other point in the filesystem, and
that other point isn’t specified in the relative pathname itself; instead, the absolute
starting point for relative pathnames is provided by the context in which they’re used.

 As examples of this, here are two Windows absolute pathnames:
C:\Program Files\Doom
A:\backup\June

Licensed to Kerri Ross <pedbro@gmail.com>

149Paths and pathnames

And here are two Linux absolute pathnames and a Mac absolute pathname:
/bin/Doom

/floppy/backup/June

/Applications/Utilities

The following are two Windows relative pathnames:
mydata\project1\readme.txt

games\tetris

And these are two Linux/UNIX relative pathnames and one Mac relative pathname:
mydata/project1/readme.txt

games/tetris

Utilities/Java

Relative paths need context to anchor them. This is typically provided in one of two
ways. The simplest is to append the relative path to an existing absolute path, produc-
ing a new absolute path. For example, we might have a relative Windows path, Start
Menu\Programs\Explorer, and an absolute path, C:\Documents and Settings\Adminis-
trator. By appending the two, we have a new absolute path, C:\Documents and Set-
tings\Administrator\Start Menu\Programs\Explorer, which refers to a specific file in
the filesystem. By appending the same relative path to a different absolute path (say,
C:\Documents and Settings\kmcdonald), we produce a path that refers to the
Explorer program in a different user’s (kmcdonald’s) Profiles directory.

 The second way in which relative paths may obtain a context is via an implicit refer-
ence to the current working directory, which is the particular directory where a Python pro-
gram considers itself to be at any point during its execution. Python commands may
implicitly make use of the current working directory when they’re given a relative path
as an argument. For example, if you use the os.listdir(path) command with a rela-
tive path argument, the anchor for that relative path is the current working directory,
and the result of the command is a list of the filenames in the directory whose path is
formed by appending the current working directory with the relative path argument.

12.1.2 The current working directory

Whenever you edit a document on a computer, you have a concept of where you are
in that computer’s file structure because you’re in the same directory (folder) as the
file you’re working on. Similarly, whenever Python is running, it has a concept of
where in the directory structure it is at any moment. This is important because the
program may ask for a list of files stored in the current directory. The directory that a
Python program is in is called the current working directory for that program. This may
be different from the directory the program resides in.

 To see this in action, start Python and use the os.getcwd (get current working
directory) command to find out what Python’s initial current working directory is:

>>> import os

>>> os.getcwd()

Licensed to Kerri Ross <pedbro@gmail.com>

150 CHAPTER 12 Using the filesystem

Note that os.getcwd is used as a zero-argument function call, to emphasize the fact
that the value it returns isn’t a constant but will change as you issue commands that
change the value of the current working directory. (It will probably be either the
directory the Python program itself resides in or the directory you were in when you
started up Python. On my Linux machine, the result is /home/vceder, which is my
home directory.) On Windows machines, you’ll see extra backslashes inserted into the
path—this is because Windows uses \ as its path separator, and in Python strings, as dis-
cussed earlier in section 6.3.1 on escape sequences, \ has a special meaning unless it’s
itself backslashed.

 Now, type

>>> os.listdir(os.curdir)

The constant os.curdir returns whatever string your system happens to use as the
same directory indicator. On both UNIX and Windows, this is a single dot; but to keep
your programs portable, you should always use os.curdir instead of typing just the
dot. This string is a relative path, meaning that os.listdir will append it to the path
for the current working directory, giving the same path. This command returns a list
of all of the files or folders inside the current working directory. Choose some folder
folder, and type

>>> os.chdir(folder)
>>> os.getcwd()

As you can see, Python moves into the folder specified as an argument of the
os.chdir function. Another call to os.listdir(os.curdir) would return a list of files
in folder, because os.curdir would then be taken relative to the new current work-
ing directory. Many Python filesystem operations (discussed later in this chapter) use
the current working directory in this manner.

12.1.3 Manipulating pathnames

Now that you have the background to understand file and directory pathnames, it’s
time to look at the facilities Python provides for manipulating these pathnames. These
facilities consist of a number of functions and constants in the os.path submodule,
which you can use to manipulate paths without explicitly using any operating sys-
tem–specific syntax. Paths are still represented as strings, but you need never think of
them or manipulate them as such.

 Let’s start out by constructing a few pathnames on different operating systems,
using the os.path.join function. Note that importing os is sufficient to bring in the
os.path submodule also. There’s no need for an explicit import os.path statement.

 First, let’s start Python under Windows:

>>> import os
>>> print(os.path.join('bin', 'utils', 'disktools'))
bin\utils\disktools

"Change directory"
function
Licensed to Kerri Ross <pedbro@gmail.com>

151Paths and pathnames

The os.path.join function interprets its arguments as a series of directory names or
filenames, which are to be joined to form a single string understandable as a relative
path by the underlying operating system. In a Windows system, that means path com-
ponent names should be joined together with backslashes, which is what was produced.

 Now, try the same thing in UNIX:

>>> import os
>>> print(os.path.join('bin', 'utils', 'disktools'))
bin/utils/disktools

The result is the same path, but using the Linux/UNIX convention of forward slash
separators rather than the Windows convention of backslash separators. In other
words, os.path.join lets you form file paths from a sequence of directory or file-
names without any worry about the conventions of the underlying operating system.
os.path.join is the fundamental way by which file paths may be built in a manner
that doesn’t constrain the operating systems on which your program will run.

 The arguments to os.path.join need not be single a directory or filename; they
may also be subpaths that are then joined together to make a longer pathname. The
following example illustrates this in the Windows environment and is also a case
where we find it necessary to use double backslashes in our strings. Note that we could
enter the pathname with forward slashes (/) as well because Python converts them
before accessing the Windows operating system:

>>> import os
>>> print(os.path.join('mydir\\bin', 'utils\\disktools\\chkdisk'))
mydir\bin\utils\disktools\chkdisk

Of course, if you always use os.path.join to build up your paths, you’ll rarely need to
worry about this. To write this example in a portable manner, we should enter

>>> path1 = os.path.join('mydir', 'bin');
>>> path2 = os.path.join('utils', 'disktools', 'chkdisk')
>>> print(os.path.join(path1, path2))
mydir\bin\utils\disktools\chkdisk

The os.path.join command also has some understanding of absolute versus relative
pathnames. In Linux/UNIX, an absolute path always begins with a / (because a single
slash denotes the topmost directory of the entire system, which contains everything
else, including the various floppy and CD drives that might be available). A relative
path in UNIX is any legal path that does not begin with a slash. Under any of the Win-
dows operating systems, the situation is more complicated because the way in which
MS Windows handles relative and absolute paths is messier. Rather than going into all
of the details, I’ll just say that the best way to handle this is to work with the following
simplified rules for Windows paths:

� A pathname beginning with a drive letter followed by a backslash and then a
path is an absolute path: C:\Program Files\Doom. (Note that C: by itself, without
a trailing backslash, can’t reliably be used to refer to the top-level directory on
Licensed to Kerri Ross <pedbro@gmail.com>

152 CHAPTER 12 Using the filesystem

the C: drive. You must use C:\ to refer to the top-level directory on C:. This is a
result of DOS conventions, not Python design.)

� A pathname beginning with neither a drive letter nor a backslash is a relative
path: mydirectory\letters\business.

� A pathname beginning with \\ followed by the name of a server is the path to a
network resource.

� Anything else can be considered as an invalid pathname.1

Regardless of the operating system used, the os.path.join command doesn’t per-
form sanity checks on the names it’s constructing. It’s possible to construct pathnames
containing characters that, according to your OS, are forbidden in pathnames. If such
checks are a requirement, probably the best solution is to write a small path-validity-
checker function yourself.

 The os.path.split command returns a two-element tuple splitting the basename
of a path (the single file or directory name at the end of the path) from the rest of the
path. For example, I use this on my Windows system:

>>> import os
>>> print(os.path.split(os.path.join('some', 'directory', 'path')))
('some\\directory', 'path')

The os.path.basename function returns only the basename of the path, and the
os.path.dirname function returns the path up to but not including the last name.
For example,

>>> import os
>>> os.path.basename(os.path.join('some', 'directory', 'path.jpg'))
'path.jpg'
>>> os.path.dirname(os.path.join('some', 'directory', 'path.jpg'))
'some\\directory'

To handle the dotted extension notation used by most filesystems to indicate file type
(the Macintosh is a notable exception), Python provides os.path.splitext:

>>> os.path.splitext(os.path.join('some', 'directory', 'path.jpg'))
'some/directory/path', '.jpg')

The last element of the returned tuple contains the dotted extension of the indicated
file (if there was a dotted extension.) The first element of the returned tuple contains
everything from the original argument except the dotted extension.

 You can also use more specialized functions to manipulate pathnames.
os.path.commonprefix(path1, path2, ...) finds the common prefix (if any) for a
set of paths. This is useful if you wish to find the lowest-level directory that contains
every file in a set of files. os.path.expanduser expands username shortcuts in paths,
1 Microsoft Windows allows some other constructs. But it’s probably best to stick to the given definitions.

Licensed to Kerri Ross <pedbro@gmail.com>

153Paths and pathnames

such as for UNIX. Similarly, os.path.expandvars does the same for environment vari-
ables., Here’s an example on a Windows XP system:

>>> import os
>>> os.path.expandvars('$HOME\\temp')
'C:\\Documents and Settings\\administrator\\personal\\temp'

12.1.4 Useful constants and functions

You can access a number of useful path-related constants and functions to make your
Python code more system independent than it otherwise would be. The most basic of
these constants are os.curdir and os.pardir, which respectively define the symbol
used by the operating system for the directory and parent directory path indicators.
(In Windows as well as Linux/UNIX and Mac OS X, these are . and .. respectively.)
These can be used as normal path elements; for example,

os.path.isdir(os.path.join(path, os.pardir, os.pardir))

asks if the parent of the parent of path is a directory. os.curdir is particularly useful
for requesting commands on the current working directory. For example,

os.listdir(os.curdir)

returns a list of filenames in the current working directory (because os.curdir is a
relative path, and os.listdir always takes relative paths as being relative to the cur-
rent working directory).

 The os.name constant returns the name of the Python module imported to handle
the operating system–specific details. Here’s an example on my Windows XP system:

>>> import os
>>> os.name
'nt'

Note that os.name returns 'nt' even though the actual version of Windows is XP. Most
versions of Windows, except for Windows CE, are identified as 'nt'.

 On a Mac running OS X and on Linux/UNIX, the response is posix. You can use
this to perform special operations, depending on the platform you’re working on:

import os
if os.name == 'posix':
 root_dir = "/"
elif os.name == 'nt':
 root_dir = "C:\\"
else:
 print("Don't understand this operating system!")

You may also see programs use sys.platform, which gives more exact information.
On Windows XP, it’s set to win32. On Linux, you may see linux2, whereas on Solaris,
it may be set to sunos5 depending on the version you’re running.

 All your environment variables, and the values associated with them, are available
in a dictionary called os.environ; in most operating systems, this includes variables
Licensed to Kerri Ross <pedbro@gmail.com>

154 CHAPTER 12 Using the filesystem

related to paths, typically search paths for binaries and so forth. If what you’re doing
requires this, you know where to find it now.

 At this point, you’ve received a grounding in the major aspects of working with
pathnames in Python. If your immediate need is to open files for reading or writing,
you can jump directly to the next chapter. Continue reading for further information
about pathnames, testing what they point to, useful constants, and so forth.

12.2 Getting information about files
File paths are supposed to indicate actual files and directories on your hard drive. Of
course, you’re probably passing a path around because you wish to know something
about what it points to. Various Python functions are available to do this.

 The most commonly used Python path-information functions are
os.path.exists, os.path.isfile, and os.path.isdir, which all take a single path
as an argument. os.path.exists returns True if its argument is a path corresponding
to something that exists in the filesystem. os.path.isfile returns True if and only if
the path it’s given indicates a normal data file of some sort (executables fall under this
heading), and it returns False otherwise, including the possibility that the path argu-
ment doesn’t indicate anything in the filesystem. os.path.isdir returns True if and
only if its path argument indicates a directory; it returns False otherwise. These
examples are valid on my system. You may need to use different paths on yours to
investigate the behavior of these functions:

>>> import os
>>> os.path.exists('C:\\Documents and Settings\\vern\\My Documents')
True
>>> os.path.exists('C:\\Documents and Settings\\vern\\My

Documents\\Letter.doc')
True
>>> os.path.exists('C:\\Documents and Settings\\vern\\\My

Documents\\ljsljkflkjs')
False
>>> os.path.isdir('C:\\Documents and Settings\\vern\\My Documents')
True
>>> os.path.isfile('C:\\Documents and Settings\\vern\\My Documents')
False
>>> os.path.isdir('C:\\Documents and Settings\\vern\\My Documents
\\Letter.doc')
False
>>> os.path.isfile('C:\\Documents and Settings\\vern\\My

Documents\\Letter.doc')
True

A number of similar functions provide more specialized queries. os.path.islink and
os.path.ismount are useful in the context of Linux and other UNIX operating systems
that provide file links and mount points. They return True if, respectively, a path indi-
cates a file that’s a link or a mount point. os.path.islink does not return True on Win-
dows shortcuts files (files ending with .lnk), for the simple reason that such files aren’t
true links. The OS doesn’t assign them a special status, and programs can’t transpar-
Licensed to Kerri Ross <pedbro@gmail.com>

155More filesystem operations

ently use them as if they were the actual file. os.path.samefile(path1, path2) returns
True if and only if the two path arguments point to the same file. os.path.isabs(path)
returns True if its argument is an absolute path, False otherwise. os.path.get-
size(path), os.path.getmtime(path), and os.path.getatime(path) return the size,
last modify time, and last access time of a pathname, respectively.

12.3 More filesystem operations
In addition to obtaining information about files, Python lets you perform certain file-
system operations directly. This is accomplished through a set of basic but highly use-
ful commands in the os module.

 I’ll describe only those true cross-platform operations. Many operating systems also
have access to more advanced filesystem functions, and you’ll need to check the main
Python library documentation for the details.

 You’ve already seen that to obtain a list of files in a directory, you use os.listdir:

>>> os.chdir(os.path.join('C:', 'my documents', 'tmp'))
>>> os.listdir(os.curdir)
['book1.doc.tmp', 'a.tmp', '1.tmp', '7.tmp', '9.tmp', 'registry.bkp']

Note that unlike the list directory command in many other languages or shells,
Python does not include the os.curdir and os.pardir indicators in the list returned
by os.listdir.

 The glob function from the glob module (named after an old UNIX function that
did pattern matching) expands Linux/UNIX shell-style wildcard characters and char-
acter sequences in a pathname, returning the files in the current working directory that
match. A * matches any sequence of characters. A ? matches any single character. A
character sequence ([h,H] or [0-9]) matches any single character in that sequence:

>>> import glob
>>> glob.glob("*")
['book1.doc.tmp', 'a.tmp', '1.tmp', '7.tmp', '9.tmp', 'registry.bkp']
>>> glob.glob("*bkp")
['registry.bkp']
>>> glob.glob("?.tmp")
['a.tmp', '1.tmp', '7.tmp', '9.tmp']
>>> glob.glob("[0-9].tmp")
['1.tmp', '7.tmp', '9.tmp']

To rename (move) a file or directory, use os.rename:

>>> os.rename('registry.bkp', 'registry.bkp.old')
>>> os.listdir(os.curdir)
['book1.doc.tmp', 'a.tmp', '1.tmp', '7.tmp', '9.tmp', 'registry.bkp.old']

You can use this command to move files across directories as well as within directories.
 Remove or delete a data file with os.remove:

>>> os.remove('book1.doc.tmp')
>>> os.listdir(os.curdir)

'a.tmp', '1.tmp', '7.tmp', '9.tmp', 'registry.bkp.old']

Licensed to Kerri Ross <pedbro@gmail.com>

156 CHAPTER 12 Using the filesystem

Note that you can’t use os.remove to delete directories. This is a safety feature, to
ensure that you don’t accidentally delete an entire directory substructure by mistake.

 Files can be created by writing to them, as you saw in the last chapter. To create a
directory, use os.makedirs or os.mkdir. The difference between them is that os.mkdir
doesn’t create any necessary intermediate directories, but os.makedirs does:

>>> os.makedirs('mydir')
>>> os.listdir(os.curdir)
['mydir', 'a.tmp', '1.tmp', '7.tmp', '9.tmp', 'registry.bkp.old']
>>> os.path.isdir('mydir')
True

To remove a directory, use os.rmdir. This removes only empty directories. Attempting
to use it on a nonempty directory raises an exception:

>>> os.rmdir('mydir')
>>> os.listdir(os.curdir)
['a.tmp', '1.tmp', '7.tmp', '9.tmp', 'registry.bkp.old']

To remove nonempty directories, use the shutil.rmtree function. It will recursively
remove all files in a directory tree. See the appendix for the details of its use.

12.4 Processing all files in a directory subtree
Finally, a highly useful function for traversing recursive directory structures is the
os.walk function. You can use it to walk through an entire directory tree, returning
three things for each directory it traverses: the root, or path, of that directory; a list of
its subdirectories; and a list of its files.

 os.walk is called with the path of the starting, or top, folder and three optional
arguments: os.walk(directory, topdown=True, onerror=None, followlinks=

False). directory is a starting directory path; if topdown is True or not present, the
files in each directory are processed before its subdirectories, resulting in a listing
that starts at the top and goes down; whereas if topdown is True, the subdirectories
of each directory are processed first, giving a bottom-up traversal of the tree. The
onerror parameter can be set to a function to handle any errors that result from
calls to os.listdir, which are ignored by default. Finally, os.walk by default doesn’t
walk down into folders that are symbolic links, unless you give it the follow-
links=True parameter.

 When called, os.walk creates an iterator that recursively applies itself to all the
directories contained in the top parameter. In other words, for each subdirectory
subdir in names, os.walk recursively invokes a call to itself, of the form os.walk(sub-
dir, ...). Note that if topdown is True or not given, the list of subdirectories may be
modified (using any of the list-modification operators or methods) before its items
are used for the next level of recursion; you can use this to control into which—if
any—subdirectories os.walk will descend.

 To get a feel for os.walk, I recommend iterating over the tree and printing out the
values returned for each directory. As an example of the power of os.walk, list the
Licensed to Kerri Ross <pedbro@gmail.com>

157Summary

current working directory and all of its subdirectories along with a count of the num-
ber of entries in each of them, excluding any .git directories:

import os
for root, dirs, files in os.walk(os.curdir):
 print("{0} has {1} files".format(root, len(files)))
 if ".git" in dirs:
 dirs.remove(".git")

This is complex, and if you want to use os.walk to its fullest extent, you should proba-
bly play around with it quite a bit to understand the details of what’s going on.

 The copytree function of the shutil module recursively makes copies of all the
files in a directory and all of its subdirectories, preserving permission mode and stat
(that is, access/modify times) information. It also has the already-mentioned rmtree
function, for removing a directory and all of its subdirectories, as well as a number of
functions for making copies of individual files. See the appendix for details.

12.5 Summary
Handling filesystem references (pathnames) and filesystem operations in a manner
independent of the underlying operating system is never simple. Fortunately, Python
provides a group of functions and constants that make this task much easier. For con-
venience, a summary of the functions discussed is given in table 12.1.

Table 12.1 Summary of filesystem values and functions

Function Filesystem value or operation

os.getcwd() Gets the current directory

os.name Provides generic platform identification

sys.platform Provides specific platform information

os.environ Maps the environment

os.listdir(path) Gets files in a directory

os.chdir(path) Changes directory

os.path.join(elements) Combines elements into a path

os.path.split(path) Splits the path into a base and tail (the last ele-
ment of the path)

os.path.splitext(path) Splits the path into a base and a file extension

os.path.basename(path) Gets the base of the path

os.path.commonprefix(list_of_paths) Gets the common prefix for all paths on a list

os.path.expanduser(path) Expands ~ or ~user to a full pathname

os.path.expandvars(path) Expands environment variables

Checks for
directory
named .git

Removes
.git from
directory list
Licensed to Kerri Ross <pedbro@gmail.com>

158 CHAPTER 12 Using the filesystem

We didn’t discuss more advanced filesystem operations that typically are tied to a cer-
tain operating system or systems here, so if your needs are more advanced and special-
ized, look at the main Python documentation for the os and posix modules.

 Although being able to handle filesystem paths and operations is important, to
write many programs you also need to be able to open, read, and write files. Those file
operations are the subject of the next chapter.

os.path.exists(path) Tests to see if a path exists

os.path.isdir(path) Tests to see if a path is a directory

os.path.isfile(path) Tests to see if a path is a file

os.path.islink(path) Tests to see if a path is a symbolic link (not a
Windows shortcut)

os.path.ismount(path) Tests to see if a path is a mount point

os.path.isabs(path) Tests to see if a path is an absolute path

os.path.samefile(path_1, path_2) Tests to see if two paths refer to the same file

os.path.getsize(path) Gets the size of a file

os.path.getmtime(path) Gets the modification time

os.path.getatime(path) Gets the access time

os.rename(old_path, new_path) Renames a file

os.mkdir(path) Creates a directory

os.makedirs Creates a directory and any needed parent direc-
tories

os.rmdir(path) Removes a directory

glob.glob(pattern) Gets matches to a wildcard pattern

os. walk(path) Gets all filenames in a directory tree

Table 12.1 Summary of filesystem values and functions

Function Filesystem value or operation

(continued)
Licensed to Kerri Ross <pedbro@gmail.com>

Reading and writing files
Probably the single most common thing you’ll want to do with files is open and
read them.

13.1 Opening files and file objects
In Python, you open and read a file using the built-in open function and various
built-in reading operations. The following short Python program reads in one line
from a text file named myfile:

file_object = open('myfile', 'r')

This chapter covers
■ Opening files and file objects
■ Closing files
■ Opening files in different modes
■ Reading and writing text or binary data
■ Redirecting screen input/output
■ Using the struct module
■ Pickling objects into files
■ Shelving objects
159

line = file_object.readline()

Licensed to Kerri Ross <pedbro@gmail.com>

160 CHAPTER 13 Reading and writing files

open doesn’t read anything from the file; instead it returns an object called a file
object that you can use to access the opened file. A file object keeps track of a file
and how much of the file has been read or written. All Python file I/O is done using
file objects rather than filenames.

 The first call to readline returns the first line in the file object, everything up to
and including the first newline character or the entire file if there is no newline char-
acter in the file; the next call to readline would return the second line, and so on.

 The first argument to the open function is a pathname. In the previous example,
we’re opening what we expect to be an existing file in the current working directory.
The following opens a file at the given absolute location:

import os
file_name = os.path.join("c:", "My Documents", "test", "myfile")
file_object = open(file_name, 'r')

13.2 Closing files
After all data has been read from or written to a file object, it should be closed. Clos-
ing a file object frees up system resources, allows the underlying file to be read or
written to by other code, and, in general, makes the program more reliable. For small
scripts, not closing a file object generally doesn’t have much of an effect; file
objects are automatically closed when the script or program terminates. For larger
programs, too many open file objects may exhaust system resources, causing the pro-
gram to abort.

 You close file objects using the close method, after the file object is no longer
needed. The earlier short program then becomes this:

file_object = open("myfile", 'r')
line = file_object.readline()
. . . any further reading on the file_object . . .
file_object.close()

13.3 Opening files in write or other modes
The second argument of the open command is a string denoting how the file should
be opened. 'r' means open the file for reading, 'w' means open the file for writing
(any data already in the file will be erased), and 'a' means open the file for append-
ing (new data will be appended to the end of any data already in the file). If you want
to open the file for reading, you can leave out the second argument; 'r' is the default.
The following short program writes “Hello, World” to a file:

file_object = open("myfile", 'w')
file_object.write(“Hello, World\n”)
file_object.close()

Depending on the operating system, open may also have access to additional file
modes. These aren’t necessary for most purposes. As you write more advanced Python

programs, you may wish to consult the Python reference manuals for details.

Licensed to Kerri Ross <pedbro@gmail.com>

161Functions to read and write text or binary data

 As well, open can take an optional third argument, which defines how reads or
writes for that file are buffered. Buffering is the process of holding data in memory
until enough has been requested or written to justify the time cost of doing a disk
access. Other parameters to open control the encoding for text files and the handling
of newline characters in text files. Again, these features aren’t something you typically
need to worry about, but as you become more advanced in your use of Python, you
may wish to read up on them.

13.4 Functions to read and write text or binary data
I’ve presented the most common text file–reading function, readline. It reads and
returns a single line from a file object, including any newline character on the end
of the line. If there is nothing more to be read from the file, readline returns an
empty string. This makes it easy to, for example, count the number of lines in a file:

file_object = open("myfile", 'r')
count = 0
while file_object.readline() != "":
 count = count + 1
print(count)
file_object.close()

For this particular problem, an even shorter way of counting all the lines is to use the
built-in readlines method, which reads all the lines in a file and returns them as a list
of strings, one string per line (with trailing newlines still included):

file_object = open("myfile", 'r')
print(len(file_object.readlines()))
file_object.close()

Of course, if you happen to be counting all the lines in a huge file, this may cause your
computer to run out of memory, because it reads the entire file into memory at once.
It’s also possible to overflow memory with readline if you have the misfortune to try
to read a line from a huge file that contains no newline characters, although this is
highly unlikely. To handle such circumstances, both readline and readlines can
take an optional argument affecting the amount of data they read at any one time. See
the Python reference documentation for details.

 Another way to iterate over all of the lines in a file is to treat the file object as an
iterator in a for loop:

file_object = open("myfile", 'r')
count = 0
for line in file_object:
 count = count + 1
print(count)
file_object.close()

This method has the advantage that the lines are read into memory as needed, so
even with large files, running out of memory isn’t a concern. The other advantage of

this method is that it’s simpler and easier to read.

Licensed to Kerri Ross <pedbro@gmail.com>

162 CHAPTER 13 Reading and writing files

 On some occasions, you may wish to read all the data in a file into a single bytes
object, especially if the data isn’t a string, and you want to get it all into memory so you
can treat it as a byte sequence. Or you may wish to read data from a file as bytes
objects of a fixed size. For example, you may be reading data without explicit new-
lines, where each line is assumed to be a sequence of characters of a fixed size. To do
this, use the read method. Without any argument, it reads all the rest of a file and
returns that data as a bytes object. With a single-integer argument, it reads that num-
ber of bytes, or less, if there isn’t enough data in the file to satisfy the request, and
returns a bytes object of the given size:

input_file = open("myfile", 'rb')
header = input_file.read(4)
data = input_file.read()
input_file.close()

The first line opens a file for reading in binary mode, the second line reads the first
four bytes as a header string, and the third line reads the rest of the file as a single
piece of data.

 A possible problem with the read method may arise due to the fact that on Win-
dows and Macintosh machines, text-mode translations occur if you use the open com-
mand in text mode—that is, without adding a b to the mode. In text mode, on a
Macintosh any \r is converted to "\n", whereas on Windows "\r\n" pairs are con-
verted to "\n". You can specify the treatment of newline characters by using the new-
line parameter when you open the file and specifying newline="\n", "\r", or
"\r\n", which forces only that string to be used as newline. If the file has been opened
in binary mode, the newline parameter isn’t needed—all bytes are returned exactly as
they’re in the file:

input_file = open("myfile", newline="\n")

This forces only "\n" to be considered a newline.
 The converses of the readline and readlines methods are the write and write-

lines methods. Note that there is no writeline function. write writes a single string,
which can span multiple lines if newline characters are embedded within the
string—for example, something like

myfile.write("Hello")

write doesn’t write out a newline after it writes its argument; if you want a newline in the
output, you must put it there yourself. If you open a file in text mode (using w), any \n
characters are mapped back to the platform-specific line endings (that is, '\r\n' on Win-
dows or '\r' on Macintosh platforms). Again, opening the file with a specified newline
will avoid this.

 writelines is something of a misnomer; it doesn’t necessarily write lines—it takes
a list of strings as an argument and writes them, one after the other, to the given file
object, without writing newlines. If the strings in the list end with newlines, they’re

written as lines; otherwise, they’re effectively concatenated together in the file. But

Licensed to Kerri Ross <pedbro@gmail.com>

163Screen input/output and redirection

writelines is a precise inverse of readlines in that it can be used on the list returned
by readlines to write a file identical to the file readlines read from. For example,
assuming myfile.txt exists and is a text file, this bit of code will create an exact copy of
myfile.txt called myfile2.txt:

input_file = open("myfile.txt", 'r')
lines = input_file.readlines()
input_file.close()
output = open("myfile2.txt", 'w')
output.writelines(lines)
output.close()

13.4.1 Using binary mode

Sometimes, you want to access the data in a file as a string of bytes, with no translation
or text encoding. To do this, you need to open files in binary mode, which will return
a bytes object, instead of a string when reading. To open the file in binary mode, use
the 'b' (binary) argument with the mode—open("file", 'rb') or open("file",
'wb'):

input_file = open("myfile", 'rb')
header = input_file.read(4)
data = input_file.read()
input_file.close()

This example opens a file for reading, reads the first four bytes as a header string, and
then reads the rest of the file as a single piece of data.

 Keep in mind that files open in binary mode deal only in bytes, not strings. To use
the data as strings, you must decode any bytes objects to string objects. This is often
an important point in dealing with network protocols, where streams of data appear
as files but are in binary mode as a rule.

13.5 Screen input/output and redirection
You can use the built-in input method to prompt for and read an input string:

>>> x = input("enter file name to use: ")
enter file name to use: myfile
>>> x
'myfile'

The prompt line is optional, and the newline at the end of the input line is stripped off.
 To read in numbers using input, you need to explicitly convert the string that

input returns to the correct number type. The following example uses int:

>>> x = int(input("enter your number: "))
enter your number: 39
>>> x
39

input writes its prompt to the standard output and reads from the standard input.

Lower-level access to these and standard error can be had using the sys module, which

Licensed to Kerri Ross <pedbro@gmail.com>

164 CHAPTER 13 Reading and writing files

has sys.stdin, sys.stdout, and sys.stderr attributes. These can be treated as spe-
cialized file objects.

 For sys.stdin, you have read, readline, and readlines methods. For sys.std-
out and sys.stderr, you can use the standard print function as well as the write and
writelines methods, which operate as they do for other file objects:

>>> import sys
>>> print("Write to the standard output.")
Write to the standard output.
>>> sys.stdout.write("Write to the standard output.\n")
Write to the standard output.
30
>>> s = sys.stdin.readline()
An input line
>>> s
'An input line\n'

You can redirect standard input to read from a file. Similarly, standard output or stan-
dard error can be set to write to files. They can also be subsequently programmatically
restored to their original values using sys.__stdin__, sys.__stdout__, and
sys.__stderr__:

>>> import sys
>>> f= open("outfile.txt", 'w')
>>> sys.stdout = f
>>> sys.stdout.writelines(["A first line.\n", "A second line.\n"])
>>> print("A line from the print statement")
>>> 3 + 4
>>> sys.stdout = sys.__stdout__
>>> f.close()
>>> 3 + 4
7

The print function also can be redirected to any file without changing standard output:

>>> import sys
>>> f = open("outfile.txt", 'w')
>>> print("A first line.\n", "A second line.\n", file=f)
>>> 3 + 4
7
>>> f.close()
>>> 3 + 4
7

While the standard output is redirected, you receive prompts and tracebacks from
errors but no other output. If you’re using IDLE, these examples using
sys.__stdout__ won’t work as indicated. You have to use the interpreter’s interactive
mode directly.

 You’d normally use this when you’re running from a script or program. But if
you’re using the interactive mode on Windows, you may want to temporarily redirect
standard output in order to capture what might otherwise scroll off the screen. The
short module in listing 13.1 implements a set of functions that provide this capability.

sys.stdout.write
returns number of
characters written
Licensed to Kerri Ross <pedbro@gmail.com>

165Reading structured binary data with the struct module

"""mio: module, (contains functions capture_output, restore_output,
 print_file, and clear_file)"""
import sys
_file_object = None
def capture_output(file="capture_file.txt"):
 """capture_output(file='capture_file.txt'): redirect the standard
 output to 'file'."""
 global _file_object
 print("output will be sent to file: {0}".format(file))
 print("restore to normal by calling 'mio.restore_output()'")
 _file_object = open(file, 'w')
 sys.stdout = _file_object

def restore_output():
 """restore_output(): restore the standard output back to the
 default (also closes the capture file)"""
 global _file_object
 sys.stdout = sys.__stdout__
 _file_object.close()
 print("standard output has been restored back to normal")

def print_file(file="capture_file.txt"):
 """print_file(file="capture_file.txt"): print the given file to the
 standard output"""
 f = open(file, 'r')
 print(f.read())
 f.close()

def clear_file(file="capture_file.txt"):
 """clear_file(file="capture_file.txt"): clears the contents of the
 given file"""
 f = open(file, 'w')
 f.close()

Here, capture_output() redirects standard output to a file that defaults to
"capture_file.txt". The function restore_output() restores standard output to
the default. Also, print_file() prints this file to the standard output, and
clear_file() clears its current contents.

13.6 Reading structured binary data with the struct module
Generally speaking, when working with your own files, you probably don’t want to
read or write binary data in Python. For very simple storage needs, it’s usually best to
use textual input and output as described earlier. For more sophisticated applications,
Python provides the ability to easily read or write arbitrary Python objects (pickling,
described later in this chapter). This ability is much less error prone than directly writ-
ing and reading your own binary data and is highly recommended.

 But there’s at least one situation in which you’ll likely need to know how to read or

Listing 13.1 File mio.py
write binary data, and that’s when you’re dealing with files that are generated or used

Licensed to Kerri Ross <pedbro@gmail.com>

166 CHAPTER 13 Reading and writing files

by other programs. This section gives a short description of how to do this using the
struct module. Refer to the Python reference documentation for more details.

 As you’ve seen, Python supports explicit binary input or output by using bytes
instead of strings if you open the file in binary mode. But because most binary files
rely on a particular structure to help parse the values, writing your own code to read
and split them into variables correctly is often more work than it’s worth. Instead, you
can use the standard struct module to permit you to treat those strings as formatted
byte sequences with some specific meaning.

 Assume that we wish to read in a binary file called data, containing a series of
records generated by a C program. Each record consists of a C short integer, a C dou-
ble float, and a sequence of four characters that should be taken as a four-character
string. We wish to read this data into a Python list of tuples, with each tuple containing
an integer, a floating-point number, and a string.

 The first thing to do is to define a format string understandable to the struct
module, which tells the module how the data in one of our records is packed. The
format string uses characters meaningful to struct to indicate what type of data is
expected where in a record. For example, the character 'h' indicates the presence
of a single C short integer, and the character 'd' indicates the presence of a single C
double-precision floating-point number. Not surprisingly, 's' indicates the presence
of a string and may be preceded by an integer to indicate the length of the string;
'4s' indicates a string consisting of four characters. For our records, the appropriate
format string is therefore 'hd4s'. struct understands a wide range of numeric, char-
acter, and string formats. See the Python Library Reference for details.

 Before we start reading records from our file, we need to know how many bytes to
read at a time. Fortunately, struct includes a calcsize function, which takes our for-
mat string as an argument and returns the number of bytes used to contain data in
such a format.

 To read each record, we’ll use the read method described previously. Then, the
struct.unpack function conveniently returns a tuple of values by parsing a read
record according to our format string. The program to read our binary data file is
remarkably simple:
import struct
record_format = 'hd4s'
record_size = struct.calcsize(record_format)
result_list = []
input = open("data", 'rb')
while 1:
 record = input.read(record_size)
 if record == '':
 input.close()
 break
 result_list.append(struct.unpack(record_format, record))

If the record is empty, we’re at end of file, so we quit the loop q. Note that there is no
checking for file consistency. But if the last record is an odd size, the struct.unpack

Reads in
single record

q

Unpacks
record into
tuple; appends
to results
function raises an error.

Licensed to Kerri Ross <pedbro@gmail.com>

167Pickling objects into files

 As you may already have guessed, struct also provides the ability to take Python
values and convert them into packed byte sequences. This is accomplished through
the struct.pack function, which is almost, but not quite, an inverse of
struct.unpack. The almost comes from the fact that whereas struct.unpack returns a
tuple of Python values, struct.pack doesn’t take a tuple of Python values; rather, it
takes a format string as its first argument and then enough additional arguments to
satisfy the format string. To produce a binary record of the form used in the previous
example, we might do something like this:

>>> import struct
>>> record_format = 'hd4s'
>>> struct.pack(record_format, 7, 3.14, 'gbye')
b'\x07\x00\x00\x00\x1f\x85\xebQ\xb8\x1e\t@gbye'

struct gets even better than this; you can insert other special characters into the for-
mat string to indicate that data should be read/written in big-endian, little-endian, or
machine-native-endian format (default is machine-native) and to indicate that things
like C short integer should be sized either as native to the machine (the default) or as
standard C sizes. If you need these features, it’s nice to know they exist. See the Python
Library Reference for details.

13.7 Pickling objects into files
Pickling is a major benefit in Python. Use this ability!

 Python can write any data structure into a file and read that data structure back out
of a file and re-create it, with just a few commands. This is an unusual ability but one
that’s highly useful. It can save you many pages of code that do nothing but dump the
state of a program into a file (and can save a similar amount of code that does nothing
but read that state back in).

 Python provides this ability via the pickle module. Pickling is powerful but simple
to use. For example, assume that the entire state of a program is held in three vari-
ables: a, b, and c. We can save this state to a file called state as follows:

import pickle
.
.
.
file = open("state", 'w')
pickle.dump(a, file)
pickle.dump(b, file)
pickle.dump(c, file)
file.close()

It doesn’t matter what was stored in a, b, and c. It might be as simple as numbers or as
complex as a list of dictionaries containing instances of user-defined classes.
pickle.dump will save everything.

 Now, to read that data back in on a later run of the program, just write

import pickle

file = open("state", 'r')

Licensed to Kerri Ross <pedbro@gmail.com>

168 CHAPTER 13 Reading and writing files

a = pickle.load(file)
b = pickle.load(file)
c = pickle.load(file)
file.close()

Any data that was previously in the variables a, b, or c is restored to them by
pickle.load.

 The pickle module can store almost anything in this manner. It can handle lists,
tuples, numbers, strings, dictionaries, and just about anything made up of these types
of objects, which includes all class instances. It also handles shared objects, cyclic ref-
erences, and other complex memory structures correctly, storing shared objects only
once and restoring them as shared objects, not as identical copies. But code objects
(what Python uses to store byte-compiled code) and system resources (like files or
sockets) can’t be pickled.

 More often than not, you won’t want to save your entire program state with
pickle. For example, most applications can have multiple documents open at one
time. If you saved the entire state of the program, you would effectively save all open
documents in one file. An easy and effective way of saving and restoring only data of
interest is to write a save function that stores all data you wish to save into a dictionary
and then uses pickle to save the dictionary. Then, you can use a complementary
restore function to read the dictionary back in (again using pickle) and to assign the
values in the dictionary to the appropriate program variables. This also has the advan-
tage that there’s no possibility of reading values back in an incorrect order—that is, an
order different from the order in which they were stored. Using this approach with
the previous example, we get code looking something like this:

import pickle
.
.
.
def save_data():
 global a, b, c
 file = open("state", 'w')
 data = {'a': a, 'b': b, 'c': c}
 pickle.dump(data, file)
 file.close()

def restore_data():
 global a, b, c
 file = open("state", 'r')
 data = pickle.load(file)
 file.close()
 a = data['a']
 b = data['b']
 c = data['c']
 .
 .

This is a somewhat contrived example. You probably won’t be saving the state of the

top-level variables of your interactive mode very often.

Licensed to Kerri Ross <pedbro@gmail.com>

169Pickling objects into files

 A real-life application is an extension of the cache example given in chapter 7, “Dic-
tionaries.” Recall that there, we were calling a function that performed a time-intensive
calculation based on its three arguments. During the course of a program run, many of
our calls to it ended up using the same set of arguments. We were able to obtain a sig-
nificant performance improvement by caching the results in a dictionary, keyed by the
arguments that produced them. But it was also the case that many different sessions of
this program were being run many times over the course of days, weeks, and months.
Therefore, by pickling the cache, we can keep from having to start over with every ses-
sion. Listing 13.2 is a pared-down version of the module for doing this.

"""sole module: contains function sole, save, show"""
import pickle
_sole_mem_cache_d = {}
_sole_disk_file_s = "solecache"
file = open(_sole_disk_file_s, 'r')
_sole_mem_cache_d = pickle.load(file)
file.close()

def sole(m, n, t):
 """sole(m, n, t): perform the sole calculation using the cache."""
 global _sole_mem_cache_d
 if _sole_mem_cache_d.has_key((m, n, t)):
 return _sole_mem_cache_d[(m, n, t)]
 else:
 # . . . do some time-consuming calculations . . .
 _sole_mem_cache_d[(m, n, t)] = result
 return result

def save():
 """save(): save the updated cache to disk."""
 global _sole_mem_cache_d, _sole_disk_file_s
 file = open(_sole_disk_file_s, 'w')
 pickle.dump(_sole_mem_cache_d, file)
 file.close()

def show():
 """show(): print the cache"""
 global _sole_mem_cache_d
 print(_sole_mem_cache_d)

This code assumes the cache file already exists. If you want to play around with it, use
the following to initialize the cache file:

>>> import pickle
>>> file = open("solecache",'w')
>>> pickle.dump({}, file)
>>> file.close()

You’ll also, of course, need to replace the comment # . . . do some time-consum-

Listing 13.2 File sole.py

Initialization code
executes when
module loads

Public
functions
ing calculations with an actual calculation. Note that for production code, this is a

Licensed to Kerri Ross <pedbro@gmail.com>

170 CHAPTER 13 Reading and writing files

situation where you probably would use an absolute pathname for your cache file.
Also, concurrency isn’t being handled here. If two people run overlapping sessions,
you’ll end up with only the additions of the last person to save. If this were an issue,
you could limit this overlap window significantly by using the dictionary update
method in the save function.

13.8 Shelving objects
This is a somewhat advanced topic but certainly not a difficult one. This section is
likely of most interest to people whose work involves storing or accessing pieces of
data in large files, because the Python shelve module does exactly that—it permits
the reading or writing of pieces of data in large files, without reading or writing the
entire file. For applications that perform many accesses of large files (such as database
applications), the savings in time can be spectacular. Like the pickle module (which
it uses), the shelve module is simple.

 Let’s explore it through an address book. This sort of thing is usually small enough
that an entire address file can be read in when the application is started and written out
when the application is done. If you’re an extremely friendly sort of person, and your
address book is too big for this, it would be better to use shelve and not worry about it.

 We’ll assume that each entry in our address book consists of a tuple of three ele-
ments, giving the first name, phone number, and address of a person. Each entry will
be indexed by the last name of the person the entry refers to. This is so simple that
our application will be an interactive session with the Python shell.

 First, import the shelve module and open the address book. shelve.open creates
the address book file if it doesn’t exist:

>>> import shelve
>>> book = shelve.open("addresses")

Now, add a couple of entries. Notice that we’re treating the object returned by
shelve.open as a dictionary (although it’s a dictionary that can use only strings as
keys):

>>> book['flintstone'] = ('fred', '555-1234', '1233 Bedrock Place')
>>> book['rubble'] = ('barney', '555-4321', '1235 Bedrock Place')

Finally, close the file and end the session:

>>> book..close()

So what? Well, in that same directory, start Python again, and open the same address
book:

>>> import shelve
>>> book = shelve.open("addresses")

But now, instead of entering something, let’s see if what we put in before is still around:

>>> book['flintstone']
('fred', '555-1234', '1233 Bedrock Place')
Licensed to Kerri Ross <pedbro@gmail.com>

171Summary

The addresses file created by shelve.open in the first interactive session has acted just
like a persistent dictionary. The data we entered before was stored to disk, even
though we did no explicit disk writes. That’s exactly what shelve does.

 More generally, shelve.open returns a shelf object that permits basic dictionary
operations, key assignment or lookup, del, in, and the keys method. But unlike a
normal dictionary, shelf objects store their data on disk, not in memory. Unfortu-
nately, shelf objects do have one significant restriction as compared to dictionaries:
they can use only strings as keys, versus the wide range of key types allowable in dic-
tionaries.

 It’s important to understand the advantage shelf objects give you over dictionar-
ies when dealing with large data sets. shelve.open makes the file accessible; it doesn’t
read an entire shelf object file into memory. File accesses are done only when
needed, typically when an element is looked up, and the file structure is maintained
in such a manner that lookups are very fast. Even if your data file is really large, only a
couple of disk accesses will be required to locate the desired object in the file. This
can improve your program in a number of ways. It may start faster, because it doesn’t
need to read a potentially large file into memory. It may execute faster, because more
memory is available to the rest of the program, and thus less code will need to be
swapped out into virtual memory. You can operate on data sets that are otherwise too
large to fit in memory.

 There are a few restrictions when using the shelve module. As previously men-
tioned, shelf object keys can be only strings; but any Python object that can be pick-
led can be stored under a key in a shelf object. Also, shelf objects aren’t suitable for
multiuser databases because they provide no control for concurrent access. Finally,
make sure you close a shelf object when you’ve finished—this is sometimes required
in order for changes you’ve made (entries or deletions) to be written back to disk.

 As written, the cache example of the previous section would be an excellent candi-
date to be handled using shelves. You would not, for example, have to rely on the user
to explicitly save their work to the disk. The only possible issue is that you wouldn’t
have the low-level control when you write back to the file.

13.9 Summary
File input and output in Python is a remarkably simple but powerful feature of the
language. You can use various built-in functions to open, read, write, and close files.
For very simple uses, you’ll probably want to stick with reading and writing text, but
the struct module does give you the ability to read or write packed binary data. Even
better, the pickle and shelve modules provide simple, safe, and powerful ways of sav-
ing and accessing arbitrarily complex Python data structures, which means you may
never again need to worry about defining file formats for your programs.
Licensed to Kerri Ross <pedbro@gmail.com>

Exceptions
This chapter discusses exceptions, which are a language feature specifically aimed
at handling unusual circumstances during the execution of a program. The most
common use for exceptions is to handle errors that arise during the execution of a
program, but they can also be used effectively for many other purposes. Python
provides a comprehensive set of exceptions, and new ones can be defined by users
for their own purposes.

 The concept of exceptions as an error-handling mechanism has been around
for some time. C and Perl, the most commonly used systems and scripting lan-
guages, don’t provide any exception capabilities, and even programmers who use
languages such as C++, which do include exceptions, are often unfamiliar with
them. This chapter doesn’t assume familiarity with exceptions on your part but
instead provides detailed explanations. If you’re already familiar with exceptions,
you can skip directly to “Exceptions in Python” (section 14.2).

This chapter covers
■ Understanding exceptions
■ Handling exceptions in Python
■ Using the with keyword
172

Licensed to Kerri Ross <pedbro@gmail.com>

173Introduction to exceptions

14.1 Introduction to exceptions
The following sections provide an introduction to exceptions and how they’re used.
Feel free to skip them if you’re already familiar with exceptions from other languages.

14.1.1 General philosophy of errors and exception handling

Any program may encounter errors during its execution. For the purposes of illustrat-
ing exceptions, we’ll look at the case of a word processor that writes files to disk and
that therefore may run out of disk space before all of its data is written. There are var-
ious ways of coming to grips with this problem.

SOLUTION 1: DON’T HANDLE THE PROBLEM

The simplest way of handling this disk-space problem is to assume that there will
always be adequate disk space for whatever files we write, and we needn’t worry about
it. Unfortunately, this seems to be the most commonly used option. It’s usually tolera-
ble for small programs dealing with small amounts of data, but it’s completely unsatis-
factory for more mission-critical programs. For several months while I was writing this
book, my officemate spent hours every day cleaning up files that had become corrupt
when a program written by someone else ran out of disk space and crashed. Eventu-
ally, he went into the code and put in some checks, which took care of most of the
problem; even now, he still has to do occasional disk cleanups. Because the original
program wasn’t written cleanly with exceptions, the checks he put in could do only a
partial job.
SOLUTION 2: ALL FUNCTIONS RETURN SUCCESS/FAILURE STATUS

The next level of sophistication in error handling is to realize that errors will occur
and to define a methodology using standard language mechanisms for detecting and
handling them. There are various ways of doing this, but a typical one is to have
each function or procedure return a status value that indicates if that function or
procedure call executed successfully. Normal results can be passed back in a call-by-
reference parameter.

 Let’s look at how this might work with our hypothetical word-processing program.
We’ll assume that the program invokes a single high-level function, save_to_file, to
save the current document to file. This will call various subfunctions to save different
parts of the entire document to the file: for example, save_text_to_file to save the
actual document text, save_prefs_to_file to save user preferences for that docu-
ment, save_formats_to_file to save user-defined formats for the document, and so
forth. Any of these may in turn call their own subfunctions, which save smaller pieces
to the file. At the bottom will be built-in system functions, which write primitive data
to the file and report on the success or failure of the file-writing operations.

 We could put error-handling code into every function that might get a disk-space
error, but that makes little sense. The only thing the error handler will be able to do is
Licensed to Kerri Ross <pedbro@gmail.com>

174 CHAPTER 14 Exceptions

to put up a dialog box telling the user that there’s no more disk space and asking that
the user remove some files and save again. It wouldn’t make sense to duplicate this
code everywhere we do a disk write. Instead, we’ll put one piece of error-handling
code into the main disk-writing function, save_to_file.

 Unfortunately, for save_to_file to be able to determine when to call this error-
handling code, every function it calls that writes to disk must itself check for disk space
errors and return a status value indicating success or failure of the disk write. In addi-
tion, the save_to_file function must explicitly check every call to a function that
writes to disk, even though it doesn’t care about which function fails. The code, using
a C-like syntax, looks something like this:

const ERROR = 1;
const OK = 0;
int save_to_file(filename) {
 int status;
 status = save_prefs_to_file(filename);
 if (status == ERROR) {
 ...handle the error...
 }
 status = save_text_to_file(filename);
 if (status == ERROR) {
 ...handle the error...
 }
 status = save_formats_to_file(filename);
 if (status == ERROR) {
 ...handle the error...
 }
 .
 .
 .
}
int save_text_to_file(filename) {
 int status;
 status = ...lower-level call to write size of text...
 if (status == ERROR) {
 return(ERROR);
 }
 status = ...lower-level call to write actual text data...
 if (status == ERROR) {
 return(ERROR);
 }
 .
 .
 .
}

And so on for save_prefs_to_file, save_formats_to_file, and all other functions
that either write to filename directly or (in any way) call functions that write to
filename.

 Under this methodology, code to detect and handle errors can become a signifi-

cant portion of the entire program, because every function and procedure containing

Licensed to Kerri Ross <pedbro@gmail.com>

175Introduction to exceptions

calls that might result in an error need to contain code to check for an error. Often,
programmers don’t have the time or the energy put in this type of complete error
checking, and programs end up being unreliable and crash prone.

SOLUTION 3: THE EXCEPTION MECHANISM

It’s obvious that most of the error-checking code in the previous type of program is
largely repetitive: it checks for errors on each attempted file write and passes an error
status message back up to the calling procedure if an error is detected. The disk space
error is handled in only one place, the top-level save_to_file. In other words, most
of the error-handling code is plumbing code, which connects the place where an
error is generated with the place where it’s handled. What we really want to do is to
get rid of this plumbing and write code that looks something like this:

def save_to_file(filename)
 try to execute the following block
 save_text_to_file(filename)
 save_formats_to_file(filename)
 save_prefs_to_file(filename)
 .
 .
 .
 except that, if the disk runs out of space while
 executing the above block, do this
 ...handle the error...

def save_text_to_file(filename)
 ...lower-level call to write size of text...
 ...lower-level call to write actual text data...
 .
 .
 .

The error-handling code is completely removed from the lower-level functions; an
error (if it occurs) will be generated by the built-in file writing routines and will prop-
agate directly to the save_to_file routine, where our error-handling code will (pre-
sumably) take care of it. Although youcan’t write this code in C, languages that offer
exceptions permit exactly this sort of behavior; and, of course, Python is one such lan-
guage. Exceptions let you write clearer code and handle error conditions better.

14.1.2 A more formal definition of exceptions

The act of generating an exception is called raising or throwing an exception. In the
previous example, all exceptions are raised by the disk-writing functions, but excep-
tions can also be raised by any other functions or can be explicitly raised by your own
code. We’ll discuss this in more detail shortly. In the previous example, the low-level
disk-writing functions (not seen in the code) would throw an exception if the disk
were to run out of space.

 The act of responding to an exception is called catching an exception, and the code
that handles an exception is called exception-handling code, or just an exception handler.
Licensed to Kerri Ross <pedbro@gmail.com>

176 CHAPTER 14 Exceptions

In the example, the except that... line catches the disk-write exception, and the
code that would be in place of the ...handle the error... line would be an excep-
tion handler for disk-write (out of space) exceptions. There may be other exception
handlers for other types of exceptions or even other exception handlers for the same
type of exception but at another place in your code.

14.1.3 User-defined exceptions

Depending on exactly what event causes an exception, a program may need to take
different actions. For example, an exception raised when disk space is exhausted
needs to be handled quite differently from an exception that is raised if we run out of
memory, and both are completely different from an exception that arises when a
divide-by-zero error occurs. One way of handling these different types of exceptions
would be to globally record an error message indicating the cause of the exception
and to have all exception handlers examine this error message and take appropriate
action. In practice, a different method has proven to be much more flexible.

 Rather than defining a single kind of exception, Python, like most modern lan-
guages that implement exceptions, defines different types of exceptions, correspond-
ing to various problems that may occur. Depending on the underlying event, different
types of exceptions may be raised. In addition, the code that catches exceptions may
be told to catch only certain types. This feature was used in the earlier pseudocode
when we said, except that, if the disk runs out of space . . ., do this; we
were specifying that this particular exception-handling code is interested only in disk-
space exceptions. Another type of exception wouldn’t be caught by that exception-
handling code. It would either be caught by an exception handler that was looking for
numeric exceptions, or, if there were no such exception handler, it would cause the
program to exit prematurely with an error.

14.2 Exceptions in Python
The remaining sections of this chapter talk specifically about the exception mecha-
nisms built into Python. The entire Python exception mechanism is built around an
object-oriented paradigm, which makes it both flexible and expandable. If you
aren’t familiar with OOP, you don’t need to learn OO techniques in order to use
exceptions.

 Like everything else in Python, an exception is an object. It’s generated automati-
cally by Python functions with a raise statement. After it’s generated, the raise state-
ment, which raises an exception, causes execution of the Python program to proceed
in a manner different than would normally occur. Instead of proceeding with the next
statement after the raise, or whatever generated the exception, the current call chain
is searched for a handler that can handle the generated exception. If such a handler is
found, it’s invoked and may access the exception object for more information. If no
suitable exception handler is found, the program aborts with an error message.
Licensed to Kerri Ross <pedbro@gmail.com>

177Exceptions in Python

14.2.1 Types of Python exceptions

It’s possible to generate different types of exceptions to reflect the actual cause of the
error or exceptional circumstance being reported. Python provides a number of dif-
ferent exception types:

BaseException
 SystemExit
 KeyboardInterrupt
 GeneratorExit
 Exception
 StopIteration
 ArithmeticError
 FloatingPointError
 OverflowError
 ZeroDivisionError
 AssertionError
 AttributeError
 BufferError
 EnvironmentError
 IOError
 OSError
 WindowsError (Windows)
 VMSError (VMS)
 EOFError
 ImportError
 LookupError
 IndexError
 KeyError
 MemoryError
 NameError
 UnboundLocalError
 ReferenceError
 RuntimeError
 NotImplementedError
 SyntaxError
 IndentationError
 TabError
 SystemError
 TypeError
 ValueError
 UnicodeError
 UnicodeDecodeError
 UnicodeEncodeError
 UnicodeTranslateError
 Warning
 DeprecationWarning
 PendingDeprecationWarning
 RuntimeWarning
 SyntaxWarning
 UserWarning
 FutureWarning
 ImportWarning

 UnicodeWarning

 BytesWarningException

Licensed to Kerri Ross <pedbro@gmail.com>

178 CHAPTER 14 Exceptions

The Python exception set is hierarchically structured, as reflected by the indentation
in this list of exceptions. As you saw in a previous chapter, you can obtain an alphabet-
ized list from the __builtin__ module.

 Each type of exception is a Python class, which inherits from its parent exception
type. But if you’re not into OOP yet, don’t worry about that. For example, an IndexEr-
ror is also a LookupError and by inheritance an Exception and also a BaseException.

 This hierarchy is deliberate: most exceptions inherit from Exception, and it’s
strongly recommended that any user-defined exceptions also subclass Exception, not
BaseException. The reason is that if you have code set up like this

try:
 # do stuff
except Exception:
 # handle exceptions

you could still interrupt the code in the try block with Ctrl-C without triggering the
exception-handling code, because the KeyboardInterrupt exception is not a subclass
of Exception.

 You can find an explanation of the meaning of each type of exception in the docu-
mentation, but you’ll rapidly become acquainted with the most common types as you
program!

14.2.2 Raising exceptions

Exceptions are raised by many of the Python built-in functions. For example:

>>> alist = [1, 2, 3]
>>> element = alist[7]
Traceback (innermost last):
 File "<stdin>", line 1, in ?
IndexError: list index out of range

Error-checking code built into Python detects that the second input line requests an ele-
ment at a list index that doesn’t exist and raises an IndexError exception. This excep-
tion propagates all the way back to the top level (the interactive Python interpreter),
which handles it by printing out a message stating that the exception has occurred.

 Exceptions may also be raised explicitly in your own code, through the use of the
raise statement. The most basic form of this statement is

raise exception(args)

The exception(args) part of the code creates an exception. The arguments to the
new exception are typically values that aid you in determining what happened, some-
thing we’ll discuss shortly. After the exception has been created, raise takes it and
throws it upward along the stack of Python functions that were invoked in getting to
the line containing the raise statement. The new exception is thrown up to the near-
est (on the stack) exception catcher looking for that type of exception. If no catcher is
found on the way to the top level of the program, this will either cause the program to
terminate with an error or, in an interactive session, cause an error message to be

printed to the console.

Licensed to Kerri Ross <pedbro@gmail.com>

179Exceptions in Python

 Try the following:

>>> raise IndexError("Just kidding")
Traceback (innermost last):
 File "<stdin>", line 1, in ?
IndexError: Just kidding

The use of raise here generates what at first glance looks similar to all the Python list-
index error messages you’ve seen so far. Closer inspection reveals this not to be the
case. The actual error reported isn’t as serious as those other ones.

 The use of a string argument when creating exceptions is common. Most of the
built-in Python exceptions, if given a first argument, assume it’s a message to be
shown to you as an explanation of what happened. This isn’t always the case, though,
because each exception type is its own class, and the arguments expected when a new
exception of that class is created are determined entirely by the class definition. Also,
programmer-defined exceptions, created by you or by other programmers, are often
used for reasons other than error handling and, as such, may not take a text message.

14.2.3 Catching and handling exceptions

The important thing about exceptions isn’t that they cause a program to halt with an
error message. Achieving that in a program is never much of a problem. What’s spe-
cial about exceptions is that they don’t have to cause the program to halt. By defining
appropriate exception handlers, you can ensure that commonly encountered excep-
tional circumstances don’t cause the program to fail; perhaps they display an error
message to the user or do something else, even fix the problem, but they don’t crash
the program.

 The basic Python syntax for exception catching and handling is as follows, using
the try and except and sometimes the else keywords:

try:
 body
except exception_type1 as var1:
 exception_code1
except exception_type2 as var2:
 exception_code2
 .
 .
 .
except:
 default_exception_code
else:
 else_body
finally:
 finally_body

A try statement is executed by first executing the code in the body part of the state-
ment. If this is successful (that is, no exceptions are thrown to be caught by the try
statement), then the else_body is executed and the try statement is finished. Noth-

ing else occurs. If an exception is thrown to the try, then the except clauses are

Licensed to Kerri Ross <pedbro@gmail.com>

180 CHAPTER 14 Exceptions

searched sequentially for one whose associated exception type matches that which was
thrown. If a matching except clause is found, the thrown exception is assigned to the
variable named after the associated exception type, and the exception code body asso-
ciated with the matching exception is executed. If the line except exception_type,
var: matches some thrown expression exc, the variable var will be created, and exc
will be assigned as the value of var, before the exception-handling code of the except
statement is executed. You don’t need to put in var; you can say something like
except exception_type:, which will still catch exceptions of the given type but won’t
assign them to any variable.

 If no matching except clause is found, then the thrown exception can’t be han-
dled by that try statement, and the exception is thrown further up the call chain in
hope that some enclosing try will be able to handle it.

 The last except clause of a try statement can optionally refer to no exception
types at all, in which case it will handle all types of exceptions. This can be convenient
for some debugging and extremely rapid prototyping but generally isn’t a good idea:
all errors are hidden by the except clause, which can lead to some confusing behavior
on the part of your program.

 The else clause of a try statement is optional and is rarely used. It’s executed if
and only if the body of the try statement executes without throwing any errors.

 The finally clause of a try statement is also optional and executes after the try,
except, and else sections have executed. If an exception is raised in the try block
and isn’t handled by any of the except blocks, that exception is reraised after the
finally block executes. Because the finally block always executes, it gives you a
chance to include code to clean up after any exception handling by closing files, reset-
ting variables, and so on.

14.2.4 Defining new exceptions

You can easily define your own exception. The following two lines will do this for you:

class MyError(Exception):
 pass

This creates a class that inherits everything from the base Exception class. But you
don’t have to worry about that if you don’t want to.

 You can raise, catch, and handle it like any other exception. If you give it a single
argument (and you don’t catch and handle it), this will be printed at the end of the
traceback:

>>> raise MyError("Some information about what went wrong")
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
__main__.MyError: Some information about what went wrong

This argument will, of course, be available to a handler you write as well:

try:
 raise MyError("Some information about what went wrong")
Licensed to Kerri Ross <pedbro@gmail.com>

181Exceptions in Python

except MyError as error:
 print("Situation:", error)

The result here is

Situation: Some information about what went wrong

If you raise your exception with multiple arguments, these will be delivered to your
handler as a tuple, which you can access through the args variable of the error:

try:
 raise MyError("Some information", "my_filename", 3)
except MyError as error:
 print("Situation: problem {0} with file {1}: {2}".format(
 (error.args[2],
 error.args[1], error.args[0]))

This gives the result

Situation: problem 3 with file my_filename: Some information

Because an exception type is a regular class in Python and happens to inherit from the
root Exception class, it’s a simple matter to create you own subhierarchy of exception
types for use by your own code. You don’t have to worry about this on a first read of
the book. You can always come back to it after you’ve read chapter 15, “Classes and
object-oriented programming.” Exactly how you create your own exceptions depends
on your particular needs. If you’re writing a small program that may generate only a
few unique errors or exceptions, subclass the main Exception class as we’ve done
here. If, on the other hand, you’re writing a large, multifile code library with a special
goal in mind—say, weather forecasting—you may decide to define a unique class
called WeatherLibraryException and then define all the unique exceptions of the
library as subclasses of WeatherLibraryException.

14.2.5 Debugging programs with the assert statement

The assert statement is a specialized form of the raise statement:

assert expression, argument

The AssertionError exception with the optional argument is raised if the expression
evaluates to False and the system variable __debug__ is True. The __debug__ variable
defaults to True. It’s turned off by either starting up the Python interpreter with the
-O or -OO option or by setting the system variable PYTHONOPTIMIZE to True.

 The code generator creates no code for assertion statements if __debug__ is false.
You can use assert statements to instrument your code with debug statements during
development and leave them in the code for possible future use with no runtime cost
during regular use:

>>> x = (1, 2, 3)
>>> assert len(x) > 5
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>

AssertionError

Licensed to Kerri Ross <pedbro@gmail.com>

182 CHAPTER 14 Exceptions

14.2.6 The exception inheritance hierarchy

Now, let’s expand on an earlier notion that Python exceptions are hierarchically struc-
tured and on what it means in terms of how except clauses catch exceptions.

 The following code

try:
 body
except LookupError as error:
 exception code
except IndexError as error:
 exception code

catches two different types of exceptions: IndexError and LookupError. It just so hap-
pens that IndexError is a subclass of LookupError. If body throws an IndexError, that
error is first examined by the except LookupError as error: line, and because an
IndexError is a LookupError by inheritance, the first except will succeed. The second
except clause will never be used because it’s subsumed by the first except clause.

 On the other hand, flipping the order of the two except clauses could potentially
be useful; the first clause would then handle IndexError exceptions, and the second
clause would handle any LookupError exceptions that aren’t IndexError errors.

14.2.7 Example: a disk-writing program in Python

Let’s revisit our example of a word-processing program that needs to check for disk
out-of-space conditions as it writes a document to disk:

def save_to_file(filename) :
 try:
 save_text_to_file(filename)
 save_formats_to_file(filename)
 save_prefs_to_file(filename)
 .
 .
 .
 except IOError:
 ...handle the error...
def save_text_to_file(filename):
 ...lower-level call to write size of text...
 ...lower-level call to write actual text data...
 .
 .
 .

Notice how unobtrusive the error-handling code is; it’s wrapped around the main
sequence of disk-writing calls in the save_to_file function. None of the subsidiary
disk-writing functions need any error-handling code. It would be easy to develop the
program first and to add error-handling code later. That’s often what is done,
although this isn’t the optimal ordering of events.

 As another note of interest, this code doesn’t respond specifically to disk-full
errors; rather, it responds to IOError exceptions, which Python built-in functions raise
Licensed to Kerri Ross <pedbro@gmail.com>

183Exceptions in Python

automatically whenever they can’t complete an I/O request, for whatever reason.
That’s probably satisfactory for your needs; but if you need to identify disk-full condi-
tions, you can do a couple of different things. The except body can check to see how
much room is available on disk. If the disk is out of space, clearly it’s a disk-full prob-
lem and should be handled in this except body; otherwise, the code in the except
body can throw the IOError further up the call chain to be handled by some other
except. If that isn’t sufficient, you can do something more extreme, like going into
the C source for the Python disk-writing functions and raising your own DiskFull
exceptions as necessary. I wouldn’t recommend this latter option, but it’s nice to know
the possibility exists if you need to make use of it.

14.2.8 Example: exceptions in normal evaluation

Exceptions are most often used in error handling but can also be remarkably useful
in certain situations involving what we would think of as normal evaluation. An exam-
ple I encountered involved a spreadsheet-like program I was implementing. Like
most spreadsheets, it permits arithmetic operations involving cells, and it permits
cells to contain values other than numbers. For my application, I wanted blank cells
used in a numerical calculation to be considered as containing the value 0, and cells
containing any other nonnumeric string to be considered as invalid, which I repre-
sented as the Python value None. Any calculation involving an invalid value should
return an invalid value.

 The first step was to write a function that would evaluate a string from a cell of the
spreadsheet and return an appropriate value:

def cell_value(string):
 try:
 return float(string)
 except ValueError:
 if string == "":
 return 0
 else:
 return None

Python’s exception-handling ability made this a simple function to write. I tried to
convert the string from the cell into a number and return it, in a try block using the
float built-in function. float raises the ValueError exception if it can’t convert its
string argument to a number, so I caught that and returned either 0 or None depend-
ing on whether the argument string was empty or non-empty.

 The next step was to handle the fact that some of my arithmetic might have to deal
with a value of None. In a language without exceptions, the normal way to do this would
be to define a custom set of arithmetic functions, which check their arguments for None,
and then to use those functions rather than the built-in arithmetic functions to perform
all of the spreadsheet arithmetic. This is time consuming and error prone, and it leads
to slow execution because you’re effectively building an interpreter in your spread-
sheet. I took a different approach. All of my spreadsheet formulas were actually Python
Licensed to Kerri Ross <pedbro@gmail.com>

184 CHAPTER 14 Exceptions

functions that took as arguments the x and y coordinates of the cell being evaluated and
the spreadsheet itself and calculated the result for the given cell using standard Python
arithmetic operators, using cell_value to extract the necessary values from the spread-
sheet. I defined a function called safe_apply, which took one of these formulas,
applied it to the appropriate arguments in a try block, and returned either the for-
mula’s result or None, depending on whether the formula evaluated successfully:

def safe_apply(function, x, y, spreadsheet):
 try:
 return function, (x, y, spreadsheet)
 except TypeError:
 return None

These two changes were enough to integrate the idea of an empty (None) value into
the semantics of my spreadsheet. Trying to develop this ability without the use of
exceptions is a highly educational exercise.

14.2.9 Where to use exceptions

Exceptions are a natural choice for handling almost any error condition. It’s an unfor-
tunate fact that error handling is often added after the rest of the program is largely
complete, but exceptions are particularly good at intelligibly managing this sort of
after-the-fact error-handling code (or, more optimistically, for the case where you’re
adding more of them after the fact).

 Exceptions are also highly useful in circumstances where a large amount of pro-
cessing may need to be discarded after it has become obvious that a computational
branch in your program has become untenable. The spreadsheet example was one
such case; others are branch-and-bound algorithms and parsing algorithms.

14.3 Using with
Some situations, such as reading files, follow a predictable pattern with a set begin-
ning and end. In the case of reading from a file, quite often the file needs to be open
only one time, while data is being read, and then it can be closed. In terms of excep-
tions, you can code this kind of file access like this:

try:
 infile = open(filename)
 data = infile.read()
finally:
 infile.close()

In Python 3, there’s a more generic way of handling situations like this: context manag-
ers. Context managers wrap a block and manage requirements on entry and departure
from the block and are marked by the with keyword. File objects are context manag-
ers, and you can read files using that capability:

with open(filename) as infile:
 data = infile.read()
Licensed to Kerri Ross <pedbro@gmail.com>

185Summary

These two lines of code are equivalent to the five previous lines. In both cases, we
know that the file will be closed immediately after the last read, whether the operation
was successful or not. In the second case, closure of the file is also assured, because it’s
part of the file object’s context management, so we don’t need to write the code. In
other words, by using with combined with a context management (in this case a file
object), we don’t need to worry about the routine cleanup.

 Context managers are intended for things like locking and unlocking resources,
closing files, committing database transactions, and so on. This is still a relatively new
feature in Python, and its use will continue to be refined.

14.4 Summary
Python’s exception-handling mechanism and exception classes provide a rich system
to handle runtime errors in your code. Python’s philosophy is that errors should not
pass silently unless explicitly silenced, and by using try, except, else, and finally
blocks and by selecting and even creating the types of exceptions caught, you can have
very fine-grained control over how exceptions are handled and even ignored, when
that makes sense.

 You’ve seen that in Python exception types are organized in a hierarchy. That’s
possible because exceptions, like all objects in Python, are based on classes, and you’ll
see how Python uses classes and objects in the next chapter.
Licensed to Kerri Ross <pedbro@gmail.com>

Classes and object-oriented
programming
In this chapter, we discuss Python classes, which can be used in a manner analogous
to C structures but which can also be used in a full object-oriented manner. For the
benefit of readers who aren’t object-oriented programmers, we’ll discuss the use of
classes as structures in the first two subsections.

 The remainder of the chapter discusses OOP in Python. This is only a descrip-
tion of the constructs available in Python; it’s not an exposition on object-oriented
programming itself.

This chapter covers
■ Defining classes
■ Using instance variables and @property
■ Defining methods
■ Defining class variables and methods
■ Inheriting from other classes
■ Making variables and methods private
■ Inheriting from multiple classes
186

Licensed to Kerri Ross <pedbro@gmail.com>

187Defining classes

15.1 Defining classes
A class in Python is effectively a data type. All the data types built into Python are
classes, and Python gives you powerful tools to manipulate every aspect of a class’s
behavior. You define a class with the class statement:

class MyClass:
 body

body is a list of Python statements, typically variable assignments and function defini-
tions. No assignments or function definitions are required. The body can be just a sin-
gle pass statement.

 By convention, class identifiers are in CapCase—that is, the first letter of each com-
ponent word is capitalized, to make them stand out. After you define the class, a new
object of the class type (an instance of the class) can be created by calling the class
name as a function:

instance = MyClass()

15.1.1 Using a class instance as a structure or record

Class instances can be used as structures or records. Unlike C structures, the fields of
an instance don’t need to be declared ahead of time but can be created on the fly. The
following short example defines a class called Circle, creates a Circle instance,
assigns to the radius field of the circle, and then uses that field to calculate the cir-
cumference of the circle:

>>> class Circle:
... pass
...
>>> my_circle = Circle()
>>> my_circle.radius = 5
>>> print(2 * 3.14 * my_circle.radius)
31.4

Like Java and many other languages, the fields of an instance/structure are accessed
and assigned to by using dot notation.

 You can initialize fields of an instance automatically by including an __init__ ini-
tialization method in the class body. This function is run every time an instance of the
class is created, with that new instance as its first argument. The __init__ method is
similar to a constructor in Java, but it doesn’t really construct anything—it initializes
fields of the class. This example creates circles with a radius of 1 by default:

class Circle:
 def __init__(self):
 self.radius = 1
my_circle = Circle()
print(2 * 3.14 * my_circle.radius)
my_circle.radius = 5
print(2 * 3.14 * my_circle.radius)

q

w
e

r
t

Licensed to Kerri Ross <pedbro@gmail.com>

188 CHAPTER 15 Classes and object-oriented programming

By convention, self is always the name of the first argument of __init__. self is set
to the newly created circle instance when __init__ is run q. Next, the code uses the
class definition. We first create a Circle instance object w. The next line makes use
of the fact that the radius field is already initialized e. We can also overwrite the
radius field r; as a result, the last line prints a different result than the previous
print statement t.

 You can do a great deal more by using true object-oriented programming, and if
you’re not familiar with OOP, I urge you to read up on it. Python’s object-oriented pro-
gramming constructs are the subject of the remainder of this chapter.

15.2 Instance variables
Instance variables are the most basic feature of OOP. Take a look at the Circle class
again:

class Circle:
 def __init__(self):
 self.radius = 1

radius is an instance variable of Circle instances. That is, each instance of the Circle
class has its own copy of radius, and the value stored in that copy may be different
from the values stored in the radius variable in other instances. In Python, you can
create instance variables as necessary by assigning to a field of a class instance:

instance.variable = value

If the variable doesn’t already exist, it’s created automatically. This is how __init__
creates the radius variable.

 All uses of instance variables—both assignment and access—require explicit mention
of the containing instance—that is, instance.variable. A reference to variable by
itself is a reference not to an instance variable but rather to a local variable in the exe-
cuting method. This is different from C++ or Java, where instance variables are
referred to in the same manner as local method function variables. I rather like
Python’s requirement for explicit mention of the containing instance, because it
clearly distinguishes instance variables from local function variables.

15.3 Methods
A method is a function associated with a particular class. You’ve already seen the special
__init__ method, which is called on a new instance when that instance is first cre-
ated. In the following example, we define another method, area, for the Circle class,
which can be used to calculate and return the area for any Circle instance. Like most
user-defined methods, area is called with a method invocation syntax that resembles
instance variable access:

>>> class Circle:
... def __init__(self):
... self.radius = 1

... def area(self):

Licensed to Kerri Ross <pedbro@gmail.com>

189Methods

... return self.radius * self.radius * 3.14159

...
>>> c = Circle()
>>> c.radius = 3
>>> print(c.area())
28.27431

Method invocation syntax consists of an instance, followed by a period, followed by
the method to be invoked on the instance. The previous syntax is sometimes called
bound method invocation. area can also be invoked as an unbound method by access-
ing it through its containing class. This is less convenient and is almost never done.
When a method is invoked in this manner, its first argument must be an instance of
the class in which that method is defined:

>>> print(Circle.area(c))
28.27431

Like __init__, the area method is defined as a function within the body of the class
definition. The first argument of any method is the instance it was invoked by or on,
named self by convention.

 Methods can be invoked with arguments, if the method definitions accept those argu-
ments. This version of Circle adds an argument to the __init__ method, so that we can
create circles of a given radius without needing to set the radius after a circle is created:

class Circle:
 def __init__(self, radius):
 self.radius = radius
 def area(self):
 return self.radius * self.radius * 3.14159

Note the two uses of radius here. self.radius is the instance variable called radius.
radius by itself is the local function variable called radius. The two aren’t the same!
In practice, we’d probably call the local function variable something like r or rad, to
avoid any possibility of confusion.

 Using this definition of Circle, we can create circles of any radius with one call on
the circle class. The following creates a Circle of radius 5:

c = Circle(5)

All the standard Python function features—default argument values, extra arguments,
keyword arguments, and so forth—can be used with methods. For example, we could
have defined the first line of __init__ to be

 def __init__(self, radius=1):

Then, calls to circle would work with or without an extra argument; Circle() would
return a circle of radius 1, and Circle(3) would return a circle of radius 3.

 There’s nothing magical about method invocation in Python. It can be considered
shorthand for normal function invocation. Given a method invocation instance.
method(arg1, arg2, . . .), Python transforms it into a normal function call by using

the following rules:

Licensed to Kerri Ross <pedbro@gmail.com>

190 CHAPTER 15 Classes and object-oriented programming

1 Look for the method name in the instance namespace. If a method has been
changed or added for this instance, it’s invoked in preference over methods in
the class or superclass. This is the same sort of lookup discussed later in section
15.4.1.

2 If the method isn’t found in the instance namespace, look up the class type
class of instance, and look for the method there. In the previous examples,
class is Circle—the type of the instance c.

3 If the method still isn’t found, look for the method in the superclasses.

4 When the method has been found, make a direct call to it as a normal Python,
using instance as the first argument of the function, and shifting all the other
arguments in the method invocation one space over to the right. So,
instance.method(arg1, arg2, . . .) becomes class.method(instance,
arg1, arg2, . . .).

15.4 Class variables
A class variable is a variable associated with a class, not an instance of a class, and is
accessed by all instances of the class, in order to keep track of some class-level infor-
mation, such as how many instances of the class have been created at any point in
time. Python provides class variables, although using them requires slightly more
effort than in most other languages. Also, you need to watch out for an interaction
between class and instance variables.

 A class variable is created by an assignment in the class body, not in the __init__
function; after it has been created, it can be seen by all instances of the class. We can
use a class variable to make a value for pi accessible to all instances of the Circle class:

class Circle:
 pi = 3.14159
 def __init__(self, radius):
 self.radius = radius
 def area(self):
 return self.radius * self.radius * Circle.pi

With the above definition entered, we can type

>>> Circle.pi
3.1415899999999999
>>> Circle.pi = 4
>>> Circle.pi
4
>>> Circle.pi = 3.14159
>>> Circle.pi
3.1415899999999999

This is exactly how we would expect a class variable to act. It’s associated with and con-
tained in the class that defines it. Notice in this example that we’re accessing Cir-
cle.pi before any circle instances have been created. Obviously, Circle.pi exists

independently of any specific instances of the Circle class.

Licensed to Kerri Ross <pedbro@gmail.com>

191Class variables

 You can also access a class variable from a method of a class, through the class
name. We do so in the definition of Circle.area, where the area function makes spe-
cific reference to Circle.pi. In operation, this has the desired effect; the correct
value for pi is obtained from the class and used in the calculation:

>>> c = Circle(3)
>>> c.area()
28.27431

You may object to hardcoding the name of a class inside that class’s methods. You can
avoid doing so through use of the special __class__ attribute, available to all Python
class instances. This attribute returns the class of which the instance is a member, for
example:

>>> Circle
<class '__main__.Circle'>
>>> c.__class__
<class '__main__.Circle'>

The class named Circle is represented internally by an abstract data structure, and
that data structure is exactly what is obtained from the __class__ attribute of c, an
instance of the Circle class. This lets us obtain the value of Circle.pi from c without
ever explicitly referring to the Circle class name:

>>> c.__class__.pi
3.1415899999999999

Of course, we could use this internally in the area method to get rid of the explicit
reference to the Circle class; replace Circle.pi with self.__class__.pi.

15.4.1 An oddity with class variables

There’s a bit of an oddity with class variables that can trip you up if you aren’t aware of
it. When Python is looking up an instance variable, if it can’t find an instance variable
of that name, it will then try to find and return the value in a class variable of the same
name. Only if it can’t find an appropriate class variable will it signal an error. This
does make it efficient to implement default values for instance variables; just create a
class variable with the same name and appropriate default value, and avoid the time
and memory overhead of initializing that instance variable every time a class instance
is created. But this also makes it easy to inadvertently refer to an instance variable
rather than a class variable, without signaling an error. Let’s look at how this operates
in conjunction with the previous example.

 First, we can refer to the variable c.pi, even though c doesn’t have an associated
instance variable named pi. Python will first try to look for such an instance variable,
but when it can’t find it, it will then look for a class variable pi in Circle and find it:

>>> c = Circle(3)
>>> c.pi
3.1415899999999999

This may or may not be what you want; it’s convenient but can be prone to error, so be

careful.

Licensed to Kerri Ross <pedbro@gmail.com>

192 CHAPTER 15 Classes and object-oriented programming

 Now, what happens if we attempt to use c.pi as a true class variable, by changing it
from one instance with the intent that all instances should see the change? Again,
we’ll use the earlier definition for Circle:

>>> c1 = Circle(1)
>>> c2 = Circle(2)
>>> c1.pi = 3.14
>>> c1.pi
3.140000000000001
>>> c2.pi
3.1415899999999999
>>> Circle.pi
3.1415899999999999

This doesn’t work as it would for a true class variable—c1 now has its own copy of pi,
distinct from the Circle.pi accessed by c2. This is because the assignment to c1.pi
creates an instance variable in c1; it doesn’t affect the class variable Circle.pi in any
way. Subsequent lookups of c1.pi return the value in that instance variable, whereas
subsequent lookups of c2.pi look for an instance variable pi in c2, fail to find it, and
resort to returning the value of the class variable Circle.pi. If you want to change the
value of a class variable, access it through the class name, not through the instance
variable self.

15.5 Static methods and class methods
Python classes can also have methods that correspond explicitly to static methods in a
language such as Java. In addition, Python has class methods, which are a bit more
advanced.

15.5.1 Static methods

Just as in Java, you can invoke static methods even though no instance of that class has
been created, although you can call them using a class instance. To create a static
method, use the @staticmethod decorator, as shown in listing 15.1.

"""circle module: contains the Circle class."""
class Circle:
 """Circle class"""
 all_circles = []
 pi = 3.14159
 def __init__(self, r=1):
 """Create a Circle with the given radius"""
 self.radius = r
 self.__class__.all_circles.append(self)
 def area(self):
 """determine the area of the Circle"""
 return self.__class__.pi * self.radius * self.radius

 @staticmethod

Listing 15.1 File circle.py

Variable containing
list of all circles that
have been created
 def total_area():

Licensed to Kerri Ross <pedbro@gmail.com>

193Static methods and class methods

 total = 0
 for c in Circle.all_circles:
 total = total + c.area()
 return total

Now, interactively type the following:

>>> import circle
>>> c1 = circle.Circle(1)
>>> c2 = circle.Circle(2)
>>> circle.Circle.total_area()
15.70795
>>> c2.radius = 3
>>> circle.Circle.total_area()
31.415899999999997

Also notice that documentation strings are used. In a real module, you’d probably put
in more informative strings, indicating in the class docstring what methods are avail-
able and including usage information in the method docstrings:

>>> circle.__doc__
'circle module: contains the Circle class.'
>>> circle.Circle.__doc__
'Circle class'
>>> circle.Circle.area.__doc__
'determine the area of the Circle'

15.5.2 Class methods

Class methods are similar to static methods in that they can be invoked before an
object of the class has been instantiated or by using an instance of the class. But class
methods are implicitly passed the class they belong to as their first parameter, so you
can code them more simply, as in listing 15.2.

"""circle module: contains the Circle class."""
class Circle:
 """Circle class"""
 all_circles = []
 pi = 3.14159
 def __init__(self, r=1):
 """Create a Circle with the given radius"""
 self.radius = r
 self.__class__.all_circles.append(self)
 def area(self):
 """determine the area of the Circle"""
 return self.__class__.pi * self.radius * self.radius

 @classmethod
 def total_area(cls):
 total = 0
 for c in cls.all_circles:
 total = total + c.area()

Listing 15.2 File circle_cm.py

Variable containing
list of all circles that
have been created

q
w

 return total e

Licensed to Kerri Ross <pedbro@gmail.com>

194 CHAPTER 15 Classes and object-oriented programming

>>> import circle_cm
>>> c1 = circle_cm.Circle(1)
>>> c2 = circle_cm.Circle(2)
>>> circle_cm.Circle.total_area()
15.70795
>>> c2.radius = 3
>>> circle_cm.Circle.total_area()
31.415899999999997

The @classmethod decorator is used before the method def q. The class parameter
is traditionally cls w. You can use cls instead of self.__class__ e.

 By using a class method instead of a static method, we don’t have to hardcode the
class name into total_area. That means any subclasses of Circle can still call
total_area and refer to their own members, not those in Circle.

15.6 Inheritance
Inheritance in Python is easier and more flexible than inheritance in compiled lan-
guages such as Java and C++ because the dynamic nature of Python doesn’t force as
many restrictions on the language.

 To see how inheritance is used in Python, we start with the Circle class given pre-
viously and generalize. We might want to define an additional class for squares:

class Square:
 def __init__(self, side=1):
 self.side = side

Now, if we want to use these classes in a drawing program, they must define some
sense of where on the drawing surface each instance is. We can do so by defining an x
coordinate and a y coordinate in each instance:

class Square:
 def __init__(self, side=1, x=0, y=0):
 self.side = side
 self.x = x
 self.y = y
class Circle:
 def __init__(self, radius=1, x=0, y=0):
 self.radius = radius
 self.x = x
 self.y = y

This approach works but results in a good deal of repetitive code as we expand the
number of shape classes, because each shape will presumably want to have this con-
cept of position. No doubt you know where we’re going here. This is a standard situa-
tion for using inheritance in an object-oriented language. Instead of defining the x
and y variables in each shape class, abstract them out into a general Shape class, and
have each class defining an actual shape inherit from that general class. In Python,
that looks like this:

class Shape:

Length of any
side of square
 def __init__(self, x, y):

Licensed to Kerri Ross <pedbro@gmail.com>

195Inheritance

 self.x = x
 self.y = y
class Square(Shape):
 def __init__(self, side=1, x=0, y=0):
 super().__init__(x, y)
 self.side = side
class Circle(Shape):
 def __init__(self, r=1, x=0, y=0):
 super().__init__(x, y)
 self.radius = r

There are (generally) two requirements in using an inherited class in Python, both of
which you can see in the bolded code in the Circle and Square classes. The first
requirement is defining the inheritance hierarchy, which you do by giving the classes
inherited from, in parentheses, immediately after the name of the class being defined
with the class keyword. In the previous code, Circle and Square both inherit from
Shape. The second and more subtle element is the necessity to explicitly call the
__init__ method of inherited classes. Python doesn’t automatically do this for you,
but you can use the super function to have Python figure out which inherited class to
use. This is accomplished in the example code by the super().__init__(x,y) lines.
This calls the Shape initialization function with the instance being initialized and the
appropriate arguments. If this weren’t done, then in the example, instances of Circle
and Square wouldn’t have their x and y instance variables set.

 Instead of using super, we could call Shape’s __init__ by explicitly naming the
inherited class using Shape.__init__(self, x, y), which would also call the Shape
initialization function with the instance being initialized. This wouldn’t be as flexible
in the long run, because it hardcodes the inherited class’s name, which could be a
problem later if the design and the inheritance hierarchy change. On the other hand,
the use of super can be tricky in more complex cases. Because the two methods don’t
exactly mix well, clearly document whichever approach you use in your code.

 Inheritance comes into effect when you attempt to use a method that isn’t defined
in the base classes but is defined in the superclass. To see this, let’s define another
method in the Shape class called move, which will move a shape by a given displace-
ment. It will modify the x and y coordinates of the shape by an amount determined by
arguments to the method. The definition for Shape now becomes

class Shape:
 def __init__(self, x, y):
 self.x = x
 self.y = y
 def move(self, delta_x, delta_y):
 self.x = self.x + delta_x
 self.y = self.y + delta_y

If we enter this definition for Shape and the previous definitions for Circle and
Square, we can then engage in the following interactive session:

>>> c = Circle(1)

Says Square
inherits from
Shape

Must call __init__
method of Shape

Says Circle
inherits from
Shape

Must call __init__
method of Shape
>>> c.move(3, 4)

Licensed to Kerri Ross <pedbro@gmail.com>

196 CHAPTER 15 Classes and object-oriented programming

>>> c.x
3
>>> c.y
4

If you try this and are doing it in an interactive session, be sure to reenter the Circle
class after the redefinition of the Shape class.

 The Circle class didn’t define a move method immediately within itself, but
because it inherits from a class that implements move, all instances of Circle can
make use of move.

15.7 Inheritance with class and instance variables
Inheritance allows an instance to inherit attributes of the class. Instance variables are
associated with object instances, and only one instance variable of a given name exists
for a given instance.

 To see this, consider the following example. Using these class definitions,

class P:
 z = "Hello"
 def set_p(self):
 self.x = "Class P"
 def print_p(self):
 print(self.x)
class C(P):
 def set_c(self):
 self.x = "Class C"
 def print_c(self):
 print(self.x)

execute the following code:

>>> c = C()
>>> c.set_p()
>>> c.print_p()
Class P
>>> c.print_c()
Class P
>>> c.set_c()
>>> c.print_c()
Class C
>>> c.print_p()
Class C

The object c in this example is an instance of class C. C inherits from P, but c doesn’t
inherit from some invisible instance of class P. It inherits methods and class variables
directly from P. Because there is only one instance (c), any reference to the instance
variable x in a method invocation on c must refer to c.x. This is true regardless of
which class defines the method being invoked on c. As you can see, when they’re
invoked on c, both set_p and print_p, defined in class P, refer to the same variable
referred to by set_c and print_c when they’re invoked on c.
Licensed to Kerri Ross <pedbro@gmail.com>

197Private variables and private methods

 In general, this is what is desired for instance variables because it makes sense that
references to instance variables of the same name should refer to the same variable.
Occasionally, somewhat different behavior is desired, which you can achieve using pri-
vate variables. These are explained in the next subsection.

 Class variables are inherited, but you should take care to avoid name clashes and
be aware of a generalization of the same behavior you saw in the earlier subsection on
class variables. In our example, a class variable z is defined for the superclass P. It can
be accessed in three different ways: through the instance c, through the derived class
C, or directly through the superclass P:

>>> c.z; C.z; P.z
'Hello'
'Hello'
'Hello'

But if we try setting it through the class C, a new class variable will be created for the
class C. This has no effect on P’s class variable itself (as accessed through P). But future
accesses through the class C or its instance c will see this new variable rather than the
original:

>>> C.z = "Bonjour"
>>> c.z; C.z; P.z
'Bonjour'
'Bonjour'
'Hello'

Similarly, if we try setting z through the instance c, a new instance variable will be cre-
ated, and we’ll end up with three different variables:

>>> c.z = "Ciao"
>>> c.z; C.z; P.z
'Ciao'
'Bonjour'
'Hello'

15.8 Private variables and private methods
A private variable or private method is one that can’t be seen outside of the methods
of the class in which it’s defined. Private variables and methods are useful for a num-
ber of reasons. They enhance security and reliability by selectively denying access to
important or delicate parts of an object’s implementation. They avoid name clashes
that can arise from the use of inheritance. A class may define a private variable and
inherit from a class that defines a private variable of the same name, but this doesn’t
cause a problem, because the fact that the variables are private ensures that separate
copies of them are kept. Finally, private variables make it easier to read code, because
they explicitly indicate what is used only internally in a class. Anything else is the
class’s interface.

 Most languages that define private variables do so through the use of a private or

other similar keyword. The convention in Python is simpler, and it also makes it easier

Licensed to Kerri Ross <pedbro@gmail.com>

198 CHAPTER 15 Classes and object-oriented programming

to immediately see what is private and what isn’t. Any method or instance variable
whose name begins—but doesn’t end—with a double underscore (__) is private; any-
thing else isn’t private.

 As an example, consider the following class definition:

class Mine:
 def __init__(self):
 self.x = 2
 self.__y = 3
 def print_y(self):
 print(self.__y)

Using this definition, create an instance of the class:

>>> m = Mine()

x isn’t a private variable, so it’s directly accessible:

>>> print(m.x)
2

__y is a private variable. Trying to access it directly raises an error:

>>> print(m.__y)
Traceback (innermost last):
 File "<stdin>", line 1, in ?
AttributeError: 'Mine' object has no attribute '__y'

The print_y method isn’t private, and because it’s in the Mine class, it can access __y
and print it:

>>> m.print_y()
3

Finally, you should note that the mechanism used to provide privacy is to mangle the
name of private variables and private methods when the code is compiled to bytecode.
What specifically happens is that _classname is appended to the variable name:

>>> dir(m)
['_Mine__y', 'x', ...]

The purpose is to avoid any accidental accesses. If someone wanted to, they could
access the value. But by performing the mangling in this easily readable form, debug-
ging is made easy.

15.9 Using @property for more flexible instance variables
Python allows you as the programmer to access instance variables directly, without the
extra machinery of getter and setter methods often used in Java and other OO lan-
guages. This lack of getters and setters makes writing Python classes cleaner and eas-
ier; but in some situations, using getter and setter methods can be handy. Suppose you
want a value before you put it into an instance variable or where it would be handy to

Defines __y as
private by using
leading double
underscores
Licensed to Kerri Ross <pedbro@gmail.com>

199Scoping rules and namespaces for class instances

figure out an attribute’s value on the fly. In both cases, getter and setter methods
would do the job but at the cost of losing Python’s easy instance variable access.

 The answer is to use a property. A property combines the ability to pass access to an
instance variable through methods like getters and setters and the straightforward
access to instance variables through dot notation.

 To create a property, you use the property decorator with a method having the
property’s name:

class Temperature:
 def __init__(self):
 self._temp_fahr = 0
 @property
 def temp(self):
 return (self._temp_fahr - 32) * 5 / 9

Without a setter, such a property is read-only. To change the property, you need to add
a setter:

 @temp.setter
 def temp(self, new_temp):
 self._temp_fahr = new_temp * 9 / 5 + 32

Now, you can use standard dot notation to both get and set the property temp. Notice
that the name of the method remains the same, but the decorator changes to the
property name (temp in this case) plus .setter to indicate that a setter for the temp
property is being defined:

>>> t = Temperature()
>>> t._temp_fahr
0
>>> t.temp
-17.777777777777779
>>> t.temp = 34
>>> t._temp_fahr
93.200000000000003
>>> t.temp
34.0

The 0 in _temp_fahr is converted to centigrade before it’s returned q. The 34 is con-
verted back to Fahrenheit by the setter w.

 One big advantage of Python’s ability to add properties is that you can do initial
development with plain-old instance variables and then seamlessly change to proper-
ties whenever and wherever you need to without changing any client code—the access
is still the same, using dot notation.

15.10 Scoping rules and namespaces for class instances
Now you have all the pieces to put together a picture of the scoping rules and
namespaces for a class instance.

q

w

Licensed to Kerri Ross <pedbro@gmail.com>

200 CHAPTER 15 Classes and object-oriented programming

 When you’re in a method of a class, you
have direct access to the local namespace
(parameters and variables declared in the
method), the global namespace (functions and
variables declared at the module level), and
the built-in namespace (built-in functions and
built-in exceptions). These three namespaces
are searched in the following order: local,
global, and built in (see figure 15.1).

 You also have access through the self vari-
able to our instance’s namespace (instance vari-
ables, private instance variables, and superclass
instance variables), its class’s namespace (meth-
ods, class variables, private methods, and pri-
vate class variables), and its superclass’s
namespace (superclass methods and superclass
class variables). These three namespaces are
searched in the order instance, class, and then
superclass (see figure 15.2).

Figure 15.2 Self variable namespaces

Figure 15.1 Direct namespaces
Licensed to Kerri Ross <pedbro@gmail.com>

201Scoping rules and namespaces for class instances

 Private superclass instance variables, private superclass methods, and private super-
class class variables can’t be accessed using self. A class is able to hide these names
from its children.

 The module in listing 15.3 puts these two together in one place to concretely dem-
onstrate what can be accessed from within a method.

"""cs module: class scope demonstration module."""
mv ="module variable: mv"
def mf():
 return "module function (can be used like a class method in " \
 "other languages): mf()"
class SC:
 scv = "superclass class variable: self.scv"
 __pscv = "private superclass class variable: no access"
 def __init__(self):
 self.siv = "superclass instance variable: self.siv " \
 "(but use SC.siv for assignment)"
 self.__psiv = "private superclass instance variable: " \
 "no access"
 def sm(self):
 return "superclass method: self.sm()"
 def __spm(self):
 return "superclass private method: no access"
class C(SC):
 cv = "class variable: self.cv (but use C.cv for assignment)"
 __pcv = "class private variable: self.__pcv (but use C.__pcv " \
 "for assignment)"
 def __init__(self):
 SC.__init__(self)
 self.__piv = "private instance variable: self.__piv"
 def m2(self):
 return "method: self.m2()"
 def __pm(self):
 return "private method: self.__pm()"
 def m(self, p="parameter: p"):
 lv = "local variable: lv"
 self.iv = "instance variable: self.xi"
 print("Access local, global and built-in " \
 "namespaces directly")
 print("local namespace:", list(locals().keys()))
 print(p)

 print(lv)
 print("global namespace:", list(globals().keys()))

 print(mv)

 print(mf())
 print("Access instance, class, and superclass namespaces " \

Listing 15.3 File cs.py

Parameter
Instance
variable

Module
variable Module

function
Licensed to Kerri Ross <pedbro@gmail.com>

202 CHAPTER 15 Classes and object-oriented programming

 "through 'self'")
 print("Instance namespace:",dir(self))

 print(self.iv)

 print(self.__piv)

 print(self.siv)
 print("Class namespace:",dir(C))
 print(self.cv)

 print(self.m2())

 print(self.__pcv)

 print(self.__pm())
 print("Superclass namespace:",dir(SC))
 print(self.sm())

 print(self.scv)

This output is considerable, so we’ll look at it in pieces. In the first part, class C’s
method m’s local namespace contains the parameters self (which is our instance vari-
able) and p along with the local variable lv (all of which can be accessed directly):

>>> import cs
>>> c = cs.C()
>>> c.m()
Access local, global and built-in namespaces directly
local namespace: ['lv', 'p', 'self']
parameter: p
local variable: lv

Next, method m’s global namespace contains the module variable mv and the module
function mf, (which, as described in a previous section, we can use to provide a class
method functionality). There are also the classes defined in the module (the class C
and the superclass SC). These can all be directly accessed:

global namespace: ['C', 'mf', '__builtins__', '__file__', '__package__',
'mv', 'SC', '__name__', '__doc__']

module variable: mv
module function (can be used like a class method in other languages): mf()

Instance C’s namespace contains instance variable iv and our superclass’s instance
variable siv (which, as described in a previous section, is no different from our regu-
lar instance variable). It also has the mangled name of private instance variable __piv
(which we can access through self) and the mangled name of our superclass’s private
instance variable __psiv (which we can’t access):

Access instance, class, and superclass namespaces through 'self'
Instance namespace: ['_C__pcv', '_C__piv', '_C__pm', '_SC__pscv',

'_SC__psiv', '_SC__spm', '__class__', '__delattr__', '__dict__',
'__doc__', '__eq__', '__format__', '__ge__', '__getattribute__',

Instance
variable

Private
instance
variable Superclass

instance
variable

Class
variableMethod

Private
class
variable Private

module
Superclass
method

Superclass variable
through instance
'__gt__', '__hash__', '__init__', '__le__', '__lt__', '__module__',

Licensed to Kerri Ross <pedbro@gmail.com>

203Destructors and memory management

'__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__',
'__setattr__', '__sizeof__', '__str__', '__subclasshook__',
'__weakref__', 'cv', 'iv', 'm', 'm2', 'scv', 'siv', 'sm']

instance variable: self.xi
private instance variable: self.__piv
superclass instance variable: self.siv (but use SC.siv for assignment)

Class C’s namespace contains the class variable cv and the mangled name of the pri-
vate class variable __pcv: both can be accessed through self, but to assign to them we
need to use class C. It also has the class’s two methods M and M2, along with the man-
gled names of the private method __PM (which can be accessed through self):

Class namespace: ['_C__pcv', '_C__pm', '_SC__pscv', '_SC__spm', '__class__',
'__delattr__', '__dict__', '__doc__', '__eq__', '__format__', '__ge__',
'__getattribute__', '__gt__', '__hash__', '__init__', '__le__',
'__lt__', '__module__', '__ne__', '__new__', '__reduce__',
'__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__',
'__subclasshook__', '__weakref__', 'cv', 'm', 'm2', 'scv', 'sm']

class variable: self.cv (but use C.cv for assignment)
method: self.m2()
class private variable: self.__pcv (but use C.__pcv for assignment)
private method: self.__pm()

Finally, superclass SC’s namespace contains superclass class variable scv (which can be
accessed through self, but to assign to it we need to use the superclass SC) and super-
class method SM. It also contains the mangled names of private superclass method
__SPM and private superclass class variable __spcv, neither of which can be accessed
through self:

Superclass namespace: ['_SC__pscv', '_SC__spm', '__class__', '__delattr__',
'__dict__', '__doc__', '__eq__', '__format__', '__ge__',
'__getattribute__', '__gt__', '__hash__', '__init__', '__le__',
'__lt__', '__module__', '__ne__', '__new__', '__reduce__',
'__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__',
'__subclasshook__', '__weakref__', 'scv', 'sm']

superclass method: self.SM()
superclass class variable: self.scv

This is a rather full example to decipher at first. You can use it as a reference or a base
for your own exploration. As with most other concepts in Python, you can build a solid
understanding of what is going on by playing around with a few simplified examples.

15.11 Destructors and memory management
You’ve already seen class constructors (the __init__ methods). A destructor can be
defined for a class as well. But unlike in C++, creating and calling a destructor isn’t
necessary to ensure that the memory used by your instance is freed. Python provides
automatic memory management through a reference-counting mechanism. That is, it
keeps track of the number of references to your instance; when this reaches zero, the
memory used by your instance is reclaimed, and any Python objects referenced by
your instance have their reference counts decremented by one. For the vast majority of

your classes, you won’t need to define a destructor.

Licensed to Kerri Ross <pedbro@gmail.com>

204 CHAPTER 15 Classes and object-oriented programming

 C++ destructors are sometimes used to also perform cleanup tasks such as releas-
ing or resetting system resources unrelated to memory management. To perform
these functions in Python, using context managers using the with keyword or the def-
inition of explicit cleanup or close methods for your classes is the best way to go.

 If you need to, you can also define destructor methods for your classes. Python will
implicitly call a class’s destructor method __del__ just before an instance is removed
upon its reference count reaching zero. You can use this as a backup to ensure that
your cleanup method is called. The following simple class illustrates this:

class SpecialFile:
 def __init__(self, file_name):
 self.__file = open(file_name, 'w')
 self.__file.write('***** Start Special File *****\n\n')
 def write(self, str):
 self.__file.write(str)
 def writelines(self, str_list):
 self.__file.writelines(str_list)
 def __del__(self):
 print("entered __del__")
 self.close()
 def close(self):
 if self.__file:
 self.__file.write('\n\n***** End Special File *****')
 self.__file.close()
 self.__file = None

Notice that close is written so that it can be called more than once without complaint.
This is what you’ll generally want to do. Also, the __del__ function has a print expres-
sion in it. But this is just for demonstration purposes. Take the following test function:

>>> def test():
... f = SpecialFile('testfile')
... f.write('111111\n')
... f.close()
...
>>> test()
entered __del__

When the function test exits, f’s reference count goes to zero and __del__ is called.
Thus, in the normal case close is called twice, which is why we want close to be able
to handle this. If we forgot the f.close() at the end of test, the file would still be
closed properly because we’re backed up by the call to the destructor. This also hap-
pens if we reassign to the same variable without first closing the file:

>>> f = SpecialFile('testfile')
>>> f = SpecialFile('testfile2')
entered __del__

As with the __init__ constructor, the __del__ destructor of a class’s parent class
needs to be called explicitly within a class’s own destructor. Be careful when writing a
destructor. If it’s called when a program is shutting down, members of its global

Destructor
method, __del__

Cleanup
method, close
Licensed to Kerri Ross <pedbro@gmail.com>

205Destructors and memory management

namespace may already have been deleted. Any exception that occurs during its exe-
cution will be ignored, other than a message being sent of the occurrence to
sys.stderr. Also, there’s no guarantee that destructors will be called for all still-
existing instances when the Python interpreter exits. Check the entries for destruc-
tors in the Python Language Manual and the Python FAQ for more details. They will
also give you hints as to what may be happening in cases where you think all refer-
ences to your object should be gone but its destructor hasn’t been called.

 Partly because of these issues, some people avoid using Python’s destructors other
than possibly to flag an error when they’ve missed putting in an explicit call. They pre-
fer that cleanup always be done explicitly. Sometimes they’re worth using, but only
when you know the issues.

 If you’re familiar with Java, you’re aware that this is what you have to do in that lan-
guage. Java uses garbage collection, and its finalize methods aren’t called if this mech-
anism isn’t invoked (which may be never in some programs). Python’s destructor
invocation is more deterministic. When the references to an object go away, it’s indi-
vidually removed. On the other hand, if you have structures with cyclical references
that have a __del__ method defined, they aren’t removed automatically. You have to
go in and do this yourself. This is the main reason why defining your own __del__
method destructors isn’t recommended.

 The following example illustrates the effect of a cyclical reference in Python and
how you might break it. The purpose of the __del__ method in this example is only to
indicate when an object is removed:

>>> class Circle:
... def __init__(self, name, parent):
... self.name = name
... self.parent = parent
... self.child = None
... if parent:
... parent.child = self
... def cleanup(self):
... self.child = self.parent = None
... def __del__(self):
... print("__del__ called on", self.name)
...
>>> def test1():
... a = Circle("a", None)
... b = Circle("b", a)
...
>>> def test2():
... c = Circle("c", None)
... d = Circle("d", c)
... d.cleanup()
...
>>> test1()
>>> test2()
__del__ called on c
__del__ called on d

Breaks any
cycles

q

w

Licensed to Kerri Ross <pedbro@gmail.com>

206 CHAPTER 15 Classes and object-oriented programming

Because they still refer to each other, a and b aren’t removed when test1 exits q.
This is a memory leak. That is, each time test1 is called, it leaks two more objects.
The explicit call to the cleanup method is necessary to avoid this w.

 The cycle is broken in the cleanup method, not the destructor, and we only had to
break it in one place. Python’s reference-counting mechanism took over from there.
This approach is not only more reliable, but also more efficient, because it reduces
the amount of work that the garbage collector has to do.

 A more robust method of ensuring that our cleanup method is called is to use the
try-finally compound statement. It takes the following form:

try:
 body
finally:
 cleanup_body

It ensures that cleanup_body is executed regardless of how or from where body is
exited. We can easily see this by writing and executing another test function for the
Circle class defined earlier:

>>> def test3(x):
... try:
... c = Circle("c", None)
... d = Circle("d", c)
... if x == 1:
... print("leaving test3 via a return")
... return
... if x == 2:
... print("leaving test3 via an exception")
... raise RuntimeError
... print("leaving test3 off the end")
... finally:
... d.cleanup()
...
>>> test3(0)
leaving test3 off the end
__del__ called on c
__del__ called on d
>>> test3(1)
leaving test3 via a return
__del__ called on c
__del__ called on d
>>> try:
... test3(2)
... except RuntimeError:
... pass
...
leaving test3 via an exception
__del__ called on c
__del__ called on d

Here, with the addition of three lines of code, we’re able to ensure that our cleanup
method is called when our function is left, which in this case can be via an exception,

a return statement, or returning after its last statement.

Licensed to Kerri Ross <pedbro@gmail.com>

207Multiple inheritance

15.12 Multiple inheritance
Compiled languages place severe restrictions on the use of multiple inheritance, the
ability of objects to inherit data and behavior from more than one parent class. For
example, the rules for using multiple inheritance in C++ are so complex that many
people avoid using it. In Java, multiple inheritance is completely disallowed, although
Java does have the interface mechanism.

 Python places no such restrictions on multiple inheritance. A class can inherit
from any number of parent classes, in the same way it can inherit from a single parent
class. In the simplest case, none of the involved classes, including those inherited indi-
rectly through a parent class, contains instance variables or methods of the same
name. In such a case, the inheriting class behaves like a synthesis of its own definitions
and all of its ancestor’s definitions. For example, if class A inherits from classes B, C,
and D, class B inherits from classes E and F, and class D inherits from class G (see figure
15.3), and none of these classes share method names, then an instance of class A can
be used as if it were an instance of any of the classes B–G, as well as A; an instance of
class B can be used as if it were an instance of class E or F, as well as class B; and an
instance of class D can be used as if it were an instance of class G, as well as class D. In
terms of code, the class definitions y look like this:

class E:
 . . .
class F:
 . . .
class G:
 . . .
class D(G):
 . . .
class C:
 . . .
class B(E, F):
 . . .
class A(B, C, D):
 . . .

The situation is more complex when some of the classes share method names,
because Python must then decide which of the identical names is the correct one. For
example, assume we wish to resolve a method invocation a.f(), on an instance a of
class A, where f isn’t defined in A but is defined in all of F, C, and G. Which of the vari-
ous methods will be invoked?

 The answer lies in the order in which Python searches base classes when looking
for a method not defined in the original class on which the method was invoked. In
the simplest cases, Python looks through the base classes of the original class in left-to-
right order but always looks through all of the ancestor classes of a base class before
looking in the next base class. In attempting to execute a.f(), the search goes some-
thing like this:

Figure 15.3 Inheritance hierarchy
1 Python first looks in the class of the invoking object, class A.

Licensed to Kerri Ross <pedbro@gmail.com>

208 CHAPTER 15 Classes and object-oriented programming

2 Because A doesn’t define a method f, Python starts looking in the base classes
of A. The first base class of A is B, so Python starts looking in B.

3 Because B doesn’t define a method f, Python continues its search of B by look-
ing in the base classes of B. It starts by looking in the first base class of B, class E.

4 E doesn’t define a method f and also has no base classes, so there is no more
searching to be done in E. Python goes back to class B and looks in the next
base class of B, class F.

Class F does contain a method f, and because it was the first method found with the
given name, it’s the method used. The methods called f in classes C and G are ignored.

 Of course, using internal logic like this isn’t likely to lead to the most readable or
maintainable of programs. And with more complex hierarchies, other factors come
into play to make sure that no class is searched twice and to support cooperative calls
to super.

 But this is probably a more complex hierarchy than you’d expect to see in practice.
If you stick to the more standard uses of multiple inheritance, as in the creation of
mixin or addin classes, you can easily keep things readable and avoid name clashes.

 Some people have a strong conviction that multiple inheritance is a bad thing. It
can certainly be misused, and nothing in Python forces you to use it. After being
involved with a number of object-oriented project developments in industry since
starting with one of the first versions of C++ in 1987, I’ve concluded that one of the
biggest dangers seems to be creating inheritance hierarchies that are too deep. Multi-
ple inheritance can at times be used to help keep this from happening. That issue is
beyond the scope of this book. The example we use here only illustrates how multiple
inheritance works in Python and doesn’t attempt to explain the use cases—for exam-
ple, as in mixin or addin classes—for it.

15.13 Summary
This chapter has briefly presented the basics of Python object-oriented programming
in a way that will make it easy for any reader familiar with OO to instantly use these fea-
tures of Python. We made no attempt to make this an introduction to OOP. If you
need to learn the basic concepts, refer to OOP books on the market.

 As you become more experienced with Python, you’ll find you can also do deeper
things than have been described here. In addition to the features described in this chap-
ter, an aspiring Python OO programmer may also wish to use the operator-overloading
features provided by special method attributes, which are described in chapter 20.

 Classes and objects can be particularly useful in dealing with GUI interfaces, as
you’ll see in the next chapter, which explores creating cross-platform GUI applications
with Python.
Licensed to Kerri Ross <pedbro@gmail.com>

Graphical user interfaces
This chapter, an introduction to programming GUIs in Python, will do two things.
First, it will provide a look at the GUI package that comes with Python, taking into
account things like its ease of use, the capabilities of the package, cross-platform
portability, and so forth. Second, it will give a brief overview of what else is available
for GUI programming with Python and how to find it.

 The Python core language has no built-in support for GUIs. It’s a pure program-
ming language, like C, Perl, or Pascal. As such, any support for GUIs must come
from libraries external to Python, and many such libraries have been developed.

 Of all the GUI packages currently available to Python programmers, Tkinter is
the one commonly used. Tkinter is an object-oriented layer on top of the Tcl/Tk

This chapter covers
■ Installing Tkinter
■ Starting and using Tkinter
■ Understanding the principles of Tk
■ Writing a simple Tkinter application
■ Creating and placing widgets
■ Alternatives to Tkinter
209

graphics libraries. The code that drives it is stable, efficient, and well supported.

Licensed to Kerri Ross <pedbro@gmail.com>

210 CHAPTER 16 Graphical user interfaces

Although it has been knocked for its somewhat plain appearance, in Python 3.1
Tkinter adds support for the new ttk widgets, which greatly improve its look and feel. I
feel that it’s a good choice for developing GUIs in Python for several reasons:

� It’s well integrated into Python.
Because IDLE uses Tkinter, it’s included in many distributions of Python with no
extra installation or can be added easily. That means that you (and your users)
don’t have as many dependencies to worry about if you want to distribute your
application.

� It’s extremely powerful.
Complex GUIs can be coded in a short period of time and with a small amount
of code.

� It’s a true cross-platform GUI.
When you learn it on any supported platform (currently, Windows, Macintosh,
and almost all variants of Linux and UNIX), you can transfer all your knowledge
directly to all other supported platforms. If you use the ttk widgets, even the
look and feel of the native GUI is supported.

� Tkinter, like Python, is free.
You can use it widely throughout your organization without worries about cost.

If you decide that Tkinter isn’t for you, or you already have enough experience with
Tkinter to know this, look at the section near the end of this chapter, which covers
other possible GUI solutions.

Tkinter contains a huge number of features. The following sections aren’t a lesson on
how to use Tkinter but more of an introductory overview, primarily aimed at readers
who aren’t familiar with Tkinter and want to know if it’s worth their while to look fur-
ther into it. Remember, for every feature I mention, there are dozens more that I
don’t. The Tk command reference alone is almost 300 pages, and that doesn’t cover
any of the basic concepts.

16.1 Installing Tkinter
If you’re using IDLE, you already have Tkinter installed. On Windows and Mac OS X,
Tkinter comes as part of the Python distribution. Some Linux distributions don’t come

Tk vs. Tkinter

In this section, we’re talking about both the Tk GUI extension to the Tcl language and
Tkinter, the Python library that uses Tk and wraps the Tk interface in Python classes.
In general, we’ll refer to Tkinter, because that’s all that a Python programmer will usu-
ally touch directly. Sometimes we’ll refer to Tk directly, particularly when talking about
general features of the underlying Tk library.
Licensed to Kerri Ross <pedbro@gmail.com>

211Starting Tk and using Tkinter

with Tkinter by default, but they usually have Tkinter packages available. On Ubuntu
Linux, for example, installing the IDLE package also installs Tkinter. If you don’t have
Tkinter installed, or are having problems making it run, go to the Python home page
and search for “tkinter” to find the link to the Tkinter page, which contains documen-
tation, tutorials, troubleshooting information, and instructions on how download the
latest version for your platform. Don’t be confused by the fact that you’ll be installing
something probably called Tcl/Tk, followed by some version number. Tcl is a scripting
language, and Tk is a GUI extension. Python uses Tcl to access Tk, but in a transparent
fashion; you’ll never need to worry about the Tcl aspect of the package.

16.2 Starting Tk and using Tkinter
After you’ve installed Tkinter on your system, check to make sure everything is work-
ing properly. Start up Python and type

from tkinter import *

If you receive another Python command prompt >>> and no errors, then everything is
working okay, and Tk has been started automatically by the importation of Tkinter.

 If you’d like to see a brief example of Tkinter in action, the following code creates
a dialog box like the one in figure 16.1:

import sys
win = Tk()
button = Button(win, text="Goodbye", command=sys.exit)
button.pack()
mainloop()

Note that if you’re in IDLE, you may need to omit the last line.
See the sidebar on mainloop() and IDLE.

Note about mainloop() and IDLE

If you want to run the Tkinter examples in this chapter from within IDLE, you need to
be aware that IDLE has two modes: one that allows modules to be run in subprocesses
and one that doesn’t. If your version of IDLE runs in the subprocess mode, which is
the default on Windows and Mac OS X, you can run the code in this chapter as is,
with the mainloop() line included. You should also leave that line in if you’re using
the command line or running from the emacs mode.

The no-subprocess mode can be recognized by the ==== No Subprocess ==== mes-
sage that appears in the shell window when IDLE starts; this is the default in some
Linux distributions, such as Ubuntu 9.10. If you run IDLE from a command line, the
no-subprocess mode is triggered by adding the –n parameter. If IDLE is running in no-
subprocess mode, omit the final line containing mainloop(), or put a # in front of it
to make it a comment. In no-subprocess mode, IDLE is already running a mainloop
under Tk, and running a second mainloop may cause the whole IDLE process to hang.

Figure 16.1 A minimal
Tkinter application
Licensed to Kerri Ross <pedbro@gmail.com>

212 CHAPTER 16 Graphical user interfaces

When you click the Goodbye button, the sys.exit command is executed, and
Python quits. This window is only a little larger than the button it contains and may
appear behind another window. But as long as you didn’t get any error messages, it
should be there.

16.3 Principles of Tkinter
The Tkinter GUI package is based on a small number of basic principles and ideas, and
this is the main reason it’s relatively easy to learn and use. Although it certainly helps to
have some previous knowledge of GUI-based programming, this isn’t strictly necessary.
Tkinter is a relatively easy way for you to learn GUI and event-driven programming.

16.3.1 Widgets

The first basic idea behind Tkinter is the concept of a widget, which is short for window
gadget. A widget is a data structure that also has a visible, onscreen representation.
When the program changes the internal data structure of the widget, that change is
automatically displayed on the screen. Various user actions on the visible representa-
tion of the widget (mouse clicks and so forth) can, in turn, cause internal changes or
actions within the widget’s data structure.

 Tkinter is a collection of widget definitions, together with commands for operating
on them, and a few extra commands that don’t apply to any specific widget but that
are still relevant to GUI programming. In Python, each different type of widget is rep-
resented by a different Python class. A Button widget is of the Button class, a Label
widget is of the Label class, and so forth.

 This direct mapping between Tkinter widget types and Python classes makes using
widgets in a Python program extremely simple. For example, a Python program that
creates and uses a Button widget and a Label widget looks something like this:

from tkinter import *

...
my_button = Button(...optional arguments...)
my_label = Label(...optional arguments...)
...

This style of mapping Python classes to widgets is common in Python GUI environ-
ments, although the exact names of the widgets and their parameters will naturally vary.

16.3.2 Named attributes

The second basic idea behind Tkinter is the availability and use of named attributes to
fine-tune widget behavior. To understand why this is necessary and see how useful it is,
let’s look at an apparently simple task—creating a button.

 The simplest way to do this is to specify a class, say AButton, with a one-argument
object constructor, whose single argument is a string that will become the name dis-
played on the button. Creating a button looks like this:
my_button = AButton(name)

Licensed to Kerri Ross <pedbro@gmail.com>

213Principles of Tkinter

But this provides no way to associate a command with the button—that is, the name of
a function that should be executed when the user clicks the button. To do this,
change AButton to have a two-argument constructor, with the command as the second
argument:

my_button = AButton(name, command)

Sometimes, though, we’ll want our button to stand out; maybe instead of black text on
a gray background, we want red text on a green background. This necessitates giving
even more arguments to the AButton constructor:

my_button = AButton(name, command, foreground_color,
 background_color)

Even this isn’t enough. We may want to have buttons with thicker borders, or buttons
with specific heights or widths, or buttons that contain a small picture instead of text.
We could easily require an AButton command with 20 different arguments, with the
end result being that the AButton command would be practically unusable and
wouldn’t give us the control we want.

 Tkinter solves this problem by specifying almost all properties of widgets as named
attributes, values that can optionally be given by name when the widget is created and
that can be accessed or modified by that same name later in the life of the widget. This
works well with Python’s named parameter passing, making it easy to create widgets
with the desired attributes. For example, the name of the attribute that defines the
string displayed in a button is text. The Python command to create a button that dis-
plays the string "Hello!" is

my_button = Button(text="Hello!")

Most attributes of a widget have a default value, which is used when you don’t supply a
value for that attribute. Generally speaking, these defaults make sense for the common
case, and most of the time most named attributes can be ignored. For example, the
named attribute that controls the color of the text in a button is called foreground,
and its default value is the string "black", which causes the button text to display as
black. To override this default, give a specific value for the foreground attribute:

my_button = Button(text="Hello!", foreground="red")")

Named attributes are used extensively throughout the Tkinter widget set, and many
attributes can be used with almost all widgets. The use of named attributes greatly sim-
plifies the process of GUI programming and makes code more readable.

16.3.3 Geometry management and widget placement

The final basic aspect of Tkinter that you need to understand is the idea of geometry
management, meaning how widgets are placed on the screen. It isn’t obvious in the
previous example, but typing in a line of Python code like so

my_button = Button(text="Alright!")
Licensed to Kerri Ross <pedbro@gmail.com>

214 CHAPTER 16 Graphical user interfaces

isn’t enough to display the button onscreen. Tk doesn’t know where you want the but-
ton to show up, and until it’s told the desired position, it will keep the button hidden.
Deciding where to display the button onscreen is a function of the window hierarchy
and associated Tk geometry managers.

 To understand the idea of the Tk window hierarchy, you need to know about two
special Tk widget classes, called Toplevel and Frame. Both Toplevel widgets and
Frame widgets may contain other Tk widgets (including other frames) and are the
basic building blocks for constructing complex GUIs. A Frame is a container for other
widgets and can be either the main window of an application or contained in another
frame. Nesting frames within frames can be useful in laying out and grouping widgets.

 Tk uses a Toplevel widget to represent a complete window in a GUI, complete with
title bar, close and zooming buttons, and so forth. A Toplevel widget is useful for cus-
tom dialog boxes and other situations where you want a window that’s independent
from the main Frame.

 The subwidgets contained in any particular frame are arranged for display accord-
ing to one of Tkinter’s three built-in geometry managers. These managers permit you
to specify the arrangement of the subwidgets in various ways, ranging from giving
exact coordinates for each widget within a window to giving only relative placement,
leaving the precise sizing of each widget to the geometry manager.

 For the purposes of talking about Tkinter in this chapter, we’ll refer to only one
geometry manager: the grid manager, which is the most powerful. grid works by plac-
ing all widgets in an implicit grid, similar to a spreadsheet layout. If you start using
Tkinter, you’ll want to learn the pack and place geometry managers as well, which you
can use to specify that widgets should be placed relative to one another (pack), or in
absolute locations in a window (place).

16.4 A simple Tkinter application
Let’s start with an example that introduces all of the basic
Tkinter concepts: window hierarchies, geometry manage-
ment, Tkinter attributes, and a couple of the most basic wid-
gets. The example is a simple one. When run, it produces a
window that resembles figure 16.2. It may look different on
your machine, because Tk provides a native look and feel for
whatever operating system it’s running on. This example was
produced under the Windows XP operating system.
Clicking the Increment button adds 1 to the number shown in the Count field, and
clicking the Quit button quits the application.

 Listing 16.1 contains the code to do this.

from tkinter import *
main_window = Tk()

Listing 16.1 File tk_count.py

Figure 16.2 A simple
application

q

count_label = Label(main_window, text="Count: 0") w r

Licensed to Kerri Ross <pedbro@gmail.com>

215Creating widgets

count_label.grid(row=0, column=1)
count_value = 0

def increment_count():
 global count_value, count_label
 count_value = count_value + 1
 count_label.configure(text='Count: ' + str(count_value))
incr_button = Button(main_window, text="Increment",
 command=increment_count)
incr_button.grid(row=0, column=0)
quit_button = Button(main_window, text="Quit",
 command=main_window.destroy)
quit_button.grid(row=1, column=0)
mainloop()

The example shows the basic principles of Tkinter-based programming:

� Widget creation, accomplished here by the Label and Button commands w—Tkinter
lets you create many different types of widgets, such as lists, scroll bars, dialog
boxes, radio and check buttons, and so on.

� Widget placement, accomplished in this case by the grid command e—Tk provides a
great deal of control over how widgets are placed and sized. grid will be dis-
cussed in more detail in a later section.

� The use of widget attributes, to set and modify the appearance and behavior of widgets
r—The widget attributes used in the example are the text attribute, which
controls the text displayed by a widget, and the command attribute, which sets
the function the widget will execute when it’s clicked. You can set widget attri-
butes when a widget is first created and change them after a widget has been
created by using the configure widget method.

� A basic window hierarchy created by the program q—The main_window is the top-
level window widget. It, in turn, contains the count_label, incr_button, and
quit_button widgets.

16.5 Creating widgets
You create widgets in Python by instantiating an object of that widget’s class, using the
name of the type of widget being created. Button and Label widgets were created in
the previous example, but you can also create Menu, Scrollbar, Listbox, Text, and
many other types.

 The widget-creation commands all follow the same general form. They all have
one mandatory argument, the parent window (or parent widget), followed by zero or
more optional named widget attributes, which determine the precise appearance and
behavior of the new widget. Each creation command returns the new widget as a
result. You’ll usually want to store this new widget somewhere so that you can modify it
later if necessary. A line in a Python program that creates a widget usually looks some-
thing like this:

new_widget = WidgetCreationCommand(parent, attribute1=value1,

e
Starts counter
value at 0 Called when

Increment
button is clicked Increments

 counter

rw

e

r
w

e
Reenters
Tk event loop
 attribute2=value2, . . .)

Licensed to Kerri Ross <pedbro@gmail.com>

216 CHAPTER 16 Graphical user interfaces

The parent window of a widget called w is the window (or widget) that contains w.1 It’s
important to define a parent for several reasons. First, widgets are always displayed
inside and relative to their parent window. Second, Tk provides a powerful event
mechanism (which we don’t have space to discuss), and a widget may pass events to its
parent if it can’t handle them itself. Finally, Tk can have widgets that act as windows, in
that they themselves are the parent window for (and contain) other widgets, and the
widget-creation commands need to be able to set up this sort of relationship.

 All the other optional arguments in a widget-creation command define widget
attributes and control different aspects of the widget. Some widget attributes are com-
mon to several different widget types (for example, the text attribute applies to all
types of simple widgets that can display a label or a line of text of some sort), whereas
other attributes are unique to certain widgets. One characteristic that makes Tk spe-
cial, compared to other GUI packages, is that it gives you a great deal of control over
your widgets. There are many attributes for each widget. To give you an idea of this,
here’s a program that uses some of the attributes that control the appearance of wid-
gets. Figure 16.3 is the resulting window (in black and white, unfortunately):

from tkinter import *
main_window = Tk()
label = Label(main_window, text="Hello", background='white',
 foreground='red', font='Times 20',
 relief='groove', borderwidth=3)
label.grid(row=0, column=0)
mainloop()

Most attributes of widgets can be set at creation in this way.

16.6 Widget placement
Creating a widget doesn’t automatically draw it on the screen. Before this can be
done, Tk needs to know where the widget should be drawn. The grid command was
used in the previous example and will be discussed in detail.

 Tk is more sophisticated in the way it handles widget placement than most GUI
packages. Under Windows, the standard way of setting the locations of widgets is to
specify an absolute position in their parent window. This can also be done in Tkinter
(using the place rather than the grid command) but usually isn’t, because this tech-
nique isn’t very flexible. For instance, if you set up a window for use on a monitor that
has 640×480 resolution, and a user uses it on a monitor that has 1600×1200 resolu-
tion, the window uses only a small amount of the available screen space and can’t be
resized (unless you write the code to resize the window). This is a common problem
with many programs.

1 This is an oversimplification. The parent window of a widget is generally the widget that contains that widget.

Figure 16.3 A widget
window
But this isn’t strictly necessary.

Licensed to Kerri Ross <pedbro@gmail.com>

217Widget placement

 Instead, Tkinter usually makes use of the notion of relative placement, where widgets
are placed in such a manner that their positions relative to one another are main-
tained no matter what size the enclosing window happens to be. This can get com-
plex. For example, you can specify that widget A should be to the left of widget B, and
that when the enclosing window is resized, widget A should grow to take advantage of
the extra space, but widget B shouldn’t. We won’t get into all of the possibilities but
will attempt to present enough of the features of Tk widget placement to illustrate the
ease and power of the methods it uses.

 The grid command places widgets in a window by considering a window as an infi-
nite grid of cells. You place a widget into this grid by specifying row and column argu-
ments to the grid command, which tell it in which cell to place the widget. The rows
and columns will expand as needed to display the widgets they contain, and any rows
or columns that don’t display any widgets aren’t displayed.

 As a simple example, we’ll put two buttons in the corners of a 2?×?2 grid:

from tkinter import *

win = Tk()
button1 = Button(win, text="one")
button2 = Button(win, text="two")
button1.grid(row=0, column=0)
button2.grid(row=1, column=1)
mainloop()

When run, this program produces a window that looks like
figure 16.4.

 The cells of the grid are automatically sized large enough to display what they con-
tain, although you can override this and place constraints on the maximum sizes of
the cells.

 This makes it easy to set up a text window with scroll-
bars and, with the proper placement (see figure 16.5),
treat the window as a 2×?2 grid into which the Text and
Scrollbar widgets will be placed.

 The program to do this is shown in listing 16.2.

from tkinter import *
main = Tk()
main.columnconfigure(0, weight=1)
main.rowconfigure(0, weight=1)
text = Text(main)
text.grid(row=0, column=0, sticky='nesw')
vertical_scroller = Scrollbar(main, orient='vertical')
vertical_scroller.grid(row=0, column=1, sticky='ns')
horizontal_scroller = Scrollbar(main, orient='horizontal')
horizontal_scroller.grid(row=1, column=0, sticky='ew')

Listing 16.2 File tk_grid.py

Figure 16.4 A two-
button window

Figure 16.5 Grid usage
mainloop()

Licensed to Kerri Ross <pedbro@gmail.com>

218 CHAPTER 16 Graphical user interfaces

The commands in the code ensure
that any extra space given to the grid
as a result of resizing the top-level
window is allocated to column 0, row
0—that is, to the Text widget. The
resulting window is shown in figure
16.6.

 In addition to the three grid
method invocations that place the
text box and two scrollbars in their
appropriate cells, this code reveals new aspects of Tk, which build on the fundamen-
tals of Tk to provide further control over the user interface:

� The orient attributes of the Scrollbar widgets control whether a scrollbar
scrolls vertically or horizontally.

� The sticky attributes of all three widgets control how they’re placed in their
cells. For example, the Text widget has a sticky value of 'nesw', which means
that its north (top) side should stick to the north side of the cell it’s in, its east
(right) side should stick to the east side of its containing cell, and similarly for
the south and west sides. The Text widget should completely fill its cell, which
means that if its cell grows, the text widget should also grow and automatically
reformat the text it contains to take advantage of the extra space. It’s then fairly
easy to guess that the sticky value of 'ns' for the vertical scrollbar means it
should always stretch in the vertical direction to fill its cell (and always be the
same height as the Text widget), and analogously for 'ew' and the horizontal
scrollbar.

� The columnconfigure command specifies that if the window containing the
entire grid of widgets is expanded in the horizontal direction, all the extra
space resulting from the resizing should be allocated to column 0, the column
containing the Text widget. rowconfigure specifies similarly in the vertical
direction. Together, columnconfigure and rowconfigure ensure that if the top
level is resized to be larger, then the extra space resulting from that resizing
should be given to the Text widget, which is generally the desired behavior.

That’s a lot of GUI detail specification in a small amount of space. But that’s exactly
the point of Tk—to enable you to rapidly specify your GUI, right down to the details.
The fact that settings are accomplished through easy-to-remember keywords, rather
than a multitude of binary flags, doesn’t hurt either.

16.7 Using classes to manage Tkinter applications
One problem with creating Tkinter applications as we have so far is that they quickly
become hard to read and maintain as you add more widgets and code. Using the OOP

Figure 16.6 A text window
principles introduced in the previous chapter and making an application class that

Licensed to Kerri Ross <pedbro@gmail.com>

219What else can Tkinter do?

inherits from Frame can make your code much more organized and easy to read and
maintain. Listing 16.3 shows the previous counter application, refactored as a class.

from tkinter import *
class Application(Frame):
 def __init__(self, master=None):
 Frame.__init__(self, master)
 self.grid()
 self.create_widgets()
 self.count_value = 0

 def create_widgets(self):
 self.count_label = Label(self, text="Count: 0")
 self.count_label.grid(row=0, column=1)
 self.incr_button = Button(self, text="Increment",
 command=self.increment_count)
 self.incr_button.grid(row=0, column=0)
 self.quit_button = Button(self, text="Quit",
 command=self.master.destroy)
 self.quit_button.grid(row=1, column=0)

 def increment_count(self):
 self.count_value += 1
 self.count_label.configure(text='Count: ' + str(self.count_value))

app = Application()
app.mainloop()

This code is no longer than the previous version, but it’s much better organized and
easier to read. Basic initialization, widget setup, and counter incrementing are now
much easier to pick out; and because increment_counter is now an instance variable,
we no longer need to make it global. Even though you almost certainly won’t want
more than one instance of Application at a time, creating the class is worth it
because of the improved organization (and readability and maintainability) it gives
your code. Use this pattern for your Tkinter applications—it will more than pay off.

16.8 What else can Tkinter do?
The previous examples don’t come close to exploring the capabilities of Tkinter, but
they should give you some idea of what it feels like. There’s no way in the space of one
chapter to illustrate by example all the facilities Tk provides. The next few sections will
cover the remainder of Tkinter’s abilities on a much higher level. If you’re familiar
with GUI programming, you’ll be at home with most of what is discussed.

 If you aren’t familiar with GUI programming, the examples so far are a good start-
ing point for learning by experimentation. They should give you grounding in Tk’s
basic philosophy and concepts. You can find further detailed information linked on
the Tkinter page on the Python website. Also be sure to check out John Grayson’s

Listing 16.3 File tk_count_oop.py

Creates application
class from Tkinter's
Frame class.

Runs app
Create instance
of app
comprehensive book Python and Tkinter Programming (Manning, 2000).

Licensed to Kerri Ross <pedbro@gmail.com>

220 CHAPTER 16 Graphical user interfaces

16.8.1 Event handling

Event handling—how a GUI library handles user actions such as mouse movements or
clicks or keypresses—is a critical part of GUI programming. An awkward event-handling
scheme can make your GUI development a real nightmare, whereas a good event-han-
dling mechanism can make your task far more pleasant. Tk event handling, although
not perfect, is up near the top. One of the big questions with event handling is event
direction—if you press a key on the keyboard, which text entry box or text widget (or
other widget) of the many in your interface is that directed to? Many GUI libraries
require a complete specification of how events are to be directed; you must say, “If this
widget can’t handle a mouse click event, it should pass that event over to this other wid-
get, and so on.” You can do this in Tk, but you aren’t required to. Tk uses the hierar-
chical structure of your user interface, together with various commonsense rules, to try
to automatically direct events to the appropriate widget. Most of the time, it gets it right.

 Tk also provides a rich set of events to choose from. For example, look at the prob-
lem of changing the mouse cursor to a paintbrush, as the mouse enters the main paint
window of a painting program. One way to do this would be to continually (explicitly)
monitor the position of the mouse relative to the main paint window and manually
adjust the cursor as necessary. This would be necessary if only basic mouse-related
events, such as movements, were reported by and to Tk. But Tk provides a higher-level
event for all windows, subwindows, and widgets, called the <Enter> event. An <Enter>
event for a window or widget is generated every time the mouse cursor enters that win-
dow or widget (and a corresponding <Leave> event is generated when the mouse
leaves). A built-in bind command makes it easy to bind <Enter> events for a particular
window, such as a painting window, to specific functions, such as a function to change
the mouse cursor to a paintbrush.

 If the built-in set of Tk events isn’t enough, you can define or generate your own
virtual events. These are events defined by you, just as you can define application-spe-
cific functions. For example, you might wish to define the virtual event called
<<Copy>> and set it to be equivalent to the keyboard event generated by pressing Ctrl-
C. If you ever migrated your program to a platform or language (such as Chinese)
where Ctrl-C wasn’t an appropriate key binding for a <<Copy>> event, you could rede-
fine <<Copy>> in terms of another keystroke—but all references to <<Copy>> in your
code would remain valid, without needing any changes. Generating virtual events is
also a convenient way to distribute events widely throughout your application without
worrying about plumbing details. For example, you could define a button called
MyButton, such that clicking this button would generate a <<MyButtonPressed>>
event. Any other widgets could then be instructed to listen for <<MyButtonPressed>>
events without referencing the original button—indeed, without knowing or caring
that a button was the source of the event.

Licensed to Kerri Ross <pedbro@gmail.com>

221Alternatives to Tkinter

16.8.2 Canvas and text widgets

Two widgets in the Tk widget set deserve special mention, because they provide abilities
reflecting literally years of implementation effort. These are the Canvas and Text wid-
gets, which respectively provide high-level manipulation capabilities for object-oriented
graphics and for text. Both widget types are an order of magnitude more advanced than
analogs found in most other GUI libraries.

 The Text widget supports all the basic functionality necessary for a basic WYSIWYG
word processor, including font families, styles, and sizes; a rich set of default key bind-
ings; automatic controllable line wrapping; settable tabs; the ability to embed images or
other widgets onto the text drawing surface; and so forth. In addition, you can tag text
within the widget with any number of user-chosen strings and then manipulate the text
via those tags. You could, for example, define a tag called bold to be applied to all text
in your widget that should be displayed in boldface. A single line of code would then let
you change the display style for all bold text from Helvetica 10 pt. bold to Times Roman
14 pt. bold, or, if you prefer, to red text on a green background with a 2-pixel-wide
raised border. You can easily define sections of text that highlight as the mouse cursor
passes over them and that cause some action when they’re clicked, mimicking the effect
of buttons or hypertext. Many other abilities also come with the Text widget.

 The Canvas widget is similar, particularly with respect to the use of tags. You can asso-
ciate arbitrary tags with an object and manipulate as a whole all objects on the canvas
that have a given tag. For example, it’s an easy matter to define a complex shape by
drawing a series of lines, curves, and other shapes, all with the same programmer-
defined tag, and then to move that shape around the canvas as a unit, by instructing the
Canvas widget to move all simple shapes having the given tag. It’s also easy to use shapes
as buttons, to set various aspects of their appearance (such as foreground and back-
ground colors and line width), to define layering of shapes atop one another, and to
perform many other advanced tasks that would take months of effort if undertaken
from scratch.

16.9 Alternatives to Tkinter
Tkinter may not satisfy your needs. It isn’t particularly fast and isn’t a good candidate
for games or for image-manipulation programs. Its high-level approach means that
particularly unusual or specialized user interfaces may be difficult to implement. Or,
you may not have the time to learn Tkinter. Fortunately, alternatives are available.

 Three cross-platform windowing/GUI libraries stand out, being available for at
least Windows, Mac OS X, and Linux/UNIX. The first is the Qt package, which forms
the basis for the well-done KDE desktop environment effort, a large project geared
toward producing an integrated and comprehensive desktop environment for Linux/

UNIX and compatible operating systems. QT is a rich and powerful GUI framework

Licensed to Kerri Ross <pedbro@gmail.com>

222 CHAPTER 16 Graphical user interfaces

and also has QT Designer, a capable GUI builder. You can find out more about Qt at
http://qt.nokia.com. Also, www.kde.org will give you a chance to browse screenshots
of many applications built using KDE.

 The next cross-platform GUI option is GTK. This is the GIMP Toolkit and is the basis
for the GNOME desktop environment project, which is comparable to KDE. GTK is sim-
ilar to Qt in scope and capability, and it has also been ported from Linux/UNIX to work
on Windows and Mac OS X. Another interesting option with GTK is Glade, a graphical
tool to build GUI interfaces for GTK. Glade saves its files in XML format, which can be
used directly with a library called libglade or used to generate the appropriate code. A
good starting point for finding out about GTK is the GTK website, at www.gtk.org.

 Finally, there is the wxPython toolkit, based on the wxWidgets framework. wxWid-
gets was created to be portable across Windows and UNIX platforms and has since
been extended to Mac OS X and other platforms. wxPython is a strong framework,
offering a native look and feel on different platforms, and is widely used. Visit
www.wxpython.org to find out more about wxPython.

 One thing to keep in mind about all of these GUI options is that they require you
to install both the GUI libraries themselves and the Python libraries to use them. This
means more work on the user end of things and can lead to issues with making sure
the right versions of all the dependencies are installed. On the other hand, developers
in many situations believe the tradeoff is more than worth it.

 Many other GUI libraries are available. Good descriptions and evaluations are avail-
able on the Python wiki’s Gui Programming page, which you can find by visiting the
main python.org website and searching for “gui programming.”

16.10 Summary
Python ships with a comprehensive and well-thought-out interface (a Python module)
called Tkinter, which allows access to the freely available and powerful Tk user inter-
face library. Tkinter is a handy framework for a scripting-style language, in that it
allows rapid interface development, interactive execution, and runtime control over
all aspects of the interface, with powerful abilities. It suffers some of the same draw-
backs of scripting languages, particularly execution overhead that may be too high for
graphics-intense applications, and inflexibility in the UI model it uses.

 There are many alternatives. If you’re programming only for the Windows environ-
ment, you can take advantage of your MS UI library knowledge through direct calls to
the Microsoft APIs. Qt, GTK, and wxPython are all excellent cross-platform choices.
Licensed to Kerri Ross <pedbro@gmail.com>

Part 3

Advanced language features

The previous chapters have been a survey of the basic features of Python:
what 80 percent of programmers will use 80 percent of the time. What follows is
a brief look at some more advanced features, which you may not use every day
but which are handy when you need them.
Licensed to Kerri Ross <pedbro@gmail.com>

Licensed to Kerri Ross <pedbro@gmail.com>

Regular expressions
In some sense, we shouldn’t discuss regular expressions in this book at all. They’re
implemented by a single Python module and are advanced enough that they don’t
even come as part of the standard library in languages like C or Java. But if you’re
using Python, you’re probably doing text parsing; and if you’re doing that, then
regular expressions are too useful to be ignored. If you use Perl, Tcl, or UNIX, you
may be familiar with regular expressions; if not, this chapter will go into them in
some detail.

17.1 What is a regular expression?
A regular expression (RE) is a way of recognizing and often extracting data from cer-
tain patterns of text. A regular expression that recognizes a piece of text or a string

This chapter covers
■ Understanding regular expressions
■ Creating regular expressions with special

characters
■ Using raw strings in regular expressions
■ Extracting matched text from strings
■ Substituting text with regular expressions
225

is said to match that text or string. An RE is defined by a string in which certain of

Licensed to Kerri Ross <pedbro@gmail.com>

226 CHAPTER 17 Regular expressions

the characters (the so-called metacharacters) can have a special meaning, which enables
a single RE to match many different specific strings..

 It’s easier to understand this through example than through explanation. Here’s a
program using a regular expression, which counts how many lines in a text file contain
the word hello. A line that contains hello more than once will be counted only once:

import re
regexp = re.compile("hello")
count = 0
file = open("textfile", 'r')
for line in file.readlines():
 if regexp.search(line):
 count = count + 1
file.close()
print(count)

The program starts by importing the Python regular expression module, called re. It
then takes the text string "hello" as a textual regular expression and compiles it into a
compiled regular expression, using the re.compile function. This isn’t strictly necessary,
but compiled regular expressions can significantly increase a program’s speed, so
they’re almost always used in programs that process large amounts of text.

 What can the regular expression compiled from "hello" be used for? You can use
it to recognize other instances of the word "hello" within another string; in other
words, you can use it to determine whether another string contains "hello" as a sub-
string. This is accomplished by the search method, which returns None if the regular
expression isn’t found in the string argument; Python interprets None as false in a
Boolean context. If the regular expression is found in the string, than Python returns
a special object that you can use to determine various things about the match (such as
where in the string it occurred). We’ll discuss this later.

17.2 Regular expressions with special characters
The previous example has a small flaw—it counts how many lines contain "hello" but
ignores lines that contain "Hello" because it doesn’t take capitalization into account.

 One way to solve this would be to use two regular expressions, one for "hello" and
one for "Hello", and test each of these REs against every line. A better way is to use
the more advanced features of regular expressions. For the second line in the pro-
gram, substitute

regexp = re.compile("hello|Hello")

This regular expression uses the vertical bar special character |. A special character is
a character in a regular expression that isn’t interpreted as itself—it has some special
meaning. | means or, so the regular expression matches "hello" or "Hello".

 Another way of doing this is to use

regexp = re.compile("(h|H)ello")

In addition to using |, this regular expression uses the parentheses special characters to
group things, which in this case means that the | only chooses between a small or cap-

ital H. The resulting regular expression matches either an h or an H, followed by ello.

Licensed to Kerri Ross <pedbro@gmail.com>

227Regular expressions and raw strings

 Another way of performing the match is

regexp = re.compile("[hH]ello")

The special characters [and] take a string of characters between them and match
any single character in that string. There’s a special shorthand to denote ranges of
characters in [and]; [a-z] will match a single character between a and z, [0-9A-Z]
will match any digit or any uppercase character, and so forth. Sometimes you may
want to include a real hyphen in the [], in which case you should put it as the first
character to avoid defining a range; [-012] will match a hyphen, or a 0 or a 1 or a 2,
and nothing else.

 Quite a few special characters are available in Python regular expressions, and
describing all of the subtleties of using them in regular expressions is beyond the
scope of this book. A complete list of the special characters available in Python regular
expressions, as well as descriptions of what they mean, is given in the appendix at the
end of this book. For the remainder of this chapter, we’ll describe the special charac-
ters we use as they appear.

17.3 Regular expressions and raw strings
The functions that compile REs, or search for matches to REs, understand that certain
character sequences in strings have special meanings in the context of regular expres-
sions. For example, RE functions understand that \n represents a newline character.
But if you use normal Python strings as regular expressions, the RE functions will typi-
cally never see such special sequences, because many of these sequences also possess a
special meaning in normal strings. \n, for example, also means newline in the context
of a normal Python string, and Python will automatically replace the string sequence
\n with a newline character before the RE function ever sees that sequence. The RE
function, as a result, will compile strings with embedded newline characters—not with
embedded -\n sequences.

 In the case of \n, this makes no difference because RE functions interpret a newline
character as exactly that and do the expected thing—they attempt to match it with
another newline character in the text being searched. Let’s look at another special
sequence, \\, which represents a single backslash to REs. Assume that we wish to search
some text for an occurrence of the string "\ten". Because we know that we have to
represent a backslash as a double backslash, we might try

regexp = re.compile("\\ten")

This will compile without complaining, but it’s wrong. The problem is that \\ also
means a single backslash in Python strings. Before re.compile is invoked, Python
interprets the string we typed as meaning \ten, which is what is passed to re.compile.
In the context of regular expressions, \t means tab, so our compiled regular expres-
sion searches for a tab character followed by the two characters en.

 To fix this while using regular Python strings, we need four backslashes. Python inter-

prets the first two backslashes as a special sequence representing a single backslash, and

Licensed to Kerri Ross <pedbro@gmail.com>

228 CHAPTER 17 Regular expressions

likewise for the second pair of backslashes, resulting in two actual backslashes in the
Python string. That string is then passed in to re.compile, which interprets the two
actual backslashes as an RE special sequence representing a single backslash. Our code
looks like this:

regexp = re.compile("\\\\ten")

That seems confusing, and it’s why Python has a way of defining strings, called raw strings.

17.3.1 Raw strings to the rescue

A raw string looks similar to a normal string, except that it has a leading r character imme-
diately preceding the initial quotation mark of the string. Here are some raw strings:

r"Hello"
r"""\tTo be\n\tor not to be"""
r'Goodbye'
r'''12345'''

As you can see, you can use raw strings with either the single or double quotation
marks and with the regular or triple-quoting convention. You can also use a leading R
instead of r if you wish. No matter how you do it, raw string notation can be taken as an
instruction to Python saying, Don’t process special sequences in this string. In the previous
examples, all the raw strings are equivalent to their normal string counterparts except
the second example, in which the \t and \n sequences aren’t interpreted as tabs or
newlines but are left as two-string character sequences beginning with a backslash.

 Raw strings aren’t a different type of string. They’re a different way of defining
strings. It’s easy to see what’s happening by running a few examples interactively:

>>> r"Hello" == "Hello"
True
>>> r"\the" == "\\the"
True
>>> r"\the" == "\the"
False
>>> print(r"\the")
\the
>>> print("\the")
 he

Using raw strings with regular expressions means you don’t need to worry about any
funny interactions between string special sequences and regular expression special
sequences. You use the regular expression special sequences. The previous RE exam-
ple then becomes

regexp = re.compile(r"\\ten")

which works as expected. The compiled RE looks for a single backslash followed by the
letters ten.

 You should get into the habit of using raw strings whenever defining REs, and we’ll
do so for the remainder of this chapter.
Licensed to Kerri Ross <pedbro@gmail.com>

229Extracting matched text from strings

17.4 Extracting matched text from strings
One of the most common uses of regular expressions is to perform simple pattern-
based parsing on text. This is something you should know how to do, and it’s also a
good way to learn more regular expression special characters.

 Assume, for example, that we have a list of people and phone numbers in a text
file. Each line of the file will look like this

surname, firstname middlename: phonenumber

with a surname, followed by a comma and space, followed by a first name, followed by
a space, followed by a middle name, followed by colon and a space, followed by a
phone number.

 But to make things complicated, the middle name may or may not exist, and the
phone number may or may not have an area code. It might be 800-123-4567, or it might
be 123-4567. You could write code to explicitly parse data out from such a line, but it
would be a tedious and error-prone job. Regular expressions provide a simpler answer.

 We’ll start by coming up with a regular expression that will match lines of the given
form. The next few paragraphs will throw quite a few special characters at you. Don’t
worry if you don’t get them all on the first read—as long as you understand the gist of
things, that’s all right.

 For simplicity’s sake, let’s assume for right now that that first names, surnames,
and middle names consist of letters and possibly a hyphen. We can use the [] special
characters defined in the previous section to define a pattern that defines only name
characters:

[-a-zA-z]

This pattern will match a single hyphen, or a single lowercase letter, or a single upper-
case letter.

 To match a full name (like McDonald), we need to repeat this pattern. The +
metacharacter repeats whatever comes before it one or more times as necessary to
match the string being processed. So, the pattern

[-a-zA-Z]+

will match a single name, like Kenneth or McDonald or Perkin-Elmer. It will also match
some strings that aren’t names, like --- or -a-b-c-, but that’s all right for our purposes.

 Now, what about the phone number? The special sequence \d matches any digit,
and a hyphen outside of [] is a normal hyphen. A good pattern to match the phone
number is

\d\d\d-\d\d\d-\d\d\d\d

That’s three digits, followed by a hyphen, followed by three digits, followed by a
hyphen, followed by four digits. This will match only phone numbers with an area
code, and our list may contain numbers that don’t have one. The best solution is to
enclose the area code part of the pattern in (), group it, and then follow that group
Licensed to Kerri Ross <pedbro@gmail.com>

230 CHAPTER 17 Regular expressions

with a ? special character, which says that the thing coming immediately before the ?
is optional:

(\d\d\d-)?\d\d\d-\d\d\d\d

This pattern will match a phone number that may or may not contain an area code.
We can use the same sort of trick to account for the fact that some of the people in
our list have their middle name included, and some don’t. (To do this, make the mid-
dle name optional using grouping and the ? special character.)

 Commas, colons, and spaces don’t have any special meaning in regular expressions
(they mean themselves). Putting everything together, we come up with a pattern that
looks like this:

[-a-zA-Z]+, [-a-zA-Z]+([-a-zA-Z]+)?: (\d\d\d-)?\d\d\d-\d\d\d\d

A real pattern would probably be a bit more complex, because we wouldn’t assume
that there is exactly one space after the comma, exactly one space after the first and
middle names, and exactly one space after the colon. But that’s easy to add later.

 The problem is that, whereas the above pattern will let us check to see if a line has
the anticipated format, we can’t extract any data yet. All we can do is write a program
like this:

import re
regexp = re.compile(r"[-a-zA-Z]+,"
 r" [-a-zA-Z]+"
 r"([-a-zA-Z]+)?"
 r": (\d\d\d-)?\d\d\d-\d\d\d\d"
)
file = open("textfile", 'r')
for line in file.readlines():
 if regexp.search(line):
 print("Yeah, I found a line with a name and number. So what?")
file.close()

Notice that we have split up our regular expression pattern using the fact that Python
will implicitly concatenate any set of strings separated by whitespace. As your pattern
grows, this can be a great aid in keeping it maintainable and understandable. It also
solves the problem with the line length possibly increasing beyond the right edge of
the screen.

 Fortunately, you can use regular expressions to extract data from patterns, as well
as to check to see if the patterns exist. The first part of doing this is to group each sub-
pattern corresponding to a piece of data you wish to extract using the () special char-
acters and then give each subpattern a unique name with the special sequence
?P<name>, like this:

(?P<last>[-a-zA-Z]+), (?P<first>[-a-zA-Z]+)((?P<middle>([-a-zA-Z]+)))?:
(?P<phone>(\d\d\d-)?\d\d\d-\d\d\d\d)

(Please note you should enter these lines as a single line with no line breaks. Due to
space constraints, we couldn’t represent it here in that manner.)

Last name
and comma First

name Optional
middle name

Colon and
phone number
Licensed to Kerri Ross <pedbro@gmail.com>

231Extracting matched text from strings

 There’s an obvious point of confusion here: The question marks in ?P<...> and
the question mark special characters that say the middle name and area code are
optional have nothing to do with one another. It’s an unfortunate semicoincidence
that they happen to be the same character.

 Now that we have named the elements of the pattern, we can extract them as
matches are made, by using the group method. This is possible because when the
search function returns a successful match, it doesn’t just return a truth value; it
returns a data structure that records what was matched. We can write a simple pro-
gram to extract names and phone numbers from our list and print them right out
again as follows:

import re
regexp = re.compile(r"(?P<last>[-a-zA-Z]+),"
 r" (?P<first>[-a-zA-Z]+)"
 r"((?P<middle>([-a-zA-Z]+)))?"
 r": (?P<phone>(\d\d\d-)?\d\d\d-\d\d\d\d)"
)
file = open("textfile", 'r')
for line in file.readlines():
 result = regexp.search(line)
 if result == None:
 print("Oops, I don't think this is a record")
 else:
 lastname = result.group('last')
 firstname = result.group('first')
 middlename = result.group('middle')
 if middlename == None:
 middlename = ""
 phonenumber = result.group('phone')
 print('Name:', firstname, middlename, lastname,' Number:', phonenumber)
file.close()

There are some points of interest here:

� We can find out whether a match succeeded by checking the value returned by
search. If the value is None, the match failed; otherwise, the match succeeded,
and we can extract information from the object returned by search.

� group is used to extract whatever data matched with our named subpatterns.
We pass in the name of the subpattern we’re interested in.

� Because the middle subpattern is optional, we can’t count on it having a value,
even if the match as a whole is successful. If the match succeeds, but the match
for the middle name doesn’t, then using group to access the data associated
with the middle subpattern will return the value None.

� Part of the phone number is optional, but part isn’t. If the match succeeds, the
phone subpattern must have some associated text, so we don’t have to worry
about it having a value of None.

Last name
and comma First

name Optional
middle name

Colon and
phone number
Licensed to Kerri Ross <pedbro@gmail.com>

232 CHAPTER 17 Regular expressions

17.5 Substituting text with regular expressions
In addition to extracting strings from text, you can use Python’s regular expression
module to find strings in text and substitute other strings in place of those that were
found. You accomplish this using the regular substitution method sub. The following
example replaces instances of "the the" (presumably a typo) with single instances of
"the":

>>> import re
>>> string = "If the the problem is textual, use the the re module"
>>> pattern = r"the the"
>>> regexp = re.compile(pattern)
>>> regexp.sub("the", string)
'If the problem is textual, use the re module'

The sub method uses the invoking regular expression (regexp, in this case) to scan its
second argument (string, in the example) and produces a new string by replacing all
matching substrings with the value of the first argument ("the", in this example).

 But what if you want to replace the matched substrings with new ones that reflect
the value of those that matched? This is where the elegance of Python comes into play.
The first argument to sub—the replacement substring, "the" in the exam-
ple—doesn’t have to be a string at all. Instead, it can be a function, and if it’s a func-
tion, Python calls it with the current match object and lets that function compute and
return a replacement string.

 To see this in action, we’ll build an example that will take a string containing inte-
ger values (no decimal point or decimal part) and return a string with the same
numerical values but as floating numbers (with a trailing decimal point and zero):

>>> import re
>>> int_string = "1 2 3 4 5"
>>> def int_match_to_float(match_obj):
... return(match_obj.group('num') + ".0")
...
>>> pattern = r"(?P<num>[0-9]+)"
>>> regexp = re.compile(pattern)
>>> regexp.sub(int_match_to_float, int_string)
'1.0 2.0 3.0 4.0 5.0'

In this case, the pattern looks for a number consisting of one or more digits (the [0-
9]+ part). But it’s also given a name (the ?P<num>... part) so that the replacement
string function can extract any matched substring by referring to that name. The sub
method then scans down the argument string "1 2 3 4 5", looking for anything that
matches [0-9]+. When sub finds a substring that matches, it makes a match object
defining exactly which substring has matched the pattern, and it calls the
int_match_to_float function with that match object as the sole argument.
int_match_to_float uses group to extract the matching substring from the match
object (by referring to the group name num) and produces a new string by concatenat-
ing the matched substring with a ".0". sub returns the new string and incorporates it
Licensed to Kerri Ross <pedbro@gmail.com>

233Summary

as a substring into the overall result. Finally, sub starts scanning again right after the
place where it found the last matching substring, and it keeps going like that until it
can’t find any more matching substrings.

17.6 Summary
I wish I could say I have provided a reasonably comprehensive overview of the regular
expression abilities of Python. I haven’t—not by a long shot. I’ve attempted to give a
good introduction to the topic and to give a reasonable description of the most
important of the regular expression facilities in Python. I’ve skipped many of the reg-
ular expression special characters, but you can find a complete list in the Python doc-
umentation. I’ve talked about the search and sub methods but omitted many other
methods that can be used to split strings, extract more information from match
objects, look for the positions of substrings in the main argument string, and precisely
control the iteration of a regular expression search over an argument string. I’ve men-
tioned the \d special sequence, which can be used to indicate a digit character, but
there are many other special sequences—they’re listed in the documentation. And
I’ve failed to mention regular expression flags, which you can use to control some of
the more esoteric aspects of how extremely sophisticated matches are carried out.

 If you do a lot of text processing and searching, I’d strongly suggest learning as
much about regular expressions as possible. Start by becoming familiar with the fea-
tures described in this chapter, and delve into the additional features described in the
documentation as you become more comfortable with regular expressions.

 In addition to the section on regular expressions in the Python Library Reference
Manual, you can find an excellent tutorial written by Andrew Kuchling at the Python
website.
Licensed to Kerri Ross <pedbro@gmail.com>

Packages
Modules make reusing small chunks of code easy. The problem comes when the
project grows and the code you want to reload outgrows, either physically or logi-
cally, what would fit into a single file. If having one giant module file is an unsatis-
factory solution, having a host of little unconnected modules isn’t much better. The
answer to this problem is to combine related modules into a package.

18.1 What is a package?
A module is a file containing code. A module defines a group of usually related
Python functions or other objects. The name of the module is derived from the
name of the file.

 When you understand modules, packages are easy, because a package is a direc-
tory containing code and possibly further subdirectories. A package contains a

This chapter covers
■ Defining a package
■ Creating a simple package
■ Exploring a concrete example
■ Using the __all__ attribute
■ Using packages properly
234

Licensed to Kerri Ross <pedbro@gmail.com>

235A first example

group of usually related code files (modules). The name of the package is derived
from the name of the main package directory.

 Packages are a natural extension of the module concept and are designed to han-
dle very large projects. Just as modules group related functions, classes, and variables,
packages group related modules.

18.2 A first example
To see how this might work in practice, let’s sketch a design layout for a type of project
that by nature is very large—a generalized mathematics package, along the lines of
Mathematica, Maple, or MATLAB. Maple, for example, consists of thousands of files,
and some sort of hierarchical structure is vital to keeping such a project ordered. We’ll
call our project as a whole mathproj.

 We can organize such a project in many ways, but a reasonable design splits the
project into two parts: ui, consisting of the user interface elements, and comp, the
computational elements. Within comp, it may make sense to further segment the com-
putational aspect into symbolic (real and complex symbolic computation, such as
high school algebra) and numeric (real and complex numerical computation, such as
numerical integration). It may then make sense to have a constants.py file in both the
symbolic and numeric parts of the project.

 The constants.py file in the numeric part of the project defines pi as

pi = 3.141592

whereas the constants.py file in the symbolic part of the project defines pi as

class PiClass:
 def __str__(self):
 return "PI"
pi = PiClass()

This means that a name like pi can be used in (and imported from) two different files
named constants.py, as shown in figure 18.1.

 The symbolic constants.py file defines pi
as an abstract Python object, the sole instance
of the PiClass class. As the system is devel-
oped, various operations can be imple-
mented in this class, which return symbolic
rather than numeric results.

 There is a natural mapping from this
design structure to a directory structure. The
top-level directory of the project, called math-
proj, contains subdirectories ui and comp;
comp in turn contains subdirectories sym-
bolic and numeric; and each of symbolic and
numeric contains its own constants.py file. Figure 18.1 Organizing a math package
Licensed to Kerri Ross <pedbro@gmail.com>

236 CHAPTER 18 Packages

 Given this directory structure, and assuming that the root mathproj directory is
installed somewhere in the Python search path, Python code both inside and outside
the mathproj package can access the two variants of pi as mathproj.symbolic.con-
stants.pi and mathproj.numeric.constants.pi. In other words, the Python name
for an item in the package is a reflection of the directory pathname to the file contain-
ing that item.

 That’s what packages are all about. They’re ways of organizing very large collec-
tions of Python code into coherent wholes, by allowing the code to be split among dif-
ferent files and directories and imposing a module/submodule naming scheme based
on the directory structure of the package files. Unfortunately, all isn’t this simple in
practice because details intrude to make their use more complex than their theory.
The practical aspects of packages are the basis for the remainder of this chapter.

18.3 A concrete example
The rest of this chapter will use a running example to illustrate the inner workings of
the package mechanism (see figure 18.2). Filenames and paths are shown in plain
text, to avoid confusion as to whether we’re talking about a file/directory or the mod-
ule/package defined by that file/directory. The files we’ll be using in our example
package are shown in listings 18.1 through 18.6.

print("Hello from mathproj init")
__all__ = ['comp']
version = 1.03

__all__ = ['c1']
print("Hello from mathproj.comp init")

Listing 18.1 File mathproj/__init__.py

Listing 18.2 File mathproj/comp/__init__.py

Figure 18.2 Example package
Licensed to Kerri Ross <pedbro@gmail.com>

237A concrete example

x = 1.00

print("Hello from numeric init")

from mathproj import version
from mathproj.comp import c1
from mathproj.comp.numeric.n2 import h
def g():
 print("version is", version)
 print(h())

def h():
 return "Called function h in module n2"

For the purposes of the examples in this chapter, we’ll assume that you’ve created
these files in a mathproj directory that’s on the Python search path. (It’s sufficient to
ensure that the current working directory for Python is the directory containing math-
proj when executing these examples.)

NOTE In most of the examples in this book, it’s not necessary to start up a new
Python shell for each example. You can usually execute them in a Python
shell you’ve used for previous examples and still get the results shown.
This isn’t true for the examples in this chapter, because the Python namespace
must be clean (unmodified by previous import statements) for the exam-
ples to work properly. If you do run the examples that follow, please
ensure that you run each separate example in its own shell. In IDLE, this
requires exiting and restarting the program, not just closing and reopen-
ing its Shell window.

18.3.1 Basic use of the mathproj package

Before getting into the details of packages, let’s look at accessing items contained in
the mathproj package. Start up a new Python shell, and do the following:

>>> import mathproj
Hello from mathproj init

If all goes well, you should get another input prompt and no error messages. As well, the
message "Hello from mathproj init" should be printed to the screen, by code in the
mathproj/__init__.py file. We’ll talk more about __init__.py files in a bit; for now, all
you need to know is that they’re run automatically whenever a package is first loaded.

Listing 18.3 File mathproj/comp/c1.py

Listing 18.4 File mathproj/comp/numeric/__init__.py

Listing 18.5 File mathproj/comp/numeric/n1.py

Listing 18.6 File mathproj/comp/numeric/n2.py
Licensed to Kerri Ross <pedbro@gmail.com>

238 CHAPTER 18 Packages

 The mathproj/__init__.py file assigns 1.03 to the variable version. version is in
the scope of the mathproj package namespace, and after it’s created, you can see it via
mathproj, even from outside the mathproj/__init__.py file:

>>> mathproj.version
1.03

In use, packages can look a lot like modules; they can provide access to objects
defined within them via attributes. This isn’t surprising, because packages are a gener-
alization of modules.

18.3.2 Loading subpackages and submodules

Now, let’s start looking at how the various files defined in the mathproj package inter-
act with one another. We’ll do this by invoking the function g defined in the file math-
proj/comp/numeric/n1.py. The first obvious question is, has this module been
loaded? We have already loaded mathproj, but what about its subpackage? Let’s see if
it’s known to Python:

>>> mathproj.comp.numeric.n1
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: 'module' object has no attribute 'comp'

In other words, loading the top-level module of a package isn’t enough to load all the
submodules. This is in keeping with Python’s philosophy that it shouldn’t do things
behind your back. Clarity is more important than conciseness.

 This is simple enough to overcome. We import the module of interest and then
execute the function g in that module:

>>> import mathproj.comp.numeric.n1
Hello from mathproj.comp init
Hello from numeric init
>>> mathproj.comp.numeric.n1.g()
version is 1.03
Called function h in module n2

Notice, however, that the lines beginning with Hello are printed out as a side effect of
loading mathproj.comp.numeric.n1. These two lines are printed out by print state-
ments in the __init__.py files in mathproj/comp and mathproj/comp/numeric. In
other words, before Python can import mathproj.comp.numeric.n1, it first has to
import mathproj.comp and then mathproj.comp.numeric. Whenever a package is first
imported, its associated __init__.py file is executed, resulting in the Hello lines. To
confirm that both mathproj.comp and mathproj.comp.numeric are imported as part
of the process of importing mathproj.comp.numeric.n1, we can check to see that
mathproj.comp and mathproj.comp.numeric are now known to the Python session:

>>> mathproj.comp
<module 'mathproj.comp' from 'mathproj/comp/__init__.py'>
>>> mathproj.comp.numeric

<module 'mathproj.comp.numeric' from 'mathproj/comp/numeric/__init__.py'>

Licensed to Kerri Ross <pedbro@gmail.com>

239A concrete example

18.3.3 import statements within packages

Files within a package don’t automatically have access to objects defined in other files
in the same package. As in outside modules, you must use import statements to explic-
itly access objects from other package files. To see how this works in practice, look
back at the n1 subpackage. The code contained in n1.py is

from mathproj import version
from mathproj.comp import c1
from mathproj.comp.numeric.n2 import h
def g():
 print "version is", version
 print h()

g makes use of both versions from the top-level mathproj package and the function h
from the n2 module; hence, the module containing g must import both version and
h to make them accessible. We import version as we would in an import statement
from outside the mathproj package, by saying from mathproj import version. In this
example, we explicitly import h into the code by saying from math-

proj.comp.numeric.n2 import h, and this will work in any file—explicit imports of
package files are always allowed. But because n2.py is in the same directory as n1.py,
we can also use a relative import by prepending a single dot to the submodule name.
In other words, we can say

from .n2 import h

as the third line in n1.py, and it works fine.
 You can add more dots to move up more levels in the package hierarchy, and you

can add module names. Instead of

from mathproj import version
from mathproj.comp import c1
from mathproj.comp.numeric.n2 import h

we could also have written the imports of n1.py as

from ... import version
from .. import c1
from . n2 import h

Relative imports can be handy and quick to type, but be aware that they’re relative to
the module’s __name__property. Therefore any module being executed as the main
module, and thus having an __name__ of __main__, can’t use relative imports.

18.3.4 __init__.py files in packages

You’ll have noticed that all the directories in our package—mathproj, mathproj/
comp, and mathproj/numeric—contain a file called __init__.py. An __init__.py file
serves two purposes:

� It’s automatically executed by Python the first time a package or subpackage is

loaded. This permits whatever package initialization you may desire. Python

Licensed to Kerri Ross <pedbro@gmail.com>

240 CHAPTER 18 Packages

requires that a directory contain an __init__.py file before it can be recognized
as a package. This prevents directories containing miscellaneous Python code
from being accidentally imported as if they defined a package.

� The second point is probably the more important. For many packages, you
won’t need to put anything in the package’s __init__.py file—just make sure an
empty __init__.py file is present.

18.4 The __all__ attribute
If you look back at the various __init__.py files defined in mathproj, you’ll notice that
some of them define an attribute called __all__. This has to do with execution of
statements of the form from ... import *, and it requires explanation.

 Generally speaking, we would hope that if outside code executed the statement
from mathproj import *, it would import all nonprivate names from mathproj. In
practice, life is more difficult. The primary problem is that some operating systems
have an ambiguous definition of case when it comes to filenames. Microsoft Windows
95/98 is particularly bad in this regard, but it isn’t the only villain. Because objects in
packages can be defined by files or directories, this leads to ambiguity as to exactly
under what name a subpackage might be imported. If we say from mathproj import *,
will comp be imported as comp, Comp, or COMP? If we were to rely only on the name as
reported by the operating system, the results might be unpredictable.

 There’s no good solution to this. It’s an inherent problem caused by poor OS design.
As the best possible fix, the __all__ attribute was introduced. If present in an
__init__.py file, __all__ should give a list of strings, defining those names that are to be
imported when a from ... import * is executed on that particular package. If __all__
isn’t present, then from ... import * on the given package does nothing. Because case
in a text file is always meaningful, the names under which objects are imported isn’t
ambiguous, and if the OS thinks that comp is the same as COMP, that’s its problem.

 To see this in action, fire up Python again, and try the following:

>>> from mathproj import *
Hello from mathproj init
Hello from mathproj.comp init

The __all__ attribute in mathproj/__init__.py contains a single entry, comp, and the
import statement imports only comp. It’s easy enough to check that comp is now known
to the Python session:

>>> comp
<module 'mathproj.comp' from 'mathproj/comp/__init__.py'>

But note that there’s no recursive importing of names with a from ... import * state-
ment. The __all__ attribute for the comp package contains c1, but c1 isn’t magically
loaded by our from mathproj import * statement:

>>> c1
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>

NameError: name 'c1' is not defined

Licensed to Kerri Ross <pedbro@gmail.com>

241Summary

To insert names from mathproj.comp we must, again, do an explicit import:

>>> from mathproj.comp import c1
>>> c1
<module 'mathproj.comp.c1' from 'mathproj/comp/c1.py'>

18.5 Proper use of packages
Most of your packages shouldn’t be as structurally complex as these examples imply.
The package mechanism allows wide latitude in the complexity and nesting of your
package design. It’s obvious that very complex packages can be built, but it isn’t obvi-
ous that they should be built.

 Here are a couple of suggestions that are appropriate in most circumstances:

� Packages shouldn’t use deeply nested directory structures. Except for absolutely
huge collections of code, there should be no need to do so. For most packages,
a single top-level directory is all that’s needed. A two-level hierarchy should be
able to effectively handle all but a few of the rest. As written in the Zen of Python,
by Tim Peters (see the appendix), “Flat is better than nested.”

� Although you can use the __all__ attribute to hide names from from ...
import * by not listing those names, this is probably not a good idea, because it’s
inconsistent. If you want to hide names, make them private by prefacing them
with an underscore.

18.6 Summary
Packages let you create libraries of code that span multiple files and directories, which
allows better organization of large collections of code than single modules would
allow. Although using packages is useful, you should be wary of nesting directories in
your packages more than one or two levels deep, unless you have a very large and
complex library.
Licensed to Kerri Ross <pedbro@gmail.com>

Data types as objects
By now, you’ve learned the basic Python types and also how to create your own data
types using classes. For many languages, that would be pretty much it, as far as data
types are concerned. But Python is dynamically typed, meaning that types of things
are determined at runtime, not at compile time. This is one of the reasons Python
is so easy to use. It also makes it possible, and sometimes necessary, to compute with
the types of objects (and not just the objects themselves).

19.1 Types are objects, too
Fire up a Python session, and try out the following:

>>> type(5)
<class 'int'>
>>> type(['hello', 'goodbye'])
<class 'list'>

This chapter covers
■ Treating types as objects
■ Using types
■ Creating user-defined classes
■ Understanding duck typing
242

Licensed to Kerri Ross <pedbro@gmail.com>

243Types and user-defined classes

This is the first time you’ve seen the built-in type function in Python. It can be applied
to any Python object and returns the type of that object. In this example, it tells us that
5 is an int (integer) and that ['hello', 'goodbye'] is a list, something you probably
already knew.

 Of greater interest is that Python returns objects in response to the calls to type;
<class 'int'> and <class 'list'> are the screen representations of the returned
objects. What sort of object is returned by a call of type(5)? We have any easy way of
finding out—just use type on that result:

>>> type_result = type(5)
>>> type(type_result)
<class 'type'>

The object returned by type is an object whose type happens to be <class
'type'>—we can call it a type object. A type object is another kind of Python object
whose only outstanding feature is the confusion its name sometime causes. Saying a
type object is of type <class 'type'> has about the same degree of clarity as the old
Abbot and Costello “Who’s on First?” comedy routine.

19.2 Using types
Now that you know that data types can be represented as Python type objects, what
can you do with them? You can compare them, because any two Python objects can be
compared:

>>> type("Hello") == type("Goodbye")
True
>>> type("Hello") == type(5)
False

The types of "Hello" and "Goodbye" are the same (they’re both strings), but the types
of "Hello" and 5 are different. Among other things, you can use this to provide type
checking in your function and method definitions.

19.3 Types and user-defined classes
The most common reason to be interested in the types of objects, particularly
instances of user-defined classes, is to find out whether a particular object is an
instance of a class. After determining that an object is of a particular type, the code
can treat it appropriately. An example makes things much clearer. To start, let’s define
a couple of empty classes, so as to set up a simple inheritance hierarchy:

>>> class A:
... pass
...
>>> class B(A):
... pass
...
Licensed to Kerri Ross <pedbro@gmail.com>

244 CHAPTER 19 Data types as objects

Now, create an instance of class B:

>>> b = B()

As expected, applying the type function to b tells us that b is an instance of the class B
that’s defined in our current __main__ namespace:

>>> type(b)
<class '__main__.B'>

We can also obtain exactly the same information by accessing the instance’s special
__class__ attribute:

>>> b.__class__
<class '__main__.B'>

We’ll be working with that class quite a bit to extract further information, so let’s store
it somewhere:

>>> b_class = b.__class__

Now, to emphasize that everything in Python is an object, let’s prove that the class we
obtained from b is the class we defined under the name B:

>>> b_class == B
True

In this example, we didn’t need to store the class of b—we already had it—but I want
to make clear that a class is just another Python object and can be stored or passed
around like any Python object.

 Given the class of b, we can find the name of that class using its __name__ attribute:

>>> b_class.__name__
'B'

And we can find out what classes it inherits from by accessing its __bases__ attribute,
which contains a tuple of all of its base classes:

>>> b_class.__bases__
(<class '__main__.A'>,)

Used together, __class__, __bases__, and __name__ allow a full analysis of the class
inheritance structure associated with any instance.

 But two built-in functions provide a more user-friendly way of obtaining most of
the information we usually need: isinstance and issubclass. The isinstance func-
tion is what you should use to determine whether, for example, a class passed into a
function or method is of the expected type:

>>> class C:
... pass
...
>>> class D:
... pass

...

Licensed to Kerri Ross <pedbro@gmail.com>

245Duck typing

>>> class E(D):
... pass
...
>>> x = 12
>>> c = C()
>>> d = D()
>>> e = E()
>>> isinstance(x, E)
False
>>> isinstance(c, E)
False
>>> isinstance(e, E)
True
>>> isinstance(e, D)
True
>>> isinstance(d, E)
False
>>> y = 12
>>> isinstance(y, type(5))
True
The issubclass function is only for class types.
>>> issubclass(C, D)
False
>>> issubclass(E, D)
True
>>> issubclass(D, D)
True
>>> issubclass(e.__class__, D)
True

For class instances, check against the class q. e is an instance of class D because E
inherits from D w. But d isn’t an instance of class E e. For other types, you can use an
example r. A class is considered a subclass of itself t.

19.4 Duck typing
Using type, isinstance, and issubclass makes it fairly easy to make code correctly
determine an object’s or class’s inheritance hierarchy. Although this is easy, Python
also has a feature that makes using objects even easier: duck typing. Duck typing, as in
“if it walks like a duck and quacks like a duck, it probably is a duck,” refers to Python’s
way of determining whether an object is the required type for an operation, focusing
on an object’s interface rather than its type. If an operation needs an iterator, for
example, the object used doesn’t need to be a subclass of any particular iterator or of
any iterator at all. All that matters is that the object used as an iterator is able to yield a
series of objects in the expected way.

 This is in contrast to a language like Java, where stricter rules of inheritance are
enforced. In short, duck typing means that in Python, you don’t need to (and proba-
bly shouldn’t) worry about type-checking function or method arguments and the like.
Instead, you should rely on readable and documented code combined with thorough
testing to make sure an object “quacks like a duck” as needed.

q

w

e

r

t

Licensed to Kerri Ross <pedbro@gmail.com>

246 CHAPTER 19 Data types as objects

 Duck typing can increase the flexibility of well-written code and, combined with
the more advanced OO features discussed in chapter 20, gives you the ability to create
classes and objects to cover almost any situation.

19.5 Summary
With what we’ve covered here, you have all the tools necessary to provide type check-
ing in the situations where it’s necessary for your applications. On the other hand, by
taking advantage of duck typing, you can write more flexible code that doesn’t need
to be as concerned with type checking. As you’ll see in the next chapter, Python’s use
of duck typing and its flexibility in defining special method attributes make it possible
to construct and combine classes in almost any way imaginable.
Licensed to Kerri Ross <pedbro@gmail.com>

Advanced
object-oriented features
This chapter will focus on some more advanced object-oriented features of Python.
Python is distinguished by the ability to modify its objects in ways that can funda-
mentally change their behavior. For C++ users, this is somewhat similar to operator
overloading, but in Python it’s more comprehensive and easier to use.

 In addition to modifying the behavior of objects, you can also control the behav-
ior of classes and the creation of their instances. Obviously, you’ll need to be fairly
familiar with OO programming to use this feature.

This chapter covers
■ Using special method attributes
■ Making an object behave like a list
■ Subclassing built-in types
■ Understanding metaclasses
■ Creating abstract base classes
247

Licensed to Kerri Ross <pedbro@gmail.com>

248 CHAPTER 20 Advanced object-oriented features

20.1 What is a special method attribute?
A special method attribute is an attribute of a Python class with a special meaning to
Python. It’s defined as a method but isn’t intended to be used directly as such. Special
methods aren’t usually directly invoked; instead, they’re called automatically by
Python in response to a demand made on an object of that class.

 Perhaps the simplest example of this is the __str__ special method attribute. If it’s
defined in a class, then anytime an instance of that class is used where Python requires
a user-readable string representation of that instance, the __str__ method attribute
will be invoked, and the value it returns will be used as the required string. To see this,
let’s define a class representing RGB colors as a triplet of numbers, one each for red,
green, and blue intensities. As well as defining the standard __init__ method to ini-
tialize instances of the class, we’ll also define a __str__ method to return strings rep-
resenting instances, in a reasonably human-friendly format. Our definition looks
something like listing 20.1.

class Color:
 def __init__(self, red, green, blue):
 self._red = red
 self._green = green
 self._blue = blue
 def __str__(self):
 return "Color: R={0:d}, G={1:d}, B={2:d}".format (self._red,

 self._green, self._blue)

If we now put this definition into a file called color_module.py, we can load it and use
it in the normal manner:

>>> from color_module import Color
>>> c = Color(15, 35, 3)

The presence of the __str__ special method attribute can be seen if we now use
print to print out c:

>>> print(c)
Color: R=15, G=35, B=3

Even though our __str__ special method attribute has not been explicitly invoked by
any of our code, it has nonetheless been used by Python, which knows that the __str__
attribute (if present) defines a method to convert objects into user-readable strings.
This is the defining characteristic of special method attributes—they allow you to
define functionality that hooks into Python in special ways. Special method attributes
can be used to define classes whose objects behave in a fashion that’s syntactically and
semantically equivalent to lists or dictionaries. You could, for example, use this ability
to define objects that are used in exactly the same manner as Python lists but that use
balanced trees rather than arrays to store data. To a programmer, they would appear to
be lists, but with faster inserts, slower iterations, and certain other performance differ-

Listing 20.1 File color_module.py
ences that would presumably be advantageous in the problem at hand.

Licensed to Kerri Ross <pedbro@gmail.com>

249Making an object behave like a list

 The rest of this chapter covers longer examples using special method attributes. It
doesn’t discuss all of Python’s available special method attributes, but it does expose
you to the concept in enough detail that you can then easily make use of the other
special attribute methods, all of which are defined in the reference appendix.

20.2 Making an object behave like a list
This sample problem involves a large text file containing records of people; each
record consists of a single line containing the person’s name, age, and place of resi-
dence, with a double semicolon (::) between the fields. A few lines from such a file
might look like this:

.

.

.
John Smith::37::Springfield, Massachusetts
Ellen Nelle::25::Springfield, Connecticut
Dale McGladdery::29::Springfield, Hawaii
.
.
.

Suppose we need to collect information as to the distribution of ages of people in the
file. There are many ways the lines in this file could be processed. Here’s one way:

fileobject = open(filename, 'r')
lines = fileobject.readlines()
fileobject.close()
for line in lines:
 . . . do whatever . . .

That would work in theory, but it reads the entire file into memory at once. If the file
was too large to be held in memory (and these files potentially are that large), the pro-
gram wouldn’t work.

 Another way to attack the problem is this:

fileobject = open(filename, 'r')
for line in fileobject:
 . . . do whatever . . .
fileobject.close()

This would get around the problem of too little memory by reading in only one line at
a time. It would work fine, but suppose we wanted to make opening the file even sim-
pler and that we wanted to get only the first two fields (name and age) of the lines in
the file? We’d need something that could, at least for the purposes of a for loop, treat
a text file as a list of lines, but without reading the entire text file in at once.

20.2.1 The __getitem__ special method attribute

A solution is to use the __getitem__ special method attribute, which you can define in
any user-defined class, to enable instances of that class to respond to list access syntax

and semantics. If AClass is a Python class that defines __getitem__, and obj is an

Licensed to Kerri Ross <pedbro@gmail.com>

250 CHAPTER 20 Advanced object-oriented features

instance of that class, then things like x = obj[n] and for x in obj: are meaningful;
obj may be used in much the same way as a list.

 Here’s the resulting code; explanations follow:

class LineReader:
 def __init__(self, filename):
 self.fileobject = open(filename, 'r')
 def __getitem__(self, index):
 line = self.fileobject.readline()
 if line == "":
 self.fileobject.close()
 raise IndexError

 else:
 return line.split("::")[:2]

for name, age in LineReader("filename"):
 . . . do whatever . . .

At first glance, this may look worse than the previous solution because there’s more
code and it’s difficult to understand. But most of that code is in a class, which can be
put into its own module, say the myutils module. Then the program becomes

import myutils
for name, age in myutils.LineReader("filename"):
 . . . do whatever . . .

The LineReader class handles all the details of opening the file, reading in lines one
at a time, and closing the file. At the cost of somewhat more initial development time,
it provides a tool that makes working with one-record-per-line large text files easier
and less error prone. Note that there are several powerful ways to read files already in
Python, but this example has the advantage that it’s fairly easy to understand. When
you get the idea, you can apply the same principle in many different situations.

20.2.2 How it works

LineReader is a class, and the __init__ method opens the named file for reading and
stores the opened fileobject for later access. To understand the use of the
__getitem__ method, you need to know the following three points:

� Any object that defines __getitem__ as an instance method can return ele-
ments as if it were a list: all accesses of the form object[i] are transformed by
Python into a method invocation of the form object.__getitem__(i), which is
then handled as a normal method invocation. It’s ultimately executed as
__getitem__(object, i), using the version of __getitem__ defined in the
class. The first argument of each call of __getitem__ is the object from which
data is being extracted, and the second argument is the index of that data.

� Because for loops access each piece of data in a list, one at a time, a for arg in
sequence: loop works by calling __getitem__ over and over again, with sequen-
tially increasing indexes. The for loop will first set arg to

Opens file
for reading

Tries to
read line

If no more
data … …closes

fileobject….…and raises
IndexError

Otherwise, splits line,
returns first two fields
sequence.__getitem__(0), then to sequence.__getitem__(1), and so on.

Licensed to Kerri Ross <pedbro@gmail.com>

251Making an object behave like a list

� A for loop catches IndexError exceptions and handles them by exiting the
loop. This is how for loops are terminated when used with normal lists or
sequences.

The LineReader class is intended for use only with and inside a for loop, and the for
loop will always generate calls with a uniformly increasing index: __getitem__(self,
0), __getitem__(self, 1), __getitem__(self, 2), and so on. The previous code
takes advantage of this knowledge and returns lines one after the other, ignoring the
index argument.

 With this knowledge, understanding how a LineReader object emulates a
sequence in a for loop is easy. Each iteration of the loop causes the special Python
attribute method __getitem__ to be invoked on the object; as a result, the object
reads in the next line from its stored fileobject and examines that line. If the line is
non-empty, it’s returned. An empty line means the end of the file has been reached,
and the object closes the fileobject and raises the IndexError exception. IndexEr-
ror is caught by the enclosing for loop, which then terminates.

 Remember that this example is here for illustrative purposes only. Usually, iterat-
ing over the lines of a file using the for line in fileobject: type of loop is suffi-
cient, but this example does show how easy it is in Python to create objects that behave
like lists or other types.

20.2.3 Implementing full list functionality

In the previous example, an object of the LineReader class behaves like a list object
only to the extent that it correctly responds to sequential accesses of the lines in the
file it’s reading from. You may wonder how this functionality can be expanded to
make LineReader (or other) objects behave more like a list.

 First, the __getitem__ method should handle its index argument in some way.
Because the whole point of the LineReader class is to avoid reading a large file into
memory, it wouldn’t make sense to have the entire file in memory and return the
appropriate line. Probably the smartest thing to do would be to check that each index
in a __getitem__ call is one greater than the index from the previous __getitem__
call (or is 0, for the first call of __getitem__ on a LineReader instance), and to raise
an error if this isn’t the case. This would ensure that LineReader instances are used
only in for loops as was intended.

 More generally, Python provides a number of special method attributes relating to
list behavior. __setitem__ provides a way of defining what should be done when an
object is used in the syntactic context of a list assignment, obj[n] = val. Some other
special method attributes provide less-obvious list functionality, such as the __add__
attribute, which enables objects to respond to the + operator and hence to perform
their version of list concatenation. Several other special methods also need to be
defined before a class fully emulates a list, but you can achieve this complete list emu-
lation by defining the appropriate Python special method attributes. The next section

gives an example that goes further toward implementing a full-list emulation class.

Licensed to Kerri Ross <pedbro@gmail.com>

252 CHAPTER 20 Advanced object-oriented features

20.3 Giving an object full list capability
__getitem__ is one of many Python special function attributes that may be defined in
a class, to permit instances of that class to display special behavior. To see how this can
be carried further, effectively integrating new abilities into Python in a seamless man-
ner, we’ll look at another, more comprehensive example.

 When lists are used, it’s common that any particular list will contain elements of
only one type such as a list of strings or a list of numbers. Some languages, such as
C++, have the ability to enforce this. In large programs, this ability to declare a list as
containing a certain type of element can help you track down errors. An attempt to
add an element of the wrong type to a typed list will result in an error message, poten-
tially identifying a problem at an earlier stage of program development than would
otherwise be the case.

 Python doesn’t have typed lists built in, and most Python coders don’t miss them;
but if you’re concerned about enforcing the homogeneity of a list, special method
attributes make it easy to create a class that behaves like a typed list. Here’s the begin-
ning of such a class (which makes extensive use of the Python built-in type and isin-
stance functions, to check the type of objects):

class TypedList:
 def __init__(self, example_element, initial_list=[]):
 self.type = type(example_element)
 if not isinstance(initial_list, list):
 raise TypeError("Second argument of TypedList must "
 "be a list.")
 for element in initial_list:
 if not isinstance(element, self.type):
 raise TypeError("Attempted to add an element of "
 "incorrect type to a typed list.")
 self.elements = initial_list[:]

The example_element argument defines the type this list can contain by providing an
example of the type of element q.

 The TypedList class, as defined here, gives us the ability to make a call of the form

x = TypedList('Hello', ["List", "of", "strings"])

The first argument, 'Hello', isn’t incorporated into the resulting data structure at all.
It’s used as an example of the type of element the list must contain (strings, in this
case). The second argument is an optional list that can be used to give an initial list of
values. The __init__ function for the TypedList class checks that any list elements
passed in when a TypedList instance is created are of the same type as the example
value given. If there are any type mismatches, an exception is raised.

 This version of the TypedList class can’t be used as a list, because it doesn’t
respond to the standard methods for setting or accessing list elements. To fix this, we
need to define the __setitem__ and __getitem__ special method attributes. The
__setitem__ method will be called automatically by Python anytime a statement of

q

the form TypedListInstance[i] = value is executed, and the __getitem__ method

Licensed to Kerri Ross <pedbro@gmail.com>

253Giving an object full list capability

will be called anytime the expression TypedListInstance[i] is evaluated to return
the value in the ith slot of TypedListInstance. Here is the next version of the
TypedList class. Because we’ll be type-checking a lot of new elements, we’ve
abstracted this function out into the new private method __check:

class TypedList:
 def __init__(self, example_element, initial_list=[]):
 self.type = type(example_element)
 if not isinstance(initial_list, list):
 raise TypeError("Second argument of TypedList must "
 "be a list.")
 for element in initial_list:
 self.__check(element)
 self.elements = initial_list[:]
 def __check(self, element):
 if type(element) != self.type:
 raise TypeError("Attempted to add an element of "
 "incorrect type to a typed list.")
 def __setitem__(self, i, element):
 self.__check(element)
 self.elements[i] = element
 def __getitem__(self, i):
 return self.elements[i]

Now, instances of the TypedList class look more like lists. For example, the following
code is valid:

>>> x = TypedList("", 5 * [""])
>>> x[2] = "Hello"
>>> x[3] = "There"
>>> print(x[2] + ' ' + x[3])
Hello There
>>> a, b, c, d, e = x
>>> a, b, c, d
('', '', 'Hello', 'There')

The accesses of elements of x in the print statement are handled by __getitem__,
which passes them down to the list instance stored in the TypedList object. The assign-
ments to x[2] and x[3] are handled by __setitem__, which checks that the element
being assigned into the list is of the appropriate type and then performs the assignment
on the list contained in self.elements. The last line uses __getitem__ to unpack the
first four items in x and then pack them into the variables a, b, c, d, and e, respectively.
The calls to __getitem__ and __setitem__ are made automatically by Python.

 Completion of the TypedList class, so that TypedList objects behave in all
respects like list objects, requires more code. The special method attributes
__setitem__ and __getitem__ should be defined so that TypedList instances can
handle slice notation as well as single item access. __add__ should be defined so that
list addition (concatenation) can be performed, and __mul__ should be defined so
that list multiplication can be performed. __len__ should be defined so that calls of
len(TypedListInstance) are evaluated correctly. __delitem__ should be defined so

that the TypedList class can handle del statements correctly. Also, an append method

Licensed to Kerri Ross <pedbro@gmail.com>

254 CHAPTER 20 Advanced object-oriented features

should be defined so that elements can be appended to TypedList instances using the
standard list-style append, and similarly for an insert method.

20.4 Subclassing from built-in types
The previous example makes for a good exercise in understanding how to implement
a list-like class from scratch, but it’s also a lot of work. In practice, if you were planning
to implement your own list-like structure along the lines demonstrated here, you
might instead consider subclassing the list type or the UserList type.

20.4.1 Subclassing list

Instead of creating a class for a typed list from scratch, as we did in the previous exam-
ples, you can also subclass the list type and override all the methods that need to be
aware of the allowed type. One big advantage of this approach is that your class has
default versions of all list operations, because it’s a list already. The main thing to keep
in mind is that every type in Python is a class, and if you need a variation on the behav-
ior of a built-in type, you may want to consider subclassing that type:

class TypedListList(list):
 def __init__(self, example_element, initial_list=[]):
 self.type = type(example_element)
 if not isinstance(initial_list, list):
 raise TypeError("Second argument of TypedList must "
 "be a list.")
 for element in initial_list:
 self.__check(element)
 super().__init__(initial_list)

 def __check(self, element):
 if type(element) != self.type:
 raise TypeError("Attempted to add an element of "
 "incorrect type to a typed list.")

 def __setitem__(self, i, element):
 self.__check(element)
 super().__setitem__(i, element)

>>> x = TypedListList("", 5 * [""])
>>> x[2] = "Hello"
>>> x[3] = "There"
>>> print(x[2] + ' ' + x[3])
Hello There
>>> a, b, c, d, e = x
>>> a, b, c, d
('', '', 'Hello', 'There')
>>> x[:]
['', '', 'Hello', 'There', '']
>>> del x[2]
>>> x[:]
['', '', 'There', '']
>>> x.sort()
>>> x[:]

['', '', '', 'There']

Licensed to Kerri Ross <pedbro@gmail.com>

255Subclassing from built-in types

Note that all that we need to do in this case is implement a method to check the type
of items being added and then tweak __setitem__ to make that check before calling
list’s regular __setitem__ method. Other methods, like sort and del, work without
any further coding. Overloading a built-in type can save a fair amount of time if you
need only a few variations in its behavior, because the bulk of the class can be used
unchanged.

20.4.2 Subclassing UserList

If you need a variation on a list (as in the previous examples), there’s a third alterna-
tive. You can subclass the UserList class, a list wrapper class found in the collections
module. UserList was created for earlier versions of Python when subclassing the list
type wasn’t possible; but it’s still useful, particularly in our current situation, because
the underlying list is available as the data attribute:

from collections import UserList
class TypedUserList(UserList):
 def __init__(self, example_element, initial_list=[]):
 super().__init__(initial_list)
 self.type = type(example_element)
 if not isinstance(initial_list, list):
 raise TypeError("Second argument of TypedList must "
 "be a list.")
 for element in initial_list:
 self.__check(element)

 def __check(self, element):
 if type(element) != self.type:
 raise TypeError("Attempted to add an element of "
 "incorrect type to a typed list.")
 def __setitem__(self, i, element):
 self.__check(element)
 self.data[i] = element
 def __getitem__(self, i):
 return self.data[i]

>>> x = TypedUserList("", 5 * [""])
>>> x[2] = "Hello"
>>> x[3] = "There"
>>> print(x[2] + ' ' + x[3])
Hello There
>>> a, b, c, d, e = x
>>> a, b, c, d
('', '', 'Hello', 'There')
>>> x[:]
['', '', 'Hello', 'There', '']
>>> del x[2]
>>> x[:]
['', '', 'There', '']
>>> x.sort()
>>> x[:]

['', '', '', 'There']

Licensed to Kerri Ross <pedbro@gmail.com>

256 CHAPTER 20 Advanced object-oriented features

This is much the same as subclassing list, except that in the implementation of the
class, the list of items is available internally as the data member. In some situations,
having direct access to the underlying data structure can be useful; and in addition to
UserList, there are also UserDict and UserString wrapper classes.

20.5 When to use special method attributes
As a rule, it’s a good idea to be somewhat cautious with the use of special method attri-
butes. Other programmers who need to work with your code may wonder why one
sequence-type object responds correctly to standard indexing notation, whereas
another doesn’t.

 My general guidelines are to use special method attributes in either of two situa-
tions. First, if I have a frequently used class in my own code that behaves in some
respects like a Python built-in type, I’ll define such special method attributes as useful.
This occurs most often with objects that behave like sequences in one way or another.
Second, if I have a class that behaves identically or almost identically to a built-in class,
I may choose to define all of the appropriate special function attributes or subclass the
built-in Python type and distribute the class. An example of the latter might be lists
implemented as balanced trees so that access is slower but insertion is faster than with
standard lists.

 These aren’t hard-and-fast rules. For example, it’s often a good idea to define the
__str__ special method attribute for a class, so that you can say print(instance) in
debugging code and get an informative and nice-looking representation of your
object printed to the screen.

20.6 Metaclasses
Everything in Python is an object, including classes. An object has to be created from
something, and in the case of a class it’s created from a metaclass. In Python, classes are
objects that are created at runtime as instances of the metaclass type. Let’s look at the
standard definition of a class:

class Spam:
 def __init__(self, x):
 self.x = x
 def show(self):
 print(self.x)

This is the ordinary way of creating a class. We can create instances of it and exercise
them and so on:

>>> my_spam = Spam("test")
>>> type(my_spam)
<class '__main__.Spam'>
>>> type(Spam)
<class 'type'>
>>> my_spam.show()
test
Licensed to Kerri Ross <pedbro@gmail.com>

257Metaclasses

Note that the type of the class spam is 'type'.
 Although this example is the common way to create a class, it’s really a shortcut for

creating it explicitly using a metaclass. To do so, you need to call the metaclass (type,
by default) with the name of the class, a tuple of its base classes, and a dictionary of its
attributes:

def init(self, x):
 self.x = x
def show(self):
 print(self.x)
Spam = type("Spam", (object,), {'__init__': init, 'show': show})

This creates exactly the same class as before, with an __init__ and a show method:

>>> my_spam = Spam("test")
>>> type(my_spam)
<class '__main__.Spam'>
>>> type(Spam)
<class 'type'>
>>> my_spam.show()
test

It looks a bit strange, because the methods are defined as first-class functions; but the
result is the same, and the type of spam is still 'type'.

 The point of this exercise is that the type metaclass can be subclassed and its
behavior can be changed. That means that the way classes themselves are created
from objects can be modified, allowing you to create classes that register or verify their
instances when they’re created, for example, or classes that automatically have a class
attribute. In the following somewhat simple-minded example, type is subclassed to
NewType, which announces when it creates a class object and adds a class attribute
new_attr to that class:

class NewType(type):
 def __init__(cls, name, bases, methods):
 print("Creating from NewType")
 type.__init__(cls, name, bases, methods)
 cls.new_attr = "test"

def init(self, x):
 self.x = x

def show(self):
 print(self.x)

Spam = NewType("Spam", (object,), {'__init__': init, 'show': show})
Creating from NewType
>>> Spam.new_attr
'test'
>>> my_spam = Spam("test")
>>> type(Spam)
<class '__main__.NewType'>
>>> type(my_spam)
Licensed to Kerri Ross <pedbro@gmail.com>

258 CHAPTER 20 Advanced object-oriented features

<class '__main__.Spam'>
>>> my_spam.show()
test

It’s not necessary to use the long form of class creation in order to use a custom meta-
class, however. You can accomplish the same thing by using the metaclass keyword
with a simple class definition:

class NewType(type):
 def __init__(cls, name, bases, dict):
 print("Creating from NewType")
 cls.new_attr = "test"
 type.__init__(cls, name, bases, dict)

class Spam(metaclass=NewType):
 def __init__(self, x):
 self.x = x
 def show(self):
 print(self.x)

Creating from NewType
>>> Spam.new_attr
'test'
>>> my_spam = Spam("test")
>>> type(Spam)
<class '__main__.NewType'>
>>> type(my_spam)
<class '__main__.Spam'>
>>> my_spam.show()
test

The previous examples have been kept deliberately simple, with the aim of making
the basic mechanics of using metaclasses clear. Metaclass programming is enormously
powerful, but it’s also a complex topic, and its details and use cases are well beyond
both this book and most coding needs. In the words of master Pythonista Tim Peters,
“Metaclasses are deeper magic than 99% of users should ever worry about. If you won-
der whether you need them, you don’t (the people who need them know with cer-
tainty that they need them, and don’t need an explanation about why).”

20.7 Abstract base classes
As you’ve seen, Python’s strategy for interacting with an object is to invoke its methods
and judge its type from what it does. This use of duck typing is also referred to as EAFP,
which is short for “easier to ask forgiveness than permission.” The common approach
in Python is to invoke an object’s method and either succeed or deal with the excep-
tion. If an object behaves like a sequence, for example, you can iterate over it with a
for loop. If not, you catch and deal with the TypeError exception. Although this
approach works well most of the time, there are occasions where it’s better for your
code to know exactly what it’s getting into. This is sometimes called the LBYL, or “look
before you leap,” approach.
Licensed to Kerri Ross <pedbro@gmail.com>

259Abstract base classes

 For example, suppose we need to know whether an object is a mutable
sequence—something that works like a list. We can use isinstance to see if the object
has list as a base class:

if isinstance(my_object, list):
 # do stuff

Or we can see if it has a __getitem__ method defined, by accessing the object with [],
for example:

try:
 x = my_object[0]
 #do stuff
except TypeError:
 pass

The problem is that the first approach will miss perfectly good mutable sequences,
like our LineReader class at the beginning of this chapter, because they aren’t sub-
classes of list. The second approach, on the other hand, will go in the other direc-
tion and accept both tuples (which aren’t mutable) and dictionaries (which aren’t
sequences), among others.

 Although it’s not in harmony with the overall philosophy of Python, in some sce-
narios it’s useful to be able to know for sure that an object is a sequence, a mutable
sequence, a mapping, and so on. Python’s answer is an abstract base class (ABC),
which is a class that can be put into an object’s inheritance tree to indicate to an exter-
nal inspector that the object has a certain set of features. You can then test objects
using isinstance for the presence of that abstract base class. The collections library
contains several abstract collection types, including the following:

'Hashable', 'Iterable', 'Mapping', 'MutableMapping', 'MutableSequence',
'MutableSet', 'Sequence', 'Sized'

There are also abstract base classes for various other sorts of objects—mapping, sets,
and so on.

20.7.1 Using abstract base classes for type checking

To return to our example, let’s see how we can use an abstract base class to make sure
the custom TypedList class we created previously is identified as a mutable sequence.
The first things we need to do are to import the MutableSequence base class from the
collections module and then register our class as a MutableSequence:

class TypedList:
 def __init__(self, example_element, initial_list=[]):
 self.type = type(example_element)
 if not isinstance(initial_list, list):
 raise TypeError("Second argument of TypedList must "
 "be a list.")
 for element in initial_list:
 self.__check(element)
 self.elements = initial_list[:]
Licensed to Kerri Ross <pedbro@gmail.com>

260 CHAPTER 20 Advanced object-oriented features

 def __check(self, element):
 if type(element) != self.type:
 raise TypeError("Attempted to add an element of "
 "incorrect type to a typed list.")
 def __setitem__(self, i, element):
 self.__check(element)
 self.elements[i] = element
 def __getitem__(self, i):
 return self.elements[i]
>>> from collections import MutableSequence
>>> issubclass(TypedList, MutableSequence)
False
>>> MutableSequence.register(TypedList)
>>> issubclass(TypedList, MutableSequence)
True
>>> my_list = TypedList(1)
>>> isinstance(my_list, MutableSequence)
True

When TypedList is registered with MutableSequence as one of its own, any instance of
it will also be an instance of MutableSequence.

20.7.2 Creating abstract base classes

You can also create your own abstract base classes by setting their metaclass to be ABC-
Meta from the abc module. For example, if we want to make sure that every instance
of list was also identified as an instance of MyABC, we do the following:

>>> from abc import ABCMeta
>>> class MyABC(metaclass=ABCMeta):
... pass
...
>>> MyABC.register(list)
>>> isinstance([1, 2, 3], MyABC)
True

Being able to use abstract base classes in Python gives you a choice: you can look
before you leap, or you can ask for forgiveness.

20.7.3 Using the @abstractmethod and @abstractproperty decorators

In Java, for example, an abstract class by definition can’t be instantiated under any cir-
cumstances. As with many features, in Python the “abstractness” of abstract base
classes isn’t so much an enforced rule as it is a gentleman’s agreement. Python will
allow you to create instances of generic abstract base classes without complaint as long
as the base class doesn’t contain an abstract method:

>>> from abc import ABCMeta
>>> class MyABC(metaclass=ABCMeta):
... pass
...
>>> my_myabc = MyABC()
>>> print(type(my_myabc))

<class '__main__.MyABC'>

Licensed to Kerri Ross <pedbro@gmail.com>

261Abstract base classes

But if the class has an abstract method, then that class can’t be instantiated, nor can
any subclass be instantiated unless it has overridden the abstract method. To create an
abstract method, you use the @abstractmethod decorator from the abc module:

>>> from abc import ABCMeta, abstractmethod
>>> class MyABC(metaclass=ABCMeta):
... @abstractmethod
... def overrideme(self):
... print("in ABC")
...
>>> my_myabc = MyABC()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: Can't instantiate abstract class MyABC with abstract
➥ methods overrideme
>>> class SecondABC(MyABC):
... pass
>>> my_secondabc = SecondABC()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: Can't instantiate abstract class SecondABC with abstract
➥ methods overrideme

As the exceptions indicate, it’s not possible to instantiate a class with an abstract
method, nor is it possible to instantiate a subclass, unless the abstract method has
been overridden. In the following example, the abstract method has been overridden
for the class SecondABC so the class can now be instantiated:

>>> class SecondABC(MyABC):
... def overrideme(self):
... super().overrideme()
... print("in SecondABC")
...
>>> my_secondabc = SecondABC()
>>> my_secondabc.overrideme()
in ABC
in SecondABC

The abstractmethod function sets a function attribute __isabstractmethod__, which
is checked by the __new__ method of ABCMeta. This means you can create abstract
methods only for classes that are created with ABCMeta as their metaclass, and they
must be defined in the class definition, not dynamically added.

 Abstract methods in Python, unlike in Java, can have an implementation. You can
call those methods by the overriding method in a subclass, as happens in the previous
example.

 There is also an @abstractproperty decorator, which adds abstract properties to a
class. These work the same way as normal properties, except that a class containing an
abstract property can’t be instantiated, nor can its subclasses, unless they override the
abstract property with a concrete one:

from abc import ABCMeta, abstractproperty

class MyABC(metaclass=ABCMeta):

Licensed to Kerri Ross <pedbro@gmail.com>

262 CHAPTER 20 Advanced object-oriented features

 @abstractproperty
 def readx(self):
 return self.__x
 def getx(self): # read only
 return self.__x
 def setx(self, x):
 self.__x = x
 x = abstractproperty(getx, setx)

Even though the property x created here has an implementation that would work, this
class can’t be instantiated. Instead, it must be subclassed, and the abstract property x
must be overridden. But the subclass can access the abstract property in MyABC.

20.8 Summary
Python has several object-oriented options. By adding special method attributes to
your classes, you can simulate other classes, even built-in types. Or you can subclass
any of Python’s built-in types to modify their behavior as needed. You can even control
the creation and behavior of classes themselves by creating or using different meta-
classes. If those options aren’t enough, you can also use abstract base classes to cus-
tomize the possibilities for type checking.
Licensed to Kerri Ross <pedbro@gmail.com>

Part 4

Where can you go from here?

Part 4 introduces features of Python beyond bare syntax and syntax and
coding. Starting with the basics of testing in Python, we’ll also look at migration
to Python 3 from Python 2.x and tour the standard library. The final chapter
uses several examples and a simple project to illustrate the power of Python for
creating database-driven web applications.
Licensed to Kerri Ross <pedbro@gmail.com>

Licensed to Kerri Ross <pedbro@gmail.com>

Testing your code
made easy(-er)
The problem with writing code is that you’re never sure you’ve got it right. Every
time you turn around, bugs crop up, and what’s worse, fixing those bugs is likely to
create more bugs. Fortunately, Python encourages readable code, which helps in
debugging; but we still need all the help we can get in maintaining our code.

21.1 Why you need to have tests
Almost all code needs maintenance. Sometimes it requires minor bug fixes, but
other times it needs major changes or additions, or even a complete redesign. The
more you change your code, the more likely you are to inadvertently introduce new

This chapter covers
■ Testing your code
■ Debugging with the assert statement
■ Using Python’s debug variable
■ Testing using docstrings
■ Creating and using unit tests
265

Licensed to Kerri Ross <pedbro@gmail.com>

266 CHAPTER 21 Testing your code made easy(-er)

problems or mistakes. What you need is a way to make sure you don’t create new bugs
when you fix the old ones and that everything still works when you redesign and refac-
tor and improve your code. You need ways to verify that what used to work still works.
You need tests.

21.2 The assert statement
The quickest way to put a test into your code is with the assert statement. An assert
statement is a simple way of putting a conditional in your code that will raise an excep-
tion if an expression isn’t true. That makes it an ideal watchdog for situations where a
particular precondition must always be true for the code to function correctly. For
example, see the file in listing 21.1.

def example(param):
 """param must be greater than 0!"""
 assert param > 0
 # do stuff here

>>> import assert_test
>>> assert_test.example(0)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "assert_test.py", line 2, in example
 assert param > 0
AssertionError
>>>

21.2.1 Python’s __debug__ variable

Although assert statements are a bit more streamlined, by themselves they’re condi-
tionals that raise exceptions when their expressions are false. It’s a fair concern that
using assert statements generously will leave code littered with extra conditional
statements that will impact its performance. The assert statement relies on a built-in
variable in Python, __debug__, which is True by default. That means the assert state-
ment we used previously in assert_test.py is equivalent to

if __debug__:
 if not param > 0:
 raise AssertionError

But if the __debug__ variable is False, no code will be generated at all for assert
statements. The catch is that __debug__ can’t be directly assigned:

>>> __debug__
True
>>> __debug__ = False
 File "<stdin>", line 1
SyntaxError: assignment to keyword

To turn off the __debug__ variable, either you need to have the PYTHONOPTIMIZE envi-

Listing 21.1 File assert_test.py

Checks value
of param
ronment variable set, or you need to run Python with the –O option. When the

Licensed to Kerri Ross <pedbro@gmail.com>

267Tests in docstrings: doctests

__debug__ variable has been turned off with the –O parameter, the previous test using
assert_test.py no longer gives an error:

>>> import assert_test
>>> assert_test.example(0)
>>>

By using assert (and the __debug__ variable), you can have several checks in place as
you develop and test your code. And then, by giving Python a single option, you can
have all of that testing code disappear for production runs but still be available the
next time you need to debug.

21.3 Tests in docstrings: doctests
Using assert statements is simple and relatively easy but also rather limited. Although
assert statements can check specific spots in your code, they give no support for cre-
ating more complete suites of tests that can be run to test entire modules. Python has
an easy way to test your code that uses the docstrings you should already be including
in your interactive sessions, testing some code that’s cut and pasted into the docstring
for that code.

 For example, let’s return to the TypedList class we created in the last chapter. As
you may recall, the idea was to create a list-like class that allowed only a single type of
item. Because we had to add __getitem__ and __setitem__ special methods, it would
be good to test them to make sure that they work as expected when we use [] to access
items. Using a Python shell, we can do something like this:

>>> from typedlist import TypedList
>>> a_typed_list = TypedList(1, [1, 2, 3])
>>> a_typed_list[1] == 2
True
>>> a_typed_list[1] = 3
>>> a_typed_list[1]
3
>>>

This interactive session verifies that with an index of 1, both __getitem__ and
__setitem__ work correctly to access the second item of a TypedList. To make this
session into a doctest, we can copy and paste it into the docstring of the typedlist
module and add code to run the test if the module is executed directly as a script. See
listing 21.2.

""" a list that only allows items of a single type

any text (like this) that isn't in shell format is ignored by doctest

>>> from typedlist_doctest import TypedList
>>> a_typed_list = TypedList(1, [1, 2, 3])
>>> a_typed_list[1] == 2

Listing 21.2 File typedlist_doctest.py
True

Licensed to Kerri Ross <pedbro@gmail.com>

268 CHAPTER 21 Testing your code made easy(-er)

>>> a_typed_list[1] = 3
>>> a_typed_list[1]
3
>>>
"""

class TypedList:
 def __init__(self, example_element, initial_list=[]):
 self.type = type(example_element)
 if not isinstance(initial_list, list):
 raise TypeError("Second argument of TypedList must "
 "be a list.")
 for element in initial_list:
 self.__check(element)
 self.elements = initial_list[:]
 def __check(self, element):
 if type(element) != self.type:
 raise TypeError("Attempted to add an element of "
 "incorrect type to a typed list.")
 def __setitem__(self, i, element):
 self.__check(element)
 self.elements[i] = element
 def __getitem__(self, i):
 return self.elements[i]

if __name__ == "__main__":
 import doctest
 doctest.testmod()

If we run typedlist_doctest.py from a command prompt, by default it prints noth-
ing if all the tests pass. But if a test fails, it’s reported in detail. For example, let’s
change the first access of a_typed_list[1] to expect a 3 instead of a 2:

>>> a_typed_list[1] == 3
True

Now the test will fail, and doctest will report that clearly:

**
File "typedlist_doctest.py", line 7, in __main__
Failed example:
 a_typed_list[1] == 3
Expected:
 True
Got:
 False
**
1 items had failures:
 1 of 5 in __main__
Test Failed 1 failures.

If you need a full report of all tests, both failing and passing, you can make doctest
give a verbose report by adding the –v switch after the filename on the command line.
Licensed to Kerri Ross <pedbro@gmail.com>

269Tests in docstrings: doctests

21.3.1 Avoiding doctest traps

Because doctests expect a character-by-character match for a successful test, you’ll
sometimes find tests failing unexpectedly. In particular, dictionaries aren’t guaranteed
to print in a particular order. If you had a test like this

>>> my_dict = {'one': 1, 'two': 2}
>>> my_dict
{'one': 1, 'two': 2}

the two items could conceivably print in either order, causing the test to fail unpre-
dictably. In cases like this, a direct comparison is more reliable:

>>> my_dict == {'one': 1, 'two': 2}
True
>>> my_dict == {'two': 2, 'one': 1}
True

Similarly, printing object addresses will also cause failures, because it’s unlikely that an
object will have the same address for two different runs of the test.

 It’s also important to note that if you want blank lines to be considered part of the
output, you need to indicate them with a line containing just <BLANKLINE>, because a
blank line is normally a signal to doctest of the end of output.

 Finally, if you use the \ character, either to escape a character or to continue a line
in a doctest, you need to make sure that the docstring is a raw string. Prepending an r
to the docstring will prevent the \ from being interpreted as part of the string.

21.3.2 Tweaking doctests with directives

Several directives can also tweak the way lines are handled. The most commonly used
of these directives are NORMALIZE_WHITESPACE and ELLIPSIS. The former treats all
sequences of whitespace as equal, so that differently spaced sequences of items, or
even sequences with line breaks, still pass the test. Similarly, ELLIPSIS signals that a
sequence of ... will match any substring in the output. Using ELLIPSIS can alleviate
problems like those mentioned earlier in printing object addresses, if you need to
include data that changes from run to run in your doctest. You employ directives by
adding them to a # doctest: comment following the test, with a + to activate and a –
to deactivate them. Directives apply only to a single example, and you can combine
multiple directives, either on the same line or on multiple lines:

>>> print([1, 2, 3, 4]) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE

This line matches all of the following:

[1, 2, 3, 4]
[1, 2,
 3, 4]
[1, ... 4]
Licensed to Kerri Ross <pedbro@gmail.com>

270 CHAPTER 21 Testing your code made easy(-er)

Additional directives control the style of output, the treatment of exception trace-
backs, and so on, and it’s also possible to add your own directives and subclass doctest
internals to change the response to them.

21.3.3 Pros and cons of doctests

Doctests have two big advantages going for them: simplicity and ease of use. These vir-
tues make doctests a good thing to use in your code, because simple, easy tests are
more likely to be created, used, and maintained. In addition, having the test readily
visible and accessible as part of the code is a help. If you can see it and edit it easily, it’s
more likely that you’ll keep it current and use it often. I might add that doctests are a
“Pythonic” method of testing.

 On the other hand, doctests aren’t for everyone or for every situation. If you need
to do many tests, docstrings will add considerable bulk to your code files unless you
move them to separate files, in which case you’ve lost one of the advantages of using
doctests. In addition, some aspects of your code may be more awkward to test in the
interpreter. There’s some debate about how far you can take doctests as a testing
mechanism. The Zope 3 project, for example, uses doctests extensively, whereas most
projects of similar size use unit tests. It finally comes down to what works best for you
and your project.

21.4 Using unit tests to test everything, every time
In addition to doctests, Python also has a full-blown unit test library as part of the stan-
dard library. The unittest module (originally named PyUnit) is modeled somewhat
on the JUnit library widely used in Java. You can use unittest to create a comprehen-
sive suite of tests for any project. Python itself uses unit tests to test its more than 110
modules, including unittest. It’s not the intent of this chapter to tell you why you
should use unittest or exactly what you should test but to give you a quick example
of how to create and run a unittest suite.

 The two basic classes you use to create unit tests are TestCase and TestSuite. The
former contains the individual tests, and the latter is used to aggregate tests that
should be run together.

21.4.1 Setting up and running a single test case

You create a test, or group of tests, by subclassing TestCase and adding each test as a
method. To make the tests, you can either use assert or use one of the many variations
on assert that are part of the TestCase class. In addition to adding the tests them-
selves as methods to the subclass, you can override both the setUp and tearDown meth-
ods to handle creating and disposing any objects or conditions needed for the test.

 It will be easier to see how test creation works by following a simple example. In
the last chapter, we created a TypedList class that ensures that all of its items are of
the same type. Let’s create a simple test case to make sure the __getitem__ method
returns the correct value. See listing 21.3.
Licensed to Kerri Ross <pedbro@gmail.com>

271Using unit tests to test everything, every time

import unittest
from typedlist import TypedList

class TestTypedList(unittest.TestCase):
 def setUp(self):
 self.a_typedlist = TypedList(1, [1, 2, 3])

 def testGetItem(self):
 self.assertEqual(self.a_typedlist[1], 2)

 def testSetItem(self):
 self.a_typedlist[1] = 3
 self.assertEqual(self.a_typedlist[1], 3)

if __name__ == '__main__':
 unittest.main()

In these tests, we use the assertEqual method of TestCase. As the name implies,
assertEqual tests for the equality of two values. There are number of test asserts in
TestCase, but you don’t absolutely have to use them. You can, for example, also use
the regular assert statement, if you want. The problem is that if the __debug__ vari-
able is set to false, the assertion won’t be tested, and your testing won’t occur. There-
fore, it’s probably wisest always to use the methods in TestCase. Table 21.1 lists the
main forms of those methods.

Listing 21.3 File testtypedlist.py

Table 21.1 Test methods in unittest.TestCase

Test Explanation

TestCase.assert(expr[, msg]) Fails if expr is False

TestCase.assertEqual(first, second[,
msg])

Fails if first isn’t equal to second

TestCase.assertNotEqual(first,
second[, msg])

Fails if first is equal to second

TestCase.assertAlmostEqual(first,
second[, places[, msg]])

Fails if first and second aren’t equal
when rounded to places (default is 7)
decimal places

TestCase.assertNotAlmostEqual(first,
second[, places[, msg]])

Fails if first and second are equal when
rounded to places (default is 7) decimal
places

TestCase.assertRaises(exception,
callable, ...)

Passes if calling callable with any
parameters passed with it raises exception

TestCase.assertFalse(expr[, msg]) Fails if expr is True

TestCase.fail([msg]) Unconditionally generates a failure
Licensed to Kerri Ross <pedbro@gmail.com>

272 CHAPTER 21 Testing your code made easy(-er)

This is a summary of the most common methods. There are variations with the oppo-
site names: failUnless, failUnlessEqual, and so on; see the standard documenta-
tion for a complete list.

21.4.2 Running the test

To run the test from the command line, we can add a call to the main method of the
test case:

if __name__ == '__main__':
 unittest.main()

The output from running this is something like the following:

doc@mac:~/work/quickpythonbook/testcode$ python3.1 testtypedlist.py
..
--
Ran 2 tests in 0.000s

OK

On the other hand, if a test fails, we get a fuller report. Let’s assume that we changed
the value of the __getitem__ test so that it would fail:

testGetItem (testtypedlist.TestTypedList) ... FAIL
testSetItem (testtypedlist.TestTypedList) ... ok

==
FAIL: testGetItem (testtypedlist.TestTypedList)
--
Traceback (most recent call last):
 File "/home/doc/work/quickpythonbook/testcode/testtypedlist.py", line 9,
 ➥ in testGetItem
 self.assertEqual(self.aTypedList[1], 3)
AssertionError: 2 != 3

--
Ran 2 tests in 0.001s

FAILED (failures=1)

Each failure is reported clearly, and the total number of failures is also reported.

21.4.3 Running multiple tests

It’s also fairly easy to aggregate various test cases into a unified test suite that can be
run with a single command. This is done most easily by using the TestSuite, Test-
Loader, and TestRunner classes. Although the TestSuite class can be subclassed and
customized, and test cases can be added to a test suite instance manually, for most
applications it’s easier to use the module’s default instances of TestLoader and Text-
TestRunner to create and run a test suite as follows:

suite = unittest.defaultTestLoader().loadTestsFromTestCase(TestTypedList)

unittest.TextTestRunner(verbosity=2).run(suite)

Licensed to Kerri Ross <pedbro@gmail.com>

273Summary

The previous code uses the module’s instance of defaultTestLoader to add all tests
of the type TestTypedList to the test suite called suite. Then, the module’s default
TextTestRunner instance runs the suite of tests with a verbosity level of 2. The result
looks something like this:

testGetItem (__main__.TestTypedList) ... ok
testSetItem (__main__.TestTypedList) ... ok

--
Ran 2 tests in 0.000s

OK

There are several variations on how test cases can be detected and loaded. For exam-
ple, to load all tests from the module testtypedlist.py, you can use loadTestsFrom-
Name('testtypedlist'), which loads all tests in classes derived from TestCase in that
module.

 This example has been simple because my intent isn’t to tell you how to use unit
tests but to show you the basics of how to create a unit test in Python.

21.4.4 Unit tests vs. doctests

Unit tests have a different approach than doctests. Although doctests are by nature
intended (if not required) to be interleaved with the code they test, unit tests are
meant to be separate from the tested code. This makes unit tests a bit less transparent
and convenient in smaller projects, but they also have benefits. Having the tests sepa-
rate from the code means you can develop an extensive suite of tests without increas-
ing the size of the code files and burying the working code under a mass of test code.
It also means that the tests don’t need to be distributed with the code, although in
many projects they are. On the other hand, the separation of tests and code and the
more programmatic nature of unit tests tend to make for less ease of documentation
than is found in doctests.

21.5 Summary
Python comes with two different testing systems, doctests and unit tests. Doctests are
meant to be included in docstrings for modules, functions, and so on and are more
visible and easier to edit. Particularly for small projects, doctests are more visible and
easier to use and therefore more likely to be used. Unit tests, on the other hand, are
intended for creating more intensive test suites and are more customizable; the tests
are separate from the code, arguably making them a better choice for larger projects.

Licensed to Kerri Ross <pedbro@gmail.com>

Moving from Python 2
to Python 3
We’ve dealt with only the syntax and features of Python 3.x so far in this book. That
was deliberate, because we feel that Python 3.x is a distinct improvement over early
versions of Python and it’s where future development should occur. On the other
hand, it’s not always possible to make a clean break from the past. For the foresee-
able future, many situations will call for dealing with legacy Python 2.x code. This
chapter discusses how you can migrate older Python 2.x code to Python 3.x.

22.1 Porting from 2 to 3
Several changes from Python 2.x to 3.x broke compatibility between the two ver-
sions. Some of them were obvious but easy to fix, such as the change of the print
statement to the print function or the change of the input function to behave the

This chapter covers
■ Using Python 2.6 for preliminary testing
■ Converting using 2to3
■ Testing and common pitfalls
■ Using the same code base for Python 2 and 3
274

Licensed to Kerri Ross <pedbro@gmail.com>

275Porting from 2 to 3

way that the old raw_input function did. Other changes were more subtle, and more
posed sneakier problems: the change of strings to be Unicode by default with the
addition of a bytes type to hold unencoded byte values, returning iterators and views
instead of lists from functions like range and a dictionary’s keys method, differences
in handling exceptions, and the addition of sets come to mind, to name a few.

 Table 22.1 illustrates some of the representative differences between Python 2.x
and 3.x code.

Although these differences aren’t in themselves that large, taken together they mean
that virtually no legacy Python 2.x code can run on Python 3.x unchanged.

22.1.1 Steps in porting from Python 2.x to 3.x

To help you make the transition from 2 to 3, the core developers of Python offer a
clear set of steps to follow to migrate code to the new version:

1 Make sure the existing code has adequate test coverage.
The change from Python 2.x to Python 3 isn’t huge, but there are enough sub-
tle incompatibilities that code will need to be tested to make sure it still behaves
as it’s supposed to. Complete test coverage isn’t recommended—it’s necessary.

2 Test the code using Python 2.6 and the -3 command-line switch to find and remove obvi-
ous compatibility problems.
Running code under Python 2.6 (or later) using the -3 switch will point out
some obvious issues that should be fixed before going on.

Table 22.1 Python 2.x vs. Python 3.x code

Python 2.x Python 3.x

raw_input(prompt) input(prompt)

print x (no parentheses) print(x)

str type and unicode type bytes type (sequence of bytes) and str type
(all strings are Unicode)

1L (long integer data type) 1 (all ints can be long)

an_iterator.next() next(an_iterator)

try.... except Exception, e try.... except Exception as e

StandardError class Exception class

1/2 -> 0 (integer division) 1/2 -> 0.5, 1//2 -> 0

my_dict.keys() (and many others)
return lists

my_dict.keys()(and others) return dynamic
view that changes if underlying object changes
Licensed to Kerri Ross <pedbro@gmail.com>

276 CHAPTER 22 Moving from Python 2 to Python 3

3 Run code through the 2to3 conversion tool to create a new version of the code with several
fixes automatically applied.
The 2to3 tool will automatically fix the straightforward incompatibilities, like
print and raw_input, and it will flag some others that it can’t fix.

4 Run the tests on the new code using Python 3.x, and fix the failures.
Running the code’s tests is likely to yield failures. The tests may well fail to run
at all without fixing both the code and the tests. Fix and test until all tests pass.

In general, the first step, complete test coverage, is the biggest stumbling block for
most projects. But the time you spend adding tests will continue to pay off long after
the conversion is complete.

22.2 Testing with Python 2.6 and -3
Python 2.6 and later versions have a -3 command-line switch that will report obvious
incompatibilities in your code. In listing 22.1, we consider a small Python 2.x script,
with several elements that need to be changed to run correctly on Python 3.

""" example of conversion from Python 2.x to Python 3

"""

def write_file(filename, version, data):
 try:
 outfile = open(filename, "wb")
 outfile.write("%s\n" % (version))
 outfile.write(data)
 outfile.close()

 except StandardError, e:
 print e

def read_file(filename):
 infile = open(filename, "rb")
 file_version = infile.readline()
 data = infile.read()
 major_version = int(file_version[0])
 minor_version = int(file_version[2])

 if major_version <> 1 or minor_version > 5:
 raise Exception, "Wrong file version"

 infile.close()
 return file_version, data

if __name__ == "__main__":
 version = "1.1"
 filename = raw_input("Please enter a filename: ")
 write_file(filename, version, "this is test data")

Listing 22.1 File convert2_3.py
 print "File created, reading data from file"

Licensed to Kerri Ross <pedbro@gmail.com>

277Using 2to3 to convert the code

 new_version, data = read_file(filename)
 cents = 73L
 quarters = cents / 25
 print "%d cents contains %d quarters" % (cents, quarters)

 new_dict = {}
 if not new_dict.has_key(new_version):
 new_dict[new_version] = filename

This code doesn’t do much of anything, but it does contain a lot of fairly common bits
of code: getting a string from the user, opening a file, reading from the file, compar-
ing the contents of the file to a string, appending a string, handling errors, and so on.
Running this code using Python 2.6 with the -3 switch generates a couple of depreca-
tion warnings about using <> and dict.has_key:

doc@mac:~$ python2.6 -3 convert2_3.py
convert2_3.py:22: DeprecationWarning: <> not supported in 3.x; use !=
 if major_version <> 1 or minor_version > 5:
Please enter a filename: testfile
File created, reading data from file
convert2_3.py:35: DeprecationWarning: classic int division

 quarters = cents / 25
73 cents contains 2 quarters
convert2_3.py:39: DeprecationWarning: dict.has_key() not supported in 3.x;
➥ use the in operator
 if not new_dict.has_key(new_version):

Obviously, some other fixes need to be made. Both print and raw_input need to be
changed, and the exception handling needs to be tweaked, but those issues can be taken
care of automatically. Although some of the warnings generated by the -3 switch can also
be corrected by the conversion tool, it’s recommended that you fix all of its warnings before
taking the next step. In this case, that means changing these lines:

� In the read_file function, the <> should be replaced by !=.
� cents = 73L needs to become 73, because there is no long an integer type in

Python 3.x.
� cents / 25 needs to be changed to cents // 25 to return an integer number

of quarters.
� if not new_dict.has_key(new_version): needs to be rephrased to if

new_version not in new_dict: to eliminate the use of has_key.

 After we make those changes, the code should run without warnings.

22.3 Using 2to3 to convert the code
After you’ve fixed any warnings from running the code with the -3 parameter under
Python 2.6 or higher, the next step is to run the 2to3 tool on it to produce a version
for Python 3. 2to3 will make a number of automatic fixes, things like changing
raw_input to input, print to print(), and so on, but it’s unlikely that the converted

code will run without error.

Licensed to Kerri Ross <pedbro@gmail.com>

278 CHAPTER 22 Moving from Python 2 to Python 3

 The 2to3 tool takes either a file or a directory to convert and generates a patch file
of all the changes to be applied to convert to Python 3. If it’s unable to apply a fix for
a problem automatically, it prints a warning below the diff for that file. By default,
2to3 runs several fixers and more can be added; running 2to3 –l (that’s a lowercase
“el”) will show what fixers are available. If you want to exclude a particular fixer, using
the –x option followed by the fixer name will exclude it, as in the following example
where the has_key fixer is turned off:

doc@mac:~$ 2to3 –x has_key convert2_3.py

Using the –f option turns on fixers explicitly, with all enabling all the default fixers,
whereas using the fixer name enables only the fixer mentioned. If we want to enable
only the has_key fixer, we use

doc@mac:~$ 2to3 –f has_key convert2_3.py

And if we want to enable all the default fixers and the apply fixer, the command is

doc@mac:~$ 2to3 –f all –f apply convert2_3.py

Running 2to3 on our sample file gives us the diff in listing 22.2.

--- convert2_3.py (original)
+++ convert2_3.py (refactored)
@@ -9,8 +9,8 @@
 outfile.write(data)
 outfile.close()

- except StandardError, e:
- print e
+ except Exception as e:
+ print(e)

 def read_file(filename):
 infile = file(filename, "rb")
@@ -19,24 +19,24 @@
 major_version = int(file_version[0])
 minor_version = int(file_version[2])

- if major_version <> 1 or minor_version > 5:
- raise Exception, "Wrong file version"
+ if major_version != 1 or minor_version > 5:
+ raise Exception("Wrong file version")

 infile.close()
 return file_version, data

 if __name__ == "__main__":
 version = "1.1"
- filename = raw_input("Please enter a filename: ")
+ filename = input("Please enter a filename: ")

Listing 22.2 File convert2_3.diff
 write_file(filename, version, "this is test data")

Licensed to Kerri Ross <pedbro@gmail.com>

279Testing and common problems

- print "File created, reading data from file"
+ print("File created, reading data from file")
 new_version, data = read_file(filename)
- cents = 73L
+ cents = 73
 quarters = cents / 25
- print "%s cents contains %s quarters" % (cents, quarters)
+ print("%s cents contains %s quarters" % (cents, quarters))

 new_dict = {}
- if not new_dict.has_key(new_version):
+ if new_version not in new_dict:
 new_dict[new_version] = filename

We can use a patch tool to apply the changes to our source, or we can use 2to3’s –w
option to automatically write the changes back to the file while creating a backup copy
of the original.

22.4 Testing and common problems
As mentioned previously, there’s little chance that the automatic conversions per-
formed by the 2to3 program will be enough for the code to run correctly. In particu-
lar, places where the old code handled strings are likely to have problems, because
Python 2.x doesn’t make a distinction between strings and sequences of raw bytes, and
it’s next to impossible for any automated conversion tool to consistently make that dis-
tinction on its own.

 Listing 22.3 is our converted version of listing 22.2, with notes indicating all of the
problems that the automatic conversion didn’t fix.

""" example of conversion from Python 2.x to Python 3

"""

def write_file(filename, version, data):
 try:
 outfile = open(filename, "wb")
 outfile.write("%s\n"% (version))
 outfile.write(data)
 outfile.close()

 except Exception as e:
 print(e)

def read_file(filename):
 infile = file(filename, "rb")
 file_version = infile.readline()
 data = infile.read()
 major_version = int(file_version[0])
 minor_version = int(file_version[2])

Listing 22.3 File convert2_3_converted.py

write needs buffer
or bytes, not string

file isn’t available;
use open

q

Licensed to Kerri Ross <pedbro@gmail.com>

280 CHAPTER 22 Moving from Python 2 to Python 3

 if major_version != 1 or minor_version > 5:
 raise Exception("Wrong file version")

 infile.close()
 return file_version, data

if __name__ == "__main__":
 version = "1.1"
 filename = input("Please enter a filename: ")
 write_file(filename, version, "this is test data")
 print("File created, reading data from file")
 new_version, data = read_file(filename)
 cents = 73
 quarters = cents / 25
 print("%s cents contains %s quarters" % (cents, quarters))

 new_dict = {}
 if new_version not in new_dict:
 new_dict[new_version] = filename

file_version is a bytes object, so int(file_version[0]) yields 49, not 1 q. Divi-
sion returns an int in Python 2.x but a float in Python 3.x, so quarters is now 2.92
instead of 2 w.

 When we attempt to run this file with Python 3, it doesn’t run without errors,
mostly because of the difference between bytes and strings. As indicated in the
annotations, several errors aren’t caught by the conversion. Even when these errors
are fixed and the code runs, it doesn’t behave correctly, with both the conversion of a
single element of a bytes object and division behaving differently between the two
versions. If these problems occur in such a small script, you can imagine the possibili-
ties for error in a larger application. The moral is pretty clear: if you’re migrating
code to Python 3.x, you must have good test coverage, and you must test extensively.

22.5 Using the same code for 2 and 3
The core developers don’t expect that the same code base can be used on both
Python 2.x and 3.x. Although Python is flexible enough that in some cases it may be
possible to create code that can run on both Python 2.x and 3.x, it isn’t recom-
mended.

 It’s possible to import several features of Python 3, like division, into Python 2.x
by using the __future__ module; but even if you imported all the features of the
__future__ library, the differences in library structure, the distinction between
strings and Unicode, and so on all would make for code that would be hard to main-
tain and debug.

22.5.1 Using Python 2.5 or earlier

If attempting to use the same code for version 3.x and 2.6 and higher isn’t recom-
mended, trying to do the same with any earlier version of Python borders on insanity.
The differences between earlier versions of Python and Python 3 are large enough

w

Licensed to Kerri Ross <pedbro@gmail.com>

281Summary

that you’d spend more time making the code run than in designing and implement-
ing an application.

22.5.2 Writing for Python 3.x and converting back

Another way of using one code base for both platforms may be to go in the opposite
direction and write code for Python 3.x and convert it back to Python 2.x. As this book
is being written, a 3to2.py tool is being developed, with the idea that it will be both eas-
ier and more reliable to convert back to 2.x, possibly even as part of the install process,
if needed. Although this tool isn’t yet complete, it shows great promise for the future.

22.6 Summary
The incompatibility between Python 3 and previous versions is a major consideration
when you’re dealing with legacy code. Python provides both procedures and tools for
moving code from Python 2.x to Python 3, using the warnings available in Python 2.6
and higher and the 2to3 conversion tool, followed by ample testing. Migrating the
code Python 3 is probably the ideal long-term solution, but only if the code has ade-
quate test coverage to ensure the new version functions properly.
Licensed to Kerri Ross <pedbro@gmail.com>

Using Python libraries
Python has long proclaimed that one of its key advantages is its “batteries included”
philosophy. This means that a stock install of Python comes with a rich standard
library that lets you handle a wide variety of situations without the need to install
additional libraries. This chapter will give you a high-level survey of some of the
contents of the standard library as well as some suggestions on finding and install-
ing external modules.

23.1 “Batteries included”—the standard library
In Python, what’s considered the library consists of several different components. It

This chapter covers
■ Managing various data types—strings,

numbers, and more
■ Manipulating files and storage
■ Accessing operating system services
■ Using internet protocols and formats
■ Developing and debugging tools
■ Accessing PyPI, a.k.a. “the Cheese Shop”
■ Installing Python libraries using setup.py
282

contains built-in data types and constants that can be used without an import state-

Licensed to Kerri Ross <pedbro@gmail.com>

283“Batteries included”—the standard library

ment, like numbers and lists, as well as some built-in functions and exceptions. The
largest part of the library is an extensive collection of modules. If you have Python,
you also have libraries to manipulate diverse types of data and files, to interact with
your operating system, to write servers and clients for many internet protocols, and to
help develop and debug your code.

 What follows is a survey of the high points. Although most of the major modules are
mentioned, for the most complete and current information I recommend that you
spend some time on your own exploring the library reference that’s part of the Python
documentation. In particular, before you go in search of an external library, be sure to
scan through what Python already offers. You may be surprised at what you find.

23.1.1 Managing various data types

The standard library naturally contains support for Python’s built-in types, which we
touched on earlier. In addition, three other categories in the standard library deal
with various data types: string services, data types, and numeric modules.

 String services include the modules in table 23.1 that deal with bytes as well as
strings. The three main things these modules deal with are strings and text, sequences
of bytes, and Unicode operations.

The data types category is a diverse collection of modules covering various data types,
particularly time, date, and collections, as shown in table 23.2.

Table 23.1 String services modules

Module Description and possible uses

string Compare to string constants, like digits or whitespace; format
strings (see chapter 6)

re Search and replace text using regular expressions (see chapter 17)

struct Interpret bytes as packed binary data; read and write structured data
to/from files

difflib Helpers for computing deltas; find differences between strings or
sequences, create patches and diff files

textwrap Wrap and fill text; format text by breaking lines or adding spaces

Table 23.2 Data types modules

Module Description and possible uses

datetime, calendar Date, time, and calendar operations

collections Container data types

array Efficient arrays of numeric values
Licensed to Kerri Ross <pedbro@gmail.com>

284 CHAPTER 23 Using Python libraries

As the name indicates, the numeric and mathematical modules deal with numbers
and mathematical operations, and the most common of these are listed in table 23.3.
These modules have everything you need to create your own numeric types and han-
dle a wide range of math operations.

23.1.2 Manipulating files and storage

Another broad category in the standard library covers files, storage, and data persis-
tence and is summarized in table 23.4. It ranges from modules for file access to vari-
ous modules for data persistence and compression and handling special file formats.

sched Event scheduler

queue Synchronized queue class

copy Shallow and deep copy operations

pprint Data pretty printer

Table 23.3 Numeric and mathematical modules

Module Description and possible uses

numbers Numeric abstract base classes

math, cmath Mathematical functions for real and complex numbers

decimal Decimal fixed-point and floating-point arithmetic

fractions Rational numbers

random Generate pseudo-random numbers and choices; shuffle sequences

itertools Functions that create iterators for efficient looping

functools Higher-order functions and operations on callable objects

operator Standard operators as functions

Table 23.4 File and storage modules

Module Description and possible uses

os.path Common pathname manipulations

fileinput Iterate over lines from multiple input streams

filecmp Compare files and directories

Table 23.2 Data types modules

Module Description and possible uses

 (continued)
tempfile Generate temporary files and directories

Licensed to Kerri Ross <pedbro@gmail.com>

285“Batteries included”—the standard library

23.1.3 Accessing operating system services

This category is another broad one, containing modules for dealing with your operat-
ing system. As shown in table 23.5, this category includes tools for handling command-
line parameters, redirecting file and print output and input, writing to log files, run-
ning multiple threads or processes, and loading non-Python (usually C) libraries for use
in Python.

glob, fnmatch UNIX-style pathname and filename pattern handling

linecache Random access to text lines

shutil High-level file operations

pickle, shelve Python object serialization and persistence

sqlite3 DB-API 2.0 interface for SQLite databases

zlib, gzip, bz2, zipfile, tarfile Work with various archive files and compressions

csv Read and write CSV files

configparser Configuration file parser; read/write Windows-style
configuration .ini files

Table 23.5 Operating system modules

Module Description

os Miscellaneous operating system interfaces

io Core tools for working with streams

time Time access and conversions

optparse Powerful command-line option parser

logging Logging facility for Python

getpass Portable password input

curses Terminal handling for character-cell displays

platform Access to underlying platform’s identifying data

ctypes Foreign function library for Python

select Waiting for I/O completion

threading Higher-level threading interface

multiprocessing Process-based threading interface

subprocess Subprocess management

Table 23.4 File and storage modules

Module Description and possible uses

 (continued)
Licensed to Kerri Ross <pedbro@gmail.com>

286 CHAPTER 23 Using Python libraries

23.1.4 Using internet protocols and formats

The internet protocols and formats category is concerned with encoding and decod-
ing the many standard formats used for data exchange on the internet, from MIME
and other encodings to JSON and XML. It also has modules for writing servers and cli-
ents for common services, particularly HTTP, and a generic socket server for writing
servers for custom services. The most commonly used are listed in table 23.6.

23.1.5 Development and debugging tools and runtime services

Python has several modules to help you debug, test, modify, and otherwise interact
with your Python code at runtime. As shown in table 23.7, this includes two different
testing tools, profilers, modules to interact with error tracebacks, the interpreter’s gar-
bage collection, and so on, as well as modules that let you tweak the importing of
other modules.

Table 23.6 Modules supporting internet protocols and formats

Module Description

socket, ssl Low-level networking interface and SSL wrapper
for socket objects

email Email and MIME handling package

json JSON encoder and decoder

mailbox Manipulate mailboxes in various formats

mimetypes Map filenames to MIME types

base64, binhex, binascii, quopri, uu Encode/decode files or streams with various
encodings

html.parser, html.entities Parse HTML and XHTML

xml.parsers.expat, xml.dom,
xml.sax, xml.etree.ElementTree

Various parsers and tools for XML

cgi, cgitb Common Gateway Interface support

wsgiref WSGI utilities and reference implementation

urllib.request, urllib.parse Open and parse URLs

ftplib, poplib, imaplib, nntplib,
smtplib, telnetlib

Clients for various internet protocols

socketserver Framework for network servers

http.server HTTP servers

xmlrpc.client, xmlrpc.server XML-RPC client and server
Licensed to Kerri Ross <pedbro@gmail.com>

287Adding more Python libraries

23.2 Moving beyond the standard library
Although Python’s “batteries included” philosophy and well-stocked standard library
mean that you can do a lot with Python out of the box, there will inevitably come a sit-
uation where you need some functionality that doesn’t come with Python. This sec-
tion surveys your options when you need to do something that isn’t in the standard
library.

23.3 Adding more Python libraries
Finding a Python package or module can be as easy as entering the functionality
you’re looking for, like “mp3 tags” and “Python” into a search engine, and then sort-
ing through the results. If you’re lucky, you may find the module you need packaged
for your OS—with an executable Windows or Mac OS X installer or a package for your
Linux distribution.

Table 23.7 Development, debugging, and runtime modules

Module Description

pydoc Documentation generator and online help system

doctest Test interactive Python examples

unittest Unit testing framework

test.support Utility functions for tests

pdb Python debugger

profile, cProfile Python profilers

timeit Measure execution time of small code snippets

trace Trace or track Python statement execution

sys System-specific parameters and functions

atexit Exit handlers

__future__ Future statement definitions—features to be added to
Python

gc Garbage collector interface

inspect Inspect live objects

imp Access the import internals

zipimport Import modules from zip archives

modulefinder Find modules used by a script
Licensed to Kerri Ross <pedbro@gmail.com>

288 CHAPTER 23 Using Python libraries

 This is one of the easiest ways to add a library to your Python installation, because
the installer or your package manager takes care of all the details of adding the mod-
ule to your system correctly.

 In general, such prebuilt packages aren’t the rule for Python software. Such pack-
ages tend to be a bit older, and there’s less flexibility in where and how they’re
installed.

23.4 Installing Python libraries using setup.py
If you need a third-party module that isn’t prepackaged for your platform, you’ll have
to turn to its source distribution. Installing even a single Python module correctly can
involve a certain amount of hassle in dealing with Python’s paths and your system’s
permissions, which makes a standard installation system helpful. The current system
uses distutils, which is a module in the standard library. Source distributions built
to use distutils in the standard way should have the name and version number of
the package in the archive name, something like spam-0.1.zip, which unpacks into a
similarly named directory. After it’s unpacked, the distribution contains a setup.py
script and a README.txt or README file. That README file includes the instruction
that to install the package, you only need to run python setup.py install in that
directory from a command line.

 If you happen to have more than one version of Python installed, it’s important to
remember that you need to run setup.py with the same version of Python that you
intend to use with the new package, and you also need to run setup.py with sufficient
permissions to install software on your system.

 For most situations, python setup.py install is all you need to know about a
distutils install. But if you need to install to a different location, possibly because
you don’t have administrator access on that particular system, you can use the home
scheme.

23.4.1 Installing under the home scheme

The home scheme is named after the UNIX idea of having a personal home directory
for both software and data. In spite of the UNIX-inspired name, this scheme works on
any OS.

 To install under the home scheme, you need to give the setup.py script the --home
option followed by the location you want use as the root of your installation. For
example, to install into /home/vern, we use

python setup.py install --home=/home/vern

In this case, after installation, the library modules will be in /home/vern/lib/python,
any executable scripts should be in /home/vern/bin, and any data belonging to the
package will be in /home/vern/share. To install on a Windows system into C:\Docu-
ments and Settings\vern, use the command

python setup.py install --home="C:\Documents and Settings\vern"
Licensed to Kerri Ross <pedbro@gmail.com>

289Summary

which will install into C:\Documents and Settings\vern\lib, C:\Documents and Set-
tings\vern\bin, and so on. Note that you need to use quotes around any directory
names that contain spaces.

 As mentioned previously, this scheme is particularly useful if you’re working on a
system where you don’t have sufficient administrator rights to install software, or if
you want to install a different version of a module.

23.4.2 Other installation options

distutils installations can be tweaked in a wide variety of ways. There are other ways
to control the locations installed into, the search path Python uses to locate modules,
and so on. If your needs go beyond the basic installation methods discussed here, a
good place to start is “Installing Python Modules,” which can be found in the Python
documentation.

23.5 PyPI, a.k.a. “the Cheese Shop”
Although distutils packages get the job done, there’s one catch—you have to find
the correct package, which can be a chore. And after you’ve found a package, it would
be nice to have a reasonably reliable source from where to download that package.

 To meet this need, there have been different Python package repositories over the
years, and currently the official (but by no means the only) repository for Python code
is the Python Package Index, or PyPI (also known as “the Cheese Shop”) on the
Python website. You can access it from a link on the main page or directly at http://
pypi.python.org. PyPI contains over 6,000 packages for various Python versions, listed
by date added and name, but also searchable and broken down by category.

 PyPI is the logical next stop if you can’t find the functionality you want with a
search of the standard library.

23.6 Summary
Python has a rich standard library that covers more common situations than many
other languages, and you should check what’s in the standard library carefully before
looking for external modules. If you do need an external module, prebuilt packages
for your OS are the easiest option, but they’re sometimes older and often hard to find.
If you can’t find a prebuilt package, the standard way to install from source is using
setup.py from the distutils package. In any case, the logical first step in searching
for external modules is the Python Package Index, or PyPI.
Licensed to Kerri Ross <pedbro@gmail.com>

Network, web, and
database programming
By this point, we’ve surveyed a lot of what Python can do. The final area to examine
is one of the most important: using Python to build web applications that serve
dynamic content. Many libraries and frameworks for creating web applications are
available, in many languages—Java, PHP, Perl, and Ruby to name a few. As web
applications continue to evolve and increase in importance, Python’s role in this
space continues to grow.

 Dynamic web applications typically store their content in databases and use the
results of queries on those databases to generate page content dynamically. Various
templating libraries and application frameworks are commonly used to handle
URLs and format content. In this chapter, we’ll look at the pieces of this process

This chapter covers
■ Accessing databases in Python
■ Network programming in Python
■ Creating Python web applications
■ Writing a sample project: creating a message

wall
290

Licensed to Kerri Ross <pedbro@gmail.com>

291Accessing databases in Python

using simple examples. When you see how the pieces fit together in Python, using
almost any combination of database and application framework is possible.

24.1 Accessing databases in Python
Database access is a large part of many applications, including dynamic web applica-
tions. By using external modules, Python can access most popular databases, and in
general the interface for each follows the DB-API 2.0 standard database specification
detailed in PEP (Python Enhancement Proposal) 249. The specification calls for the
use of a connection object to manage the connection to the database and for the use
of cursor objects to manage the interaction with the database, for fetching data from
the database and updating its contents.

 The fact that Python database libraries conform to the DB-API 2.0 spec has a couple
of obvious advantages. For one thing, writing code for different databases is easier,
because the general rules are the same. The other advantage is that it’s fairly easy to pro-
totype an application using a lightweight database and then switch the application over
to a production database after the basic design of the application has been finalized.

24.1.1 Using the sqlite3 database

Although there are Python modules for many databases, for the following examples
we’ll look at the one that comes included with Python: sqlite3. Although not suited for
large, high-traffic applications, sqlite3 has two advantages: first, because it’s part of the
standard library it can be used anywhere you need a database, without worrying about
adding dependencies; second, sqlite3 stores all of its records in a local file, so it doesn’t
need both a client and server, like MySQL or other common databases. These features
make sqlite3 a handy option for both smaller applications and quick prototypes.

 To use a sqlite3 database, the first thing you need is a connection object. Getting a
connection object requires only calling the connect function with the name of file
that will be used to store the data:

>>> import sqlite3
>>> conn = sqlite3.connect("datafile")

It’s also possible to hold the data in memory by using ":memory:" as the filename. For
storing Python integers, strings, and floats, nothing more is needed. If you want
sqlite3 to automatically convert query results for some columns into other types, it’s
useful to include the detect_types parameter set to sqlite3.PARSE_DECLTYPES|
sqlite3.PARSE_COLNAMES, which will direct the connection object to parse the name
and types of columns in queries and attempt to match them with converters you’ve
already defined.

 The second step is to create a cursor object from the connection:

>>> cursor = conn.cursor()
>>> cursor
<sqlite3.Cursor object at 0xb7a12980>
Licensed to Kerri Ross <pedbro@gmail.com>

292 CHAPTER 24 Network, web, and database programming

At this point, you’re able to make queries against the database. In our current situa-
tion, because there are no tables or records in the database yet, we need to create one
and insert a couple of records:

>>> cursor.execute("create table test (name text, count integer)")
>>> cursor.execute("insert into test (name, count) values ('Bob', 1)")
>>> cursor.execute("insert into test (name, count) values (?, ?)",
... ("Jill", 15))

The last insert query illustrates the preferred way to make a query with variables;
rather than constructing the query string, it’s more secure to use a ? for each variable
and then pass the variables as a tuple parameter to the execute method. The advan-
tage is that you don’t need to worry about incorrectly escaping a value; sqlite3 takes
care of it for you.

 You can also use variable names prefixed with : in the query and pass in a corre-
sponding dictionary with the values to be inserted:

>>> cursor.execute("insert into test (name, count) values (:username, \
 :usercount)", {"username": "Joe", "usercount": 10})

After a table is populated, you can query the data using SQL commands, again using
either ? for variable binding or names and dictionaries:

>>> result = cursor.execute("select * from test")
>>> print(result.fetchall())
[('Bob', 1), ('Jill', 15), ('Joe', 10)]
>>> result = cursor.execute("select * from test where name like :name",
... {"name": "bob"})
>>> print(result.fetchall())
[('Bob', 1)]
>>> cursor.execute("update test set count=? where name=?", (20, "Jill"))
>>> result = cursor.execute("select * from test")
>>> print(result.fetchall())
[('Bob', 1), ('Jill', 20), ('Joe', 10)]

In addition to the fetchall method, the fetchone method gets one row of the result
and fetchmany returns an arbitrary number of rows. For convenience, it’s also possi-
ble to iterate over a cursor object’s rows similar to iterating over a file:

>>> result = cursor.execute("select * from test")
>>> for row in result:
... print(row)
...
('Bob', 1)
('Jill', 20)
('Joe', 10)

Finally, by default, sqlite3 doesn’t immediately commit transactions. That means you
have the option of rolling back a transaction if it fails, but it also means you need to
use the connection object’s commit method to ensure that any changes made have
been saved. This is a particularly good idea before you close a connection to a data-
base, because the close method doesn’t automatically commit any active transactions:
Licensed to Kerri Ross <pedbro@gmail.com>

293Network programming in Python

>>> cursor.execute("update test set count=? where name=?", (20, "Jill"))
>>> conn.commit()
>>> conn.close()

Table 24.1 gives an overview of the most common operations on a sqlite3 database.

These operations are usually all you need to manipulate a sqlite3 database. Of course,
several options let you control their precise behavior; see the Python documentation
for more information.

24.2 Network programming in Python
The Python standard library has everything you need to handle the standard internet
protocols and to create both clients and servers. The following examples use HTTP,
but similar patterns are used in most protocols.

24.2.1 Creating an instant HTTP server

The standard library has a number of modules for writing servers for various network
protocols. In many cases, you can create a server in only a few lines of code. Suppose
we want to make a particular folder’s files freely accessible via HTTP, perhaps to share
a few files with coworkers without the hassle of setting up a formal repository or file
share. With Python, we don’t need to install and configure a server. With a few lines of
code, we can create a temporary server on the fly:

>>> from http.server import HTTPServer, SimpleHTTPRequestHandler
>>> server = HTTPServer(("", 8000), SimpleHTTPRequestHandler)
>>> server.serve_forever()

This server will serve the contents of the folder it’s run in on port 8000 for all active
network interfaces. The tuple ("", 8000) sets the address and port for the server.
Leaving the address an empty string allows it to use all of the machine’s network

Table 24.1 Common database operations

Operation Sqlite3 command

Create a connection to a database conn = sqlite3.connect(filename)

Create a cursor for a connection Cursor = conn.cursor()

Execute a query with the cursor cursor.execute(query)

Return the results of a query cursor.fetchall(),cursor.fetchmany(num_row
s), cursor.fetchone()
for row in cursor:

Commit a transaction to a database conn.commit()

Close a connection conn.close()
addresses, and the 8000 specifies the port. The second parameter to HTTPServer is the

Licensed to Kerri Ross <pedbro@gmail.com>

294 CHAPTER 24 Network, web, and database programming

request handler; and SimpleHTTPRequestHandler is a subclass of BaseHTTPRequest-
Handler, which is written to serve files from the current directory. In particular, Sim-
pleHTTPRequestHandler defines do_GET and do_HEAD methods, which map the
requests to the contents of the current folder, returning either directory listings or the
contents of a file, as needed.

 Another predefined request-handler class, CGIHTTPRequestHandler, serves files or
the output of CGI scripts in the current folder. CGIHTTPRequestHandler defines an addi-
tional method, do_POST, which responds to POST requests on CGI scripts. Any of the
request-handler classes can be subclassed to create the particular behavior you desire.

24.2.2 Writing an HTTP client

Writing Python code to interact with an HTTP server is also quite easy. The
urllib.request module is designed to enable interaction with URLs in all their real-
world complexity, including authentication, cookies, redirections, and the like.

 But for all of its power and options, basic interactions with the urllib.request
module are simple. The URL is opened and returns a file-like object, which you can
read and treat like any other file. The object returned also has two additional meth-
ods: geturl, which returns the URL retrieved, so you can tell if the original request
was redirected; and info, which returns the page’s headers. For example, if we were to
leave our simple HTTP server running and open another Python interactive shell, we
could access the server in this way:

>>> from urllib.request import urlopen
>>> url_file = urlopen("http://localhost:8000")
>>> print(url_file.geturl())
http://localhost:8000
>>> print(url_file.info())
Server: SimpleHTTP/0.6 Python/3.1.1
Date: Sat, 06 Jun 2009 20:28:13 GMT
Content-type: text/html; charset=utf-8
Content-Length: 15395

>>> for line in url_file.readlines():
... print(line)
...
b'<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 3.2 Final//EN"><html>\n'
b'<title>Directory listing for /</title>\n'
b'<body>\n'
b'<h2>Directory listing for /</h2>\n'
b'<hr>\n'
b'\n'
...
file names would be in HTML links in list items here...
...
b'\n'
b'<hr>\n'
b'</body>\n'
b'</html>\n'
Licensed to Kerri Ross <pedbro@gmail.com>

295Creating a Python web application

24.3 Creating a Python web application
Although the http.server module has the basics of a web server, you need more than
the basics to write a full-featured web application. You need to manage users, authen-
tication, and sessions; you need a way to generate HTML pages. The solution to this is
to use a web framework, and over the years many frameworks have been created in
Python, leading to the present generation, which includes Zope and Plone, Django,
TurboGears, web2py, and many more.

 One thing to keep in mind in considering web applications is that the web server func-
tionality—the part that processes HTTP requests and returns responses—isn’t necessar-
ily (or even usually) closely tied to the web application itself. Most web frameworks
today can either run their own HTTP servers or rely on an external server, depending
on the situation. For development, it’s often preferred to use the application’s internal
server, because there’s less to install and set up. For heavy traffic in production, often
an external server handles the load better and can be tweaked as needed.

24.3.1 Using the web server gateway interface

In the early days of Python web frameworks, there was little standardization of how
web applications interacted with web servers. Consequently, the choice of a web
framework often limited the possible web servers you could use and made migration
from one to the other difficult. The WSGI (“whiz-ghee”), or web server gateway inter-
face, specification was created to provide a standard for the interaction of web server
and applications, so that it would be easier to use a web application and framework on
different web servers. Figure 24.1 is a simple schematic of how a WSGI application
combines with a server.

You need to know the details of WSGI design only if you’re writing web servers or web
application frameworks, but it’s useful to understand the basic idea of how a WSGI
application is set up.

24.3.2 Using the wsgi library to create a basic web app

Although WSGI is technically more of a specification than a library, the standard
library does include a reference implementation of WSGI server and utilities in the
wsgiref module. It includes a simple server implementation as well as various utilities.
Creating a basic WSGI application using wsgiref.simple_server is almost as easy as
our bare-bones HTTP server earlier. The one thing you need to pass to the server when
it’s created is a callable application object that receives two parameters from the server:

Figure 24.1 How a WSGI
application works with a server
a dictionary of environment variables and a callable object to receive HTTP status and

Licensed to Kerri Ross <pedbro@gmail.com>

296 CHAPTER 24 Network, web, and database programming

headers for the response. Here’s a basic “Hello World” WSGI application, based on the
one in the standard library documentation:

from wsgiref.simple_server import make_server

def hello_world_app(environ, start_response):
 status = b'200 OK'
 headers = [(b'Content-type', b'text/plain; charset=utf-8')]
 start_response(status, headers)

 return [b"Hello World"]

httpd = make_server('', 8000, hello_world_app)
print("Serving on port 8000...")

httpd.serve_forever()

If you run this script and open a browser to http://127.0.0.1:8000, you should be
greeted by “Hello World.”

 The two main parts of this are hello_world_app and the creation of the server
itself. The creation of the server is easy: a call to make_server:make_server, passing in
the application object, and the address and port for the server. In this example the
address is blank, so the server will listen on all active interfaces. After the server has
been created, you start it by calling its serve_forever:serve_forever method; or you
can make it serve only one request and quit by using the handle_request:handle_
request method.

 Creating the application object, hello_world_app, is more involved but still fairly
simple, because it’s a function with the two required parameters, environ and
start_response. The former is a CGI-style dictionary of variables from the server,
which in this example is ignored. The second parameter, start_response, is a call-
able object that the application uses to send the HTTP status and headers of its
response. In this case, as usual, we send a status of '200 OK' and the headers indicat-
ing that this response will be plain text, encoded as UTF-8. We’ll be using this basic
implementation as the starting point to create a simple “message wall” application at
the end of this chapter.

24.3.3 Using frameworks to create advanced web apps

The WSGI specification goes a long way toward standardizing the way that Python web
applications can interact with web servers and handle HTTP requests and responses. It
doesn’t specify how applications behave internally, however, nor does it mandate what
the application does with the requests it receives or how it generates its responses.
This means that with a bare WSGI application a lot must be implemented. And a lot of
that is repetitive: handling URLs, extracting the information from web forms, creating
HTML pages, inserting dynamic content into those pages, and the like. Although it’s
possible to code everything by hand or to assemble and/or write a custom collection

HTTP
status

Returned object
will be printed

Serves until
process is killed
of modules to handle these chores, for most projects it’s preferable to use an existing

Licensed to Kerri Ross <pedbro@gmail.com>

297Sample project—creating a message wall

web framework. The most popular frameworks include a server (good enough for at
least development and testing) and the machinery for creating and customizing web
applications.

 At the time of this writing, none of the major frameworks have been ported to
Python 3, but the work is in progress; Python 3 versions of all the major web app
frameworks should be ready by the time Python 3.2 is released in the summer of 2010.

24.4 Sample project—creating a message wall
To see what you can do with a WSGI application, let’s create a simple example: a mes-
sage wall where the messages are stored in a sqlite3 database and the URL is used to
indicate the user and tags being searched for. Note that this is a simple example, and
we won’t be implementing any kind of security, session management, and so on, so
don’t use this in production. This application is intended to show you the possibilities
for writing web applications in Python.

 As you’ve seen, we need to create an application object to pass to the server when
we create it. This application needs to be able to do the following:

� Retrieve messages written by a user, and display them along with their ages: for
example, “5 minutes ago,” “2 days ago,” and so on

� Retrieve messages addressed to a user (messages beginning with @user), and
display them and their ages

� Display messages in chronological order from newest to oldest
� Allow users to enter messages and store them in the database

24.4.1 Creating the database

The first thing we need to do is to create the sqlite3 database for the app. We’ll need
three fields in the messages table: the user, the message itself, and its timestamp. Both
the user and the message are naturally text fields in sqlite3 and will map automatically
to strings in Python. For the timestamp, it would be convenient if we could read the
values as Python datetime values. Fortunately, Python’s sqlite3 module includes con-
verters for date and datetime types; we’ll need to activate type detection on the con-
nection object in order to have a timestamp database type available. To set up the
database, we need to enter the following from a Python shell in the directory where
we want to run our database:

>>> import sqlite3
>>> conn = sqlite3.connect("messagefile", \
... detect_types=sqlite3.PARSE_DECLTYPES | sqlite3.PARSE_COLNAMES)
>>> cursor = conn.cursor()
>>> cursor.execute("create table messages(user text, message text, “
... “ts timestamp)")
>>> conn.commit()
>>> conn.close()

This creates a database in the file messagefile and creates a table called messages with

text fields for the user and the message and a timestamp field called ts.

Licensed to Kerri Ross <pedbro@gmail.com>

298 CHAPTER 24 Network, web, and database programming

24.4.2 Creating an application object

The next step is to create the application. First, let’s write the application to display
the title Message Wall, as shown in listing 24.1.

from wsgiref.simple_server import make_server

def message_wall_app(environ, start_response):
 status = b'200 OK'
 headers = [(b'Content-type', b'text/html; charset=utf-8')]
 start_response(status, headers)

 return ["<h1>Message Wall</h1>"]

httpd = make_server('', 8000, message_wall_app)
print("Serving on port 8000...")

httpd.serve_forever()

Running this program gets a similar result to our early simple example. When you visit
127.0.0.1:8000 with a web browser, you see only “Message Wall.” Note, however, that
we did change the type of the response in our header from text/plain to text/html.

24.4.3 Adding a form and retrieving its contents

With the basic application working, it’s time to add its functionality. The first thing we
can do is add a form for message submissions. This will require two things: sending
the HTML code to make the form and then retrieving its values when the user submits
the form. Sending the HTML code means that we’ll be creating longer and longer
strings to return from our application object; rather than using string concatenation,
we can use a StringIO object from the io library to let us print our output as if we
were writing it to a file and then return it as one string.

 Retrieving the values of the form can happen only when values are submitted,
which makes the request’s REQUEST_METHOD be POST instead of the normal GET. When
that happens, we can get the values from the form by using the CONTENT_LENGTH item
from environ to find out how long the form string is and then reading that amount
from environ’s wsgi.input. At this point, we aren’t saving the form data, but we’ll
print it to the browser so that we can see what’s going on (see listing 24.2).

from wsgiref.simple_server import make_server
from io import StringIO

def message_wall_app(environ, start_response):
 output = StringIO()
 status = b'200 OK' # HTTP Status
 headers = [(b'Content-type', b'text/html; charset=utf-8')]

Listing 24.1 File message_wall01.py

Listing 24.2 File message_wall02.py

HTTP
status

Returned object
will be printed

Serves until
process is killed
 start_response(status, headers)

Licensed to Kerri Ross <pedbro@gmail.com>

299Sample project—creating a message wall

 print("<h1>Message Wall</h1>", file=output)
 if environ['REQUEST_METHOD'] == 'POST':
 size = int(environ['CONTENT_LENGTH'])
 post_str = environ['wsgi.input'].read(size)
 print(post_str, "<p>", file=output)
 print('<form method="POST">User: <input type="text" '
 'name="user">Message: <input type="text" '
 'name="message"><input type="submit" value="Send"></form>',
 file=output)
 return [output.getvalue()]

httpd = make_server('', 8000, message_wall_app)
print("Serving on port 8000...")

httpd.serve_forever()

We use the print function’s file parameter to print to StringIO object q. We then
return the entire contents of output by calling its getvalue method w.

 Figure 24.2 is a screen shot of the browser window, with the server running in a
command window behind it.

Note that the value of the form fields is returned as a single bytes object.

24.4.4 Saving the form’s contents

When we have a message, we need to save the message to the database. To do this,
we’ll need to parse the value we read from the form and then use a sqlite3 query to

Checks for POST
instead of GET

q
w

Figure 24.2 The browser
and server after a form POST
store it in the database. To make this easier, we’ve added a helper function to parse

Licensed to Kerri Ross <pedbro@gmail.com>

300 CHAPTER 24 Network, web, and database programming

the form string into a dictionary, and we’ve added the current timestamp to that dic-
tionary. Then, the dictionary is used as the parameter for a SQL query to save the mes-
sage to the database (see listing 24.3).

from wsgiref.simple_server import make_server
from io import StringIO
import sqlite3
import datetime

def get_form_vals(post_str):
 form_vals = {item.split("=")[0]: item.split("=")[1] for item
 in post_str.decode().split("&")}
 return form_vals

def message_wall_app(environ, start_response):
 output = StringIO()
 status = b'200 OK' # HTTP Status
 headers = [(b'Content-type', b'text/html; charset=utf-8')]
 start_response(status, headers)
 print("<h1>Message Wall</h1>", file=output)
 if environ['REQUEST_METHOD'] == 'POST':
 size = int(environ['CONTENT_LENGTH'])
 post_str = environ['wsgi.input'].read(size)
 form_vals = get_form_vals(post_str)
 form_vals['timestamp'] = datetime.datetime.now()
 print(form_vals, "<p>", file=output)
 cursor.execute("insert into messages (user, message, ts) values "
 "(:user, :message, :timestamp)", form_vals)
 print('<form method="POST">User: <input type="text" '
 'name="user">Message: <input type="text" '
 'name="message"><input type="submit" value="Send"></form>',
 file=output)
 return [output.getvalue()]

httpd = make_server('', 8000, message_wall_app)
print("Serving on port 8000...")

conn = sqlite3.connect("messagefile")
cursor = conn.cursor()
httpd.serve_forever()

We use a dictionary comprehension to transform post_str into a dictionary q.
Then, we add a timestamp to the form_vals dictionary w. Sqlite3 connection and
cursor objects are created only once for an application e.

24.4.5 Parsing the URL and retrieving messages

What remains is to retrieve messages from or addressed to a particular user. As
described in our requirements, a message addressed to a user will begin with @ and
that user’s username. Also shown in the specs, the desired way of indicating the user is

Listing 24.3 File message_wall03.py

q

w

e

to append the username to the base URL. To get all messages to user vceder, for

Licensed to Kerri Ross <pedbro@gmail.com>

301Sample project—creating a message wall

example, that username would be added to the URL, which in the case of our local-
host server would be http://localhost:8000/vceder.

 That means we need to get the PATH_INFO:PATH_INFO from the request, which is
anything beyond the base URL, and split it on/into fields. We can use Python’s flexible
tuple unpacking to put the first field into a username variable and anything beyond
the first field into a tags list, so that we can easily add tagging later.

 In this case, it’s simpler to create a query using ? to mark the variables. We can cre-
ate a tuple of (user, "@"+user+"%") to hold the values, with the first part of the
query looking for an exact match on the username and the second part being a match
with any message that starts with an @ and the username.

 We’ve also taken care of a couple of other issues. First, a helper function
message_table puts any matching records from the query into an HTML table. Sec-
ond, the post_str variable is now decoded from a bytes object to a string, and it also
has any quoting removed with the unquote_plus function from the urllib.parse
library (see listing 24.4).

from wsgiref.simple_server import make_server
from io import StringIO
from urllib.parse import unquote_plus
import sqlite3
import datetime

def get_form_vals(post_str):
 form_vals = {item.split("=")[0]: item.split("=")[1] for item \
 in post_str.split("&")}
 return form_vals

def message_table(messages):
 table = "<table>\n"
 for message in messages:
 row_str = "<tr><td>{0}</td><td>{1}</td><td>{2}</td></tr>\n"
 table += row_str.format(message[2], message[0], message[1])
 table += "</table>"
 return table

def message_wall_app(environ, start_response):
 from io import StringIO
 output = StringIO()
 status = b'200 OK' # HTTP Status
 headers = [(b'Content-type', b'text/html; charset=utf-8')]
 start_response(status, headers)
 print("<h1>Message Wall</h1>", file=output)
 if environ['REQUEST_METHOD'] == 'POST':
 size = int(environ['CONTENT_LENGTH'])
 post_str = environ['wsgi.input'].read(size)
 post_str = unquote_plus(post_str.decode())
 form_vals = get_form_vals(post_str)

Listing 24.4 File message_wall04.py

q
 form_vals['timestamp'] = datetime.datetime.now()

Licensed to Kerri Ross <pedbro@gmail.com>

302 CHAPTER 24 Network, web, and database programming

 cursor.execute("""insert into messages (user, message, ts) values
 (:user, :message, :timestamp)""", form_vals)
 path_vals = environ['PATH_INFO'][1:].split("/")
 user,*tag = path_vals
 cursor.execute("""select * from messages where user like ? or message
 like ? order by ts""", (user, "@" + user + "%"))
 print(message_table(cursor.fetchall()), "<p>", file=output)

 print('<form method="POST">User: <input type="text" '
 'name="user">Message: <input type="text" '
 'name="message"><input type="submit" value="Send"></form>',
 file=output)
 return [output.getvalue()]

httpd = make_server('', 8000, message_wall_app)
print("Serving on port 8000...")

conn = sqlite3.connect("messagefile")
cursor = conn.cursor()
httpd.serve_forever()

Here we decode from bytes to string and unquote q. We read and parse PATH_INFO
for username w. Then, we query the database for matching messages e.

 Figure 24.3 is a screenshot of the server and browser after a message has been
posted.

w

e

Figure 24.3 Browser and
server after a message POST
Licensed to Kerri Ross <pedbro@gmail.com>

303Sample project—creating a message wall

If you compare the timestamp of the message in the browser and the time of the POST
statement in the server’s command window, you can see that the last message has just
been posted.

24.4.6 Adding an HTML wrapper

If we were to use our browser’s View Source feature to look at the HTML this applica-
tion is generating, we’d see that we’re not returning complete pages. Instead, we’re
returning only the HTML code for the contents of the page, with no beginning or end.
The last step is to wrap our output in HTML headers and footers to make it a more
legal HTML page. To do that, we can add some variables to hold header and footer
strings and a little function to put everything together (listing 24.5).

from wsgiref.simple_server import make_server
from io import StringIO
from urllib.parse import unquote_plus
import sqlite3
import datetime

header = "<html><header> <title>Message Wall</title></header><body>"
footer = "</body></html>"

def html_page(content):
 page = "%s\n%s\n%s" % (header, content, footer)
 return page

def get_form_vals(post_str):
 form_vals = {item.split("=")[0]: item.split("=")[1] for item \
 in post_str.split("&")}
 return form_vals

def message_table(messages):
 table = "<table>\n"
 for message in messages:
 row_str = "<tr><td>{0}</td><td>{1}</td><td>{2}</td></tr>\n"
 table += row_str.format(message[2], message[0], message[1])
 table += "</table>"
 return table

def message_wall_app(environ, start_response):
 from io import StringIO
 output = StringIO()
 status = b'200 OK' # HTTP Status
 headers = [(b'Content-type', b'text/html; charset=utf-8')]
 start_response(status, headers)
 print("<h1>Message Wall</h1>", file=output)
 if environ['REQUEST_METHOD'] == 'POST':
 size = int(environ['CONTENT_LENGTH'])
 post_str = unquote_plus(environ['wsgi.input'].read(size).decode())

Listing 24.5 File message_wall05.py
Licensed to Kerri Ross <pedbro@gmail.com>

304 CHAPTER 24 Network, web, and database programming

 form_vals = get_form_vals(post_str)
 form_vals['timestamp'] = datetime.datetime.now()
 cursor.execute("""insert into messages (user, message, ts) values
 (:user, :message, :timestamp)""", form_vals)
 path_vals = environ['PATH_INFO'][1:].split("/")
 user, *tag = path_vals
 cursor.execute("""select * from messages where user like ? or message
 like ? order by ts""", (user, "@" + user + "%"))
 print(message_table(cursor.fetchall()), "<p>", file=output)

 print('<form method="POST">User: <input type="text" '
 'name="user">Message: <input type="text" '
 'name="message"><input type="submit" value="Send"></form>',
 file=output)
 return [html_page(output.getvalue())]

httpd = make_server('', 8000, message_wall_app)
print("Serving on port 8000...")

conn = sqlite3.connect("messaging")
cursor = conn.cursor()
httpd.serve_forever()

Although it works fine for a tiny demo application, this method of applying HTML for-
matting can become tedious as pages and their contents get more complex. In addi-
tion, hand-coding the generation of HTML can make designing the appearance of the
page doubly burdensome, because whoever is doing it must be both a programmer
and a designer. Obviously, this example suffers from a plain look that could be dressed
up with advanced HTML code. Web application frameworks use some sort of templat-
ing system to handle formatting so that you don’t need to worry about it.

24.5 Summary
The previous example illustrates the basics of how Python combines databases and the
WSGI standard to create dynamic web applications. The choices of web application
frameworks in Python are extensive, but almost all of them work in the same way and
handle the same basic problems: handling requests, parsing URLs and mapping them
to parts of the web application, handling user data, creating dynamic pages based on
database queries, and producing HTML.
Licensed to Kerri Ross <pedbro@gmail.com>

appendix

A guide to Python’s documentation
The best and most current reference for Python is the documentation that comes
with Python itself. With that in mind, it will be more useful to explore the ways you
can access that documentation than to print pages of edited documentation.

 The standard bundle of documentation has several sections, including instruc-
tions on documenting, distributing, installing, and extending Python on various
platforms, and is the logical starting point when you’re looking for answers to ques-
tions about Python. The two main areas of the Python documentation that are likely
to be the most useful are the Library Reference and the Language Reference. The Library
Reference is absolutely essential, because it has explanations of both the built-in data
types and every module included with Python. The Language Reference is the expla-
nation of how the core of Python works, and it contains the official word on the core
of the language, explaining the workings of data types, statements, and so on. The
“What’s New” section is also worth reading, particularly when a new version of
Python is released, because it summarizes all of the changes in the new version.

Accessing Python documentation on the Web

For many people, the most convenient way to access the Python documentation is
to go to www.python.org and browse the documentation collection there. Although
this requires a connection to the web, it has the advantage that the content is always
the most current. Given that for many projects it’s often useful to search the web
for other documentation and information, having a browser tab permanently open
and pointing to the online Python documentation is an easy way to have a Python
reference at your fingertips.

Browsing Python documentation on your computer

Many distributions of Python include the full documentation by default. In some
Linux distributions, the documentation is a separate package that you need to
install separately. In most cases, however, full documentation is already on your
305

computer and easily accessible.

Licensed to Kerri Ross <pedbro@gmail.com>

306 APPENDIX

ACCESSING HELP IN THE INTERACTIVE SHELL OR AT A COMMAND LINE

In chapter 2, you saw how to use the help command in the interactive interpreter to
access online help for any Python module or object:

>>> help(int)
Help on int object:

class int(object)
 | int(x[, base]) -> integer
 |
 | Convert a string or number to an integer, if possible. A floating
 | point argument will be truncated towards zero (this does not include a
 | string representation of a floating point number!) When converting a
 | string, use the optional base. It is an error to supply a base when
 | converting a non-string.
 |
 | Methods defined here:
... (continues with a list of methods for an int)

What’s happening is that the interpreter is calling the pydoc module to generate
the documentation. You can also use the pydoc module to search the Python docu-
mentation from a command line. On a Linux or Mac OS X system, to get the same
output in a terminal window, you need only type pydoc int at the prompt; to exit,
type q. In a Windows command window, unless you’ve set your search path to
include the Python Lib directory, you’ll need to type the entire path, something like
C:\Python31\Lib\pydoc.py int.
GENERATING HTML HELP PAGES WITH PYDOC

If you want a sleeker look to the documentation that pydoc generates for a Python
object or module, you can also have the output written to an HTML file, which you can
view in any browser. To do this, add the –w option to the pydoc command, which on
Windows would then be C:\Python31\Lib\pydoc.py –w int. In this case, where
we’re looking up documentation on the int object, pydoc will create a file named

int.html in the cur-
rent directory, and
we can open and
view it in a browser
from there. Figure
A.1 shows what
int.html looks like
in a browser.

Figure A.1 int.html as

generated by pydoc

Licensed to Kerri Ross <pedbro@gmail.com>

307A guide to Python’s documentation

If for some reason you want only a limited number pages of documentation available,
this method works well. But in most cases it will probably be better to use pydoc to
serve more complete documentation, as discussed in the next section.
USING PYDOC AS A DOCUMENTATION SERVER

In addition to being able to generate text and
HTML documentation on any Python object, the
pydoc module can also be used as a server to serve
web-based docs. You can do this two ways. Either
you can run pydoc with –p and a port number to
open a server on that port, or you can run pydoc
–g to pop up a little search dialog box and open a
browser from there, as illustrated in figure A.2.

 Clicking the Open Browser button opens your system’s default browser and gives
you access to the documentation of all the modules available, as shown in figure A.3.

 A bonus in using pydoc to serve documentation is that it also scans the current
directory and extracts documentation from the docstrings of any modules it finds,
even if they aren’t part of the standard library. This makes it useful for accessing the
documentation of any Python modules. There is one caveat, however. To extract the

Figure A.2 pydoc search dialog box

Figure A.3 A partial view of the module documentation served by pydoc
Licensed to Kerri Ross <pedbro@gmail.com>

308 APPENDIX

documentation from a module, pydoc must import it, which means it will execute any
code at the module’s top level. Thus scripts that aren’t written to be imported without
side effects, as discussed in chapter 11, will be run, so use this feature with care.
USING THE WINDOWS HELP FILE

On Windows systems, the standard Python 3 package includes complete Python docu-
mentation as a Windows Help file. You can find it in the Doc folder inside the folder
where Python was installed (C:\Python31\Doc on my system). When you open it, it will
look something like figure A.4.

 If you’re comfortable with using Window Help files, this file may be all the docu-
mentation you ever need.

Downloading documentation

If you want the Python documentation on a computer but don’t necessarily want or
need to be running Python, you can also download the complete documentation
from python.org in PDF, HTML, or text format. This is convenient if you want to be
able to access the docs from an ebook reader or similar device.

The Python manual of style
This section contains a slightly edited excerpt from PEP (Python Enhancement Pro-
posal) 8. Written by Guido van Rossum and Barry Warsaw, PEP 8 is the closest thing

Figure A.4 Python documentation in a Windows Help file
Python has to a style manual. Some more-specific sections have been omitted, but the

Licensed to Kerri Ross <pedbro@gmail.com>

309The Python manual of style

main points are covered. You should make your code conform to PEP 8 as much as
possible—your Python style will be the better for it.

 You can access the full text of PEP 8 and all of the other PEPs issued in the history
of Python by going to www.python.org’s documentation section and looking for the
PEP index. The PEPs are an excellent source for the history and lore of Python as well
as explanations of current issues and future plans.

PEP 8 - Style Guide for Python Code

Introduction

This document gives coding conventions for the Python code comprising the stan-
dard library in the main Python distribution. Please see the companion informational
PEP describing style guidelines for the C code in the C implementation of Python.1

This document was adapted from Guido’s original Python Style Guide essay,2 with
some additions from Barry’s style guide.3 Where there’s conflict, Guido’s style rules for
the purposes of this PEP. This PEP may still be incomplete (in fact, it may never be fin-
ished <wink>).

A FOOLISH CONSISTENCY IS THE HOBGOBLIN OF LITTLE MINDS

One of Guido’s key insights is that code is read much more often than it’s written. The
guidelines provided here are intended to improve the readability of code and make it
consistent across the wide spectrum of Python code. As PEP 204 says, “Readability
counts.”

 A style guide is about consistency. Consistency with this style guide is important.
Consistency within a project is more important. Consistency within one module or
function is most important.

 But most important, know when to be inconsistent—sometimes the style guide just
doesn’t apply. When in doubt, use your best judgment. Look at other examples and
decide what looks best. And don’t hesitate to ask!

 Here are two good reasons to break a particular rule:
■ When applying the rule would make the code less readable, even for someone

who is used to reading code that follows the rules
■ To be consistent with surrounding code that also breaks it (maybe for historic

reasons), although this is also an opportunity to clean up someone else’s mess
(in true XP style)

Code layout
INDENTATION

Use four spaces per indentation level.

1 PEP 7, Style Guide for C Code, van Rossum
2 http://www.python.org/doc/essays/styleguide.html
3 Barry’s GNU Mailman style guide: http://barry.warsaw.us/software/STYLEGUIDE.txt

4 PEP 20, The Zen of Python

Licensed to Kerri Ross <pedbro@gmail.com>

310 APPENDIX

 For really old code that you don’t want to mess up, you can continue to use eight-
space tabs.

TABS OR SPACES?
Never mix tabs and spaces.

 The most popular way of indenting Python is with spaces only. The second most
popular way is with tabs only. Code indented with a mixture of tabs and spaces should
be converted to using spaces exclusively. When you invoke the Python command-line
interpreter with the -t option, it issues warnings about code that illegally mixes tabs
and spaces. When you use -tt, these warnings become errors. These options are
highly recommended!

 For new projects, spaces only are strongly recommended over tabs. Most editors
have features that make this easy to do.
MAXIMUM LINE LENGTH

Limit all lines to a maximum of 79 characters.
 Many devices are still around that are limited to 80-character lines; plus, limiting

windows to 80 characters makes it possible to have several windows side by side. The
default wrapping on such devices disrupts the visual structure of the code, making it
more difficult to understand. Therefore, please limit all lines to a maximum of 79
characters. For flowing long blocks of text (docstrings or comments), limiting the
length to 72 characters is recommended.

 The preferred way of wrapping long lines is by using Python’s implied line contin-
uation inside parentheses, brackets, and braces. If necessary, you can add an extra pair
of parentheses around an expression, but sometimes using a backslash looks better.
Make sure to indent the continued line appropriately. The preferred place to break
around a binary operator is after the operator, not before it. Here are some examples:

class Rectangle(Blob):
 def __init__(self, width, height,
 color='black', emphasis=None, highlight=0):
 if width == 0 and height == 0 and \
 color == 'red' and emphasis == 'strong' or \
 highlight > 100:
 raise ValueError("sorry, you lose")
 if width == 0 and height == 0 and (color == 'red' or
 emphasis is None):
 raise ValueError("I don't think so -- values are %s, %s" %
 (width, height))
 Blob.__init__(self, width, height,
 color, emphasis, highlight)

BLANK LINES

Separate top-level function and class definitions with two blank lines.
 Method definitions inside a class are separated by a single blank line.
 Extra blank lines may be used (sparingly) to separate groups of related functions.

Blank lines may be omitted between a bunch of related one-liners (for example, a set
of dummy implementations).
Licensed to Kerri Ross <pedbro@gmail.com>

311The Python manual of style

 Use blank lines in functions, sparingly, to indicate logical sections.
 Python accepts the Control-L (^L) form feed character as whitespace. Many tools

treat these characters as page separators, so you may use them to separate pages of
related sections of your file.
IMPORTS

Imports should usually be on separate lines, for example:

import os
import sys

Don’t put them together like this:

import sys, os

It’s okay to say this, though:

from subprocess import Popen, PIPE

Imports are always put at the top of the file, just after any module comments and doc-
strings and before module globals and constants.

 Imports should be grouped in the following order:

1 Standard library imports
2 Related third-party imports
3 Local application/library–specific imports

Put a blank line between each group of imports.
 Put any relevant __all__ specification after the imports.
 Relative imports for intra-package imports are highly discouraged. Always use the

absolute package path for all imports. Even now that PEP 3285 is fully implemented in
Python 2.5, its style of explicit relative imports is actively discouraged; absolute
imports are more portable and usually more readable.

 When importing a class from a class-containing module, it’s usually okay to spell
them

from myclass import MyClass
from foo.bar.yourclass import YourClass

If this spelling causes local name clashes, then spell them

import myclass
import foo.bar.yourclass
and use myclass.MyClass and foo.bar.yourclass.YourClass.

WHITESPACE IN EXPRESSIONS AND STATEMENTS

Pet peeves—avoid extraneous whitespace in the following situations:
■ Immediately inside parentheses, brackets, or braces

Yes:

spam(ham[1], {eggs: 2})
5 PEP 328, Imports: Multi-Line and Absolute/Relative

Licensed to Kerri Ross <pedbro@gmail.com>

312 APPENDIX

No:

spam(ham[1], { eggs: 2 })

■ Immediately before a comma, semicolon, or colon
Yes:

if x == 4: print x, y; x, y = y, x

No:

if x == 4 : print x , y ; x , y = y , x

■ Immediately before the open parenthesis that starts the argument list of a func-
tion call

Yes:

spam(1)

No:

spam (1)

■ Immediately before the open parenthesis that starts an indexing or slicing
Yes:

dict['key'] = list[index]

No:

dict ['key'] = list [index]

■ More than one space around an assignment (or other) operator to align it with
another

Yes:

x = 1
y = 2
long_variable = 3

No:

x = 1
y = 2
long_variable = 3

OTHER RECOMMENDATIONS

Always surround these binary operators with a single space on either side: assignment
(=), augmented assignment (+=, -=, and so on), comparisons (==, <, >, !=, <>,
<=, >=, in, not in, is, is not), and Booleans (and, or, not).

 Use spaces around arithmetic operators.
Yes:

i = i + 1
submitted += 1
Licensed to Kerri Ross <pedbro@gmail.com>

313The Python manual of style

x = x * 2 – 1
hypot2 = x * x + y * y
c = (a + b) * (a - b)

No:

i=i+1
submitted +=1
x = x*2 – 1
hypot2 = x*x + y*y
c = (a+b) * (a-b)

Don’t use spaces around the = sign when used to indicate a keyword argument or a
default parameter value.

Yes:

def complex(real, imag=0.0):
 return magic(r=real, i=imag)

No:

def complex(real, imag = 0.0):
 return magic(r = real, i = imag)

Compound statements (multiple statements on the same line) are generally dis-
couraged.

Yes:

if foo == 'blah':
 do_blah_thing()
do_one()
do_two()
do_three()

Rather not:

if foo == 'blah': do_blah_thing()
do_one(); do_two(); do_three()

While sometimes it’s okay to put an if/for/while with a small body on the same line,
never do this for multiclause statements. Also avoid folding such long lines!

Rather not:

if foo == 'blah': do_blah_thing()
for x in lst: total += x
 while t < 10: t = delay()

Definitely not:

if foo == 'blah': do_blah_thing()
else: do_non_blah_thing()
try: something()
finally: cleanup()
do_one(); do_two(); do_three(long, argument,
 list, like, this)
if foo == 'blah': one(); two(); three()
Licensed to Kerri Ross <pedbro@gmail.com>

314 APPENDIX

Comments

Comments that contradict the code are worse than no comments. Always make a pri-
ority of keeping the comments up to date when the code changes!

 Comments should be complete sentences. If a comment is a phrase or sentence, its
first word should be capitalized, unless it’s an identifier that begins with a lowercase
letter (never alter the case of identifiers!).

 If a comment is short, the period at the end can be omitted. Block comments gen-
erally consist of one or more paragraphs built out of complete sentences, and each
sentence should end in a period.

 You should use two spaces after a sentence-ending period.
 When writing English, Strunk and White apply.
 Python coders from non-English-speaking countries: please write your comments

in English, unless you are 120% sure that the code will never be read by people who
don’t speak your language.
BLOCK COMMENTS

Block comments generally apply to some (or all) code that follows them and are
indented to the same level as that code. Each line of a block comment starts with a #
and a single space (unless it is indented text inside the comment).

 Paragraphs inside a block comment are separated by a line containing a single #.
INLINE COMMENTS

Use inline comments sparingly.
 An inline comment is a comment on the same line as a statement. Inline com-

ments should be separated by at least two spaces from the statement. They should start
with a # and a single space.

 Inline comments are unnecessary and in fact distracting if they state the obvious.
Don’t do this:

x = x + 1 # Increment x

But sometimes, this is useful:

x = x + 1 # Compensate for border

DOCUMENTATION STRINGS

Conventions for writing good documentation strings (aka docstrings) are immortal-
ized in PEP 257.6

 Write docstrings for all public modules, functions, classes, and methods. Doc-
strings are not necessary for nonpublic methods, but you should have a comment that
describes what the method does. This comment should appear after the def line.

 PEP 257 describes good docstring conventions. Note that, most importantly, the
""" that ends a multiline docstring should be on a line by itself and preferably pre-
ceded by a blank line, for example:

"""Return a foobang
6 PEP 257, Docstring Conventions, Goodger, van Rossum

Licensed to Kerri Ross <pedbro@gmail.com>

315The Python manual of style

Optional plotz says to frobnicate the bizbaz first.

"""

For one-liner docstrings, it’s okay to keep the closing """ on the same line.

VERSION BOOKKEEPING

If you have to have Subversion, CVS, or RCS crud in your source file, do it as follows:

 __version__ = "$Revision: 68852 $" # $Source$

These lines should be included after the module’s docstring, before any other code,
separated by a blank line above and below.

Naming conventions

The naming conventions of Python’s library are a bit of a mess, so we’ll never get this
completely consistent. Nevertheless, here are the currently recommended naming
standards. New modules and packages (including third-party frameworks) should be
written to these standards, but where an existing library has a different style, internal
consistency is preferred.

DESCRIPTIVE: NAMING STYLES

There are many different naming styles. It helps to be able to recognize what naming
style is being used, independent of what it’s used for.

 The following naming styles are commonly distinguished:
■ b (single lowercase letter)
■ B (single uppercase letter)
■ lowercase
■ lower_case_with_underscores
■ UPPERCASE
■ UPPER_CASE_WITH_UNDERSCORES
■ CapitalizedWords (or CapWords, or CamelCase—so named because of the

bumpy look of its letters7). This is also sometimes known as StudlyCaps.
Note: When using abbreviations in CapWords, capitalize all the letters of the
abbreviation. Thus HTTPServerError is better than HttpServerError.

■ mixedCase (differs from CapitalizedWords by initial lowercase character!)
■ Capitalized_Words_With_Underscores (ugly!)

There’s also the style of using a short unique prefix to group related names together.
This is seldom used in Python, but I mention it for completeness. For example, the
os.stat() function returns a tuple whose items traditionally have names like
st_mode, st_size, st_mtime, and so on. (This is done to emphasize the correspon-
dence with the fields of the POSIX system call struct, which helps programmers famil-
iar with that.)
7 www.wikipedia.com/wiki/CamelCase

Licensed to Kerri Ross <pedbro@gmail.com>

316 APPENDIX

 The X11 library uses a leading X for all its public functions. In Python, this style is
generally deemed unnecessary because attribute and method names are prefixed with
an object, and function names are prefixed with a module name.

 In addition, the following special forms using leading or trailing underscores are
recognized (these can generally be combined with any case convention):

■ _single_leading_underscore
Weak “internal use” indicator. For example, from M import * does not

import objects whose name starts with an underscore.
■ single_trailing_underscore_

Used by convention to avoid conflicts with Python keyword. For example,
tkinter.Toplevel(master, class_='ClassName').

■ __double_leading_underscore
When naming a class attribute, it invokes name mangling (inside class Foo-

Bar, __boo becomes _FooBar__boo; see below).
■ __double_leading_and_trailing_underscore__

“Magic” objects or attributes that live in user-controlled namespaces. For
example, __init__, __import__ or __file__. Never invent such names; use
them only as documented.

PRESCRIPTIVE: NAMING CONVENTIONS

■ Names to avoid
Never use the characters l (lowercase letter el), O (uppercase letter oh), or I

(uppercase letter eye) as single-character variable names.

In some fonts, these characters are indistinguishable from the numerals 1
(one) and 0 (zero). When tempted to use l, use L instead.

■ Package and module names
Modules should have short, all-lowercase names. Underscores can be used in

a module name if it improves readability. Python packages should also have
short, all-lowercase names, although the use of underscores is discouraged.

Since module names are mapped to filenames, and some file systems are
case insensitive and truncate long names, it’s important that module names be
fairly short—this won’t be a problem on UNIX, but it may be a problem when
the code is transported to older Mac or Windows versions or DOS.

When an extension module written in C or C++ has an accompanying Python
module that provides a higher-level (for example, more object-oriented) inter-
face, the C/C++ module has a leading underscore (for example, _socket).

■ Class names
Almost without exception, class names use the CapWords convention.

Classes for internal use have a leading underscore in addition.
■ Exception names
Licensed to Kerri Ross <pedbro@gmail.com>

317The Python manual of style

Because exceptions should be classes, the class-naming convention applies
here. However, you should use the suffix Error on your exception names (if the
exception actually is an error).

■ Global variable names
(Let’s hope that these variables are meant for use inside one module only.)

The conventions are about the same as those for functions.

Modules that are designed for use via from M import * should use the
__all__ mechanism to prevent exporting globals or use the older convention
of prefixing such globals with an underscore (which you might want to do to
indicate these globals are module nonpublic).

■ Function names
Function names should be lowercase, with words separated by underscores as

necessary to improve readability.

mixedCase is allowed only in contexts where that’s already the prevailing
style (for example, threading.py), to retain backward compatibility.

■ Function and method arguments
Always use self for the first argument to instance methods.

Always use cls for the first argument to class methods.

If a function argument’s name clashes with a reserved keyword, it’s generally
better to append a single trailing underscore than to use an abbreviation or
spelling corruption. Thus, print_ is better than prnt. (Perhaps better is to
avoid such clashes by using a synonym.)

■ Method names and instance variables
Use the function-naming rules: lowercase with words separated by under-

scores as necessary to improve readability.

Use one leading underscore only for nonpublic methods and instance vari-
ables.

To avoid name clashes with subclasses, use two leading underscores to invoke
Python’s name-mangling rules.

Python mangles these names with the class name: if class Foo has an attribute
named __a, it cannot be accessed by Foo.__a. (An insistent user could still gain
access by calling Foo._Foo__a.) Generally, double leading underscores should
be used only to avoid name conflicts with attributes in classes designed to be
subclassed.

Note: there is some controversy about the use of __names (see below).
■ Constants

Constants are usually declared on a module level and written in all capital
letters with underscores separating words. Examples include MAX_OVERFLOW and
TOTAL.
■ Designing for inheritance

Licensed to Kerri Ross <pedbro@gmail.com>

318 APPENDIX

Always decide whether a class’s methods and instance variables (collectively
called attributes) should be public or nonpublic. If in doubt, choose nonpublic;
it’s easier to make it public later than to make a public attribute nonpublic.

Public attributes are those that you expect unrelated clients of your class to
use, with your commitment to avoid backward-incompatible changes. Nonpublic
attributes are those that are not intended to be used by third parties; you make
no guarantees that nonpublic attributes won’t change or even be removed.

We don’t use the term private here, since no attribute is really private in
Python (without a generally unnecessary amount of work).

Another category of attributes includes those that are part of the subclass API
(often called protected in other languages). Some classes are designed to be
inherited from, either to extend or modify aspects of the class’s behavior. When
designing such a class, take care to make explicit decisions about which attri-
butes are public, which are part of the subclass API, and which are truly only to
be used by your base class.

With this in mind, here are the Pythonic guidelines:
■ Public attributes should have no leading underscores.
■ If your public attribute name collides with a reserved keyword, append a single

trailing underscore to your attribute name. This is preferable to an abbreviation
or corrupted spelling. (However, notwithstanding this rule, cls is the preferred
spelling for any variable or argument that’s known to be a class, especially the
first argument to a class method.)

Note 1: See the argument name recommendation above for class methods.
■ For simple public data attributes, it’s best to expose just the attribute name,

without complicated accessor/mutator methods. Keep in mind that Python
provides an easy path to future enhancement, should you find that a simple
data attribute needs to grow functional behavior. In that case, use properties to
hide functional implementation behind simple data attribute access syntax.

Note 1: Properties work only on new-style classes.
 Note 2: Try to keep the functional behavior side-effect free, although side effects

such as caching are generally fine.
 Note 3: Avoid using properties for computationally expensive operations; the attri-

bute notation makes the caller believe that access is (relatively) cheap.
■ If your class is intended to be subclassed, and you have attributes that you don’t

want subclasses to use, consider naming them with double leading underscores
and no trailing underscores. This invokes Python’s name-mangling algorithm,
where the name of the class is mangled into the attribute name. This helps
avoid attribute name collisions should subclasses inadvertently contain attri-
butes with the same name.

Note 1: Only the simple class name is used in the mangled name, so if a subclass
chooses both the same class name and attribute name, you can still get name collisions.
Licensed to Kerri Ross <pedbro@gmail.com>

319The Python manual of style

 Note 2: Name mangling can make certain uses, such as debugging and
__getattr__(), less convenient. However the name-mangling algorithm is well docu-
mented and easy to perform manually.

 Note 3: Not everyone likes name mangling. Try to balance the need to avoid acci-
dental name clashes with potential use by advanced callers.

Programming recommendations

You should write code in a way that does not disadvantage other implementations of
Python (PyPy, Jython, IronPython, Pyrex, Psyco, and such).

 For example, don’t rely on CPython’s efficient implementation of in-place string
concatenation for statements in the form a+=b or a=a+b. Those statements run more
slowly in Jython. In performance-sensitive parts of the library, you should use the
''.join() form instead. This will ensure that concatenation occurs in linear time
across various implementations.

 Comparisons to singletons like None should always be done with is or is not,
never the equality operators.

 Also, beware of writing if x when you really mean if x is not None, for exam-
ple, when testing whether a variable or argument that defaults to None was set to some
other value. The other value might have a type (such as a container) that could be
false in a boolean context!

 Use class-based exceptions.
 String exceptions in new code are forbidden, because this language feature has

been removed in Python 2.6.
 Modules or packages should define their own domain-specific base exception

class, which should be subclassed from the built-in Exception class. Always include a
class docstring, for example:

class MessageError(Exception):
 """Base class for errors in the email package."""

Class-naming conventions apply here, although you should add the suffix Error to
your exception classes if the exception is an error. Non-error exceptions need no spe-
cial suffix.

 When raising an exception, use raise ValueError('message') instead of the
older form raise ValueError, 'message'.

 The paren-using form is preferred because when the exception arguments are
long or include string formatting, you don’t need to use line continuation characters
thanks to the containing parentheses. The older form has been removed in Python 3.

 When catching exceptions, mention specific exceptions whenever possible instead
of using a bare except: clause. For example, use

try:
 import platform_specific_module
except ImportError:
 platform_specific_module = None
Licensed to Kerri Ross <pedbro@gmail.com>

320 APPENDIX

A bare except: clause will catch SystemExit and KeyboardInterrupt exceptions,
making it harder to interrupt a program with Control-C, and can disguise other prob-
lems. If you want to catch all exceptions that signal program errors, use except
Exception:.

 A good rule of thumb is to limit use of bare except clauses to two cases:

■ If the exception handler will be printing out or logging the traceback; at least
the user will be aware that an error has occurred.

■ If the code needs to do some cleanup work but then lets the exception propa-
gate upward with raise, then try...finally is a better way to handle this case.

In addition, for all try/except clauses, limit the try clause to the absolute minimum
amount of code necessary. Again, this avoids masking bugs.

Yes:

try:
 value = collection[key]
except KeyError:
 return key_not_found(key)
else:
 return handle_value(value)

No:

try: # Too broad!
 return handle_value(collection[key])
except KeyError:
 return key_not_found(key)

Use string methods instead of the string module.
 String methods are always much faster and share the same API with Unicode

strings. Override this rule if backward compatibility with Python versions older than
2.0 is required.

 Use ''.startswith() and ''.endswith() instead of string slicing to check for
prefixes or suffixes.

 startswith() and endswith() are cleaner and less error prone.
Yes:

if foo.startswith('bar'):

No:

if foo[:3] == 'bar':

The exception is if your code must work with Python 1.5.2 (but let’s hope not!).
 Object type comparisons should always use isinstance() instead of comparing

types directly.
Yes:

if isinstance(obj, int):

No:

Will also catch
KeyError raised by
handle_value()
if type(obj) is type(1):

Licensed to Kerri Ross <pedbro@gmail.com>

321The Zen of Python

When checking to see if an object is a string, keep in mind that it might be a Unicode
string too! In Python 2.3, str and unicode have a common base class, basestring, so
you can do the following:

if isinstance(obj, basestring):

In Python 2.2, the types module has the StringTypes type defined for that purpose,
for example:

from types import StringTypes
if isinstance(obj, StringTypes):

In Python 2.0 and 2.1, you should do the following:

from types import StringType, UnicodeType
if isinstance(obj, StringType) or \
 isinstance(obj, UnicodeType) :

For sequences (strings, lists, tuples), use the fact that empty sequences are false.
Yes:

if not seq: if seq:

No:

if len(seq) if not len(seq)

Don’t write string literals that rely on significant trailing whitespace. Such trailing
whitespace is visually indistinguishable, and some editors (or more recently, rein-
dent.py) will trim them.

 Don’t compare boolean values to True or False using ==.
Yes:

if greeting:

No:

if greeting == True:

Worse:

if greeting is True:

Copyright—this document has been placed in the public domain.

The Zen of Python
The following document is PEP 20, also referred to as “The Zen of Python,” a slightly
tongue-in-cheek statement of the philosophy of Python. In addition to being included
in the Python documentation, the Zen of Python is also an Easter egg in the Python
interpreter. Type import this at the interactive prompt to see it.

 Long time Pythoneer Tim Peters succinctly channels the BDFL’s (Benevolent Dic-
tator for Life) guiding principles for Python’s design into 20 aphorisms, only 19 of
which have been written down.
Licensed to Kerri Ross <pedbro@gmail.com>

322 APPENDIX

The Zen of Python

 Beautiful is better than ugly.
 Explicit is better than implicit.
 Simple is better than complex.
 Complex is better than complicated.
 Flat is better than nested.
 Sparse is better than dense.
 Readability counts.
 Special cases aren’t special enough to break the rules.
 Although practicality beats purity.
 Errors should never pass silently.
 Unless explicitly silenced.
 In the face of ambiguity, refuse the temptation to guess.
 There should be one—and preferably only one—obvious way to do it.
 Although that way may not be obvious at first unless you’re Dutch.
 Now is better than never.
 Although never is often better than *right* now.
 If the implementation is hard to explain, it’s a bad idea.
 If the implementation is easy to explain, it may be a good idea.
 Namespaces are one honking great idea—let’s do more of those!

 Copyright—This document has been placed in the public domain.
Licensed to Kerri Ross <pedbro@gmail.com>

index
Symbols

' (single quoted string
delimiter) 39

!= (not equal) 100
.pth files (additions to

sys.path) 121
.py files (Python source code

files) 117
.pyc files (compiled bytecode

files) 118
'' character in strings 227
() (empty tuple) 58
{} (empty dictionary) 82
@abstractmethod decorator 260
@abstractproperty

decorator 260–261
@property decorator 199
@staticmethod decorator 192
*

list multiplication operator 53
multiplication operator 40
unpacking tuples 59

’ (single-quote character) 64
\ 65
\n (newline character) 39
(comment header) 37
% operator 24
+ (concatenation operator), for

lists 53
= (assignment operator)

for assigning to shelves 170
for creating/assigning to a

Numerics

2to3 conversion tool 276–277
diff file produced 278
fixers for specific features 278
options 278
-w option to write to file 279

3to2.py, converting Python 3.x
back to 2.x 281

A

ABCMeta 260
absolute pathnames. See path-

names
absolute

abstract base classes 258–262
@abstractmethod

decorator 260
@abstractproperty

decorator 260
abstract method, instantiating

class with 261
creating 260
MutableSequence 259
type checking with 259

abstract collection type
Hashable 259
Iterable 259
Mapping 259
MutableMapping 259
MutableSequence 259
MutableSet 259
Sequence 259

abstract methods 261
containing

implementation 261
instantiating class with 261

abstract property 261
__add__ special method

attribute 251
__all__ attribute, packages 240
Alt-/, keyboard shortcut (key-

word completion) 14
Alt-N, keyboard shortcut (next

line) 14
Alt-P, keyboard shortcut (previ-

ous line) 14
and (logical operator) 100, 154
append method lists 48
applications, distributing 145
arguments. See command line or

functions 105
arithmetic operations 40
arithmetic operators 19

involving only integers 38
arithmetic precedence 38
array module 46
ASCII

characters, including in a
string 65

special characters 65
assert statement (debug

statement) 181, 266
assert_ TestCase class 271
assertAlmostEqual TestCase

class 271
assertEqual TestCase class 271
323

dictionary 82 Sized 259 assertFalse TestCase class 271

Licensed to Kerri Ross <pedbro@gmail.com>

INDEX324

assertNotAlmostEqual TestCase
class 271

assertNotEqual TestCase
class 271

assertRaises TestCase class 271
assignment 37–38
associative arrays. See

dictionaries 81
attributes 117

B

BaseHTTPRequestHandler
urllib.request module 294

BaseHTTPRequestHandler
http.server module 294

__bases__ (finding what classes
an object inherits
from) 244

batteries included 282
binary data, reading 165–167
binary mode, opening files

in 163
binary records (for reading and

writing data) 166
bindings (names to objects in

namespaces) 123
block structure 35–37, 96–99

indentation 36
blocks. See block structure 96
Boolean expressions 25, 99, 101
Boolean operators 100
Booleans 99–101

examples 20
introduction 40

bound methods 188
braces in block structure 36
break statement 27

in for loops 92, 94
in while loops 91

buffering, definition 161
built-in namespace 123
built-in operators 43
__builtins__ (built-in

module) 123
dictionary of built-in

identifiers 126
Button (widget) in Tkinter 219
bytecode (.pyc or .pyo files) 118
bytes 80

reading from a file (read) 162
writing a string to a file

(write) 162

C

C compiler, needed for freeze
tool 145

C/C++
reading data files generated

by (struct)struct 167
writing data files for

(struct)struct 167
cache

definition 88
implementation example 89,

169
Canvas (widget) in Tkinter 221
capitalize function 72
center function 72
CGI, dictionary in WSGI

application 296
CGIHTTPRequestHandler

http.server module 294
Cheese Shop. See Python Pack-

age Index
__class__ attribute, obtaining

the class of an instance 191
class keyword 187
class methods 192–194
class variables

access 191
creating 190
in class inheritance 197
using if instance variable not

found 191
using to initialize instance

variables 191
classes

abstract base classes 258–262
capitalization 187
class methods 192–194
class variables 190–192

creating 190
in inheritance 197
using if instance variable

not found 191
using to initialize instance

variables 191
constructor 187
cyclical references in instances

of 205
defining and using 187–188
destructor methods for

(__del__) 203–206
documentation strings for

(__doc__) 193
dot notation, to accrss

duck-typing 245
explicitly creating using a

metaclass 257
finding the base classes of an

instance (__bases__) 244
__getitem__ as marker of

mutable sequence 259
inheritance 194–196

instance variables in 196
need to call __init__

explicitly 195
inheritance,

multiple 207–208
initializing (__init__

method) 187
initializing with default

parameters (__init__
method) 189

initializing with parameters
(__init__ method) 189

instance variables 188
instantiation 187
isinstance function 244
issubclass function 245
metaclass keyword 258
metaclasses 256–258

custom 258
method definition (def

statement) 188
method invocation 188–189
methods 188
multiple inheritance

hierarchy 207
namespaces 200
obtaining the class of an

instance 191
private methods 197
private variable name

mangling 198
private variables 197

begin with __ 198
properties

marked with the @property
decorator 199

setter decorator 199
shadowing class variable with

instance variable 191
special method attributes 248
static methods 192–194
storing the class of an

instance 244
subclassing built-in

types 254–256

bytes type 275 members 187 super function 195

Licensed to Kerri Ross <pedbro@gmail.com>

INDEX 325

classes (continued)
superclass namespace 200
use of self 189
user-defined, type of 243
using superclass name explic-

itly instead of super 195
using to define structures 187
using to manage Tkinter

application 219
close

for files 160
for shelves 170

cmath module 20
complex numbers and 42

collections library, abstract col-
lection types 259

collections module, in standard
library 283

comments
defined 29
differentiating 37

comparison operators 26
comparisons, compound 100
compile-time variable typing,

lack of 8
complex numbers 41

advanced functions 42
examples 20
introduction 40

compound statements 96
context managers 184
continue statement 27

in for loops 94
in while loops 91

control flow structures 25–28
copy module 56
count method 70

lists 54
current working directory 149
cyclical references,

breaking 205

D

data members. See classes,
instance variables 188

data serialization. See
pickling 167

data type modules, in standard
library 283

data types 19
converting to strings 23
dictionaries 24
file objects 25

numbers 19–21
sets 24
strings 23
tuples 22

databases
accessing 291–293
DB-API 2.0 standard 291
sqlite3 library 291–293

close 292
commit 292
common operations 293
connect 293
connecting 291
creating cursor 292
cursor 293
execute 293
fetchall 293
fetchmany 293
fetchone 293
inserting 292
querying 292

DB-API 2.0 standard database
interface 291

debug statements (assert) 181
__debug__ variable 181, 266

setting false with PYTHONOP-
TIMIZE environment
variable 266

decorator functions 113
deepcopy function, lists 56
def statement 28
def (method definition

statement) 188
def keyword

defining methods 31
del (deletion statement)

deleting module
bindings 124

deleting namespace
entries 124

deleting variables 37
deletion of dictionary

entries 84
del method

lists 49
__delitem__ special method

attribute 253
destructors 203–206

pitfalls 205
Python compared to C++ 204

development and debugging
tools and runtime services,
in standard library 286

adding multiple entries to
(update) 85

comparison to lists 82
comprehension 95
copying (copy,

copy.deepcopy) 85
creating (=)

with initial entries 83
definition 82
deleting entries from (del) 84
delimiters [] 84
efficiency of 89
get method 24
implementing a cache

with 88
key membership (in) 84
keys 24, 82–83

indices of 84
sorting 84
valid values 87

keys view (object) 84
key-value pairs in (items) 84
len function 24
methods 24
number of entries in (len) 83
order of values 82
representing sparse matrices

with 88
retrieving values from

(get) 85
table of operations 85
tuples as keys for 87
using to count words 86
values 24
values in (values) 84
view (object) 84
vs. shelves 171
why called dictionaries 83

dictionary, tuples, as keys 22
dir (display names in a

module) 126
function 16

directives doctests, tweaking
with 269

directories
changing (os.chdir) 150
creating (os.mkdir,

os.makedirs) 156
deleting (os.rmdir) 156
getting the current working

directory (os.getcwd) 150
listing the files in

(os.listdir) 150, 155
nonempty, deleting
lists 21–22 dictionaries 24, 81–89 (shutil.rmtree) 156

Licensed to Kerri Ross <pedbro@gmail.com>

INDEX326

directories (continued)
processing files in a directory

tree
(os.path.walk) 156–157

renaming (os.rename) 155
distutils package 145

installing libraries 288
division

returning float 38, 40
returning truncated

integer 38, 40
Django 295

use of decorators in 114
__doc__ (documentation string)

definition 29, 104
for built-in functions 127
for classes 193
vs. comment 104

docstrings, testing code
with 267

doctest module, testmod 268
doctests 267–270

avoiding traps 269
directives 269

ELLIPSIS 269
NORMALIZE_WHITESPACE 269

pros and cons 270
vs. unit tests 273

documentation,
Python 305–308

downloading 308
help command 306
HTML, using pydoc 306
on your computer 305
online 305
using pydoc 306
web-based, using pydoc 307
Windows Help file 308

duck typing 245, 258

E

EAFP, easier to ask
forgiveness 258

else (statement)
with exceptions 179
with for loops 92
with if-else constructs 91
with while loops 91

Emacs Python mode 13
endian, converting when read-

ing and writing data 167
endswith method 71

error handling
example program 182
exception mechansm 175
possible approaches 173–175
returning error status 173

escape sequences 65–66
hexadecimal 65
numeric 65
octal 65

event handling in Tkinter 220
events, virtual, in Tkinter 220
except statement

(exceptions) 28, 180
exceptions 28, 172–184

accessing multiple
arguments 181

AssertionError 177
AttributeError 177
BaseException 177
BufferError 177
BytesWarningException 177
catching 176
catching and handling (try-

except-else-finally) 179
defining new types of 180
DeprecationWarning 177
else statement 179
EnvironmentError 177
EOFError 177
example application 183
except statement 179
Exception 177
formal definition 175
FutureWarning 177
general concepts 173–176
generating with raise

statement 176
GeneratorExit 177
handlers 175
handling, examples 28
hierarchy of, in Python 177
ImportError 177
ImportWarning 177
in Python 176–184
IndentationError 177
IndexError 177
inheritance hierarchy, effect

on catching of 182
introduction 38
IOError 177
KeyboardInterrupt 177
KeyError 177
LookupError 177

NameError 177
NotImplementedError 177
OverflowError 177
OSError 177
PendingDeprecationWarning

177
raising (raise) 178
ReferenceError 177
RuntimeError 177
RuntimeWarning 177
StopIteration 177
SyntaxError 177
SyntaxWarning 177
SystemError 177
SystemExit 177
TabError 177
try statement 179
TypeError 177
types of 177
UnboundLocalError 177
UnicodeDecodeError 177
UnicodeEncodeError 177
UnicodeError 177
UnicodeTranslateError 177
UnicodeWarning 177
use of string argument 179
user defined 176
UserWarning 177
ValueError 177
VMSError (VMS) 177
Warning 177
where to use 184
WindowsError

(Windows) 177
ZeroDivisionError 177

executables, creating
with py2app 145
with py2exe 145
with the freeze tool 145

expandtabs function 72
expressions

Boolean 99, 101
introduction 38

extend method, lists 49

F

fail TestCase class 271
false Boolean values 99
Fast Fourier Transform 41
file objects 25

closing 160
input function 25
open statement 25
enumerate function 94 MemoryError 177 opening 160

Licensed to Kerri Ross <pedbro@gmail.com>

INDEX 327

file objects (continued)
os module 25
Pickle module 25
struct module 25
sys module 25

file objects. See also files 160
file path functions in standard

library 284
filehandles. See file objects 159
fileinput module 133–134

fileinput.input (iterate over
lines of input files)
fileinput 133

fileinput.lineno (total lines
read in) 134

files 159
closing 160
obtaining the extension of

(os.path.splitext) 152
opening (open) 160
opening in binary mode 163
processing files in a directory

tree (os.path.walk) 157
reading with context

managers 184
reading a line of

(readline) 160
reading all lines of

file object as iterator 161
readlines 161

removing (os.remove) 155
renaming (os.rename) 155
write (write a string to a

file) 162
writing a list of bytes to

(writelines) 163
writing a list of strings to

(writelines) 163
writing binary data to

(write) 162
files and storage modules, in

standard library 284
filesystems 147–158

See also pathnames, files,
directories 158

finally statement 179, 180, 206
find method 70
float (conversion function), for

converting a string to a
float 69

floating-point numbers See floats
floats

arithmetic operations 40
examples 20

for loops 27, 92–94
break statement 27
continue statement 27
syntax for 92

formal string representation
(repr) 75

format method 76
format specifiers 77
format string, as a template for a

binary record (struct) 166
Frame (widget class), in

Tkinter 214
freeze tool 145

C compiler required 145
from import * 42
from ... import *, controlled by

__all__ 240
frozensets 61

creating (frozenset) 61
functions 103–114

accessing variable outside
local scope 111

arguments 28
assigning to variables 111
built-in

list of 127
obtaining documentation

strings of 127
overriding 127

decorator functions 113
definition of (def) 27, 103
documentation string of

(__doc__) 104
generator functions 112
global variables in 109
local variables in 109
parameters 28, 105–109

default values 105
indefinite number of, by

keyword 108
mixed passing

techniques 108
mutable objects as 108
passing, by parameter

name 106
positional 105
variable number of 107

return statement 28
return value of (return) 104
testing in interactive

mode 108
variable scope 111
vs. procedures 104

G

generator functions 112
geometry management in

Tkinter 213
get (dictionary value retrieval

method) 85
get method 24
__getitem__ special method

attribute 249, 253
as marker of mutable

sequence 259
using to mimic list 250

GIMP Toolkit 222
Glade (graphical tool) 222
glob module, glob.glob (path-

name pattern
expansion) 139, 155

global namespace 123
global variables 109
globals function 16
graphics libraries, use of decora-

tors in 114
Grayson, John, Python and

Tkinter Programming 219
grid command in Tkinter 217
GUI development. See also

Tkinter 209
GUI libraries for Python

cross-platform 221
Gtk (GIMP Toolkit) 222
Qt Package (of the KDE) 221
Tkinter 209
wxPython and wxWidgets 222

GUI principles, using
Tkinter 212–214

H

hashtables. See dictionaries 81
Hello, World program 15
help function 15

with variable name 15
help pages, generating 306
hexadecimal character represen-

tation (\xFF) 66
home scheme

installing libraries with 288
setup.py option 289

HTML formatting, for web
applications 304

HTML wrapper 303
HTTP client, writing 294
HTTP status, in WSGI

application 296

introduction 40 __future__ module 280 http.server module 293

Licensed to Kerri Ross <pedbro@gmail.com>

INDEX328

I

IDLE
Alt-/ keyboard shortcut (key-

word completion) 14
Alt-N keyboard shortcut (next

line) 14
Alt-P keyboard shortcut (pre-

vious line) 14
choosing, vs. basic shell 14
exiting a session 15
for creating/editing a

module 116
indentation 37
introduction to 13
keyboard shortcuts 14
Python Shell window

starting on Mac OS X 13
starting on UNIX/

Linux 13
starting on Windows 13
using 14

vs. basic interactive
mode 12–14

if statement 26
if-elif-else statements 91
imag 42
imaginary numbers. See com-

plex numbers 41
immutability (non-modifiabil-

ity), of numbers 87
import packages 238
import (bring in from a

module) 119
import statement 20, 29, 119

from module import
name 119

imports, relative 239
in for dictionaries 84
in (key existence test), for

shelves 171
in (membership operator), for

strings 74
indentation 5, 96–99

in block structure 35–37
tabs vs. spaces in 97

index method 70
lists 53

index notation
for lists 46–48

IndexError exception 251
informal string representation

(str) 75
inheritance 194–196

__init__.py, required for
packages 238

__init__.py file
executed on package

import 239
required for packages 240

input (prompt for and read in a
string) 163

input function 25
getting user input 43

insert method
lists 49
vs. slice assignment 49

installing Python modules 287
other options 289
prebuilt packages 287
using home scheme 288
using setup.py 288

instance variables
in class inheritance 196
in classes 188

int as dictionary key 87
int (conversion function), for

converting a string to an
integer 69

integer division 38, 40
integers

examples 19
introduction 40

Integrated Development Envi-
ronment (IDLE). See IDLE

interactive mode 12
command history 13
command prompt in

(>>>) 15
for Mac OS X 12
for UNIX 13
for Windows 12
session

exiting 13
session, starting 12

interactive prompt
dir function 16
help function 15
using to explore Python 15

internet protocols and formats,
in standard library 286

io library, StringIO 298
is (identity operator) 101
is not (identity operator) 101
__isabstractmethod__ function

attribute 261
isinstance (built-in

function) 244, 252, 259
issubclass (built-in

items (dictionary contents
method) 84

iteration. See for loops, while
loops 90

J

Java, difference in memory man-
agement for 205

join method 67

K

keys (dictionary indices) 84
values valid for 87

keyword passing 106
Kuchling, Andrew, regular

expression tutorial 233

L

Label (widget) in Tkinter 219
lambda expressions 111
LBYL, look before you leap 258
len (length function)

for dictionaries 83
for lists 46
use in for loops with the range

function 93
len function 24
__len__ special method

attribute 253
libraries

adding 287
in Python 8
installing with home

scheme 288
installing with setup.py 288

library modules 122
Linux/UNIX

absolute pathnames in 149
relative pathnames in 149

list, subclassing 254
list (conversion function) 23

converting string to list 60
converting tuple to list 60
for converting a string to a

list 73
list multiplication operator

(*) 53
lists 21–22, 46–57

adding together 49
appending element to
__init__ method 31 function) 245 (append) 48

Licensed to Kerri Ross <pedbro@gmail.com>

INDEX 329

lists (continued)
bulk initialization of (*) 53
comparison to dictionaries 82
comprehension 95
concatenating 53
converting to tuples 23, 60
copying 48, 56
creating (=) 46
creating with the range

function 93
custom sorting 51–52

disadvantages of 52
deep copy 56
deleting elements

by position (del) 49
by value (remove) 50

element types 21
empty 47, 58
finding the maximum value of

(max) 53
finding the minimum value of

(min) 53
functionality, implementing

with special method
attributes 251

index notation 46–48
indexing 21
inserting elements into

(insert) 49
matches in (count) 54
membership, determining

(in) 52
methods, calling 22
modifying 48–50
nested 55–57
operations, summary of 54
reverse parameter 52
reversing (reverse) 50
searching (index) 54
shallow copy 56
slice notation 21, 47
sorting 50–52

in descending order 52
with a custom key

function 51
typed 252
types of elements 46
writing to a file

(pickle.dump) 167–170
ljust function 72
local namespace 123
locals (obtain the local

namespace) 16, 124
logical operators 26, 100

loops. See for loops, while
loops 90

lower function 72
lstrip method 69

M

Mac OS X
Python launcher app for

scripts 135
relative pathnames in 149
writing administrative scripts

for 135
Macintosh

installing Python on 11
__main__ (script or interactive

session name) 124, 125
map objects. See dictionaries 81
Maple 235
math functions, in standard

library 284
math module 20, 41

complex numbers and 42
Mathematica 235
MATLAB 235
matrix

definition 88
representation using lists 55
sparse 88

memory management 203–206
message wall, creating 297–304
metaclasses 256–258

custom 258
explicitly creating a class

using 257
methods

abstract 261
containing

implementation 261
instantiating class with 261

basics 188
bound 189
invoking 188
unbound 189

modules 115–123
abc (Abstract Base Class) 260
accessing other definitions in

same 117
collections library, abstract

collection types 259
combining with scripts 141
creating 29
creating in IDLE 116
definition 115, 234

grouping, in
packages 30, 235

importing from (import) 119
installing 287
library modules 122
module name vs. file

name 118
private names in 121
reloading (reload) 118
search path for (sys.path) 119
using __all__ to control

imports 119
using in scripts 118
using to eliminate name

clashes 116
using underscore to make

names private in 121
vs. programs and

scripts 140–145
where to place 120

__mul__ special method
attribute 253

multiline statements 98
multiple inheritance 207–208

addins 208
hierarchy 207
mixins 208

multiplication operator (*), for
numbers 40

MutableSequence abstract base
class 259

N

__name__ (finding the class
name of an
object) 124, 244

named attributes
in Tkinter 212
in Tkinter, default values 213

NameError exception 38
namespaces 123–128

bindings in 123
built-in 123, 200
class namespace (self) 200,

203
displaying the built-in

namespace (dir) 126
for class instances 199–203
for functions in interactive

sessions 125
for functions in modules 125
for interactive

sessions 123–124

look before you leap 258 doctests 267 for modules 125

Licensed to Kerri Ross <pedbro@gmail.com>

INDEX330

namespaces (continued)
global 123, 200
instance namespace

(self) 200, 202
local 123, 200
obtaining the local namespace

(locals) 124
overriding built-in

functions 127
superclasses (self) 200, 203
with modules 116

network programming 293–304
newline character (\n) 39
None value 43
nonlocal keyword 110
numbers 19–21, 40–43

complex 42
integer division operator (//) 40
types, in Python 40

numeric and mathematical mod-
ules, in standard
library 284

numeric computation 41
numeric functions

built in 41
in math module 41

NumPy extension for numeric
operations 41, 46

O

-O command-line option 266
object reference counting 203
object-oriented programming in

Python 186–208
See also classes 208

objects
converting strings to 74
duck-typing 258
finding class name of

(__name__) 244
giving full list capability 252
making behave like

lists 249–251
type of (type function) 243
writing to a file

(cPickle.dump) 167–170
OOP (object oriented

programming) 30
open (open a file) 159–161

additional arguments 161
create a new file object 159
statement 25
use of newline parameter 162

operating system services, in
standard library 285

operators, built-in 43
optparse module (parse com-

mand-line arguments) 132
or (logical operator) 100
os module 25

os.chdir (change
directory) 150

os.curdir (current directory
indicator) 150, 153

os.environ (environment
variables) 154

os.getcwd (get the current
working directory) 150

os.listdir (list the files in a
directory) 150, 153, 155

os.mkdir (create a
directory) 156

os.name (operating system
name) 153

os.path.basename (obtain the
base file/directory) 152

os.path.commonprefix (find
the common prefix in a set
of pathnames) 152

os.path.exists (test the exis-
tence of a pathname) 154

os.path.expanduser (expand
the user name
variable) 153

os.path.expandvars (expand
the system variables) 153

os.path.getatime (get atime of
object pointed to by
path) 155

os.path.getmtime (get mtime
of object pointed to by
path) 155

os.path.isdir (test if the path-
name is a directory) 154

os.path.isfile (test if the path-
name is a file) 154

os.path.ismount (test if the
pathname is a filesystem
mount point) 154

os.path.issamefile (test if two
pathnames point to same
file) 155

os.path.join (creating
pathnames) 150–153

os.path.split (splitting
pathnames) 152

os.path.splitext (obtain the

os.remove (delete a file) 155
os.rmdir (delete a

directory) 156
os.walk (process files in a

directory tree) 156

P

packages 234–241
__all__ attribute of 240
basic use of 234
collections of related

modules 235
controlling imports with

__all__ 240
directory structure 236
example of 235–240
import statements in 239
__init__.py file in 239
loading subpackages and sub-

modules of 238
nesting 241
private names vs. __all__ 241
proper use of 241
relative imports 239
similarity to modules 238
submodules 239
using 238

packages, defined 30
packing binary data

(struct.pack) 167
pass statement 92
PATH_INFO, web server gateway

interface (WSGI) 301
pathnames 148–155

absolute 148
in Linux/UNIX 149
in Mac OS X 149
in Windows 148, 151

creating
(os.path.join) 150–152

expanding environment vari-
ables in
(os.path.expandvars) 153

expanding username short-
cuts in
(os.path.expanduser) 153

expanding wildcard charac-
ters in 155

expansion of (glob.glob) 155
getting information about

files 154
manipulating 150–153
obtaining common prefix of a

set of

open source software 7 file extension) 152 (os.path.commonprefix) 152

Licensed to Kerri Ross <pedbro@gmail.com>

INDEX 331

pathnames (continued)
obtaining the base of

(os.path.basename) 152
relative 148

in Linux/UNIX 149
in Mac OS X 149
in Windows 149, 151

separators 148
specialized queries 154
splitting 152
table of functions 157
testing existence of

(os.path.exists) 154
to network resources 152

paths. See pathnames 147
PEP (Python Enhancement Pro-

posal) 8 309–321
PEP 20, Zen of Python 321
PEP-8 44
Perl vs. Python 5
persistent data. See pickling and

shelves 171
Peters, Tim

metaclasses 258
Zen of Python 241, 322

Pickle module 25
in standard library 285
pickle.dump (write a Python

object to a file) 167–170
pickle.load (read a Python

object from a file) 167–170
pickling (reading and writing

Python objects from
files) 167–170

piping I/O between commands
(|) 132

Plone 295
porting

Python 2.x to Python
3 274–276
problems 279

test coverage during 275, 279
precedence

arithmetic 38
rules of 100

print function 8, 15, 23
controlling output 79
redirecting output to file 164

print statement 66
printing

formatted strings with the %
operator (%) 77

formatting sequences with
named parameters 76

private names, in modules 121
private variables

in classes, begin with __ 198
methods of classes 197

procedures
None value and 43
vs. functions 104

properties creating 199
PSF (Python Software

Foundation) 7
py2exe 145
pydoc module

HTML help pages 306
using from command

line 306
web-based

documentation 307
PyPi 289
Python

advantages of 3–6
coding style 43
contributing to 7
control flow 19
cross-platform 6
disadvantages 7–8
ease of use 4
expressiveness 4
high level of abstraction 4
indentation 5
installing 10–12

more than one version 11
on Macintosh 11
on UNIX 12
on Windows 95/98/NT 11

IronPython 6
legal restrictions on use, lack

thereof 7
libraries included 6
library support 8
licensing 6
open source 6
origin 4
programs

distributing 145
Python 3

advantages of 8
incompatible with earlier

versions 8
vs. earlier versions 8

readability 5
simple syntax 4
speed 7
support for GUIs 209
synopsis 19–30

vs. Java, variable swap 5
vs. Perl 5

Python 2.6 and -3 switch, needed
for porting 275–276

Python 2.x
2to3 conversion tool and

Python 3 276–277
converting Python 3.x code

back to 2.x 281
dict.keys() returns list 275
integer division 275
long integer type 275
migrating to Python

3.x 274–281
porting to Python 3 276

common problems 279
print statement 275
raw_input 275
StandardError 275
unicode type 275
using same code for, and

Python 3 280
vs. Python 3 275
vs. Python 3.x

integer vs. float
division 275

methods returning lists vs.
dynamic views 275

normal and long ints vs. all
ints long 275

print statement vs. print
function 275

raw_input vs. input 275
StandardError exception vs.

Exception exception
class 275

unicode string type 275
Python 3.x

bytes type 275
using same code for, and

Python 2 280
Python 3000 8
Python and Tkinter Programming

(John Grayson) 219
Python manual of style 309–321
Python Package Index

(PyPI) 289
Python, Zen of 321
PYTHONOPTIMIZE environ-

ment variable 181, 266
PYTHONPATH environment

variable 121
PYTHONUNBUFFERED

(binary unbuffered
IO) 138
private methods, in classes 197 variable typing, lack of 8 PyUnit 270

Licensed to Kerri Ross <pedbro@gmail.com>

INDEX332

Q

Qt package 221
qualification 117

R

raise (statement) 178
range (create a list

sequence) 93
setting starting and stepping

values 93
use in for loops 93

raw strings 228
re (regular expression)

library 23
re module 23, 70

re.compile (create and
compile a regular
expression) 226

read
a binary record from a

file 166
a fixed amount from a

file 162–163
read (read contents of file as

bytes object) 162
readline (read a line from a

file) 160
readlines (read all lines of a

file) 161
real 42
regular expressions 225–233

advantages of using
re.compile 226

definition of 226
example of 226
extracting matched text

with 229–231
extracting text from a string

with (?P) 230
function for substituting text

in strings with (sub) 232
grouping () 226
in standard library 283
matching a digit \d 229
matching one or more times

+ 229
matching optional ? 230
or | 226
raw strings and 227
special characters in 226
splitting into sections 230

substituting text in strings with
(sub) 232

relative pathnames. See path-
names, relative

reload (reload a module) 118
using to reload imported

module 30
remove method, lists 50
replace method 72
repr (convert an object to a

string) 74, 76
return statement 28
reverse method, lists 50
rfind method 70
rindex method 70
rjust function 72
rowconfigure (command), in

Tkinter 218
rstrip method 69
rules of precedence 100

S

scoping rules for
Python 123–128, 199–203

scripts 130–146
combining with modules 141
command-line arguments

for 131
controlling functions

purpose of 144
to catch exceptions 144
to check command-line

parameters 144
to handle special

modes 144
to map output 144

double-click starts in inter-
preter directory on
Windows 139

execution options on
Windows 135–138

making executable on Mac OS
X 135

making executable on
UNIX 135

on UNIX/Linux
grp module for accessing

group database 135
pwd module for accessing

group database 135
resource module for access-

ing group
database 135

stat module for accessing

syslog module for accessing
group database 135

redirecting input and output
for 131

standard structure of 130
starting from a command

line 130
starting from a command

window 137
starting from a Mac OS X

command line 130
starting from a Windows com-

mand prompt 130
starting from the Windows

Run box 137
starting in Windows by open-

ing (double-click) 136, 140
UNIX vs. Windows 138–140
use as modules 142
use for module regression

testing 144
use of __main__ 142

Scrollbar (widget), in Tkinter
orientation 218
placement 217
sticky attributes 218

search (search a string for a reg-
ular expression
match) 226, 230–231

self variable 31, 200
use of in classes 189

sequence creation (range) 93
sequence object types, immuta-

ble. See strings, tuples, and
sets 45

setdefault (dictionary
method) 85

__setitem__ special method
attribute 251

sets 24, 60–61
creating (set) 24, 61
frozenset type 61
in keyword 24
operations 60

setter decorator (@method.set-
ter), in classes 199

setup.py
installing libraries with 288
use with distutils 145

shelve module
close to ensure data written to

file 171
only strings a keys for 171
shelve.open (open/create a
strings, searching with 70 group database 135 shelve) 170

Licensed to Kerri Ross <pedbro@gmail.com>

INDEX 333

shelves 170–171
closing (close) 170
key membership

(has_key) 171
valid keys for (only

strings) 170
vs. dictionaries 171

slice, defined 21
slicing, defined 47
sort method, lists 50
sorted function 52
special characters 64–66, 227

in ASCII 65
in regular expressions 226

special characters for regular
expressions 227

special method attributes 248
__getitem__ 249
making objects behave like

lists 249–251
when to use 256

speed, of Python 7
split function 67, 73
SQLite interface, in standard

library 285
sqlite3 database. See databases

sqlite3 library
standard error (sys.stderr) 163
standard input (sys.stdin) 164

redirecting 164
standard library 282–287

data types 283
development and debugging

tools and runtime
services 286

files and storage 284
http.server module 293
internet protocols and

formats 286
internet protocols,

handling 293
numeric and mathematical

modules 284
operating system services 285
string services 283

standard output (sys.stdout),
redirecting 164

startswith method 71
statements

compound 96
splitting across multiple lines

(\) 98
static methods 192–194
str (convert an object to a

__str__ method 31
__str__ special method

attribute 248
defining 248

string module
constants 73
string.capitalize (convert a

string to uppercase) 72
string.center (centers a

string) 72
string.expandtabs (remove tab

characters from a
string) 72

string.find (find a substring in
a string) 70

string.index (find a substring
in a string) 71

string.join (join strings) 67
string.ljust (left-justify a

string) 72
string.lower (convert a string

to lowercase) 72
string.maketrans (translate

characters in a string) 72
string.replace (replace sub-

strings in a string) 72
string.rfind (find a substring

in a string) 71
string.rjust (right-justify a

string) 72
string.split (split a

string) 67–68
string.strip (strip white space

off both ends of a
string) 70

string.swapcase (swap charac-
ter case in a string) 72

string.title (capitalize all
words in a string) 72

string.translate (translate
characters in a string) 72

string.zfill (pads a numeric
string with zeros) 72

string modulus (%)
operator 77–80

formatting sequences 77
string services modules, in stan-

dard library 283
string.digits constant 73
string.hexdigits constant 73
string.letters constant 74
string.lowercase constant 74
string.maketrans function 72

string.translate function 72
string.uppercase constant 74
string.whitespace constant 73
strings 23, 39, 63–77

automatic concatenation
of 99

basic 39
basic operations 64
concatenation (+) 64
concatenation

(string.join) 67
conversion to a number (int,

long, float) 69
converting objects to (repr,

str) 74, 76
counting occurrences in

(string.count) 71
delimiters

double quoted 39
single quoted 39
triple quoted 39

evaluating 67–74
extracting matched text

from 229–231
format method 76–77

with named parameters 76
formatting 78
formatting sequences 77–80

with named parameters 76,
78–79

formatting with % 77–80
function to create text when

substituting text in with reg-
ular expressions (sub) 232

immutability of 23, 64
including ASCII characters

in 65
including Unicode characters

in 66
introduction 39
length of (len) 64
matching single element in a

regular expression in
(search) 227

methods 23, 67
modifying 71

with list manipulations 73
multiplication (*) 64
options for delimiting 23
raw 228
regular expression

grouping () 226
or | 226
string) 75 string.octdigits constant 73 optional match (?) 230

Licensed to Kerri Ross <pedbro@gmail.com>

INDEX334

strings (continued)
to extract text from

(?P) 230
to match a digit (\d) 229
to match one or more times

+ 229
reporting qualities of 73
searching for a regular expres-

sion in (search) 230
searching (string.find,

string.rfind, string.index,
string.rindex) 70

searching, with re module 70
slice notation 63
splitting across lines 39, 99
splitting apart

(string.split) 67
table of operations 74
whitespace removal

(string.strip, string.lstrip,
string.rstrip) 70

writing a string to a file
(write) 162

strip method 69
struct module (read and write

binary data) 25, 165–167
format string 166
struct.calcsize (calculate the

size of a format string) 166
struct.pack (pack a binary

record) 167
struct.unpack (parse data

based on a format
string) 166

structures
creating 187
using 187

style, Python
blank lines 310
code layout 310
comments 314–315

block 314
inline 314

documentation strings 314
imports 311
indentation 310
maximum line length 310
naming conventions 315–319
PEP (Python Enhancement

Proposal) 8 309–321
programming

conventions 319–321

whitespace 311
subclassing

built-in types 254–256
UserDict 256
UserList 255
UserString 256

subpackages in packages 238
super function 195
swapcase function 72
symbol tables. See

namespaces 123
SyntaxError, indentation

errors 97
sys module 25

sys.path (search path for
modules) 119

sys.platform (what platform
are we on) 153

sys.prefix (module search
path prefix) 121

sys.__stderr__ (original stan-
dard error) 164

sys.__stdin__ (original stan-
dard input) 164

sys.stdin, standard input 131
sys.stdout, standard output 131
syspath 119

T

Tcl, Tk as GUI extension 210
test coverage, needed for

porting 275, 279
TestCase class

assert_ 271
assertAlmostEqual 271
assertEqual 271
assertFalse 271
assertNotAlmostEqual 271
assertNotEqual 271
assertRaises 271
fail 271
unittest class 270

testing 265–273
assert statement 266
avoiding doctest traps 269
doctests 267–270
need for 266
unit tests 270–273
with Python 2.6 and -3 276

TestLoader class 272
TestRunner class 272
TestSuite class 272

Text (widget) in Tkinter 221
text file, analyzing, example

program 101
text input, prompting for

(raw_input) 163
third-party modules 123
title function 72
Tk, GUI extension of Tcl 210
Tkinter 209–221

advantages 210
alternatives to 221
cross-platform support 210
direct mapping of Tk widgets

to Python classes 212
event handling in 220
example application 214–215
Frame (widget class) 214
geometry management

for 213
grid command 217
grid geometry manager 214
GUI development library for

Python 209
installing 210
integration into Python 210
mouse events in 220
named attributes 212

default values 213
pack geometry manager 214
place geometry manager 214
principles 212–214
quick development time 210
rowconfigure

(command) 218
sources of further

information 219
Tk interface module 211
Toplevel (widget class) 214
ttk widgets 210
using classes to manage 219
virtual events in 220
widgets 212

attributes 215
Button 219
Canvas 221
constructor arguments 213
creating 215
hierarchy 215
Label 219
parent 216
placement 214–218
relative placement 217
Scrollbar
version bookkeeping 315 unittest class 270 orientation 218

Licensed to Kerri Ross <pedbro@gmail.com>

INDEX 335

Tkinter (continued)
 placement 217
 sticky attributes for 218
Text 221

window events in 220
Tkinter package 107
Toplevel (widget class) in

Tkinter 214
tracebacks 38
True (Boolean value) 26, 99
try statement 28, 179
try-except statement 179
try-except-finally-else

statement 28
try-finally statement

(finalizer) 206
ttk widget set in Tkinter 210
tuple (conversion function) 23, 73

converting list to tuple 60
tuples 22, 57–60

as dictionary keys 22
as keys for dictionaries 87
concatenating (+) 57
converting to lists 23, 60
copying 58
creating (=) 57
element types 22
immutability of 57
index notation 57
methods 22
one-element, comma in 58
packing and

unpacking 59–60
with list delimiters 60

parentheses and 58
reading from a file

(pickle.load) 167
unpacking of, in for loops 94
unpacking to make for loops

cleaner 94
unpacking, extended (*) 59
writing to a file

(pickle.dump) 168
TurboGears 295
type (type finding function) 242
type coercions 38
type conversions

any Python object to a string
(repr, str) 74

integer to float (float) 40
string to float (float,

string.atof) 69
typed list 252

types
as objects 242–246
built-in, subclassing 254–256
bytes 275
checking 243
comparing 243
duck-typing 245
in the standard library 283
obtaining the class of an

object (__class__) 244
of user-defined classes 243
type objects 243

typing, dynamic 8

U

Unicode
character representation

(\N{LATIN SMALL LET-
TER A}) 66

characters, including in
strings 66

unit tests 270–273
creating 270
running 272
running multiple tests 272
vs. doctests 273

unittest module 270
UNIX

installing Python on 12
writing scripts for 135

update (dictionary update
method) 85

upper function 72
URL, parsing 300
urllib.parse, uquote_plus

function 301
urllib.request module 294
urlopen, urllib.request

module 294
user input 43

converting to int or float 43
prompt string 43

user-defined classes, type of 243
UserDict, subclassing 256
UserList, subclassing 255
UserString, subclassing 256

V

ValueError exception 68
values (dictionary method) 84

variables
assigning (=) 37–38
creating (=) 37
deleting (del) 37
global 109
local 109
names 38

view (object), with
dictionaries 84

virtual events, in Tkinter 220

W

Warsaw, Barry, PEP 8 309
web application

advanced, creating with
frameworks 296

basic, creating with wsgi
library 295

creating in Python 295–297
WSGI 295

web frameworks 297
web programming 293
web server gateway interface

(WSGI)
environ,

CONTENT_LENGTH 298
handle_request 296
HTML formatting 304
make_server 296
PATH_INFO 301
REQUEST_METHOD 298
sample application 297–304
serve_forever 296

web server gateway interface
(WSGI) specification 295

schematic diagram 295
wsgiref module 296

web2py 295
When 266
which 154
while loops 26, 90

break statement 26
whitespace

in block structure 35
removing 69

widgets, in Tkinter 212
constructor arguments 213
creating 215
placement 215–218
relative placement 217

Windows
absolute pathnames in 148,
TypedList 252, 267 van Rossum, Guido, PEP 8 309 151

Licensed to Kerri Ross <pedbro@gmail.com>

INDEX336

Windows (continued)
adding .py as recognized

extension 138
creating shortcut for script

in 136
relative pathnames in 149, 151
starting script with double

click 140
using .pyw extension to avoid

opening command
window 136

Windows 95/98/NT, installing
Python on 11

word-counting example 86
working directory, current 149
wrapper class

UserDict 256
UserList 255
UserString 256

write (write a string to a
file) 162

writelines (write a list of strings
to a file) 163

WSGI 295
wsgi.input, reading from 298
wsgiref module,

wxPython toolkit 222
wxWidgets framework 222

Z

Zen of Python (Tim Peters) 321
flat is better than nested 241

zfill function 72
zip function 95
Zope 295
Zope 3 project, use of
with statement 184 simple_server 295 doctests 270

Licensed to Kerri Ross <pedbro@gmail.com>

ISBN 13: 978-1-93 - -75182 20
ISBN 10: 1-935182-20-X

9 7 8 1 9 3 5 1 8 2 2 0 7

99935

T
his revision of Manning’s popular The Quick Python Book
off ers a clear, crisp introduction to the elegant Python
programming language and its famously easy-to-read syntax.

Written for programmers new to Python, this updated edition
covers features common to other languages concisely, while
introducing Python’s comprehensive standard functions library
and unique features in detail.

Aft er exploring Python’s syntax, control fl ow, and basic data
structures, the book shows how to create, test, and deploy full
applications and larger code libraries. It addresses established
Python features as well as the advanced object-oriented options
available in Python 3. Along the way, you’ll survey the current
Python development landscape, including GUI programming,
testing, database access, and web frameworks.

What’s Inside
Concepts and Python 3 features
Regular expressions and testing
Python tools
All the Python you need—nothing you don’t

Second edition author Vern Ceder is Director of Technology at
the Canterbury School in Fort Wayne, Indiana where he teaches
and uses Python. Th e fi rst edition of this book was written by
Daryl Harms and Kenneth McDonald.

For online access to the author, and a free ebook for owners
of this book, go to manning.com/TheQuickPythonBookSecondEdition

$39.99 / Can $49.99 [INCLUDING eBOOK]

THE Quick Python Book SECOND EDITION

PROGRAMMING

Vernon L. Ceder

“Th e quickest way to learn
 the basics of Python.”
 —Massimo Perga, Microsoft

“Th is is my favorite Python
 book... a competent way into
 serious Python programming.”
 —Edmon Begoli
 Oak Ridge National Laboratory

“Great book... covers the new
 incarnation of Python.”
 —William Kahn-Greene
 Participatory Culture Foundation

“Like Python itself, its emphasis
 is on readability and rapid
 development.”
 —David McWhirter, Cranberryink

“Python coders will love this
 nift y book.”
 —Sumit Pal, Leapfrogrx

M A N N I N G

SEE INSERT

	Home Page
	Quick Python
	brief contents
	contents
	preface
	acknowledgments
	about this book
	Who should read this book
	How to use this book
	Roadmap
	Code conventions
	Source code downloads
	System requirements
	Software requirements
	Author online
	About the author
	About the cover illustration

	Part 1 Starting out
	1 About Python
	1.1 Why should I use Python?
	1.2 What Python does well
	1.2.1 Python is easy to use
	1.2.2 Python is expressive
	1.2.3 Python is readable
	1.2.4 Python is complete—“batteries included”
	1.2.5 Python is cross-platform
	1.2.6 Python is free

	1.3 What Python doesn’t do as well
	1.3.1 Python is not the fastest language
	1.3.2 Python doesn’t have the most libraries
	1.3.3 Python doesn’t check variable types at compile time

	1.4 Why learn Python 3?
	1.5 Summary

	2 Getting started
	2.1 Installing Python
	2.2 IDLE and the basic interactive mode
	2.2.1 The basic interactive mode
	2.2.2 The IDLE integrated development environment
	2.2.3 Choosing between basic interactive mode and IDLE

	2.3 Using IDLE’s Python Shell window
	2.4 Hello, world
	2.5 Using the interactive prompt to explore Python
	2.6 Summary

	3 The Quick Python overview
	3.1 Python synopsis
	3.2 Built-in data types
	3.2.1 Numbers
	3.2.2 Lists
	3.2.3 Tuples
	3.2.4 Strings
	3.2.5 Dictionaries
	3.2.6 Sets
	3.2.7 File objects

	3.3 Control flow structures
	3.3.1 Boolean values and expressions
	3.3.2 The if-elif-else statement
	3.3.3 The while loop
	3.3.4 The for loop
	3.3.5 Function definition
	3.3.6 Exceptions

	3.4 Module creation
	3.5 Object-oriented programming
	3.6 Summary

	Part 2 The essentials
	4 The absolute basics
	4.1 Indentation and block structuring
	4.2 Differentiating comments
	4.3 Variables and assignments
	4.4 Expressions
	4.5 Strings
	4.6 Numbers
	4.6.1 Built-in numeric functions
	4.6.2 Advanced numeric functions
	4.6.3 Numeric computation
	4.6.4 Complex numbers
	4.6.5 Advanced complex-number functions

	4.7 The None value
	4.8 Getting input from the user
	4.9 Built-in operators
	4.10 Basic Python style
	4.11 Summary

	5 Lists, tuples, and sets
	5.1 Lists are like arrays
	5.2 List indices
	5.3 Modifying lists
	5.4 Sorting lists
	5.4.1 Custom sorting
	5.4.2 The sorted() function

	5.5 Other common list operations
	5.5.1 List membership with the in operator
	5.5.2 List concatenation with the + operator
	5.5.3 List initialization with the * operator
	5.5.4 List minimum or maximum with min and max
	5.5.5 List search with index
	5.5.6 List matches with count
	5.5.7 Summary of list operations

	5.6 Nested lists and deep copies
	5.7 Tuples
	5.7.1 Tuple basics
	5.7.2 One-element tuples need a comma
	5.7.3 Packing and unpacking tuples
	5.7.4 Converting between lists and tuples

	5.8 Sets
	5.8.1 Set operations
	5.8.2 Frozensets

	5.9 Summary

	6 Strings
	6.1 Strings as sequences of characters
	6.2 Basic string operations
	6.3 Special characters and escape sequences
	6.3.1 Basic escape sequences
	6.3.2 Numeric (octal and hexadecimal) and Unicode escape sequences
	6.3.3 Printing vs. evaluating strings with special characters

	6.4 String methods
	6.4.1 The split and join string methods
	6.4.2 Converting strings to numbers
	6.4.3 Getting rid of extra whitespace
	6.4.4 String searching
	6.4.5 Modifying strings
	6.4.6 Modifying strings with list manipulations
	6.4.7 Useful methods and constants

	6.5 Converting from objects to strings
	6.6 Using the format method
	6.6.1 The format method and positional parameters
	6.6.2 The format method and named parameters
	6.6.3 Format specifiers

	6.7 Formatting strings with %
	6.7.1 Using formatting sequences
	6.7.2 Named parameters and formatting sequences

	6.8 Bytes
	6.9 Summary

	7 Dictionaries
	7.1 What is a dictionary?
	7.1.1 Why dictionaries are called dictionaries

	7.2 Other dictionary operations
	7.3 Word counting
	7.4 What can be used as a key?
	7.5 Sparse matrices
	7.6 Dictionaries as caches
	7.7 Efficiency of dictionaries
	7.8 Summary

	 8 Control flow
	8.1 The while loop
	8.1.1 The break and continue statements

	8.2 The if-elif-else statement
	8.3 The for loop
	8.3.1 The range function
	8.3.2 Using break and continue in for loops
	8.3.3 The for loop and tuple unpacking
	8.3.4 The enumerate function
	8.3.5 The zip function

	8.4 List and dictionary comprehensions
	8.5 Statements, blocks, and indentation
	8.6 Boolean values and expressions
	8.6.1 Most Python objects can be used as Booleans
	8.6.2 Comparison and Boolean operators

	8.7 Writing a simple program to analyze a text file
	8.8 Summary

	9 Functions
	9.1 Basic function definitions
	9.2 Function parameter options
	9.2.1 Positional parameters
	9.2.2 Passing arguments by parameter name
	9.2.3 Variable numbers of arguments
	9.2.4 Mixing argument-passing techniques

	9.3 Mutable objects as arguments
	9.4 Local, nonlocal, and global variables
	9.5 Assigning functions to variables
	9.6 lambda expressions
	9.7 Generator functions
	9.8 Decorators
	9.9 Summary

	10 Modules and scoping rules
	10.1 What is a module?
	10.2 A first module
	10.3 The import statement
	10.4 The module search path
	10.4.1 Where to place your own modules

	10.5 Private names in modules
	10.6 Library and third-party modules
	10.7 Python scoping rules and namespaces
	10.8 Summary

	11 Python programs
	11.1 Creating a very basic program
	11.1.1 Starting a script from a command line
	11.1.2 Command-line arguments
	11.1.3 Redirecting the input and output of a script
	11.1.4 The optparse module
	11.1.5 Using the fileinput module

	11.2 Making a script directly executable on UNIX
	11.3 Scripts on Mac OS X
	11.4 Script execution options in Windows
	11.4.1 Starting a script as a document or shortcut
	11.4.2 Starting a script from the Windows Run box
	11.4.3 Starting a script from a command window
	11.4.4 Other Windows options

	11.5 Scripts on Windows vs. scripts on UNIX
	11.6 Programs and modules
	11.7 Distributing Python applications
	11.7.1 distutils
	11.7.2 py2exe and py2app
	11.7.3 Creating executable programs with freeze

	11.8 Summary

	12 Using the filesystem
	12.1 Paths and pathnames
	12.1.1 Absolute and relative paths
	12.1.2 The current working directory
	12.1.3 Manipulating pathnames
	12.1.4 Useful constants and functions

	12.2 Getting information about files
	12.3 More filesystem operations
	12.4 Processing all files in a directory subtree
	12.5 Summary

	13 Reading and writing files
	13.1 Opening files and file objects
	13.2 Closing files
	13.3 Opening files in write or other modes
	13.4 Functions to read and write text or binary data
	13.4.1 Using binary mode

	13.5 Screen input/output and redirection
	13.6 Reading structured binary data with the struct module
	13.7 Pickling objects into files
	13.8 Shelving objects
	13.9 Summary

	14 Exceptions
	14.1 Introduction to exceptions
	14.1.1 General philosophy of errors and exception handling
	14.1.2 A more formal definition of exceptions
	14.1.3 User-defined exceptions

	14.2 Exceptions in Python
	14.2.1 Types of Python exceptions
	14.2.2 Raising exceptions
	14.2.3 Catching and handling exceptions
	14.2.4 Defining new exceptions
	14.2.5 Debugging programs with the assert statement
	14.2.6 The exception inheritance hierarchy
	14.2.7 Example: a disk-writing program in Python
	14.2.8 Example: exceptions in normal evaluation
	14.2.9 Where to use exceptions

	14.3 Using with
	14.4 Summary

	15 Classes and object-oriented programming
	15.1 Defining classes
	15.1.1 Using a class instance as a structure or record

	15.2 Instance variables
	15.3 Methods
	15.4 Class variables
	15.4.1 An oddity with class variables

	15.5 Static methods and class methods
	15.5.1 Static methods
	15.5.2 Class methods

	15.6 Inheritance
	15.7 Inheritance with class and instance variables
	15.8 Private variables and private methods
	15.9 Using @property for more flexible instance variables
	15.10 Scoping rules and namespaces for class instances
	15.11 Destructors and memory management
	15.12 Multiple inheritance
	15.13 Summary

	16 Graphical user interfaces
	16.1 Installing Tkinter
	16.2 Starting Tk and using Tkinter
	16.3 Principles of Tkinter
	16.3.1 Widgets
	16.3.2 Named attributes
	16.3.3 Geometry management and widget placement

	16.4 A simple Tkinter application
	16.5 Creating widgets
	16.6 Widget placement
	16.7 Using classes to manage Tkinter applications
	16.8 What else can Tkinter do?
	16.8.1 Event handling
	16.8.2 Canvas and text widgets

	16.9 Alternatives to Tkinter
	16.10 Summary

	Part 3 Advanced language features
	17 Regular expressions
	17.1 What is a regular expression?
	17.2 Regular expressions with special characters
	17.3 Regular expressions and raw strings
	17.3.1 Raw strings to the rescue

	17.4 Extracting matched text from strings
	17.5 Substituting text with regular expressions
	17.6 Summary

	18 Packages
	18.1 What is a package?
	18.2 A first example
	18.3 A concrete example
	18.3.1 Basic use of the mathproj package
	18.3.2 Loading subpackages and submodules
	18.3.3 import statements within packages
	18.3.4 __init__.py files in packages

	18.4 The __all__ attribute
	18.5 Proper use of packages
	18.6 Summary

	19 Data types as objects
	19.1 Types are objects, too
	19.2 Using types
	19.3 Types and user-defined classes
	19.4 Duck typing
	19.5 Summary

	20 Advanced object-oriented features
	20.1 What is a special method attribute?
	20.2 Making an object behave like a list
	20.2.1 The __getitem__ special method attribute
	20.2.2 How it works
	20.2.3 Implementing full list functionality

	20.3 Giving an object full list capability
	20.4 Subclassing from built-in types
	20.4.1 Subclassing list
	20.4.2 Subclassing UserList

	20.5 When to use special method attributes
	20.6 Metaclasses
	20.7 Abstract base classes
	20.7.1 Using abstract base classes for type checking
	20.7.2 Creating abstract base classes
	20.7.3 Using the @abstractmethod and @abstractproperty decorators

	20.8 Summary

	Part 4 Where can you go from here?
	21 Testing your code made easy(-er)
	21.1 Why you need to have tests
	21.2 The assert statement
	21.2.1 Python’s __debug__ variable

	21.3 Tests in docstrings: doctests
	21.3.1 Avoiding doctest traps
	21.3.2 Tweaking doctests with directives
	21.3.3 Pros and cons of doctests

	21.4 Using unit tests to test everything, every time
	21.4.1 Setting up and running a single test case
	21.4.2 Running the test
	21.4.3 Running multiple tests
	21.4.4 Unit tests vs. doctests

	21.5 Summary

	22 Moving from Python 2 to Python 3
	22.1 Porting from 2 to 3
	22.1.1 Steps in porting from Python 2.x to 3.x

	22.2 Testing with Python 2.6 and -3
	22.3 Using 2to3 to convert the code
	22.4 Testing and common problems
	22.5 Using the same code for 2 and 3
	22.5.1 Using Python 2.5 or earlier
	22.5.2 Writing for Python 3.x and converting back

	22.6 Summary

	23 Using Python libraries
	23.1 “Batteries included”—the standard library
	23.1.1 Managing various data types
	23.1.2 Manipulating files and storage
	23.1.3 Accessing operating system services
	23.1.4 Using internet protocols and formats
	23.1.5 Development and debugging tools and runtime services

	23.2 Moving beyond the standard library
	23.3 Adding more Python libraries
	23.4 Installing Python libraries using setup.py
	23.4.1 Installing under the home scheme
	23.4.2 Other installation options

	23.5 PyPI, a.k.a. “the Cheese Shop”
	23.6 Summary

	24 Network, web, and database programming
	24.1 Accessing databases in Python
	24.1.1 Using the sqlite3 database

	24.2 Network programming in Python
	24.2.1 Creating an instant HTTP server
	24.2.2 Writing an HTTP client

	24.3 Creating a Python web application
	24.3.1 Using the web server gateway interface
	24.3.2 Using the wsgi library to create a basic web app
	24.3.3 Using frameworks to create advanced web apps

	24.4 Sample project—creating a message wall
	24.4.1 Creating the database
	24.4.2 Creating an application object
	24.4.3 Adding a form and retrieving its contents
	24.4.4 Saving the form’s contents
	24.4.5 Parsing the URL and retrieving messages
	24.4.6 Adding an HTML wrapper

	24.5 Summary

	appendix
	A guide to Python’s documentation
	The Python manual of style
	The Zen of Python

	index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

	back cover

