
PyS60 Library Reference
Release 1.3.13 final

2 December 2006

Nokia

Copyright c© 2004-2006 Nokia Corporation.

This is Python for S60 version 1.3.13 final created by Nokia Corporation. Files added by Nokia Corpo-
ration are licensed under Apache License Version 2.0. The original software, including modifications of
Nokia Corporation therein, is licensed under the applicable license(s) for Python 2.2.2, unless specifically
indicated otherwise in the relevant source code file.

See http://www.apache.org/licenses/LICENSE-2.0 and http://www.python.org/2.2.2/license.html

Abstract

The Python for S60 Platform (Python for S60) simplifies application development and provides a scripting
solution for the Symbian C++ APIs. This document is for Python for S60 version 1.3.13 final that is
based on Python 2.2.2.

CONTENTS

1 Introduction 1
1.1 Scope . 1
1.2 Audience . 1
1.3 New in Release 1.3.12 . 2
1.4 Naming Conventions . 2

2 API Summary 3
2.1 Python Standard Library . 3
2.2 Python for S60 Extensions . 3
2.3 Third-Party Extensions . 4

3 Selected Issues on Python Programming for S60 5
3.1 Concurrency Aspects . 5
3.2 Current S60 Python Script Execution Environment . 5
3.3 Standard I/O Streams . 6
3.4 Usage of Unicode . 6
3.5 Date and Time . 6
3.6 Sharing Native Resources between Threads . 6
3.7 Scalable User Interface . 7
3.8 Error Handling . 7
3.9 Limitations and Areas of Development . 7

4 Operating System Services and Information 9
4.1 e32 — A Symbian OS related services package . 9
4.2 sysinfo — Access to system information . 11

5 User Interface and Graphics 13
5.1 appuifw — Interface to the S60 GUI framework . 13
5.2 graphics — A graphics related services package . 24
5.3 camera — Interface for taking photographs . 31
5.4 keycapture — Interface for global capturing of key events. 32
5.5 topwindow — Interface for creating windows that are shown on top of other applications. 33

6 Audio and Communication Services 37
6.1 audio — An audio related services package . 37
6.2 telephone — Telephone services . 38
6.3 messaging — A messaging services package . 39
6.4 inbox — Interface to device inbox . 39
6.5 location — GSM location information . 40

7 Data Management 41
7.1 contacts — A contacts related services package . 41
7.2 calendar — Access to calendar related services . 44
7.3 calendar for EKA2 — Access to calendar related services 50

i

7.4 e32db — Interface to the Symbian native DB . 55
7.5 e32dbm — DBM implemented using the Symbian native DBMS 57

8 Standard Library Support and Extensions 61
8.1 Support for Python Standard Library . 61
8.2 Extensions to Standard Library Modules . 62

9 Extending and Embedding 65
9.1 Python/C API Extensions . 65
9.2 Extending Python for S60 . 66

10 Terms and Abbreviations 69

A Reporting Bugs 73

Module Index 75

Index 77

ii

CHAPTER

ONE

Introduction

The Python for S60 Platform (Python for S60) simplifies application development and provides a scripting
solution for the Symbian C++ APIs. This document is for Python for S60 release 1.3.13 that is based
on Python 2.2.2.

The documentation for Python for S60 includes three documents:

• Getting Started with Python for S60 Platform [5] contains information on how to install Python
for S60 and how to write your first program.

• This document contains API and other reference material.

• Programming with Python for S60 Platform [6] contains code examples and programming patterns
for S60 devices that can be used as a basis for programs.

Python for S60 as installed on a S60 device consists of:

• Python execution environment, which is visible in the application menu of the device and has been
written in Python on top of Python for S60 Platform (see S60 SDK documentation [4])

• Python interpreter DLL

• Standard and proprietary Python library modules

• S60 UI application framework adaptation component (a DLL) that connects the scripting domain
components to the S60 UI

• Python Installer program for installing Python files on the device, which consists of:

– Recognizer plug-in
– Symbian application written in Python

The Python for S60 developer discussion board [9] on the Forum Nokia Web site is a useful resource for
finding out information on specific topics concerning Python for S60. You are welcome to give feedback
or ask questions about Python for S60 through this discussion board.

1.1 Scope

This document includes the information required by developers to create applications that use Python
for S60, and some advice on extending the platform.

1.2 Audience

This guide is intended for developers looking to create programs that use the native features and re-
sources of the S60 phones. The reader should be familiar with the Python programming language
(http://www.python.org/) and the basics of using Python for S60 (see Getting Started with Python for S60
Platform [5]).

1

1.3 New in Release 1.3.12

This section lists the updates in this document since release 1.3.8.

• Section 5.4, keycapture Module has been added.

• Section 5.5, topwindow Module has been added.

• Section 7.3, calendar Module for EKA2 has been added.

1.4 Naming Conventions

Most names of the type ESomething typically indicate a constant defined by the Symbian SDK. More
information about these constants can be found in the Symbian SDK documentation.

2 Chapter 1. Introduction

CHAPTER

TWO

API Summary

All built-in object types of the Python language are supported in the S60 environment. The rest of the
programming interfaces are implemented by various library modules as summarized in this chapter.

2.1 Python Standard Library

Python for S60 platform distribution does not include all of the Python’s standard and optional library
modules to save storage space in the phone. Nevertheless, many of the excluded modules also work in
the S60 Python environment without any modifications. Some modules are included in the SDK version
but not installed in the phone. For a summary of supported library modules, see Chapter 8.

When Python, available at http://www.python.org/, is installed on a PC, the library modules are by
edefault located in ‘\Python22\Lib’ on Windows and in ‘/usr/lib/python2.2’ on Linux. The Python library
modules’ APIs are documented in [1].

Python for S60 extends some standard modules. These extensions are described in this document, see
Chapter 8.2.

2.2 Python for S60 Extensions

There are two kinds of native C++ extensions in the Python for S60 Platform: built-in extensions and
dynamically loadable extensions.

2.2.1 Built-in extensions

There are two built-in extensions in the Python for S60 package:

• The e32 extension module is built into the Python interpreter on Symbian OS, and implements
interfaces to special Symbian OS Platform services that are not accessible via Python standard
library modules.

• The appuifw module for Python for S60 Platform offers UI application framework related Python
interfaces.

2.2.2 Dynamically loadable extensions

These dynamically loadable extension modules provide proprietary APIs to S60 Platform’s services:
graphics (see Chapter 5.2, graphics Module), e32db (see Chapter 7.4, e32db Module), messaging (see
Chapter 6.3, messaging Module), inbox (see Chapter 6.4, inbox Module), location (see Chapter 6.5,
location Module), sysinfo (see Chapter 4.2, sysinfo Module), camera (see Chapter 5.3, camera Module),
audio (see Chapter 6.1, audio Module), telephone (see Chapter 6.2, telephone Module), calendar (see
Chapter 7.2, calendar Module), and contacts (see Chapter 7.1, contacts Module).

3

2.3 Third-Party Extensions

It is also possible to write your own Python extensions. S60 related extensions to Python/C API are
described in Chapter 9.1. For some further guidelines on writing extensions in C/C++, see Chapter 9.2.
In addition, for an example on porting a simple extension to S60, see [6].

4 Chapter 2. API Summary

CHAPTER

THREE

Selected Issues on Python Programming for
S60

The following issues must be considered when using Python on S60.

3.1 Concurrency Aspects

The thread that initializes the Python interpreter becomes the main Python thread. This is usually the
main thread of a UI application. When an application written in Python launches, the Symbian platform
infrastructure creates the main UI thread that starts the Python environment. If a Python program is
started as a server with e32.start server, then the Python main thread is not a UI thread.

It is possible to launch new threads via the services of thread module. Examples of such situations could
be to overcome eventual problems with the fixed, relatively small stack size of the main UI application
thread; or to perform some background processing while still keeping the UI responsive. These new
threads are not allowed to directly manipulate the UI; in other words, they may not use the appuifw
module.

Because of the limitations of the Python interpreter’s final cleanup, Python applications on the Symbian
OS should be designed in such a way that the main thread is the last thread alive.

A facility called active object is used extensively on the Symbian OS to implement co-operative, non-
preemptive scheduling within operating system threads. This facility is also utilized with native APIs. A
Python programmer is exposed to related concurrency issues particularly in UI programming. Preserving
the responsiveness of the UI with the help of active objects needs to be considered when designing the
application logic. At the same time it is necessary to take into account the resulting concurrent behavior
within the application when active objects are used. While the main execution path of a UI script is
blocked in wait for an active object to complete – either explicitly as a result of using e32.Ao lock, or
indirectly within some other Python API implementation – the UI-related callbacks may still get called.

The standard thread.lock cannot normally be used for synchronization in the UI application main
thread, as it blocks the UI event handling that takes place in the same thread context. The Symbian
active object based synchronization service called e32.Ao lock has been implemented to overcome this
problem. The main thread can wait in this lock, while the UI remains responsive.

Python for S60 tries to minimize the unwanted exposure of a Python programmer to the active objects
of the Symbian OS. The programmer may choose to implement the eventual concurrent behavior of the
application with normal threads. However, certain active object based facilities are offered as an option
in the e32 module.

3.2 Current S60 Python Script Execution Environment

The current options for installing Python scripts to a S60 device are: a stand-alone installation to the
device’s main application menu, and an installation to a folder hierarchy maintained by the Python

5

execution environment. For more details on this topic, see Programming with Python for S60 Platform
[6]. In the first case the script application is launched via application menu, and it executes in its own
process context. The latter case is suitable for development, testing, and trying out new scripts.

The Python execution environment delivered with Python for S60 package has itself been written in
Python. It is a collection of scripts that offer an interactive Python console and a possibility to execute
scripts located in the directory of the execution environment. Due to this kind of design the scripts are
not fully isolated from each other. This means that any changes a script makes in the shared execution
environment are visible to other scripts as well. This may be helpful during the development of a script
suite, as long as care is taken to avoid unwanted interference between scripts.

For some special issues to consider when writing Python scripts to be run from the current Python exe-
cution environment, see Programming with Python for S60 Platform [6]. These include the arrangements
for standard output and the maintenance of the Options menu contents.

3.3 Standard I/O Streams

The standard Python I/O streams in the sys module are by default connected to underlying C STDLIB’s
stdio streams that in turn are terminated by dummy file descriptors. Usually Python scripts set the
I/O streams suitably by manipulating them at Python level via sys module interface. The e32 extension
module offers a Python interface for attaching to C STDLIB’s output streams, but this service is only
recommended for debugging purposes. The e32. stdo function takes as its argument the name of the
file where C STDLIB’s stdout and stderr are to be redirected. This makes it possible to capture the
low-level error output when the Python interpreter has detected a fatal error and aborts.

3.4 Usage of Unicode

No changes have been made to the standard library modules with regard to string argument and return
value types. S60 extensions generally accept both plain strings and Unicode strings as arguments, but
they return only Unicode strings. APIs that take string arguments for the purpose of showing them on
the UI expect Unicode strings. Giving something else may result in garbled appearance of the text on
the screen.

3.5 Date and Time

Unix time, seconds since January 1, 1970, 00:00:00 UTC (Coordinated Universal Time), is generally used
as the time format in the Python for S60 APIs described in this document. The float type is used for
storing time values.

3.6 Sharing Native Resources between Threads

Warning: Python for S60 objects that wrap native resources cannot be shared between threads.
Trying this can lead to a crash. This is because native resources cannot be shared between native
threads. Examples:

• Symbian OS STDLIB implementation has some limitations that are reflected at OS module support
(see S60 SDK documentation [4]). For example, STDLIB file descriptors cannot be shared between
threads, and for that reason, Python file objects cannot either.

• Sockets as implemented in the S60 version of the socket module.

6 Chapter 3. Selected Issues on Python Programming for S60

3.7 Scalable User Interface

Note: S60 2nd Edition FP3 and further releases.

S60 2nd Edition FP3 enables a new feature called scalable user interface. For Python developers scal-
able user interface is currently visible in new APIs supporting the scalable UI, icon loading, and new
screen resolutions. For more information on scalable user interface, see Section 5.1.8, Icon Type of this
document, as well as Programming with Python for S60 Platform [6].

3.8 Error Handling

The APIs described in this document may raise any standard Python exceptions. In situations where a
Symbian error code is returned, its symbolic name is given as the value parameter of a SymbianError
exception.

In case where the functions have nothing special to return, they return None on success.

3.9 Limitations and Areas of Development

Some OS level concepts to which the standard os library module offers an interface do not exist as such
in Symbian OS environment. An example of this is the concept of current working directory.

Reference cycle garbage collection is not in use. Because of this, special care needs to be taken to
dismantle cyclic references when a Python program exits. This prevents error messages related to native
resources that are left open. The problem could be removed by developing support for collection of cyclic
garbage or by performing a special cleanup action on interpreter exit. The gc module has been ported
to the Symbian OS, and it has been verified to work. However, the current distribution has been built
without gc support.

3.7. Scalable User Interface 7

8

CHAPTER

FOUR

Operating System Services and Information

4.1 e32 — A Symbian OS related services package

The e32 module offers Symbian OS related utilities that are not related to the UI and are not provided
by the standard Python library modules.

4.1.1 Module Level Functions

The following free functions - functions that do not belong to any class - are defined in the e32 module:

ao yield()
Yields to the active scheduler to have ready active objects with priority above normal scheduled for
running. This has the effect of flushing the eventual pending UI events. Note that the UI callback
code may be run in the context of the thread that performs an ao yield. For information on
active scheduler, see S60 SDK documentation [4].

ao sleep(interval [, callback])
Sleeps for the given interval without blocking the active scheduler. When the optional callback is
given, the call to ao sleep returns immediately and the callback gets called after interval . See
also Section 4.1.3, Ao timer Type.

ao callgate(wrapped callable)
Wraps wrapped callable into returned callable object callgate that can be called in any thread. As
a result of a call to callgate, wrapped callable gets called in the context of the thread that originally
created the callgate. Arguments can be given to the call. This is actually a simple wrapping of the
Symbian active object facility.

drive list()
Returns a list of currently visible drives as a list of Unicode strings ’<driveletter>:’

file copy(target name, source name)
Copies the file source name to target name. The names must be complete paths.

in emulator()
Returns 1 if running in an emulator, or 0 if running on a device.

set home time(time)
Set the device’s time to time (see Section 3.5).

pys60 version
A string containing the version number of the Python for S60 and some additional information.
Example:

>>> import e32

>>> e32.pys60_version

’1.2 final’

pys60 version info

9

A tuple containing the five components of the Python for S60 version number: major, minor, micro,
release tag, and serial. All values except release level are integers; the release tag is a string. A value
other than ’final’ for the release tag signifies a development release. The pys60 version info
value corresponding to the Python for S60 version 1.2 is (1, 2, 0, ’final’, 0).

s60 version info
The SDK version with which this Python was compiled (tuple). The following values are possible:

•(1, 2) for S60 1st Edition

•(2, 0) for S60 2nd Edition

•(2, 6) S60 2nd Edition Feature Pack 2

•(2, 8) S60 2nd Edition Feature Pack 3

Examples:

>>> import e32

>>> e32.pys60_version

’1.2.0 final’

>>> e32.pys60_version_info

(1, 2, 0, ’final’, 0)

>>> e32.s60_version_info

(2, 0)

>>>

is ui thread()
Returns True if the code that calls this function runs in the context of the UI thread; otherwise
returns False.

start exe(filename, command [,wait])
Launches the native Symbian OS executable filename (Unicode) and passes it the command string.
When wait is set, the function synchronously waits for the exit of the executable and returns a
value that describes the exit type. Possible values are 0 for normal exit and 2 for abnormal exit.

start server(filename)
Starts the Python script in file filename (Unicode) as a server in its own process. Note that appuifw
module is not available to a server script.

4.1.2 Ao lock Type

class Ao lock()
Creates an Ao lock instance. A Symbian active object based synchronization service. This can be
used in the main thread without blocking the handling of UI events. The application should not
exit while a thread is waiting in Ao lock. If Ao lock is called while another wait is in progress,
an AssertionError is raised.

Instances of Ao lock type have the following methods:

wait()
If the lock has already been signaled, returns immediately. Otherwise blocks in wait for the lock
to be signaled. Only one waiter is allowed, so you should avoid recursive calls to this service. wait
can only be called in the thread that created the lock object. During the wait, other Symbian-
active objects are being served, so the UI will not freeze. This may result in the UI callback code
being run in the context of the thread that is waiting in Ao lock. This must be considered when
designing the application logic.

signal()
Signals the lock. The waiter is released.

4.1.3 Ao timer Type

10 Chapter 4. Operating System Services and Information

The rationale for the Ao timer type is that you cannot cancel a pending e32.ao sleep. This is
problematic if e.g. the user exits an application which is sleeping. In this case a panic would occur
since the sleep is not cancelled - this is the reason you should avoid using e32.ao sleep and instead
use the Ao timer with appropriate cancel calls if there is for example a possibility for the user to exit
the application during a sleep.

class Ao timer()
Creates an Ao timer instance. A Symbian active object based sleeping service. This can be used
in the main thread without blocking the handling of UI events. The application should not exit
while a thread has a pending after call in Ao timer. Only one after invocation can be pending
at time for each instance of this type.

Instances of Ao timer type have the following methods:

after(interval [,callback])
Sleeps for the given interval without blocking the active scheduler. When the optional callback is
given, the call to after returns immediately and the callback gets called after interval.

cancel()
Cancels a pending after call.

4.2 sysinfo — Access to system information

The sysinfo module offers an API for checking the system information of a S60 mobile device.

Note: The method ring type is not available for S60 1st Edition.

The sysinfo module has the following functions:

battery()
Returns the current battery level ranging from 0 to 100, with 0 meaning that the battery is empty
and 100 meaning that the battery is full. Devices based on Symbian 7.0 or earlies battery level is
ranged from 0 to 7. If using an emulator, value 0 is always returned.

display twips()
Returns the width and height of the display in twips. For a definition of a twip, see Chapter 10,
Terms and Abbreviations.

display pixels()
Returns the width and height of the display in pixels.

free drivespace()
Returns the amount of free space left on the drives in bytes, for example {u’C:’ 100}. The keys
in the dictionary are the drive letters followed by a colon (:).

imei()
Returns the IMEI code of the device as a Unicode string. If using an emulator, the hardcoded
string u’000000000000000’ is returned.

max ramdrive size()
Returns the maximum size of the RAM drive on the device.

total ram()
Returns the amount of RAM memory on the device.

free ram()
Returns the amount of free RAM memory available on the device.

total rom()
Returns the amount of read-only ROM memory on the device.

ring type()
Not supported in 1st Edition! Returns the current ringing type as a string, which can be one
of the following: ’normal’, ’ascending’, ’ring once’, ’beep’, or ’silent’.

4.2. sysinfo — Access to system information 11

os version()
Returns the operating system version number of the device as integers. The returned version is
defined by a set of three numbers as follows1:

•The major version number, ranging from 0 to 127 inclusive

•The minor version number, ranging from 0 to 99 inclusive

•The build number, ranging from 0 to 32767 inclusive.

signal()
Returns the current network signal strength ranging from 0 to 7, with 0 meaning no signal and 7
meaning a strong signal.. If using an emulator, value 0 is always returned.

signal strength()
Returns the current network signal strength in dBm. This is available SDK 2.8 onwards. If using
an emulator, value 0 is always returned.

sw version()
Returns the software version as a Unicode string. If using an emulator, the hardcoded string
u’emulator’ is returned. For example, a software version can be returned as u’V 4.09.1 26-02-04
NHL-10 (c) NMP’.

1Descriptions for these values are based on information found in S60 SDK documentation [4].

12 Chapter 4. Operating System Services and Information

CHAPTER

FIVE

User Interface and Graphics

5.1 appuifw — Interface to the S60 GUI framework

The appuifw module offers an interface to S60 UI application framework. Figure 5.1 provides an overview
of the Python for S60 environment for UI application programming.

Note: The services of this interface may only be used in the context of the main thread, that is, the
initial thread of a UI application script.

5.1.1 Basics of appuifw Module

Figure 5.2 shows the layout of a S60 application UI in the normal screen mode and a summary of how
it relates to the services available at the appuifw API. For alternative layouts, see Figure 5.3.

The main application window may be set up to be occupied by a UI control.

A multi-view application can show the different views as tabs in the navigation pane and react as the
users navigate between tabs.

Dialogs always take precedence over the usual UI controls and appear on top of them.

UI controls are implemented as Python types. These types are available:

• Text

• Listbox

• Canvas

UI controls appear on the screen as soon as an instance of the corresponding Python type is created and
set to the body field (app.body) of the current application UI.

Form is a versatile dialog implemented as a type.

The Content handler type facilitates interfacing to other UI applications and common high-level UI
components. It is based on the notion that designated handlers can reduce UI application interaction to
operations on MIME-type content.

The following dialogs are implemented as functions:

• note

• query

• multi query

• selection list

• multi selection list

13

Figure 5.1: Python for S60 UI environment overview

Figure 5.2: The different parts of the screen when using the ’normal’ layout

14 Chapter 5. User Interface and Graphics

Figure 5.3: UI layouts. left: ’normal’, middle: ’large’, right: ’full’

• popup menu

A dialog becomes visible as soon as the corresponding Python function has been called. The function
returns with the eventual user input or information on the cancellation of the dialog. Form is an exception;
it is shown when its execute method is called.

5.1.2 Softkeys

The softkeys are managed by the underlying S60 Platform. When no dialog is visible, the right softkey is
bound to application exit and the left one represents an Options menu. Python for S60 offers an interface
for manipulating the menu and for binding the Exit key to a Python-callable object (see Section 5.1.4).

The native code that implements a dialog also manages the softkeys of the dialog, typically OK and
Cancel. When the user input needs to be validated before accepting it and dismissing the dialog, it is
best to use Form.

5.1.3 Module Level Functions

The following free functions - functions that do not belong to any class - are defined in the appuifw
module:

available fonts()
Returns a list (Unicode) of all fonts available in the device.

query(label, type[, initial value])
Performs a query with a single-field dialog. The prompt is set to label , and the type of the dialog
is defined by type. The value of type can be any of the following strings:

•’text’
•’code’
•’number’
•’date’
•’time’
•’query’
•’float’

The type of the optional initial value parameter and the returned input depend on the value of
type:

5.1. appuifw — Interface to the S60 GUI framework 15

•For text fields, (’text’, ’code’) it is Unicode

•For number fields, it is numeric

•For date fields, it is seconds since epoch rounded down to the nearest local midnight

A simple confirmation query and time query take no initial value and return True/None and seconds
since local midnight, correspondingly. All queries return None if the users cancel the dialog.

For ’float’ query the initial value setting has no effect.

multi query(label 1, label 2)
A two-field text (Unicode) input dialog. Returns the inputted values as a 2-tuple. Returns None if
the users cancel the dialog.

note(text[, type[, global]])
Displays a note dialog of the chosen type with text (Unicode). The default value for type is ’info’,
which is automatically used if type is not set. type can be one of the following strings: ’error’,
’info’, or ’conf’.

If global (integer) is any other value than zero a global note is displayed. A global note is displayed
even if the Python application calling this function is in background. The same set of types is
supported as in standard note.

popup menu(list[, label])
A pop-up menu style dialog. list representing the menu contents can be a list of Unicode strings
or a list of Unicode string pairs (tuples). The resulting dialog list is then a single-style or a double-
style list. A single-style list is shown in full; whereas a double-style list shows the items one at a
time. Returns None if the user cancels the operation.

selection list(choices[, search field=0])
Executes a dialog that allows the users to select a list item and returns the index of the chosen item,
or None if the selection is cancelled by the users. choices is a list of Unicode strings. search field
is 0 (disabled) by default and is optional. Setting it to 1 enables a search field (find pane) that
facilitates searching for items in long lists. If enabled, the search field appears after you press a
letter key.

multi selection list(choices[, style=’checkbox’, search field=0])
Executes a dialog that allows the users to select multiple list items. Returns a tuple of indexes
(a pair of Unicode strings) of the chosen items, or None if the selection is cancelled by the users.
choices is a list of Unicode strings. style is an optional string; the default value being ’checkbox’.
If ’checkbox’ is given, the list will be a checkbox list, where empty checkboxes indicate what items
can be marked. The other possible value that can be set for style is ’checkmark’. If ’checkmark’
is given, the list will be a markable list, which lists items but does not indicate specifically that
items can be selected. To select items on a markable list, use the Navigation key to browse the
list and the Edit key to select an item. For example views on checkbox and markable lists, see
Figure 5.4. search field is 0 (disabled) by default and is optional. Setting it to 1 enables a search
field (find pane) that facilitates searching for items in long lists. If enabled, the search field is
always visible with checkbox lists; with markable lists it appears by pressing a letter key.
Example:

tuple = appuifw.multi_selection_list(L, style=’checkmark’, search_field=1)

5.1.4 Application Type

A single implicit instance of this type always exists when appuifw module is present and can be referred
to with the name app. New instances cannot be created by a Python program.

class Application
Instances of Application type have the following attributes:

16 Chapter 5. User Interface and Graphics

Figure 5.4: Examples of a checkbox list (left) and a markable list (right)

body
The UI control that is visible in the application’s main window. Currently either Text, a
Listbox object, Canvas, or None.

exit key handler
A callable object that is called when the user presses the Exit softkey. Setting
exit key handler to None sets it back to the default value.

menu
This is a list of the following kinds of items:

•(title, callback) which creates a regular menu item

•(title, ((title, callback)[...])) which creates a submenu

title (Unicode) is the name of the item and callback the associated callable object. The
maximum allowed number of items in a menu, or items in a submenu, or submenus in a menu
is 30.
Example:

appuifw.app.menu = [(u"Item 1", item1),

(u"Submenu 1",

((u"Subitem 1", subitem1),

(u"Subitem 2", subitem2)))]

screen
The screen area used by an application. See Figure 5.3 for example screens. The appearance of
the application on the screen can be affected by setting one of the following values: ’normal’,
’large’, and ’full’.
Examples:

appuifw.app.screen=’normal’ # (a normal screen with title pane and softkeys)

appuifw.app.screen=’large’ # (only softkeys visible)

appuifw.app.screen=’full’ # (a full screen)

title
The title the application that is visible in the application’s title pane. Must be Unicode.

focus
A callable object that is called with integer as parameter (0 = focus lost, 1 = focus regained)
when the application receives focus or it is switched to background. Focus is received e.g. when
the application is switched from background to foreground or when the focus is regained from
screensaver. Similarly when the screensaver is displayed, focus is lost.
Examples:

>>> import appuifw

>>> def cb(fg):

5.1. appuifw — Interface to the S60 GUI framework 17

... if(fg):

... print "foreground"

... else:

... print "background"

...

>>> appuifw.app.focus=cb

>>> # switch to background, following text is printed from callback:

>>> background

>>> # switch to foreground, following text is printed from callback:

>>> foreground

Note: An improper callback can cause adverse effects. If you, for example, define a callback
which takes no parameters you will receive never-ending TypeError exceptions on the Nokia
6600.

Instances of Application type have the following methods:

activate tab(index)
Activates the tab index counting from zero.

full name()
Returns the full name, in Unicode, of the native application in whose context the current
Python interpreter session runs.

uid()
Returns the UID, in Unicode, of the native application in whose context the current Python
interpreter session runs.

set exit()
Requests a graceful exit from the application as soon as the current script execution returns.

set tabs(tab texts[,callback=None])
Sets tabs with given names on them in the navigation bar; tab texts is a list of Unicode
strings. When the users navigate between tabs, callback gets called with the index of the
active tab as an argument. Tabs can be disabled by giving an empty or one-item tab texts
list.

5.1.5 Form Type

Form implements a dynamically configurable, editable multi-field dialog. Form caters for advanced dialog
use cases with requirements such as free selectability of the combination of fields, possibility of validating
the user input, and automatically producing the contents of some dialog fields before allowing the closing
of the dialog.

class Form(fields[, flags=0])
Creates a Form instance. fields is a list of field descriptors: (label, type[, value]) where

label is a Unicode string

type is one of the following strings: ’text’, ’number’, ’date’, ’time’, ’combo’ or ’float’

value, depending on type: Unicode string, numeric, float (seconds since Unix epoch rounded down to
the nearest local midnight), float (seconds since local midnight), ([choice label ...], index)
of float. For ’float’ type the initial value setting might not be shown in the UI.

Form can also be configured and populated after construction. The configuration flags are visible as
an attribute. Form implements the list protocol that can be used for setting the form fields, as well as
obtaining their values after the dialog has been executed.

Instances of Form type have the following attributes:

flags
This attribute holds the values of the various configuration flags. Currently supported flags are:

FFormEditModeOnly
When this flag is set, the form remains in edit mode while execute runs.

18 Chapter 5. User Interface and Graphics

FFormViewModeOnly
When this flag is set, the form cannot be edited at all.

FFormAutoLabelEdit
This flag enables support for allowing the end-users to edit the labels of the form fields.

FFormAutoFormEdit
This flag enables automatic support for allowing the end-users to add and delete the form
fields. Note that this is an experimental feature and is not guaranteed to work with all SDK
versions.

FFormDoubleSpaced
When this flag is set, double-spaced layout is applied when the form is executed: one field
takes two lines, as the label and the value field are on different lines.

menu
A list of (title, callback) pairs, where each pair describes an item in the form’s menu bar that
is active while the dialog is being executed. title (Unicode) is the name of the item and callback
the associated callable object.

save hook
This attribute can be set to a callable object that receives one argument and returns a Boolean
value. It gets called every time the users want to save the contents of an executing Form dialog.
A candidate list for new form content - a list representing the currently visible state of the UI - is
given as an argument. The list can be modified by save hook. If save hook returns True, the
candidate list is set as the new contents of the form. Otherwise, the form UI is reset to reflect the
field list contained in Form object.

Instances of Form type have the following methods:

execute()
Executes the dialog by making it visible on the UI.

insert(index, field descriptor)
Inserts the field descriptor into the Form before the given index .

pop()
Removes the last field descriptor from the Form and returns it.

length()
the number of field descriptors in the form.

The subscript notation f[i] can be used to access or modify the i-th element of the form f. Same
limitations as discussed above in the context of the flag FFormAutoFormEdit apply to modifying a form
while it is executing. The ability to change the schema of a form while it is executing is an experimental
feature.

5.1.6 Text Type

Text is a text editor UI control. For examples on the options available with Text, see Figure 5.5.

Instances of Text type have the following attributes:

color
The color of the text. color supports the same color representation models as the graphics
module. For the supported color representation models, see Section 5.2.

focus
A Boolean attribute that indicates the focus state of the control. Editor control also takes the
ownership of the navigation bar, and this feature is needed to enable the usage of this control in
applications that use the navigation bar - for example, navigation tabs.

font
The font of the text. There are two possible ways to set this attribute:

•Using a supported Unicode font, for example u"Latin12". Trying to set a font which is not

5.1. appuifw — Interface to the S60 GUI framework 19

Figure 5.5: Examples of the options available for Text type

supported by the device has no effect. A list of supported fonts can be retrieved by using
appuifw.available fonts.
Example, setting font:

t = appuifw.Text()

t.font = u"albi17b" # sets font to Albi 17 bold

t.font = u"LatinPlain12" # sets font to Latin Plain 12

•Using one of the default device fonts that are associated with the following labels (plain
strings): ’annotation’, ’title’, ’legend’, ’symbol’, ’dense’, ’normal’ Example,
setting font:

t.font = "title" # sets font to the one used in titles

Example, checking the currently set font:

unicodeFont = t.font

The attribute value retrieved is always a Unicode string. If the font has been set with a label, for
example, ’title’, the attribute will retrieve the font associated with that label.

highlight color
The highlight color of the text. highlight color supports the same color representation models
as the graphics module. For the supported color representation models, see Section 5.2.

style
The style of the text. The flags for this attribute are defined in the appuifw module. These flags
can be combined by using the binary operator |. The flags can be divided into two types: text
style and text highlight. Text style flags can be freely combined with each other. However, one or
more text style flags can be combined with only one text highlight flag. The flags are:

Text style:

STYLE BOLD
Enables bold text.

STYLE UNDERLINE
Enables underlined text.

STYLE ITALIC
Enables italic text.

STYLE STRIKETHROUGH
Enables strikethrough.

Text highlight:

HIGHLIGHT STANDARD
Enables standard highlight.

20 Chapter 5. User Interface and Graphics

HIGHLIGHT ROUNDED
Enables rounded highlight.

HIGHLIGHT SHADOW
Enables shadow highlight.

Only one highlight is allowed to be used at once. Therefore, it is possible to combine only one
highlight with one or more text styles.
Examples:

t = appuifw.Text()

These and other similar values and combinations are valid:

t.style = appuifw.STYLE_BOLD

t.style = appuifw.STYLE_UNDERLINE

t.style = appuifw.STYLE_ITALIC

t.style = appuifw.STYLE_STRIKETHROUGH

t.style = (appuifw.STYLE_BOLD|

appuifw.STYLE_ITALIC|

appuifw.STYLE_UNDERLINE)

These values are valid:

t.style = appuifw.HIGHLIGHT_STANDARD

t.style = appuifw.HIGHLIGHT_ROUNDED

t.style = appuifw.HIGHLIGHT_SHADOW

This combination is NOT valid:

Invalid code, do not try!

t.style = (appuifw.HIGHLIGHT_SHADOW|appuifw.HIGHLIGHT_ROUNDED)

Instances of Text type have the following methods:

add(text)
Inserts the Unicode string text to the current cursor position.

bind(event code, callback)
Binds the callable Python object callback to event event code. The key codes are defined in the
key codes library module. The call bind(event code, None) clears an existing binding. In the
current implementation the event is always passed also to the underlying native UI control.

clear()
Clears the editor.

delete([pos=0, length=len()])
Deletes length characters of the text held by the editor control, starting from the position pos.

get pos()
Returns the current cursor position.

len()
Returns the length of the text string held by the editor control.

get([pos=0, length=len()])
Retrieves length characters of the text held by the editor control, starting from the position pos.

set(text)
Sets the text content of the editor control to Unicode string text .

set pos(cursor pos)
Sets the cursor to cursor pos.

5.1.7 Listbox Type

An instance of this UI control type is visible as a listbox, also known as a list in Symbian, that can be
configured to be a single-line item or a double-item listbox. Figure 5.6 shows a single-line item Listbox
with icons. For more information on the MBM and MIF formats, see Section 5.1.8.

5.1. appuifw — Interface to the S60 GUI framework 21

Figure 5.6: Listbox with icons

class Listbox(list, callback)
Creates a Listbox instance. A callable object callback gets called when a listbox selection has
been made. list defines the content of the listbox and can be one of the following:

•A normal (single-line item) listbox: a list of Unicode strings, for example [unicode string
item1, unicode string item2]

•A double-item listbox: a two-element tuple of Unicode strings , for exam-
ple [(unicode string item1, unicode string item1description), (unicode string
item2, unicode string item2description)]

•A normal (single-line item) listbox with graphics: a two-element tuple consisting of
a Unicode string and an Icon object, for example [(unicode string item1, icon1),
(unicode string item2, icon2)].

•A double-item listbox with graphics: a three-element tuple consisting of
two Unicode strings and one Icon object, for example [(unicode string
item1, unicode string item1description, icon1), (unicode string item2,
unicode string item2description, icon2)]

Example: To produce a normal (single-line item) listbox with graphics:

icon1 = appuifw.Icon(u"z:\\system\\data\\avkon.mbm", 28, 29)

icon2 = appuifw.Icon(u"z:\\system\\data\\avkon.mbm", 40, 41)

entries = [(u"Signal", icon1),

(u"Battery", icon2)]

lb = appuifw.Listbox(entries, lbox_observe)

Instances of Listbox type have the following methods:

bind(event code, callback)
Binds the callable Python object callback to event event code. The key codes are defined in the
key codes library module. The call bind(event code, None) clears an existing binding. In the
current implementation the event is always passed also to the underlying native UI control.

current()
Returns the currently selected item’s index in the Listbox.

set list(list[, current])
Sets the Listbox content to a list of Unicode strings or a list of tuples of Unicode strings. The
accepted structures of list are the same as in the Listbox constructor. The optional argument
current is the index of the focused list item.

5.1.8 Icon Type

22 Chapter 5. User Interface and Graphics

An instance of Icon type encapsulates an icon to be used together with a Listbox instance. Note that
currently Icon can only be used with Listbox (see Section 5.1.7).

MBM is the native Symbian OS format used for pictures. It is a compressed file format where the files
can contain several bitmaps and can be referred to by a number. An .mbg file is the header file usually
associated with an .mbm file, which includes symbolic definitions for each bitmap in the file. For example,
an ‘avkon.mbm’ file has an associated index file called ‘avkon.mbg’, which is included in S60 SDKs. For
more information on the MBM format and the bitmap converter tool, see [4] and search the topics with
the key term ”How to provide Icons”; this topic also points you to the Bitmap Converter tool that can
be used for converting bitmaps into the MBM format.

S60 2nd Edition FP3 introduces a new format for icons called Multi-Image File (MIF). This format is
very similar to the MBM format and also contains several compressed files. The files to be compressed
should be in Scalable Vector Graphics Tiny (SVG-T) format. For more information on the SVG format,
see Scalable Vector Graphics (SVG) 1.1 Specification [10].

class Icon(filename, bitmap, bitmapMask)
Creates an icon. filename is a Unicode file name and must include the whole path. Note that
MBM and MIF (MIF only in S60 2nd Edition FP3) are the only file formats supported. bitmap
and bitmapMask are integers that represent the index of the icon and icon mask inside that file
respectively.

Example: The following builds an icon with the standard signal symbol:

icon = appuifw.Icon(u"z:\\system\\data\\avkon.mbm", 28, 29)

5.1.9 Content handler Type

An instance of Content handler handles data content by its MIME type.

class Content handler([callback])
Creates a Content handler instance. A Content handler handles data content by its MIME
type. The optional callback is called when the embedded handler application started with the open
method finishes.

Instances of Content handler type have the following methods:

open(filename)
Opens the file filename (Unicode) in its handler application if one has been registered for the
particular MIME type. The handler application is embedded in the caller’s thread. The call to
this function returns immediately. When the handler application finishes, the callback that was
given to the Content handler constructor is called.

open standalone(filename)
Opens the file filename (Unicode) in its handler application if one has been registered for the
particular MIME type. The handler application is started in its own process. The call to this
function returns immediately. Note that callback is not called for applications started with this
method.

5.1.10 Canvas Type

Canvas is a UI control that provides a drawable area on the screen and support for handling raw key
events. Canvas supports the standard drawing methods that are documented in Section 5.2.

class Canvas([redraw callback=None, event callback=None, resize callback=None])
Constructs a Canvas. The optional parameters are callbacks that are called when specific events
occur.

Note: Watch out for cyclic references here. For example, if the callbacks are methods of an object
that holds a reference to the Canvas, a reference cycle is formed that must be broken at cleanup
time or the Canvas will not be freed.

redraw callback is called whenever a part of the Canvas has been obscured by something, is then

5.1. appuifw — Interface to the S60 GUI framework 23

revealed, and needs to be redrawn. This can typically happen, for example, when the user switches
away from the Python application and back again, or after displaying a pop-up menu. The callback
takes as its argument a four-element tuple that contains the top-left and the bottom-right corner
of the area that needs to be redrawn. In many cases redrawing the whole Canvas is a reasonable
option.

event callback is called whenever a raw key event is received. There are three kinds of key
events: EEventKeyDown, EEventKey, and EEventKeyUp. When a user presses a key down, events
EEventKeyDown and EEventKey are generated. When the key is released, an EEventKeyUp event is
generated.

The argument to the event callback is a dictionary that contains the following data for key events:

•’type’: one of EEventKeyDown, EEventKey, or EEventKeyUp

•’keycode’: the keycode of the key

•’scancode’: the scancode of the key

•’modifiers’: the modifiers that apply to this key event

Each key on the keyboard has one or more scancodes and zero or more keycodes associated with it.
A scancode represents the physical key itself and a keycode is the result of state-related operating
system defined processing done on the key. For keys that correspond to a symbol in the current
character set of the phone, the keycode is equal to the code of the corresponding symbol in that
character set. For example, if you are using the Nokia Wireless Keyboard (SU-8W), pressing the
key A will always produce the scancode 65 (ASCII code for an upper case A), but the keycode
could be either 65 or 91 (ASCII code for a lower case A) depending on whether or not the Shift
key is pressed or Caps Lock is active.

The key codes module contains definitions for the keycodes and scancodes. See Figure 5.7 for the
codes of the most common keys on the phone keypad.

Some keys are handled in a special way:

•A short press of the Edit key causes it to stay down, meaning that no EEventKeyUp event is
sent. The event is only sent after a long press.

•Detecting presses of the Voice tags key or the Power key is not supported.

•If the right softkey is pressed, the appuifw.app.exit key handler callback is always exe-
cuted.

There is no way to prevent the standard action of the Hang-up key, the Menu key, the Power key
or the Voice tags key from taking place.

resize callback is called when screen size is changed when the Canvas rect size has been changed.
The callback takes as its argument a two-element tuple that contains the new clientRect width and
height.

Instances of Canvas type have the following attribute:

size
A two-element tuple that contains the current width and height of the Canvas as integers.

Instances of Canvas type have the same standard drawing methods that are documented in Section 5.2.

5.2 graphics — A graphics related services package

The graphics module provides access to the graphics primitives and image loading, saving, resizing, and
transformation capabilities provided by the Symbian OS.

The module is usable from both graphical Python applications and background Python processes. How-
ever, background processes have some restrictions, namely that plain string symbolic font names are not

24 Chapter 5. User Interface and Graphics

Key Keycode Scancode
1. EKeyLeftSoftkey EScancodeLeftSoftkey
2. EKeyYes EScancodeYes
3. EKeyMenu EScancodeMenu
4. EKey0...9 EScancode0...9
5. EKeyStar EScancodeStar
6. EKeyLeftArrow EScancodeLeftArrow
7. EKeyUpArrow EScancodeUpArrow
8. EKeySelect EScancodeSelect
9. EKeyRightArrow EScancodeRightArrow
10. EKeyDownArrow EScancodeDownArrow
11. EKeyRightSoftkey EScancodeRightSoftkey
12. EKeyNo EScancodeNo
13. EKeyBackspace EScancodeBackspace
14. EKeyEdit EScancodeEdit
15. EKeyHash EScancodeHash

Figure 5.7: Keycodes and scancodes for phone keys usable from Python applications

5.2. graphics — A graphics related services package 25

supported in background processes since background processes have no access to the UI framework (see
also Section 5.2.4).

For an example on using this module, see [6].

Functions Image.open and Image.inspect and Image object methods load, save, resize, and
transpose are not available for S60 1st Edition.

5.2.1 Module Level Functions

The following free functions - functions that do not belong to any class - are defined in the graphics
module:

screenshot()
Takes a screen shot and returns the image in Image format.

5.2.2 Image Class Static Methods

The following Image class static methods are defined in the graphics module:

Image.new(size[, mode=’RGB16’])
Creates and returns a new Image object with the given size and mode. size is a two-element tuple.
mode specifies the color mode of the Image to be created. It can be one of the following:

•’1’: Black and white (1 bit per pixel)

•’L’: 256 gray shades (8 bits per pixel)

•’RGB12’: 4096 colors (12 bits per pixel)

•’RGB16’: 65536 colors (16 bits per pixel)

•’RGB’: 16.7 million colors (24 bits per pixel)

Image.open(filename)
Note: Not supported in S60 1st Edition!

Returns a new Image object (mode RGB16) that contains the contents of the named file. The
supported file formats are JPEG and PNG. The file format is automatically detected based on file
contents. filename should be a full path name.

Image.inspect(filename)
Note: Not supported in S60 1st Edition!

Examines the given file and returns a dictionary of the attributes of the file. At present the
dictionary contains only the image size in pixels as a two-element tuple, indexed by key ’size’.
filename should be a full path name.

5.2.3 Image Objects

An Image object encapsulates an in-memory bitmap.

Note on asynchronous methods: Methods resize, transpose, save, and load have an optional callback
argument. If the callback is not given, the method call is synchronous; when the method returns,
the operation is complete or an exception has been raised. If the callback is given, the method calls
are asynchronous. If all parameters are valid and the operation can start, the method call will return
immediately. The actual computation then proceeds in the background. When it is finished, the callback
is called with an error code as the argument. If the given code is 0, the operation completed without
errors, otherwise an error occurred.

It is legal to use an unfinished image as a source in a blit operation; this will use the image data as it is
at the moment the blit is made and may thus show an incomplete result.

Image objects have the following methods:

26 Chapter 5. User Interface and Graphics

resize(newsize[, callback=None, keepaspect=0])
Note: Not supported in S60 1st Edition!

Returns a new image that contains a resized copy of this image. If keepaspect is set to 1, the resize
will maintain the aspect ratio of the image, otherwise the new image will be exactly the given size.

If callback is given, the operation is asynchronous, and the returned image will be only partially
complete until callback is called.

transpose(direction[, callback=None])
Note: Not supported in S60 1st Edition!

Creates a new image that contains a transformed copy of this image. The direction parameter can
be one of the following:

•FLIP LEFT RIGHT: Flips the image horizontally, exchanging left and right edges.

•FLIP TOP BOTTOM: Flips the image vertically, exchanging top and bottom edges.

•ROTATE 90: Rotates the image 90 degrees counterclockwise.

•ROTATE 180: Rotates the image 180 degrees.

•ROTATE 270: Rotates the image 270 degrees counterclockwise.

If callback is given, the operation is asynchronous and the returned image will be only partially
complete until callback is called.

load(filename[, callback=None])
Note: Not supported in S60 1st Edition!

Replaces the contents of this Image with the contents of the named file, while keeping the current
image mode. This Image object must be of the same size as the file to be loaded.

If callback is given, the operation is asynchronous and the loaded image will be only partially
complete until callback is called. filename should be a full path name.

save(filename[,callback=None, format=None, quality=75, bpp=24, compression=’default’])
Note: Not supported in S60 1st Edition!

Saves the image into the given file. The supported formats are JPEG and PNG. If format is not
given or is set to None, the format is determined based on the file name extension: ’.jpg’ or
’.jpeg’ are interpreted to be in JPEG format and ’.png’ to be in PNG format. filename should
be a full path name.

When saving in JPEG format, the quality argument specifies the quality to be used and can range
from 1 to 100.

When saving in PNG format, the bpp argument specifies how many bits per pixel the resulting file
should have, and compression specifies the compression level to be used.

Valid values for bpp are:

•1: Black and white, 1 bit per pixel

•8: 256 gray shades, 8 bits per pixel

•24: 16.7 million colors, 24 bits per pixel

Valid values for compression are:

•’best’: The highest possible compression ratio, the slowest speed

•’fast’: The fastest possible saving, moderate compression

•’no’: No compression, very large file size

•’default’: Default compression, a compromise between file size and speed

If callback is given, the operation is asynchronous. When the saving is complete, the callback is
called with the result code.

5.2. graphics — A graphics related services package 27

stop()
Stops the current asynchronous operation, if any. If an asynchronous call is not in progress, this
method has no effect.

Image objects have the following attribute:

size
A two-element tuple that contains the size of the Image. Read-only.

5.2.4 Common Features of Drawable Objects

Objects that represent a surface that can be drawn on support a set of common drawing methods,
described in this section. At present there are two such objects: Canvas from the appuifw module and
Image from the graphics module.

Options

Many of these methods support a set of standard options. This set of options is as follows:

• outline: The color to be used for drawing outlines of primitives and text. If None, the outlines of
primitives are not drawn.

• fill : The color to be used for filling the insides of primitives. If None, the insides of primitives are
not drawn. If pattern is also specified, fill specifies the color to be used for areas where the pattern
is white.

• width: The line width to be used for drawing the outlines of primitives.

• pattern: Specifies the pattern to be used for filling the insides of primitives. If given, this must be
either None or a 1-bit (black and white) Image.

Coordinate representation

The methods accept an ordered set of coordinates in the form of a coordinate sequence. Coordinates
can be of type int, long, or float. A valid coordinate sequence is a non-empty sequence of either

• Alternating x and y coordinates. In this case the sequence length must be even, or

• Sequences of two elements, that specify x and y coordinates.

Examples of valid coordinate sequences:

• (1, 221L, 3, 4, 5.85, -3): A sequence of three coordinates

• [(1,221L),(3,4),[5.12,6]): A sequence of three coordinates

• (1,5): A sequence of one coordinate

• [(1,5)]: A sequence of one coordinate

• [[1,5]]: A sequence of one coordinate

Examples of invalid coordinate sequences:

Invalid code, do not use!

• []: An empty sequence

• (1,2,3): Odd number of elements in a flat sequence

• [(1,2),(3,4),None]: Contains an invalid element

• ([1,2],3,4): Mixing the flat and nested form is not allowed

28 Chapter 5. User Interface and Graphics

Color representation

All methods that take color arguments accept the following two color representations:

• A three-element tuple of integers in the range from 0 to 255 inclusive, representing the red, green,
and blue components of the color.

• An integer of the form 0xrrggbb, where rr is the red, gg the green, and bb the blue component of
the color.

For 12 and 16 bit color modes the color component values are simply truncated to the lower bit depth. For
the 8-bit grayscale mode images the color is converted into grayscale using the formula (2*r+5*g+b)/8,
rounded down to the nearest integer. For 1-bit black and white mode images the color is converted into
black (0) or white (1) using the formula (2*r+5*g+b)/1024.

Examples of valid colors:

• 0xffff00: Bright yellow

• 0x004000: Dark green

• (255,0,0): Bright red

• 0: Black

• 255: Bright blue

• (128,128,128): Medium gray

Examples of invalid colors:

Invalid code, do not use!

• (0,0.5,0.9): Floats are not supported

• ’#ff80c0’: The HTML color format is not supported

• (-1,0,1000): Out-of-range values

• (1,2): The sequence is too short

• [128,128,192]: This is not a tuple

Font specifications

A font can be specified in two ways: Either as a Unicode string that represents a full font name, such
as u’LatinBold19’, or as a plain string symbolic name that refers to a font setting currently specified
by the UI framework. You can obtain a list of all available fonts with the appuifw module function
available fonts.

The symbolic names for UI fonts are:

• ’normal’

• ’dense’

• ’title’

• ’symbol’

• ’legend’

• ’annotation’

Since background processes have no access to the UI framework, these symbolic names are not supported
in them. You need to specify the full font name.

5.2. graphics — A graphics related services package 29

Common Methods of Drawable Objects

line(coordseq[, <options>])
Draws a line connecting the points in the given coordinate sequence. For more information about
the choices available for options, see Section 5.2.4.

polygon(coordseq[, <options>])
Draws a line connecting the points in the given coordinate sequence, and additionally draws an
extra line connecting the first and the last point in the sequence. If a fill color or pattern is specified,
the polygon is filled with that color or pattern. For more information about the choices available
for options, see Section 5.2.4.

rectangle(coordseq[, <options>])
Draws rectangles between pairs of coordinates in the given sequence. The coordinates specify the
top-left and the bottom- right corners of the rectangle. The sequence must have an even number
of coordinates. For more information about the choices available for options, see Section 5.2.4.

ellipse(coordseq[, <options>])
Draws ellipses between pairs of coordinates in the given sequence. The coordinates specify the top-
left and bottom-right corners of the rectangle inside which the ellipse is contained. The sequence
must have an even number of coordinates. For more information about the choices available for
options, see Section 5.2.4.

pieslice(coordseq, start, end[, <options>])
Draws pie slices contained in ellipses between pairs of coordinates in the given sequence. The start
and end parameters are floats that specify the start and end points of pie slice as the starting and
ending angle in radians. The angle 0 is to the right, the angle pi/2 is straight up, pi is to the left
and-pi/2 is straight down. coordseq is interpreted the same way as for the ellipse method. For
more information about the choices available for options, see Section 5.2.4.

arc(coordseq, start, end[, <options>])
Draws arcs contained in ellipses between pairs of coordinates in the given sequence. The start
and end parameters are floats that specify the start and end points of pie slice as the starting and
ending angle in radians. The angle 0 is to the right, the angle pi/2 is straight up, pi is to the left
and-pi/2 is straight down. coordseq is interpreted the same way as for the ellipse method. For
more information about the choices available for options, see Section 5.2.4.

point(coordseq[, <options>])
Draws points in each coordinate in the given coordinate sequence. If the width option is set to
greater than 1, draws a crude approximation of a circle filled with the outline color in the locations.
Note that the approximation is not very accurate for large widths; use the ellipse method if you
need a precisely formed circle. For more information about the choices available for options, see
Section 5.2.4.

clear([color=0xffffff])
Sets the entire surface of the drawable to the given color, white by default.

text(coordseq, text[fill=0, font=u”LatinBold12”])
Draws the given text in the points in the given coordinate sequence with the given color (default
value is black) and the given font. The font specification format is described above.

blit(image[,target=(0,0), source=((0,0),image.size), mask=None, scale=0])
Copies the source area from the given image to the target area in this drawable. The source area
is copied in its entirety if mask is not given or is set to None. If the mask is given, the source area
is copied where the mask is white. mask can be either None or a 1-bit (black and white) Image
and must be of the same size as the source image.

target and source specify the target area in this image and the source area in the given source. They
are coordinate sequences of one or two coordinates. If they specify one coordinate, it is interpreted
as the upper-left corner for the area; if they specify two coordinates, they are interpreted as the
top-left and bottom-right corners of the area.

If scale is other than zero, scaling is performed on the fly while copying the source area to the

30 Chapter 5. User Interface and Graphics

target area. If scale is zero, no scaling is performed, and the size of the copied area is clipped to
the smaller of source and target areas.

Note that a blit operation with scaling is slower than one without scaling. If you need to blit the
same Image many times in a scaled form, consider making a temporary Image of the scaling result
and blitting it without scaling. Note also that the scaling performed by the blit operation is much
faster but of worse quality than the one done by the resize method, since the blit method does
not perform any antialiasing.

5.3 camera — Interface for taking photographs

Note: Not available for S60 1st Edition.

The camera module enables taking photographs.

The camera module has the following functions1:

cameras available()
Returns the number of cameras available in the device.

image modes()
Returns the image modes supported in the device as a list of strings, for example: [’RGB12’,
’RGB’, ’RGB16’].

image sizes()
Returns the image sizes (resolution) supported in the device as a list of (x, y) tuples, for example:
[(640, 480), (160, 120)].

flash modes()
Returns the flash modes available in the device as a list of strings.

max zoom()
Returns the maximum digital zoom value supported in the device as an integer.

exposure modes()
Returns the exposure settings supported in the device as a list of strings.

white balance modes()
Returns the white balance modes available in the device as a list of strings.

take photo([mode, size, flash, zoom, exposure, white balance, position])
Takes a photograph and returns the image in Image format (for more information on Image format,
see Chapter 5.2 graphics Module). If some other application is using the camera, this operation
fails, for example with SymbianError: KErrInUse. The settings listed below describe all settings
that are supported by the camera module. You can retrieve the mode settings available for your
device by using the appropriate functions listed at the beginning of this chapter.

•mode is the display mode of the image. The default value is ’RGB16’. The following display
modes are supported:

–’RGB12’: 4096 colors (12 bits per pixel)
–’RGB16’: 65536 colors (16 bits per pixel). Default value, always supported
–’RGB’: 16.7 million colors (24 bits per pixel)

•size is the resolution of the image. The default value is (640, 480). The following sizes are
supported, for example, in Nokia 6630: (1280, 960), (640, 480) and (160, 120).
•flash is the flash mode setting. The default value is ’none’. The following flash mode settings
are supported:

–’none’
No flash. Default value, always supported

–’auto’
Flash will automatically fire when required

1Descriptions for some of the values are based on information found in S60 SDK documentation [4]

5.3. camera — Interface for taking photographs 31

–’forced’
Flash will always fire

–’fill in’
Reduced flash for general lighting

–’red eye reduce’
Red-eye reduction mode

•zoom is the digital zoom factor. It is assumed to be on a linear scale from 0 to the maximum
zoom value allowed in the device. The default value is 0, meaning that zoom is not used.

•exposure is the exposure adjustment of the device. Exposure is a combination of lens aperture
and shutter speed used in taking a photograph. The default value is ’auto’. The following
exposure modes are supported:

–’auto’
Sets exposure automatically. Default value, always supported

–’night’
Night-time setting for long exposures

–’backlight’
Backlight setting for bright backgrounds

–’center’
Centered mode for ignoring surroundings

•white balance can be used to adjust white balance to match the main source of light. The
term white balance refers to the color temperature of the current light. A digital camera
requires a reference point to represent white. It will then calculate all the other colors based
on this white point. The default value for white balance is ’auto’ and the following white
balance modes are supported:

–’auto’
Sets white balance automatically. Default value, always supported

–’daylight’
Sets white balance to normal daylight

–’cloudy’
Sets white balance to overcast daylight

–’tungsten’
Sets white balance to tungsten filament lighting

–’fluorescent’
Sets white balance to fluorescent tube lighting

–’flash’
Sets white balance to flash lighting

•position is the camera used if the device, such as Nokia 6680, has several cameras. In Nokia
6680, the camera pointing to the user of the device is located in position 1, whereas the one
pointing away from the user is located in position 0. The default position is 0.

5.4 keycapture — Interface for global capturing of key events.

The keycapture module offers an API for global capturing of key events. The keycapture module
provides the KeyCapturer object as a tool for listening the events.

The KeyCapturer object uses a callback method to report the key events. The callback method is called
each time any of the specified keys is pressed.

Currently the keycapture module does not support capturing separate key-up or key-down events.

5.4.1 Module Level Constants

The following constants are defined in the keycapture module:

32 Chapter 5. User Interface and Graphics

all keys
A list of all key codes defined in the key codes module.

5.4.2 KeyCapturer objects

KeyCapturer object takes a callback method as a mandatory parameter to its constructor. The callback
method must have one single parameter for forwarding the key code of the captured key.

There can be several KeyCapturer objects existing at the same time.

KeyCapturer object has following methods and properties:

keys
List of keys to be captured. Can be read and written.
Example:

keys = (key_codes.EkeyUpArrow,)

keys = keycapture.all_keys

forwarding
Specifies whether captured key events are forwarded to other applications or not. Either has value
1 or 0. Can be read and written.

start()
Starts the actual capturing of key events.

stop()
Stops the actual capturing of key events.

last key()
Returns last key code that is captured.

5.5 topwindow — Interface for creating windows that are shown on top of
other applications.

The topwindow module offers an API for creating windows that are shown on top of other applications
and managing the content of these windows. Images can be inserted into the windows and the background
color, visibility, corner type and shadow of the window can be manipulated.

topwindow extension does not provide sophisticated drawing capabilities by any means but rather relies
on services provided by the graphics extension: topwindow allows graphics Image objects to be put
into the windows that are represented by TopWindow objects.

TopWindow object provides mainly only two services: TopWindow objects can be shown or hidden and
Images can be put into the windows. However, several images can be added into one TopWindow object
and several TopWindow objects can be created and shown. Since the images can be manipulated using
the graphics extension this makes it possible to create many kind of content to the TopWindow objects.

5.5.1 TopWindow objects

class TopWindow()
Create a TopWindow object.

TopWindow objects have the following methods and properties:

show()
Shows the window. The window is not shown until show() is called.

hide()
Hides the window.

5.5. topwindow — Interface for creating windows that are shown on top of other applications. 33

add image(image, position)
Inserts an image object graphics.Image into the window. The position of the image is specified
by the (position) parameter. If only the coordinates of the top left corner are specified, like (x1,
y1) the image is not resized. If four coordinates are given, like(x1, y1, x2, y2), the image is resized
to fit to the specified area. Example:

add_image(image, (10,20))

add_image(image, (10,20,20,30))

remove image(image[,position])
Removes the image from the window. Mandatory parameter image must be a graphics.Image
object. Parameter position may specify the top-left corner coordinates of the image or the rectan-
gular area of the image. If only image parameter is given, all the pictures representing this image
object are removed from the window. If both parameters are given, only the picture that matches
both parameters is removed.
Example:

remove_image(image)

remove_image(image, (10,10))

remove_image(image, (10,10,20,20))

position
Specifies the coordinates of the top left corner of the window. Can be read and written.
Example:

position = (10, 20)

size
Specifies the size of the window. Can be read and written.
Example:

size = (100, 200)

images
The images inserted into the window. Defined as a list of tuple objects. Each tuple contains a
graphics.Image object and the position of the image. The position may specify the top-left coor-
dinate of the image and optionally also the bottom-right coordinate of the image. Parameter (x,y)
specifies the top-left coordinate, but does not resize the image while parameter like (x1,y1,x2,y2)
specifies both the top-left and bottom-right coordinates and possibly also resizes the image. Can
be read and written. Also see the add image() and remove image() methods.
Example:

images = [(image1,(x1,y1)), (image2,(x1,y1,x2,y2)), (image3,(50,50,100,100))]

sets the window content to be 3 images. image2 and image3 are possibly resized while the image1
is not)

shadow
Specifies if the shadow of the window is shown and the length of the shadow. Can be read and
written. Setting shadow = 0 makes the shadow invisible.
Example: shadow = 5

corner type
Specifies the corner type of the window. Can be read and written. Corner type can be one of the
following values:

•square
•corner1
•corner2
•corner3
•corner5

34 Chapter 5. User Interface and Graphics

Example: corner type = square

maximum size
Returns the maximum size of the window as a tuple (width, height). Read only property.

background color
The background color of the window as an integer (e.g. 0xaabbcc). The two greatest hexadecimal
digits specify the red, the next two specify the blue and the last ones specify the green color. Can
be read and written.
Example: background color = 0xffffff (sets the white color)

visible
Can be set to 0 or 1. 1 means that window is visible, 0 means that it is not. Can be read and
written. Also see the show and hide methods.

5.5. topwindow — Interface for creating windows that are shown on top of other applications. 35

36

CHAPTER

SIX

Audio and Communication Services

6.1 audio — An audio related services package

The audio module enables recording and playing audio files. The audio module supports all the for-
mats supported by the device, typically: WAV, AMR, MIDI, MP3, AAC, and Real Audio1. For more
information on the audio types supported by different devices, see the Forum Nokia Web site [7] and
S60 Platform Web site [8].

The following Sound class static methods are defined in the audio module:

Sound.open(filename)
Returns a new initialized Sound object with the named file opened. Note that filename should be
a full Unicode path name and must also include the file extension, for example u’c:\\foo.wav’.

The following data items are available in audio:

KMdaRepeatForever
Possible value for times parameter in open.

ENotReady
The Sound object has been constructed but no audio file is open.

EOpen
An audio file is open but no playing or recording operation is in progress.

EPlaying
An audio file is playing.

ERecording
An audio file is being recorded.

6.1.1 Sound Objects

Note: The method current volume is not available for S60 1st Edition.

class Sound
Sound objects have the following functions:

play([times=1, interval=0, callback=None])
Starts playback of an audio file from the beginning. Without the parameters times and
interval it plays the audio file one time. times defines the number of times the audio file is
played, the default being 1 . If the audio file is played several times, interval gives the time
interval between the subsequent plays in microseconds. The optional callback is called when
the end of sound file is reached. Other issues:

•Calling play(audio.KMdaRepeatForever) will repeat the file forever.
•If an audio file is played but not stopped before exiting, the Python script will leave audio
playing on; therefore stop needs to be called explicitly prior to exit.

1The dynamically loaded audio codec for the sound file is based on the MIME-type information inside the audio file
and file extension.

37

•Currently the module does not support playing simultaneous audio files, calling play to a
second Sound instance while another audio file is playing, stops the earlier audio file and
starts to play the second Sound instance.
•Calling play while a telephone call is ongoing plays the sound file to uplink. In some
devices the sound file is also played to the device speaker.
•Calling play when already playing or recording results in RuntimeError. Calling stop
prior to play will prevent this from happening.

stop()
Stops playback or recording of an audio file.

record()
Starts recording audio data to a file. If the file already exists, the operation appends to the
file. For Nokia devices, WAV is typically supported for recording. For more information on
the audio types supported by different devices, see the Forum Nokia Web site [7] and S60
Platform Web site [8]. Other issues:

•Calling record while a telephone call is ongoing starts the recording of the telephone call.
•Calling record when already playing or recording results in RuntimeError. Calling stop
prior to record will prevent this from happening.

close()
Closes an opened audio file.

state()
Returns the current state of the Sound type instance. The different states (constants) are
defined in the audio module. The possible states2 are:

•ENotReady
The Sound object has been constructed but no audio file is open.
•EOpen
An audio file is open but no playing or recording operation is in progress.
•EPlaying
An audio file is playing.
•ERecording
An audio file is being recorded.

max volume()
Returns the maximum volume of the device.

set volume(volume)
Sets the volume. If the given volume is negative, then the volume is set to zero which mutes
the device. If the volume is greater than max volume, then max volume is used.

current volume()
Returns the current volume set.

duration()
Returns the duration of the file in microseconds.

set position(microseconds)
Set the position for the playhead.

current position()
Returns the current playhead position in microseconds.

6.2 telephone — Telephone services

This module provides an API to a telephone.

Since the users of the device can also hang-up the phone explicitly, they might affect the current status
of the call. In addition, using this extension in an emulator has no effect since no calls can be connected.

The telephone module has the following functions:
2Descriptions for these options are based on information found in S60 SDK documentation [4].

38 Chapter 6. Audio and Communication Services

dial(number)
Dials the number set in number . number is a string, for example u’+358501234567’ where ’+’ is
the international prefix, ’358’ is the country code, ’50’ is the mobile network code (or the area
code), and ’1234567’ is the subscriber number. If there is an ongoing phone call prior to calling
dial from Python, then the earlier call is put on hold and a new call is established. Calling dial
multiple times when, for example, the first call has been answered and a line has been established
results in subsequent calls not being connected.

hang up()
Hangs up if a call initiated by dial is in process. If this call has already been finished,
SymbianError: KErrNotReady is raised.

6.3 messaging — A messaging services package

The messaging module offers APIs to messaging services. Currently, the messaging module has one
function:

sms send(recipient, message)
Sends an SMS message with body text message (Unicode) to telephone number recipient (string).

6.4 inbox — Interface to device inbox

The inbox module offers APIs to device inbox. Currently, the inbox module supports only SMS handling
and notifications of incoming messages and drafts, sent and outbox folders are not supported.

class Inbox()
Create an Inbox object.

6.4.1 Inbox Objects

Inbox objects have the following functions:

sms messages()
Returns a list of SMS message IDs in device inbox.

content(sms id)
Retrieve the SMS message content in Unicode.

time(sms id)
Retrieve the SMS message time of arrival in seconds since epoch.

address(sms id)
Retrieve the SMS message sender address in Unicode.

delete(sms id)
Delete the SMS message from inbox.

bind(callable)
Bind a callback to receive new message events in device inbox. When a new message arrives to the
device inbox the callback gets called with the received message ID. The received message can be
other than an SMS message.

If the message received is deleted immediately after e.g. checking the message content, the ”new
message” sound and dialog are not activated. This functionality might be useful in notification
type of applications.

Examples:

>>> import inbox

>>> i=inbox.Inbox()

6.3. messaging — A messaging services package 39

>>> m=i.sms_messages()

>>> i.content(m[0])

u’foobar’

>>> i.time(m[0])

1130267365.03125

>>> i.address(m[0])

u’John Doe’

>>> i.delete(m[0])

>>>

>>> import inbox

>>> id=0

>>> def cb(id_cb):

... global id

... id=id_cb

...

>>> i=inbox.Inbox()

>>> i.bind(cb)

>>> # Send an SMS to your inbox here. The "id" gets updated

>>> i.address(id)

u’John Doe’

>>> i.content(id)

u’print 1’

>>>

6.5 location — GSM location information

The location module offers APIs to location information related services. Currently, the location has
one function:

gsm location()
Retrieves GSM location information: Mobile Country Code, Mobile Network Code, Location Area
Code, and Cell ID. A location area normally consists of several base stations. It is the area where
the terminal can move without notifying the network about its exact position. mcc and mnc
together form a unique identification number of the network into which the phone is logged.

6.5.1 Examples

Here is an example of how to use the location package to fetch the location information:

>>> import location

>>> print location.gsm_location()

40 Chapter 6. Audio and Communication Services

CHAPTER

SEVEN

Data Management

7.1 contacts — A contacts related services package

The contacts module offers an API to address book services allowing the creation of contact information
databases. The contacts module represents a Symbian contact database as a dictionary-like ContactDb
object, which contains Contact objects and which is indexed using the unique IDs of those objects. A
Contact object is itself a list-like object, which contains ContactField objects and which is indexed using
the field indices. Unique IDs and field indices are integers. The ContactDb object supports a limited
subset of dictionary functionality. Therefore, only iter , getitem , delitem , len ,
keys, values, and items are included.

ContactDb objects represent a live view into the database. If a contact is changed outside your Python ap-
plication, the changes are visible immediately, and conversely any changes you commit into the database
are visible immediately to other applications. It is possible to lock a contact for editing, which will pre-
vent other applications from modifying the contact for as long as the lock is held. This can be done in,
for example, a contacts editor application when a contact is opened for editing, very much like with the
Contacts application in your Nokia device. If you try to modify a contact without locking it for editing,
the contact is automatically locked before the modification and released immediately afterwards.

7.1.1 Module Level Functions

The following free functions - functions that do not belong to any class - are defined in the Contact
module:

open([filename[, mode]])
Opens a contacts database and returns a ContactDb object. filename should be a full Unicode
path name. If filename is not given, opens the default contacts database. If mode is not given, the
database must exist. If mode is ’c’, the database is created if it does not already exist. If mode is
’n’, a new, empty database is created, overwriting the possible previous database.

Warning: Using open together with the additional parameters filename or mode is intended for testing
purposes only. Due to S60 SDK functionality, the open method can sometimes be unreliable with these
parameters.

7.1.2 ContactDb Object

There is one default contact database, but it is possible to create several databases with the open function.

class ContactDb
ContactDb objects have the following methods:

add contact()
Adds a new contact into the database. Returns a Contact object that represents the new
contact. The returned object is already locked for modification. Note that a newly created
contact will contain some empty default fields. If you do not want to use the default fields for
anything, you can ignore them.

41

find(searchterm)
Finds the contacts that contain the given Unicode string as a substring and returns them as
a list.

import vcards(vcards)
Imports the vCard(s) in the given string into the database.

export vcards(ids)
Converts the contacts corresponding to the ID’s in the given tuple ids to vCards and returns
them as a string.

keys()
Returns a list of unique IDs of all Contact objects in the database.

compact required()
Verifies whether compacting is recommended. Returns an integer value indicating either a
true or false state. Returns True if more than 32K of space is unused and if this comprises
more than 50 percent of the database file, or if more than 256K is wasted in the database file.

compact()
Compacts the database to its minimum size.

delitem (id)
Deletes the given contact from the database.

field types()
Returns a list of dictionary objects that contains information on all supported field types.
The list contains dictionary objects, which each describe one field type. The most important
keys in the dictionary are ’type’ and ’location’ which together indentify the field type.
’type’ can have string values such as ’email address’. ’location’ can have the string
values ’none’, ’home’, or ’work’. Another important key is ’storagetype’, which defines
the storage type of the field. ’storagetype’ can have the string values ’text’, ’datetime’,
’item id’, or ’binary’. Note that the Contacts extension does not support adding, read-
ing, or modifying fields of any other type than ’text’ or ’datetime’. The other content
returned by field types is considered to be advanced knowledge and is not documented
here.

7.1.3 Contact Object

A Contact object represents a live view into the state of a single contact in the database. You can access
the fields either with a contact’s numeric field ID as contact[fieldid], or using the find method.
Attempting to modify a contact while it has been locked for editing in another application will raise the
exception ContactBusy.

class Contact
Contact objects have the following attributes:

id
The unique ID of this Contact. Read-only.

title
The title of this Contact. Read-only.

Contact objects have the following methods:

begin()
Locks the contact for editing. This prevents other applications from modifying the contact for
as long as the lock is held. This method will raise the exception ContactBusy if the contact
has already been locked.

commit()
Releases the lock and commits the changes made into the database.

rollback()
Releases the lock and discards all changes that were made. The contact remains in the state
it was before begin.

42 Chapter 7. Data Management

as vcard()
Returns the contact as a string in vCard format.

add field(type [, value [, label=field label][, location=location spec]])
Adds a new field into this Contact. This method raises ContactBusy if the contact has been
locked by some other application. type can be one of the supported field types as a string.
The following field types can be added at present:

•city
•company name

•country
•date
•dtmf string

•email address

•extended address

•fax number

•first name

•job title

•last name

•mobile number

•note
•pager number

•phone number

•po box

•postal address

•postal code

•state
•street address

•url
•video number

•wvid
The following field types are recognized but cannot be created at present:

•first name reading

•last name reading

•picture
•speeddial
•thumbnail image

•voicetag
All supported field types are passed as strings or Unicode strings, except for ’date’ which is
a float that represents Unix time. For more information on Unix time, see Section 3.5, Date
and Time.
field label is the name of the field shown to the user. If you do not pass a label, the default
label for the field type is used.
location spec, if given, must be ’home’ or ’work’. Note that not all combinations of type
and location are valid. The settings of the current contacts database in use determine which
ones are valid.

find([type=field type][, location=field location])
Finds the fields of this contact that match the given search specifications. If no parameters
are given, all fields are returned.

delitem (fieldindex)
Deletes the given field from this contact. Note that since this will change the indices of all
fields that appear after this field in the contact, and since the ContactField objects refer to
the fields by index, old ContactField objects that refer to fields after the deleted field will
refer to different fields after this operation.

7.1. contacts — A contacts related services package 43

7.1.4 ContactField Object

A ContactField represents a field of a Contact at a certain index. A ContactField has attributes,
some of which can be modified. If the parent Contact has not been locked for editing, modifications
are committed immediately to the database. If the parent Contact has been locked, the changes are
committed only when commit is called on the Contact.

class ContactField
ContactField objects have the following attributes:

label
The user-visible label of this field. Read-write.

value
The value of this field. Read-write.

type
The type of this field. Read-only.

location
The location of this field. This can be ’none’, ’work’, or ’home’.

schema
A dictionary that contains some properties of this field. The contents of this dictionary
correspond to those returned by the ContactDb method field types.

7.2 calendar — Access to calendar related services

The calendar module offers an API to calendar services. The calendar module represents a Symbian
agenda database as a dictionary-like CalendarDb object, which contains Entry objects and which is
indexed using the unique IDs of those objects. There are four types of entry objects: AppointmentEntry,
EventEntry, AnniversaryEntry, and TodoEntry.

CalendarDb objects represent a live view into the database. If an entry is changed outside your Python
application, the changes are visible immediately, and conversely any changes you commit into the
database are visible immediately to other applications.

In addition to entries, there are todo lists which contain todo entries. Todo lists are accessed using the
dictionary-like TodoListDict and TodoList objects.

All time parameters use Unix time unless stated otherwise. For more information on Unix time, see
Section 3.5, Date and Time.

Figure 7.1 demonstrates the relationships of the calendar module objects.

7.2.1 Module Level Functions

The following free functions - functions that do not belong to any class - are defined in the calendar
module:

open([filename=None, mode=None])
Opens a calendar database and returns a new CalendarDb object.

If filename is None, the default database is opened.

If filename is given, it should be a full, absolute path name in Unicode that specifies the calendar
database to open.

mode can be:

•None: Opens an existing calendar database.

•’c’: Opens an existing calendar database, or creates it if it doesn’t exist.

•’n’: Creates a new, empty calendar database. If filename exists, the previous contents are
erased.

44 Chapter 7. Data Management

Figure 7.1: The calendar module objects

7.2.2 CalendarDb Objects

Calendar entries and todo lists are stored in a calendar database. There is one default calendar database
but more calendar databases can be created by invoking open with parameters ’n’ or ’c’.

class CalendarDb
CalendarDb objects have the following methods:

add appointment()
Creates and returns a new appointment entry AppointmentEntry. The entry is not added
and saved into the database until Entry.commit is called.

add event()
Creates and returns a new event entry EventEntry. The entry is not added and saved into
the database until Entry.commit is called.

add anniversary()
Creates and returns a new anniversary entry AnniversaryEntry. The entry is not added and
saved into the database until Entry.commit is called.

add todo()
Creates and returns new todo entry TodoEntry. The entry is not added and saved into the
database until Entry.commit is called.

find instances(start date, end date, search str=u”[,appointments=0,events=0,anniversaries=0,todos=0])
The parameters for this function include the start date, end date, search string, and optional
parameters. The optional parameters define the entry types to be included into the search.
By default all entry types are included. Returns a list that contains Entry instances found in
the search. An instance is a dictionary that contains the entry ID and the datetime value. An
entry may have several instances if it is repeated, for example once every week, etc. However,
all the returned instances occur on the same day, i.e. on the first day between the start
and end datetime values that contains instances. To search all instances between the initial
start and end datetime values, you may have to execute several searches and change the start
datetime value for each search. A match is detected if the search string is a substring of an
entry’s content.

monthly instances(month, appointments=0, events=0, anniversaries=0, todos=0)
The parameters for this function include month (float) and optional parameters. The optional
parameters define the entry types to be returned. Returns a list that contains entry instances

7.2. calendar — Access to calendar related services 45

occurring during the specified calendar month.

daily instances(day, appointments=0, events=0, anniversaries=0, todos=0)
The parameters for this function include day (float) and optional parameters. The optional
parameters define the entry types to be returned. Returns a list that contains entry instances
occurring on the specified day.

add todo list([name=None])
Creates a new todo list. name sets the name of the todo list (Unicode). Returns the ID of
the created todo list.

export vcalendars((int,...))
Returns a vcalendar string that contains the specified entries in vCalendar format. The
parameter for this function is a tuple that contains the entry IDs of the exported entries.

import vcalendars(string)
Imports vcalendar entries, given in the string parameter, to the database. Returns a tuple
that contains the unique IDs of the imported entries.

todo lists
Contains a dictionary-like TodoListDict object for accessing the todo lists of this database.

delitem (id)
Deletes the given calendar Entry from the database. id is the unique ID of the calendar
Entry.

getitem (id)
Returns a calendar Entry object indicated by the unique ID. The returned object can be one
of the following: AppointmentEntry, EventEntry, AnniversaryEntry, or TodoEntry. id is
the unique ID of the calendar Entry.

compact()
Compacts the database file. The returned value (integer) indicates the success of compaction;
a value other than zero means that the compaction was successful.

7.2.3 Entry Objects

An Entry object represents a live view into the state of a single entry in the database. You can access
the entries with an entry’s unique ID. If you create a new entry using db.add appointment etc., it is
saved into the database only if you call the entry’s commit method. In case an entry is already saved
into the database, the autocommit mode is on by default and all the changes are automatically saved
into the database, unless you call the entry’s begin method. If you call the entry’s begin method, the
changes are not saved into the database until you call the entry’s commit method.

Database entries cannot be locked. In other words, other applications are able to make changes to the
database entries you are using (not directly to the EntryObjects you are using, but to their representation
in the database) at the same time you are modifying them, even if you use begin and commit methods.

class Entry
Entry objects have the following methods and properties:

content
Sets or returns the entry’s content text (Unicode).

commit()
Saves the entry or in case of a new entry adds the entry into the database. Note that this can
be called only in case of a new entry, created with db.add appointment etc., or after begin
is called.

rollback()
Undoes the changes made after last commit.

set repeat(dictionary)
Sets the repeat data of the entry. dictionary is a repeat data dictionary that contains all the
repeat rules. For more information on repeat rules, see Section 7.3.4, Repeat Rules.

46 Chapter 7. Data Management

get repeat()
Returns the repeat data dictionary of the entry.

location
Sets or returns the entry’s location data (Unicode), for example meeting room information.

set time(start[, end])
Sets the start and end datetime values of the entry (floats). If only one parameter is given,
the other will have the same value.
In case of events, anniversaries, and todo entries the datetime values are truncated to corre-
sponding date values.
TodoEntries can be made undated with TodoEntry.set time(None). Making the todo entry
undated means removing the start and end date and all the repeat rules.

start time
The start datetime value (float) of the entry or None if the start datetime of the entry is not
set.

end time
The end datetime value (float) of the entry or None if the end datetime of the entry is not set.

id
The unique ID of the entry.

last modified
The datetime value (float) of the entry’s last modification in universal time.

alarm
The alarm datetime value (float) for the entry. None if alarm is not set. Alternatively removes
the alarm if the value is set to None.
Alarms can be set to all Entry types. However, only alarms set to Appointments and Anniver-
saries will actually cause an alarm; this is similar to the Calendar application in your Nokia
device, which allows you to set an alarm only for Meetings and Anniversaries. In addition,
alarms set to any entries residing in a database other than the default database do not cause
actual alarms either.

priority
The priority of the entry, which can be an integer ranging from 0 to 255. Native Phonebook
and Calendar applications in Nokia devices use value 1 for high priority, 2 for normal priority,
and 3 for low priority.

crossed out
The crossed out value of an entry. A value that is interpreted as false means that the entry is
not crossed out, whereas a value that is interpreted as true means that the entry is crossed out.
Note that TodoEntries must also have a cross-out time while the other entry types cannot
have one. If TodoEntry is crossed out using this method, the moment of crossing out is set
to the cross-out time of the TodoEntry. See also Section 7.3.3, TodoEntry, cross out time.

replication
Sets or returns the entry’s replication status, which can be one of the following: ’open’,
’private’, or ’restricted’.

as vcalendar()
Returns this entry as a vCalendar string.

AppointmentEntry Objects

class AppointmentEntry

AppointmentEntry class contains no additional methods compared to the Entry class from which it is
derived.

EventEntry

class EventEntry

7.2. calendar — Access to calendar related services 47

EventEntry class contains no additional methods compared to the Entry class from which it is derived.

AnniversaryEntry

class AnniversaryEntry

AnniversaryEntry class contains no additional methods compared to the Entry class from which it is
derived.

TodoEntry

TodoEntryobjects represent todo entry types. They have additional properties compared to the Entry
class from which they are derived.

class TodoEntry
TodoEntryobjects have the following additional properties:

cross out time
The cross-out date value of the entry. The value can be None meaning that the entry is
not crossed out, or the cross-out date (float). The set value must be date (float). Setting a
cross-out time also crosses out the entry. See also Section 7.3.3, Entry Object, crossed out.

todo list
The ID of the todo list to which this entry belongs.

TodoListDict

TodoListDict objects are dictionary-like objects that enable accessing todo lists.

class TodoListDict
TodoListDict objects have the following property:

default list
The ID of the default todo list.

TodoList

TodoList objects are dictionary-like objects that enable accessesing todo lists.

class TodoList
TodoList objects have the following properties:

name
The name of the todo list as a Unicode string.

id
Returns the ID of the todo list as an integer.

7.2.4 Repeat Rules

Repeat rules specify an entry’s repeat status, that is, the recurrence of the entry. There are six repeat
types:

• daily: repeated daily

• weekly: repeat on the specified days of the week, such as Monday and Wednesday, etc.

• monthly by dates: repeat monthly on the specified dates, such as the 15th and 17th day of the
month

• monthly by days: repeat monthly on the specified days, such as the fourth Wednesday of the
month, or the last Monday of the month

48 Chapter 7. Data Management

• yearly by date: repeat yearly on the specified date, such as December 24

• yearly by day: repeat yearly on the specified day, such as every third Tuesday of May

There are exceptions to repeat rules. For example, you can specify the datetime value (float) in such a
way that the entry is not repeated on a specific day even if the repeat rule would specify otherwise.

You must set the start and end dates (floats) of the repeat. The end date can also be set to None to
indicate that the repeating continues forever. You can set interval defining how often the repeat occurs,
for example in a daily repeat: 1 means every day, 2 means every second day, etc. You can also set the
days specifier which lets you explicitly specify the repeat days; for example in a weekly repeat you can
set "days":[0,2] which sets the repeat to occur on Mondays and Wednesdays. If you do not set the
days specifier, the repeat days are calculated automatically based on the start date.

You can modify repeat data by calling rep data = entry.get repeat(), then making changes to
rep data dictionary, and then calling entry.set repeat(rep data).

Repeating can be cancelled by calling entry.set repeat with a parameter that is interpreted to be
false, such as entry.set repeat(None).

Repeat definition examples:

repeat = {"type":"daily", #repeat type

"exceptions":[exception_day, exception_day+2*24*60*60],

#no appointment on those days

"start":appt_start_date, #start of the repeat

"end":appt_start_date+30*24*60*60, #end of the repeat

"interval":1} #interval (1=every day, 2=every second day etc.)

repeat = {"type":"weekly", #repeat type

"days":[0,1], #which days in a week (Monday, Tuesday)

"exceptions":[exception_day], #no appointment on that day

"start":appt_start_date, #start of the repeat

"end":appt_start_date+30*24*60*60, #end of the repeat

"interval":1}

#interval (1=every week, 2=every second week etc.)

repeat = {"type":"monthly_by_days", #repeat type

appointments on second Tuesday and last Monday of the month

"days":[{"week":1, "day":1},{"week":4, "day":0}],

"exceptions":[exception_day], #no appointment on that day

"start":appt_start_date, #start of the repeat

"end":appt_start_date+30*24*60*60, #end of the repeat

"interval":1}

#interval (1=every month, 2=every second month etc.)

repeat = {"type":"monthly_by_dates", #repeat type

"days":[0,15],

appointments on the 1st and 16th day of the month.

"exceptions":[exception_day], #no appointment on that day

"start":appt_start_date, #start of the repeat

"end":appt_start_date+30*24*60*60, #end of the repeat

"interval":1}

#interval (1=every month, 2=every second month etc.)

repeat = {"type":"yearly_by_date", #repeat type

"exceptions":[exception_day], #no appointment on that day

"start":appt_start_date, #start of the repeat

"end":appt_start_date+3*365*24*60*60, #end of the repeat

"interval":1}

#interval (1=every year, 2=every second year etc.)

repeat = {"type":"yearly_by_day", #repeat type

7.2. calendar — Access to calendar related services 49

appointments on the second Tuesday of February

"days":{"day":1, "week":1, "month":1},

"exceptions":[exception_day], #no appointment on that day

"start":appt_start_date, #start of the repeat

"end":appt_start_date+3*365*24*60*60, #end of the repeat

"interval":1}

#interval (1=every year, 2=every second year etc.)

7.3 calendar for EKA2 — Access to calendar related services

The calendar module offers an API to calendar services. The calendar module represents a Symbian
agenda database as a dictionary-like CalendarDb object, which contains Entry objects and which is
indexed using the unique IDs of those objects. There are five types of entry objects: AppointmentEntry,
EventEntry, AnniversaryEntry, ReminderEntry, and TodoEntry.

CalendarDb objects represent a live view into the database. If an entry is changed outside your Python
application, the changes are visible immediately, and conversely any changes you commit into the
database are visible immediately to other applications.

All time parameters use Unix time unless stated otherwise. For more information on Unix time, see
Section 3.5, Date and Time.

7.3.1 Module Level Functions

The following free functions - functions that do not belong to any class - are defined in the calendar
module:

open([filename=None, mode=None])
Opens a calendar database and returns a new CalendarDb object.

If filename is None, the default database is opened.

If filename is given, it should contain drive letter, colon and file’s name, but no absolute path.

mode can be:

•None: Opens an existing calendar database.

•’c’: Opens an existing calendar database, or creates it if it doesn’t exist.

•’n’: Creates a new, empty calendar database. If filename exists, the previous contents are
erased.

7.3.2 CalendarDb Objects

Calendar entries are stored in a calendar database. There is one default calendar database but more
calendar databases can be created by invoking open with parameters ’n’ or ’c’.

class CalendarDb
CalendarDb objects have the following methods:

add appointment()
Creates and returns a new appointment entry AppointmentEntry. The entry is not added
and saved into the database until Entry.commit is called.

add event()
Creates and returns a new event entry EventEntry. The entry is not added and saved into
the database until Entry.commit is called.

add anniversary()
Creates and returns a new anniversary entry AnniversaryEntry. The entry is not added and
saved into the database until Entry.commit is called.

50 Chapter 7. Data Management

add todo()
Creates and returns new todo entry TodoEntry. The entry is not added and saved into the
database until Entry.commit is called.

add reminder()
Creates and returns new reminder entry ReminderEntry. The entry is not added and saved
into the database until Entry.commit is called.

find instances(start date, end date, search str=u”[,appointments=0,events=0,anniversaries=0,todos=0,reminders=0])
The parameters for this function include the start date, end date, search string, and optional
parameters. The optional parameters define the entry types to be included into the search.
By default all entry types are included. Returns a list that contains Entry instances found
in the search. An instance is a dictionary that contains the entry ID and the datetime value.
An entry may have several instances if it is repeated, for example once every week, etc.

monthly instances(month, appointments=0, events=0, anniversaries=0, todos=0, reminders=0)
The parameters for this function include month (float) and optional parameters. The optional
parameters define the entry types to be returned. Returns a list that contains entry instances
occurring during the specified calendar month.

daily instances(day, appointments=0, events=0, anniversaries=0, todos=0)
The parameters for this function include day (float) and optional parameters. The optional
parameters define the entry types to be returned. Returns a list that contains entry instances
occurring on the specified day.

export vcalendars((int,...))
Returns a vcalendar string that contains the specified entries in vCalendar format. The
parameter for this function is a tuple that contains the entry IDs of the exported entries.

import vcalendars(string)
Imports vcalendar entries, given in the string parameter, to the database. Returns a list
that contains the unique IDs of the imported entries.

delitem (id)
Deletes the given calendar Entry from the database. id is the unique ID of the calendar
Entry.

getitem (id)
Returns a calendar Entry object indicated by the unique ID. The returned object can be one
of the following: AppointmentEntry, EventEntry, AnniversaryEntry, ReminderEntry, or
TodoEntry. id is the unique ID of the calendar Entry.

7.3.3 Entry Objects

An Entry object represents a live view into the state of a single entry in the database. You can access
the entries with an entry’s unique ID. If you create a new entry using db.add appointment etc., it is
saved into the database only if you call the entry’s commit method. In case an entry is already saved
into the database, the autocommit mode is on by default and all the changes are automatically saved
into the database, unless you call the entry’s begin method. If you call the entry’s begin method, the
changes are not saved into the database until you call the entry’s commit method.

Database entries cannot be locked. In other words, other applications are able to make changes to the
database entries you are using (not directly to the EntryObjects you are using, but to their representation
in the database) at the same time you are modifying them, even if you use begin and commit methods.

class Entry
Entry objects have the following methods and properties:

content
Sets or returns the entry’s content text (Unicode).

commit()
Saves the entry or in case of a new entry adds the entry into the database. Note that this can
be called only in case of a new entry, created with db.add appointment etc., or after begin
is called.

7.3. calendar for EKA2 — Access to calendar related services 51

rollback()
Undoes the changes made after last commit.

set repeat(dictionary)
Sets the repeat data of the entry. dictionary is a repeat data dictionary that contains all the
repeat rules. For more information on repeat rules, see Section 7.3.4, Repeat Rules.

get repeat()
Returns the repeat data dictionary of the entry.

location
Sets or returns the entry’s location data (Unicode), for example meeting room information.

set time(start[, end])
Sets the start and end datetime values of the entry (floats). If only one parameter is given,
the other will have the same value.
In case of events, anniversaries, and todo entries the datetime values are truncated to corre-
sponding date values.
TodoEntries can be made undated with TodoEntry.set time(None). Making the todo entry
undated means removing the start and end date and all the repeat rules.

start time
The start datetime value (float) of the entry or None if the start datetime of the entry is not
set.

end time
The end datetime value (float) of the entry or None if the end datetime of the entry is not set.

id
The unique ID of the entry.

last modified
The datetime value (float) of the entry’s last modification in universal time.

originating
An integer value indicating if the entry is an originating entry or a modifying entry.

alarm
The alarm datetime value (float) for the entry. None if alarm is not set. Alternatively removes
the alarm if the value is set to None.
Alarms can be set to all Entry types. However, only alarms set to Appointments and Anniver-
saries will actually cause an alarm; this is similar to the Calendar application in your Nokia
device, which allows you to set an alarm only for Meetings and Anniversaries. In addition,
alarms set to any entries residing in a database other than the default database do not cause
actual alarms either.

priority
The priority of the entry, which can be an integer ranging from 0 to 255. Native Phonebook
and Calendar applications in Nokia devices use value 1 for high priority, 2 for normal priority,
and 3 for low priority.

crossed out
The crossed out value of an entry. Only valid for todo entries. A value that is interpreted as
false means that the entry is not crossed out, whereas a value that is interpreted as true means
that the entry is crossed out. Note that TodoEntries must also have a cross-out time. If
TodoEntry is crossed out using this method, the moment of crossing out is set to the cross-out
time of the TodoEntry. See also Section 7.3.3, TodoEntry, cross out time.

replication
Sets or returns the entry’s replication status, which can be one of the following: ’open’,
’private’, or ’restricted’.

as vcalendar()
Returns this entry as a vCalendar string.

52 Chapter 7. Data Management

AppointmentEntry Objects

class AppointmentEntry

AppointmentEntry class contains no additional methods compared to the Entry class from which it is
derived.

EventEntry

class EventEntry

EventEntry class contains no additional methods compared to the Entry class from which it is derived.

AnniversaryEntry

class AnniversaryEntry

AnniversaryEntry class contains no additional methods compared to the Entry class from which it is
derived.

ReminderEntry

class ReminderEntry

ReminderEntry class contains no additional methods compared to the Entry class from which it is
derived.

TodoEntry

TodoEntryobjects represent todo entry types. They have additional properties compared to the Entry
class from which they are derived.

class TodoEntry
TodoEntryobjects have the following additional properties:

cross out time
The cross-out date value of the entry. The value can be None meaning that the entry is
not crossed out, or the cross-out date (float). The set value must be date (float). Setting a
cross-out time also crosses out the entry. See also Section 7.3.3, Entry Object, crossed out.

7.3.4 Repeat Rules

Repeat rules specify an entry’s repeat status, that is, the recurrence of the entry. There are six repeat
types:

• daily: repeated daily

• weekly: repeat on the specified days of the week, such as Monday and Wednesday, etc.

• monthly by dates: repeat monthly on the specified dates, such as the 15th and 17th day of the
month

• monthly by days: repeat monthly on the specified days, such as the fourth Wednesday of the
month, or the last Monday of the month

• yearly by date: repeat yearly on the specified date, such as December 24

• yearly by day: repeat yearly on the specified day, such as every third Tuesday of May

7.3. calendar for EKA2 — Access to calendar related services 53

There are exceptions to repeat rules. For example, you can specify the datetime value (float) in such a
way that the entry is not repeated on a specific day even if the repeat rule would specify otherwise.

You must set the start and end dates (floats) of the repeat. The end date can also be set to None to
indicate that the repeating continues forever. You can set interval defining how often the repeat occurs,
for example in a daily repeat: 1 means every day, 2 means every second day, etc. You can also set the
days specifier which lets you explicitly specify the repeat days; for example in a weekly repeat you can
set "days":[0,2] which sets the repeat to occur on Mondays and Wednesdays. If you do not set the
days specifier, the repeat days are calculated automatically based on the start date.

You can modify repeat data by calling rep data = entry.get repeat(), then making changes to
rep data dictionary, and then calling entry.set repeat(rep data).

Repeating can be cancelled by calling entry.set repeat with a parameter that is interpreted to be
false, such as entry.set repeat(None).

Repeat definition examples:

repeat = {"type":"daily", #repeat type

"exceptions":[exception_day, exception_day+2*24*60*60],

#no appointment on those days

"start":appt_start_date, #start of the repeat

"end":appt_start_date+30*24*60*60, #end of the repeat

"interval":1} #interval (1=every day, 2=every second day etc.)

repeat = {"type":"weekly", #repeat type

"days":[0,1], #which days in a week (Monday, Tuesday)

"exceptions":[exception_day], #no appointment on that day

"start":appt_start_date, #start of the repeat

"end":appt_start_date+30*24*60*60, #end of the repeat

"interval":1}

#interval (1=every week, 2=every second week etc.)

repeat = {"type":"monthly_by_days", #repeat type

appointments on second Tuesday and last Monday of the month

"days":[{"week":1, "day":1},{"week":4, "day":0}],

"exceptions":[exception_day], #no appointment on that day

"start":appt_start_date, #start of the repeat

"end":appt_start_date+30*24*60*60, #end of the repeat

"interval":1}

#interval (1=every month, 2=every second month etc.)

repeat = {"type":"monthly_by_dates", #repeat type

"days":[0,15],

appointments on the 1st and 16th day of the month.

"exceptions":[exception_day], #no appointment on that day

"start":appt_start_date, #start of the repeat

"end":appt_start_date+30*24*60*60, #end of the repeat

"interval":1}

#interval (1=every month, 2=every second month etc.)

repeat = {"type":"yearly_by_date", #repeat type

"exceptions":[exception_day], #no appointment on that day

"start":appt_start_date, #start of the repeat

"end":appt_start_date+3*365*24*60*60, #end of the repeat

"interval":1}

#interval (1=every year, 2=every second year etc.)

repeat = {"type":"yearly_by_day", #repeat type

appointments on the second Tuesday of February

"days":{"day":1, "week":1, "month":1},

"exceptions":[exception_day], #no appointment on that day

"start":appt_start_date, #start of the repeat

54 Chapter 7. Data Management

"end":appt_start_date+3*365*24*60*60, #end of the repeat

"interval":1}

#interval (1=every year, 2=every second year etc.)

7.4 e32db — Interface to the Symbian native DB

The e32db module provides an API for relational database manipulation with a restricted SQL syntax.
For details of DBMS support, see the S60 SDK documentation. For examples on using this module, see
[6].

The e32db module defines the following functions:

format rawtime(timevalue)
Formats timevalue (Symbian time) according to the current system’s date/time formatting rules
and returns it as a Unicode string.

format time(timevalue)
Formats timevalue according to the current system’s date/time formatting rules and returns it as
a Unicode string.

7.4.1 Dbms Objects

class Dbms()
Creates a Dbms object. Dbms objects support basic operations on a database.

Dbms objects have the following methods:

begin()
Begins a transaction on the database.

close()
Closes the database object. It is safe to try to close a database object even if it is not open.

commit()
Commits the current transaction.

compact()
Compacts the database, reclaiming unused space in the database file.

create(dbname)
Creates a database with path dbname.

execute(query)
Executes an SQL query . On success, returns 0 if a DDL (SQL schema update) statement was
executed. Returns the number of rows inserted, updated, or deleted, if a DML (SQL data update)
statement was executed.

open(dbname)
Opens the database in file dbname. This should be a full Unicode path name, for example,
u’c:\\foo.db’.

rollback()
Rolls back the current transaction.

7.4.2 DB view Objects

class Db view()
Creates a Db view object. DB view objects generate rowsets from a SQL query. They provide
functions to parse and evaluate the rowsets.

Db view objects have the following methods:

7.4. e32db — Interface to the Symbian native DB 55

col(column)
Returns the value in column. The first column of the rowset has the index 1. If the type of the
column is not supported, a TypeError is raised. See Table 7.1 for a list of supported data types.

col count()
Returns the number of columns defined in the rowset.

col length(column)
Gets the length of the value in column. Empty columns have a length of zero; non-empty numerical
and date/time columns have a length of 1. For text columns, the length is the character count,
and for binary columns, the length is the byte count.

col raw(column)
Extracts the value of column as raw binary data, and returns it as a Python string. The first
column of the rowset has the index 1. See Table 7.1 for a list of supported data types.

col rawtime(column)
Extracts the value of a date/time column at index column as a long integer, which represents the
raw Symbian time value. The first column of the rowset has the index 1. See Table 7.1 for a list
of the supported data types.

col type(column)
Returns the numeric type of the given column as an integer from a Symbian-specific list of types.
This function is used in the implementation of method col.

count line()
Returns the number of rows available in the rowset.

first line()
Positions the cursor on the first row in the rowset.

get line()
Gets the current row data for access.

is col null(column)
Tests whether column is empty. Empty columns can be accessed like normal columns. Empty
numerical columns return a 0 or an equivalent value, and text and binary columns have a zero
length.

next line()
Moves the cursor to the next row in the rowset.

prepare(db, query)
Prepares the view object for evaluating an SQL select statement. db is a Dbms object and query
the SQL query to be executed.

7.4.3 Mapping Between SQL and Python Data Types

See Table 7.1 for a summary of mapping between SQL and Python data types. The col function can
extract any value except LONG VARBINARY and return it as the proper Python value. In addition, the
col raw function can extract any column type except LONG VARCHAR and LONG VARBINARY as raw binary
data and return it as a Python string.

Inserting, updating, or searching for BINARY, VARBINARY, or LONG VARBINARY values is not supported.
BINARY and VARBINARY values can be read with col or col raw.

7.4.4 Date and Time Handling

The functions col and format time use Unix time, seconds since January 1, 1970, 00:00:00 UTC, as the
time format. Internally the database uses the native Symbian time representation that provides greater
precision and range than the Unix time. The native Symbian time format is a 64-bit value that represents
microseconds since January 1st 0 AD 00:00:00 local time, nominal Gregorian. BC dates are represented
by negative values. Since converting this format to Unix time and back may cause slight round-off errors,

56 Chapter 7. Data Management

SQL type Symbian column type (in the
DBMS C++ API)

Python type Supported

BIT EDbColBit

int

yes

TINYINT EDbColInt8
UNSIGNED TINYINT EDbColUint8
SMALLINT EDbColInt16
UNSIGNED SMALLINT EDbColUint16
INTEGER EDbColInt32
UNSIGNED INTEGER EDbColUint32
COUNTER EDbColUint32 (with the TDb-

Col::EAutoIncrement attribute)
BIGINT EDbColInt64 long
REAL EDbColReal32

float
FLOAT

EDbColReal64DOUBLE
DOUBLE PRECISION
DATE

EDbColDateTime float (or long, with col rawtime())TIME
TIMESTAMP
CHAR(n)

EDbColText
UnicodeVARCHAR(n)

LONG VARCHAR EDbColLongText
BINARY(n)

EDbColBinary str read only
VARBINARY(n)
LONG VARBINARY EDbColLongBinary n/a no

Table 7.1: Mapping between SQL and Python types

you have to use the functions col rawtime and format rawtime if you need to be able to handle these
values with full precision.

The representation of date and time literals in SQL statements depends on the current system date and
time format. Note that the only accepted ordering of day, month, and year is the one that the system is
currently configured to use. Dates in other order are rejected. The recommended way to form date/time
literals for SQL statements is to use the functions format time or format rawtime that format the
given date/time values properly according to the current system’s date/time format settings.

7.5 e32dbm — DBM implemented using the Symbian native DBMS

The e32dbm module provides a DBM API that uses the native Symbian RDBMS as its storage back-end.
The module API resembles that of the gdbm module. The main differences are:

• The firstkey() - nextkey() interface for iterating through keys is not supported. Use the "for
key in db" idiom or the keys or keysiter methods instead.

• This module supports a more complete set of dictionary features than gdbm

• The values are always stored as Unicode, and thus the values returned are Unicode strings even if
they were given to the DBM as normal strings.

7.5.1 Module Level Functions

The e32dbm defines the following functions:

open(dbname[,flags, mode])
Opens or creates the given database file and returns an e32dbm object. Note that dbname should

7.5. e32dbm — DBM implemented using the Symbian native DBMS 57

be a full path name, for example, u’c:\\foo.db’. Flags can be:

•’r’: opens an existing database in read-only mode. This is the default value.

•’w’: opens an existing database in read-write mode.

•’c’: opens a database in read-write mode. Creates a new database if the database does not
exist.

•’n’: creates a new empty database and opens it in read-write mode.

If the character ’f’ is appended to flags, the database is opened in fast mode. In fast mode, updates
are written to the database only when one of these methods is called: sync, close, reorganize,
or clear.

Since the connection object destructor calls close, it is not strictly necessary to close the database before
exiting to ensure that data is saved, but it is still good practice to call the close method when you are
done with using the database. Closing the database releases the lock on the file and allows the file to be
reopened or deleted without exiting the interpreter.

If you plan to do several updates, it is highly recommended that you open the database in fast mode,
since inserts and updates are more efficient when they are bundled together in a larger transaction. This
is especially important when you plan to insert large amounts of data, since inserting records to e32db
is very slow if done one record at a time.

7.5.2 e32dbm Objects

The e32dbm objects returned by the open function support most of the standard dictionary methods.
The supported dictionary methods are:

• getitem

• setitem

• delitem

• has key

• update

• len

• iter

• iterkeys

• iteritems

• itervalues

• get

• setdefault

• pop

• popitem

• clear

These work the same way as the corresponding methods in a normal dictionary.

In addition, e32dbm objects have the following methods:

58 Chapter 7. Data Management

close()
Closes the database. In fast mode, commits all pending updates to disk. close raises an exception
if called on a database that is not open.

reorganize()
Reorganizes the database. Reorganization calls compact on the underlying e32db database file,
which reclaims unused space in the file. Reorganizing the database is recommended after several
updates.

sync()
In fast mode, commits all pending updates to disk.

7.5. e32dbm — DBM implemented using the Symbian native DBMS 59

60

CHAPTER

EIGHT

Standard Library Support and Extensions

8.1 Support for Python Standard Library

The standard library support in Python for S60 is summarized in Table 8.1. For API descriptions, see
[1].

Name Type Status Remarks
testcapi PYD Y

anydbm PY X DBM API is implemented by PY e32dbm that
relies on PYD e32db (see Chapter 7.5, e32dbm
Module)

atexit PY X
base64 PY X
bdb PY (X)
binascii built-in X
cmd PY (X)
code PY X
codecs PY X
codeop PY X
copy PY X
copy reg PY X
cStringIO built-in X
dis PY (X)
errno built-in X
exceptions built-in X

future PY X
httplib PY X
imp built-in X
keyword PY X
linecache PY X
marshal built-in X
math built-in X
md51 built-in X
mimetools PY X
operator built-in X
os, os.path PY X Wraps built-in e32posix. Limitations dis-

cussed in Section 3.9, Limitations and Areas
of Development.

pdb PY (X)
quopri PY X
Name Type Status Remarks

1Derived from the RSA Data Security, Inc. MD5 Message-Digest Algorithm.

61

random PY X
re PY X Uses PY sre as its engine.
repr PY X
rfc822 PY X
select PY X A minimal implementation: select is sup-

ported only for input from sockets.
socket PY X Requires PYD e32socket. Contains exten-

sions as described in Section 8.2.2, socket
Module. Limitations discussed in Section 3.9,
Limitations and Areas of Development.

sre PY X Wraps built-in sre.
string PY X
StringIO PY X
struct built-in X
sys built-in X
thread built-in X Contains extensions as described in Section

8.2.1, thread Module
threading PY (X)
time built-in X
traceback PY X
types PY X
urllib PY X
urlparse(urlsplit only) PY X
uu PY X
warnings PY X
whichdb PY X
xreadlines built-in X
zipfile PY X
zlib PYD X

Table 8.1: Status of library module support.

Table 8.1 uses the following coding for module types:

• PY – module is implemented in Python.

• Built-in – module is a built-in C/C++ module.

• PYD – module is a dynamically loadable C/C++ module.

For support status, the following codes are used:

• X – included to the Series 60 Python distribution.

• (X) – not included to the Series 60 Python distribution, but works both on phone and SDK.

• Y – included only to the SDK distribution.

8.2 Extensions to Standard Library Modules

The following standard modules have been extended.

62 Chapter 8. Standard Library Support and Extensions

8.2.1 thread — S60 extensions to standard thread module

The following function has been added to the standard thread module:

ao waittid(thread id)
Synchronizes with the end of the execution of the thread identified by the given thread id . The
implementation is based on a Symbian OS active object. For the blocking behavior, see Section
4.1.2, Ao lock Type.

8.2.2 socket — S60 extensions to standard socket module

Bluetooth (BT) support has been added to the standard socket module. The following related constants
and functions are defined:

Note: In release 1.0 the functions bt advertise service, bt obex receive, and
bt rfcomm get available server channel incorrectly expected to be given the internal
e32socket.socket object as the socket parameter instead of the proper socket object. Now the func-
tions work correctly. The old calling convention is still supported but it is deprecated and may be
removed in a future release.

AF BT
Represents the Bluetooth address family.

BTPROTO RFCOMM
This constant represents the Bluetooth protocol RFCOMM.

RFCOMM

OBEX
Bluetooth service classes supported by bt advertise service.

AUTH

ENCRYPT

AUTHOR
Bluetooth security mode flags.

bt advertise service(name, socket, flag, class)
Sets a service advertising the service name (Unicode) on local channel that is bound to socket .
If flag is True, the advertising is turned on, otherwise it is turned off. The service class to be
advertised is either RFCOMM or OBEX.

bt discover([address])
Performs the Bluetooth device discovery (if the optional BT device address is not given) and the
discovery of RFCOMM class services on the chosen device. Returns a pair: BT device address,
dictionary of services, where Unicode service name is the key and the corresponding port is the
value.

bt obex discover([address])
Same as discover, but for discovery of OBEX class services on the chosen device.

bt obex send file(address, channel, filename)
Sends file filename (Unicode) wrapped into an OBEX object to remote address, channel .

bt obex receive(socket, filename)
Receives a file as an OBEX object, unwraps and stores it into filename (Unicode). socket is a
bound OBEX socket.

bt rfcomm get available server channel(socket)
Returns an available RFCOMM server channel for socket .

set security(socket, mode)
Sets the security level of the given bound socket . The mode is an integer flag that is formed using
a binary or operation of one or more of: AUTH (authentication), ENCRYPT, AUTHOR (authorization).
Example: set security(s, AUTH | AUTHOR).

8.2. Extensions to Standard Library Modules 63

Note: When listening to a Bluetooth socket on the phone, it is necessary to set the security level.

Note: SSL is not supported in S60 1st Edition. SSL client certificates are not supported at all.

For examples on the usage of these functions, see Programming with Python for S60 Platform [6].

64 Chapter 8. Standard Library Support and Extensions

CHAPTER

NINE

Extending and Embedding

9.1 Python/C API Extensions

The native API exported by the interpreter in S60 environment consists of class CSPyInterpreter,
Python/C API (see [3]) and and a small set of extensions to Python/C API.

9.1.1 class CSPyInterpreter

The class CSPyInterpreter offers an interface for initializing the interpreter and for running scripts. It
exports the following public interface:

static CSPyInterpreter*

NewInterpreterL(TBool aCloseStdlib = ETrue,

void(*aStdioInitFunc)(void*) = NULL,

void* aStdioInitCookie = NULL);

TInt RunScript(int argc, char** argv);

void PrintError();

void (*iStdI)(char* buf, int n);

void (*iStdO)(const char* buf, int n);

The caller of the constructor CSPyInterpreter::NewInterpreterL() may provide its own function
aStdioInitFunc for initializing Symbian OS STDLIB’s standard I/O descriptors. It gets called with the
argument aStdioInitCookie. The CSPyInterpreter class can also be requested to leave STDLIB open
at its destruction.

The RunScript method establishes a Python interpreter context and runs the script file whose full path
name is in argv[0] with the given argument vector. After completion, it leaves the interpreter context
and returns a Symbian error code to indicate success or failure.

The CSPyInterpreter::PrintError method can be used to print current Python exception information
to the standard error output.

9.1.2 Extensions to Python/C API

Defined in symbian python ext util.h

PyObject* SPyErr SetFromSymbianOSErr(int error)
Sets Python exception of type PyExc SymbianError with the value field set to symbolic name of
the Symbian OS enumeration value error and returns NULL. In case error has the special value
KErrPython, it assumes that a Python exception has already been set and returns NULL.

The following functions can be used for storing the global data in a module implementa-
tion. They are thin wrappers around PyDict SetItem, PyDict SetItemString, PyDict GetItem,
PyDict GetItemString, PyDict DelItem and PyDict DelItemString, respectively, and can be used
in the same way. The data is stored in a special completely global dictionary shared by all modules and
threads in the current interpreter.

65

int SPyAddGlobal(PyObject *key, PyObject *value)

int SPyAddGlobalString(char *key, PyObject *value)

PyObject* SPyGetGlobal(PyObject *key)

PyObject* SPyGetGlobalString(char *key)

void SPyRemoveGlobal(PyObject *key)

void SPyRemoveGlobalString(char *key)

Defined in python globals.h

PyThreadState* PYTHON TLS->thread state
Current thread state.

Thread state and interpreter lock management must be performed according to the instructions; see
[3]. Python for S60 Platform extends the Python/C API by offering a facility for querying the related
Python thread state (PYTHON TLS->thread state) from the context of the currently running thread.
This can be used to re-establish the interpreter context with PyEval RestoreThread in C/C++ code.

To save/restore the interpreter context:

Py_BEGIN_ALLOW_THREADS

/* ...your code... */

Py_END_ALLOW_THREADS

To restore/save the interpreter context:

PyEval_RestoreThread(PYTHON_TLS-$>$thread_state)

/* ...your code... */

PyEval_SaveThread()

Defined in pythread.h

int PyThread AtExit(void(*)())
An extenstion to the standard thread module’s C API that can be used for registering thread-
specific exit functions. In the main thread calling this function has the same effect as calling
Py AtExit. For more information, see [1].

9.2 Extending Python for S60

The general rules and guidelines for writing Python extensions apply in the S60 Python environment as
well; for more information, see [2]. The Python/C API is available, see [3] In addition, for an example
on porting a simple extension to S60, see [6].

The issues that need to be considered in the implementation of the extension modules include:

• Preparation of the data structures that make the C/C++ coded extensions visible to the Python
interpreter and make it possible to perform calls from Python to C/C++ code

• Conversions between C/C++ representations of the Python objects and object types used in the
extension code

• Maintenance of the reference counts of the C/C++ representations of the Python objects

• Passing of exceptions between C/C++ code and Python

• Management of interpreter’s thread state and the interpreter lock

66 Chapter 9. Extending and Embedding

In addition to the concerns common for all Python C extensions, the following principles should be
considered when implementing new Python interfaces in the S60 environment:

• Maximize the usage of Python’s built-in types at the interfaces.

• Related to the above: design interfaces in such a way that information can be passed between them
with minimal conversions.

• Convert Symbian operating system exceptions / errors to Python exceptions.

• Unicode strings are used at the interfaces to represent text that gets shown on the GUI. They can
be passed to and from Symbian operating system without conversions.

• While performing potentially long-lasting / blocking calls from an extension implementation to
services outside the interpreter, the interpreter lock must be released and then re-acquired after
the call.

• Rather than always implementing a thin wrapper on top of a Symbian OS facility, consider the
actual task for which the script writer needs the particular interface. For example, if the task
involves interaction with the users using the GUI, the script writer’s interest may well be limited
to performing the interaction / information exchange in a way that is compatible with the UI style
rather than having full control of the low-level details of the GUI implementation.

• The C/C++ implementation of a Python interface should be optimized for performance and cov-
ering access to the necessary features of the underlying Platform. Where necessary, the Python
programming interface can be further refined by wrapper modules written in Python.

An extension module is packaged in its own dynamically loadable library that must be installed into
‘\system\libs’ directory and named ‘module name.pyd’. The module initialization function must be ex-
ported at ordinal 1. The module identification is based on the filename only. As a special feature of
PyS60, an optional module finalizer function may be exported at ordinal 2.

The macro versions of memory-management functions PyMem MALLOC and PyObject NEW are not in-
cluded. Use the functions PyMem Malloc and PyObject New instead.

9.2.1 Services for Extensions

S60 Python Platform implements an adaptation layer between S60 UI application framework and script
language UI extensions to simplify UI extension development. This API is used by the implementation of
the appuifw module but not exported in the current release. Some general utility services for extensions
are also provided, see Chapter 9.1.

9.2.2 Example

This extension code snippet demonstrates some of the issues mentioned in this chapter, such as:

• Conversion from Python data types, usage of built-in data types at extension interface, usage of
Unicode strings (lines 8-12)

• Maintenance of the reference counts (line 36)

• Passing of exceptions between C/C++ code and Python (line 34)

• Releasing the interpreter lock while performing a blocking call to a service outside the interpreter
(lines 29, 31)

• Simplifying the API to the note facility of the Platform

9.2. Extending Python for S60 67

01 extern "C" PyObject *

02 note(PyObject* /*self*/, PyObject *args)

03 {

04 TInt error = KErrNone;

05 int l_tx, l_ty;

06 char *b_tx, *b_ty;

07

08 if (!PyArg_ParseTuple(args, "u#s#", &b_tx, &l_tx, &b_ty, &l_ty))

09 return NULL;

10

11 TPtrC8 stype((TUint8*)b_ty, l_ty);

12 TPtrC note_text((TUint16 *)b_tx, l_tx);

13 CAknResourceNoteDialog* dlg = NULL;

14

15 if (stype.Compare(KErrorNoteType) == 0)

16 dlg = new CAknErrorNote(ETrue);

17 else if (stype.Compare(KInfoNoteType) == 0)

18 dlg = new CAknInformationNote(ETrue);

19 else if (stype.Compare(KConfNoteType) == 0)

20 dlg = new CAknConfirmationNote(ETrue);

21 else {

22 PyErr_BadArgument();

23 return NULL;

24 }

25

26 if (dlg == NULL)

27 return PyErr_NoMemory();

28

29 Py_BEGIN_ALLOW_THREADS

30 TRAP(error, dlg->ExecuteLD(note_text));

31 Py_END_ALLOW_THREADS

32

33 if (error != KErrNone)

34 return SPyErr_SetFromSymbianOSErr(error);

35 else {

36 Py_INCREF(Py_None);

37 return Py_None;

38 }

39 }

68 Chapter 9. Extending and Embedding

CHAPTER

TEN

Terms and Abbreviations

The following list defines the terms and abbreviations used in this document:

Term Definition
AAC; Adaptive
Audio Coding

AAC provides basically the same sound quality as MP3 while using a
smaller bit rate. AAC is mainly used to compress music.

Advertise Advertise service in Bluetooth makes it known that a certain Bluetooth
service is available.

AMR Adaptive Multi-rate Codec file format.
API Application Programming Interface
Bluetooth Bluetooth is a technology for wireless communication between devices that

is based on a low-cost short-range radio link.
BPP Bits Per Pixel
C STDLIB Symbian OS’s implementation of the C standard library
Dialog A temporary user interface window for presenting context-specific informa-

tion to the user, or prompting for information in a specific context.
Discovery Discovery is a process where Bluetooth finds other nearby Bluetooth devices

and their advertised services.
DLL Dynamic link library
GSM; Global
System for
Mobile commu-
nication

GSM is a digital mobile telephone system that uses a variation of time
division multiple access. It digitizes and compresses data, then sends it
down a channel with two other streams of user data, each in its own time
slot.

GUI Graphical User Interface
I/O input/output
IP Internet Protocol
MBM; Multi-
BitMap

The native Symbian OS format used for pictures. MBM files can be gener-
ated with the bmconv.exe tool included in the S60 SDK.

MIDI; Musi-
cal Instrument
Digital Interface

A protocol and a set of commands for storing and transmitting information
about music.

MIF; Multi-
Image File

MIF files are similar to MBM files and can contain compressed SVG-T files.
This file type can be generated with the MifConv.exe tool.

MIME; Multi-
purpose Internet
Mail Extensions

MIME is an extension of the original Internet e-mail protocol that can be
used to exchange different kinds of data files on the Internet.

MP3 A standard technology and format for compressing a sound sequence into
a very small file while preserving the original level of sound quality when
it is played.

OS Operating System
Real Audio An audio format developed by Real Networks.
RDBMS Relational database management system
SMS; Short
Message System
(within GSM)

SMS is a service for sending messages of up to 160 characters, or 224 charac-
ters if using a 5-bit mode, to mobile phones that use GSM communication.

69

Term Definition
Softkey Softkey is a key that does not have a fixed function nor a function label

printed on it. On a phone, selection keys reside below or above on the
side of the screen, and derive their meaning from what is presently on the
screen.

SQL Structured Query Language
SVG, SVG-T;
Scalable Vec-
tor Graphics
(-Tiny)

XML-based vector graphics format for describing two-dimensional graphics
and graphical applications.

Twip Twips are screen-independent units to ensure that the proportion of screen
elements are the same on all display systems. A twip is defined as 1/1440
of an inch, or 1/567 of a centimeter.

UI User Interface
UI control UI control is a GUI component that enables user interaction and represents

properties or operations of an object.
WAV A file format for recording sound, especially in multimedia applications.

70 Chapter 10. Terms and Abbreviations

BIBLIOGRAPHY

[1] G. van Rossum, and F.L. Drake, Jr., editor. [Python] Library Reference. Available at
http://www.python.org/doc

[2] G. van Rossum, and F.L. Drake, Jr., editor. Extending and Embedding [the Python Interpreter].
Available at http://www.python.org/doc

[3] G. van Rossum, and F.L. Drake, Jr., editor. Python/C API [Reference Manual]. Available at
http://www.python.org/doc

[4] S60 SDK documentation, available at http://www.forum.nokia.com/

[5] Getting Started with Python for S60 Platform, available at http://www.forum.nokia.com/

[6] Programming with Python for S60 Platform, available at http://www.forum.nokia.com/

[7] Audio & Video section on the Forum Nokia Web site (for Nokia devices),
http://www.forum.nokia.com/audiovideo

[8] Developers section on the S60 Platform Web site (for all S60 devices), http://www.s60.com/

[9] Python for S60 developer discussion board http://discussion.forum.nokia.com/

[10] Scalable Vector Graphics (SVG) 1.1 Specification http://www.w3.org/TR/SVG/

71

72

APPENDIX

A

Reporting Bugs

In order to improve the quality of Python for S60 the developers would like to know of any deficiencies
you find in Python for S60 or its documentation.

Before submitting a report, you will be required to log into SourceForge; this will make it possible for
the developers to contact you for additional information if needed. It is not possible to submit a bug
report anonymously.

All bug reports should be submitted via the project PyS60 Bug Tracker on SourceForge
(http://sourceforge.net/tracker/?group id=154155). The bug tracker offers a Web form which allows per-
tinent information to be entered and submitted to the developers.

The first step in filing a report is to determine whether the problem has already been reported. The
advantage in doing so, aside from saving the developers time, is that you learn what has been done to
fix it; it may be that the problem has already been fixed for the next release, or additional information
is needed (in which case you are welcome to provide it if you can!). To do this, search the bug database
using the search box near the bottom of the page.

If the problem you’re reporting is not already in the bug tracker, go back to the project PyS60 Bug
Tracker (http://sourceforge.net/tracker/?group id=154155). Select the “Submit a Bug” link at the top of
the page to open the bug reporting form.

The submission form has a number of fields. The only fields that are required are the “Summary” and
“Details” fields. For the summary, enter a very short description of the problem; less than ten words is
good. In the Details field, describe the problem in detail, including what you expected to happen and
what did happen. Be sure to include the version of Python for S60 you used, whether any extension
modules were involved and what hardware (the S60 device model or emulator) you were using, including
version information of the S60 SDK and your device firmware version as appropriate. You can see the
device firmware version by entering *#0000# on the device keypad - please include all information that
is shown by this code.

The only other field that you may want to set is the “Category” field, which allows you to place the bug
report into a broad category (such as “Documentation” or “Library”).

Each bug report will be assigned to a developer who will determine what needs to be done to correct the
problem. You will receive an update each time action is taken on the bug.

See Also:

How to Report Bugs Effectively
(http://www-mice.cs.ucl.ac.uk/multimedia/software/documentation/ReportingBugs.html)

Article which goes into some detail about how to create a useful bug report. This describes what
kind of information is useful and why it is useful.

Bug Writing Guidelines
(http://www.mozilla.org/quality/bug-writing-guidelines.html)

Information about writing a good bug report. Some of this is specific to the Mozilla project, but
describes general good practices.

73

74

MODULE INDEX

appuifw, 13
audio, 37

calendar, 44, 50
camera, 31
contacts, 41

e32, 9
e32db, 55
e32dbm, 57

graphics, 24

inbox, 39

keycapture, 32

location, 40

messaging, 39

socket, 63
sysinfo, 11

telephone, 38
thread, 63
topwindow, 33

75

76

INDEX

delitem () (CalendarDb method), 46, 51
delitem () (ContactDb method), 42
delitem () (Contact method), 43
getitem () (CalendarDb method), 46, 51

activate tab() (Application method), 18
add() (Text method), 21
add anniversary() (CalendarDb method), 45, 50
add appointment() (CalendarDb method), 45, 50
add contact() (ContactDb method), 41
add event() (CalendarDb method), 45, 50
add field() (Contact method), 43
add image() (TopWindow method), 34
add reminder() (CalendarDb method), 51
add todo() (CalendarDb method), 45, 51
add todo list() (CalendarDb method), 46
address() (Inbox method), 39
AF BT (data in socket), 63
after() (Ao timer method), 11
alarm (Entry attribute), 47, 52
all keys (data in keycapture), 33
AnniversaryEntry (class in calendar), 48, 53
ao callgate() (in module e32), 9
Ao lock (class in e32), 10
ao sleep() (in module e32), 9
Ao timer (class in e32), 11
ao waittid() (in module thread), 63
ao yield() (in module e32), 9
Application (class in appuifw), 16
AppointmentEntry (class in calendar), 47, 53
appuifw (standard module), 13
arc() (method), 30
as vcalendar() (Entry method), 47, 52
as vcard() (Contact method), 43
audio (extension module), 37
AUTH (data in socket), 63
AUTHOR (data in socket), 63
available fonts() (in module appuifw), 15

background color (TopWindow attribute), 35
battery() (in module sysinfo), 11
begin()

Contact method, 42
Dbms method, 55

bind()
Inbox method, 39

Listbox method, 22
Text method, 21

blit() (method), 30
body (Application attribute), 16
bt advertise service() (in module socket), 63
bt discover() (in module socket), 63
bt obex discover() (in module socket), 63
bt obex receive() (in module socket), 63
bt obex send file() (in module socket), 63
bt rfcomm get available server channel()

(in module socket), 63
BTPROTO RFCOMM (data in socket), 63

calendar (extension module), 44, 50
CalendarDb (class in calendar), 45, 50
camera (extension module), 31
cameras available() (in module camera), 31
cancel() (Ao timer method), 11
Canvas (class in appuifw), 23
clear()

method, 30
Text method, 21

close()
Dbms method, 55
e32dbm method, 59
Sound method, 38

col() (Db view method), 56
col count() (Db view method), 56
col length() (Db view method), 56
col raw() (Db view method), 56
col rawtime() (Db view method), 56
col type() (Db view method), 56
color (Text attribute), 19
commit()

Contact method, 42
Dbms method, 55
Entry method, 46, 51

compact()
CalendarDb method, 46
ContactDb method, 42
Dbms method, 55

compact required() (ContactDb method), 42
Contact (class in contacts), 42
ContactDb (class in contacts), 41
ContactField (class in contacts), 44
contacts (extension module), 41

77

content() (Inbox method), 39
content (Entry attribute), 46, 51
Content handler (class in appuifw), 23
corner type (TopWindow attribute), 34
count line() (Db view method), 56
create() (Dbms method), 55
cross out time (TodoEntry attribute), 48, 53
crossed out (Entry attribute), 47, 52
current() (Listbox method), 22
current position() (Sound method), 38
current volume() (Sound method), 38

daily instances() (CalendarDb method), 46, 51
Db view (class in e32db), 55
Dbms (class in e32db), 55
default list (TodoListDict attribute), 48
delete()

Inbox method, 39
Text method, 21

dial() (in module telephone), 39
display pixels() (in module sysinfo), 11
display twips() (in module sysinfo), 11
drive list() (in module e32), 9
duration() (Sound method), 38

e32 (extension module), 9
e32db (extension module), 55
e32dbm (module), 57
ellipse() (method), 30
ENCRYPT (data in socket), 63
end time (Entry attribute), 47, 52
ENotReady (data in audio), 37
Entry (class in calendar), 46, 51
EOpen (data in audio), 37
EPlaying (data in audio), 37
ERecording (data in audio), 37
EventEntry (class in calendar), 47, 53
execute()

Dbms method, 55
Form method, 19

exit key handler (Application attribute), 17
export vcalendars() (CalendarDb method), 46,

51
export vcards() (ContactDb method), 42
exposure modes() (in module camera), 31

FFormAutoFormEdit (data in appuifw), 19
FFormAutoLabelEdit (data in appuifw), 19
FFormDoubleSpaced (data in appuifw), 19
FFormEditModeOnly (data in appuifw), 18
FFormViewModeOnly (data in appuifw), 19
field types() (ContactDb method), 42
file copy() (in module e32), 9
find()

Contact method, 43
ContactDb method, 42

find instances() (CalendarDb method), 45, 51
first line() (Db view method), 56
flags (Form attribute), 18

flash modes() (in module camera), 31
focus

Application attribute, 17
Text attribute, 19

font (Text attribute), 19
Form (class in appuifw), 18
format rawtime() (in module e32db), 55
format time() (in module e32db), 55
forwarding (KeyCapturer attribute), 33
free drivespace() (in module sysinfo), 11
free ram() (in module sysinfo), 11
full name() (Application method), 18

get() (Text method), 21
get line() (Db view method), 56
get pos() (Text method), 21
get repeat() (Entry method), 47, 52
graphics (extension module), 24
gsm location() (in module location), 40

hang up() (in module telephone), 39
hide() (TopWindow method), 33
highlight color (Text attribute), 20
HIGHLIGHT ROUNDED (data in appuifw), 21
HIGHLIGHT SHADOW (data in appuifw), 21
HIGHLIGHT STANDARD (data in appuifw), 20

Icon (class in appuifw), 23
id

Contact attribute, 42
Entry attribute, 47, 52
TodoList attribute, 48

Image.inspect() (in module graphics), 26
Image.new() (in module graphics), 26
Image.open() (in module graphics), 26
image modes() (in module camera), 31
image sizes() (in module camera), 31
images (TopWindow attribute), 34
imei() (in module sysinfo), 11
import vcalendars() (CalendarDb method), 46,

51
import vcards() (ContactDb method), 42
in emulator() (in module e32), 9
Inbox (class in inbox), 39
inbox (extension module), 39
insert() (Form method), 19
is col null() (Db view method), 56
is ui thread() (in module e32), 10

keycapture (extension module), 32
keys() (ContactDb method), 42
keys (KeyCapturer attribute), 33
KMdaRepeatForever (data in audio), 37

label (ContactField attribute), 44
last key() (KeyCapturer method), 33
last modified (Entry attribute), 47, 52
len() (Text method), 21
length() (Form method), 19

78 Index

line() (method), 30
Listbox (class in appuifw), 22
load() (Image method), 27
location

ContactField attribute, 44
Entry attribute, 47, 52
extension module, 40

max ramdrive size() (in module sysinfo), 11
max volume() (Sound method), 38
max zoom() (in module camera), 31
maximum size (TopWindow attribute), 35
menu

Application attribute, 17
Form attribute, 19

messaging (extension module), 39
monthly instances() (CalendarDb method), 45,

51
multi query() (in module appuifw), 16
multi selection list() (in module appuifw),

16

name (TodoList attribute), 48
next line() (Db view method), 56
note() (in module appuifw), 16

OBEX (data in socket), 63
open()

Content handler method, 23
Dbms method, 55
in module calendar, 44, 50
in module contacts, 41
in module e32dbm, 57

open standalone() (Content handler method),
23

originating (Entry attribute), 52
os version() (in module sysinfo), 12

pieslice() (method), 30
play() (Sound method), 37
point() (method), 30
polygon() (method), 30
pop() (Form method), 19
popup menu() (in module appuifw), 16
position (TopWindow attribute), 34
prepare() (Db view method), 56
priority (Entry attribute), 47, 52
pys60 version (data in e32), 9
pys60 version info (data in e32), 9
PYTHON TLS->thread state, 66
PyThread AtExit(), 66

query() (in module appuifw), 15

record() (Sound method), 38
rectangle() (method), 30
ReminderEntry (class in calendar), 53
remove image() (TopWindow method), 34
reorganize() (e32dbm method), 59

replication (Entry attribute), 47, 52
resize() (Image method), 27
RFCOMM (data in socket), 63
ring type() (in module sysinfo), 11
rollback()

Contact method, 42
Dbms method, 55
Entry method, 46, 52

s60 version info (data in e32), 10
save() (Image method), 27
save hook (Form attribute), 19
schema (ContactField attribute), 44
screen (Application attribute), 17
screenshot() (in module graphics), 26
selection list() (in module appuifw), 16
set() (Text method), 21
set exit() (Application method), 18
set home time() (in module e32), 9
set list() (Listbox method), 22
set pos() (Text method), 21
set position() (Sound method), 38
set repeat() (Entry method), 46, 52
set security() (in module socket), 63
set tabs() (Application method), 18
set time() (Entry method), 47, 52
set volume() (Sound method), 38
shadow (TopWindow attribute), 34
show() (TopWindow method), 33
signal()

Ao lock method, 10
in module sysinfo, 12

signal strength() (in module sysinfo), 12
size

Canvas attribute, 24
Image attribute, 28
TopWindow attribute, 34

sms messages() (Inbox method), 39
sms send() (in module messaging), 39
socket (extension module), 63
Sound (class in audio), 37
Sound.open() (in module audio), 37
SPyAddGlobal(), 66
SPyAddGlobalString(), 66
SPyErr SetFromSymbianOSErr(), 65
SPyGetGlobal(), 66
SPyGetGlobalString(), 66
SPyRemoveGlobal(), 66
SPyRemoveGlobalString(), 66
start() (KeyCapturer method), 33
start exe() (in module e32), 10
start server() (in module e32), 10
start time (Entry attribute), 47, 52
state() (Sound method), 38
stop()

Image method, 28
KeyCapturer method, 33
Sound method, 38

Index 79

style (Text attribute), 20
STYLE BOLD (data in appuifw), 20
STYLE ITALIC (data in appuifw), 20
STYLE STRIKETHROUGH (data in appuifw), 20
STYLE UNDERLINE (data in appuifw), 20
sw version() (in module sysinfo), 12
sync() (e32dbm method), 59
sysinfo (extension module), 11

take photo() (in module camera), 31
telephone (extension module), 38
text() (method), 30
thread (extension module), 63
time() (Inbox method), 39
title

Application attribute, 17
Contact attribute, 42

todo list (TodoEntry attribute), 48
todo lists (CalendarDb attribute), 46
TodoEntry (class in calendar), 48, 53
TodoList (class in calendar), 48
TodoListDict (class in calendar), 48
TopWindow (class in topwindow), 33
topwindow (extension module), 33
total ram() (in module sysinfo), 11
total rom() (in module sysinfo), 11
transpose() (Image method), 27
type (ContactField attribute), 44

uid() (Application method), 18

value (ContactField attribute), 44
visible (TopWindow attribute), 35

wait() (Ao lock method), 10
white balance modes() (in module camera), 31

80 Index

	1 Introduction
	1.1 Scope
	1.2 Audience
	1.3 New in Release 1.3.12
	1.4 Naming Conventions

	2 API Summary
	2.1 Python Standard Library
	2.2 Python for S60 Extensions
	2.2.1 Built-in extensions
	2.2.2 Dynamically loadable extensions

	2.3 Third-Party Extensions

	3 Selected Issues on Python Programming for S60
	3.1 Concurrency Aspects
	3.2 Current S60 Python Script Execution Environment
	3.3 Standard I/O Streams
	3.4 Usage of Unicode
	3.5 Date and Time
	3.6 Sharing Native Resources between Threads
	3.7 Scalable User Interface
	3.8 Error Handling
	3.9 Limitations and Areas of Development

	4 Operating System Services and Information
	4.1 e32 --- A Symbian OS related services package
	4.1.1 Module Level Functions
	4.1.2 Aoprotect unhbox voidb@x kern .06emvbox {hrule width.55em}lock Type
	4.1.3 Aoprotect unhbox voidb@x kern .06emvbox {hrule width.55em}timer Type

	4.2 sysinfo --- Access to system information

	5 User Interface and Graphics
	5.1 appuifw --- Interface to the S60 GUI framework
	5.1.1 Basics of appuifw Module
	5.1.2 Softkeys
	5.1.3 Module Level Functions
	5.1.4 Application Type
	5.1.5 Form Type
	5.1.6 Text Type
	5.1.7 Listbox Type
	5.1.8 Icon Type
	5.1.9 Contentprotect unhbox voidb@x kern .06emvbox {hrule width.55em}handler Type
	5.1.10 Canvas Type

	5.2 graphics --- A graphics related services package
	5.2.1 Module Level Functions
	5.2.2 Image Class Static Methods
	5.2.3 Image Objects
	5.2.4 Common Features of Drawable Objects
	Options
	Coordinate representation
	Color representation
	Font specifications
	Common Methods of Drawable Objects

	5.3 camera --- Interface for taking photographs
	5.4 keycapture --- Interface for global capturing of key events.
	5.4.1 Module Level Constants
	5.4.2 KeyCapturer objects

	5.5 topwindow --- Interface for creating windows that are shown on top of other applications.
	5.5.1 TopWindow objects

	6 Audio and Communication Services
	6.1 audio --- An audio related services package
	6.1.1 Sound Objects

	6.2 telephone --- Telephone services
	6.3 messaging --- A messaging services package
	6.4 inbox --- Interface to device inbox
	6.4.1 Inbox Objects

	6.5 location --- GSM location information
	6.5.1 Examples

	7 Data Management
	7.1 contacts --- A contacts related services package
	7.1.1 Module Level Functions
	7.1.2 ContactDb Object
	7.1.3 Contact Object
	7.1.4 ContactField Object

	7.2 calendar --- Access to calendar related services
	7.2.1 Module Level Functions
	7.2.2 CalendarDb Objects
	7.2.3 Entry Objects
	AppointmentEntry Objects
	EventEntry
	AnniversaryEntry
	TodoEntry
	TodoListDict
	TodoList

	7.2.4 Repeat Rules

	7.3 calendar for EKA2 --- Access to calendar related services
	7.3.1 Module Level Functions
	7.3.2 CalendarDb Objects
	7.3.3 Entry Objects
	AppointmentEntry Objects
	EventEntry
	AnniversaryEntry
	ReminderEntry
	TodoEntry

	7.3.4 Repeat Rules

	7.4 e32db --- Interface to the Symbian native DB
	7.4.1 Dbms Objects
	7.4.2 DBprotect unhbox voidb@x kern .06emvbox {hrule width.55em}view Objects
	7.4.3 Mapping Between SQL and Python Data Types
	7.4.4 Date and Time Handling

	7.5 e32dbm --- DBM implemented using the Symbian native DBMS
	7.5.1 Module Level Functions
	7.5.2 e32dbm Objects

	8 Standard Library Support and Extensions
	8.1 Support for Python Standard Library
	8.2 Extensions to Standard Library Modules
	8.2.1 thread --- S60 extensions to standard thread module
	8.2.2 socket --- S60 extensions to standard socket module

	9 Extending and Embedding
	9.1 Python/C API Extensions
	9.1.1 class CSPyInterpreter
	9.1.2 Extensions to Python/C API
	Defined in symbianprotect unhbox voidb@x kern .06emvbox {hrule width.55em}pythonprotect unhbox voidb@x kern .06emvbox {hrule width.55em}extprotect unhbox voidb@x kern .06emvbox {hrule width.55em}util.h
	Defined in pythonprotect unhbox voidb@x kern .06emvbox {hrule width.55em}globals.h
	Defined in pythread.h

	9.2 Extending Python for S60
	9.2.1 Services for Extensions
	9.2.2 Example

	10 Terms and Abbreviations
	A Reporting Bugs
	Module Index
	Index

