

Python for Informatics

Exploring Information

Version 0.0.4

Charles Severance

Copyright © 2009, 2010 Charles Severance.

Printing history:

December 2009:Begin to producePython for Informatics: Exploring Informationby re-mixing
Think Python: How to Think Like a Computer Scientist

June 2008: Major revision, changed title toThink Python: How to Think Like a Computer Scientist.

August 2007: Major revision, changed title toHow to Think Like a (Python) Programmer.

April 2002: First edition ofHow to Think Like a Computer Scientist.

This work is licensed under a Creative Commons Attribution-Share Alike 3.0 Unported License. This
license is available atcreativecommons.org/licenses/by-sa/3.0/ .

The original form of this book is LATEX source code. Compiling this LATEX source has the effect
of generating a device-independent representation of a textbook, which can be converted to other
formats and printed.

The LATEX source for theThink Python: How to Think Like a Computer Scientistversion of this book
is available fromhttp://www.thinkpython.com .

The LATEX source for thePython for Informatics: Exploring Informationversion of the book is avail-
able fromhttp://source.sakaiproject.org/contrib/csev/trunk/p yinf/ .

The cover image shows social connectivity of NSF grant investigators at the University of Michigan
from September 1999 through October 2010 and was provided by Eric Hofer and visualized using
the GUESS software developed by Eytan Adar, both of the University of Michigan. The cover design
is by Terri Geitgey of the University of Michigan Library.

Preface

Python for Informatics: Remixing an Open Book

It is quite natural for academics who are continuously told to “publish or perish” to want
to always create something from scratch that is their own fresh creation. This book is
an experiment in not starting from scratch, but instead “re-mixing” the book titledThink
Python: How to Think Like a Computer Scientistwritten by Allen B. Downey, Jeff Elkner
and others.

In December of 2009, I was preparing to teachSI502 - Networked Programmingat the
University of Michigan for the fifth semester in a row and decided it was time to write a
Python textbook that focused on exploring data instead of understanding algorithms and ab-
stractions. My goal in SI502 is to teach people life-long data handling skills using Python.
Few of my students were planning to be be professional computer programmers. Instead,
they planned be librarians, managers, lawyers, biologists, economists, etc. who happened
to want to skillfully use technology in their chosen field.

I never seemed to find the perfect data-oriented Python book for my course so I set out
to write just such a book. Luckily at a faculty meeting three weeks before I was about to
start my new book from scratch over the holiday break, Dr. Atul Prakash showed me the
Think Pythonbook which he had used to teach his Python course that semester. It is a
well-written Computer Science text with a focus on short, direct explanations and ease of
learning.

The overall book structure has been changed to get to doing data analysis problems as
quickly as possible and have a series of running examples andexercises about data analysis
from the very beginning.

The first 10 chapters are similar to theThink Pythonbook but there have been some
changes. Nearly all number-oriented exercises have been replaced with data-oriented ex-
erises. Topics are presented in the order to needed to build increasingly sophisticated data
analysis solutions. Some topics liketry andexcept are pulled forward and presented as
part of the chapter on conditionals while other concepts like functions are left until they are
needed to handle program complexity rather introduced as anearly lesson in abstraction.
The word “recursion” does not appear in the book at all.

vi Chapter 0. Preface

In chapters 11-15, nearly all of the material is brand new, focusing on real-world uses and
simple examples of Python for data analysis including regular expressons for searching
and parsing, automating tasks on your computer, retrievingdata across the network, scrap-
ing web pages for data, using web services, parsing XML data,and creating and using
databases using Structured Query Language.

The ultimate goal of all of these changes is a shift from a Computer Science to an Infor-
matics focus is to only include topics into a first technologyclass that can be applied even
if one chooses not to become a professional programmer.

Students who find this book interesting and want to further explore should look at Allen
B. Downey’sThink Pythonbook. Because there is a lot of overlap between the two books,
students will quickly pick up skills in the additional areasof computing in general and
computational thinking that are covered inThink Python. And given that the books have a
similar writing style and at times have identical text and examples, you should be able to
move quickly throughThink Pythonwith a minimum of effort.

As the copyright holder ofThink Python, Allen has given me permission to change the
book’s license from the GNU Free Documentation License to the more recent Creative
Commons Attribution — Share Alike license. This follows a general shift in open doc-
umentation licenses moving from the GFDL to the CC-BY-SA (i.e. Wikipedia). Using
the CC-BY-SA license maintains the book’s strong copyleft tradition while making it even
more straightforward for new authors to reuse this materialas they see fit.

I feel that this book serves an example of why open materials are so important to the future
of education, and want to thank Allen B. Downey and CambridgeUniversity Press for their
forward looking decision to make the book available under anopen Copyright. I hope they
are pleased with the results of my efforts and I hope that you the reader are pleased with
our collective efforts.

Charles Severance
www.dr-chuck.com
Ann Arbor, MI, USA
July 25, 2010

Charles Severance is a Clinical Associate Professor at the University of Michigan School
of Information.

Preface for “Think Python”

The strange history of “Think Python”

(Allen B. Downey)

In January 1999 I was preparing to teach an introductory programming class in Java. I had
taught it three times and I was getting frustrated. The failure rate in the class was too high
and, even for students who succeeded, the overall level of achievement was too low.

vii

One of the problems I saw was the books. They were too big, withtoo much unnecessary
detail about Java, and not enough high-level guidance abouthow to program. And they all
suffered from the trap door effect: they would start out easy, proceed gradually, and then
somewhere around Chapter 5 the bottom would fall out. The students would get too much
new material, too fast, and I would spend the rest of the semester picking up the pieces.

Two weeks before the first day of classes, I decided to write myown book. My goals were:

• Keep it short. It is better for students to read 10 pages thannot read 50 pages.

• Be careful with vocabulary. I tried to minimize the jargon and define each term at
first use.

• Build gradually. To avoid trap doors, I took the most difficult topics and split them
into a series of small steps.

• Focus on programming, not the programming language. I included the minimum
useful subset of Java and left out the rest.

I needed a title, so on a whim I choseHow to Think Like a Computer Scientist.

My first version was rough, but it worked. Students did the reading, and they understood
enough that I could spend class time on the hard topics, the interesting topics and (most
important) letting the students practice.

I released the book under the GNU Free Documentation License, which allows users to
copy, modify, and distribute the book.

What happened next is the cool part. Jeff Elkner, a high schoolteacher in Virginia, adopted
my book and translated it into Python. He sent me a copy of his translation, and I had the
unusual experience of learning Python by reading my own book.

Jeff and I revised the book, incorporated a case study by Chris Meyers, and in 2001 we
releasedHow to Think Like a Computer Scientist: Learning with Python, also under the
GNU Free Documentation License. As Green Tea Press, I published the book and started
selling hard copies through Amazon.com and college book stores. Other books from Green
Tea Press are available atgreenteapress.com .

In 2003 I started teaching at Olin College and I got to teach Python for the first time. The
contrast with Java was striking. Students struggled less, learned more, worked on more
interesting projects, and generally had a lot more fun.

Over the last five years I have continued to develop the book, correcting errors, improving
some of the examples and adding material, especially exercises. In 2008 I started work on
a major revision—at the same time, I was contacted by an editorat Cambridge University
Press who was interested in publishing the next edition. Good timing!

I hope you enjoy working with this book, and that it helps you learn to program and think,
at least a little bit, like a computer scientist.

viii Chapter 0. Preface

Acknowledgements for “Think Python”

(Allen B. Downey)

First and most importantly, I thank Jeff Elkner, who translated my Java book into Python,
which got this project started and introduced me to what has turned out to be my favorite
language.

I also thank Chris Meyers, who contributed several sectionsto How to Think Like a Com-
puter Scientist.

And I thank the Free Software Foundation for developing the GNU Free Documentation
License, which helped make my collaboration with Jeff and Chris possible.

I also thank the editors at Lulu who worked onHow to Think Like a Computer Scientist.

I thank all the students who worked with earlier versions of this book and all the contribu-
tors (listed in an Appendix) who sent in corrections and suggestions.

And I thank my wife, Lisa, for her work on this book, and Green Tea Press, and everything
else, too.

Allen B. Downey
Needham MA

Allen Downey is an Associate Professor of Computer Science at the Franklin W. Olin
College of Engineering.

Contents

Preface v

1 Why should you learn to write programs? 1

1.1 Creativity and motivation .. 2

1.2 Computer hardware architecture .. . 3

1.3 Understanding programming .4

1.4 The Python programming language .. 5

1.5 What is a program? . 7

1.6 What is debugging? . 7

1.7 Building “sentences” in Python .. . 9

1.8 The first program . 11

1.9 Debugging . 11

1.10 Glossary . 12

1.11 Exercises . 14

2 Variables, expressions and statements 15

2.1 Values and types . 15

2.2 Variables . 16

2.3 Variable names and keywords .17

2.4 Statements . 18

2.5 Operators and operands . 18

x Contents

2.6 Expressions . 19

2.7 Order of operations . 20

2.8 Modulus operator . 20

2.9 String operations . 21

2.10 Asking the user for input .21

2.11 Comments . 22

2.12 Choosing mnemonic variable names 23

2.13 Debugging . 24

2.14 Glossary . 25

2.15 Exercises . 26

3 Conditional execution 29

3.1 Boolean expressions . 29

3.2 Logical operators . 30

3.3 Conditional execution .30

3.4 Alternative execution .31

3.5 Chained conditionals . 32

3.6 Nested conditionals . 33

3.7 Catching exceptions using try and except 34

3.8 Short circuit evaluation of logical expressions 36

3.9 Debugging . 37

3.10 Glossary . 38

3.11 Exercises . 39

4 Functions 41

4.1 Function calls . 41

4.2 Built-in functions . 41

4.3 Type conversion functions .42

4.4 Random numbers . 43

Contents xi

4.5 Math functions . 44

4.6 Adding new functions . 45

4.7 Definitions and uses . 46

4.8 Flow of execution . 47

4.9 Parameters and arguments . 48

4.10 Fruitful functions and void functions 49

4.11 Why functions? . 50

4.12 Debugging . 50

4.13 Glossary . 51

4.14 Exercises . 52

5 Iteration 55

5.1 Updating variables . 55

5.2 Thewhile statement . 55

5.3 Infinite loops . 56

5.4 “Infinite loops” andbreak . 58

5.5 Finishing iterations withcontinue . 59

5.6 Definite loops usingfor . 59

5.7 Loop patterns . 60

5.8 Debugging . 63

5.9 Glossary . 63

5.10 Exercises . 64

6 Strings 65

6.1 A string is a sequence . 65

6.2 Getting the length of a string usinglen 66

6.3 Traversal through a string with afor loop 66

6.4 String slices . 67

6.5 Strings are immutable . 68

xii Contents

6.6 Searching . 69

6.7 Looping and counting . 69

6.8 Thein operator . 70

6.9 String comparison . 70

6.10 string methods . 71

6.11 Parsing strings . 73

6.12 Format operator . 74

6.13 Debugging . 75

6.14 Glossary . 77

6.15 Exercises . 78

7 Files 81

7.1 Persistence . 81

7.2 Opening files . 82

7.3 Text files and lines . 83

7.4 Reading files . 84

7.5 Searching through a file . 85

7.6 Letting the user choose the file name 87

7.7 Usingtry, except, andopen . 88

7.8 Writing files . 89

7.9 Debugging . 90

7.10 Glossary . 91

7.11 Exercises . 91

8 Lists 93

8.1 A list is a sequence . 93

8.2 Lists are mutable . 94

8.3 Traversing a list . 95

8.4 List operations . 96

Contents xiii

8.5 List slices . 96

8.6 List methods . 97

8.7 Deleting elements . 97

8.8 Lists and strings . 98

8.9 Parsing lines . 99

8.10 Objects and values . 100

8.11 Aliasing . 101

8.12 List arguments . 102

8.13 Debugging . 103

8.14 Glossary . 107

8.15 Exercises . 107

9 Dictionaries 109

9.1 Dictionary as a set of counters .. 111

9.2 Dictionaries and files . 112

9.3 Looping and dictionaries .113

9.4 Advanced text parsing . 114

9.5 Debugging . 116

9.6 Glossary . 117

9.7 Exercises . 117

10 Tuples 119

10.1 Tuples are immutable . 119

10.2 Comparing tuples . 120

10.3 Tuple assignment . 121

10.4 Dictionaries and tuples .. 123

10.5 Multiple assignment with dictionaries 123

10.6 The most common words . 124

10.7 Using tuples as keys in dictionaries 126

xiv Contents

10.8 Sequences: strings, lists, and tuples–Oh My! 127

10.9 Debugging . 127

10.10 Glossary . 129

10.11 Exercises . 129

11 Automating common tasks on your computer 131

11.1 File names and paths . 131

11.2 Example: Cleaning up a photo directory 132

11.3 Command line arguments . 138

11.4 Pipes . 139

11.5 Glossary . 140

11.6 Exercises . 141

12 Networked programs 143

12.1 HyperText Transport Protocol - HTTP 143

12.2 The World’s Simplest Web Browser 144

12.3 Retrieving web pages withurllib . 146

12.4 Parsing HTML and scraping the web 146

12.5 Glossary . 149

12.6 Exercises . 149

13 Using Web Services 151

13.1 eXtensible Markup Language - XML 151

13.2 Parsing XML . 152

13.3 Looping through nodes . 153

13.4 Application Programming Interfaces (API) 154

13.5 Twitter web services . 155

13.6 Handling XML data from an API . 157

13.7 Glossary . 158

13.8 Exercises . 159

Contents xv

14 Using databases and Structured Query Language (SQL) 161

14.1 What is a database? . 161

14.2 Database concepts . 162

14.3 SQLite Database Browser .162

14.4 Creating a database table .. 163

14.5 Structured Query Language (SQL) summary 166

14.6 Spidering Twitter using a database 167

14.7 Basic data modeling . 173

14.8 Programming with multiple tables 175

14.9 Three kinds of keys . 180

14.10 Using JOIN to retrieve data .. . 181

14.11 Summary . 183

14.12 Debugging . 183

14.13 Glossary . 184

14.14 Exercises . 185

15 Regular Expressions 187

15.1 Character Matching in Regular Expressions 188

15.2 Extracting Data Using Regular Expressions 189

15.3 Combining Searching and Extracting 192

15.4 Summary . 195

15.5 Bonus Section for UNIX Users .196

15.6 Debugging . 197

15.7 Glossary . 198

15.8 Exercises . 198

A Debugging 199

A.1 Syntax errors . 199

A.2 Runtime errors . 201

A.3 Semantic errors . 204

B Contributor List 207

xvi Contents

Chapter 1

Why should you learn to write
programs?

Writing programs (or programming) is a very creative and rewarding activity. You can
write programs for many reasons ranging from making your living to solving a difficult
data analysis problem to having fun to helping someone else solve a problem. This book
assumes thateveryoneneeds to know how to program and that once you know how to
program, you will figure out what you want to do with your newfound skills.

We are surrounded in our daily lives with computers ranging from laptops to cell phones.
We can think of these computers as our “personal assistants”who can take care of many
things on our behalf. The hardware in our current-day computers is essentially built to
continuously ask us the question, “What would you like me to donext?”.

PDA

Next?
What

Next?
What

Next?
What

Next?
What

Next?
What

Next?
What

Programmers add an operating system and a set of applications to the hardware and we
end up with a Personal Digital Assistant that is quite helpful and capable of helping many
different things.

Our computers are fast and have vast amounts of memory and could be very helpful to us
if we only knew the language to speak to explain to the computer what we would like it to
“do next”. If we knew this language we could tell the computerto do tasks on our behalf
that were repetitive. Interestingly, the kinds of things computers can do best are often the
kinds of things that we humans find boring and mind-numbing.

2 Chapter 1. Why should you learn to write programs?

For example, look at the first three paragraphs of this chapter and tell me the most com-
monly used word and how many times the word is used. While you were able to read and
understand the words in a few seconds, counting them is almost painful because it is not
the kind of problem that human minds are designed to solve. For a computer the opposite
is true, reading and understanding text from a piece of paperis hard for a computer to do
but counting the words and telling you how many times the mostused word was used is
very easy for the computer:

python words.py
Enter file:words.txt
to 16

Our “personal information analysis assistant” quickly told us that the word “to” was used
sixteen times in the first three paragraphs of this chapter.

This very fact that computers are good at things that humans are not is why you need to
become skilled at talking “computer language”. Once you learn this new language, you can
delegate mundane tasks to your partner (the computer), leaving more time for you to do the
things that you are uniquely suited for. You bring creativity, intuition, and inventiveness to
this partnership.

1.1 Creativity and motivation

While this book is not intended for professional programmers, professional programming
can be a very rewarding job both financially and personally. Building useful, elegant, and
clever programs for others to use is a very creative activity. Your computer or Personal
Digital Assistant (PDA) usually contains many different programs from many different
groups of programmers, each competing for your attention and interest. They try their best
to meet your needs and give you a great user experience in the process. In some situations,
when you choose a piece of software, the programmers are directly compensated because
of your choice.

If we think of programs as the creative output of groups of programmers, perhaps the
following figure is a more sensible version of our PDA:

Me! PDA

Me!
Pick Pick Pick

BuyPickPick
Me!

Me!

Me :)

Me!

For now, our primary motivation is not to make money or pleaseend-users, but instead
for us to be more productive in handling the data and information that we will encounter
in our lives. When you first start, you will be both the programmer and end-user of your

1.2. Computer hardware architecture 3

programs. As you gain skill as a programmer and programming feels more creative to you,
your thoughts may turn toward developing programs for others.

1.2 Computer hardware architecture

Before we start learning the language we speak to give instructions to computers to develop
software, we need to learn a small amount about how computersare built. If you were to
take apart your computer or cell phone and look deep inside, you would find the following
parts:

Next?

Network
Input

Software

Output
Devices

What

Central
Processing
Unit

Main
Memory Secondary

Memory

The high-level definitions of these parts are as follows:

• TheCentral Processing Unit(or CPU) is that part of the computer that is built to be
obsessed with “what is next?”. If your computer is rated at 3.0 Gigahertz, it means
that the CPU will ask “What next?” three billion times per second. You are going to
have to learn how to talk fast to keep up with the CPU.

• TheMain Memory is used to store information that the CPU needs in a hurry. The
main memory is nearly as fast as the CPU. But the information stored in the main
memory vanishes when the computer is turned off.

• The Secondary Memory is also used to store information, but it is much slower
than the main memory. The advantage of the secondary memory is that it can store
information even when there is no power to the computer. Examples of secondary
memory are disk drives or flash memory (typically found in USBsticks and portable
music players).

• The Input and Output Devices are simply our screen, keyboard, mouse, micro-
phone, speaker, touchpad, etc. They are all of the ways we interact with the com-
puter.

4 Chapter 1. Why should you learn to write programs?

• These days, most computers also have aNetwork Connection to retrieve informa-
tion over a network. We can think of the network as a very slow place to store and
retrieve data that might not always be “up”. So in a sense, thenetwork is a slower
and at times unreliable form ofSecondary Memory

While most of the detail of how these components work is best left to computer builders, it
helps to have some terminology so we can talk about these different parts as we write our
programs.

As a programmer, your job is to use and orchestrate each of these resources to solve the
problem that you need solving and analyze the data you need. As a programmer you will
mostly be “talking” to the CPU and telling it what to do next. Sometimes you will tell the
CPU to use the main memory, secondary memory, network, or theinput/output devices.

You

Input

Software

Output
Devices

What
Next?

Central
Processing
Unit

Main
Memory Secondary

Memory

Network

You need to be the person who answers the CPU’s “What next?” question. But it would be
very uncomfortable to shrink you down to 5mm tall and insert you into the computer just
so you could issue a command three billion times per second. So instead, you must write
down your instructions in advance. We call these stored instructions aprogram and the act
of writing these instructions down and getting the instructions to be correctprogramming.

1.3 Understanding programming

In the rest of this book, we will try to turn you into a person who is skilled in the art
of programming. In the end you will be aprogrammer — perhaps not a professional
programmer but at least you will have the skills to look at a data/information analysis
problem and develop a program to solve the problem.

In a sense, you need two skills to be a programmer:

1.4. The Python programming language 5

• First you need to know the programming language (Python) - you need to know the
vocabulary and the grammar. You need to be able spell the words in this new lan-
guage properly and how to construct well-formed “sentences” in this new languages.

• Second you need to “tell a story”. In writing a story, you combine words and sen-
tences to convey an idea to the reader. There is a skill and artin constructing the story
and skill in story writing is improved by doing some writing and getting some feed-
back. In programming, our program is the “story” and the problem you are trying to
solve is the “idea”.

Once you learn one programming language such as Python, you will find it much easier to
learn a second programming language such as JavaScript or C++. The new programming
language has very different vocabulary and grammar but onceyou learn problem solving
skills, they will be the same across all programming languages.

You will learn the “vocabulary” and “sentences” of Python pretty quickly. It will take
longer for you to be able to write a coherent program to solve abrand new problem. We
teach programming much like we teach writing. We start reading and explaining programs
and then we write simple programs and then write increasingly complex programs over
time. At some point you “get your muse” and see the patterns onyour own and can see
more naturally how to take a problem and write a program that solves that problem. And
once you get to that point, programming becomes a very pleasant and creative process.

We start with the vocabulary and structure of Python programs. Be patient as the simple
examples remind you of when you started reading for the first time.

1.4 The Python programming language

The programming language you will learn is Python. Python isan example of ahigh-level
language; some other high-level languages you might have heard of areC, C++, Perl, Java,
Ruby, and JavaScript.

There are alsolow-level languages, sometimes referred to as “machine languages” or “as-
sembly languages.” Loosely speaking, computers can only execute programs written in
low-level languages. So programs written in a high-level language have to be processed
before they can run. This extra processing takes some time, which is a small disadvantage
of high-level languages.

However, the advantages are enormous. First, it is much easier to program in a high-level
language. Programs written in a high-level language take less time to write, they are shorter
and easier to read, and they are more likely to be correct. Second, high-level languages
areportable, meaning that they can run on different kinds of computers with few or no
modifications. Low-level programs can run on only one kind ofcomputer and have to be
rewritten to run on another.

Due to these advantages, almost all programs are written in high-level languages. Low-
level languages are used only for a few specialized applications.

6 Chapter 1. Why should you learn to write programs?

Two kinds of programs process high-level languages into low-level languages:inter-
preters andcompilers. An interpreter reads a high-level program and executes it,meaning
that it does what the program says. It processes the program alittle at a time, alternately
reading lines and performing computations.

OUTPUTSOURCE
CODE

INTERPRETER

A compiler reads the program and translates it completely before the program starts run-
ning. In this context, the high-level program is called thesource code, and the translated
program is called theobject code, machine codeor theexecutable. Once a program is
compiled, you can execute it repeatedly without further translation.

OUTPUT
CODE
OBJECT EXECUTOR

CODE
SOURCE COMPILER

Python is considered an interpreted language because Python programs are executed by an
interpreter. There are two ways to use the interpreter:interactive modeandscript mode.

To start interactive mode, you have to run the Python interpreter program. In a UNIX or
Windows command window, you would typepython to run the Python interpreter.

In interactive mode, you type Python programs and the interpreter prints the result:

>>> 1 + 1
2
>>>

The chevron,>>>, is theprompt the interpreter uses to indicate that it is ready. If you type
1 + 1 , the interpreter replies2. The chevron is the Python interpreter’s way of asking you,
“What do you want me to do next?”. You will notice that as soon asPython finishes one
statement it immediately is ready for you to type another statement.

Typing commands into the Python interpreter is a great way toexperiment with Python’s
features, but it is a bad way to type in many commands to solve amore complex problem.
When we want to write a program, we use a text editor to write thePython instructions into
a file, which is called ascript. By convention, Python scripts have names that end with
.py .

To execute the script, you have to tell the interpreter the name of the file. In a UNIX or
Windows command window, you would typepython dinsdale.py . In other development
environments, the details of executing scripts are different. You can find instructions for
your environment at the Python Websitepython.org .

1.5. What is a program? 7

Working in interactive mode is convenient for testing smallpieces of code because you can
type and execute them immediately. But for anything more than a few lines, you should
save your code as a script so you can modify and execute it in the future.

1.5 What is a program?

A program is a sequence of instructions that specifies how to perform a computation.
The computation might be something mathematical, such as solving a system of equations
or finding the roots of a polynomial, but it can also be a symbolic computation, such as
searching and replacing text in a document or (strangely enough) compiling a program.

The details look different in different languages, but a fewbasic instructions appear in just
about every language:

input: Get data from the keyboard, a file, or some other device, pausing if necessary.

output: Display data on the screen or send data to a file or other device.

sequential execution:Perform statements one after another in the order they are encoun-
tered in the script.

conditional execution: Check for certain conditions and execute or skip a sequence of
statements.

repeated execution:Perform some set of statements repeatedly, usually with some varia-
tion.

reuse: Write a set of instructions once and give them a name and then reuse those instruc-
tions as needed throughout your program.

Believe it or not, that’s pretty much all there is to it. Everyprogram you’ve ever used, no
matter how complicated, is made up of instructions that lookpretty much like these. So you
can think of programming as the process of breaking a large, complex task into smaller and
smaller subtasks until the subtasks are simple enough to be performed with one of these
basic instructions.

1.6 What is debugging?

Programming is error-prone. For whimsical reasons, programming errors are calledbugs
and the process of tracking them down is calleddebugging.

Three kinds of errors can occur in a program: syntax errors, runtime errors, and semantic
errors. It is useful to distinguish between them in order to track them down more quickly.

8 Chapter 1. Why should you learn to write programs?

1.6.1 Syntax errors

Python can only execute a program if the syntax is correct; otherwise, the interpreter dis-
plays an error message.Syntax refers to the structure of a program and the rules about that
structure. For example, parentheses have to come in matching pairs, so(1 + 2) is legal,
but 8) is asyntax error.

In English readers can tolerate most syntax errors, which iswhy we can read certain abstract
poetry. Python is not so forgiving. If there is a single syntax error anywhere in your
program, Python will display an error message and quit, and you will not be able to run
your program. During the first few weeks of your programming career, you will probably
spend a lot of time tracking down syntax errors. As you gain experience, you will make
fewer errors and find them faster.

1.6.2 Runtime errors

The second type of error is a runtime error, so called becausethe error does not appear until
after the program has started running. These errors are alsocalledexceptionsbecause they
usually indicate that something exceptional (and bad) has happened.

Runtime errors are rare in the simple programs you will see inthe first few chapters, so it
might be a while before you encounter one.

1.6.3 Semantic errors

The third type of error is thesemantic error. If there is a semantic error in your program,
it will run successfully in the sense that the computer will not generate any error messages,
but it will not do the right thing. It will do something else. Specifically, it will do what you
told it to do but not what you meant for it to do.

The problem is that the program you wrote is not the program you wanted to write. The
meaning of the program (its semantics) is wrong. Identifying semantic errors can be tricky
because it requires you to work backward by looking at the output of the program and
trying to figure out what it is doing.

1.6.4 Experimental debugging

One of the most important skills you will acquire is debugging. Although it can be frus-
trating, debugging is one of the most intellectually rich, challenging, and interesting parts
of programming.

In some ways, debugging is like detective work. You are confronted with clues, and you
have to infer the processes and events that led to the resultsyou see.

Debugging is also like an experimental science. Once you have an idea about what is going
wrong, you modify your program and try again. If your hypothesis was correct, then you

1.7. Building “sentences” in Python 9

can predict the result of the modification, and you take a stepcloser to a working program.
If your hypothesis was wrong, you have to come up with a new one. As Sherlock Holmes
pointed out, “When you have eliminated the impossible, whatever remains, however im-
probable, must be the truth.” (A. Conan Doyle,The Sign of Four)

For some people, programming and debugging are the same thing. That is, programming
is the process of gradually debugging a program until it doeswhat you want. The idea is
that you should start with a program that doessomethingand make small modifications,
debugging them as you go, so that you always have a working program.

For example, Linux is an operating system that contains thousands of lines of code, but it
started out as a simple program Linus Torvalds used to explore the Intel 80386 chip. Ac-
cording to Larry Greenfield, “One of Linus’s earlier projects was a program that would
switch between printing AAAA and BBBB. This later evolved toLinux.” (The Linux
Users’ GuideBeta Version 1).

Later chapters will make more suggestions about debugging and other programming prac-
tices.

1.7 Building “sentences” in Python

The rules (or grammar) of Python are simpler and more precisethan the rules of a natural
language that we use to speak and write.

Natural languagesare the languages people speak, such as English, Spanish, and French.
They were not designed by people (although people try to impose some order on them);
they evolved naturally.

Formal languagesare languages that are designed by people for specific applications. For
example, the notation that mathematicians use is a formal language that is particularly good
at denoting relationships among numbers and symbols. Chemists use a formal language to
represent the chemical structure of molecules. And most importantly:

Programming languages are formal languages that have been designed to
express computations.

Formal languages tend to have strict rules about syntax. Forexample, 3+3= 6 is a syntac-
tically correct mathematical statement, but 3++3@6 is not.H2O is a syntactically correct
chemical formula, but2Zz is not.

Syntax rules come in two flavors, pertaining totokensand structure. Tokens are the basic
elements of the language, such as words, numbers, and chemical elements. One of the
problems with 3++3@6 is that @ is not a legal token in mathematics (at least as far as I
know). Similarly,2Zz is not legal because there is no element with the abbreviation Zz.

The second type of syntax error pertains to the structure of astatement; that is, the way the
tokens are arranged. The statement 3++3@6 is illegal because even though+ is a legal

10 Chapter 1. Why should you learn to write programs?

token and you can have more than one plus in an exression, you cannot have one right after
another. Similarly, in a chemical formula the subscript comes after the element name, not
before.

Exercise 1.1Write a well-structured English sentence with invalid tokens in it. Then write
another sentence with all valid tokens but with invalid structure.

When you read a sentence in English or a statement in a formal language, you have to
figure out what the structure of the sentence is (although in anatural language you do this
subconsciously). This process is calledparsing.

For example, when you hear the sentence, “The penny dropped,” you understand that “the
penny” is the subject and “dropped” is the predicate. Once you have parsed a sentence, you
can figure out what it means, or the semantics of the sentence.Assuming that you know
what a penny is and what it means to drop, you will understand the general implication of
this sentence.

Although formal and natural languages have many features incommon—tokens, structure,
syntax, and semantics—there are some differences:

ambiguity: Natural languages are full of ambiguity, which people deal with by using con-
textual clues and other information. Formal languages are designed to be nearly or
completely unambiguous, which means that any statement hasexactly one meaning,
regardless of context.

redundancy: In order to make up for ambiguity and reduce misunderstandings, natural
languages employ lots of redundancy. As a result, they are often verbose. Formal
languages are less redundant and more concise.

literalness: Natural languages are full of idiom and metaphor. If I say, “The penny
dropped,” there is probably no penny and nothing dropping1. Formal languages mean
exactly what they say.

People who grow up speaking a natural language—everyone—often have a hard time ad-
justing to formal languages. In some ways, the difference between formal and natural
language is like the difference between poetry and prose, but more so:

Poetry: Words are used for their sounds as well as for their meaning, and the whole poem
together creates an effect or emotional response. Ambiguity is not only common but
often deliberate.

Prose: The literal meaning of words is more important, and the structure contributes more
meaning. Prose is more amenable to analysis than poetry but still often ambiguous.

Programs: The meaning of a computer program is unambiguous and literal, and can be
understood entirely by analysis of the tokens and structure.

1This idiom means that someone realized something after a periodof confusion.

1.8. The first program 11

Here are some suggestions for reading programs (and other formal languages). First, re-
member that formal languages are much more dense than natural languages, so it takes
longer to read them. Also, the structure is very important, so it is usually not a good idea
to read from top to bottom, left to right. Instead, learn to parse the program in your head,
identifying the tokens and interpreting the structure. Finally, the details matter. Small er-
rors in spelling and punctuation, which you can get away within natural languages, can
make a big difference in a formal language.

1.8 The first program

Traditionally, the first program you write in a new language is called “Hello, World!” be-
cause all it does is display the words, “Hello, World!” In Python, it looks like this:

print ' Hello, World! '

This is an example of aprint statement2, which doesn’t actually print anything on paper.
It displays a value on the screen. In this case, the result is the words

Hello, World!

The quotation marks in the program mark the beginning and endof the text to be displayed;
they don’t appear in the result.

Some people judge the quality of a programming language by the simplicity of the “Hello,
World!” program. By this standard, Python does about as wellas possible.

1.9 Debugging

It is a good idea to read this book in front of a computer so you can try out the examples as
you go. You can run most of the examples in interactive mode, but if you put the code into
a script, it is easier to try out variations.

Whenever you are experimenting with a new feature, you shouldtry to make mistakes.
For example, in the “Hello, world!” program, what happens ifyou leave out one of the
quotation marks? What if you leave out both? What if you spellprint wrong?

This kind of experiment helps you remember what you read; it also helps with debugging,
because you get to know what the error messages mean. It is better to make mistakes now
and on purpose than later and accidentally.

Programming, and especially debugging, sometimes brings out strong emotions. If you are
struggling with a difficult bug, you might feel angry, despondent or embarrassed.

2In Python 3.0,print is a function, not a statement, so the syntax isprint(’Hello, World!’) . We will get
to functions soon!

12 Chapter 1. Why should you learn to write programs?

There is evidence that people naturally respond to computers as if they were people3. When
they work well, we think of them as teammates, and when they are obstinate or rude, we
respond to them the same way we respond to rude, obstinate people.

Preparing for these reactions might help you deal with them.One approach is to think of
the computer as an employee with certain strengths, like speed and precision, and particular
weaknesses, like lack of empathy and inability to grasp the big picture.

Your job is to be a good manager: find ways to take advantage of the strengths and mitigate
the weaknesses. And find ways to use your emotions to engage with the problem, without
letting your reactions interfere with your ability to work effectively.

Learning to debug can be frustrating, but it is a valuable skill that is useful for many activi-
ties beyond programming. At the end of each chapter there is adebugging section, like this
one, with my thoughts about debugging. I hope they help!

1.10 Glossary
bug: An error in a program.

central processing unit: The heart of any computer. It is what runs the software that we
write; also called “CPU” or “the processor”.

compile: To translate a program written in a high-level language intoa low-level language
all at once, in preparation for later execution.

debugging: The process of finding and removing any of the three kinds of programming
errors.

exception: An error that is detected while the program is running.

executable: Another name for object code that is ready to be executed.

formal language: Any one of the languages that people have designed for specific pur-
poses, such as representing mathematical ideas or computerprograms; all program-
ming languages are formal languages.

high-level language: A programming language like Python that is designed to be easy for
humans to read and write.

interactive mode: A way of using the Python interpreter by typing commands and expres-
sions at the prompt.

interpret: To execute a program in a high-level language by translatingit one line at a
time.

3See Reeves and Nass,The Media Equation: How People Treat Computers, Television, and New Media Like
Real People and Places.

1.10. Glossary 13

low-level language: A programming language that is designed to be easy for a computer
to execute; also called “machine code” or “assembly language.”

machine code: The lowest level language for software which is the languagethat is di-
rectly executed by the central processing unit (CPU).

main memory: Stores programs and data. Main memory loses its informationwhen the
power is turned off.

natural language: Any one of the languages that people speak that evolved naturally.

object code: The output of the compiler after it translates the program.

parse: To examine a program and analyze the syntactic structure.

portability: A property of a program that can run on more than one kind of computer.

print statement: An instruction that causes the Python interpreter to display a value on
the screen.

problem solving: The process of formulating a problem, finding a solution, andexpress-
ing the solution.

program: A set of instructions that specifies a computation.

prompt: Characters displayed by the interpreter to indicate that itis ready to take input
from the user.

secondary memory: Stores programs and data and retains its information even when the
power is turned off. Generally slower than main memory. Examples of secondary
memory include disk drives and flash member in USB sticks.

script: A program stored in a file (usually one that will be interpreted).

script mode: A way of using the Python interpreter to read and execute statements in a
script.

semantics: The meaning of a program.

semantic error: An error in a program that makes it do something other than what the
programmer intended.

source code:A program in a high-level language before being compiled.

syntax: The structure of a program.

syntax error: An error in a program that makes it impossible to parse (and therefore im-
possible to interpret).

token: One of the basic elements of the syntactic structure of a program, analogous to a
word in a natural language.

14 Chapter 1. Why should you learn to write programs?

1.11 Exercises

Exercise 1.2Use a web browser to go to the Python Websitepython.org . This page
contains information about Python and links to Python-related pages, and it gives you the
ability to search the Python documentation.

For example, if you enterprint in the search window, the first link that appears is the
documentation of theprint statement. At this point, not all of it will make sense to you,
but it is good to know where it is.

Exercise 1.3Start the Python interpreter and typehelp() to start the online help utility.
Or you can typehelp(' print ') to get information about theprint statement.

If this example doesn’t work, you may need to install additional Python documentation or
set an environment variable; the details depend on your operating system and version of
Python.

Exercise 1.4Start the Python interpreter and use it as a calculator. Python’s syntax for
math operations is almost the same as standard mathematicalnotation. For example, the
symbols+, - and / denote addition, subtraction and division, as you would expect. The
symbol for multiplication is* .

If you run a 10 kilometer race in 43 minutes 30 seconds, what isyour average time per
mile? What is your average speed in miles per hour? (Hint: there are 1.61 kilometers in a
mile).

Chapter 2

Variables, expressions and
statements

2.1 Values and types

A value is one of the basic things a program works with, like a letter or a number. The
values we have seen so far are1, 2, and' Hello, World! ' .

These values belong to differenttypes: 2 is an integer, and' Hello, World! ' is astring,
so-called because it contains a “string” of letters. You (and the interpreter) can identify
strings because they are enclosed in quotation marks.

The print statement also works for integers. We use thepython command to start the
interpreter.

python
>>> print 4
4

If you are not sure what type a value has, the interpreter can tell you.

>>> type(' Hello, World! ')
<type ' str ' >
>>> type(17)
<type ' int ' >

Not surprisingly, strings belong to the typestr and integers belong to the typeint . Less
obviously, numbers with a decimal point belong to a type called float , because these
numbers are represented in a format calledfloating-point.

16 Chapter 2. Variables, expressions and statements

>>> type(3.2)
<type ' float ' >

What about values like' 17' and' 3.2 ' ? They look like numbers, but they are in quotation
marks like strings.

>>> type(' 17')
<type ' str ' >
>>> type(' 3.2 ')
<type ' str ' >

They’re strings.

When you type a large integer, you might be tempted to use commas between groups of
three digits, as in1,000,000 . This is not a legal integer in Python, but it is legal:

>>> print 1,000,000
1 0 0

Well, that’s not what we expected at all! Python interprets1,000,000 as a comma-
separated sequence of integers, which it prints with spacesbetween.

This is the first example we have seen of a semantic error: the code runs without producing
an error message, but it doesn’t do the “right” thing.

2.2 Variables

One of the most powerful features of a programming language is the ability to manipulate
variables. A variable is a name that refers to a value.

An assignment statementcreates new variables and gives them values:

>>> message = ' And now for something completely different '
>>> n = 17
>>> pi = 3.1415926535897931

This example makes three assignments. The first assigns a string to a new variable named
message ; the second assigns the integer17 to n; the third assigns the (approximate) value
of π to pi .

A common way to represent variables on paper is to write the name with an arrow pointing
to the variable’s value. This kind of figure is called astate diagrambecause it shows what
state each of the variables is in (think of it as the variable’s state of mind). This diagram
shows the result of the previous example:

2.3. Variable names and keywords 17

message

n

pi

17

’And now for something completely different’

3.1415926535897931

To display the value of a variable, you can use a print statement:

>>> print n
17
>>> print pi
3.14159265359

The type of a variable is the type of the value it refers to.

>>> type(message)
<type ' str ' >
>>> type(n)
<type ' int ' >
>>> type(pi)
<type ' float ' >

2.3 Variable names and keywords

Programmers generally choose names for their variables that are meaningful—they docu-
ment what the variable is used for.

Variable names can be arbitrarily long. They can contain both letters and numbers, but they
have to begin with a letter. It is legal to use uppercase letters, but it is a good idea to begin
variable names with a lowercase letter (you’ll see why later).

The underscore character (_) can appear in a name. It is often used in names with multiple
words, such asmy_nameor airspeed_of_unladen_swallow .

If you give a variable an illegal name, you get a syntax error:

>>> 76trombones = ' big parade '
SyntaxError: invalid syntax
>>> more@ = 1000000
SyntaxError: invalid syntax
>>> class = ' Advanced Theoretical Zymurgy '
SyntaxError: invalid syntax

76trombones is illegal because it does not begin with a letter.more@is illegal because it
contains an illegal character,@. But what’s wrong withclass ?

It turns out thatclass is one of Python’skeywords. The interpreter uses keywords to
recognize the structure of the program, and they cannot be used as variable names.

18 Chapter 2. Variables, expressions and statements

Python reserves 31 keywords1 for its use:

and del from not while
as elif global or with
assert else if pass yield
break except import print
class exec in raise
continue finally is return
def for lambda try

You might want to keep this list handy. If the interpreter complains about one of your
variable names and you don’t know why, see if it is on this list.

2.4 Statements

A statement is a unit of code that the Python interpreter can execute. We have seen two
kinds of statements: print and assignment.

When you type a statement in interactive mode, the interpreter executes it and displays the
result, if there is one.

A script usually contains a sequence of statements. If thereis more than one statement, the
results appear one at a time as the statements execute.

For example, the script

print 1
x = 2
print x

produces the output

1
2

The assignment statement produces no output.

2.5 Operators and operands

Operators are special symbols that represent computations like addition and multiplica-
tion. The values the operator is applied to are calledoperands.

The operators+, - , * , / and** perform addition, subtraction, multiplication, divisionand
exponentiation, as in the following examples:

1In Python 3.0,exec is no longer a keyword, butnonlocal is.

2.6. Expressions 19

20+32 hour-1 hour*60+minute minute/60 5**2 (5+9)*(15-7)

The division operator might not do what you expect:

>>> minute = 59
>>> minute/60
0

The value ofminute is 59, and in conventional arithmetic 59 divided by 60 is 0.98333, not
0. The reason for the discrepancy is that Python is performing floor division2.

When both of the operands are integers, the result is also an integer; floor division chops
off the fraction part, so in this example it rounds down to zero.

If either of the operands is a floating-point number, Python performs floating-point division,
and the result is afloat :

>>> minute/60.0
0.98333333333333328

2.6 Expressions

An expressionis a combination of values, variables, and operators. A value all by itself
is considered an expression, and so is a variable, so the following are all legal expressions
(assuming that the variablex has been assigned a value):

17
x
x + 17

If you type an expression in interactive mode, the interpreter evaluatesit and displays the
result:

>>> 1 + 1
2

But in a script, an expression all by itself doesn’t do anything! This is a common source of
confusion for beginners.

Exercise 2.1Type the following statements in the Python interpreter to see what they do:

5
x = 5
x + 1

2In Python 3.0, the result of this division is afloat . In Python 3.0, the new operator// performs integer
division.

20 Chapter 2. Variables, expressions and statements

2.7 Order of operations

When more than one operator appears in an expression, the order of evaluation depends
on therules of precedence. For mathematical operators, Python follows mathematical
convention. The acronymPEMDAS is a useful way to remember the rules:

• Parentheses have the highest precedence and can be used to force an expression to
evaluate in the order you want. Since expressions in parentheses are evaluated first,
2 * (3-1) is 4, and(1+1)**(5-2) is 8. You can also use parentheses to make an
expression easier to read, as in(minute * 100) / 60 , even if it doesn’t change the
result.

• Exponentiation has the next highest precedence, so2**1+1 is 3, not 4, and3*1**3
is 3, not 27.

• Multiplication andDivision have the same precedence, which is higher thanAddition
andSubtraction, which also have the same precedence. So2*3-1 is 5, not 4, and
6+4/2 is 8, not 5.

• Operators with the same precedence are evaluated from leftto right. So in the ex-
pression5-3-1 is 1, not 3 because the5-3 happens first and then1 is subtracted from
2.

When in doubt always put parenthesis in your expressions to make sure the computations
are performed in the order you intend.

2.8 Modulus operator

Themodulus operator works on integers and yields the remainder when the first operand
is divided by the second. In Python, the modulus operator is apercent sign (%). The syntax
is the same as for other operators:

>>> quotient = 7 / 3
>>> print quotient
2
>>> remainder = 7 % 3
>>> print remainder
1

So 7 divided by 3 is 2 with 1 left over.

The modulus operator turns out to be surprisingly useful. For example, you can check
whether one number is divisible by another—ifx % y is zero, thenx is divisible byy .

Also, you can extract the right-most digit or digits from a number. For example,x % 10
yields the right-most digit ofx (in base 10). Similarlyx % 100 yields the last two digits.

2.9. String operations 21

2.9 String operations

The+ operator works with strings, but it is not addition in the mathematical sense. Instead
it performsconcatenation, which means joining the strings by linking them end-to-end.
For example:

first = ' throat '
second = ' warbler '
print first + second

The output of this program isthroatwarbler .

2.10 Asking the user for input

Sometimes we would like to take the value for a variable from the user via their keyboard.
Python provides a built-in function calledraw_input that gets input from the keyboard3.
When this function is called, the program stops and waits for the user to type something.
When the user pressesReturn or Enter, the program resumes andraw_input returns what
the user typed as a string.

>>> input = raw_input()
Some silly stuff
>>> print input
Some silly stuff

Before getting input from the user, it is a good idea to print aprompt telling the user what
to input. raw_input can take a prompt as an argument:

>>> name = raw_input(' What...is your name?\n ')
What...is your name?
Arthur, King of the Britons!
>>> print name
Arthur, King of the Britons!

The sequence\n at the end of the prompt represents anewline, which is a special character
that causes a line break. That’s why the user’s input appearsbelow the prompt.

If you expect the user to type an integer, you can try to convert the return value toint using
the int() function:

>>> prompt = ' What...is the airspeed velocity of an unladen swallow?\n '
>>> speed = raw_input(prompt)
What...is the airspeed velocity of an unladen swallow?
17
>>> int(speed)

3In Python 3.0, this function is namedinput .

22 Chapter 2. Variables, expressions and statements

17
>>> int(speed) + 5
22

But if the user types something other than a string of digits,you get an error:

>>> speed = raw_input(prompt)
What...is the airspeed velocity of an unladen swallow?
What do you mean, an African or a European swallow?
>>> int(speed)
ValueError: invalid literal for int()

We will see how to handle this kind of error later.

2.11 Comments

As programs get bigger and more complicated, they get more difficult to read. Formal
languages are dense, and it is often difficult to look at a piece of code and figure out what
it is doing, or why.

For this reason, it is a good idea to add notes to your programsto explain in natural language
what the program is doing. These notes are calledcomments, and they start with the#
symbol:

compute the percentage of the hour that has elapsed
percentage = (minute * 100) / 60

In this case, the comment appears on a line by itself. You can also put comments at the end
of a line:

percentage = (minute * 100) / 60 # percentage of an hour

Everything from the# to the end of the line is ignored—it has no effect on the program.

Comments are most useful when they document non-obvious features of the code. It is
reasonable to assume that the reader can figure outwhat the code does; it is much more
useful to explainwhy.

This comment is redundant with the code and useless:

v = 5 # assign 5 to v

This comment contains useful information that is not in the code:

v = 5 # velocity in meters/second.

Good variable names can reduce the need for comments, but long names can make complex
expressions hard to read, so there is a tradeoff.

2.12. Choosing mnemonic variable names 23

2.12 Choosing mnemonic variable names

As long as you follow the simple rules of variable naming, andavoid reserved words, you
have a lot of choice when you name your variables. In the beginning, this choice can be
confusing both when you read a program and when you write yourown programs. For
example, the following three programs are identical in terms of what they accomplish, but
very different when you read them and try to understand them.

a = 35.0
b = 12.50
c = a * b
print c

hours = 35.0
rate = 12.50
pay = hours * rate
print pay

x1q3z9ahd = 35.0
x1q3z9afd = 12.50
x1q3p9afd = x1q3z9ahd * x1q3z9afd
print x1q3p9afd

The Python interpreter sees all three of these programs asexactly the samebut humans
see and understand these programs quite differently. Humans will most quickly understand
the intent of the second program because the programmer has chosen variable names that
reflect the intent of the programmer regarding what data willbe stored in each variable.

We call these wisely-chosen variable names “mnemonic variable names”. The word
mnemonic4 means “memory aid”. We choose mnemonic variable names to help us re-
member why we created the variable in the first place.

While this all sounds great, and it is a very good idea to use mnemonic variable names,
mnemonic variable names can get in the way of a beginning programmer’s ability to parse
and understand code. This is because beginning programmershave not yet memorized the
reserved words (there are only 31 of them) and sometimes variables which have names that
are too descriptive start to look like part of the language and not just well-chosen variable
names.

Take a quick look at the following Python sample code which loops through some data. We
will cover loops soon, but for now try to just puzzle through what this means:

for word in words:
print word

4Seehttp://en.wikipedia.org/wiki/Mnemonic for an extended description of the word “mnemonic”.

24 Chapter 2. Variables, expressions and statements

What is happening here? Which of the tokens (for, word, in, etc.) are reserved words and
which are just variable names? Does Python understand at a fundamental level the notion
of words? Beginning programmers have trouble separating what parts of the codemust
be the same as this example and what parts of the code are simply choices made by the
programmer.

The following code is equivalent to the above code:

for slice in pizza:
print slice

It is easier for the beginning programmer to look at this codeand know which parts are
reserved words defined by Python and which parts are simply variable names chosen by
the programmer. It is pretty clear that Python has no fundamental understanding of pizza
and slices and the fact that a pizza consists of a set of one or more slices.

But if our program is truly about reading data and looking forwords in the data,pizza and
slice are very un-mnemonic variable names. Choosing them as variable names distracts
from the meaning of the program.

After a pretty short period of time, you will know the most common reserved words and
you will start to see the reserved words jumping out at you:

for word in words :
print word

The parts of the code that are defined by Python (for , in , print , and:) are in bold and
the programmer chosen variables (word andwords) are not in bold. Many text editors are
aware of Python syntax and will color reserved words differently to give you clues to keep
your variables and reserved words separate. After a while you will begin to read Python
and quickly determine what is a variable and what is a reserved word.

2.13 Debugging

At this point the syntax error you are most likely to make is anillegal variable name,
like class andyield , which are keywords, orodd˜job andUS$, which contain illegal
characters.

If you put a space in a variable name, Python thinks it is two operands without an operator:

>>> bad name = 5
SyntaxError: invalid syntax

For syntax errors, the error messages don’t help much. The most common messages
areSyntaxError: invalid syntax andSyntaxError: invalid token , neither of
which is very informative.

2.14. Glossary 25

The runtime error you are most likely to make is a “use before def;” that is, trying to use
a variable before you have assigned a value. This can happen if you spell a variable name
wrong:

>>> principal = 327.68
>>> interest = principle * rate
NameError: name ' principle ' is not defined

Variables names are case sensitive, soLaTeX is not the same aslatex .

At this point the most likely cause of a semantic error is the order of operations. For
example, to evaluate12π , you might be tempted to write

>>> 1.0 / 2.0 * pi

But the division happens first, so you would getπ/2, which is not the same thing! There is
no way for Python to know what you meant to write, so in this case you don’t get an error
message; you just get the wrong answer.

2.14 Glossary
assignment: A statement that assigns a value to a variable.

concatenate: To join two operands end-to-end.

comment: Information in a program that is meant for other programmers(or anyone read-
ing the source code) and has no effect on the execution of the program.

evaluate: To simplify an expression by performing the operations in order to yield a single
value.

expression: A combination of variables, operators, and values that represents a single re-
sult value.

floating-point: A type that represents numbers with fractional parts.

floor division: The operation that divides two numbers and chops off the fraction part.

integer: A type that represents whole numbers.

keyword: A reserved word that is used by the compiler to parse a program; you cannot
use keywords likeif , def , andwhile as variable names.

mnemonic: A memory aid. We often give variables mnemonic names to help us remember
what is stored in the variable.

modulus operator: An operator, denoted with a percent sign (%), that works on integers
and yields the remainder when one number is divided by another.

operand: One of the values on which an operator operates.

26 Chapter 2. Variables, expressions and statements

operator: A special symbol that represents a simple computation like addition, multipli-
cation, or string concatenation.

rules of precedence:The set of rules governing the order in which expressions involving
multiple operators and operands are evaluated.

state diagram: A graphical representation of a set of variables and the values they refer
to.

statement: A section of code that represents a command or action. So far,the statements
we have seen are assignments and print statements.

string: A type that represents sequences of characters.

type: A category of values. The types we have seen so far are integers (typeint), floating-
point numbers (typefloat), and strings (typestr).

value: One of the basic units of data, like a number or string, that a program manipulates.

variable: A name that refers to a value.

2.15 Exercises

Exercise 2.2Write a program that usesraw_input to prompt a user for their name and
then welcomes them.

Enter your name: Chuck
Hello Chuck

Exercise 2.3Write a program to prompt the user for hours and rate per hour tocompute
gross pay.

Enter Hours: 35
Enter Rate: 2.75
Pay: 96.25

We won’t worry about making sure our pay has exactly two digits after the decimal place
for now. If you want, you can play with the built-in Pythonround function to properly
round the resulting pay to two decimal places.

Exercise 2.4Assume that we execute the following assignment statements:

width = 17
height = 12.0

For each of the following expressions, write the value of theexpression and the type (of the
value of the expression).

1. width/2

2.15. Exercises 27

2. width/2.0

3. height/3

4. 1 + 2 * 5

Use the Python interpreter to check your answers.

Exercise 2.5Write a program which prompts the user for a Celsius temperature, convert
the temperature to Fahrenheit and print out the converted temperature.

28 Chapter 2. Variables, expressions and statements

Chapter 3

Conditional execution

3.1 Boolean expressions

A boolean expressionis an expression that is either true or false. The following examples
use the operator==, which compares two operands and producesTrue if they are equal and
False otherwise:

>>> 5 == 5
True
>>> 5 == 6
False

True andFalse are special values that belong to the typebool ; they are not strings:

>>> type(True)
<type ' bool ' >
>>> type(False)
<type ' bool ' >

The== operator is one of thecomparison operators; the others are:

x != y # x is not equal to y
x > y # x is greater than y
x < y # x is less than y
x >= y # x is greater than or equal to y
x <= y # x is less than or equal to y
x is y # x is the same as y
x is not y # x is not the same as y

Although these operations are probably familiar to you, thePython symbols are different
from the mathematical symbols. A common error is to use a single equal sign (=) instead

30 Chapter 3. Conditional execution

of a double equal sign (==). Remember that= is an assignment operator and== is a com-
parison operator. There is no such thing as=< or =>.

3.2 Logical operators

There are threelogical operators: and , or , andnot . The semantics (meaning) of these
operators is similar to their meaning in English. For example,

x > 0 and x < 10

is true only ifx is greater than 0and less than 10.

n%2 == 0 or n%3 == 0 is true if eitherof the conditions is true, that is, if the number is
divisible by 2or 3.

Finally, thenot operator negates a boolean expression, sonot (x > y) is true if x > y is
false, that is, ifx is less than or equal toy .

Strictly speaking, the operands of the logical operators should be boolean expressions, but
Python is not very strict. Any nonzero number is interpretedas “true.”

>>> 17 and True
True

This flexibility can be useful, but there are some subtletiesto it that might be confusing.
You might want to avoid it (unless you know what you are doing).

3.3 Conditional execution

In order to write useful programs, we almost always need the ability to check conditions
and change the behavior of the program accordingly.Conditional statementsgive us this
ability. The simplest form is theif statement:

if x > 0 :
print ' x is positive '

The boolean expression after theif statement is called thecondition. We end theif
statement with a colon character (:) and the line(s) after the if statement are indented.

3.4. Alternative execution 31

x > 0

print 'x is positive'

yes

no

If the logical condition is true, then the indented statement gets executed. If the logical
condition is false, the indented statement is skipped.

if statements have the same structure as function definitions or for loops. The statement
consists of a header line that ends with the colon character (:) followed by an indented
block. Statements like this are calledcompound statementsbecause they stretch across
more than one line.

There is no limit on the number of statements that can appear in the body, but there has
to be at least one. Occasionally, it is useful to have a body with no statements (usually
as a place keeper for code you haven’t written yet). In that case, you can use thepass
statement, which does nothing.

if x < 0 :
pass # need to handle negative values!

3.4 Alternative execution

A second form of theif statement isalternative execution, in which there are two pos-
sibilities and the condition determines which one gets executed. The syntax looks like
this:

if x%2 == 0 :
print ' x is even '

else :
print ' x is odd '

If the remainder whenx is divided by 2 is 0, then we know thatx is even, and the program
displays a message to that effect. If the condition is false,the second set of statements is
executed.

32 Chapter 3. Conditional execution

x%2 == 0

print 'x is even'

yesno

print 'x is odd'

Since the condition must be true or false, exactly one of the alternatives will be executed.
The alternatives are calledbranches, because they are branches in the flow of execution.

3.5 Chained conditionals

Sometimes there are more than two possibilities and we need more than two branches. One
way to express a computation like that is achained conditional:

if x < y:
print ' x is less than y '

elif x > y:
print ' x is greater than y '

else:
print ' x and y are equal '

elif is an abbreviation of “else if.” Again, exactly one branch will be executed.

3.6. Nested conditionals 33

x < y print 'less'
yes

yes
x > y

print 'equal'

print 'greater'

There is no limit on the number ofelif statements. If there is anelse clause, it has to be
at the end, but there doesn’t have to be one.

if choice == ' a' :
print ' Bad guess '

elif choice == ' b' :
print ' Good guess '

elif choice == ' c' :
print ' Close, but not correct '

Each condition is checked in order. If the first is false, the next is checked, and so on. If
one of them is true, the corresponding branch executes, and the statement ends. Even if
more than one condition is true, only the first true branch executes.

3.6 Nested conditionals

One conditional can also be nested within another. We could have written the trichotomy
example like this:

if x == y:
print ' x and y are equal '

else:
if x < y:

print ' x is less than y '
else:

print ' x is greater than y '

34 Chapter 3. Conditional execution

The outer conditional contains two branches. The first branch contains a simple statement.
The second branch contains anotherif statement, which has two branches of its own.
Those two branches are both simple statements, although they could have been conditional
statements as well.

x == y

print 'greater'

yes

print 'less'

x < y

print 'equal'

no

noyes

Although the indentation of the statements makes the structure apparent,nested condition-
als become difficult to read very quickly. In general, it is a goodidea to avoid them when
you can.

Logical operators often provide a way to simplify nested conditional statements. For ex-
ample, we can rewrite the following code using a single conditional:

if 0 < x:
if x < 10:

print ' x is a positive single-digit number. '

Theprint statement is executed only if we make it past both conditionals, so we can get
the same effect with theand operator:

if 0 < x and x < 10:
print ' x is a positive single-digit number. '

3.7 Catching exceptions using try and except

Earlier we saw a code segment where we used theraw_input and int functions to read
and parse an integer number entered by the user. We also saw how treacherous doing this
could be:

>>> speed = raw_input(prompt)
What...is the airspeed velocity of an unladen swallow?

3.7. Catching exceptions using try and except 35

What do you mean, an African or a European swallow?
>>> int(speed)
ValueError: invalid literal for int()
>>>

When we are executing these statements in the Python interpreter, we get a new prompt
from the interpreter, think “oops” and move on to our next statement.

However if this code is placed in a Python script and this error occurs, your script imme-
diately stops in its tracks with a traceback. It does not execute the following statement.

Here is a sample program to convert a Fahrenheit temperatureto a Celsius temperature:

inp = raw_input(' Enter Fahrenheit Temperature: ')
fahr = float(inp)
cel = (fahr - 32.0) * 5.0 / 9.0
print cel

If we execute this code and give it invalid input, it simply fails with an unfriendly error
message:

python fahren.py
Enter Fahrenheit Temperature:72
22.2222222222

python fahren.py
Enter Fahrenheit Temperature:fred
Traceback (most recent call last):

File "fahren.py", line 2, in <module>
fahr = float(inp)

ValueError: invalid literal for float(): fred

There is a conditional execution structure built into Python to handle these types of ex-
pected and unexpected errors called “try / except”. The ideaof try andexcept is that you
know that some sequence of instruction(s) may have a problemand you want to add some
statements to be executed if an error occurs. These extra statements (the except block) are
ignored if there is no error.

You can think of thetry and except feature in Python as an “insurance policy” on a
sequence of statements.

We can rewrite our temperature converter as follows:

inp = raw_input(' Enter Fahrenheit Temperature: ')
try:

fahr = float(inp)
cel = (fahr - 32.0) * 5.0 / 9.0

36 Chapter 3. Conditional execution

print cel
except:

print ' Please enter a number '

Python starts by executing the sequence of statements in thetry block. If all goes well,
it skips theexcept block and proceeds. If an exception occurs in thetry block, Python
jumps out of thetry block and executes the sequence of statements in theexcept block.

python fahren2.py
Enter Fahrenheit Temperature:72
22.2222222222

python fahren2.py
Enter Fahrenheit Temperature:fred
Please enter a number

Handling an exception with atry statement is calledcatchingan exception. In this exam-
ple, theexcept clause prints an error message. In general, catching an exception gives you
a chance to fix the problem, or try again, or at least end the program gracefully.

3.8 Short circuit evaluation of logical expressions

When Python is processing a logical expression such asx >= 2 and (x/y) > 2 , it eval-
uates the expression from left-to-right. Because of the definition of and , if x is less than 2,
the expressionx >= 2 is False and so the whole expression isFalse regardless of whether
(x/y) > 2 evaluates toTrue or False .

When Python detects that there is nothing to be gained by evaluating the rest of a logical
expression, it stops its evaluation and does not do the computations in the rest of the logical
expression. When the evaluation of a logical expression stops because the overall value is
already known, it is calledshort-circuiting the evaluation.

While this may seem like a fine point, the short circuit behavior leads to a clever tech-
nique called theguardian pattern. Consider the following code sequence in the Python
interpreter:

>>> x = 6
>>> y = 2
>>> x >= 2 and (x/y) > 2
True
>>> x = 1
>>> y = 0
>>> x >= 2 and (x/y) > 2
False
>>> x = 6

3.9. Debugging 37

>>> y = 0
>>> x >= 2 and (x/y) > 2
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ZeroDivisionError: integer division or modulo by zero
>>>

The third calculation failed because Python was evaluating(x/y) andy was zero which
causes a runtime error. But the second example didnot fail because the first part of the
expressionx >= 2 evaluated toFalse so the(x/y) was not ever executed due to theshort
circuit rule and there was no error.

We can construct the logical expression to strategically place aguard evaluation just before
the evaluation that might cause an error as follows:

>>> x = 1
>>> y = 0
>>> x >= 2 and y != 0 and (x/y) > 2
False
>>> x = 6
>>> y = 0
>>> x >= 2 and y != 0 and (x/y) > 2
False
>>> x >= 2 and (x/y) > 2 and y != 0
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ZeroDivisionError: integer division or modulo by zero
>>>

In the first logical expression,x >= 2 is False so the evaluation stops at theand . In the
second logical expressionx >= 2 is True but y != 0 is False so we never reach(x/y) .

In the third logical expression, they != 0 is after the(x/y) calculation so the expression
fails with an error.

In the second expression, we say thaty != 0 acts as aguard to insure that we only execute
(x/y) if y is non-zero.

3.9 Debugging

The traceback Python displays when an error occurs containsa lot of information, but it
can be overwhelming, especially when there are many frames on the stack. The most useful
parts are usually:

• What kind of error it was, and

38 Chapter 3. Conditional execution

• Where it occurred.

Syntax errors are usually easy to find, but there are a few gotchas. Whitespace errors can
be tricky because spaces and tabs are invisible and we are used to ignoring them.

>>> x = 5
>>> y = 6

File "<stdin>", line 1
y = 6
ˆ

SyntaxError: invalid syntax

In this example, the problem is that the second line is indented by one space. But the error
message points toy , which is misleading. In general, error messages indicate where the
problem was discovered, but the actual error might be earlier in the code, sometimes on a
previous line.

The same is true of runtime errors. Suppose you are trying to compute a signal-to-noise
ratio in decibels. The formula isSNRdb = 10log10(Psignal/Pnoise). In Python, you might
write something like this:

import math
signal_power = 9
noise_power = 10
ratio = signal_power / noise_power
decibels = 10 * math.log10(ratio)
print decibels

But when you run it, you get an error message1:

Traceback (most recent call last):
File "snr.py", line 5, in ?

decibels = 10 * math.log10(ratio)
OverflowError: math range error

The error message indicates line 5, but there is nothing wrong with that line. To find the
real error, it might be useful to print the value ofratio , which turns out to be 0. The
problem is in line 4, because dividing two integers does floordivision. The solution is to
represent signal power and noise power with floating-point values.

In general, error messages tell you where the problem was discovered, but that is often not
where it was caused.

3.10 Glossary
body: The sequence of statements within a compound statement.

1In Python 3.0, you no longer get an error message; the divisionoperator performs floating-point division even
with integer operands.

3.11. Exercises 39

boolean expression:An expression whose value is eitherTrue or False .

branch: One of the alternative sequences of statements in a conditional statement.

chained conditional: A conditional statement with a series of alternative branches.

comparison operator: One of the operators that compares its operands:==, != , >, <, >=,
and<=.

conditional statement: A statement that controls the flow of execution depending on
some condition.

condition: The boolean expression in a conditional statement that determines which
branch is executed.

compound statement: A statement that consists of a header and a body. The header ends
with a colon (:). The body is indented relative to the header.

guardian pattern: Where we construct a logical expression with additional comparisons
to take advantage of the short circuit behavior.

logical operator: One of the operators that combines boolean expressions:and , or , and
not .

nested conditional: A conditional statement that appears in one of the branches of another
conditional statement.

traceback: A list of the functions that are executing, printed when an exception occurs.

short circuit: When Python is part-way through evaluating a logical expression and stops
the evaluation because Python knows the final value for the expression without need-
ing to evaluate the rest of the expression.

3.11 Exercises

Exercise 3.1Rewrite your pay computation to give the employee 1.5 times the hourly rate
for hours worked above 40 hours.

Enter Hours: 45
Enter Rate: 10
Pay: 475.0

Exercise 3.2Rewrite your pay program usingtry andexcept so that your program han-
dles non-numeric input gracefully by printing a message andexiting the program. The
following shows two executions of the program:

40 Chapter 3. Conditional execution

Enter Hours: 20
Enter Rate: nine
Error, please enter numeric input

Enter Hours: forty
Error, please enter numeric input

Exercise 3.3Write a program to prompt for a score between 0.0 and 1.0. If thescore is out
of range print an error. If the score is between 0.0 and 1.0, print a grade using the following
table:

Score Grade
>= 0.9 A
>= 0.8 B
>= 0.7 C
>= 0.6 D
< 0.6 F

Enter score: 0.95
A

Enter score: perfect
Bad score

Enter score: 10.0
Bad score

Enter score: 0.75
C

Enter score: 0.5
F

Run the program repeatedly as shown above to test the variousdifferent values for input.

Chapter 4

Functions

4.1 Function calls

In the context of programming, afunction is a named sequence of statements that performs
a computation. When you define a function, you specify the nameand the sequence of
statements. Later, you can “call” the function by name. We have already seen one example
of a function call:

>>> type(32)
<type ' int ' >

The name of the function istype . The expression in parentheses is called theargument
of the function. The argument is a value or variable that we are passing into the function as
input ot the function. The result, for thetype function, is the type of the argument.

It is common to say that a function “takes” an argument and “returns” a result. The result
is called thereturn value.

4.2 Built-in functions

Python provides a number of important built-in functions that we can use without needing
to provide the function definition. In a sense, the creators or Python wrote a set of functions
to solve common problems and included them in Python for us touse.

Themax andmin functions give us the largest and smallest values in a list, respectively:

>>> max(' Hello world ')
' w'
>>> min(' Hello world ')

42 Chapter 4. Functions

' '
>>>

The max function tells us the “largest character” in the string (which turns out to be the
letter “w”) and themin function shows us the smallest character which turns out to be a
space.

Another very common built-in function is thelen function which tells us how many items
are in its argument. If the argument tolen is a string, it returns the number of characters in
the string.

>>> len(' Hello world ')
11
>>>

These functions are not limited to looking at strings, they can operate on any set of values
as we will see in later chapters.

4.3 Type conversion functions

Python also provides built-in functions that convert values from one type to another. The
int function takes any value and converts it to an integer, if it can, or complains otherwise:

>>> int(' 32')
32
>>> int(' Hello ')
ValueError: invalid literal for int(): Hello

int can convert floating-point values to integers, but it doesn’t round off; it chops off the
fraction part:

>>> int(3.99999)
3
>>> int(-2.3)
-2

float converts integers and strings to floating-point numbers:

>>> float(32)
32.0
>>> float(' 3.14159 ')
3.14159

Finally, str converts its argument to a string:

>>> str(32)
' 32'
>>> str(3.14159)
' 3.14159 '

4.4. Random numbers 43

4.4 Random numbers

Given the same inputs, most computer programs generate the same outputs every time, so
they are said to bedeterministic. Determinism is usually a good thing, since we expect
the same calculation to yield the same result. For some applications, though, we want the
computer to be unpredictable. Games are an obvious example,but there are more.

Making a program truly nondeterministic turns out to be not so easy, but there are ways
to make it at least seem nondeterministic. One of them is to use algorithms that generate
pseudorandomnumbers. Pseudorandom numbers are not truly random becausethey are
generated by a deterministic computation, but just by looking at the numbers it is all but
impossible to distinguish them from random.

Therandom module provides functions that generate pseudorandom numbers (which I will
simply call “random” from here on).

The functionrandom returns a random float between 0.0 and 1.0 (including 0.0 but not 1.0).
Each time you callrandom , you get the next number in a long series. To see a sample, run
this loop:

import random

for i in range(10):
x = random.random()
print x

This program produces the following list of 10 random numbers between 0.0 and up to but
not including 1.0.

0.301927091705
0.513787075867
0.319470430881
0.285145917252
0.839069045123
0.322027080731
0.550722110248
0.366591677812
0.396981483964
0.838116437404

Exercise 4.1Run the program on your system and see what numbers you get. Run the
program more than once and see what numbers you get.

The random function is only one of many functions which handle random numbers. The
function randint takes parameterslow andhigh and returns an integer betweenlow and
high (including both).

44 Chapter 4. Functions

>>> random.randint(5, 10)
5
>>> random.randint(5, 10)
9

To choose an element from a sequence at random, you can usechoice :

>>> t = [1, 2, 3]
>>> random.choice(t)
2
>>> random.choice(t)
3

The random module also provides functions to generate random values from continuous
distributions including Gaussian, exponential, gamma, and a few more.

4.5 Math functions

Python has a mathmodule that provides most of the familiar mathematical functions.Be-
fore we can use the module, we have to import it:

>>> import math

This statement creates amodule objectnamed math. If you print the module object, you
get some information about it:

>>> print math
<module ' math ' from ' /usr/lib/python2.5/lib-dynload/math.so ' >

The module object contains the functions and variables defined in the module. To access
one of the functions, you have to specify the name of the module and the name of the
function, separated by a dot (also known as a period). This format is calleddot notation.

>>> ratio = signal_power / noise_power
>>> decibels = 10 * math.log10(ratio)

>>> radians = 0.7
>>> height = math.sin(radians)

The first example computes the logarithm base 10 of the signal-to-noise ratio. The math
module also provides a function calledlog that computes logarithms basee.

The second example finds the sine ofradians . The name of the variable is a hint thatsin
and the other trigonometric functions (cos , tan , etc.) take arguments in radians. To convert
from degrees to radians, divide by 360 and multiply by 2π:

4.6. Adding new functions 45

>>> degrees = 45
>>> radians = degrees / 360.0 * 2 * math.pi
>>> math.sin(radians)
0.707106781187

The expressionmath.pi gets the variablepi from the math module. The value of this
variable is an approximation ofπ, accurate to about 15 digits.

If you know your trigonometry, you can check the previous result by comparing it to the
square root of two divided by two:

>>> math.sqrt(2) / 2.0
0.707106781187

4.6 Adding new functions

So far, we have only been using the functions that come with Python, but it is also possible
to add new functions. Afunction definition specifies the name of a new function and the
sequence of statements that execute when the function is called. Once we define a function,
we can reuse the function over and over throughout our program.

Here is an example:

def print_lyrics():
print "I ' m a lumberjack, and I ' m okay."
print ' I sleep all night and I work all day. '

def is a keyword that indicates that this is a function definition. The name of the function
is print_lyrics . The rules for function names are the same as for variable names: letters,
numbers and some punctuation marks are legal, but the first character can’t be a number.
You can’t use a keyword as the name of a function, and you should avoid having a variable
and a function with the same name.

The empty parentheses after the name indicate that this function doesn’t take any argu-
ments. Later we will build functions that take arguments as their inputs.

The first line of the function definition is called theheader; the rest is called thebody.
The header has to end with a colon and the body has to be indented. By convention, the
indentation is always four spaces (see Section 4.12). The body can contain any number of
statements.

The strings in the print statements are enclosed in double quotes. Single quotes and double
quotes do the same thing; most people use single quotes except in cases like this where a
single quote (which is also an apostrophe) appears in the string.

If you type a function definition in interactive mode, the interpreter prints ellipses (...) to
let you know that the definition isn’t complete:

46 Chapter 4. Functions

>>> def print_lyrics():
... print "I ' m a lumberjack, and I ' m okay."
... print ' I sleep all night and I work all day. '
...

To end the function, you have to enter an empty line (this is not necessary in a script).

Defining a function creates a variable with the same name.

>>> print print_lyrics
<function print_lyrics at 0xb7e99e9c>
>>> print type(print_lyrics)
<type ' function ' >

The value ofprint_lyrics is afunction object, which has type' function ' .

The syntax for calling the new function is the same as for built-in functions:

>>> print_lyrics()
I ' m a lumberjack, and I ' m okay.
I sleep all night and I work all day.

Once you have defined a function, you can use it inside anotherfunction. For example, to
repeat the previous refrain, we could write a function called repeat_lyrics :

def repeat_lyrics():
print_lyrics()
print_lyrics()

And then callrepeat_lyrics :

>>> repeat_lyrics()
I ' m a lumberjack, and I ' m okay.
I sleep all night and I work all day.
I ' m a lumberjack, and I ' m okay.
I sleep all night and I work all day.

But that’s not really how the song goes.

4.7 Definitions and uses

Pulling together the code fragments from the previous section, the whole program looks
like this:

def print_lyrics():
print "I ' m a lumberjack, and I ' m okay."
print ' I sleep all night and I work all day. '

4.8. Flow of execution 47

def repeat_lyrics():
print_lyrics()
print_lyrics()

repeat_lyrics()

This program contains two function definitions:print_lyrics and repeat_lyrics .
Function definitions get executed just like other statements, but the effect is to create func-
tion objects. The statements inside the function do not get executed until the function is
called, and the function definition generates no output.

As you might expect, you have to create a function before you can execute it. In other
words, the function definition has to be executed before the first time it is called.

Exercise 4.2Move the last line of this program to the top, so the function call appears
before the definitions. Run the program and see what error message you get.

Exercise 4.3Move the function call back to the bottom and move the definition of
print_lyrics after the definition ofrepeat_lyrics . What happens when you run this
program?

4.8 Flow of execution
In order to ensure that a function is defined before its first use, you have to know the order
in which statements are executed, which is called theflow of execution.

Execution always begins at the first statement of the program. Statements are executed one
at a time, in order from top to bottom.

Functiondefinitionsdo not alter the flow of execution of the program, but rememberthat
statements inside the function are not executed until the function is called.

A function call is like a detour in the flow of execution. Instead of going to the next
statement, the flow jumps to the body of the function, executes all the statements there, and
then comes back to pick up where it left off.

That sounds simple enough, until you remember that one function can call another. While
in the middle of one function, the program might have to execute the statements in another
function. But while executing that new function, the program might have to execute yet
another function!

Fortunately, Python is good at keeping track of where it is, so each time a function com-
pletes, the program picks up where it left off in the functionthat called it. When it gets to
the end of the program, it terminates.

What’s the moral of this sordid tale? When you read a program, you don’t always want
to read from top to bottom. Sometimes it makes more sense if you follow the flow of
execution.

48 Chapter 4. Functions

4.9 Parameters and arguments

Some of the built-in functions we have seen require arguments. For example, when you
call math.sin you pass a number as an argument. Some functions take more than one
argument:math.pow takes two, the base and the exponent.

Inside the function, the arguments are assigned to variables calledparameters. Here is an
example of a user-defined function that takes an argument:

def print_twice(bruce):
print bruce
print bruce

This function assigns the argument to a parameter namedbruce . When the function is
called, it prints the value of the parameter (whatever it is)twice.

This function works with any value that can be printed.

>>> print_twice(' Spam')
Spam
Spam
>>> print_twice(17)
17
17
>>> print_twice(math.pi)
3.14159265359
3.14159265359

The same rules of composition that apply to built-in functions also apply to user-defined
functions, so we can use any kind of expression as an argumentfor print_twice :

>>> print_twice(' Spam ' *4)
Spam Spam Spam Spam
Spam Spam Spam Spam
>>> print_twice(math.cos(math.pi))
-1.0
-1.0

The argument is evaluated before the function is called, so in the examples the expressions
' Spam ' *4 andmath.cos(math.pi) are only evaluated once.

You can also use a variable as an argument:

>>> michael = ' Eric, the half a bee. '
>>> print_twice(michael)
Eric, the half a bee.
Eric, the half a bee.

4.10. Fruitful functions and void functions 49

The name of the variable we pass as an argument (michael) has nothing to do with the
name of the parameter (bruce). It doesn’t matter what the value was called back home (in
the caller); here inprint_twice , we call everybodybruce .

4.10 Fruitful functions and void functions

Some of the functions we are using, such as the math functions, yield results; for lack of a
better name, I call themfruitful functions . Other functions, likeprint_twice , perform
an action but don’t return a value. They are calledvoid functions.

When you call a fruitful function, you almost always want to dosomething with the result;
for example, you might assign it to a variable or use it as partof an expression:

x = math.cos(radians)
golden = (math.sqrt(5) + 1) / 2

When you call a function in interactive mode, Python displaysthe result:

>>> math.sqrt(5)
2.2360679774997898

But in a script, if you call a fruitful function and do not store the result of the function in a
variable, the return value vanishes into the mist!

math.sqrt(5)

This script computes the square root of 5, but since it doesn’t store the result in a variable
or display the result, it is not very useful.

Void functions might display something on the screen or havesome other effect, but they
don’t have a return value. If you try to assign the result to a variable, you get a special value
calledNone.

>>> result = print_twice(' Bing ')
Bing
Bing
>>> print result
None

The valueNone is not the same as the string' None' . It is a special value that has its own
type:

>>> print type(None)
<type ' NoneType ' >

To return a result from a function, we use thereturn statement in our function. For
example, we could make a very simple function calledaddtwo that adds two numbers
together and return a result.

50 Chapter 4. Functions

def addtwo(a, b):
added = a + b
return added

x = addtwo(3, 5)
print x

When this script executes, theprint statement will print out “8” because theaddtwo func-
tion was called with 3 and 5 as arguments. Within the functionthe parametersa andb
were 3 and 5 respectively. The function computed the sum of the two numbers and placed
it in the local function variable namedadded and used thereturn statement to send the
computed value back to the calling code as the function result which was assigned to the
variablex and printed out.

4.11 Why functions?

It may not be clear why it is worth the trouble to divide a program into functions. There
are several reasons:

• Creating a new function gives you an opportunity to name a group of statements,
which makes your program easier to read, understand and debug.

• Functions can make a program smaller by eliminating repetitive code. Later, if you
make a change, you only have to make it in one place.

• Dividing a long program into functions allows you to debug the parts one at a time
and then assemble them into a working whole.

• Well-designed functions are often useful for many programs. Once you write and
debug one, you can reuse it.

Throughout the rest of the book, often we will use a function definition to explain a concept.
Part of the skill of creating and using functions is to have a function properly capture an
idea such as “find the smallest value in a list of values”. Later we will show you code that
finds the smallest in a list of values and we will present it to you as a function namedmin
which takes a list of values as its argument and returns the smallest value in the list.

4.12 Debugging

If you are using a text editor to write your scripts, you mightrun into problems with spaces
and tabs. The best way to avoid these problems is to use spacesexclusively (no tabs). Most
text editors that know about Python do this by default, but some don’t.

Tabs and spaces are usually invisible, which makes them hardto debug, so try to find an
editor that manages indentation for you.

4.13. Glossary 51

Also, don’t forget to save your program before you run it. Some development environments
do this automatically, but some don’t. In that case the program you are looking at in the
text editor is not the same as the program you are running.

Debugging can take a long time if you keep running the same, incorrect, program over and
over!

Make sure that the code you are looking at is the code you are running. If you’re not sure,
put something likeprint ' hello ' at the beginning of the program and run it again. If
you don’t seehello , you’re not running the right program!

4.13 Glossary
algorithm: A general process for solving a category of problems.

argument: A value provided to a function when the function is called. This value is as-
signed to the corresponding parameter in the function.

body: The sequence of statements inside a function definition.

composition: Using an expression as part of a larger expression, or a statement as part of
a larger statement.

deterministic: Pertaining to a program that does the same thing each time it runs, given
the same inputs.

dot notation: The syntax for calling a function in another module by specifying the mod-
ule name followed by a dot (period) and the function name.

flow of execution: The order in which statements are executed during a program run.

fruitful function: A function that returns a value.

function: A named sequence of statements that performs some useful operation. Functions
may or may not take arguments and may or may not produce a result.

function call: A statement that executes a function. It consists of the function name fol-
lowed by an argument list.

function definition: A statement that creates a new function, specifying its name, param-
eters, and the statements it executes.

function object: A value created by a function definition. The name of the function is a
variable that refers to a function object.

header: The first line of a function definition.

import statement: A statement that reads a module file and creates a module object.

52 Chapter 4. Functions

module object: A value created by animport statement that provides access to the data
and code defined in a module.

parameter: A name used inside a function to refer to the value passed as anargument.

pseudorandom: Pertaining to a sequence of numbers that appear to be random,but are
generated by a deterministic program.

return value: The result of a function. If a function call is used as an expression, the
return value is the value of the expression.

void function: A function that doesn’t return a value.

4.14 Exercises

Exercise 4.4Rewrite your pay computation with time-and-a-half for overtime and create
a function calledcomputepay which takes two parameters (hours andrate).

Enter Hours: 45
Enter Rate: 10
Pay: 475.0

Exercise 4.5Rewrite the grade program from the previous chapter using a function called
computegrade that takes a score as its parameter and returns a grade as a string.

Score Grade
> 0.9 A
> 0.8 B
> 0.7 C
> 0.6 D
<= 0.6 F

Program Execution:

Enter score: 0.95
A

Enter score: perfect
Bad score

Enter score: 10.0
Bad score

Enter score: 0.75
C

4.14. Exercises 53

Enter score: 0.5
F

Run the program repeatedly to test the various different values for input.

54 Chapter 4. Functions

Chapter 5

Iteration

5.1 Updating variables

A common pattern in assignment statements is an assignment statement that updates a
variable - where the new value of the variable depends on the old.

x = x+1

This means “get the current value ofx , add one, and then updatex with the new value.”

If you try to update a variable that doesn’t exist, you get an error, because Python evaluates
the right side before it assigns a value tox :

>>> x = x+1
NameError: name ' x' is not defined

Before you can update a variable, you have toinitialize it, usually with a simple assign-
ment:

>>> x = 0
>>> x = x+1

Updating a variable by adding 1 is called anincrement; subtracting 1 is called adecre-
ment.

5.2 Thewhile statement

Computers are often used to automate repetitive tasks. Repeating identical or similar tasks
without making errors is something that computers do well and people do poorly. Because
iteration is so common, Python provides several language features to make it easier.

56 Chapter 5. Iteration

One form of iteration in Python is thewhile statement. Here is a simple program that
counts down from five and then says “Blastoff!”.

n = 5
while n > 0:

print n
n = n-1

print ' Blastoff! '

You can almost read thewhile statement as if it were English. It means, “Whilen is greater
than 0, display the value ofn and then reduce the value ofn by 1. When you get to 0, exit
the while statement and display the wordBlastoff! ”

More formally, here is the flow of execution for awhile statement:

1. Evaluate the condition, yieldingTrue or False .

2. If the condition is false, exit thewhile statement and continue execution at the next
statement.

3. If the condition is true, execute the body and then go back to step 1.

This type of flow is called aloop because the third step loops back around to the top. Each
time we execute the body of the loop, we call it aniteration . For the above loop, we would
say, “It had five iterations” which means that the body of of the loop was executed five
times.

The body of the loop should change the value of one or more variables so that eventually
the condition becomes false and the loop terminates. We callthe variable that changes each
time the loop executes and controls when the loop finishes theiteration variable . If there
is no iteration variable, the loop will repeat forever, resulting in an infinite loop.

5.3 Infinite loops

An endless source of amusement for programmers is the observation that the directions on
shampoo, “Lather, rinse, repeat,” are an infinite loop because there is noiteration variable
telling you how many times to execute the loop.

In the case ofcountdown , we can prove that the loop terminates because we know that the
value ofn is finite, and we can see that the value ofn gets smaller each time through the
loop, so eventually we have to get to 0. Other times a loop is obviously infinite because it
has no iteration variable at all.

In other cases, it is not so easy to tell. The code below definesa function that takes an
positive number as its parameter and computes a different kind of sequence. Remember
that the percent sign is themodulo operator which gives us the remainder if a division
were performed.

5.3. Infinite loops 57

def sequence(n):
while n != 1:

print n, # Use comma to suppress newline
if n%2 == 0: # n is even

n = n/2
else: # n is odd

n = n*3+1

The condition for this loop isn != 1 1, so the loop will continue untiln is 1, which makes
the condition false.

Each time through the loop, the program outputs the value ofn and then checks whether it
is even or odd. If it is even,n is divided by 2. If it is odd, the value ofn is replaced with
n*3+1 . For example, if the argument passed tosequence is 3, the resulting sequence is 3,
10, 5, 16, 8, 4, 2.

Sincen sometimes increases and sometimes decreases, there is no obvious proof thatn will
ever reach 1, or that the program terminates. For some particular values ofn, we can prove
termination. For example, if the starting value is a power oftwo, then the value ofn will be
even each time through the loop until it reaches 1. The previous example ends with such a
sequence, starting with 16.

>>> def sequence(n):
... while n != 1:
... print n,
... if n%2 == 0: # n is even
... n = n/2
... else: # n is odd
... n = n*3+1
...
>>> sequence(3)
3 10 5 16 8 4 2
>>> sequence(16)
16 8 4 2
>>> sequence(50)
50 25 76 38 19 58 29 88 44 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2

You can try this sequence with a variety of integer or floatingpoint numbers as the argu-
ment. Since the main loop repeatedly divides a number by two,an argument in the billions
converges to one in relatively few steps. It is more fun to tryfloating point arguments such
as 12.45 as it takes more iterations before the sequence converges to one.

The hard question is whether we can prove that this program terminates forall positive
valuesof n. So far2, no one has been able to prove itor disprove it!

1Remember that!= is the operator for ’not equal’.
2Seewikipedia.org/wiki/Collatz_conjecture .

58 Chapter 5. Iteration

5.4 “Infinite loops” and break

Sometimes you don’t know it’s time to end a loop until you get half way through the body.
In that case you can write an infinite loop on purpose and then use thebreak statement to
jump out of the loop.

This loop is obviously aninfinite loop because the logical expression on thewhile state-
ment is simply the logical constantTrue :

n = 10
while True:

print n,
n = n - 1

print ' Done! '

If you make the mistake and run this code, you will learn quickly how to stop a runaway
Python process on your system or find where the power-off button is on your computer.
This program will run forever or until your battery runs out because the logical expression
at the top of the loop is always true by virtue of the fact that the expression is the constant
valueTrue .

While this is a dysfunctional infinite loop, we can still use this pattern to build useful loops
as long as we carefully add code to the body of the loop to explicitly exit the loop using
break when we have reached the exit condition.

For example, suppose you want to take input from the user until they typedone . You could
write:

while True:
line = raw_input(' > ')
if line == ' done ' :

break
print line

print ' Done! '

The loop condition isTrue , which is always true, so the loop runs repeatedly until it hits
the break statement.

Each time through, it prompts the user with an angle bracket.If the user typesdone , the
break statement exits the loop. Otherwise the program echoes whatever the user types and
goes back to the top of the loop. Here’s a sample run:

> hello there
hello there
> finished
finished
> done
Done!

5.5. Finishing iterations with continue 59

This way of writingwhile loops is common because you can check the condition anywhere
in the loop (not just at the top) and you can express the stop condition affirmatively (“stop
when this happens”) rather than negatively (“keep going until that happens.”).

5.5 Finishing iterations with continue

Sometimes you are in an iteration of a loop and want to finish the current iteration and
immediately jump to the next iteration. In that case you can use thecontinue statement to
skip to the next iteration without finishing the body of the loop for the current iteration.

Here is an example of a loop that copies its input until the user types “done”, but treats lines
that start with the hash character as lines not to be printed (kind of like Python comments).

while True:
line = raw_input(' > ')
if line[0] == ' #' :

continue
if line == ' done ' :

break
print line

print ' Done! '

Here is a sample run of this new program withcontinue added.

> hello there
hello there
> # don ' t print this
> print this!
print this!
> done
Done!

All the lines are printed except the one that starts with the hash sign because when the
continue is executed, it ends the current iteration and jumps back to thewhile statement
to start the next iteration, thus skipping theprint statement.

5.6 Definite loops usingfor

Sometimes we want to loop through aset of things such as a list of words, the lines in a
file or a list of numbers. When we have a list of things to loop through, we can construct
a definiteloop using afor statement. We call thewhile statement anindefiniteloop be-
cause it simply loops until some condition becomesFalse whereas thefor loop is looping
through a known set of items so it runs through as many iterations as there are items in the
set.

60 Chapter 5. Iteration

The syntax of afor loop is similar to thewhile loop in that there is afor statement and a
loop body:

friends = [' Joseph ' , ' Glenn ' , ' Sally ']
for friend in friends:

print ' Happy New Year: ' , friend
print ' Done! '

In Python terms, the variablefriends is a list3 of three strings and thefor loop goes
through the list and executes the body once for each of the three strings in the list resulting
in this output:

Happy New Year: Joseph
Happy New Year: Glenn
Happy New Year: Sally
Done!

Translating thisfor loop to English is not as direct as thewhile , but if you think of friends
as aset, it goes like this: “Run the statements in the body of the for loop once for each
friend in the set named friends.”.

Looking at thefor loop, for and in are reserved Python keywords, andfriend and
friends are variables.

for friend in friends :
print ’Happy New Year’, friend

In particular, friend is the iteration variable for the for loop. The variablefriend
changes for each iteration of the loop and controls when thefor loop completes. The
iteration variable steps successively through the three strings stored in thefriends vari-
able.

5.7 Loop patterns

Often we use a for or while loop to go through a list of items or the contents of a file and we
are looking for something such as the largest or smallest value of the data we scan through.

These loops are generally constructed by:

• Initialize one or more variables before the loop starts.

• Perform some computation on each item in the loop body, possibly changing the
variables in the body of the loop

• At the end of the loop, the variables contain the information we are looking for

We will use a list of numbers to demonstrate the concepts and construction of these loop
patterns.

3We will examine lists in more detail in a later chapter

5.7. Loop patterns 61

5.7.1 Counting and summing loops

For example, to count the number of items in a list, we would write the followingfor loop:

count = 0
for iterval in [3, 41, 12, 9, 74, 15]:

count = count + 1
print ' Count: ' , count

We set the variablecount to zero before the loop starts, then we write afor loop to run
through the list of numbers. Ouriteration variable is namediterval and while we do not
useiterval in the loop, it does control the loop and cause the loop body tobe executed
once for each of the values in the list.

In the body of the loop, we add one to the current value ofcount for each of the values in
the list. While the loop is executing, the value ofcount is the number of values we have
seen “so far”.

Once the loop completes, the value ofcount is the total number of items. The total number
“falls in our lap” at the end of the loop. We construct the loopso that we have what we
want when the loop finishes.

Another similar loop that computes the total of a set of numbers is as follows:

total = 0
for iterval in [3, 41, 12, 9, 74, 15]:

total = total + iterval
print ' Total: ' , total

In this loop wedouse theiteration variable . Instead of simply adding one to thecount as
in the previous loop, we add the actual number (3, 41, 12, etc.) to the running total during
each loop iteration. If you think about the variabletotal , it contains the “running total of
the values so far”. So before the loop startstotal is zero because we have not yet seen any
values, during the looptotal is the running total, and at the end of the looptotal is the
overall total of all the values in the list.

As the loop executes,total accumulates the sum of the elements; a variable used this way
is sometimes called anaccumulator.

Neither the counting loop nor the summing loop are particularly useful in practice because
there are built-in functionslen() andsum() that compute the number of items in a list and
the total of the items in the list respectively.

5.7.2 Maximum and minimum loops

To find the largest value in a list or sequence, we construct the following loop:

62 Chapter 5. Iteration

largest = None
print ' Before: ' , largest
for iterval in [3, 41, 12, 9, 74, 15]:

if largest is None or largest < iterval:
largest = iterval

print ' Loop: ' , iterval, largest
print ' Largest: ' , largest

When the program executes, the output is as follows:

Before: None
Loop: 3 3
Loop: 41 41
Loop: 12 41
Loop: 9 41
Loop: 74 74
Loop: 15 74
Largest: 74

The variablelargest is best thought of as the “largest value we have seen so far”. Before
the loop, we setlargest to the constantNone. None is a special constant value which we
can store in a variable to mark the variable as “empty”.

Before the loop starts, the largest value we have seen so far is None since we have not yet
seen any values. While the loop is executing, iflargest is None then we take the first value
we see as the largest so far. You can see in the first iteration when the value ofiterval is
3, sincelargest is None, we immediately setlargest to be 3.

After the first iteration,largest is no longerNone, so the second part of the compound
logical expression that checkslargest < iterval triggers only when we see a value that
is larger than the “largest so far”. When we see a new “even larger” value we take that new
value forlargest . You can see in the program output thatlargest progresses from 3 to
41 to 74.

At the end of the loop, we have scanned all of the values and thevariablelargest now
does contain the largest value in the list.

To compute the smallest number, the code is very similar withone small change:

smallest = None
print ' Before: ' , smallest
for iterval in [3, 41, 12, 9, 74, 15]:

if smallest is None or iterval < smallest:
smallest = iterval

print ' Loop: ' , iterval, smallest
print ' Smallest: ' , smallest

Again,smallest is the “smallest so far” before, during, and after the loop executes. When
the loop has completed,smallest contains the minimum value in the list.

5.8. Debugging 63

Again as in counting and summing, the built-in functionsmax() andmin() make writing
these exact loops unnecessary.

The following is a simple version of the Python built-inmin() function:

def min(values):
smallest = None
for value in values:

if smallest is None or value < smallest:
smallest = iterval

return smallest

In the function version of the smallest code, we removed all of the print statements so as
to be equivalent to themin function which is already built-in to Python.

5.8 Debugging

As you start writing bigger programs, you might find yourselfspending more time debug-
ging. More code means more chances to make an error and more places for bugs to hide.

One way to cut your debugging time is “debugging by bisection.” For example, if there are
100 lines in your program and you check them one at a time, it would take 100 steps.

Instead, try to break the problem in half. Look at the middle of the program, or near it, for
an intermediate value you can check. Add aprint statement (or something else that has a
verifiable effect) and run the program.

If the mid-point check is incorrect, the problem must be in the first half of the program. If
it is correct, the problem is in the second half.

Every time you perform a check like this, you halve the numberof lines you have to search.
After six steps (which is much less than 100), you would be down to one or two lines of
code, at least in theory.

In practice it is not always clear what the “middle of the program” is and not always possible
to check it. It doesn’t make sense to count lines and find the exact midpoint. Instead, think
about places in the program where there might be errors and places where it is easy to put
a check. Then choose a spot where you think the chances are about the same that the bug
is before or after the check.

5.9 Glossary
accumulator: A variable used in a loop to add up or accumulate a result.

counter: A variable used in a loop to count the number of times something happened.
We initialize a counter to zero and then increment the counter each time we want to
“count” something.

64 Chapter 5. Iteration

decrement: An update that decreases the value of a variable.

initialize: An assignment that gives an initial value to a variable that will be updated.

increment: An update that increases the value of a variable (often by one).

infinite loop: A loop in which the terminating condition is never satisfied or for which
there is no termination condition.

iteration: Repeated execution of a set of statements using either a recursive function call
or a loop.

5.10 Exercises

Exercise 5.1Write a program which repeatedly reads numbers until the userenters “done”.
Once “done” is entered, print out the total, count, and average of the numbers. If the user
enters anything other than a number, detect their mistake using try andexcept and print
an error message and skip to the next number.

Enter a number: 4
Enter a number: 5
Enter a number: bad data
Invalid input
Enter a number: 7
Enter a number: done
16 3 5.33333333333

Exercise 5.2Write another program that prompts for a list of numbers as above and at the
end prints out both the maximum and minimum of the numbers.

Chapter 6

Strings

6.1 A string is a sequence

A string is asequenceof characters. You can access the characters one at a time with the
bracket operator:

>>> fruit = ' banana '
>>> letter = fruit[1]

The second statement extracts the character at index position 1 from thefruit variable
and assigns it toletter variable.

The expression in brackets is called anindex. The index indicates which character in the
sequence you want (hence the name).

But you might not get what you expect:

>>> print letter
a

For most people, the first letter of' banana ' is b, not a. But in Python, the index is an
offset from the beginning of the string, and the offset of thefirst letter is zero.

>>> letter = fruit[0]
>>> print letter
b

Sob is the 0th letter (“zero-eth”) of' banana ' , a is the 1th letter (“one-eth”), andn is the
2th (“two-eth”) letter.

b a n n aa
[0] [1] [2] [3] [4] [5]

66 Chapter 6. Strings

You can use any expression, including variables and operators, as an index, but the value
of the index has to be an integer. Otherwise you get:

>>> letter = fruit[1.5]
TypeError: string indices must be integers

6.2 Getting the length of a string usinglen

len is a built-in function that returns the number of charactersin a string:

>>> fruit = ' banana '
>>> len(fruit)
6

To get the last letter of a string, you might be tempted to try something like this:

>>> length = len(fruit)
>>> last = fruit[length]
IndexError: string index out of range

The reason for theIndexError is that there is no letter in’banana’ with the index 6. Since
we started counting at zero, the six letters are numbered 0 to5. To get the last character,
you have to subtract 1 fromlength :

>>> last = fruit[length-1]
>>> print last
a

Alternatively, you can use negative indices, which count backward from the end of the
string. The expressionfruit[-1] yields the last letter,fruit[-2] yields the second to
last, and so on.

6.3 Traversal through a string with a for loop

A lot of computations involve processing a string one character at a time. Often they start
at the beginning, select each character in turn, do something to it, and continue until the
end. This pattern of processing is called atraversal. One way to write a traversal is with a
while loop:

index = 0
while index < len(fruit):

letter = fruit[index]
print letter
index = index + 1

6.4. String slices 67

This loop traverses the string and displays each letter on a line by itself. The loop condition
is index < len(fruit) , so whenindex is equal to the length of the string, the condition
is false, and the body of the loop is not executed. The last character accessed is the one
with the indexlen(fruit)-1 , which is the last character in the string.

Exercise 6.1Write awhile loop that starts at the last character in the string and worksits
way backwards to the first character in the string, printing each letter on a separate line,
except backwards.

Another way to write a traversal is with afor loop:

for char in fruit:
print char

Each time through the loop, the next character in the string is assigned to the variablechar .
The loop continues until no characters are left.

The following example shows how to use concatenation (string addition) and afor loop to
generate an abecedarian series (that is, in alphabetical order). In Robert McCloskey’s book
Make Way for Ducklings, the names of the ducklings are Jack, Kack, Lack, Mack, Nack,
Ouack, Pack, and Quack. This loop outputs these names in order:

prefixes = ' JKLMNOPQ'
suffix = ' ack '

for letter in prefixes:
print letter + suffix

The output is:

Jack
Kack
Lack
Mack
Nack
Oack
Pack
Qack

Of course, that’s not quite right because “Ouack” and “Quack” are misspelled.

6.4 String slices

A segment of a string is called aslice. Selecting a slice is similar to selecting a character:

68 Chapter 6. Strings

>>> s = ' Monty Python '
>>> print s[0:5]
Monty
>>> print s[6:13]
Python

The operator[n:m] returns the part of the string from the “n-eth” character to the “m-eth”
character, including the first but excluding the last. This behavior is counterintuitive, but
it might help to imagine the indices pointingbetweenthe characters, as in the following
diagram:

fruit b a n na a ’
0 1 2 3 4 5 6index

’

If you omit the first index (before the colon), the slice starts at the beginning of the string.
If you omit the second index, the slice goes to the end of the string:

>>> fruit = ' banana '
>>> fruit[:3]
' ban '
>>> fruit[3:]
' ana '

If the first index is greater than or equal to the second the result is anempty string, repre-
sented by two quotation marks:

>>> fruit = ' banana '
>>> fruit[3:3]
''

An empty string contains no characters and has length 0, but other than that, it is the same
as any other string.

Exercise 6.2Given thatfruit is a string, what doesfruit[:] mean?

6.5 Strings are immutable

It is tempting to use the[] operator on the left side of an assignment, with the intention of
changing a character in a string. For example:

>>> greeting = ' Hello, world! '
>>> greeting[0] = ' J '
TypeError: object does not support item assignment

6.6. Searching 69

The “object” in this case is the string and the “item” is the character you tried to assign.
For now, anobject is the same thing as a value, but we will refine that definition later. An
item is one of the values in a sequence.

The reason for the error is that strings areimmutable, which means you can’t change an
existing string. The best you can do is create a new string that is a variation on the original:

>>> greeting = ' Hello, world! '
>>> new_greeting = ' J ' + greeting[1:]
>>> print new_greeting
Jello, world!

This example concatenates a new first letter onto a slice ofgreeting . It has no effect on
the original string.

6.6 Searching

What does the following function do?

def find(word, letter):
index = 0
while index < len(word):

if word[index] == letter:
return index

index = index + 1
return -1

In a sense,find is the opposite of the[] operator. Instead of taking an index and extracting
the corresponding character, it takes a character and finds the index where that character
first appears. If the character is not found, the function returns-1 .

This is the first example we have seen of areturn statement inside a loop. Ifword[index]
== letter , the function breaks out of the loop and returns immediately.

If the character doesn’t appear in the string, the loop exitsnormally at the bottom and
returns-1 .

This pattern of computation—traversing a sequence and returning when we find what we
are looking for—is a called asearch.

Exercise 6.3Modify find so that it has a third parameter, the index inword where it
should start looking.

6.7 Looping and counting

The following program counts the number of times the lettera appears in a string:

70 Chapter 6. Strings

word = ' banana '
count = 0
for letter in word:

if letter == ' a' :
count = count + 1

print count

This program demonstrates another pattern of computation called acounter. The variable
count is initialized to 0 and then incremented each time ana is found. When the loop exits,
count contains the result—the total number ofa’s.

Exercise 6.4Encapsulate this code in a function namedcount , and generalize it so that it
accepts the string and the letter as arguments.

6.8 Thein operator

The wordin is a boolean operator that takes two strings and returnsTrue if the first appears
as a substring in the second:

>>> ' a' in ' banana '
True
>>> ' seed ' in ' banana '
False

6.9 String comparison

The comparison operators work on strings. To see if two strings are equal:

if word == ' banana ' :
print ' All right, bananas. '

Other comparison operations are useful for putting words inalphabetical order:

if word < ' banana ' :
print ' Your word, ' + word + ' , comes before banana. '

elif word > ' banana ' :
print ' Your word, ' + word + ' , comes after banana. '

else:
print ' All right, bananas. '

Python does not handle uppercase and lowercase letters the same way that people do. All
the uppercase letters come before all the lowercase letters, so:

Your word, Pineapple, comes before banana.

6.10. string methods 71

A common way to address this problem is to convert strings to astandard format, such as
all lowercase, before performing the comparison. Keep thatin mind in case you have to
defend yourself against a man armed with a Pineapple.

6.10 string methods

Strings are an example of Pythonobjects. An object contains both data (the actual string
itself) as well asmethodswhich are effectively functions which are built into the object
and available to anyinstanceof the object.

Python has a function calleddir that lists the methods available for an object. Thetype
function shows the type of an object and thedir function shows the available methods.

>>> stuff = ' Hello world '
>>> type(stuff)
<type ' str ' >
>>> dir(stuff)
[' capitalize ' , ' center ' , ' count ' , ' decode ' , ' encode ' ,
' endswith ' , ' expandtabs ' , ' find ' , ' format ' , ' index ' ,
' isalnum ' , ' isalpha ' , ' isdigit ' , ' islower ' , ' isspace ' ,
' istitle ' , ' isupper ' , ' join ' , ' ljust ' , ' lower ' , ' lstrip ' ,
' partition ' , ' replace ' , ' rfind ' , ' rindex ' , ' rjust ' ,
' rpartition ' , ' rsplit ' , ' rstrip ' , ' split ' , ' splitlines ' ,
' startswith ' , ' strip ' , ' swapcase ' , ' title ' , ' translate ' ,
' upper ' , ' zfill ']
>>> help(str.capitalize)
Help on method_descriptor:

capitalize(...)
S.capitalize() -> string

Return a copy of the string S with only its first character
capitalized.

>>>

While thedir function lists the methods, and you can usehelp to get some simple doc-
umentation on a method, a better source of documentation forstring methods would be
docs.python.org/library/string.html .

Calling amethod is similar to calling a function—it takes arguments and returns a value—
but the syntax is different. We call a method by appending themethod name to the variable
name using the period as a delimiter.

For example, the methodupper takes a string and returns a new string with all uppercase
letters:

72 Chapter 6. Strings

Instead of the function syntaxupper(word) , it uses the method syntaxword.upper() .

>>> word = ' banana '
>>> new_word = word.upper()
>>> print new_word
BANANA

This form of dot notation specifies the name of the method,upper , and the name of the
string to apply the method to,word . The empty parentheses indicate that this method takes
no argument.

A method call is called aninvocation; in this case, we would say that we are invoking
upper on theword .

As it turns out, there is a string method namedfind that is remarkably similar to the
function we wrote:

>>> word = ' banana '
>>> index = word.find(' a')
>>> print index
1

In this example, we invokefind onword and pass the letter we are looking for as a param-
eter.

Actually, thefind method is more general than our function; it can find substrings, not just
characters:

>>> word.find(' na')
2

It can take as a second argument the index where it should start:

>>> word.find(' na' , 3)
4

One common task is to remove white space (spaces, tabs, or newlines) from the beginning
and end of a string using thestrip method:

>>> line = ' Here we go '
>>> line.strip()
' Here we go '

Some methods such asstartswith return boolean values.

>>> line = ' Please have a nice day '
>>> line.startswith(' Please ')
True
>>> line.startswith(' p')
False

6.11. Parsing strings 73

You will note thatstartswith requires case to match so sometimes we take a line and
map it all to lowercase before we do any checking using thelower method.

>>> line = ' Please have a nice day '
>>> line.startswith(' p')
False
>>> line.lower()
' please have a nice day '
>>> line.lower().startswith(' p')
True

In the last example, the methodlower is called and then we usestartswith to check to
see if the resulting lowercase string starts with the letter“p”. As long as we are careful with
the order, we can make multiple method calls in a single expression.

Exercise 6.5There is a string method calledcount that is similar to the function in the pre-
vious exercise. Read the documentation of this method atdocs.python.org/library/
string.html and write an invocation that counts the number of times the letter a occurs
in ' banana ' .

6.11 Parsing strings

Often, we want to look into a string and find a substring. For example if we were presented
a series of lines formatted as follows:

From stephen.marquard@ uct.ac.za Sat Jan 5 09:14:16 2008

And we wanted to pull out only the second half of the address (i.e. uct.ac.za) from each
line. We can do this by using thefind method and string slicing.

First, we will find the position of the at-sign in the string. Then we will find the position of
the first spaceafter the at-sign. And then we will use string slicing to extract the portion of
the string which we are looking for.

>>> data = ' From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008 '
>>> atpos = data.find(' @')
>>> print atpos
21
>>> sppos = data.find(' ' ,atpos)
>>> print sppos
31
>>> host = data[atpos+1:sppos]
>>> print host
uct.ac.za
>>>

74 Chapter 6. Strings

We use a version of thefind method which allows us to specify a position in the string
where we wantfind to start looking. When we slice, we extract the characters from “one
beyond the at-sign through up tobut not includingthe space character”.

The documentation for thefind method is available atdocs.python.org/library/
string.html .

6.12 Format operator

The format operator , %allows us to construct strings, replacing parts of the strings with
the data stored in variables. When applied to integers,%is the modulus operator. But when
the first operand is a string,%is the format operator.

The first operand is theformat string , which contains one or moreformat sequences,
which specify how the second operand is formatted. The result is a string.

For example, the format sequence' %d' means that the second operand should be formatted
as an integer (d stands for “decimal”):

>>> camels = 42
>>> ' %d' % camels
' 42'

The result is the string' 42' , which is not to be confused with the integer value42.

A format sequence can appear anywhere in the string, so you can embed a value in a
sentence:

>>> camels = 42
>>> ' I have spotted %d camels. ' % camels
' I have spotted 42 camels. '

If there is more than one format sequence in the string, the second argument has to be a
tuple. Each format sequence is matched with an element of thetuple, in order.

The following example uses' %d' to format an integer,' %g' to format a floating-point
number (don’t ask why), and' %s' to format a string:

>>> ' In %d years I have spotted %g %s. ' % (3, 0.1, ' camels ')
' In 3 years I have spotted 0.1 camels. '

The number of elements in the tuple has to match the number of format sequences in the
string. Also, the types of the elements have to match the format sequences:

>>> ' %d %d %d' % (1, 2)
TypeError: not enough arguments for format string
>>> ' %d' % ' dollars '
TypeError: illegal argument type for built-in operation

6.13. Debugging 75

In the first example, there aren’t enough elements; in the second, the element is the wrong
type.

The format operator is powerful, but it can be difficult to use. You can read more about it
at docs.python.org/lib/typesseq-strings.html .

6.13 Debugging

A skill that you should cultivate as you program is always asking yourself, “What could go
wrong here?” or alternatively, “What crazy thing might our user do to crash our (seemingly)
perfect program?”.

For example, look at the program which we used to demonstratethe while loop in the
chapter on iteration:

while True:
line = raw_input(' > ')
if line[0] == ' #' :

continue
if line == ' done ' :

break
print line

print ' Done! '

Look what happens when the user enters an empty line of input:

> hello there
hello there
> # don ' t print this
> print this!
print this!
>
Traceback (most recent call last):

File "copytildone.py", line 3, in <module>
if line[0] == ' #' :

The code works fine until it is presented an empty line. Then there is no zeroth character
so we get a traceback. There are two solutions to this to make line three “safe” even if the
line is empty.

One possibility is to simply use thestartswith method which returnsFalse if the string
is empty.

if line.startswith(' #') :

76 Chapter 6. Strings

Another way to safely write theif statement using theguardian pattern and make sure
the second logical expression is evaluated only where thereis at least one character in the
string.:

if len(line) > 0 and line[0] == ' #' :

Another common source of problems is when you hand-construct index values to move
through a sequence. It can be quite tricky to get the beginning and end of the traversal
right.

Here is a function that is supposed to compare two words and return True if one of the
words is the reverse of the other, but it contains two errors:

def is_reverse(word1, word2):
if len(word1) != len(word2):

return False

i = 0
j = len(word2)

while j > 0:
if word1[i] != word2[j]:

return False
i = i+1
j = j-1

return True

The firstif statement checks whether the words are the same length. If not, we can return
False immediately and then, for the rest of the function, we can assume that the words are
the same length. This is another example of the guardian pattern.

i and j are indices:i traversesword1 forward while j traversesword2 backward. If we
find two letters that don’t match, we can returnFalse immediately. If we get through the
whole loop and all the letters match, we returnTrue .

If we test this function with the words “pots” and “stop”, we expect the return valueTrue ,
but we get an IndexError:

>>> is_reverse(' pots ' , ' stop ')
...

File "reverse.py", line 15, in is_reverse
if word1[i] != word2[j]:

IndexError: string index out of range

For debugging this kind of error, my first move is to print the values of the indices imme-
diately before the line where the error appears.

6.14. Glossary 77

while j > 0:
print i, j # print here

if word1[i] != word2[j]:
return False

i = i+1
j = j-1

Now when I run the program again, I get more information:

>>> is_reverse(' pots ' , ' stop ')
0 4
...
IndexError: string index out of range

The first time through the loop, the value ofj is 4, which is out of range for the
string ' pots ' . The index of the last character is 3, so the initial value forj should be
len(word2)-1 .

If I fix that error and run the program again, I get:

>>> is_reverse(' pots ' , ' stop ')
0 3
1 2
2 1
True

This time we get the right answer, but it looks like the loop only ran three times, which is
suspicious. To get a better idea of what is happening, it is useful to draw a state diagram.
During the first iteration, the frame foris_reverse looks like this:

i 0 j 3

word1 ’pots’ word2 ’stop’

I took a little license by arranging the variables in the frame and adding dotted lines to show
that the values ofi andj indicate characters inword1 andword2 .

Exercise 6.6Starting with this diagram, execute the program on paper, changing the values
of i andj during each iteration. Find and fix the second error in this function.

6.14 Glossary
counter: A variable used to count something, usually initialized to zero and then incre-

mented.

78 Chapter 6. Strings

empty string: A string with no characters and length 0, represented by two quotation
marks.

format operator: An operator,%, that takes a format string and a tuple and generates a
string that includes the elements of the tuple formatted as specified by the format
string.

format sequence: A sequence of characters in a format string, like%d, that specifies how
a value should be formatted.

format string: A string, used with the format operator, that contains format sequences.

flag: A boolean variable used to indicate whether a condition is true.

invocation: A statement that calls a method.

immutable: The property of a sequence whose items cannot be assigned.

index: An integer value used to select an item in a sequence, such as acharacter in a string.

item: One of the values in a sequence.

method: A function that is associated with an object and called usingdot notation.

object: Something a variable can refer to. For now, you can use “object” and “value”
interchangeably.

search: A pattern of traversal that stops when it finds what it is looking for.

sequence:An ordered set; that is, a set of values where each value is identified by an
integer index.

slice: A part of a string specified by a range of indices.

traverse: To iterate through the items in a sequence, performing a similar operation on
each.

6.15 Exercises

Exercise 6.7Write some code to parse lines of the form:

X-DSPAM-Confidence: 0.8475

Usefind and string slicing to extract the portion of the string afterthe colon character and
then use thefloat function to convert the extracted string into a floating point number.

6.15. Exercises 79

Exercise 6.8Read the documentation of the string methods atdocs.python.org/lib/
string-methods.html . You might want to experiment with some of them to make sure
you understand how they work.strip andreplace are particularly useful.

The documentation uses a syntax that might be confusing. Forexample, in
find(sub[, start[, end]]) , the brackets indicate optional arguments. Sosub is re-
quired, butstart is optional, and if you includestart , thenend is optional.

Exercise 6.9The following functions are allintendedto check whether a string contains
any lowercase letters, but at least some of them are wrong. For each function, describe
what the function actually does (assuming that the parameter is a string).

def any_lowercase1(s):
for c in s:

if c.islower():
return True

else:
return False

def any_lowercase2(s):
for c in s:

if ' c ' .islower():
return ' True '

else:
return ' False '

def any_lowercase3(s):
for c in s:

flag = c.islower()
return flag

def any_lowercase4(s):
flag = False
for c in s:

flag = flag or c.islower()
return flag

def any_lowercase5(s):
for c in s:

if not c.islower():
return False

return True

Exercise 6.10ROT13 is a weak form of encryption that involves “rotating” each letter in

80 Chapter 6. Strings

a word by 13 places1. To rotate a letter means to shift it through the alphabet, wrapping
around to the beginning if necessary, so ’A’ shifted by 3 is ’D’ and ’Z’ shifted by 1 is ’A’.

Write a function calledrotate_word that takes a string and an integer as parameters and
returns a new string that contains the letters from the original string “rotated” by the given
amount.

For example, “cheer” rotated by 7 is “jolly” and “melon” rotated by -10 is “cubed”.

You might want to use the built-in functionsord , which converts a character to a numeric
code, andchr , which converts numeric codes to characters.

Potentially offensive jokes on the Internet are sometimes encoded in ROT13. If you are not
easily offended, find and decode some of them.

1Seewikipedia.org/wiki/ROT13

Chapter 7

Files

7.1 Persistence

So far, we have learned how to write programs and communicateour intentions to the
Central Processing Unitusing conditional execution, functions, and iterations. We have
learned how to create and use data structures in theMain Memory . The CPU and memory
are where our software works and runs. It is where all of the “thinking” happens.

But if you recall from our hardware architecture discussions, once the power is turned off,
anything stored in either the CPU or main memory is erased. Soup to now, our programs
have just been transient fun exercises to learn Python.

Unit

Main
Memory Secondary

Memory

Network
Input

Software

Output
Devices

Central
Processing

In this chapter, we start to work withSecondary Memory(or files). Secondary memory
is not erased even when the power is turned off. Or in the case of a USB flash drive, the

82 Chapter 7. Files

data can we write from our programs can be removed from the system and transported to
another system.

We will primarily focus on reading and writing text files suchas those we create in a text
editor. Later we will see how to work with database files whichare binary files, specifically
designed to be read and written through database software.

7.2 Opening files

When we want to read or write a file (say on your hard drive), we first mustopen the file.
Opening the file communicates with your operating system which knows where the data
for each file is stored. When you open a file, you are asking the operating system to find
the file by name and make sure the file exists. In this example, we open the filembox.txt
which should be stored in the same folder that you are in when you start Python. You can
download this file fromwww.py4inf.com/code/mbox.txt

>>> fhand = open(' mbox.txt ')
>>> print fhand
<open file ' mbox.txt ' , mode ' r ' at 0x1005088b0>

If the open is successful, the operating system returns us afile handle. The file handle
is not the actual data contained in the file, but instead it is a“handle” that we can use to
read the data. You are given a handle if the requested file exists and you have the proper
permissions to read the file.

H

A

N

D

L

E

Your

Program

mbox.txt
open
read
write
close

From stephen.m..

Return-Path: <p..

Date: Sat, 5 Jan ..

To: source@coll..

From: stephen...

Subject: [sakai]...

Details: http:/...

...

If the file does not exist,open will fail with a traceback and you will not get a handle to
access the contents of the file:

>>> fhand = open(' stuff.txt ')
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
IOError: [Errno 2] No such file or directory: ' stuff.txt '

Later we will usetry and except to deal more gracefully with the situation where we
attempt to open a file that does not exist.

7.3. Text files and lines 83

7.3 Text files and lines

A text file can be thought of as a sequence of lines, much like a Python string can be thought
of as a sequence of characters. For example, this is a sample of a text file which records
mail activity from various individuals in an open source project development team:

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008
Return-Path: <postmaster@collab.sakaiproject.org>
Date: Sat, 5 Jan 2008 09:12:18 -0500
To: source@collab.sakaiproject.org
From: stephen.marquard@uct.ac.za
Subject: [sakai] svn commit: r39772 - content/branches/
Details: http://source.sakaiproject.org/viewsvn/?vie w=rev&rev=39772
...

The entire file of mail interactions is available fromwww.py4inf.com/code/mbox.txt
and a shortened version of the file is available fromwww.py4inf.com/code/mbox-short.
txt . These files are in a standard format for a file containing multiple mail messages. The
lines which start with “From ” separate the messages and the lines which start with “From:”
are part of the messages. For more information, seeen.wikipedia.org/wiki/Mbox .

To break the file into lines, there is a special character thatrepresents the “end of the line”
called thenewlinecharacter.

In Python, we represent thenewline character as a backslash-n in string constants. Even
though this looks like two characters, it is actually a single character. When we look at the
variable by entering “stuff” in the interpreter, it shows usthe \n in the string, but when
we useprint to show the string, we see the string broken into two lines by the newline
character.

>>> stuff = ' Hello\nWorld! '
>>> stuff
' Hello\nWorld! '
>>> print stuff
Hello
World!
>>> stuff = ' X\nY '
>>> print stuff
X
Y
>>> len(stuff)
3

You can also see that the length of the string' X\nY ' is threecharacters because the newline
character is a single character.

So when we look at the lines in a file, we need toimaginethat there is a special invisible
character at the end of each line that marks the end of the linecalled the newline.

84 Chapter 7. Files

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008\n
Return-Path: <postmaster@collab.sakaiproject.org>\n
Date: Sat, 5 Jan 2008 09:12:18 -0500\n
To: source@collab.sakaiproject.org\n
From: stephen.marquard@uct.ac.za\n
Subject: [sakai] svn commit: r39772 - content/branches/\n
Details: http://source.sakaiproject.org/viewsvn/?vie w=rev&rev=39772\n
...

So the newline character separates the characters in the fileinto lines.

7.4 Reading files

While thefile handle does not contain the data for the file, it is quite easy to construct a
for loop to read through and count each of the lines in a file:

fhand = open(' mbox.txt ')
count = 0
for line in fhand:

count = count + 1
print ' Line Count: ' , count

python open.py
Line Count: 132045

We can use the file handle as the sequence in ourfor loop. Ourfor loop simply counts the
number of lines in the file and prints them out. The rough translation of thefor loop into
English is, “for each line in the file represented by the file handle, add one to thecount
variable.”

The reason that theopen function does not read the entire file is that the file might be quite
large with many gigabytes of data. Theopen statement takes the same amount of time
regardless of the size of the file. Thefor loop actually causes the data to be read from the
file.

When the file is read using afor loop in this manner, Python takes care of splitting the data
in the file into separate lines using the newline character. Python reads each line through
the newline and includes the newline as the last character inthe line variable for each
iteration of thefor loop.

Because the for loop reads the data one line at a time, it can efficiently read and count the
lines in very large files without running out of main memory tostore the data. The above
program can count the lines in any size file using very little memory since each line is read,
counted, and then discarded.

If you know the file is relatively small compared to the size ofyour main memory, you can
read the whole file into one string using theread method on the file handle.

7.5. Searching through a file 85

>>> fhand = open(' mbox-short.txt ')
>>> inp = fhand.read()
>>> print len(inp)
94626
>>> print inp[:20]
From stephen.marquar

In this example, the entire contents (all 94,626 characters) of the filembox-short.txt are
read directly into the variableinp . We use string slicing to print out the first 20 characters
of the string data stored ininp .

When the file is read in this manner, all the characters including all of the lines and newline
characters are one big string in the variableinp. Remember that this form of theopen
function should only be used if the file data will fit comfortably in the main memory of
your computer.

If the file is too large to fit in main memory, you should write your program to read the file
in chunks using afor or while loop.

7.5 Searching through a file

When you are searching through data in a file, it is a very commonpattern to read through
a file, ignoring most of the lines and only processing lines which meet a particular criteria.
We can combine the pattern for reading a file with stringmethodsto build simple search
mechanisms.

For example, if we wanted to read a file and only print out lineswhich started with the
prefix “From:”, we could use the string methodstartswith to select only those lines with
the desired prefix:

fhand = open(' mbox-short.txt ')
for line in fhand:

if line.startswith(' From: ') :
print line

When this program runs, we get the following output:

From: stephen.marquard@uct.ac.za

From: louis@media.berkeley.edu

From: zqian@umich.edu

From: rjlowe@iupui.edu
...

86 Chapter 7. Files

The output looks great since the only lines we are seeing are those which start with “From:”,
but why are we seeing the extra blank lines? This is due to thatinvisiblenewlinecharacter.
Each of the lines ends with a newline, so theprint statement prints the string in the variable
line which includes a newline and thenprint addsanothernewline, resulting in the double
spacing effect we see.

We could use line slicing to print all but the last character,but a simpler approach is to use
therstrip method which strips whitespace from the right side of a string as follows:

fhand = open(' mbox-short.txt ')
for line in fhand:

line = line.rstrip()
if line.startswith(' From: ') :

print line

When this program runs, we get the following output:

From: stephen.marquard@uct.ac.za
From: louis@media.berkeley.edu
From: zqian@umich.edu
From: rjlowe@iupui.edu
From: zqian@umich.edu
From: rjlowe@iupui.edu
From: cwen@iupui.edu
...

As your file processing programs get more complicated, you may want to structure your
search loops usingcontinue . The basic idea of the search loop is that you are looking for
“interesting” lines and effectively skipping “uninteresting” lines. And then when we find
an interesting line, we do something with that line.

We can structure the loop to follow the pattern of skipping uninteresting lines as follows:

fhand = open(' mbox-short.txt ')
for line in fhand:

line = line.rstrip()
Skip ' uninteresting lines '
if not line.startswith(' From: ') :

continue
Process our ' interesting ' line
print line

The output of the program is the same. In English, the uninteresting lines are those which
do not start with “From:”, which we skip usingcontinue . For the “interesting” lines (i.e.
those that start with “From:”) we perform the processing on those lines.

We can use thefind string method to simulate a text editor search which finds lines where
the search string is anywhere in the line. Sincefind looks for an occurrence of a string

7.6. Letting the user choose the file name 87

within another string and either returns the position of thestring or -1 if the string was not
found, we can write the following loop to show lines which contain the string “@uct.ac.za”
(i.e. they come from the University of Capetown in South Africa):

fhand = open(' mbox-short.txt ')
for line in fhand:

line = line.rstrip()
if line.find(' @uct.ac.za ') == -1 :

continue
print line

Which produces the following output:

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008
X-Authentication-Warning: set sender to stephen.marquar d@uct.ac.za using -f
From: stephen.marquard@uct.ac.za
Author: stephen.marquard@uct.ac.za
From david.horwitz@uct.ac.za Fri Jan 4 07:02:32 2008
X-Authentication-Warning: set sender to david.horwitz@u ct.ac.za using -f
From: david.horwitz@uct.ac.za
Author: david.horwitz@uct.ac.za
...

7.6 Letting the user choose the file name

We really do not want to have to edit our Python code every timewe want to process a
different file. It would be more usable to ask the user to enterthe file name string each
time the program runs so they can use our program on differentfiles without changing the
Python code.

This is quite simple to do by reading the file name from the userusing raw_input as
follows:

fname = raw_input(' Enter the file name: ')
fhand = open(fname)
count = 0
for line in fhand:

if line.startswith(' Subject: ') :
count = count + 1

print ' There were ' , count, ' subject lines in ' , fname

We read the file name from the user and place it in a variable named fname and open that
file. Now we can run the program repeatedly on different files.

python search6.py
Enter the file name: mbox.txt

88 Chapter 7. Files

There were 1797 subject lines in mbox.txt

python search6.py
Enter the file name: mbox-short.txt
There were 27 subject lines in mbox-short.txt

Before peeking at the next section, take a look at the above program and ask yourself,
“What could go possibly wrong here?” or “What might our friendly user do that would
cause our nice little program to ungracefully exit with a traceback, making us look not-so-
cool in the eyes of our users?”.

7.7 Usingtry, except, and open

I told you not to peek. This is your last chance.

What if our user types something that is not a file name?

python search6.py
Enter the file name: missing.txt
Traceback (most recent call last):

File "search6.py", line 2, in <module>
fhand = open(fname)

IOError: [Errno 2] No such file or directory: ' missing.txt '

python search6.py
Enter the file name: na na boo boo
Traceback (most recent call last):

File "search6.py", line 2, in <module>
fhand = open(fname)

IOError: [Errno 2] No such file or directory: ' na na boo boo '

Do not laugh, users will eventually do every possible thing they can do to break your
programs — either on purpose or with malicious intent. As a matter of fact, an important
part of any software development team is a person or group called Quality Assurance(or
QA for short) whose very job it is to do the craziest things possible in an attempt to break
the software that the programmer has created.

The QA team is responsible for finding the flaws in programs before we have delivered the
program to the end-users who may be purchasing the software or paying our salary to write
the software. So the QA team is the programmer’s best friend.

So now that we see the flaw in the program, we can elegantly fix itusing thetry /except
structure. We need to assume that theopen call might fail and add recovery code when the
open fails as follows:

7.8. Writing files 89

fname = raw_input(' Enter the file name: ')
try:

fhand = open(fname)
except:

print ' File cannot be opened: ' , fname
exit()

count = 0
for line in fhand:

if line.startswith(' Subject: ') :
count = count + 1

print ' There were ' , count, ' subject lines in ' , fname

Theexit function terminates the program. It is a function that we call that never returns.
Now when our user (or QA team) types in silliness or bad file names, we “catch” them and
recover gracefully:

python search7.py
Enter the file name: mbox.txt
There were 1797 subject lines in mbox.txt

python search7.py
Enter the file name: na na boo boo
File cannot be opened: na na boo boo

Protecting theopen call is a good example of the proper use oftry andexcept in a Python
program. We use the term “Pythonic” when we are doing something the “Python way”. We
might say that the above example is the Pythonic way to open a file.

Once you become more skilled in Python, you can engage in reparte’ with other Python
programmers to decide which of two equivalent solutions to aproblem is “more Pythonic”.
The goal to be “more Pythonic” captures the notion that programming is part engineering
and part art. We are not always interested in just making something work, we also want our
solution to be elegant and to be appreciated as elegant by ourpeers.

7.8 Writing files

To write a file, you have to open it with mode' w' as a second parameter:

>>> fout = open(' output.txt ' , ' w')
>>> print fout
<open file ' output.txt ' , mode ' w' at 0xb7eb2410>

If the file already exists, opening it in write mode clears outthe old data and starts fresh, so
be careful! If the file doesn’t exist, a new one is created.

90 Chapter 7. Files

Thewrite method of the file handle object puts data into the file.

>>> line1 = ' This here ' s the wattle,\n '
>>> fout.write(line1)

Again, the file object keeps track of where it is, so if you callwrite again, it adds the new
data to the end.

We must make sure to manage the ends of lines as we write to the file by explicitly inserting
the newline character when we want to end a line. Theprint statement automatically
appends a newline, but thewrite method does not add the newline automatically.

>>> line2 = ' the emblem of our land.\n '
>>> fout.write(line2)

When you are done writing, you have to close the file to make surethat the last bit of data
is physically written to the disk so it will not be lost if the power goes off.

>>> fout.close()

We could close the files which we open for read as well, but we can be a little sloppy if we
are only opening a few files since Python makes sure that all open files are closed when the
program ends. When we are writing files, we want to explicitly close the files so as to leave
nothing to chance.

7.9 Debugging

When you are reading and writing files, you might run into problems with whitespace.
These errors can be hard to debug because spaces, tabs and newlines are normally invisible:

>>> s = ' 1 2\t 3\n 4 '
>>> print s
1 2 3

4

The built-in functionrepr can help. It takes any object as an argument and returns a string
representation of the object. For strings, it represents whitespace characters with backslash
sequences:

>>> print repr(s)
' 1 2\t 3\n 4 '

This can be helpful for debugging.

One other problem you might run into is that different systems use different characters to
indicate the end of a line. Some systems use a newline, represented\n . Others use a return
character, represented\r . Some use both. If you move files between different systems,
these inconsistencies might cause problems.

7.10. Glossary 91

For most systems, there are applications to convert from oneformat to another. You can find
them (and read more about this issue) atwikipedia.org/wiki/Newline . Or, of course,
you could write one yourself.

7.10 Glossary
catch: To prevent an exception from terminating a program using thetry and except

statements.

newline: A special character used in files and strings to indicate the end of a line.

Pythonic: A technique that works elegantly in Python. “Using try and except is the
Pythonicway to recover from missing files.”.

Quality Assurance: A person or team focused on insuring the overall quality of a software
product. QA is often involved in testing a product and identifying problems before
the product is released.

text file: A sequence of characters stored in permanent storage like a hard drive.

7.11 Exercises

Exercise 7.1Write a program to read through a file and print the contents of the file (line
by line) all in upper case. Executing the program will look asfollows:

python shout.py
Enter a file name: mbox-short.txt
FROM STEPHEN.MARQUARD@UCT.AC.ZA SAT JAN 5 09:14:16 2008
RETURN-PATH: <POSTMASTER@COLLAB.SAKAIPROJECT.ORG>
RECEIVED: FROM MURDER (MAIL.UMICH.EDU [141.211.14.90])

BY FRANKENSTEIN.MAIL.UMICH.EDU (CYRUS V2.3.8) WITH LMTPA;
SAT, 05 JAN 2008 09:14:16 -0500

You can download the file fromwww.py4inf.com/code/mbox-short.txt

Exercise 7.2Write a program to loop through a mailbox-format file and look for lines of
the form:

X-DSPAM-Confidence: 0.8475

When you encounter a line that starts with “X-DSPAM-Confidence:” pull apart the line to
extract the floating point number on the line. Count these lines and the compute the total of
the spam confidence values from these lines. When you reach theend of the file, print out
the average spam confidence.

92 Chapter 7. Files

Enter the file name: mbox.txt
Average spam confidence: 0.894128046745

Enter the file name: mbox-short.txt
Average spam confidence: 0.750718518519

Exercise 7.3Sometimes when programmers get bored or want to have a bit of fun, they
add a harmlessEaster Egg to their program (en.wikipedia.org/wiki/Easter_egg_
(media)). Modify the program that prompts the user for the file name sothat it prints a
funny message when the user types in the exact file name ’na na boo boo’. The program
should behave normally for all other files which exist and don’t exist. Here is a sample
execution of the program:

python egg.py
Enter the file name: mbox.txt
There were 1797 subject lines in mbox.txt

python egg.py
Enter the file name: missing.tyxt
File cannot be opened: missing.tyxt

python egg.py
Enter the file name: na na boo boo
NA NA BOO BOO TO YOU - You have been punk' d!

We are not encouraging you to put Easter Eggs in your programs- this is just an exercise.

Chapter 8

Lists

8.1 A list is a sequence

Like a string, alist is a sequence of values. In a string, the values are characters; in a list,
they can be any type. The values in list are calledelementsor sometimesitems.

There are several ways to create a new list; the simplest is toenclose the elements in square
brackets ([and]):

[10, 20, 30, 40]
[' crunchy frog ' , ' ram bladder ' , ' lark vomit ']

The first example is a list of four integers. The second is a list of three strings. The
elements of a list don’t have to be the same type. The following list contains a string, a
float, an integer, and (lo!) another list:

[' spam' , 2.0, 5, [10, 20]]

A list within another list isnested.

A list that contains no elements is called an empty list; you can create one with empty
brackets,[] .

As you might expect, you can assign list values to variables:

>>> cheeses = [' Cheddar ' , ' Edam' , ' Gouda']
>>> numbers = [17, 123]
>>> empty = []
>>> print cheeses, numbers, empty
[' Cheddar ' , ' Edam' , ' Gouda'] [17, 123] []

94 Chapter 8. Lists

8.2 Lists are mutable

The syntax for accessing the elements of a list is the same as for accessing the characters
of a string—the bracket operator. The expression inside the brackets specifies the index.
Remember that the indices start at 0:

>>> print cheeses[0]
Cheddar

Unlike strings, lists are mutable. When the bracket operatorappears on the left side of an
assignment, it identifies the element of the list that will beassigned.

>>> numbers = [17, 123]
>>> numbers[1] = 5
>>> print numbers
[17, 5]

The one-eth element ofnumbers , which used to be 123, is now 5.

You can think of a list as a relationship between indices and elements. This relationship
is called amapping; each index “maps to” one of the elements. Here is a state diagram
showingcheeses , numbers andempty :

0

1

list

numbers 17

123

5

list

empty

0

1

2

’Cheddar’

’Edam’

’Gouda’

list

cheeses

Lists are represented by boxes with the word “list” outside and the elements of the list
inside. cheeses refers to a list with three elements indexed 0, 1 and 2.numbers contains
two elements; the diagram shows that the value of the second element has been reassigned
from 123 to 5.empty refers to a list with no elements.

List indices work the same way as string indices:

8.3. Traversing a list 95

• Any integer expression can be used as an index.

• If you try to read or write an element that does not exist, youget anIndexError .

• If an index has a negative value, it counts backward from theend of the list.

The in operator also works on lists.

>>> cheeses = [' Cheddar ' , ' Edam' , ' Gouda']
>>> ' Edam' in cheeses
True
>>> ' Brie ' in cheeses
False

8.3 Traversing a list

The most common way to traverse the elements of a list is with afor loop. The syntax is
the same as for strings:

for cheese in cheeses:
print cheese

This works well if you only need to read the elements of the list. But if you want to write
or update the elements, you need the indices. A common way to do that is to combine the
functionsrange andlen :

for i in range(len(numbers)):
numbers[i] = numbers[i] * 2

This loop traverses the list and updates each element.len returns the number of elements
in the list. range returns a list of indices from 0 ton−1, wheren is the length of the list.
Each time through the loopi gets the index of the next element. The assignment statement
in the body usesi to read the old value of the element and to assign the new value.

A for loop over an empty list never executes the body:

for x in empty:
print ' This never happens. '

Although a list can contain another list, the nested list still counts as a single element. The
length of this list is four:

[' spam' , 1, [' Brie ' , ' Roquefort ' , ' Pol le Veq '], [1, 2, 3]]

96 Chapter 8. Lists

8.4 List operations

The+ operator concatenates lists:

>>> a = [1, 2, 3]
>>> b = [4, 5, 6]
>>> c = a + b
>>> print c
[1, 2, 3, 4, 5, 6]

Similarly, the* operator repeats a list a given number of times:

>>> [0] * 4
[0, 0, 0, 0]
>>> [1, 2, 3] * 3
[1, 2, 3, 1, 2, 3, 1, 2, 3]

The first example repeats[0] four times. The second example repeats the list[1, 2, 3]
three times.

8.5 List slices

The slice operator also works on lists:

>>> t = [' a' , ' b' , ' c ' , ' d' , ' e' , ' f ']
>>> t[1:3]
[' b' , ' c ']
>>> t[:4]
[' a' , ' b' , ' c ' , ' d']
>>> t[3:]
[' d' , ' e' , ' f ']

If you omit the first index, the slice starts at the beginning.If you omit the second, the slice
goes to the end. So if you omit both, the slice is a copy of the whole list.

>>> t[:]
[' a' , ' b' , ' c ' , ' d' , ' e' , ' f ']

Since lists are mutable, it is often useful to make a copy before performing operations that
fold, spindle or mutilate lists.

A slice operator on the left side of an assignment can update multiple elements:

>>> t = [' a' , ' b' , ' c ' , ' d' , ' e' , ' f ']
>>> t[1:3] = [' x ' , ' y ']
>>> print t
[' a' , ' x ' , ' y ' , ' d' , ' e' , ' f ']

8.6. List methods 97

8.6 List methods

Python provides methods that operate on lists. For example,append adds a new element
to the end of a list:

>>> t = [' a' , ' b' , ' c ']
>>> t.append(' d')
>>> print t
[' a' , ' b' , ' c ' , ' d']

extend takes a list as an argument and appends all of the elements:

>>> t1 = [' a' , ' b' , ' c ']
>>> t2 = [' d' , ' e']
>>> t1.extend(t2)
>>> print t1
[' a' , ' b' , ' c ' , ' d' , ' e']

This example leavest2 unmodified.

sort arranges the elements of the list from low to high:

>>> t = [' d' , ' c ' , ' e' , ' b' , ' a']
>>> t.sort()
>>> print t
[' a' , ' b' , ' c ' , ' d' , ' e']

Most list methods are void; they modify the list and returnNone. If you accidentally write
t = t.sort() , you will be disappointed with the result.

8.7 Deleting elements

There are several ways to delete elements from a list. If you know the index of the element
you want, you can usepop :

>>> t = [' a' , ' b' , ' c ']
>>> x = t.pop(1)
>>> print t
[' a' , ' c ']
>>> print x
b

pop modifies the list and returns the element that was removed. Ifyou don’t provide an
index, it deletes and returns the last element.

If you don’t need the removed value, you can use thedel operator:

98 Chapter 8. Lists

>>> t = [' a' , ' b' , ' c ']
>>> del t[1]
>>> print t
[' a' , ' c ']

If you know the element you want to remove (but not the index),you can useremove :

>>> t = [' a' , ' b' , ' c ']
>>> t.remove(' b')
>>> print t
[' a' , ' c ']

The return value fromremove is None.

To remove more than one element, you can usedel with a slice index:

>>> t = [' a' , ' b' , ' c ' , ' d' , ' e' , ' f ']
>>> del t[1:5]
>>> print t
[' a' , ' f ']

As usual, the slice selects all the elements up to, but not including, the second index.

8.8 Lists and strings

A string is a sequence of characters and a list is a sequence ofvalues, but a list of characters
is not the same as a string. To convert from a string to a list ofcharacters, you can uselist :

>>> s = ' spam'
>>> t = list(s)
>>> print t
[' s ' , ' p' , ' a' , ' m']

Becauselist is the name of a built-in function, you should avoid using it as a variable
name. I also avoidl because it looks too much like1. So that’s why I uset .

The list function breaks a string into individual letters. If you want to break a string into
words, you can use thesplit method:

>>> s = ' pining for the fjords '
>>> t = s.split()
>>> print t
[' pining ' , ' for ' , ' the ' , ' fjords ']
>>> print t[2]
the

8.9. Parsing lines 99

Once you have usedsplit to break the string into a list of tokens, you can use the index
operator (square bracket) to look at a particular word in thelist.

You can callsplit with an optional argument called adelimiter specifies which characters
to use as word boundaries. The following example uses a hyphen as a delimiter:

>>> s = ' spam-spam-spam '
>>> delimiter = ' - '
>>> s.split(delimiter)
[' spam' , ' spam' , ' spam']

join is the inverse ofsplit . It takes a list of strings and concatenates the elements.join
is a string method, so you have to invoke it on the delimiter and pass the list as a parameter:

>>> t = [' pining ' , ' for ' , ' the ' , ' fjords ']
>>> delimiter = ' '
>>> delimiter.join(t)
' pining for the fjords '

In this case the delimiter is a space character, sojoin puts a space between words. To
concatenate strings without spaces, you can use the empty string, '' , as a delimiter.

8.9 Parsing lines

Usually when we are reading a file we want to do something to thelines other than just
printing the whole line. Often we want to find the “interesting lines” and thenparse the
line to find some interestingpart of the line. What if we wanted to print out the day of the
week from those lines that start with “From ”.

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

Thesplit method is very effective when faced with this kind of problem. We can write a
small program that looks for lines where the line starts with“From ” and thensplit those
lines and then print out the third word in the line:

fhand = open(' mbox-short.txt ')
for line in fhand:

line = line.rstrip()
if not line.startswith(' From ') : continue
words = line.split()
print words[2]

We also use the contracted form of theif statement where we put thecontinue on the
same line as theif . This contracted form of theif functions the same as if thecontinue
were on the next line and indented.

The program produces the following output:

100 Chapter 8. Lists

Sat
Fri
Fri
Fri

...

Later, we will learn increasingly sophisticated techniques for picking the lines to work on
and how we pull those lines apart to find the exact bit of information we are looking for.

8.10 Objects and values

If we execute these assignment statements:

a = ' banana '
b = ' banana '

We know thata andb both refer to a string, but we don’t know whether they refer tothe
samestring. There are two possible states:

a

b
’banana’

a

b

’banana’

’banana’

In one case,a andb refer to two different objects that have the same value. In the second
case, they refer to the same object.

To check whether two variables refer to the same object, you can use theis operator.

>>> a = ' banana '
>>> b = ' banana '
>>> a is b
True

In this example, Python only created one string object, and both a andb refer to it.

But when you create two lists, you get two objects:

>>> a = [1, 2, 3]
>>> b = [1, 2, 3]
>>> a is b
False

So the state diagram looks like this:

a

b

[1, 2, 3]

[1, 2, 3]

8.11. Aliasing 101

In this case we would say that the two lists areequivalent, because they have the same ele-
ments, but notidentical, because they are not the same object. If two objects are identical,
they are also equivalent, but if they are equivalent, they are not necessarily identical.

Until now, we have been using “object” and “value” interchangeably, but it is more precise
to say that an object has a value. If you executea = [1,2,3] , a refers to a list object
whose value is a particular sequence of elements. If anotherlist has the same elements, we
would say it has the same value.

8.11 Aliasing

If a refers to an object and you assignb = a , then both variables refer to the same object:

>>> a = [1, 2, 3]
>>> b = a
>>> b is a
True

The state diagram looks like this:

a

b
[1, 2, 3]

The association of a variable with an object is called areference. In this example, there
are two references to the same object.

An object with more than one reference has more than one name,so we say that the object
is aliased.

If the aliased object is mutable, changes made with one aliasaffect the other:

>>> b[0] = 17
>>> print a
[17, 2, 3]

Although this behavior can be useful, it is error-prone. In general, it is safer to avoid
aliasing when you are working with mutable objects.

For immutable objects like strings, aliasing is not as much of a problem. In this example:

a = ' banana '
b = ' banana '

It almost never makes a difference whethera andb refer to the same string or not.

102 Chapter 8. Lists

8.12 List arguments

When you pass a list to a function, the function gets a reference to the list. If the function
modifies a list parameter, the caller sees the change. For example,delete_head removes
the first element from a list:

def delete_head(t):
del t[0]

Here’s how it is used:

>>> letters = [' a' , ' b' , ' c ']
>>> delete_head(letters)
>>> print letters
[' b' , ' c ']

The parametert and the variableletters are aliases for the same object. The stack dia-
gram looks like this:

0

1

2

’a’

’b’

’c’

list

t

__main__ letters

 delete_head

Since the list is shared by two frames, I drew it between them.

It is important to distinguish between operations that modify lists and operations that create
new lists. For example, theappend method modifies a list, but the+ operator creates a new
list:

>>> t1 = [1, 2]
>>> t2 = t1.append(3)
>>> print t1
[1, 2, 3]
>>> print t2
None

>>> t3 = t1 + [3]
>>> print t3
[1, 2, 3]
>>> t2 is t3
False

This difference is important when you write functions that are supposed to modify lists.
For example, this functiondoes notdelete the head of a list:

8.13. Debugging 103

def bad_delete_head(t):
t = t[1:] # WRONG!

The slice operator creates a new list and the assignment makes t refer to it, but none of that
has any effect on the list that was passed as an argument.

An alternative is to write a function that creates and returns a new list. For example,tail
returns all but the first element of a list:

def tail(t):
return t[1:]

This function leaves the original list unmodified. Here’s how it is used:

>>> letters = [' a' , ' b' , ' c ']
>>> rest = tail(letters)
>>> print rest
[' b' , ' c ']

Exercise 8.1Write a function calledchop that takes a list and modifies it, removing the
first and last elements, and returnsNone.

Then write a function calledmiddle that takes a list and returns a new list that contains all
but the first and last elements.

8.13 Debugging

Careless use of lists (and other mutable objects) can lead tolong hours of debugging. Here
are some common pitfalls and ways to avoid them:

1. Don’t forget that most list methods modify the argument and returnNone. This is
the opposite of the string methods, which return a new stringand leave the original
alone.

If you are used to writing string code like this:

word = word.strip()

It is tempting to write list code like this:

t = t.sort() # WRONG!

Becausesort returnsNone, the next operation you perform witht is likely to fail.

Before using list methods and operators, you should read thedocumentation care-
fully and then test them in interactive mode. The methods andoperators that lists
share with other sequences (like strings) are documented atdocs.python.org/lib/
typesseq.html . The methods and operators that only apply to mutable sequences
are documented atdocs.python.org/lib/typesseq-mutable.html .

104 Chapter 8. Lists

2. Pick an idiom and stick with it.

Part of the problem with lists is that there are too many ways to do things. For
example, to remove an element from a list, you can usepop , remove , del , or even a
slice assignment.

To add an element, you can use theappend method or the+ operator. But don’t
forget that these are right:

t.append(x)
t = t + [x]

And these are wrong:

t.append([x]) # WRONG!
t = t.append(x) # WRONG!
t + [x] # WRONG!
t = t + x # WRONG!

Try out each of these examples in interactive mode to make sure you understand what
they do. Notice that only the last one causes a runtime error;the other three are legal,
but they do the wrong thing.

3. Make copies to avoid aliasing.

If you want to use a method likesort that modifies the argument, but you need to
keep the original list as well, you can make a copy.

orig = t[:]
t.sort()

In this example you could also use the built-in functionsorted , which returns a
new, sorted list and leaves the original alone. But in that case you should avoid using
sorted as a variable name!

4. Lists,split , and files

When we read and parse files, there are many opportunities to encounter input that
can crash our program so it is a good idea to revisit theguardian pattern when
it comes writing programs that read through a file and look fora “needle in the
haystack”.

Lets revisit our program that is looking for the day of the week on the from lines of
our file.:

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

Since we are breaking this line into words, we could dispensewith the use of
startswith and simply look at the first word of the line to determine if we are in-
terested in the line at all. We can usecontinue to skip lines that don’t have “From”
as the first word as follows:

8.13. Debugging 105

fhand = open(' mbox-short.txt ')
for line in fhand:

words = line.split()
if words[0] != ' From' : continue
print words[2]

This looks much simpler and we don’t even need to do therstrip to remove the
newline at the end of the file. But is it better?

python search8.py
Sat
Traceback (most recent call last):

File "search8.py", line 5, in <module>
if words[0] != ' From' : continue

IndexError: list index out of range

It kind of works and we see the day from the first line (Sat) but then the program fails
with a traceback error. What went wrong? What messed-up data caused our elegant,
clever and very Pythonic program to fail?

You could stare at it for a long time and puzzle through it or ask someone for help,
but the quicker and smarter approach is to add aprint statement. The best place to
add the print statement is right before the line where the program failed and print out
the data that seems to be causing the failure.

Now this approach may generate a lot of lines of output but at least you will imme-
diately have some clue as to the problem at hand. So we add a print of the variable
words right before line five. We even add a prefix “Debug:” to the lineso we can
keep our regular output separate from our debug output.

for line in fhand:
words = line.split()
print ' Debug: ' , words
if words[0] != ' From' : continue
print words[2]

When we run the program, a lot of output scrolls off the screen but at the end, we
see our debug output and the traceback so we know what happened just before the
traceback.

Debug: [' X-DSPAM-Confidence: ' , ' 0.8475 ']
Debug: [' X-DSPAM-Probability: ' , ' 0.0000 ']
Debug: []
Traceback (most recent call last):

File "search9.py", line 6, in <module>
if words[0] != ' From' : continue

IndexError: list index out of range

106 Chapter 8. Lists

Each debug line is printing the list of words which we get whenwe split the line
into words. When the program fails the list of words is empty[] . If we open the file
in a text editor and look at the file, at that point it looks as follows:

X-DSPAM-Result: Innocent
X-DSPAM-Processed: Sat Jan 5 09:14:16 2008
X-DSPAM-Confidence: 0.8475
X-DSPAM-Probability: 0.0000

Details: http://source.sakaiproject.org/viewsvn/?vie w=rev&rev=39772

The error occurs when our program encounters a blank line! Ofcourse there are
“zero words” on a blank line. Why didn’t we think of that when wewere writing the
code. When the code looks for the first word (word[0]) to check to see if it matches
“From”, we get an “index out of range” error.

This of course is the perfect place to add someguardian code to avoid checking the
first word if the first word is not there. There are many ways to protect this code, we
will choose to check the number of words we have before we lookat the first word:

fhand = open(' mbox-short.txt ')
count = 0
for line in fhand:

words = line.split()
print ' Debug: ' , words
if len(words) == 0 : continue
if words[0] != ' From' : continue
print words[2]

First we commented out the debug print statement instead of removing it in case our
modification fails and we need to debug again. Then we added a guardian statement
that checks to see if we have zero words, and if so, we usecontinue to skip to the
next line in the file.

We can think of the twocontinue statements as helping us refine the set of lines
which are “interesting” to us and which we want to process some more. A line
which has no words is “uninteresting” to us so we skip to the next line. A line which
does not have “From” as its first word is uninteresting to us sowe skip it.

The program as modified runs successfully so perhaps it is correct. Our guardian
statement does make sure that thewords[0] will never fail, but perhaps it is not
enough. When we are programming, we must always be thinking, “What might go
wrong?”.

Exercise 8.2Figure out which line of the above program is still not properly
guarded. See if you can construct a text file which causes the program to fail and
then modify the program so that the line is properly guarded and test it to make sure
it handles your new text file.

8.14. Glossary 107

Exercise 8.3Rewrite the guardian code in the above example without twoif state-
ments. Instead use a compound logical expression using theand logical operator
with a singleif statement.

8.14 Glossary
aliasing: A circumstance where two or more variables refer to the same object.

delimiter: A character or string used to indicate where a string should be split.

element: One of the values in a list (or other sequence), also called items.

equivalent: Having the same value.

index: An integer value that indicates an element in a list.

identical: Being the same object (which implies equivalence).

list: A sequence of values.

list traversal: The sequential accessing of each element in a list.

nested list: A list that is an element of another list.

object: Something a variable can refer to. An object has a type and a value.

reference: The association between a variable and its value.

8.15 Exercises

Exercise 8.4Download a copy of the file fromwww.py4inf.com/code/romeo.txt

Write a program to open the fileromeo.txt and read it line by line. For each line, split the
line into a list of words using thesplit function.

For each word, check to see if the word is already in a list. If the word is not in the list, add
it to the list.

When the program completes, sort and print the resulting words in alphabetical order.

Enter file: romeo.txt
[' Arise ' , ' But ' , ' It ' , ' Juliet ' , ' Who' , ' already ' ,
' and ' , ' breaks ' , ' east ' , ' envious ' , ' fair ' , ' grief ' ,
' is ' , ' kill ' , ' light ' , ' moon' , ' pale ' , ' sick ' , ' soft ' ,
' sun ' , ' the ' , ' through ' , ' what ' , ' window ' ,
' with ' , ' yonder ']

108 Chapter 8. Lists

Exercise 8.5Write a program to read through the mail box data and when you find line
that starts with “From”, you will split the line into words using thesplit function. We are
interested in who sent the message which is the second word onthe From line.

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

You will parse the From line and print out the second word for each From line and then you
will also count the number of From (not From:) lines and printout a count at the end.

This is a sample good output with a few lines removed:

python fromcount.py
Enter a file name: mbox-short.txt
stephen.marquard@uct.ac.za
louis@media.berkeley.edu
zqian@umich.edu

[...some output removed...]

ray@media.berkeley.edu
cwen@iupui.edu
cwen@iupui.edu
cwen@iupui.edu
There were 27 lines in the file with From as the first word

Chapter 9

Dictionaries

A dictionary is like a list, but more general. In a list, the positions (a.k.a. indices) have to
be integers; in a dictionary the indices can be (almost) any type.

You can think of a dictionary as a mapping between a set of indices (which are calledkeys)
and a set of values. Each key maps to a value. The association of a key and a value is called
akey-value pair or sometimes anitem.

As an example, we’ll build a dictionary that maps from English to Spanish words, so the
keys and the values are all strings.

The functiondict creates a new dictionary with no items. Becausedict is the name of a
built-in function, you should avoid using it as a variable name.

>>> eng2sp = dict()
>>> print eng2sp
{}

The squiggly-brackets,{} , represent an empty dictionary. To add items to the dictionary,
you can use square brackets:

>>> eng2sp[' one '] = ' uno '

This line creates an item that maps from the key’one’ to the value' uno ' . If we print the
dictionary again, we see a key-value pair with a colon between the key and value:

>>> print eng2sp
{ ' one ' : ' uno ' }

This output format is also an input format. For example, you can create a new dictionary
with three items:

>>> eng2sp = { ' one ' : ' uno ' , ' two ' : ' dos ' , ' three ' : ' tres ' }

110 Chapter 9. Dictionaries

But if you print eng2sp , you might be surprised:

>>> print eng2sp
{ ' one ' : ' uno ' , ' three ' : ' tres ' , ' two ' : ' dos ' }

The order of the key-value pairs is not the same. In fact, if you type the same example
on your computer, you might get a different result. In general, the order of items in a
dictionary is unpredictable.

But that’s not a problem because the elements of a dictionaryare never indexed with integer
indices. Instead, you use the keys to look up the corresponding values:

>>> print eng2sp[' two ']
' dos '

The key’two’ always maps to the value' dos ' so the order of the items doesn’t matter.

If the key isn’t in the dictionary, you get an exception:

>>> print eng2sp[' four ']
KeyError: ' four '

The len function works on dictionaries; it returns the number of key-value pairs:

>>> len(eng2sp)
3

The in operator works on dictionaries; it tells you whether something appears as akeyin
the dictionary (appearing as a value is not good enough).

>>> ' one ' in eng2sp
True
>>> ' uno ' in eng2sp
False

To see whether something appears as a value in a dictionary, you can use the method
values , which returns the values as a list, and then use thein operator:

>>> vals = eng2sp.values()
>>> ' uno ' in vals
True

The in operator uses different algorithms for lists and dictionaries. For lists, it uses a
search algorithm, as in Section 6.6. As the list gets longer,the search time gets longer in
direct proportion. For dictionaries, Python uses an algorithm called ahashtablethat has a
remarkable property; thein operator takes about the same amount of time no matter how
many items there are in a dictionary. I won’t explain why hashfunctions are so magical,
but you can read more about it atwikipedia.org/wiki/Hash_table .

9.1. Dictionary as a set of counters 111

Exercise 9.1Write a function that reads the words inwords.txt and stores them as keys
in a dictionary. It doesn’t matter what the values are. Then you can use thein operator as
a fast way to check whether a string is in the dictionary.

9.1 Dictionary as a set of counters

Suppose you are given a string and you want to count how many times each letter appears.
There are several ways you could do it:

1. You could create 26 variables, one for each letter of the alphabet. Then you could tra-
verse the string and, for each character, increment the corresponding counter, proba-
bly using a chained conditional.

2. You could create a list with 26 elements. Then you could convert each character to
a number (using the built-in functionord), use the number as an index into the list,
and increment the appropriate counter.

3. You could create a dictionary with characters as keys and counters as the correspond-
ing values. The first time you see a character, you would add anitem to the dictionary.
After that you would increment the value of an existing item.

Each of these options performs the same computation, but each of them implements that
computation in a different way.

An implementation is a way of performing a computation; some implementations are
better than others. For example, an advantage of the dictionary implementation is that we
don’t have to know ahead of time which letters appear in the string and we only have to
make room for the letters that do appear.

Here is what the code might look like:

def histogram(s):
d = dict()
for c in s:

if c not in d:
d[c] = 1

else:
d[c] = d[c] + 1

return d

The name of the function ishistogram, which is a statistical term for a set of counters (or
frequencies).

The first line of the function creates an empty dictionary. The for loop traverses the string.
Each time through the loop, if the characterc is not in the dictionary, we create a new item
with keyc and the initial value 1 (since we have seen this letter once).If c is already in the
dictionary we incrementd[c] .

112 Chapter 9. Dictionaries

Here’s how it works:

>>> h = histogram(' brontosaurus ')
>>> print h
{ ' a' : 1, ' b' : 1, ' o' : 2, ' n' : 1, ' s ' : 2, ' r ' : 2, ' u' : 2, ' t ' : 1}

The histogram indicates that the letters’a’ and' b' appear once;' o' appears twice, and
so on.

Exercise 9.2Dictionaries have a method calledget that takes a key and a default value. If
the key appears in the dictionary,get returns the corresponding value; otherwise it returns
the default value. For example:

>>> h = histogram(' a')
>>> print h
{ ' a' : 1}
>>> h.get(' a' , 0)
1
>>> h.get(' b' , 0)
0

Useget to write histogram more concisely. You should be able to eliminate theif state-
ment.

9.2 Dictionaries and files

One of the common uses of a dictionary is to count the occurrence of words in
a file with some written text. Lets start with a very simple fileof words taken
from the text ofRomeo and Julietthanks tohttp://shakespeare.mit.edu/Tragedy/
romeoandjuliet/romeo_juliet.2.2.html .

For the first set of examples, we will use a shortened and simplified version of the text with
no punctuation. Later we will work with the text of the scene with punctuation included.

But soft what light through yonder window breaks
It is the east and Juliet is the sun
Arise fair sun and kill the envious moon
Who is already sick and pale with grief

We will write a Python program to read through the lines of thefile, break each line into
a list of words, and then loop through each of the words in the line, and count each word
using a dictionary.

You will see that we have twofor loops. The outer loop is reading the lines of the file
and the inner loop is iterating through each of the words on that particular line. This is an
example of a pattern callednested loopsbecause one of the loops is theouter loop and the
other loop is theinner loop.

9.3. Looping and dictionaries 113

Because the inner loop executes all of its iterations each time the outer loop makes a single
iteration, we think of the inner loop as iterating “more quickly” and the outer loop as
iterating more slowly.

The combination of the two nested loops ensures that we will count every word on every
line of the input file.

fname = raw_input(' Enter the file name: ')
try:

fhand = open(fname)
except:

print ' File cannot be opened: ' , fname
exit()

counts = dict()
for line in fhand:

words = line.split()
for word in words:

if word not in counts:
counts[word] = 1

else:
counts[word] += 1

print counts

When we run the program, we see a raw dump of all of the counts in unsorted hash order.
(theromeo.txt file is available atwww.py4inf.com/code/romeo.txt)

python count1.py
Enter the file name: romeo.txt
{ ' and ' : 3, ' envious ' : 1, ' already ' : 1, ' fair ' : 1,
' is ' : 3, ' through ' : 1, ' pale ' : 1, ' yonder ' : 1,
' what ' : 1, ' sun ' : 2, ' Who' : 1, ' But ' : 1, ' moon' : 1,
' window ' : 1, ' sick ' : 1, ' east ' : 1, ' breaks ' : 1,
' grief ' : 1, ' with ' : 1, ' light ' : 1, ' It ' : 1, ' Arise ' : 1,
' kill ' : 1, ' the ' : 3, ' soft ' : 1, ' Juliet ' : 1}

It is a bit inconvenient to look through the dictionary to findthe most common words and
their counts, so we need to add some more Python code to get us the output that will be
more helpful.

9.3 Looping and dictionaries

If you use a dictionary as the sequence in afor statement, it traverses the keys of the
dictionary. For example,print_hist prints each key and the corresponding value:

114 Chapter 9. Dictionaries

def print_hist(h):
for c in h:

print c, h[c]

Here’s what the output looks like:

>>> h = histogram(' parrot ')
>>> print_hist(h)
a 1
p 1
r 2
t 1
o 1

Again, the keys are in no particular order.

If you want to print the keys in alphabetical order, you first make a list of the keys in the
dictionary using thekeys method available in dictionary objects, and then sort that list and
loop through the sorted list, looking up each key printing out key/value pairs in sorted order
as follows as follows:

def print_sorted_hist(h):
lst = h.keys()
lst.sort()
for c in lst:

print c, h[c]

Here’s what the output looks like:

>>> h = histogram(' parrot ')
>>> print_sorted_hist(h)
a 1
o 1
p 1
r 2
t 1

So now the keys are in alphabetical order.

9.4 Advanced text parsing

In the above example using the fileromeo.txt , we made the file as simple as possible by
removing any and all punctuation by hand. The real text has lots of punctuation as shown
below:

9.4. Advanced text parsing 115

But, soft! what light through yonder window breaks?
It is the east, and Juliet is the sun.
Arise, fair sun, and kill the envious moon,
Who is already sick and pale with grief,

Since the Pythonsplit function looks for spaces and treats words as tokens separated by
spaces, we would treat the words “soft!” and “soft” asdifferentwords and create a separate
dictionary entry for each word.

Also since the file has capitalization, we would treat “who” and “Who” as different words
with different counts.

We can solve both these problems by using the string methodslower , punctuation , and
translate . Thetranslate is the most subtle of the methods. Here is the documentation
for translate :

string.translate(s, table[, deletechars])

Delete all characters from s that are in deletechars (if present), and then translate the
characters using table, which must be a 256-character string giving the translation for
each character value, indexed by its ordinal. If table is None, then only the character
deletion step is performed.

We will not specify thetable but we will use thedeletechars parameter to delete all
of the punctuation. We will even let Python tell us the list ofcharacters that it considers
“punctuation”:

>>> import string
>>> string.punctuation
' !"#$%&\ ' ()*+,-./:;<=>?@[\\]ˆ_ ` {|}˜ '

We make the following modifications to our program:

import string # New Code

fname = raw_input(' Enter the file name: ')
try:

fhand = open(fname)
except:

print ' File cannot be opened: ' , fname
exit()

counts = dict()
for line in fhand:

line = line.translate(None, string.punctuation) # New Cod e
line = line.lower() # New Code
words = line.split()
for word in words:

116 Chapter 9. Dictionaries

if word not in counts:
counts[word] = 1

else:
counts[word] += 1

print counts

We usetranslate to remove all punctuation andlower to force the line to lowercase.
Otherwise the program is unchanged. Note for Python 2.5 and earlier, translate does not
acceptNone as the first parameter so use this code for the translate call:

print a.translate(string.maketrans(' ' , ' '), string.punctuation

Part of learning the “Art of Python” or “Thinking Pythonically” is realizing that Python
often has built-in capabilities for many common data-analysis problems. Over time, you
will see enough example code and read enough of the documentation to know where to
look to see if someone has already written something that makes your job much easier.

The following is an abbreviated version of the output:

Enter the file name: romeo-full.txt
{ ' swearst ' : 1, ' all ' : 6, ' afeard ' : 1, ' leave ' : 2, ' these ' : 2,
' kinsmen ' : 2, ' what ' : 11, ' thinkst ' : 1, ' love ' : 24, ' cloak ' : 1,
a' : 24, ' orchard ' : 2, ' light ' : 5, ' lovers ' : 2, ' romeo ' : 40,
' maiden ' : 1, ' whiteupturned ' : 1, ' juliet ' : 32, ' gentleman ' : 1,
' it ' : 22, ' leans ' : 1, ' canst ' : 1, ' having ' : 1, ...}

Looking through this output is still unwieldy and we can use Python to gives us exactly
what we are looking for, but to do so, we need to learn about Python tuples. We will pick
up this example once we learn about tuples.

9.5 Debugging

As you work with bigger datasets it can become unwieldy to debug by printing and check-
ing data by hand. Here are some suggestions for debugging large datasets:

Scale down the input: If possible, reduce the size of the dataset. For example if the pro-
gram reads a text file, start with just the first 10 lines, or with the smallest example
you can find. You can either edit the files themselves, or (better) modify the program
so it reads only the firstn lines.

If there is an error, you can reducen to the smallest value that manifests the error,
and then increase it gradually as you find and correct errors.

Check summaries and types:Instead of printing and checking the entire dataset, con-
sider printing summaries of the data: for example, the number of items in a dictionary
or the total of a list of numbers.

9.6. Glossary 117

A common cause of runtime errors is a value that is not the right type. For debugging
this kind of error, it is often enough to print the type of a value.

Write self-checks: Sometimes you can write code to check for errors automatically. For
example, if you are computing the average of a list of numbers, you could check that
the result is not greater than the largest element in the listor less than the smallest.
This is called a “sanity check” because it detects results that are “insane.”

Another kind of check compares the results of two different computations to see if
they are consistent. This is called a “consistency check.”

Pretty print the output: Formatting debugging output can make it easier to spot an error.

Again, time you spend building scaffolding can reduce the time you spend debugging.

9.6 Glossary
dictionary: A mapping from a set of keys to their corresponding values.

hashtable: The algorithm used to implement Python dictionaries.

hash function: A function used by a hashtable to compute the location for a key.

histogram: A set of counters.

implementation: A way of performing a computation.

item: Another name for a key-value pair.

key: An object that appears in a dictionary as the first part of a key-value pair.

key-value pair: The representation of the mapping from a key to a value.

lookup: A dictionary operation that takes a key and finds the corresponding value.

nested loops:When there is one or more loops “inside” of another loop. The inner loop
runs to completion each time the outer loop runs once.

value: An object that appears in a dictionary as the second part of a key-value pair. This
is more specific than our previous use of the word “value.”

9.7 Exercises

Exercise 9.3Write a program that categorizes each mail message by which day of the
week the commit was done. To do this look for lines which startwith “From”, then look
for the third word and then keep a running count of each of the days of the week. At the
end of the program print out the contents of your dictionary (order does not matter).

118 Chapter 9. Dictionaries

Sample Line:
From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

Sample Execution:
python dow.py
Enter a file name: mbox-short.txt
{ ' Fri ' : 20, ' Thu' : 6, ' Sat ' : 1}

Exercise 9.4Write a program to read through a mail log, and figure out who hadthe most
messages in the file. The program looks for “From” lines and takes the second parameter
on those lines as the person who sent the mail.

The program creates a Python dictionary that maps the sender’s address to the total number
of messages for that person.

After all the data has been read the program looks through thedictionary using a maximum
loop (see Section 5.7.2) to find who has the most messages and how many messages the
person has.

Enter a file name: mbox-short.txt
cwen@iupui.edu 5

Enter a file name: mbox.txt
zqian@umich.edu 195

Exercise 9.5This program records the domain name (instead of the address) where the
message was sent from instead of who the mail came from (i.e. the whole e-mail address).
At the end of the program print out the contents of your dictionary.

python schoolcount.py
Enter a file name: mbox-short.txt
{ ' media.berkeley.edu ' : 4, ' uct.ac.za ' : 6, ' umich.edu ' : 7,
' gmail.com ' : 1, ' caret.cam.ac.uk ' : 1, ' iupui.edu ' : 8}

Chapter 10

Tuples

10.1 Tuples are immutable

A tuple is a sequence of values much like a list. The values stored in a tuple can be any type,
and they are indexed by integers. The important difference is that tuples areimmutable.
Tuples are alsocomparable andhashableso we can sort lists of them and use tuples as
key values in Python dictionaries.

Syntactically, a tuple is a comma-separated list of values:

>>> t = ' a' , ' b' , ' c ' , ' d' , ' e'

Although it is not necessary, it is common to enclose tuples in parentheses to help use
quickly identify tuples when we look at Python code:

>>> t = (' a' , ' b' , ' c ' , ' d' , ' e')

To create a tuple with a single element, you have to include the final comma:

>>> t1 = (' a' ,)
>>> type(t1)
<type ' tuple ' >

Without the comma Python treats(' a') as an expression with a string in parentheses that
evaluates to a string:

>>> t2 = (' a')
>>> type(t2)
<type ' str ' >

Another way to construct a tuple is the built-in functiontuple . With no argument, it creates
an empty tuple:

120 Chapter 10. Tuples

>>> t = tuple()
>>> print t
()

If the argument is a sequence (string, list or tuple), the result of the call totuple is a tuple
with the elements of the sequence:

>>> t = tuple(' lupins ')
>>> print t
(' l ' , ' u' , ' p' , ' i ' , ' n' , ' s ')

Becausetuple is the name of a constructor, you should avoid using it as a variable name.

Most list operators also work on tuples. The bracket operator indexes an element:

>>> t = (' a' , ' b' , ' c ' , ' d' , ' e')
>>> print t[0]
' a'

And the slice operator selects a range of elements.

>>> print t[1:3]
(' b' , ' c ')

But if you try to modify one of the elements of the tuple, you get an error:

>>> t[0] = ' A'
TypeError: object doesn ' t support item assignment

You can’t modify the elements of a tuple, but you can replace one tuple with another:

>>> t = (' A' ,) + t[1:]
>>> print t
(' A' , ' b' , ' c ' , ' d' , ' e')

10.2 Comparing tuples

The comparison operators work with tuples and other sequences; Python starts by compar-
ing the first element from each sequence. If they are equal, itgoes on to the next element,
and so on, until it finds elements that differ. Subsequent elements are not considered (even
if they are really big).

>>> (0, 1, 2) < (0, 3, 4)
True
>>> (0, 1, 2000000) < (0, 3, 4)
True

10.3. Tuple assignment 121

Thesort function works the same way. It sorts primarily by first element, but in the case
of a tie, it sorts by second element, and so on.

This feature lends itself to a pattern calledDSU for

Decorate a sequence by building a list of tuples with one or more sort keys preceding the
elements from the sequence,

Sort the list of tuples uring the Python built-insort , and

Undecorate by extracting the sorted elements of the sequence.

For example, suppose you have a list of words and you want to sort them from longest to
shortest:

def sort_by_length(words):
t = list()
for word in words:

t.append((len(word), word))

t.sort(reverse=True)

res = list()
for length, word in t:

res.append(word)
return res

The first loop builds a list of tuples, where each tuple is a word preceded by its length.

sort compares the first element, length, first, and only considersthe second element to
break ties. The keyword argumentreverse=True tells sort to go in decreasing order.

The second loop traverses the list of tuples and builds a listof words in descending order
of length.

10.3 Tuple assignment

One of the unique syntactic features of the Python language is the ability to have a tuple
on the left hand side of an assignment statement. This allowsyou to assign more than one
variable at a time when the left hand side is a sequence.

In this example we have a two element list (which is a sequence) and assign the first and
second elements of the sequence to the variablesx andy in a single statement.

>>> m = [' have ' , ' fun ']
>>> x, y = m
>>> x

122 Chapter 10. Tuples

' have '
>>> y
' fun '
>>>

It is not magic, Pythonroughlytranslates the tuple assignment syntax to be the following:1

>>> m = [' have ' , ' fun ']
>>> x = m[0]
>>> y = m[1]
>>> x
' have '
>>> y
' fun '
>>>

Stylistically when we use a tuple on the left hand side of the assignment statement, we omit
the parentheses, but the following is an equally valid syntax:

>>> m = [' have ' , ' fun ']
>>> (x, y) = m
>>> x
' have '
>>> y
' fun '
>>>

A particularly clever application of tuple assignment allows us toswap the values of two
variables in a single statement:

>>> a, b = b, a

Both sides of this statement are tuples, but the left side is atuple of variables; the right
side is a tuple of expressions. Each value on the right side isassigned to its respective
variable on the left side. All the expressions on the right side are evaluated before any of
the assignments.

The number of variables on the left and the number of values onthe right have to be the
same:

>>> a, b = 1, 2, 3
ValueError: too many values to unpack

More generally, the right side can be any kind of sequence (string, list or tuple). For
example, to split an email address into a user name and a domain, you could write:

1Python does not translate the syntax literally. For example if you try this with a dictionary it will not work as
might expect.

10.4. Dictionaries and tuples 123

>>> addr = ' monty@python.org '
>>> uname, domain = addr.split(' @')

The return value fromsplit is a list with two elements; the first element is assigned to
uname, the second todomain .

>>> print uname
monty
>>> print domain
python.org

10.4 Dictionaries and tuples

Dictionaries have a method calleditems that returns a list of tuples, where each tuple is a
key-value pair2.

>>> d = { ' a' :10, ' b' :1, ' c ' :22}
>>> t = d.items()
>>> print t
[(' a' , 10), (' c ' , 22), (' b' , 1)]

As you should expect from a dictionary, the items are in no particular order.

However, since the list of tuples is a list, and tuples are comparable, we can now sort the list
of tuples. Converting a dictionary to a list of tuples is a wayfor us to output the contents of
a dictionary sorted by key:

>>> d = { ' a' :10, ' b' :1, ' c ' :22}
>>> t = d.items()
>>> t
[(' a' , 10), (' c ' , 22), (' b' , 1)]
>>> t.sort()
>>> t
[(' a' , 10), (' b' , 1), (' c ' , 22)]

The new list is sorted in ascending alphabetical order by thekey value.

10.5 Multiple assignment with dictionaries

Combiningitems , tuple assignment andfor , you can see a nice code pattern for traversing
the keys and values of a dictionary in a single loop:

for key, val in d.items():
print val, key

2This behavior is slightly different in Python 3.0.

124 Chapter 10. Tuples

This loop has twoiteration variables becauseitems returns a list of tuples andkey, val
is a tuple assignment that successively iterates through each of the key/value pairs in the
dictionary.

For each iteration through the loop, bothkey andvalue are advanced to the next key/value
pair in the dictionary (still in hash order).

The output of this loop is:

0 a
2 c
1 b

Again in hash key order (i.e. no particular order).

If we combine these two techniques, we can print out the contents of a dictionary sorted by
thevaluestored in each key/value pair.

To do this, we first make a list of tuples where each tuple is(value, key) . The items
method would give us a list of(key, value) tuples–but this time we want to sort by value
not key. Once we have constructed the list with the value/keytuples, it is a simple matter
to sort the list in reverse order and print out the new, sortedlist.

>>> d = { ' a' :10, ' b' :1, ' c ' :22}
>>> l = list()
>>> for key, val in d.items() :
... l.append((val, key))
...
>>> l
[(10, ' a'), (22, ' c '), (1, ' b')]
>>> l.sort(reverse=True)
>>> l
[(22, ' c '), (10, ' a'), (1, ' b')]
>>>

By hand-constructing the list of tuples to have the value as the first element of each tuple,
we can sort the list of tuples and get our dictionary contentssorted by value.

10.6 The most common words

Coming back to our running example of the text fromRomeo and JulietAct 2, Scene 2, we
can augment our program to use this technique to print the tenmost common words in the
text as follows:

import string
fhand = open(' romeo-full.txt ')
counts = dict()

10.6. The most common words 125

for line in fhand:
line = line.translate(None, string.punctuation)
line = line.lower()
words = line.split()
for word in words:

if word not in counts:
counts[word] = 1

else:
counts[word] += 1

Sort the dictionary by value
lst = list()
for key, val in counts.items():

lst.append((val, key))

lst.sort(reverse=True)

for key, val in lst[:10] :
print key, val

The first part of the program which reads the file and computes the dictionary that maps
each word to the count of words in the document is unchanged. But instead of simply
printing outcounts and ending the program, we construct a list of(val, key) tuples and
then sort the list in reverse order.

Since the value is first, it will be used for the comparisons and if there is more than one
tuple with the same value, it will look at the second element (the key) so tuples where the
value is the same will be further sorted by the alphabetical order of the key.

At the end we write a nice⁀for loop which does a multiple assignment iteration and prints
out the ten most common words by iterating through a slice of the list (lst[:10]).

So now the output finally looks like what we want for our word frequency analysis.

61 i
42 and
40 romeo
34 to
34 the
32 thou
32 juliet
30 that
29 my
24 thee

The fact that this relatively complex data parsing and analysis can be done with a relatively
easy-to-understand 19 line Python program is one reason whyPython is a good choice as a

126 Chapter 10. Tuples

language for exploring information.

10.7 Using tuples as keys in dictionaries

Because tuples arehashableand lists are not, if we want to create acompositekey to use
in a dictionary we must use a tuple as the key.

We would encounter a composite key if we wanted to create a telephone directory that maps
from last-name, first-name pairs to telephone numbers. Assuming that we have defined the
variableslast , first andnumber , we could write a dictionary assignment statement as
follows:

directory[last,first] = number

The expression in brackets is a tuple. We could use tuple assignment in afor loop to
traverse this dictionary.

for last, first in directory:
print first, last, directory[last,first]

This loop traverses the keys indirectory , which are tuples. It assigns the elements of
each tuple tolast andfirst , then prints the name and corresponding telephone number.

There are two ways to represent tuples in a state diagram. Themore detailed version
shows the indices and elements just as they appear in a list. For example, the tuple
(' Cleese ' , ' John ') would appear:

0

1

’Cleese’

’John’

tuple

But in a larger diagram you might want to leave out the details. For example, a diagram of
the telephone directory might appear:

(’Cleese’, ’John’) ’08700 100 222’

’08700 100 222’

’08700 100 222’

’08700 100 222’

’08700 100 222’

(’Chapman’, ’Graham’)

(’Idle’, ’Eric’)

(’Jones’, ’Terry’)

(’Gilliam’, ’Terry’)

(’Palin’, ’Michael’) ’08700 100 222’

dict

10.8. Sequences: strings, lists, and tuples–Oh My! 127

Here the tuples are shown using Python syntax as a graphical shorthand.

The telephone number in the diagram is the complaints line for the BBC, so please don’t
call it.

10.8 Sequences: strings, lists, and tuples–Oh My!

I have focused on lists of tuples, but almost all of the examples in this chapter also work
with lists of lists, tuples of tuples, and tuples of lists. Toavoid enumerating the possible
combinations, it is sometimes easier to talk about sequences of sequences.

In many contexts, the different kinds of sequences (strings, lists and tuples) can be used
interchangeably. So how and why do you choose one over the others?

To start with the obvious, strings are more limited than other sequences because the ele-
ments have to be characters. They are also immutable. If you need the ability to change the
characters in a string (as opposed to creating a new string),you might want to use a list of
characters instead.

Lists are more common than tuples, mostly because they are mutable. But there are a few
cases where you might prefer tuples:

1. In some contexts, like areturn statement, it is syntactically simpler to create a tuple
than a list. In other contexts, you might prefer a list.

2. If you want to use a sequence as a dictionary key, you have touse an immutable type
like a tuple or string.

3. If you are passing a sequence as an argument to a function, using tuples reduces the
potential for unexpected behavior due to aliasing.

Because tuples are immutable, they don’t provide methods like sort and reverse ,
which modify existing lists. However Python provides the built-in functions sorted and
reversed , which take any sequence as a parameter and return a new list with the same
elements in a different order.

10.9 Debugging

Lists, dictionaries and tuples are known generically asdata structures; in this chapter
we are starting to see compound data structures, like lists of tuples, and dictionaries that
contain tuples as keys and lists as values. Compound data structures are useful, but they
are prone to what I callshape errors; that is, errors caused when a data structure has the
wrong type, size or composition or perhaps you write some code and forget the shape of
your data and introduce an error.

128 Chapter 10. Tuples

For example, if you are expecting a list with one integer and Igive you a plain old integer
(not in a list), it won’t work.

When you are debugging a program, and especially if you are working on a hard bug, there
are four things to try:

reading: Examine your code, read it back to yourself, and check that itsays what you
meant to say.

running: Experiment by making changes and running different versions. Often if you dis-
play the right thing at the right place in the program, the problem becomes obvious,
but sometimes you have to spend some time to build scaffolding.

ruminating: Take some time to think! What kind of error is it: syntax, runtime, semantic?
What information can you get from the error messages, or from the output of the
program? What kind of error could cause the problem you’re seeing? What did you
change last, before the problem appeared?

retreating: At some point, the best thing to do is back off, undoing recentchanges, until
you get back to a program that works and that you understand. Then you can start
rebuilding.

Beginning programmers sometimes get stuck on one of these activities and forget the oth-
ers. Each activity comes with its own failure mode.

For example, reading your code might help if the problem is a typographical error, but not if
the problem is a conceptual misunderstanding. If you don’t understand what your program
does, you can read it 100 times and never see the error, because the error is in your head.

Running experiments can help, especially if you run small, simple tests. But if you run
experiments without thinking or reading your code, you might fall into a pattern I call
“random walk programming,” which is the process of making random changes until the
program does the right thing. Needless to say, random walk programming can take a long
time.

You have to take time to think. Debugging is like an experimental science. You should have
at least one hypothesis about what the problem is. If there are two or more possibilities, try
to think of a test that would eliminate one of them.

Taking a break helps with the thinking. So does talking. If you explain the problem to
someone else (or even yourself), you will sometimes find the answer before you finish
asking the question.

But even the best debugging techniques will fail if there aretoo many errors, or if the code
you are trying to fix is too big and complicated. Sometimes thebest option is to retreat,
simplifying the program until you get to something that works and that you understand.

Beginning programmers are often reluctant to retreat because they can’t stand to delete a
line of code (even if it’s wrong). If it makes you feel better,copy your program into another

10.10. Glossary 129

file before you start stripping it down. Then you can paste thepieces back in a little bit at a
time.

Finding a hard bug requires reading, running, ruminating, and sometimes retreating. If you
get stuck on one of these activities, try the others.

10.10 Glossary
comparable: A type where one value can be checked to see if it is greater than, less than

or equal to another value of the same type. Types which are comparable can be put
in a list and sorted.

data structure: A collection of related values, often organized in lists, dictionaries, tuples,
etc.

DSU: Abbreviation of “decorate-sort-undecorate,” a pattern that involves building a list of
tuples, sorting, and extracting part of the result.

gather: The operation of assembling a variable-length argument tuple.

hashable: A type that has a hash function. Immutable types like integers, floats and strings
are hashable; mutable types like lists and dictionaries arenot.

scatter: The operation of treating a sequence as a list of arguments.

shape (of a data structure): A summary of the type, size and composition of a data struc-
ture.

singleton: A list (or other sequence) with a single element.

tuple: An immutable sequence of elements.

tuple assignment: An assignment with a sequence on the right side and a tuple of variables
on the left. The right side is evaluated and then its elementsare assigned to the
variables on the left.

10.11 Exercises

Exercise 10.1Revise a previous program as follows: Read and parse the “From” lines and
pull out the addresses from the line. Count the number of messages from each person using
a dictionary.

After all the data has been read print the person with the mostcommits by creating a list of
(count, email) tuples from the dictionary and then sorting the list in reverse order and print
out the person who has the most commits.

130 Chapter 10. Tuples

Sample Line:
From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

Enter a file name: mbox-short.txt
cwen@iupui.edu 5

Enter a file name: mbox.txt
zqian@umich.edu 195

Exercise 10.2This program counts the distribution of the hour of the day for each of the
messages. You can pull the hour from the “From” line by findingthe time string and then
splitting that string into parts using the colon character.Once you have accumulated the
counts for each hour, print out the counts, one per line, sorted by hour as shown below.

Sample Execution:
python timeofday.py
Enter a file name: mbox-short.txt
04 3
06 1
07 1
09 2
10 3
11 6
14 1
15 2
16 4
17 2
18 1
19 1

Exercise 10.3Write a function calledmost_frequent that takes a string and prints the
letters in decreasing order of frequency. Find text samplesfrom several different languages
and see how letter frequency varies between languages. Compare your results with the
tables atwikipedia.org/wiki/Letter_frequencies .

Chapter 11

Automating common tasks on
your computer

Up to now, we have focused on writing programs that read the data in a single file. Python
can also read data from a network, database, or even look through all the folders on your
computer.

In this chapter, we will write programs that scan scan through your computer and perform
some operation on each file. Files are organized into directories (also called “folders”).
Simple Python scripts can make short work of simple tasks that must be done to hundreds
or thousands of files spread across a directory tree or your entire computer.

To walk through all the directories and files in a tree we useos.walk and afor loop. This
is similar to howopen allows us to write a loop to read the contents of a file,socket allows
us to write a loop to read the contents of a network connection, andurllib allows us to
open a web document and loop through its contents.

11.1 File names and paths

Every running program has a “current directory,” which is the default directory for most
operations. For example, when you open a file for reading, Python looks for it in the current
directory.

The os module provides functions for working with files and directories (os stands for
“operating system”).os.getcwd returns the name of the current directory:

>>> import os
>>> cwd = os.getcwd()
>>> print cwd
/home/dinsdale

132 Chapter 11. Automating common tasks on your computer

cwd stands forcurrent working directory . The result in this example is/home/dinsdale ,
which is the home directory of a user nameddinsdale .

A string likecwd that identifies a file is called a path. Arelative path starts from the current
directory; anabsolute pathstarts from the topmost directory in the file system.

The paths we have seen so far are simple file names, so they are relative to the current
directory. To find the absolute path to a file, you can useos.path.abspath :

>>> os.path.abspath(' memo.txt ')
' /home/dinsdale/memo.txt '

os.path.exists checks whether a file or directory exists:

>>> os.path.exists(' memo.txt ')
True

If it exists,os.path.isdir checks whether it’s a directory:

>>> os.path.isdir(' memo.txt ')
False
>>> os.path.isdir(' music ')
True

Similarly, os.path.isfile checks whether it’s a file.

os.listdir returns a list of the files (and other directories) in the given directory:

>>> os.listdir(cwd)
[' music ' , ' photos ' , ' memo.txt ']

11.2 Example: Cleaning up a photo directory

Some time ago, I built a bit of Flickr-like software that received photos from my cellphone
and stored those photos on my server. I wrote this before Flickr existed and kept using it
after Flickr existed because I wanted to keep original copies of my images forever.

I would also send a simple one-line text description in the MMS message or the subject
line of the E-Mail message. I stored these messages in a text file in the same directory as
the image file. I came up with a directory structure based on the month, year, day and time
the photo was taken. The following would be an example of the naming for one photo and
its existing description:

./2006/03/24-03-06_2018002.jpg

./2006/03/24-03-06_2018002.txt

11.2. Example: Cleaning up a photo directory 133

After seven years, I had a lot of photos and captions. Over theyears as I switched cell
phones, sometimes my code to extract the caption from the message would break and add
a bunch of useless data on my server instead of a caption.

I wanted to go through these files and figure out which of the text files were really captions
and which were junk and then delete the bad files. The first thing to do was to get a simple
inventory of how many text files I had in of the sub-folders using the following program:

import os
count = 0
for (dirname, dirs, files) in os.walk(' . '):

for filename in files:
if filename.endswith(' .txt ') :

count = count + 1
print ' Files: ' , count

python txtcount.py
Files: 1917

The key bit of code that makes this possible is theos.walk library in Python. When we
call os.walk and give it a starting directory, it will “walk” through all of the directories
and sub-directories recursively. The string “.” indicatesto start in the current directory and
walk downward. As it encounters each directory, we get threevalues in a tuple in the body
of the for loop. The first value is the current directory name, the second value is the list
of sub-directories in the current directory, and the third value is a list of files in the current
directory.

We do not have to explicitly look into each of the sub-directories because we can count on
os.walk to visit every folder eventually. But we do want to look at each file, so we write
a simplefor loop to examine each of the files in the current directory. We check each file
to see if it ends with “.txt” and then count the number of files through the whole directory
tree that end with the suffix “.txt”.

Once we have a sense of how many files end with “.txt”, the next thing to do is try to
automatically determine in Python which files are bad and which files are good. So we
write a simple program to print out the files and the size of each file:

import os
from os.path import join
for (dirname, dirs, files) in os.walk(' . '):

for filename in files:
if filename.endswith(' .txt ') :

thefile = os.path.join(dirname,filename)
print os.path.getsize(thefile), thefile

Now instead of just counting the files, we create a file name by concatenating the directory
name with the name of the file within the directory usingos.path.join . It is important to

134 Chapter 11. Automating common tasks on your computer

useos.path.join instead of string concatenation because on Windows we use a backslash
(\) to construct file paths and on Linux or Apple we use a forward slash (/) to construct file
paths. Theos.path.join knows these differences and knows what system we are running
on and it does the proper concatenation depending on the system. So the same Python code
runs on either Windows or UNIX-style systems.

Once we have the full file name with directory path, we use theos.path.getsize utility
to get the size and print it out, producing the following output:

python txtsize.py
...
18 ./2006/03/24-03-06_2303002.txt
22 ./2006/03/25-03-06_1340001.txt
22 ./2006/03/25-03-06_2034001.txt
...
2565 ./2005/09/28-09-05_1043004.txt
2565 ./2005/09/28-09-05_1141002.txt
...
2578 ./2006/03/27-03-06_1618001.txt
2578 ./2006/03/28-03-06_2109001.txt
2578 ./2006/03/29-03-06_1355001.txt
...

Scanning the output, we notice that some files are pretty short and a lot of the files are pretty
large and the same size (2578 and 2565). When we take a look at a few of these larger files
by hand, it looks like the large files are nothing but a genericbit of identical HTML that
came in from mail sent to my system from my T-Mobile phone:

<html>
<head>

<title>T-Mobile</title>
...

Skimming through the file, it looks like there is no good information in these files so we
can probably delete them.

But before we delete the files, we will write a program to look for files that are more than
one line long and show the contents of the file. But let’s not bother showing ourselves those
files that are exactly 2578 or 2565 characters long since we know that these files have no
useful information.

So we write the following program:

import os
from os.path import join
for (dirname, dirs, files) in os.walk(' . '):

for filename in files:

11.2. Example: Cleaning up a photo directory 135

if filename.endswith(' .txt ') :
thefile = os.path.join(dirname,filename)
size = os.path.getsize(thefile)
if size == 2578 or size == 2565:

continue
fhand = open(thefile, ' r ')
lines = list()
for line in fhand:

lines.append(line)
fhand.close()
if len(lines) > 1:

print len(lines), thefile
print lines[:4]

We use acontinue to skip files with the two “bad sizes”, then open the rest of thefiles and
read the lines of the file into a Python list and if the file has more than one line we print out
how many lines are in the file and print out the first three lines.

It looks like filtering out those two bad file sizes, and assuming that all one-line files are
correct, we are down to some pretty clean data:

python txtcheck.py
3 ./2004/03/22-03-04_2015.txt
[' Little horse rider\r\n ' , ' \r\n ' , ' \r ']
2 ./2004/11/30-11-04_1834001.txt
[' Testing 123.\n ' , ' \n ']
3 ./2007/09/15-09-07_074202_03.txt
[' \r\n ' , ' \r\n ' , ' Sent from my iPhone\r\n ']
3 ./2007/09/19-09-07_124857_01.txt
[' \r\n ' , ' \r\n ' , ' Sent from my iPhone\r\n ']
3 ./2007/09/20-09-07_115617_01.txt
...

But there is one more annoying pattern of files: there are somethree-line files that consist
of two blank lines followed by a line that says “Sent from my iPhone” that have slipped
into my data. So we make the following change to the program todeal with these files as
well.

lines = list()
for line in fhand:

lines.append(line)
if len(lines) == 3 and lines[2].startswith(' Sent from my iPhone ') :

continue
if len(lines) > 1:

print len(lines), thefile
print lines[:4]

136 Chapter 11. Automating common tasks on your computer

We simply check if we have a three-line file, and if the third line starts with the specified
text, we skip it.

Now when we run the program, we only see four remaining multi-line files and all of those
files look pretty reasonable:

python txtcheck2.py
3 ./2004/03/22-03-04_2015.txt
[' Little horse rider\r\n ' , ' \r\n ' , ' \r ']
2 ./2004/11/30-11-04_1834001.txt
[' Testing 123.\n ' , ' \n ']
2 ./2006/03/17-03-06_1806001.txt
[' On the road again...\r\n ' , ' \r\n ']
2 ./2006/03/24-03-06_1740001.txt
[' On the road again...\r\n ' , ' \r\n ']

If you look at the overall pattern of this program, we have successively refined how we
accept or reject files and once we found a pattern that was “bad” we usedcontinue to skip
the bad files so we could refine our code to find more file patternsthat were bad.

Now we are getting ready to delete the files, so we are going to flip the logic and instead of
printing out the remaining good files, we will print out the “bad” files that we are about to
delete.

import os
from os.path import join
for (dirname, dirs, files) in os.walk(' . '):

for filename in files:
if filename.endswith(' .txt ') :

thefile = os.path.join(dirname,filename)
size = os.path.getsize(thefile)
if size == 2578 or size == 2565:

print ' T-Mobile: ' ,thefile
continue

fhand = open(thefile, ' r ')
lines = list()
for line in fhand:

lines.append(line)
fhand.close()
if len(lines) == 3 and lines[2].startswith(' Sent from my iPhone ') :

print ' iPhone: ' , thefile
continue

We can now see a list of candidate files that we are about to delete and why these files are
up for deleting. The program produces the following output:

11.2. Example: Cleaning up a photo directory 137

python txtcheck3.py
...
T-Mobile: ./2006/05/31-05-06_1540001.txt
T-Mobile: ./2006/05/31-05-06_1648001.txt
iPhone: ./2007/09/15-09-07_074202_03.txt
iPhone: ./2007/09/15-09-07_144641_01.txt
iPhone: ./2007/09/19-09-07_124857_01.txt
...

We can spot-check these files to make sure that we did not inadvertently end up introducing
a bug in our program or perhaps our logic caught some files we did not want to catch.

Once we are satisfied that this is the list of files we want to delete, we make the following
change to the program:

if size == 2578 or size == 2565:
print ' T-Mobile: ' ,thefile
os.remove(thefile)
continue

...
if len(lines) == 3 and lines[2].startswith(' Sent from my iPhone ') :

print ' iPhone: ' , thefile
os.remove(thefile)
continue

In this version of the program, we will both print the file out and remove the bad files using
os.remove .

python txtdelete.py
T-Mobile: ./2005/01/02-01-05_1356001.txt
T-Mobile: ./2005/01/02-01-05_1858001.txt
...

Just for fun, run the program a second time and it will produceno output since the bad files
are already gone.

If we reruntxtcount.py we can see that we have removed 899 bad files:

python txtcount.py
Files: 1018

In this section, we have followed a sequence where we use Python to first look through
directories and files seeking patterns. We slowly use Pythonto help determine what we
want to do to clean up our directories. Once we figure out whichfiles are good and which
files are not useful, we use Python to delete the files and perform the cleanup.

138 Chapter 11. Automating common tasks on your computer

The problem you may need to solve can either be quite simple and might only depend on
looking at the names of files, or perhaps you need to read everysingle file and look for
patterns within the files. Sometimes you will need to read allthe files and make a change to
some of the files. All of these are pretty straightforward once you understand howos.walk
and the otheros utilities can be used.

11.3 Command line arguments

In earlier chapters, we had a number of programs that prompted for a file name using
raw_input and then read data from the file and processed the data as follows:

name = raw_input(' Enter file: ')
handle = open(name, ' r ')
text = handle.read()
...

We can simplify this program a bit by taking the file name from the command line when we
start Python. Up to now, we simply run our Python programs andrespond to the prmompts
as as follows:

python words.py
Enter file: mbox-short.txt
...

We can place additional strings after the Python file and access thosecommand line ar-
guments in our Python program. Here is a simple program that demonstrates reading
arguments from the command line:

import sys
print ' Count: ' , len(sys.argv)
print ' Type: ' , type(sys.argv)
for arg in sys.argv:

print ' Argument: ' , arg

The contents ofsys.argv are a list of strings where the first string is the name of the
Python program and the remaining strings are the arguments on the command line after the
Python file.

The following shows our program reading several command line arguments from the com-
mand line:

python argtest.py hello there
Count: 3
Type: <type ' list ' >
Argument: argtest.py
Argument: hello
Argument: there

11.4. Pipes 139

There are three arguments are passed into our program as a three-element list. The first
element of the list is the file name (argtest.py) and the others are the two command line
arguments after the file name.

We can rewrite our program to read the file, taking the file namefrom the command line
argument as follows:

import sys

name = sys.argv[1]
handle = open(name, ' r ')
text = handle.read()
print name, ' is ' , len(text), ' bytes '

We take the second command line argument as the name of the file(skipping past the
program name in the[0] entry). We open the file and read the contents as follows:

python argfile.py mbox-short.txt
mbox-short.txt is 94626 bytes

Using command line arguments as input can make it easier to reuse your Python programs
especially when you only need to input one or two strings.

11.4 Pipes

Most operating systems provide a command-line interface, also known as ashell. Shells
usually provide commands to navigate the file system and launch applications. For exam-
ple, in Unix, you can change directories withcd , display the contents of a directory with
ls , and launch a web browser by typing (for example)firefox .

Any program that you can launch from the shell can also be launched from Python using a
pipe. A pipe is an object that represents a running process.

For example, the Unix command1 ls -l normally displays the contents of the current
directory (in long format). You can launchls with os.popen :

>>> cmd = ' ls -l '
>>> fp = os.popen(cmd)

The argument is a string that contains a shell command. The return value is a file pointer
that behaves just like an open file. You can read the output from thels process one line at
a time withreadline or get the whole thing at once withread :

>>> res = fp.read()

1When using pipes to talk to operating system commands likels , it is important for you to know which
operating system you are using and only open pipes to commands that are supported on your operating system.

140 Chapter 11. Automating common tasks on your computer

When you are done, you close the pipe like a file:

>>> stat = fp.close()
>>> print stat
None

The return value is the final status of thels process;None means that it ended normally
(with no errors).

11.5 Glossary
absolute path: A string that describes where a file or directory is stored that starts at the

“top of the tree of directories” so that it can be used to access the file or directory,
regardless of the current working directory.

checksum: See alsohashing. The term “checksum” comes from the need to verify if
data was garbled as it was sent across a network or written to abackup medium and
then read back in. When the data is written or sent, the sendingsystem computes
a checksum and also sends the checksum. When the data is read orreceived, the
receiving system re-computes the checksum from the received data and compares it
to the received checksum. If the checksums do not match, we must assume that the
data was garbled as it was transferred.

command line argument: Parameters on the command line after the Python file name.

current working directory: The current directory that you are “in”. You can change your
working directory using thecd command on most systems in their command-line
interfaces. When you open a file in Python using just the file name with no path
information the file must be in the current working directorywhere you are running
the program.

hashing: Reading through a potentially large amount of data and producing a unique
checksum for the data. The best hash functions produce very few “collisions” where
you can give two different streams of data to the hash function and get back the same
hash. MD5, SHA1, and SHA256 are examples of commonly used hash functions.

pipe: A pipe is a connection to a running program. Using a pipe, you can write a program
to send data to another program or receive data from that program. A pipe is similar
to asocketexcept that a pipe can only be used to connect programs running on the
same computer (i.e. not across a network).

relative path: A string that describes where a file or directory is stored relative to the
current working directory.

shell: A command-line interface to an operating system. Also called a “terminal program”
in some systems. In this interface you type a command and parameters on a line and
press “enter” to execute the command.

11.6. Exercises 141

walk: A term we use to describe the notion of visiting the entire tree of directories, sub-
directories, sub-sub-directories, until we have visited the all of the directories. We
call this “walking the directory tree”.

11.6 Exercises

Exercise 11.1In a large collection of MP3 files there may be more than one copy of the
same song, stored in different directories or with different file names. The goal of this
exercise is to search for these duplicates.

1. Write a program that walks a directory and all of its sub-directories for all files
with a given suffix (like.mp3) and lists pairs of files with that are the same size.
Hint: Use a dictionary where the key of the dictionary is the size of the file from
os.path.getsize and the value in the dictionary is the path name concatenated
with the file name. As you encounter each file check to see if youalready have a file
that has the same size as the current file. If so, you have a duplicate size file and print
out the file size and the two files names (one from the hash and the other file you are
looking at).

2. Adapt the previous program to look for files that have duplicate content using a hash-
ing orchecksumalgorithm. For example, MD5 (Message-Digest algorithm 5) takes
an arbitrarily-long “message” and returns a 128-bit “checksum.” The probability is
very small that two files with different contents will returnthe same checksum.

You can read about MD5 atwikipedia.org/wiki/Md5 . The following code snippet
opens a file, reads it and computes its checksum.

import hashlib
...

fhand = open(thefile, ' r ')
data = fhand.read()
fhand.close()
checksum = hashlib.md5(data).hexdigest()

You should create a dictionary where the checksum is the key and the file name is
the value. When you compute a checksum and it is already in the dictionary as a key,
you have two files with duplicate content so print out the file in the dictionary and
the file you just read. Here is some sample output from a run in afolder of image
files:

./2004/11/15-11-04_0923001.jpg ./2004/11/15-11-04_10 16001.jpg

./2005/06/28-06-05_1500001.jpg ./2005/06/28-06-05_15 02001.jpg

./2006/08/11-08-06_205948_01.jpg ./2006/08/12-08-06_ 155318_02.jpg

./2006/09/28-09-06_225657_01.jpg ./2006/09-50-years/ 28-09-06_225657_01.jpg

./2006/09/29-09-06_002312_01.jpg ./2006/09-50-years/ 29-09-06_002312_01.jpg

142 Chapter 11. Automating common tasks on your computer

Apparently I sometimes sent the same photo more than once or made a copy of a
photo from time to time without deleting the original.

Chapter 12

Networked programs

While many of the examples in this book have focused on readingfiles and looking for
data in those files, there are many different sources of information when one considers the
Internet.

In this chapter we will pretend to be a web browser and retrieve web pages using the
HyperText Transport Protocol (HTTP). Then we will read through the web page data and
parse it.

12.1 HyperText Transport Protocol - HTTP

The network protocol that powers the web is actually quite simple and there is built-in
support in Python calledsockets which makes it very easy to make network connections
and retrieve data over those sockets in a Python program.

A socket is much like a file, except that it provides a two-way connection between two
programs with a single socket. You can both read from and write to the same socket. If you
write somthing to a socket it is sent to the application at theother end of the socket. If you
read from the socket, you are given the data which the other application has sent.

But if you try to read a socket when the program on the other endof the socket has not sent
any data - you just sit and wait. If the programs on both ends ofthe socket simply wait for
some data without sending anything, they will wait for a verylong time.

So an important part of programs that communicate over the Internet is to have some sort
of protocol. A protocol is a set of precise rules that determine who is to go first, what they
are to do, and then what are the responses to that message, andwho sends next and so on.
In a sense the two applications at either end of the socket aredoing a dance and making
sure not to step on each other’s toes.

144 Chapter 12. Networked programs

There are many documents which describe these network protocols. The HyperText Trans-
port Protocol is described in the following document:

http://www.w3.org/Protocols/rfc2616/rfc2616.txt

This is a long and complex 176 page document with a lot of detail. If you find it interesting
feel free to read it all. But if you take a look around page 36 ofRFC2616 you will find the
syntax for the GET request. If you read in detail, you will findthat to request a document
from a web server, we make a connection to thewww.py4inf.com server on port 80, and
then send a line of the form:

GET http://www.py4inf.com/code/romeo.txt HTTP/1.0

Where the second parameter is the web page we are requesting and then we also send a
blank line. The web server will respond with some header information about the document
and a blank line followed by the document content.

12.2 The World’s Simplest Web Browser

Perhaps the easiest way to show how the HTTP protocol works isto write a very simple
Python program that makes a connection to a web server and following the rules of the
HTTP protocol, requests a document and displays what the server sends back.

import socket

mysock = socket.socket(socket.AF_INET, socket.SOCK_STR EAM)
mysock.connect((' www.py4inf.com ' , 80))
mysock.send(' GET http://www.py4inf.com/code/romeo.txt HTTP/1.0\n\n ')

while True:
data = mysock.recv(512)
if (len(data) < 1) :

break
print data

mysock.close()

First the program makes a connection to port 80 on the serverwww.py4inf.com . Since our
program is playing the role of the “web browser” the HTTP protocol says we must send
the GET command followed by a blank line.

12.2. The World’s Simplest Web Browser 145

Our Computer Web Server

www.py4inf.com

Socket

send

recv

Web Pages

.

.

.

.

.

80

Once we send that blank line, we write a loop that receives data in 512 character chunks
from the socket and prints the data out until there is no more data to read (i.e. the recv()
returns an empty string).

The program produces the following output:

HTTP/1.1 200 OK
Date: Sun, 14 Mar 2010 23:52:41 GMT
Server: Apache
Last-Modified: Tue, 29 Dec 2009 01:31:22 GMT
ETag: "143c1b33-a7-4b395bea"
Accept-Ranges: bytes
Content-Length: 167
Connection: close
Content-Type: text/plain

But soft what light through yonder window breaks
It is the east and Juliet is the sun
Arise fair sun and kill the envious moon
Who is already sick and pale with grief

The output starts with headers which the web server sends to describe the document. For
example, theContent-Type header indicated that the document is a plain text document
(text/plain).

After the server sends us the headers, it adds a blank line to indicate the end of the headers
and then sends the actual data of the fileromeo.txt .

This example shows how to make a low-level network connection with sockets. Sockets
can be use to communicate with a web server or with a mail server or many other kinds of
servers. All that is needed is to find the document which describes the protocol and write
the code to send and receive the data according to the protocol.

However, since the protocol that we use most commonly is the HTTP (i.e. the web) proto-
col, Python has a special library specifically designed to support the HTTP protocol for the
retrieval of documents and data over the web.

146 Chapter 12. Networked programs

12.3 Retrieving web pages withurllib

Theurllib library makes it very easy to retrieve web pages and process the data in Python.
Usingurllib you can treat a web page much like a file. You simply indicate which web
page you would like to retrieve andurllib handles all of the HTTP protocol details.

The equivalent code to read theromeo.txt file from the web usingurllib is as follows:

import urllib

fhand = urllib.urlopen(' http://www.py4inf.com/code/romeo.txt ')
for line in fhand:

print line.strip()

Once the web page has been opened withurllib.urlopen we can treat it like a file and
read through it using afor loop.

When the program runs, we only see the output of the contents ofthe file. The headers are
still sent, but theurllib code consumes the headers and only returns the data to us.

But soft what light through yonder window breaks
It is the east and Juliet is the sun
Arise fair sun and kill the envious moon
Who is already sick and pale with grief

As an example, we can write a program to retrieve the data forromeo.txt and compute
the frequency of each word in the file as follows:

import urllib

counts = dict()
fhand = urllib.urlopen(' http://www.py4inf.com/code/romeo.txt ')
for line in fhand:

words = line.split()
for word in words:

counts[word] = counts.get(word,0) + 1
print counts

Again, once we have opened the web page, we can read it like a local file.

12.4 Parsing HTML and scraping the web

One of the common uses of theurllib capability in Python is toscrape the web. Web
scraping is when we write a program that pretends to be a web browser and retrieves pages
and then examines the data in those pages looking for patterns.

12.4. Parsing HTML and scraping the web 147

As an example, a search engine such as Google will look at the source of one web page and
extract the links to other pages and retrieve those pages, extracting links, and so on. Using
this technique, Googlespiders its way through nearly all of the pages on the web. Google
also uses the frequency of links from pages it finds to a particular page as one measure of
how “important” a page is and how highly the page should appear in its search results.

There are a number of Python libraries which can help you parse HTML and extract data
from the pages. Each of the libraries has its strengths and weaknesses and you can pick one
based on your needs.

As an example, we will simply parse some HTML input and extract links using theBeau-
tifulSoup library. You can download and install the BeautifulSoup code from:

www.crummy.com

You can download and “install” BeautifulSoup or you can simply place the
BeautifulSoup.py file in the same folder as your application.

Even though HTML looks like XML and some pages are carefully constructed to be XML,
most HTML is generally broken in ways that cause an XML parserto reject the entire page
of HTML as improperly formed. BeautifulSoup tolerates highly flawed HTML and still
lets you easily extract the data you need.

Here is a simple web page:

<h1>The First Page</h1>
<p>
If you like, you can switch to the

Second Page.
</p>

We will use urllib to read the bage and then useBeautifulSoup to extract thehref
attributes from the anchor (a) tags.

import urllib
from BeautifulSoup import *

url = raw_input(' Enter - ')
html = urllib.urlopen(url).read
soup = BeautifulSoup(html)

Retrieve all of the anchor tags
tags = soup(' a')
for tag in tags:

print tag.get(' href ' , None)

The program prompts for a web address, then opens the web page, reads the data and passes
the data to the BeautifulSoup parser, and then retrieves allof the anchor tags and prints out
thehref attribute for each tag.

148 Chapter 12. Networked programs

When the program is run it looks as follows:

python urllinks.py
Enter - http://www.dr-chuck.com/page1.htm
http://www.dr-chuck.com/page2.htm

python urllinks.py
Enter - http://www.py4inf.com/
http://www.greenteapress.com/thinkpython/thinkpytho n.html
http://allendowney.com/
http://www.si502.com/
http://www.lib.umich.edu/espresso-book-machine
http://www.py4inf.com/code
http://www.pythonlearn.com/

You can use BeautifulSoup to pull out various parts of each tag as follows:

import urllib
from BeautifulSoup import *

url = raw_input(' Enter - ')
html = urllib.urlopen(url).read
soup = BeautifulSoup(html)

Retrieve all of the anchor tags
tags = soup(' a')
for tag in tags:

Look at the parts of a tag
print ' TAG:' ,tag
print ' URL: ' ,tag.get(' href ' , None)
print ' Content: ' ,tag.contents[0]
print ' Attrs: ' ,tag.attrs

This produces the following output:

python urllink2.py
Enter - http://www.dr-chuck.com/page1.htm
TAG:
Second Page
URL: http://www.dr-chuck.com/page2.htm
Content: [u ' \nSecond Page ']
Attrs: [(u ' href ' , u ' http://www.dr-chuck.com/page2.htm ')]

These examples only begin to show the power of BeautifulSoupwhen it comes to parsing
HTML. See the documentation and samples atwww.crummy.com for more detail.

12.5. Glossary 149

12.5 Glossary
BeautifulSoup: A Python library for parsing HTML documents and extracting data from

HTML documents that compensates for most of the imperfections in the HTML
that browsers generally ignore. You can download the BeautifulSoup code from
www.crummy.com .

port: A number that generally indicates which application you arecontacting when you
make a socket connection to a server. As an example, web traffic usually uses port
80 while e-mail traffic uses port 25.

scrape: When a program pretends to be a web browser and retrieves a web page and then
looks at the web page content. Often programs are following the links in one page to
find the next page so they can traverse a network of pages or a social network.

socket: A network connection between two applications where the applications can send
and receive data in either direction.

spider: The act of a web search engine retrieving a page and then all the pages linked from
a page and so on until they have nearly all of the pages on the Internet which they
use to build their search index.

12.6 Exercises

Exercise 12.1Change theurllinks.py program to extract paragraph (p) tags from the
retrieved HTML document and simply count how many paragraphs are in the document
and display the count of the paragraphs as the output of your program. Test your program
on several small web pages as well as some larger web pages.

150 Chapter 12. Networked programs

Chapter 13

Using Web Services

Once it became easy to retrieve documents and parse documents over HTTP using pro-
grams, it did not take long to develop an approach where we started producing documents
that were specifically designed to be consumed by other programs (i.e. not HTML to be
displayed in a browser).

The most common approach when two programs are exchanging data across the web is to
exchange the data in a format called the “eXtensible Markup Language” or XML.

13.1 eXtensible Markup Language - XML

XML looks very similar to HTML, but XML is more structured than HTML. Here is a
sample of an XML document:

<person>
<name>Chuck</name>
<phone type="intl">

+1 734 303 4456
</phone>
<email hide="yes"/>

</person>

Often it is helpful to think of an XML document as a tree structure where there is a top tag
person and other tags such asphone are drawn aschildrenof their parent nodes.

152 Chapter 13. Using Web Services

Person

name

Chuck
+1 734

303 4456

phone email
type=

intl
hide=

yes

13.2 Parsing XML

Here is a simple application that parses some XML and extracts some data elements from
the XML:

import xml.etree.ElementTree as ET

data = '''
<person>

<name>Chuck</name>
<phone type="intl">

+1 734 303 4456
</phone>
<email hide="yes"/>

</person> '''

tree = ET.fromstring(data)
print ' Name:' ,tree.find(' name').text
print ' Attr: ' ,tree.find(' email ').get(' hide ')

Calling fromstring converts the string representation of the XML into a ’tree’ of XML
nodes. When the XML is in a tree, we have a series of methods which we can call to extract
portions of data from the XML.

The find function searches through the XML tree and retrieves anode that matches the
specified tag. Each node can have some text, some attributes (i.e. like hide) and some
“child” nodes. Each node can be the top of a tree of nodes.

Name: Chuck
Attr: yes

Using an XML parser such asElementTree has the advantage that while the XML in this
example is quite simple, it turns out that there are many rules regarding valid XML and
usingElementTree allows us to extract data from XML without worrying about therules
of XML syntax.

13.3. Looping through nodes 153

13.3 Looping through nodes

Often the XML has multiple nodes and we need to write a loop to process all of the nodes.
In the following program, we loop through all of theuser nodes:

import xml.etree.ElementTree as ET

input = '''
<stuff>

<users>
<user x="2">

<id>001</id>
<name>Chuck</name>

</user>
<user x="7">

<id>009</id>
<name>Brent</name>

</user>
</users>

</stuff> '''

stuff = ET.fromstring(input)
lst = stuff.findall(' users/user ')
print ' User count: ' , len(lst)

for item in lst:
print ' Name' , item.find(' name').text
print ' Id ' , item.find(' id ').text
print ' Attribute ' , item.get(' x ')

The findall method retrieves a Python list of sub-trees that represent theuser structures
in the XML tree. Then we can write afor loop that looks at each of the user nodes, and
prints thename andid text elements as well as thex attribute from theuser node.

User count: 2
Name Chuck
Id 001
Attribute 2
Name Brent
Id 009
Attribute 7

154 Chapter 13. Using Web Services

13.4 Application Programming Interfaces (API)

We now have the ability to exchange data between applications using HyperText Transport
Protocol (HTTP) and a way to represent complex data that we are sending back and forth
between these applications using eXtensible Markup Language (XML).

The next step is to begin to define and document “contracts” between applications using
these techniques. The general name for these application-to-application contracts isAppli-
cation Program Interfacesor APIs. When we use an API, generally one program makes
a set ofservicesavailable for use by other applications and publishes the APIs (i.e. the
“rules”) which must be followed to access the services provided by the program.

When we begin to build our programs where the functionality ofour program includes
access to services provided by other programs, we call the approach aService-Oriented
Architecture or SOA. A SOA approach is one where our overall application makes use
of the services of other applications. A non-SOA approach iswhere the application is a
single stand-alone application which contains all of the code necessary to implement the
application.

We see many examples of SOA when we use the web. We can go to a single web site and
book air travel, hotels, and automobiles all from a single site. The data for hotels is not
stored on the airline computers. Instead, the airline computers contact the services on the
hotel computers and retrieve the hotel data and present it tothe user. When the user agrees
to make a hotel reservation using the airline site, the airline site uses another web service
on the hotel systems to actually make the reservation. And when it comes to charge your
credit card for the whole transaction, still other computers become involved in the process.

Auto

Rental

Service

Hotel

Reservation

Service

Airline

Reservation

Service

Travel

Application

API

API

API

A Service-Oriented Architecture has many advantages including: (1) we always maintain
only one copy of data - this is particularly important for things like hotel reservations where
we do not want to over-commit and (2) the owners of the data canset the rules about the

13.5. Twitter web services 155

use of their data. With these advantages, a SOA system must becarefully designed to have
good performance and meet the user’s needs.

When an application makes a set of services in its API available over the web, we call these
web services.

13.5 Twitter web services
You are probably familiar with the Twitter web site and its applicationshttp://www.
twitter.com . Twitter has a very unique approach to its API/web services in that all of
its data is available to non-Twitter applications using theTwitter API.

Because Twitter has been so liberal in allowing access to itsdata, it has enabled thousands
of software developers to build their own customized Twitter-based software. These addi-
tional applications greatly increase the value of Twitter far beyond simply a web site. The
Twitter web services allow the building of whole new applications that the Twitter team
may never have thought of. It is said that over 90 percent of the use of Twitter is through
the API (i.e. not through thetwitter.com web user interface).

You can view the Twitter API documentation athttp://apiwiki.twitter.com/ . The
Twitter API is an example of the REST style of web services. Wewill focus on the Twitter
API to retrieve a list of a user’s friends and their statuses.As an example, you can visit the
following URL:

http://api.twitter.com/1/statuses/friends/drchuck.x ml

To see a list of the friends of the twitter accountdrchuck . It may look like a mess in
your browser. To see the actual XML returned by Twitter, you can view the source of the
returned “web page”.

We can retrieve this same XML using Python using theurllib utility:

import urllib

TWITTER_URL = ' http://api.twitter.com/l/statuses/friends/ACCT.xml '

while True:
print ''
acct = raw_input(' Enter Twitter Account: ')
if (len(acct) < 1) : break
url = TWITTER_URL.replace(' ACCT' , acct)
print ' Retrieving ' , url
document = urllib.urlopen (url).read()
print document[:250]

The program prompts for a Twitter account and opens the URL for the friends and statuses
API and then retrieves the text from the URL and shows us the first 250 characters of the
text.

156 Chapter 13. Using Web Services

python twitter1.py

Enter Twitter Account:drchuck
Retrieving http://api.twitter.com/l/statuses/friends /drchuck.xml
<?xml version="1.0" encoding="UTF-8"?>
<users type="array">
<user>

<id>115636613</id>
<name>Steve Coppin</name>
<screen_name>steve_coppin</screen_name>
<location>Kent, UK</location>
<description>Software developing, best practicing, agil e e

Enter Twitter Account:

In this application, we have retrieved the XML exactly as if it were an HTML web page.
If we wanted to extract data from the XML, we could use Python string functions but this
would become pretty complex as we tried to really start to diginto the XML in detail.

If we were to dump out some of the retrieved XML it would look roughly as follows:

<?xml version="1.0" encoding="UTF-8"?>
<users type="array">

<user>
<id>115636613</id>
<name>Steve Coppin</name>
<screen_name>steve_coppin</screen_name>
<location>Kent, UK</location>
<status>

<id>10174607039</id>
<source>web</source>
</status>

</user>
<user>

<id>17428929</id>
<name>davidkocher</name>
<screen_name>davidkocher</screen_name>
<location>Bern</location>
<status>

<id>10306231257</id>
<text>@MikeGrace If possible please post a detailed bug rep ort </text>

</status>
</user>
...

The top level tag is ausers and there are multipleuser tags below within theusers tag.

13.6. Handling XML data from an API 157

There is also astatus tag below theuser tag.

13.6 Handling XML data from an API

When we receive well-formed XML data from an API, we generallyuse an XML parser
such asElementTree to extract information from the XML data.

In the program below, we retrieve the friends and statuses from the Twitter API and then
parse the returned XML to show the first four friends and theirstatuses.

import urllib
import xml.etree.ElementTree as ET

TWITTER_URL = ' http://api.twitter.com/l/statuses/friends/ACCT.xml '

while True:
print ''
acct = raw_input(' Enter Twitter Account: ')
if (len(acct) < 1) : break
url = TWITTER_URL.replace(' ACCT' , acct)
print ' Retrieving ' , url
document = urllib.urlopen (url).read()
print ' Retrieved ' , len(document), ' characters. '
tree = ET.fromstring(document)
count = 0
for user in tree.findall(' user '):

count = count + 1
if count > 4 : break
print user.find(' screen_name ').text
status = user.find(' status ')
if status :

txt = status.find(' text ').text
print ' ' ,txt[:50]

We use thefindall method to get a list of theuser nodes and loop through the list using
a for loop. For eachuser node, we pull out the text of thescreen_name node and then
pull out thestatus node. If there is astatus node, we pull out the text of thetext node
and print the first 50 characters of the status text.

The pattern is pretty straightforward, we usefindall andfind to pull out a list of nodes
or a single node and then if a node is a complex element with more sub-nodes we look
deeper into the node until we reach the text element that we are interested in.

The program runs as follows:

158 Chapter 13. Using Web Services

python twitter2.py

Enter Twitter Account:drchuck
Retrieving http://api.twitter.com/l/statuses/friends /drchuck.xml
Retrieved 193310 characters.
steve_coppin

Looking forward to some "oh no the markets closed,
davidkocher

@MikeGrace If possible please post a detailed bug
hrheingold

From today ' s Columbia Journalism Review, on crap d
huge_idea

@drchuck #cnx2010 misses you, too. Thanks for co

Enter Twitter Account:hrheingold
Retrieving http://api.twitter.com/l/statuses/friends /hrheingold.xml
Retrieved 208081 characters.
carr2n

RT @tysone: Saturday ' s proclaimation by @carr2n pr
tiffanyshlain

RT @ScottKirsner: Turning smartphones into a tool
soniasimone

@ACCompanyC Funny, smart, cute, and also nice! He
JenStone7617

Watching "Changing The Equation: High Tech Answers

Enter Twitter Account:

While the code for parsing the XML and extracting the fields using ElementTree takes a
few lines to express what we are looking for in the XML, it is much simpler than trying to
use Python string parsing to pull apart the XML and find the data elements.

13.7 Glossary

API: Application Program Interface - A contract between applications that defines the
patterns of interaction between two application components.

ElementTree: A built-in Python library used to parse XML data.

XML: eXtensible Markup Language - A format that allows for the markup of structured
data.

REST: REpresentational State Transfer - A style of Web Services that provide access to
resources within an application using the HTTP protocol.

13.8. Exercises 159

SOA: Service Oriented Architecture - when an application is madeof components con-
nected across a network.

13.8 Exercises

Exercise 13.1Change the program that retrieves twitter data to also printout the location
for each of the friends indented under the name by two spaces as follows:

Enter Twitter Account:drchuck
Retrieving http://api.twitter.com/l/statuses/friends /drchuck.xml
Retrieved 194533 characters.
steve_coppin

Kent, UK
Looking forward to some "oh no the markets closed,

davidkocher
Bern
@MikeGrace If possible please post a detailed bug

hrheingold
San Francisco Bay Area
RT @barrywellman: Lovely AmBerhSci Internet & Comm

huge_idea
Boston, MA
@drchuck #cnx2010 misses you, too. Thanks for co

160 Chapter 13. Using Web Services

Chapter 14

Using databases and Structured
Query Language (SQL)

14.1 What is a database?

A databaseis a file that is organized for storing data. Most databases are organized like
a dictionary in the sense that they map from keys to values. The biggest difference is
that the database is on disk (or other permanent storage), soit persists after the program
ends. Because a database is stored on permanent storage, it can store far more data than a
dictionary, which is limited to the size of the memory in the computer.

Like a dictionary, database software is designed to keep theinserting and accessing of data
very fast, even for large amounts of data. Database softwaremaintains its performance by
building indexesas data is added to the database to allow the computer to jump quickly to
a particular entry.

There are many different database systems which are used fora wide variety of purposes
including: Oracle, MySQL, Microsoft SQL Server, PostgreSQL, and SQLite. We focus on
SQLite in this book because it is a very common database and isalready built into Python.
SQLite is designed to beembeddedinto other applications to provide database support
within the application. For example, the Firefox browser also uses the SQLite database
internally as do many other products.

http://sqlite.org/

SQLite is well suited to some of the data manipulation problems that we see in Informatics
such as the Twitter spidering application that we describe in this chapter.

162 Chapter 14. Using databases and Structured Query Language (SQL)

14.2 Database concepts

When you first look at a database it looks like a spreadsheet with multiple sheets. The
primary data structures in a database are:tables, rows, andcolumns.

Table

row

column

2.3

tuple

Relation

attribute

In technical descriptions of relational databases the concepts of table, row, and column are
more formally referred to asrelation, tuple, andattribute , respectively. We will use the
less formal terms in this chapter.

14.3 SQLite Database Browser

While this chapter will focus on using Python to work with datain SQLite database files,
many operations can be done more conveniently using a desktop program called theSQLite
Database Browserwhich is freely available from:

http://sourceforge.net/projects/sqlitebrowser/

Using the browser you can easily create tables, insert data,edit data, or run simple SQL
queries on the data in the database.

14.4. Creating a database table 163

In a sense, the database browser is similar to a text editor when working with text files.
When you want to do one or very few operations on a text file, you can just open it in a text
editor and make the changes you want. When you have many changes that you need to do
to a text file, often you will write a simple Python program. You will find the same pattern
when working with databases. You will do simple operations in the database browser and
more complex operations will be most conveniently done in Python.

14.4 Creating a database table

Databases require more defined structure than Python lists or dictionaries1.

When we create a databasetable we must tell the database in advance the names of each
of the columns in the table and the type of data which we are planning to storein each
column. When the database software knows the type of data in each column, it can choose
the most efficient way to store and lookup the data based on thetype of data.

You can look at the various data types supported by SQLite at the following url:

http://www.sqlite.org/datatypes.html

Defining structure for your data up front may seem inconvenient at the beginning, but the
payoff is fast access to your data even when the database contains a large amount of data.

The code to create a database file and a table namedTracks with two columns in the
database is as follows:

1SQLite actually does allow some flexibility in the type of datastored in a column, but we will keep our data
types strict in this chapter so the concepts apply equally toother database systems such as MySQL.

164 Chapter 14. Using databases and Structured Query Language (SQL)

import sqlite3

conn = sqlite3.connect(' music.db ')
cur = conn.cursor()

cur.execute(' DROP TABLE IF EXISTS Tracks ')
cur.execute(' CREATE TABLE Tracks (title TEXT, plays INTEGER) ')

conn.close()

Theconnect operation makes a “connection” to the database stored in thefile music.db in
the current directory. If the file does not exist, it will be created. The reason this is called a
“connection” is that sometimes the database is stored on a separate “database server” from
the server on which we are running our application. In our simple examples the database
will just be a local file in the same directory as the Python code we are running.

A cursor is like a file handle that we can use to perform operations on the data stored in the
database. Callingcursor() is very similar conceptually to callingopen() when dealing
with text files.

C

U

R

S

O

R

Your

Program

Database
select

insert

create

Once we have the cursor, we can begin to execute commands on the contents of the database
using theexecute() method.

Database commands are expressed in a special language that has been standardized across
many different database vendors to allow us to learn a singledatabase language. The
database language is calledStructured Query Languageor SQL for short.

http://en.wikipedia.org/wiki/SQL

In our example, we are executing two SQL commands in our database. As a convention,
we will show the SQL keywords in uppercase and the parts of thecommand that we are
adding (such as the table and column names) will be shown in lowercase.

The first SQL command removes theTracks table from the database if it exists. This
pattern is simply to allow us to run the same program to createtheTracks table over and
over again without causing an error. Note that theDROP TABLEcommand deletes the table
and all of its contents from the database (i.e. there is no “undo”).

14.4. Creating a database table 165

cur.execute(' DROP TABLE IF EXISTS Tracks ')

The second command creates a table namedTracks with a text column namedtitle and
an integer column namedplays .

cur.execute(' CREATE TABLE Tracks (title TEXT, plays INTEGER) ')

Now that we have created a table namedTracks , we can put some data into that table using
the SQLINSERT operation. Again, we begin by making a connection to the database and
obtaining thecursor . We can then execute SQL commands using the cursor.

The SQL INSERT command indicates which table we are using and then defines a new
row by listing the fields we want to include(title, plays) followed by theVALUES
we want placed in the new row in the table. We specify the values as question marks(?,
?) to indicate that the actual values are passed in as a tuple(’My Way’, 15) as the
second parameter to theexecute() call.

import sqlite3

conn = sqlite3.connect(' music.db ')
cur = conn.cursor()

cur.execute(' INSERT INTO Tracks (title, plays) VALUES (?, ?) ' ,
(' Thunderstruck ' , 20))

cur.execute(' INSERT INTO Tracks (title, plays) VALUES (?, ?) ' ,
(' My Way' , 15))

conn.commit()

print ' Tracks: '
cur.execute(' SELECT title, plays FROM Tracks ')
for row in cur :

print row

cur.execute(' DELETE FROM Tracks WHERE plays < 100')
conn.commit()

cur.close()

First weINSERT two rows into our table and usecommit() to force the data to be written
to the database file.

Friends

title

Thunderstruck

My Way

 20

15

plays

166 Chapter 14. Using databases and Structured Query Language (SQL)

Then we use theSELECTcommand to retrieve the rows we just inserted from the table.
On theSELECTcommand, we indicate which columns we would like(title, plays)
and indicate which table we want to retrieve the data from. After we execute theSELECT
statement, the cursor is something we can loop through in afor statement. For efficiency,
the cursor does not read all of the data from the database whenwe execute theSELECT
statement. Instead, the data is read on-demand as we loop through the rows in thefor
statement.

The output of the program is as follows:

Tracks:
(u ' Thunderstruck ' , 20)
(u ' My Way' , 15)

Our for loop finds two rows, and each row is a Python tuple with the firstvalue as the
title and the second value as the number ofplays . Do not be concerned that the title
strings are shown starting withu’ . This is an indication that the strings areUnicodestrings
that are capable of storing non-Latin character sets.

At the very end of the program, we execute an SQL command toDELETEthe rows we have
just created so we can run the program over and over. TheDELETEcommand shows the
use of aWHEREclause that allows us to express a selection criterion so that we can ask the
database to apply the command to only the rows that match the criterion. In this example
the criterion happens to apply to all the rows so we empty the table out so we can run the
program repeatedly. After theDELETEis performed we also callcommit() to force the data
to be removed from the database.

14.5 Structured Query Language (SQL) summary

So far, we have been using the Structured Query Language in our Python examples and
have covered many of the basics of the SQL commands. In this section, we look at the
SQL language in particular and give an overview of SQL syntax.

Since there are so many different database vendors, the Structured Query Language (SQL)
was standardized so we could communicate in a portable manner to database systems from
multiple vendors.

A relational database is made up of tables, rows, and columns. The columns generally have
a type such as text, numeric, or date data. When we create a table, we indicate the names
and types of the columns:

CREATE TABLE Tracks (title TEXT, plays INTEGER)

To insert a row into a table, we use the SQLINSERT command:

INSERT INTO Tracks (title, plays) VALUES (' My Way' , 15)

14.6. Spidering Twitter using a database 167

The INSERT statement specifies the table name, and then a list of the fields/columns that
you would like to set in the new row, and then the keywordVALUESand then a list of
corresponding values for each of the fields.

The SQLSELECTcommand is used to retrieve rows and columns from a database.The
SELECTstatement lets you specify which columns you would like to retrieve as well as a
WHEREclause to select which rows you would like to see. It also allows an optionalORDER
BY clause to control the sorting of the returned rows.

SELECT * FROM Tracks WHERE title = ' My Way'

Using* indicates that you want the database to return all of the columns for each row that
matches theWHEREclause.

Note, unlike in Python, in a SQLWHEREclause we use a single equal sign to indicate a test
for equality rather than a double equal sign. Other logical operations allowed in aWHERE
clause include<, >, <=, >=, != , as well asANDandORand parentheses to build your logical
expressions.

You can request that the returned rows be sorted by one of the fields as follows:

SELECT title,plays FROM Tracks ORDER BY title

To remove a row, you need aWHEREclause on an SQLDELETEstatement. TheWHEREclause
determines which rows are to be deleted:

DELETE FROM Tracks WHERE title = ' My Way'

It is possible toUPDATEa column or columns within one or more rows in a table using the
SQL UPDATEstatement as follows:

UPDATE Tracks SET plays = 16 WHERE title = ' My Way'

TheUPDATEstatement specifies a table and then a list of fields and valuesto change after
theSETkeyword and then an optionalWHEREclause to select the rows that are to be updated.
A singleUPDATEstatement will change all of the rows that match theWHEREclause, or if a
WHEREclause is not specified, it performs theUPDATEon all of the rows in the table.

These four basic SQL commands (INSERT, SELECT, UPDATE, and DELETE) allow the
four basic operations needed to create and maintain data.

14.6 Spidering Twitter using a database

In this section, we will create a simple spidering program that will go through Twitter
accounts and build a database of them.Note: Be very careful when running this program.
You do not want to pull too much data or run the program for too long and end up having
your Twitter access shut off.

168 Chapter 14. Using databases and Structured Query Language (SQL)

One of the problems of any kind of spidering program is that itneeds to be able to be
stopped and restarted many times and you do not want to lose the data that you have re-
trieved so far. You don’t want to always restart your data retrieval at the very beginning so
we want to store data as we retrieve it so our program can startback up and pick up where
it left off.

We will start by retrieving one person’s Twitter friends andtheir statuses, looping through
the list of friends, and adding each of the friends to a database to be retrieved in the future.
After we process one person’s Twitter friends, we check in our database and retrieve one of
the friends of the friend. We do this over and over, picking an“unvisited” person, retrieving
their friend list and adding friends we have not seen to our list for a future visit.

We also track how many times we have seen a particular friend in the database to get some
sense of “popularity”.

By storing our list of known accounts and whether we have retrieved the account or not,
and how popular the account is in a database on the disk of the computer, we can stop and
restart our program as many times as we like.

This program is a bit complex. It is based on the code from the exercise earlier in the book
that uses the Twitter API.

Here is the source code for our Twitter spidering application:

import sqlite3
import urllib
import xml.etree.ElementTree as ET

TWITTER_URL = ' http://api.twitter.com/l/statuses/friends/ACCT.xml '

conn = sqlite3.connect(' twdata.db ')
cur = conn.cursor()

cur.execute('''
CREATE TABLE IF NOT EXISTS
Twitter (name TEXT, retrieved INTEGER, friends INTEGER) ''')

while True:
acct = raw_input(' Enter a Twitter account, or quit: ')
if (acct == ' quit ') : break
if (len(acct) < 1) :

cur.execute(' SELECT name FROM Twitter WHERE retrieved = 0 LIMIT 1 ')
try:

acct = cur.fetchone()[0]
except:

print ' No unretrieved Twitter accounts found '
continue

14.6. Spidering Twitter using a database 169

url = TWITTER_URL.replace(' ACCT' , acct)
print ' Retrieving ' , url
document = urllib.urlopen (url).read()
tree = ET.fromstring(document)

cur.execute(' UPDATE Twitter SET retrieved=1 WHERE name = ? ' , (acct,))

countnew = 0
countold = 0
for user in tree.findall(' user '):

friend = user.find(' screen_name ').text
cur.execute(' SELECT friends FROM Twitter WHERE name = ? LIMIT 1 ' ,

(friend,))
try:

count = cur.fetchone()[0]
cur.execute(' UPDATE Twitter SET friends = ? WHERE name = ? ' ,

(count+1, friend))
countold = countold + 1

except:
cur.execute(''' INSERT INTO Twitter (name, retrieved, friends)

VALUES (?, 0, 1) ''' , (friend,))
countnew = countnew + 1

print ' New accounts= ' ,countnew, ' revisited= ' ,countold
conn.commit()

cur.close()

Our database is stored in the filetwdata.db and it has one table namedTwitter and each
row in theTwitter table has a column for the account name, whether we have retrieved
the friends of this account, and how many times this account has been “friended”.

In the main loop of the program, we prompt the user for a Twitter account name or “quit”
to exit the program. If the user enters a Twitter account, we retrieve the list of friends and
statuses for that user and add each friend to the database if not already in the database. If
the friend is already in the list, we add one to thefriends field in the row in the database.

If the user presses enter, we look in the database for the nextTwitter account that we have
not yet retrieved and retrieve the friends and statuses for that account, add them to the
database or update them and increase theirfriends count .

Once we retrieve the list of friends and statuses, we loop through all of theuser items in
the returned XML and retrieve thescreen_name for each user. Then we use theSELECT
statement to see if we already have stored this particularscreen_name in the database and
retrieve the friend count (friends) if the record exists.

countnew = 0

170 Chapter 14. Using databases and Structured Query Language (SQL)

countold = 0
for user in tree.findall(' user '):

friend = user.find(' screen_name ').text
cur.execute(' SELECT friends FROM Twitter WHERE name = ? LIMIT 1 ' ,

(friend,))
try:

count = cur.fetchone()[0]
cur.execute(' UPDATE Twitter SET .riends = ? WHERE name = ? ' ,

(count+1, friend))
countold = countold + 1

except:
cur.execute(''' INSERT INTO Twitter (name, retrieved, friends)

VALUES (?, 0, 1) ''' , (friend,))
countnew = countnew + 1

print ' New accounts= ' ,countnew, ' revisited= ' ,countold
conn.commit()

Once the cursor executes theSELECTstatement, we must retrieve the rows. We could do
this with afor statement, but since we are only retrieving one row (LIMIT 1), we can use
the fetchone() method to fetch the first (and only) row that is the result of the SELECT
operation. Sincefetchone() returns the row as atuple (even though there is only one
field), we take the first value from the tuple using[0] to get the current friend count into
the variablecount .

If this retrieval is successful, we use the SQLUPDATEstatement with aWHEREclause to add
one to thefriends column for the row that matches the friend’s account. Noticethat there
are two placeholders (i.e. question marks) in the SQL, and the second parameter to the
execute() is a two-element tuple which holds the values to be substituted into the SQL in
place of the question marks.

If the code in thetry block fails it is probably because no record matched theWHERE name
= ? clause on the SELECT statement. So in theexcept block, we use the SQLINSERT
statement to add the friend’sscreen_name to the table with an indication that we have not
yet retrieved thescreen_name and setting the friend count to zero.

So the first time the program runs and we enter a Twitter account, the program runs as
follows:

Enter a Twitter account, or quit: drchuck
Retrieving http://api.twitter.com/l/statuses/friends /drchuck.xml
New accounts= 100 revisited= 0
Enter a Twitter account, or quit: quit

Since this is the first time we have run the program, the database is empty and we create
the database in the filetwdata.db and add a table namedTwitter to the database. Then
we retrieve some friends and add them all to the database since the database is empty.

14.6. Spidering Twitter using a database 171

At this point, we might want to write a simple database dumperto take a look at what is in
our twdata.db file:

import sqlite3

conn = sqlite3.connect(' twdata.db ')
cur = conn.cursor()
cur.execute(' SELECT * FROM Twitter ')
count = 0
for row in cur :

print row
count = count + 1

print count, ' rows. '
cur.close()

This program simply opens the database and selects all of thecolumns of all of the rows in
the tableTwitter , then loops through the rows and prints out each row.

If we run this program after the first execution of our Twitterspider above, its output will
be as follows:

(u ' opencontent ' , 0, 1)
(u ' lhawthorn ' , 0, 1)
(u ' steve_coppin ' , 0, 1)
(u ' davidkocher ' , 0, 1)
(u ' hrheingold ' , 0, 1)
...
100 rows.

We see one row for eachscreen_name , that we have not retrieved the data for that
screen_name and everyone in the database has one friend.

Now our database reflects the retrieval of the friends of our first Twitter account (drchuck).
We can run the program again and tell it to retrieve the friends of the next “unprocessed”
account by simply pressing enter instead of a Twitter account as follows:

Enter a Twitter account, or quit:
Retrieving http://api.twitter.com/l/statuses/friends /opencontent.xml
New accounts= 98 revisited= 2
Enter a Twitter account, or quit:
Retrieving http://api.twitter.com/l/statuses/friends /lhawthorn.xml
New accounts= 97 revisited= 3
Enter a Twitter account, or quit: quit

Since we pressed enter (i.e. we did not specify a Twitter account), the following code is
executed:

172 Chapter 14. Using databases and Structured Query Language (SQL)

if (len(acct) < 1) :
cur.execute(' SELECT name FROM Twitter WHERE retrieved = 0 LIMIT 1 ')
try:

acct = cur.fetchone()[0]
except:

print ' No unretrieved twitter accounts found '
continue

We use the SQLSELECTstatement to retrieve the name of the first (LIMIT 1) user who still
has their “have we retrieved this user” value set to zero. We also use thefetchone()[0]
pattern within a try/except block to either extract ascreen_name from the retrieved data
or put out an error message and loop back up.

If we successfully retrieved an unprocessedscreen_name , we retrieve their data as follows:

url = TWITTER_URL.replace(' ACCT' , acct)
print ' Retrieving ' , url
document = urllib.urlopen (url).read()
tree = ET.fromstring(document)

cur.execute(' UPDATE Twitter SET retrieved=1 WHERE name = ? ' , (acct,))

Once we retrieve the data successfully, we use theUPDATEstatement to set theretrieved
column to one to indicate that we have completed the retrieval of the friends of this account.
This keeps us from re-retrieving the same data over and over and keeps us progressing
forward through the network of Twitter friends.

If we run the friend program and press enter twice to retreivethe next unvisited friend’s
friends, then run the dumping program, it will give us the following output:

(u ' opencontent ' , 1, 1)
(u ' lhawthorn ' , 1, 1)
(u ' steve_coppin ' , 0, 1)
(u ' davidkocher ' , 0, 1)
(u ' hrheingold ' , 0, 1)
...
(u ' cnxorg ' , 0, 2)
(u ' knoop ' , 0, 1)
(u ' kthanos ' , 0, 2)
(u ' LectureTools ' , 0, 1)
...
295 rows.

We can see that we have properly recorded that we have visitedlhawthorn and
opencontent . Also the accountscnxorg and kthanos already have two followers.
Since we now have retrieved the friends of three people (drchuck , opencontent and
lhawthorn) our table has 295 rows of friends to retrieve.

14.7. Basic data modeling 173

Each time we run the program and press enter, it will pick the next unvisited account (e.g.
the next account will besteve_coppin), retrieve their friends, mark them as retrieved and
for each of the friends ofsteve_coppin , either add them to the end of the database, or
update their friend count if they are already in the database.

Since the program’s data is all stored on disk in a database, the spidering activity can be
suspended and resumed as many times as you like with no loss ofdata.

Note: One more time before we leave this topic, be very careful when running this Twitter
spidering program. You do not want to pull too much data or runthe program for too long
and end up having your Twitter access shut off.

14.7 Basic data modeling

The real power of a relational database is when we make multiple tables and make links
between those tables. The act of deciding how to break up yourapplication data into
multiple tables and establishing the relationships between the two tables is calleddata
modeling. The design document that shows the tables and their relationships is called a
data model.

Data modeling is a relatively sophisticated skill and we will only introduce the most basic
concepts of relational data modeling in this section. For more detail on data modeling you
can start with:

http://en.wikipedia.org/wiki/Relational_model

Let’s say for our Twitter spider application, instead of just counting a person’s friends, we
wanted to keep a list of all of the incoming relationships so we could find a list of everyone
who is following a particular account.

Since everyone will potentially have many accounts that follow them, we cannot simply
add a single column to ourTwitter table. So we create a new table that keeps track of
pairs of friends. The following is a simple way of making sucha table:

CREATE TABLE Pals (from_friend TEXT, to_friend TEXT)

Each time we encounter a person whodrchuck is following, we would insert a row of the
form:

INSERT INTO Pals (from_friend,to_friend) VALUES (' drchuck ' , ' lhawthorn ')

As we are processing the 100 friends from thedrchuck Twitter feed, we will insert 100
records with “drchuck” as the first parameter so we will end upduplicating the string many
times in the database.

This duplication of string data violates the best practicesfor database normalization
which basically states that we should never put the same string data in the database more

174 Chapter 14. Using databases and Structured Query Language (SQL)

than once. If we need the data more than once, we create a numeric key for the data and
reference the actual data using this key.

In practical terms, a string takes up a lot more space than an integer on the disk and in the
memory of our computer and takes more processor time to compare and sort. If we only
have a few hundred entries the storage and processor time hardly matters. But if we have a
million people in our database and a possibility of 100 million friend links, it is important
to be able to scan data as quickly as possible.

We will store our Twitter accounts in a table namedPeople instead of theTwitter table
used in the previous example. ThePeople table has an additional column to store the
numeric key associated with the row for this Twitter user. SQLite has a feature that auto-
matically adds the key value for any row we insert into a tableusing a special type of data
column (INTEGER PRIMARY KEY).

We can create thePeople table with this additionalid column as follows:

CREATE TABLE People
(id INTEGER PRIMARY KEY, name TEXT UNIQUE, retrieved INTEGE R)

Notice that we are no longer maintaining a friend count in each row of thePeople table.
When we selectINTEGER PRIMARY KEYas the type of ourid column, we are indicating
that we would like SQLite to manage this column and assign a unique numeric key to each
row we insert automatically. We also add the keywordUNIQUEto indicate that we will not
allow SQLite to insert two rows with the same value forname.

Now instead of creating the tablePals above, we create a table calledFollows with two
integer columnsfrom_id andto_id and a constraint on the table that thecombinationof
from_id andto_id must be unique in this table (i.e. we cannot insert duplicaterows) in
our database.

CREATE TABLE Follows
(from_id INTEGER, to_id INTEGER, UNIQUE(from_id, to_id))

When we addUNIQUEclauses to our tables, we are communicating a set of rules that we
are asking the database to enforce when we attempt to insert records. We are creating these
rules as a convenience in our programs as we will see in a moment. The rules both keep us
from making mistakes and make it simpler to write some of our code.

In essense, in creating thisFollows table, we are modelling a ”relationship” where one
person ”follows” someone else and representing it with a pair of numbers indicating that
(a) the people are connected and (b) the direction of the relationship.

14.8. Programming with multiple tables 175

People

name

drchuck

opencontent

 1

1

retrieved
Follows

from_id

1

1 3

to_id
id

1

2

3

4

lhawthorn

steve_coppin

1

0

2

1 4

...
...

14.8 Programming with multiple tables

We will now re-do the Twitter spider program using two tables, the primary keys, and the
key references as described above. Here is the code for the new version of the program:

import sqlite3
import urllib
import xml.etree.ElementTree as ET

TWITTER_URL = ' http://api.twitter.com/l/statuses/friends/ACCT.xml '

conn = sqlite3.connect(' twdata.db ')
cur = conn.cursor()

cur.execute(''' CREATE TABLE IF NOT EXISTS People
(id INTEGER PRIMARY KEY, name TEXT UNIQUE, retrieved INTEGE R) ''')

cur.execute(''' CREATE TABLE IF NOT EXISTS Follows
(from_id INTEGER, to_id INTEGER, UNIQUE(from_id, to_id)) ''')

while True:
acct = raw_input(' Enter a Twitter account, or quit: ')
if (acct == ' quit ') : break
if (len(acct) < 1) :

cur.execute(''' SELECT id,name FROM People
WHERE retrieved = 0 LIMIT 1 ''')

try:
(id, acct) = cur.fetchone()

except:

176 Chapter 14. Using databases and Structured Query Language (SQL)

print ' No unretrieved Twitter accounts found '
continue

else:
cur.execute(' SELECT id FROM People WHERE name = ? LIMIT 1' ,

(acct,))
try:

id = cur.fetchone()[0]
except:

cur.execute(''' INSERT OR IGNORE INTO People
(name, retrieved) VALUES (?, 0) ''' , (acct,))

conn.commit()
if cur.rowcount != 1 :

print ' Error inserting account: ' ,acct
continue

id = cur.lastrowid

url = TWITTER_URL.replace(' ACCT' , acct)
print ' Retrieving ' , url
document = urllib.urlopen (url).read()
tree = ET.fromstring(document)

cur.execute(' UPDATE People SET retrieved=1 WHERE name = ? ' , (acct,))

countnew = 0
countold = 0
for user in tree.findall(' user '):

friend = user.find(' screen_name ').text
cur.execute(' SELECT id FROM People WHERE name = ? LIMIT 1' ,

(friend,))
try:

friend_id = cur.fetchone()[0]
countold = countold + 1

except:
cur.execute(''' INSERT OR IGNORE INTO People (name, retrieved)

VALUES (?, 0) ''' , (friend,))
conn.commit()
if cur.rowcount != 1 :

print ' Error inserting account: ' ,friend
continue

friend_id = cur.lastrowid
countnew = countnew + 1

cur.execute(''' INSERT OR IGNORE INTO Follows
(from_id, to_id) VALUES (?, ?) ''' , (id, friend_id))

print ' New accounts= ' ,countnew, ' revisited= ' ,countold

14.8. Programming with multiple tables 177

conn.commit()

cur.close()

This program is starting to get a bit complicated, but it illustrates the patterns that we need
to use when we are using integer keys to link tables. The basicpatterns are:

1. Creating tables with primary keys and constraints.

2. When we have a logical key for a person (i.e. account name) and we need theid
value for the person. Depending on whether or not the person is already in the
People table, we either need to: (1) look up the person in thePeople table and
retrieve theid value for the person or (2) add the person the thePeople table and
get theid value for the newly added row.

3. Insert the row that captures the “follows” relationship.

We will cover each of these in turn.

14.8.1 Constraints in database tables

As we design our table structures, we can tell the database system that we would like it
to enforce a few rules on us. These rules help us from making mistakes and introducing
incorrect data into out tables. When we create our tables:

cur.execute(''' CREATE TABLE IF NOT EXISTS People
(id INTEGER PRIMARY KEY, name TEXT UNIQUE, retrieved INTEGE R) ''')

cur.execute(''' CREATE TABLE IF NOT EXISTS Follows
(from_id INTEGER, to_id INTEGER, UNIQUE(from_id, to_id)) ''')

We indicate that thename column in thePeople table must beUNIQUE. We also indicate
that the combination of the two numbers in each row of theFollows table must be unique.
These constraints keep us from making mistakes such as adding the same relationship more
than once.

We can take advantage of these constraints in the following code:

cur.execute(''' INSERT OR IGNORE INTO People (name, retrieved)
VALUES (?, 0) ''' , (friend,))

We add theOR IGNOREclause to ourINSERT statement to indicate that if this particular
INSERT would cause a violation of the “name must be unique” rule, the database system is
allowed to ignore theINSERT. We are using the database constraint as a safety net to make
sure we don’t inadvertently do something incorrect.

Similarly, the following code ensures that we don’t add the exact sameFollows relation-
ship twice.

178 Chapter 14. Using databases and Structured Query Language (SQL)

cur.execute(''' INSERT OR IGNORE INTO Follows
(from_id, to_id) VALUES (?, ?) ''' , (id, friend_id))

Again we simply tell the database to ignore our attemptedINSERT if it would violate the
uniqueness constraint that we specified for theFollows rows.

14.8.2 Retrieve and/or insert a record

When we prompt the user for a Twitter account, if the account exists, we must look up its
id value. If the account does not yet exist in thePeople table, we must insert the record
and get theid value from the inserted row.

This is a very common pattern and is done twice in the program above. This code shows
how we look up theid for a friend’s account when we have extracted ascreen_name from
a user node in the retrieved Twitter XML.

Since over time it will be increasingly likely that the account will already be in the database,
we first check to see if thePeople record exists using aSELECTstatement.

If all goes well2 inside thetry section, we retrieve the record usingfetchone() and then
retrieve the first (and only) element of the returned tuple and store it infriend_id .

If the SELECT fails, the fetchone()[0] code will fail and control will transfer into the
except section.

friend = user.find(' screen_name ').text
cur.execute(' SELECT id FROM People WHERE name = ? LIMIT 1' ,

(friend,))
try:

friend_id = cur.fetchone()[0]
countold = countold + 1

except:
cur.execute(''' INSERT OR IGNORE INTO People (name, retrieved)

VALUES (?, 0) ''' , (friend,))
conn.commit()
if cur.rowcount != 1 :

print ' Error inserting account: ' ,friend
continue

friend_id = cur.lastrowid
countnew = countnew + 1

If we end up in theexcept code, it simply means that the row was not found so we must
insert the row. We useINSERT OR IGNOREjust to avoid errors and then callcommit()
to force the database to really be updated. After the write isdone, we can check the

2In general, when a sentence starts with “if all goes well” youwill find that the code needs to use try/except.

14.8. Programming with multiple tables 179

cur.rowcount to see how many rows were affected. Since we are attempting toinsert
a single row, if the number of affected rows is something other than one, it is an error.

If the INSERT is successful, we can look atcur.lastrowid to find out what value the
database assigned to theid column in our newly created row.

14.8.3 Storing the friend relationship

Once we know the key value for both the Twitter user and the friend in the XML, it is a
simple matter to insert the two numbers into theFollows table with the following code:

cur.execute(' INSERT OR IGNORE INTO Follows (from_id, to_id) VALUES (?, ?) ' ,
(id, friend_id))

Notice that we let the database take care of keeping us from “double-inserting” a relation-
ship by creating the table with a uniqueness constraint and then addingOR IGNOREto our
INSERT statement.

Here is a sample execution of this program:

Enter a Twitter account, or quit:
No unretrieved Twitter accounts found
Enter a Twitter account, or quit: drchuck
Retrieving http://api.twitter.com/l/statuses/friends /drchuck.xml
New accounts= 100 revisited= 0
Enter a Twitter account, or quit:
Retrieving http://api.twitter.com/l/statuses/friends /opencontent.xml
New accounts= 97 revisited= 3
Enter a Twitter account, or quit:
Retrieving http://api.twitter.com/l/statuses/friends /lhawthorn.xml
New accounts= 97 revisited= 3
Enter a Twitter account, or quit: quit

We started with thedrchuck account and then let the program automatically pick the next
two accounts to retrieve and add to our database.

The following is the first few rows in thePeople and Follows tables after this run is
completed:

People:
(1, u ' drchuck ' , 1)
(2, u ' opencontent ' , 1)
(3, u ' lhawthorn ' , 1)
(4, u ' steve_coppin ' , 0)
(5, u ' davidkocher ' , 0)
295 rows.

180 Chapter 14. Using databases and Structured Query Language (SQL)

Follows:
(1, 2)
(1, 3)
(1, 4)
(1, 5)
(1, 6)
300 rows.

You can see theid , name, andvisited fields in thePeople table and you see the numbers
of both ends of the relationshipFollows table. In thePeople table, we can see that the first
three people have been visited and their data has been retrieved. The data in theFollows
table indicates thatdrchuck (user 1) is a friend to all of the people shown in the first five
rows. This makes sense because the first data we retrieved andstored was the Twitter
friends ofdrchuck . If you were to print more rows from theFollows table, you would see
the friends of user two and three as well.

14.9 Three kinds of keys

Now that we have started building a data model putting our data into multiple linked tables,
and linking the rows in those tables usingkeys, we need to look at some terminology
around keys. There are generally three kinds of keys used in adatabase model.

• A logical key is a key that the “real world” might use to look up a row. In our
example data model, thename field is a logical key. It is the screen name for the user
and we indeed look up a user’s row several times in the programusing thename field.
You will often find that it makes sense to add aUNIQUEconstraint to a logical key.
Since the logical key is how we look up a row from the outside world, it makes little
sense to allow multiple rows with the same value in the table.

• A primary key is usually a number that is assigned automatically by the database.
It generally has no meaning outside the program and is only used to link rows from
different tables together. When we want to look up a row in a table, usually searching
for the row using the primary key is the fastest way to find a row. Since primary keys
are integer numbers, they take up very little storage and canbe compared or sorted
very quickly. In our data model, theid field is an example of a primary key.

• A foreign key is usually a number that points to the primary key of an associated row
in a different table. An example of a foreign key in our data model is thefrom_id .

We are using a naming convention of always calling the primary key field nameid and
appending the suffix_id to any field name that is a foreign key.

14.10. Using JOIN to retrieve data 181

14.10 Using JOIN to retrieve data

Now that we have followed the rules of database normalization and have data separated
into two tables, linked together using primary and foreign keys, we need to be able to build
a SELECTthat re-assembles the data across the tables.

SQL uses theJOIN clause to re-connect these tables. In theJOIN clause you specify the
fields that are used to re-connect the rows between the tables.

The following is an example of aSELECTwith a JOIN clause:

SELECT * FROM Follows JOIN People
ON Follows.to_id = People.id WHERE Follows.from_id = 2

The JOIN clause indicates that the fields we are selecting cross both the Follows and
People tables. TheONclause indicates how the two tables are to be joined. Take therows
from Follows and append the row fromPeople where the fieldfrom_id in Follows is
the same theid value in thePeople table.

People

name

drchuck

opencontent

 1

1

retrieved

Follows

from_id

1

1 3

to_id
id

1

2

3

4

lhawthorn

steve_coppin

1

0

2

1 4

...
...

name

drchuck opencontent

id

1 2

3

4

lhawthorn

steve_coppin

drchuck 1

drchuck 1

to_id namefrom_id

1

1

1

The result of the JOIN is to create extra-long “meta-rows” which have both the fields from
People and the matching fields fromFollows . Where there is more than one match be-
tween theid field from People and thefrom_id from People , then JOIN creates a meta-
row for eachof the matching pairs of rows, duplicating data as needed.

The following code demonstrates the data that we will have inthe database after the multi-
table Twitter spider program (above) has been run several times.

import sqlite3

conn = sqlite3.connect(' twdata.db ')
cur = conn.cursor()

182 Chapter 14. Using databases and Structured Query Language (SQL)

cur.execute(' SELECT * FROM People')
count = 0
print ' People: '
for row in cur :

if count < 5: print row
count = count + 1

print count, ' rows. '

cur.execute(' SELECT * FROM Follows ')
count = 0
print ' Follows: '
for row in cur :

if count < 5: print row
count = count + 1

print count, ' rows. '

cur.execute(''' SELECT * FROM Follows JOIN People
ON Follows.to_id = People.id WHERE Follows.from_id = 2 ''')

count = 0
print ' Connections for id=2: '
for row in cur :

if count < 5: print row
count = count + 1

print count, ' rows. '

cur.close()

In this program, we first dump out thePeople andFollows and then dump out a subset of
the data in the tables joined together.

Here is the output of the program:

python twjoin.py
People:
(1, u ' drchuck ' , 1)
(2, u ' opencontent ' , 1)
(3, u ' lhawthorn ' , 1)
(4, u ' steve_coppin ' , 0)
(5, u ' davidkocher ' , 0)
295 rows.
Follows:
(1, 2)
(1, 3)
(1, 4)
(1, 5)
(1, 6)

14.11. Summary 183

300 rows.
Connections for id=2:
(2, 1, 1, u ' drchuck ' , 1)
(2, 28, 28, u ' cnxorg ' , 0)
(2, 30, 30, u ' kthanos ' , 0)
(2, 102, 102, u ' SomethingGirl ' , 0)
(2, 103, 103, u ' ja_Pac ' , 0)
100 rows.

You see the columns from thePeople andFollows tables and the last set of rows is the
result of theSELECTwith theJOIN clause.

In the last select, we are looking for accounts that are friends of “opencontent” (i.e.
People.id=2).

In each of the “meta-rows” in the last select, the first two columns are from theFollows
table followed by columns three through five from thePeople table. You can also see that
the second column (Follows.to_id) matches the third column (People.id) in each of
the joined-up “meta-rows”.

14.11 Summary

This chapter has covered a lot of ground to give you an overview of the basics of using a
database in Python. It is more complicated to write the code to use a database to store data
than Python dictionaries or flat files so there is little reason to use a database unless your
application truly needs the capabilities of a database. Thesituations where a database can
be quite useful are: (1) when your application needs to make small many random updates
within a large data set, (2) when your data is so large it cannot fit in a dictionary and you
need to look up information repeatedly, or (3) you have a long-running process that you
want to be able to stop and restart and retain the data from onerun to the next.

You can build a simple database with a single table to suit many application needs, but
most problems will require several tables and links/relationships between rows in different
tables. When you start making links between tables, it is important to do some thoughful
design and follow the rules of database normalization to make the best use of the database’s
capabilities. Since the primary motivation for using a database is that you have a large
amount of data to deal with, it is important to model your dataefficiently so your programs
run as fast as possible.

14.12 Debugging

One common pattern when you are developing a Python program to connect to an SQLite
database will be to run a Python program and check the resultsusing the SQLite Database

184 Chapter 14. Using databases and Structured Query Language (SQL)

Browser. The browser allows you to quickly check to see if your program is working
properly.

You must be careful because SQLite takes care to keep two programs from changing the
same data at the same time. For example, if you open a databasein the browser and make
a change to the database and have not yet pressed the “save” button in the browser, the
browser “locks” the database file and keeping any other program from accessing the file.
In particular, your Python program will not be able to accessthe file if it is locked.

So a solution is to make sure to either close the dababase browser or use theFile menu to
close the database in the browser before you attempt to access the database from Python to
avoid the problem of your Python code failing because the database is locked.

14.13 Glossary
attribute: One of the values within a tuple. More commonly called a “column” or “field”.

constraint: When we tell the database to enforce a rule on a field or a row in a table. A
common constraint is to insist that there can be no duplicatevalues in a particular
field (i.e. all the values must be unique).

cursor: A cursor allows you to execute SQL commands in a database and retrieve data
from the database. A cursor is similar to a socket or file handle for network connec-
tions and files respectively.

database browser: A piece of software that allows you to directly connect to a database
and manipulate the database directly without writing a program.

foreign key: A numeric key that points to the primary key of a row in anothertable. For-
eign keys establish relationships between rows stored in different tables.

index: Additional data that the database software maintains as rows are inserted into a
table designed to make lookups very fast.

logical key: A key that the “outside world” uses to look up a particular row. For example
in a table of user accounts, a person’s E-Mail address might be a good candidate as
the logical key for the user’s data.

normalization: Designing a data model so that no data is replicated. We storeeach item
of data at one place in the database and reference it elsewhere using a foreign key.

primary key: A numeric key assigned to each row that is used to refer to one row in a
table from another table. Often the database is configured toautomatically assign
primary keys as rows are inserted.

relation: An area within a database that contains tuples and attributes. More typically
called a “table”.

14.14. Exercises 185

tuple: A single entry in a database table that is a set of attributes.More typically called
“row”.

14.14 Exercises

Exercise 14.1Retrieve the following filehttp://www.py4inf.com/code/wikidata.db
and use the SQLite browser to figure out how many tables are in the datbase and list the
fields for each of the tables including the type of the field. One of the fields is a type that is
not described in this chapter. Use the SQLite online documentation to describe the purpose
of that type of data?

186 Chapter 14. Using databases and Structured Query Language (SQL)

Chapter 15

Regular Expressions

So far we have been reading through files, looking for patterns and extracting various bits
of lines that we find interesting. We have been using string methods likesplit andfind
and using lists and string slicing to extract portions of thelines.

This task of searching and extracting is so common that Python has a very powerful library
calledregular expressionsthat handles many of these tasks quite elegantly. The reason
we have not introduced regular expressions earlier in the book because while they are very
powerful, they are a little complicated and their syntax takes a little getting used to.

Regular expressions are almost their own little programming language for searching and
parsing strings. As a matter of fact, entire books have been written on the topic of regular
expressions. In this chapter, we will only cover the basics of regular expressions. For more
detail on regular expressions, see:

http://en.wikipedia.org/wiki/Regular_expression

http://docs.python.org/library/re.html

The regular expression library must be imported into your program before you can use it.
The simplest use of the regular expression library is thesearch() function. The following
program demonstrates a trivial use of the search function.

import re
hand = open(' mbox-short.txt ')
for line in hand:

line = line.rstrip()
if re.search(' From: ' , line) :

print line

We open the file, loop through each line and use the regular expressionsearch() to only
print out lines that contain the string “From:”. This program does not use the real power

188 Chapter 15. Regular Expressions

of regular expressions since we could have just as easily used line.find() to accomplish
the same result.

The power of the regular expressions comes we add to special characters to the search string
that allow us to more precisely control which lines match thestring. Adding these special
characters to our regular expression allow us to do sophisticated matching and extraction
while writing very little code.

For example, if we wanted to only match lines where “From:” was at the beginning of the
line, we could add the caret character which a special character in regular expressions that
matches the beginning of a line and change our application asfollows:

import re
hand = open(' mbox-short.txt ')
for line in hand:

line = line.rstrip()
if re.search(' ˆFrom: ' , line) :

print line

Now we will only match lines thatstart with the string “From:”. This is still a very simple
example that we could have done equivalently with thestartswith() method from the
string library. But it serves to introduce the notion that regular expressions contain special
action characters that give us more control as to what will match the regular expression.

15.1 Character Matching in Regular Expressions

There are a number of other special characters that let us build even more powerful regular
expressions. The most commonly used special character is the period character which
matches any character.

In the following example, the regular expression “F..m:” would match any of the strings
“From:”, “Fxxm:”, “F12m:”, or “F!@m:” since the period characters in the regular expres-
sion match any character.

import re
hand = open(' mbox-short.txt ')
for line in hand:

line = line.rstrip()
if re.search(' ˆF..m: ' , line) :

print line

This is particularly powerful when combined with the ability to indicate that a character can
be repeated any number of times using the “*” or “+” characters in your regular expression.
These special characters mean that instead of matching a single character in the search
string they match zero-or-more in the case of the asterisk orone-or-more of the characters
in the case of the plus sign.

15.2. Extracting Data Using Regular Expressions 189

We can further narrow down the lines that we match using thewild card character repeated
one or more times in the following example:

import re
hand = open(' mbox-short.txt ')
for line in hand:

line = line.rstrip()
if re.search(' ˆFrom:.+@ ' , line) :

print line

The search string “ˆ From:.+@” will successfully match lines that start with “From:” fol-
lowed by one or more characters “.+” followed by an at-sign. So this will match the fol-
lowing line:

From: stephen.marquard @uct.ac.za

You can think of the “.+” wildcard as expanding to match all the characters between the
colon character and the at-sign.

From: .+ @

It is good to think of the plus and asterisk characters as “pushy”. For example the following
string would match the last at-sign in the string as the “.+” pushes outwards as shown below:

From: stephen.marquard@uct.ac.za, csev@umich.edu, and cwen @iupui.edu

It is possible to tell an asterisk or plus-sign not to be so “greedy” by adding another char-
acter. See the detailed dcumentation for information on turning off the greedy behavior.

15.2 Extracting Data Using Regular Expressions

If we want to extract data from a string in Python we can use thefindall() method to
extract all of the substrings which match a regular expression. Lets use the example of
wanting to extract anything that looks like an E-Mail address from any line regardless of
format. For example, we want to pull the e-mail addresses from each of the following lines:

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008
Return-Path: <postmaster@collab.sakaiproject.org>

for <source@collab.sakaiproject.org>;
Received: (from apache@localhost)
Author: stephen.marquard@uct.ac.za

We don’t want to write code for each of the types of lines, splitting and slicing differ-
ently for each line. This following program usesfindall() to find the lines with E-Mail
addresses in them and extracts one or more addresses from each of those lines.

190 Chapter 15. Regular Expressions

import re
s = ' Hello from csev@umich.edu to cwen@iupui.edu about the meet ing @2PM'
lst = re.findall(' \S+@\S+ ' , s)
print lst

The findall() method searches the string in the second argument and returns a list of
all of the strings that look like E-Mail addresses. We are using a special character that
indicates a non-whitespace character (\S).

The output of the program would be:

[' csev@umich.edu ' , ' cwen@iupui.edu ']

Translating the regular expression, we are looking for substrings that have at least one
non-whitespace character, followed by an at-sign, followed by at least one more non-white
space characters. Also, the “\S+” matches as many non-whitespace characters as possible
(this is called“greedy” matching in regular expressions).

The regular expression would match twice (csev@umich.edu and cwen@iupui.edu) but it
would not match the string “@2PM” because there are no non-blank characters before the
at-sign. We can use this regular expression in a program to read all the lines in a file and
print out anything that looks like an E-Mail address as follows:

import re
hand = open(' mbox-short.txt ')
for line in hand:

line = line.rstrip()
x = re.findall(' \S+@\S+ ' , line)
if len(x) > 0 :

print x

We read each line and then extract all the substrings that match our regular expression.
Sincefindall() returns a list, we simple check if the number of elements in our returned
list is more than zero to print only lines where we found at least one substring that looks
like an E-Mail address.

If we run the program on mbox.txt we get the following output:

[' wagnermr@iupui.edu ']
[' cwen@iupui.edu ']
[' <postmaster@collab.sakaiproject.org> ']
[' <200801032122.m03LMFo4005148@nakamura.uits.iupui.ed u>']
[' <source@collab.sakaiproject.org>; ']
[' <source@collab.sakaiproject.org>; ']
[' <source@collab.sakaiproject.org>; ']
[' apache@localhost) ']
[' source@collab.sakaiproject.org; ']

15.2. Extracting Data Using Regular Expressions 191

Some of our E-mail addresses have incorrect characters like“<” or “;” at the beginning or
end. Lets declare that we are only interested in the portion of the string that starts and ends
with a letter or a number.

To do this, we use another feature of regular expressions. Square brackets are used to
indicate a set of acceptable characters we are willing to consider matching. In a sense, the
“\S” is asking to match the set of “non-whitespace characters”. Now we will be a little
more explicit in terms of the characters we will match.

Here is our new regular expression:

[a-zA-Z0-9]\S*@\S*[a-zA-Z]

This is getting a little complicated and you can begin to see why regular expressions are
their own little language unto themselves. Translating this regular expression, we are look-
ing for substrings that start with asingle lowercase letter, upper case letter, or number
“[a-zA-Z0-9]” followed by zero or more non blank characters“\S*”, followed by an at-
sign, followed by zero or more non-blank characters “\S*” followed by an upper or lower
case letter. Note that we switched from “+” to “*” to indicatezero-or-more non-blank char-
acters. Remember that the “*” or “+” applies to the single character immediately to the left
of the plus or asterisk.

If we use this expression in our program, our data is much cleaner:

import re
hand = open(' mbox-short.txt ')
for line in hand:

line = line.rstrip()
x = re.findall(' [a-zA-Z0-9]\S+@\S+[a-zA-Z] ' , line)
if len(x) > 0 :

print x

[' wagnermr@iupui.edu ']
[' cwen@iupui.edu ']
[' postmaster@collab.sakaiproject.org ']
[' 200801032122.m03LMFo4005148@nakamura.uits.iupui.edu ']
[' source@collab.sakaiproject.org ']
[' source@collab.sakaiproject.org ']
[' source@collab.sakaiproject.org ']
[' apache@localhost ']

Notice that on the “source@collab.sakaiproject.org” lines, our regular expression elimi-
nated two letters at the end of the string (“>;”). This is because when we append “[a-
zA-Z]” to the end of our regular expression, we are demandingthat whatever string the
regular expression parser finds, it must end with a letter. Sowhen it sees the “>” after
“sakaiproject.org>;” it simply stops at the last “matching” letter it found (i.e. the “g” was
the last good match).

192 Chapter 15. Regular Expressions

Also note that the output of the program is a Python list that has a string as the single
element in the list.

15.3 Combining Searching and Extracting

Lets say we want to find numbers on lines that start with the string “X-” like the following.:

X-DSPAM-Confidence: 0.8475
X-DSPAM-Probability: 0.0000

We don’t just want any floating point point numbers from any lines. We only to extract
numbers from lines that have the above syntax.

We can construct the following regular expression to selectthe lines:

ˆX-.*: [0-9.]+

Translating this, we are saying, we want lines that start with “X-” followed by zero or more
characters “.*” followed by a colon (“:”) and then a space. After the space we are looking
for one or more characters that are either a digit (0-9) or a period “[0-9.]+”. Note that in
between the square braces, the period matches an actual period (i.e. it is not a wildcard
between the square brackets).

This is a very tight expression that will pretty much match only the lines we are interested
in as follows:

import re
hand = open(' mbox-short.txt ')
for line in hand:

line = line.rstrip()
if re.search(' ˆX\S*: [0-9.]+ ' , line) :

print line

When we run the program, we see the data nicely filtered to show only the lines we are
looking for.

X-DSPAM-Confidence: 0.8475
X-DSPAM-Probability: 0.0000
X-DSPAM-Confidence: 0.6178
X-DSPAM-Probability: 0.0000

But now we have to solve the problem of extracting the numbersusingsplit . While it
would be simple enough to usesplit , we can use another feature of regular expressions to
both search and parse the line at the same time.

Parentheses are another special character in regular expressions. When you add parentheses
to a regular expression they are ignored when matching the string, but when you are using

15.3. Combining Searching and Extracting 193

findall() , parentheses indicates that you while you want the whole expression to match,
you only are interesed in extracting a portion of the substring that matches the regular
expression.

So we make the following change to our program:

import re
hand = open(' mbox-short.txt ')
for line in hand:

line = line.rstrip()
x = re.findall(' ˆX\S*: ([0-9.]+) ' , line)
if len(x) > 0 :

print x

Instead of callingsearch() , we add a parentheses around the part of the regular expression
that represents the floating point number to indicate we onlywant findall() to give us
back the floating point number from the matching substring.

The output from this program is as follows:

[' 0.8475 ']
[' 0.0000 ']
[' 0.6178 ']
[' 0.0000 ']
[' 0.6961 ']
[' 0.0000 ']
..

The numbers are still in a list and need to be converted from strings to floating point but we
have used the power of regular expressions to both search andextract the information we
found interesting.

If you look at the file there are a number of lines of the form:

Details: http://source.sakaiproject.org/viewsvn/?vie w=rev&rev=39772

Lets say, we wanted to extract all of the revision numbers (the integer number at the end of
these lines) using the same technique as above. We could write the following program:

import re
hand = open(' mbox-short.txt ')
for line in hand:

line = line.rstrip()
x = re.findall(' ˆDetails:.*rev=([0-9.]+) ' , line)
if len(x) > 0:

print x

Translating our regular expression, we are looking for lines that start with “Details:’, fol-
lowed by any any number of characters “.*” followed by “rev=”and then by one or more

194 Chapter 15. Regular Expressions

digits. We want lines that match the entire expression but weonly want to extract the
integer number at the end of the line so we surround “[0-9]+” with parentheses.

When we run the program, we get the following output:

[' 39772 ']
[' 39771 ']
[' 39770 ']
[' 39769 ']
...

Remember that the “[0-9]+” is “greedy” and it tries to make aslarge a string of digits as
possible before extracting those digits. This “greedy” behavior is why we get all five digits
for each number. The regular expression library expands in both directions until it counters
a non-digit, the beginning, or the end of a line.

Now lets use regular expressions to re-do an exercise from earlier in the book where we
were interested in the time of day of each mail message. We looked for lines of the form:

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

And wanted to extract the hour of the day for each line. Previously we did this with two
calls tosplit . First the line was split into words and then we pulled out thefifth word and
split it again on the colon character to pull out the two characters we were interested in.

While this worked, it actually results in pretty brittle codethat is assuming the lines are
nicely formatted. If you were to add enough error checking (or a big try/except block) to
insure that your program never failed when presented with incorrectly formatted lines, the
code would balloon to 10-15 lines of code that was pretty hardto read.

We can do this far simpler with the following regular expression:

ˆFrom .* [0-9][0-9]:

The translation of this regular expression is that we are looking for lines that start with
“From ” (note the space) followed by any number of characters“.*” followed by a space
followed by two digits “[0-9][0-9]” followed by a colon character. This is the definition of
the kinds of lines we are looking for.

In order to pull out only the hour usingfindall() , we add parentheses around the two
digits as follows:

ˆFrom .* ([0-9][0-9]):

This results in the following program:

import re
hand = open(' mbox-short.txt ')
for line in hand:

line = line.rstrip()

15.4. Summary 195

x = re.findall(' ˆFrom .* ([0-9][0-9]): ' , line)
if len(x) > 0 : print x

When the program runs, it produces the following output:

[' 09']
[' 18']
[' 16']
[' 15']

15.4 Summary

While this only scratched the surface of regular expressions, we have learned a bit about
the language of regular expressions. They are search strings that have special characters
in them that communicate your wishes to the regular expression system. Here are some of
those specal characters and character sequences:

ˆ
Matches the beginning of the line

$
Matches the end of the line

.
Matches any character (a wildcard)

\s
Matches a whitespace character

\S
Matches a non-whitespace character (opposite of\s)

*
Applies to the immediately preceding character and indicates to match zero or more of the
preceding character.

+
Applies to the immediately preceding character and indicates to match zero or more of the
preceding character.

[abc]
Matches a single character as long as that character is in thespecified set. In this example,
it would match “a”, “b”, or “c” but no other characters.

[a-z0-9]
You can specify ranges of characters using the minus sign. This example is a single char-
acter that must be a lower case letter or a digit.

196 Chapter 15. Regular Expressions

[ˆ A-Za-z]
When the first character in the set notation is a caret, it inverts the logic. This example
matches a single character that is anythingother thanan upper or lower case character.

()
When parentheses are added to a regular expression, they are ignored for the purpose of
matching, but allow you to extract a particular subset of thematched string rather than the
whole string when usingfindall() .

\b
Matches the empty string, but only at the start or end of a word.

\B
Matches the empty string, but not at the start or end of a word.

\d
Matches any decimal digit; equivalent to the set [0-9].

\D
Matches any non-digit character; equivalent to the set [ˆ 0-9].

15.5 Bonus Section for UNIX Users

Support for searching files using regular expressions was built into the UNIX operating
since the 1960’s and it is avaiable in nearly all programminglanguages in one form or
another.

As a matter of fact, there is a command-line program built into UNIX calledgrep (General-
ized Regular Expression Parser) that does pretty much the same as thesearch() examples
in this chapter. So if you have a Macintosh or Linux system, you can try the following
commands in your command line window.

$ grep ' ˆFrom: ' mbox-short.txt
From: stephen.marquard@uct.ac.za
From: louis@media.berkeley.edu
From: zqian@umich.edu
From: rjlowe@iupui.edu

This tells grep to show you lines that start with the string “From:” in the filembox-
short.txt. If you experiment with the rep command a bit and read the documentation
for grep , you will find some subtle difference between the regular expression support in
Python and the regular expression support ingrep . As an example,grep does not support
the non-blank character “\S” so you will need to use the slightly more complex set notation
“[ˆ]”- which simply means - match a character that is anything other than a space.

15.6. Debugging 197

15.6 Debugging

Python has some simple and rudimentary built-in documentation that can be quite helpful
if you need a quick refresher to trigger your memory about theexact name of a particular
method. This documentation can be viewed in the Python interpreter in interactive mode.

You can bring up an interactive help system using help()

>>> help()

Welcome to Python 2.6! This is the online help utility.

If this is your first time using Python, you should definitel y check out
the tutorial on the Internet at http://docs.python.org/tu torial/.

Enter the name of any module, keyword, or topic to get help on w riting
Python programs and using Python modules. To quit this help u tility and
return to the interpreter, just type "quit".

To get a list of available modules, keywords, or topics, type "modules",
"keywords", or "topics". Each module also comes with a one-l ine summary
of what it does; to list the modules whose summaries contain a given word
such as "spam", type "modules spam".

help> modules

If you know what module you want to use, you can sue the dir() command to find the
methods in the module as follows:

>>> import re
>>> dir(re)
[.. ' compile ' , ' copy_reg ' , ' error ' , ' escape ' , ' findall ' ,
' finditer ' , ' match ' , ' purge ' , ' search ' , ' split ' , ' sre_compile ' ,
' sre_parse ' , ' sub ' , ' subn ' , ' sys ' , ' template ']

You can also get a small amount of documentation on a particular method using the dir
command.

>>> help (re.search)
Help on function search in module re:

search(pattern, string, flags=0)
Scan through string looking for a match to the pattern, retur ning
a match object, or None if no match was found.

>>>

The built in documentation is not very extensive, but it can be helpful when you are in a
hurry or don’t have access to a web browser or search engine.

198 Chapter 15. Regular Expressions

15.7 Glossary
greedy matching: The notion that the “+” and “*” characters in a regular expression ex-

pand outward to match the largest possible string.

grep: A command available in most UNIX systems that searchesthrough text files looking
for lines that match regular expressions. The command name stands for ”Generalized
Regular Expression Parser”.

regular expression: A language for expressing more complexsearch strings. A regular
expression may contain special characters that indicate that a search only matches at
the beginning or end of a line or many other similar capabilities.

wild card: A special character that matches any character. In regular expressions the wild
card character is the period character.

15.8 Exercises

Exercise 15.1Write a simple program to simulate the operation of the thegrep command
on UNIX. Ask the user to enter a regular expression and count the number of lines that
matched the regular expression:

$ python grep.py
Enter a regular expression: ˆAuthor
mbox.txt had 1798 lines that matched ˆAuthor

$ python grep.py
Enter a regular expression: ˆX-
mbox.txt had 14368 lines that matched ˆX-

$ python grep.py
Enter a regular expression: java$
mbox.txt had 4218 lines that matched java$

Exercise 15.2Write a program to look for lines of the form

New Revision: 39772

And extract the number from each of the lines using a regular expression and the
findall() method. Compute the average of the numbers and print out the average.

Appendix A

Debugging

Different kinds of errors can occur in a program, and it is useful to distinguish among them
in order to track them down more quickly:

• Syntax errors are produced by Python when it is translatingthe source code into
byte code. They usually indicate that there is something wrong with the syntax of
the program. Example: Omitting the colon at the end of adef statement yields the
somewhat redundant messageSyntaxError: invalid syntax .

• Runtime errors are produced by the interpreter if something goes wrong while the
program is running. Most runtime error messages include information about where
the error occurred and what functions were executing.

• Semantic errors are problems with a program that runs without producing error mes-
sages but doesn’t do the right thing. Example: An expressionmay not be evaluated
in the order you expect, yielding an incorrect result.

The first step in debugging is to figure out which kind of error you are dealing with. Al-
though the following sections are organized by error type, some techniques are applicable
in more than one situation.

A.1 Syntax errors

Syntax errors are usually easy to fix once you figure out what they are. Unfortunately,
the error messages are often not helpful. The most common messages areSyntaxError:
invalid syntax andSyntaxError: invalid token , neither of which is very infor-
mative.

On the other hand, the message does tell you where in the program the problem occurred.
Actually, it tells you where Python noticed a problem, whichis not necessarily where the

200 Appendix A. Debugging

error is. Sometimes the error is prior to the location of the error message, often on the
preceding line.

If you are building the program incrementally, you should have a good idea about where
the error is. It will be in the last line you added.

If you are copying code from a book, start by comparing your code to the book’s code
very carefully. Check every character. At the same time, remember that the book might be
wrong, so if you see something that looks like a syntax error,it might be.

Here are some ways to avoid the most common syntax errors:

1. Make sure you are not using a Python keyword for a variable name.

2. Check that you have a colon at the end of the header of every compound statement,
including for , while , if , anddef statements.

3. Make sure that any strings in the code have matching quotation marks.

4. If you have multiline strings with triple quotes (single or double), make sure you
have terminated the string properly. An unterminated string may cause aninvalid
token error at the end of your program, or it may treat the followingpart of the
program as a string until it comes to the next string. In the second case, it might not
produce an error message at all!

5. An unclosed opening operator—(, { , or [—makes Python continue with the next
line as part of the current statement. Generally, an error occurs almost immediately
in the next line.

6. Check for the classic= instead of== inside a conditional.

7. Check the indentation to make sure it lines up the way it is supposed to. Python can
handle space and tabs, but if you mix them it can cause problems. The best way
to avoid this problem is to use a text editor that knows about Python and generates
consistent indentation.

If nothing works, move on to the next section...

A.1.1 I keep making changes and it makes no difference.

If the interpreter says there is an error and you don’t see it,that might be because you and
the interpreter are not looking at the same code. Check your programming environment to
make sure that the program you are editing is the one Python istrying to run.

If you are not sure, try putting an obvious and deliberate syntax error at the beginning of
the program. Now run it again. If the interpreter doesn’t findthe new error, you are not
running the new code.

There are a few likely culprits:

A.2. Runtime errors 201

• You edited the file and forgot to save the changes before running it again. Some
programming environments do this for you, but some don’t.

• You changed the name of the file, but you are still running theold name.

• Something in your development environment is configured incorrectly.

• If you are writing a module and usingimport , make sure you don’t give your module
the same name as one of the standard Python modules.

• If you are usingimport to read a module, remember that you have to restart the
interpreter or usereload to read a modified file. If you import the module again, it
doesn’t do anything.

If you get stuck and you can’t figure out what is going on, one approach is to start again
with a new program like “Hello, World!,” and make sure you canget a known program to
run. Then gradually add the pieces of the original program tothe new one.

A.2 Runtime errors

Once your program is syntactically correct, Python can compile it and at least start running
it. What could possibly go wrong?

A.2.1 My program does absolutely nothing.

This problem is most common when your file consists of functions and classes but does
not actually invoke anything to start execution. This may beintentional if you only plan to
import this module to supply classes and functions.

If it is not intentional, make sure that you are invoking a function to start execution, or
execute one from the interactive prompt. Also see the “Flow of Execution” section below.

A.2.2 My program hangs.

If a program stops and seems to be doing nothing, it is “hanging.” Often that means that it
is caught in an infinite loop. If there is a particular loop that you suspect is the problem, add
a print statement immediately before the loop that says “entering the loop” and another
immediately after that says “exiting the loop.”

Run the program. If you get the first message and not the second, you’ve got an infinite
loop. If you think you have an infinite loop and you think you know what loop is causing
the problem, add aprint statement inside the loop as the last statement in the loop loop
that prints the values of the variables in the condition and the value of the condition.

For example:

202 Appendix A. Debugging

while x > 0 and y < 0 :
do something to x
do something to y

print ' x: ' , x
print ' y: ' , y
print ' condition: ' , (x > 0 and y < 0)

Now when you run the program, you will see three lines of output for each time through
the loop. The last time through the loop, the condition should befalse . If the loop keeps
going, you will be able to see the values ofx andy , and you might figure out why they are
not being updated correctly.

Flow of Execution

If you are not sure how the flow of execution is moving through your program, addprint
statements to the beginning of each function with a message like “entering functionfoo ,”
wherefoo is the name of the function.

Now when you run the program, it will print a trace of each function as it is invoked.

A.2.3 When I run the program I get an exception.

If something goes wrong during runtime, Python prints a message that includes the name
of the exception, the line of the program where the problem occurred, and a traceback.

The traceback identifies the function that is currently running, and then the function that
invoked it, and then the function that invokedthat, and so on. In other words, it traces the
sequence of function invocations that got you to where you are. It also includes the line
number in your file where each of these calls occurs.

The first step is to examine the place in the program where the error occurred and see if
you can figure out what happened. These are some of the most common runtime errors:

NameError: You are trying to use a variable that doesn’t exist in the current environment.
Remember that local variables are local. You cannot refer tothem from outside the
function where they are defined.

TypeError: There are several possible causes:

• You are trying to use a value improperly. Example: indexinga string, list, or
tuple with something other than an integer.

• There is a mismatch between the items in a format string and the items passed
for conversion. This can happen if either the number of itemsdoes not match
or an invalid conversion is called for.

A.2. Runtime errors 203

• You are passing the wrong number of arguments to a function or method. For
methods, look at the method definition and check that the firstparameter is
self . Then look at the method invocation; make sure you are invoking the
method on an object with the right type and providing the other arguments
correctly.

KeyError: You are trying to access an element of a dictionary using a keythat the dictio-
nary does not contain.

AttributeError: You are trying to access an attribute or method that does not exist. Check
the spelling! You can usedir to list the attributes that do exist.

If an AttributeError indicates that an object hasNoneType , that means that it isNone.
One common cause is forgetting to return a value from a function; if you get to
the end of a function without hitting areturn statement, it returnsNone. Another
common cause is using the result from a list method, likesort , that returnsNone.

IndexError: The index you are using to access a list, string, or tuple is greater than its
length minus one. Immediately before the site of the error, add aprint statement to
display the value of the index and the length of the array. Is the array the right size?
Is the index the right value?

The Python debugger (pdb) is useful for tracking down Exceptions because it allows you
to examine the state of the program immediately before the error. You can read aboutpdb
at docs.python.org/lib/module-pdb.html .

A.2.4 I added so manyprint statements I get inundated with output.

One of the problems with usingprint statements for debugging is that you can end up
buried in output. There are two ways to proceed: simplify theoutput or simplify the pro-
gram.

To simplify the output, you can remove or comment outprint statements that aren’t help-
ing, or combine them, or format the output so it is easier to understand.

To simplify the program, there are several things you can do.First, scale down the problem
the program is working on. For example, if you are searching alist, search asmall list. If
the program takes input from the user, give it the simplest input that causes the problem.

Second, clean up the program. Remove dead code and reorganize the program to make it
as easy to read as possible. For example, if you suspect that the problem is in a deeply
nested part of the program, try rewriting that part with simpler structure. If you suspect a
large function, try splitting it into smaller functions andtesting them separately.

Often the process of finding the minimal test case leads you tothe bug. If you find that a
program works in one situation but not in another, that givesyou a clue about what is going
on.

Similarly, rewriting a piece of code can help you find subtle bugs. If you make a change
that you think shouldn’t affect the program, and it does, that can tip you off.

204 Appendix A. Debugging

A.3 Semantic errors

In some ways, semantic errors are the hardest to debug, because the interpreter provides no
information about what is wrong. Only you know what the program is supposed to do.

The first step is to make a connection between the program textand the behavior you are
seeing. You need a hypothesis about what the program is actually doing. One of the things
that makes that hard is that computers run so fast.

You will often wish that you could slow the program down to human speed, and with some
debuggers you can. But the time it takes to insert a few well-placedprint statements is
often short compared to setting up the debugger, inserting and removing breakpoints, and
“stepping” the program to where the error is occurring.

A.3.1 My program doesn’t work.

You should ask yourself these questions:

• Is there something the program was supposed to do but which doesn’t seem to be
happening? Find the section of the code that performs that function and make sure it
is executing when you think it should.

• Is something happening that shouldn’t? Find code in your program that performs
that function and see if it is executing when it shouldn’t.

• Is a section of code producing an effect that is not what you expected? Make sure that
you understand the code in question, especially if it involves invocations to functions
or methods in other Python modules. Read the documentation for the functions you
invoke. Try them out by writing simple test cases and checking the results.

In order to program, you need to have a mental model of how programs work. If you write
a program that doesn’t do what you expect, very often the problem is not in the program;
it’s in your mental model.

The best way to correct your mental model is to break the program into its components
(usually the functions and methods) and test each componentindependently. Once you
find the discrepancy between your model and reality, you can solve the problem.

Of course, you should be building and testing components as you develop the program.
If you encounter a problem, there should be only a small amount of new code that is not
known to be correct.

A.3.2 I’ve got a big hairy expression and it doesn’t do what I expect.

Writing complex expressions is fine as long as they are readable, but they can be hard to
debug. It is often a good idea to break a complex expression into a series of assignments to
temporary variables.

A.3. Semantic errors 205

For example:

self.hands[i].addCard(self.hands[self.findNeighbor(i)].popCard())

This can be rewritten as:

neighbor = self.findNeighbor(i)
pickedCard = self.hands[neighbor].popCard()
self.hands[i].addCard(pickedCard)

The explicit version is easier to read because the variable names provide additional doc-
umentation, and it is easier to debug because you can check the types of the intermediate
variables and display their values.

Another problem that can occur with big expressions is that the order of evaluation may
not be what you expect. For example, if you are translating the expressionx

2π into Python,
you might write:

y = x / 2 * math.pi

That is not correct because multiplication and division have the same precedence and are
evaluated from left to right. So this expression computesxπ/2.

A good way to debug expressions is to add parentheses to make the order of evaluation
explicit:

y = x / (2 * math.pi)

Whenever you are not sure of the order of evaluation, use parentheses. Not only will the
program be correct (in the sense of doing what you intended),it will also be more readable
for other people who haven’t memorized the rules of precedence.

A.3.3 I’ve got a function or method that doesn’t return what I expect.

If you have areturn statement with a complex expression, you don’t have a chanceto
print the return value before returning. Again, you can use a temporary variable. For
example, instead of:

return self.hands[i].removeMatches()

you could write:

count = self.hands[i].removeMatches()
return count

Now you have the opportunity to display the value ofcount before returning.

206 Appendix A. Debugging

A.3.4 I’m really, really stuck and I need help.

First, try getting away from the computer for a few minutes. Computers emit waves that
affect the brain, causing these symptoms:

• Frustration and rage.

• Superstitious beliefs (“the computer hates me”) and magical thinking (“the program
only works when I wear my hat backward”).

• Random walk programming (the attempt to program by writingevery possible pro-
gram and choosing the one that does the right thing).

If you find yourself suffering from any of these symptoms, getup and go for a walk. When
you are calm, think about the program. What is it doing? What aresome possible causes
of that behavior? When was the last time you had a working program, and what did you do
next?

Sometimes it just takes time to find a bug. I often find bugs whenI am away from the
computer and let my mind wander. Some of the best places to findbugs are trains, showers,
and in bed, just before you fall asleep.

A.3.5 No, I really need help.

It happens. Even the best programmers occasionally get stuck. Sometimes you work on a
program so long that you can’t see the error. A fresh pair of eyes is just the thing.

Before you bring someone else in, make sure you are prepared.Your program should be as
simple as possible, and you should be working on the smallestinput that causes the error.
You should haveprint statements in the appropriate places (and the output they produce
should be comprehensible). You should understand the problem well enough to describe it
concisely.

When you bring someone in to help, be sure to give them the information they need:

• If there is an error message, what is it and what part of the program does it indicate?

• What was the last thing you did before this error occurred? What were the last lines
of code that you wrote, or what is the new test case that fails?

• What have you tried so far, and what have you learned?

When you find the bug, take a second to think about what you couldhave done to find it
faster. Next time you see something similar, you will be ableto find the bug more quickly.

Remember, the goal is not just to make the program work. The goal is to learn how to make
the program work.

Appendix B

Contributor List

Contributor List for “Python for Informatics”

Bruce Shields for copy editing early drafts, Sarah Hegge, Steven Cherry, Sarah Kathleen
Barbarow, Andrea Parker, Radaphat Chongthammakun, Megan Hixon, Kirby Urner, Sarah
Kathleen Barbrow, Katie Kujala, Noah Botimer, Emily Alinder, Mark Thompson-Kular,
James Perry, Eric Hofer, Eytan Adar, Peter Robinson, Deborah J. Nelson, Jonathan C.
Anthony, Eden Rassette, Jeannette Schroeder, Justin Feezell, Chuanqi Li, Gerald Gor-
dinier, Gavin Thomas Strassel, Ryan Clement, Alissa Talley, Caitlin Holman, Yong-Mi
Kim, Karen Stover,

Contributor List for “Think Python”

(Allen B. Downey)

More than 100 sharp-eyed and thoughtful readers have sent insuggestions and corrections
over the past few years. Their contributions, and enthusiasm for this project, have been a
huge help.

For the detail on the nature of each of the contributions fromthese individuals, see the
“Think Python” text.

Lloyd Hugh Allen, Yvon Boulianne, Fred Bremmer, Jonah Cohen, Michael Conlon, Benoit
Girard, Courtney Gleason and Katherine Smith, Lee Harr, James Kaylin, David Kershaw,
Eddie Lam, Man-Yong Lee, David Mayo, Chris McAloon, MatthewJ. Moelter, Simon
Dicon Montford, John Ouzts, Kevin Parks, David Pool, Michael Schmitt, Robin Shaw,
Paul Sleigh, Craig T. Snydal, Ian Thomas, Keith Verheyden, Peter Winstanley, Chris Wro-
bel, Moshe Zadka, Christoph Zwerschke, James Mayer, HaydenMcAfee, Angel Arnal,
Tauhidul Hoque and Lex Berezhny, Dr. Michele Alzetta, Andy Mitchell, Kalin Harvey,

208 Appendix B. Contributor List

Christopher P. Smith, David Hutchins, Gregor Lingl, Julie Peters, Florin Oprina, D. J. We-
bre, Ken, Ivo Wever, Curtis Yanko, Ben Logan, Jason Armstrong, Louis Cordier, Brian
Cain, Rob Black, Jean-Philippe Rey at Ecole Centrale Paris,Jason Mader at George Wash-
ington University made a number Jan Gundtofte-Bruun, Abel David and Alexis Dinno,
Charles Thayer, Roger Sperberg, Sam Bull, Andrew Cheung, C.Corey Capel, Alessandra,
Wim Champagne, Douglas Wright, Jared Spindor, Lin Peiheng, Ray Hagtvedt, Torsten
Hübsch, Inga Petuhhov, Arne Babenhauserheide, Mark E. Casida, Scott Tyler, Gordon
Shephard, Andrew Turner, Adam Hobart, Daryl Hammond and Sarah Zimmerman, George
Sass, Brian Bingham, Leah Engelbert-Fenton, Joe Funke, Chao-chao Chen, Jeff Paine, Lu-
bos Pintes, Gregg Lind and Abigail Heithoff, Max Hailperin,Chotipat Pornavalai, Stanis-
law Antol, Eric Pashman, Miguel Azevedo, Jianhua Liu, Nick King, Martin Zuther, Adam
Zimmerman, Ratnakar Tiwari, Anurag Goel, Kelli Kratzer, Mark Griffiths, Roydan Ongie,
Patryk Wolowiec, Mark Chonofsky, Russell Coleman, Wei Huang, Karen Barber, Nam
Nguyen, St́ephane Morin, and Paul Stoop.

Index

abecedarian, 67
absolute path, 132
access, 94
accumulator, 63

sum, 61
algorithm, 51

MD5, 141
aliasing, 100, 101, 107

copying to avoid, 104
alternative execution, 31
ambiguity, 10
and operator, 30
API, 158
append method, 97, 102
argument, 41, 45, 48, 51, 102

keyword, 121
list, 102
optional, 72, 99

arguments, 138
arithmetic operator, 18
assignment, 25, 93

item, 69, 94, 120
tuple, 121, 129

assignment statement, 16
attribute, 184
AttributeError, 203

BeautifulSoup, 147, 149
big, hairy expression, 204
bisection, debugging by, 63
body, 38, 45, 51, 56
bool type, 29
boolean expression, 29, 39
boolean operator, 70
bracket

squiggly, 109

bracket operator, 65, 94, 120
branch, 32, 39
break statement, 58
bug, 7, 12
BY-SA, vi

calculator, 14
case-sensitivity, variable names, 25
catch, 91
CC-BY-SA, vi
celsius, 35
central processing unit, 12
chained conditional, 32, 39
character, 65
checksum, 140, 141
choice function, 44
close method, 90, 140
Collatz conjecture, 57
colon, 45, 200
comment, 22, 25
comparable, 119, 129
comparison

string, 70
tuple, 120

comparison operator, 30
compile, 5, 12
composition, 48, 51
compound statement, 31, 39
concatenation, 21, 25, 67, 69, 99

list, 96, 102
condition, 31, 39, 56, 201
conditional, 200

chained, 32, 39
nested, 33, 39

conditional execution, 30
conditional statement, 30, 39

210 Index

connect function, 164
consistency check, 117
constraint, 184
continue statement, 59
contributors, 207
conversion

type, 42
copy

slice, 68, 96
to avoid aliasing, 104

count method, 73
counter, 63, 69, 77, 84, 111
counting and looping, 69
CPU, 12
Creative Commons License, vi
cursor, 184
cursor function, 164

data structure, 127, 129
database, 161

indexes, 161
database browser, 184
database normalization, 184
dead code, 203
debugger (pdb), 203
debugging, 7, 11, 12, 24, 37, 50, 75, 90, 103,

116, 127, 199
by bisection, 63
emotional response, 12, 206
experimental, 8
superstition, 206

decorate-sort-undecorate pattern, 121
decrement, 55, 64
def keyword, 45
definition

function, 45
del operator, 97
deletion, element of list, 97
delimiter, 99, 107
deterministic, 43, 51
development plan

incremental, 200
random walk programming, 128, 206

diagram

stack, 102
state, 16, 77, 94, 100, 101, 126

dict function, 109
dictionary, 109, 117, 123, 203

looping with, 113
traversal, 123

directory, 131
current, 140
cwd, 140
working, 132, 140

divisibility, 20
division

floating-point, 19
floor, 19, 38

documentation, 14
dot notation, 44, 51, 72
Doyle, Arthur Conan, 9
DSU pattern, 121, 129
duplicate, 141

element, 93, 107
element deletion, 97
ElementTree, 152, 158

find, 152
findall, 153
fromstring, 152
get, 153

elif keyword, 33
ellipses, 45
else keyword, 31
email address, 122
emotional debugging, 12, 206
empty list, 93
empty string, 78, 99
encapsulation, 70
end of line character, 90
equivalence, 101
equivalent, 107
error

compile-time, 199
runtime, 8, 24, 38, 199
semantic, 8, 16, 25, 77, 199, 204
shape, 127
syntax, 8, 24, 199

Index 211

error message, 8, 11, 16, 24, 199
evaluate, 19
exception, 8, 12, 24, 199, 202

AttributeError, 203
IndexError, 66, 76, 95, 203
IOError, 88
KeyError, 110, 203
NameError, 202
OverflowError, 38
TypeError, 66, 68, 74, 120, 202
ValueError, 22, 122

executable, 6, 12
exists function, 132
experimental debugging, 8, 128
expression, 18, 19, 25

big and hairy, 204
boolean, 29, 39

extend method, 97
eXtensible Markup Language, 158

fahrenheit, 35
False special value, 29
file, 81

open, 82
reading, 84
writing, 89

file handle, 82
file name, 131
filter pattern, 85
find function, 69
findall, 189
flag, 78
float function, 42
float type, 15
floating-point, 25
floating-point division, 19
floor division, 19, 25, 38
flow of execution, 47, 51, 56, 202
folder, 131
for loop, 66, 95
for statement, 59
foreign key, 184
formal language, 9, 12
format operator, 74, 78, 202

format sequence, 74, 78
format string, 74, 78
Free Documentation License, GNU, vii, viii
frequency, 111

letter, 130
fruitful function, 49, 51
frustration, 206
function, 45, 51

choice, 44
connect, 164
cursor, 164
dict, 109
exists, 132
find, 69
float, 42
getcwd, 131
int, 42
len, 66, 110
list, 98
log, 44
open, 82, 88
popen, 139
randint, 43
random, 43
raw input, 21
reload, 201
repr, 90
reversed, 127
sorted, 127
sqrt, 45
str, 42
tuple, 119

function argument, 48
function call, 41, 51
function definition, 45, 46, 51
function object, 46
function parameter, 48
function, fruitful, 49
function, math, 44
function, reasons for, 50
function, trigonometric, 44
function, void, 49

gather, 129

212 Index

get method, 112
getcwd function, 131
GNU Free Documentation License, vii, viii
greedy, 189, 198
greedy matching, 198
grep, 198
guardian pattern, 36, 39, 76

hanging, 201
hardware, 3

architecture, 3
hash function, 117
hashable, 119, 126, 129
hashing, 140
hashtable, 110, 117
header, 45, 51, 200
Hello, World, 11
help utility, 14
high-level language, 5, 12
histogram, 111, 117
Holmes, Sherlock, 9
HTML, 147

identical, 107
identity, 101
if statement, 30
immutability, 68, 69, 78, 101, 119, 127
implementation, 111, 117
import statement, 51
in operator, 70, 95, 110
increment, 55, 64
incremental development, 200
indentation, 45, 200
index, 65, 66, 76, 78, 94, 107, 109, 184, 202

looping with, 95
negative, 66
slice, 67, 96
starting at zero, 65, 94

IndexError, 66, 76, 95, 203
infinite loop, 56, 64, 201
initialization (before update), 55
int function, 42
int type, 15
integer, 25
interactive mode, 6, 12, 18, 49

interpret, 5, 12
invocation, 72, 78
IOError, 88
is operator, 100
item, 78, 93

dictionary, 117
item assignment, 69, 94, 120
item update, 95
items method, 123
iteration, 55, 64

join method, 99

key, 109, 117
key-value pair, 109, 117, 123
keyboard input, 21
KeyError, 110, 203
keys method, 114
keyword, 17, 25, 200

def, 45
elif, 33
else, 31

keyword argument, 121

language
formal, 9
high-level, 5
low-level, 5
natural, 9
programming, 5
safe, 8

len function, 66, 110
letter frequency, 130
letter rotation, 79
Linux, 9
list, 93, 98, 107, 127

as argument, 102
concatenation, 96, 102
copy, 96
element, 94
empty, 93
function, 98
index, 95
membership, 95
method, 97

Index 213

nested, 93, 95
operation, 96
repetition, 96
slice, 96
traversal, 95, 107

literalness, 10
log function, 44
logical key, 184
logical operator, 29, 30
lookup, 117
loop, 56

condition, 201
for, 66, 95
infinite, 56, 201
maximum, 61
minimum, 61
nested, 112, 117
traversal, 66
while, 55

looping
with dictionaries, 113
with indices, 95
with strings, 69

looping and counting, 69
low-level language, 5, 13
ls (Unix command), 139

machine code, 13
main memory, 13
mapping, 94
math function, 44
McCloskey, Robert, 67
MD5 algorithm, 141
membership

dictionary, 110
list, 95
set, 111

mental model, 204
method, 71, 78

append, 97, 102
close, 90, 140
count, 73
extend, 97
get, 112

items, 123
join, 99
keys, 114
pop, 97
read, 139
readline, 139
remove, 98
sort, 97, 103, 120
split, 98, 122
string, 79
values, 110
void, 97

method, list, 97
mnemonic, 23, 25
model, mental, 204
module, 44, 52

os, 131
random, 43
reload, 201
sqlite3, 163

module object, 44
modulus operator, 20, 25
MP3, 141
multiline string, 200
mutability, 68, 94, 96, 101, 119, 127

NameError, 202
natural language, 9, 13
negative index, 66
nested conditional, 33, 39
nested list, 93, 95, 107
nested loops, 112, 117
newline, 21, 83, 90, 91
None special value, 49, 61, 97, 98
normalization, 184
not operator, 30
number, random, 43

object, 69, 78, 100, 101, 107
function, 46

object code, 6, 13
open function, 82, 88
operand, 18, 25
operator, 26

and, 30

214 Index

boolean, 70
bracket, 65, 94, 120
comparison, 30
del, 97
format, 74, 78, 202
in, 70, 95, 110
is, 100
logical, 29, 30
modulus, 20, 25
not, 30
or, 30
slice, 67, 96, 103, 120
string, 21

operator, arithmetic, 18
optional argument, 72, 99
or operator, 30
order of operations, 20, 25, 205
os module, 131
OverflowError, 38

parameter, 48, 52, 102
parentheses

argument in, 41
empty, 45, 72
matching, 8
overriding precedence, 20
parameters in, 48
regular expression, 193
tuples in, 119

parse, 10, 13
parsing

HTML, 147
pass statement, 31
path, 131

absolute, 132, 140
relative, 132, 140

pattern
decorate-sort-undecorate, 121
DSU, 121
filter, 85
guardian, 36, 39, 76
search, 69, 78
swap, 121

pdb (Python debugger), 203

PEMDAS, 20
persistence, 81
pi, 45
pipe, 139, 140
poetry, 10
pop method, 97
popen function, 139
port, 149
portability, 5, 13
precedence, 26, 205
primary key, 184
print statement, 11, 13, 203
problem solving, 4, 13
program, 7, 13
programming language, 5
prompt, 6, 13, 21
prose, 10
pseudorandom, 43, 52
Python 3.0, 11, 19, 21
Python debugger (pdb), 203
python.org, 14
Pythonic, 89, 91

QA, 88, 91
Quality Assurance, 88, 91
quotation mark, 11, 15, 16, 68, 200

radian, 44
rage, 206
randint function, 43
random function, 43
random module, 43
random number, 43
random walk programming, 128, 206
raw input function, 21
re module, 187
read method, 139
readline method, 139
redundancy, 10
reference, 101, 102, 107

aliasing, 101
regex, 187

character sets(brackets), 191
findall, 189
parentheses, 193

Index 215

search, 187
wild card, 188

regular expressons, 187
relation, 184
relative path, 132
reload function, 201
remove method, 98
repetition

list, 96
repr function, 90
return statement, 205
return value, 41, 52
reversed function, 127
rotation, letter, 79
rules of precedence, 20, 26
running pace, 14
runtime error, 8, 24, 38, 199, 202

safe language, 8
sanity check, 117
scaffolding, 117
scatter, 129
script, 6, 13
script mode, 6, 13, 18, 49
search pattern, 69, 78
secondary memory, 13, 81
semantic error, 8, 13, 16, 25, 77, 199, 204
semantics, 8, 13
sequence, 65, 78, 93, 98, 119, 127
Service Oriented Architecture, 159
set membership, 111
shape, 129
shape error, 127
shell, 139, 140
short circuit, 36, 39
sine function, 44
singleton, 119, 129
slice, 78

copy, 68, 96
list, 96
string, 67
tuple, 120
update, 96

slice operator, 67, 96, 103, 120

SOA, 159
socket, 149
sort method, 97, 103, 120
sorted function, 127
source code, 6, 13
special value

False, 29
None, 49, 61, 97, 98
True, 29

spider, 149
split method, 98, 122
sqlite3 module, 163
sqrt function, 45
squiggly bracket, 109
stack diagram, 102
state diagram, 16, 26, 77, 94, 100, 101, 126
statement, 18, 26

assignment, 16
break, 58
compound, 31
conditional, 30, 39
continue, 59
for, 59, 66, 95
if, 30
import, 51
pass, 31
print, 11, 13, 203
return, 205
try, 88
while, 55

str function, 42
string, 15, 26, 98, 127

comparison, 70
empty, 99
find, 188
immutable, 68
method, 71
multiline, 200
operation, 21
slice, 67
split, 192
startswith, 188

string method, 79
string representation, 90

216 Index

string type, 15
structure, 9
superstitious debugging, 206
swap pattern, 121
syntax, 8, 13, 200
syntax error, 8, 13, 24, 199

temperature conversion, 35
temporary variable, 205
test case, minimal, 203
testing

interactive mode, 6
minimal test case, 203

text file, 91
token, 9, 13
traceback, 35, 37, 39, 202
traversal, 66, 69, 76, 78, 111, 113, 121

list, 95
traverse

dictionary, 123
trigonometric function, 44
True special value, 29
try statement, 88
tuple, 119, 127, 129, 185

as key in dictionary, 126
assignment, 121
comparison, 120
in brackets, 126
singleton, 119
slice, 120

tuple assignment, 129
tuple function, 119
type, 15, 26

bool, 29
dict, 109
file, 81
float, 15
int, 15
list, 93
str, 15
tuple, 119

type conversion, 42
TypeError, 66, 68, 74, 120, 202
typographical error, 128

underscore character, 17
Unicode, 166
Unix command

ls, 139
update, 55

item, 95
slice, 96

use before def, 24, 47

value, 15, 26, 100, 101, 117
ValueError, 22, 122
values method, 110
variable, 16, 26

temporary, 205
updating, 55

void function, 49, 52
void method, 97

walk, 141
while loop, 55
whitespace, 38, 50, 90, 200
wild card, 188, 198
working directory, 132

XML, 158

zero, index starting at, 65, 94

