PYTHON,

The Comprehensive Guide

By Maott Telles

Python
Power!

THE COMPREHENSIVE GUIDE

Matt Telles

THOMNMSON

Professional m Technical m Reference

© 2008 Thomson Course Technology, a division of Thomson Learning Inc. All rights reserved.
No part of this book may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage
or retrieval system without written permission from Thomson Course Technology PTR,
except for the inclusion of brief quotations in a review.

The Thomson Course Technology PTR logo and related trade dress are trademarks of
Thomson Course Technology, a division of Thomson Learning Inc., and may not be used
without written permission.

Python is a trademark of the Python Software Foundation.
Microsoft Windows is a registered trademark of Microsoft Corporation.
All other trademarks are the property of their respective owners.

Important: Thomson Course Technology PTR cannot provide software support. Please
contact the appropriate software manufacturer’s technical support line or Web site for
assistance.

Thomson Course Technology PTR and the author have attempted throughout this book to
distinguish proprietary trademarks from descriptive terms by following the capitalization
style used by the manufacturer.

Information contained in this book has been obtained by Thomson Course Technology PTR
from sources believed to be reliable. However, because of the possibility of human or
mechanical error by our sources, Thomson Course Technology PTR, or others, the Publisher
does not guarantee the accuracy, adequacy, or completeness of any information and is not
responsible for any errors or omissions or the results obtained from use of such information.
Readers should be particularly aware of the fact that the Internet is an ever-changing entity.
Some facts may have changed since this book went to press.

Educational facilities, companies, and organizations interested in multiple copies or
licensing of this book should contact the Publisher for quantity discount information.
Training manuals, CD-ROMs, and portions of this book are also available individually or can
be tailored for specific needs.

ISBN-10: 1-59863-158-6

ISBN-13: 978-1-59863-158-6

eISBN-10: 1-59863-159-4

Library of Congress Catalog Card Number: 2006923270
Printed in the United States of America

0809101112TW10987654321

THOMSON

e -

COURSE TECHNOLOGY

Professional m Technical m Reference

Thomson Course Technology PTR, a division of Thomson Learning Inc.
25 Thomson Place

Boston, MA 02210

http://www.courseptr.com

Publisher and General
Manager, Thomson Course
Technology PTR:

Stacy L. Hiquet

Associate Director of
Marketing:
Sarah O'Donnell

Manager of Editorial
Services:
Heather Talbot

Marketing Manager:
Mark Hughes

Acquisitions Editor:
Mitzi Koontz

Marketing Assistant:
Adena Flitt

Project and Copy Editor:
Marta Justak

Technical Reviewer:
Michael Dawson

PTR Editorial Services
Coordinator:
Erin Johnson

Interior Layout Tech:
Value Chain International,
Ltd.

Cover Designer:
Mike Tanamachi

Indexer:
Sharon Hilgenberg

Proofreader:
Steve Honeywell

http://www.courseptr.com

This book is dedicated to the ladies in my life: Teresa, Jenny, Rachel and Sarah.

iv

Acknowledgments

The author would like to acknowledge the aid of the Python community
and Usenet newsgroups in finding answers to all of the questions that
eluded me.

A special thanks to Mike Dawson, who went well above and beyond the

call of duty to help a poor programmer out with this book. Thanks, Mike,
you did a great job!

Also, a small note of thanks to Marta, without whom this book would
never have gotten off the ground. Thank you, dear. Now get back to work.

About the Author

Matt Telles is a 22-year veteran of the computer wars. Having moved
from the mainframe world, with his beloved DEC 1091, he is now
ensconced in the PC world of Windows and Linux. A long-time C++
programmer, he has since moved on to more modern languages like
C#, Python, and PHP. The high point of his career is in writing his own
biography for books.

This page intentionally left blank

TABLE OF

CHAPTER 1

CHAPTER 2

Contents

About Python ... 1
What IS PYERON? ..o 1
A Brief History of Python ... 2
Interpreters Versus COMPILErSccoooiiiiiiiiiiiiiiiiiiiiiiieieicieieeieie e 5
When to Use (or Not Use) an Interpreted Language ..o, 8
Understanding Bytecodes ... 10
Why Use PYthOon? ... 11
ODbjJECt-OrieNtedo.ooiiiiiiiiiiiiiiietice e 11
Cross PLAtfOrmo.co.oiiiiiiiiiiiiiicici e 11
Broad USEr BASEc.ccoiiiiiiiiiiiiiiiieiiietiieieeet et 11
Well Supported in Third-Party TOOISccccccouiiiiiiiiiiiiiiiiiiiiiicececiciccine 12
Good Selection of Tools Available ..., 12
Good Selection of Pre-built Libraries ..., 12
Where Is Python USed?cccoiiiiiiiiiiiiiiiiiiiiiciiieceeicieieeeesesies e 13
How Is Python Licensed? ... 13
Where Do I Get PythOn? ... 14
Installing Python ... 14
Getting Information on Python ... 16
Python COMMUNITIESoooiiiiiiiiiiiiiiiiiiiii e 17
Other SOftWATE ... 18
And Now for Something Completely Different... ... 18
Python Language OVervIiew ... 19
Python Syntax

Comments

Indentation

Vii

e asle 5
RX R OB

CONTENTS

Python Reserved WOrdS ..ot 24
Decision Making and Iteration Keywords ..., 25
Debugging KeYWOrds ..ottt 27
Package and Module Handling Keywordsccccccoooiiiiiiiiininiiine. 27
Exception Handling Keywords ... 29
General Language KeyWordscoccooiiuiimiiuiiiiiiiiiiieieiceciceecieecen 31
Other KEYWOIdScooiiiiiiiiiiiiiiiiiiieic e 32

Variable USQ@ec.ccoiiiiiiiiiiiiiiiiiiiiiiiiiciiieie e 34
The Continuation Variable ... 36
Watching Out for Spelling Mistakes! ..., 37

PrediCates ... 38

IAENEIfIEr SCOPE ... 39

L0 57C) =1 0] £ 42
MOAUIO OPEIAtOT ..ottt 44
Exponential OPerator ...ttt 46
LOGICal OPEIatorsocoiiiiiiiiiiiiiiiiieiieieietieeee e 46
Comparative OPETatOrSoccooiiiiiiieiiiieieeeteieteitieieest ettt 49
BitWiS@ OPEIAtOrSoouiiimiiiiiiiiiiiiiiiiietit ettt 51
Membership Operators and String Operatorsccccccccoccvceieiciccuncnnce 53
Identity OPerators ..ottt 53

IN CONCIUSION ..o 53

CHAPTER 3 TOOIS ..ot 55

IDLE bttt 55
Fle MIBIU ..ot 57
The Path Browser Dialog ... 62
Edit M@NU ..ottt 64
SHell MENU ..o 70
DEDUG MENU ..ot 71
The Edit WINAOW ...t 79
FOrmat MENU ..ot 80

o o5l 35l
A o

CHAPTER 4

CONTENTS

Command Line COMPIIErocoiiiiiiiiiiiiiiiiiiicciei e 90
Creating Python Files ... 93
DOCUMENTATION ..ot 95
IN CONCIUSTON .ot 96
Data TYPEScoiiiiiiiiiiiiiic s 97
NUMETIC TYPES ..ottt 98
INTEGETS ..o 98
Demonstrating Long INtegers ... 99
Octal and Hexadecimal ..o, 100
Floating Point NUMDEISococoiiiiiiiiiiiiiiiiiiiiiieie e 101
SEIINIES oo 103
String Variables ... 103
Concatenating STriNGS ..ot 106
Repeating STriNGS ...t 107
SUDSTIINES ...cviiiiiiii e
STHCING e
String Functions

String Constants

Conversion FUNCHIONSc.ccociiiiiiiiiiiiiiiiiiiiiiiiiiiiciciccicicice e 114
Search FUNCLIONSo.oiiiiiiiiiiciiic e 118
Formatting FUNCEIONSocooiiiiiiiiiiiiiiiiiiiiiciiiciccccciccccc, 120
ESCape SEQUENCESococooiiiiiiiiiiiiiiiiiiiiiiiiiiicic 121

AdVANCEA TYPE ..o 136
Classes and ODJECtScocoiuiiiiiiiiiiiiiiiiieieccec e 136
COMPIEX TYPE .ot 137
GeNErator TYPE ..ottt 138

ix

S sels. sels
o 2k ¥

CONTENTS

NONE TYPE ..o 139
UNICOAe TYPE ..ot 140

In Conclusion

CHAPTER 5 CONtIOl FIOW ...oooviiiiiiiiiiiieeeeeeeeeeeeeeee et 143

Conditionals
B TSI TR Y =1 7<) 14 =) 1 L OO 144

CHAPTER 6 Input and OULPUL ...t

User Input

The input Function

The raw_input FUNCLIONcocooiiiiiiiiiiiiiiiiciccececceeceee e 168
USEr QUEPUL .ot 170

FOIMAiNG ..o 172
FIle INPUL oot 175
FIle OULPUL ..ottt 177
CloSING FIleS ... 179
Positioning in FIles ..., 180
Directories and FIleScccoooiiiiiiiiiiiiiiiiiiiiciciee e 183
The stat Module: File StatistiCsccccoiiiiiiiiiiiiiiiiiiiiiiccciicicccicee 186
Command Line AFGUMENTSc.ociiuiimiiiiiiiiiiiiiiiieiiieietieeieeieeie e 190
PICKIE ..o 192
IN CONCIUSION ... 195

%
e
2%,
b3
a4
k3

CHAPTER 7

CHAPTER 8

CONTENTS

Functions and Modules ... 197
What Is @ FUNCEION? ..o 197
Defining Functions in Python ... 197
What Are AFGUMENTS?c.ooiiiimiiiiiiiiiiiiiicieiii ittt 200
How Do You Pass an Argument to a Function? ... 201
Default APGUMENTSc.ooiiiiiiiiiiiiiiiiiicicicic et 203
Variable Default ArgUMENtS ..ot 205
Keyword ArgUMENTScooiiiiiiiiiiiiiiiiiieciciiceiet e 206
Returning Values from FUNCtIONScooiiiiiiiiiiiiiiiiiiiiiiiiiiicciccc 207
Returning Multiple Values from Functionsccoooiiiiiinnn, 209
Recursive FUNCLIONScoooiiiiiiiiiiiiiiiiiiiciiicicicccicicie e 210
Passing Functions as ArgUMEeNtScccooiiiiiiiiiiiimiiiiiiiiiiiieieiisiciciecisiea 212
Lambda FUNCHIONScccoiuiiiiiiiiiiiiiiiiiiiiiiiiiicciiiciciccic s 213
Variable Numbers of Arguments to @ FUNCtionccccoooiiiiiiiiiiniinince. 215
Variable Scope in FUNCLIONSc.oooiiiiiiiiiiiiiiiiiiiieeeeteeeeeteeee 216
USING MOAUIES ... 218
IN CONCIUSTON .o 219
Exception Handling ... 221
Looking at Exceptions in Python ... 222
Traceback EXaAMPIEccooviiiiiiiiiiiiiiiiiiiiiciiicteteeeeeset e 223
Understanding Tracebacks ... 224
EXCEPLIONS ..ottt 225

Catching Exceptions with try. .except ..., 226

Multiple except ClauSes ..ot 229

Blank except ClaUSESccccooviviiiiiiiiiiciiiciicieiceectceeeeeteeee v 231
The else ClaUSES ..ot 232
The £inally ClAUSE ..ottt 234
Raising Your Own EXCEPLiONSc.cccccoociiiiiiiiiiiiiiiiiiiiiiiiiiicicciiiiiciciccicicicia 235
EXCePtion AFGUMENTScoooiiiiiiiiiiiiiiiiiiiiiicieictc e 237
User-Defined EXCEPLIONSc.cccouuiiiiiiiiiiiiiiiieieiiiieetet ettt 238
Working with the Exception Information ... 239

Xi

s 9l s,
BXORX R

CONTENTS

CHAPTER 9

d
2 gk gk

Lo T o g <= PSRRI 239
L= U =SSR 240
Using the with Clause for Files ..., 243
Re-throwing EXCEPLIONScccoiuiiiiiiiiiiiiiiiiiiiiiiiciiiiiciicitececcce 244
IN CONCIUSION ... 246
Object-Oriented Programmingccccccoooooiiiiiiiiiiiiiiociiieiaes 247
A Brief History of OOPcccoiiiiiiiiiiiiiiiiiiiiiiiiciciiccccicicceceiecceecce 247
What Is an ODJect? ... 248
Why D0 We USe ODJECES? ..ottt 249
REUSE .o 249
Ease in Debu@@ing ...t 250
Maintainabilityccccooiiiiiiiiiiiiiiiii s 250
The Attributes of Object-Oriented Development ... 251
ADSTIACTION ...t 251
Data Hiding ..ot 252
INNETITANCEo.iiiiiiiiiiiiii e 253
POlyMOTPRiSI ...t 255
TerMINOIOGYcoiviiiiiiiiiiiiiiiciii e 256
CLASS e 256
ODJECE ..o 256
ATEIIDULE .o 257
MEEROM .. 258
MeSSA@E PASSINGcooiuimiiiiiiiiiiiiiiiiiitic e 259
Event Handling ... 260
DeIIVALION ..ot 260
Coupling
Cohesion
L1011 = 1 1 1 261
Other CONCEPLSouiiiiiiiiiiiiiiieiiiititite et 262
IN CONCIUSION ...t 262

CONTENTS

CHAPTER 10 Classes and Objects in Python ..o, 265

CHAPTER 11

PYthon CIasSesccccuiiiiiiimiiiiiiiiiiiiiieii e 265
PPOPEITIESoiiiiiiiiiiiiiiiiii 267
Attribute Modifying FUNCLIONSoooooiiiiiiiiiiiiiiiiiiciiccccce 272
Private AtEIIDULESoooiiiiiiiiiiiiiiiiiicii s
DIOC SEIINGS ..ot
PIOPEITIES ...ttt
The SELE ODJECT ..o
MEthOMS ...
Special MEthodsc.cooiiiiiiiiiiiiiiiiiiiciit s
INItIAlIZAION ..o
TermMINAtIONooiiiiiiiiiiiiiiiiiiiiii e
String Conversion
INRETITANCE ..o
Multiple Inheritance
USING SUDET vttt
POlyMOIrPRISIN ..o

Exception Classes

TEETATOIS .ottt ettt

Operator OVerloading ...t 301
IN CONCIUSION ..ottt 304
The Python Library ..., 305
(000) 112211 1=) -3 305

SEIIIIES oot 318
Regular EXPIeSSIONSc.oc.ooiiiuiiiiiiiiiiiiiiiiieiiceieieieee et 319
Patterns
Special Sequence Characterscoooiiiiiiiiiiiiiiiiieiieieesiesesreseeiesieseeens 323

LY

CONTENTS

Compiling Regular EXPressions ... 323
Matching SIS ..ottt 324
Meta Characters ... 326
GIOUPIIE .ottt 327
SYSTEIM oo 328
Random Number Generation ... 330
Dates and TIMEScoooiiiiiiiiiiiiieee ettt 331
Creating @ New TIMe ...t 332
Time OPerationscc.ooiiiiiiiiiiiiiiiii ittt 332
Creating @a New Date ... 333
Date OPEIatiONSc.cooviiiiiiiiiiiiiiiiiiietiieteietee ettt ettt 333
Time Zone INformationccooiiiiiiiiiiiiiiiciiecicicec e 335
Operating System Interface ..., 336
System INformation ... 336
Process Management ... 337

IN CONCIUSION ..ciiiiiiiiiiiicci e 341
CHAPTER 12 The GUI — TKINTETccooviiiiiiiiiiiiiiiiiiieetce e 343
What IS TKINTET? ... 343
Terms and CONAItIONScooiiiiiuiiiiiiiiiiieiie e 343
Event Handling ..o 344
CallbACKS ..o 344
WIAGELS .o 345
Layout Mana@ersS ...ttt 345
Working with TKINTer ... 346
Creating a Label ... 347
Frame Widgets and Centeringccoooouiiuiiiiiiiiiiiiiiieiieciesieiecieeieieeeeces 349
An Application with @ BULEONcoooiiiiiiiiiiiiiiiiiiicee 351
Working with Entry Fields and Grid Layoutsc.ccccoociiiiiniiniiniinnnnes 353
Creating a Class to Handle User Interfaces ..., 356
Working With LiSt BOXESccccooiiiiiiiiiiiiiiiiiiiiiiiicieiiieiieicietieceeici e 358
SCrolling @ LISt BOXc.cuuiuiiiiiiiiiiiiciiiciete e 361

CHAPTER 13

CHAPTER 14

CONTENTS

IMIEIIUS ittt 363

CoNteXt MENUSc.ouiiiiiiiiiiiiiiiiiiiitiii ittt 366

SCAlE WIGELS ... 367

RadioButtons and CheckBUtton ... 370

TEXt WIAGEES ... 373

IN CONCIUSION ..o 375

The Web Server—Apache ..., 377

Setting Up Apache

Testing APACRe ..o

Your First Python CGI Script: Hello Apacheccccooooviiiiniiniiiiiiiiic, 379
Examining the Hello Python Script ...,
The cgi-bin DIr@CtOrYc.cccooiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiceiei e

A Script for Displaying the Environment

Receiving Data from an HTML File ...

Sending Data to an HTML File ...
HOW Tt AILWOTKS ..o

Dynamic HTML Displays Based on User Input ..., 391

HTML Elements

COOKIES ...

Uploading Files
REAIT@CHION ...
Error Handling
In Conclusion

Working with Databases ..., 407
What Is @ Database? ... 407

Simple Database Terminology ..., 408
What IS MySQL? ..ot 409
Downloading and Installing ... 409
Creating @ New Databaseococoooiiiiiiiiiiiiiiiiiiiiiiiciccicic e 410
Creating @ NeW USET ...t 414

XV

cla 33l <l
B gk

CONTENTS

Opening an Existing Database ... 415
Writing to @ Database ... 417
Reading from a Databasecccoooiiiiiiiiiiiiiiiiiiiciiciciicccce e 421
Updating @ Database ... 424
Deleting from a Database ... 427
Searching @ Database ... 430
IN CONCIUSION .o 436
CHAPTER 15 Putting It All Together ...,
Designing the Application ...
Program FIOWccciiiiiiiiiiiiiiiiiiiiiiiiiiciciccicicee e
User Interface DeSINcccoooiiiiiiiiiiiiiiiiiciiciciccicieceee e
Database DeSIGNcccociiiiiiiiiiiiiiiiiiiiiieiiieiti e

Implementing the Database Tables

Implementing the FOIMSoooiiiiiiiiiiiiiiiiiice
Adding ROVIEWS ...ttt
Adding the Review to the Database ... 452
Listing the ReVIEWS ..o 456

Deleting Books

In Conclusion

CHAPTER 16 Python and Graphics ...,
The PIL LIDIary ...t
DOWNIOAdING ...t
INSTALlING oo
Verifying Your Installation
Creating @ NeW IMageccooiiiiiiiiiiiiiiiiiiiiiciiiicic e
Function Parameters ..o
Drawing on the Image ...

Drawing the IMage ...

Displaying the ImMage ...

CONTENTS

Saving the IMage ... 470
Loading an EXisting IMage ..o 472

Displaying Text
Identifying an IMage ...t 476
Rotating an IMage ... 478
POSESCIIPE PrNEINGooiiiiiiiiiiiiiiiiiiiiiiiiiciciicccc e 480
Creating Thumbnails ... 481
IN CONCIUSION ..o 483
INEX i 485
XVvii

sl sl als
B B g

Introduction

What You'll Find in This Book

Welcome to the world of Python! Within this book, you will find a com-
plete introduction to the language, including insider tips and tricks, and
basic knowledge that you will need to get started. If you are a beginning
Python programmer, you will find enough here to get you going. If you

are an experienced Python programmer, you will likely find a trick or two
worth the price of admission. Within these covers, you'll learn how to:

Write basic Python code.

Work with databases.

Work with Web pages and Web servers.
Create reusable Python code.

« Work with files.

Create your own Python types.

Who This Book Is For

This book is intended for a programmer with some experience in the
world of development. Although no prior expertise in Python is assumed,
you will do just fine if you have worked with the language in the past.
Beginning developers will learn enough to get started with the language
and become proficient quickly. Experienced developers will quickly get
up to speed with the language, and previous Python programmers will
learn new things about the language they are accustomed to.

INTRODUCTION

How This Book Is Organized

The book consists of 16 chapters, each of which addresses a specific area
of Python programming. The chapters are set up individually so that you
need not read them in any specific order. Simply leaf through to the
section you are most interested in and refer to the content in that chapter.

Chapter 1 introduces the Python language, explains where it came from,
what it is used for, and explains how to download the interpreter and
related applications.

Chapter 2 consists of an overview of the elements of the language,
including types, conventions, and structure of code.

Chapter 3 discusses the individual tools that are a part of the Python
distribution, including the Command Line compiler, the editor, and the
integrated development environment.

Chapter 4 discusses the basic data types in Python, showing you how to
create them, use them, and convert between them.

Chapter 5 introduces control flow and allows the reader to learn how to
change the behavior of a Python application through looping and con-
ditional structures.

Chapter 6 introduces input and output functionality in Python, dis-
cussing how to write to the console window, files, and work with direc-
tories and drives.

Chapter 7 introduces the concept of functions and modules, allowing
the developer to encapsulate code for later reuse and integration into
other applications.

Chapter 8 discusses the topic of exception handling, discussing how to
create, handle, and work with the exception functions in Python.

Chapter 9 gives the developer a brief overview of object-oriented devel-
opment, introducing the concepts and terminology used throughout the
remainder of the book.

Chapter 10 extends the concept of object-oriented development as it
applies in Python, introducing the developer to classes, methods, and
attributes.

INTRODUCTION

Chapter 11 discusses modules, both those that are built into the lan-
guage and developed by external developers.

Chapter 12 works with the default GUI library for Python, Tkinter, dis-
cussing how to create and work with graphical user interfaces. The various
components of Tkinter are used to create forms for inputting and dis-
playing user information.

Chapter 13 covers working with the Apache Web server, receiving in-
formation from HTML forms, generating HTML on the fly, and working
with cookies.

Chapter 14 deals with the MySQL relational database and how it is used
from Python. The concepts involved in relational database are covered,
as is the syntax of adding, deleting, and modifying records in a database
table.

Chapter 15 creates a full-blown Web application utilizing HTML pages,
Python scripting code, database technology, and the Apache Web server.

Chapter 16 covers graphics in Python using the PIL library. The devel-
oper will learn how to draw graphics, display existing images, and work
with graphical concepts.

All of the code for the book can be found at http://www.courseptr.com/
ptr_downloads.cfm.

Simply enter the ISBN, Title, or author name to be able to access it.

Code Numbering

Note that all of the code in the book will be on the Web site, whether or not
the file name is listed in the text. Each code sample will be in numerical order,
which can lead to some “missing” numbers in the text. This is by design and
not an error.

http://www.courseptr.com/ptr_downloads.cfm
http://www.courseptr.com/ptr_downloads.cfm

About Python

What Is Python?

“What does the word Python make you think of?” If someone on the street asked you that
question, you might come up with a variety of possible answers. Perhaps you would say that it
reminded you of a large snake that squished people and ate them. Alternatively, you might
think of the wonderful old British comedy show, Monty Python's Flying Circus. The odds are,
however, that you would not think about a programming language. Reading this book should
change that attitude, hopefully, and make you think of the programming language first, or at
least just after Monty.

So what is this programming language called Python? Put simply, Python is an interpreted
object-oriented language that is available on multiple platforms (hardware systems) and mul-
tiple operating systems (software systems). You can take the same Python script file and run it
on Microsoft Windows™, Apple Macintosh™, Unix™, or a dozen other potential platforms that
the language has been implemented for. The language itself is a standard, so any valid Python
script will run, unmodified, on any platform that supports the interpreter.

Python is an extensible language, meaning that you can add to it with your own source code,
modules, and components that can then be reused in other applications. Python is a small
language, meaning that it has a tiny memory “footprint,” and, in fact, is used in many handheld
devices for programming. The Python interpreter is distributed under an approved open-source
license that means that it is now, and always shall be in the future, a free language. Nobody
can charge you for the interpreter, nor can they suddenly charge you to make your script

files work.

Python is one of the foundations of LAMP (or WAMP) application development. LAMP stands
for the four pillars of the open source community, Linux, Apache, MySQL, and Python (or PHP).
In addition, three of the same pillars can be used in the Windows community to provide

free development for Microsoft Windows developers as well. Python can be used to create

CHAPTER 1} About Python

stand-alone scripted applications for use on a single machine, or as a scripting language for
Web-based applications that can run all over the known computer universe.

Python gives you the capability to interface to databases, to create CGI scripts that can be run
from a Web browser, to create applications that can be run in a Windows environment, and to
create extensible scripts that function in the business or scientific world. Python has been used
in everything from business Web sites to online games, from simple conversion scripts to com-
plex Internet update routines for banks and other financial institutions.

To give you just a brief idea of what sorts of people use Python, the language has been used
successfully in such large-scale operations as Industrial Light and Magic (the film people) to
such small-scale operations as running the semi-conductor line at Phillips. If people of this
magnitude think the language is ready for prime time, it is hardly a surprise that the average
programmer is interested in it.

A Brief History of Python

Now that you have a vague idea of what Python is, it might be useful to know exactly where it
came from. After all, knowing our history is what separates men from animals, or something
like that. If you are all fired up to learn the language itself and not worry about where it came
from, or what drove the original development of the language, feel free to skip this section
of the book. However, you should know that by understanding the underpinnings of the lan-
guage, youwould get a pretty good idea of what the original developer intended. Understanding
the history and purpose of a language helps to understand some of the design choices and
approaches made by the language developers, and Python is certainly no exception.

In the late 1980s, in the Netherlands, a programmer named Guido van Rossum, then work-
ing at CWI (the National Research Institute for Mathematics and Computer Science in the
Netherlands) was working with a language called ABC on a platform called the Amoeba oper-
ating system. Amoeba was an experimental, microkernel-based distributed operating system
developed by Andrew S. Tanenbaum and others at the Vrije Universiteit. The aim of the Amoeba
project was to build a timesharing system that made an entire network of computers appear
to the user as a single machine. Mr. Van Rossum liked the language a lot, but recognized that
it had a number of shortcomings.

The basis for the Python language was ABC, which was very similar to BASIC or Pascal. It was
an excellent teaching language, did not require variable declarations, and used indentation for
nesting of statements. These bits of functionality, you will find, are core to the Python imple-
mentation as well. While ABC was more of a monolithic language that tended to produce large,
hard-to-debug applications, Python was designed more to be object-oriented and modular.

Similar to modern programming languages, ABC consisted of a complete environment includ-
ing interpreter, editor, multiple workspaces, and a syntax sensitive command system. This made

e e e
S B B

A Brief History of Python

it popular for beginning students, who liked the idea of an all-in-one environment that helped
them as they went along.

By this point in the computer world, the advantages of an interpreted language had already
been recognized. BASIC was a standard, popular with people who needed to write quick, easy-
to-implement and easy-to-modify scripts that would accomplish simple tasks. It was just
becoming clear, however, that the concepts inherent in interpreted languages could be used
to accomplish much more complex tasks than they had been used for before.

Python itself came from frustrations van Rossum encountered when trying to work with ABC.
For one thing, the language had no really well structured error handling. For another, ABC had
such a monolithic structure that it could not easily be extended or modified. Realizing that
these disadvantages would make it impossible for the language to grow and be used externally,
van Rossum took the best features from ABC and then built a new language around them calling
it Python.

Python was designed to be a highly readable language. It aims toward an uncluttered visual
layout, uses English keywords frequently where other languages use punctuation, and has no-
tably fewer syntactic constructions than many structured languages such as C, Perl, or Pascal.
Because it is a simple language, Python is very easy to learn and master, and therefore lends
itself well to a first language for most developers. At the same time, because the language is so
well crafted, it is amazingly powerful and can accomplish incredible tasks with a minimum
amount of coding.

The really exciting changes to Python came after van Rossum’s work at CWI was complete. He
and his team of programmers had moved from CWI to the BeOpen labs. This open-structured
programming laboratory led the team to explore new directions for the language. In the great
tradition of all programming tasks, the team “borrowed” from other languages to extend their
own. Much in the same was that the C language borrowed constructs from previous languages
such as Pascal or FORTRAN, Python 2.0 borrowed from a language called Haskell and acquired
its most important feature: list comprehensions.

List comprehension gives a language the capability to work in terms of sets and lists. The lan-
guage itself understands a list and can construct one from a collection of individual units, from
a collection of other lists, or from selected “slices” of existing lists. For example, you might have
a list that consisted of four items:

List 1:
Apple
Pear
Pomegranate
Grape

CHAPTER 1} About Python

You might then have a second list, which consisted of vegetables:
List 2:

Potato
Celery
Tomato
Carrot

Yes, | know, a tomato is not a vegetable; it is a fruit. Let's not get bogged down in minutiae
here. In any case, the two lists contain four separate items. Suppose that you wanted to create
a new list that contained all of the items in both lists. In a typical non list-based language, you
would have to allocate a block of memory big enough to hold all eight items and then copy the
items one by one into the new list. In a language such as Haskell or Python, however, you can
create a new list by simply defining a variable to be the concatenation of lists one and two.
More importantly, you can then “slice” this list any way you want, returning individual com-
ponents or sublists quickly and easily. It may not be evident at this point why this is useful, but
I assure you that by the end of your reading of this book, you will see just how useful this

can be.

We digress, however, since the original topic of discussion was the history of Python. At this
point, Python had been released (or escaped) into the international community, and many
people were interested in it. The simplicity and power of the language, not to mention the built-
in exception handling capability, made the language a natural replacement for programming
environments like BASIC, which, to this point, had been the most popularly used interpreted
language. Python was on its way to stardom.

With the release of Python version 2.0, however, Python really became noticed by the main-
stream development world. The addition of garbage collection, which allowed the programmer
to focus on development and stop worrying about things like memory leaks and the like, made
it desirable. The ability to extend the language through the use of internal and external classes
made it possible to use Python in production environments. Up to this point, however, Python
had been somewhat schizophrenic. The language had its own types (string, integer, floating
point, and so forth) that were implemented in the underlying implementation language
(Python was originally written in C, and the mainstream implementation still is, so that's what
the underlying types were implemented in), while new classes that were implemented in the
Python language were treated differently. With the release of Python 2.2, however, this all
changed. The language treated all types the same way, paving the way for true object-oriented
development, a basic goal from the initial releases of the software. It should be noted that in
addition to the C implementation, there are several other editions of Python available today,
including Jython (Java), IronPython, and many others.

Interpreters Versus Compilers

The biggest change for Python came in the release that was centered around the second major
version. Python had become a standard language, with a group responsible for its development
and forapproving all enhancements to the language standard. The Python Software Foundation
was created. This board used a standard method, called the Python Enhancement Proposal (PEP),
to offer up to the programming community suggestions for new language enhancements.
These enhancements have been gathered and streamlined and will become Python 3.0 when
it becomes available. The biggest change for the third major release will be the first break with
backward compatibility to fix perceived errors in the language. Whether or not this will actually
happen is still in debate. In any case, the future of Python is quite rosy, and the spirited debate
on its functionality and future ensure that it will be around for a long time to come.

That's where Python came from. Where is it going? While nobody really knows for sure, we
do know that Python is here to stay, and learning the language will help you in your future
endeavours in the software development world. So let's take a look at why you should learn
Python and what it will mean to you.

Interpreters Versus Compilers
The first thing that is important to understand about Python is that it is an interpreted language.
There are two sorts of programming languages: interpreted ones and compiled ones. A compiled
language is what you are probably used to if you have done any programming in the past. The
process for a compiled language is as follows:

Create source file using text edit — Use compiler to syntax check and convert source file into
binary — Use linker to turn binary files into executable format — Run the resulting executable
format file in the operating system.

Let's take a look at the steps here, so you can get a better idea of what is going on beneath the
covers.

1. Create source file using text editor.
Source files are human-readable text files that represent the actual programming language

in which you are working. For example, in C, you might have a file that looks something
like this:

#include <stdio.h>
int main(int argc, char **argv)
{
printf ("Hello world") ;
}

This little program just prints out the string He1lo worl1d to the user’s console. You will
notice that the program doesn't run. It is the input to a compiler. You can type out the

CHAPTER 1} About Python

file using system tools, or print it, or save it to a source code repository, but it will never
be anything more than text. There is a complete disconnect between the source code file
and the final running application in the compiler version of a language.

2. Use the compiler to check syntax and convert source into binary format.
The purpose of a compiler is to do two things. First, it runs through the tokens in your
source code, comparing them to the rules that the language requires. Again, as an example,
consider a Pascal assignment statement. The language requires that the statement look
something like this:

a := 3;
In this statement, there are four pieces:

a—This is the name of a variable in the program, or a memory address if you prefer.

:=—In Pascal, the := statement means assign a value to. It takes the variable on the
left-hand side of the equation and puts the value on the right-hand side of the equation
into that location in memory.

3—This is a value; in this case, a constant value. We are going to place the value 3 in
the memory address represented by the variable a.

(;)—Thesemicolonisthe last piece of the equation. In Pascal, this character represents
the end of the statement. Now, looking at the whole statement, realize that the code
is there only for the benefit of the programmer. To the compiler, the instruction breaks
down into “move the constant value 3 into the memory address that was allocated for
the variable a.”

In C, the same statement looks like this:
a = 3;

In BASIC, it would be a = 3

No matter what language you choose, the output of the compiling process will be the
same: a binary instruction that moves the value 3 into a memory address. Once the com-
piling process is complete, you have a bunch of binary files that represent the “source
code” as it is viewed by the computer.

3. Use linker to turn binary files into executable format.
The purpose of the “linking” phase of the compiling process is to assemble all the various
pieces of the final executable together. The linker takes the individual pieces, whether
they are C functions, C++ classes, or Pascal modules and finds all of the pieces that need
each other. When you call a function, for example, the linker is responsible for finding

e e e
S B B

Interpreters Versus Compilers

that function in the group of source files that you have given it and creating the proper
binary instructions to the computer to “jump to” the right place in memory to being
executed.

An example might be useful here, since this is about as clear as mud.

Imagine that you have a bit of code in your program. This bit of code is going to output
some data to the user. For this example, we will use C and assume that the data you are
outputting is a simple string that says “Hello world.”

In the source code file, you have a statement that says:

printf ("Hello world") ;

The compiler takes this statement, assembles it into two separate instructions to the
computer:

Take the string "Hello world" and place it in a memory address.

Call the function print f and point it at that memory address.

The first part of the process is easy enough. There is an instruction to store the string in a
memory address, and this is independent of any other pieces of the program. The second
part of the process, however, is more complicated.

The call to the function print £ requires the system to find the function and load its
address into memory. The compiler can't do this job, because it has no idea what
printf does or where it is. This is the job of the linker. It finds the print £ function in
all of the compiled source code and matches it up to the function call.

The result of this finding and matching up and generating is the executable file.

4. Run the resulting executable format file in the operating system.
After the linking process is complete, the compiler and linker are no longer necessary for
the program to run. It has become a permanent part of the operating system, and can run
anytime you want it to with no external requirements.

The interpretative process, on the other hand, is quite different. The interpretative process looks
more like this: Create source file using editor — Load the source file into the interpreter —
Run the interpreted code.

1. Create the source file.
Creating the source file using the text editor is exactly the same as it was in the compiled
step of the same name. You use a text editor and generate some text in the format of the
interpreted language that you want to use.

2. Load the source file into the Interpreter.

The interpreter for given languages usually has a load, or run, option. This option is used
to take the human-readable code and load it into the interpreter. Python uses a bytecode

sl ahe b

£

CHAPTER 1} About Python

interpreter, so the input source code is loaded, parsed, and turned into byte codes for later
execution. Unlike a compiler, the interpreter does not process the input file at this point.
(There are some exceptions here, but the general rule applies.) The important thing to
realize is that interpreted code is not processed until the user requests it to be run.

3. Run the interpreted code.
Once the user requests that the interpreted code be run, the process begins. The interpreter
reads each statement of code and validates it. If an error occurs, the process stops, and the
user is presented with an error message. This is quite different from the compiled stage,
in that the end user can be presented with syntax errors, whereas the compiled version
will only allow the developer to see syntax errors.
As each statement is validated, the interpreter is either directly executed, or, in the case
of languages like Python, is converted into a bytecode version that can then be loaded into
a processing environment. In any case, the results are immediately displayed for the end
user to view.
The biggest difference between interpreted code and compiled code is that an interpreted
application need not be “complete.” You can test it in bits and pieces until you are satisfied
with the results and put them all together later for the end user to use.

When to Use (or Not Use) an Interpreted Language

As with any approach to a problem, there are advantages and disadvantages to using an inter-
preted language. Let's take a look at some of these, so you can get a sense of the balance you
need to use in determining when a language such as Python makes sense, and when it

does not.

Disadvantages

1. You need to do more things to the end user.
Obviously, since the interpreter loads and runs the individual source code files at runtime,
you need to distribute all of the files that are needed by the interpreter. This means sending
out a potentially large number of source files. Contrast this with the compiled approach,
where all you generally have to distribute is the single executable file that contains the
application you want to give to the user.

2. The source files can be modified by the end user.
Source code files are simple text files, especially in Python. This means that they are in
human-readable, and thus human-modifiable, form. Since the end user can read the
files, it is not unreasonable to assume that the person can modify the files. This can lead
to confusing problems, especially if the user happens to delete a file that is needed by the

e e e
S B B

Interpreters Versus Compilers

system. Python does provide the ability to distribute bytecode versions (called * . pyc files)
of the source code to alleviate this concern to some degree.
The flip side to this is that you can easily detect what files have changed by using simple
tools available in nearly any operating system environment.

3. Errors aren't found until runtime.
Since an interpreted file is processed line by line, any problems that exist in a given module
will not be found until that module, and the line containing that module, are loaded and
processed. This can lead to unexpected problems with end users and applications. It also
requires that testing be much more complete than it would need to be in a compiled
application.
While a logical error can occur in any sort of code, whether it be interpreted or compiled,
a syntactical error can only occur in interpreted code for the end user. It looks particularly
unprofessional to see an error such as “Syntax error in line nn in file xxxx.py” show up on
your user’s screen. The use of interpreted code, therefore, requires a higher degree of path
testing than the equivalent use of compiled code.

Advantages

1. Easier to debug and maintain the code.
Obviously, when you can load a small section of code and try it out without having to
worry about compiling and linking the entire application, the process is going to go a lot
faster. In addition, since you can try things out without having to have them work com-
pletely, you can step through a process, see if the individual pieces work, and then stop
the process before it completes.

2. Easier to update the application code quickly.
Since the edit, compile, link, and deploy process is now reduced to edit the file and replace
the existing file with the updated version, the process for updating an application is
streamlined. More importantly, since there are no longer any issues about whether or not
the program is running, whether or not the executable file is in use, and whether or not
the user has the rights to change the file, everything becomes much easier to modify.
Obviously, doing a file comparison between two text files is vastly easier than trying to
figure out what changed in a binary executable file. As a result, it is easier to determine
what changed between two versions on the user’s machine. This makes management of
applications and users easier as well.

3. Errors can be fixed quickly without the need for complete redistribution.

For most stand-alone applications, the executable file is only a small part of what needs
to be sent to the user. There are subsidiary files that must be kept in sync, settings that

sl ahe b

£

CHAPTER 1} About Python

need to be made on the user's machine, and so forth. The ability to simply drop a text file
into a directory and have the application behave in a new, or improved, manner is a huge
benefit not only to the developer, but also to the support personnel and the maintainers
of the user’s system.

In addition, since “patch” files can be issued that modify small parts of text within a file,
this makes it trivial to change a running application to behave in a different fashion.

4. Can be embedded in other languages.
One of the more interesting things about Python as an interpretive language is that the
interpreter itself is rather small. The interpreter itself is a binary component that can be
included in other applications without including the entire GUI system that supports the
interpreter. This permits third-party applications to embed this binary component in their
own applications and to run scripts in Python from within their own GUIs.
When you think about it, most applications these days need some sort of scripting capa-
bility. The ability to run commands automatically, or to extend the functionality of an
application through scripting, is so powerful that it has become a standard part of most
complex applications. Python provides the best of both worlds here. It allows you to
maintain the security and speed of a compiled application, while permitting the ability to
customize that application via scripting.

So, as you can see, there are a mere three reasons not to use an interpreted language, whereas
there are four reasons to use one. Now, it is vaguely possible that this balance might be biased
because of the subject of this book, but it still indicates that Python is a very valid alternative
to compiled languages.

Understanding Bytecodes

As mentioned previously, Python uses “bytecodes” to actually do the work of processing the
source code. The bytecode idea is not new, as there are quite a number of languages that use
something similar. The idea is that a statement is broken down into a “code,” indicating what
it is going to do, and then a series of arguments to that code. For example, you might have
something like this:

print valuel
The “code” for print might be 0x01 (it doesn't really matter what the value is). The argument

to the print statement is a value. So, in the byte code version of the source code, you might
see something like this:

<0x01l><value><end-of-statement>

When the interpreter loads the bytecode version of the file, it reads a code and recognizes it as
aprint statement. The interpreter then knows to read in arguments until the end of statement

10

e e e
S B B

Why Use Python?

marker is encountered. This is quite different from the compiled version of the program, where
the statement is literally turned into a series of machine statements that the native operating
system can process.

Why Use Python?

We've looked at the differences between compiled languages and interpreted ones. We've also
looked at the advantages and disadvantages of using interpreted languages in general. The real
question, then, is why would you choose Python over some of the other interpreted languages
out there? Let's look at the reasons you should use Python. Of course, since you are reading this
book, the odds are good you've already made this decision for yourself, but hey, what's wrong
with a little shameless promotion?

Object-Oriented

Python is an object-oriented language. Most existing interpreted and scripting languages are
simple line-oriented, sequential languages, which indicates that reuse is virtually impossible
and debugging and maintaining the code is difficult. Python is a structured language con-
structed around classes and reusable components called modules. This allows you to easily move
your Python code from project to project, saving you enormous amounts of time.

Cross Platform

Some languages, particularly ones like Java claim to be “write once, run anywhere” as the tagline
goes. Unfortunately, the reality is far from that simple. Most scripting languages require major
changes to run on different platforms, because the core components are written in machine-
specific languages. Python code is written in Python itself, so any platform that will run the
interpreter will run them. This allows you to move forward knowing that no matter what
changes the company you work for decides to make with respect to hardware and software,
your Python code is going to work like a champ. This particular attribute is one of the main
reasons that so much Internet code is written in Python, because it makes it easy to port it from
server to server.

Broad User Base

When you are writing code in a particular language, it is good to know that there are others
out there who are writing code in that same language. Not only does this give you someone to
commiserate with when things don’t go the way you want them to, but it also gives you someone
to ask for help. The Python community is quite large, as you will see in just a bit. There are
entire Web sites devoted to Python programming, Usenet newsgroups that specialize in helping
new and expert users, and lots and lots of code out there that you can steal (I mean, borrow)
and use in your own applications.

I1

sl ahe b

A HX KX

CHAPTER 1} About Python

There is really nothing more frustrating than having to reinvent the wheel each time you do
something, simply because you can't find any examples of how to do it. Because Python has
such a broad user base, the chances are good that someone has done what you are trying to
do. Combine that fact with the aforementioned object-oriented approach, and you can likely
find existing code that just drops into your application and does what you need it to do. This
can be important when the boss calls you at 4:30 on a Friday wanting some new feature added
to his Web site.

Well Supported in Third-Party Tools

When you are trying to implement a new application, it is good to know if the existing third-
party tools out there will help you out. Python is well supported in such third-party tools as
MySQL, an open-source database package, and Apache, an open-source Web server. These are
two of the most popular packages for using scripting tools with, and as such, using a well-
supported scripting tool is a definite bonus.

In addition to being used by third-party tools, Python can be embedded in other applications.
There are a number of examples of this, which makes it easier to convince other people to use
Python rather than a less supported engine.

Good Selection of Tools Available

Itis one thing to start writing code with a Command Line compiler and a language specification.
It is quite another to have the ability to use a fully compliant Integrated Development Envi-
ronment (IDE), debugger, and Help system. The former allows you to write code. The latter
allows you to write code that you can actually trust in a reasonable period of time.

Python comes with an excellent set of pre-built tools, for which source code is available. This
makes it easier to develop high-quality code, which in turn makes it easier to worry about your
application features and not about whether or not your system is going to crash the first time
someone uses it.

Good Selection of Pre-built Libraries

As mentioned previously, Python lends itself well to developing reusable code because of its
object-oriented approach to development. This means that there is a lot of already developed
code out there that you can reuse. Many of these classes are of general-purpose functionality
that you will probably need in your own applications. Email, complex math, and collections are
but a few of the libraries that you can easily import into your own applications.

Remember, the less time you spend developing code that the user never sees, the more time
you can spend creating functionality that the user really wants. When all is said and done, that
is what it is all about, from the perspective of management anyway.

12

e e e
S B B

How Is Python Licensed?

Where Is Python Used?

So where do people use Python? The areas that the language finds itself used would surprise
you. Here is just a small group of areas in which Python has found itself utilized to make the
world a better place:

Cinematography

Sports

Clothing

Aviation

Business information

Document management
Pharmaceuticals.

Education

Government

Public safety
Biology

Chemistry

Weather

GIS

Marine

Engineering.
Web pages
Application development tools
Bear in mind that this is only a small fraction of the places in which you will find Python code,

so it's likely that your application space has already been used in the past and that code exists
to do the more common things you might need.

How Is Python Licensed?

Python is distributed in open source, and is licensed under a public access license. If you go
to the Python Foundation Web site (www . python . org), you will find a complete description
of the license for the language and all of its components. Essentially, however, you can
consider the language to be free of all encumbrances and licensing fees.

You need never worry about paying for Python, or any of its source code.

13

B B B

www.python.org

CHAPTER 1} About Python

Where Do I Get Python?

Although Python can be obtained from lots of places on the Web, the “official” release of the
software is always available at www . python . org/download. To download the software, go to
the Web site and find the version that corresponds to your operating system. For example, for
this book, I have chosen to do my work on Windows XP. All of the Windows versions are sup-
ported with a single installer, the Windows installer.

From that point, you must decide whether you want only the development system, or whether
you want the source code for the system, or both. The source is available as a tarball, which can
be unzipped using the GNU gzip application, available at the GNU Web site, www.gnu. org. As
of the writing of this book, the gzip application was available on the main download page for
GNU software, which is http://directory. fsf.org/GNU.

If you do not want the source code for the system and simply want the binaries, you can down-
load them directly. For Windows, the download is a standard Microsoft installer file (msi). For
UNIX, the download is a tarball that contains all of the applications and installer files. You may
also want to download the documentation, which is available in various flavors, from HTML to
compiled help (CHM) files.

In any case, once you have downloaded the software, it is time to install it.

Installing Python

For the purposes of this book, we will look at only the Microsoft Windows version of Python.

There are avariety of reasons for this, not the least of which is that Windows is the most prevalent
operating system out there. However, the language and tools we'll discuss will work with any
operating system and any installation of the current version of Python. Note that differences

between versions may arise due to changes in the core language. Installing Python on Microsoft
Windows is a fairly straightforward affair. After you have downloaded the installer file from the
python.org Web site, and placed the file somewhere you can find it on your local computer,
simply double-click the installer executable file to get started.

At the time of this writing, the current version of the Python system is 2.5. The installer for
the 2.5 Python install is called python-2.5.msi, and is a standard Microsoft Installer file.
Running the installer will display a security warning in Windows first, since the publisher cannot
be determined from the application file. This warning screen looks like the one shown in
Figure 1.1.

Saying yes to this screen is pretty straightforward; just click the run button and move onward.
Doing so will bring up a second window, which prompts you to decide whether you want to
install this application for just yourself or all users. Your answer to this one determines whether
or not the application will show up on the Start menu for just the user you are logged in as, or
for all users that use this machine. The default here is for all users. This is probably what you

14

e e e
S B B

www.python.org/download
www.gnu.org
http://directory.fsf.org/GNU

Installing Python

Open File - Security Warning __. Figure 1.1
The publizher could not be valkad. Are pou sure you want to SeCurity Wal"ning fOl‘
1un thiz software? .
@ Name: python-2.4.3.msi Python 2.5 installer.

Publisher. Unknown Publisher
Tyne: Windows Tnskaller Parkage
From: Ciimatt

Nﬂa_w azk belore opaning thiz file

This file doet not have a valid digital signature that verifies s
publisher, ‘Y'ou shoud only un software from publishers vou tust.
How can | decide what softveare to un?

should use, unless you have a compelling reason not to install the system for other users. The
screen looks like the one shown in Figure 1.2. Whether you select all users or just yourself, click
the Next button to move on to the next screen.

18 Python 2.4.3 Setup X Figure 1.2
than . Select whether to install Python 2.4.3 Determining user installa-
for all users of this computer. tion to install Python 2.5.
O Install for all users
@ Install just for me
A3
[Next =] [Cancel i

Following the user determination, you will be prompted for a directory to use for installing the
system. You can select whatever directory on whatever drive you want for this prompt, but write
down the directory that you are using since you will need it in just a moment.

CHAPTER 1 } About Python

The next dialog prompts you to select the tools you want to install. By default, Python will install
all of the tools that you will look at in the next chapter. If you have particular disk space
problems, or know in advance that you will never need certain components, feel free to remove
whatever pieces you don’t want.

After you have made your location and detail install choices, the installer will go off and start
copying files into the right places on your hard drive. Depending on the speed of your system
and the hard drive you are copying to, this could take a little while. Finally, the installer will
grind to a halt, and a Finish screen will be displayed. Once this happens, Python is installed on
your system. You can verify this by looking at the Start button menus. You should see an entry
that reads Python 2.5 in the main menu, along with entries in that menu entitled IDLE, Module
Docs, Python Command Line, Python manuals, and Uninstall Python. To verify that all is work-
ing properly, click the Python Command Line selection. You should see a window pop up that
looks like Figure 1.3.

Figure 1.3
The Python Command
Line window.

If the window pops up properly, your install went fine, and you should be all set. If you get an
error message, check to be sure that everything went properly in the install directory and that
no errors are displayed on the screen. The most likely errors are that you had insufficient disk
space to install the system or that you did not have sufficient privileges to install the application.
In either of these cases, contact your system administrator for resolution of the problems.

Congratulations! You now have a full-blown Python installation on your system and can begin
to write programs.

Getting Information on Python

You might wonder where to find really good information about Python, besides this book. The
Internet, of course, is a great source of information, but you always have to know where to look.

I 6“'

Python Communities

Here are just a few of the Web sites that you might take a look at for source code, answers to
questions, and general tips about the language and the tools.

The most obvious source of information is www . python. org, the main site for Python. This is
the place you will find the documentation, latest applications and patches, and other official

information about the language. Anyone starting out with Python should at least browse the
site to see what is available here for download or reading.

The www.planetpython.org site is a good source of information about Python, as well as
downloads, commentary and discussions.

If you are working on the Apache Web server and want information related to Python, how to
use it, where to get the modpython (we'll discuss this later) modules and how to configure
things, the www.modpython.org Web site is the place to be. There's some general Python
discussion here as well.

For those of you who are into the whole .Net environment from Microsoft,

www . codeplex.com/IronPython is the place to be for sure. This Web site contains the
download of Iron Python, allowing you to integrate Python code with .Net libraries to develop
specifically for .Net compatible platforms, primarily Microsoft Windows. They have a nice mail-
ing list to keep you updated on changes to the system and discussion areas to talk about the
language and the implementation.

There is an excellent mailing list for learning Python and discussing it with people that are
experts in the field at http://mail.python.org/mailman/listinfo/tutor. Itisavery
friendly place for people new to the language to ask questions without being made to feel
stupid.

Finally, for those of you who want to use Python as an embedded interpreter within the C++
language, the world gives you boost.Python. Go to this site, located at www . boost .org/libs/
python/doc, and you will learn more than you ever wanted to know about how Python can

be used inside a C++ application using the open source boost libraries.

Python Communities

The Web sites listed previously often have discussion areas where you can talk about Python,
post your problems, or just read what other people are doing with the language. Another
excellent source of information about Python is the Usenet newsgroup community. If you have
a newsgroup reader, or can point your Web browser to groups . google . com, you can read
these newsgroups and post your own comments or questions. Some of the newsgroups you
might want to read include the following:

I7

sl ahe b

A HX KX

www.python.org
www.planetpython.org
www.modpython.org
www.codeplex.com/IronPython
www.boost.org/libs/python/doc
www.boost.org/libs/python/doc
http://mail.python.org/mailman/listinfo/tutor

CHAPTER 1} About Python

comp.lang.python—The official newsgroup for Python development. You will find the
majority of expertise here, along with people who are more than happy to help anewcomer
feel at ease with the language.

comp.lang.python.announce—An official release newsgroup where you can read
about the latest and greatest Python developments and where to download them.

Finally, there are operating system specific newsgroups. For example the
linux.debian.maint .python newsgroup contains information about Python on the
Debian installation of Linux.

Other Software

As we begin to discuss other segments of the programming world with respect to Python, you
will need to obtain and download other software for use with the language. Specifically, you
will probably want to download and install the MySQL database system and the Apache Web
server system. These two packages are available on the Internet free of charge.

MySQL is a relational database system that is used by a large percentage of the development
world because of its stability and lack of cost. It compares well to commercial database systems,
such as Oracle™ or SQL Server™, but does not require the same level of administration or the
upfront cost to purchase. You can find the most current version of MySQL at www . mysql . org
in the Downloads section. Be sure to download the Python interface libraries, which can be
found at www .mysql . org/downloads/python.html.

The Apache Web server has become the standard open source Web server for creating and
maintaining Web sites. Since Python has become so closely associated with creating CGI scripts
and Web pages, it only makes sense for us to discuss the building of various components for
the Web. You can find Apache at www . apache . org. The actual Web server (http server) is found
athttp://projects.apache.org/projects/http_server.html.In this bOOk, we will
be using Version 2.2.3, which is available for download. You will also need to download the
mod_python module for use with the server. You can download this at www . modpython. org.

And Now for Something Completely Different...

Aw, come on, you didn't really think we could go this whole chapter without a gratuitous Monty
Python® reference, now did you? Remember, Python has a lot in common with Monty Python.
They are both a bit offbeat, both well loved, and both often blow up rabbits. No, actually, Python
doesn’t blow up rabbits—I made that part up. Anyway, it is time to move on to the actual meat
of the language, looking at syntax and writing code. So, let's get on with it!

18

e e e
S B B

www.mysql.org
www.mysql.org/downloads/python.html
www.apache.org
http://projects.apache.org/projects/http_server.html
www.modpython.org

Python Language
Overview

In order to really understand a language, you need to know the components that make up that
language. In the case of a programming language, the elements that make up the language are
its syntax, its keywords, and the style with which the language expresses itself. To begin with,
let's take a simple look at some Python code. Since Python is an interpreted language, there is
really no need for the usual start and end blocks; you can simply select the pieces that you want
to run and type them into the interpreter. In a compiled language, for example, you would
need an entry point, and some sort of termination point. We will be using the IDLE interpreter
forthis example. We'll get into a fuller discussion of IDLE and the other tools in the next chapter,
but for now just follow the directions, and you'll do just fine.

To start up IDLE, just select it from the Start menu in windows (Start Menu | All Programs |
Python 2.5 | IDLE (Python GUI)), or run pythonw. exe from the directory in which you
installed Python. When you bring up the IDLE editor, it will look like the image shown in
Figure 2.1. IDLE, of course, comes from the name of one of the Monty Python actors, Eric Idle.

Python Shell E|@|® Figu re 2.1

Fle Edt Shel Debug Opbons Windows Hep The IDLE editor

Python 2.5 (r25:51%00, Jep 19 2006, 09:52:17) [M3C v.1310 32 bit (Intel]] on win J
a2
Type "copyright”, "credits™ or "license()" for more information.

**
Fersonal firewall software may warn about the connection IDLE
mwakes to its subprocess using this computer's internal loopback
interface. This conmection is not visible on any external

interface and no data is sent to or received from the Internet.
**

IDLE 1.2

19

sl aslss ol

CHAPTER 2} Python Language Overview

Python Syntax

You've seen some simple examples of the ways in which Python statements are entered and
executed by the interpreter. Let's take a closer look at what the actual syntax of Python looks
like and what the rules are for using that syntax.

Comments

When you are writing code, it is often useful to place a comment in place to indicate what you
are doing. This is particularly useful if you want someone else to be able to ever read your code.
The Python language supports comments, using the hash (#) character. The hash character
indicates that everything from that point on to the end of the line is a comment. For example,
you can use it as a line unto itself:

This is a comment.

Alternatively, you can use the comment character at the end of a line of code:

x = 1 # Initialize x to be the first element.

In either case, the text following the comment character is ignored by the interpreter when it
is reading and processing the code.

Indentation

If you are accustomed to programming in another language, such as Pascal, C++, or Java, you
may be used to the idea of statement termination. For example, in C++, if you want to assign
the value 12 to a variable named a, you would write a statement that looks something like this:

a = 12;

The variable name is a, the action you are taking is “assignment” (using the = operator), and
the value you are assigning to the variable is 12. The compiler knows that the statement is
finished when it encounters the end-of-statement token, which in C++ is the semi-colon (;).
Likewise, in Pascal, you might write something like this:

a := 12;

Once again, the statement has a variable, an operator (in this case := which is the Pascal version
of the C++ operator=), and a value. The statement is terminated by a semi-colon. Older lan-
guages, such as FORTRAN, use a different scheme to indicate the end of a statement. In order
to terminate a statement, you use the carriage return to indicate that the statement is finished.
Python, which aims for simplicity in all things it does, uses a combination of indentation and
end-of-line characters (carriage returns) to indicate statements. So an assignment in Python
looks like this:

a =12

20

sl b sibe
ot g g

Python Syntax

That certainly seems simple enough, but what do you do when your line is too long for a single
line of code? For example, suppose that you want to assign areally long string to a given variable.
You might do something like this:

s = “This is a really, really long string that should not be this long, but it

is. How long do you think it will get before it does something bad?”

Asyou can tell, the above line is too long to appear on a single line in the interpreter. Wrapping
text is a bad idea in any language, since the editor often inserts some sort of carriage return
character to mark a line wrap. That character inserted indicates to the interpreter that the
statement ends. So the Python interpreter would read the above statement as:

s = “This is a really, really long string that should not be this long, but it
is. How long do you think it will

and then follow that with the statement:

get before it does something bad?”

The first statement is an error because it does not terminate the literal string with a closing
double quote. The second statement is an error because, well, it isn't a statement at all! So, how
do you get around this little problem? Fortunately, Python provides a solution, the line con-
tinuation character. You can write the above as:

s = “This is a really, really long string that should not be this long, but it
is. How long do you think” \

“ it will get before it does something bad?”

Now, there are a few rules here that you will need to become aware of later. First of all, this
rigmarole is not necessary if the line in question is actually a list of items. For example:

month_names = ['January', 'February', 'March', # These are the
'April’, 'May"', 'June', # names
'July’', 'August’', 'September', # for the months
'October', 'November', 'December'] # of the year

The interpreter knows that there is more coming, because each line ends with a comma and
the “statement” cannot end until the closing bracket (‘]') is found.

Secondly, you can't have a comment on a line that contains a continuation character. Thus,
something like this:

str = “This is a test” \ #

“ more of the test”

will not be parsed properly and will end up with an error from the interpreter.

CHAPTER 2} Python Language Overview

So what is important about indentation? In the world of Python, indentation is everything. For
example, consider the following example in a language such as C++:

if (x == 2)
{

printf (“*X is 2\n”");
}

This example compares the variable x to the constant value 2, and if they compare to the same
value, it then prints out some debugging information. In a language such as Pascal, this same
statement would look like this:

if (x = 2) then
begin
WriteLine(“x 1s 2");

end;

As you can see, in either case, there is a delimiter for a block. In the case of C++, the delimiter
is a set of braces { and }. In the case of Pascal, the block is delimited by the begin and end
statements. The compilers recognize that these delimiters mean that everything within the
block will only be executed if the conditional is wrapped around the block (in this case, whether
or not x is equal to 2) is true.

We will spend a fair amount of time looking at conditionals and loops and all the rest of the
block-oriented statements in Python. For now, however, it is only important to know that
Python has no real delimiters. It does not use “begin” and “end” statements or sets of braces to
indicate that anything is supposed to be a part of something else. Python, instead, uses the
simplicity of indentation to indicate whether or not something is a part of a block.

For Python, the above block would look like this:
if x == 2:
print “x = 2~
Ifyou want to try this out, bring up the IDLE editor that you just installed in the previous action.
Now, enter the following lines into the IDLE editor. First, let’s assign the variable a value:
x = 2
Enter the line just as it appears above and press the Enter key. The IDLE editor will create a local

variable in the editor called x and assign it the value 2. Now, we are going to try to compare it
to something:

if x == 2:

print “This is a test”

22

sl b sibe
ot g g

Python Syntax

There are a couple of things worth noticing here. First, as you type, Python will highlight (change
the font color) the text of words it recognizes within the lines you enter. In this case, the words
if and print will be highlighted, because they are keywords within the Python environment.
Next, notice that the colon : at the end of the i f statement automatically causes the editor to
indent the next line, because the editor knows that the colon at the end of an i £ statement
means that you are trying to create a block of statements to follow if the conditional statement
within it is true. When you type the print statement and press the Enter key, the editor will
automatically indent the next line, indicating that it feels you are trying to create a new line in
the block. You can add another line, and it will only be executed if the block is entered, or you
can press Enter without entering any text. If you do the latter, the editor assumes you are done
with the block and terminates it. In “immediate” mode, which is what we are doing right now,
the interpreter executes statements as you enter them. Don’t worry about the differences be-
tween immediate mode and program mode, as we will discuss that in the next chapter. In any
case, once you press the Enter key on the blank line, the interpreter interprets the line, realizes
that the variable x is, in fact, equal to the value 2, and prints “This is a test” on the output
console. The whole thing looks like this:

>>> x = 2
>>> 1f x ==

print "This is a test"

This is a test

>>>

As you can see, it works the way that you'd expect. Indentation is a very important part of
Python, and this is one of the main reasons that it is built directly into the editor. However, you
might wonder whether the indentation level is important. The answer is, well, kind of. You can
change the level of indentation when you are typing, simply by hitting the backspace key. This
will automatically wipe out all indentation, since the editor uses a single tab to auto-indent.
Once you have done this, you can then indent your own level, such as two spaces, for example.
Try it.

First, enter the line:
if x ==
Notice that the editor auto-indents the next line in about eight characters. (It varies, depending

on your settings, but that is the default.) Then press the backspace key. Notice that the cursor
moves back to the left hand side of the screen. Type some number of spaces, say two, and enter:

print “This is a test”

CHAPTER 2} Python Language Overview

Press the Enter key again, and you will see that the editor indents two spaces as well. The
indentation level doesn't matter, except that it should be consistent. Now, why did I say it “kind
of” matters as to the level of indentation? Well, let’s take a look at our example. We've got:

X = 2
if x ==

print “This is a test”

This is what is presently in the editor buffer. Now, if you press the Enter key again and then
press backspace, you can change the indent level, right? No, in fact, you can't. Suppose, for
example, that you try to indent in one space (indenting more than the current level would be
okay, as we'll see later).

>>> if x ==

print "x = 2"

print "x = 1"
IndentationError: unindent does not match any outer indentation level
(<pyshell#7>, line 3)

The editor “knows” that the indentation level doesn’t match, so it complains about it to you.
The levels have to match, or it is an error. So while you might play around a bit until you discover
a level of indentation that appeals to you, you need to be consistent about it. Indentation is
extremely important in Python, so be sure that you understand how to read and interpret the
indentation levels in code. Now that we've covered the keywords and indentation, it is time to
start slowly getting into the meat of the language. Let’s next take a look at the naming and
usage of variables in Python.

Python Reserved Words

One of the nice features of the IDLE environment is that you can actually ask Python to list all
of the keywords that it supports. A keyword is one that means something to the language. In
other words, you can't use a reserved word as the name of a variable, a function, a class, or a
module. You can only use keywords the way in which they were meant to be used. To list the
keywords in IDLE, just enter the following lines into the interpreter, pressing Return after
each one:

import keyword

print keyword.kwlist

Obviously, you will be spending a fair amount of time with IDLE and with the various syntax
components of Python, so just accept that this is a capability of the environment that you can
use to remember the keywords.

24

sl b ssbe
ot g g

Python Reserved Words

When you run the above commands in the interpreter, you will see a list of words, enclosed in
single quotes, and separated by commas. This is the way in which IDLE displays a list. We'll talk
about lists a bit more in Chapter 3, “Tools.” The list you see should look like this:

[‘and', 'as', 'assert', 'break', 'class', 'continue', 'def', 'del', 'elif',
'else', 'except', ‘'exec', 'finally', 'for', 'from', 'global', 'if', 'import',
'in', 'is', 'lambda', 'nmot', 'or', 'pass', 'print',6 'raise', 'return', 'try',
'while', 'with', 'yield']

Let's take a look at the keywords, along with a brief description of what they mean, and a very
simple example of how you might use them. This will be your quick and dirty introduction to
the syntax of Python.

Decision Making and Iteration Keywords

Python contains multiple keywords used for looping, decision-making, and controlling of ex-
ecution statement order. Here's a list of those keywords, along with a simple example of each
one. You will learn more about decision-making and iteration control keywords in Chapter 4.

s

break: The break statement stops execution of a loop in Python. For example, you might
want to stop a given loop when a condition is met. The following example will break out
of a loop when the index value is odd.

index = 0
while index < 100:
if index % 2 == 1:
break
print index

index = index + 1

This block of code will print out only the number 0, because as soon as the value of 1 is
reached, it will break out of the loop as per the break statement.

continue: The continue statement allows a loop to pick up again at the top of the
iteration, rather than executing any statements following the continue statement in the
loop. For example, you might want to skip certain values in a loop. The following example
will skip all odd values in a loop.

index = 0
while index < 10:
index = index + 1

if index % 2 == 1:

CHAPTER 2} Python Language Overview

sshe

R

continue

print index

This block of code will print out every even number between 1 and 10. The continue
statement skips all of the odd numbers.

elif:The elif statement is Python shorthand for “else if.” An elif statement should
follow an i f statement, and the code within the e11i £ block will only be executed if the
condition is True. This does not mean that every i £ statement must have a corresponding
elif.Note that an elif statement must be at the same level as the i f statement it
follows. Finally, once any condition is evaluated to True, the entire block of i s and
elif’s is exited. The following example shows how you might test for three different
conditions.

x = input ("Enter a value: ")
if x ==

print "You entered one"
elif x == 2:

print "You entered two"
elif x == 3:

print "You entered three"

When the user enters a value, the series of statements is interpreted. If the user entered,
for example, a 2 at the prompt, the first e1i £ would be evaluated to True, and the block
would exit.

else: The else statement corresponds to an i f statement somewhere in an application.
If the preceding if statement (or e1if statement) is not true, the else statement code
will be executed. The following example shows testing a single value and printing out
some information, depending on whether the value is odd or even. The else statement
can also be used with a while or try statement, as you will see later.

x = input ("Enter a value: ")

if x $ 2 == 0:
print "Even"
else:
print "odd"

for: The for statement allows you to iterate over a sequence of values. The following
example prints out the elements of a set.

Python Reserved Words

myList = [1,"Hello world", 2.5]
for i in myList:

print i

if:The if statement allows you to evaluate an expression and take action, depending on
whether the statement is True or False. The following example simply prints out a string
if a variable is the proper value.

x =1
if x ==

print "Yes!", x

while: The while statement implements a looping mechanism that will continue to
execute until a given condition is no longer true. The following example shows a loop that
counts up to (but not including) 10.

index=0
while index < 10:
print index

index = index + 1

Debugging Keywords
Python provides built-in methods for debugging and observing your application’s actions
while it is running. Let's take a quick look at the keywords involved here.

assert: The assert statement is used to ensure that a given condition is true. If the
condition is violated, the program will throw an exception (see the “Exception Handling
Keywords” section) and most likely terminate. For example, this code snippet would ensure
that the user never entered a value outside the range from 1 to 10.

x = input ("Enter a value from 1 to 10: ")
assert x >= 1 and x <= 10

print "Thank you"

print:Theprint statement is a multi-use statement that allows you to output the value
of variables along with text and formatting instructions in Python. For example, you might
output a value in octal format as the following snippet shows.

print "%o" % 12

Package and Module Handling Keywords

As you will see later, Python provides ways to organize your code. The methods include pack-
aging your code or writing your own modules. To utilize these organizational techniques, you

CHAPTER 2} Python Language Overview

use the package and module handling keywords. We will learn more about these keywords and
their usage in Chapter 6, “Input and Output.”

e
b

e
b

28

global: The global statement makes a variable that would otherwise be defined locally
to be available outside the scope of the function you are using it in. For example, if you
have a global variable called BaD, and you want to assign a value to that variable within a
function, you must declare it to be global within the function. Otherwise, a local variable
of that name will be created. An example would be useful here:

BAD=1

def fool():
print "Foo Called"
global BAD
BAD = 2

def fool():
print "Fool Called"
BAD = 12

foo() #1
fool() #2
print BAD

Notice that when this code snippet is run, the value of BaD following the execution of the
lines marked #1 and #2 is 2, rather than 12. In the function Foo1, we assign to a local
variable called BAD, because it is not marked as global.

import: The import statement, similar to the C or Java include statement, allows you to

bring external code into the currently running application. For example, to use one of the
libraries that ships with Python, such as the math library, you import it into the interpreter.

import math from:The fromstatement is used in conjunction with the import state-
ment to import only selected entries, such as modules, classes, functions, or constants
from external code. For example, you might want to import only the value of Pi from the
math library.

from math import pi

print “Pi = %, pi

s o o

H

A X

Python Reserved Words

class:The Python language allows you to encapsulate your logic in your own code blocks
called classes. These classes can contain data and methods that you can expose to the
outside world. In this simple example, you create a class with one method and then use
that class in the actual application.

class MyClass:
"A simple example class"
i = 12345
def f(self):

return 'hello world'

Program begins here.
print "Start of program"
X = MyClass ()
s = x.f()
print s
def : The def keyword allows you to define your own functions in Python. A function is
simply a group of statements that is executed only when it is called from a piece of ap-

plication code. Here's a simple example of a function that simply doubles the value that
is input.

def doubleit (x) :

return x * 2
Execution begins here.

x =1

print "Doubled: ", doubleit (x)
x = doubleit (x)

print "Doubled: ", doubleit (x)

return:The return statement allows you to return values from a function. If you return

avalue from a function, you must assign a value to the return value in order to use it. See
the def keyword above for an example of how to use the return statement.

Exception Handling Keywords
Exception handling is a way of creating, dealing with, and notifying the user of errors in the
application. An exception is considered to be an extraordinary (or, if you prefer, exceptional)

29

B B 3

CHAPTER 2} Python Language Overview

event that has occurred within the application, which cannot be dealt with in the normal course
of running. We will look more at exception handling in Chapter 8. “Exception Handling.”

finally:The finally statement is used in an exception handling block for things that
must be done before any exception in a try block is thrown. You can save the exception
information, close files, or whatever you might want to do when a serious error occurs.
You cannot handle an exception in a finally statement, as illustrated in this example.

X = input ("Enter a number: ")

=0
try
y = 10 / x
print "Y = ", vy
finally :
print "In Finally Y = ", y

raise:The raise keyword allows you to raise your own exceptions in your own Python
application code. An exception should be raised whenever an exceptional event (one well
outside the scope of expected errors) occurs. For example, consider the case of a user
entering a value that is outside the valid range of values for a given input.

try:
x = input ("Enter a non-zero value: ")
if x == 0:
raise Exception
print "You entered a legitimate value!"
except:

print "Exception caught!"

try: The try statement executes a block of code that might throw an exception. See the
previous raise statement for an example of how this works in Python. Anything within
the indented block will attempt to run. If an exception is thrown, it will skip all remaining
statements in the block.

except : The except statement is used to catch exceptions. In the example used in the
raise statement code, the except block (indented code following the except: statement)
will be executed only if there is an exception. Otherwise, this block will be skipped during
normal execution.

Python Reserved Words

General Language Keywords

The Python language has a number of keywords that can be used in virtually any kind of a
statement, from a decision to a print statement. Here are a few of them that should be reason-
ably obvious to any programmer.

and:The and keyword is used to combine two values for boolean True or False equivalence.
If a is True, as well as b being True, then a and b are True together. This is a normal
programming convention.

in:The in keyword is used to see if something is a member of any sequence or collection.
For example, you can test for a value in a list or set by using the in keyword. You can see
an example of this in the following interpreter exchange:

>> x = [1,2,3]
>>> if 1 in x:

print "Yes"

Yes
>>> if 4 in x:

print "yes"

Note that the second query 4 in x returns False and thus does not print out the yes
statement.

is:The is keyword is used to test for object equality. Any two objects that reference the
same object will be alike for the is comparison. For example:

>>> g = 1
>>> ref = s
>>> if s is ref:
print "s is copy"
else:

print "s is NOT a copy"

s is copy
>>> 1if x is copy:

print "x is copy"

>>> t = 1

31

B B 3

CHAPTER 2} Python Language Overview

33l
k3

>>> if s is t:

print "s is t"

s is t
not: The not keyword simply negates a comparison. It is not really useful by itself, but
you can use it to ask if something is not equal in object equality:

if s is not t:

This statement will do an object equality test of the variables s and t and if they are not
the same ,will execute the code following the i £ statement.

or: Similar to the and keyword, the or keyword returns True if either of the two values
are True. So, if the variable a is True and the variable b is False, then a or b returns True
because one of them is True. If both a and b are False, then a or b returns False.

Other Keywords
This section contains keywords that do not fit in anywhere else.

sl
kx3

32

pass: The pass keyword is what used to be called a noop. That is, the statement does
nothing. It can be used anywhere that a valid statement is expected. For example, you
could do something like this:

>>> t = 1

>>> g = 2

>>> if t == 1:
pass

else:

print "Something is very bad"

If £ retained its assigned value, the pass statement would be executed, and the program
would simply move on to the next line following the i £ block.

lambda: At the risk of starting a linguistic war, the 1ambda statement is by far one of the
most useless things in the Python language. Essentially, 1ambda allows you to create a
“nameless” function with some inline code in it. An example is probably easier than trying
to explain this keyword, or why you might want to use it.

s o o

H

A X

Python Reserved Words

>>> g = lambda x: x*x
>>> g (8)
64

Why would you want to create an inline, unnamed, function? I have no idea.

yield: The yield statement is used only in generator functions in Python. A generator
is a function that can stop what it is doing at any given point in the function body, return
avalue back to the caller, and, later on, resume from the point it had paused. This appears
quite confusing, but can be very useful under certain circumstances. Let's look at a simple
example now to see the syntax and then talk about it later in the book.

>>> def genfunc():
print 'first call’
yvield 1
print 'second'
yvield 2

>>> a = genfunc() # note that nothing happens here
>>> a.next () # call the function the first time
first call

1

>>> a.next ()

second

2

>>>

Notice that the yield statement allowed us to pick back up where we started after we
called the “next” iterator of the generator function object.

del: The del statement simply removes a variable from the interpreter memory. Once a
variable has been deleted, it can no longer be referred to:

>>> x = 1

>>> print x

>>> del x

>>> print x

Traceback (most recent call last):

CHAPTER 2} Python Language Overview

File "<pyshell#55>", line 1, in -toplevel-
print x
NameError: name 'x' is not defined

>>>

exec :Theexec statementsimply executes astring. The string can be any valid command
within Python. It can be either a literal string or a string variable.

>>> X = 2

>>> exec "print x"
2

>>> g = "print"
>>> g += " x "

>>> exec s

>>>

Variable Usage

Python, like most languages, has a set of rules for variables. A variable is a memory address that
can change. This is different from a memory address that can’t change, which we normally refer
to as a “constant.” Variables are the holding cells of the computer world, the place in which
you place data that you are going to need later. (I'm sure you know this, but it never hurts to
actually take a moment to understand what it is we are talking about.) Note that in Python, all
variables are references, which is different than many languages, which do not use the reference
concept.

Python is not a “strongly typed language.” By this, we mean that variables do not have specific
types, which they can only be assigned to. In fact, you don’t have to predefine variables in Python
at all. A variable comes into existence as soon as you refer to it by its name. Which brings us to
the first variable topic: naming and conventions.

Python allows you to define a variable using a combination of letters, numbers, and the
underscore (_) character. There are a few rules: a variable must begin with a letter or an
underscore, and the variable name is case sensitive. That is, you cannot have the following
variable names:

1x =

2
?x = 3
4

Variable Usage

However, all of the following are legal Python variable names:

x =3

5

|><
<
I

On the other hand, while these variable names are all valid, they are also all different:

aXb
AxB
Axb

For example, if you bring up the IDLE editor and enter the following lines:

>>> aXb = 1
>>> AxXB = 2
>>> Axb = 3
>>> print aXb
1

>>> print AxB
>>> print Axb
>>> print AXB

Traceback (most recent call last):
File "<pyshell#12>", line 1, in <module>
print AXB

NameError: name 'AXB' is not defined

Notice that all of the variable names contain the same letters, “a,” “b,” and “x” but in different
combinations of cases. Yet each one has a different value assigned to it. It is important to keep
track of the actual combination of letters you use to define a variable name, since it can lead
to some rather strange problems in the code if you do not. In short, Python uses case-sensitive
variable names.

Once you have the actual rules out of the way, there are the conventions. As the movie Pirates
of the Caribbean: The Curse of the Black Pearltaught us, these aren't really rules; they are more
guidelines. In Python, it is customary to begin a variable with a letter, not an underscore. There
are no hard and fast rules for this, but under certain circumstances that we will discuss later,

underscores can mean different things in different places, so it is best to avoid them as starting

35

B B 3

¥

CHAPTER 2} Python Language Overview

characters. Consistency is more important than style in a Python application, so if you use a
lowercase letter as the starting letter of your variables, do so consistently throughout the ap-
plication. Numbers are allowable in variable names, and they often are used to differentiate
between different types of values. For example, you might have t0, which represents a starting
time, and t1, which might indicate an ending time. Numbers are best at the end of variable
names, but this is not a hard and fast rule.

The next thing that is often hard to understand about Python is that you do not need to define
your variable. That is, if you are used to doing things like this:

int x;
int vy;
double z;
x = 1;
y = 2;

z (double) (x+y) ;

in your applications, you might as well get over it for Python. Python is quite happy with the
following lines instead:

x =1
y =2
z = x+1

In fact, if you try to define a simple variable ahead of time, you will get an error, since there is
no way to “define” a variable in Python.

The Continuation Variable

Now, remember that I said that using the underscore to begin a variable name is a bad idea?
There's a reason for this. The IDLE editor (and, in fact, the interpreter in general) supports the
notion of a continuation variable. This is probably one of the oddest things in the Python
environment, but it does have its uses. It is a lot easier to just show you this one, rather than
try to explain it up front:

>>> 546

11

>>> 422 # Continuation!!
33

Notice the second statement, the one marked with the comment “Continuation!!” The contin-
uation character, “_", forces the interpreter to take the last value that was stored and to apply
whatever additional work you want done on it. Why would you do something like this? Because
all Python expressions in immediate mode have a side effect, which is that they store the current

36

sl b sibe
ot g g

Variable Usage

value in the interpreter. You can think of this value as the “immediate variable.” You can work
with this variable to do shortcuts in your work. This does not work with variables, however.
Consider this example:

>>> x =1 + 2

>>> _+ 33

Traceback (most recent call last):
File "<pyshell#18>", line 1, in <module>
_+ 33

NameError: name '_' is not defined

[Note: The above session assumes you just started the IDLE Editor. If you have been typing along
with the chapter, you would not see an error.

Asyou can see, the continuation variable is only valid when you are working in immediate mode
in the editor, and only when you are creating values as you go. This is particularly useful when
you are using the Python environment to do mathematical calculations for you and want to
see the intermediate values as you go along. If you didn't use this method, you would have to
things like this:

>>> x = 546

>>> y = X + 22

>>> print y

33

Python is all about making life as easy as possible for the programmer to get his or her job done
as quickly and easily as possible, and the continuation character is an expression of that.

Watching Out for Spelling Mistakes!
Here's an important caveat for working with Python: spelling matters! This is particularly true
if you use rather odd names. For example, consider the following example:

>>> x_ v .z =1

>>> y 7z _a = 2

>>> a b c=xy z+ vy z a
>>> xX_y . a = 3

>>> b c. d=xVy z + Yy z_a
>>> print b_c_d

3

CHAPTER 2} Python Language Overview

Now, this code works just as it was written, but there is a major problem here. Instead of adding
the first and second values and referencing the result in the variable b_c_d, I really meant to
add the second value (y_z_a) and the last value (x_y_a). Because I misspelled a variable name,
however, | got the wrong result, with no indication of the error. If | had actually used a variable
name that didn't exist, I would have gotten an error. Unfortunately, there is no such check for
what you meant to have happen. This is a danger in any language, but it is particularly prevalent
in interpreted languages that do not have strong type checking, which describes Python. So
remember what your third grade teacher told you and mind your spelling!

Predicates

The term predicate is used in a lot of languages, and has a variety of meanings. In Python, you
will see the term bandied about quite a bit in the literature, so it is worth mentioning here.
There is no “predicate” keyword in Python. It is a term that describes functionality in the lan-
guage, much the same way that “variable” does. A predicate is a function that tests a condition
and returns a Boolean value. That is, the function returns a value that is either true or false,
depending on the condition evaluated. We haven'’t gotten into a discussion of functions yet,
and won't for some time, so why bring this up now? The answer is, there are lots of functions
that you use every day that you don't even think about. For example, consider the following
bit of Python code:

x =1
y =2
if x+y < 4:

print “Yes!”

If you enter this code into the interpreter, you will see the following display in IDLE:

>>> x = 1
>>> y = 2
>>> if x +y < 4:

print "Yes!"

Yes!

What does this mean? Obviously, when you add one and two, you get a value less than four, so
the print statement is executed. The conditional expression here is “x+y < 4". The expression
that you are invoking is the i £ statement in Python. So, the entire expression “if x + y < 4" is
the predicate in this expression. This might not seem important now, but it will certainly be-
come important later on as you develop your own functions and use them in your code.

38

sl b ssbe
ot g g

ldentifier Scope

Identifier Scope

Scope is another issue that comes up constantly in programming languages. Put simply, scope
is the lifetime of an object and where it may be accessed. The scope of a variable in Python is
determined by two things: first, the place at which it is first used, and second, whether or not
it is global. As you may recall, the keyword global was mentioned a bit earlier in this chapter.
At the time, we merely glossed over what it meant, but now it's time to actually understand
why this keyword exists at all.

There are two times in which the scope of a variable becomes important. One, in functions, we
will discuss a bit later in the book. The second, within blocks, we can talk about now.

Let's consider the following example:
x =1
if x == 2:
y =2
print “y = ", vy

Entering the code into the IDLE editor, you get the following output:

>>> x = 1
>>> if x ==

y =1

>>> print y

Traceback (most recent call last):
File "<pyshell#70>", line 1, in <module>
print vy
NameError: name 'y' is not defined

>>>

Why is this? The answer is scope. The variable y in this example is only defined within the block
that is defined from the start of the i £ statement until the end of the i f block two lines below.
You can't refer to the value outside of that block, because it was never defined as the code never
entered the block. We could fix this easily enough:

>>> x = 1
>>> y = 1

>>> 1f x ==

CHAPTER 2} Python Language Overview

>>> print y
1

Asyou can see, by moving the initial definition of y outside of the i £ block, you fix the problem.
However, you may not want to do that under all circumstances. Instead, you can extend the
scope of the variable y by using the global statement:

>>> x= 1

>>> if x ==
global y
v = 2

>>> print vy
2

>>>

Asyou can see, the variable y is now defined both inside and outside the block. We have changed
the scope of the y variable to be global, that is, available anywhere from that point on in the
application. When we talk about functions and modules, this will become more important, so
it is fairly imperative that you understand what scope means at this stage.

By the way, this brings up an important aside. You may have noticed that once a variable is
defined in the IDLE editor, it hangs around forever. There are two ways that you can fix this, if
you happen to want to get rid of a variable. First, you can use the de1 statement:

>>> y = 2
>>> print y
2

>>> del y

>>> print y

Traceback (most recent call last):
File "<pyshell#87>", line 1, in <module>
print vy

NameError: name 'y' is not defined

>>>

ldentifier Scope

The del statement removes a variable from the memory of the interpreter. This is useful if you
just want to get rid of a single variable. If, on the other hand, you want to get rid of all of the
work you have done, there is a better way. The IDLE editor has an option, tucked under the
Shell menu called Restart Shell. If you run this function, it will remove all of the variables you
have in memory, as well as any code you may have loaded in the form of modules or functions.
This can be useful when you have no idea what is set and what is not and just want to start with
a clean slate.

Figure 2.2 shows a typical run of the IDLE editor, showing some of the things you have done
in this session, along with a shell restart and the repercussions of that restart.

Python Shell =] Figure 2.2

o L Sesl Besly Sater Dleder wsd Restarting the IDLE editor.

Python 2.5 (r28:51908, Sep 19 2006, N9:52:17) [MSC v.1310 32 hit (Intel}] on win |
az

Type "copyright™, "crecdits™ or "license ()" Ior more 1nformatlon.

R AN AR EEEEEEEEFENEETNER AR AR A AR A AR AR AR AT ARANAAATAATTTITETE S
Fersonal rirevall software may Warn sbout the connection IDLE
makes to 1ts subprocess using thils computer's incternal loopback
incerrtace. This connection 15 not visible on &ny external
incertace and no data 13 Sent To or recelved Ifrom the INTernec.

B T T e T

IDLE 1.2
rrox =1
¥y if x == 1:

353 RESTART

That about covers the concept of scope, leaving us only one more topic to talk about in this
chapter before we get into some real coding. So, let's move on to that final topic: the notion of
operators.

e

b w5k
B g

CHAPTER 2} Python Language Overview

Operators

There are two different kinds of operators in Python, as in most languages. First, there are unary
operators. Unary operators are those that operate on a single value. The unary operators are:

~: The bitwise NOT operator
- : The negative operator
+: The positive operator.

The latter two are fairly self-explanatory. If you have a value and apply the negative operator
to it, you get a negative result, assuming that the value is a numeric type. Likewise, if you have
avalue and assign the positive operator to it, you get .. well, actually, you get the same value.
The positive operator is really just used for circumstances where you want to emphasize the
fact that something is positive. That is:

>>> x = 1
>>> y = +X

>>> print vy

1
>>> x = -1
>>> y = +X

>>> print y
-1

>>>

The “~" operator, on the other hand, is a little more complicated if you have never worked with
it before. The idea here is that the ~ operator reverses all of the bits in a value. That can be useful
for certain mathematical expressions, but it is generally used to reverse the values 0 and -1, to
be used as numeric values for true and false. So, if we do the following:

>>> x = 0

>>> print x
0

>>> X = ~X

>>> print x

>>> X = ~X

>>> print x

>>>

42

sl sl sl
ot g g

Operators

As you can see, the ~ operator is simply flipping the bits of the value of x. By definition ~(~x)
will always be the value x, no matter what x started out as:

>> x = 123

>>> X = ~(~x)

>>> print x

123

That about covers unary operators, which brings us up to the second type of operator in Python,
binary operators. In this case, binary doesn’t mean the mathematical base that consists of only
zeroes and ones, it means the idea of operators that have two arguments. This sounds strange,
but I assure you, you have been using them most of your life without even thinking of them as
binary. For example, x + y uses the binary operator “+.” It applies to two variables, x and y.

Python supports the basic binary operators that you would expect:
+ The addition operator

- The subtraction operator

* The multiplication operator

/ The division operator.

For numeric values, these operators work the way you would expect. There are a few catches
and caveats work mentioning, however. Python will assume data type, depending upon the
information supplied. Consider the following example.

X = 10/3

Python has no way of knowing what you intended the data types to be in the above statement.
It will therefore assume that both operands are integers, as there is nothing to suggest other-
wise, and as you know, you do not declare variable types in Python. The result of the above
statement will also be an integer. So, instead of getting a result of 3.333, you will get the result
3. How do you fix this? That's also quite simple; just change one of the arguments to a floating
point value:

>>> x = 10/3
>>> print x

3

>>> x = 10.0/3
>>> print x
3.33333333333

>>>

CHAPTER 2} Python Language Overview

There are also shorthand versions of the above operators that work on a single variable. For
example, suppose that you want to increment the value of x by 1. You could write:

x = xX+1

However, Python provides a better way, the += operator:

>>> x = 1
>>> x = X + 1
>>> print x
2

>>> x = 1
>>> x += 1
>>> print x
2

>>>

Likewise, there are versions for all of the other standard operators, as show in Table 2-1.

Table 2-1 The Python Standard Operators

Operator Meaning
+ Add two values
+= Add a value to a variable (shorthand)

Subtract two values
= Subtract a value from a variable (shorthand)

* Multiply two values

*= Multiply a variable by a value (shorthand)
/ Divide two values

/= Divide a variable by a value (shorthand)

Note that all of the above only work on numeric types, which means that integers or floating point
numbers can be added, subtracted, multiplied, and divided. This does not apply to string types.

Modulo Operator

One of the less common operators, at least outside of the computer world, is the modulo
operator. This operator, is represented by the percent sign ‘%'’. This operator does a division
between two values and returns the remainder of the division. For example, if you divide 10 by
3, you get the result of 3, with one left over. The modulo operator returns the 1, in this case,
as you can see in the following example:

4

sl sl sl
R R RX

Qperators

>>> x = 10 /3

>>> print x

>>> x = 10 % 3
>>> print x
1

>>>

You might wonder what the use is for the modulo operator. Actually, there are quite a number
of really good uses for it. The first, and most heavily overused example is that of determining

whether or not a given year is a leap year. If you are unaware of the rules, a leap year is a year
that follows these constraints:

It is divisible by 4.
It is not divisible by 100, unless it is divisible by 400.
Thus, 2004 is a leap year, 2000 is a leap year, but 1900 is not a leap year, nor is 1901. Note the

“is divisible by.” You can think of “is divisible by” as the same as “divisible with no remainder.”
In other words, a given year is a leap year if:

>>> year = 2004

>>> igLeapYear = (year % 400 == 0) or (year % 100 != 0 and year % 4

1l
1l
o

>>> year= 2000
>>> print isLeapYear
True

>>> year = 2004

>>> isLeapYear = (year % 400 == 0) or (year % 100 != 0 and year % 4 == 0)
>>> print isLeapYear

True

>>>

>>> year = 1900

>>> isLeapYear = (year % 400 == 0) or (year % 100 != 0 and year % 4 == 0)

>>> print isLeapYear

False

Another use of the modulo function is in calculating change, which is probably more useful
and less widely used. For example, imagine that you want to know how many quarters to return
to someone based on the value of the bill that they hand you. By dividing by the value of the
coin you want to use, you find out how much of that coin will be returned as change. Then, by

CHAPTER 2} Python Language Overview

using the modulo operator, you can determine how much change is left to figure out the next
coin value for. This is actually a very common operation in point of sales systems.

Naturally, there is a shorthand version of the modulo operator, %=, which takes a value, applies
the modulo of a value to it, and then stores the result back in the original variable.

Exponential Operator

How many times have you thought to yourself: “How much is 2 multiplied by itself 4 times?”
Why, I find myself doing this half a dozen times a day, at least. You mean you don't? Gee, what
is wrong with you, anyway? Seriously, though, the idea of multiplying a number by itself is
called “raising that number to a power” or exponentiation. This particular function is very useful
for working with bit values, for doing mathematical calculations, and for various other uses in
the software world. In Python, the exponentiation operator is represented by the symbol “**”,
or a double asterisk.

For example, suppose that you are told to find the value of 2 raised to the 5™ power. In math
terms, this is represented as 25, and in Python, it would be expressed as 2**5. Entering this
into the IDLE editor, you can see that the result is:

>>> 2%*5

32

Can you apply the exponentiation operator to a variable itself using shorthand? Yes, just as you
would expect:

>>> X = 2
>>> x **= h
>>> print x

32

Logical Operators

The next batch of operators we are going to discuss is the set known as logical operators. These
operators are called this because they are used by the logic statement in Python. The set of
operators is shown in Table 2-2.

Table 2-2 Python Logical Operators

Operator Name Purpose

or Logical or statement
and Logical and statement
not Logical not statement

46

sl b ssbe
ot g g

Qperators

The logical operators are generally used in conditional statements, such as the ‘if’ statement.
For example, consider the following scenario: You want a number that is between 1 and 10,
inclusive. That is, the values 1, 2, 3,4, 5, 6, 7, 8,9 and 10 are legitimate, all other values should
be rejected. You could write something like this:

if x < 1:
print “Error!”
if x > 10:
print “Error”
Otherwise, legitimate value.
This, of course, works fine as you would expect:
>>> x = 1
>>> if x < 1:

print "Error"

>>> if x > 10:

print "Error"

>>> x = -1
>>> 1if x < 1:

print "Error"

Error

>>>

Wouldn't it be nice, however, to combine those two conditions into a single i f statement? That
way, you would know exactly what it was you were testing for. This is a perfect case for the
logical or operator:

>>> x= -1
>>> if (x < 1) or (x > 10):

print "Error"

Error

>>>

4

ok

¥

CHAPTER 2} Python Language Overview

If you happened to major in English and not in “programmerese” as a language, the logical
or is not quite what you expect. When you write x or y, you get results according to Table 2-3:

Table 2-3 Logic OR Truth Table

X y Result of x ORy
True True True
True False True
False False False
False True True

In other words, the result of two expressions or * d together is True if either of those expressions
is True.

The and operator works exactly the opposite way. The expression “x and y” is True only if both
xandy are True:

>>> x = 1
>>> if x != 2 and x != 3 and x != 4:

print "X is ok"

X is ok

>>>

Using our truth table (Table 2-3) above for and, we get the following table results:

Table 2-4 Logic AND Truth Table

X y Result of X AND y
True True True
True False False
False False False
False True False

Finally, you have the not logical operator. The not operator does the opposite of whatever you
apply it to. So, if you say not x == 2, then it is the same as x != 2. Here's a simple example to
show you what is meant:

>>> x = 2

>>> if not x == 2:

48

sl sl sl
R R RX

Qperators

print "x is not 2"

>>> 1f not x 1:

print "x is not 1"

x 1s not 1

>>>

Likewise, you can use the not operator with the and, or or operators. For example:

>>> x = 1
>>> if not (x == 1 and x !'= 2):

print "Help!"

In this case, you take the expression (x == 1 and x != 2) and evaluate it. Since the variable x is
equal to 1, the first half of the expression is True. Since x is not equal to 2, the second half of
the expression is True. Using the truth tables above, you can see that since True and True is
True, the value of the expression within the parentheses is, in fact, True. Now, you apply the
not operator to that. This says that you take True, and make it not True, or False. So the result
of the expression is False, and should result in the print statement not being executed. Running
the above code in the IDLE environment verifies this.

Comparative Operators

Like all programming languages, Python provides a way in which to compare values for equality
and inequality. In addition, for numeric and string values, there are operators for checking for
magnitude differences, less than, greater than, and so forth. Table 2-5 shows the list of valid
comparative operators in Python.

Table 2-5 The Python Comparative Operators

Operator Meaning

< Less than operator

<= Less than or equal to operator

> Greater than operator

>= Greater than or equal to operator
<> Not equal operator (deprecated)

== Equal operator
I= Not equal operator

49

B B 3

CHAPTER 2} Python Language Overview

Yes, you read that correctly, there are two not equal operators. Why? I really don't know, to be
honest, except that different languages, such as Pascal and C++ use different operators, and it
was easier to support both when the language was being created. Note that the <> version has
been deprecated and shouldn’t be used in new code. It is shown here just in case you run into
it in some old code.

Here are a few simple examples of the comparative operators in use, just to give you an idea of
how they work in practice.

>>> x = 1
>>> y = 2

>>> print x <> y

True
>>> print x != vy
True
>>> print x ==y
False

>>> 1f x < y:
print "x is less than y"
else:
if x > y:
print "x is greater than y"
else:

print "x = y"

x 1s less than y

As you can see, not only can you compare two values, but you can also print out the result of
that comparison as a value itself. Finally, Python does proper comparisons for both integer
values and floating point values:

>>> x = 10.0
>>> y = 9.99
>>> print x > vy
True

>>> print x < y

False

There you go, a whirlwind tour of the reasonably straightforward comparison operators in

Python.

Qperators

Bitwise Operators

A few pages back, you learned about the logical and, or, and not operators. These operators
worked on the state of logical values, True and False. The computer world, however, often deals
in much smaller increments than True and False. Computer programmers are taught early on
to think in terms of bits. A bit is a single 0 or 1 value. In many cases, especially in older appli-
cations, a lot of data was stored as individual bits within a numeric value. For example, you
might have a single 16-bit value that meant the following:

Bit 0: Whether or not option 1 is enabled.
Bit 1: Whether or not option 2 is enabled.

And so forth until:

Bit 15: Whether or not option 16 is enabled.

To accomplish this, Python offers three operators: the “&" bitwise and operator, the “|" bitwise
or operator, and the “~" bitwise not operator.

The bitwise or operator works by combining bit values. It is probably easier to show you how
this works and then explain it than to try to explain it alone. Take a look at the following simple
Python code:

>>> a = 1
>>> b = 2
>>>c:a|b

>>> print c

3

Okay, now to understand what is going, first you have to understand how binary values are
represented. A number like 1 is really represented as a 16 bit value:

0000000000000001

The value 2 is represented as:
0000000000000010

The value 4 would be:

0000000000000100

51

B B 3

CHAPTER 2} Python Language Overview

And so on. When you “or” two values together, you use the same rules you used for the logical
or condition, but on a bit basis. Let's look at the numbers you select, 1 and 2:

1: 0000000000000001
2: 0000000000000010

You first look at bit O (the rightmost bit). If either bit is set in the two values, the “output” bit
is set to 1. Since there is a 1 in the value 1, and no 1 in the value 2 for the rightmost bit, the
“output” bit is set to 1. So, at this point, you have:

0000000000000001

Now, you repeat the process for the next bit. The value 2 has bit 2 set, whereas the value 1 does
not. So the output bit is set and the result is now:

0000000000000011

The remainder of the bits is not set for either the first or second values, so all of the output bits

are set to 0. This means that the result has only two bits set. To figure out what the number is,
you just multiply each position by the power of 2 that it represents:

1 %20 =1
1 %2 =2
And so forth. Since none of the rest of the bits are set, you just add the 1 and the 2 and get 3

for the output value. Thus, 1| 2 is 3. Wow, talk about a complex explanation of a really simple
concept. Computers know how to do this instantly.

Now that you understand all that, the rest of it goes pretty fast. The bitwise and operator, &,
works by determining which bits are set in common between two values. So, 1 & 2 is 0 since
there are no bits in common. 3 & 2 is 2 because only a single bit is set in common, the second
bit from the right.

Finally, the bitwise not operator: ~. This operator flips the bits of a given value; however, it
doesn't really result in what you expect to have happen, so it is probably worth a bit of
explanation.

Imagine you have the value 0. The value 0 is represented by sixteen zero bits:
0000000000000000

If you flip those bits, you get:
1111111111111111

Now, you might imagine that would be a really big number, but you are wrong. In fact, that's
a really small number. The reason is that the computer uses the high bit (the leftmost bit) to

52

sl b ssbe
ot g g

In Conclusion

represent the sign of the value. So, if the leftmost bit is set to 1, the value is negative. In this
case, the remainder of the bits adds up to be -2.

Take my word that this works for now. If you really want to understand the representation of
negative numbers as a binary value, feel free to look it up on the Internet. Suffice it to say that
the bitwise not operator accomplishes this by flipping bits.

Membership Operators and String Operators

We will talk a great deal more about membership and string operators in later chapters when
we talk about sets of data and strings. For completeness, Table 2-6 shows the various operators
and a short description of what they do.

Table 2-6 Membership Operators in Python

Operator Meaning

in Indicates whether a given collection contains a value.

not in Indicates whether a given collection does not contain a given value
X[index] Returns the element at a given location in a sequence.

X[startindex:endindex] Returns a slice of a given sequence.

Identity Operators

Finally, Python contains two identity operators. The is and not is operators check to see if
a given variable refers to the same object as another variable. We will discuss the identity
operators when we talk about classes and instances later in the book.

In Conclusion

That sums up our quick introduction to the Python syntax. At this point, you have just enough
information to be slightly dangerous in the language. Next up on our tour will be an exami-
nation of the tools that are provided with the Python environment, examining how to use things
like the editor, the Command Line compiler, and the documentation. We'll look at creating
Python files, and how to run them in the interpreter. We'll also take a little look at the structure
of Python, including modules and packages and files.

This page intentionally left blank

Tools

A carpenter cannot create works of art without his hammer, saw, and drill. An electrician is
helpless without a circuit tester. A politician is hopeless without his script writer. What do all
of these things have in common? Simple—they are all tools that are used for professionals to
accomplish their jobs. The job of a Python programmer is to create, maintain, enhance, and
debug Python applications. Like any other sort of profession, the Python programmer needs
tools to accomplish his or her task. In this chapter, we are going to look at some of the tools
that are already built into the Python distribution that will be used in your unrelenting pursuit
of Python perfection.

Also, we are going to explore the tools that actually come with the standard Python distribu-
tion. There are plenty of third-party libraries, packages, and tools that can be used with Python,
but they are a subject for external sources, such as Web site reviews, because they have a ten-
dency to change so quickly and move around so much. Refer back to the Web sites listed in
Chapter 1 for a good list of places to look for other Python tools and libraries.

IDLE

Of all of the tools you are likely to use in the Python development process, IDLE is by far the
most common. The IDLE integrated development environment provides syntax highlighting,
loading, and running of Python scripts, debugging facilities, integrated help, and many other
features that will aid you in producing high-quality Python code. The IDLE environment, which
was created specifically for Python, is a vast improvement over various other possibilities for
editing and running code, and it should be your first choice among tools to use.

Actually, you don't really need to use IDLE, unless you are so inclined. Python is all about

flexibility, so you can use other tools if they are more familiar to you. There are Python language
templates for the popular UNIX editor Emacs, and for many other common editors out there.
By using your favorite editor along with the Command Line interpreter/compiler, you can easily
edit and run Python scripts to your heart’s content without ever having to learn IDLE. If this is

CHAPTER 3} Tools

your choice, feel free to skip this section and read about some of the other features of the
language tools or simply move on to the next chapter and read about the language itself.

To begin the discussion, let's look at the IDLE environment. Figure 3.1 shows the IDLE editor
as it looks when you first load it from the main menu [Start -> All Programs -> Python 2.5 ->
IDLE (Python GUI)]. The IDLE application, by the way, on the Windows side is called
pythonw.exe, not to be confused with python.exe, which is the Command Line compiler.

Figure 3.1 Python Shell EIBX

The IDLE editor He EBdt shel Debug Opbons Windows Help
Pyrhon 2.5 (r25:51908, Sep 19 2006, N9:52:17) [WSC v.1310 32 hit (Tntel)] on win J
3z

Type "copyright™, "crecdit3s™ or "license(]"™ Ior more information.

R AN AR INEEEEEN NN ENRRRRAN R AR AR A A AR AR AR A A AAANAAATAATTTITEETE
Fersonal rirewvall software may Warn sbout the connecction IDLE
makes to 1ts subprocess using thils computer's incernal loopback
incerrtace. This connection 15 not visible on &ny external

incertace and no data 13 Sent To or recelved Ifrom the INTEernec.
B T T T R

IDLE 1.2

Before we talk about the functionality of the IDLE editor menus, it is important to note that
IDLE recognizes two “modes.” First, there is “immediate” mode. In this case, the interpreter
immediately executes a statement as soon as it is entered into the editor and the Enter key
pressed. For example:

x =1

56

3t 3l 35
B g %k

IDLE

followed by the Enter key will immediately create a variable called x in the interpreter memory
and assign that variable the value 1. Likewise, entering the statement print x and pressing
the Enter key will immediately display the value of x (in this case, 1) to the immediate window.

The other “mode” that IDLE recognizes is editing mode. In this case, you are using the IDLE
editor as a text editor, creating a set of commands that you want to run as a single application
script. Only when you are done and select Run from the Editor window will the interpreter be
invoked and the individual statements within the script executed. Immediate mode statements
disappear when you close down the editor; edit mode statements are normally saved to a file
at some point during the development and debugging process. Now let's take a look at the
functionality that is built into the IDLE editor.

Let's briefly look through the menu structure of the IDLE editor, so you can get a good handle
on where everything is, and know where to change things when you need to change them
during the editing and running of a Python script.

File Menu
The File menu consists of the following options.

New Window

The New Window option pops up a new editing window that you can use to create a new Python
script window. The IDLE editor allows you to open as many windows as memory permits on
your system. You can keep each module or file in a separate window, if that happens to be your
preference. We'll look at this option a bit later when we talk about creating Python files. Opening
a new window does not invoke a new copy of the interpreter, nor can you actually run a given
script module in one of these separate windows. They are solely for loading and editing text.
Think of them as small editors, and you will do fine.

Open

The Open command loads a module that you have written in the past, or one that someone
else has written, for editing or running. After a module has been loaded into the interpreter,
all of the functions, statements, and definitions within the modules are available to the inter-
preter (although not available to you in Immediate mode, as you shall see later). This allows
you to load a given Python module and run some functions within it to do testing, or just to
experiment with how things work, without making any changes in the “production” version of
the code. This is a powerful capability and one that is not really available in the compiled world.
Sometimes, interpreters are really better than compilers overall.

Recent Files

The recent files entry is really just a placeholder for a pop-up menu that contains a list of the

most recently used files that you have loaded into the editor or saved from the editor. You can
quickly and easily move between files that you have loaded by selecting them from the Recent

CHAPTER 3} Tools

Files menu. Note that the first time you bring up IDLE, this menu will be empty, since you will
not have worked on any files yet.

Files that are loaded from the Recent Files menu will be loaded into a new window, as per the
new window command. In fact, selecting something from the Recent Files list is the equivalent
of selecting a new window, followed by using the File menu on that new window to load an
existing file. Files loaded by the recent files menu are not automatically interpreted, so you will
have to issue the Run command on them to load the functions and data in them into memory
for use in the interpreter.

Open Module

We will look at modules a bit later in this chapter, but for now, just consider a module to be a
collection of functions and classes in Python. You can use the Open Module command to load
a module the same way that you use the Open command under the File menu to load a given
Python script file. The difference is that the Open file command allows you to browse for a given
file in a given place on your computer system. The Open Module command, on the other hand,
takes the name of a module and finds it somewhere within the search path defined in the IDLE
editor. The difference, really, is between browsing for something when you know where it is,
and searching for something when you know its name. The Open Module command launches
a single dialog, shown in Figure 3.2, which prompts you for the name of a module to load.

Figure 3.2 L :

The Open Module Entet the name of a Pyihon modulo
to search on sys.path and open:

dialog box.

You might be wondering what the “sys.path” is to which the dialog refers. We will examine that
in just a moment when we look at the path browser in the IDLE IDE.

Let's take a quick look at how a module load works in IDLE. In the dialog box, type in the name
pdb.py. This is the Python debugger module, which you'll learn about later in the chapter.
Here, you'll get your first look at a real Python file. Enter the name and press the OK button in
the dialog. You should then see a window showing the pdb.py module (see Figure 3.3).

The module loads and is ready for you to edit, run, or do whatever you want to do with it. Note
also that the window used to display a loaded file is different from the IDLE Immediate mode
window, and contains other commands, which you'll learn about in just a bit.

Class Browser
The Class Browser allows you to view the makeup of a given class within the Python environ-
ment. In general, using the class browser from the main IDLE window is pointless, since the

|DLE

pdb._py - C:3PythonZ5ilibipdb. py Figure 3.3
Fie EdiL Formal Run Opliors Windows Hep
{‘:' fusr/bin/env pychon The Python debugger

[

module loaded into IDLE.

——
t linecache
Locmd

t opprint
© tracebsck
e a custom oafe Repr inatance and increcase ita maxatring.

H The defasli of 30 Lruncates error messages Lon emssily.
_repr = Repr(]

repe.maxatring = 200

Tsmferepr = _reprorepr

—all__ = [’

ef find function(funcname, filename):
cre = re.compile(r'dsr s=2[(]' % Lfuncneme)

fp = openifilencwe)
© ICError:
Hone

vonsumer of Lhis info expecis Lhe firs line Lo be 1
lineno = 1
anawer — HNonc
Wil 12

Lline = fp.readlinei)

£ ling == |1;

1 cre.matchiline):
answer = funcname, filename, lineno

modules are generally loaded into separate windows. The same command, however, exists on
open file windows. Looking at the Python debugger module that was loaded in the last example,
you can look at the File | Class Browser result in that window. Move over to the pdb.py window
and select File | Class Browser. You should see a pop-up window appear that looks just like the
one displayed in Figure 3.4.

Class Browser - pdb X |4 _ bad Figure 3.4
xh } 7
h—é‘ ol il The Class Browser
-] class Piblbdb.Bdb, emd Ld] .
@ i) - displayed for the Python
rlef e
ﬁ d.,.ﬁ:?.f]] debugger module.
0 det uncall...|
@y def set_tiacel)
R, def post_maotem...)
4 et pr..)
— @y def testl...|
—@y del bkl)
4, def man..)

59

e
B wk

CHAPTER 3} Tools

As you can see, the Class Browser lists all sorts of interesting things about the module. Any
classes that are encountered when loading the module are displayed. In this case, there is only
asingle class, the Pdb class. You will notice that there is a little expansion box to the left of the
class name. Clicking that box will expand the class definition and show you all of the methods
within the class. In addition, outside of the class definition will be a list of functions that were
found at a global scope within the module. At the top of the Class Browser window, for example,
you will see a definition for a function called find_function. Don't worry about understand-
ing how functions work in Python quite yet, as we will get into amuch more complete discussion
of creating and using functions in Chapter 7.

One last note on the Class Browser: One of the nicest features of the Class Browser is its ability
to go directly to the source line in the actual module file from the definition of the function.
In the Class Browser, simply double-click the function name that you want to inspect. Figure 3.5
shows a good example of this. In this case, I've selected the “reset” function in the Class Browser
and double-clicked it. This brought up the pdb.py file in a window (I had closed it to illustrate
the point) and moved the cursor directly to the line that defines the function reset within that
file. This can be a very handy way to navigate the source code in a module, or to pick up where
you left off in your last editing session.

Figure 35 pdb. py - C:A\Python25\ib\pdb. py »
Fie Edt Format Run Cptions Windows Help

The Class Browser used
for navigation.

SmpTY

b =

alobals_ nae
locals_ = globals_

H us 1 for ast .
aelf._walt Tor_mainpyrile = 1
aelf . mainpyfile = self. canonic(filename)
aelf. user requested guit = 0
statement = f " g

% £ilename
self.run{atatement, globals=globala , localaslacals)

t, globals=None, locals=None):
n{statemem L =)

cuneval [expression,
Pdb () .cuneval (expre

runcey (scacemsnt, chals, locals):
B/V compatibil:
run(scacems:

« locals)

runcall (“acgs, "'kwvds):
Pdb () .runcall (*args, *tkvds)

act_trace():
Pdb (] .0et_trace (3ys._getframe () .2 _back)

|

p.resec() -

[Lre 1122Cat 1)

IDLE

Oh, one last note that isn't important right now but may be to you in the future. The Class
Browser, like the rest of Python, works by interpreting the source. That means that it does its
very best to parse a given source module and extract all of the functions and classes within that
module. The really nice side-effect of all of this is that a class need not be complete, nor compile
properly, to load it into the Class Browser. So you can easily use the Class Browser on your work
in progress. This is a nice feature that I think you will learn to appreciate as you go along.

Path Browser

Ah yes, the joys of paths. The Python system uses the sys.path value to determine the roots
from which to load all modules and search for things. For example, in the Open Module menu
selection, the sys.path path is used to define the directories on the local system and any
network paths to use to find things. Now, you might wonder where this information comes
from. There is no setting in the IDLE application to define the system path, but the Path Browser
is something else entirely. So before we get to the Path Browser, let’s take a quick look at the
sys .path variable and determine where it is set and how.

In the Windows environment, and specifically for Python 2.5 installations, there is a registry
key that is used to determine the path that will be used for the installation. You will find this
key in the registry at the following location: HKEY_LOCAL_MACHINE\SOFTWARE\Python\
PythonCore\2.5\PythonPath

In addition, you will find the installation path there, as well as the documentation paths and
the modules loaded into the system at startup. It is not generally a good idea to modify these
values, because most of them can be modified outside of the registry as well.

Forthe specific example of the sys . path variable, you can set an environment variable in your
system to modify the path that the IDLE editor (and Python interpreter) uses to search for
modules. The environment variable is called PyTHON_PATH and is expected to contain a list of
directory paths, separated by a semi-colon. You can place this environment variable in either
the system environment or your local user environment, and the IDLE environment will find
it properly. Note that changing this variable requires you to restart the IDLE environment in
order to reload it.

Finally, you may change the path through a . pth file placed in the Python directory. A .pth
file contains a list of subdirectories from the directory it is stored in that are to be used to search
for modules. For example, imagine that you have your Python directory at c¢: \Python25 for
Python 2.5. Within that directory, you have a directory called MmySource in which you want to
add the files that you create to the general search path. Let's look at how you would go about
doing that right now.

First, create the directory MySource in the c: \Python25 (or wherever you installed Python
on your system) directory. Next, bring up the Path Browser. You should see something like the
display shown in Figure 3.6. Note that the Mysource directory is not displayed in the list.

CHAPTER 3} Tools

Figure 3.6 Path Browser

C s palh
The initial Path Browser B0 CRpthendS\Libideib
. (0 CAWINDUWS \system 3 prthonis.ap
display. [1 CAPython25\DLLs
BT CvPyehonShin
T CAPython2S\ibhplatwin
: _:J L:\PythonZbhlib\lib te
00 21 CAPython2S
B C\PithonZS\bsite-packages

o

Now, we are going to create a new file in the main directory (c: \Python25, or the directory
in which you installed the system). Using your favorite text editor, or even IDLE itself, create a
new file and call it MySource.pth (for path file). Place the following lines into the file:

Add MySource to the main path

MySource

Save the file and close it. Make sure that you close down the IDLE environment; then restart it.
Re-enter the Path Browser dialog, and you will see that the Mysource directory has now been
added to the list of searchable paths. You can repeat this for any number of paths you want, by
simply adding the lines to the . pth file, or by creating a new .pth file in the main directory.

-l Warning About Invalid Paths!

If you add a name that does not exist, or is not a directory, IDLE will not
add it to the search path, nor will it tell you about it. Always verify that
your search path has been updated when you make a change to the main search

path or you will get unexpected results.

The Path Browser Dialog

Now that you understand what path is being browsed, it is worth mentioning that the Path
Browser dialog itself is used to show you all of the files that are located along the various
branches of the search path. You can select any given directory in the search path and view the
Python (. py) files that are located along that directory path.

Save

The Save saves a file that has been previously opened or created within the environment. Se-
lecting the Save menu selection on a newly created script file will prompt the user for a name
for the file, as well as a directory in which it should be stored. If the file has already been saved

62

sl ssls 5l

IDLE

and has been loaded into the IDLE environment, selecting the Save option will save it back to
the same file name, overwriting the existing file.

Note that there are three file types that are supported by the IDLE environment:

TXT files (. txt) are simple text files. Anything can be saved as a text file and will be
assumed to be plain text. IDLE will attempt to look for Python code stored within a TXT
file just as it does with any other sort of file.

PY files (. py) are considered to be Python source code files. The .py extension is the
default extension for Python and is the extension you will normally see on the Internet.

PYW files (.pyw) are Python Microsoft Windows files. Normally, there is no difference
between a .py file and . pyw file. However, if you are using functionality for which Win-
dows extensions are somehow needed, you should use the . pyw extension rather than
the . py extension to indicate to other people that this file will only work on a given
operating systems. Needless to say, it is considered rude and poor form to create a Python
script that only runs on a given operating system.

td File Naming Tip

If you do not name your files correctly, the IDLE editor will not do syntax
highlighting for that file.

Save As

The Save As functionality is the same as the Save functionality, except that it will change the
name of the output file. The original file that was loaded into the environment will not be
affected by a Save As, whether the file name or the file extension has been modified, unless you
save it to the same name. It is okay to save a file as the same name as another file that already
exists; however, you will be prompted that the file already exists.

Save Copy As

The Save Copy As functionality is exactly the same as the Save As functionality with one no-
ticeable difference. When you use the Save As functionality, not only is the file saved by the
new name, but also the copy that is maintained in memory is renamed to that new name. That
is, when you do a Save As to the name test1 . py, work on the file for a bit, and click Save, then
the test1.py file will be updated on disk. With the Save Copy As functionality, when you save
the test.py file as test1.py and then modify the file, the next time you click Save, it will
be saved to disk as test .py rather than test1.py. This is rarely worth mentioning, but can
lead to confusing results for you if you selected the wrong one and then went back later to work
on it.

CHAPTER 3} Tools

Print Window

The Print Window functionality seems simple, doesn't it? You click the main window, click Print
Window, and the results of the window are printed. Sigh. Unfortunately, it isn't that simple.
Python lacks the capability to actually print to a Windows printer. As a result, the system
launches the standard text editing program, Notepad for Windows, loads the text into it, and
then invokes the Print command from Notepad to print it. You might think that there is no
difference here, but there is. For one thing, Notepad assumes that there is a default printer
installed. If your system does not have such a default printer, or if the default printer is not
enabled or running, your print job will not show up on the printer. Worse, you will get a very
odd message about the RPC server not running instead of a printer error. Should you happen
to see this message, you will now know what is going on.

If a default printer is installed, or you are running on a non-Windows platform, the contents
of the current window will be sent to the printer as plain text, in the default font and color
displayed.

Close
The Close button will close the window for which it is used. If the Close button is used on the
main window, the behavior is the same as selecting Exit.

Exit

The Exit button will close all open Python IDLE windows and exit the application. IDLE does
not prompt you to save your work, so if you do not want to lose anything that is in the current
edit buffer, you will need to save it before selecting exit or close.

Edit Menu

The Edit menu on IDLE consists of the following options:

Undo and Redo

Undo and Redo are fairly well understood terms in the computer world. If you make a mistake,
you can click the Undo button to revert the current document to its previous state. In IDLE,
Undo and Redo only work within the context of the current statement. That is, once you com-
plete a Python statement, the Undo functionality is lost. So, if you are typing on a line and enter
print x and click the Undo menu selection, it will remove the last thing you typed, which is
“x." Clicking it again will remove the space. Clicking it a third time will remove the word “print.”
Undo isn't necessarily as intuitive as you might imagine.

Likewise, Redo does exactly what Undo does, but in the opposite order. If you type print x
without pressing Return, and then click Undo three times, you will end up with a blank line. If
you click Redo three times, you will end up with “print x” back on the line again. Anywhere in
between, of course, will result in some partial amount of the “print x” line.

|DLE

Unfortunately, IDLE does not gray out menu options when they do not apply, so even if you
have a blank line and have done nothing with it, you will still see the Undo and Redo menu
options available.

Cut, Copy, and Paste

The cut, copy, and paste actions work on the current line in the editor. For cut and copy, the
currently selected item or items will be copied or removed from the edit buffer into the paste
buffer. For the paste command, whatever is in the current paste buffer will be placed into the
edit buffer at the current cursor location. Note that IDLE does not really pay much attention
to whether or not pasting a given block at the current location makes any sense, so if you copy
out of another document and paste into the IDLE environment you may get what you want
and you may get total garbage followed by error messages. It is best to use these as simply and
in as straightforward a manner as possible.

One difference between the “standard” Windows copy and cut functionality and that imple-
mented in IDLE is the case where nothing is selected. In this case, most Windows applications
assume that if you have selected nothing, then you want to copy (or cut) the entire line. How-
ever, IDLE assumes that you want to copy (or cut) nothing. If you select a block of text and copy
(or cut) it, then select another block of text and select paste, the copied text will overwrite the
highlighted text.

IDLE considers text that is cut, copied, or pasted to be part of the current line buffer, and unless
that text contains an embedded carriage return character, it will not immediately interpret the
line when in “immediate” mode. In editing mode, the text will always be pasted in and treated
simply as text.

Select All

The Select All menu item simply selects, and therefore highlights, all of the text that is displayed
in the window, whether or not it is currently visible to the user. That is, the entire edit buffer
is selected. This can be useful for copying text to another window, or for saving it into a file
that exists in another editor, or for clearing the entire window by selecting it all and deleting
it. There are no real surprises in the Select All command.

Find, Find Next, Find Selection, Find in Files, Replace

The various find and replace options in IDLE work pretty much the way you would expect them
to. In Immediate mode, the Find, Find Next, and Find Selection commands work on the entire
edit buffer, allowing you to search not only the text of your script, but the system display and
error messages. In Edit mode, the Find functions work in the file that is displayed and allow
you to search and find any piece of text from the current location either upward or downward
in the current file. The Find functionality uses the (ill-named) dialog shown in Figure 3.7.

As you can see from the Find dialog, you have various options within the function. The Regular
Expression check box allows you to use regular expressions within the string in order to match

CHAPTER 3} Tools

Figure 3.7 Search Dialog g@|@|
: Find ’\'
The Search dialog. e

Options [~ Meoguler sxpression | Matchcase [‘whols word ¥ ‘Wiep around

Direction: © Up & Down

wildcards, single words, various permutations of strings, and so on. The options available when
using regular expressions are, not surprisingly, the same as those exposed by the Regular Ex-
pression package for Python, which we will be discussing in Chapter 11. The Match Case check
box allows you to force the search to be exactly the same as the string you type in. That is, if
you enter the string "hello" and you do not check this box, then the search will match the
following strings:

"Hello"
"hEllo"
"HELLO"
"hello"

Naturally, all other variants will match as well, with any of the characters being in upper- or
lowercase. On the other hand, if you check this option, the string "he110" will only match that
exact string in the text, so all other variants will be ignored.

The whole word option indicates whether the string that is checked can be a part of a bigger
string or not. So, if the check box is not selected, then hel1o will match hellothere, as well
as shellop. If the check box is selected, then the string must exist as a separate delimited
string. A delimited string may be delimited by the start of the line, the end of the line, or by a
non-letter character, such as a space or a period.

The Wrap option indicates whether the search should wrap around to the beginning of the file
or buffer if the string is not found from the current location. If your cursor is in the middle of
the file, for example, and you tell it not to wrap, then the search will progress from the character
position of the cursor to the bottom of the file and stop. If the Wrap option is selected, and the
string is not found by the bottom of the file, then the search will pick up at the top of the file
and progress to the cursor location.

The Up or Down radio buttons indicate whether the search should progress from the cursor
location to the bottom of the file (down) or from the cursor location to the top of the file (up).

Finally, since the Find dialog can be displayed and used at any time, the Close button is included
to make it go away. The Find dialog is modal, meaning that while it is displayed, you can’t do
anything else. The Find Next command can be used to repeat the search using the same argu-
ments as the previous search, but moving the starting location to the current cursor location.

66

sl ssls 5l

IDLE

Find Selection works just like Find, but it uses the currently highlighted text as the target of
the search. Basically, you can select a block of text (or double-click a word to select it) and then
select Find Selection to find the next occurrence of the text in the buffer.

The Find in Files function can be amazingly useful when you are trying to figure out where
a given string, or function, exists somewhere in your source tree. By using the dialog shown
in Figure 3.8, you can search an entire raft of files for a given string, rather than the current
edit buffer.

Find in Files Dialog \ Figure 3.8
chuse The Find in Files dialog.

Infiles: [~py Search Files

Options [~ Hegular expression [Matchcase [Whale word
[V Recuse down subdiectnies

The options for this dialog are exactly the same as the Find dialog, with three noticeable
differences. First, the Wrap option is gone, since it makes no sense to consider your current
cursor position when searching other files. Secondly, the File Mask is now added to the dialog,
allowing you to specify what file names you want to search for. Wildcards are supported in the
File Mask, so you can ask to search all Python (* . py) source files. The default mask is *.py. In
addition, you can specify whether to search the current directory, or the current directory and
all directories below that.

Ed Changing Your Current Directory

The "current directory" for IDLE is always the installed directory for the
pythonw.exe application. If you want to search other directories, just enter
the directory as part of the file name in the File Mask box, such as

c:\MyFiles*.py.

Finally, the Replace command looks just like the Find dialog, but allows you to specify a string
to replace the found text with. In addition, you can find the string, replace the string, or replace
all occurrences of the string using the Replace command.

Go to Line

As the command suggests, the Go to Line menu option allows you to move to a specific line
number within the Editor window. When you select this menu option a small dialog pops up
asking what line number you want to move the cursor to. Enter a numeric value and press the
OK button, and the Editor will scroll itself up or down, if necessary, to move to the line number
that you have entered.

67

3k sk 3k

CHAPTER 3} Tools

Being a programmer, you are going to try something dumb here, such as entering a non-numeric
value or a negative value into the dialog box. Don't bother, because the writers of IDLE were
smarter than that. If the value entered is out of range, it will just beep at you and ignore you.
If you try a non-numeric value, you will see an error message telling you to enter only numeric
values. Sorry.

Show Call Tips

This rather odd sounding function gives you some very useful functionality in the IDLE editor.
If you are working with a function that IDLE is aware of, such as one that has been loaded into
the editor from an outside source, or one that you defined in the current module you are
working on, you can enable Call Tips for the module. A call tip is a little pop-up window that
shows you information without getting in the way. For example, take a look at Figure 3.9.

Figure 3.9 *Python Shell* EEX

. . : File Ecil Shel Debuy Oplic Windows Hel
A Call Tip window display kbt Sk carr S e il 1R
Python 2.5 (r25:51908, Sep 10 2006, 09:52:17) [MSC v.1310 32 bit (Intel)] on win |

in IDLE. 32

Type "copyright”, "credits" or "license()" for more information.

R IR R E R E IR A AR AT R IR I RN IR IR AN A RE R AR R AEAERENANAARATTRTRT
Personal firewall software may warn sbout the connection IDLE
makes To 1T® subprocess using this compurer's internal loophack
inrertace. This conmecninn 18 non visihle on any exTernal
intertace and nn dara 18 S#nt ©o or received Trom The TNTErNeT.
B P T

IDLE 1.Z
»¥> string.replace (|
(2, old, new, maxsplic=-1)
replace (arr, nld, nPu[, mawvaplint]) - Acring

=)
Ln: 12{Let 19

As you can see from the display in Figure 3.9, a small window opens up indicating what infor-
mation the system expects to see for the string.replace function in Python. This can be
really useful when you can’t quite remember the number or order of arguments that are
supposed to be used for a given function. Unlike some of the newer IDE systems, IDLE does not
allow you to enter things by default for functions using the Call Tip window. That doesn't really
make the functionality any less useful, however.

Show Completions
One of the new features for the IDLE Python 2.5 editor is the addition of completion showing
in the editor. When you enable completion showing (it is off by default), the editor will pop up

|DLE

alittle list box that allows you to view the possible endings for the string you have started typing
in. Not only does this work with functions that are built into classes, but it also works on ordinary
typing within the editor itself. For example, let's look at Figure 3.10, which shows a good
example of how this works.

Python Shell |Z|@|g] Figure 3.10

Fie Edit Shd Debug) 5 Windows = . . .
9, Oplors doye Hep Edit completion in Python.

Python 2.5 (riS5:51908, Sep 19 2006, 09:52:17) ([HSC v.1310 32 bit (Intel)] om wvin J
3z
TYpe "eopyrightT™, "orsdiBa™ ar "licenas(}" Por more information.

...........
tion IDLE
al loopback
on is not visible on any external

sent to or received from the Internec.
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

=t

|Lr 130Ce 11

If you are accustomed to working in some of the more popular commercial development sys-
tems, you've probably seen this functionality before. It allows you, the programmer, to think
less about how things are spelled and what exact wording was used for a given feature or
keyword, and more about writing your code to accomplish whatever task you have at hand.
This feature alone would make IDLE worth buying, if anyone were actually charging for the
editor. That you get the feature and the editor for free just indicates what an incredible bargain
Python is to developers.

To use the function to insert keywords or function names into your source code, simply use the
up and down arrow keys to select the word you want and press the Enter key. The pop-up list
will disappear, and the word will be inserted at the current cursor position in the editor.

Show Surrounding Parens

This is also a new feature in IDLE 2.5, and a very nice one. The Show Surrounding Parens
function will allow you to type in an expression such as x = 1 + ((2*3)+4) and see which sets
of parentheses match up on the line. When you enable this feature, the editor will automatically
highlight both of the parentheses when you type a closing parenthesis. When you are working
with a complex expression with a lot of parentheses, this can be a real lifesaver. You no longer
have to sit there and count the number of closing parentheses to see whether or not you have
the right number of them for an expression. By watching which of the opening parentheses
the closing one matches up with, you know how many you need to still add. For those of us
who once worked in languages such as Lisp, this feature alone makes everything else worth the
experience.

CHAPTER 3} Tools

As a simple example of the matching parenthesis function, try the following. First, type in an
expression like this:

x =1+ (2%(3+4) + (4*5) + 6 * ((1+2) *(1+2))

Now press the Enter key. You will notice that the editor continues to indent the statement,
rather than executing it in Immediate mode. Why is that? Because we do not have the right
number of matching opening and closing parentheses.

Now, try it again, but leave the setting for Show Surrounding Parens on. When you type the
last parenthesis in the above expression, you will see it matched up with the second one on the
line. This tells you that you need to enter one more parenthesis to make it all work. Enter that
one, and you will see it match up with the first one on the expression line. Now, you can press
the Enter key and see that the value of x has been set in the interpreter.

I think that once you play with this one a bit, you will agree that it is an amazingly useful
function.

Expand Word

The Expand Word function is a form of auto-completion that a lot of Command Line shells have
these days. For example, you might want to copy one file named “fred.txt” to another one called
“fred.new.” The Command Line shell can auto-complete the name of the first file, since it exists,
saving you some typing time and some backspacing, at least if you type like I do.

To see the Expand Word function at work, try this: go into the IDLE environment and type
str. Now enter the auto-complete command, ALT-/. You will see the environment automatically
fills in the string to read “string,” since that is the best match it can find for the letters you
typed.

What if there is more than one possible match for what you typed? Pressing the Alt-/ keyboard
combination multiple times will slowly go through the entire list of possible matches for that
string selection. When you find the one you want, just keep typing and the match will be placed
into the edit buffer.

Shell Menu

The Shell menu consists of only two options, but both are rather useful.

View Last Restart

This command will scroll the Shell window to the position of the last user restart. If there has
been no restart of the Shell, the cursor position will not change. This can be useful for when
you want to know exactly what variables you have set, and what conditions have been created
within a given session. Each time the Shell is restarted, a message is displayed in the window
indicating that a user restart has occurred. Note that the first time you start up the Shell, this
is a non-user restart and does not count in the display.

IDLE

Restart Shell

Restarting the Shell deletes all variables, clears out all function definitions, and unloads all
modules that are not automatically loaded at runtime. In addition, all memory is cleared, all
breakpoints are reset, and all data in the Edit window is erased. Restarting the Shell can be very
useful for a number of reasons, including not being sure what variables have been set or what
functions have been modified. Restarting the Shell is much akin to shutting down the Python
IDLE editor and then starting it again, without having to go through the pain of having to
stop and start the process. In slow environments, or those with limited memory, this can be a
slow and painful process, and a restart is much easier.

For the programmer, another important consideration when you are debugging a system is to
restart the system to be sure that the interpreter is in a “clean” state before running your
program. This can help you identify problems that are being caused because you have been
mucking about in the interpreter in Immediate mode and then running a program that relies
on certain interpreter settings. If you run the program a second time and don't see the same
behavior, it is likely that you simply left some stray garbage running around in memory and
needed to clear it out. It could also be an indication that your application is relying on things
you were unaware of set in the interpreter. Either is a matter for some concern and should
cause you to at least scan the offending code.

Debug Menu

The next menu on the IDLE 2.5 system Interpreter window is the Debug menu. This menu
consists of commands related to the running, debugging, and maintaining of existing code.
The available commands on the menu are the following.

Go to File/Line

This option would appear to be the same as the Edit menu version of Go to Line. It is quite
different however, as you will see. First, with the IDLE editor open in Immediate mode, and no
modules listed, select the menu item. You will see an error message displayed that says:

The line you point at doesn't appear to be a valid file name followed
by a line number.

Well, that was clear as mud, wasn't it? Actually, what the error is telling you is absolutely true.
You may rememberawhile back we looked at the Find in Files command. This command, among
others, generates alist of files and line numbers upon which a given statement or string is found.
Another good place to find such things is in the error statement from the interpreter when an
invalid token is encountered during the parsing of the interpreted lines of a function or class.

Let's go back and re-run the Find in Files command and search for the string “copyright” in all
Python (*.py) files in the current directory and all subdirectories below it.

CHAPTER 3} Tools

After you run the command, a window will appear that looks a lot like the one shown in
Figure 3.11. Notice that it is a list of files, along with the line number in the file, and then the
string that the search indicated contained the word copyright. 0Oddly enough, you will also
notice that the Find in Files window does not contain any Debug command, nor is there a Go
to File/Line command under any of the windows in that window. Seems rather silly, doesn't
it? The format shown here, with the file name followed by the line number, is the same format
that is expected by the Go to File/Line command. All is not lost, however, since you can simply
copy the lines you are interested in, in the Output window, and paste them into the IDLE editor
window; then use the command on the line to view the file that the search found.

Figure 3.11 *Outputt CBEX

. . . File Tdt Format Rin Opfiors Windows |Help
The Find in Files output. : . — :
Lib\sglited\test\hooks.py: 4: # Copyright (C) 2006 Gerhard Haring <ghfghacring.d |

Lithsglice3) esth regression. py: 4 # Copyr ight (0) 2006 Gerhard Har ing <gh@ghaes
Libisqlicte3test\transaccions.py: 4: § Copyrighc (C) 2005 Gerhard Haring <ghfgha
Lib\ysqlitedltest\types.py: 4: § Copyright (C) 2005 Gerhard Haring <ghfghaering.d
Libhagliced) oot uscrfunctiono.py: 5: # Copyright (C) 2005 Gerhoard Haring <ghfiah
Lib\sre_compile.py: G: # Copyright (c] 1997-2001 by JSecret Labs AD. All rights
[.ill\Hrr-:clln.-cl.mll.:(.py: 7: # Copyright (i) 1998-2001 by Feceel Labs AR, A1 right

Libi=re constante.py: 235: ¢ Copyright (o) 1997-2001 by Secret Labs AB. A1l ri
Lib\sre_parse.py: 6: § Copyright [c) 19¥E8-ZUUL by Secret Labs AE. ALl rights re
Likb\ subprocess.py: 7: # Copyright (c) 2003-2005 by Peter Astrand <astrandflysato
Libhtarfile.py: &: § Copyright. (€} 2002 Lars Gustébel <lars=fgustasbe] des
Lib\tarfile.py: 18: # The above copyright norice and this permigsion notice sh
Lib\tartile.py: 24: § NONINFHINGEMENT. IN NO EVENT SHALL THE AUTHURS OR CO
Lik\teothteot_acpack.py: 1: # Copyright (€] 2003 Python Softwarc Foundation
Lib\test\test_applesingle.py: 1: # Copyright (€] 2003 Python Software Foundation
it Lest) et _charmapeodec . py: &2 (3) Copyr ight. 2000 Guido ven Rossum.
Ll.b\test\test_csu.pv: 2: # Copyright () 2001,2002 Python Sortware Foundation
LibYtest\test_decimal.py: 1: ff Copyright (o) ZUUS Python Software Foundation.
Libhtestitest_ewail.py: 1: # Copyright (C) 20012002 Python Software Foundation
LAt Lest) Lot emmi]l codecs.py: 1: § Copyr ight (€} 2002 Pybhon Suftusee Foundabin
Lib\test\test emsil renamed.py: L: # Copyright () 2001-2006 Pychon Software Fou
LibYtest)test_gettext.py: 3e4: f Copyraight (C) ZUULl Python Software Foundation
Libhteothteot_gettext.py: 124: # Copyright (C) 2001 Python Softwarc Foundation
Lib\testhtest_hashlib.py: 5: # Copyright (C) 2005 Gregory P. Omith (greglelec
Lib Lest) est logging.py: 3: 8 Copyright 2001-2004 by Vinay Sajip. A11 Rights Re
L.l.h\test\:est_l.agg:lng.py: 7: # provided that the above copyright notice appear 1
Lib\test\test_logyging.py: H: # both that copyright notice and this permission no
Lib\testitest_logging.py: 24: Copyright (C) Z2001-ZD0Z Vinay Jajip. All Rights Re
Libh Lest) st mensf=.py: 1@ § Copyr ight. (C) 2003 Python Softusre Foumdation
L.Lb\test\:est_mcostoul.s.py: 1: @ Copyright (C) 2003 Pychon Sofcrware Foundation
LibYtest)test_pepi¥i,.py: 1: ff Copyright (L) 2UU4 Python Software Foundation
LibYteothteot_pliotlib.py: 1: # Copvright (C) 2003 Python Softwarc Foundation
Lib\test\test_scriptpackages.py: 1: # Copyright (C) 2007 Python Joftware Foundat

Libhtest\Lest shutil.py: 1: # Copyright. (€} 2003 PyLhon Software Foumdation
L.Lb\test\l:est_sxce.py: 104: def test sSetcing copyright (self):
LibYtest)test_site.py: 1Y95: ff 'copyright' and 'credits' should be in _ b
Lib\testitest_site.py: 19G: self.faillnless (hasater [__builtin__, "copyri
Libh Lest) Lest_sy=.py: 329: we e L (i nstance (sys . copyr (ghL, basest

Lib\test\test ucn.py: 6: (o) Copyright CNRI, All Rights Reserved. NO WARRANTY.

Lr: 2|dcot 0

See? Python isn't perfect, but it certainly provides ways around problems when you encounter
them. This is the hallmark of a great system.

Debugger

Virtually all good development environments contain a debugger of some sort that will aid the
developer in tracking down problems in his or her source code when it is running. Often, probl-
emsoccur only while the program is running, and in away that can’t be found by simply printing

72

3t 3l 35
Bk Bk vk

|DLE

things out as you go along. We will spend more time discussing the debugger in just a bit, but
for now, you can see what sort of tools you have available to you in the debugger. Figure 3.12
shows you the Debug Control window and shows you the various options available in it.

Debug Control - _ L3 El@"gl Figure 3-] 2
1 | ¥ Stack Souren
L L] L T Py oo The Debug Control
window.
[Hane|
)
Locals

Norm &)

The debugger offers the usual assortment of commands that all good debuggers offer: the ability
to set breakpoints, the ability to single step through code, the ability to step into and out of
functions, and the ability to restart the application by quitting the debugger. In addition, you
can look at variable values and view global values within your application.

For those of you who have used, or at least tried, Python in the past, the debugger has always
been available and was called the pdb module.The current release, Python 2.5, now integrates
the debugger into the IDLE environment where it belongs.

Stack Viewer

Without a doubt, the most annoying thing there is for a programmer is when the program just
dies without any real indication of why. In Python, exception handling is a built-in part of the
language, so it is natural for programmers to throw exceptions when error conditions occur.
Unfortunately, if the programmer before you didn’t catch the exception properly, the program
has an annoying tendency to simply abort and drop you back into the IDLE editor. This isn't
exactly a useful thing. Yes, the editor will tell you what the exception was, and possibly where
it occurred, but that information is usually not terribly useful without knowing how you got
to the point of the exception.

The Stack Viewer option will display a stack trace indicating how you got to the point of the
last exception. This can be more useful than I can really explain to you if you've never tried to
backtrack through an application. We will certainly make use of this viewer later in the book
as we explore exceptions and exception handling.

Auto-Open Stack Viewer
The Auto-open Stack Viewer menu option is a toggle indicating whether or not to automatically
open the Stack Viewer when an exception occurs. You would think this would be the sort of

73

e

CHAPTER 3} Tools

thing that you could set once and forget about, but unfortunately, it isn't. Every time you shut
down IDLE, the editor will “forget” the setting you used for this option. So, each time you bring
up IDLE, remember to turn this on—it really should have defaulted itself to on. This one is too
good a piece of functionality not to use it, and remembering afterward forces you to go through
a lot more work than you need to in order to figure out where something went wrong.

Like most editors, the IDLE editor permits you to configure virtually anything for the way in

which you add, modify, or display code. The configurable items are all found under the Options
menu item.

Configure IDLE

The IDLE environment is extremely configurable. It provides ways to change virtually all of the
key bindings, colors, and behaviors of the system. This is done within the configuration dialog.
When you select the Configure IDLE option in the menu, you will be presented with the fol-
lowing dialog and the following tab on that dialog, as shown in Figure 3.13.

Figure 3.13 . Python Shell
IDLE Conﬁguratlon_ Python 2.5 (£25:51908, Sep 19 2006, 08:52:17) (MSC v.1310 32 bit (Intel)] on win |
az
FOHtS/TabS tab TYpe "copyright™, "credita™ or "license()" for more information.
..........
Personal f
makes to i : - =
incartace. _Innlx.frnluIHm Keys | Genesal
interface
........ Set Daze Edlon Fonl Puthon Standand: 4 Spaces
IDLE 1.2 Fort: Imml.l‘.-emwnh
L %_:Il CEE |
(DEBUG ON] Courier Mew Bakie 2 4 6 BIM2146
E Y Cowner New CE
[LEBUG OFF) Courier New CiR =
Sew: 10 —-| ™ Bok
haBbCeldEe
FLGgHRI1JIK
1234567890
Haa=() (3 0])
lk_] Apply| Cancel uspi

Lo 17Ca 4]

The font part of the tab is fairly straightforward: you can select the font that you want the text
displayed in for the code in the editor. In general, fixed fonts work the best, since you can easily
line up code in columns, but your preferences may vary from mine.

74

sl ssls 5l
B ¥

|DLE

The Tab setting is probably one of the most religious items on the screen. This setting, set by a
slider control that we will discuss when we work on the Tk GUI elements of Python, allows you
to set the number of spaces used for a tab character. This is important, because the tab character
is the way in which you normally indent code in Python. As discussed in Chapter 2, indentation
is a major part of the Python language, and you should be comfortable with the way in which
the code is displayed. If you set the Tab setting too high, you will have lines that wrap around
to the next line, which are very hard to read. If you set the tab setting set too low, it is very
difficult to tell when code is indented, especially with a proportional font. The Default setting
for the tab value in IDLE is 4, and it seems to work well under most circumstances. If you don't
like it, you can change it, and if the changes don't work out, you can always change it back, so
feel free to experiment with the settings until you find something that works well for you. For
this book, we will be using the Default setting of four spaces to a tab.

The second tab on the configuration screen is the Highlighting tab. This tab, shown in

Figure 3.14, allows you to specify the colors that are used for displaying various kinds of high-
lighted text in the editor. IDLE uses the concept of “themes” so that you can save a set of
preferences, and then use them depending on what you feel like or what your environment
looks like. I prefer different settings at home and at work, because of the lighting available in
the different locations.

Figure 3.14

3

liet

(Nene)

Type "copyright”, "cradita® or "license(}"” for more information.
......... . "
Personal :jad [?]
makes to § 5)
inceceace | | Foie/Teby | Highlohting [} Keve | General
interrace
.......... Tt e =

IDLE 1.2 ot

> SEEANY. '+ Budtan Theme

[DEBUG ©H] Nomal Test i e

[DERUG. OFF) * Foground Backgiound IDLE Classic _-J

m cursor |
shell stdout stdert
Save asNewCustom Theme |
O] sosl| Comel] oo

Python 2.5 (£25:51908, Sep 1o 2006, 09:52:17) [MSC v.1310 32 bit (Intel)] on win -
2

IDLE configuration
Highlighting tab

75

ol b sl
B dk

CHAPTER 3} Tools

You will notice, if you play with the drop-down box on the screen, that you can set the colors
for a wide variety of elements in the system. For example, if you want to show keywords in the
system in a bold red color, it is quite easy to do. Simply select the “Python keywords” from the
first drop-down box (the one that says “Choose Color for:"), oryou can simply click on the section
you want to change within the display box. The drop-down box will automatically change to
reflect your selection. To actually change the color, just click the Choose Color for: button, and
a color dialog will display. Pick the color you want and apply it and the keywords will then be
displayed in that color in the editor.

Once you have set the various colors to be the way you want them, the next thing you get to
play with is the keyboard bindings for the editor. Keyboard bindings match up a set of key
combinations to a command in the editor. The editor is quite flexible, so if you want to model
it after a favorite editor of yours, it is usually possible.

You can see the tab in Figure 3.15. The left-hand side is a list of possible key bindings, or
commands, that you can modify along with their current keyboard combinations.

Figure 3.15
IDLE configuration—Keys

.. Pythen Shell

Python 2.5 (c25:51908, Sep 18 2006, 09:52:17) [MSC v.1310 32 bit (Imcel)] on win |
t b az
a Type "copyright”™, "credita™ or "licenac()"™ for more information.

nnnnnnnnnn .
Personal f idle [-x_wl
makea to 1
intertace.
interface

--------- Set Custom Key Bindings Select aKey Set

Fonts/Tabs | Hiphlighting | Keys || Genersl

IDLE 1.2 Htion - Feyls) Select

hegrnngrotine - ¢K.eptiomes - o ;
S— cwrtmvirment + <CorhioHapds (Controh £ aBikin Ky Sot
(DEBUG ON) change-indentwickh - <AREepus <Mal (8
i check module - CAILEey =)
TR lase-allwindows - <ControbKay-q
(DEBUG OFF) clove-window « cAkKeyFil> Metakle
g comment-tegion - (AR Key 3 (Metak,
oy - < Contiobap-cs ¢ ConbobapL g — |
cut + <Cortiohigmo <CortioHep
dedent-tegion - <Control-Key-besckeths
el weord-left - <Conirol Koy BackSpact t
dekweutbright - eCantiobapDelates
do-nothing « «Contiokepf12>
e ol fle - (Contcikerd (Control K,
expand-ward - <ARFey-saghe

i1« CortioEepgs <KepFh
Ak eyl cMatakeyF

IDLE Classic Windowrs —!

Save s New Cosstim Key Set. |

o]] o]]

FREET |

To modify a keyboard setting, you simply select the one you want and then click the Get New
Keys for Selection button. A dialog will appear allowing you to set the key that you want. You

76

sl ssls 5l
B ¥

|DLE

can select any combination of the Control, Shift, and Alt keys to use with your keyboard entry.
For example, suppose that you want the “move to start of line” key to be Control-Shift-H. I'm
not entirely sure why you would want this, but let’s say that you did.

First, select the keyboard binding you want. In this case, it is “Beginning-of-line” and is bound
by default to the Home key on your keyboard. Now, click the “Get New Keys for Selection”
button. In the displayed dialog, click the Control and Shift check boxes. Now, find the “h” key
in the listbox on the right-hand side of the dialog. Select it and press OK in the dialog. That's
all there is to it! From now on, when you use this keyboard map, pressing Ctrl-Shift-H will move
you to the beginning of the line.

You might notice that the dialog displayed has an “advanced” button. If you have no great desire
to search through the list of things and have been using Python for some time, you may find
it easier to simply select this and type in your keyboard combination in Python-key syntax. It's
a bit tricky at first, but once you see a few in the Basic view, you will get used to it.

Finally, we have the General tab of the options menu. This option shows you the general options
available in Python. The tab is shown in Figure 3.16.

. Pythen Shell Figure 3.16
Python 2.5 (c25:51908, Sep 19 2006, 09:52:17) [MSC v.1310 32 bit (Iutel)] on win | IDLE Conﬁguratlon_
az
Type "copyright™, "eredita™ or "liecense()" for more information. General tab
.......... » .
Personal + El
makes to 1 TR 7 : E
incartace.| | Fonts/Tabs | Highghting | Keys | Genmal
interface
'''''''' Stantup Prefesences
IDLE 1.2 A1 Statu OpenEditWindow = Dpen Shel Window
Yer ARring.
(DEBUG ON] FELARLELES
I;EB,G ae¥i & Start of Run [F5) & PongtloSave ¢ Mo Prompt
sl Window Size [in chacaclers) widh [0 Heght [0
Parageaph telnmal wikh [n charactes) [~
Delat Encodng O Locdedelred T UTFE & Hone
Addbonal Help Sources
s |
L |
|
ﬂk-] Apply| Cancel u.-npl
L 17Ca 4]

77

e
B wk

CHAPTER 3} Tools

Most of the options of the General options tab are straightforward and need little commentary.
The first option simply tells you what window to bring up when you start IDLE, the second asks
whether or not you want the system to save your work before you run a script. If you do not
automatically save your work, IDLE will prompt you before running a script. The reason for this
is obvious: if you do something horrible and crash the interpreter, your work would be lost
forever. If you save it before you run, this is not an issue.

The window size is a default. You can probably leave it as it is, unless you have particularly
special environments in which you are running. The size selected tends to be about half the
screen. The page reformat width is simply the number of characters wide the page is before it
wraps around to the next line. The default source encoding is an interesting one. The encoding
scheme used for Python is the character set that you use to store your scripts. Normally, you
would use plain text, since that is the most portable between different operating systems. If,
however, you are going to be displaying characters in your script that are in a different character
set, such as a different language, you will want to select either the current locale, which is a
Windows system setting, or you will want to select UTF-8, which is the standard for wide char-
acter sets across all operating systems. Note that Python code itself is in plain text at all times.

The additional Help source list needs a bit of explanation. If you are using third-party libraries
or tools within your Python IDLE environment, you may want to include the Help files that
come with these tools. To do so, simply click the Add button to the right of the additional Help
files list box. Python will then load these Help sources whenever it starts up.

The Windows menu in Python is a variable one. The first entry changes the height of the main
window to be the same as the height of the screen. After that, a list of windows is maintained,
corresponding to all of the individual windows that are available within the IDLE editor. For
example, if you do a search within files, an Output window will be displayed by the IDLE editor
environment. That window will then be added to the bottom of the Windows menu on the
main screen.

The final menu on the IDLE main menu is the Help menu. This menu consists of three or more
Help entries. The first, About IDLE, simply gives you version information about the system. An
example of the IDLE About box is shown in Figure 3.17.

The most interesting information in the About box are the versions of Python and of Tk that
are being used to implement and run with the IDLE environment. In this case, the Python
version, as expected, is 2.5 since that is the version we installed and ran. The Tk version, which
is the version of the GUI components that Python uses to create windowing applications, is 8.4.
Why the discrepancy? Well, for one thing, Tk has been around longer than Python and is better
established. Foranother, there are more changes on a more frequent basis in Tk than in Python.

Oh, one last note on this screen. You will note that the actual name of IDLE is displayed. There
is a lot of controversy over where the name came from, and the IDLE folks finally decided to

|DLE

_ Python Shell Figure 3.17
2 = ' IDLE About box

Python Z.5 (CZ5:518908, Sep 19 2006, 09:52:17] [M5C v.1310 32 bit (Incel)] on win |
32

Type "eopye ight”, "credits® or "license ()" for moce information

cLion TDLE
nal loopback
Ll xternal

maKes To 1ts subp
interface. This
inter face and oo
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
IDLE 1.2
233

»rr mtring.
[DEBUG Cnf]
e

[DERNG OFF]
e

actually reveal the secret. IDLE stands for Integrated DeveLopment Environment. If you do not
think it is a stretch to make that particular acronym work for this, you really haven't been paying
attention.

The Edit Window

There are quite a few other windows within the IDLE environment, and we will discuss most of
them as we get to them. The most important one to consider, for now at least, is the Editing
window. To get to the Editing window, select File | New Window from the main menu in IDLE.
You should see a window that looks remarkably like the one shown in Figure 3.18.

The majority of the menus and functionality of the Editing window are very similar to, if not
the same as, the main IDLE Interpreter window. The differences are primarily around the func-
tionality needed to actually write and run code in the system. The Editing window is designed
to help you write code, edit code, and maintain code. The Interpreter window, on the other
hand, is generally designed to interpret Python statements and display the results of those
statements. The Interpreter window certainly can be used to write code, but that is not what it
is best at. When you are writing actual Python scripts to be deployed external to the system, it
is best to use the Code Editor window.

79

e
B o dk

CHAPTER 3} Tools

Figure 3.18 Untitled EBIX
IDLE Editing window He Edt Format Run Optons Windows Help
' e
1
—
R

The biggest differences between the Code Editing window and the Interpreter windows are in
the two menus labeled Format and Run. There are other differences, as we will see shortly, but
these two are where we will focus the majority of our energies in this chapter.

Format Menu
The Format menu, as should be obvious from its name, is used for formatting Python code
according to your own desires. The options in the Format menu are the following.

Indent Region

As we have mentioned repeatedly, Python is all about indentation. As a result, you will want to
be able to control what is indented and what is not indented. The Indent Region command
simply indents the selected area by one tab stop. You might do this if you were taking a block
of code and placing it within a conditional statement such as an i £ statement, or maybe within
a looping construct, as you will see in the next chapter. You may indent a region as many times
as you want, because indenting it will not unselect the area, nor will it change the behavior of
the application.

The indent behavior is dependent on the indent setting, which is set in the Options panel of
either the main window or this one. If you want a faster way to change this setting, look at the
New Indent Width menu option on this very menu.

Dedent Region

If there were any need to prove that Python was a programmer’s tool, and not something written
for anyone with the slightest grasp of the English language, instead of the Python language,
this menu option would dissuade them from any other belief. Really, who would call something

IDLE

dedent? The proper term would be unindent, or perhaps outdent. Then again, outdent sounds
no better than dedent, so let's just let it go, shall we?

Needless to say, the Dedent function does the opposite of the Indent function. A block of
selected code will be indented less by using this function when the editor applies the menu
option. If the code block selected is already at the leftmost margin, there will be no effect from
this command, except for a warning noise from the editor.

Unlike the indent command, however, dedenting (can this really be used as a verb?) a block
can cause problems. Remember, the indentation level determines what a block of code “belongs
to” and how it is executed. Moving a block of code out of an indented block causes that block to
be executed after the block it was in finishes, and, more importantly, whether or not the con-
ditional or loop enclosing the old block is executed at all.

For example, let's imagine that we have a loop that does something. It might look something
like this:

for i in range(1,10):
if 1 & 1 == 1:
print "The number is odd"

print "This number is ", 1

Don't worry about how the code works. We'll certainly discuss this, and many other features of
loops, in the next few chapters. The point is, the code that is indented within the for loop is
all executed when the for loop runs. Now, if we modify this block by dedenting the final line,
as follows:

for i in range(1,10):
if 1 & 1 == 1:
print "The number is odd"

print "This number is ", 1

We get a completely different result from this block than we would from the original block of
code. The original block, when run in the IDLE interpreter, prints out the following output:

The number is odd
The number is odd
The number is odd
The number is odd
The number is odd
This number is 9
The number is odd

This number is 1

81

CHAPTER 3} Tools

This number is 2
The number is odd
This number is 3
This number is 4
The number is odd
This number is 5
This number is 6
The number is odd
This number is 7
This number is 8
The number is odd

This number is 9

As you can see, the block of code simply prints out the numbers from one to 10, indicating
which ones are odd and which ones are not. It does its job, and is nothing flashy. However,
when we unindent that last line of code, we get the following output from the scriptlet:

The number is odd
The number is odd
The number is odd
The number is odd
The number is odd

This number is 9

As you can see, the indentation makes a huge difference. Oh, one final note here. You can't
actually type in the second block of code into the interpreter. If you try, you will get an error
saying that the indentation levels don’t match. That is because the interpreter works by pro-
cessing one line at a time. If you want to run this little scriptlet, you will need to enter it into
the Code Editor window and save it; then run it in the interpreter.

Comment Out Region

One of the hallmark methods of debugging an application is to remove code until you find the
offending statement. Python is no exception to that rule. You often find that you want to see
where a problem is occurring, and the easiest way to do that is simply to get rid of all of the
code until the problem goes away. Alternatively, you may have a block of code that does some-
thing you don't want it to, or aren't ready for. In any of these cases, you often find it necessary
to comment out an entire block of code at once. The Comment Out Region command was
designed for you! Imagine, for example, that you have the following set of Python code in your
little application:

82

IDLE

x =1

y = 2

z =3

print "x = ", x
print "y =", y
print "z = ", z
a=x+y*z
print "a = ", a

When you run this chunk of code in the interpreter, you get the following output shown in the
console window:

1

y = 2
z = 3
7

a =

Obviously, we are displaying a lot of information here. The first three print statements, for
example, are there just to show what the input to our little equation to calculate “a” might be.
We might want to see that information when we are initially writing the application, and per-
haps when we are debugging it, but not during the real “run” of the system. So, rather than
deleting the lines, we might want to comment them out for now. To do this, select the three
print statements above the assignment to the variable a and then click the Comment Region
menu option. You should see the following code in your Code Editor afterward:

x =1

y = 2

z =3

##print "x = ", X

##print "y = ", vy

##print "z = ", z

a=x+y * z

print "a = ", a

As you can see, the editor has commented out the lines, and thus suppressed the unneeded
debug statements. They aren’t gone, but they won't be executed, as you can see when you run
the scriptlet in the interpreter.

Uncomment Region
As you might have guessed from the trend here, the IDLE creators were very fond of complete-
ness when they were implementing features. If there is a way to do something, there is a way

83

CHAPTER 3} Tools

to undo it. For the Comment Region function, the mirror function is to, of course, uncomment
the region. Using the example from our previous block of code in the Comment Region func-
tion, applying the Uncomment Region command to it results in:

x =1

y = 2

z =3

print "x = ", x
print "y = ", y
print "z = ", z
a=x+y * z
print "a = ", a

Somehow, I really doubt this came as a huge surprise. When you are putting back in a large
chunk of code that you have commented out in the previous step, using the Uncomment Region
is a quick and easy way to accomplish your task.

One thing you might wonder about, does the Uncomment Region work on code that you have
commented out on your own? The answer is yes. If | comment out a line of code by doing
something like this:

#x =1

Then if I select that line and press the Uncomment Region menu option, the line will be turned
into the proper code again:

x =1

One warning here: If you have a line that is commented out with some space in front of it, like
this:

x =1

And if you “uncomment” it, you will keep the spaces in front, which will result in a possible
indentation issue. Just something to be aware of.

Tabify Region

The Tabify command reformats a block of code using a tab setting specified by the user at the
time the reformatting is done. Essentially, the Tabify function allows you to override on a local
basis what the editor does for you automatically. For example, suppose that you typed the
following block of code into the editor:

x 1
y = 2

84

IDLE

for i in range(1,10):
print "i = ", 1
if i & 1:
print "I is odd"
else:

print "I is even"

Assuming that you used spaces in the above code, the Tabify region command will convert the
spaces into tabs at the rate you specify in the dialog box that pops up when you select Tabify.
If you select, say, four spaces to a tab, then each four spaces that lead each of the lines in the
above block will be replaced by a single tab character. Tabs are better than spaces, at least in
the Python world, because they make it easier to line things up, and much easier for people to
reformat code to look the way they want it to. If you use spaces, the user will have to go through
and either replace each set of spaces with a tab character, or actually physically modify the code
to look the way they like.

Untabify Region

As you might have guessed from the rest of the formatting options, the Untabify command
undoes the results of the Tabify command. That is, Untabify (which isn't a word either) converts
tabs back into spaces. To use the command, select a block of code and then click the Untabify
Region menu command.

When you select the Untabify Region, the editor will display a small dialog prompting you for
the number of columns to use for each tab it encounters in the lines marked. As with the
comments above on the unindent section, you have to be careful with this command. If you
did not use tabs in all of the code, which would be a bad idea, you might accidentally change
the indent levels of the code and produce a different result. Because indentation is such a huge
part of the Python language and editor, it is generally a good idea to settle on a single way of
doing the indentation levels and stick to that way throughout your code.

If you work in a corporate environment, it is important that you establish standards for
coding including the use of tabs and spaces, as well as the indentation levels. Without such
standards, you will find that combining different people’s code into a single application
becomes a nightmare.

Toggle Tabs

In the editor, by default, when you move to a given column, the editor will use a combination
of tabs and spaces to reach the given result. For example, if you have eight character tab settings,
and you are in column 10, the editor will use a single tab (eight spaces) and two spaces to reach
the tenth column. If you turn off tabs, using the Toggle Tabs command, only spaces will be
used to reach the column number. Once again, this can have an impact when you are using
other people’s code (OPC), so you should select this option with some care.

CHAPTER 3} Tools

Oddly enough, there is no Untoggle Tabs command. Go figure. You would have thought, for
completeness, that there would be a Use tabs and Unuse tabs command. There isn't. The toggle
is a single menu command that is either on or off. Unfortunately, there is no indication that
you are in one mode or the other. If you want to change this setting, you may have to click the
menu item twice to get the results you want. The editor does warn you when you select it as to
which one you are trying to accomplish.

New Indent Width

The New Indent Width command sets the indentation level. Instead of having to go into the
Options panel and setting the indent level, you can do it here directly. One annoying feature
of the IDLE editor, or a good feature I suppose, depending on how you look at it, is that the
setting here only applies to the current Edit window, and only as long as the Edit window is
open. As soon as you close this window, this setting disappears. If you open a different Edit
window, the default value from the Options panel will be used instead of this one. Even if you
reopen this file with another Edit window, a different value will be set. This is not the same as
changingthe indent level in the Options panel, which isa system wide preference and persistent
across different editing sessions.

Format Paragraph

The format paragraph is exactly the same functionality as the Emacs editor command fill region,
and is useful for working with blocks of comments. The format paragraph command should
not be used on code, as it will hopelessly mess up your code style and indentation level and
will render the resulting code uncompilable (if that is a word at all).

The purpose of the format paragraph command is to allow you to reformat a comment block
so that it appears in a single paragraph. For example, suppose that you had the following
comments in your text:

This is a comment.
This is another comment, except this one is longer and will probably wrap

around to another line in a wrapped environment.

As you can see from the above, the comments are on two lines, and one of them is too long
to actually fit on a single line in the Editor window without extending off to the right and
requiring scrolling. If you then apply the Format Paragraph command to the two lines, you get
the following:

This is a comment. # This is another comment, except this one is

longer and will probably wrap around to another line in a wrapped

environment.

Unfortunately, the above will not compile. You only want to use the Format Paragraph com-
mand in actual documentation you are writing, not in code. Yes, Python developers are expected
to write documentation.

|DLE

In addition to the Format menu, the Edit window also contains one other completely new main
menu item, the Run menu. This menu consists of commands related to compiling and running
source code.

Python Shell

Depending on how you start up the IDLE system (see the Options panel discussion earlier in
this chapter), you may or may not have a Shell window visible when you are in the Edit window.
If you do, this command will simply bring that window to the front. If you do not have a Shell
window visible, this command will create one and bring it to the front. The Shell window is
the same as the Interpreter window, and is used for running scripts and displaying Immediate
mode values.

Note that there is simply no way, in the current version of Python, to run a program or scriptlet
without invoking the Interpreter window. This might change in future versions of the IDLE
editor, but for now, you might as well get used to the Shell window. It isn't going anywhere. Of
course, even this statement isn't entirely true. If you name a file with the extension . pyw, you
can launch it and suppress the display of the console window by double-clicking it in the
Explorer window. This is a nice feature, especially when you want to provide users with quick
and dirty utilities.

Check Module

In any interpretive language, just as in any compiled language, there are really two steps to
running a program. First, you have to verify that the code is correct. Then you actually run the
program. Python is no exception to this rule. You have to first check over your script to verify
that it is all proper for the language rules. The purpose of the Check Module command is to do
exactly this. Without actually running the code, this command will see if all of the code is valid
Python code.

For example, consider the following script file:

x =1

y = 2

for i in range(1,10):
print "i = ", 1
if i & 1:

print "I is odd"
else:

print "I is even"

This is an error

CHAPTER 3} Tools

If you will notice, there is a line of text at the bottom of the script that is quite obviously an
error. It even tells you that it is an error, so how can you (or the interpreter) miss it? Okay,
sarcasm aside, the point is, there can be code in the script that is invalid. Now, there are two
kinds of errors in Python. First, you can have syntax errors. These are lines of code that are
invalid according to the standard. These can be statically checked by the interpreter without
having to actually run the code. This is the purpose of the Check Module command. If a piece
of code contains a syntax error, the error will be flagged by the interpreter, and the editor will
return you to the exact line that contains the error, indicating what the problem is, if possible.
At no time will the code be run or any output generated.

The second form of error in the Python environment is a runtime error. These are errors that
occur because you pass bad data to a function, or because you try to open a file that doesn't
exist, or something of that ilk. It is not possible for the interpreter to determine whether or
not something will generate a runtime error, so this sort of error can only be found by running
the program.

Run Module

Once you have written a chunk of Python code, and checked it for syntax errors using the Check
Module command, the next logical thing to do would be to run it and see if it does what you
want and expect. The Run Module command is designed to accomplish exactly that. When you
run a module, the interpreter first checks it for syntax errors, then loads the script into the
interpreter and executes it one line at a time. If an error occurs, such as an unhandled exception
being thrown, the process halts and an error is displayed on the output window console. If the
process completes normally, the output from the application is displayed and the interpreter
returns to a waiting state.

We will look at a complete example of creating a simple Python application a bit further into
this chapter.

Rather than look at the individual menus on the Edit window from this point on, we will only
look at the menu items that are different from the main interpreter (Shell) window.

Under the Options menu on the Editor window is the Code Context option. This is a toggle that
can be turned on or off. Turning it on will reveal a blank area at the top of the window that
displays nothing initially. This might not seem like the most useful option, but the reality is
that it does quite a bit.

Code Context means where you are in the source code. When the entire source code listing fits
into the Editor window, as it has for all of the examples we have looked at so far, it obviously

accomplishes nothing. Let's look at a good example of how the code context can be useful. To
accomplish this, we are going to load in some existing code that ships with the Python system.

Under the File menu, select the Path Browser option. You will see the Path Browser window
that you have seen in the past. Now, navigate to the <drive><base>\1ib directory. The

IDLE

<drive> will be whatever drive you installed the system on, and the <base> will be the base
directory into which the Python 2.5 install was made. For most users, the entire path will be
c:\Python25\1ib. Select the id1elib package entry in the list. You should see a display that
looks like Figure 3.19.

Path Browser E”Eﬂzj Figure 3.19
T E'_:E}P;mzf":’km | Path Browser showing the
-0 eampier packags IDLElib package.
H_] rhypes packags
8] curses: package
8- dishaile: package

B3] emat packags

837 encodngs: package

0 (] hotshot: package

0 3 fglelib: package

- ey, packaye

- maiib; package

w1 saited packane

-1 test package

L v st -

Jia|

Now, select the AutoCompletewindow.py file and double-clickit in the window. In a moment,
an Edit window will display showing the contents of this file. You will notice that the entire file
does not fit into the Edit window at all. Go to the Code Context menu option and toggle it on.
For reasons unknown, this particular toggle option does indicate that it is active by placing a
check mark next to the menu option when it is selected and removing the check mark when it
is cleared. Notice that nothing appears in the little context area. Now, page down by clicking
on the scrollbar on the right-hand side of the Editor window.

You should see adisplay similar to the one shown in Figure 3.20. As you can see, the lines above
the lines displayed at the top of the Editor window are now visible in the Code Context window.
This is the purpose of the window, to put the code you are looking at into “context” in terms
of what class and method you are currently viewing in the editor window.

It can often be difficult to tell exactly what function you are working on when you are in the
middle of a file. The IDLE developers realized this and provided a way in which to control this
display.

That wraps up our whirlwind tour of the IDLE editor. Next, we will look at the underlying
Command Line compiler/interpreter that is actually the core of the Python language.

CHAPTER 3} Tools

Figure 3.20

Path Browser showing the
IDLE1ib package with
context.

CodeContext. py - C:\Python25iibydlelibA\CodeContext. py
He Edt Format Run Optons Windows Help

class CodeContext:
der _ 1nit_ (selr, editwin):

3 a list o :J
s providi
the 1i
aoclf.info[0]
cvel 'block' of th
self 1nf0 = [{0, -1, "M, Fal=se)]
self.topvisible = 1
wvigikle = idleConf. GetOption(e exth,
L . default=Fal=e)
1f wisible:
arlf.rtoggle_rode_context event (]
arlf.pdituin. qPrvm’[& TN . Trueg)
¥ Start two update cycles £ ext linea, one for font changes.
Selr.text. atter{uPDAJElNlEHUAL Self.timer_ event)
selr.text.alter (FUNTUPPATEINTERVAL, self.font Limer_ ewvent)
et quC”.E code_CORUext_event (selrf, event=None):
T self.label:
self.pad frame = Thinter.Frame (self.editvin.lup, -
by-self.byculur, burdec-2,
relief="sunken")
self.label = Tkinter.Label (self.pad frame,
text="n" * (self.context_depth - 1),
anchor="u", juotify="lcfr",
font-aclf.textfont,
bg=gelf.bgeolor, fg=self.fgoolor,
border=0,
width=1, {f Don't request more than we get
)
self._ label.pack({szide="top", £ill="x", expand=True,
padx=4, pady=0)
aplf.pad frame . pack(side="rop™, fill="«", pwpand=Falars,
- padx=N, pady=nN,
arter=self.edltwin.status_bar)
selr.label.destrov()
self.pad Irame.destrov()
Selrf.label = None
idleCunf.JerOplivn("exLen *; "CudeCuntexcL”, "wvizibile®,
sLL [:il:l.E lubr:l 1 1 Nune)) -
[lr 14[F0k 9

Command Line Compiler

The Command Line compiler, or interpreter, is the core of the Python interpretive system.
Rather than being a complete integrated development environment (IDE), the Command Line
executable is just a little program you can run in your Command Shell. To launch the Command
Line version of Python, simply open a Command Shell in Windows (located under Start | All

Programs | Accessories | Command Prompt). On some versions of Windows it will be called the
Command Shell, on others the Power Shell. Whatever you call it, it is basically the MS-DOS shell
that older programs know and hate.

The first thing you will need to do in the command prompt, if you have not already done so,
is to set your path variable to point to the location of the Python executables. For a normal

install, the Python executables will be located in c: \Python25. The actual executable for the

90

e sl osh
R RERZ

Command Line Compiler

interpreter is called, surprisingly, python . exe. To run the Command Line version of the
interpreter, simply type python and press Enter. You should see a display similar to Figure 3.21.

“ Command Prompt - python | Figure 3.21
Python running in a
or more information. command prompt'

The interpreter looks exactly the same in the command prompt as it does in the IDLE editor.
There is really no surprise here—that is the Command Line interpreter you are looking at in
IDLE, just displayed differently.

Within the Command Line environment you can do all of the things you did in IDLE with some
notable differences. Obviously, you can’t change the font or color display, and you will not be
using a GUI interface to load files. However, there are lots of bits of functionality available to
you.To find out what is there, type help () and press Enter at the prompt. You will be informed
of the high level Help topics available. There are three main levels of Help available:

Keywords—This entry will list all of the available Python keywords. We have looked at
these in Chapter 2.

Modules—This entry will list all of the available modules that you can look at help for in
the system. A module is a package of classes, functions, and definitions in the Python
system. Once you are in the modules Help subsystem, entering the name of one of the
modules will give you more information about it.

Topics—This entry will provide you with a list of Help topics that are available within the
Python environment. Note that to view the documentation for a given Help topic, you will
need to set an additional environment variable, called pyTHONDOCS. In addition, you will
need to install the Python HTML files that contain the documentation.

Otherwise, the Command Line interpreter works the same way that IDLE does. You can type an
expression at the interpreter prompt (>>>), and it will be immediately processed and, if nec-

essary, output displayed. For example, enter the following commands and look at the output
within the environment:

CHAPTER 3} Tools

>>> x = 1
>>> print x

1

As you can see, the interpreter works exactly the same way at the command line as it does in
IDLE. However, there is one important feature that the Command Line interpreter supports
that IDLE does not, which is the ability to immediately “run” a script from the command line.
Let's look at a very simple script and then run it in the environment. You don't need to worry
about what the script does at this point, just type it in as requested.

1. Create a new file in your favorite text editor (Notepad works fine) and enter the following
text into the file:
fp = open("test.xml", "w")

fp.write ("<XML>\n") ;

sName=input ("Enter a name: ")
sColor=input ("Enter a color: ")

sNumber=input ("Enter a number: ")

fp.write("<object name=\"" + sName + "\">")
fp.write(" <color>"+sColor+"</color>")
fp.write(" <number>"+sNumber+ "< /number>")

fp.write("</object>")

fp.write("</xml>")

fp.close()

2. Save the file and call it runme . py. Make a note of the directory in which you saved
the file.

3. Open the command prompt and navigate to the directory that you saved the file in. For
example, if you saved the file in c: \MyFiles, type the following commands into the
command prompt:

C:
Ccd\Myfiles

4. Run the script by entering the following command into the command prompt:

python runme.py

5. You will notice that the Python header information, telling you how the system works and
so forth, does not come up. Instead, the prompt displays the following:

02

sl ssls 5l
E R F

Creating Python Files

C:\MyFiles>python ch7_1.py

Enter a name:

As you can see, the program is actually running and prompting you for input. This is the big
difference between the Command Line executable and IDLE. In IDLE you would see the usual
interpreter display; you would need to load your file into the Editor window and select Run to
make the thing run. When you need to test command line-style programs, this is the best way
to go about it.

So now you know how to use the IDLE editor and how to use the Command Line compiler.
Let's take a very brief tour of creating a new file in IDLE and running it. That will take you
through the entire process, the rest is just details.

Creating Python Files

So you want to create a Python script and run it. How do you go about it? Well, we've seen a
lot of the pieces so far, but we haven't done an end-to-end discussion of the process. Let's do
that now, so that we don't have to go over it again and again through the book.

1. Determine what the program is going to do.

It should be obvious that the first step you are ever going to take in developing application
software is to determine what you want the software to do, but too many people skip this
step. We aren't going to go into a complete discussion of the art of designing a software
application, because there are many fine books out there, including books in this series
that will help you to do software design. From a Python perspective, however, you need
to decide what the application is going to do, and what modules you will need to imple-
ment that application.

2. Create a new file in the Editor window.
The first step to creating a new application is to create a new file in which to store the
source code. Using IDLE, select File | New Window from the main menu. A new Editor
window will be displayed that contains no code. Notice that the title of the window is
“Untitled.”

3. Create the application code in the Editor window.
For the purposes of this simple example, you are going to create a very simple application
that prompts you for your first name, last name, and middle initial, and then greets you
by name. You don’t need to understand how it works, at least not yet, just follow along to
get a feel for the process involved.

CHAPTER 3} Tools

In the Edit window, add the following code, one line at a time. Notice that as you type
Python keywords, they are highlighted in the window. If a word does not highlight
immediately, go back and check it for misspellings.

fName = input("Please input your first name : ")
IName = input("Please input your last name : ")
mInit = input("Please input your middle initial: ")
sFullName = fName + " " + mInit + " " + 1Name

print "Hello ", sFullName

4. Save the file.
There are several ways to save a file in IDLE, and the easiest is to press Control-S. This will
bring up the Save File dialog. Save the file as ch3_1 . py (for the first program we have
worked on for Chapter 3) and save it to a place that you want to use for Python script
storage. Click OK, and the file will be saved.

5. Run the file.
From the Run menu, in the Code Editor window, select Run Module (or press F5). The
Python Shell window will come to the front of the window stack and will display:
Please input your first name :
Enter the following string: ‘Matt'.
You have to enter it with the quotes included, but it doesn’t matter if they are single quotes
or double quotes. The reason for this is that if you simply enter the value Matt into the
editor, it will be processed as a variable and will be undefined and generate an error.
Once you press Enter, the Shell window will then display:
Please input your last name :
Enter “Telles” in quotes (or, if you are really bold and daring, go ahead and enter your own
last name). Press Enter.
The Shell window will now display:
Please input your middle initial:
Enter ‘A’ in quotes, or your own middle initial, and press Enter.
The Shell window will display:
Hello Matt A Telles
And will then return itself to a waiting state.

6. That's it. You have just written and executed your first Python application. You can now
reload this application any time you want, by selecting File | Open from the main menu
and selecting the ch3_1.py file from your disk operating system.

Documentation

Documentation

The final topic of discussion for this chapter is documentation. There are three forms of
documentation available in the Python system. First, only in the Windows operating system
version, we have the compiled Help file (CHM) that is available from the IDLE editor under the
Help menu. The actual Help file is stored under the menu option “Python Docs” in IDLE.

The second form of documentation exists within the interpreter itself. This is the built-in Help
system that is accessible by typing help() into either the Command Line interpreter or the
Python Shell window in IDLE. Within this Help system, you can type topics, as we have seen
earlier, to get a list of help topics. Typing one of these topic names into the Help system,
however, will result in the following error being reported:

help> DELETION
Sorry, topic and keyword documentation is not available because the Python
HTML documentation files could not be found. If you have installed them,

please set the environment variable PYTHONDOCS to indicate their location.

Now, really, why would anyone give you the ability to display a Help topic and then give you
an error message when you try to follow his directions? The IDLE editor creators, of course.
Well, really, it isn't their fault. The Help HTML files, you see, are really a part of the Python
system as a whole. On the Microsoft Windows system, however, the download does not include
them by default. The Python official Web site, www . python.org has them at http: //

docs .python.org/download as HTML files for download. You can go there now, download
them, and install them on your system. Fair warning: The entire Help file system download is
over four megabytes, and on some systems that might take quite some time to download. Once
you have the file downloaded, decompress it into the doc directory of your Python installation
tree. You will then need to set the pyTHONDOCS environment variable to allow the IDLE editor
to find the location of these files. Set the pyTHONDOCS environment variable to be the root of
the directory in which you installed the documents. For example, if you installed the files in
c:\Python25\doc\Python2-5-docs\ with all of the directories below that (ref, api, doc,
etc), then use that directory rather than the actual location of the reference files.

After you have done all this and everything is working properly, you can use the Help topics
from within either IDLE or the Command Line Python interpreter.

The final way in which you can utilize Help within the Python system is to use the index.html
that is stored in the pyTHONDOCS root directory. Bring this file up in your favorite Web browser,
and you will have access to all of the Help files within Python.

www.python.org
http://docs.python.org/download
http://docs.python.org/download

CHAPTER 3} Tools

In Conclusion

Hopefully, you've enjoyed this tour of the various Python tools. I realize that it is frustrating to
be three chapters into a book and not have the opportunity to write code, but at the same time,
I hope you realize just how big of an area we have covered so far. The Python system is quite
large, and has a lot of really useful and important features. In the next chapter, we start coding
real Python, so you will get that itch scratched. Hang in there, just one more page.

Data Types

Like most programming languages, Python is made up of building blocks called types. These
types define the kinds of data that you can reference in the system and how you can manipulate
that data. As with most languages, there are restrictions in Python on what sorts of information
you can refer to various data types. Rather than data storage spaces, which is what variables are
in most languages, Python uses data references for variables. This means that a variable “refers
to” a given piece of data in memory. Unlike many languages, however, Python is not a strongly
typed language. By strongly typed, we mean that a particular variable can only refer to a par-
ticular data type. For example, in the C programming language, if you were to do something
like this:

int x;

x = "Hello world";

This would be flagged as an error by the compiler. I have defined the variable x to be of type
“int” (or integer). By doing so, I have instructed the compiler that the variable x can only be
used to store numeric values within a certain range. (The actual range is defined by the operating
system on which the compiler is running.)

Python, on the other hand, does not require you to define the type that you are going to store
in a variable. In fact, Python does not allow you to define the data type for a given variable. The
data referred to in the variable defines its type implicitly, and in so doing, defines what opera-
tions can be performed on the variable.

In the Python language, there are two sorts of data types. First, we have the “built-in” data type.
These are types that have simple assignments and functionality. Built-in types tend to directly
model real-world types. For example, one of the built-in types isa number. We run into numbers
all the time, from the negative ones in my checkbook to the massively large ones in the Federal
budget. It is easy to understand how the built-in types work, because we are accustomed to
working with most of them in our everyday noncomputer lives.

CHAPTER 4} Data Types

The second type of data in Python is what we refer to as “advanced” data types. Advanced data
types are classes and instances of those classes, as well as the types that are made up of basic
types. As an example of the second sort, consider the complex math type. This type, made up
of an “imaginary” half and a “real” half, is useful for all sorts of mathematical and engineering
calculations. It has a representation (usually shown in the form of “4 + 2i,” for example) and a
set of rules that goes along with it. The capability to extend a language with your own user-
defined types is the difference between classic languages, such as FORTRAN and COBOL, and
more advanced languages, such as C++ or Eiffel. Python falls somewhere on the advanced side
of that equation, with the ability to extend itself, as we will see, through classes and functions.

When we discuss data types, we will consider a number of things. First, the ways in which you
can use the data types, such as ranges and conversions must be thought about. Ranges are the
allowable values over which the value is defined. For example, a numeric type range consists
of all of the numbers, but not characters, strings, or images. After the range, we will consider
the notion of usage. Some types, for example, allow you to convert their value directly to strings
quickly and easily. Some allow you to manipulate pieces of their values, such as the complex
data type mentioned previously. Yet others allow you to define your own manipulations for
working with them, such as classes. We will discuss classes more completely when we get into
writing functions and class definitions in Chapter 10, but for now let's look at the capabilities
of those classes in Python.

Numeric Types

The first type is the numeric type. Python supports two basic numeric types: integers and float-
ing point numbers.

Integers

Integers are whole numbers having a range that depends upon the hardware upon which
Python is running. You can have negative integers, positive integers, and zero, which is neither
negative or positive. Integers support the full range of arithmetic operations: adding, multi-
plying, dividing, and subtracting.

The first question is: How big of anumber can I store in an integer? The answer is that it depends
on the machine on which you are running. Since determining what kind of processor that you
are using can be annoying, Python defines a few constants that you can use for manipulating
very large or very small numbers. The most important variable that you care about with respect
to integers is the maxint constant. This constant is defined in the “sys” modules in Python. To
see the value of maxint, try the following lines in the IDLE editor:

>>> import sys
>>> print sys.maxint
2147483647

08

sl b ssbe
ot g g

Numeric Types

Understanding the sys . maxint value can be a little confusing. Where does that number come
from? Actually, it is really simple. The number of bits on the machine determines the size of
the largest integer value that you can store. To determine the maximum value, look at the
following list:

For a 32-bit machine, this is (2 ** 31) -1
For a 64-bit machine, this is (2 ** 63) -1
Fora 128-bit machine, this is (2 ** 127) -1

To display the maxint value, you simply import the sys (or system) module into the IDLE editor.
The sys module contains lots of definitions of operating system specific data and functions. You
might think that the maximum negative integer, therefore, would be - 2147483647. Surpris-
ingly, itis not. In fact, it is-2147483646. Because of the way in which binary numbers are stored,
the highest value is going to have to use the highest bit to indicate that it is negative, which
“eats up” one bit value and thus makes the negative value smaller. So, for the 32-bit operating
system that makes up Windows XP, the range of normal integers is -2147483646 to
2147483647, inclusive. You can assign any such value to a numeric variable and not have any
problems.

Demonstrating Long Integers

Python also has what it calls long integers. A long integer is limited in size only by the storage
available on the machine upon which it is running. A long integer is signified in Python by
addingasuffix, L, like this: 5000000000L. Long integers use multiple words to store their values,
so they can hold very long numbers. The advantage to a long integer is that you can store a very
large number without losing precision. So why wouldn't you use long integers at all times?
Well, for one thing, it takes time to process all those digits when you are doing math upon
them. So, unless you have a compelling reason to use a long integer, you should probably stick
with normal ones.

Older versions of Python used to display an error if a variable was set with an integer value (by
not using the L suffix) if the variable was subsequently set to a value greater than maxint. Now
Python simply changes the variable to a long integer. This is a nice convenience, and works well
with the IDLE environment. To illustrate this, consider the following example.

Repeating the exercise of displaying maxint, but adding one (+1) to the value demonstrates
this:

>>> x = sys.maxint

>>> x = x + 1

>>> print x

2147483648

>>>

99

CHAPTER 4} Data Types

Even though the editor does not bother to print out the trailing “L,” indicating that this is a
long value, it is obviously bigger than amaxint and yet is not having any problems. If you were
writing, say, an accounting package in which all dollar values were stored as pennies, and
happened to be working with a chief executive's salary that was in the millions of dollars, you
would definitely appreciate the ability of Python to store such large numbers! The real advan-
tage is that you can do math on big numbers, or small numbers, in the same way.

Look at the following code, entered into the IDLE environment in Immediate mode:

>>> x = 10000000
>>> type(x)
<type 'int'>

>>> x *= 12

>>> print x
120000000

>>> x *= 22

>>> print x
2640000000

>>> type (x)

<type 'long'>

As you can see, no matter what size the integer value represents, and what type of data variable
is used to refer to it, the same math operations can be applied to it. Note also that you can verify
that the type has changed by using the type () method built into Python. When you first
initialize the value, it references an integer value. After doing math to force it to contain a long
integer, it now references a long integer value.

Octal and Hexadecimal

Python also understands other number bases, such as hexadecimal and octal. To tell Python
you are using a value in octal (base 8), simply add a preceding zero. For example, suppose that
you wanted to write the number 9 as an octal number. In base eight, the number nine is
represented as one eight and one one. So it would be 11, in octal. However, if you tell Python
that the number is 11, it is going to think that you mean the decimal (base 10) value 11. So,
instead of writing:

x = 11

when you want something in octal, write:

x = 011

100

sl b sibe
ot g g

Floating Point Numbers

then, print out the value:

>>> print x

9

So the interpreter recognized that you wanted the value to be in base eight and not in base ten.
Similarly, you can work in programmers’ other favorite base, sixteen or hexadecimal. To ac-
complish hexadecimal constants, you add the string “0x” in front of the value.

>>> x = 0x11
>>> print x

17

Once again, note that the print statement displays the value in decimal integer format. Now,
you might wonder, how do you output numbers in other bases? To print out in hexadecimal
format, you use the hex () function. For example, using our previous conversion:

>>> print hex(x)

0x11

Likewise, there is a built-in function called oct () that will return a value in octal format (with
the preceding zero indicating it is an octal value):

>>> print oct (x)

021

Python supports binary values too, but in a slightly more complex manner. We will discuss the
binary support when we get to built-in functions and libraries.

Floating Point Numbers

What would the world be like without floating point numbers? You certainly couldn’t have a
half of something, nor could you deal in quarters, eighths, or sixteenths. None of these are
whole numbers, so they can't be represented by integers. As a result, to handle little things like
this, Python contains a complete floating point library for working with rational, or floating
point, numbers.

To assign a floating point number, you use a floating point literal:

>>> f = 1.2
>>> print f

1.

Other than the fact that the floating point number system in Python allows you to enter more
than integers, there isn't all that much exciting about floating point numbers. You can use

CHAPTER 4} Data Types

floating point literals, as above. You can add, subtract, multiply and divide floating point
numbers. You can also mix integers and floating point numbers. For example:

>>> x = 1.23
>>> y = 2
>>> z =x /y

>>> print z

0.615

You can convert an integer into a floating point value in a variety of ways. For one thing, you
can simply assign one to the other:

>>> g = 1
>>> b = 2.0
>>> b = a

>>> print a
1

You can create a floating point number from either an integer or a string by using the built-in
float () function:

>>> ¢ = float("2.3")
>>> print c
2.3

There are also quite a few built-in functions that you can use on floating point numbers. For
example, there are the £1oor () and ceil () functions. These functions return the lowest and
highest integers that are represented by a given floating point number, respectively. An example
is likely to help here:

>>> import math

>>> x = 4.5

>>> print math.floor (x)
4.0

>>> print math.ceil (x)
5.0

The f1oor function, which is part of the math library, returns the integer portion of the value
of the number you give it. The ceil function returns the next highest integer representing the
floating point value. Any value over the integer value will result in a ceil value of the value plus
one. Note that to use the math functions, you must first import the math library in the IDLE
environment:

>>> import math

Strings

After you have done this, you can use the functions in the library, as long as you fully qualify
them by placing math in front of them, followed by a period. This is the Python way of qualifying
a function within a module.

Strings

Although Python is used for a variety of mathematical and engineering functions that require
heavy use of numeric types, by far the most common use of the language is in areas that require
heavy string processing. Searching functions, e-commerce applications, pattern matching, and
mailing list processing are but a few of the areas where you care a lot more about text processing
than number crunching. Python provides arich array of functionality dedicated toward working
with strings.

String Variables

The most obvious use of a string is in the storage, printing, and inputting of strings. Python
variables can be used to store strings. You can assign string literals to string variables, copy
string values into other values, and manipulate string values using a variety of string functions
that are either built into the language or in the string module. This is probably the most com-
mon module you will use when writing Python code, so it behooves you to understand it as
well as you possibly can.

To create a string variable, you normally assign a variable a string literal. A string literal is a
series of characters, normally enclosed in quotation marks. There are actually a few ways in
which you can define a string literal. Let's look at the three most common:

Enclosed in Quotes
The most obvious way you would work with a string is to place something in quotation marks.
For example:

name = "My name is Matt Telles"

This creates a variable called name, which refers to the string literal “My name is Matt
Telles.” You can use either single or double quotation marks to create a string in Python:

>>> name_single = 'My name is Matt Telles'
>>> name_double = "My name is Matt Telles"
>>> print name_single
My name is Matt Telles
>>> print name_double

My name is Matt Telles

CHAPTER 4} Data Types

As you see, it doesn't matter to the interpreter which form you use. There are exceptions to
this, such as when you want to enclose a single quote within a literal string:

>>> name_quote = "This is Matt's string"
>>> print name_guote

This is Matt's string

The reverse works just as well:

>>> quote = 'And I said, "Hello there" to him'

If you don't like this method, you can use another way to place a double quote within a string:

>>> quote = “And I said, \"Hello there\" to him”
>>> print quote

And I said, "Hello there" to him

This works just as well the other way around, too. You can escape (that's what placing a backslash
in front of the character means) a single quote within either a single or double quote-delimited
string.

Spanning Multiple Lines

It is quite often useful to have a single string that spans multiple lines. Whether you are out-
putting some help text, or just have a quotation that turns out to be too long for a single line
of text, Python provides methods for entering multiple lines of text into a single variable. The
easiest way to do this is simply to continue a line to the next line by using the line continuation
character:

>>> aQuote = "This is a really really really long line that"\
"needs to be continued to the next line"

>>> print aQuote

This is a really really, really long line that needs to be continued to the next line.

As you can see, the line is continued, and does not contain any line breaks. If, for some reason,
you actually want to continue the line and embed a line break in it, simply use the carriage
return escape sequence (\n):

>>> aQuote = "This is a really really really long line that\n"\
"needs to be continued to the next line"

>>> print aQuote

This is a really really, really long line that

needs to be continued to the next line.

Strings

The other direct way to continue a line is to use the “raw” delimiter, the character “r,” in front
of the string. If you do this, Python considers everything in the string to be copied literally until
it finds the closing quotation mark:

>>> gRawQuote = r'This is a raw string that will be interpreted\

to contains whatever the heck I type into it'

>>> print aRawQuote

This is a raw string that will be interpreted\

to contains whatever the heck I type into it

One problem with the raw syntax is that, in the interpreter, it will force you to use the backslash
to continue the line while typing; however, the interpreter itself will count the backslash as
part of the line. You can't have everything. Oh, and finally, the line continuation character isn't
restricted to strings; it can be used for any sort of input line.

Triple Quotes
The third method for continuing lines in Python was designed for use in printing out things
like Help texts or copyright statements. Certainly, you have seen blocks like this:
Help - use this command for getting help.
Our interpreter understands the following commands:
Print
Quit

Store

This syntax is so popular, in fact, that Python provides a special way to enter it, the triple quote.
The triple quote, which is literally three quotation marks in a row, treats everything within the
block defined by the quotes as literal text to be rendered just as it appears:
>>> print """
Help - use this command for getting help.
Our interpreter understands the following commands:

Print

Quit

Store

Help - use this command for getting help.

Our interpreter understands the following commands:
Print
Quit

Store

105

sl aslss ol
¥ g o

CHAPTER 4} Data Types

The triple quote syntax, which is very familiar to HTML programmers as the <pre> tag format,
is quite useful when you are displaying things like help, usage, or other block-oriented data. It
does make the code a little harder to read, so if you are going to use it, be sure to keep the
sections of your scripts that print in triple quotes on their own and with plenty of white space
around them to make it clear to the reader that what they are seeing is really literal text and
not potentially code.

Concatenating Strings

After storing and printing, the most utilized function of strings is concatenating, or combining,
them into longer strings. For example, | might have an output line that was going to print
something based on certain criteria. The beginning of the output might always be the same,
say, “The answer is: “where the end of the string would vary, depending on exactly what that
answer was. Python provides the string concatentation operation, ‘+", for working with strings.
Much as the plus operator adds two numbers, the string plus operator adds two strings:

output = "The answer is: "
Decide what the answer should be..
output += "green"

print output

In the above little piece of code, the final result printed would be:

The answer is: green

Concatenation can be used with variables, as shown above, to concatenate to a single variable.
It can be used with two variables:

quest = "The question is:
gl = " why me? "
gtotal = quest + gl

This creates avariable called gtotal that combines the two strings found in quest and q1. Note
that there are no automatically appended spaces, punctuation marks, or quotation marks. If
you combine “a” and “b” by writing “a"+"b,” you get “ab.”

Finally, please note that simple concatenating a string to another string does not modify either
string, unless the result is assigned to one of them. In this case, the result becomes the new
reference of the string variable. So:

sl += "this"

106

sl b sibe
ot g g

W Strings

does modify the string s1, since it is assigned back to the original string. However if you look
at this example:

>>> s2='b’

>>> print s2+'c'
bc

>>> print s2

b

You can see that the string s2 was not modified, even though it was used in the print statement
to output a concatenated string.

“won

As a side note, you might wonder if Python contains the reverse operator, a “-” or deconcate-

nation operator, that would do something like this:

sl = 'abc'

s2 = sl - 'a'

The answer is no, nor is there a “-=" operator that will remove a given character or string from
a string reference. | guess completeness only goes so far with language developers. As you will
see shortly, however, implementing the functionality of a minus operator is not hard with the
functionality given to us by the string functions in Python.

Repeating Strings
Python does contain a unique operator in all of the programming languages. The times operator
“*" when applied to strings, allows you to repeat a string some number of times. For example:

>>> a = "Hello"
>>> a += 5*"there"
>>> print a

Hellotheretheretheretherethere

The times operator (or repeat operator) “multiplies” a string and produces a result that is the
string concatenated with itself the number of times you want. The repeat operator can be used
on either side of a string:

>>> a += "there"*3

>>> print a

Hellotheretheretheretheretheretheretherethere

While it might appear that this is one of those times that an operator is included simply to
create a cool feature, if you've ever had to generate filled strings for a database, you will realize
just how useful this function is. The reason for this is that you can use a variable in place of the

CHAPTER 4} Data Types

literal value shown previously. That allows you to do things like filling a string with a variable
number of spaces, based on some criteria. A simple example shows this:

>>> g = "Test"
>>> 1 = 10

>>> g += i*" "
>>> a += "done"
>>> print a

Test done

As you can see in the preceding example, we chose the value 10 to be the number of spaces to
“pad” the variable “a” with, before appending the string “done” to it. However, suppose that
you wanted to do something more exciting, like padding the string to be 25 characters at all
times. As you will see in just a moment, there is a way to determine the length of the string.
That function, combined with the repeat operator, allows you to pad a string to an arbitrary
size:

a = 'word'

Pad the string out to 25 characters

1 = 25-1en(a)

a += 1*"

Substrings

A common problem, when you are working with strings, is to be able to extract a piece of a
string. This is particularly important when working with fixed length files, for example, where
each character in a string might mean something else. Another good example of this need is
in telephone numbers, where you might want to input the number as 212-555-5555, but then
store it as the area code (212) and the rest of the number in separate fields in a database or
otherstorage mechanism. Python provides some excellent manipulation capabilities for strings,
especially when you are working with pieces of them.

The first way in which you can manipulate a string is by indexing. An index provides a single
character in the string, or can be used to provide a complete substring within an existing string.
The general form of the index operator in Python is:

String[start[:end]]

Where:

Start is the starting index of the character you want to work from
End is the ending index of the character you want to process to.

108

sl sl sl
ot g g

Strings

You do not have to specify anything more than the start or end index. For example, suppose
that you wanted the third character in the string He11o wor1d referenced to by the variable
str. This character, which would be an 1 would be retrieved using the following bit of Python
code:

Str[2]

The index value 2 is chosen, rather than 3, because Python is a 0-based indexing language. That
is, numbers start at zero and progress to the number of characters minus one. So, in the string
Hello world, which has eleven characters, the indices run from 0 to 10.

One important point about Python strings and indexes. Unlike other languages you may have
worked with, such as C, Pascal, or Visual Basic, you cannot change a string via the index mech-
anism. That is, you cannot write something like this.

Str[2] = 'b!'

There are a variety of reasons for this, but the upshot is that you can't. There are lots of ways
to accomplish the same thing without having to directly modify memory, so this isn't a partic-
ularly big problem. Just remember that strings accessed via index are read-only and cannot be
modified. Strings are immutable, meaning “unchangeable.” In Python, variables are either
mutable (able to be changed) or immutable (unable to be changed). You'll see this come up
over and over in the next few chapters.

Oh, by the way, if you don’t happen to know how long a given string is, or don't feel like doing
the math, Python provides a rather interesting method for accessing strings backward. You
can use negative numbers to access the string from the right-hand side. Thus, with the string
variable str equal to the string Hel11o world, if you use the value -1 for the string index
(e, str(-17)you will get the d at the end of the string. Likewise, the string index -2 gives
you a 1 and so forth, until you get to the beginning of the string. Python strings will not allow
you to access values outside the range of 0 to the length of the string minus 1, using positive
indices; anything outside that range will give you an error. Likewise, you can't use a value in
the negative range outside of -1 to the length of the string, because it will give you an error. To
illustrate this point:

>>> g = "Hello world"

>>> s[12]

Traceback (most recent call last):
File "<pyshell#23>", line 1, in <module>
s[12]
IndexError: string index out of range

>>> g[-11]

CHAPTER 4} Data Types

g

>>> s[-12]

Traceback (most recent call last):
File "<pyshell#25>", line 1, in <module>
s[-12]

IndexError: string index out of range

Slicing

A variant of the single index access is multiple index accessing of strings, or slicing of strings.
This is done by providing a range of characters that you want. For example, you might want
the characters from position three through position eight in the string Hel11o world.In
Python, this is done by using the slicing syntax [3 : 8]. In fact, if you look at the result of this
operation:

>>> s[3:8]

'lo wor'

You can see that you get exactly what you'd expect. In a range operation, unlike a single char-
acter operation, giving numbers outside the bounds of the string is okay. So, you can look at,
for example, characters four through 100:

>>> g[4:100]

'o world'

Python will automatically check the string bounds and will only allow you to work with the
ones that are valid. Likewise, if you work with negative numbers and “go off the end” to the
left, you will get the beginning of the string.

There are some rather handy shortcuts that can be used with string slicing. First, you do not
have to supply either the beginning or ending values. Python will use the remainder of the
string in that direction. For example, you can use the following syntax to obtain the characters
in a string from position 3 to the end:

>>> s[3:]

'lo world'

Naturally, you can also retrieve the first batch of characters in a string. For example, suppose
that you wanted everything up to the third character in a string. In this case, you would use
syntax like this:

>>> g[:3]

'Hel'

110

sl sl sl
ot g g

W Strings

Now, let's go back to the problem we talked about a bit earlier—setting a given character in a
string. As mentioned, you can't simply say s[2] = 'a' and have the string now read Healo
world. However, using the combination of the two pieces above, you could write:

>>> sl = str[0:2] + 'a' + str[3:]
>>> print sl

Healo world

Obviously, you can change a single character, but you just have to use a little bit more code to
do it. However, you can also insert a set of characters at a given position using the same syntax.
For example, instead of the a in the concatenation of strings, you could have put an entire line
of text. This is something you can't do in languages that support changing a single character
index. So, really, Python can do everything they can do and more.

String Functions

Python supports two sorts of string functions. First, there are the built-in operators that support
indexing and assignment. There is also the string module, which contains quite a number of
different sort of functions. However, before we get there, let’s discuss the one other built-in
function that applies to strings, and any other sort of sequence type: the 1en () function. The
len () function will return the length, in characters, of a given string that is passed to it.

Astring that contains no characters, for example, a character string represented by “”, is defined
to have a length of zero. A string that contains any other characters, such as He11o wor1d,
contains a length of the number of characters in the string, in this case 11. String objects that
are not assigned a value, such as those assigned the special value type “None” have no length,
and trying to determine the length of such an object will generate an error. The remainder of
the string methods are actually part of the string module, which is the class that represents
strings in Python. Let’s look at those functions now.

String manipulation in the string module consists of a variety of types of functions and defi-
nitions. They are the following:

string constants

Conversion functions
Search functions

Formatting functions
Escape sequences

Let's look at each of these groups and see how they apply to strings in Python.

I11

CHAPTER 4} Data Types

String Constants

The Python string module defines quite a few constants that can be used in your own applica-
tions. The major ones that you are likely to run into are listed in Table 4-1. Take a look at them
and then we will look at an example or two of how to use them:

Table 4-1 String Constants In Python

Function Name Purpose

ascii_lowercase The set of ASCII characters in lowercase.

This is the letters a-z, but not the punctuation or space characters.
ascii_uppercase The set of ASCII characters uppercase.

This is the letters A-Z but not the punctuation, space, or other characters.

ascii_letters This is the combination of the two groups above uppercase and lowercase
ASCII characters.

digits These are the digits 0-9

hexdigits These are the hexadecimal digits O—F

punctuation These are the punctuation marks, period, comma, semi-colon, and so forth.
This includes all of the Shifted-number keys on the keyboard.

printable This is the complete set of characters made up of the groups above: letters,

numbers, and punctuation.

How do you use these constants? There are a variety of ways, but let's consider the most obvious
case. The user inputs a string, and you want to check to make sure that it only is made up of
certain characters.

First, you need a way in which the user can input some data into the application. We'll discuss
various input and output functions in Chapter 6, but for now, let's just use a function and
assume that you can figure it out enough to write the code. The function is called input and
just takes a single argument, the string you want to use as the input prompt. You use the
function like this:

s = input("Please input a string: ")

The return value from the input function is the evaluation of an expression. So long as you
enclose your input in quotation marks, you will get back a string. We will see in Chapter 6 that
there is another function, called raw_input, which will return you only the string. You may

use raw_input instead if you want. You can convert the string, or you can use it directly as a
string as you are going to do right now. So the process is as follows:

1. Input a string from the user.

2. Check all of the characters to see if they are valid for our application.

W Strings

3. If an invalid character is found, tell the user and stop.

4. If no invalid characters are found, print the string back to the user.

In this case, we will consider all valid characters to be those that are in either lowercase ASCII
or uppercase ASCII. Anything else is an invalid character. So, given what we have learned in

Python so far, and a little bit of code that we have not learned yet, let's try it:
1. Create a new file in the editor of your choice. Call it ch4_1.py.
2. Enter the following code into the ch4_1.py file:

Import the string module for the constants we need.

import string

Input the string from the user and assume that it is okay.

s = input ("Please input a string using only lower and upper case letters:

valid = True

Loop through all of the characters, checking to see if they are all
in the valid groups we allow
for ¢ in s:
if (¢ in string.uppercase):
continue
if (¢ in string.lowercase):
continue
print "You have entered an invalid character: [" + ¢ + "]"
valid = False
break

If the whole string was valid, echo it back to the user.
if valid == True:

print "You entered a valid string: "+s

3. Save the file in the editor and then load it into the Python IDLE shell by using the
File | Open command.

n)

4. Run the program in the shell by using the Run Module (or F5 in Windows) command.

5. You should see some sort of interaction similar to the following in the Shell window. Note
that we have run the program several times here with different sets of input, as denoted

by the Restart messages:

113

ok

CHAPTER 4} Data Types

>>>
Please input a string using only lower and upper case letters: 'hello’

You entered a valid string: hello

>>>

Please input a string using only lower and upper case letters: 'hello world'
You have entered an invalid character: []

>>> ================================ RESTART ================================
>>>

Please input a string using only lower and upper case letters: 'hi.’

You have entered an invalid character: [.]

As you can see, the program works as specified. We'll get into what the various pieces are as we
discuss the components of Python later in the book. Let’s just look at a few little things here:

The statement for ¢ in s: simply loops through the contents of the string s, allowing the
variable c to get each character. The for loop iterates over the character array (which is what
astring really is) and returns each character in turn. Then once you have the character, you can
check to see if it is a member of the various string values uppercase and lowercase using the
in operator again.

You may also note the user of the True and False values. They do have to be capitalized in
Python, but otherwise can be treated as any other sort of value. As you can see, working with
the string values, and strings, in general, is quite simple and straightforward in Python.

Conversion Functions

The next group of functions we will consider in the string module are the conversion functions.
These are functions that manipulate and return a given string in some way. Some of them
change the string type into other types, while others simply manipulate the contents of the
string in a useful fashion. Table 4-2 shows the functions we are going to be considering in this

group:

Table 4-2 Python String Functions

Function Purpose

atof A deprecated function that converts a string into a floating point number. For future
work, use the £1oat () function instead.

atol A deprecated function that converts a string into a long value. For future work, use

the 1ong () function instead.

Strings

Function Purpose

atoi A deprecated function that converts a string into an integer value. For future work,
use the int () function instead.

capitalize A function to capitalize the first letter of a string and make all other letters in the
string into lowercase. Used primarily for displaying names.

lower Converts an entire string into lowercase.

upper Converts an entire string into uppercase.

join Concatenates two strings, using a separator character supplied by the programmer.
lstrip Strips leading spaces (or optionally other characters) from a string

rstring Strips trailing spaces (or optionally other characters) from a string.

strip Strips leading and trailing spaces (or optionally other characters) from a string.
replace Replaces one or more characters in a string with a replacement set of characters.

The first three functions are marked as deprecated. In programming lingo, deprecated means
that these functions have been replaced by newer functions and may not work in the future.
You can use a deprecated function, especially if you are never planning on upgrading your
version of Python, but it is generally a good idea not to do so. You never know when someone
else might decide that they want some new whizbang feature in a newer edition of the libraries
and upgrade the system, breaking your Python scripts. When something is marked deprecated
and replaced, you should not use it in new code, and find all occurrences of it in old code and
replace those occurrences with the newer function.

In this case, we are talking about converting strings to various types of numbers. The old way
of doing this was:

"123.35"

f = string.atof(s)

The variable £ will now reference the floating point number 123.35.

In modern versions of Python, starting with version 2.0, the proper way to do this same function
is to use float:

f = float(s)

The variable £ will, once again, reference the floating point value 123.35. The variable s will
not be modified in either case.

The two functions atoi and at ol convert a string into an integer value, allowing you to specify
an optional mathematical base to use in the conversion: The base is the numeric system (usually
decimal, but can be octal, hexadecimal, orany othervalid numeric base) to use in the conversion.
To see how this works, consider the following simple example:

I1

CHAPTER 4} Data Types

>>> g = "100"

>>> 1 = string.atoi(s)
>>> print 1

100

>>> 1 = gstring.atoi(s, 8)
>>> print 1

64

As you can see, if you do not specify a base, the default decimal system (base 10) is used for
conversion. If, on the other hand, you specify a base, which in this example was octal, the
conversion function uses that numbering system to convert the number. Obviously, the output
is in decimal in either case.

The new functions, int () and 1ong (), both accept the same arguments, so you can pass in a
base there as well:

>>> 1 = long(s, 8)
>>> print i

64

The capitalize, upper, and lower methods work on the case, upper, or lower of a given string.
The upper and lower methods simply return the string mapped into the upper- or lowercase
characters, whereas the capitalize method changes the case of the first character in the string
to be uppercase and all other characters to be lowercase. Here's a simple example to give you
an idea of how they work:

>>> g = input("Enter your first name: ")
Enter your first name: 'matt’

>>> print string.lower (s)

matt

>>> print string.upper(s)

MATT

>>> print string.capitalize(s)

Matt

As you can see, these functions can be very useful for output. The lower and upper functions
are extremely useful when you are trying to match strings, without worrying about the case of
the input, such as when you ask the user to input a command. Imagine, for example, that you
want to have a “menu” of commands, such as copy, delete, and exit. You wouldn't want to check
for every variation of input of the commands, depending on how the user felt like typing them
that day. Instead, you might compare the input converted always to lowercase to make things
easier for you.

Strings

You might wonder what happens if a non-alphabetical character is used in the string and then
passed to the upper or lower functions. The answer is, nothing. Conversions on non-alphabetical
functions are not performed; the characters are left alone:

>>> print string.lower ('#SS7&* () ')
#S%7&* ()
>>> print string.upper ('#$%°&* () ")
#S%7&* ()

The “join” function is an interesting one. Suppose, for example, that you had a database that
contained the user first name, last name, and middle initial. Now, suppose that you needed to
print out their name, in proper format, for use in a mailing label. You could simply print out
the first name, a space, the middle initial, a space, and the last name. That certainly works, but
there is an easier way using the functions that we have learned so far:

>>> first = 'matt’
>>> last = 'telles'
>>> middle = 'a'

>>> print string.join([string.capitalize(first),string.capitalize (middle),
string.capitalize(last)], ' ")
Matt A Telles

The only thing that looks funky here is the bracket syntax ([1) to create a list. Don't worry about
it for now,as we'll be talking about it later in this chapter.

The strip functions (1strip, rstrip, and strip) remove leading and trailing spaces (or
other characters) from an input string. Going back to our example of inputting menu com-
mands, you might worry that the user would input a string with a leading or trailing space in
it. The 1strip function removes leading spaces, the rstrip function trailing spaces, and the
strip function both leading and trailing spaces. The reason that the description above says
“or other characters” is that the functions work on spaces by default. If you want to remove
leading underscores, you can use them for that as well, by simply adding a second argument,
which is the character to remove. Looking at an example of using the strip functions:

>>> g = " hello world
>>> print "[" + string.lstrip(s) + "]"
[hello world 1

>>> print "[" + string.rstrip(s) + "]"
[hello world]
>>> print "[" + string.strip(s) + "]"

[hello world]

117

CHAPTER 4} Data Types

Asyou can see, the functions will remove the leading spaces by default. If you wanted to use, say,
1striptoremove leading underscores fromastring, youwoulduse string.lstrip(s, “_")
as your function call.

The final function we will consider in the conversion set for strings is the replace function. The
replace function replaces characters that you do not want to appear in a string, with characters
you would prefer to find. A good example of this is using a string with spaces in a file system
that does not support spaces in file names. The conventional thing to do in this case is to replace
all of the spaces with underscores. So, we might have something like this as an example:

>>> f = input ("Enter file name: ")
Enter file name: 'this is a file name with spaces'
>>> print string.replace(f, ' ', '_")

this_is_a_ file_name_with_spaces
That's about all there is to it to the conversion functions. Now, let’s look at the search functions.

Search Functions

When you are working with strings, in Python or any other language, it is normal to need to be
able to search through the string for various things. Perhaps you want to know if the string
contains any invalid characters, or perhaps you are looking for a wildcard character that indi-
cates the need to do further processing. You might care how many times a given character or
string appears within an input string, or want to break an input string down into component
words. Whatever your need, the Python string functions will likely provide a method for
accomplishing the task.

Table 4-3 shows the search functions that are supported by the Python string module, along
with a brief description of what they do. Take a look at them and then we will take some time
to look at how they are used with some examples.

Table 4-3 String Search Methods

Method Purpose

find Locates a given character or string in a given string if it exists, searching from the beginning
of the string to the end.

rfind Locates a given character or string in a given string if it exists, searching from the end of
the string to the beginning.

index Locates a given character or string within a string, starting from a given position and
moving forward within the string.

rindex Locates a given character or string within a string, starting from a given position and
moving backward within the string.

split Allows you to split a string into component words, using user-defined delimiters.

zfi1l Pads a given string with zeroes until a given length is reached.

Strings

The searching functions seem reasonably straightforward. In fact, if you understand the £ind
functions, forward and backward, you really understand the index functions, since they are
the same thing. The main difference is that in case of an error, find returns a -1 for the index
of the next position, whereas index raises an exception in your code. We'll be looking at
exceptions and exception handling a bit later in the book, so let's just examine the find function
for now. The syntax is the same for both.

To search forward through a string for a given substring, you use the £ind function. To search
from the rear of the string backward, you use the rfind function. To see how this works,
consider the following example:

>>> g = "my name is my passport, verify me"
>>> print s.find("my")

0

>>> print s.rfind("my")

11

If you examine the output of both functions, you will find that they refer to different instances
of the string “my~ within the original string. The first string is at the very beginning of the string
and is found by the £ind () function. The second string is in the middle of the string, and is
found by counting backward eleven positions from the end of the string by the rfind ()
function.

The split() function breaks a string down into substrings, using a delimiter specified by the user.
In the previous example, we have a string with seven substrings in it. Using the sp1i t function
we get the following:

>>> g.split(' ")

['my', 'mame', 'is', 'my', 'passport,',6 'verify', 'me']

Notice that the sp1it function returned the word passport along with the comma that
followed it. The sp11it function doesn’t understand that you wanted words; it understands that
you wanted everything that was delimited by the character(s) that you gave it. You can't specify
more than one delimiter, because the function assumes that a multi-character separator is really
a string that separates the words. So, if we try:

>>> g.split(', ")

['my name is my passport', 'verify me']

As you can see, we don't get what we expect. The string is split into two words, separated by a
comma and space, rather than all words that are separated by either a comma or a space. Note
that you can omit the separator entirely, and get back a list that is separated by any form of
white space.

CHAPTER 4} Data Types

>>> g.split()

['my', 'mame', 'is', 'my', 'passport,', ‘'verify', 'me']
This is, of course, the same as the case where we specified the delimiter.

The z£i11 () function is one of those things you just scratch your head at and wonder why
people included it. In fact, if you have ever worked with an accounting system, you would
understand. In some applications, such as accounting, numbers are supposed to be a fixed
width. This requires leading zeroes, so as to not change the value of the number, to be printed.
This is the purpose of the zfi111 () function:

>>> g = "123"
>>> print s.z£i11(10)
0000000123

Formatting Functions

It isn't unusual for programmers to use Python to write applications that have to produce
reports for the user. One of the most common needs when writing a report is the ability to
justify text within a column or region of the report. Python provides three string methods in
the string module for justification, whether you need things right or left justified, or centered
within a block. The three methods are shown in Table 4-4.

Table 4-4 Formatting Methods

Method Purpose

1just Left justify a string within a given width
rjust Rightjustify a string within a given width
center Center astring within a given width.

The functions should be somewhat self-explanatory, but let's give a simple example of how to
use them anyway, just in case you might have some questions about them.
>>> g = "1234"
>>> print s.ljust(10)
1234
>>> print s.rjust(10)
1234

>>> print s.center(10)

1234

Strings

As you can see, the justification functions work about the way you would expect. You can
combine various string functions, since most of them return a string. The exception is the split
function, which returns a list of strings. In Python, if a function returns a given object, you can
invoke other methods of that object. For example:

>>> g.zf1i11(5) .center (10)
! 01234 !

The ability to apply multiple methods to what appears to be a single object is quite powerful,
especially when those methods do not change the object(s) to which they are initially applied.
Let's imagine, for example, that Python provided no way to strip both the leading and trailing
spaces for a string. You might have to do something like this to create the same functionality
as strip().

>>> g = " hello world "
>>> gl = s.lstrip()
>>> s2 = sl.rstrip()

>>> print s2

hello world

Alternatively, however, you could just do this:

>>> print s.lstrip().rstrip()
hello world

As you can see, the application of multiple methods does just what we want and in a much
more convenient and compact format.

Escape Sequences

One thing that you might run into when working with Python code is the notion of “escape
sequences” in the strings. An escape sequence is a character that cannot normally be used in a
string literal, but can be if you convert it into something that the interpreter understands and
can process. Good examples of escape sequences that you would need to understand would be
carriage returns, line feeds, tabs, and quotation marks.

There are two sorts of escape sequences. First, we have escaped characters. For example, if you
want a string that reads Matt’s Farm, you need to escape the quotation mark within the
string, because otherwise, Python thinks you are stopping the literal string and then creating
avariable called s Farm, which isn't legal. To do this, we place a backslash in front of the
escaped character: Matt\’s Farm. Then the interpreter understands that you want to embed
a single quotation mark within the literal string and everything is good.

CHAWER4}Dmmes

The other sort of escaping is to use a special sequence of characters to replace a character that
cannot be used in a normal literal string (or, for that matter, in an HTML page or certain kinds
of documents).

Table 4-5 lists the more commonly used Python escape sequences along with their meanings:

Table 4-5 Python Escape Sequences

Escape Sequence = Meaning

\r ASCII carriage return

\n ASCII line feed

\b ASCII backspace

\t ASCII horizontal tab

\f ASCII form feed

\v ASCII vertical tab

\\ The backslash character

\ Single quote character

\’ Double quote character

\unnnn The 16-bit unicode character represented by the hexadecimal value nnnn
\Unnnn The 32-bit unicode character represented by the hexadecimal value nnnn.
\onn The octal value nn

\xnn The hexadecimal value nn

There really isn't a lot to using an escape sequence in Python. You simply choose the ones you
want, and then place them in a string:

>>> print "This is a tab \t followed by a return \n and then a funky character \xE4"
This is a tab followed by a return

and then a funky character a

I'm sure you get the general idea here. That about covers the string module in Python. You will
have noticed that while we were discussing strings, we came across some interesting things
that looked like arrays. These are called sequences, and they will be the next topic we are going
to cover.

Sequences

Sequences in Python are collections of data, shown in various forms. The three specific forms
that make up all of the other types in Python are lists, tuples, and dictionaries. They are roughly
equivalent to various types of arrays in other languages, but in Python they have special mean-
ings. Let's look at each one of them so that you can understand how they work, what they look
like, and how you can use them in your own Python programs.

Sequences

Lists

In Python, a list is simply a collection of ordered objects, although the objects need not be of
the same type. Lists are formed by enclosing a collection of objects in a set of square brackets,
separated by commas. Well, at least that's what the official Python definition says. What does
a list look like? A list looks like, well, a list of items:

x = [1, 2.45, "This is a string", 0]

The Python interpreter will take the previous statement and allocate a block of memory to store
it. Once it has done so, you will have a list. The question is—what can you do with a list once
you have one?

First, you can determine how many elements a list has, using the 1en () function:

>>> print len(x)
4

As the above code illustrates, the list referenced by the variable x contains 4 elements. We
can look at a given element of a list using the index function ([1) to index into the list. As
with all other Python data structures, lists are zero based, and thus this list has the elements
0,1,2and 3.

>>> print x[0]

1

>>> print x[1]

2.45

>>> print x[2]

This is a string

>>> print x[3]

0

You can iterate through a list, using the for. . in syntax we've looked at briefly before:

>>> for e in x:

print e

1

2.45

This is a string
0

So far, at least, lists appear to be the same as arrays in any other language. Lists in Python, as
with most other languages, are mutable, meaning that you can change the elements in the list
in place:

123

B B 3

CHAPTER 4} Data Types

>>> x[2] = "This is a different string"

>>> for e in x:

print e
1
2.45
This is a different string
0

On the other hand, lists can also be modified and extended at the same time. This is done using
“slicing,” which we've looked at before as well. For example, I can refer to the first and second
elements of the list by saying x [0: 11. You can do that with strings, but you can’t change them.
Even more impressive, you can insert data into a slice of a list:

>>> x[0:1] = [1,2,3,4,5]
>>> print x
[1, 2, 3, 4, 5, 2.4500000000000002, 'This is a different string', 0]

>>>

As you can see, lists support the concept of mutability and also the idea of insertion. If you
insert a list of objects at a given slice, you get a new list that contains all of the old elements
(aside from those in the slice) and all of the new elements, as a single list. If, however, you insert
anew list at a given position in a list:

>>> print x

[1, (2, 3, 4, 51, 3, 4, 5, 2.4500000000000002, 'This is a different string', 0]

In this case, you get something very different. As you can see, the second element in the list (or
position 1) contains both a single element, and a list of elements. This brings up an interesting
attribute of lists: Lists may contain other lists. And since any list can contain any other list, a
list may be made up of lists of lists, or matrices. If you have a mathematical background, I'm
sure you can see how useful this kind of thing can be. How do you access the embedded lists?
The way you would expect:

>>> print x[1][2]
4

You can think of the above syntax as “the second element of x, then take the third element of
the list stored at that position.” The result of an embedded list element that is extracted via a

slice or index is always a list itself, and thus you can do operations on it. For example, suppose
that you wanted to know how many elements were in that embedded list:

>>> print len(x[1])
4

Pretty fancy stuff, isn't it?

3 Sequences

Adding, Removing and Inserting with Lists

If you have a list, and it is mutable, it makes sense that you can add, remove, and insert things
into that list. We've covered one form of adding things into a list, using the slicing mechanism
to replace a range of items with a potentially longer list of items. Adding items to the end of
the list is accomplished via the append () method (there are other methods for adding items
to a list in other places):

>>> x.append(3)
>>> print x

(1, (2, 3, 4, 51, 3, 4, 5, 2.4500000000000002, 'This is a different string', 0, 3]

The append method can add a single element, a range of elements from another list, or even
an entire other list to the list. If you append a new list to the end of the list, you get a new
element in x that contains an embedded list:

>>> x.append([1,2,3])

>>> print x

(1, (2, 3, 4, 51, 3, 4, 5, 2.4500000000000002, 'This is a different string',
0, 3, [1, 2, 311

If you want to insert a new item in the middle of a list, you use the insert method. This is pretty
straightforward, as methods go:

>>> x.insert (0, "front")

>>> print x

['front', 1, [2, 3, 4, 5], 3, 4, 5, 2.4500000000000002, 'This is a different
string', 0, 3, [1, 2, 311

Once again, this is pretty straightforward. There is a catch, of course. Consider the following
line of code:

>>> x[0:0] = "fronter!"

You would think that this would create a single new element at the beginning of the array,
since the slice 0:0 is really just the first element of the array, and it would replace the current
element with the string “fronter. ~ It does not do that. Instead, you get the following:

>> x[0:0] = "fronter!"

>>> print x

(¢, 'r', 'o', 'm', 't', 'e', 'r', 't', 'front', 1, [2, 3, 4, 5], 3, 4, 5,
2.4500000000000002, 'This is a different string', 0, 3, [1, 2, 31]

This happens because a string really is a sequence in Python. As a result, when you inserted the
string as a single element, you got the list of characters inserted into the array at that position,
just as if you had inserted a list of elements at a range of positions. This is, admittedly, a bit

125

B B 3

CHAPTER 4} Data Types

strange, but you get used to it after a while. If you wanted to insert the string as a single element,
you would use the considerably less intuitive format:

>>> x[0:0] = ["fronter!"]

>>> print x

['fronter!', 'front', 1, [2, 3, 4, 5], 3, 4, 5, 2.4500000000000002,
'This is a different string', 0, 3, [1, 2, 31]

Items can be removed from a list using the remove method. You can remove a single element
if you know the value of it using remove, or you can use the del function to delete items by
their index:

>>> x.remove (0)

>>> print x

[r¢', 'r', 'o', 'm', 't', 'e', 'r', '!', 'front', 1, [2, 3, 4, 51, 3, 4, 5,
2.4500000000000002, 'This is a different string', 3, [1, 2, 31]

>>> del x[0:5]

>>> print x

['e', 'xr', "', '"front', 1, [2, 3, 4, 5], 3, 4, 5, 2.4500000000000002,
'This is a different string', 3, [1, 2, 3]]

Notice the difference here. The remove () method searched for, found, and removed the value
0 in the list. The de1 operation (which is not a part of the list class) removed the elements from
0 to 5 of the list. The difference is quite dramatic and easy to overlook.

There are three other operations that are worth mentioning about lists. First, there is the
index method. Given a list X, the x. index(value) method will return the position of the first
index of a list element equal to “value” in the list.

>>> print x
['fronter!', 'front', 1, [2, 3, 4, 51, 3, 4, 5, 2.4500000000000002,
'This is a different string', 0, 3, [1, 2, 3]]

>>> print x.index (1)
2

Sequences

Next, we have the reverse method. Given a list, this method will reverse in place the elements
of the list:

>>> 1 = [1,2,3]
>>> 1.reverse ()
>>> print 1

[3, 2, 1]

Finally, there is the sort method. The sort () method, which can be quite powerful, allows
you to sort the elements of a list in place. Given the above definition of a list, we can then say:

>>> 1l.sort ()
>>> print 1
(1, 2, 3]

You might wonder what the index () and sort () methods do with embedded lists. It's a valid
question and one we should examine:

>>> print x
["fronter!', 'front', 1, [2, 3, 4, 51, 3, 4, 5, 2.4500000000000002,
'This is a different string', 0, 3, [1, 2, 3]1]

>>> print x.index(2)

Traceback (most recent call last):
File "<pyshell#44>", line 1, in <module>
print x.index(2)

ValueError: list.index(x): X not in list

Why do you think you would get an error trying to find the value 2 in the list? Looking at the
list, it is quite obvious that there is, in fact, a value of 2 stored in the list, which is stored in
position 3. So, why didn’t Python find it there? The answer is that the index function finds the
exact match of an element in the list. The element at position 3 in the x list is actually a list
itself with the value [2, 3, 4, 5]. Thus, it does not match the single element 2.

What happens when you sort the above list?

>>> x.sort ()
>>> print x
[0, 1, 2.4500000000000002, 3, 3, 4, 5, [1, 2, 31, [2, 3, 4, 51,

'This is a different string', 'front', 'fronter!']

CHAPTER 4} Data Types

If you allow Python to use its default comparing technique, the sorting algorithm first looks at
numeric values, then at strings, because the ASCII values of numbers will be lower than the
string values. As a result, the items are sorted in numeric order and then string order, which
looks a bit strange, but is absolutely accurate.

There will be more to learn about lists as we go along through the book. Hopefully, at this point,
you know enough to understand the odd syntax elements that we will be learning.

Shared References

One last point worth mentioning, since we are discussing references and values of variables. In
Python, everything is a reference. That is, a given variable “refers” to a given value. Multiple
variables can refer to the same location in memory. This is especially a problem in lists. Consider
the following example:

>>> x = [1, 2, 3]

>>> y = X # not copied, shared reference

>>> y[0] = "a"

>>> X

[ta', 2, 3]

>>> vy

[ra', 2, 3]

Note that in this case, although we modified one variable, we also modified another reference
to the same memory location, within a list. This can be a problem for programmers who are
accustomed to variables being actual containers.

Tuples

Once you understand lists, understanding tuples is easy. A tuple is just like a list, except that it
is immutable. In short, you can create a tuple, and iterate over it, but you can’t modify the
contents of the tuple after it has been created. A tuple is created using a similar syntax as a list:

aTuple = (1, 2.15, "This is a test")

You can print them out:
>>> print aTuple

(1, 2.1499999999999999, 'This is a test')

Note that the floating point value, being stored as a “true” float, will be displayed as an
approximation, so it does not look like 2.15.

Sequences

Naturally, just like a list, you can slice them and print out or access pieces of them:

>>> print aTuple[l]
2.15

>>> x = aTuple[2]
>>> print x

This is a test

The biggest difference is that you simply cannot modify the individual pieces of a tuple the way
that you do a list. For example, if you try to update one of the components of the tuple:

>>> aTuple[l] = 3.14

Traceback (most recent call last):
File "<pyshell#5>", line 1, in <module>
aTuple[l] = 3.14

TypeError: 'tuple' object does not support item assignment

Unlike lists, the tuple is considerably less picky about syntax. For example, you don't really need
to include the parentheses to make a tuple in the interpreter:

>>> anotherTuple =1, 2, 3, 4, 5, "end"
>>> print anotherTuple
(1, 2, 3, 4, 5, 'end')

Once again, just like a list, a tuple is sliceable, meaning that you can get at chunks of it at once.
Forexample, in the previous example, suppose that you wanted to get the second through fifth
elements of the variable anotherTuple and print them out. You could write something like
this:

>>> print anotherTuple[1l:4]

(2, 3, 4, 5)

Aswith lists and other data structures in Python, the tuple type is zero based for access, meaning
that elements one through four correspond to the second through fifth data elements in the
tuple.

Tuples can be nested within each other, forming a two or three or more dimensional data
structure. If you have two tuples and then want to form a third tuple created from the first two,
you can do so easily:

>>> tl = 1,2,3,4

>>> t2 = 2,3,4,5

129

B B 3

CHAPTER 4} Data Types

>>> t3 = tl,t2
>>> print t3

(1, 2, 3, 4), (2, 3, 4, 5))

Note in the above example, the variable t 3 consists of two elements, not eight. The two ele-
ments are each tuples and contain four elements each. If you look at the length of the tuple,
you will see this:

>>> print len(t3)

2

>>> print len(t3[0])
4

>>> print len(t3[1])
4

There are two other important aspects of tuples that we need to cover before we move on to
the next data structure. First, you can create a tuple that contains no elements at all. This is
called an “empty tuple.” You may never want to create one directly, but if you are returning a
tuple that contains data from some user query, it is important to know that the returned value
could be empty:

>>> t = ()
>>> print len(t)
0

As you can see, the empty tuple has a length of zero, which really should be no surprise at all.
You can create empty versions of any type of sequence, such as a list ([]) or a string (*"). Now,
what about the other strange case of tuples, the case of a single element? There is nothing
surprising about the fact that a tuple can contain only a single element, but the syntax is a bit
strange:

>>> tl = 4,

>>> print tl

(4,)

Notice the extra comma at the end of the line assigning the value 4 to the newly created tuple
t 1. This is necessary because it is the only way in which to tell the interpreter that you want to
create a tuple of length one and not simply assign a variable the value 4. Notice that this syntax
works for more than one element, as it would have to in order to make the language complete:

>>> t2 = 4,5,6,
>>> print t2
(4, 5, 6)

Sequences

You never have to include the comma at the end of a tuple definition if there is more than one
element in the tuple, but it won't hurt things either.

Tuples, by the way, support the usual functionality of data structures in Python. You can print
them out, and you can concatenate them:

>>> t3 = tl + t2
>>> print t3
(4, 4, 5, 6)

When you concatenate two or more tuples, you are creating one long tuple; you are not em-
bedding one tuple in another, as you might have thought from our discussion about lists.
Finally, you can unpack a tuple. This is definitely one of the stranger elements of Python, so
take a careful look at it to understand what is going on here:

>>> x1,x2,X3,x4=t3
>>> print x1
4

>>> print x2
>>> print x3

>>> print x4

6

The comma syntax on the left-hand side of the equation tells Python to “unpack” the tuple
elements, one at a time, into the variables defined on the left side, from the tuple on the right
side. Note that the number of elements on the left side must exactly match the number of
elements in the tuple:

>>> x1,x2,x3=t3

Traceback (most recent call last):
File "<pyshell#34>", line 1, in <module>
x1,x2,x3=t3

ValueError: too many values to unpack

So, what have we learned so far? If you use the square bracket notation, you get a list. Lists are
mutable. If you use the regular parentheses notation, or just assign a variable a list of comma
separated items, you get a tuple. Tuples are immutable. Now, you can forget all that and work
on the next item, dictionaries.

CHAPTER 4} Data Types

Dictionaries

A dictionary is a mapping of key value pairs. The idea comes from our own word dictionary,
which consists of words and their meanings. Likewise, a data structures dictionary consists of
keys and values that are associated with those keys (like definitions, but less so). For example,
suppose that I had a list of names, and wanted to associate a list of addresses with those names.
I could use two lists to do so, having the first list contain the names and the second list hold
the addresses. Of course, by doing so, I set myself up for failure. What if I delete something from
the first list? [have to remember to do so in the second list. What if | want to sort the first list
based on some criteria? | have to remember to sort the second list in the same order as the first
list so that everything stays in sync. In short, it is a bad idea to implement two dependent data
structures in independent format. For this reason, the designers of Python created the dictio-
nary, which is a single data structure with two dependent data fields in it.

There is one important aspect to a dictionary that you need to understand. The key to a dictio-
nary can be any valid object type. The key, however, must be an immutable value type. That is,
you can't use lists as keys in a Python dictionary. There are a variety of reasons for this, but the
major one is that dictionaries are allocated in a fixed way, so that allowing change would overly
complicate the underlying code. However, this requirement does explain the need for tuples
in Python. The entire purpose of a tuple is to provide an immutable construct. Needless to say,
you can use tuples as value types in dictionaries.

Creating a Dictionary

The first step toward working with any new data structure is creating one, and dictionaries are
certainly no exception to that rule. As we have seen, Python is all about creating things using
strange syntax. The dictionary uses yet another odd character set to define it, in this case the
braces ({}) characters:

>>> dict = {}

This line creates an empty dictionary. There is no particular reason why a new dictionary has
to be empty. We could easily create one that had an initial element:

>>> dict2 = { "fred":"1010 Elm Street" }

>>> print dict2

{"fred': '1010 Elm Street'}

Multiple entries into a dictionary are made by separating them by a comma in the construction
phase:

>>> dict3 = { "fred":"1010 Elm Street", "ralph":"2020 Maple Lane" }

>>> print dict3

{'ralph': '2020 Maple Lane', 'fred': '1010 Elm Street'}

Sequences

The above code creates a dictionary with two keys in it, ‘ralph’ and ‘fred’. Note that the order
of things in a dictionary is not guaranteed in any way. We created the dictionary with ‘fred’ first
and ‘ralph’ second, but when we printed them they were in the opposite order.

3 Dictionaries and Keys

Never assume anything about the order of a dictionary and its keys. Dictionary keys may be stored in
any order, and should never be assumed to be sorted.

Adding to a Dictionary

After you have defined a dictionary, the next logical step is to add new items to it. The syntax
for adding items to a dictionary is actually amazingly simple, especially compared to some of
the other methods used in Python:

>>> dict3['irving'] = '2662 Fremont Blvd'

>>> print dict3

{'ralph': '2020 Maple Lane', 'irving': '2662 Fremont Blvd', 'fred': '1010
Elm Street'}

To add a new key value, you simply use the indexing method to define it as a key for the
dictionary. Likewise, if you want to change the value for a given entry in a dictionary, you use
the same syntax:

>>> dict3['fred'] = '1020 Elm Street'

>>> print dict3

{'ralph': '2020 Maple Lane', 'irving': '2662 Fremont Blvd', 'fred': '1020
Elm Street'}

You can add or update key values using the same method. This is rather handy, especially 1fyou
aren't sure if a given key exists in the dictionary. If you want to know if a dictionary has a given
value, you can use the has_key method:

>>> if dict3.has_key('fred'): print 'yes!'

ves!

Retrieving Values for Keys

When you have added keys and associated values to a dictionary, the real question is how do
you get them back? There are a couple of ways to get data back from a key. The first uses the
same syntax as setting the data:

CHAPTER 4} Data Types

>>> print dict3['ralph']
2020 Maple Lane

There is also a method called get (), which will return either the value of a key, or a default
value, depending on whether or not the key was found in the dictionary. The thought process
goes like this. If there is a key in the dictionary for the requested key value, return it. If there is
no key value, you probably want to do something with it anyway, so allow the programmer to
define a default value to return that can be set in the dictionary. You use the get () method
this way:

>>> dict3.get('ralph', 99)

99

If the key “ralph” is found in the dictionary, the actual value of the key will be returned. If the
key “ralph” was not found, then the value 99 will be returned. As you can see in our example,
the key was not found. It is generally a good idea to return a signal value that tells you that the
value was not found; otherwise, it is difficult to know if this is a new entry or an update of an
existing key.

Iterating Over Keys

Let's imagine that you have a dictionary that represents a list of names and their identification
numbers within a company. Such a dictionary might look something like this:

>>> dict = {'adam':1, 'bert':2, 'charlie':3, 'devon':4 }

>>> print dict

{'bert': 2, 'devon': 4, 'adam': 1, 'charlie': 3}

By the way, this also shows that you can create a dictionary with keys and values that are of
different types, but I digress. Suppose that you wanted to list all of the keys available in the
dictionary. The dictionary class defines a method called keys () that provides access to the key
components of the dictionary object:

>>> for k in dict.keys()

print k

bert
devon
adam

charlie

134

sl sl sl
ot g g

Sequences

There is a similar entry for the value entries for a given dictionary:

>>> for v in dict.values/()

print v

w =N

Once again, please notice that the order of the keys and values within your dictionary bear no
relationship to the order in which you put them into the dictionary. In fact, they are completely
mixed up in relation to the original definition of the dictionary. You can never rely on the order
of a dictionary.

Now, if you want to retrieve a value for a given key, you could simply iterate over both lists,
looking for a given key and then finding the corresponding value in the other collection. That,
however, would be silly. Remember, given a key, you can directly get back the value for it in the
dictionary. You could, for example, dump a dictionary and get back both the key and value
assigned to it using the following code:

>>> for k in dict.keys|()

print "key: ["+k+"] = value: ["+str(dictl[k])+"]"
key: [bert] = value: [2]
key: [devon] = value: [4]
key: [adam] = value: [1]
key: [charlie] = value: [3]

Note that you have to convert the value into a string in order to be able to print it. If you didn't
do this, because the type is an integer, Python thinks that you are trying to add a string and an
integer, which is an invalid operation.

Removing Keys from a Dictionary

The last topic to cover with respect to dictionaries is the removal of keys and values from the
data structure. As with lists, the removal of entries in the dictionary is accomplished via the
del () function, which is a part of the basic Python functionality. Assuming that you are using
the dictionary from our last example, let's get rid of poor bert, who is no longer with the
company:

CHAPTER 4} Data Types

>>> del dict['bert']
>>> print dict

{'devon': 4, 'adam': 1, 'charlie': 3}

That's all there is to it. Once you've deleted an item from a dictionary, it is gone forever, never
to rear its head again. With that, we complete our discussion of dictionaries, and wrap up our
discussion of the basic types in Python.

Advanced Type

In addition to the basic types in Python, there are quite a few advanced types. Some of them,
we will discuss later on in the book, but a few are worth mentioning here. Whether or not you
ever use some of these advanced types, it is always good to know that they are available, so that
if you do need them you will know what to look for.

Classes and Objects

Python is an object-oriented scripting language. We will look at the complete issue of object-
oriented programming and what it lends itself to in Chapters 9 and 10 of this book. For now,
however, just know that Python allows you to define your own classes, which are encapsulations
of data and functionality. The class keyword allows you to define a class, as in the following
example. We'll be looking at what all this means later in the book, in the aforementioned
chapters.

class MyClass :
def _ init__ (self)
print "Initializing MyClass"
self.x = 0

def print_x(self)

print "MyClass::x = ", self.x

You don't really need to understand this example, but it is nice to see some real code for a
change. Note that the “class” keyword is used to define a class, and that the “def” keyword is
used to define methods within the class. Programmers used to object-oriented languages such
as C++ or Java will have little trouble recognizing the constructs shown here. Also, please notice
that indentation plays a major part in the definition of classes.

If you are accustomed to object-oriented programming, you are probably accustomed to the
notion of constructors. A constructor is used to initialize an object when it is created. In Python,
the notion of a constructor is handled by the __init__ method. If you are used to C++, you
probably know all about the “this” pointer, which is a reference to the actual object you are
working on. In Python, this is handled by the self object We will talk about the remainder of
the class code in Chapter 10.

136

sl b sibe
ot g g

Advanced Type

As a last example, before we leave classes, let's just look quickly at how you create an object
and invoke a method upon it:

>>> x = MyClass ()

Initializing MyClass

>>> x.print_x()

MyClass::x = 0

As you can see, it really isn't all that difficult. Classes are a very powerful part of the language,
and well worth the two chapters we will devote to them.

Complex Type

If you are of a mathematical bent, you have almost certainly worked with complex numbers
before. A complex number is part “real” and part “imaginary.” Normally, you write a complex
number as:

X + nj

where:

x is some real number that represents the magnitude of the real portion of the number.
jindicates the imaginary portion

nis some real number that represents the magnitude of the imaginary portion of the number.

This book is really not long enough to explain what imaginary numbers are, or how they work.
Suffice it to say that the definition of an imaginary number is the square root of minus one.
Yes, I know, they told you in school that you can't take the square root of a negative number.
You can, so get over it.

You can add complex numbers, multiply them by either real numbers or other complex num-
bers, subtract them, and take their square roots and divide them by either real numbers or other
complex numbers.

For example, consider the following simple example of multiplying two complex numbers:
>>> (4+433)+(2+63)
(6+97)

Other than that, if you want a background in imaginary and complex numbers, please consult
a general college math book. I'm not entirely sure why Python chose to implement complex
numbers, but having used them in a project, I can say that it does an excellent job with them.

CHAPTER 4} Data Types

Generator Type

Python provides a generator type function. A generator function is one that can come up with
areturn value and then yield control back to the calling function. Now, of course, any function
can do that. The difference is, when you call a generator function again, it picks up where it left
off, and continues until it is next interrupted. The generator type function makes use of the
reserved word yield in the Python lexicon, and can be invoked with the next () function.
Let's look at a simple example, just to illustrate what it is we are talking about here:

def fool():
1
print 'call 1°
vield 0
2
print 'call 2
yvield 1
3
print 'call 3
yield 2
4

The foo () function is a generator function. When it is invoked, it will print out information
indicating what stage in its existence it is at. To invoke it, you use a variable that is “created”
by foo:

>>> a=foo ()

Notice that there is no output from this function. That's because it hasn't actually done
anything yet. To make the generator work, you call the next () function:

>>> a.next ()
call 1
0

As you can see, the function is invoked the first time, and proceeds until it encounters a yield
statement. The yield value, the number following the yield statement in the function, is the
result of the function call. At this point, the function has run from the line marked with the
comment #1 to the line marked with the comment #2. If you invoke the generator object
again, you get a different result:

>>> a.next ()
call 2
1

138

sl sl sl
ot g g

Advanced Type

Naturally, the second time you invoke the generator, it picks up where it left off and executes
until another yield statement is encountered. You can run the function a third time:

>>> a.next ()
call 3
2

At this point, the generator is sitting at the point marked # 4 in the code listing. The function
is essentially complete. If you run the function another time:

>>> a.next ()

Traceback (most recent call last):
File "<pyshell#19>", line 1, in <module>
a.next ()

StopIteration

The interpreter recognizes that the function has finished, and that generates a
StopIteration exception, which can be caught by the calling program. There is no defined
way to restart a generator function; you need to recreate it and call next () on it once more to
make it start over.

There are a variety of good reasons to use generator objects. Perhaps you want to process some
database records in the background. Perhaps you want to calculate the value of pi to the thou-
sandth digit. Whatever your process, you can call the generator function when you want to,
and let it continue until it has processed a single iteration of its functionality. When it returns,
you can continue with whatever you were doing. An excellent use of the generator pattern is
to do background spell checking in an editor. Your mileage may vary, of course.

None Type

Python considers the type of an object to be a type unto itself. Integers, for example, are of type
int. Strings are of type string (or something str). User defined classes are of the type defined
by the class. You can do things based on the type of an object. Python provides a function and
a keyword to work with types. The type () function will return you the actual type of an object:

>>> x = 'this is a test'
>>> print type(x)
<type 'str'>

You can test the type of one object against another type using the is keyword:

>>> x = 'this 1is a test'

>>> print type(x)

CHAPTER 4} Data Types

<type 'str'>
>>> y = 'this is another test'
>>> if type(x) is typel(y)

print "They are the same!"

They are the same!

As you can see, the types match, and thus the objects are of the same type. You can return a
value of a given type from a function, in exactly the same way. What happens, however, if you
don't know what type of value to return for a given variable? The answer is, you use the None
type. The None type means exactly what it says, that the object has no valid (or discernable)
type. It is much the same as using null as a value in C++ or Java.

Please do not confuse the None type with an undefined variable type. For example, if you have
a program that hasn't ever used the variable z, then you can’t write something like this.

>>> if type(z) == None :

print "z has no type"

Not only does the statement not work, it generates an error.

Traceback (most recent call last):
File "<pyshell#56>", line 1, in <module>
if type(z) == None :

NameError: name 'z' is not defined

Unicode Type

The Unicode type is used for supporting systems that support Unicode strings. A Unicode string
(sometimes incorrectly called a wide string) is one that uses multi-byte characters to allow
support for foreign language character sets. You create a Unicode string by adding the string
“u” to the front of a string:

>>> x= u"This is a Unicode string!"
>>> print x

This is a Unicode string!

Depending on your computer setting, Unicode strings may or may not compare exactly to non-
Unicode strings. For Windows, for example, they are the same:

In Conclusion

>>> y = "This is a Unicode string!"
>>> if x ==y :

print "They are the same"

They are the same

For some flavors of UNIX, this will not be true.

In Conclusion

That concludes our tour of the basic and advanced data types in Python. From this point on,
I'm going to assume that you understand the data types, so [won't take the time to explain
them or how they work. Feel free, of course, to refer back to this chapter any time you feel you
need to refresh your memory.

In the next chapter, we'll begin to explore the structure of Python statements by looking at
condition and looping syntax. Once you understand the basics of the language, you can do
pretty much anything in Python.

I

L

41

HE HZ

This page intentionally left blank

Control Flow

In the beginning of computer programming, languages really only allowed you to do things in
sequential order. You wrote your programs by inputting instructions to the machine to do a
given task, following a set of commands that were always executed in the same order and the
same direction. Eventually, programmers realized that not all conditions were the same. You
had to have some control over whether or not certain instructions were executed and when
the machine would execute them. This led to the rise of “conditional” programming. Condi-
tional programming was considered to be an “if .. then” style of programming.

Consider, for example, a very simple script that does the following pseudo tasks:
1. Asks the user for a file name.

. If the file name exists, copies it to a backup directory.

. If the file name does not exist, creates the file from a template.

. Asks the user if he wants to do it again.

. If the user says yes, returns to step 1.

A A W N

. If the user does not say yes, exits the script.

There is nothing particularly complicated or surprising in the above task list. This is the sort of
thing that we do every day in the computer world. However, notice the two bits of logic in the
list. First, you need to be able to compare two things (whether or not a file exists, and whether
or not the user says “yes” to a question) and take actions based on that result. Second, you need
to be able to go back to another point in the script and start running from there.

The ability to change the behavior of a piece of code based on certain information in the
environment (variables, conditions, input) is known as conditional code flow. The ability to
change the order of a program so that it moves back and reruns a block of code is known as
looping code flow. This chapter is dedicated to working with these two concepts.

CHAPTER 5} Control Flow

Conditionals

The conditional logic in Python is primarily based on the “if .. else” structure. The keywords we
are generally concerned with in Python are the ones shown here in Table 5-1.

Table 5-1 Conditional Keywords in Python

Keyword Meaning

if Checks a condition. If the condition results in a “True” case, the code following the i £
statement is executed.

elif Shorthand for “else if.” Must follow an i f statement, and if the condition compared is
True, the code following the e11i f statement is executed

else Must follow an i f statement. If the code for the i £ (or e1i f) statement is False, the code

following the else statement is executed. May also be used in a loop structure

As you can see from the list above, there are really only three keywords that we care about in
the Python language. The i f statement is the only one of the three that can be used on its
own; the other two are dependent on other statements in the code.

The if Statement

The i f statement is used to test a condition and to check whether or not the comparison results
in a True value or False value. The simplest form of an i £ statement is as follows:

if condition :

statement

Note that the i f statement always consists of three elements. First, there is the i f keyword.
This tells the interpreter that you want to do a comparison. Next, there is the condition section.
A condition can be any valid Python comparison, the result of a function or method call, or, in
the case of a Boolean variable, a simple variable name. Finally, there is the colon (:) that indicates
the end of the i f statement and the beginning of the statement block to execute in case the
condition is True.

Let's look at a couple of examples of the i £ statement in action to get an idea of how it works.
First, consider the simplest case, a variable that is assigned either the value True or False.

>>> v = True
>>> if v :

print "v is True!"

v is True!

144

3 gk ak

Conditionals

As you can see from the above listing, first you create a simple Python Boolean variable and set
it to True. Then you write an i f statement that seems to do no comparison; it merely has a
single variable name on the i f line. The reason this works is that Python implicitly compares
the variable to the True value. The i £ statement could have been written this way:

if v == True :

but this way saves us a couple of bytes and is understood by the interpreter. In general, happen
to frown on this sort of code in my own applications. I find it more difficult to read on first scan
and thus more error prone. But your mileage may vary, and you should work in the way in which
you are most comfortable.

As you can see, the i f statement does work, the variable is True, and the print statement is
executed. What if the variable were False? You can easily test this by entering the code in a
slightly different way:

>>> if not v :

print "v is False"

As noted in this example, nothing is printed out. The not operator modifies the tested condi-
tion, so that if the variable is True, the condition is not True, which is False. If the variable had
been False, the condition would have been not False or True.

That is the simplest form of the i f statement. A slightly more complex version would be a
comparison:

>>> x = 1
>>> y = 2
>>> if x < y :
print "x is less than y"
print "please change x to be greater than y"

x =y + 1

x is less than y
please change x to be greater than y
>>> print x

3

Looking at this example, you can see that comparisons can be slightly more complex than we
have examined previously. In addition, you can see that we can have multiple statements within
an if block. Once again, Python indentation comes to the rescue. By indenting the block, you
indicate to Python that you are going to execute all of the statements in the block when the

145

CHAPTER 5} Control Flow

if statement is True. If the i £ statement is False, none of the statements in the block are
executed. It is an all or nothing proposition.

Before we move on to the next part of the “i £ logic, let’s take a look at one more thing you
ought to be aware of, which is the idea of nested i f statements.

>>> x = 1
>>> y = 2
>>> z = 3

>>> if x < y :
if z > x :
print "Z is bigger than X"
if z < x :

print "Z is smaller than X"

Z is bigger than X

There are a couple of interesting things in this code snippet. First, you will notice that an i f
block can contain other i £ blocks. This is important for cases such as sorting or comparing
multiple values. Notice that the indentation of the blocks indicates which lines go with which
blocks. Because the print statements are indented from the i f statements within the main
if block, they are only executed if the i £ statements they belong to are True. Otherwise, the
flow of the application continues with the next statement outside of that block.

Next, note the two i f statements within the main block. If x and z are the same value, of course,
neither of these statements is going to be executed. Fortunately, we have taken care of that
by assigning z a larger value than x. If they are not the same, then obviously, one of the two
if statements is going to be True, and the print statement within it will be processed and
executed.

Oh, one last thing about i £ statements. You don’t have to have separate lines or blocks for
statements. You can have everything on one line, but the i £ statement still has to have the
colon separating the condition from the executing statements:

>>> if x + y == z : print "The equation is TRUE!"

The equation is TRUE!

146

3 gk ak

Conditionals

When you are tying the above statement in the IDLE environment, you will notice that you
have to press the Enter key twice at the end of the statement for it to execute. This is because
even though the first line is not indented, subsequent lines can be, so the editor waits until it
is sure you are done typing in lines for the i £ block before executing them.

Let's take a look at the second of the three pieces of the conditional block, the e1i f statement.

The e1if Statement

The e1i f statement is a combination of the e1se clause and the i f statement. Essentially, you
are saying, “if this one thing is not True and if this other thing is True, then do this.” As a result
of this, the syntax of the e11 f statement is exactly the same as the i f statement, but with the
following caveat. An eli f statement must appear in an i f block. It cannot appear on its own.
That is, you can't write:

elif x ==

print "x = 1"
This isn't valid, because there was nothing for the else part of the e1i f statement to apply
to. Instead, you would have written:

if x ==

1l
o

print "x
elif x ==

print "x = 1"

The important thing to remember about e11i f is that it is the same as an i f statement in terms
of syntax and usage.

That is, it must be followed by a conditional statement and then a colon before you can place
any statements to be executed.

Any valid statement block that can be placed in an i f statement block can be placed in an
elif statement block:

>>> x = 3

>>> 1f x ==
print "X is zero"

elif x & 1 ==

X
1

print "X is ODD"
elif x & == 0
X

print "X is EVEN"

X is ODD

147

CHAPTER 5} Control Flow

In the above code, the value of x is compared to three different things. First, you check to see
if the value is zero, since zero is neither odd nor even. If the value is not zero, the first elif
statement is invoked and the lowest bit is tested to see if it is on or not. If it is on, the value is,
by definition, odd. If the bit is not set, the code will then drop down to the next e11 f statement,
which tests to see if the bit is not set, which would indicate that the value was even.

In this instance, we give the value three to x, which makes it not zero and odd. Note that the
only block of code that is executed is the one for the odd case, and none of the others. This
indicates that the program has done what we expected it to do. In addition to seeing that the
elif statement works properly, this example also indicates that you can nest e11 f statements
the same way in which you nest i f statements. The difference, however, is that an e1if can
only be nested within an i f statement and not within another e1if. Each e1i £ is paired with
the closest i f statement. Thus, you can't write something like this:

if x ==
print "x
elif x == 1:
print 'x = 1"
elif x & 1 :

print "x is odd"

For one thing, this would make no sense at all. What exactly are you trying to accomplish? You
cannestif .. elif blocks, however:
>>> x = 3
>>> 1f x ==
print "Zero"
elif x & 1 :
print "ODD"
if x > 3
print "Unlikely"
elif x < 3 :
print "Even more unlikely"
elif x ==
print "There you go!"
elif x & 1 == 0 :

print "Even"

ODD

There you go!

148

sl ssls 5l
E R F

Conditionals

In the above example, there are two separate conditions that you are testing for. At the outside
level, you want to know whether x is zero, even, or odd. At the inside level, if x is odd, you want
to know if it is less than, greater than, or equal to three. If x is odd, you would expect to see
two print statements executed, and you do, indicating that the structure and its indentation
are correct.

The else Statement

The final piece of our conditional logic puzzle is the e1se statement. The else statement, as
you might imagine, is what happens when no other conditions in an i £ block are found to be
True. There can be only a single else statement that is a part of the i f structure, although
nested if statements can each have their own else block. Unlike the e1i £, the else statement
must appear at the end of the list of conditional alternatives, following the i f and any
elifs that exist subsequently. You do not need to have an e1i f statement to have an else,
but you must have an i f statement.

Here is a very simple example of an i £ statement with an else clause:

>>> x = 0
>>> if x & 1 :

print "X is odd"
else :

print "X is even"

X is even

If you look at the logic here, it goes like this. The conditional (x&1) is evaluated. Since zero
doesn't have the lowest bit (bit 1) set, the condition is False. As a result, the i f statement
condition doesn't evaluate to True, and the block of code following it is not executed. The
interpreter then looks for the next token within the block at the same level as the i f statement.
If you consider a block of i £, e1i f, and else statements, the levels go like this:

if #1
elif #2
if #3
elif #4
else #5
elif #6
else #7

149

CHAPTER 5} Control Flow

Looking at the blocks, you have an outer block and an inner block. The outer block is made up
of statements 1, 2, 6, and 7. Notice that there is only a single i f and a single e1se in that
grouping. That is the most of each that you can have at any level. The inner block consists of
statements 3, 4, and 5. Once again, there is one i f and one else statement in the block. In
the outer block, you have two e11i f statements: 2 and 6. You can have as many of these as
you want.

Wrapping Up the Conditionals: A Cool Example

That really wraps up all of the functionality available in the conditionals in Python. We will look
at some other uses for at least one of the statements here, the else statement, when we talk
about looping, since it is used there as well. However, before we leave the subject, let's look at
areally cool example, using some of the functionality that you've learned in this chapter and
the last chapter.

Imagine, for a moment, that you are writing some sort of a command driven system. The user
enters a command, and you then invoke a given function based on that command. Let's say,
for argument’s sake, that you have three commands possible. You have print, copy, and
exit. Certainly, you could add new commands to the system, but for now we’'ll stick to those
three. Let's just assume that there is a way to input the command into the system. We are merely
concerned with writing a chunk of code that processes the command. We'll further assume that
there are three functions already written by someone else that do the actual work. We'll call
those three functionsprint_function(),copy_function() andexit_function ().Very
original, isn't it?

Given the code that you've already seen in the sections above in this chapter, you could write
something like this:

if command == 'print'
print_function ()
elif command == 'copy'
copy_function ()
elif command == ‘'exit'
exit_function()
else :

print "Invalid command"

Now, this code will certainly work. If you enter avalid command, it will call the proper command.
However, it suffers from a very annoying flaw, in my opinion. Each time you want to add a new
command, you have to add a new block to the i f statements. The if block can very quickly
become long and unwieldy, and is going to leave you prone to mistakes. What if you could
replace all of the comparison and processing logic to four lines, and could extend that logic

150

Conditionals

infinitely without having to modify those four lines? Would you be interested in something
like that? Of course, you would. But wait, there’s more! Hmmm. Why do [suddenly feel like a
late-night TV salesperson? Oh well. We are going to use a bit of functionality that we learned
inthe last chapter, by using the dictionary datastructure to implement all this. Now what would
you pay for all of this? Oh, wait, sorry. Anyway, take a look at this code:

def copy_function/()

print "copy function"

def print_function/()

print "print function"

def exit_function ()

print "exit function"

Definition piece.

func_dict = {}

func_dict["copy"] = copy_function
func_dict["print"] = print_function
func_dict["exit"] = exit_function

Processing piece

command = input ("Enter command: ")

if func_dict.has_key (command)
func_dict[command] ()

else :

print "invalid command: "+command

As you can see, the processing code for this entire script is, as promised, only four lines long.
The definition piece, which can be expanded as much as you need it to be, sets up a dictionary
and then adds commands to it. The value part of the dictionary is the function to invoke. How
can this work? Well, as you might recall, in the previous chapter we said that the key could be
anyvalid immutable Python data type. That certainly is the case here, with the key beinga string
value. The value part of a dictionary entry does not have to be an immutable entity within
Python. A function is most certainly an immutable thing; you can't change it without modifying
the code and reloading it. As a result, Python is more than happy to allow you to store functions
in dictionary values. Of course, you aren't really storing the function there; instead, you are
storing a reference to the function. When you retrieve the function reference by getting

the key value, you then apply the function call syntax [function ()] to it, and Python does

151

CHAPTER 5} Control Flow

the rest. The only reason this works is because Python is an interpretive language. Any other
language would, at the very least, require a bunch of casts and conversions before it would let
you try something like this.

Let's try the thing out and see if it works as advertised:
1. Create a new file in Python using the IDLE editor’s File | New Window command.

2. Enter the code above into the new window and select File | Save. Save the file as
ch5_2.py in the directory of your choice.

3. Press the F5 key or select Run Module from the Run menu of the Editor window.
4. Enter a command when prompted.

5. Repeat steps 3 and 4 until you are satisfied that the script works the way it was
promised to.

6. You should see something like the following dialog displayed in the console window of
IDLE:
Enter command: 'print'

print function

Enter command: 'print'

print function

>>>
Enter command: 'copy'

copy function

>>>
Enter command: 'exit'

exit function

>>>
Enter command: 'fred'
invalid command: fred

>>>

As you can see, it works! Now there is something you aren’t going to find in the average intro-
duction to Python Web page.

152

sl ssls 5l
B Bk Bk

Loops

Loops

Modern programming languages all contain some sort of looping mechanism. Some contain
quite a few different varieties, from for loops, to do loops, to while loops, to repeat
until loops. Python contains two varieties of looping constructs. First, there is the for loop,
which is the main workhorse for looping. The for loop in Python can do pretty much anything
any other sort of loop can do, and then some. If that were not enough, Python contains the
whileloop, which is more of a conditional looping structure than anything else. In this section,
we will take a look at the two kinds of loops and how they work in Python.

The for Loop

The for loop is the basic looping structure in Python. The for loop is used for a lot of things,
but primarily it is a “foreach” style loop, always working its way through a set of data values. If
you are accustomed to working in another language, such as C or C++, you may be used to a
for loop structure looking something like this:

for (int i=1; i<10; ++1)

// do something.

The basic structure of a for loop (or do loop, in some languages) in most languages is three-
phase. First, there is an initialization step. Next, there is a termination clause. Finally, there is
an incremental stage. The initialization step sets the starting condition for the loop. For exam-
ple, in our C++ example above, the index variable 1 is initialized to one to start the loop. The
termination clause is the middle conditional section of the loop, and is checked each time the
loop is entered from above or by looping back. While the condition is True, the loop will con-
tinue. In our example, the loop continues until the value of i exceeds nine. Once it hits 10, the
loop will exit. Finally, we have the incremental phase, where the index value (and any other
values) is modified each time through the loop. You can think of the C++ for loop as looking
like this:

index = initial_ value;
target: do_something
increment index

if index < final_value go to target

This is the style of most looping constructs in programming languages. Python, however, takes
a slightly different approach to the loop mechanism. In Python, the for loop looks something
like this:

for value in setofvalues :

do_something

CHAPTER 5} Control Flow

As with all other Python block-oriented statements, the for loop executes all of the statements
that are indented within it while it is running. Naturally, you can have all sorts of other state-
ments in that block, including conditionals and other looping constructs. Here is the simplest
example of a Python for loop:

>>> for i in 1,2,3,4,5 :

print i

(O 2 O S

The above loop will execute, as you can see, five times. There are five values in the set of values
to work with, so it goes through each of them once. There is no notion of incrementing the
loop, nor of a terminating clause to speak of. You can drop out of a loop, but you cannot
change the processing order of it. By the way, I lied. The absolutely simplest form of a loop
would be the following:

>>> for i in 1,2,3,4,5 :

pass

The pass statement in Python does just about what you would expect it to. It means “pass this
line without doing anything.” The pass statement is a placeholder when you must have a valid
statement in place, but don't want the code to do anything. If you are accustomed to other

languages, it is the equivalent of a line containing nothing but a semi-colon in C, C++, or Pascal.

So, ifall you can do with a for loop is loop through a bunch of values, what good is it? Actually,
it is quite useful. You don't have to list every value in the set of values over which to execute;
instead, you can use a variety of other alternatives. Let's look at a few of these.

The range () function will allow you to define a set of values over which the for loop can
execute, as long as your value list is in sequential order. For example, let's imagine that you
want to add the numbers from one to a given value. The range() function accepts two values,
a starting and ending value, and generates a set of numbers between those two numbers,
inclusively. So, if you wanted to add the numbers from one to 10, you would create a for loop
like this:

Loops

>>> total = 0
>>> for i in range(1l,10)

total = total + 1

>>> print total
45

If you sit down with a calculator and add the numbers from one to 10, you will find that the
result is incorrect. The actual value for adding all of the numbers from one to 10 is 55, not 45.
So what happened? The answer isn't that complicated. The actual syntax of the range function
is as follows:

range (start, stop [,step])

You don't have to specify astep value; one will be assumed if you don't tell it otherwise. However,
the start value is where the range begins, and the stop value is the number at which to stop
before adding another to the range. If you really want to generate the full range of numbers
from one to 10, you have to add one more to it. Remember, Python is zero based. So what you
really want is this:

>>> total = 0
>>> for i in range(1l,11)

total = total + 1

>>> print total
55

As you can see, the range is now correct, and the value generated is what was expected.

You don't have to use the range statement. The for loop also works on lists. In this case, it is
reallya foreach loop, working its way through all of the values in the list. For example, suppose
that you wanted to multiply three numbers together. You could do this:

mtotal = nl * n2 * n3

However, if you want to add new numbers to the list to multiply, this could get ugly in a hurry.
Let's use a looping construct to do it instead:

>>> nums = [1,2,3,4]
>>> mtotal = 1

>>> for i in nums :

I55

CHAPTER 5} Control Flow

mtotal *= i

>>> print mtotal
24

Now, if you want to add new numbers to multiply by, you simply add them to the end of the

list. Let's take a quick look at the for loop usage here, to understand what is really going on.

Note that we use the “in” operator. Each time through the loop, the loop variable i is assigned
the next element in the list. The first time through the loop, the i variable is 1, the next time
it is 2, and so forth until it reaches the end of the list. Unlike the range () function, looping

through an list will process each and every element in the array.

It might appear that you can only use this construct on numeric lists, but nothing could be
further from the truth. In fact, Python allows you to process any type of list in a for loop. For
example, suppose that you wanted to print out the letters of a string individually. Remember
that a string is really just a sequence of characters, so:

>>> s = "this is a test"

>>> for i in s:

print i

d n O

Before continuing, there is one more aspect of the for loop that is worth mentioning. As you
may remember, | said originally that you could loop through a list of values on the for loop
line:

156

Loops

for 1 in 1,2,3,4,5 :

do something
There is no requirement whatsoever that the numbers be in order, nor do they have to be
consecutive:

>>> for i in 1,3,2,5,4,400 :

print i

[2 N N R O R

400

Naturally, you can nest loops. Imagine, for a moment, that you wanted to determine all of the
prime numbers between one and 10. A prime number, you may recall from school, is a number
that is divisible only by one and itself. It turns out that you can determine if a number is prime
by trying to divide it by all the numbers between one and itself divided by two. You can deter-
mine all of the prime numbers between one and a given number by two loops:

for n in range(2, 10):
prime = True
for x in range (2, n):
ifn % x ==
prime = False
if prime == True :

print n, " is a prime number"

If you run the above little script in the interpreter, you will see the following output:

is a prime number

2

3 1s a prime number
5 1is a prime number
7

is a prime number

As you can see, the nested looping structure works quite well, and is an important part of the
Python programming language. This example, however, is quite inefficient. Even after it deter-
mines that a given number is not prime, it continues to find factors that divide into it. This

seems rather silly, because it should probably stop processing the inner loop as soon as it finds

I57

CHAPTER 5} Control Flow

that a number is not prime. Not surprisingly, Python provides a way in which to accomplish
this, the break statement:

for n in range (2, 10):
prime = True
for x in range(2, n):
if n % x ==

prime = False

break
print "Inner loop: ", X
if prime == True
print n, " is a prime number"

The break statement stops the processing of a loop and “breaks out” of it when the statement
is encountered. I've added a print statement to the inner loop so you can see what is going
on while the loop executes. If you look at the output from this script now, you'll see what I
mean:

2 1s a prime number

Inner loop: 2

3 1s a prime number

Inner loop: 2

Inner loop: 3

Inner loop: 4

5 1is a prime number

Inner loop:
Inner loop:
Inner loop:

Inner loop:

o Ul W N

Inner loop:
7 1is a prime number

Inner loop: 2

As soon as a factor that the number divides by evenly is found, then the loop stops. That is the
purpose of the break statement. On the other hand, you might want to run through a loop
and only process certain numbers. Let's say that you want to process only the odd numbers in
a given range. You might write something like this:

for i in range(1,11)
if 1 &1

print "Processing ", i

158

sl ssls 5l
E R F

Loops

print "Doing something here"
else
print "NOT processing ", i
Now, if your code is just doing this, there is no particular reason not to write the code this way.
If you execute this code, you will see the following output from the interpreter in IDLE:

Processing 1

Doing something here
NOT processing 2
Processing 3

Doing something here
NOT processing 4
Processing 5

Doing something here
NOT processing 6
Processing 7

Doing something here
NOT processing 8
Processing 9

Doing something here

NOT processing 10

It isn't always that ideal to have to do things this way, however. If you want to simply skip to
the next value in a for loop, Python provides a simpler way. The continue statement allows
you to skip to the next iteration of the loop:

for i in range(1,11)
if 1 & 1 == 0:
continue
print "Processing ", i

print "Doing something here"

This code is considerably easier to read, and doesn'’t require that you remember to indent each
line within the i £ statement properly. The output from this, with the exception of not printing
out the “not processing” entries, is exactly the same as the previous example, but the code is
shorter and more efficient. The continue statement drops to the bottom of the loop and
continues with the next entry in the range that is being processed. This example also shows
how the i f statement can be used within a Python for loop to do individual processing on
range elements.

9

CHAPTER 5} Control Flow

The final keyword that is important to the for loop structure is, oddly enough, the else
statement. As you have seen, there are two ways for a for loop to terminate. First, it can run
through all of the values assigned to it to process. The for loop can also exit because you
inserted a break statement, which was processed during the running of the code. If you want
to know whether or not the break statement was processed, you can either insert some sort
of signal variable, as we did in the prime number case, or you can use the else statement. Let's
take another look at the prime number loop, this time using the e1se statement:

for num in range (2, 10):
for x in range(2, num) :
if num % x == 0:
break #1
else: #2

print num, 'is prime'

For each iteration of the inside loop, one of two things can happen. The first thing that can
happen is that a number will be evenly divisible by one of the numbers that leads up to it. In
this case, the break statement will be executed. The second thing that can happen is that none
of the numbers leading up to the number in question will be evenly divisible. In this case, the
loop will terminate normally. However, when the loop finishes, the interpreter will execute the
else statement, because nothing interrupted the flow of the loop. This might seem a tad
counterintuitive. Normally, the e1se command is executed when something doesn’t happen
the way you expect, and a loop flowing through all of its values is the normal behavior. Hey,
nobody said everything had to make perfect sense. The e1se clause will only be executed when
the normal behavior of the loop is followed. In our case, if the loop finishes normally, we didn’t
find a factor of the number, so it must be a prime number. In this case, we print out the fact
to the user:

>>>
2 is prime
3 is prime
5 is prime

7 is prime

You'll find that the for loop is an amazingly versatile and powerful tool in your Python arsenal.
You should get quite used to using it, since we will be relying on the power of this construct
quite a bit through the rest of the book.

Oh, one last note on the for loop. The behavior of the loop is set at the time you define it, and
it is not safe to modify the contents of the range you are processing over. That is, if you do
something like this:

160

Loops

arr = [1,2,3,4,5]
idx = 0
for i in arr :
if i &1 :
del arr[idx]
idx = idx + 1

..then you are just asking for trouble. The odds are good that it will work, most of the time. The
problem is that if it doesn’t work, you are stuck with a program that crashes intermittently with
no real indication of what the problem might be. If you have to do something like this, make
a copy of the array by using the slicing operator:

arr = [1,2,3,4,5]
idx = 0
for 1 in arr([:]
if i &1 :
del arr[idx]
else:
idx = idx + 1

Notice that you now only increment the index if the value was not deleted. That's because the
array was modified when the index was deleted, and the index will not be pointing at the proper
place. This is the problem with in place modification of an array in a loop. Oh, and finally, the
break and continue statements can be used outside of simple loops, in i f statements, and
other places such as the while loop, which we will talk about now.

The while Loop

The final construct we are going to look at in Python is the whi1e loop. Nearly all languages
have something equivalent to thewhi 1e loop. Put simply, the while loopisalooping construct
that continues to execute while a given condition is True. In its simplest form, the while loop
looks like this:

while (something)

do something

For example, let's imagine that you want to count upward from a given number until you run
across a number that is evenly divisible by 3. Since you do not know how many values might
be involved, the for loop is not a good choice. Instead, you use the while loop to process
numbers until the condition is satisfied:

>>> gstart = 5

>>> while start % 3 != 0 :

161

CHAPTER 5} Control Flow

print start

start = start + 1

5

In this case, because the very next number in order happens to be divisible by three, the loop
terminates very quickly. However, if you started at 10 instead:

>>> gstart = 10
>>> while start $ 3 != 0 :
print start

start = start + 1

10
11

In this example, there are two numbers between the starting value and the terminating value.
This kind of thing is harder to do with a for loop, because the ending point is not well known.
The for loop doesn't really have a condition for an open-ended terminator, whereas the
while loop doesn’t have a condition for a particular ending. When you think about a loop, the
best way to approach the decision of which looping structure to use is to decide whether or
not you know exactly when it will end. If you know the ending value, use a for loop; if you do
not know the ending value, use a while loop instead.

There is one very serious warning about the while loop construct in Python. Unlike the for
loop, there is no way for the interpreter to determine when, or whether, a whi1e loop will exit.
There is no valid way to create an infinite loop using the for loop construct. With a while
loop, unless you are very careful, you will easily create loops that cannot possible exit. Consider
the following, very simple, example of an infinite loop using the while construct:

>>> i =5

>>> while 1 < 10 :

print i

5
5

5 <this line repeats forever until you hit control-c in the editor>

162

3 gk ak

Loops

Why does this happen? You told the interpreter to continue printing inside the loop until the
value of i equaled 10 or more. The problem is that you never changed the value of the variable
inside the loop. The while loop contains no automatic incrementing facility, so the value of
the variable stays the same forever.

The other potential problem in Python whi1e loops is the loop that never actually executes.
Consider the following, simple example of such a loop:

>>> while False :

print "In Loop!"

This loop never prints out “In Loop!” or anything else when you enter it into the interpreter
window. The condition for which it executes is never True, so the loop itself is ignored. This
might seem like a strange thing to allow, but it can happen in less obvious ways. If you write a
loop that has a variable condition such as this, you can see what I'm talking about:

while !done :

do something

This loop might execute once, it might execute a number of times, or it might execute forever.
It is impossible to say, without knowing what the value of done is before the loop is entered,
and what happens to the value of done within the loop.

The Python while loop is an extremely powerful construct, but one that needs to be used with
considerable care. Always study the terminating condition of your loop and make sure that you
know what will cause it to end, and whether or not that condition can ever be met. The most
dangerous of all possibilities is a logic error that leads to an infinite loop in your code. As a
bonus, here’s a loop that looks perfectly safe, but will never end under a certain circumstance.
See if you can figure out what the circumstance is before you look at the answer:

while value != 0 :

if value & 1 :

print "Value ", value, " is odd "
else :

print "Value ", value, " is even "
value = value - 1

Can you figure out what value of “value” will cause the problem? Give yourself a gold star if
you said a negative number. If the value variable is initially set to, say, -1, the loop will
continue more or less endlessly. I say more or less, because eventually it will loop around to a
number that is too big to be negative (yes, this actually makes sense) and will become positive.
At that point, the decrement will eventually take it down to 0, and the loop will terminate.

CHAPTER 5} Control Flow

However, this is a condition you really don’t want to wait for—it could take years. Be careful
with your loops!

In Conclusion

The difference between a simple first-generation programming language and a more advanced
second-generation or later programming language is the ability to interrupt the flow of a pro-
gram, to change the flow, and to repeat instructions. In Python, the two methods we looked at
for interrupting the flow of behavior were conditional statements and looping statements. We
looked at the i f statement, the for loop, and the whi1e loop, as ways to change the behavior
of a program at runtime.

The ability to perform statements conditionally in a scripting language makes that language

immensely powerful. You can customize code based on user preferences, or security concerns,
or anything else that your little heart desires. Likewise, the ability to perform looping within a
program means that you can repeat a process until you are happy with the result, or until the
end user tells you that he is satisfied with the outcome. In either case, it is a lot nicer to be able
to do something “n” times until the user says “stop” than it is to make the user start and stop

o n

a process “n” times.

That about covers all of the basics of Python. We've done allittle bit of real programming, written
some scripts that perform real tasks, and learned about the components of the language. In
our next chapter, we will cover that most wondrous of all topics: the input and output of data
in a Python program.

Input and Output

From the programmer’s viewpoint, a programming language is all about the code: how easy it
is to read, how easy it is to accomplish the task at hand, and how good are the tools that come
along with the language. From the user’s perspective, however, it doesn't matter what the
language is. What matters is how they get information into an application, and how the infor-
mation they get back is presented. As a result, the input and output features of a language are
key in the user's eyes, even if they aren’t quite as important to the developer. In this chapter,
we will explore some of the basic input and output functions of Python. This chapter does not
discuss graphical user interfaces, which will be discussed later in the book. Instead, we will focus
on the programmer’s interface to user input and output. You will learn about displaying simple
data, getting information from the user, formatting the data so that it looks nice, and then
working with files. We'll discover how to open and close files, how to read and write using files,
and how to work with the operating system to discover what files and directories exist on the
user’s machine.

User Input

Without user input, the computer world would surely be extremely boring to the end user. It
is all very nice to watch data endlessly scroll across the screen, as it always seems to be doing
in bad technology movies, but unless you have some control over what information is doing
the scrolling, it really doesn't help you a lot. In order to have any sort of control over what comes
out of the system, you have to have some control over what goes into the system. That system
input is usually in the form of the user being prompted for information and entering the
requested information into the system in the easiest and most straightforward method possible.

The two most basic functions provided with the Python environment are input () and
raw_input (). These two functions will do most of the work you need to do, at least when
working in a Command Line environment. Remember, however, that Python is not a strongly-
typed language. You can reference any sort of data from a variable, and the language will not

CHAPTER 6} Input and Output

do anything to stop you. This same approach tends to apply to the more simplistic input and
output functions. You can input pretty much anything from the command line, because the
language really does not care. The two functions we will be discussing now simply output a
prompt and wait for the user to enter a string. They do no range, bounds, or syntax checking,
nor do they worry about how long the string is going to be or what sort of variable you are
going to utilize for storage of the string. All of the details of the input are left to the programmer.
This can be a good, or bad, thing depending on how you look at it. For now, let's not worry
about the details of the implementation, but let’s just focus on getting some information into
a Python program, so that you can work with it in your scripts.

The input Function

The input () function is the first of the ways in which you can get data from the user in Python
Command Line programs. The syntax of the input function is really quite simple. It looks
like this:

<return> = input ("<prompt>")

Where:

prompt is a string that will be displayed for the user to view, which should give some sort of
indication of the usage and type of data you are expecting.

return is the returned value from the function. This will be the evaluated version of whatever
is input. Normally, you assign the return value to a variable, although you may not always
do this.

In its simplest form, without worrying about the returned data from the user, the input ()
function can be used to indicate that the user should do something. For example, consider the
following small Python script, which outputs a series of data points and then waits for the user
to read them before going on:

for i in range(0,50)
if 1 $ 10 == 0 and 1 != 0 :
x = input ("Press return to continue")

print i

If you run this little scriptlet, you will see that it runs in the IDLE interpreter and generates
output that looks like this:

0
1
2
3

User Input

W 00 J o Ul >

Press return to continue'
10
11
12
13
14
15
16
17
18
19

Press return to continue

You will notice that in order to handle the Return key input from the user, you are forced to
have the user enter a single space in quotes. The reason for this is that the input () function
expects the user to input either a string or a variable. For example, consider the following
interactive session:

>>> ¢ = 'hello world'

>>> x = input('enter a value: ')
enter a value: c

>>> print x

hello world

That seems rather odd, doesn't it? We typed in the letter “c” into the input field, and yet the
variable x that was assigned the return from the input () function got the value hello
world. That can't be right, can it? The answer is, yes, it can. The input () function allows you
to enter variable names, and it inserts the variable value into the input string. Why does it do
this? The answer is somewhat convoluted. The actual definition of the input () function is
that it is the same as eval (raw_input (prompt)), at least according to the Python docu-
mentation. The input value from input () is really expected to be any valid Python expression.
That means it can be a variable, an expression, or a string. Let's look at an example to illustrate
exactly what we are talking about here.

167

CHAPTER 6} Input and Output

>>> x = input ('enter a value: ')
enter a value: 1+2+3
>>> print x

6

As you can see, the input is not the string “1+2+3", but rather the evaluation of the expression
“1+2+3", which happens to be the integer value 6. As you might have guessed, the input ()
function was written for Python programmers by Python programmers. It really isn't intended
for getting simple input from the end user. When you want to get input from the end user, you
should probably choose the raw_input function, which we will look at next. Remember,
Python is primarily a scripting language. It was not intended for general-purpose user input
and work. Instead, it was meant to make it easier to develop scripts that could quickly and easily
work to accomplish simple tasks. As the popularity of the language has grown, so have its
capabilities, adding a GUI interface, working with databases, and all of the other topics that you
will learn about later in the book. At the core, however, Python is still that simple scripting
language.

The raw_input Function

The raw_input () function is a better choice for getting simple information from the user.
Imagine, for example, that you want to have the user simply press the Return key to continue.
You might be scrolling information across the screen and want to pause it so that the user can
see what is going by. Or you might be displaying an error message before going back to pro-
cessing, or perhaps to exiting, the application. Whatever the reason, what you want is the ability
to output a string, have the user press the Return key, and then continue. This is one of the
best uses for the raw_input () function:

>>> raw_input ("Press return to continue")

Press return to continue

You can also prompt the user for some sort of input and retrieve it with the raw_input func-
tion. In fact, even when you don’t enter anything, the system does retrieve the value. As you
can see, just below the prompt line above, the interpreter has printed out what you typed in,
since you didn't assign it to a variable. In IDLE, the interpreter always prints out the return value
of a function when it is finished executing, unless that return value is assigned to a variable.
So, if we do this:

>>> raw_input ("Enter your name: ")
Enter your name: matt telles

'matt telles'

168

User Input

You can see that the interpreter received the value of my name and then printed that value out
to the console because it wasn't used. Now, on the other hand, if we do this:

>>> name = raw_input ("Enter your name: ")

Enter your name: matt telles

You will notice that in this case, nothing was printed out, because it was assigned to the
name variable in the application. We can print out the value of the variable in the IDLE
interpreter:

>>> print name

matt telles

As you see, the name was stored referenced by the variable. How do you deal with numbers?
The answer is that raw_input () does not deal with numbers, at least not directly. Look at this
example:

>>> x = raw_input ("Enter your age: ")
Enter your age: 45

>>> print x

45

>>> print x + 2

Traceback (most recent call last):
File "<pyshell#ll>", line 1, in <module>
print x + 2

TypeError: cannot concatenate 'str' and 'int' objects

In the above code, the “age” is input, but it is stored as a string. When you try to manipulate
that variable as if it were a numeric entry by adding the value two to it, you get an error, because
you can't add a number to a string. So, how do you make the age value into a string? The answer
is by conversion. For an integer value, for example, you use the int () function:

>>> x = int (raw_input ("Enter your age: "))
Enter your age: 45

>>> print x

45

>>> print x + 2

47

CHAPTER 6} Input and Output

Likewise, you can convert floating point numbers using the f1oat () function:

>>> x = float(raw_input("Enter a floating point number: "))
Enter a floating point number: 55.2
>>> print x

55.2

You might wonder what would happen if I entered a value that was not in the proper format
for the conversion type I selected. Imagine that [wanted the user to input a number in integer
format, and he entered the string representation of the integer, like this:

>>> x = int(raw_input("Enter a number from one to five: "))

Enter a number from one to five: one

Traceback (most recent call last):
File "<pyshell#17>", line 1, in <module>
x = int(raw_input ("Enter a number from one to five: "))

ValueError: invalid literal for int() with base 10: 'one'

As you will see when we talk about exceptions and exception handling in Chapter 8, there
are ways to handle this sort of problem. For now, just be careful when you enter a value to
make sure that it is in the right format for the variable type you are expecting in the Python
script.

From the perspective of simple input, the input () and raw_input () functions are what are
available to you in Python, and for the majority of simple cases, they are enough. When you
need something more advanced than this, there are a couple of other choices. One is file-
handling input, which we will discuss in this chapter. Another is GUI input, which we will talk
about in Chapter 12.

User Output

It only makes sense that if you can input data from the user, you will want to output data to
the user. Python supplies a number of ways in which to output data. The most basic one is the
print statement, which we have been looking at throughout the book. The general form of
the print statement is:

print expression|,]
where expression can be any valid Python expression, from a variable name to an evaluated

formula, to a simple string. The print statement normally outputs a carriage return at the end
of its processing, unless the last character on the print line is a comma.

170

3 gk ak

User Output

For example, you might write some Python code that looked like this:

print "This is one line"
print "This is on a line",

print "But so is this"

The first line contains no trailing comma, so it will be output and then followed with a carriage
return. The second line contains a trailing comma, so it will be output and no carriage return
will follow. The third line will be output on the same line as the second, and will terminate with
a carriage return. In fact, if you enter the code above into an Editor window in IDLE and then
run it in the interpreter, you will see the following output from your script:

>>>
This is one line

This is on a line But so is this

Isn't it nice when things work the way they are expected to? The trailing comma, by the way,

is intended for use in applications in which you want to build up an output string, such as in

reports, or error processing, where you want to output some text, then do some work, but have
it all look like a single line to the end user.

You can print the value of a variable using the print statement, and the value of the variable
will be displayed for the user:

>>> x = 42.7
>>> print x

42.7

You can combine string literal with variables to display information for the user, such as show-
ing them the name of the variable along with the value of that variable, as follows:

>>> print 'x = ', X

x = 19

An important rule to remember is that the print statement takes a single expression. This
expression must be a valid Python statement, and it cannot break any of the rules in the inter-
preter. Thus, you can append strings together in the expression using the “+" operator, but you
cannot append an integer to a string. Instead, you must use the comma operator “,” to display
different data types together, as you see in the example above. If the variable x contained a

string, that would be a different matter. Strings can be concatenated with the “+" operator:
>>> x = 'hello world'
>>> print 'x = '+x

x = hello world

171

CHAPTER 6} Input and Output

Ifyou want to use special characters in your output, you need to escape them with the backslash
character. Special characters for an output string would include quotation marks, for example:

>>> print 'x = \"'+x+'\""'

x = "hello world"

Note the use of the backslashes in the string to indicate to the interpreter that you want the
quote marks to appear in the output, and not be used for delimiting strings. The print state-
ment isn't very complicated, nor is it very smart. The only thing that remains to discuss with
respect to the print statement is the issue of formatting.

Formatting

The print statement in Python supports a limited form of formatting. You will probably not
see a lot of good examples of its formatting capabilities, simply because it is really quite con-
fusing to use. Here is an example of formatting a string:

>>> print "There are %(#)03d entries" % { '#' : 3 }

There are 003 entries

Yes, it really looks like that. Here's the scoop on formatting. In order to use formatting in a
print statement, you first have to use a name for the item you are going to format. In the
example above, the “name” is the “#" character in the left-hand string portion of the print
statement, for example, the part that reads “There are %(#)03d entries.” The 03d means that
you are printing out an integer value, that it should be displayed as three digits, and that it
should be zero filled for any portion of the three digits that would otherwise be blank. In other
words, if you have fewer than three digits, you get zeroes on the left-hand side. Table 6-1 shows
the various permutations of the value and the output string:

Table 6-1 Output Options for print Statement

Value Range Output
0-9 00n
10-99 Onn
100-999 nnn

As you can see from the table, if you have a number from zero to nine, you get two zeroes plus
the number. A number from 10 to 99 has one zero plus the number, and anything over 99
displays the number itself. What if you have a number bigger than the three digits you allowed?

>>> print "There are %(#)03d entries" % { '#' : 1103 }

There are 1103 entries

172

User Output

The answer is that the print statement considers the formatting width to be more of a guide-
line than a rule. If your number is too big to fit in the formatting specification, it will be output
normally, since it is assumed that you cared a lot more about the value of the number than the
width of the space it is going to print in.

You can specify names of variables in the list, as well as the special character “#.” For example,
suppose that you want to output the last name, first name, and middle initial in a print
statement, all formatted to a specific width:

>>> print '$(first)20s %$(last)30s %$(middle)2s' % {'first':"matt", 'last':
"telles", 'middle':"a"}
matt telles a

As you can see, the various components of the name were carefully aligned to the widths you
specified in the print formatting statement. The key to the formatting, by the way, is the “%"
sign following the initial formatting string. This tells the interpreter that the remainder is to
be formatted using the dictionary that follows. You might wonder, since the second half of the
formatting string is a dictionary, whether or not you can use a variable there instead of a hard-
coded list of values. You may absolutely do so, as you can see in this example:

>>> names = { "first":"matt", "last":"telles", "middle":"a" }
>>> print '$(first)20s %(last)30s % (middle)2s' % names

matt telles a

Once you understand that you can do things like this, the formatting options in the print
statement make a bit more sense. The next thing you might wonder is what sort of formatting
options exist. Table 6-2 shows the formatting string options and what they mean to the
print statement.

Table 6-2 The Formatting Options in Python

Conversion Character Meaning

Signed integer decimal

Signed integer decimal (same as “d")

Signed octal decimal

Unsigned decimal

Unsigned hexadecimal (displayed as 0x)

Unsigned hexadecimal (displayed as 0X)

Floating point exponential (displayed as e”power)
Floating point exponential (displayed as E*power)
Floating point decimal

Floating point decimal (uppercase)

M h M D X X o O T

173

CHAPTER 6} Input and Output

Conversion Character Meaning

g Floating point format. Uses exponential if power is greater than -4 or less than
precision, decimal format otherwise.

G Floating point format. Same as “g” but uses uppercase

c A single character (integer or character string)

r String (converts any object using the repr () function).

S String (converts any object using the str () function)

% No argument, results in a % sign in the output string.

To get an idea of how these work, consider the following simple example:

>>> print '$(vl)x $(v2)Ef %(v3)e' $ { 'vl':12, 'v2': 25.4, 'v3': 45678.434 }
c 25.400000 4.567843e+004

You can output numbers in various formats. The first entry is the lower-case hexadecimal
version of the value “12,” whereas the last entry is the value “45678.434" in scientific notation,
using the lowercase version of the “e.” The remainder of the entries, hopefully, is obvious.

That's really all there is to say about formatting. When you are writing reports, or other fixed
size output, the formatting functions in Python can be useful, but they really are nothing to
write home about. You can accomplish the same thing with most of the string formatting
functions discussed in Chapter 3.

Justasalast note onthe matter, the formatting characteristics we have discussed are not actually
a part of the print statement. In fact, you can use them by themselves. Consider the following
statements in the IDLE interpreter:

>>> k = 'value'
>>> v = 'a string'
>>> x = "%s=%s" % (k, v)

>>> print x

value=a string

It might not seem obvious, but you do not need the names in the list. The formatting
functions will accept an array, but they have to be in the same order as the usage in the format
string. What the formatting statement is looking for is a tuple of values. A dictionary allows you
to order the tuple by name, and refer to it that way in the format statement, but it isn't a
requirement.

174

sl ssls 5l

File Input

File Input

Not all input into an application is from the user on the command line. Quite often, it is
necessary to read data from an existing data source, such as a file. Other forms of file input are
databases, but we will talk about those later in the book. For now, let's look at the basic file
functionality provided with Python and its libraries.

The first thing you need to understand is that a file object is a part of the basic Python library.
There are no imports necessary to work with files or their functions. Next, you need to know
how to create a file object to work with it. The file object is created in response to an attempt
to open or create a new file in the operating system. For our purposes, we are going to assume
that there is a file in the system that already exists. The following is the contents of my example
file; you can use whatever data you want for your own application.

This is a test

This is another test

This is a third line of the test that is fairly long and contains odd

characters &*" (~ ("

The purpose of this example is just to show that file input and output work properly in Python
and to illustrate some of the potential issues that might be expected to come up. This is far
from a comprehensive file full of strange characters and really long lines and blank lines and
such. The file contains some text, some non-alphabetical characters, and a single blank line,
just to illustrate how Python handles those cases.

So, how do you work with files? The first step is to open the file. This is accomplished through
the open () function. The open () function accepts two arguments. The first is the name and
path of the file to open for access. The second is the mode of access. Modes include reading,
writing, reading and writing, and whether or not the file is of text format or binary format. Our
open () statement looks like this:

infile = open("c:\\temp.dat", "r")

Note that the infi1le variable doesn't need to be defined anywhere, because it will come into
existence as soon as the statement is executed successfully. The infile variable is a “file”
object, and you can use the file methods with it. The open statement is a function call that
invokes a built-in function in the Python library. The first argument to the function is just the
complete path of the file you want to open. In my case, the file is stored on the root directory
of my primary hard-drive. The file name is “temp.dat,” for simplicity for me. You can call yours
whatever you want, and place it wherever you want. The final option, “r,” means that you are
opening the file for read access. There is actually one more option available, which is the buffer
size to use when loading the file, but in general you do not have to worry about that one.

yad

By w2

CHAPTER 6} Input and Output

The available modes for the open () function are as follows:

r—Opens the file in read access. Writing to the file will not be permitted. The file must
exist.

w—Opens the file in write access. If the file does not exist, it will be created. If the file does
exist, it will be truncated to a zero length.

a—Opens the file in append access. Both reads and writes will be permitted to the file. If
the file does not exist, it will be created. If the file does exist, it will be opened, and the
current position moved to the end of the file for writing.

b—Thebattribute is added to one of the above attributes, so you actually have rb, wb, and
ab. The b attribute indicates that the file is binary, for operating systems that treat binary
and text files differently.

If the open function fails, an exception is thrown, and the process stops. If, on the other hand,
the open function succeeds, the file is opened in the mode you specified and can be accessed
using the other functions in the file class. Let's look at a simple example that shows how to
work with the file object to read in the contents of a file.

1. Create a new file, using either the IDLE editor or the editor of your choice. Give the file
the name ch6_1.py.
2. Enter the following text into the ché_1 . py file:

infile = open("c:\\temp.dat", "r") #1
while infile:
line = infile.readline()
if line == ""
break
print line,

infile.close()

Ed A Note on File Naming Conventions

If you have chosen another name, or location, for the file, substitute the

file name of your choice in the line marked with the comment #1.

3. Save the file to a location of your choice by using the File | Save command.

File Output

4, Run the file in the interpreter by either selecting Run | Run Module in the Editor window
or by pressing the F5 key on Windows.

5. Observe the output from your new program. It should look something like this:

>>>

This is a test

This is another test

This is a third line of the test that is fairly long and contains odd

characters &*" ("~ ("

That's all there is to creating a file reader in Python. However, there is a considerable amount
more that you can do with the file object for a file, once you have it open. Table 6-3 shows a
list of the file methods and what they do.

Table 6-3 File Methods in Python

Method

flush

fileno

next

read(size)

Description

Flushes out the contents of the file to the operating system; useful for files opened
in write mode.

Returns the file descriptor number for this file. Really not useful for anything but
external functions that require it.

Uses the file object as an iterator and returns the next line in the buffer. Rather than
returning a blank line on end of file, it raises an exception.

Reads at least size bytes from the file if there are at least that many left to read.

readline Reads one complete line from the file. A line is defined to be the characters until a
newline character is encountered. The newline is included.

readlines Reads lines in one at a time until the end of file is encountered; then returns them
as a list.

seek Moves to a given position in the file, starting at either the beginning, the end, or the
current position.

tell Returns the current position in the file. The opposite of seek.

truncate Truncates the file to a given size

write Writes a batch of data from the application to the file.

writelines Writes out a list of lines to the file all at once.

File Output

We've already looked at the methods for reading lines from a file. The next thing to examine is
how to write data to a file. For this exercise, it makes sense to work with a real-world example.
Let's imagine that we need to be able to log information to a file while our program is running.

77

3k sk 3k

CHAPTER 6} Input and Output

Now, later on in the book, we would probably use a function that could be used anywhere.
However, for now, we will just use interactive statements to accomplish the task.

The process of writing to a file is three-fold. First, you need to open the file, specifying write
access to it in order to be able to output data into the file, instead of reading data from the file.
Next, you need to do the actual writes to the file, outputting whatever kinds of information
you want to output. Finally, you need to close the file, which flushes the data back to the
operating system disk files and frees up the memory associated with the file object in the Python
interpreter. It sounds like a lot to remember and do, but the reality is that it is very simple and
straightforward in Python.

1. Create a new file in the IDLE editor, or use the editor of your choice. Name the file
ché6_2.py.

2. Place the following code into the ch6_2.py file and save it.

log_file = open("c:\\debuglog.log", "w")

log_file.write("Starting program")

Prompt the user for data, reverse the string
and write it out to the console and log file
done = False
while not done:
s = raw_input ("Enter a string to reverse (exit to quit): ")
if s == 'exit':
break;
log_file.write("The user entered: "+s)
Reverse the string
sr = ""

for ¢ in s :

sSr = ¢ + sr
log_file.write("The reversed string is: "+sr+"\n")
print "The reversed string is: " + sr

log_file.write("Ending program") ;
log_file.close()

3. Run the script in the IDLE interpreter, using either the Run | Run Module command or
pressing F5 in the Editor window.

4. You should see an output session that looks something like this:

178

sl ssls 5l
E R F

Closing Files

Enter a string to reverse (exit to quit): fred
The reversed string is: derf

Enter a string to reverse (exit to quit): george
The reversed string is: egroeg

Enter a string to reverse (exit to quit): ralph
The reversed string is: hplar

Enter a string to reverse (exit to quit): exit

5. Now, examine the debug log file (c: \debuglog.1log). It should look like this:

C:\>type debuglog.log

Starting programThe user entered: fred

The reversed string is: derfThe user entered: george
The reversed string is: egroegThe user entered: ralph

The reversed string is: hplarEnding program

Notice that since we did not place a carriage return (\n) character at the end of the first
write statement, the debuglog does not contain a carriage return between the first and second
write statements.

As you can see, writing to a Python file really isn't very difficult. You can write out any type of
data you want to, simply by converting it into a string using either the repr () function or the
str () function, depending on your preferences. The repr () function returns a representa-
tion, which the interpreter can handle, while the str () function returns a human-readable
string representation. For example, if you had a value of 123.456 in a floating point variable,
you could convert it with:

>>> x = 123.456
>>> print str(x)
123.456

>>> print repr (x)
123.456

Closing Files

With earlier versions of Python, it was very important to close the file when you were done
writing to it. Closing a file when you are reading from it is a less important issue, since no data
can be lost if the file doesn’t change. However, with the version 2.5 release of Python and the
file library functions, it is less important to force the file to close. If you do not specifically call
the close function on the file object, then it will be automatically closed when the object is
reclaimed by the Python interpreter. This will happen when either the object goes out of scope,
or when the program ends, whichever happens first.

179

3k sk 3k

CHAPTER 6} Input and Output

Closing a file, however, is a good habit to get into. If you always rely on the interpreter to clean
up after you, and you continue to run the program forever, you may end up with serious memory
leaks that are not at all easy to detect. With files, failing to close a file will result in data poten-
tially being lost, especially if the program ends unexpectedly.

As aresult of these reasons, and just to be safe, always call the c1ose () method on the file
object when you are done with it. To do this, just call the method with no arguments:

fileObject.close()

Once you have closed a file, it is no longer available for either reading or writing, depending
on the mode in which it was opened. Using that file object after the c1ose method has been
called is an error.

Positioning in Files

Once upon a time, files were stored on sequential media, like paper tape and magnetic tape. It
was possible to write to files, then rewind the tape and read from them. However, writing to
the file, then moving back and reading it while the program was running was, at best difficult,
and at worst impossible. Quite often you had to request that a tape be remounted for writing
by a human operator. Fortunately, those bad old days are long behind us now.

Python, like most programming languages, supports the ability to move around randomly
within a file. You can jump to a given position, read some data, then jump to a new position
and either read or write more data. The operating system deals with extending the file, moving
blocks around, and making sure that everything stays in sync. This has led to the use of files as
“conduits” of data in applications, especially when the data is being written on one end, and
read on another. In addition, it has made it possible to skip around a file to read pieces of it
only when you need to.

The Python functions for moving around a file are taken from the “C” programming language
libraries. The two functions you should care about are seek () and tel1 ().The seek function
positions the file “cursor” at agiven place, at which point all reading and writing will commence.
The seek function has the following usage:

seek(offset[, whence)]

The offset parameter is a long integer representing the number of bytes into the file to move
the cursor. The actual position is a combination of the offset and the whence parameter.

The whence parameter specifies where the offset should begin from. By default, this parameter
is set to 0, which indicates the beginning of the file. You can also use the values 1, which means
from the current position in the file, or 2, which means the end of the file moving backwards.

180

Positioning in Files

For example, if you opened a file and wanted to move to the one-thousandth byte before
reading, you would do the following:

fileObj = open(fileName, "r")
fileObj.seek(1000)

Since the whence parameter defaults to the beginning of the file, this statement will always
move to the position one thousand in the file. Note that if the position does not exist, such as
being before the beginning of the file or after the end, the position will be set to the closest
legal place, such as the start or end of the file.

The te11 function, on the other hand, returns the current position in afile. The offset returned
will always be usable by the seek function to return to a given position. This brings us to an
excellent example program to use for seeking around files. We will write a little script that
prompts the user for a file name and a keyword to search for, and then returns all of the lines
in the file that contain that keyword. The user can then go to the individual lines by entering
the number, and viewing the text at that line position.

1. Create a new file, using either the IDLE editor or the editor of your choice. Give the file
the name ch6_2b.py.

2. Enter the following text into the ch6_2b.py file:

Read in the lines, looking for that keyword. If we

find it, add the line number and position to the list
lineNo = 0

linesFound = []

done = False

while not done :
pos = inFile.tell()
sLine = inFile.readline()
if sLine == "" : # end of file
done = True
break

if sLine.find(sKeyword) != -1 :
Print out the line number
print "Found at line: "+str (lineNo)
Build a tuple to store the info
tTuple = lineNo, pos

181

3k sk 3k

CHAPTER 6} Input and Output

linesFound.append(tTuple)

lineNo = lineNo + 1
Now, see what they want to do.
done = False
while not done
command = int(raw_input ("Enter the line you want to view: "))
if command == -1
done = True
break

see if we can find it in the list

for tT in linesFound

if command == tT[0]

Go to that line

inFile.seek(tT[1])

Read in the line again

lLine = inFile.readline()

print "The line at position " + str(tT[1l]) + "is: " + 1lLine

3. Save the file to a location of your choice by using the File | Save command.

4. Runthe file in the interpreter by either selecting Run | Run Module in the Editor window
or by pressing the F5 key on Windows.

5. Observe the output from your new program. It should look something like this:

Enter
Enter
Found
Found
Found
Found
Found
Found

Enter

the file

name to search: d:\PythonBook\ché6_3.py

the keyword to find: done

at line:
at line:
at line:
at line:
at line:
at line:

the line

11
18
22
34
35
39

you want to view: 18

The line at position 438is: while not done

Enter the line you want to view: 34

182

sl ssls 5l
B o %k

Directories and Files

The line at position 878is: done = False

Enter the line you want to view: 39
The line at position 1005is: done = True

Enter the line you want to view: -1

The functionality to move around files works quite well. You should also note the use of tuples,
lists, and string functions in this example. The next important thing to know is how to work
with the operating system to retrieve directories and file names.

Directories and Files

One of the most common problems that faced by programmers is to work with files and direc-
tories. The user often wants to load an existing file, save a file to a specific directory, or validate
that a given file exists and is of the correct format. It is no surprise, therefore, that the Python
libraries provide functionality that will aid you in supporting these user needs. The majority of
the functionality we will be discussing in this section comes from the os module. To use this

package in your own Python scripts and in the interpreter, you will need to import it into the
system with the following statement:

import os

In addition, we will be working with the os.path module. Here is how to import all of the
submodules into your program (or into the interpreter).:

import os.path

The most commonly used functions that we are going to discuss in this section are the

listdir, access, chdir, getcwd, isdir, and stat. There are lots of other functions in the
os package. Table 6-4 lists the os package methods and what they do.

Table 6-4 The os Methods for Files and Directories

Method Description

access Provides access to the file information, such as whether or not a file exists, whether
you have permission to read it, or write it, or execute it.

chdir Changes the current directory to the one passed into the function.

fchdir The same as chdir, but uses a file descriptor to an open directory, rather than a
directory name.

getcwd Returns the current working directory name.

chmod Changes the mode of a file to allow permissions to read, write, or execute the file.

listdir Returns a list of all entities within a given directory. An entity is a file, link, or

“wn “won

subdirectory. Does not return “.” or

183

CHAPTER 6} Input and Output

Method Description

major Returns the major version number for a given device.

minor Returns the minor version number for a device.

mkdir Creates a new directory within a given file system.

makedirs Creates a list of nested subdirectories recursively from a given point downward

remove Removes (unlinks) a given file.

removedirs Recursively loops through and removes directories down to a given level.

rename Renames a given file or directory in the file system.

rmdir Removes a given directory from the file system. One level only.

stat Returns file statistics

tempnam Returns a temporary file name that is guaranteed to be unique.

tmpnam Returns a temporary file path that is guaranteed to be unique. Used for temporary
files that will be deleted after a program terminates.

unlink Removes a file from the file system.

utime Sets user times (access time, creation time, and so forth) for a given file.

walk Does a recursive walk through a directory structure returning all elements of the

structure.

But it is one thing to sit there and look at the functions, and it is quite another to put them
together into a cohesive module. Let's create a simple Python script that will go through and
show us a directory list for a given path. Now, this isn’t quite as simple as it seems. When you
are looking at the contents of a directory, it is not completely obvious how you go about de-
termining whether or not the entities you are processing are files, directories, or other things.

To accomplish our task, we will prompt the user for a path name and then enumerate all of the
entities we find under that path. Each entity will be checked to see whether or not it is a file.
If it is not, then it must be a directory.

1. Create a new file, using either the IDLE editor or the editor of your choice. Give the file
the name ch6_4.py.

2. Enter the following text into the ché_4 . py file:

Import the packages we need
import os

import os.path

Prompt the user for the path
sPath = raw_input ("Enter the path: ")

if sPath[len(sPath)-1] != "\\"

184

sl ssls 5l
E R F

sPath += '"\\'

Get a list of ALL of the entities for the path

elList = os.listdir (sPath)

Now, determine which of these is a directory

for e in eList

if os.path.isdir (sPath + e)

print "Directory: " + e

Directories and Files

3. Save the file to a location of your choice by using the File | Save command.

. Run the file in the interpreter by either selecting Run | Run Module in the Editor window
or by pressing the F5 key on Windows.

. Observe the output from your new program. It should look something like this:

Enter the path: c:\windows

Directory:
Directory:
Directory:
Directory:
Directory:
Directory:
Directory:
Directory:
Directory:
Directory:
Directory:
Directory:
Directory:
Directory:
Directory:
Directory:
Directory:
Directory:
Directory:
Directory:
Directory:

Directory:

addins

AppPatch

assembly

Config

Connection Wizard
Ccsc

Cursors

Debug

dell

Downloaded Installations
Downloaded Program Files
Driver Cache
ehome

Fonts

Help

ie7beta3

ime

inf

Installer

java

LastGood

Media

185

e
B s %k

CHAPTER 6} Input and Output

Directory: Microsoft.NET
Directory: Minidump
Directory: msagent

Directory: msapps

Directory: mui

Directory: network diagnostic
Directory: nview

<remainder deleted to save space>

Now, the real question is, how does this all work? The user is first prompted for a path name.
In Windows, a path consists of a drive letter, a path, and a trailing backslash. Since users cannot
always be relied upon to enter things completely, we check to see if the path they gave us
contains the trailing backslash or not. If it is not already there, we will append it to the string
before processing it, since the methods we are using require it.

After the path name is specified, the next step is to get back a list of all of the entities within
that directory name. This is accomplished by using the os . 1istdir () function. This function
returns a Python list, which you can then process using a for loop. For each element you
process, check to see if it is a directory, using the i sdir method of the os . path package. Once
you know that something is a directory, you print it out for the user. Notice that the above is
the listing of the directories in the standard Windows directory for Windows XP. I've removed
a number of the directories in the list simply because they would scroll for page after page and
accomplish nothing. We certainly have more to talk about than looking at the subdirectories
on a computer!

The stat Module: File Statistics

When you are working on a computer, you often want to know things about the files on your
file system. For example, it is nice to know what files have been modified in a given directory,
so that you can back them up to some sort of an archive system. When [am writing a book, for
example, I often ask the file system for a list of files that have been modified most recently, in
order to make sure that my backup copies are up-to-date. Have you ever wondered just how
the file system knows what files have changed and when those changes took place? The answer
lies in file statistics. In Python, the file statistics commands are all handled by the stat ()
method of the os package.

The stat method accepts a single argument, the full path of the file or directory name for
which you want the statistics. It returns an array of values, which need to be interpreted properly
to use. Let's take a look at the use of the stat function, and the information you can retrieve
for a given file or a directory.

186

The stat Module: File Statistics

1. Create a new file, using your favorite editor or the IDLE editor that ships with Python. Call
the new file ch6_5.py.

2. Enter the following code into the ch6_5.py file:

import os, sys

from stat import *
sName = raw_input ("Enter the file name: ")

First, see if the file exists
if os.access(sName, os.F_OK) == False
print "That file name doesn't exist!"

exit ()

The file exists. Get some information about it

sStat = os.stat(sName)

The first thing we need is the 'mode' of the file
mMode= sStat[ST_MODE]
if S_TISDIR (mMode)
print "The path is a directory"
elif S_TISREG (mMode)
print "The path is a file"
else

print "I have no idea what the path is"

Now, let's get some information about the file.
userID = sStat[ST _UID]

print "The user id that owns this file is: " + str(userID)

fSize = sStat[ST_SIZE]

print "The size of the file, in bytes, is: " + str(fSize)

accessTime = sStat[ST_ATIME]

print "The last access time is: " + str(accessTime)

187

e
B s %k

CHAPTER 6} Input and Output

modTime = sStat[ST MTIME]

print "The last modification time is: " + str (modTime)
3. Save the file to a location of your choice by using the File | Save command.

4. Runthe file in the interpreter by either selecting Run | Run Module in the Editor window
or by pressing the F5 key on Windows.

5. Observe the output from your new program. It should look something like this:

Enter the file name: c:\Python25\README. txt
The path is a file

The user id that owns this file is: 0

The size of the file, in bytes, is: 56691
The last access time is: 1171030703

The last modification time is: 1158684398

If you take a look at Figure 6.1, you will see the actual Windows directory listing (using a
command prompt) of the directory in question. As you can see, the file size that is listed
in the directory listing is the same value we came up with in our Python program.

Figure 6.1 Command Prompt
Directory listing of
c:\Python25 directory.

C:sPuthon25 3

The time values that are used by Python are something called epoch-seconds. This happens
to be the same value that is used by the operating system to store times. The value itself
isthe number of seconds since some base date. In the case of Windows, the base is normally
1970. That particular number, however, isn't terribly useful to those of us who work in
the realm of months, days, and years. Fortunately, there is a datetime module in Python
that will allow you to convert these strange numbers into more human readable forms.

188

The stat Module: File Statistics

6. Modify the Python script, ch6_5.py as follows. Note that the lines to modify are shown in
bold print:

import os, sys
from stat import *

import datetime
sName = raw_input ("Enter the file name: ")

First, see if the file exists
if os.access(sName, os.F_OK) == False
print "That file name doesn't exist!"

exit ()

The file exists. Get some information about it

sStat = os.stat(sName)

The first thing we need is the 'mode' of the file
mMode= sStat[ST_MODE]
if S_ISDIR (mMode)
print "The path is a directory"
elif S_TISREG (mMode)
print "The path is a file"
else

print "I have no idea what the path is"

Now, let's get some information about the file.
userID = sStat[ST _UID]

print "The user id that owns this file is: " + str(userID)

fSize = sStat[ST_SIZE]

print "The size of the file, in bytes, is: " + str(fSize)

accessTime = sStat[ST_ATIME]
print "The last access time is: " + str(accessTime)

print "As a date, this is: " + str(datetime.datetime.fromtimestamp(accessTime))

189

e
B s %k

CHAPTER 6} Input and Output

modTime = sStat[ST MTIME]
print "The last modification time is: " + str (modTime)

print "As a date, this is: " + str(datetime.datetime.fromtimestamp (modTime))

7. Once again, run the program. You should see the following output from the file:

Enter the file name: c:\Python25\README. txt
The path is a file

The user id that owns this file is: 0

The size of the file, in bytes, is: 56691
The last access time is: 1171030703

As a date, this is: 2007-02-09 07:18:23

The last modification time is: 1158684398
As a date, this is: 2006-09-19 10:46:38

As you can see, the date that the file was modified does correspond to what we saw in the
directory listing in the command prompt. It is also displayed in a human readable format that
is a lot easier to read than a timestamp.

As with all of the other methods in the directory processing system, you should spend some
time browsing through the online documentation to see what is available to you. There is simply
not enough space in this book to go over each and every method that is in the library, and you
never know when you might need one that we haven't covered.

Command Line Arguments

When you are working in the IDLE editor, it is normal to simply prompt the user for whatever
information you want, or to simply set a variable equal to whatever you might want to use in
your program in the interpreter. However, in the real world, it is quite common to use Python
scripts from the command line to accomplish things. We do this sort of thing all the time, and
rarely think about it. For example, we might want to use the command prompt to rename a
file. To accomplish this, you open a command prompt (in Windows, in UNIX, you would simply
type at a shell prompt) and enter the following command:

ren myFile.old myFile.new

where the name myFile is the existing name of the file, and myFile.newis what we want to
call it. The command here is ren, indicating you want to rename a file. The two entries
myFile.oldand myFile.new are called command line arguments to the application (ren).
Python supports the use of command line arguments. The sys . argv variable will hold the
current Command Line arguments to your application. To see how this works, let's create a very
simple example script to print out whatever arguments you pass to the thing.

190

Command Line Arguments

1. Create a new file, using your favorite editor or the IDLE editor that ships with Python. Call
the new file ch6_6.py.

2. Enter the following code into the ché6_6.py file:

import sys

if len(sys.argv) ==
print "There were no arguments passed to the program"

else :
print "There were " + str (len(sys.argv)) + " arguments passed to the program"
for arg in sys.argv :

print "Argument: " + arg
3. Save the file to a location of your choice by using the File | Save command.

4. Run the file in the interpreter by either selecting Run | Run Module in the Editor window
or by pressing the F5 key on Windows.

5. You should see the following output in the Python interpreter:

There were 1 arguments passed to the program

Argument: E:/Python/ch6_6.py

Now, that doesn’t seem very useful, does it? We knew the name of our program, since we wrote
it and executed it. How do we get user arguments to the program from outside the program?

Unfortunately, it is simply not possible to pass arguments to a program within the IDLE envi-
ronment. This makes sense since you aren't likely to want to pass information to something
within an interpreted environment. To pass the arguments to the program as it is run, you need
to run the program from a command prompt. To do this, just launch a command prompt (in
Windows, or just run the command from the shell in UNIX) and enter the following command
at the command line:

E:\Python>c:\python25\python ch6_6.py 1 2 3 4 5

Note that you may need to modify the path of the python.exe program file, if you have not
already set your path variable to point to that directory. If you've done everything right, you
should see the following output from at the command prompt window:

There were 6 arguments passed to the program
Argument: ché6_6.py

Argument: 1

Argument: 2

Argument: 3

191

CHAPTER 6} Input and Output

Argument: 4

Argument: 5

There are two important things to note about this particular example. First, you obviously can
get the arguments passed on the command line. The first argument (index 0) is always going
to be the name of your program script. The remaining entries are the values passed on the
command line. Secondly, and more importantly, you will notice that when you run the inter-
preter from the command line directly, the interpreter runs the script you pass and then
terminates it. No prompt to enter values, and no waiting in immediate mode for you to enter
values. This can be very important when you want to run a simple script in Python to accomplish
something and then move on to some other task.

Command Line arguments aren’t something new, and they certainly aren’t rocket science. Note,
however, that not all environments will set the initial argument to be the name of the program,
so you should always check to see if the argv variable in the system module actually contains
data before processing it.

Pickle

The pickle module is the standard way in which Python objects are written to a file. You may
have noticed that the read and write functions of the file object work only with strings. That is,
if you have a string s and want to write it to a file £, you just do this:

f.write(s)

However, if you have a numeric value, say a floating point value, and want to write it to a file,
you can't simply write:

f.write(£f)

You will get an error from the interpreter, because the file object write method is not written
to accept a floating point number. Instead, you have to write:

f.write(str(f))

or

f.write(repr(f))

This can be rather annoying, especially when you are working with more complex types, such as complex
variables, or user-defined class types. The designers of Python recognized that this was likely to become
a problem, so they wrote the pickle module just for this purpose. The pickle module is a generalized
serialization process for Python. If you have a type t and a file £ that you want to write that a variable of
that type’s values into, you just use the pickle module to accomplish it:

import pickle

Pickle

pickle.dump(t, f)

Then, if you want to read a type back in from a file, you use the 10ad () function:

import pickle

t = pickle.load(f)

You can read about the pickle module more completely in the Python documentation, but here
is a very simple example of using the module to save and restore data from a file:

1. Create a new file, using your favorite editor or the IDLE editor that ships with Python. Call
the new file ch6_7.py.

2. Enter the following code into the ché6_7.py file:
import pickle

Create the file for storing data in

dFile = open("storage.dat", "wb")

Store some values
x = 123.467
pickle.dump(x,dFile)

y = 10
pickle.dump(y,dFile)
z = { 1 : "Hello", 2 : "Goodbye" }

pickle.dump(z, dFile)

Close the file so that the data values are written to disk

dFile.close ()
print "Done with save. Restoring"
iFile = open("storage.dat", "rb")

Read in values

dl = pickle.load(iFile)
print dil

d2 = pickle.load(iFile)
print d2

193

e
B s %k

CHAPTER 6} Input and Output

d3 = pickle.load(iFile)
print d3

iFile.close ()

print "Done"
3. Save the file to a location of your choice by using the File | Save command.

4. Runthe file in the interpreter by either selecting Run | Run Module in the Editor window
or by pressing the F5 key on Windows.

5. You should see the following output in the Python interpreter:

Done with save. Restoring

123.467

10

{1l: 'Hello', 2: 'Goodbye'}
Done

Pretty much any data type can be “pickled,” although if you write your own classes, you may
need some effort to make them serialize properly. We will discuss this again when we talk about
creating new classes in Python. For now, you can simply use the pickle module to save and
restore data anytime you want. Note, however, that pickle does throw some exceptions, par-
ticularly if you try to read something that isn't available in the file (such as storing three values,
and trying to read back four). How do you know if you have more data to unpickle? Actually,
the pickle module simply moves through the file, reading each element. As a result, you can
use the following code to determine whether or not the process is complete:

Are we at the end of the file?
curPos = iFile.tell()
iFile.seek (0, 2)

endPos = iFile.tell()

iFile.seek (curPos)

print iFile.tell(), endPos

If the two values printed at the end are the same, you have reached the end. So you could rewrite
your unpickling (loading) process to be:

Re-read, using a more generic system.

iFile = open("storage.dat", "rb")

Determine how big the file is:

curPos = iFile.tell()

194

sl ssls 5l
E R F

In Conclusion

iFile.seek (0, 2)
endPos = iFile.tell ()

iFile.seek (curPos)

Read in values

while iFile.tell() < endPos :
d = pickle.load(iFile)
print d

If you add this code to the bottom of your script and re-run it, you will see the following output
in the interpreter:

Done with save. Restoring

123.467

10

{1l: 'Hello', 2: 'Goodbye'}
Done

123.467

10

{1l: 'Hello', 2: 'Goodbye'}

As you can see, you get the same result, with a more generic approach to the loading process.
This can be useful if you don't know what is stored in the file.

In Conclusion

This chapter has been a fairly quick-paced coverage of the input and output functionality in
Python. You've learned about printing to the console, reading from the console, working with
files, and working with the serializing subsystem in Python. Take some time to play with the
functions you've learned, so that you can get a good idea of how they will apply in your own
applications. When you are done, come on back, and we'll move to the next topic in our Python
exploration, in which we'll talk about these mysterious classes and functions that we've been
using so blithely up to this point.

195

This page intentionally left blank

Functions and Modules

The single biggest difference between early, first generation programming languages and later
programming languages is the addition of functions. Functions made it possible to stop
copying blocks of code from one place to another and to begin the process of reusing code
entities. Not only did that make applications smaller, but it also made it easier to debug, main-
tain, and extend them. Python supports functions, as we will see in this chapter, and gives you
a number of features that so-called “more advanced” languages do not.

What Is a Function?

According to the dictionary, “In mathematics, a function is a relation, such that each element
of a set (the domain) is associated with a unique element of another (possibly the same) set
(the codomain, not to be confused with the range). The concept of a function is fundamental
to virtually every branch of mathematics and every quantitative science.” Fortunately, we don't
have to deal with definitions like that. A function, in the computer science sense, is a set of
code that performs a given action. It may have parameters, or arguments, which modify the
behavior for a specific set of values. It may choose to return data to the caller of the function.
For our purposes, however, a function is simply a block of code that can be reused easily across
one or more applications.

Defining Functions in Python
The keyword for defining functions in Python is def. You use the def keyword (which has
nothing to do with rap music or other musical things) in the following manner:

def func /()

statements

When the Python interpreter encounters a def statement, it knows that it is not supposed to
actually execute the code. You can think of the function definition as a “template” (not in the

CHAPTER 7} Functions and Modules

standard programming terminology, but rather in the English usage) for code that will be
executed only when it is needed. You can have as many functions in a given application as you
like, but only the ones that are called (or “invoked”) will ever use up any processing time in the
computer.

As for using a function, you've been using quite a few of them in this book already. Some of
them are built-in functions, like the print statement or the raw_input function. The differ-
ence between statements and functions is somewhat arbitrary. A statement is a part of the
language that requires no parentheses or other syntax elements, but it is treated exactly the
same way as any other function. Put in its simplest terms, a statement is a part of the language,
whereas a function is an extension to the language implemented by the programmer.

For an example of using a function, let's consider the raw_input function that we have been
using in the past few chapters to receive information from the user via the console. The
raw_input function looks like this:

value = raw_input (prompt_string)

The function takes one (optional) argument, a prompt string that is displayed for the end user
to tell him what sort of information the program is expecting. It returns a single value, the
input string, which the end user typed into the program. We'll be looking at arguments in just
a moment, but for now, let's consider what the definition of the raw_input function would
be, if we were writing it.

def raw_input(prompt)
Output the prompt
Do something to get some text from the user

Return the text entered.

As you can see in the above function pseudo-code, a function can return values to the calling
program. It does not have to, of course. You can have a function that performs an action, such
as printing out a string. For example, suppose that you wanted to have a function that you
could use to print out the copyright information for a program. It might look something

like this:

def print_copyright ()
print "This program is copyright © 2007 Matt Telles Enterprises"

Notice that the function does not take any arguments, nor does it return any values. However,
it does execute one statement, the print statement, to present some information to the
user. A function's scope is from the starting de f statement to the last blank line, indicated
by the end of the indentation block. Just like i £ statements, for loops, and any other
Python construct, the function definition is defined by indentation. Remember, way back in

Defining Functions in Python

Chapter 1, you were told that indentation was an important part of the language of Python.
Well, here’s yet one more example of this.

You might also notice, going back to the raw_input example, that there is no way to define
whether or not a function returns a value, or what type that value might be. If you are used to
working with strongly typed programming languages, such as C, Java, or Pascal, this might seem
rather odd to you. In C, for example, you indicate a function by writing something like this:

type funcname(argtype argname, ..)

where:

type is the type of return value for the function. This may be void if nothing is returned
from the function.
funcname is simply the name of the function, much as we have used func, or
print_copyright, above.
argtype is the type of each argument to the function. Python does not use types for
arguments; it simply lists them by name.
argname is the name of each argument. There may be multiple argtype and argname
pairs for a given function.
Let's create a simple function in Python and look at how you call it in the interpreter. Our
function isn't going to take any arguments, nor is it going to return any values. The purpose of
this function shall be to print out the current working directory for our application. The current
working directory is where all files will be created and read, unless a path is specifically defined
for the file name. For example, if I create a file called “foo . dat” without specifying a path for
it, it will be created in the current working directory. If I create a file called “c: \ foo.dat”", it
will be created in the root directory of the c: drive on my machine.

1. Create a new file, using your favorite editor or the IDLE editor that ships with Python. Call
the new file ch7_1.py.

2. Enter the following code into the ch7_1.py file:
import os

import os.path

def print_current_working directory ()
s = os.getcwd()

print "Current Working Directory: " + s

3. Save the file to a location of your choice, by using the File | Save command.

CHAPTER 7} Functions and Modules

4. Run the file in the interpreter by either selecting Run | Run Module in the Editor window
or by pressing the F5 key on Windows.

5. Notice that nothing happens in the IDLE console window. This is because a function def-
inition does nothing until the function itself is invoked.

6. Run the function in the IDLE interpreter by entering the following line at the command
prompt.

>>> print_current_working directory ()

7. You should see something like the following displayed (note that your directory and drive
is likely to be very different than mine):
Current Working Directory: E:\Python

You can call the function as many times as you want, and it will return the same value, at least
until you change the current working directory. The code executed will remain the same. This
is the advantage to a function—you can keep calling it and getting the same expected result
without worrying about how to implement the functionality or being concerned with typos in
your code.

What Are Arguments?

An argument is a bit of data that is passed into a function to provide a way to customize the
functionality (if you will excuse the description) of the function. For example, you might pass
in the current name of the user to a function used to greet people so that you can greet each
user differently. Arguments can be any valid Python type, from strings to numbers, to tuples,
dictionaries, or lists. The advantage to being able to pass in a function argument, rather than
simply having functions use the same values over and over, is that you can easily change the
behavior of an application by modifying the arguments that you pass to the functions in that
application.

If you are accustomed to other programming languages, you might be used to the idea of
passing arguments by reference and by value. Python has no notion of passing simple data
types by reference, because all simple data type arguments are immutable. That is, you can't
pass in an argument to a function and have that argument modified and returned to the calling
program directly. This does not apply to mutable complex types, such as lists or dictionaries.
We'll look at just how this works in a moment.

You cannot change the type of an argument in a function either, except through direct con-
version. For example, if the user passes in a list, you can't treat it as a single value. Likewise, you
cannot treat a single value as a list. You are stuck with whatever the user passes in. Arguments
are not strongly typed in Python. For example, if you do not actually check to see if something
is of an expected type before you operate on it, you will find that you get runtime errors.

200

sl b sibe
ot g g

How Do You Pass an Argument to a Function?

How Do You Pass an Argument to a Function?

When you have a function defined, you list the names of the arguments you want the user to
pass to the function. As you'll see in just a bit, they don't always have to pass in all of the
arguments, but it is a good assumption to begin with. Arguments can be mutable, meaning
that they can be modified within the function and returned changed to the caller. However,
only some arguments can be mutable. Simple data types cannot be changed in a function. To
illustrate this, let's look at some real code.

1. Create a new file, using your favorite editor or the IDLE editor that ships with Python. Call
the new file ch7_2.py.

2. Enter the following code into the ch7_2.py file:
def func_immutable(a)

a=a+1

def func_mutable (1)
1l.append(4);

a =10
print "A starts as: ", a

func_immutable (a)

print "A ends as: ", a
1 =11,2,3]
print "L starts as: ", 1

func_mutable (1)

print "L ends as: ", 1

3. Save the file to a location of your choice by using the File | Save command.

4. Run the file in the interpreter by either selecting Run | Run Module in the Editor window
or by pressing the F5 key on Windows.

5. You should see the following output in the IDLE interpreter:
A starts as: 10

A ends as: 10
L starts as: [1, 2, 3]
L ends as: [1, 2, 3, 4]

Even though you modify the value of the variable a in the func_immutable function code,
the value once the function has finished is the same as it was in the main program before it
starts. This shows you that simple data types, such as numbers (int, float, etc.), are immutable

CHAPTER 7} Functions and Modules

in functions. On the other hand, data types that are containers, such as lists and arrays, can be
modified within a function, as you see in func_mutable. The list that is passed in contains
only three elements. In our function, we modify the list to contain a fourth element. When the
function has completed execution, you can see that the list now contains a fourth element in
the main program, too.

Any type of variable can be used as an argument, but the arguments must be used properly in
the function. For example, if you tried to pass a single integer to the func_mutable method,
you would get an error from the interpreter when it tried to execute the code. The entire process
would look something like this:

>>> func_mutable(3)

Traceback (most recent call last):
File "<pyshell#3>", line 1, in <module>
func_mutable (3)
File "E:/Python/ch7_2", line 5, in func_mutable
1.append(4);

AttributeError: 'int' object has no attribute 'append'

Because Python is interpreted, and not compiled, some things have odd side effects. For
example, if you had a class object that had an append method defined for it, you could pass
that object to the func_mutable function, and it would work fine. The interpreter only cares
that the usage of the argument matches something that it knows how to do with the argument
you pass into the function. It does not care that you meant for the object to be a list, or an array,
or some user-defined class.

You are not restricted to a single argument in a function. In fact, you can have as many as you
like. The only restriction is that arguments need to be passed to the function in the same order
as they were defined. The naming convention does not matter (there is an exception to this, as
you'll see in just a minute); it is the order that is important. So, if | have a function that defines
four arguments:

>>> def func4(a,b,c,d)

print "a = ", a
print "b = ", b
print "c = ", c
print "d = ", d

And then I call this function with some variables that [define in the interpreter, external to the
function, like this:

Default Arguments

>>> a = 10
>>> b = 20
>>> ¢ = 30
>>> d = 40

>>> func4(d,b,c,a)

a = 40
b= 20
c = 30
d= 10

As you can see, the names of the variables in the interpreter bear no relationship whatsoever
to the names of the arguments in a function. The arguments have a scope of the function itself.
You can't use the variable a, for example, outside the lines starting with the de f statement and
ending with the end of the indentation block of the function, and expect to see the same value
as in the function. We say that the arguments are scoped to the function itself.

Please notice that the order in which you pass arguments is important. If you define a func-
tion to accept four arguments, such as we did in func4, you have to pass in four arguments
(although, as we will see later, you can allow some of them to be default values). If you try to
pass in three, or five, or some other number, you will get a runtime error from the interpreter:

>>> func4 (1,2,3)

Traceback (most recent call last):
File "<pyshell#19>", line 1, in <module>
func4 (1,2,3)
TypeError: func4d () takes exactly 4 arguments (3 given)
>>> func4(1,2,3,5,6)

Traceback (most recent call last):
File "<pyshell#20>", line 1, in <module>
func4(1,2,3,5,6)

TypeError: func4d () takes exactly 4 arguments (5 given)

So, those are the rules for arguments. As with any rule, there are also exceptions. Let's look at
two of the exceptions to the rules I just mentioned.

Default Arguments

So, we just got finished saying that if you define a function that takes four arguments, you need
to pass in four arguments at all times. This isn't exactly true, although it is true that a function

203

ok

CHAPTER 7} Functions and Modules

with four arguments will always receive four arguments. How can these two statements both
be true? The answer lies in something called a default argument. A default argument is one that
the writer of a function defines to have a default value if the user does not specify a value. For
example, let's say that wanted to print out the copyright date for my application. The copyright
date is a string containing some boilerplate legal text and a year from which that copyright is
valid. Now, it would make sense to have a default year that happened to be the current year,
wouldn't it? So, we could write a function like this:

def print_copyright ()
print "This application is copyright 2007, Matt Telles Enterprises"

print "All rights reserved"

Then, in my main program, I could call it the same way that I call any other function:

print_copyright ()

Imagine, however, that a few years go by, and it is now 2010. If the program were new, [would
need to go track down all of the instances of the print_copyright function in any libraries
I was using and change the function to read 2010 instead of 2007. But why not just pass in the
date as an argument? Good idea. Let's rewrite the function to accept an argument instead of a
hard-coded number:

def print_copyright (year)
print "This application is copyright ",year,", Matt Telles Enterprises"

print "All rights reserved"

Now, I can call the function with an argument to indicate what year the copyright is valid for:

>>> print_copyright (2007)

This application is copyright 2007 , Matt Telles Enterprises
All rights reserved

>>> print_copyright (2010)

This application is copyright 2010 , Matt Telles Enterprises
All rights reserved

This does get a bit annoying, however, especially when you realize that the majority of the time,
I'm going to be using the function this year. So, we can make the year argument into a default
argument, by assigning it a default value:

>>> def print_copyright (year=2007)
print "This application is copyright", year, ", Matt Telles Enterprises"

print "All rights reserved"

After I've create a default argument, I can either pass in a value or not, as I choose:

Variable Default Arguments

>>> print_copyright (2010)

This application is copyright 2010 , Matt Telles Enterprises
All rights reserved

>>> print_copyright ()

This application is copyright 2007 , Matt Telles Enterprises

All rights reserved

If the user does not pass in a value, and the argument has a default value, then the value used
for the function will be the default. If the user specifies a value, the value that they specify will
be used. Not all of the arguments in a function must be the same. You can have some default
values and some non-default values. As you'll see in just a moment, it is possible to have the
default parameters and non-default parameters in any order; however, in general, you must
specify default parameters at the end of the function list. That is, you cannot define a function
that looks like this:

def func_test (i=10, 3j)
Why is that? Because there is no way for the interpreter to know which value you want a default

value for and which value you are passing in. When you are defining default value arguments,
you must start at the right-hand side and work your way backward. That is, you can do this:

def func_test (i, j=10)

or even this:

def func_test(i, j=10, k=20)

In any case, the end user of the function can always override the default value of an argument,
something that is important for you to realize. Default arguments, by the way, are also known
as optional arguments because the user doesn't have to specify them.

Variable Default Arguments
You might wonder if you could specify variables for default arguments in Python. The answer,
sadly, is no. That is, you can't do something like this:

def func(a, b, c=a+b)

Unfortunately, the way the interpreter works, the variables are processed from right to left. So,
when the interpreter is trying to define variable c, variables a and b do not yet exist. As a result,
there is no way to accomplish this in the definition of the function. All is not lost, however. You
can use signal values to accomplish this. For example, let's imagine that you have the function
just mentioned, with a, b, and ¢ passed in as arguments.

CHAPTER 7} Functions and Modules

Now, let’s assume that you want the value of ¢ to be the values of a and b multiplied, but only
if the user didn't specify a value of c. We could do this in a slightly roundabout fashion:

def func(a, b, c=-1)
if ¢ == -1 :
c=a*b

more code follows

This will accomplish the same task, without having to bend or break the language to make it
happen. In Python, the common default value when you don’t want to use a variable is “None,”
rather than -1 as in most other languages

Keyword Arguments

One of the problems with default arguments is the order in which they are processed. Suppose,
for example, you have a function like this:

def print_stuff(name="Me", date="01/01/99", stuff=stuff to print")

You can call this function in any of the following ways, with no problems at all in your own
applications:

>>> print_stuff ("fred")

fred

01/01/99

stuff to print

>>> print_stuff("fred", "01/02/03")

fred

01/02/03

stuff to print

>>> print_stuff("fred", "01/02/03", "other stuff to print")
fred

01/02/03

other stuff to print

What happens, however, if you want to print out something like fred, 01/01/99, "other
stuff to print." Well, obviously, you would have to duplicate the two beginning argu-
ments and pass them to the function, like this:

>>> print_stuff("Me", "01/01/99", "other stuff to print")
Me

01/01/99

other stuff to print

Returning Values from Functions

That seems rather obvious, because you can't just ignore the first two arguments and use the
defaults, since the interpreter wouldn't know which argument you were referring to. It turns
out that there is a way to do exactly this. The answer to this little conundrum is the keyword
argument. Python allows you to send a name with the argument to a function, like this:

>>> print_stuff (stuff="other stuff to print")
Me

01/01/99

other stuff to print

When Python passes a set of arguments to a function, it is actually creating a set of name-value
pairs that are then expanded out into the arguments in the order specified in the function
signature. In fact, Python provides a very special syntax for retrieving all of the parameters of
a function along with their names, the “**” syntax. While it is somewhat unusual to use this
particular syntax in a normal function, you certainly are permitted to use it if you like:

def print_params(**params)

for p in params :

print p, params([p]

>>> print_params(a="1", b="2", c=3, d=123.45)
al
c 3
b 2
d 123.45
This rather odd syntax allows you to retrieve all of the named parameters to a function. You
might want to do something like this if you were constructing some sort of a parameterized

function that was called from an external source. Otherwise, honestly, it is just a curiosity of
the language.

Returning Values from Functions

If you are accustomed to other languages, one of the things you are probably most used to with
respect to functions is the ability to return a value. For example, consider the find function
of the string module. This function returns the position of a given substring within a specified
string. The usage of a function like this is:

idx = string-object.find(substring)
This particular type of function is actually a c1ass method, which means that it operates on

an object of type string. There is no reason, however, that you have to implement it that way.
Suppose, for example, you wanted to write a function that found the first instance of a character

CHAPTER 7} Functions and Modules

within a string. To do this, you have to take two arguments, a string to search and a character
to find. However, you also need a third piece, which is the return value of the index of the
character within the string. To do this, you use the return keyword in Python. Let’s look at a
possible implementation of our function.

def find(s, c)
idx = 0
for ¢ in s :
if ¢ == ¢ :
return idx
idx = idx + 1
If we get to here, the value wasn't found

return -1

You can now use this function in your own code by just calling it directly in the interpreter
in IDLE:

>>> idx = find("This 1s an examination", 'x')

>>> print idx

12

As you can see, the index was properly computed, and the result was returned to the calling
program and stored in the assigned variable (in this case, idx). You could also implement a
math function using input and returned values.

>>> def square (x)

return x * x

>>> gquare (10)
100

Note that you haven't modified the input value at all; you've just returned it. You can modify
the value in the calling program, however:

x = 10

X = square (x)

print x

100

208

sl sl sl
R R RX

Returning Multiple Values from Functions

Returning Multiple Values from Functions

Sometimes, there are ways in which Python shines in ways that no other language can quite
match. Returning values from a function is one of those ways, where Python does things that
more conventional languages cannot do at all. In a conventional language, if you want to return
more than one value from a function, you have to either return some compound object type
or return values by reference, or just give up entirely. Python makes it easy to return multiple
values from a single function.

Imagine, for a moment, that you want to write a function that computes the first three powers
of a value. That is, you want to pass in a single number and return three values, representing
the number, the number squared, and the number cubed. In a conventional language, this
would be difficult, if not impossible. For example, in a language like C++, you would have to
do something like this:

void compute_multi(int inval, int& outval, int& outvall, int& outval2) ;

This is confusing, to say the least. Am I sending a value into those values, or are they just being
returned? Do | need to initialize the values or not? All of these questions have to be answered
by either studying the code or digging up the documentation for the function. Eventually, you
would have an answer, but even then someone reading the code later on would have the same
questions.

In Python, however, you would do something like this:

>>> def multi_return (x)

return x, X*x, X*xX*X

>>> a,b,c = multi_return(3)

>>> print a
>>> print b

>>> print c

27

All that is really happening here is that you are defining a tuple within the function and re-
turning it, and then unpacking it into its component parts upon the exit from the function.
But, to the user, it looks as if you are really returning multiple values from the function. In
essence, you actually are returning multiple values from a single statement. Now that is pretty
cool.

CHAPTER 7} Functions and Modules

By the way, you aren't restricted to just three values; you could return any number. Nor are you
restricted to a single type. Since a tuple can contain a heterogeneous mixture of data types, you
could easily return different values:

>>> def multi_return_1()
return 1, "Hello", 45.67
>>> a,b,c = multi_return_1()
>>> print a
1
>>> print b
Hello
>>> print c

45.67

Recursive Functions

One of the more interesting things in the software development world is the notion of a re-
cursive function. Recursive functions are those that call themselves, or “recur,” over and over,
until a given problem has been solved. There are no problems that absolutely require a recursive
function, but there are quite a few that are a lot easier to solve with the ability to recurse. To
give you an idea of how this works, consider the concept of a factorial function, which is pretty
much the classic example of how a recursive function works.

A factorial is defined as all of the numbers between 1 and a given number multiplied together.
So, the factorial of four, for example, is equal to:

Fact(4) =1 * 2 * 3 * 4

or
24

To compute a factorial, you start with the number you want the factorial of. Then you multiply
that by the factorial of the number one less than that number. This continues, until you get to

the value one, at which point you start adding things together. Believe it or not, it is actually
easier to look at the code than it is to explain the math.

1. Create a new file, using your favorite editor or the IDLE editor that ships with Python. Call
the new file ch7_4 . py.

2. Enter the following code into the ch7_4.py file:
def fact(value):

Terminating condition:

210

sl b sibe
ot g g

Recursive Functions

If the number is 1 or less, the factorial is, by definition 1.
if value <= 1 :
return 1
else :
The factorial of any other number is the number * all of the
numbers leading up to it.

return value * fact(value-1)
3. Save the file to a location of your choice by using the File | Save command.

4. Run the file in the interpreter by either selecting Run | Run Module in the Editor window
or by pressing the F5 key on Windows.

5. Notice that nothing happens in the IDLE console window. This is because a function def-
inition does nothing until the function itself is invoked.

6. Run the function in the IDLE interpreter by entering the following line at the command
prompt.
>>> fact(4)
24
>>> fact (6)
720
>>> fact(10)
3628800
>>> fact(12)
479001600
>>> fact (1)
1

One very important point about recursive functions: You must be absolutely sure that the
function has a valid terminating condition that will be executed under all circumstances. If you
do not, the recursive loop becomes an infinite loop, and your program eventually crashes. This
is equivalent to writing a function like this:

def bad_loop (i)
if (1 == 0)
return 0

return bad_loop (i)

This appears to be a similar function to the factorial one, but contains a deadly error. Note that
at no time do we modify the value of the variable “"” that controls whether or not the function
terminates. In this case, we have created a disaster of an infinite loop, certain to crash whenever

211

B B 3

CHAPTER 7} Functions and Modules

itis called. In Python, we will get the error “RuntimeError: maximum recursion depth exceeded”
and the program will terminate.

While we are on the subject of errors, there is actually a slight error in the factorial function.
Can you see it? It isn't a programming error, per se; it is a logic error (which are the hardest
ones to find). In the factorial function, if you pass in the value -1, or any other negative value,
you get back 1 as a result. Factorials are somewhat undefined for negative values (or zero, for
that matter), and thus we have to return something. However, under certain circumstances,
this can cause other program logic errors to appear. It would probably be better to raise an
exception for a zero or negative number, as you will see in the next chapter.

Passing Functions as Arguments

You can pass all sorts of things as arguments to functions. Simple variables, dictionaries, tuples,
and even your own class objects can be passed into and used by functions that you write.
However, there is one other thing that can be used as an argument that we haven't discussed
yet, and that is using another function as an argument. In Python, a function is really just a
“pointer” to a block of memory containing code. This code is jumped to and executed when a
function invocation is used within the calling application. There is no reason that you can't use
a function as an argument, or to store in a dictionary (as we saw in Chapter 3), or in any other
format.

Suppose, for example, that you wanted to parse through a string and call a function each time
that a given character, or string, was encountered. Such functionality might be used to imple-
ment an XML parser, or some such thing. Let's write a simple function that simply scans through
an input string and calls a function when an angle bracket (‘<’ or *>') is encountered.

def find_angle_brackets(s, func)
idx = 0
for ¢ in s :
if ¢ == '<' or ¢ == '>'
func (s, idx)

idx = idx + 1

Now, to use this function, you need a string and a function to call. The string is easy to come
by: you just create one and pass it in. The function, on the other hand, you will need to create
in the IDLE editor, and pre-compile it by entering the text and allowing IDLE to know it exists.
Let's type one into the editor now:

>>> def func_print(str, idx)

print "Found bracket in ["+str+"] at position", idx

Lambda Functions

There is nothing special about this function; it simply prints out information whenever it is
called. If you call it with a string like this "This is a test!",you would expect to
see four calls of your function. Let's try it out! Enter the following line into the IDLE interpreter
and observe the output, it should look like what I have shown following the line:

>>> find_angle_brackets("This is a test!", func_print)

Found bracket in [This is a test!] at position 8

Found bracket in [This is a test!] at position 10

Found bracket in [This is a test!] at position 18
]

Found bracket in [This is a test!] at position 21

So, there you are, four angle brackets, four calls of your function, and four messages displayed
to the console window. As mentioned, this isn't exactly rocket science. A function name is like
anything else in Python. There is no reason to expect you would have to do something strange
to make it work as an argument to a function. As you can see from this example, that is the
case.

Lambda Functions

Lambda functions, named for the Greek letter, are also known as anonymous functions. The
reason for this is that a lambda function doesn’t have a name; it only has code to execute
associated with it. Normally, a lambda function is implemented to do something very trivial,
such as multiplying a number or extracting a section of a string. If you are using the same basic
statement over and over in your code, you might consider making it a lambda function.

The basic syntax of a lambda function is as follows:

name = lambda (variables) : code

Note that you cannot place statements in a lambda expression. This means that you can’t have
an embedded i £ statement in the lambda expression, or a variable declaration. Aside from that
restriction, a lambda expression is really just a very trivial function that avoids having to do all
the def funcname(variables): stuff that you would normally have to do to implement a func-
tion. Let's look at two examples of lambda functions to show you how they work:

>>> double = lambda x : x * 2

This statement creates a lambda function called double, which takes a single argument and
doubles it. You can use it as a function in your code:

>>> double(2)
4
>>> double(4)
8

CHAPTER 7} Functions and Modules

You can pass it as an argument to a function:

>>> print double (6)
12

In fact, you can use this function anywhere that you would use any other Python statement or
function. Lambda functions are not at all restricted to one variable; you can write them with
more than one:

>>> combine = lambda x, y, Z : X*y*z
>>> combine(1,2,3)
6

Where lambda functions are most useful is when combined with the map function that is built
into Python. The map function takes two arguments, a function to execute and a list of values
to apply the function to, and generates a list of values that are the list values applied to the
function. So you could write this:

def double_it (x)

return x * x

retList = map(double_it, range(l,5))

This bit of code produces the following output when you type it into the IDLE interpreter:

>>> retList = map(double_it, range(l,5))
>>> print retList

(2, 4, 6, 8]

Now, this little code is only a few lines. However, it is nice to know that you can implement this
exact bit of functionality in only a single line of code:

>>> 1 = map(lambda x : x * 2, range(l,5))
>>> print 1
[2, 4, 6, 8]

Personally, I consider lambda functions to be more of a curiosity than anything else. They make
the code a bit harder to read, and make the intent a bit harder to understand. Unless you have
a compelling reason to use lambda functions, it is probably best to simply use regular ones in

Python.

Variable Numbers of Arguments to a Function

Variable Numbers of Arguments to a Function

Every now and then, you run into a situation where the writer of a function has decided that
you should have “n” arguments to the function. If you are using a function to open a file, and
the arguments are the name and the mode, this makes sense. If, on the other hand, you are
writing a function to determine the average of a group of numbers, it really doesn't. Python
provides a method for writing a function that accepts a variable number of arguments. For
example, rather than having to do this:

>>> def avg(1)
total = 0
count = 0
for i in 1 :
total = total + i
count = count + 1

return total / count

>>> print avg([1,2,3,4,5,6])
3

Wouldn't it be nicer to simply be able to do something like this?

print avg(1,3,5,7,9,11,13)

Yes, I realize that this is only a few characters less in typing, but the ideas behind the two are

quite different. In one case, I need to write a function to deal with a list. In the second example,
I am just processing numbers directly. To accomplish this in Python, you use a variable name
with an asterisk (*) in front of it as the name of the argument for the function:

def average(*args)
total = 0
count = 0
for i in args :
total = total + i
count = count + 1

return total / count

This syntax doesn’t look any different from what you did before, but it really is. You can also
accept avariable number of arguments of different types. To do this, you might write a function
that looks like this:

CHAPTER 7} Functions and Modules

def var_func (*args)

for a in args :

print "Argument: " + repr(a)
print "Type of argument: ", type(a)
if type(a) == int :

print "It is an integer!"

Note in this example, you actually test the type of the arguments to see if you are getting what
you expect. By comparing the value to a known quantity type, you can identify the type of
variable and process it properly.

Variable arguments are less common than you might think in Python, simply because of the
availability to dynamic lists and tuples. However, there are definite times when they come in
handy, so they are a good addition to your arsenal of coding techniques.

Variable Scope in Functions

Before we leave the discussion of functions, it is really worth taking a moment to talk about
the scope of variables in applications and in functions. As mentioned previously, a variable

in Python exists from the moment of its first usage until the end of the scope in which it is
defined. For functions, however, there are two types of variables. First, there are local variables.
Local variables are those defined and used within the function. The second type of variable is
known as a globalvariable. Global variables are those that are defined externally to any function,
but used within the function at runtime. This sounds kind of confusing, so let's look at an
example here:

In a new Editor window in IDLE, enter the following:

x = 10
def func/()

x = 20

print "in function func, x = ", X
def gfunc()

global x

x = 20

print "in function gfunc, x = ", x
print "Initially, x = ", X
func ()

print "After func, x = ", x

Variable Scope in Functions

gfunc ()

print "After gfunc, x = ", x

Normally, when you use a variable in a function, it must be defined in that function. If you do
not, and try to access it before it is assigned a value, you will get an error. For example:

>>> def func()
print i
i =10

print i

>>> func ()

Traceback (most recent call last):
File "<pyshell#46>", line 1, in <module>
func ()
File "<pyshell#45>", line 2, in func
print i

UnboundLocalError: local variable 'i' referenced before assignment

Python, however, provides a way to get at variables that are defined in the main program,
external to the function itself. This method is the global keyword, which permits you to define
a variable as external to the function and use the global version of the variable. In our first
example, the func () function assigns a variable called x the value 20. This variable is defined
within the func () function, and is not accessible outside of the function in the same way. That
is why when you change the value of x in the function, it does not affect the variable x defined
in the main program. They are completely different variables. You can think of the main pro-
gram variable as global.x, while the variable x in the function func () is func.x. That isn't
really the name assigned to each of them, but it will work for discussion purposes. In func (),
when you change func . x, you are working on a local variable. The global .x value is not
affected, and you see this when you print it out after calling the function in your main program.

On the other hand, the gfunc () function references the variable x using the global statement.
This forces the interpreter to go out and look for a variable that was defined before gfunc ()
was called that has the name “x.” You can think of the gfunc () function as using the
global.x variable, rather than the gfunc . x variable. When you then change this value inside
the function, the value is also changed in the main program, as you see in the output.

Remember, if you don't explicitly tell Python that you want to use the global version of a
variable, while in a function, a local variable will be used. This can lead to some strange

217

B B 3

CHAPTER 7} Functions and Modules

errors, so pay attention to your variable scope. For example, you might expect a variable to
change in your main program, but it doesn't because you defined a local version of the same
name. This is referred to as “shadowing” a global variable.

Using Modules
A module is essentially a file that can be included in your Python application that contains a
series of variables, functions, and even classes. We've been using modules all throughout this

book, but you may not have realized it before. For example, every time that you write some
code that starts with:

import os

or any other sort of import statement, you are using a module. The os module is simply a
Python file (o0s.py) that you can bring up and look at in the IDLE editor, or any other editor of
your choice. Modules are loaded by applying their name and the Python path variable to search
for anything of that name within the path. The order of the search is the same as the order of
the entries in the Python path variable, so if there are multiple modules by the same name in
the path, the first one found will be used.

You can write your own modules in Python, and have been doing that all along. If you create
a new file and save it within the Python path, the system will allow you to use it as a module.

1. Create a new file, using your favorite editor or the IDLE editor that ships with Python. Call
the new file ch7_6.py.

2. Enter the following code into the ch7_6.py file:
def myprint (str)
print str
def mycopy(strl, str2)

return strl + str2

3. Save the file in the IDLE editor, in the 1ib directory of your Python installation (this is
guaranteed to be in the Python path). For example, if you installed Python into the direc-
tory c: \Python25, place the file in c: \Python25\1ib.

4 . Do not run the file within the IDLE environment. Instead, go into the interpreter, and
enter the following lines:
>>> import ch7_6
>>> ch7_6.myprint ('hello world"')
hello world

As you can see, the import statement properly picks up your module. Because the module is
not “run” in the interpreter, you have to specify the name of the module for the interpreter to

218

sl b sibe
ot g g

In Conclusion

pick up the function that you want to call. If you simply called the myprint function directly,
you would get an error:

>>> myprint ('hello world")

Traceback (most recent call last):
File "<pyshell#51>", line 1, in <module>
myprint ('hello world')

NameError: name 'myprint' is not defined

Just one last note on modules. You will notice, if you look through the directories in the Python
1ib directory, that there are two kinds of files located here. Most are of the form name . py,
which is just a Python script file that we've been looking at all along. However, there are a
number of files of the form name . pyc. In fact, after running the code above, if you look in the
1ib directory, you will see a file called “ch7_6 . pyc.” What are these files? The pyc file is a
compiled Python file. Importing and processing a module is an expensive operation, since the
interpreter has to load the file, check it for valid syntax, and create the appropriate structures
in memory to store the functions and variables it encounters. If it had to do this for every script
you wrote, it would take a long time to execute complicated scripts. To avoid this, the interpreter
stores a “tokenized” version of the file that is very quick to load. This file contains the same data
as the original script file, but is in a binary format that requires no tokenizing, just loading.

In Conclusion

This chapter has been a fairly low-key tour of a major component of the Python programming
language: functions. As you have learned, functions are a great way to encapsulate code and
hide the implementation of algorithms from the user, allowing them access to functionality
without needing to understand how it works. We will be using functions and modules quite a
bit in the remainder of the book, so it is important that you understand them now.

In the next chapter, we'll be talking about a form of error handling often used in conjunction
with functions, that of exception handling.

This page intentionally left blank

Exception Handling

They say that nothing is certain except death and taxes. Of course, in the software development
world, we know that there are other things that are true. One of the certain things in the software
development world is the existence of bugs in software. Bugs have existed since the beginning
of the programming era, and will continue to exist long after you and I have disappeared from
this world. Bugs are caused by a lot of different things but one of the most egregious is the
mishandling or lack of handling of errors.

In any non-trivial application, there will be errors. Some of those errors are caused by a lack of
understanding by the end user. Some are caused by hardware or software failures on the user’s
machine. Yet more errors are caused by bad or malformed input that is needed by the appli-
cation. Whatever the case, it is a given that your application will have to handle errors while it
is running.

There are two kinds of errors in Python. The first, most basic, type is the error code. For example,
the £ind () function in the string module will return an error code, -1, to indicate that it could
not find the requested substring within a given string. Error codes are easy to deal with, because
you just check for them and do the appropriate thing. Sometimes, that means printing out an
error message, and sometimes it is just a normal event flow within the application that indicates
the end of a processing loop (such as the aforementioned £ind () function). Whatever the case,
there is really no reason to discuss the handling of error codes in this chapter. As an experienced
programmer, you are well aware that you need to check the return value of any function that
can conceivably return an error code. If you don't already know this, and do this in your
applications, nothing I can say will change your mind and make you do so. Really, do us all a
favor and handle them, okay?

The second type of error that can occur in a Python application is the exception. An exception
is really intended (as its name implies) to handle an exceptional situation. Something bad has
happened, and the program needs to handle it. Imagine, for example, that you are writing an
interpreter for a programming language such as Python. If the user were to enter a statement

221

CHAPTER 8} Exception Handling

that was obviously malformed, you would need to handle that problem. In Python, the way in
which errors are handled by the interpreter is generally by raising an exception and allowing
that exception to be handled.

Exceptions have three basic components. First, there is the exception itself. The exception
consists of an error, and may optionally contain information about the exception. Second, the
exception must be “raised” within the application. Raising an application stops the processing
at the point it occurs, and throws control back to the application. If the application does not
process the exception, which is called “catching the exception,” control eventually returns to the
interpreter, and finally to the operating system. Finally, the exception may have “arguments,”
that is, information about what went wrong. Arguments are an optional part of the process.

Looking at Exceptions in Python

There are, unfortunately, a lot of ways to generate an exception easily in Python. Let’s look at
the simplest one, which is a syntax error in your Python code. You can generate one of these
directly from the IDLE interpreter:

>>> fro i in range(1,20)

SyntaxError: invalid syntax

Obviously, I didn't mean to type fro, | meant to type for and generate a for loop that I could
use to loop through the values 1 through 19. Unfortunately, that's not what I typed, and the
Python IDLE editor has not yet become advanced enough to know what I meant. It has to go
with what [said, instead.

An exception consists of three elements: the error message, the position at which the error
occurred, and any information that goes along with the exception. For example, in our previous
example, the error message would be syntaxError, which is a type of exception. The position
is shown in the editor itself, pointing at the fro entry in the code. The information that went
along with the error was the descriptive text “invalid syntax,” indicating that the Python inter-
preter did not understand what we were trying to do with the fro statement. It probably
thought we were tryingto create a variable called fro in the interpreter, and since the remainder
of the line did not properly follow the assignment syntax, it complained.

You might wonder why you should worry about trapping things like syntax errors. After all, in
Immediate mode, the interpreter shows you what went wrong. When you try to load a module
with a function or statement that contains an error, the interpreter will complain at load
time, telling you that there was an invalid syntax problem. However, consider the following
example.

Traceback Example

1. Create a new file, using your favorite editor or the IDLE editor that ships with Python. Call
the new file ch8_1.py.

2. Enter the following code into the chg_1.py file:
for i in range(1,20) :/
pritn "Hello world"
Note that the print statement is intentionally misspelled here.
3. Save the file and exit the IDLE editor (or whatever editor you used to create the file).
4. Open a command prompt in Windows and run the following command at the prompt, in
the directory in which you saved the file.
E:\Python>c:\Python25\python.exe ch8_1.py
5. Observe the following output in the command prompt:

File "ch8_1.py", line 2
pritn "Hello world"

~

SyntaxError: invalid syntax

Now, you realize that the script might never have been tested. Naturally, none of the “real”
programmers among us would do such a thing, but these things have been known to sneak in
from one of those “fake” programmers. Seriously, if a last-minute change were made to a file,
you could end up with a syntax error like this that was never shown in the interpreter.

Traceback Example

When an exception occurs in code that is running, whether in the IDLE environment or via the
Command Line interpreter, a traceback is generated and displayed, showing you where the
problem occurred. For example, if you had a little script like this:

>>> for i in 1,3,5,7,9,0 :

x = 100 / i

print x
There is a problem with this piece of code. If you run the code in the interpreter, you get the
following display:
100

33
20

CHAPTER 8} Exception Handling

14
11

Traceback (most recent call last):
File "<pyshell#38>", line 2, in <module>
x = 100 / 1

ZeroDivisionError: integer division or modulo by zero

In this case, the error is a division by zero that occurs when the value of i becomes zero at the
last entry in the for loop. This is likely to be a typographical error in this case; at least, it seems
likely (especially since you just wrote it) that the last value should have been 10 and not zero.
Still, you generated an error. What do you do about it?

Understanding Tracebacks

The information available to you in the traceback shows you the problem that was encountered
and, if possible, where the problem occurred. When a traceback is displayed, you will see the
name of the file that the interpreter was processing when the error was encountered, as well
as the line in which it happened. It will also attempt to tell you what module and function the
error was found in.

In the example above, the problem happened while you were running in Immediate mode. We
can tell this because the error file is called pyshel1#38. In this case, the name pyshel1 indi-
cates that the temporary file that represents the Python shell was the culprit. The #38 really
isn't a useful thing to know, because it represents some sort of an internal descriptor for the
current run within the shell. The line number will represent the line on which the problem
happened. Note that lines begin at 1, so looking at your code, it must be the line that reads:

x = 100/1

In fact, this is the information that is displayed in the traceback description as well. If the
interpreter is unable to determine exactly what the code was that caused the problem, it will
not display anything here.

The final bit of information that you get from a traceback is what the error was that the inter-
preter encountered. If you look at the description, it is telling you that there was an integer
division (or modulo) by zero. Looking at the line that is indicated, it is quite clear that the only
way this could happen would be if the value of i were zero. Let's add a single print statement
to the code, to see what is going on. This is probably the process you would follow if you were
debugging this module on your own:

>>> for i in 1,3,6,7,9,0 :

print "i = ", 1

224

Exceptions

x = 100 / 1

print x

i= 1
100
i= 3
33
i= 6
16
i= 7
14
i= 9
11
i= 0

From the output, it is quite clear that the value of i becomes zero just before the program
halted. Thus, you can use the traceback information, combined with debugging information,
to figure out what the problem was. Of course, it would be nicer if you simply stopped the
application from halting in the first place, right?

Exceptions

The division by zero problem is called an exception in Python parlance. Not all errors can be
considered exceptions, but the majority can. In order to stop the program from crashing, you
need to do one of two things:

1. Stop the error condition from occurring
2. Capture the error and deal with it, continuing if possible.

The first solution, in this case, would be to modify your loop as follows:

>>> for i in 1,3,5,7,9,0 :

print "i = ", 1
if i 1= 0 :
x = 100/1
else :

print "Error, cannot divide by zero!"
x =0

print x

225

CHAPTER 8} Exception Handling

If you do this, the new output from your script will be:

i= 1
100
i= 3
33

i= 5
20

i= 7
14

i= 9
11

i= 0

Error cannot divide by zero!

Unfortunately, it is not always possible to anticipate what the problem might be. For this reason,
Python provides the try and except statements.

Catching Exceptions with try. .except

The purpose of the try statement is to tell Python that you think that the code you are about
to run might raise an exception. When you use a try statement, you are telling the interpreter
that you will handle errors that come up in the code, rather than allowing the generic handler
to end the program and display an error message. The basic format of the try and except
statements is as follows:

try:

some python statements
except [ExceptionName] :

some error handling
else:

some other statement
finally:

do something when all is done.

Let's look at each part separately. First, we have the try statement. The try statement has no
arguments and no other forms. You simply place a try statement in your code, and the inter-
preter knows that you want to handle an error. The try statement must be followed by, at a
minimum, a single except statement. The other statements, else and finally, are com-
pletely optional during error handling. The assumption is that the code within the try block
is the code that is likely to raise an exception! Otherwise, what would be the point?

226

3 gk ak

Exceptions

The except statement may contain zero or more exception types that may follow it. These may
either be system exception types, which are predefined, or they may be user-defined exception
types that are defined in your application. Table 8-1 shows the predefined system exception

types in Python.

Table 8-1

Standard Python Error Types

Error Name

Exception
StandardError
ArithmeticError
LookupError

AssertionError
AttributeError
EOFError
EnvironmentError

FloatingPointError
GeneratorExit
IOError
ImportError

IndexError

KeyError
KeyboardInterrupt

MemoryError
NameError
NotImplementedError
OsError

OverflowError

ReferenceError
StopIteration

SyntaxError

Meaning

The basic Python exception, the base for all other exception types.

The base class for all standard exceptions in Python

The base class for all arithmetic errors, such as overflows.

Errors related to containers, trying to find things that aren’t in
dictionaries, for example.

An assertion failed, generating an exception in the code.

An attribute is invalid, illegal, or out of range.

End of file error.

The base class for all errors, which occur outside of the Python
environment, such as 10 errors.

Raised whenever an error occurs in processing a floating point value.
Raised when the close () method of a generator object is called.
Raised whenever an error occurs in an input/output operation.

Raised when the system is unable to locate or load the target of an import
statement in the code.

Raised when the index value used to access an array or list element is out
of range.

Raised when a key in a dictionary is not found.

Raised whenever the user terminates input in a nonstandard way, such
as pressing Ctrl-C during an input statement.

Raised when the system runs out of memory while running, but can still
be rescued. This is a nonfatal memory error.

Raised when a name or scope cannot be found by the interpreter.
Normally not raised by the system, this error should be raised by the
implementer of a derived class when functionality is not implemented
in their class.

Raised any time an operating system error occurs.

Raised whenever an overflow occurs in a mathematical statement, such
as when a number cannot be represented by the types it is using.
Called when a reference to a garbage collected object is used.

Raised when an iterator's next () method is called, and there are no
further values to be processed.

Raised by the interpreter when a syntax error is encountered while
parsing the code.

227

sl b b

CHAPTER 8} Exception Handling

Table 8-1 Standard Python Error Types (Cont.)

Error Name Meaning

SystemError Raised by the interpreter when an internal error occurs, but the system can
be restarted and continued.

TypeError Raised when a given type is invalid, or a value is assigned that is

inappropriate for a given type.
UnboundLocalError Raised when a local variable is used without having been assigned a value.

ValueError Raised when a given type is valid, but the value assigned to it is not
appropriate or valid.
WindowsError Generic error class for all Windows-specific errors.

ZeroDivisionError Raised when a division by zero would occur in the code.

Let's look at a real example of using the try. .except statements to catch an exception in a
Python class. In the IDLE interpreter, enter the following code:

try:
name = raw_input ("Enter your name: ")
print "You entered: " + name

except KeyboardInterrupt:

print "You hit control-c"

Now run the program. If you enter a name and press Enter, you will see the following output
in the console window of IDLE:

>>>
Enter your name: matt

You entered: matt

On the other hand, if you press the Ctrl-C keyboard combination while you are entering your
name, you will see the following output in the IDLE console window instead:

>>>
Enter your name:

You hit control-c

As you can see, the interpreter properly caught the exception generated by the pressing of the
Ctrl-C combination and notified the application. Since we had installed a handler by placing
the code within a try. . except block, the code was able to recover from the error and
continue processing properly. This is the real purpose of exception handling, to allow your
program to continue processing and, if possible, to accomplish its task. Whether or not the
error is something you can deal with, you can at the very least do a clean shutdown of your
application if you use exception handling.

228

sl ssls 5l
E R F

Exceptions

Multiple except Clauses

The problem with errors isn't that they occur, but that they occur in such varied ways. For
example, imagine that you are going to ask the user to enter a number and then use that
number for a mathematical calculation. How many things can go wrong in this simple little
exercise? Quite a few, really. First, the user could interrupt the input, as we saw in the previous
example. Next, he could enter a value that isn't a valid number, generating a valueError
that would crash your program. We could divide by the input number and somehow generate
a DivisionByZero exception. How can you possibly handle all of these possibilities in a
single application?

One possibility you might consider would be a series of try . . except blocks. For example,
you might try something like this:

try:
try :
v = int(raw_input ("Enter a value: "))
except ValueError:
print "Invalid input, please enter a value"
except KeyboardInterrupt:

print "Please don't hit ctrl-c"

This certainly works, and will accomplish what you want. However, if you have even more
possible errors, the code will quickly become unreadable, with too many levels of indentation
and too many nested blocks of t ry statements. There really does have to be a better way. Since
Python is all about making things easier for you, there naturally is an easier way. In fact, there
are three easier ways. Let's look at two of them first, and then discuss the third, since they are
slightly different.

First, you can have multiple except clauses for a given try statement. For example, let's
consider the two cases of KeyboardInterrupt and ValueError that we looked at in the
previous code. We could rewrite this code as follows:

try:
v = int(raw_input("Enter a value: "))
print "We got some valid input!"
except ValueError:
print "Invalid input, please enter a value"
except KeyboardInterrupt:

print "Please don't hit ctrl-c"

229

CHAPTER 8} Exception Handling

The Python interpreter understands that multiple except clauses may follow a single try
statement. Until the indentation level changes, it will process each of the except clauses until
it finds one that matches the exception type. Now, if none of the except clauses matches the
kind of error we get, then bad things will happen. Let’s modify the code above slightly, and see
what [mean:
try:

v = int(raw_input ("Enter a value: "))

print "We got some valid input!"

x = 100 / v
except ValueError:

print "Invalid input, please enter a value"
except KeyboardInterrupt:

print "Please don't hit ctrl-c"

Now, run the above code, but enter O for the value:

>>>
Enter a value: 0

We got some valid input!

Traceback (most recent call last):
File "C:/Python25/ex.py", line 4, in <module>
x = 100 / v

ZeroDivisionError: integer division or modulo by zero

Notice that the input works fine, but when the value is used to divide, a division by zero occurs,
generating an error. We could add a third except clause to the list, but the problem would get
out of hand quickly. Obviously, what we really want are categories of exceptions, so that invalid
input types are handled one way, and math errors and the like are handled in another. This
brings us to the second form of the except clause that we need to consider, multiple exception
types for a single except clause. Here is how you do them:

try:
v = int(raw_input ("Enter a value: "))
print "We got some valid input!"
x = 100 / v
except (ValueError, KeyboardInterrupt):
print "Invalid input, please enter a value"
except ZeroDivisionError:

print "You can't divide by ZERO!"

230

sl ssls 5l
E R F

Exceptions

As you can see from the above example, it is possible to handle multiple exception types with
asingle except clause. Placing the exception list that you want within parentheses, separated
by commas, permits the interpreter to know that you want to look at all of those exceptions as
asingle kind of error. Thus, the valueError and KeyboardInterrupt exceptions are treated
the same way, allowing you to combine all of the code for bad input types in a single block.
Meanwhile, the division by zero error is handled on its own, although you could combine it
with other math errors and process them all the same way.

Blank except Clauses

You might wonder what you do when you know there are possible exceptions out there, but
really don't know what they might be. For example, as we've seen, there are numerous excep-
tions that can be thrown for a simple input statement. There are probably dozens of other
possible errors that could occur for a single Python statement. How can you possibly write
enough exception handling code to deal with them all? Do you really have to list every single
error that can occur and deal with each one individually? That would be pretty horrifying,
wouldn't it? The answer to this is that you never have to do something like that. If all you want
is to deal with any potential errors you didn't think about, Python provides the except clause
with no exception handlers defined:

Let's imagine that we want to input a number from the user. If the user presses the Ctrl-C
combination, we want him to exit the application. If the user enters 0, we want to warn him
about division by zero and prompt him again. Any other errors should simply tell the user that
he gave us bad input and try again. To do this, we use the blank except clause:

while True :
try:
v = int(raw_input ("Enter a value: "))
print "We got some valid input!"
x = 100 / v
break
except (KeyboardInterrupt):
print "well, ok, if you don't really want to.."
break
except ZeroDivisionError:
print "You can't divide by ZERO!"
except:

print "Some other error happened here"

231

CHAPTER 8} Exception Handling

Now, when we run the program, it will continue to request input from the user until we either
enter something valid or press the Ctrl-C combination at the keyboard. Here is a typical set of
input and the resulting conditions from the previous code.

>>>
Enter a value: abc

Some other error happened here

Enter a value: 0

We got some valid input!

You can't divide by ZERO!

Enter a value: 1

We got some valid input!

>>>

Enter a value: [Control-C was pressed]

well, ok, if you don't really want to..

The blank except clause catches any exception. If you want to simply handle errors and make
sure that the program does not terminate abnormally, each try statement that you use should
contain a blank except clause to handle anything you didn't think of. That doesn't absolve
you from catching exceptions that you do know about and handling them properly.

The else Clauses

The exception handling system in Python provides ways to try one or more statements and to
catch any exceptions that are generated as the result of those statements. As we've looked at
the process so far, it looks like this in a generalized way:

try:
statement-that-may-generate-exception
except:
statements to handle exceptions
Continue down here somehow.
statements-to-process-if-no-exception
except:

exception-handling-code

There is a problem here, however. While we assume that the original statement may generate
an exception, we do not worry about what might happen in the statements to process after

that, which might also generate exceptions. To avoid this problem, Python provides the el1se
statement. Yes, we have looked at the e1se statement with respect to i f statements, and with

232

3 gk ak

The else Clauses

for loops. It turns out that the versatile e1 se can also be used with respect to the try statement
as well.

The purpose of the e1se statement in exception handling is to provide a path to execute if no
exceptions occur during the try block. For example, if we are processing a file, reading in and
doing something with the data from the file, we might worry about exceptions occurring during
the processing. Maybe we want to warn the user if not all of the data could be processed. All
of that is easy enough to do in the scope of a try. . except block. However, what happens if
all went fine? We want a way in which to let the user know that everything went as expected.
This is the idea behind the el1se clause. Take a look at the following example to get an idea of
how it all works.

try:

v = int(raw_input("Enter a value: "))

print "We got some valid input!"

x = 100 / v
except (KeyboardInterrupt) :

print "well, ok, if you don't really want to.."
except ZeroDivisionError:

print "You can't divide by ZERO!"
except:

print "Some other error happened here"
else:

print "All went well, x = ", X

Now, when we run this script in the interpreter, we can either generate an error or get through
the code properly. Let's look at both cases:

Enter a value: 10

We got some valid input!
All went well, x = 10
>>>

Enter a value: 0

We got some valid input!

You can't divide by ZERO!

When we process a block of potential exception generating code properly, it is important to
care about the “happy path” case, aswell as all of the error cases. The e1se clause isan important
weapon in creating exception free code. Note, however, that code within an el1se clause can
generate exceptions and that those exceptions will not be caught by the t ry block above them.

233

sl ol ol

CHAPTER 8} Exception Handling

Only place code within the e1se block that you know to be safe, or encase it in its own try
block for safety.

The £inally Clause

The else clause handles the case where everything worked fine in an exception handling block.
What do you do, however, when you want to process some code, regardless of whether or not
something worked properly? The answer is the fina11y clause in Python.The final1ly clause,
used for cleanup and final processing, will be executed at the end of a block of exception
handling code, whether there was an error encountered or not. You can think of it as your last
chance to clean things up before the program moves on from its problem state.

In order to use the finally clause, you simply place a finally statement as the last thing to do
in your try block. For example, in our example that we have been using so far in this chapter,
we would modify it to look like this:

try:

v = int(raw_input ("Enter a value: "))

print "We got some valid input!"

x = 100 / v
except (KeyboardInterrupt) :

print "well, ok, if you don't really want to.."
except ZeroDivisionError:

print "You can't divide by ZERO!"
except:

print "Some other error happened here"
else:

print "All went well, x = ", X

finally:

print "This is executed no matter what!"

So what happens when we run the code above? We'll consider three cases. First, we'll look at
the case where everything went just fine. Second, we will consider the case where the user
presses the Control-C combination while entering a value. Finally, we will consider the case of
a division by zero error from valid numeric input. If you try all three of these in the interpreter,
you will see the following output.

Enter a value: 10
We got some valid input!
All went well, x = 10

This is executed no matter what!

234

sl ssls 5l
E R F

Raising Your Own Exceptions

>>>
Enter a value:
Some other error happened here

This is executed no matter what!

>>>
Enter a value: 0

We got some valid input!
You can't divide by ZERO!

This is executed no matter what!

Notice that in all three cases, you see the code that is listed in the final1y clause executed.
Naturally, you can have as many statements in this clause as you want, always bearing in mind
that exceptions could be generated in this block as well as any other.

Raising Your Own Exceptions

Obviously, if exceptions are such an integrated part of the Python environment, it would make
sense that you should be able to launch your own exceptions when something goes wrong in
code that you've written. Naturally, that capability does exist. The function of creating a new
exception and propagating it across the running application is called raising an exception. It's
called raising because the keyword that is used to accomplish the task is named raise.

Suppose that you are writing a simple function that computes the factorial of a number. You
may remember that in the last chapter, we wrote a recursive Python function that did exactly
that. At the time, I said there was a minor bug in the logic of the code. The function looks like
this:

def fact(value):

Terminating condition:
If the number is 1 or less, the factorial is, by definition 1.
if value <=1
return 1
else :
The factorial of any other number is the number * all of the
numbers leading up to it.

return value * fact(value-1)

235

sl b b

CHAPTER 8} Exception Handling

As mentioned back in Chapter 7, the factorial program has a problem. The factorial of a negative
number is defined, at least here, as 1. That's not correct; in fact, the factorial of a negative
number is undefined. An undefined situation seems like an absolutely ideal time to raise an
exception, so let's modify our function to do just that.

def fact(value):
Sanity check. Negative numbers are not valid
if value < 0

raise ValueError

Terminating condition:
If the number is 1 or less, the factorial is, by definition 1.
if value <=1
return 1
else
The factorial of any other number is the number * all of the
numbers leading up to it.

return value * fact(value-1)

Now, if we try to pass the negative number to the fact () function, you should see an exception
raised. Let's try it in the IDLE interpreter:

>>> print fact(-1)

Traceback (most recent call last):
File "<pyshell#5>", line 1, in <module>
print fact(-1)
File "E:/Python/ch8_2.py", line 4, in fact
raise ValueError

ValueError

Can we catch this error and have it not propagate into the interpreter? You better believe we
can:

>>> try
fact (-1)
except ValueError:
print "It is invalid to take the factorial of a negative number"

else:

236

sl ssls 5l
B Bk Bk

Exception Arguments

print "Looks good"

It is invalid to take the factorial of a negative number

Finally, we could have rewritten our statement checking the value of the variable by using the
assert statement in Python, rather than an i f statement. In this case, we would have:

assert value >= 0

Then instead of checking for a valueError in our exception handler, we would check for an
AssertionError.

Exception Arguments

Sometimes, it is rather nice to tell someone not only what went wrong, but why it happened.
For example, it is all very well and good to tell the programmer that he passed an invalid
argument to a function, but it would certainly be a lot better to tell him which argument it was
and what a valid range would be for that argument. That saves the programmer a lot of time
tracking down the documentation for a function, which nobody reads anyway, and then seeing
what values he passed to it and what were expected. Programming really shouldn't be all that
hard, and Python strives to make it as easy as possible.

Let's imagine that you have a function that takes a few arguments. The arguments are all
numeric and have various allowable ranges. In fact, the function might look something like
this:
def myFunction(a, b, c)
if a < 0 or a> 10 :
raise ValueError, "a must be between 0 and 10"
if b > 50 :
raise ValueError, "b must be less than 50"

return a*b + c

The function listed above raises an exception (valueError) if one of the arguments passed to
it is out of range. This is normal for Python, and the programmer can easily trap for it. If you
were to call the function in IDLE, passing it invalid numbers, you might see something like this:

>>> myFunction(-1,5,3)

Traceback (most recent call last):
File "<pyshell#l>", line 1, in <module>
myFunction(-1,5,3)
File "G:/Python/ch8_3.py", line 3, in myFunction

237

CHAPTER 8} Exception Handling

raise ValueError, "a must be between 0 and 10"

ValueError: a must be between 0 and 10

Likewise, you might pass in an invalid value for the second argument “b” into the function. In
that case, you would see the following output in the IDLE interpreter:

>>> myFunction(5,100,2)

Traceback (most recent call last):
File "<pyshell#2>", line 1, in <module>
myFunction(5,100,2)
File "G:/Python/ch8_3.py", line 5, in myFunction
raise ValueError, "b must be less than 50"

ValueError: b must be less than 50

Hopefully, you can see how it is a lot easier to find and fix the problem when you see errors
like this instead of an error like valueError at line 5. If you make it easy for people to
understand what the problem they are causing is, they will fix it faster, and make everyone’s
life easier.

Exception arguments are somewhat limited, depending on the exception type. For the excep-
tion valueError, for example, you can only specify a single argument, and then a traceback
argument if you want. The traceback functionality is provided in case the function you are
calling calls other functions that cause the exception to be generated.

Of course, you may want to actually see what the exception arguments are in your code. In this
case, you do something like this:

get an exception's argument
try:

num = float (raw_input ("\nEnter a number: "))
except (ValueError), e:

print "Not a number! Or as Python would say:\n", e

User-Defined Exceptions

You can define your own exception types in Python. These exceptions can work just like “built-
in” exceptions and can contain traceback information and arguments that can be used by
the programmer catching them. Naturally, a user-defined exception can be caught with the
try. .except logic, exactly the same as with “normal” exceptions. We will discuss how to
create user-defined exceptions in Chapter 10, when we talk about how to define your own
classes, and how to derive your classes from existing ones.

238

3 gk ak

Working with the Exception Information

Working with the Exception Information

When you are programming in Python and working with exceptions, there is information
available to you that will allow you to print out things you want the end user to see, while
permitting you to ignore showing the user things that really won't mean anything to them.
There are three basic variables that you need to know about when you are working with Python
exception handling, which are exc_type, exc_value,and exc_traceback. Let's take a brief
look at each one and see what they are and why you might care about them. Note that these
values are all a component of the system package (sys), and you will need to import sys to
use them in your own modules.

exc_type

The exc_type value represents the type of the exception that was last generated. Normally,
you use these values within the exception handler, but there is actually no particular reason
you need to. Until another exception is generated, the values will contain the last value that
was set for them, so if you want to log exceptions or such, you can do so at any time, up until
the next exception comes along. To see an example of how the exc_ type value works, consider
the following code:

>>> import sys
>>> try :

raise ValueError, "Got an error"
except :

print sys.exc_type

<type 'exceptions.ValueError'>

You can compare type values, if you want to. For example:

>>> try :
raise ValueError, "Got an error"
except :
if sys.exc_type == ValueError :
print "Value Error"
else :

print "Something else"

Value Error

CHAPTER 8} Exception Handling

The ability to compare the error types is particularly useful when we start talking about derived
types and user exceptions, which we will do in Chapter 10. Until then, you can just consider
the ability to look at the type of the exception to be a useful way in which to handle them. For
example, the exception types could be stored in a global dictionary along with global handlers
for those types. The Python system is amazingly flexible, so you can write code that does things
like this:

import sys

dict = {}

dict[ValueError] = "Enter a valid value"
dict[IOError] = "An error occurred in the IO system"
try :

raise ValueError
except :
if dict.has_key(sys.exc_type)
print dict[sys.exc_type]

In this case, we have a dictionary that contains a list of potential exception types, along with
some text to output when that exception is raised. It would be just as simple to replace the text
with a function to call when the exception is raised, and call that function from anywhere in
the program. This is a very useful technique, particularly for generalized errors like input/
output or memory problems.

exc_value

The exc_value argument of the system exception subsystem is an object that represents parts
of an exception’s state. When you pass an argument to an exception via the raise statement,
you can retrieve this argument via the exc_value variable. This can be particularly useful for
user-defined errors, since you can print out a much more meaningful message to the user than
“exception <blah> occurred” in your error handling functions. The type is not really what you
expect of a value. For example, if you look at this:

>>> try :
raise ValueError, 123
except:

print sys.exc_value

123

240

3 gk ak

Working with the Exception Information

It would appear that the value here is the integer 123, and it is, sort of. However, if you print
it out in string format, using the repr () function, you will see that it isn't.

>>> try :
raise ValueError, 123
except:

print "The error argument was"+repr (sys.exc_value)

The error argument wasValueError (123,)

What you are actually getting here is a representation of the error argument as an object, which
is correct from the perspective of the Python interpreter. It is easier to use the str () function,
which will convert the value to a string properly:

print "The error argument was "+str (sys.exc_value)

The error argument was 123

Values are useful for comparison, for logging, or just for telling the user what was going on at
the time of the exception.

exc_traceback

Inolderversions of Python, before 2.4, the exc_traceback variable was used to store traceback
information for showing the call stack that led to the error. In current versions, this variable is
still available but considered deprecated (that is, don't use it, it may go away in the next release).
You are supposed to use the exc_info () function instead. This function prints out a traceback
of the call stack, which shows how you got to a given point. If you get an exception in a function
that you call, for example, you will see the function and line that generated the exception.

import sys

def excFunc ()

raise ValueError

try:
excFunc ()
except:
print "Got an exception"

print sys.exc_info()

241

CHAPTER 8} Exception Handling

This code generates the following output to the console:

Got an exception

(<type 'exceptions.ValueError'>, ValueError (), <traceback object at 0x00C455F8>)

Ed Note about the Address

The address shown, 0x00C455F8, is likely to be different on your system.

The last bit there, the traceback object, can be used to print out information about the excep-
tion. By importing the traceback module, you have access to a whole host of functions that
work with traceback objects. For example:

import sys

import traceback

def excFunc ()

raise ValueError

try:
excFunc ()
except:
print "Got an exception"

print traceback.print_stack(sys.exc_info () [2])

This function call results in a printout of the stack, indicating how you got to this stage. In this
case, the actual stack trace will look like this:

Traceback (most recent call last):
File "C:/Python25/templ.py", line 11, in <module>
print traceback.print_stack(sys.exc_info () [2])
File "C:\Python25\1lib\traceback.py", line 262, in print_stack
print_list (extract_stack(f, limit), file)
File "C:\Python25\1lib\traceback.py", line 293, in extract_stack
lineno = f.f_lineno

AttributeError: f lineno

Which shows where you are at this point and how you got there.

In general, using the exception variables is frowned upon, with the exception of printing out
the exception argument. You really should not have to know a great deal about the internals

242

sy o5l
B gk wk

Using the with Clause for Files

of the exception handling system in order to use exceptions. Just knowing that an exception
occurred is usually enough, and then knowing what sort of exception it was will complete the
picture.

Using the with Clause for Files

One of the most common problems with using exceptions is cleaning up after yourself when
something really bad happens. The most common problem is that files are not closed and
flushed to disk when you encounter an error in processing them. For this purpose, Python
provides a special form of error handling, which is the wi th clause. The wi th clause allows you
to free up any form of object in a specific block if an error occurs.

The basic format of the with clause is as follows:

with var = expression :

block

Where var is simply the name of avariable