

Python Multimedia
Beginner's Guide

Learn how to develop multimedia applications using Python
with this practical step-by-step guide

Ninad Sathaye

BIRMINGHAM - MUMBAI

x

x

Python Multimedia
Beginner's Guide

Copyright © 2010 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2010

Production Reference: 1060810

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-849510-16-5

www.packtpub.com

Cover Image by Ed Maclean (edmaclean@gmail.com)

x

x

Credits

Author

Ninad Sathaye

Reviewers

Maurice HT Ling

Daniel Waterworth

Sivan Greenberg

Acquisition Editor

Steven Wilding

Development Editor

Eleanor Duffy

Technical Editor

Charumathi Sankaran

Indexers

Hemangini Bari

Tejal Daruwale

Editorial Team Leader

Aanchal Kumar

Project Team Leader

Priya Mukherji

Project Coordinator

Prasad Rai

Proofreader

Lynda Sliwoski

Graphics

Geetanjali Sawant

Production Coordinators

Shantanu Zagade

Aparna Bhagat

Cover Work

Aparna Bhagat

x

x

About the Author

Ninad Sathaye (ninad.consult@gmail.com) has more than six years of experience in
software design and development. He is currently working at IBM, India. Prior to working for
IBM, he was a Systems Programmer at Nanorex Inc. based in Michigan, U.S.A. At Nanorex,
he was involved in the development of an open source, interactive 3D CAD software, written
in Python and C. This is where he developed passion for the Python programming language.
Besides programming, his favorite hobbies are reading and traveling.

Ninad holds a Master of Science degree in Mechanical Engineering from Kansas State
University, U.S.A.

I would like to thank everyone at Packt Publishing, especially, Eleanor Duffy,
Steven Wilding, Charu Sankaran, and Prasad Rai for their co-operation.
This book wouldn't have been possible without your help. I also want to
thank all the technical reviewers of the book for their valuable suggestions.
I wish to express my sincere thanks and appreciation to Rahul Nayak, my
colleague, who provided many professional quality photographs for this
book. I owe a special thanks to Mark Sims and Bruce Smith, my former
colleagues, for introducing me to the amusing world of Python. Finally,
this book wouldn't have been possible without the encouragement and
support of my whole family. I owe my loving thanks to my wife, Arati, for
providing valuable feedback. She also happens to be the photographer of
several of the pictures used throughout this book.

x

x

About the Reviewers

Maurice HT Ling completed his Ph.D. in Bioinformatics and B.Sc (Hons) in Molecular and
Cell Biology, where he worked on microarray analysis and text mining for protein-protein
interactions. He is currently an Honorary Fellow at The University of Melbourne and
a Lecturer at Singapore Polytechnic where he lectures on microbiology and
computational biology.

Maurice holds several Chief Editorships including The Python Papers, iConcept Journal
of Computational and Mathematical Biology, and Methods and Cases in Computational,
Mathematical, and Statistical Biology. In his free time, Maurice likes to train in the gym,
read, and enjoy a good cup of coffee. He is also a Senior Fellow of the International Fitness
Association, U.S.A.

Daniel Waterworth is a Python fanatic who can often be found behind his keyboard. He is
always beavering away on a new project having learned to program from a young age. He is a
keen blogger and his ideas can be found at http://active-thought.com.

Sivan Greenberg is a Forum Nokia Champion, with almost ten years of multi-disciplinary
IT experience and a sharp eye for quality. He started with open source technologies and
the Debian project back in 2002. Joining Ubuntu development two years later, Sivan also
contributed to various other open source projects, such as Plone and Nokia's Maemo.

He has experience with quality assurance, application and web development, UNIX system
administration (including some rather exotic IBM platforms), and GUI programming and
documentation. He's been using Python for all of his development needs for the last five
years. He is currently involved with Nokia's MeeGo project and works with CouchDB and
Python in his day job for a living.

I thank my unique and amazing family, specifically my Dad Eric for igniting
the spark of curiosity from day zero.

x

x

x

x

To my daughter, Anvita

x

x

x

x

Table of Contents
Preface 1

Chapter 1: Python and Multimedia 7
Multimedia 8
Multimedia processing 8

Image processing 8
Audio and video processing 10

Compression 10
Mixing 11
Editing 11

Animations 11
Built-in multimedia support 12

winsound 12
audioop 12
wave 13

External multimedia libraries and frameworks 13
Python Imaging Library 13
PyMedia 13
GStreamer 13
Pyglet 14
PyGame 14

Sprite 14
Display 14
Surface 14
Draw 14
Event 15
Image 15
Music 15

Time for action – a simple application using PyGame 15
QT Phonon 18
Other multimedia libraries 19

x

x

Table of Contents

[ii]

Snack Sound Toolkit 19
PyAudiere 20

Summary 20

Chapter 2: Working with Images 21
Installation prerequisites 21

Python 21
Windows platform 22
Other platforms 22

Python Imaging Library (PIL) 22
Windows platform 22
Other platforms 22

PyQt4 23
Windows platform 23
Other platforms 24

Summary of installation prerequisites 24
Reading and writing images 25
Time for action – image file converter 25

Creating an image from scratch 28
Time for action – creating a new image containing some text 28

Reading images from archive 29
Time for action – reading images from archives 29
Basic image manipulations 30

Resizing 30
Time for action – resizing 30

Rotating 33
Time for action – rotating 34

Flipping 35
Time for action – flipping 35

Capturing screenshots 36
Time for action – capture screenshots at intervals 36

Cropping 39
Time for action – cropping an image 39

Pasting 40
Time for action – pasting: mirror the smiley face! 40
Project: Thumbnail Maker 42
Time for action – play with Thumbnail Maker application 43

Generating the UI code 45
Time for action – generating the UI code 45

Connecting the widgets 47
Time for action – connecting the widgets 48

Developing the image processing code 49

x

x

Table of Contents

[iii]

Time for action – developing image processing code 49
Summary 53

Chapter 3: Enhancing Images 55
Installation and download prerequisites 56
Adjusting brightness and contrast 56
Time for action – adjusting brightness and contrast 56
Tweaking colors 59
Time for action – swap colors within an image! 59

Changing individual image band 61
Time for action – change the color of a flower 61

Gray scale images 63
Cook up negatives 64

Blending 65
Time for action – blending two images 65
Creating transparent images 68
Time for action – create transparency 68
Making composites with image mask 70
Time for action – making composites with image mask 71
Project: Watermark Maker Tool 72
Time for action – Watermark Maker Tool 73
Applying image filters 81

Smoothing 82
Time for action – smoothing an image 82

Sharpening 84
Blurring 84
Edge detection and enhancements 85

Time for action – detecting and enhancing edges 85
Embossing 87

Time for action – embossing 87
Adding a border 88
Time for action – enclosing a picture in a photoframe 89
Summary 90

Chapter 4: Fun with Animations 91
Installation prerequisites 92

Pyglet 92
Windows platform 92
Other platforms 92

Summary of installation prerequisites 93
Testing the installation 93

A primer on Pyglet 94

x

x

Table of Contents

[iv]

Important components 94
Window 94
Image 95
Sprite 95
Animation 95
AnimationFrame 95
Clock 95

Displaying an image 96
Mouse and keyboard controls 97
Adding sound effects 97

Animations with Pyglet 97
Viewing an existing animation 97

Time for action – viewing an existing animation 98
Animation using a sequence of images 100

Time for action – animation using a sequence of images 100
Single image animation 102

Time for action – bouncing ball animation 102
Project: a simple bowling animation 108

Time for action – a simple bowling animation 108
Animations using different image regions 113

Time for action – raindrops animation 114
Project: drive on a rainy day! 117
Time for action – drive on a rainy day! 118
Summary 122

Chapter 5: Working with Audios 123
Installation prerequisites 123

GStreamer 124
Windows platform 124
Other platforms 125

PyGobject 125
Windows platform 125
Other platforms 125

Summary of installation prerequisites 126
Testing the installation 127

A primer on GStreamer 127
gst-inspect and gst-launch 128
Elements and pipeline 128
Plugins 129
Bins 129
Pads 130

Dynamic pads 130
Ghost pads 131

Caps 131

x

x

Table of Contents

[v]

Bus 131
Playbin/Playbin2 131

Playing music 132
Time for action – playing an audio: method 1 133

Building a pipeline from elements 137
Time for action – playing an audio: method 2 138

Playing an audio from a website 141
Converting audio file format 142
Time for action – audio file format converter 142
Extracting part of an audio 150

The Gnonlin plugin 151
Time for action – MP3 cutter! 152
Recording 156
Time for action – recording 157
Summary 160

Chapter 6: Audio Controls and Effects 161
Controlling playback 161

Play 162
Pause/resume 162

Time for action – pause and resume a playing audio stream 162
Stop 165
Fast-forward/rewind 166
Project: extract audio using playback controls 166

Time for action – MP3 cutter from basic principles 167
Adjusting volume 173
Time for action – adjusting volume 173
Audio effects 175

Fading effects 175
Time for action – fading effects 176

Echo echo echo... 179
Time for action – adding echo effect 179

Panning/panorama 182
Project: combining audio clips 183

Media 'timeline' explained 184
Time for action – creating custom audio by combining clips 185
Audio mixing 194
Time for action – mixing audio tracks 194
Visualizing an audio track 196
Time for action – audio visualizer 196
Summary 199

x

x

Table of Contents

[vi]

Chapter 7: Working with Videos 201
Installation prerequisites 202
Playing a video 203
Time for action – video player! 203

Playing video using 'playbin' 208
Video format conversion 209
Time for action – video format converter 209
Video manipulations and effects 215

Resizing 215
Time for action – resize a video 216

Cropping 217
Time for action – crop a video 218

Adjusting brightness and contrast 219
Creating a gray scale video 220

Adding text and time on a video stream 220
Time for action – overlay text on a video track 220
Separating audio and video tracks 223
Time for action – audio and video tracks 223
Mixing audio and video tracks 226
Time for action – audio/video track mixer 226
Saving video frames as images 230
Time for action – saving video frames as images 230
Summary 235

Chapter 8: GUI-based Media Players Using QT Phonon 237
Installation prerequisites 238

PyQt4 238
Summary of installation prerequisites 238

Introduction to QT Phonon 238
Main components 239

Media graph 239
Media object 239
Sink 239
Path 239
Effects 239

Backends 239
Modules 240

MediaNode 240
MediaSource 240
MediaObject 240
Path 240
AudioOutput 241
Effect 241
VideoPlayer 241

x

x

Table of Contents

[vii]

SeekSlider 241
volumeSlider 241

Project: GUI-based music player 241
GUI elements in the music player 242
Generating the UI code 243

Time for action – generating the UI code 243
Connecting the widgets 247

Time for action – connecting the widgets 247
Developing the audio player code 249

Time for action – developing the audio player code 250
Project: GUI-based video player 257

Generating the UI code 258
Time for action – generating the UI code 258

Connecting the widgets 260
Developing the video player code 261

Time for action – developing the video player code 261
Summary 264

Index 265

x

x

x

x

Preface
Multimedia applications are used in a broad spectrum of fields. Writing applications that
work with images, videos, and other sensory effects is great. Not every application gets
to make full use of audio/visual effects, but a certain amount of multimedia makes any
application very appealing.

This book is all about multimedia processing using Python. This step by step guide gives
you a hands-on experience with developing exciting multimedia applications. You will build
applications for processing images, creating 2D animations and processing audio and video.

There are numerous multimedia libraries for which Python bindings are available. These
libraries enable working with different kinds of media, such as images, audio, video, games,
and so on. This book introduces the reader to some of these (open source) libraries through
several implausibly exciting projects. Popular multimedia frameworks and libraries, such
as GStreamer, Pyglet, QT Phonon, and Python Imaging library are used to develop various
multimedia applications.

What this book covers
Chapter 1, Python and Multimedia teaches you a few things about popular multimedia
frameworks for multimedia processing using Python and shows you how to develop a
simple interactive application using PyGame.

Chapter 2, Working with Images explains basic image conversion and manipulation
techniques using the Python Imaging Library. With the help of several examples and code
snippets, we will perform some basic manipulations on the image, such as pasting an image
on to another, resizing, rotating/flipping, cropping, and so on. We will write tools to capture
a screenshot and convert image files between different formats. The chapter ends with
an exciting project where we develop an image processing application with a graphical
user interface.

x

x

Preface

[�]

Chapter 3, Enhancing Images describes how to add special effects to an image using Python
Imaging Library. You will learn techniques to enhance digital images using image filters, for
example, reducing 'noise' from a picture, smoothing and sharpening images, embossing, and
so on. The chapter will cover topics such as selectively changing the colors within an image.
We will develop some exiting utilities for blending images together, adding transparency
effects, and creating watermarks.

Chapter 4, Fun with Animations introduces you to the fundamentals of developing animations
using Python and Pyglet multimedia application development frameworks. We will work
on some exciting projects such as animating a fun car out for a ride in a thunderstorm, a
'bowling animation' with keyboard controls, and so on.

Chapter 5, Working with Audios teaches you how to get to grips with the primer on
GStreamer multimedia framework and use this API for audio and video processing. In this
chapter, we will develop some simple audio processing tools for 'everyday use'. We will
develop tools such as a command-line audio player, a file format converter, an MP3 cutter
and audio recorder.

Chapter 6, Audio Controls and Effects describes how to develop tools for adding audio effects,
mixing audio tracks, creating custom music tracks, visualizing an audio track, and so on.

Chapter 7, Working with Videos explains the fundamentals of video processing. This
chapter will cover topics such as converting video between different video formats, mixing
or separating audio and video tracks, saving one or more video frames as still images,
performing basic video manipulations such as cropping, resizing, adjusting brightness,
and so on.

Chapter 8, GUI-based Media Players using QT Phonon takes you through the fundamental
components of the QT Phonon framework. We will use QT Phonon to develop audio and
video players using a graphical user interface.

Who this book is for
Python developers who want to dip their toes into working with images, animations, and
audio and video processing using Python.

Conventions
In this book, you will find several headings appearing frequently.

To give clear instructions of how to complete a procedure or task, we use:

x

x

Preface

[�]

Time for action – heading
1. Action 1

2. Action 2

3. Action 3

Instructions often need some extra explanation so that they make sense, so they are
followed with:

What just happened?
This heading explains the working of tasks or instructions that you have just completed.

You will also find some other learning aids in the book, including:

Pop quiz – heading
These are short multiple choice questions intended to help you test your own understanding.

Have a go hero – heading
These set practical challenges and give you ideas for experimenting with what you
have learned.

You will also find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "The dictionary self.addedEffects keeps track
of all the audio."

A block of code is set as follows:

1 def __init__(self):
2 self.constructPipeline()
3 self.is_playing = False
4 self.connectSignals()

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

1 def constructPipeline(self):
2 self.pipeline = gst.Pipeline()
3 self.filesrc = gst.element_factory_make(
4 "gnlfilesource")

x

x

Preface

[�]

Any command-line input or output is written as follows:

>>>import pygst

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "You will need to tweak the
Effects menu UI and make some other changes in the code to keep track of the added effects."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to
develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note in the
SUGGEST A TITLE form on www.packtpub.com or e-mail suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code for this book

You can download the example code files for all Packt books you have purchased
from your account at http://www.PacktPub.com. If you purchased this
book elsewhere, you can visit http://www.PacktPub.com/support and
register to have the files e-mailed directly to you.

x

x

Preface

[�]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we
would be grateful if you would report this to us. By doing so, you can save other readers from
frustration and help us improve subsequent versions of this book. If you find any errata, please
report them by visiting http://www.packtpub.com/support, selecting your book, clicking
on the errata submission form link, and entering the details of your errata. Once your errata
are verified, your submission will be accepted and the errata will be uploaded on our website,
or added to any list of existing errata, under the Errata section of that title. Any existing errata
can be viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

x

x

x

x

1
Python and Multimedia

Since its conception in 1989, Python has gained increasing popularity as a
general purpose programming language. It is a high-level, object-oriented
language with a comprehensive standard library. The language features
such as automatic memory management and easy readability have attracted
the attention of a wide range of developer communities. Typically, one can
develop complex applications in Python very quickly compared to some other
languages. It is used in several open source as well as commercial scientific
modeling and visualization software packages. It has already gained popularity
in industries such as animation and game development studios, where the focus
is on multimedia application development. This book is all about multimedia
processing using Python.

In this introductory chapter, we shall:

Learn about multimedia and multimedia processing

Discuss a few popular multimedia frameworks for multimedia processing
using Python

Develop a simple interactive application using PyGame

So let's get on with it.

x

x

Python and Multimedia

[�]

Multimedia
We use multimedia applications in our everyday lives. It is multimedia that we deal
with while watching a movie or listening to a song or playing a video game. Multimedia
applications are used in a broad spectrum of fields. Multimedia has a crucial role to play
in the advertising and entertainment industry. One of the most common usages is to add
audio and video effects to a movie. Educational software packages such as a flight or a drive
simulator use multimedia to teach various topics in an interactive way.

So what really is multimedia? In general, any application that makes use of different sources
of digital media is termed as a digital multimedia. A video, for instance, is a combination
of different sources or contents. The contents can be an audio track, a video track, and a
subtitle track. When such video is played, all these media sources are presented together
to accomplish the desired effect.

A multichannel audio can have a background music track and a lyrics track. It may even
include various audio effects. An animation can be created by using a bunch of digital images
that are displayed quickly one after the other. These are different examples of multimedia.

In the case of computer or video games, another dimension is added to the application,
the user interaction. It is often termed as an interactive type of multimedia. Here, the users
determine the way the multimedia contents are presented. With the help of devices such as
keyboard, mouse, trackball, joystick, and so on, the users can interactively control the game.

Multimedia processing
We discussed some of the application domains where multimedia is extensively used.
The focus of this book will be on multimedia processing, using which various multimedia
applications will be developed.

Image processing
After taking a snap with a digital camera, we often tweak the original digital image for
various reasons. One of the most common reasons is to remove blemishes from the image,
such as removing 'red-eye' or increasing the brightness level if the picture was taken in
insufficient light, and so on. Another reason for doing so is to add special effects that
give a pleasing appearance to the image. For example, making a family picture black and
white and digitally adding a frame around the picture gives it a nostalgic effect. The next
illustration shows an image before and after the enhancement. Sometimes, the original
image is modified just to make you understand important information presented by the
image. Suppose the picture represents a complicated assembly of components. One can add
special effects to the image so that only edges in the picture are shown as highlighted. This

x

x

Chapter 1

[�]

information can then be used to detect, for instance, interference between the components.
Thus, we digitally process the image further until we get the desired output image.

An example where a border is added around an image to change its appearance is as follows:

Digital image processing can be viewed as an application of various algorithms/filters on
the image data. One of the examples is an image smoothing filter. Image smoothing means
reducing the noise from the image. The random changes in brightness and color levels within
the image data are typically referred to as image noise. The smoothing algorithms modify
the input image data so that this noise is reduced in the resultant image.

Another commonly performed image processing operation is blending. As the name
suggests, blending means mixing two compatible images to create a new image. Typically,
the data of the two input images is interpolated using a constant value of alpha to produce
a final image. The next illustration shows the two input images and the resultant image
after blending. In the coming chapters we will learn several of such digital image
processing techniques.

The pictures of the bridge and the flying birds are taken at different locations. Using image
processing techniques these two images can be blended together so that they appear as a
single picture:

x

x

Python and Multimedia

[10]

Audio and video processing
When you are listening to music on your computer, your music player is doing several things
in the background. It processes the digital media data so that it can be transformed into a
playable format that an output media device, such as an audio speaker, requires. The media
data flows through a number of interconnected media handling components, before it
reaches a media output device or a media file to which it is written. This is shown in the
next illustration.

The following image shows a media data processing pipeline:

Audio and video processing encompasses a number of things. Some of them are briefly
discussed in this section. In this book, we will learn various audio-video processing
techniques using Python bindings of the GStreamer multimedia framework.

Compression
If you record footage on your camcorder and then transfer it to your computer, it will
take up a lot of space. In order to save those moments on a VCD or a DVD, you almost
always have to compress the audio-video data so that it occupies less space. There are two
types of audio and video compression; lossy and lossless. The lossy compression is very
common. Here, some data is assumed unnecessary and is not retained in the compressed
media. For example, in a lossy video compression, even if some of the original data is lost,
it has much less impact on the overall quality of the video. On the other hand, in lossless
compression, the data of a compressed audio or video perfectly matches the original data.
The compression ratio, however, is very low. As we go along, we will write audio-video data
conversion utilities to compress the media data.

x

x

Chapter 1

[11]

Mixing
Mixing is a way to create composite media using more than one media source. In case of
audio mixing, the audio data from different sources is combined into one or more audio
channels. For example, it can be used to add audio effect, in order to synchronize separate
music and lyrics tracks. In the coming chapters, we will learn more about the media mixing
techniques used with Python.

Editing
Media mixing can be viewed as a type of media editing. Media editing can be broadly divided
into linear editing and non-linear editing. In linear editing, the programmer doesn't control
the way media is presented. Whereas in non-linear editing, editing is done interactively. This
book will cover the basics of media editing. For example, we will learn how to create a new
audio track by combining portions of different audio files.

Animations
An animation can be viewed as an optical illusion of motion created by displaying a
sequence of image frames one after the other. Each of these image frames is slightly
different from the previously displayed one. The next illustration shows animation
frames of a 'grandfather's clock':

As you can see, there are four image frames in a clock animation. These frames are
quickly displayed one after the other to achieve the desired animation effect. Each of
these images will be shown for 0.25 seconds. Therefore, it simulates the pendulum
oscillation of one second.

x

x

Python and Multimedia

[12]

Cartoon animation is a classic example of animation. Since its debut in the early twentieth
century, animation has become a prominent entertainment industry. Our focus in this
book will be on 2D cartoon animations built using Python. In Chapter 4, we will learn some
techniques to build such animations. Creating a cartoon character and bringing it to 'life' is
a laborious job. Until the late 70s, most of the animations and effects were created without
the use of computers. In today's age, much of the image creation work is produced digitally.
The state-of-the-art technology makes this process much faster. For example, one can apply
image transformations to display or move a portion of an image, thereby avoiding the need
to create the whole cartoon image for the next frame.

Built-in multimedia support
Python has a few built-in multimedia modules for application development. We will skim
through some of these modules.

winsound
The winsound module is available on the Windows platform. It provides an interface which
can be used to implement fundamental audio-playing elements in the application. A sound
can be played by calling PlaySound(sound, flags). Here, the argument sound is used
to specify the path of an audio file. If this parameter is specified as None, the presently
streaming audio (if any) is stopped. The second argument specifies whether the file to be
played is a sound file or a system sound. The following code snippet shows how to play a
wave formatted audio file using winsound module.

from winsound import PlaySound, SND_FILENAME

PlaySound("C:/AudioFiles/my_music.wav", SND_FILENAME)

This plays the sound file specified by the first argument to the function PlaySound. The
second argument, SND_FILENAME, says that the first argument is an audio file. If the flag
is set as SND_ALIAS, it means the value for the first argument is a system sound from
the registry.

audioop
This module is used for manipulating the raw audio data. One can perform several useful
operations on sound fragments. For example, it can find the minimum and maximum values
of all the samples within a sound fragment.

x

x

Chapter 1

[13]

wave
The wave module provides an interface to read and write audio files with WAV file format.
The following line of code opens a wav file.

import wave
fil = wave.open('horn.wav', 'r')

The first argument of method open is the location where the path to the wave file is
specified. The second argument 'r' returns a Wave_read object. This is the mode in which
the audio file is opened, 'r' or 'rb' for read-only mode and 'w' or 'wb' for write-only mode.

External multimedia libraries and frameworks
There are several open source multimedia frameworks available for multimedia application
development. The Python bindings for most of these are readily available. We will discuss
a few of the most popular multimedia frameworks here. In the chapters that follow, we will
make use of many of these libraries to create some useful multimedia applications.

Python Imaging Library
Python Imaging Library provides image processing functionality in Python. It supports several
image formats. Later in this book, a number of image processing techniques using PIL will
be discussed thoroughly. We will learn things such as image format conversion and various
image manipulation and enhancement techniques using the Python Imaging Library.

PyMedia
PyMedia is a popular open source media library that supports audio/video manipulation of
a wide range of multimedia formats.

GStreamer
This framework enables multimedia manipulation. It is a framework on top of which one
can develop multimedia applications. The rich set of libraries it provides makes it easier
to develop applications with complex audio/video processing capabilities. GStreamer is
written in C programming language and provides bindings for some other programming
languages including Python. Several open source projects use GStreamer framework to
develop their own multimedia application. Comprehensive documentation is available on
the GStreamer project website. GStreamer Application Development Manual is a very good
starting point. This framework will be extensively used later in this group to develop audio
and video applications.

x

x

Python and Multimedia

[14]

Pyglet
Interested in animations and gaming applications? Pyglet is here to help. Pyglet provides
an API for developing multimedia applications using Python. It is an OpenGL-based library
that works on multiple platforms. It is one of the popular multimedia frameworks for
development of games and other graphically intense applications. It supports multiple
monitor configuration typically needed for gaming application development. Later in this
book, we will be extensively using this Pyglet framework for creating animations.

PyGame
PyGame (www.pygame.org) is another very popular open source framework that provides
an API for gaming application development needs. It provides a rich set of graphics and
sound libraries. We won't be using PyGame in this book. But since it is a prominent
multimedia framework, we will briefly discuss some of its most important modules and
work out a simple example. The PyGame website provides ample resources on use of this
framework for animation and game programming.

Sprite
The Sprite module contains several classes; out of these, Sprite and Group are the
most important. Sprite is the super class of all the visible game objects. A Group object
is a container for several instances of Sprite.

Display
As the name suggests, the Display module has functionality dealing with the display. It is
used to create a Surface instance for displaying the Pygame window. Some of the important
methods of this module include flip and update. The former is called to make sure that
everything drawn is properly displayed on the screen. Whereas the latter is used if you
just want to update a portion of the screen.

Surface
This module is used to display an image. The instance of Surface represents an image. The
following line of code creates such an instance.

surf = pygame.display.set_mode((800,600))

The API method, display.set_mode, is used to create this instance. The width and height
of the window are specified as arguments to this method.

Draw
With the Draw module, one can render several basic shapes within the Surface. Examples
include circles, rectangles, lines, and so on.

x

x

Chapter 1

[15]

Event
This is another important module of PyGame. An event is said to occur when, for instance,
the user clicks a mouse button or presses a key and so on. The event information is used to
instruct the program to execute in a certain way.

Image
The Image module is used to process images with different file formats. The loaded image is
represented by a surface.

Music
Pygame.mixer.music provides convenient methods for controlling playback such as play,
reverse, stop, and so on.

The following is a simple program that highlights some of the fundamental concepts
of animation and game programming. It shows how to display objects in an application
window and then interactively modify their positions. We will use PyGame to accomplish
this task. Later in this book, we will use a different multimedia framework, Pyglet, for
creating animations.

Time for action – a simple application using PyGame
This example will make use of the modules we just discussed. For this application to
work, you will need to install PyGame. The binary and source distribution of PyGame is
available on Pygame's website.

1.	 Create a new Python source file and write the following code in it.

1 import pygame
2 import sys
3
4 pygame.init()
5 bgcolor = (200, 200, 100)
6 surf = pygame.display.set_mode((400,400))
7
8 circle_color = (0, 255, 255)
9 x, y = 200, 300
10 circle_rad = 50
11
12 pygame.display.set_caption("My Pygame Window")
13
14 while True:
15 for event in pygame.event.get():

x

x

Python and Multimedia

[16]

16 if event.type == pygame.QUIT:
17 sys.exit()
18 elif event.type == pygame.KEYDOWN:
19 if event.key == pygame.K_UP:
20 y -= 10
21 elif event.key == pygame.K_DOWN:
22 y += 10
23 elif event.key == pygame.K_RIGHT:
24 x += 10
25 elif event.key == pygame.K_LEFT:
26 x -= 10
27
28 circle_pos = (x, y)
29
30 surf.fill(bgcolor)
31 pygame.draw.circle(surf, circle_color ,
32 circle_pos , circle_rad)
33 pygame.display.flip()

2.	 The first line imports the pygame package. On line 4, the modules within this
pygame package are initialized. An instance of class Surface is created using
display.set_mode method. This is the main PyGame window inside which the
images will be drawn. To ensure that this window is constantly displayed on the
screen, we need to add a while loop that will run forever, until the window is
closed by the user. In this simple application everything we need is placed inside the
while loop. The background color of the PyGame window represented by object
surf is set on line 30.

3.	 A circular shape is drawn in the PyGame surface by the code on line 31. The
arguments to draw.circle are (Surface, color, position, radius) . This
creates a circle at the position specified by the argument circle_pos. The instance
of class Surface is sent as the first argument to this method.

4.	 The code block 16-26 captures certain events. An event occurs when, for instance,
a mouse button or a key is pressed. In this example, we instruct the program to
do certain things when the arrow keys are pressed. When the RIGHT arrow key is
pressed, the circle is drawn with the x coordinate offset by 10 pixels to the previous
position. As a result, the circle appears to be moving towards right whenever you
press the RIGHT arrow key. When the PyGame window is closed, the pygame.QUIT
event occurs. Here, we simply exit the application by calling sys.exit() as done
on line 17.

x

x

Chapter 1

[17]

5.	 Finally, we need to ensure that everything drawn on the Surface is visible. This is
accomplished by the code on line 31. If you disable this line, incompletely drawn
images may appear on the screen.

6.	 Execute the program from a terminal window. It will show a new graphics window
containing a circular shape. If you press the arrow keys on the keyboard, the circle
will move in the direction indicated by the arrow key. The next illustration shows the
screenshot of the original circle position (left) and when it is moved using the UP
and RIGHT arrow keys.

A simple PyGame application with a circle drawn within the Surface (window).
The image on the right side is a screenshot taken after maneuvering the position
of the circle with the help of arrow keys:

What just happened?
We used PyGame to create a simple user interactive application. The purpose of this
example was to introduce some of the basic concepts behind animation and game
programming. It was just a preview of what is coming next! Later in this book we
will use Pyglet framework to create some interesting 2D animations.

x

x

Python and Multimedia

[1�]

QT Phonon
When one thinks of a media player, it is almost always associated with a graphical user
interface. Of course one can work with command-line multimedia players. But a media
player with a GUI is a clear winner as it provides an easy to use, intuitive user interface to
stream a media and control its playback. The next screenshot shows the user interface of an
audio player developed using QT Phonon.

An Audio Player application developed with QT Phonon:

QT is an open source GUI framework. 'Phonon' is a multimedia package within QT that
supports audio and video playback. Note that, Phonon is meant for simple media player
functionality. For complex audio/video player functionality, you should use multimedia
frameworks like GStreamer. Phonon depends on a platform-specific backend for media
processing. For example, on Windows platform the backend framework is DirectShow.
The supported functionality may vary depending on the platform.

To develop a media processing application, a media graph is created in Phonon. This media
graph contains various interlinked media nodes. Each media node does a portion of media
processing. For example, an effects node will add an audio effect, such as echo to the media.
Another node will be responsible for outputting the media from an audio or video device
and so on. In chapter 8, we will develop audio and video player applications using Phonon
framework. The next illustration shows a video player streaming a video. It is developed
using QT Phonon. We will be developing this application in Chapter 8.

x

x

Chapter 1

[1�]

Using various built-in modules of QT Phonon, it is very easy to create GUI-based audio
and video players. This example shows a video player in action:

Other multimedia libraries
Python bindings for several other multimedia libraries are available on various platforms.
Some of the popular libraries are mentioned below.

Snack Sound Toolkit
Snack is an audio toolkit that is used to create cross-platform audio applications.
It includes audio analysis and input-output functionality and it has support for
audio visualization as well. The official website for Snack Sound Toolkit is
http://www.speech.kth.se/snack/.

x

x

Python and Multimedia

[20]

PyAudiere
PyAudiere (http://pyaudiere.org/) is an open source audio library. It provides an API
to easily implement the audio functionality in various applications. It is based on Audiere
Sound Library.

Summary
This chapter served as an introduction to multimedia processing using Python.

Specifically, in this chapter we covered:

An overview of multimedia processing. It introduced us to digital image, audio, and
video processing.

We learned about a number of freely available multimedia frameworks that can be
used for multimedia processing.

Now that we know what multimedia libraries and frameworks are out there, we're ready to
explore these to develop exciting multimedia applications!

x

x

2
Working with Images

In this chapter, we will learn basic image conversion and manipulation
techniques using the Python Imaging Library. The chapter ends with an exciting
project where we create an image processing application.

In this chapter, we shall:

Learn various image I/O operations for reading and writing images using the Python
Imaging Library (PIL)

With the help of several examples and code snippets, perform some basic
manipulations on the image, such as resizing, rotating/ flipping, cropping,
pasting, and so on.

Write an image-processing application by making use of PIL

Use the QT library as a frontend (GUI) for this application

So let's get on with it!

Installation prerequisites
Before we jump in to the main chapter, it is necessary to install the following packages.

Python
In this book we will use Python Version 2.6, or to be more specific, Version 2.6.4.
It can be downloaded from the following location:
http://python.org/download/releases/

x

x

Working with Images

[22]

Windows platform
For Windows, just download and install the platform-specific binary distribution of
Python 2.6.4.

Other platforms
For other platforms, such as Linux, Python is probably already installed on your machine.
If the installed version is not 2.6, build and install it from the source distribution. If you are
using a package manager on a Linux system, search for Python 2.6. It is likely that you will
find the Python distribution there. Then, for instance, Ubuntu users can install Python from
the command prompt as:

$sudo apt-get python2.6

Note that for this, you must have administrative permission on the machine on which you
are installing Python.

Python Imaging Library (PIL)
We will learn image-processing techniques by making extensive use of the Python Imaging
Library (PIL) throughout this chapter. As mentioned in Chapter 1, PIL is an open source
library. You can download it from http://www.pythonware.com/products/pil/.
Install the PIL Version 1.1.6 or later.

Windows platform
For Windows users, installation is straightforward—use the binary distribution PIL 1.1.6 for
Python 2.6.

Other platforms
For other platforms, install PIL 1.1.6 from the source. Carefully review the README file in
the source distribution for the platform-specific instructions. Libraries listed in the following
table are required to be installed before installing PIL from the source. For some platforms
like Linux, the libraries provided in the OS should work fine. However, if those do not work,
install a pre-built "libraryName-devel" version of the library. For example, for JPEG support,
the name will contain "jpeg-devel-", and something similar for the others. This is generally
applicable to rpm-based distributions. For Linux flavors like Ubuntu, you can use the
following command in a shell window.

$sudo apt-get install python-imaging.

x

x

Chapter 2

[23]

However, you should make sure that this installs Version 1.1.6 or later. Check PIL
documentation for further platform-specific instructions. For Mac OSX, see if you can use
fink to install these libraries. See http://www.finkproject.org/ for more details.
You can also check the website http://pythonmac.org or Darwin ports website
http://darwinports.com/ to see if a binary package installer is available. If such
a pre-built version is not available for any library, install it from the source.

The PIL prerequisites for installing PIL from source are listed in the following table:

Library URL Version Installation options

(a) or (b)
libjpeg

(JPEG support)

http://www.ijg.
org/files

7 or 6a or
6b

(a) Pre-built version. For example:

jpeg-devel-7

Check if you can do:

sudo apt-install libjpeg
(works on some flavors of Linux)

(b) Source tarball. For example:
jpegsrc.v7.tar.gz

zib

(PNG support)

http://www.gzip.
org/zlib/

1.2.3 or
later

(a) Pre-built version. For example:

zlib-devel-1.2.3..

(b) Install from the source.
freetype2

(OpenType /TrueType
support)

http://www.
freetype.org

2.1.3 or
later

(a) Pre-built version. For example:

freetype2-devel-2.1.3..

(b) Install from the source.

PyQt4
This package provides Python bindings for Qt libraries. We will use PyQt4 to generate GUI for
the image-processing application that we will develop later in this chapter. The GPL version is
available at: http://www.riverbankcomputing.co.uk/software/pyqt/download.

Windows platform
Download and install the binary distribution pertaining to Python 2.6. For example, the
executable file's name could be 'PyQt-Py2.6-gpl-4.6.2-2.exe'. Other than Python, it includes
everything needed for GUI development using PyQt.

x

x

Working with Images

[24]

Other platforms
Before building PyQt, you must install SIP Python binding generator. For further details,
refer to the SIP homepage: http://www.riverbankcomputing.com/software/sip/.

After installing SIP, download and install PyQt 4.6.2 or later, from the source tarball. For
Linux/Unix source, the filename will start with PyQt-x11-gpl-.. and for Mac OS X,
PyQt-mac-gpl-... Linux users should also check if PyQt4 distribution is already
available through the package manager.

Summary of installation prerequisites

Package Download location Version Windows
platform

Linux/Unix/OS X platforms

Python http://python.org/
download/releases/

2.6.4
(or any
2.6.x)

Install using
binary
distribution

(a) Install from binary; Also
install additional developer
packages (For example, with
python-devel in the
package name in the rpm
systems) OR

(b) Build and install from the
source tarball.

(c) MAC users can also check
websites such as http://
darwinports.com/ or
http://pythonmac.org/.

PIL www.pythonware.com/
products/pil/

1.1.6 or
later

Install PIL 1.1.6
(binary) for
Python 2.6

(a) Install prerequisites if
needed. Refer to Table #1 and
the README file in PIL source
distribution.

(b) Install PIL from source.

(c) MAC users can also check
websites like http://
darwinports.com/ or
http://pythonmac.org/.

PyQt4 http://www.
riverbankcomputing.
co.uk/software/
pyqt/download

4.6.2 or
later

Install using
binary
pertaining to
Python 2.6

(a) First install SIP 4.9 or later.

(b) Then install PyQt4.

x

x

Chapter 2

[25]

Reading and writing images
To manipulate an existing image, we must open it first for editing and we also require the
ability to save the image in a suitable file format after making changes. The Image module in
PIL provides methods to read and write images in the specified image file format. It supports
a wide range of file formats.

To open an image, use Image.open method. Start the Python interpreter and write the
following code. You should specify an appropriate path on your system as an argument to
the Image.open method.

>>>import Image

>>>inputImage = Image.open("C:\\PythonTest\\image1.jpg")

This will open an image file by the name image1.jpg. If the file can't be opened, an
IOError will be raised, otherwise, it returns an instance of class Image.

For saving image, use the save method of the Image class. Make sure you replace the
following string with an appropriate /path/to/your/image/file.

>>>inputImage.save("C:\\PythonTest\\outputImage.jpg")

You can view the image just saved, using the show method of Image class.

>>>outputImage = Image.open("C:\\PythonTest\\outputImage.jpg")

>>>outputImage.show()

Here, it is essentially the same image as the input image, because we did not make any
changes to the output image.

Time for action – image file converter
With this basic information, let's build a simple image file converter. This utility will
batch-process image files and save them in a user-specified file format.

To get started, download the file ImageFileConverter.py from the Packt website,
www.packtpub.com. This file can be run from the command line as:

python ImageConverter.py [arguments]

Here, [arguments] are:

--input_dir: The directory path where the image files are located.

--input_format: The format of the image files to be converted. For example, jpg.

x

x

Working with Images

[26]

--output_dir: The location where you want to save the converted images.

--output_format: The output image format. For example, jpg, png, bmp,
and so on.

The following screenshot shows the image conversion utility in action on Windows XP, that
is, running image converter from the command line.

Here, it will batch-process all the .jpg images within C:\PythonTest\images and save
them in png format in the directory C:\PythonTest\images\OUTPUT_IMAGES.

The file defines class ImageConverter . We will discuss the most important methods in
this class.

def processArgs: This method processes all the command-line arguments
listed earlier. It makes use of Python's built-in module getopts to process these
arguments. Readers are advised to review the code in the file ImageConverter.py
in the code bundle of this book for further details on how these arguments
are processed.

def convertImage: This is the workhorse method of the image-conversion utility.

1 def convertImage(self):
2 pattern = "*." + self.inputFormat
3 filetype = os.path.join(self.inputDir, pattern)
4 fileList = glob.glob(filetype)
5 inputFileList = filter(imageFileExists, fileList)
6
7 if not len(inputFileList):
8 print "\n No image files with extension %s located \
9 in dir %s"%(self.outputFormat, self.inputDir)
10 return
11 else:

x

x

Chapter 2

[27]

12 # Record time before beginning image conversion
13 starttime = time.clock()
14 print "\n Converting images.."
15
16 # Save image into specified file format.
17 for imagePath in inputFileList:
18 inputImage = Image.open(imagePath)
19 dir, fil = os.path.split(imagePath)
20 fil, ext = os.path.splitext(fil)
21 outPath = os.path.join(self.outputDir,
22 fil + "." + self.outputFormat)
23 inputImage.save(outPath)
24
25 endtime = time.clock()
26 print "\n Done!"
27 print "\n %d image(s) written to directory:\
28 %s" %(len(inputFileList), self.outputDir)
29 print "\n Approximate time required for conversion: \
30 %.4f seconds" % (endtime – starttime)

Now let's review the preceding code.

1.	 Our first task is to get a list of all the image files to be saved in a different format.
This is achieved by using glob module in Python. Line 4 in the code snippet finds all
the file path names that match the pattern specified by the local variable fileType.
On line 5, we check whether the image file in fileList exists. This operation can
be efficiently performed over the whole list using the built-in filter functionality
in Python.

2.	 The code block between lines 7 to 14 ensures that one or more images exist. If so, it
will record the time before beginning the image conversion.

3.	 The next code block (lines 17-23) carries out the image file conversion. On line 18,
we use Image.open to open the image file. Line 18 creates an Image object.
Then the appropriate output path is derived and finally the output image is saved
using the save method of the Image module.

What just happened?
In this simple example, we learned how to open and save image files in a specified image
format. We accomplished this by writing an image file converter that batch-processes a
specified image file. We used PIL's Image.open and Image.save functionality along with
Python's built-in modules such as glob and filter.

Now we will discuss other key aspects related to the image reading and writing.

x

x

Working with Images

[2�]

Creating an image from scratch
So far we have seen how to open an existing image. What if we want to create our own
image? As an example, it you want to create fancy text as an image, the functionality that we
are going to discuss now comes in handy. Later in this book, we will learn how to use such
an image containing some text to embed into another image. The basic syntax for creating a
new image is:

foo = Image.new(mode, size, color)

Where, new is the built-in method of class Image. Image.new takes three arguments,
namely, mode, size, and color. The mode argument is a string that gives information about
the number and names of image bands. Following are the most common values for mode
argument: L (gray scale) and RGB (true color). The size is a tuple specifying dimensions
of the image in pixels, whereas, color is an optional argument. It can be assigned an RGB
value (a 3-tuple) if it's a multi-band image. If it is not specified, the image is filled with
black color.

Time for action – creating a new image containing some text
As already stated, it is often useful to generate an image containing only some text or a
common shape. Such an image can then be pasted onto another image at a desired angle
and location. We will now create an image with text that reads, "Not really a fancy text!"

1.	 Write the following code in a Python source file:

1 import Image
2 import ImageDraw
3 txt = "Not really a fancy text!"
4 size = (150, 50)
5 color = (0, 100, 0)
6 img = Image.new('RGB', size, color)
7 imgDrawer = ImageDraw.Draw(img)
8 imgDrawer.text((5, 20), txt)
9 img.show()

2.	 Let's analyze the code line by line. The first two lines import the necessary modules
from PIL. The variable txt is the text we want to include in the image. On line 7,
the new image is created using Image.new. Here we specify the mode and size
arguments. The optional color argument is specified as a tuple with RGB values
pertaining to the "dark green" color.

x

x

Chapter 2

[2�]

3.	 The ImageDraw module in PIL provides graphics support for an Image object.
The function ImageDraw.Draw takes an image object as an argument to create a
Draw instance. In output code, it is called imgDrawer, as used on line 7. This Draw
instance enables drawing various things in the given image.

4.	 On line 8, we call the text method of the Draw instance and supply position
(a tuple) and the text (stored in the string txt) as arguments.

5.	 Finally, the image can be viewed using img.show() call. You can optionally
save the image using Image.save method. The following screenshot shows
the resultant image.

What just happened?
We just learned how to create an image from scratch. An empty image was created using the
Image.new method. Then, we used the ImageDraw module in PIL to add text to this image.

Reading images from archive
If the image is part of an archived container, for example, a TAR archive, we can use the
TarIO module in PIL to open it and then call Image.open to pass this TarIO instance
as an argument.

Time for action – reading images from archives
Suppose there is an archive file images.tar containing image file image1.jpg. The
following code snippet shows how to read image1.jpg from the tarball.

>>>import TarIO
>>>import Images
>>>fil = TarIO.TarIO("images.tar", "images/image1.jpg")
>>>img = Image.open(fil)
>>>img.show()

What just happened?
We learned how to read an image located in an archived container.

x

x

Working with Images

[30]

Have a go hero – add new features to the image file converter
Modify the image conversion code so that it supports the following new functionality, which:

1. Takes a ZIP file containing images as input

2. Creates a TAR archive of the converted images

Basic image manipulations
Now that we know how to open and save images, let's learn some basic techniques to
manipulate images. PIL supports a variety of geometric manipulation operations, such as
resizing an image, rotating it by an angle, flipping it top to bottom or left to right, and so on.
It also facilitates operations such as cropping, cutting and pasting pieces of images, and
so on.

Resizing
Changing the dimensions of an image is one of the most frequently used image manipulation
operations. The image resizing is accomplished using Image.resize in PIL. The following
line of code explains how it is achieved.

foo = img.resize(size, filter)

Here, img is an image (an instance of class Image) and the result of resizing operation is
stored in foo (another instance of class Image). The size argument is a tuple (width,
height). Note that the size is specified in pixels. Thus, resizing the image means modifying
the number of pixels in the image. This is also known as image re-sampling. The Image.
resize method also takes filter as an optional argument. A filter is an interpolation
algorithm used while re-sampling the given image. It handles deletion or addition of pixels
during re-sampling, when the resize operation is intended to make image smaller or larger in
size respectively. There are four filters available. The resize filters in the increasing order
of quality are NEAREST, BILINEAR, BICUBIC, and ANTIALIAS. The default filter option
is NEAREST.

Time for action – resizing
Let's now resize images by modifying their pixel dimensions and applying various filters
for re-sampling.

1.	 Download the file ImageResizeExample.bmp from the Packt website. We will
use this as the reference file to create scaled images. The original dimensions of
ImageResizeExample.bmp are 200 x 212 pixels.

x

x

Chapter 2

[31]

2.	 Write the following code in a file or in Python interpreter. Replace the inPath and
outPath strings with the appropriate image path on your machine.

1 import Image
2 inPath = "C:\\images\\ImageResizeExample.jpg"
3 img = Image.open(inPath)
4 width , height = (160, 160)
5 size = (width, height)
6 foo = img.resize(size)
7 foo.show()
8 outPath = "C:\\images\\foo.jpg"
9 foo.save(outPath)

3. The image specified by the inPath will be resized and saved as the image
specified by the outPath. Line 6 in the code snippet does the resizing job and
finally we save the new image on line 9. You can see how the resized image looks
by calling foo.show().

4.	 Let's now specify the filter argument. In the following code, on line 14, the
filterOpt argument is specified in the resize method. The valid filter options
are specified as values in the dictionary filterDict. The keys of filterDict
are used as the filenames of the output images. The four images thus obtained are
compared in the next illustration. You can clearly notice the difference between the
ANTIALIAS image and the others (particularly, look at the flower petals in these
images). When the processing time is not an issue, choose the ANTIALIAS filter
option as it gives the best quality image.

1 import Image
2 inPath = "C:\\images\\ImageResizeExample.jpg"
3 img = Image.open(inPath)
4 width , height = (160, 160)
5 size = (width, height)
6 filterDict = {'NEAREST':Image.NEAREST,
7 'BILINEAR':Image.BILINEAR,
8 'BICUBIC':Image.BICUBIC,
9 'ANTIALIAS':Image.ANTIALIAS }
10
11 for k in filterDict.keys():
12 outPath= "C:\\images\\" + k + ".jpg"
13 filterOpt = filterDict[k]
14 foo = img.resize(size, filterOpt)
15 foo.save(outPath)

x

x

Working with Images

[32]

The resized images with different filter options appear as follows. Clockwise
from left, Image.NEAREST, Image.BILENEAR, Image.BICUBIC, and
Image.ANTIALIAS:

5.	 The resize functionality illustrated here, however, doesn't preserve the aspect
ratio of the resulting image. The image will appear distorted if one dimension is
stretched more or stretched less in comparison with the other dimension. PIL's
Image module provides another built-in method to fix this. It will override the
larger of the two dimensions, such that the aspect ratio of the image is maintained.

import Image
inPath = "C:\\images\\ResizeImageExample.jpg"
img = Image.open(inPath)
width , height = (100, 50)
size = (width, height)
outPath = "C:\\images\\foo.jpg"
img.thumbnail(size, Image.ANTIALIAS)
img.save(outPath)

x

x

Chapter 2

[33]

6.	 This code will override the maximum pixel dimension value (width in this case)
specified by the programmer and replace it with a value that maintains the aspect
ratio of the image. In this case, we have an image with pixel dimensions (47, 50).
The resultant images are compared in the following illustration.

It shows the comparison of output images for methods Image.thumbnail
and Image.resize.

What just happened?
We just learned how image resizing is done using PIL's Image module, by writing a few lines
of code. We also learned different types of filters used in image resizing (re-sampling). And
finally, we also saw how to resize an image while still keeping the aspect ratio intact (that is,
without distortion), using the Image.thumbnail method.

Rotating
Like image resizing, rotating an image about its center is another commonly performed
transformation. For example, in a composite image, one may need to rotate the text by
certain degrees before embedding it in another image. For such needs, there are methods
such as rotate and transpose available in PIL's Image module. The basic syntax to
rotate an image using Image.rotate is as follows:

foo = img.rotate(angle, filter)

Where, the angle is provided in degrees and filter, the optional argument, is the
image-re-sampling filter. The valid filter value can be NEAREST, BILINEAR, or BICUBIC.
You can rotate the image using Image.transpose only for 90-, 180-, and 270-degree
rotation angles.

x

x

Working with Images

[34]

Time for action – rotating
1.	 Download the file Rotate.png from the Packt website. Alternatively, you can use

any supported image file of your choice.

2.	 Write the following code in Python interpreter or in a Python file. As always, specify
the appropriate path strings for inPath and outPath variables.

1 import Image
2 inPath = "C:\\images\\Rotate.png"
3 img = Image.open(inPath)
4 deg = 45
5 filterOpt = Image.BICUBIC
6 outPath = "C:\\images\\Rotate_out.png"
7 foo = img.rotate(deg, filterOpt)
8 foo.save(outPath)

3.	 Upon running this code, the output image, rotated by 45 degrees, is saved to the
outPath. The filter option Image.BICUBIC ensures highest quality. The next
illustration shows the original and the images rotated by 45 and 180 degrees
respectively—the original and rotated images.

4. There is another way to accomplish rotation for certain angles by using the
Image.transpose functionality. The following code achieves a 270-degree
rotation. Other valid options for rotation are Image.ROTATE_90 and
Image.ROTATE_180.

import Image
inPath = "C:\\images\\Rotate.png"
img = Image.open(inPath)
outPath = "C:\\images\\Rotate_out.png"
foo = img.transpose(Image.ROTATE_270)
foo.save(outPath)

x

x

Chapter 2

[35]

What just happened?
In the previous section, we used Image.rotate to accomplish rotating an image by the
desired angle. The image filter Image.BICUBIC was used to obtain better quality output
image after rotation. We also saw how Image.transpose can be used for rotating the
image by certain angles.

Flipping
There are multiple ways in PIL to flip an image horizontally or vertically. One way to achieve
this is using the Image.transpose method. Another option is to use the functionality from
the ImageOps module . This module makes the image-processing job even easier with some
ready-made methods. However, note that the PIL documentation for Version 1.1.6 states
that ImageOps is still an experimental module.

Time for action – flipping
Imagine that you are building a symmetric image using a bunch of basic shapes. To create
such an image, an operation that can flip (or mirror) the image would come in handy. So let's
see how image flipping can be accomplished.

1.	 Write the following code in a Python source file.

1 import Image
2 inPath = "C:\\images\\Flip.png"
3 img = Image.open(inPath)
4 outPath = "C:\\images\\Flip_out.png"
5 foo = img.transpose(Image.FLIP_LEFT_RIGHT)
6 foo.save(outPath)

2.	 In this code, the image is flipped horizontally by calling the transpose method.
To flip the image vertically, replace line 5 in the code with the following:

foo = img.transpose(Image.FLIP_TOP_BOTTOM)

3.	 The following illustration shows the output of the preceding code when the image is
flipped horizontally and vertically.

x

x

Working with Images

[36]

4. The same effect can be achieved using the ImageOps module. To flip the
image horizontally, use ImageOps.mirror, and to flip the image vertically,
use ImageOps.flip.

import ImageOps

Flip image horizontally
foo1 = ImageOps.mirror(img)
Flip image vertically
foo2 = ImageOps.flip(img)

What just happened?
With the help of example, we learned how to flip an image horizontally or vertically using
Image.transpose and also by using methods in class ImageOps. This operation will be
applied later in this book for further image processing such as preparing composite images.

Capturing screenshots
How do you capture the desktop screen or a part of it using Python? There is ImageGrab
module in PIL. This simple line of code will capture the whole screen.

img = ImageGrab.grab()

Where, img is an instance of class Image.

However, note that in PIL Version 1.1.6, the ImageGrab module supports screen grabbing
only for Windows platform.

Time for action – capture screenshots at intervals
Imagine that you are developing an application, where, after certain time interval, the
program needs to automatically capture the whole screen or a part of the screen. Let's
develop code that achieves this.

1.	 Write the following code in a Python source file. When the code is executed, it will
capture part of the screen after every two seconds. The code will run for about
three seconds.

1 import ImageGrab
2 import time
3 startTime = time.clock()
4 print "\n The start time is %s sec" % startTime
5 # Define the four corners of the bounding box.
6 # (in pixels)
7 left = 150

x

x

Chapter 2

[37]

8 upper = 200
9 right = 900
10 lower = 700
11 bbox = (left, upper, right, lower)
12
13 while time.clock() < 3:
14 print " \n Capturing screen at time %.4f sec" \
15 %time.clock()
16 screenShot = ImageGrab.grab(bbox)
17 name = str("%.2f"%time.clock())+ "sec.png"
18 screenShot.save("C:\\images\\output\\" + name)
19 time.sleep(2)

2.	 We will now review the important aspects of this code. First, import the necessary
modules. The time.clock() keeps track of the time spent. On line 11, a bounding
box is defined. It is a 4-tuple that defines the boundaries of a rectangular region.
The elements in this tuple are specified in pixels. In PIL, the origin (0, 0) is defined
in the top-left corner of an image. The next illustration is a representation of a
bounding box for image cropping; see how left, upper and right, lower are specified
as the ends of a diagonal of rectangle.

Example of a bounding box used for image cropping.

3.	 The while loop runs till the time.clock() reaches three seconds. Inside the loop,
the part of the screen bounded within bbox is captured (see line 16) and then the
image is saved on line 18. The image name corresponds to the time at which
it is taken.

4.	 The time.sleep(2) call suspends the execution of the application for two
seconds. This ensures that it grabs the screen every two seconds. The loop
repeats until the given time is reached.

x

x

Working with Images

[3�]

5.	 In this example, it will capture two screenshots, one when it enters the loop for the
first time and the next after a two-second time interval. In the following illustration,
the two images grabbed by the code are shown. Notice the time and console prints
in these images.

The preceding screenshot is taken at time 00:02:15 as shown dialog. The next screenshot is
taken after 2 seconds, at wall clock time, 00:02:17.

x

x

Chapter 2

[3�]

What just happened?
In the preceding example, we wrote a simple application that captures the screen at regular
time intervals. This helped us to learn how to grab a screen region using ImageGrab.

Cropping
In previous section, we learned how to grab a part of the screen with ImageGrab. Cropping
is a very similar operation performed on an image. It allows you to modify a region within
an image.

Time for action – cropping an image
This simple code snippet crops an image and applies some changes on the cropped portion.

1. Download the file Crop.png from Packt website. The size of this image is 400 x
400 pixels. You can also use your own image file.

2.	 Write the following code in a Python source file. Modify the path of the image file to
an appropriate path.

import Image
img = Image.open("C:\\images\\Crop.png")
left = 0
upper = 0
right = 180
lower = 215
bbox = (left, upper, right, lower)
img = img.crop(bbox)
img.show()

3.	 This will crop a region of the image bounded by bbox. The specification of the
bounding box is identical to what we have seen in the Capturing screenshots
section. The output of this example is shown in the following illustration.

Original image (left) and its cropped region (right).

x

x

Working with Images

[40]

What just happened?
In the previous section, we used Image.crop functionality to crop a region within an image
and save the resultant image. In the next section, we will apply this while pasting a region of
an image onto another.

Pasting
Pasting a copied or cut image onto another one is a commonly performed operation while
processing images. Following is the simplest syntax to paste one image on another.

img = img.paste(image, box)

Here image is an instance of class Image and box is a rectangular bounding box that
defines the region of img, where the image will be pasted. The box argument can be a
4-tupleError: Reference source not found or a 2-tuple. If a 4-tuple box
is specified, the size of the image to be pasted must be same as the size of the region.
Otherwise, PIL will throw an error with a message ValueError: images do not match.
The 2-tuple on the other hand, provides pixel coordinates of the upper-left corner of the
region to be pasted.

Now look at the following line of code. It is a copy operation on an image.

img2 = img.copy(image)

The copy operation can be viewed as pasting the whole image onto a new image. This
operation is useful when, for instance, you want to keep the original image unaltered
and make alterations to the copy of the image.

Time for action – pasting: mirror the smiley face!
Consider the example in earlier section where we cropped a region of an image. The cropped
region contained a smiley face. Let's modify the original image so that it has a 'reflection' of
the smiley face.

1. If not already, download the file Crop.png from the Packt website.

2. Write this code by replacing the file path with appropriate file path on your system.

1 import Image
2 img = Image.open("C:\\images\\Crop.png")
3 # Define the elements of a 4-tuple that represents
4 # a bounding box (region to be cropped)
5 left = 0
6 upper = 25
7 right = 180

x

x

Chapter 2

[41]

8 lower = 210
9 bbox = (left, upper, right, lower)
10 # Crop the smiley face from the image
11 smiley = img.crop(bbox_1)
12 # Flip the image horizontally
13 smiley = smiley.transpose(Image.FLIP_TOP_BOTTOM)
14 # Define the box as a 2-tuple.
15 bbox_2 = (0, 210)
16 # Finally paste the 'smiley' on to the image.
17 img.paste(smiley, bbox_2)
18 img.save("C:\\images\\Pasted.png")
19 img.show()

3.	 First we open an image and crop it to extract a region containing the smiley
face. This was already done in section Error: Reference source not
found'Cropping'. The only minor difference you will notice is the value of the tuple
element upper. It is intentionally kept as 25 pixels from the top to make sure that the
crop image has a size that can fit in the blank portion below the original smiley face.

4.	 The cropped image is then flipped horizontally with code on line 13.

5.	 Now we define a box, bbox_2, for pasting the cropped smiley face back on to the
original image. Where should it be pasted? We intend to make a 'reflection' of the
original smiley face. So the coordinate of the top-right corner of the pasted image
should be greater than or equal to the bottom y coordinate of the cropped region,
indicated by 'lower' variable (see line 8) . The bounding box is defined on line 15,
as a 2-tuple representing the upper-left coordinates of the smiley.

6.	 Finally, on line 17, the paste operation is performed to paste the smiley on the
original image. The resulting image is then saved with a different name.

7.	 The original image and the output image after the paste operation is shown in the
next illustration.

The illustration shows the comparison of original and resulting images after the
paste operation.

x

x

Working with Images

[42]

What just happened?
Using a combination of Image.crop and Image.paste, we accomplished cropping a
region, making some modifications, and then pasting the region back on the image.

Project: Thumbnail Maker
Let's take up a project now. We will apply some of the operations we learned in this chapter
to create a simple Thumbnail Maker utility. This application will accept an image as an input
and will create a resized image of that image. Although we are calling it a thumbnail maker, it
is a multi-purpose utility that implements some basic image-processing functionality.

Before proceeding further, make sure that you have installed all the packages discussed at
the beginning of this chapter. The screenshot of the Thumbnail Maker dialog is show in the
following illustration.

The Thumbnail Maker GUI has two components:

1. The left panel is a 'control area', where you can specify certain image parameters
along with options for input and output paths.

2. A graphics area on the right-hand side where you can view the generated image.

x

x

Chapter 2

[43]

In short, this is how it works:

1. The application takes an image file as an input.

2. It accepts user input for image parameters such as dimensions in pixel, filter for re-
sampling and rotation angle in degrees.

3. When the user clicks the OK button in the dialog, the image is processed and saved
at a location indicated by the user in the specified output image format.

Time for action – play with Thumbnail Maker application
First, we will run the Thumbnail Maker application as an end user. This warm-up exercise
intends to give us a good understanding of how the application works. This, in turn, will help
us develop/learn the involved code quickly. So get ready for action!

1.	 Download the files ThumbnailMaker.py, ThumbnailMakeDialog.py,
and Ui_ThumbnailMakerDialog.py from Packt website. Place these files
in some directory.

2.	 From the command prompt, change to this directory location and type the
following command:

 python ThumbnailMakerDialog.py

The Thumbnail Maker dialog that pops up was shown in the earlier screenshot.
Next, we will specify the input-output paths and various image parameters. You can
open any image file of your choice. Here, the flower image shown in some previous
sections will be used as an input image. To specify an input image, click on the small
button with three dots …. It will open a file dialog. The following illustration shows
the dialog with all the parameters specified.

x

x

Working with Images

[44]

3.	 If Maintain Aspect Ratio checkbox is checked, internally it will scale the image
dimension so that the aspect ratio of the output image remains the same. When
the OK button is clicked, the resultant image is saved at the location specified by the
Output Location field and the saved image is displayed in the right-hand panel of
the dialog. The following screenshot shows the dialog after clicking OK button.

4.	 You can now try modifying different parameters such as output image format or
rotation angle and save the resulting image.

5.	 See what happens when the Maintain Aspect Ratio checkbox is unchecked. The
aspect ratio of the resulting image will not be preserved and the image may appear
distorted if the width and height dimensions are not properly specified.

6.	 Experiment with different re-sampling filters; you can notice the difference between
the quality of the resultant image and the earlier image.

7. There are certain limitations to this basic utility. It is required to specify reasonable
values for all the parameters fields in the dialog. The program will print an error if
any of the parameters is not specified.

What just happened?
We got ourselves familiar with the user interface of the thumbnail maker dialog and saw
how it works for processing an image with different dimensions and quality. This knowledge
will make it easier to understand the Thumbnail Maker code.

x

x

Chapter 2

[45]

Generating the UI code
The Thumbnail Maker GUI is written using PyQt4 (Python bindings for Qt4 GUI framework).
Detailed discussion on how the GUI is generated and how the GUI elements are connected
to the main functions is beyond the scope of this book. However, we will cover certain main
aspects of this GUI to get you going. The GUI-related code in this application can simply
be used 'as-is' and if this is something that interests you, go ahead and experiment with it
further! In this section, we will briefly discuss how the UI code is generated using PyQt4.

Time for action – generating the UI code
PyQt4 comes with an application called QT Designer. It is a GUI designer for QT-based
applications and provides a quick way to develop a graphical user interface containing some
basic widgets. With this, let's see how the Thumbnail Maker dialog looks in QT Designer and
then run a command to generate Python source code from the .ui file.

1. Download the thumbnailMaker.ui file from the Packt website.

2. Start the QT Designer application that comes with PyQt4 installation.

3. Open the file thumbnailMaker.ui in QT Designer. Notice the red-colored borders
around the UI elements in the dialog. These borders indicate a 'layout' in which
the widgets are arranged. Without a layout in place, the UI elements may appear
distorted when you run the application and, for instance, resize the dialog. Three
types of QLayouts are used, namely Horizontal, Vertical, and Grid layout.

x

x

Working with Images

[46]

4. You can add new UI elements, such as a QCheckbox or a QLabel, by dragging
and dropping it from the 'Widget Box' of QT Designer. It is located in the left
panel by default.

5. Click on the field next to the label "Input file". In the right-hand panel of QT
Designer, there is a Property Editor that displays the properties of the selected
widget (in this case it's a QLineEdit). This is shown in the following illustration.
The Property Editor allows us to assign values to various attributes such as the
objectName, width, and height of the widget, and so on.

Qt Designer shows the details of the selected widget in Property Editor.

6. QT designer saves the file with extension .ui. To convert this into Python source
code, PyQt4 provides a conversion utility called pyuic4. On Windows XP, for
standard Python installation, it is present at the following location—C:\Python26\
Lib\site-packages\PyQt4\pyuic4.bat. Add this path to your environment
variable. Alternatively specify the whole path each time you want to convert ui
file to Python source file. The conversion utility can be run from the command
prompt as:

pyuic4 thumbnailMaker.ui -o Ui_ThumbnailMakerDialog.py

7. This script will generate Ui_ThumbnailMakerDialog.py with all the GUI
elements defined. You can further review this file to understand how the UI
elements are defined.

What just happened?
We learned how to autogenerate the Python source code defining UI elements of Thumbnail
Maker Dialog from a Qt designer file.

x

x

Chapter 2

[47]

Have a go hero – tweak UI of Thumbnail Maker dialog
Modify the thumbnailMaker.ui file in QT Designer and implement the following list of
things in the Thumbnail Maker dialog.

1. Change the color of all the line edits in the left panel to pale yellow.

2. Tweak the default file extension displayed in the Output file Format combobox such
that the first option is .png instead of .jpeg

Double click on this combobox to edit it.

3. Add new option .tiff to the output format combobox.

4. Align the OK and Cancel buttons to the right corner.

You will need to break layouts, move the
spacer around, and recreate the layouts.

5. Set the range of rotation angle 0 to 360 degrees instead of the
current -180 to +180 degrees.

After this, create Ui_ThumbnailMakerDialog.py by running the pyuic4 script and then
run the Thumbnail Maker application.

Connecting the widgets
In the earlier section, the Python source code representing UI was automatically generated
using the pyuic4 script. This, however, only has the widgets defined and placed in a nice
layout. We need to teach these widgets what they should do when a certain event occurs.
To do this, QT's slots and signals will be used. A signal is emitted when a particular GUI event
occurs. For example, when the user clicks on the OK button, internally, a clicked() signal
is emitted. A slot is a function that is called when a particular signal is emitted. Thus, in
this example, it will call a specified method, whenever the OK button is clicked. See PyQt4
documentation for a complete list of available signals for various widgets.

x

x

Working with Images

[4�]

Time for action – connecting the widgets
You will notice several different widgets in the dialog. For example, the field which accepts
the input image path or the output directory path is a QLineEdit. The widget where
image format is specified is a QCombobox. On similar lines, the OK and Cancel buttons are
QPushButton. As an exercise, you can open up the thumbnailMaker.ui file and click
on each element to see the associated QT class from the Property Editor.

With this, let's learn how the widgets are connected.

1. Open the file ThumbnailMakerDialog.py. The _connect method of class
ThumbnailMakerDialog is copied. The method is called in the constructor
of this class.
def _connect(self):
 """
 Connect slots with signals.
 """
 self.connect(self._dialog.inputFileDialogButton,
 SIGNAL("clicked()"), self._openFileDialog)

 self.connect(self._dialog.outputLocationDialogButton,
 SIGNAL("clicked()"), self._outputLocationPath)

 self.connect(self._dialog.okPushButton,
 SIGNAL("clicked()"), self._processImage)

 self.connect(self._dialog.closePushButton,
 SIGNAL("clicked()"), self.close)

 self.connect(self._dialog.aspectRatioCheckBox,
 SIGNAL('stateChanged(int)'),
 self._aspectRatioOptionChanged)

2. self._dialog is an instance of class Ui_ThumbnailMakerDialog. self.
connect is the inherited method of Qt class QDialog. Here, it takes the following
arguments (QObject, signal, callable), where QObject is any widget type
(all inherit QObject), signal is the QT SIGNAL that tells us about what event
occurred and callable is any method handling this event.

3. For example, consider the highlighted lines of the code snippet. They connect
the OK button to a method that handles image processing. The first argument
, self._dialog.okPushButton refers to the button widget defined in class
Ui_ThumbnailMakerDialog. Referring to QPushButton documentation, you
will find there is a "clicked()" signal that it can emit. The second argument
SIGNAL("clicked()") tells Qt that we want to know when that button is clicked
by the user. The third argument is the method self._processImage that gets
called when this signal is emitted.

x

x

Chapter 2

[4�]

4. Similarly, you can review the other connections in this method. Each of these
connects a widget to a method of the class ThumbnailMakerDialog.

What just happened?
We reviewed ThumbnailMakerDialog._connect() method to understand how the UI
elements are connected to various internal methods. The previous two sections helped us
learn some preliminary concepts of GUI programming using QT.

Developing the image processing code
The previous sections were intended to get ourselves familiar with the application as an end
user and to understand some basic aspects of the GUI elements in the application. With all
necessary pieces together, let's focus our attention on the class that does all the main image
processing in the application.

The class ThumbnailMaker handles the pure image processing code. It defines various
methods to achieve this. For example, the class methods such as _rotateImage,
_makeThumbnail, and _resizeImage manipulate the given image to accomplish
rotation, thumbnail generation, and resizing respectively. This class accepts input from
ThumbnailMakerDialog. Thus, no QT related UI code is required here. If you want to
use some other GUI framework to process input, you can do that easily. Just make sure to
implement the public API methods defined in class ThumbnailMakerDialog, as those are
used by the ThumbnailMaker class.

Time for action – developing image processing code
Thus, with ThumbnailMakerDialog at your disposal, you can develop your own
code in scratch, in class ThumbnailMaker. Just make sure to implement the method
processImage as this is the only method called by ThumbnailMakerDialog.

Let's develop some important methods of class ThumbnailMaker.

1. Write the constructor for class ThumbnailMaker. It takes dialog as an argument.
In the constructor, we only initialize self._dialog, which is an instance of class
ThumbnailMakerDialog. Here is the code.

def __init__(self, dialog):
 """
 Constructor for class ThumbnailMaker.
 """
 # This dialog can be an instance of
 # ThumbnailMakerDialog class. Alternatively, if
 # you have some other way to process input,

x

x

Working with Images

[50]

 # it will be that class. Just make sure to implement
 # the public API methods defined in
 # ThumbnailMakerDialog class!
 self._dialog = dialog

2. Next, write the processImage method in class ThumbnailMaker. The code is
as follows:

Note: You can download the file ThumbnailMaker.py
from Packt website. The code written is from this file. The only
difference is that some code comments are removed here.

1 def processImage(self):
2 filePath = self._dialog.getInputImagePath()
3 imageFile = Image.open(filePath)
4
5 if self._dialog.maintainAspectRatio:
6 resizedImage = self._makeThumbnail(imageFile)
7 else:
8 resizedImage = self._resizeImage(imageFile)
9
10 rotatedImage = self._rotateImage(resizedImage)
11
12 fullPath = self._dialog.getOutImagePath()
13
14 # Finally save the image.
15 rotatedImage.save(fullPath)

3. On line 2, it gets the full path of the input image file. Note that it relies on
self._dialog to provide this information.

4. Then the image file is opened the usual way. On line 4, it checks a flag that decides
whether or not to process the image by maintaining the aspect ratio. Accordingly,
_makeThumbnail or _resizeImage methods are called.

5. On line 10, it rotates the image resized earlier, using the _rotateImage method.

6. Finally, on line 15, the processed image is saved at a path obtained from the
getOutImagePath method of class ThumbnailMakerDialog.

x

x

Chapter 2

[51]

7. We will now write the _makeThumbnail method.

1 def _makeThumbnail(self, imageFile):
2 foo = imageFile.copy()
3 size = self._dialog.getSize()
4 imageFilter = self._getImageFilter()
5 foo.thumbnail(size, imageFilter)
6 return foo

8. First a copy of the original image is made. We will manipulate this copy and the
method will return it for further processing.

9. Then the necessary parameters such as the image dimension and filter
for re-sampling are obtained from self._dialog and _getImageFilter
respectively.

10. Finally the thumbnail is created on line 5 and then method returns this
image instance.

11. We have already discussed how to resize and rotate image. The related code is
straightforward to write and the readers are suggested to write it as an exercise.
You will need to review the code from file ThumbnailMakerDialog.py
for getting appropriate parameters. Write remaining routines namely,
_resizeImage, _rotateImage and _getImageFilter.

12. Once all methods are in place, run the code from the command line as:

 python Thumbnailmaker.py

13. It should show our application dialog. Play around with it to make sure
everything works!

What just happened?
In the previous section, we completed an exciting project. Several things learned in this
chapter, such as image I/O, resizing, and so on, were applied in the project. We developed a
GUI application where some basic image manipulation features, such as creating thumbnails,
were implemented. This project also helped us gain some insight into various aspects of GUI
programming using QT.

x

x

Working with Images

[52]

Have a go hero – enhance the ThumbnailMaker application
Want to do something more with the Thumbnail Maker. Here you go! As you will add more
features to this application, the first thing you would need to do is to change its name—at
least from the caption of the dialog that pops up! Edit the thumbnailMaker.ui file in
QT designer, change the name to something like "Image Processor", and recreate the
corresponding .py file. Next, add the following features to this application.

If you don't want to deal with any UI code, that is fine too! You
can write a class similar to ThumbnailMakerDialog. Do
the input argument processing in your own way. All that class
ThumbnailMaker requires is implementation of certain public
methods in this new class, to get various input parameters.

1. Accept output filename from the user. Currently, it gives the same name as the
input file.

Edit the .ui file. You would need to break the layouts before adding a QLineEdit
and its QLabel and then recreate the layouts.

2. If there is a previously created output image file in the output directory, clicking OK
would simply overwrite that file. Add a checkbox reading, "Overwrite existing file
(if any)". If the checkbox in deselected, it should pop up a warning dialog and exit.

For the latter part, there is a commented out code block in
ThumbnailMakerDialog._processImage. Just enable the code.

3. Add a feature that can add specified text in the lower-left corner of the
output image.

4. Create an image with this text, and use the combination of crop and paste to
achieve desired results. For user input, you will need to add a new QLineEdit
for accepting text input and then connect signals with a callable method in
ThumbnailMakerDialog._connect.

x

x

Chapter 2

[53]

Summary
We learned a lot in this chapter about basic image manipulation.

Specifically, we covered image input-output operations that enable reading and writing of
images, and creation of images from scratch.

With the help of numerous examples and code snippets, we learned several image
manipulation operations. Some of them are:

How to resize an image with or without maintaining aspect ratio

Rotating or flipping an image

Cropping an image, manipulating it using techniques learned earlier in the chapter,
and then pasting it on the original image

Creating an image with a text

We developed a small application that captures a region of your screen at regular
time intervals

We created an interesting project implementing some image processing
functionality learned in this chapter

With this basic image manipulation knowledge, we are ready to learn how to add some cool
effects to an image. In the next chapter, we will see how to enhance an image.

x

x

x

x

3
Enhancing Images

In the previous chapter, we learned a lot about day-to-day image processing.
We accomplished the learning objective of performing basic image
manipulation by working on several examples and small projects. In this
chapter, we will move a step further by learning how to add special effects to
an image. The special effects added to the image serve several purposes. These
not only give a pleasing appearance to the image but may also help you to
understand important information presented by the image.

In this chapter, we shall:

Learn how to adjust brightness and contrast levels of an image

Add code to selectively modify the color of an image and create gray scale images
and negatives

Use PIL functionality to combine two images together and add transparency effects
to the image

Apply various image-enhancement filters to an image to achieve effects such as
smoothing, sharpening, embossing, and so on

Undertake a project to develop a tool to add a watermark or text or a date stamp
to an image

So let's get on with it.

x

x

Enhancing Images

[56]

Installation and download prerequisites
The installation prerequisites for this chapter are same as the ones in Chapter 2, Working
with Images. Please refer to that chapter for further details.

It is important to download all the images required for this chapter from the Packt website
at http://www.packtpub.com/. We will be using these images throughout this chapter
in the image processing code. Additionally, please download the PDF file, Chapter 3
Supplementary Material.pdf from Packt website. This is very important if you are
reading a hard copy of this book which is printed in black and white. In the upcoming
sections such as "Tweaking Colors", we compare the images before and after processing. In
the black and white edition, you won't be able to see the difference between the compared
images. For example, the effects such as changed image color, modified contrast, and so on,
won't be noticeable. The PDF file contains all these image comparisons. So please keep this
file handy while working on the examples in this chapter!

Adjusting brightness and contrast
One often needs to tweak the brightness and contrast level of an image. For example, you
may have a photograph that was taken with a basic camera, when there was insufficient
light. How would you correct that digitally? The brightness adjustment helps make the image
brighter or darker whereas the contrast adjustments emphasize differences between the
color and brightness level within the image data. The image can be made lighter or darker
using the ImageEnhance module in PIL. The same module provides a class that can
auto-contrast an image.

Time for action – adjusting brightness and contrast
Let's learn how to modify the image brightness and contrast. First, we will write code to adjust
brightness. The ImageEnhance module makes our job easier by providing Brightness class.

1.	 Download image 0165_3_12_Before_BRIGHTENING.png and rename it to
Before_BRIGHTENING.png.

2.	 Use the following code:
1 import Image
2 import ImageEnhance
3
4 brightness = 3.0
5 peak = Image.open("C:\\images\\Before_BRIGHTENING.png ")
6 enhancer = ImageEnhance.Brightness(peak)
7 bright = enhancer.enhance(brightness)
8 bright.save("C:\\images\\BRIGHTENED.png ")
9 bright.show()

x

x

Chapter 3

[57]

3.	 On line 6 in the code snippet, we created an instance of the class Brightness. It
takes Image instance as an argument.

4.	 Line 7 creates a new image bright by using the specified brightness value.
A value between 0.0 and less than 1.0 gives a darker image, whereas a value
greater than 1.0 makes it brighter. A value of 1.0 keeps the brightness of the
image unchanged.

5.	 The original and resultant image are shown in the next illustration.

Comparison of images before and after brightening.

6.	 Let's move on and adjust the contrast of the brightened image. We will append the
following lines of code to the code snippet that brightened the image.

10 contrast = 1.3
11 enhancer = ImageEnhance.Contrast(bright)
12 con = enhancer.enhance(contrast)
13 con.save("C:\\images\\CONTRAST.png ")
14 con.show()

7.	 Thus, similar to what we did to brighten the image, the image contrast was tweaked
by using the ImageEnhance.Contrast class. A contrast value of 0.0 creates a
black image. A value of 1.0 keeps the current contrast.

8.	 The resultant image is compared with the original in the following illustration.

x

x

Enhancing Images

[5�]

NOTE: As mentioned in the Installation and Download Prerequisites
section, the images compared in the following illustration will appear identical
if you are reading a hard copy of this book. Please download and refer to the
supplementary PDF file Chapter 3 Supplementary Material.pdf. Here,
the color images are provided, which will help you see the difference.

The original image with the image displaying the increasing contrast.

9.	 In the preceding code snippet, we were required to specify a contrast value. If you
prefer PIL for deciding an appropriate contrast level, there is a way to do this. The
ImageOps.autocontrast functionality sets an appropriate contrast level. This
function normalizes the image contrast. Let's use this functionality now.

10.	Use the following code:

import ImageOps
bright = Image.open("C:\\images\\BRIGHTENED.png ")
con = ImageOps.autocontrast(bright, cutoff = 0)
con.show()

11.	The highlighted line in the code is where contrast is automatically set. The
autocontrast function computes histogram of the input image. The cutoff
argument represents the percentage of lightest and darkest pixels to be trimmed
from this histogram. The image is then remapped.

What just happened?
Using the classes and functionality in ImageEnhance module, we learned how to
increase or decrease the brightness and the contrast of the image. We also wrote code
to auto-contrast an image using functionality provided in the ImageOps module. The
things we learned here will be useful in the upcoming sections in this chapter.

x

x

Chapter 3

[5�]

Tweaking colors
Another useful operation performed on the image is adjusting the colors within an image.
The image may contain one or more bands, containing image data. The image mode
contains information about the depth and type of the image pixel data. The most common
modes we will use in this chapter are RGB (true color, 3x8 bit pixel data), RGBA (true color
with transparency mask, 4x8 bit) and L (black and white, 8 bit).

In PIL, you can easily get the information about the bands data within an image. To get the
name and number of bands, the getbands() method of the class Image can be used. Here,
img is an instance of class Image.

>>> img.getbands()

('R', 'G', 'B', 'A')

Time for action – swap colors within an image!
To understand some basic concepts, let's write code that just swaps the image band data.

1.	 Download the image 0165_3_15_COLOR_TWEAK.png and rename it as
COLOR_TWEAK.png.

2.	 Type the following code:

1 import Image
2
3 img = Image.open("C:\\images\\COLOR_TWEAK.png ")
4 img = img.convert('RGBA')
5 r, g, b, alpha = img.split()
6 img = Image.merge("RGBA ", (g, r, b, alpha))
7 img.show()

3.	 Let's analyze this code now. On line 2, the Image instance is created as usual. Then,
we change the mode of the image to RGBA.

Here we should check if the image already has that mode or if this
conversion is possible. You can add that check as an exercise!

4.	 Next, the call to Image.split() creates separate instances of Image class,
each containing a single band data. Thus, we have four Image instances—r, g, b,
and alpha corresponding to red, green, and blue bands, and the alpha
channel respectively.

x

x

Enhancing Images

[60]

5.	 The code in line 6 does the main image processing. The first argument that
Image.merge takes mode as the first argument whereas the second argument is a
tuple of image instances containing band information. It is required to have same
size for all the bands. As you can notice, we have swapped the order of band data
in Image instances r and g while specifying the second argument.

6.	 The original and resultant image thus obtained are compared in the next illustration.
The color of the flower now has a shade of green and the grass behind the flower is
rendered with a shade of red.

As mentioned in the Installation and Download Prerequisites
section, the images compared in the following illustration will
appear identical if you are reading a hard copy of this book. Please
download and refer to the supplementary PDF file Chapter 3
Supplementary Material.pdf. Here, the color images are
provided that will help you see the difference.

Original (left) and the color swapped image (right).

What just happened?
We accomplished creating an image with its band data swapped. We learned how to use
PIL's Image.split() and Image.merge() to achieve this. However, this operation was
performed on the whole image. In the next section, we will learn how to apply color changes
to a specific color region.

x

x

Chapter 3

[61]

Changing individual image band
In the previous section, we saw how to change the data represented by the whole band. As
a result of this band swapping, the color of the flower was changed to a shade of green and
the grass color was rendered as a shade of red. What if we just want to change the color
of the flower and keep the color of the grass unchanged? To do this, we will make use of
Image.point functionality along with Image.paste operation discussed in depth in the
previous chapter.

However, note that we need to be careful in specifying the color region that needs to be
changed. It may also depend on the image. Sometimes, it will select some other regions
matching the specified color range, which we don't want.

Time for action – change the color of a flower
We will make use of the same flower image used in the previous section. As mentioned
earlier, our task is to change the color of the flower while keeping the grass color unchanged.

1.	 Add this code in a Python source file.

1 import Image
2
3 img = Image.open("C:\\images\\COLOR_TWEAK.png ")
4 img = img.convert('RGBA')
5 r, g, b, alpha = img.split()
6 selection = r.point(lambda i: i > 120 and 150)
7 selection.save("C:\\images\\COLOR_BAND_MASK.png ")
8 r.paste(g, None, selection)
9 img = Image.merge("RGBA ", (r, g, b, alpha))
10 img.save("C:\\images\\COLOR_CHANGE_BAND.png ")
11 img.show()

2.	 Lines 1 to 5 remain the same as seen earlier. On line 5, we split the original image,
creating four Image instances, each holding a single band data.

3.	 A new Image instance 'selection' is created on line 6. This is an important operation
that holds the key to selectively modify color! So let's see what this line of code
does. If you observe the original image, the flower region (well, most of it) is
rendered with a shade of red color. So, we have called the point(function)
method on Image instance r. The point method takes a single function and an
argument maps the image through this function. It returns a new Image instance.

x

x

Enhancing Images

[62]

4.	 What does this lambda function on line 6 do? Internally, PIL's point function does
something of this sort:

lst = map(function, range(256)) * no_of_bands

In this example, function is nothing but the lambda function. The no_of_bands
for the image is 1. Thus, line 6 is used to select a region where the red value is
greater than 120. The lst is a list which, in this case has the first 120 values as
False whereas the remaining values as 150. The value of 150 plays a role in
determining the final color when we perform the paste operation.

5.	 The image mask thus created after the application of point operation is shown
in the following illustration. The white region in this image represents the region
captured by the point operation that we just performed. Only the white region
will undergo change when we perform paste operation next.

6.	 On line 8, we perform a paste operation discussed in the last chapter. Here, the
image g is pasted onto image r using mask selection. As a result, the band data
of image r is modified.

7.	 Finally, a new Image instance is created using the merge operation, by making
use of the individual r, g, b, and alpha image instances containing the new
band information.

8.	 The original and final processed images are compared in the next illustration.
The new flower color looks as cool as the original color, doesn't it?

x

x

Chapter 3

[63]

As mentioned in the Installation and download prerequisites section, the
images compared in the following illustration will appear identical if you
are reading a hard copy of this book. Please download and refer to the
supplementary PDF file Chapter 3 Supplementary Material.pdf.
The color images are provided that will help you see the difference.

What just happened?
We worked out an example that modified a selective color region. Individual image band
data was processed to accomplish this task. With the help of point, paste, and merge
operations in PIL's Image module, we accomplished changing the color of the flower in
the provided image.

Gray scale images
If you want to give a nostalgic effect to an image, one of the many things that you can do
is to convert it to gray scale. There is more than one way to create a gray scale image in
PIL. When the mode is specified as L, the resultant image is gray scale. The basic syntax
to convert color images to black and white is:

img = img.convert('L')

Alternatively, we can use functionality provided in the ImageOps module.

img = ImageOps.grayscale(img)

If you are creating the image from scratch, the syntax is:

img = Image.new('L', size)

x

x

Enhancing Images

[64]

The following illustration shows the original and the converted gray scale images created
using one of these techniques.

Please download and refer to the supplementary PDF file Chapter 3
Supplementary Material.pdf. The color images are provided
that will help you see the difference between the following images.

Original and gray scale images of a bridge:

Cook up negatives
Creating a negative of an image is straightforward. We just need to invert each color pixel.
Therefore, if you have a color x at a pixel, the negative image will have (255 – x) at that pixel.
The ImageOps module makes it very simple. The following line of code creates a negative of
an image.

img = ImageOps.invert(img)

Here is the result of this operation:

Original image (left) and its negative (right).

x

x

Chapter 3

[65]

Blending
Have you ever wished to see yourself in a family photo, taken at a time when you were not
around? Or what if you just want to see yourself at the top of Mount Everest at least in a
picture? Well, it is possible to do this digitally, using the functionality provided in PIL such
as blending, composite image processing, and so on.

In this section, we will learn how to blend images together. As the name suggests, blending
means mixing two compatible images to create a new image. The blend functionality in PIL
creates a new image using two input images of the same size and mode. Internally, the two
input images are interpolated using a constant value of alpha.

In the PIL documentation, it is formulated as:

blended_image = in_image1 * (1.0 - alpha) + in_image2 * alpha

Looking at this formula, it is clear that alpha = 1.0 will make the blended image the same
as 'n_image2 whereas alpha = 0.0 returns in_image1 as the blended image.

Time for action – blending two images
Sometimes, the combined effect of two images mixed together makes a big impact
compared to viewing the same images differently. Now it's time to give way to your
imagination by blending two pictures together. In this example, our resultant image shows
birds flying over the Mackinac bridge in Michigan. However, where did they come from? The
birds were not there in the original image of the bridge.

1.	 Download the following files from Packt website: 0165_3_28_BRIDGE2.png
and 0165_3_29_BIRDS2.png. Rename these files as BRIDGE2.png and
BIRDS2.png respectively.

2.	 Add the following code in a Python source file.

1 import Image
2
3 img1 = Image.open("C:\\images\\BRIDGE2.png ")
4 img1 = img1.convert('RGBA')
5
6 img2 = Image.open("C:\\images\\BIRDS2.png ")
7 img2 = img2.convert('RGBA')
8
9 img = Image.blend(img1, img2, 0.3)
10 img.show()
11 img.save("C:\\images\\BLEND.png")

x

x

Enhancing Images

[66]

3.	 The next illustration shows the two images before blending, represented by img1
and img2 in the code.

Individual images of a bridge and flying birds, before blending.

4.	 The lines 3 to 7 open the two input images to be blended. Notice that we have
converted both the images RGBA. It need not be necessarily RGBA mode. We can
specify the modes such as 'RGB' or 'L'. However, it is required to have both the
images with same size and mode.

5.	 The images are blended on line 9 using the Image.blend method in PIL. The first
two arguments in the blend method are two Image objects representing the two
images to be blended. The third argument defines the transparency factor alpha. In
this example, the image of the bridge is the main image we want to focus on. Thus,
the factor alpha is defined such that more transparency is applied to the image of
the flying birds while creating the final image. The alpha factor can have a value
between 0.0 to 1.0. Note that, while rendering the output image, the second
image, img2, is multiplied by this alpha value whereas the first image is
multiplied by 1 - alpha. This can be represented by the following equation.

blended_img = img1 * (1 – alpha) + img2* alpha

Thus, if we select an alpha factor of, for instance, 0.8, it means that the birds will
appear more opaque compared to the bridge. Try changing the alpha factor to see
how it changes the resultant image. The resultant image with alpha = 0.3 is:

x

x

Chapter 3

[67]

Blended image showing birds flying over a bridge.

6.	 The picture appears a bit dull due to the transparency effect applied while creating
the image. If you convert the input images to mode L, the resultant image will
look better—however, it will be rendered as gray scale. This is shown in the
next illustration.

Blended gray scale image when both the input images have mode L.

x

x

Enhancing Images

[6�]

What just happened?
Blending is an important image enhancement feature. With the help of examples, we
accomplished creating blended images. We learned using the Image.blend method and
applied the transparency factor alpha to achieve this task. The technique learned in this
chapter will be very useful throughout this chapter. In the next section, we will apply the
blending technique to create a transparent image.

Creating transparent images
In the previous section, we learned how to blend two images together. In this section, we
will go one step further and see how the same blend functionality can be used to create a
transparent image! The images with mode RGBA define an alpha band. The transparency
of the image can be changed by tweaking this band data. Image.putalpha() method
allows defining new data for the alpha band of an image. We will see how to perform
point operation to achieve the same effect.

Time for action – create transparency
Let's write a few lines of code that add the transparency effects to an input image.

1.	 We will use one of the images used in Chapter 2. Download 0165_3_25_SMILEY.
png and rename it to SMILEY.png.

2.	 Use the following code:

1 import Image
2
3 def addTransparency(img, factor = 0.7):
4 img = img.convert('RGBA')
5 img_blender = Image.new('RGBA', img.size, (0,0,0,0))
6 img = Image.blend(img_blender, img, factor)
7 return img
8
9 img = Image.open("C:\\images\\SMILEY.png ")
10
11 img = addTransparency(img, factor =0.7)

3.	 In this example, the addTransparency() function takes the img instance as input
and returns a new image instance with the desired level of transparency.

x

x

Chapter 3

[6�]

4.	 Now let's see how this function works. On line 4, we first convert the image mode to
RGBA. As discussed in an earlier section, you can add a conditional here to see if the
image is already in the RGBA mode.

5.	 Next, we create a new Image class instance, image_blender, using the Image.
new method. It has the same size and mode as the input image. The third argument
represents the color. Here, we specify the transparency as 0.

6.	 On line 6, two images, img (input image) and img_blender, are blended together
by applying a constant alpha value. The function then returns this modified
Image instance.

7.	 The original image and the one with the transparency effect are compared. The
images are the screenshots of the images opened in the GIMP editor. This is done
so that you clearly understand the effect of transparency. The checkered pattern
in these images represents the canvas. Notice how the canvas appears in the
transparent image.

8.	 There is another simple way to add transparency to an image, using the Image.
point functionality! Enter the following code in a Python source file and execute it.

1 import Image
2 img = Image.open("C:\\images\\SMILEY.png ")
3 r, g, b, alpha = img.split()
4 alpha = alpha.point(lambda i: i>0 and 178)
5 img.putalpha(alpha)
6 img.save("C:\\images\\Transparent_SMILEY.png ")

9.	 In this new code, we split the original image into four new image instance, each
having one of the image band data (r, g, b, or alpha). Note that we are assuming
here that the mode of the image is RGBA. If it is not, you need to convert this image
to RGBA! As an exercise, you can add that check in the code.

10.	Next, on line 4, the Image.point method is called. The lambda function operates
on the alpha band data. It sets the value as 178. This is roughly equal to the alpha
factor of 0.7 that we set earlier. It is computed here as int(255*0.7)). In the
Changing individual image band section, where we learned modifying colors
within images, the point operation was thoroughly discussed.

x

x

Enhancing Images

[70]

11.	On line 5, we put back the new alpha band data in img. The resultant images using
blend and point functionality are shown in the next illustration.

Image before and after adding transparency.

What just happened?
We accomplished adding transparency effect to an image. This is a very useful image
enhancement that we need from time to time. We learned how to create a transparent image
using two different techniques, namely, using Image.blend functionality and Image.point
operation. The knowledge gained in this section will be applied later in this chapter.

Making composites with image mask
So far, we have already seen how to blend two images together. It was done using the
Image.blend operation where the two input images were blended by using a constant
alpha transparency factor. In this section, we will learn another technique to combine two
images together. Here, instead of a constant alpha factor, an image instance that defines
the transparency mask is used as the third argument. Another difference is that the input
images need not have the same mode. For instance, the first image can be with mode L
and the second with mode RGBA. The syntax to create composite images is:

outImage = Image.composite(img1, img2, mask)

Here, the arguments to the composite method are Image instances. The mask is specified as
alpha. The mode for mask image instance can be 1, L, or RGBA.

x

x

Chapter 3

[71]

Time for action – making composites with image mask
We will mix the same two images blended in another section. Just to try out something
different, in the composite image, we will focus on the flying birds instead of the bridge.

1.	 We will use the same set of input images as used in the Blending section.

1 import Image
2
3 img1 = Image.open("C:\\images\\BRIDGE2.png ")
4 img1 = img1.convert('RGBA')
5
6 img2 = Image.open("C:\\images\\BIRDS2.png ")
7 img2 = img2.convert('RGBA')
8
9 r, g, b, alpha = img2.split()
10 alpha = alpha.point(lambda i: i>0 and 204)
11
12 img = Image.composite(img2, img1, alpha)
13 img.show()

2.	 The code until line 7 is identical to the one illustrated in the blending example. Note
that the two input images need not have the same mode. On line 10, the Image.
point method is called. The lambda function operates on the alpha band data.
The code on lines 9 and 10 is similar to that illustrated in the section Creating
Transparent Images. Please refer to that section for further details. The only
difference is that the pixel value is set as 204. This modifies the band data in the
image instance alpha. This value of 204 is roughly equivalent to the alpha factor
of 0.7 if the image were to be blended. What this implies is the bridge will have a
fading effect and the flying birds will appear prominently in the composite image.

3.	 One thing you will notice here is we are not putting the modified alpha band data
back in img2. Instead, on line 12, the composite image is created using the mask
as alpha.

x

x

Enhancing Images

[72]

4.	 The resultant composite image is shown in the next illustration—with emphasis on
the image of the flying birds.

What just happened?
We learned how to create an image combining two images, using an alpha mask. This was
accomplished by using Image.composite functionality.

Project: Watermark Maker Tool
We have now learned enough image enhancement techniques to take up a simple project
applying these techniques. Let's create a simple command line utility, a "Watermark Maker
Tool". Although we call it a "Watermark Maker ", it actually provides some more useful
features. Using this utility, you can add the date stamp to the image (the date on which
the image was enhanced using this tool). It also enables embedding custom text within
an image. The tool can be run on the command line using the following syntax:

python WaterMarkMaker.py [options]

x

x

Chapter 3

[73]

Where, the [options] are as follows:

--image1: The file path of the main image that provides canvas.

--waterMark: The file path of the watermark image (if any).

--mark_pos: The coordinates of top-left corner of the watermark image to be
embedded. The values should be specified in double quotes, like 100, 50.

--text: The text that should appear in the output image.

--text_pos: The coordinates of top-left corner of the TEXT to be embedded.
The values should be specified in double quotes, like 100, 50.

--transparency: The transparency factor for the watermark (if any)

--dateStamp: Flag (True or False) that determines whether to insert date
stamp in the image. If True, the date stamp at the time this image was processed
will be inserted.

The following is an example that shows how to run this tool with all the options specified.

python WaterMarkMaker.py --image1= "C:\foo.png "

 --watermark= "C:\watermark.png "

 --mark_pos= "200, 200 "

 --text= "My Text "

 –-text_pos= "10, 10 "

 --transparency=0.4

 --dateStamp=True

This creates an output image file WATERMARK.png, with a watermark and text at the
specified anchor point within the image.

Time for action – Watermark Maker Tool
Think about all the methods we would need to accomplish this. The first thing that comes to
mind is a function that will process the command-line arguments mentioned earlier. Next,
we need to write code that can add a watermark image to the main image. Let's call this
addWaterMark(). On similar lines, we will need methods that add text and date stamp
to the image. We will call this addText() and addDateStamp() respectively. With this
information, we will develop code to make this work. In this project, we will encapsulate
this functionality in a class, but it is not necessary. We do so to make this tool extensible
for future use.

1.	 Download the file WaterMarkMaker.py. This has the code required in this
project. Just keep it for further use. Some of the methods will not be discussed in
this section. If you encounter difficulties while developing those methods, you can
always go back and refer to this file.

x

x

Enhancing Images

[74]

2.	 Open a new Python source file and declare the following class and its methods. Just
create empty methods for now. We will expand these in as we proceed along.

import Image, ImageDraw, ImageFont
import os, sys
import getopt
from datetime import date

class WaterMarkMaker:
 def __init__(self):
 pass
 def addText(self):
 pass
 def addDateStamp(self):
 pass
 def _addTextWorker(self, txt, dateStamp = False):
 pass
 def addWaterMark(self):
 pass
 def addTransparency(self, img):
 pass
 def createImageObjects(self):
 pass
 def _getMarkPosition(self, canvasImage, markImage):
 return
 def processArgs(self):
 pass
 def printUsage(self):
 pass

3.	 Next, we will write code in the constructor of this class.

def __init__(self):
 # Image paths
 self.waterMarkPath = ''
 self.mainImgPath = ''
 # Text to be embedded
 self.text = ''
 # Transparency Factor
 self.t_factor = 0.5
 # Anchor point for embedded text
 self.text_pos = (0, 0)
 # Anchor point for watermark.
 self.mark_pos = None

 # Date stamp
 self.dateStamp = False
 # Image objects
 self.waterMark = None
 self.mainImage = None

x

x

Chapter 3

[75]

 self.processArgs()
 self.createImageObjects()
 self.addText()
 self.addWaterMark()

 if self.dateStamp:
 self.addDateStamp()
 self.mainImage.save("C:\\images\\WATERMARK.png ")
 self.mainImage.show()

4.	 The code is self-explanatory. First, all the necessary attributes are initialized and
then the relevant methods are called to create the image with watermark and/or
the embedded text. Let's write the methods in the order in which they are called
in the constructor.

5.	 The processArgs() method processes the command-line arguments. You
can write this method as an exercise. Alternatively, you can use code in the
WaterMarkMaker.py file from the Packt website. The process arguments method
should take the assignments as shown in the following table. In the reference files,
getopt module is used to process these arguments. Alternatively, you can use
OptionParser in the optparse module of Python.

Argument Value Argument Value

image1 self.mainImgPath text_pos self.text_pos

waterMark self.waterMarkPath transparency self.t_factor

mark_pos self.mark_pos dateStamp self.dateStamp

text self.text

6.	 The printUsage() method just prints how to run this tool. You can easily write
that method.

7.	 Let's review the addText()and _addTextWorker() methods now. Note that
some of the code comments are removed from the code samples for clarity. You
can refer to the code in WaterMarkMaker.py for detailed comments.

def addText(self):
 if not self.text:
 return
 if self.mainImage is None:
 print "\n Main Image not defined.Returning. "
 return
 txt = self.text
 self._addTextWorker(txt)

The addText() method simply calls _addTextWorker() by providing the
self.text argument received from the command line.

x

x

Enhancing Images

[76]

8.	 The _addTextWorker() does the main processing that embeds the text within the
image. This method is used in the following code:

1 def _addTextWorker(self, txt, dateStamp = False):
2 size = self.mainImage.size
3 color = (0, 0, 0)
4 textFont = ImageFont.truetype("arial.ttf ", 50)
5
6 # Create an ImageDraw instance to draw the text.
7 imgDrawer = ImageDraw.Draw(self.mainImage)
8 textSize = imgDrawer.textsize(txt, textFont)
9
10 if dateStamp:
11 pos_x = min(10, size[0])
12 pos_y = size[1] - textSize[0]
13 pos = (pos_x, pos_y)
14 else:
15 # We need to add text. Use self.text_pos
16 pos = self.text_pos
17 #finally add the text
18 imgDrawer.text(pos, txt, font=textFont)
19
20 if (textSize[0] > size[0]
21 or textSize[1] > size[1]):
22 print ("\n Warning, the specified text "

23 "going out of bounds. ")

In Chapter 2, we created a new image containing a text string. It read "Not really
a fancy text ". Do you remember? Here, we have written similar code with some
improvements. The function ImageDraw.Draw takes the self.mainImage
(an Image instance) as an argument to create a Draw instance, imgDrawer.

On line 18, the text is embedded onto the given position using a given font. The
text() method of Draw instance takes three arguments, namely, position,
text, and the font. In the previous chapter, we already made use of the first two
arguments. The third argument font is an instance of class ImageFont in PIL.

On line 4, we create this instance specifying a font type (arial.ttf) and the font
size (=50). The given text string is now added on to the main image!

x

x

Chapter 3

[77]

9.	 The next method we will discuss is addDateStamp(). It calls the same
_addTextWorker() in the end. However, the placement of this date stamp is
fixed at the bottom left corner of the image and of course we create our date string
by using Python's datetime module. The code is illustrated below along with the
import statement declared earlier.

from datetime import date

def addDateStamp(self):
 today = date.today()
 time_tpl = today.timetuple()
 year, month, day = map(str, time_tpl)
 datestamp = "%s/%s/%s "%(year,month, day)
 self._addTextWorker(datestamp, dateStamp = True)

The first line of the code in this method creates a date instance today with today's
date provided as a 3-tuple. Something like this: datetime.date(2010, 1, 20).
Next, we call the timetuple method of date instance. The first three values in this
tuple are year, month, and day respectively.

The rest of the code is just the processing of the date stamp as a text string and then
calling the main worker method just discussed.

10.	Now we will review the code in the addWaterMark() method. A watermark is
typically a semi-transparent image that appears in the main image. There are two
different approaches to accomplish creating a watermark. The following code
considers both these approaches.

1 def addWaterMark(self):
2 # There are more than one way to achieve creating a
3 # watermark. The following flag,if True, will use
4 # Image.composite to create the watermark instead of a
5 # simple Image.paste
6 using_composite = False
7
8 if self.waterMark is None:
9 return
10 # Add Transparency
11 self.waterMark = self.addTransparency(self.waterMark)
12 # Get the anchor point
13 pos_x, pos_y = self._getMarkPosition(self.mainImage,
14 self.waterMark)
15 # Create the watermark
16 if not using_composite:
17 # Paste the image using the transparent
18 # watermark image as the mask.

x

x

Enhancing Images

[7�]

19 self.mainImage.paste(self.waterMark,
20 (pos_x, pos_y),
21 self.waterMark)
22 else:
23 # Alternate method to create water mark.
24 # using Image.composite create a new canvas
25 canvas = Image.new('RGBA',
26 self.mainImage.size,
27 (0,0,0,0))
28 # Paste the watermark on the canvas
29 canvas.paste(self.waterMark, (pos_x, pos_y))
30 # Create a composite image
31 self.mainImage = Image.composite(canvas,
32 self.mainImage,
33 canvas)

11.	To add a watermark, first we make the image transparent. This is accomplished by
calling the addTransparency() method. This method also changes the mode
of the image to RGBA. This method is shown here. It is almost identical to the one
we developed in an earlier section where an image was made transparent using
blending functionality of PIL.

def addTransparency(self, img):
 img = img.convert('RGBA')
 img_blender = Image.new('RGBA',
 img.size,
 (0,0,0,0))
 img = Image.blend(img_blender,
 img,
 self.t_factor)
 return img

Next, on line 13, we determine the anchor point on the main image, where the top-
left corner of the watermark will appear. By default, we will match the bottom-left
corner of the watermark with the main image. You can review the code for method
_getMarkPosition() in the file WaterMarkMaker.py to see how this is done.
Moving forward, the code block between lines 16-21 creates the watermark using
the paste functionality. This is one way to create the image with a watermark. The
arguments provided in the Image.paste function are image to be pasted,
anchor point, and mask. The mask is selected as the watermark image itself so as
to consider the transparency. Otherwise, the watermark image will appear opaque.
The resultant image with and without image mask specification is compared in the
following illustration.

x

x

Chapter 3

[7�]

Resultant images using Image.paste operation created with and
without mask.

Next, in the else condition block (lines 22 to 33), we use Image.composite
functionality in PIL to embed the watermark. The dimensions of the example
watermark image used here are 200x200 pixels, whereas the dimensions of the
main image are 800x600 pixels. To use the composite() method, we need to
make these images of the same size, and yet, make sure to paste the watermark at
the specified position. How to achieve this? The first thing to do is to create a canvas
image to hold the watermark. The canvas image is of the same size as that of the
main image. The code block 25-29 creates the canvas and pastes the watermark at
an appropriate location.

Finally, on line 31, the composite image is created using the canvas image instance
as the alpha mask.

12.	Now lets run this tool! You can use your own image files for main image or the
watermark. Alternatively, you can use the image 0165_3_34_KokanPeak_for_
WATERMARK.png as the main image and 0165_3_38_SMILEY_small.png as the
watermark image. The command-line arguments for this run are:

 python WaterMarkMaker.py

 --image1= "C:\images\KokanPeak_for_WATERMARK.png "

 --text= "Peak "

 --text_pos= "10, 10 "

 --waterMark= "C:\\images\\SMILEY_small.png "

 --dateStamp=True

x

x

Enhancing Images

[�0]

13.	The resultant image with text, date stamp, and the watermark is shown in the
next illustration.

Final processed image with text, date stamp, and a watermark.

What just happened?
We created a very useful utility that can add a watermark and/or a text string and/or a date
stamp to an input image. We used several of the image processing techniques learned in this
as well as in an earlier chapter on image processing. Especially, image enhancement features
such as blending, creating composite images, and adding transparency were applied to
accomplish this task. Additionally we made use of common functionality such as pasting
an image, drawing text onto the image, and so on.

Have a go hero – do more with Watermark Maker Tool
Our Watermark Maker tool needs an upgrade. Extend this application so that it supports
following the features:

1. The text or the date stamp color is currently hardcoded. Add a new command-line
argument so that a text color can be specified as an optional argument.

2. Add some standard default options for specifying anchor position for text, date
stamp, and the watermark image. These options can be TOP_RIGHT, TOP_LEFT,
BOTTOM_RIGHT, and BOTTOM_LEFT.

x

x

Chapter 3

[�1]

3. The command-line options list is too long. Add code so that all arguments can be
read from a text file.

4. Add support so that it can batch-process images to create desired effect.

Applying image filters
In the previous chapter, filter argument was used while performing the image resize
operation. This filter determined the quality of the output image. However, there were
only four filter options available and the scope was limited to a resize operation. In this
section, some additional image enhancement filters will be introduced. These are predefined
filters and can be directly used on any input image. Following is a basic syntax used for
applying a filter.

img = Image.open('foo.jpg')
filtered_image = img.filter(FILTER)

Here, we created a new image filtered_image by filtering imageby filtering image img . The FILTER
argument can be one of the predefined filters in the ImageFilter module of PIL for
filtering the image data. PIL offers several predefined image enhancement filters. These can
be broadly classified into the following categories. With the help of examples, we will learn
some of these in the coming sections.

Blurring and sharpening: BLUR, SHARPEN, SMOOTH, SMOOTH_MORE

Edge detection and enhancement: EDGE_ENHANCE, EDGE_ENHANCE_MORE,
FIND_EDGES, CONTOUR

Distortion/special effects: EMBOSS

The file ImageFilter.py in the PIL source code defines the-mentioned filter classes. You
can create your own custom filter by tweaking various arguments in these filter classes.

filterargs = size, scale, offset, kernel

Where, kernel is the convolution kernel. Here, the 'convolution' is a mathematical
operation, on the image matrix by the 'kernel' matrix to produce a resultant matrix.

The size of matrix is specified by the size argument. It is specified in the form (width, height).
This can either be (3, 3) or (5, 5) size in the current PIL version. The result of each pixel is
divided by scale argument. This is an optional argument. The offset value, if specified,
has its value is added to the result after dividing it by the scale argument.

In some of the image enhancement filter examples, we will create our own custom filter.

x

x

Enhancing Images

[�2]

Smoothing
Smoothing an image means reducing the noise within the image data. For this, certain
mathematical approximation is applied on the image data to recognize the important
patterns within the image. The ImageFilter module defines class SMOOTH for smoothing
an image. PIL specifies the following default filter arguments for the image-smoothing filter.

filterargs = (3, 3),
 13,
 0,
 (1, 1, 1,
 1, 5, 1,
 1, 1, 1)

Time for action – smoothing an image
Let's work out an example where a smoothing filter will be applied to an image.

1.	 Download the image file 0165_3_Before_SMOOTHING.png from the Packt
website and save it as Before_SMOOTHING.png.

2.	 This is a low-resolution image scanned from a developed photograph. As you can
see, there is a lot of salt-and-pepper noise in the image. We will apply smoothing
filter to reduce some of this noise in the image data.

3.	 Add the following code in a Python file.

import ImageFilter
import Image

img = Image.open("C:\\images\\Before_SMOOTH.png ")
img = img.filter(ImageFilter.SMOOTH)
img.save("C:\\images\\ch3\\After_SMOOTH.png")
img.show()

x

x

Chapter 3

[�3]

4.	 The highlighted line in the code is where the smoothing filter is applied to the
image. The results are shown in the next illustration.

Picture before and after smoothing:

5.	 To reduce the noise further down, you can use ImageFilter.SMOOTH_MORE
or try reapplying the ImageFilter.SMOOTH multiple times until you get the
desired effect.

import ImageFilter
import Image

img = Image.open("C:\\images\\0165_3_2_Before_SMOOTH.png ")
i = 0
while i < 5:
 img = img.filter(ImageFilter.SMOOTH)
 i += 1
img.save("C:\\images\\0165_3_3_After_SMOOTH_5X.png")
img.show()

x

x

Enhancing Images

[�4]

As you can observe in the illustration, the noise is further reduced but the
image appears a little bit hazy. Thus, one has to determine an appropriate
level of smoothness.

Comparison of the resultant image with single and multiple smoothing filters.

What just happened?
We learned how to reduce high-level noise from the image data using the smoothing filter in
the ImageFilter module.

Sharpening
In the earlier section, we learned image-smoothing techniques. If you want to view
the finer details within an image, a sharpening filter can be applied over the image.
Like image-smoothing filters, PIL provides predefined filters for sharpening called
ImageFilter.SHARPEN. The basic syntax to sharpen an image is as follows:

img = img.filter(ImageFilter.SHARPEN)

You can try this filter on the image that was smoothed multiple times in the earlier section.

Blurring
In general, blurring makes an image lose its focus. In PIL, the predefined filter for this is
ImageFilter.BLUR. This is typically useful if you want to fade out the background to
highlight some object in the foreground. The syntax is similar to the one used for other filters.

img = img.filter(ImageFilter.BLUR)

x

x

Chapter 3

[�5]

The following illustration shows the effect of this filter.

Image before and after application of blurring filter:

Edge detection and enhancements
In this section, we will learn some general edge detection and enhancement filters. The
edge enhance filter improves the edge contrast. It increases the contrast of the region very
close to the edge. This makes the edge stand out. The edge detection algorithm looks for
discontinuities within the pixel data of the image. For example, it looks for sharp change in
the brightness to identify an edge.

Time for action – detecting and enhancing edges
Let's see how the edge detection and enhancement filters modify the data of a picture. The
photograph that we will use is a close-up of a leaf. The original photo is shown in the next
illustration. Applying an edge detection filter on this image creates a cool effect where only
edges are highlighted and the remaining portion of the image is rendered as black.

1.	 Download the image 0165_3_6_Before_EDGE_ENHANCE.png from the Packt
website and save it as Before_EDGE_ENHANCE.png.

2.	 Add the following code in a Python file.

1 import Image
2 import ImageFilter
3 import os
4 paths = ["C:\images\Before_EDGE_ENHANCE.png ",
5 "C:\images\After_EDGE_ENHANCE.png ",
6 "C:\images\EDGE_DETECTION_1.png ",
7 "C:\images\EDGE_DETECTION_2.png "
8]
9 paths = map(os.path.normpath, paths)
10

x

x

Enhancing Images

[�6]

11 (imgPath ,outImgPath1,
12 outImgPath2, outImgPath3) = paths
13 img = Image.open(imgPath)
14 img1 = img.filter(ImageFilter.FIND_EDGES)
15 img1.save(outImgPath1)
16
17 img2 = img.filter(ImageFilter.EDGE_ENHANCE)
18 img2.save(outImgPath2)
19
20 img3 = img2.filter(ImageFilter.FIND_EDGES)
21 img3.save(outImgPath3)

3.	 Line 14 modifies the image data using the FIND_EDGES filter and then the resulting
image is saved.

4.	 Next, we modify the original image data, so that more veins within the leaf become
visible. This is accomplished by the application of ENHANCE_EDGES filter (line 17).

5.	 On line 20, the FIND_EDGES filter is applied on the edge-enhanced image. The
resultant images are compared in the next illustration.

a) First row: Images before and after application of edge enhancement filter b)
Second row: The edges detected by ImageFilter.FIND_EDGES filter.

x

x

Chapter 3

[�7]

What just happened?
We created an image with enhanced edges by applying the EDGE_ENHANCE filter in the
ImageFilter module. We also learned how to detect edges within the image using the
edge detection filter. In the next section, we will apply a special form of the edge filter that
highlights or darkens the detected edges within an image. It is called an embossing filter.

Embossing
In image processing, embossing is a process that gives an image a 3-D appearance. The edges
within the image appear raised above the image surface. This optical illusion is accomplished
by highlighting or darkening edges within the image. The following illustration shows original
and embossed images. Notice how the edges along the characters in the embossed image
are either highlighted or darkened to give the desired effect.

The ImageFiltermodule provides a predefined filter, ImageFilter.EMBOSS, to achieve
the embossing effect for an image. The convolution kernel of this filter is of a (3, 3) size and
the default filter arguments are:

filterargs = (3, 3), 1, 128, (
 -1, 0, 0,
 0, 1, 0,
 0, 0, 0
)

Time for action – embossing
1.	 Download the image 0165_3_4_Bird_EMBOSS.png from the Packt website and

save it as Bird_EMBOSS.png.

2.	 Add the following code in a Python file:

1 import os, sys
2 import Image
3 import ImageFilter
4 imgPath = "C:\images\Bird_EMBOSS.png "
5 outImgPath = "C:\images\Bird_EMBOSSED.png "
6 imgPath = os.path.normpath(imgPath)

x

x

Enhancing Images

[��]

6 outImgPath = os.path.normpath(outImgPath)
7 bird = Image.open(imgPath)
8 bird = bird.filter(ImageFilter.EMBOSS)
9 bird.save(outImgPath)
10 bird.show()

3.	 On line 9, the embossing filter ImageFilter.EMBOSS is applied to the
image object bird. The resultant embossed image of the bird is shown
in the next illustration.

Original and embossed images of a bird using ImageFilter.EMBOSS.

What just happened?
We applied an embossing filter on an image and created an embossed image. As seen in
previous section, the filter modified the brightness of various edges to make them appear
highlighted or darkened. This created an optical illusion where the image appeared raised
above the surface.

Adding a border
How would you prefer viewing a family photo? As a bare picture or enclosed in a nice photo
frame? In ImageOps module, PIL provides a preliminary functionality to add a plain border
around the image. Here is the syntax to achieve this:

img = ImageOps.expand(img, border, fill)

x

x

Chapter 3

[��]

This code creates a border around the image. Internally, PIL just creates an image that has
dimesions such that:

new_width = (right_border_thickness + image_width +
 left_border_thickness)

new_height = (top_border_thickness + image_height +
 bottom_border_thickness)

Then, the original image is pasted onto this new image to create the border effect. The
border argument in the preceding code suggests border thickness in pixels. It is uniform
in this example and is set to 20 pixels for left, right, top, and bottom borders. The fill
argument specifies the border color. It can be a number in the range 0 to 255 indicating the
pixel color, where 0 is for 'black' and 255 for 'white' border. Alternatively, you can specify a
string representing a color, such as 'red' for red color, and so on.

Time for action – enclosing a picture in a photoframe
Let's develop code that adds a frame around a picture.

1.	 Download the image 0165_3_15_COLOR_TWEAK.png and rename it to
FLOWER.png.

2.	 Add the following code in a Python source file. Make sure to modify the code
to specify in the input and output paths appropriately.

1 import Image, ImageOps
2 img = Image.open("C:\\images\\FLOWER.png ")
3 img = ImageOps.expand(img, border=20, fill='black')
4 img = ImageOps.expand(img, border=40, fill='silver')
5 img = ImageOps.expand(img, border=2, fill='black')
6 img.save("C:\\images\\PHOTOFRAME.png ")
7 img.show()

3.	 In this code snippet, three stacked borders are created. The innermost border layer
is rendered with black color. This is intentionally chosen darker.

4.	 Next, there is a middle layer of border, rendered with a lighter color (silver color in
this case). This is done by the code on line 4. It is thicker than the innermost border.

5.	 The outermost border is created by code on line 5. It is a very thin layer rendered
as black.

6.	 Together, these three layers of borders create an optical illusion of a photo frame, by
making the border appear raised above the original image.

x

x

Enhancing Images

[�0]

7.	 The following image shows the result of adding this border to the specified input
image—it shows the image before and after enclosing in a 'photo frame'.

What just happened?
We learned how to create a simple border around an image. By calling ImageOps.expand
multiple times, we created a multi-layered border having each layer of variable thickness and
color. With this, we accomplished creating an optical illusion where the picture appears to be
enclosed within a simple photo frame.

Summary
This chapter taught us several important image enhancement techniques, specifically:

With the help of ample examples, we learned how to adjust the color, brightness,
and contrast of an image.

We learned how to blend images together create composites using image mask and
how to add transparency.

We applied blending, pasting, and other techniques learned to develop an
interesting tool. We implemented features in this tool that enabled inserting
a watermark, text, or date stamp to an image.

A number of image enhancement filters were discussed. Using code snippets we
learned how to reduce high-level noise from image, enhance edges, add sharpening
or blurring effects, emboss an image, and so on.

We learned miscellaneous other useful image enhancements such as creating
negatives and adding border effects to the image.

x

x

4
Fun with Animations

Cartoons have always fascinated the young and old alike. An animationanimation
is where the imaginary creatures become alive and take us to a totally
different world.

Animation is a sequence of frames displayed quickly one after the other. This
creates an optical illusion where the objects, for instance, appear to be movingillusion where the objects, for instance, appear to be moving
around. This chapter will introduce you to the fundamentals of developing
animations using Python and Pyglet multimedia application development
frameworks. Pyglet is designed to do 3D operations, but we will use it for
developing very simple 2D animations in this book..

In this chapter, we shall:

Learn the basics of Pyglet framework. This will be used to develop code to create or
play animations.

Learn how to play an existing animation file and create animations using a sequence
of images.

Work on project 'Bowling animation', where animations can be controlled using
inputs from the keyboard.

Develop code to create an animation using different regions of a single image.

Work on an exciting project that animates a car moving in a thunderstorm. This
project will cover many important things covered throughout this chapter.

So let's get on with it.

x

x

Fun with Animations

[�2]

Installation prerequisites
We will cover the prerequisites for the installation of Pyglet in this section.

Pyglet
Pyglet provides an API for multimedia application development using Python. It is an
OpenGL-based library, which works on multiple platforms. It is primarily used for developing
gaming applications and other graphically-rich applications. Pyglet can be downloaded from
http://www.pyglet.org/download.html. Install Pyglet version 1.1.4 or later. The
Pyglet installation is pretty straightforward.

Windows platform
For Windows users, the Pyglet installation is straightforward—use the binary distribution
Pyglet 1.1.4.msi or later.

You should have Python 2.6 installed. For Python 2.4, there are some more
dependencies. We won't discuss them in this book, because we are using
Python 2.6 to build multimedia applications.

If you install Pyglet from the source, see the instructions under the next sub-section,
Other platforms.

Other platforms
The Pyglet website provides a binary distribution file for Mac OS X. Download and install
pyglet-1.1.4.dmg or later.

On Linux, install Pyglet 1.1.4 or later if it is available in the package repository of your
operating system. Otherwise, it can be installed from source tarball as follows:

Download and extract the tarballextract the tarball the tarball pyglet-1.1.4.tar.gz or a later version.

Make sure that python is a recognizable command in shell. Otherwise, set therecognizable command in shell. Otherwise, set the command in shell. Otherwise, set the
PYTHONPATH environment variable to the correct Python executable path.

In a shell window, change to the mentioned extracted directory and then run then a shell window, change to the mentioned extracted directory and then run the
following command:

 python setup.py install

Review the succeeding installation instructions using the README/install instruction
files in the Pyglet source tarball.

x

x

Chapter 4

[�3]

If you have the package setuptools (http://pypi.python.org/
pypi/setuptools) installed, the Pyglet installation should be very easy.installed, the Pyglet installation should be very easy., the Pyglet installation should be very easy.
However, for this, you will need a runtime egg of Pyglet. But the egg file for
Pyglet is not available at http://pypi.python.org. If you get hold of a
Pyglet egg file, it can be installed by running the following command on Linux or
Mac OS X. You will need administrator access to install the package:

$sudo easy_install -U pyglet

Summary of installation prerequisites
The following table illustrates installation prerequisites depending on the version
and platform.

Package Download location Version Windows
platform

Linux/Unix/OS X platforms

Python http://python.
org/download/
releases/

2.6.4 (or any
2.6.x)

Install using
binary
distribution

Install from binary;
also install additional
developer packages
(For example, with
python-devel in
the package name in
a rpm-based Linux
distribution).

Build and install from
the source tarball.

Pyglet http://www.
pyglet.org/
download.html

1.1.4 or later Install using
binary
distribution
(the .msi file)

Mac: Install using disk
image file (.dmg file).

Linux: Build and install
using the source
tarball.

Testing the installation
Before proceeding further, ensure that Pyglet is installed properly. To test this, just start
Python from the command line and type the following:

>>>import pyglet

If this import is successful, we are all set to go!

x

x

Fun with Animations

[�4]

A primer on Pyglet
Pyglet provides an API for multimedia application development using Python. It is an
OpenGL-based library that works on multiple platforms. It is primarily used for developing
gaming and other graphically-rich applications. We will cover some important aspects of
Pyglet framework.

Important components
We will briefly discuss some of the important modules and packages of Pyglet that we will
use. Note that this is just a tiny chunk of the Pyglet framework. Please review the Pyglet
documentation to know more about its capabilities, as this is beyond the scope of this book.

Window
The pyglet.window.Window module provides the user interface. It is used to create a
window with an OpenGL context. The Window class has API methods to handle various
events such as mouse and keyboard events. The window can be viewed in normal or full
screen mode. Here is a simple example of creating a Window instance. You can define a size
by specifying width and height arguments in the constructor.

win = pyglet.window.Window()

The background color for the image can be set using OpenGL call glClearColor, as follows:

pyglet.gl.glClearColor(1, 1, 1, 1)

This sets a white background color. The first three arguments are the red, green, and blue
color values. Whereas, the last value represents the alpha. The following code will set up a
gray background color.

pyglet.gl.glClearColor(0.5, 0.5, 0.5, 1)

The following illustration shows a screenshot of an empty window with a gray
background color.

x

x

Chapter 4

[�5]

Image
The pyglet.image module enables the drawing of images on the screen. The following
code snippet shows a way to create an image and display it at a specified position within the
Pyglet window.

img = pyglet.image.load('my_image.bmp')
x, y, z = 0, 0, 0
img.blit(x, y, z)

A later section will cover some important operations supported by the
pyglet.image module.

Sprite
This is another important module. It is used to display an image or an animation frame
within a Pyglet window discussed earlier. It is an image instance that allows us to position
an image anywhere within the Pyglet window. A sprite can also be rotated and scaled. It is
possible to create multiple sprites of the same image and place them at different locations
and with different orientations inside the window.

Animation
Animation module is a part of pyglet.image package. As the name indicates, pyglet.
image.Animation is used to create an animation from one or more image frames. There
are different ways to create an animation. For example, it can be created from a sequence
of images or using AnimationFrame objects. We will study these techniques later in the
chapter. An animation sprite can be created and displayed within the Pyglet window.

AnimationFrame
This creates a single frame of an animation from a given image. An animation can be created
from such AnimationFrame objects. The following line of code shows an example.

animation = pyglet.image.Animation(anim_frames)

anim_frames is a list containing instances of AnimationFrame.

Clock
Among many other things, this module is used for scheduling functions to be called at a
specified time. For example, the following code calls a method moveObjects ten times
every second.

pyglet.clock.schedule_interval(moveObjects, 1.0/10)

x

x

Fun with Animations

[�6]

Displaying an image
In the Image sub-section, we learned how to load an image using image.blit. However,
image blitting is a less efficient way of drawing images. There is a better and preferred
way to display the image by creating an instance of Sprite. Multiple Sprite objects
can be created for drawing the same image. For example, the same image might need
to be displayed at various locations within the window. Each of these images should be
represented by separate Sprite instances. The following simple program just loads an
image and displays the Sprite instance representing this image on the screen.

1 import pyglet
2
3 car_img= pyglet.image.load('images/car.png')
4 carSprite = pyglet.sprite.Sprite(car_img)
5 window = pyglet.window.Window()
6 pyglet.gl.glClearColor(1, 1, 1, 1)
7
8 @window.event
9 def on_draw():
10 window.clear()
11 carSprite.draw()
12
13 pyglet.app.run()

On line 3, the image is opened using pyglet.image.load call. A Sprite instance
corresponding to this image is created on line 4. The code on line 6 sets white background
for the window. The on_draw is an API method that is called when the window needs to be
redrawn. Here, the image sprite is drawn on the screen. The next illustration shows a loaded
image within a Pyglet window.

In various examples in this chapter and others, the file path strings are
hardcoded. We have used forward slashes for the file path. Although this works
on Windows platform, the convention is to use backward slashes. For example,
images/car.png is represented as images\car.png. Additionally,
you can also specify a complete path to the file by using the os.path.
join method in Python. Regardless of what slashes you use, the os.path.
normpath will make sure it modifies the slashes to fit to the ones used
for the platform. The use of os.path.normpath is illustrated in the
following snippet:

import os

original_path = 'C:/images/car.png"

new_path = os.path.normpath(original_path)

x

x

Chapter 4

[�7]

The preceding image illustrates Pyglet window showing a still image.

Mouse and keyboard controls
The Window module of Pyglet implements some API methods that enable user input to a
playing animation. The API methods such as on_mouse_press and on_key_press are
used to capture mouse and keyboard events during the animation. These methods can be
overridden to perform a specific operation.

Adding sound effects
The media module of Pyglet supports audio and video playback. The following code loads a
media file and plays it during the animation.

1 background_sound = pyglet.media.load(
2 'C:/AudioFiles/background.mp3',
3 streaming=False)
4 background_sound.play()

The second optional argument provided on line 3 decodes the media file completely in the
memory at the time the media is loaded. This is important if the media needs to be played
several times during the animation. The API method play() starts streaming the specified
media file.

Animations with Pyglet
The Pyglet framework provides a number of modules required to develop animations. Many
of these were discussed briefly in earlier sections. Lets now learn techniques to create 2D
animations using Pyglet.

Viewing an existing animation
If you already have an animation in, for example, .gif file format, it can be loaded and
displayed directly with Pyglet. The API method to use here is pyglet.image.load_
animation.

x

x

Fun with Animations

[��]

Time for action – viewing an existing animation
This is going to be a short exercise. The goal of this section is to develop a primary
understanding on use of Pyglet for viewing animations. So let's get on with it.

1.	 Download the file SimpleAnimation.py from the Packt website. Also download
the file SimpleAnimation.gif and place it in a sub-directory images. The code is
illustrated as follows:

1 import pyglet
2
3 animation = pyglet.image.load_animation(
4 "images/SimpleAnimation.gif")
5
6 # Create a sprite object as an instance of this animation.
7 animSprite = pyglet.sprite.Sprite(animation)
8
9 # The main pyglet window with OpenGL context
10 w = animSprite.width
11 h = animSprite.height
12 win = pyglet.window.Window(width=w, height=h)
13
14 # r,g b, color values and transparency for the background
15 r, g, b, alpha = 0.5, 0.5, 0.8, 0.5
16
17 # OpenGL method for setting the background.
18 pyglet.gl.glClearColor(r, g, b, alpha)
19
20 # Draw the sprite in the API method on_draw of
21 # pyglet.Window
22 @win.event
23 def on_draw():
24 win.clear()
25 animSprite.draw()
26
27 pyglet.app.run()

The code is self-explanatory. On line 3, the API method image.load_
animation creates an instance of class image.Animation using the
specified animation file. For this animation, a Sprite object is created on
line 7. The Pyglet window created on line 12 will be used to display the
animation. The size of this window is specified by the height and width of
the animSprite. The background color for the window is set using OpenGL
call glClearColor.

x

x

Chapter 4

[��]

2.	 Next, we need to draw this animation sprite into the Pyglet window. The pyglet.
window defines API method on_draw which gets called when an event occurs. The
call to the draw() method of animation Sprite is made on line 25 to render the
animation on screen. The code on line 22 is important. The decorator, @win.
event allows us to modify the on_draw API method of pyglet.window.Window
when an event occurs. Finally code on line 27 runs this application.

You can create your own animation file like SimpleAnimation.
gif using freely available image editing software packages like GIMP.
This animation file was created using GIMP 2.6.7, by drawing each
of the characters on a separate layer and then blending all the layers
using Filters | Animation | Blend.

3.	 Put the file SimpleAnimation.py along with the animation file
SimpleAnimation.gif in the same directory and then run the program
as follows:

 $python SimpleAnimation.py

This will show the animation in a Pyglet window. You can use a different
animation file instead of SimpleAnimation.gif. Just modify the related
code in this file or add code to accept any GIF file as a command-line
argument for this program. The next illustration shows some of the
frames from this animation at different time intervals.

The preceding image is a screen capture of a running animation at different time intervals.

x

x

Fun with Animations

[100]

What just happened?
We worked out an example where an already created animation file was loaded and viewed
using Pyglet. This short exercise taught us some preliminary things about viewing animations
using Pyglet. For example, we learned how to create a Pyglet window and load an animation
using pyglet.Sprite object. These fundamentals will be used throughout this chapter.

Animation using a sequence of images
The API method Animation.from_image_sequence enables creation of an animation
using a bunch of sequential images. Each of the images is displayed as a frame in the
animation, one after the other. The time for which each frame is displayed can be specified
as an argument while creating the animation object. It can also be set after the animation
instance is created.

Time for action – animation using a sequence of images
Let's develop a tool that can create an animation and display it on the screen. This tool will
create and display the animation using the given image files. Each of the image files will
be displayed as a frame in the animation for a specified amount of time. This is going to
be a fun little animation that shows a grandfather clock with a pendulum. We will animate
the pendulum oscillations with other things, including making the dial remaining still. This
animation has only three image frames; two of them show the pendulum at opposite
extremes. These images are sequenced as shown in the next illustration.

x

x

Chapter 4

[101]

Clock image frames to be animated appear in the preceding image.

1.	 Download the file ImageSequenceAnimation.py from the Packt website.

2.	 The code in this file is presented below.

1 import pyglet
2
3 image_frames = ('images/clock1.png',
4 'images/clock2.png',
5 'images/clock3.png')
6
7 # Create the list of pyglet images
8 images = map(lambda img: pyglet.image.load(img),
9 image_frames)
10
11 # Each of the image frames will be displayed for 0.33
12 # seconds
13 # 0.33 seconds chosen so that the 'pendulam in the clock
14 # animation completes one oscillation in ~ 1 second !
15
16 animation = pyglet.image.Animation.from_image_sequence(
17 images, 0.33)
18 # Create a sprite instance.
19 animSprite = pyglet.sprite.Sprite(animation)
20
21 # The main pyglet window with OpenGL context
22 w = animSprite.width
23 h = animSprite.height
24 win = pyglet.window.Window(width=w, height=h)
25
26 # Set window background color to white.
27 pyglet.gl.glClearColor(1, 1, 1, 1)
28
29 # The @win.event is a decorator that helps modify the API
30 # methods such as
31 # on_draw called when draw event occurs.
32 @win.event
33 def on_draw():
34 win.clear()
35 animSprite.draw()
36
37 pyglet.app.run()

x

x

Fun with Animations

[102]

The tuple, image_frames contains the paths for the images. The map
function call on line 8 creates pyglet.image objects corresponding to
each of the image paths and stores the resultant images in a list. On
line 16, the animation is created using the API method Animation.
from_image_sequence. This method takes the list of image objects
as an argument. The other optional argument is the time in seconds for
which each of the frames will be shown. We set this time as 0.33 seconds
per image so that the total time for a complete animation loop is nearly 1
second. Thus, in the animation, one complete oscillation of the pendulum
will be complete in about one second. We already discussed the rest of the
code in an earlier section.

3.	 Place the image files in a sub-directory images within the directory in which
file ImageSequenceAnimation.py is placed. Then run the program using:

 $python ImageSequenceAnimation.py

You will see a clock with an oscillating pendulum in the window. The
animation will continue in a loop and closing the window will end it.

What just happened?
By rapidly displaying still images, we just created something like a 'flipbook' cartoon! We
developed a simple utility that takes a sequence of images as an input and creates an
animation using Pyglet. To accomplish this task, we used Animation.from_image_
sequence to create the animation and re-used most of the framework from the
Viewing an existing animation section.

Single image animation
Imagine that you are creating a cartoon movie where you want to animate the motion of
an arrow or a bullet hitting a target. In such cases, typically it is just a single image. The
desired animation effect is accomplished by performing appropriate translation or
rotation of the image.

Time for action – bouncing ball animation
Lets create a simple animation of a 'bouncing ball'. We will use a single image file,
ball.png, which can be downloaded from the Packt website. The dimensions of this
image in pixels are 200x200, created on a transparent background. The following screenshot
shows this image opened in GIMP image editor. The three dots on the ball identify its side.
We will see why this is needed. Imagine this as a ball used in a bowling game.

x

x

Chapter 4

[103]

The image of a ball opened in GIMP appears as shown in the preceding image. The ball size
in pixels is 200x200.

1.	 Download the files SingleImageAnimation.py and ball.png from the Packt
website. Place the ball.png file in a sub-directory 'images' within the directory in
which SingleImageAnimation.py is saved.

2.	 The following code snippet shows the overall structure of the code.

1 import pyglet
2 import time
3
4 class SingleImageAnimation(pyglet.window.Window):
5 def __init__(self, width=600, height=600):
6 pass
7 def createDrawableObjects(self):
8 pass
9 def adjustWindowSize(self):
10 pass
11 def moveObjects(self, t):
12 pass
13 def on_draw(self):
14 pass
15 win = SingleImageAnimation()
16 # Set window background color to gray.
17 pyglet.gl.glClearColor(0.5, 0.5, 0.5, 1)
18
19 pyglet.clock.schedule_interval(win.moveObjects, 1.0/20)
20
21 pyglet.app.run()

x

x

Fun with Animations

[104]

Although it is not required, we will encapsulate event handling and other
functionality within a class SingleImageAnimation. The program
to be developed is short, but in general, it is a good coding practice. It
will also be good for any future extension to the code. An instance of
SingleImageAnimation is created on line 14. This class is inherited from
pyglet.window.Window. It encapsulates the functionality we need here.
The API method on_draw is overridden by the class. on_draw is called
when the window needs to be redrawn. Note that we no longer need a
decorator statement such as @win.event above the on_draw method
because the window API method is simply overridden by this inherited class.

3.	 The constructor of the class SingleImageAnimation is as follows:

1 def __init__(self, width=None, height=None):

2 pyglet.window.Window.__init__(self,

3 width=width,

4 height=height,

5 resizable = True)

6 self.drawableObjects = []

7 self.rising = False

8 self.ballSprite = None

9 self.createDrawableObjects()

10 self.adjustWindowSize()

As mentioned earlier, the class SingleImageAnimation inherits pyglet.
window.Window. However, its constructor doesn't take all the arguments
supported by its super class. This is because we don't need to change
most of the default argument values. If you want to extend this application
further and need these arguments, you can do so by adding them as
__init__ arguments. The constructor initializes some instance variables
and then calls methods to create the animation sprite and resize the
window respectively.

4.	 The method createDrawableObjects creates a sprite instance using the
ball.png image.

1 def createDrawableObjects(self):

2 """

3 Create sprite objects that will be drawn within the

4 window.

5 """

6 ball_img= pyglet.image.load('images/ball.png')

7 ball_img.anchor_x = ball_img.width / 2

8 ball_img.anchor_y = ball_img.height / 2

9

x

x

Chapter 4

[105]

10 self.ballSprite = pyglet.sprite.Sprite(ball_img)
11 self.ballSprite.position = (
12 self.ballSprite.width + 100,
13 self.ballSprite.height*2 - 50)
14 self.drawableObjects.append(self.ballSprite)

The anchor_x and anchor_y properties of the image instance are set
such that the image has an anchor exactly at its center. This will be useful
while rotating the image later. On line 10, the sprite instance self.
ballSprite is created. Later, we will be setting the width and height of
the Pyglet window as twice of the sprite width and thrice of the sprite
height. The position of the image within the window is set on line 11. The
initial position is chosen as shown in the next screenshot. In this case, there
is only one Sprite instance. However, to make the program more general,
a list of drawable objects called self.drawableObjects is maintained.

5.	 To continue the discussion from the previous step, we will now review the
on_draw method.

def on_draw(self):
 self.clear()
 for d in self.drawableObjects:
 d.draw()

As mentioned previously, the on_draw function is an API method of class
pyglet.window.Window that is called when a window needs to be
redrawn. This method is overridden here. The self.clear() call clears
the previously drawn contents within the window. Then, all the Sprite
objects in the list self.drawableObjects are drawn in the for loop.

The preceding image illustrates the initial ball position in the animation.

x

x

Fun with Animations

[106]

6.	 The method adjustWindowSize sets the width and height parameters of the
Pyglet window. The code is self-explanatory:

def adjustWindowSize(self):

 w = self.ballSprite.width * 3

 h = self.ballSprite.height * 3

 self.width = w

 self.height = h

7.	 So far, we have set up everything for the animation to play. Now comes the fun part.
We will change the position of the sprite representing the image to achieve the
animation effect. During the animation, the image will also be rotated, to give it
the natural feel of a bouncing ball.

1 def moveObjects(self, t):
2 if self.ballSprite.y - 100 < 0:
3 self.rising = True
4 elif self.ballSprite.y > self.ballSprite.height*2 - 50:
5 self.rising = False
6
7 if not self.rising:

8 self.ballSprite.y -= 5
9 self.ballSprite.rotation -= 6
10 else:

11 self.ballSprite.y += 5
12 self.ballSprite.rotation += 5

This method is scheduled to be called 20 times per second using the
following code in the program.

 pyglet.clock.schedule_interval(win.moveObjects, 1.0/20)

To start with, the ball is placed near the top. The animation should be such
that it gradually falls down, hits the bottom, and bounces back. After this,
it continues its upward journey to hit a boundary somewhere near the top
and again it begins its downward journey. The code block from lines 2 to 5
checks the current y position of self.ballSprite. If it has hit the upward
limit, the flag self.rising is set to False. Likewise, when the lower limit
is hit, the flag is set to True. The flag is then used by the next code snippet
to increment or decrement the y position of self.ballSprite.

8.	 The highlighted lines of code rotate the Sprite instance. The current rotation angle
is incremented or decremented by the given value. This is the reason why we set the
image anchors, anchor_x and anchor_y at the center of the image. The Sprite
object honors these image anchors. If the anchors are not set this way, the ball will
be seen wobbling in the resultant animation.

x

x

Chapter 4

[107]

9.	 Once all the pieces are in place, run the program from the command line as:

 $python SingleImageAnimation.py

This will pop up a window that will play the bouncing ball animation. The
next illustration shows some intermediate frames from the animation while
the ball is falling down.

What just happened?
We learned how to create an animation using just a single image. The image of a ball was
represented by a sprite instance. This sprite was then translated and rotated on the screen to
accomplish a bouncing ball animation. The whole functionality, including the event handling,
was encapsulated in the class SingleImageAnimation.

x

x

Fun with Animations

[10�]

Project: a simple bowling animation
It's time for a small project. We will re-use most of the code we used in the Single Image
Animation section and some more stuff to create an animation where a rolling ball hits a
pin in a bowling game. Although this chapter covers animation, this project will give you a
preliminary understanding on how to turn an animation into a game. This is not a real game
as such, but it will involve some user interactions to control the animation.

The starting position in the bowling animation, showing ball and pin images.

Time for action – a simple bowling animation
Let's develop the code for this application. As mentioned earlier, a big chunk of the code
comes from the Single Image Animation section. So we will only discuss the new and
modified methods needed to create a bowling animation.

1.	 Download the Python source file BowlingAnimation.py from the Packt
website. The overall class design is the same as the one developed in the Single
Image Animation section. We will only discuss the new and modified methods.
You can review the rest of the code from this file.

2.	 Also, download the image files used in this project. These files are ball.png and
pin.png. Place these files in a sub-directory images. The images directory should
be placed in the directory in which the above Python source file is located.

x

x

Chapter 4

[10�]

3.	 The __init__ method of the class is identical to that of class
SingleImageAnimation. The only change here is that it initializes the
following flags:

self.paused = False

self.pinHorizontal = False

The flag self.pinHorizontal is used later to check if the pin is knocked
out by the ball. Whereas, self.paused is used to pause or resume the
animation depending on its value.

4.	 The createDrawable object method is modified to create a sprite instance for
the pin image. Also, the position of the ball and pin sprites are adjusted for our
animation needs. The code is presented as follows:

1 def createDrawableObjects(self):

2 ball_img= pyglet.image.load('images/ball.png')

3 ball_img.anchor_x = ball_img.width / 2

4 ball_img.anchor_y = ball_img.height / 2

5

6 pin_img = pyglet.image.load('images/pin.png')

7 pin_img.anchor_x = pin_img.width / 2

8 pin_img.anchor_y = pin_img.height / 2

9

10 self.ballSprite = pyglet.sprite.Sprite(ball_img)

11 self.ballSprite.position = (0 + 100,

12 self.ballSprite.height)

13

14 self.pinSprite = pyglet.sprite.Sprite(pin_img)

15 self.pinSprite.position = (

16 (self.ballSprite.width*2 + 100,

17 self.ballSprite.height))

18

19 # Add these sprites to the list of drawables

20 self.drawableObjects.append(self.ballSprite)

21 self.drawableObjects.append(self.pinSprite)

The code block 6-8 creates an image instance for the pin image and then
sets the image anchor at its center. The Sprite instances representing ball
and pin images are created on lines 10 and 14 respectively. Their positions
are set such that the initial positions appear as shown in the earlier
illustration. Finally these sprites are added to the list of drawable
objects that are drawn in on_draw method.

x

x

Fun with Animations

[110]

5.	 Next, let's review the moveObjects method. As before, this method is called every
0.05 seconds.

1 def moveObjects(self, t):

2 if self.pinHorizontal:

3 self.ballSprite.x = 100

4 self.pinSprite.x -= 100

5

6 if self.ballSprite.x < self.ballSprite.width*2:

7 if self.ballSprite.x == 100:

8 time.sleep(1)

9 self.pinSprite.rotation = 0

10 self.pinHorizontal = False

11

12 self.ballSprite.x += 5

13 self.ballSprite.rotation += 5

14

15 if self.ballSprite.x >= self.ballSprite.width*2:

16 self.pinSprite.rotation = 90

17 self.pinSprite.x += 100

18 self.pinHorizontal = True

The if block, from lines 6 to 13, is called for when the x position of the ball
sprite is between 100 pixels to twice the width of the self.ballSprite.
On line 12, the x position of self.ballSprite is incremented by 5 pixels.
Also, the sprite is rotated by 5 degrees. The combination of these two
transforms creates an effect where we see the ball rolling horizontally, from
left to right, inside the Pyglet window. As seen earlier, the center of the
pin is located at x = self.ballSprite.width*2 + 100 and y = self.
ballSprite.height.

x

x

Chapter 4

[111]

The if block from lines 15 to 18 is where the ball appears to have hit
the pin. That is, the x coordinate of ball sprite center is about 100 pixels
away from the center of the pin. The 100-pixel value is chosen to account
for the ball radius. Therefore, once the ball hits the pin, the pin image is
rotated by 90 degrees (line 16). This creates a visual effect where the pin
appears to be knocked down by the ball. The x coordinate of the pin is
incremented by 100 pixels so that, after the pin rotation, the ball and pin
images don't overlap. You can do some more improvement here. Shift the
y position of the pin sprite further down, so that the pin appears lying on
the ground. In this if block, we also set the flag self.pinHorizontal
to True. When the moveObjects method is called the next time, the first
thing that is checked is whether the pin is vertical or horizontal. If the pin is
horizontal, the original positions of the ball and pin are restored by the code
on lines 2 to 4. This is a preparation for the next animation loop. On line
9, the pin is rotated back to 0 degree, whereas on line 10, the flag self.
pinHorizontal is reset to False.

6.	 With the code we developed so far, and with the remaining code from class
SingleImageAnimation, if you run the program, it will show the bowling
animation. Now let's add some controls to this animation. A flag, self.paused,
was initialized in the constructor. It will be used here. Just like on_draw, on_key_
press is another API method of pyglet.window.Window. It is overridden here to
implement pause and resume controls.

1 def on_key_press(self, key, modifiers):

2 if key == pyglet.window.key.P and not self.paused:

3 pyglet.clock.unschedule(self.moveObjects)

4 self.paused = True

5 elif key == pyglet.window.key.R and self.paused:

6 pyglet.clock.schedule_interval(

7 self.moveObjects, 1.0/20)

8 self.paused = False

The key argument is one of the keyboard keys pressed by the user. The if
block from lines 2 to 4 pauses the animation when P key is pressed. The
method self.moveObjects is scheduled to be called every 0.05 seconds.
The scheduled callback to this method is canceled using the pyglet.
clock.unschedule method. To resume the animation, the schedule_
interval method is called on line 6. The self.paused flag ensures that
the multiple keypresses won't have any undesirable effect on the animation.
For example, if you press the R key multiple times, the code will just ignore
the keypress events that follow.

x

x

Fun with Animations

[112]

7.	 Refer to the file BowlingAnimation.py to review or develop the rest of the code
and then run the program from the command line as:

 $python BowlingAnimation.py

This will pop up a window in which the animation will be played. Press
the P key on the keyboard to pause the animation. To resume a paused
animation, press the R key. The next illustration shows a few intermediate
frames in this animation.

The intermediate frames in the bowling animation appear as shown in the preceding image.

What just happened?
We completed a simple but exciting project where an animation of a bowl hitting a pin was
developed. This was accomplished by moving and rotating the image sprites on the screen.
Several methods from the SingleImageAnimation class were re-used. Additionally, we
learned how to control the animation by overriding the on_key_press API method.

x

x

Chapter 4

[113]

Animations using different image regions
It is possible to create an animation using different regions of a single image. Each of these
regions can be treated as a separate animation frame. In order to achieve the desired
animation effect, it is important to properly create the image with regions. In the following
example, the animation will be created using such regions. We will also be using the default
position parameters for each of the regions within that image. Thus, our main task in this
section is simply to use these regions in their original form and create animation frames out
of them. We will first see how the image looks. The following illustration shows this image.

A single image file with an imaginary 'grid' on top of it appears in the previous image.

The horizontal dotted lines overlaying this image indicate how an imaginary image grid
divides the image into different regions. Here we have four rows and just a single column.
Thus, during the animation, each of these image regions will be shown as a single animation
frame. Notice how the droplet images are drawn. In the first row, the four droplets are drawn
at the top. Then in the next row, these images are slightly offset to the south-west direction
compared to the droplets in the first row. This offset is increased further in the third and
fourth rows.

x

x

Fun with Animations

[114]

Time for action – raindrops animation
Let's create an animation of falling raindrops by using different regions of a single image.

1.	 Download the Python source file RainDropsAnimation.py and the image file
droplet.png from the Packt website. As done before, place the image file in a
sub-directory images. The images directory should be placed in the directory in
which the Python source file is located.

2.	 The __init__ method of the class RainDropsAnimation is presented.

1 def __init__(self, width=None, height=None):

2 pyglet.window.Window.__init__(self,

3 width=width,

4 height=height)

5 self.drawableObjects = []

6 self.createDrawableObjects()

The code is self-explanatory. The class RainDropsAnimation inherits pyglet.
window.Window. The constructor of the class calls the method that creates the
Sprite instance for displaying the animation on the screen.

3.	 Let's review the createDrawableObjects method.

1 def createDrawableObjects(self):

2 num_rows = 4

3 num_columns = 1

4 droplet = 'images/droplet.png'

5 animation = self.setup_animation(droplet,

6 num_rows,

7 num_columns)

8

9 self.dropletSprite = pyglet.sprite.Sprite(animation)

10 self.dropletSprite.position = (0,0)

11

12 # Add these sprites to the list of drawables

13 self.drawableObjects.append(self.dropletSprite)

The pyglet.image.Animation instance is created on line 5, by calling
setup_animation method. On line 9, the Sprite instance is created for
this animation object.

x

x

Chapter 4

[115]

4.	 The setup_animation method is the main worker method that uses regions
within the image file to create individual animation frames.

1 def setup_animation(self, img, num_rows, num_columns):

2 base_image = pyglet.image.load(img)

3 animation_grid = pyglet.image.ImageGrid(base_image,

4 num_rows,

5 num_columns)

6 image_frames = []

7

8 for i in range(num_rows*num_columns, 0, -1):

9 frame = animation_grid[i-1]

10 animation_frame = (

11 pyglet.image.AnimationFrame(frame,

12 0.2))

13 image_frames.append(animation_frame)

14

15 animation = pyglet.image.Animation(image_frames)

16 return animation

First, the instance of image is created on line 2. The ImageGrid is an
imaginary grid placed over the droplet image. Each 'cell' or the 'image
region' within this image grid can be viewed as a separate image frame in an
animation. The ImageGrid instance is constructed by providing the image
object and the number of rows and columns as arguments. The number of
rows in this case is 4 and there is only a single column. Thus, there will be
four such image frames in the animation corresponding to each of these
rows in the ImageGrid. The AnimationFrame object is created on line 10.
The code on line 8 increments the value of i from maximum to minimum
region or cell of the imaginary grid. Line 9 gets the specific image region and
this is then used to create the pyglet.image.AnimationFrame instance,
as we did on line 10. The second argument is the time for which each frame
will be displayed on the screen. Here, we are displaying each frame for 0.2
seconds. All such animation frame forms are stored in a list image_frames
and then the pyglet.image.Animation instance is created using this list.

x

x

Fun with Animations

[116]

5.	 Refer to the file RainDropsAnimation.py to review the rest of the code and then
run the program from the command line as:

 $python RainDropsAnimation.py

This animation displays four image regions of a single image, one after
another. The next illustration shows these four images.

The four image frames that display different regions of a single image appear in the previous
illustration. These four image frames are repeated in the animation loop.

What just happened?
We created an animation using different regions of a single image. Each of these regions was
treated as a separate animation frame. The creation of an image used in this animation was
briefly discussed. Among many other things, we learned how to create and use Pyglet classes
such as ImageGrid and AnimationFrame.

x

x

Chapter 4

[117]

Project: drive on a rainy day!
This project is essentially a summary of what we have learned so far in this chapter.
Additionally, it will cover a few other things such as adding sound effects to an animation,
showing or hiding certain image sprites while the animation is being played, and so on. In
this animation, there will be a stationary cloud image. We will re-use the code from the
raindrops animation section to animate falling rain. There will be an image sprite to
animate lightning effect. Finally, a car cartoon will be shown passing by from left to right
in this heavy rain. The following snapshot is an animation frame that captures all these
component images.

Component images of animation drive on a rainy day illustrated in the preceding image.

x

x

Fun with Animations

[11�]

Time for action – drive on a rainy day!
It's time to write the code for this animation.

1.	 Download the Python source file RainyDayAnimation.py. We will discuss some
of the important methods from this file. You can go through the rest of the code
from this file.

2.	 Download the image files, droplet.png, cloud.png, car.png, and
lightening.png from the Packt website. Place these image files in a sub-directory
called images. The images directory should be placed in the directory where the
Python source file is located.

3.	 The constructor of the class is written as follows:

1 def __init__(self, width=None, height=None):

2 pyglet.window.Window.__init__(self,

3 width=width,

4 height=height,

5 resizable=True)

6 self.drawableObjects = []

7 self.paused = False

8

9

10 self.createDrawableObjects()

11 self.adjustWindowSize()

12 # Make sure to replace the following media path to

13 # with an appropriate path on your computer.

14 self.horn_sound = (

15 pyglet.media.load('C:/AudioFiles/horn.wav',

16 streaming=False))

The code is same as the one developed in the raindrops animation. The
media file horn.wav is decoded on line 14. The flag streaming is set
to False so that the media can be played multiple times during the
animation. Make sure you specify an appropriate audio file path on
your computer on line 15.

x

x

Chapter 4

[11�]

4.	 Let's review the createDrawableObjects method:

1 def createDrawableObjects(self):

2

3 num_rows = 4

4 num_columns = 1

5 droplet = 'images/droplet.png'

6 animation = self.setup_animation(droplet,

7 num_rows,

8 num_columns)

9

10 self.dropletSprite = pyglet.sprite.Sprite(animation)

11 self.dropletSprite.position = (0,200)

12

13 cloud = pyglet.image.load('images/cloud.png')

14 self.cloudSprite = pyglet.sprite.Sprite(cloud)

15 self.cloudSprite.y = 100

16

17 lightening = pyglet.image.load('images/lightening.png')

18 self.lSprite = pyglet.sprite.Sprite(lightening)

19 self.lSprite.y = 200

20

21 car = pyglet.image.load('images/car.png')

22 self.carSprite = pyglet.sprite.Sprite(car, -500, 0)

23

24 # Add these sprites to the list of drawables

25 self.drawableObjects.append(self.cloudSprite)

26 self.drawableObjects.append(self.lSprite)

27 self.drawableObjects.append(self.dropletSprite)

28 self.drawableObjects.append(self.carSprite)

The code block from lines 3 to 10 is identical to the one developed in
the raindrops animation. The self.dropletSprite image is placed
at an appropriate position. Next, we just create sprites to load images of
clouds, lightning, and car in the Pyglet window. These sprites are placed
at appropriate locations within the window. For example, the starting
position of the car is off the screen. It is anchored at x = -500 and y = 0.
The code block from lines 24 to 28 adds all the Sprite instances to self.
drawableObjects . The draw() method of each one of these instances is
called in on_draw method.

x

x

Fun with Animations

[120]

5.	 To achieve the desired animation effect, we have to move around various sprites
during the animation. This is done by scheduling a few methods to be called at
specified time intervals. These methods update the coordinates of the sprite or
toggle its visibility when the Pyglet window is redrawn. The code is illustrated
as follows:

Schedule the method RainyDayAnimation.moveObjects to be

called every 0.05 seconds.

pyglet.clock.schedule_interval(win.moveObjects, 1.0/20)

Show the lightening every 1 second

pyglet.clock.schedule_interval(win.show_lightening, 1.0)

We have already seen an example of the moveObjects method
in earlier sections. In this project, we schedule another method,
RainyDayAnimation.show_lightening, to be called every
second. This method created an animation effect where lightning
strikes every second at different positions.

6.	 We will now review the method show_lightening.

1 def show_lightening(self, t):

2 if self.lSprite.visible:

3 self.lSprite.visible = False

4 else:

5 if(self.lSprite.x == 100):

6 self.lSprite.x += 200

7 else:

8 self.lSprite.x = 100

9

10 self.lSprite.visible = True

self.lSprite is the sprite representing the lightning image. Our target
is to create an animation effect where the lightning flashes for a moment
and then disappears. This can be accomplished by toggling the Sprite.
visible property. When this property is set to False, the lightning is
not shown. When it is set to True, the else block 4-10 is executed. The
position of self.lSprite is changed so that the lightning appears at
different locations the next time this method is called.

x

x

Chapter 4

[121]

7.	 The moveObjects method is scheduled to be called every 0.05 seconds.

1 def moveObjects(self, t):

2 if self.carSprite.x <= self.cloudSprite.width:

3 self.carSprite.x += 10

4 else:

5 self.carSprite.x = -500

6 self.horn_sound.play()

Every time it is called, it moves the position of the Sprite representing
the car by 10 pixels in the positive direction of x axis. However, if the x
coordinate of the self.carSprite exceeds its width, the car is reset to its
original position. Also, at the starting position of the car, the horn sound
is played.

8.	 Review the rest of the code from file RainyDayAnimation.py. Make sure to
replace the audio file path for self.horn_sound with an appropriate file path
on your computer. Once everything is all set, run the program from the command
line as:

 $python RainyDayAnimation.py

This will pop up a window that will play the animation in which a fun
car cruises along in a thunderstorm. The next illustration shows some
intermediate frames from the animation.

Intermediate frames from an animation where a car drives along on a rainy
day appear in the preceding image.

x

x

Fun with Animations

[122]

What just happened?
The animation developed in this project used four different images. We learned how to add
sound effects and change the visibility of the image sprites during the animation. Some of
the images were translated or made intermittently visible to achieve the desired animation
effect. Different regions of a single image were used to animate raindrops. Overall, this fun
project covered most of the things we learned throughout this book.

Have a go hero – add more effects
1. Additional sound effects—whenever lightning strikes in the animation, play a

thunderstorm sound.

2. In the code presented earlier, the lightning image position is toggled between
two fixed locations. Use random module in Python to get a random coordinate
between 0 to self.cloudSprite.width and use that as the x coordinate of
self.lSprite.

3. Add keyboard controls to change the speed of the car, the frequency of lightning,
and so on.

Summary
We learned a lot in this chapter about creating 2D animations in Python using Pyglet.
Specifically, we:

Learned some fundamental components of the Pyglet framework for
creating animations. Modules such as Window, Image, Animation, Sprite,
AnimationFrame, ImageGrid, and so on were discussed.

Wrote code to create an animation using a sequence of images or to play a
pre-created animation.

Learned things such as modifying the position of the Pyglet sprite, adding keyboard
and mouse controls and adding sound effects to the animation.

Worked on a cartoon animation project 'Drive on a Rainy Day'. Here we applied
several of the techniques learned throughout the chapter.

x

x

5
Working with Audios

Decades ago, silent movies lit up the screen—but later, it was audio effect that
brought life into them. We deal with digital audio processing quite frequently—
when just playing a CD track, recording your own voice or converting songs into
a different audio format. There are many libraries or multimedia frameworks
available for audio processing. This chapter teaches some common digital
audio processing techniques using Python bindings of a popular multimedia
framework called GStreamer.

In this chapter, we shall:

Learn basic concepts behind GStreamer multimedia framework

Use GStreamer API for audio processing

Develop some simple audio processing tools for 'everyday use'. We will develop
tools that will batch convert audio file formats, record an audio, and play audio files

So let's get on with it!

Installation prerequisites
Since we are going to use an external multimedia framework, it is necessary to install thenecessary to install the
packages mentioned in this section.

x

x

Working with Audios

[124]

GStreamer
GStreamer is a popular open source multimedia framework that supports audio/video
manipulation of a wide range of multimedia formats. It is written in the C programming
language and provides bindings for other programming languages including Python.
Several open source projects use GStreamer framework to develop their own multimedia
application. Throughout this chapter, we will make use of the GStreamer framework
for audio handling. In order to get this working with Python, we need to install both
GStreamer and the Python bindings for GStreamer.

Windows platform
The binary distribution of GStreamer is not provided on the project website
http://www.gstreamer.net/. Installing it from the source may require
considerable effort on the part of Windows users. Fortunately, GStreamer WinBuilds
project provides pre-compiled binary distributions. Here is the URL to the project website:
http://www.gstreamer-winbuild.ylatuya.es

The binary distribution for GStreamer as well as its Python bindings (Python 2.6) are
available in the Download area of the website:
http://www.gstreamer-winbuild.ylatuya.es/doku.php?id=download

You need to install two packages. First, the GStreamer and then the Python bindingsou need to install two packages. First, the GStreamer and then the Python bindings
to the GStreamer. Download and install the GPL distribution of GStreamer available on
the GStreamer WinBuilds project website. The name of the GStreamer executable is
GStreamerWinBuild-0.10.5.1.exe. The version should be 0.10.5 or higher. By default,
this installation will create a folder C:\gstreamer on your machine. The bin directory
within this folder contains runtime libraries needed while using GStreamer.

Next, install the Python bindings for GStreamer. The binary distribution is available on the
same website. Use the executable Pygst-0.10.15.1-Python2.6.exe pertaining topertaining to
Python 2.6. The version should be 0.10.15 or higher.

GStreamer WinBuilds appears to be an independent project. It is based on
the OSSBuild developing suite. Visit http://code.google.com/p/
ossbuild/ for more information. It could happen that the GStreamer binary
built with Python 2.6 is no longer available on the mentioned website at the
time you are reading this book. Therefore, it is advised that you should contact
the developer community of OSSBuild. Perhaps they might help you out!

x

x

Chapter 5

[125]

Alternatively, you can build GStreamer from source on the Windows platform, using a
Linux-like environment for Windows, such as Cygwin (http://www.cygwin.com/). Under
this environment, you can first install dependent software packages such as Python 2.6, gcc
compiler, and others. Download the gst-python-0.10.17.2.tar.gz package from the
GStreamer website http://www.gstreamer.net/. Then extract this package and install it
from sources using the Cygwin environment. The INSTALL file within this package will have
installation instructions.

Other platforms
Many of the Linux distributions provide GStreamer package. You can search for the
appropriate gst-python distribution (for Python 2.6) in the package repository. If such a
package is not available, install gst-python from the source as discussed in the earlier the
Windows platform section.

If you are a Mac OS X user, visit http://py26-gst-python.darwinports.com/. It
has detailed instructions on how to download and install the package Py26-gst-python
version 0.10.17 (or higher).

Mac OS X 10.5.x (Leopard) comes with the Python 2.5 distribution. If
you are using packages using this default version of Python, GStreamer
Python bindings using Python 2.5 are available on the darwinports
website: http://gst-python.darwinports.com/

PyGobject
There is a free multiplatform software utility library called 'GLib'. It provides data
structures such as hash maps, linked lists, and so on. It also supports the creation of
threads. The 'object system' of GLib is called GObject. Here, we need to install the
Python bindings for GObject. The Python bindings are available on the PyGTK website
at: http://www.pygtk.org/downloads.html.

Windows platform
The binary installer is available on the PyGTK website. The complete URL is:
http://ftp.acc.umu.se/pub/GNOME/binaries/win32/pygobject/2.20/..
Download and install version 2.20 for Python 2.6.

Other platforms
For Linux, the source tarball is available on the PyGTK website. There could even be binary
distribution in the package repository of your Linux operating system. The direct link to the
Version 2.21 of PyGObject (source tarball) is:
http://ftp.gnome.org/pub/GNOME/sources/pygobject/2.21/.

x

x

Working with Audios

[126]

If you are a Mac user and you have Python 2.6 installed, a distribution of PyGObject is
available at http://py26-gobject.darwinports.com/. Install version 2.14 or later.

Summary of installation prerequisites
The following table summarizes the packages needed for this chapter.

Package Download
location

Version Windows platform Linux/Unix/OS X platforms

GStreamer http://
www.
gstreamer.
net/

0.10.5 or
later

Install using binary
distribution available on
the Gstreamer WinBuild
website:

http://www.
gstreamer-
winbuild.
ylatuya.es/doku.
php?id=download

Use
GStreamerWinBuild-
0.10.5.1.exe (or later
version if available).

Linux: Use GStreamer
distribution in package
repository.

Mac OS X: Download
and install by following
instructions on the website:
http://gstreamer.
darwinports.com/.

Python
Bindings for
GStreamer

http://
www.
gstreamer.
net/

0.10.15 or
later for
Python 2.6

Use binary provided by
GStreamer WinBuild
project. See. See http://
www.gstreamer-
winbuild.ylatuya.
es for details pertaining to
Python 2.6.

Linux: Use gst-python
distribution in the package
repository.

Mac OS X: Use this package
(if you are using Python2.6):
http://py26-gst-
python.darwinports.
com/.

Linux/Mac: Build and install
from the source tarball.

Python
bindings
for GObject
"PyGObject"

Source
distribution:

http://
www.pygtk.
org/
downloads.
html

2.14 or
later for
Python 2.6

Use binary package from

pygobject-
2.20.0.win32-
py2.6.exe

Linux: Install from source if
pygobject is not available in
the package repository.

Mac: Use this package
on darwinports (if you
are using Python2.6)
See http://
py26-gobject.
darwinports.com/
for details.

x

x

Chapter 5

[127]

Testing the installation
Ensure that the GStreamer and its Python bindings are properly installed. It is simple to test
this. Just start Python from the command line and type the following:

>>>import pygst

If there is no error, it means the Python bindings are installed properly.

Next, type the following:

>>>pygst.require("0.10")

>>>import gst

If this import is successful, we are all set to use GStreamer for processing audios and videos!

If import gst fails, it will probably complain that it is unable to work some required DLL/
shared object. In this case, check your environment variables and make sure that the PATH
variable has the correct path to the gstreamer/bin directory. The following lines of code
in a Python interpreter show the typical location of the pygst and gst modules on the
Windows platform.

>>> import pygst

>>> pygst

<module 'pygst' from 'C:\Python26\lib\site-packages\pygst.pyc'>

>>> pygst.require('0.10')

>>> import gst

>>> gst

<module 'gst' from 'C:\Python26\lib\site-packages\gst-0.10\gst__init__
.pyc'>

Next, test if PyGObject is successfully installed. Start the Python interpreter and try
importing the gobject module.

>>import gobject

If this works, we are all set to proceed!

A primer on GStreamer
In this chapter, we will be using GStreamer multimedia framework extensively. Before
we move on to the topics that teach us various audio processing techniques, a primer
on GStreamer is necessary.

x

x

Working with Audios

[12�]

So what is GStreamer? It is a framework on top of which one can develop multimedia
applications. The rich set of libraries it provides makes it easier to develop applications with
complex audio/video processing capabilities. Fundamental components of GStreamer are
briefly explained in the coming sub-sections.

Comprehensive documentation is available on the GStreamer project website.
GStreamer Application Development Manual is a very good starting point. In this
section, we will briefly cover some of the important aspects of GStreamer. For
further reading, you are recommended to visit the GStreamer project website:
http://www.gstreamer.net/documentation/

gst-inspect and gst-launch
We will start by learning the two important GStreamer commands. GStreamer can
be run from the command line, by calling gst-launch-0.10.exe (on Windows) or
gst-launch-0.10 (on other platforms). The following command shows a typical execution
of GStreamer on Linux. We will see what a pipeline means in the next sub-section.

$gst-launch-0.10 pipeline_description

GStreamer has a plugin architecture. It supports a huge number of plugins. To see more
details about any plugin in your GStreamer installation, use the command gst-inspect-
0.10 (gst-inspect-0.10.exe on Windows). We will use this command quite often. Use
of this command is illustrated here.

$gst-inspect-0.10 decodebin

Here, decodebin is a plugin. Upon execution of the preceding command, it prints detailed
information about the plugin decodebin.

Elements and pipeline
In GStreamer, the data flows in a pipeline. Various elements are connected together forming
a pipeline, such that the output of the previous element is the input to the next one.

A pipeline can be logically represented as follows:

Element1 ! Element2 ! Element3 ! Element4 ! Element5

Here, Element1 through to Element5 are the element objects chained together by
the symbol !. Each of the elements performs a specific task. One of the element objects
performs the task of reading input data such as an audio or a video. Another element
decodes the file read by the first element, whereas another element performs the job of
converting this data into some other format and saving the output. As stated earlier, linking
these element objects in a proper manner creates a pipeline.

x

x

Chapter 5

[12�]

The concept of a pipeline is similar to the one used in Unix. Following is a Unix example of a
pipeline. Here, the vertical separator | defines the pipe.

$ls -la | more

Here, the ls -la lists all the files in a directory. However, sometimes, this list is too long to
be displayed in the shell window. So, adding | more allows a user to navigate the data.

Now let's see a realistic example of running GStreamer from the command prompt.

$ gst-launch-0.10 -v filesrc location=path/to/file.ogg ! decodebin !
audioconvert ! fakesink

For a Windows user, the gst command name would be gst-launch-0.10.exe. The
pipeline is constructed by specifying different elements. The !symbol links the adjacent
elements, thereby forming the whole pipeline for the data to flow. For Python bindings of
GStreamer, the abstract base class for pipeline elements is gst.Element, whereas gst.
Pipeline class can be used to created pipeline instance. In a pipeline, the data is sent to a
separate thread where it is processed until it reaches the end or a termination signal is sent.

Plugins
GStreamer is a plugin-based framework. There are several plugins available. A plugin
is used to encapsulate the functionality of one or more GStreamer elements. Thus we
can have a plugin where multiple elements work together to create the desired output.
The plugin itself can then be used as an abstract element in the GStreamer pipeline. An
example is decodebin. We will learn about it in the upcoming sections. A comprehensive
list of available plugins is available at the GStreamer website http://gstreamer.
freedesktop.org. In this book, we will be using several of them to develop audio/
video processing applications. For example, a plugin Playbin will be used for audio
playback. In almost all applications to be developed, decodebin plugin will be used. For
audio processing, the functionality provided by plugins such as gnonlin, audioecho,
monoscope, interleave, and so on will be used.

Bins
In GStreamer, a bin is a container that manages the element objects added to it. A bin
instance can be created using gst.Bin class. It is inherited from gst.Element and can act
as an abstract element representing a bunch of elements within it. A GStreamer plugin
decodebin is a good example representing a bin. The decodebin contains decoder elements.
It auto-plugs the decoder to create the decoding pipeline.

x

x

Working with Audios

[130]

Pads
Each element has some sort of connection points to handle data input and output.
GStreamer refers to them as pads. Thus an element object can have one or more
"receiver pads" termed as sink pads that accept data from the previous element in the
pipeline. Similarly, there are 'source pads' that take the data out of the element as an
input to the next element (if any) in the pipeline. The following is a very simple example
that shows how source and sink pads are specified.

>gst-launch-0.10.exe fakesrc num-bufferes=1 ! fakesink

The fakesrc is the first element in the pipeline. Therefore, it only has a source pad. It
transmits the data to the next linkedelement, that is fakesink which only has a sink pad
to accept elements. Note that, in this case, since these are fakesrc and fakesink, just
empty buffers are exchanged. A pad is defined by the class gst.Pad. A pad can be attached
to an element object using the gst.Element.add_pad() method.

The following is a diagrammatic representation of a GStreamer element with a pad. It
illustrates two GStreamer elements within a pipeline, having a single source and sink pad.

Now that we know how the pads operate, let's discuss some of special types of pads. In
the example, we assumed that the pads for the element are always 'out there'. However,
there are some situations where the element doesn't have the pads available all the time.
Such elements request the pads they need at runtime. Such a pad is called a dynamic pad.
Another type of pad is called ghost pad. These types are discussed in this section.

Dynamic pads
Some objects such as decodebin do not have pads defined when they are created. Such
elements determine the type of pad to be used at the runtime. For example, depending on
the media file input being processed, the decodebin will create a pad. This is often referred
to as dynamic pad or sometimes the available pad as it is not always available in elements
such as decodebin.

x

x

Chapter 5

[131]

Ghost pads
As stated in the Bins section a bin object can act as an abstract element. How is it
achieved? For that, the bin uses 'ghost pads' or 'pseudo link pads'. The ghost pads of
a bin are used to connect an appropriate element inside it. A ghost pad can be created
using gst.GhostPad class.

Caps
The element objects send and receive the data by using the pads. The type of media data
that the element objects will handle is determined by the caps (a short form for capabilities).
It is a structure that describes the media formats supported by the element. The caps are
defined by the class gst.Caps.

Bus
A bus refers to the object that delivers the message generated by GStreamer. A message is
a gst.Message object that informs the application about an event within the pipeline. A
message is put on the bus using the gst.Bus.gst_bus_post() method. The following
code shows an example usage of the bus.

1 bus = pipeline.get_bus()
2 bus.add_signal_watch()

3 bus.connect("message", message_handler)

The first line in the code creates a gst.Bus instance. Here the pipeline is an instance of
gst.PipeLine. On the next line, we add a signal watch so that the bus gives out all the
messages posted on that bus. Line 3 connects the signal with a Python method. In this
example, the message is the signal string and the method it calls is message_handler.

Playbin/Playbin2
Playbin is a GStreamer plugin that provides a high-level audio/video player. It can
handle a number of things such as automatic detection of the input media file format,
auto-determination of decoders, audio visualization and volume control, and so on.
The following line of code creates a playbin element.

playbin = gst.element_factory_make("playbin")

It defines a property called uri. The URI (Uniform Resource Identifier) should be an
absolute path to a file on your computer or on the Web. According to the GStreamer
documentation, Playbin2 is just the latest unstable version but once stable, it will
replace the Playbin.

x

x

Working with Audios

[132]

A Playbin2 instance can be created the same way as a Playbin instance.

gst-inspect-0.10 playbin2

With this basic understanding, let us learn about various audio processing techniques using
GStreamer and Python.

Playing music
Given an audio file, one the first things you will do is to play that audio file, isn't it? In
GStreamer, what basic elements do we need to play an audio? The essential elements
are listed as follows.

The first thing we need is to open an audio file for reading

Next, we need a decoder to transform the encoded information

Then, there needs to be an element to convert the audio format so that it is in a
'playable' format required by an audio device such as speakers

Finally, an element that will enable the actual playback of the audio file

How will you play an audio file using the command-line version of GStreamer? One way to
execute it using command line is as follows:

$gstlaunch-0.10 filesrc location=/path/to/audio.mp3 ! decodebin !
audioconvert ! autoaudiosink

The autoaudiosink automatically detects the correct audio device on your
computer to play the audio. This was tested on a machine with Windows XP
and it worked fine. If there is any error playing an audio, check if the audio
device on your computer is working properly. You can also try using element
sdlaudiosink that outputs to the sound card via SDLAUDIO . If this doesn't
work, and you want to install a plugin for audiosink—here is a partial list of
GStreamer plugins:
http://www.gstreamer.net/data/doc/gstreamer/head/gst-
plugins-good-plugins/html/

Mac OS X users can try installing osxaudiosink if the default
autoaudiosink doesn't work.

The audio file should start playing with this command unless there are any missing plugins.

x

x

Chapter 5

[133]

Time for action – playing an audio: method 1
There are a number of ways to play an audio using Python and GStreamer. Let's start with a
simple one. In this section, we will use a command string, similar to what you would specify
using the command-line version of GStreamer. This string will be used to construct a
gst.Pipeline instance in a Python program.

So, here we go!

1.	 Start by creating an AudioPlayer class in a Python source file. Just define the
empty methods illustrated in the following code snippet. We will expand those in
the later steps.

1 import thread
2 import gobject
3 import pygst
4 pygst.require("0.10")
5 import gst
6
7 class AudioPlayer:
8 def __init__(self):
9 pass
10 def constructPipeline(self):
11 pass
12 def connectSignals(self):
13 pass
14 def play(self):
15 pass
16 def message_handler(self):
17 pass
18
19 # Now run the program
20 player = AudioPlayer()
21 thread.start_new_thread(player.play, ())
22 gobject.threads_init()
23 evt_loop = gobject.MainLoop()

24 evt_loop.run()

Lines 1 to 5 in the code import the necessary modules. As discussed in the
Installation prerequisites section, the package pygst is imported first.
Then we call pygst.require to enable the import of gst module.

x

x

Working with Audios

[134]

2.	 Now focus on the code block between lines 19 to 24. It is the main execution code.
It enables running the program until the music is played. We will use this or similar
code throughout this book to run our audio application.

On line 21, the thread module is used to create a new thread for playing
the audio. The method AudioPlayer.play is sent on this thread. The
second argument of thread.start_new_thread is the list of arguments
to be passed to the method play. In this example, we do not support any
command-line arguments. Therefore, an empty tuple is passed. Python
adds its own thread management functionality on top of the operating
system threads. When such a thread makes calls to external functions (such
as C functions), it puts the 'Global Interpreter Lock' on other threads until,
for instance, the C function returns a value.

The gobject.threads_init() is an initialization function for facilitating
the use of Python threading within the gobject modules. It can enable or
disable threading while calling the C functions. We call this before running
the main event loop. The main event loop for executing this program is
created using gobject on line 23 and this loop is started by the call
evt_loop.run().

3.	 Next, fill the AudioPlayer class methods with the code. First, write the constructor
of the class.

1 def __init__(self):
2 self.constructPipeline()
3 self.is_playing = False
4 self.connectSignals()

The pipeline is constructed by the method call on line 2. The flag self.is_
playing is initialized to False. It will be used to determine whether the
audio being played has reached the end of the stream. On line 4, a method
self.connectSignals is called, to capture the messages posted on a
bus. We will discuss both these methods next.

4.	 The main driver for playing the sound is the following gst command:

 "filesrc location=C:/AudioFiles/my_music.mp3 "\

 "! decodebin ! audioconvert ! autoaudiosink"

The preceding string has four elements separated by the symbol !. These
elements represent the components we briefly discussed earlier.

5.	 The first element filesrc location=C:/AudioFiles/my_music.mp3 defines
the source element that loads the audio file from a given location. In this string, just
replace the audio file path represented by location with an appropriate file path
on your computer. You can also specify a file on a disk drive.

x

x

Chapter 5

[135]

If the filename contains namespaces, make sure you specify the path within
quotes. For example, if the filename is my sound.mp3, specify it as follows:
filesrc location =\"C:/AudioFiles/my sound.mp3\"

6.	 The next element loads the file. This element is connected to a decodebin. As
discussed earlier, the decodebin is a plugin to GStreamer and it inherits gst.Bin.
Based on the input audio format, it determines the right type of decoder element
to use.

The third element is audioconvert. It translates the decoded audio data
into a format playable by the audio device.

The final element, autoaudiosink, is a plugin; it automatically detects the
audio sink for the audio output.

We have sufficient information now to create an instance of gst.
Pipeline. Write the following method.

1 def constructPipeline(self):

2 myPipelineString = \

3 "filesrc location=C:/AudioFiles/my_music.mp3 "\

4 "! decodebin ! audioconvert ! autoaudiosink"

5 self.player = gst.parse_launch(myPipelineString)

An instance of gst.Pipeline is created on line 5, using the
gst.parse_launch method.

7.	 Now write the following method of class AudioPlayer.

1 def connectSignals(self):
2 # In this case, we only capture the messages
3 # put on the bus.
4 bus = self.player.get_bus()
5 bus.add_signal_watch()

6 bus.connect("message", self.message_handler)

On line 4, an instance of gst.Bus is created. In the introductory section
on GStreamer, we already learned what the code between lines 4 to 6
does. This bus has the job of delivering the messages posted on it from the
streaming threads. The add_signal_watch call makes the bus emit the
message signal for each message posted. This signal is used by the method
message_handler to take appropriate action.

x

x

Working with Audios

[136]

Write the following method:

1 def play(self):
2 self.is_playing = True
3 self.player.set_state(gst.STATE_PLAYING)
4 while self.is_playing:
5 time.sleep(1)

6 evt_loop.quit()

On line 2, we set the state of the gst pipeline to gst.STATE_PLAYING to
start the audio streaming. The flag self.is_playing controls the while
loop on line 4. This loop ensures that the main event loop is not terminated
before the end of the audio stream is reached. Within the loop the call to
time.sleep just buys some time for the audio streaming to finish. The
value of flag is changed in the method message_handler that watches for
the messages from the bus. On line 6, the main event loop is terminated.
This gets called when the end of stream message is emitted or when some
error occurs while playing the audio.

8.	 Next, develop method AudioPlayer.message_handler. This method sets the
appropriate flag to terminate the main loop and is also responsible for changing the
playing state of the pipeline.

1 def message_handler(self, bus, message):

2 # Capture the messages on the bus and

3 # set the appropriate flag.

4 msgType = message.type

5 if msgType == gst.MESSAGE_ERROR:

6 self.player.set_state(gst.STATE_NULL)

7 self.is_playing = False

8 print "\n Unable to play audio. Error: ", \

9 message.parse_error()

10 elif msgType == gst.MESSAGE_EOS:

11 self.player.set_state(gst.STATE_NULL)

12 self.is_playing = False

In this method, we only check two things: whether the message on the bus
says the streaming audio has reached its end (gst.MESSAGE_EOS) or if
any error occurred while playing the audio stream (gst.MESSAGE_ERROR).
For both these messages, the state of the gst pipeline is changed from
gst.STATE_PLAYING to gst.STATE_NULL. The self.is_playing flag
is updated to instruct the program to terminate the main event loop.

x

x

Chapter 5

[137]

We have defined all the necessary code to play the audio. Save the file as
PlayingAudio.py and run the application from the command line
as follows:

 $python PlayingAudio.py

This will begin playback of the input audio file. Once it is done playing, the
program will be terminated. You can press Ctrl + C on Windows or Linux to
interrupt the playing of the audio file. It will terminate the program.

What just happened?
We developed a very simple audio player, which can play an input audio file. The code we
wrote covered some of the most important components of GStreamer. These components
will be useful throughout this chapter. The core component of the program was a GStreamer
pipeline that had instructions to play the given audio file. Additionally, we learned how to
create a thread and then start a gobject event loop to ensure that the audio file is played
until the end.

Have a go hero – play audios from a playlist
The simple audio player we developed can only play a single audio file, whose path is
hardcoded in the constructed GStreamer pipeline. Modify this program so it can play audios
in a "playlist". In this case, play list should define full paths of the audio files you would like
to play, one after the other. For example, you can specify the file paths as arguments to this
application or load the paths defined in a text file or load all audio files from a directory.
Hint: In a later section, we will develop an audio file converter utility. See if you can use
some of that code here.

Building a pipeline from elements
In the last section, a gst.Pipeline was automatically constructed for us by the gst.parse_
launch method. All it required was an appropriate command string, similar to the one
specified while running the command-line version of GStreamer. The creation and linking
of elements was handled internally by this method. In this section, we will see how to
construct a pipeline by adding and linking individual element objects. 'GStreamer Pipeline'
construction is a fundamental technique that we will use throughout this chapter and also in
other chapters related to audio and video processing.

x

x

Working with Audios

[13�]

Time for action – playing an audio: method 2
We have already developed code for playing an audio. Let's now tweak the method
AudioPlayer.constructPipeline to build the gst.Pipeline using different
element objects.

1.	 Rewrite the constructPipeline method as follows. You can also download the
file PlayingAudio.py from the Packt website for reference. This file has all the
code we discussed in this and previous sections.

1 def constructPipeline(self):

2 self.player = gst.Pipeline()
3 self.filesrc = gst.element_factory_make("filesrc")
4 self.filesrc.set_property("location",
5 "C:/AudioFiles/my_music.mp3")
6
7 self.decodebin = gst.element_factory_make("decodebin",
8 "decodebin")
9 # Connect decodebin signal with a method.
10 # You can move this call to self.connectSignals)
11 self.decodebin.connect("pad_added",
12 self.decodebin_pad_added)
13
14 self.audioconvert = \
15 gst.element_factory_make("audioconvert",
16 "audioconvert")
17
18 self.audiosink = \
19 gst.element_factory_make("autoaudiosink",
20 "a_a_sink")
21
22 # Construct the pipeline
23 self.player.add(self.filesrc, self.decodebin,
24 self.audioconvert, self.audiosink)
25 # Link elements in the pipeline.
26 gst.element_link_many(self.filesrc, self.decodebin)

27 gst.element_link_many(self.audioconvert,self.audiosink)

2.	 We begin by creating an instance of class gst.Pipeline.

x

x

Chapter 5

[13�]

3.	 Next, on line 2, we create the element for loading the audio file. Any new gst
element can be created using the API method, gst.element_factory_make.
The method takes the element name (string) as an argument. For example, on
line 3, this argument is specified as "filesrc" in order to create an instance of
element GstFileSrc. Each element will have a set of properties. The path of the
input audio file is stored in a property location of self.filesrc element. This
property is set on line 4. Replace the file path string with an appropriate audio
file path.

You can get a list of all properties by running the 'gst-inspect-
0.10 ' command from a console window. See the introductory
section on GSreamer for more details.

4.	 The second optional argument serves as a custom name for the created object. For
example, on line 20, the name for the autoaudiosink object is specified as a_a_
sink. Like this, we create all the essential elements necessary to build the pipeline.

5.	 On line 23 in the code, all the elements are put in the pipeline by calling the gst.
Pipeline.add method.

6.	 The method gst.element_link_many establishes connection between two or
more elements for the audio data to flow between them. The elements are linked
together by the code on lines 26 and 27. However, notice that we haven't linked
together the elements self.decodebin and self.audioconvert. Why? That's
up next.

7.	 We cannot link the decodebin element with the audioconvert element at the
time the pipeline is created. This is because decodebin uses dynamic pads. These
pads are not available for connection with the audioconvert element when the
pipeline is created. Depending upon the input data , it will create a pad. Thus, we
need to watch out for a signal that is emitted when the decodebin adds a pad!
How do we do that? It is done by the code on line 11 in the code snippet above.
The "pad-added" signal is connected with a method, decodebin_pad_added.
Whenever decodebin adds a dynamic pad, this method will get called.

x

x

Working with Audios

[140]

8.	 Thus, all we need to do is to manually establish a connection between decodebin
and audioconvert elements in the method decodebin_pad_added. Write the
following method.

1 def decodebin_pad_added(self, decodebin, pad):
2 caps = pad.get_caps()
3 compatible_pad = \
4 self.audioconvert.get_compatible_pad(pad, caps)
5
6 pad.link(compatible_pad)

The method takes the element (in this case it is self.decodebin) and
pad as arguments. The pad is the new pad for the decodebin element. We
need to link this pad with the appropriate one on self.audioconvert.

9.	 On line 2 in this code snippet, we find out what type of media data the pad handles.
Once the capabilities (caps) are known, we pass this information to the method
get_compatible_pad of object self.audioconvert. This method returns a
compatible pad which is then linked with pad on line 6.

10.	The rest of the code is identical with the one illustrated in the earlier section. You
can run this program the same way described earlier.

What just happened?
We learned some very crucial components of GStreamer framework. With the simple audio
player as an example, we created a GStreamer pipeline 'from scratch' by creating various
element objects and linking them together. We also learned how to connect two elements by
'manually' linking their pads and why that was required for the element self.decodebin.

Pop Quiz – element linking
In the earlier example, most of the elements in the pipeline linked using gst.element_
link_many in method AudioPlayer.constructPipeline. However, we did not link the
elements self.decodebin and self.audioconvert at the time when the pipeline was
constructed. Why? Choose the correct answer from the following.

1. We were just trying out a different technique of manually linking these
elements together.

2. Decodebin uses a dynamic pad that is created at the runtime. This pad is not
available when the pipeline is created.

3. We don't need to link these elements in the pipeline. The media data will just find
its way somehow.

4. What are you talking about? It is impossible to connect decodebin and
audioconvert elements no matter what you try.

x

x

Chapter 5

[141]

Playing an audio from a website
If there is an audio somewhere on a website that you would like to play, we can pretty much
use the same AudioPlayer class developed earlier. In this section, we will illustrate the use of
gst.Playbin2 to play an audio by specifying a URL. The code snippet below shows the revised
AudioPlayer.constructPipeline method. The name of this method should be changed as it is
playbin object that it creates.

1 def constructPipeline(self):
2 file_url = "http://path/to/audiofile.wav"
3 buf_size = 1024000
4 self.player = gst.element_factory_make("playbin2")
5 self.player.set_property("uri", file_url)
6 self.player.set_property("buffer-size", buf_size)
7 self.is_playing = False

8 self.connectSignals()

On line 4, the gst.Playbin2 element is created using gst.element_factory_make method.
The argument to this method is a string that describes the element to be created. In this case
it is "playbin2" . You can also define a custom name for this object by supplying an optional
second argument to this method. Next, on line 5 and 6, we assign values to the properties uri
and buffer-size. Set the uri property to an appropriate URL , the full path to the audio file you
would like to play.

Note: When you execute this program, Python application tries to access the
Internet. The anti-virus installed on your computer may block the program
execution. In this case, you will need to allow this program to access the
Internet. Also, you need to be careful of hackers. If you get the fil_url
from an untrusted source, perform a safety check such as assert not
re.match("file://", file_url).

Have a go hero – use 'playbin' to play local audios
In the last few sections, we learned different ways to play an audio file using Python and
GStreamer. In the previous section, you must have noticed another simple way to achieve
this, using a playbin or playbin2 object to play an audio. In the previous section, we learned
how to play an audio file from a URL. Modify this code so that this program can now play
audio files located in a drive on your computer. Hint: You will need to use the correct "uri"
path. Convert the file path using Python's module urllib.pathname2url and then
append it to the string: "file://".

x

x

Working with Audios

[142]

Converting audio file format
Suppose you have a big collection of songs in wav file format that you would like to load on
a cell phone. But you find out that the cell phone memory card doesn't have enough space
to hold all these. What will you do? You will probably try to reduce the size of the song files
right? Converting the files into mp3 format will reduce the size. Of course you can do it using
some media player. Let's learn how to perform this conversion operation using Python and
GStreamer. Later we will develop a simple command-line utility that can be used to perform
a batch conversion for all the files you need.

1. Like in the earlier examples, let's first list the important building blocks we need to
accomplish file conversion. The first three elements remain the same.

2. As before, the first thing we need is to load an audio file for reading.

3. Next, we need a decoder to transform the encoded information.

4. Then, there needs to be an element to convert the raw audio buffers into an
appropriate format.

5. An encoder is needed that takes the raw audio data and encodes it to an
appropriate file format to be written.

6. An element where the encoded data will be streamed to is needed. In this case it is
our output audio file.

Okay, what's next? Before jumping into the code, first check if you can achieve what you
want using the command-line version of GStreamer.

$gstlaunch-0.10.exe filesrc location=/path/to/input.wav ! decodebin !
audioconvert ! lame ! Filesink location=/path/to/output.mp3

Specify the correct input and output file paths and run this command to convert a wave file
to an mp3. If it works, we are all set to proceed. Otherwise check for missing plugins.

You should refer to the GStreamer API documentation to know more about the properties of
various elements illustrated above. Trust me, the gst-inspect-0.10 (or gst-inspect-
0.10.exe for Windows users) command is a very handy tool that will help you understand
the components of a GStreamer plugin. The instructions on running this tool are already
discussed earlier in this chapter.

Time for action – audio file format converter
Let's write a simple audio file converter. This utility will batch process input audio files and
save them in a user-specified file format. To get started, download the file AudioConverter.py
from the Packt website. This file can be run from the command line as:

python AudioConverter.py [options]

x

x

Chapter 5

[143]

Where, the [options] are as follows:

--input_dir : The directory from which to read the input audio file(s) to
be converted.

--input_format: The audio format of the input files. The format should be in a
supported list of formats. The supported formats are "mp3", "ogg", and "wav". If no
format is specified, it will use the default format as ".wav".

--output_dir : The output directory where the converted files will be saved.
If no output directory is specified, it will create a folder OUTPUT_AUDIOS within
the input directory.

--output_format: The audio format of the output file. Supported output formats
are "wav" and "mp3".

Let's write this code now.

1.	 Start by importing necessary modules.

import os, sys, time
import thread
import getopt, glob
import gobject
import pygst
pygst.require("0.10")
import gst

2.	 Now declare the following class and the utility function. As you will notice, several
of the methods have the same names as before. The underlying functionality of
these methods will be similar to what we already discussed. In this section we
will review only the most important methods in this class. You can refer to file
AudioConverter.py for other methods or develop those on your own.

def audioFileExists(fil):
 return os.path.isfile(fil)

class AudioConverter:
 def __init__(self):
 pass
 def constructPipeline(self):
 pass
 def connectSignals(self):
 pass
 def decodebin_pad_added(self, decodebin, pad):
 pass
 def processArgs(self):
 pass

x

x

Working with Audios

[144]

 def convert(self):
 pass
 def convert_single_audio(self, inPath, outPath):
 pass
 def message_handler(self, bus, message):
 pass
 def printUsage(self):
 pass
 def printFinalStatus(self, inputFileList,
 starttime, endtime):
 pass

Run the converter
converter = AudioConverter()
thread.start_new_thread(converter.convert, ())
gobject.threads_init()
evt_loop = gobject.MainLoop()
evt_loop.run()

3.	 Look at the last few lines of code above. This is exactly the same code we used in the
Playing Music section. The only difference is the name of the class and its method
that is put on the thread in the call thread.start_new_thread. At the beginning,
the function audioFileExists() is declared. It will be used to check if the
specified path is a valid file path.

4.	 Now write the constructor of the class. Here we do initialization of various variables.

def __init__(self):
 # Initialize various attrs
 self.inputDir = os.getcwd()
 self.inputFormat = "wav"
 self.outputDir = ""
 self.outputFormat = ""
 self.error_message = ""

 self.encoders = {"mp3":"lame",
 "wav": "wavenc"}
 self.supportedOutputFormats = self.encoders.keys()
 self.supportedInputFormats = ("ogg", "mp3", "wav")
 self.pipeline = None
 self.is_playing = False

 self.processArgs()
 self.constructPipeline()
 self.connectSignals()

x

x

Chapter 5

[145]

5.	 The self.supportedOutputFormats is a tuple that stores the supported output
formats. self.supportedInputFormats is a list obtained from the keys of self.
encoders and stores the supported input formats. These objects are used in self.
processArguments to do necessary checks. The dictionary self.encoders
provides the correct type of encoder string to be used to create an encoder
element object for the GStreamer pipeline. As the name suggests, the call to self.
constructPipeline() builds a gst.Pipeline instance and various signals are
connected using self.connectSignals().

6.	 Next, prepare a GStreamer pipeline.

def constructPipeline(self):

 self.pipeline = gst.Pipeline("pipeline")

 self.filesrc = gst.element_factory_make("filesrc")

 self.decodebin = gst.element_factory_make("decodebin")

 self.audioconvert = gst.element_factory_make(

 "audioconvert")

 self.filesink = gst.element_factory_make("filesink")

 encoder_str = self.encoders[self.outputFormat]

 self.encoder= gst.element_factory_make(encoder_str)

 self.pipeline.add(self.filesrc, self.decodebin,

 self.audioconvert, self.encoder,

 self.filesink)

 gst.element_link_many(self.filesrc, self.decodebin)

 gst.element_link_many(self.audioconvert, self.encoder,
 self.filesink)

7.	 This code is similar to the one we developed in the Playing Music sub-section.
However there are some noticeable differences. In the Audio Player example, we
used the autoaudiosink plugin as the last element. In the Audio Converter, we
have replaced it with elements self.encoder and self.filesink. The former
encodes the audio data coming out of the self.audioconvert. The encoder will
be linked to the sink element. In this case, it is a filesink. The self.filesink is
where the audio data is written to a file given by the location property.

x

x

Working with Audios

[146]

8.	 The encoder string, encoder_str determines the type of encoder element to
create. For example, if the output format is specified as "mp3" the corresponding
encoder to use is "lame" mp3 encoder. You can run the gst-inspect-0.10 command
to know more about the lame mp3 encoder. The following command can be run
from shell on Linux.

$gst-inspect-0.10 lame

9.	 The elements are added to the pipeline and then linked together. As before, the
self.decodebin and self.audioconvert are not linked in this method as
the decodebin plugin uses dynamic pads. The pad_added signal from the
self.decodebin is connected in the self.connectSignals() method.

10.	Another noticeable change is that we have not set the location property for
both, self.filesrc and self.filesink. These properties will be set at the
runtime. The input and output file locations keep on changing as the tool is a batch
processing utility.

11.	Let's write the main method that controls the conversion process.

1 def convert(self):

2 pattern = "*." + self.inputFormat

3 filetype = os.path.join(self.inputDir, pattern)

4 fileList = glob.glob(filetype)

5 inputFileList = filter(audioFileExists, fileList)

6

7 if not inputFileList:

8 print "\n No audio files with extension %s "\

9 "located in dir %s"%(

10 self.outputFormat, self.inputDir)

11 return

12 else:

13 # Record time before beginning audio conversion

14 starttime = time.clock()

15 print "\n Converting Audio files.."

16

17 # Save the audio into specified file format.

18 # Do it in a for loop If the audio by that name already

19 # exists, do not overwrite it

20 for inPath in inputFileList:

21 dir, fil = os.path.split(inPath)

22 fil, ext = os.path.splitext(fil)

23 outPath = os.path.join(

24 self.outputDir,

x

x

Chapter 5

[147]

25 fil + "." + self.outputFormat)

26

27

28 print "\n Input File: %s%s, Conversion STARTED..."\

29 % (fil, ext)
30 self.convert_single_audio(inPath, outPath)

31 if self.error_message:

32 print "\n Input File: %s%s, ERROR OCCURED" \

33 % (fil, ext)

34 print self.error_message

35 else:

36 print "\nInput File: %s%s,Conversion COMPLETE"\

37 % (fil, ext)

38

39 endtime = time.clock()

40

41 self.printFinalStatus(inputFileList, starttime,

42 endtime)
43 evt_loop.quit()

12.	The code between lines 2 to 26 is similar to the one developed in the Image File
conversion utility in this book. Refer to the Reading and Writing Images section of
Chapter 2 to know what that code does. All the input audio files are collected in the
list inputFileList by the code between lines 2 to 6 . Then, we loop over each of
these files. First, the output file path is derived based on user inputs and then the
input file path.

13.	The highlighted line of code is the workhorse method, AudioConverter.
convert_single_audio, that actually does the job of converting the input audio.
We will discuss that method next. On line 43, the main event loop is terminated. The
rest of the code in method convert is self-explanatory.

14.	The code in method convert_single_audio is illustrated below.

1 def convert_single_audio(self, inPath, outPath):
2 inPth = repr(inPath)
3 outPth = repr(outPath)
4

5 # Set the location property for file source and sink
6 self.filesrc.set_property("location", inPth[1:-1])
7 self.filesink.set_property("location", outPth[1:-1])
8
9 self.is_playing = True

x

x

Working with Audios

[14�]

10 self.pipeline.set_state(gst.STATE_PLAYING)
11 while self.is_playing:

12 time.sleep(1)

15.	As mentioned in the last step, convert_single_audio method is called within a
for loop in the self.convert() . The for loop iterates over a list containing input
audio file paths. The input and output file paths are given as arguments to this
method. The code between lines 8-12 looks more or less similar to AudioPlayer.
play() method illustrated in the Play audio section. The only difference is the
main event loop is not terminated in this method. Earlier we did not set the location
property for the file source and sink. These properties are set on lines 6 and 7
respectively.

16.	Now what's up with the code on lines 2 and 3? The call repr(inPath) returns a
printable representation of the string inPath. The inPath is obtained from the
'for loop'. The os.path.normpath doesn't work on this string. In Windows, if
you directly use inPath, GStreamer will throw an error while processing such a
path string. One way to handle this is to use repr(string) , which will return the
whole string including the quotes . For example: if inPath be "C:/AudioFiles/
my_music.mp3" , then repr(inPath) will return "'C:\\\\AudioFiles\\\\
my_music.mp3'". Notice that it has two single quotes. We need to get rid of the
extra single quotes at the beginning and end by slicing the string as inPth[1:-1].
There could be some other better ways. You can come up with one and then just use
that code as a path string!

17.	Let's quickly skim through a few more methods. Write these down:

def connectSignals(self):

 # Connect the signals.
 # Catch the messages on the bus
 bus = self.pipeline.get_bus()
 bus.add_signal_watch()
 bus.connect("message", self.message_handler)
 # Connect the decodebin "pad_added" signal.
 self.decodebin.connect("pad_added",

 self.decodebin_pad_added)

def decodebin_pad_added(self, decodebin, pad):
 caps = pad.get_caps()
 compatible_pad=\
 self.audioconvert.get_compatible_pad(pad, caps)
 pad.link(compatible_pad)

x

x

Chapter 5

[14�]

18.	The connectSignal method is identical to the one discussed in the Playing music
section, except that we are also connecting the decodebin signal with a method
decodebin_pad_added. Add a print statement to decodebin_pad_added to
check when it gets called. It will help you understand how the dynamic pad works!
The program starts by processing the first audio file. The method convert_
single_audio gets called. Here, we set the necessary file paths. After that, it
begins playing the audio file. At this time, the pad_added signal is generated.
Thus based on the input file data, decodebin will create the pad.

19. The rest of the methods such as processArgs, printUsage, and
message_handler are self-explanatory. You can review these methods
from the file AudioConverter.py.

20. The audio converter should be ready for action now! Make sure that all methods are
properly defined and then run the code by specifying appropriate input arguments.
The following screenshot shows a sample run of audio conversion utility on
Windows XP. Here, it will batch process all audio files in directory C:\AudioFiles
with extension .ogg and convert them into mp3 file format . The resultant mp3 files
will be created in directory C:\AudioFiles\OUTPUT_AUDIOS.

What just happened?
A basic audio conversion utility was developed in the previous section. This utility can
batch-convert audio files with ogg or mp3 or wav format into user-specified output format
(where supported formats are wav and mp3). We learned how to specify encoder and
filesink elements and link them in the GStreamer pipeline. To accomplish this task, we
also applied knowledge gained in earlier sections such as creation of GStreamer pipeline,
capturing bus messages, running the main event loop, and so on.

x

x

Working with Audios

[150]

Have a go hero – do more with audio converter
The audio converter we wrote is fairly simple. It deserves an upgrade.

Extend this application to support more audio output formats such as ogg, flac, and
so on. The following pipeline illustrated one way of converting an input audio file into ogg
file format.

filesrc location=input.mp3 ! decodebin ! audioconvert ! vorbisenc !
oggmux ! filesink location=output.ogg

Notice that we have an audio muxer, oggmux, that needs to be linked with encoder
vorbisenc. Similarly, to create an MP4 audio file, it will need { faac ! mp4mux} as encoder
and audio muxer. One of the simplest things to do is to define proper elements (such as
encoder and muxer) and instead of constructing a pipeline from individual elements, use
the gst.parse_launch method we studied earlier and let it automatically create and link
elements using the command string. You can create a pipeline instance each time the audio
conversion is called for. But in this case you would also need to connect signals each time
the pipeline is created. Another better and simpler way is to link the audio muxer in the
AudioConverter.constructPipeline method. You just need to check if it is needed
based on the type of plugin you are using for encoding. In this case the code will be:

gst.element_link_many(self.audioconvert, self.encoder,
 self.audiomuxer, self.filesink)

The audio converter illustrated in this example takes input files of only a single audio file
format. This can easily be extended to accept input audio files in all supported file formats
(except for the type specified by the --output_format option). The decodebin should
take care of decoding the given input data. Extend Audio Converter to support this feature.
You will need to modify the code in the AudioConverter.convert() method where the
input file list is determined.

Extracting part of an audio
Suppose you have recorded a live concert of your favorite musician or a singer. You have
saved all this into a single file with MP3 format but you would like to break this file into small
pieces. There is more than one way to achieve this using Python and GStreamer. We will use
the simplest and perhaps the most efficient way of cutting a small piece from an audio track.
It makes use of an excellent GStreamer plugin, called Gnonlin.

x

x

Chapter 5

[151]

The Gnonlin plugin
The multimedia editing can be classified as linear or non-linear. Non-linear multimedia
editing enables control over the media progress in an interactive way. For example, it allows
you to control the order in which the sources should be executed. At the same time it allows
modifications to the position in a media track. While doing all this, note that the original
source (such as an audio file) remains unchanged. Thus the editing is non-destructive. The
Gnonlin or (G-Non-Linear) provides essential elements for non-linear editing of a multimedia.
It has five major elements, namely, gnlfilesource, gnlurisource, gnlcomposition,
gnloperation, and gnlsource. To know more about their properties, run gst-inspect-0.10
command on each of these elements.

Here, we will only focus on the element gnlfilesource and a few of its properties. This is really
a GStreamer bin element. Like decodebin, it determines which pads to use at the runtime.
As the name suggests, it deals with the input media file. All you need to specify is the input
media source it needs to handle. The media file format can be any of the supported media
formats. The gnlfilesource defines a number of properties. To extract a chunk of an audio, we
just need to consider three of them:

media-start: The position in the input media file, which will become the start
position of the extracted media. This is specified in nanoseconds.

media-duration: Total duration of the extracted media file (beginning from
media-start). This is specified in nanoseconds as well.

uri: The full path of the input media file. For example, if it is a file on your local
hard drive, the uri will be something like file:///C:/AudioFiles/my_music.
mp3. If the file is located on a website, then the uri will something of this sort:
http://path/to/file.mp3.

The gnlfilesource internally does operations like loading and decoding the file, seeking the
track to the specified position, and so on. This makes our job easier. We just need to create
basic elements that will process the information furnished by gnlfilesource, to create an
output audio file. Now that we know the basics of gnlfilesource, let's try to come up with a
GStreamer pipeline that will cut a portion of an input audio file.

First the gnlfilesource element that does the crucial job of loading, decoding the
file, seeking the correct start position, and finally presenting us with an audio data
that represents the portion of track to be extracted.

An audioconvert element that will convert this data into an appropriate
audio format.

An encoder that encodes this data further into the final audio format we want.

A sink where the output data is dumped. This specifies the output audio file.

x

x

Working with Audios

[152]

Try running the following from the command prompt by replacing the uri and location paths
with appropriate file paths on your computer.

$gst-launch-0.10.exe gnlfilesource uri=file:///C:/my_music.mp3

 media-start=0 media-duration=15000000000 !

 audioconvert !

 lame !

 filesink location=C:/my_chunk.mp3

This should create an extracted audio file of duration 15 seconds, starting at the initial
position on the original file. Note that the media-start and media-duration properties take
the input in nanoseconds. This is really the essence of what we will do next.

Time for action – MP3 cutter!
In this section we will develop a utility that will cut out a portion of an MP3 formatted audio
and save it as a separate file.

1.	 Keep the file AudioCutter.py handy. You can download it from the Packt website.
Here we will only discuss important methods. The methods not discussed here are
similar to the ones from earlier examples. Review the file AudioCutter.py which
has all the necessary source code to run this application.

2.	 Start the usual way. Do the necessary imports and write the following skeleton code.

import os, sys, time

import thread

import gobject

import pygst

pygst.require("0.10")

import gst

class AudioCutter:

 def __init__(self):

 pass

 def constructPipeline(self):

 pass

 def gnonlin_pad_added(self, gnonlin_elem, pad):

 pass

 def connectSignals(self):

 pass

 def run(self):
 pass

x

x

Chapter 5

[153]

 def printFinalStatus(self):
 pass
 def message_handler(self, bus, message):
 pass

#Run the program
audioCutter = AudioCutter()
thread.start_new_thread(audioCutter.run, ())
gobject.threads_init()
evt_loop = gobject.MainLoop()
evt_loop.run()

The overall code layout looks familiar doesn't it? The code is very similar
to the code we developed earlier in this chapter. The key here is the
appropriate choice of the file source element and linking it with the rest
of the pipeline! The last few lines of code create a thread with method
AudioCutter.run and run the main event loop as seen before.

3.	 Now fill in the constructor of the class. We will keep it simple this time. The things
we need will be hardcoded within the constructor of the class AudioCutter. It
is very easy to implement a processArgs() method as done on many occasions
before. Replace the input and output file locations in the code snippet with a proper
audio file path on your computer.

def __init__(self):

 self.is_playing = False

 # Flag used for printing purpose only.

 self.error_msg = ''

 self.media_start_time = 100

 self.media_duration = 30

 self.inFileLocation = "C:\AudioFiles\my_music.mp3"

 self.outFileLocation = "C:\AudioFiles\my_music_chunk.mp3"

 self.constructPipeline()
 self.connectSignals()

4.	 the self.media_start_time is the new starting position of the mp3 file in
seconds. This is the new start position for the extracted output audio. The self.
duration variable stores the total duration extracted track. Thus, if you have an
audio file with a total duration of 5 minutes, the extracted audio will have a starting
position corresponding to 1 min, 40 seconds on the original track. The total duration
of this output file will be 30 seconds, that is, the end time will correspond to 2
minutes, 10 seconds on the original track. The last two lines of this method
build a pipeline and connect signals with class methods.

x

x

Working with Audios

[154]

5.	 Next, build the GStreamer pipeline.

1 def constructPipeline(self):

2 self.pipeline = gst.Pipeline()
3 self.filesrc = gst.element_factory_make(

4 "gnlfilesource")

5

6 # Set properties of filesrc element

7 # Note: the gnlfilesource signal will be connected

8 # in self.connectSignals()

9 self.filesrc.set_property("uri",

10 "file:///" + self.inFileLocation)

11 self.filesrc.set_property("media-start",

12 self.media_start_time*gst.SECOND)

13 self.filesrc.set_property("media-duration",

14 self.media_duration*gst.SECOND)

15

16 self.audioconvert = \

17 gst.element_factory_make("audioconvert")

18

19 self.encoder = \

20 gst.element_factory_make("lame", "mp3_encoder")

21

22 self.filesink = \

23 gst.element_factory_make("filesink")

24

25 self.filesink.set_property("location",

26 self.outFileLocation)

27

28 #Add elements to the pipeline

29 self.pipeline.add(self.filesrc, self.audioconvert,

30 self.encoder, self.filesink)

31 # Link elements

32 gst.element_link_many(self.audioconvert,self.encoder,
33 self.filesink)

The highlighted line of code (line 3) creates the gnlfilesource. We call
this as self.filesrc. As discussed earlier, this is responsible for loading
and decoding audio data and presenting only the required portion of
audio data that we need. It enables a higher level of abstraction in the
main pipeline.

x

x

Chapter 5

[155]

6.	 The code between lines 9 to 13 sets three properties of gnlfilesource, uri,
media-start and media-duration . The media-start and media-duration
are specified in nanoseconds. Therefore, we multiply the parameter value (which is
in seconds) by gst.SECOND which takes care of the units.

7.	 The rest of the code looks very much similar to the Audio Converter example. In this
case, we only support saving the file in mp3 audio format. The encoder element
is defined on line 19. self.filesink determines where the output file will be
saved. Elements are added to the pipeline by self.pipeline.add call and are linked
together on line 32. Note that the gnlfilesource element, self.filesrc, is
not linked with self.audioconvert while constructing the pipeline. Like the
decodebin, the gnlfilesource implements dynamic pads. Thus, the pad is not
available when the pipeline is constructed. It is created at the runtime depending
on the specified input audio format. The "pad_added" signal of gnlfilesource is
connected with a method self.gnonlin_pad_added.

8.	 Now write the connectSignals and gnonlin_pad_added methods.

def connectSignals(self):

 # capture the messages put on the bus.

 bus = self.pipeline.get_bus()

 bus.add_signal_watch()

 bus.connect("message", self.message_handler)

 # gnlsource plugin uses dynamic pads.

 # Capture the pad_added signal.
 self.filesrc.connect("pad-added",self.gnonlin_pad_added)

def gnonlin_pad_added(self, gnonlin_elem, pad):

 pad.get_caps()

 compatible_pad = \

 self.audioconvert.get_compatible_pad(pad, caps)
 pad.link(compatible_pad)

The highlighted line of code in method connectSignals connects the
pad_added signal of gnlfilesource with a method gnonlin_pad_
added. The gnonlin_pad_added method is identical to the decodebin_
pad_added method of class AudioConverter developed earlier.
Whenever gnlfilesource creates a pad at the runtime, this method gets
called and here, we manually link the pads of gnlfilesource with the
compatible pad on self.audioconvert.

x

x

Working with Audios

[156]

9.	 The rest of the code is very much similar to the code developed in the Playing
an audio section. For example, AudioCutter.run method is equivalent to
AudioPlayer.play and so on. You can review the code for remaining
methods from the file AudioCutter.py.

10.	Once everything is in place, run the program from the command line as:

$python AudioCutter.py

11.	This should create a new MP3 file which is just a specific portion of the original
audio file.

What just happened?
We accomplished creation of a utility that can cut a piece out of an MP3 audio file (yet keep
the original file unchanged). This audio piece was saved as a separate MP3 file. We learned
about a very useful plugin, called Gnonlin, intended for non-linear multimedia editing. A few
fundamental properties of gnlfilesource element in this plugin to extract an audio file.

Have a go hero – extend MP3 cutter
Modify this program so that the parameters such as media_start_time
can be passed as an argument to the program. You will need a method like
processArguments(). You can use either getopt or OptionParser
module to parse the arguments.

Add support for other file formats. For example, extend this code so that it can
extract a piece from a wav formatted audio and save it as an MP3 audio file. The
input part will be handled by gnlfilesource. Depending upon the type of output
file format, you will need a specific encoder and possibly an audio muxer element.
Then add and link these elements in the main GStreamer pipeline.

Recording
After learning how to cut out a piece from our favorite music tracks, the next exciting thing
we will have is a 'home grown' audio recorder. Then use it the way you like to record music,
mimicry or just a simple speech!

Remember what pipeline we used to play an audio? The elements in the pipeline
to play an audio were filesrc ! decodebin ! audioconvert ! autoaudiosink .
The autoaudiosink did the job of automatically detecting the output audio device on
your computer.

x

x

Chapter 5

[157]

For recording purposes, the audio source is going to be from the microphone connected to
your computer. Thus, there won't be any filesrc element. We will instead replace with
a GStreamer plugin that automatically detects the input audio device. On similar lines, you
probably want to save the recording to a file. So, the autoaudiosink element gets replaced
with a filesink element.

autoaudiosrc is an element we can possibly use for detecting input audio source. However,
while testing this program on Windows XP, the autoaudiosrc was unable to detect the
audio source for unknown reasons. So, we will use the Directshow audio capture source
plugin called dshowaudiosrc, to accomplish the recording task. Run the gst-inspect-
0.10 dshowaudiosrc command to make sure it is installed and to learn various properties
of this element. Putting this plugin in the pipeline worked fine on Windows XP. The
dshowaudiosrc is linked to the audioconvert.

With this information, let's give it a try using the command-line version of GStreamer. Make
sure you have a microphone connected or built into your computer. For a change, we will
save the output file in ogg format.

gst-launch-0.10.exe dshowaudiosrc num-buffers=1000 !

 audioconvert ! audioresample !

 vorbisenc ! oggmux !

 filesink location=C:/my_voice.ogg

The audioresample re-samples the raw audio data with different sample rates. Then the
encoder element encodes it. The multiplexer or mux, if present, takes the encoded data and
puts it into a single channel. The recorded audio file is written to the location specified by
the filesink element.

Time for action – recording
Okay, time to write some code that does audio recording for us.

1.	 Download the file RecordingAudio.py and review the code. You will notice
that the only important task is to set up a proper pipeline for audio recording.
Content-wise, the other code is very much similar to what we learned earlier in
the chapter. It will have some minor differences such as method names and print
statements. In this section we will discuss only the important methods in the
class AudioRecorder.

2.	 Write the constructor.

def __init__(self):
 self.is_playing = False
 self.num_buffers = -1
 self.error_message = ""

x

x

Working with Audios

[15�]

 self.processArgs()
 self.constructPipeline()

 self.connectSignals()

3.	 This is similar to the AudioPlayer.__init__() except that we have added a
call to processArgs() and initialized the error reporting variable self.error_
message and the variable that indicates the total duration of the recording.

4.	 Build the GStreamer pipeline by writing constructPipeline method.

1 def constructPipeline(self):
2 # Create the pipeline instance
3 self.recorder = gst.Pipeline()
4
5 # Define pipeline elements
6 self.audiosrc = \
7 gst.element_factory_make("dshowaudiosrc")
8
9 self.audiosrc.set_property("num-buffers",
10 self.num_buffers)
11
12 self.audioconvert = \
13 gst.element_factory_make("audioconvert")
14
15 self.audioresample = \
16 gst.element_factory_make("audioresample")
17
18 self.encoder = \
19 gst.element_factory_make("lame")
20
21 self.filesink = \
22 gst.element_factory_make("filesink")
23
24 self.filesink.set_property("location",
25 self.outFileLocation)
26
27 # Add elements to the pipeline
28 self.recorder.add(self.audiosrc, self.audioconvert,
29 self.audioresample,
30 self.encoder, self.filesink)
31
32 # Link elements in the pipeline.
33 gst.element_link_many(self.audiosrc,self.audioconvert,
34 self.audioresample,
35 self.encoder,self.filesink)

x

x

Chapter 5

[15�]

5.	 We use the dshowaudiosrc (Directshow audiosrc) plugin as an audio source
element. It finds out the input audio source which will be, for instance, the audio
input from a microphone.

6.	 On line 9, we set the number of buffers property to the one specified by self.
num_buffers. This has a default value as -1 , indicating that there is no limit on
the number of buffers. If you specify this value as 500 for instance, it will output 500
buffers (5 second duration) before sending a End of Stream message to end the run
of the program.

7.	 On line 15, an instance of element 'audioresample' is created. This element is
takes the raw audio buffer from the self.audioconvert and re-samples it to
different sample rates. The encoder element then encodes the audio data into
a suitable format and the recorder file is written to the location specified by
self.filesink.

8.	 The code between lines 28 to 35 adds various elements to the pipeline and links
them together.

9.	 Review the code in file RecordingAudio.py to add rest of the code. Then run the
program to record your voice or anything that you want to record that makes an
audible sound! Following are sample command-line arguments. This program will
record an audio for 5 seconds.

$python RecordingAudio.py –-num_buffers=500

 -–out_file=C:/my_voice.mp3

What just happened?
We learned how to record an audio using Python and GStreamer. We developed a simple
audio recording utility to accomplish this task. The GStreamer plugin, dshowaudiosrc,
captured the audio input for us. We created the main GStreamer Pipeline by adding this
and other elements and used it for the Audio Recorder program.

x

x

Working with Audios

[160]

Summary
This chapter gave us deeper insight into the fundamentals of audio processing using Python
and the GStreamer multimedia framework. We used several important components of
GStreamer to develop some frequently needed audio processing utilities. The main
learning points of the chapter can be summarized as follows:

GStreamer installation: We learned how to install GStreamer and the dependent
packages on various platforms. This set up a stage for learning audio processing
techniques and will also be useful for the next chapters on audio/video processing.

A primer on GStreamer: A quick primer on GStreamer helped us understand
important elements required for media processing.

Use of GStreamer API to develop audio tools: We learned how to use GStremer API
for general audio processing. This helped us develop tools such as an Audio player, a
file format converter, an MP3 cutter, and audio recorder.

Now that we've learned about basic audio processing using GStreamer, we're ready to add
some 'spice' to the audio. In the next chapter we will learn techniques that will help us add
special effects to an audio.

x

x

6
Audio Controls and Effects

In the previous chapter, the focus was on learning fundamentals of audio
processing. It introduced us to the GStreamer multimedia framework. We
applied this knowledge to develop some frequently needed audio processing
tools. In this chapter, we will go one step further by developing tools for adding
audio effects, mixing audio tracks, creating custom music tracks, and so on.

In this chapter, we shall:

Learn how to control a streaming audio.

Spice up the audio by adding effects such as fading, echo, and panorama.

Work on a project where a custom music track will be created by combining
different audio clips.

Add visualization effect to a streaming audio.

Mix two audio streams into a single track. For example, mix an audio containing only
a vocal track with an audio containing only background music track.

So let's get on with it.

Controlling playback
In an audio player, various options such as Play, Pause, Stop, and so on, provide a way to
control the streaming audio. Such playback controls also find use in other audio processing
techniques. We have already used some of the playback controls in Chapter 5, Working with
Audios. In this chapter, we will study some more controlling options.

x

x

Audio Controls and Effects

[162]

Play
In the previous chapter, we developed a preliminary command-line audio player using
GStreamer. The audio streaming can be started by instructing the GStreamer pipeline to
begin the flow of audio data. This was achieved by the following code:

self.pipeline.set_state(gst.STATE_PLAYING)

With the above instruction, the audio will be streamed until the end of the stream is
reached. Refer to the code in the Playing Audio section of Chapter 5, Working with Audios to
see what the surrounding code looks like. If you develop a user interface for a simple audio
player, the "Play" button can be connected to a method that will set the state of pipeline to
gst.STATE_PLAYING.

Pause/resume
The streaming audio can be paused temporarily by setting the GStreamer pipeline state to
gst.STATE_PAUSED. Pausing music in an audio player is another commonly performed
operation. But this also finds use while doing some special audio processing.

Time for action – pause and resume a playing audio stream
We will now review a very simple example demonstrating various playback control
techniques. The same example will be used in the next few sections. This exercise will be an
ideal preparation while working on the project 'Extract Audio Using Playback Controls'. So
let's get started!

1. Download the file PlaybackControlExamples.py from the Packt website. This
file has all the necessary code that illustrates various playback controls. The overall
class and its methods are illustrated below for reference. See the source file to know
more about each of these methods.

class AudioPlayer:
 def __init__(self):
 pass
 def constructPipeline(self):
 pass
 def connectSignals(self):
 pass
 def decodebin_pad_added(self, decodebin, pad):
 pass
 def play(self):
 pass
 def runExamples(self):
 pass

x

x

Chapter 6

[163]

 def runPauseExample(self):
 pass
 def runStopExample(self):
 pass
 def runSeekExample(self):
 pass
 def okToRunExamples(self):
 pass
 def message_handler(self, bus, message):
 pass

The overall code layout is very similar to the code developed in the Playing audio
section of Chapter 5, Working with Audios. Thus, we will just review some of the
newly added methods relevant to this section.

2. Here is the code for self.play method.

1 def play(self):
2 self.is_playing = True
3 self.player.set_state(gst.STATE_PLAYING)
4 self.position = None
5 while self.is_playing:
6 time.sleep(0.5)
7 try:
9 self.position = (
10 self.player.query_position(gst.FORMAT_TIME,
11 None) [0])
16 except gst.QueryError:
17 # The pipeline has probably reached
18 # the end of the audio, (and thus has 'reset'
itself.
19 # So, it may be unable to query the current
position.
20 # In this case, do nothing except to reset
21 # self.position to None.
22 self.position = None
23
24 if not self.position is None:
25 #Convert the duration into seconds.
26 self.position = self.position/gst.SECOND
27 print "\n Current playing time: ",
28 self.position
29
30 self.runExamples()
31 evt_loop.quit()

x

x

Audio Controls and Effects

[164]

Inside the while loop, on line 9, the current position of the streaming audio is
queried using the query_position call. This is an API method of GStreamer
Pipeline object. When the pipeline approaches the end of the stream, it may throw
an error while querying the current position. Therefore, we catch the exception
gst.QueryError, in the try-except block. The time.sleep call is important
before entering the try-except block. It ensures that the position is queried
every 0.5 seconds. If you remove this call, the next code will be executed for each
incremental tiny step. From a performance standpoint this is unnecessary. The
current position thus obtained is expressed in nanoseconds, Thus, if the time is say
0.1 seconds, it is obtained as 100 000 000 nanoseconds. To convert it into seconds, it
is divided by a GStreamer constant gst.SECOND. On line 30, the main method that
runs various audio control examples is called.

3. Let's see the code in self.runExamples method now.

1 def runExamples(self):
2
3 if not self.okToRunExamples():
4 return
5
6 # The example will be roughly be run when the streaming
7 # crosses 5 second mark.
8 if self.position >= 5 and self.position < 8:
9 if self.pause_example:
10 self.runPauseExample()
11 elif self.stop_example:
12 self.runStopExample()
13 elif self.seek_example:
14 self.runSeekExample()
15 # this flag ensures that an example is run
16 # only once.
17 self.ranExample = True

The method self.okToRunExamples does some preliminary error checking and
ensures that the total streaming duration is greater than 20 seconds. This method
will not be discussed here. When the current track position reaches 5 seconds, one
of the examples is run. Which example to run is determined by the corresponding
boolean flag. For instance, if self.pause_example flag is set to True, it will run
the code that will 'pause' the audio stream. Likewise for the other examples. These
three flags are initialized to False in the __init__ method.

x

x

Chapter 6

[165]

4. The last method we will review is self.runPauseExample.

1 def runPauseExample(self):
2 print ("\n Pause example: Playback will be paused"
3 " for 5 seconds and will then be resumed...")
4 self.player.set_state(gst.STATE_PAUSED)
5 time.sleep(5)
6 print "\n .. OK now resuming the playback"
7 self.player.set_state(gst.STATE_PLAYING)

The streaming audio is paused by the call on line 4. The time.sleep call will keep
the audio paused for 5 seconds and then the audio playback is resumed by the call
on line 7.

5. Make sure to set the flag self.pause_example to True in the __init__ method
and specify the proper audio file path for the variable for self.inFileLocation.
Then run this example from the command prompt as:

$python PlaybackControlExamples.py

The audio will be played for the first 5 seconds. It will be then paused for another 5
seconds and finally the playback will be resumed.

What just happened?
With the help of a simple example, we learned how to pause a streaming audio. We also saw
how the current position of the streaming audio is queried. This knowledge will be used in a
project later in this chapter.

Stop
Setting the state of the GStreamer pipeline to gst.STATE_NULL stops the audio streaming.
Recall the message_handler method explained in the Playing Audio section of the previous
chapter. We made use of this state when the end of stream message was put on the bus. In
the file PlaybackControlExamples.py, the following code stops the streaming of
the audio.

def runStopExample(self):
 print ("\n STOP example: Playback will be STOPPED"
 " and then the application will be terminated.")
 self.player.set_state(gst.STATE_NULL)
 self.is_playing = False

In this file, set the flag self.stop_example to True and then run the program from the
command line to see this illustration.

x

x

Audio Controls and Effects

[166]

Fast-forward/rewind
Fast-forwarding or rewinding a track simply means that the current position on the audio
track being played is shifted to some other position. This is also called seeking a position
on a track. The pipeline element of GStreamer defines an API method, seek_simple,
that facilitates jumping to a specified position on the track in a streaming audio. In the file
PlabackControlExamples.py, this is illustrated by the following method.

def runSeekExample(self):
 print ("\n SEEK example: Now jumping to position at 15 seconds"
 "the audio will continue to stream after this")

 self.player.seek_simple(gst.FORMAT_TIME,
 gst.SEEK_FLAG_FLUSH,
 15*gst.SECOND)
 self.player.set_state(gst.STATE_PAUSED)
 print "\n starting playback in 2 seconds.."
 time.sleep(2)
 self.player.set_state(gst.STATE_PLAYING)

When this method is called, the current audio position is shifted to a position corresponding
to 15 seconds duration on the audio track. The highlighted lines of code are the key. The
seek_simple method takes three arguments. The first argument, gst.FORMAT_TIME,
represents the time on the track. The second argument,gst.SEEK_GLAG_FLUSH, is a 'seek
flag'. It tells the pipeline to clear the currently playing audio data. In other words it instructs
to flush the pipeline. This makes the seek operation faster according to the documentation.
There are several other seek flags. Refer to the GStreamer documentation to know more
about these flags. The third argument specifies the time on the track that will be the new
'current position' of the streaming audio. This time I specified in nanoseconds and so, it is
multiplied by a constant gst.SECOND. Note that pipeline should be in playing state, before
calling seek_simple method.

Project: extract audio using playback controls
In the last chapter, we learned how to use gnonlin plugin to extract a piece of audio.
Gnonlin made our job very easy. In this project, we will see another way of extracting the
audio files, by applying basic audio processing techniques using GStreamer. We will use some
of the audio playback controls just learned. This project will serve as a refresher on various
fundamental components of GStreamer API.

x

x

Chapter 6

[167]

Time for action – MP3 cutter from basic principles
Let's create an MP3 cutter from 'basic principles'. That is we won't be using gnonlin to
do this. In this project, we will apply knowledge about seeking a track playing, pausing the
pipeline along with the basic audio processing operations.

This utility can be run from the command line as:

$python AudioCutter_Method2.py [options]

Where, the [options] are as follows:

--input_file: The input audio file in MP3 format from which a piece of audio
needs to be cut.

--output_file: The output file path where the extracted audio will be saved. This
needs to be in MP3 format.

--start_time: The position in seconds on the original track. This will be the
starting position of the audio to be extracted.

--end_time: The position in seconds on the original track. This will be the end
position of the extracted audio.

--verbose_mode: Prints useful information such as current position of the track (in
seconds) while extracting the audio. By default, this flag is set too False.

1. Download the file AudioCutter_Method2.py from the Packt website. We will
discuss only the most important methods here. You can refer to the source code in
this file for developing the rest of the code.

2. We will start as usual, by defining a class with empty methods.

import os, sys, time
import thread
import gobject
from optparse import OptionParser

import pygst
pygst.require("0.10")
import gst

class AudioCutter:
 def __init__(self):
 pass
 def constructPipeline(self):
 pass
 def decodebin_pad_added(self, decodebin, pad):

x

x

Audio Controls and Effects

[16�]

 pass
 def connectSignals(self):
 pass
 def run(self):
 pass
 def extractAudio(self):
 pass
 def processArgs(self):
 pass
 def printUsage(self):
 pass
 def printFinalStatus(self):
 pass
 def message_handler(self, bus, message):
 pass

audioCutter = AudioCutter()
thread.start_new_thread(audioCutter.run, ())
gobject.threads_init()
evt_loop = gobject.MainLoop()
evt_loop.run()

3. As you can see, the overall structure and the method names are very much
consistent with the MP3 cutter example in earlier chapters. Instead of method
gnonlin_pad_added we have decodebin_pad_added which indicates we are
going to capture the pad_added signal for the decodebin. Also, there are new
methods run and extractAudio. We will discuss these in detail.

4. Now let's review the constructor of the class.

1 def __init__(self):
2 self.start_time = None
3 self.end_time = None
4 self.is_playing = False
5 self.seek_done = False
6 self.position = 0
7 self.duration = None
8 #Flag used for printing purpose only.
9 self.error_msg = ''
10 self.verbose_mode = False
11
12 self.processArgs()
13 self.constructPipeline()
14 self.connectSignals()

x

x

Chapter 6

[16�]

5. The __init__ method calls methods to process user input and then constructs the
GStreamer pipeline by calling the constructPipeline() method. This is similar
to what we have seen in several examples earlier.

6. Think about this. To extract an audio, what elements do you need? We need all the
elements used in audio conversion utility developed in last chapter. Note that in this
example we are saving the output in the same audio format as the input. Let's try to
construct an initial pipeline.

1 def constructPipeline(self):
2 self.pipeline = gst.Pipeline()
3 self.fakesink = gst.element_factory_make("fakesink")
4 filesrc = gst.element_factory_make("filesrc")
5 filesrc.set_property("location", self.inFileLocation)
6
7 autoaudiosink = gst.element_factory_make(
8 "autoaudiosink")
9
10 self.decodebin = gst.element_factory_make("decodebin")
11
12 self.audioconvert = gst.element_factory_make(
13 "audioconvert")
14
15 self.encoder = gst.element_factory_make("lame",
16 "mp3_encoder")
17
18 self.filesink = gst.element_factory_make("filesink")
19 self.filesink.set_property("location",
20 self.outFileLocation)
21
22 self.pipeline.add(filesrc, self.decodebin,
23 self.audioconvert,
24 self.encoder, self.fakesink)
25
26 gst.element_link_many(filesrc, self.decodebin)
27 gst.element_link_many(self.audioconvert,
28 self.encoder, self.fakesink)

7. We are already familiar with most of the elements included in this pipeline. The
pipeline looks identical to the one in audio conversion utility except for the sink
element. Notice that the filesink element is created on line 18. But it is not
added to the pipeline! Instead we have added a fakesink element. Can you guess
why? This is an extraction utility. We just need to save a portion of an input audio
file. The start position of the extracted portion may not be the start position of the
original track. Thus, at this time, we will not add the filesink to the pipeline.

x

x

Audio Controls and Effects

[170]

8. Next write the AudioCutter.run method.

1 def run(self):
2 self.is_playing = True
3 print "\n Converting audio. Please be patient.."
4 self.pipeline.set_state(gst.STATE_PLAYING)
5 time.sleep(1)
6 while self.is_playing:
7 self.extractAudio()
8 self.printFinalStatus()
9 evt_loop.quit()

9. On line 4, we apply one of the playback control commands to instruct the pipeline
to 'begin'. The state of the input audio is set to STATE_PLAYING. As seen earlier,
the flag self.is_playing is changed in the message_handler method. In the
while loop, the workhorse method self.extractAudio() is called. The rest of
the code is self-explanatory.

10. Now we will review the method that does the job of cutting the piece of input audio.
Let us first see the important things considered in extractAudio() method. Then
it will be very easy to understand the code. This following illustration lists these
important things.

Important steps considered in AudioCutter.extractAudio() method appear in
the preceding image.

11. To extract a piece of audio from the input, the flow of data through the pipeline
needs to be 'started'. Then, we need to jump to a position in the input audio that
corresponds to the start position of the audio file to be extracted. Once the start
position is identified, the GStreamer pipeline needs to be tweaked so that there
is a filesink element. The filesink will specify the output audio file. After
setting the pipeline, we need to begin the flow of data. When the user-specified end
position is reached, the program execution should stop. Now let's write the code.

1 def extractAudio(self):
2 if not self.seek_done:
3 time.sleep(0.1)
4 self.duration = \
5 self.pipeline.query_duration(gst.FORMAT_TIME,
6 None) [0]
7 self.duration = self.duration/gst.SECOND

x

x

Chapter 6

[171]

8
9 if self.start_time > self.duration:
10 print "\n start time specified" \
11 " is more than the total audio duration"\
12 " resetting the start time to 0 sec"
13 self.start_time = 0.0
14
15 self.pipeline.seek_simple(gst.FORMAT_TIME,
16 gst.SEEK_FLAG_FLUSH,
17 self.start_time*gst.SECOND)
18
19 self.pipeline.set_state(gst.STATE_PAUSED)
20 self.seek_done = True
21 self.pipeline.remove(self.fakesink)
22
23 self.pipeline.add(self.filesink)
24 gst.element_link_many(self.encoder, self.filesink)
25 self.pipeline.set_state(gst.STATE_PLAYING)
26
27 time.sleep(0.1)
28 try:
29 self.position = self.pipeline.query_position(
30 gst.FORMAT_TIME, None)[0]
31 self.position = self.position/gst.SECOND
32 except gst.QueryError:
33 # The pipeline has probably reached
34 # the end of the audio, (and thus has 'reset' itself)
35 if self.duration is None:
36 self.error_msg = "\n Error cutting the audio
37 file.Unable to determine the audio duration."
38 self.pipeline.set_state(gst.STATE_NULL)
39 self.is_playing = False
40 if (self.position <= self.duration and
41 self.position > (self.duration - 10)):
42 # Position close to the end of file.
43 # Do nothing to avoid a possible traceback.
44 #The audio cutting should work
45 pass
46 else:
47 self.error_msg =" Error cutting the audio file"
48 self.pipeline.set_state(gst.STATE_NULL)
49 self.is_playing = False
50
51 if not self.end_time is None:
52 if self.position >= self.end_time:
53 self.pipeline.set_state(gst.STATE_NULL)
54 self.is_playing = False
55
56 if self.verbose_mode:
57 print "\n Current play time: =", self.position

x

x

Audio Controls and Effects

[172]

12. The code block between lines 3 to 25 is executed only once, when the program
enters this method for the first time. The flag self.seek_done ensures it is
executed only once. This is an important piece of code that does the steps 2 to 5
represented by rectangular blocks in the above illustration. Let's review this code in
detail now.

13. On line 3, we ask the program to wait for 0.1 seconds by time.sleep call. This is
necessary for the next line of code that queries the total duration of the playback.
The API method query duration returns the total duration of the playback. The
argument gst.FORMAT_TIME ensures that the return value is in time format
(nanoseconds). To get it in seconds, we divide it by gst.SECOND.

14. Next, on lines 15-17, we jump to the position on the input audio track pertaining to
the user-supplied argument self.start_time. Note that the time argument in
the method seek_simple needs to be in nanoseconds. So it is multiplied by
gst.SECOND.

15. On line 19, the gst.STATE_PAUSED call pauses the flow of data in the pipeline. The
fakesink element is removed from the pipeline with self.pipline.remove
call. This also unlinks it from the pipeline. Then the self.filesink element is
added and linked in the pipeline on lines 23 and 24. With this, we are all set to start
playing the audio file again. Here onwards, the audio data will be saved to the audio
file indicated by the filesink element.

16. On line 27, the current position being played is queried. Note that this is done in
a try-except block to avoid any possible error while querying the position when
the audio is very near to the end of the file. When self.position reaches the
specified self.end_time, the data flow through the pipeline is stopped by the
gst.STATE_NULL call.

17. Write other methods such as decodebin_pad_added, connectSignals. The
source code can be found in the file AudioCutter_Method2.py.

18. We are now all set to run the program. Run it from the command line by specifying
the appropriate arguments mentioned at the beginning of this section.

What just happened?
By applying fundamental audio processing techniques, we developed an MP3 cutter utility.
This is just another way of extracting audio. We accomplished this task by making use of
various playback controls learned in earlier sections.

x

x

Chapter 6

[173]

Adjusting volume
One of the most common audio operations we perform is to adjust the volume level of a
playing audio. Suppose you have a collection of your favourite songs on your computer. You
have been adding songs to this collection from various sources over the years and have created
a 'playlist' so that you can listen to them one after the other. But some of the songs start much
louder than the others. Of course you can adjust the volume every time such songs start playing
but that's not what you would like to do is it?? You want to fix this, but how? Let's learn how!

The volume element in GStreamer can be used to control the volume of the streaming
audio. It is classified as a type of audio filter. Run gst-inspect-0.10 command on
volume to know more details about its properties.

How will you adjust volume using the command-line version of GStreamer? Here is the
command on Windows XP that accomplishes this. You should use forward slashes as the
backward slashes are not parsed properly by the 'location' property.

$gstlaunch-0.10 filesrc location=/path/to/audio.mp3 ! decodebin !
Audioconvert ! volume volume=0.8 ! autoaudiosink

This pipeline is very similar to the audio playing example. All we did was to add a volume
element after audioconvert.

Time for action – adjusting volume
Now let's develop a Python example of modifying volume of an audio file. We will write a
utility that can take an input audio file and write the output file with increased or decreased
level of the default volume. The utility will support writing audio files with MP3 format. If
you need some other formats, you can extend this application. Refer to the Audio Converter
project we did in the previous chapter.revious chapter.

1. Download the filee file AudioEffects.py from Packt website. It has the source code
for this example as well as for the Fading effect.

2. Write the constructor of the class AudioEffects.

1 def __init__(self):
2 self.is_playing = False
3 # Flag used for printing purpose only.
4 self.error_msg = ''
5 self.fade_example = False
6 self.inFileLocation = "C:/AudioFiles/audio1.mp3"
7 self.outFileLocation = (
8 "C:/AudioFiles/audio1_out.mp3")
9
10 self.constructPipeline()
11 self.connectSignals()

x

x

Audio Controls and Effects

[174]

3. The flag self.fade_example should be set to False in this example. You can
ignore it for now. It will be used in the Fading effects section. Specify appropriate
input and output audio file paths on lines 6 and 8.

4. We will review the self.constructPipeline() method next.

1 def constructPipeline(self):
2 self.pipeline = gst.Pipeline()
3
4 self.filesrc = gst.element_factory_make("filesrc")
5 self.filesrc.set_property("location",
6 self.inFileLocation)
7
8 self.decodebin = gst.element_factory_make("decodebin")
9 self.audioconvert = gst.element_factory_make(
10 "audioconvert")
11 self.encoder = gst.element_factory_make("lame")
12
13 self.filesink = gst.element_factory_make("filesink")
14 self.filesink.set_property("location",
15 self.outFileLocation)
16
17 self.volume = gst.element_factory_make("volume")
18 self.volumeLevel = 2.0
19
20 if self.fade_example:
21 self.setupVolumeControl()
22 else:
23 self.volume.set_property("volume",
24 self.volumeLevel)
25
26
27 self.pipeline.add(self.filesrc,
28 self.decodebin,
29 self.audioconvert,
30 self.volume,
31 self.encoder,
32 self.filesink)
33
34 gst.element_link_many(self.filesrc, self.decodebin)
35 gst.element_link_many(self.audioconvert,
36 self.volume,
37 self.encoder,
38 self.filesink)

x

x

Chapter 6

[175]

5. Various GStreamer elements are created the usual way. On line 17, the volume
element is created.

6. The volume element has a "volume" property. This determines the level of volume
in the streaming audio. By default, this has a value of 1.0 which indicates 100% of
the current default volume of the audio. A value of 0.0 indicates no volume. A value
greater than 1.0 will make the audio louder than the original level. Let's set this level
as 2.0, which means the resultant volume will be louder than the original. The rest
of the code in this method adds and links elements in the GStreamer pipeline.

7. Review the rest of the code from the file mentioned earlier. It is self- explanatory.

8. Run the program on the command prompt as:

$python AudioEffects.py

9. Play the resultant audio and compare its default sound level with the original audio.

What just happened?
With a very simple illustration, we learned how to change the default sound level of an audio
file. What if you want to have varying sound levels at certain points in the audio? We will
discuss that very soon, in the Fading effects section.

Audio effects
One adds spices for improved taste to food, similarly, to enhance the music or any sound we
add audio effects. There is a wide range of audio effect plugins available in GStreamer. We
will discuss some of the commonly used audio effects in the coming sections.

Fading effects
Fading is a gradual increase or decrease in the volume level of an audio. Fading-out means
gradually decreasing the volume of the audio file as it approaches the end. Typically, at
the end, the volume level is set as 0. On similar lines, fade-in effect gradually increases
the volume level from the beginning of an audio. In this chapter, we will learn how to add
fade-out effect to an audio. Once we learn that, it is trivial to implement fade-in effects.

x

x

Audio Controls and Effects

[176]

Time for action – fading effects
Let's add fade-out effect to an input audio. We will use the same source file as used in the
Adjusting volume section.

1. If you haven't already, download the file AudioEffects.py that has the source
code for this example.

2. In the __init__ method of this class, you will need to do one small change. Set
the flag self.fade_example to True so that it now runs the code that adds fade-
out effect.

3. We already reviewed the self.constructPipeline() method in Adjusting
volume section. It calls the method self.setupVolumeControl().

1 def setupVolumeControl(self):
2 self.volumeControl = gst.Controller(self.volume,
3 "volume")
4 self.volumeControl.set("volume", 0.0*gst.SECOND,
5 self.volumeLevel)
6 self.volumeControl.set_interpolation_mode("volume",
7 gst.INTERPOLATE_LINEAR)

4. The GStreamer Controller object is created on line 2. It is a light-weight object
that provides a way to control various properties of GStreamer objects. In this case,
it will be used to adjust the 'volume' property of self.volume. The set method
of the Controller takes three arguments, namely, the property that needs to be
controlled ("volume"), the time on the audio track at which it needs to be changed,
and the new value of that property (self.volumeLevel). Here, the volume level at
the beginning of the audio is set self.volumeLevel. Next, the interpolation mode
is set for the volume property being adjusted by the Controller object. Here, we
ask the self.volumeControl to linearly change the volume from its earlier value
to the new value as the audio track progresses. For example, if the sound level at the
beginning is set as 1.0 and at 30 seconds it is set as 0.5, the volume levels between
0 to 30 seconds on the track will be linearly interpolated. In this case it will linearly
decrease from level 1.0 at 0 seconds to level 0.5 at 30 seconds.

The GStreamer documentation suggests that Controller.
set_interpolation_mode is deprecated (but is still
backward compatible in the version 0.10.5 which is used in this
book). See a 'TODO' comment in file AudioEffects.py.

x

x

Chapter 6

[177]

5. In order to add a fade-out effect towards the end, first we need to get the total
duration of the audio being played. We can query the duration only after the audio
has been set for playing (example, when it is in gst.STATE_PLAYING mode). This is
done in self.play() method.

def play(self):
 self.is_playing = True
 self.pipeline.set_state(gst.STATE_PLAYING)

 if self.fade_example:
 self.addFadingEffect()

 while self.is_playing:
 time.sleep(1)
 self.printFinalStatus()
 evt_loop.quit()

6. Once the pipeline's state is set to gst.STATE_PLAYING, the
self.addFadingEffects() method will be called as shown by
the highlighted line of code.

7. We will review this method now.

1 def addFadingEffect(self):
2 # Fist make sure that we can add the fading effect!
3 if not self.is_playing:
4 print ("\n Error: unable to add fade effect"
5 "addFadingEffect() called erroniously")
6 return
7
8 time.sleep(0.1)
9 try:
10 duration = (
11 self.pipeline.query_duration(gst.FORMAT_TIME,
12 None) [0])
13 #Convert the duration into seconds.
14 duration = duration/gst.SECOND
15 except gst.QueryError:
16 # The pipeline has probably reached
17 # the end of the audio, (and thus has 'reset' itself)
18 print ("\n Error: unable to determine duration."
19 "Fading effect not added.")
20 return
21
22 if duration < 4:

x

x

Audio Controls and Effects

[17�]

23 print ("ERROR: unable to add fading effect."
24 "\n duration too short.")
25 return
26
27 fade_start = duration - 4
28 fade_volume = self.volumeLevel
29 fade_end = duration
30
31 self.volumeControl.set("volume",
32 fade_start * gst.SECOND,
33 fade_volume)
34
35 self.volumeControl.set("volume",
36 fade_end * gst.SECOND,
37 fade_volume*0.01)

8. First we ensure that duration of the audio being played can be computed without
any errors. This is done by the code block 2-24. Next, the fade_start time is
defined. At this control point the fade-out effect will begin. The fade-out will start 4
seconds before the end of the audio. The volume will linearly decrease from
fade_start time to fade_end time. The fade_volume is the reference volume
level when the fade-out begins. On lines 30 and 34 we actually set these fade timing
and volume parameters for self.volumeController , the Controller object
that adjusts the volume. The gradual decrease in the volume level is achieved by the
gst.INTERPOLATE_LINEAR, discussed in an earlier step.

9. Develop or review the remaining code using the reference file AudioEffects.
py. Make sure to specify appropriate input and output audio paths for variables
self.inFileLocation and self.outFileLocation respectively. Then run the
program from the command line as:

$python AudioEffects.py

10. This should create the output audio file, with a fade-out effect that begins 4 seconds
before the end of the file.

What just happened?
We learned how to add a fading effect to an audio file using GStreamer multimedia
framework. We used the same GStreamer pipeline as the one used in the Adjusting
volume section, but this time, the volume level was controlled using the Controller
object in GStreamer. The technique we just learned will come handy while working on
project 'Combining Audio Clips ' later in this chapter.

x

x

Chapter 6

[17�]

Have a go hero – add fade-in effect
This is going to be straightforward. We added a fade-out effect earlier. Now extend this
utility by adding a fade-in effect to the input audio. Use a total fade duration of 4 seconds.
The fade_start time in this case will be 0 seconds. Try the interpolation mode as
gst.INTERPOLATE_CUBIC.

Echo echo echo...
Echo is a reflection of a sound heard a short time period after the original sound. In audio
processing, to achieve this effect the input audio signal is recorded and then played back
after the specified 'delay time' with a specified intensity. An echo effect can be added using
the audioecho plugin in GStreamer. The audio echo plugin should be available by default in
your GStreamer installation. Check this by running the following command:

$gst-inspect-0.10 audioecho

If it is not available, you will need to install it separately. Refer to the GStreamer website for
installation instructions.

Time for action – adding echo effect
Let's write code to add an echo effect to an input audio. The code is very similar to the one
in the AudioEffects.py file discussed in earlier section. Just to simplify the matter, we
will use the code in file EchoEffect.py file for easier understanding. Later, you can easily
integrate this with the code in AudioEffects.py.

1. Download the file EchoEffect.py that has the source code to add audio
echo effect. The file contains class AudioEffects whose constructor has the
following code.

def __init__(self):
 self.is_playing = False
 # Flag used for printing purpose only.
 self.error_msg = ''

 #the flag that determines whether to use
 # a gst Controller object to adjust the
 # intensity of echo while playing the audio.
 self.use_echo_controller = False

 self.inFileLocation = "C:/AudioFiles/audio1.mp3"
 self.outFileLocation = "C:/AudioFiles/audio1_out.mp3"

 self.constructPipeline()
 self.connectSignals()

x

x

Audio Controls and Effects

[1�0]

It is similar to the __init__ method discussed in the Fading Effects section. One
difference here is the flag self.use_echo_controller. If it is set to True, the
GStreamer Controller object will be used to adjust certain echo properties
while the audio is being streamed. We will first see how a simple echo effect can
be implemented and then discuss the echo control details. Specify the appropriate
values for audio file path variables self.inFileLocation and self.
outFileLocation.

2. Let's build the GStreamer pipeline.

1 def constructPipeline(self):
2 self.pipeline = gst.Pipeline()
3
4 self.filesrc = gst.element_factory_make("filesrc")
5 self.filesrc.set_property("location",
6 self.inFileLocation)
7
8 self.decodebin = gst.element_factory_make("decodebin")
9
10 self.audioconvert = gst.element_factory_make(
11 "audioconvert")
12 self.audioconvert2 = gst.element_factory_make(
13 "audioconvert")
14
15 self.encoder = gst.element_factory_make("lame")
16
17 self.filesink = gst.element_factory_make("filesink")
18 self.filesink.set_property("location",
19 self.outFileLocation)
20
21 self.echo = gst.element_factory_make("audioecho")
22 self.echo.set_property("delay", 1*gst.SECOND)
23 self.echo.set_property("feedback", 0.3)
24
25 if self.use_echo_controller:
26 self.setupEchoControl()
27 else:
28 self.echo.set_property("intensity", 0.5)
29
30 self.pipeline.add(self.filesrc,self.decodebin,
31 self.audioconvert,
32 self.echo,
33 self.audioconvert2,
34 self.encoder,
35 self.filesink)
36
37 gst.element_link_many(self.filesrc, self.decodebin)

x

x

Chapter 6

[1�1]

38 gst.element_link_many(self.audioconvert,
39 self.echo,
40 self.audioconvert2,
44 self.encoder,
45 self.filesink)

The audioecho element is created on line 21. The property delay specifies the
duration after which the echo sound will be played. We specify it as 1 second, and
you can increase or decrease this value further. The echo feedback value is set as
0.3. On line 28, the intensity property is set to 0.5. It can be set in a range 0.0 to 1.0
and determines the sound intensity of the echo. Thus, if you set it to 0.0, the echo
won't be heard.

3. Notice that there are two audioconvert elements. The first audioconvert
converts the decoded audio stream into a playable format input to the self.echo
element. Similarly on the other end of the echo element, we need audioconvert
element to process the audio format after the echo effect has been added. This
audio is then encoded in MP3 format and saved to the location specified by
self.filesink.

4. Run the program from the command line as:

$python EchoEffect.py

If you play the output file, the echo sound will be audible throughout the
playback duration.

5. Now we will add a feature that will allow us to add echo effect only for a certain
duration of the audio track. In the __init__ method, set the flag self.use_
echo_controller to True.

6. We will now review the method self.setupEchoControl() which is called in
self.constructPipeline().

def setupEchoControl(self):
 self.echoControl = gst.Controller(self.echo, "intensity")
 self.echoControl.set("intensity", 0*gst.SECOND, 0.5)
 self.echoControl.set("intensity", 4*gst.SECOND, 0.0)

7. Setting up gst.Controller object is very similar to the one developed in the
Fading effects section. Here, we ask the Controller object, self.echoControl,
to control the property 'intensity' of the audioecho element, self.echo. At
the beginning of the playback (0 seconds), we set the echo intensity as 0.5. We add
another control point at 4 seconds during the playback and set the intensity level
as 0.0. What this effectively means is that we don't want to hear any echo after the
first 4 seconds of the audio playback! .

x

x

Audio Controls and Effects

[1�2]

8. Run the program again from the command line as:

$python EchoEffect.py

Note that the only change done here is the value of flag self.use_echo_
controller is set to True. Play the output file; the echo sound will be audible
only for the first 4 seconds during the playback.

What just happened?
We learned how to add echo to an audio clip. To accomplish this, the audioecho element
was added and linked in the GStreamer pipeline. We also learned how to selectively add
echo effect to the audio using GStreamer Controller object.

Have a go hero – add Reverberation Effect
Suppose you are in a theater. When an actor at the center stage talks, the sound waves are
reflected from the surfaces of the theater before reaching your ears. Thus what you hear is
a bunch of these reflected sounds. This is known as reverberation effect. According to the
audioecho plugin documentation, if you set the delay property to a value of less than
0.2 seconds in audioecho element, it produces a reverberation effect. Try setting different
values for delay, less than 0.2 seconds and see how it affects the output audio. Note, this
argument is taken as an integer. Therefore, specify this value in nanoseconds. For example
specify 0.05 seconds as 50000000 instead of 0.05*gst.SECOND. This is illustrated below.

self.echo.set_property("delay", 50000000)

Panning/panorama
The stereo panorama effect can be added to a sound by using audiopanorama plugin (part
of audiofx plugin). This plugin should be available by default in your GStreamer installation.
Use gst-inspect-0.10 to verify it is there and also to know more about its properties.
Download the file PanoramaEffect.py from the Packt website. This file is more or less
identical to AudioEffects.py or EchoEffect.py. The following is a code snippet from
the self.contructPipeline method in file PanoramaEffect.py

1 # Stereo panorama effect
2 self.panorama = gst.element_factory_make("audiopanorama")
3 self.panorama.set_property("panorama", 1.0)
4
5
6 self.pipeline.add(self.filesrc,
7 self.decodebin,
8 self.audioconvert,
9 self.panorama,

x

x

Chapter 6

[1�3]

10 self.encoder,
11 self.filesink)
12
13
14 gst.element_link_many(self.filesrc, self.decodebin)
15 gst.element_link_many(self.audioconvert,
16 self.panorama,
17 self.encoder,
18 self.filesink)

We have discussed the following many times. Let's go over the code once again as a
refresher… just in case you missed it earlier. The code block 6-11 adds all the elements to
the GStreamer pipeline. Notice that we call gst.element_link_many twice. Do you recall
why? The first call on line 14 makes a connection between self.filesrc and self.
decodebin. There is one important point to note when we make a second call to gst.
element_link_many. Notice that we have not linked self.decodebin with self.
audioconvert. This is because self.decodebin implements dynamic pads. So we
connect it at the runtime, using the callback method, decodebin_pad_added.

You can review the rest of the code from this file. The audiopanorama element is created
on line 2 in the code snippet. The panorama property can have a value in the range -1.0 to
1.0. If you have stereo speakers connects, the sound will entirely come from the left speaker
if a value of -1.0 is specified. Likewise, a value of 1.0 will make the sound come from right
speaker only. In the above code snippet, we instruct the program to exclusively use the right
speaker for audio streaming. The audio will be streamed from both speakers if the value is
in-between these two limits. Each speaker's contribution will be determined by actual value.

Have a go hero – control panorama effect and more...
'Move' the sound around! Add a GStreamer Controller object to adjust the panorama
property of the self.panorama element. This is similar to what we did in EchoEffect.
py. Add some control points in the audio stream as done earlier, and specify different values
for the panorama property.

Integrate this feature with the code in AudioEffects.py discussed earlier in this chapter.

Project: combining audio clips
It is time for a project! In this project, we will create a single audio file, which has custom
audio clips appended one after the other. Here, we will apply several of the things learned
in earlier section, and also in the previous chapter on audio processing.

x

x

Audio Controls and Effects

[1�4]

Creating a new audio file, which is a combination of several audio tracks of your choice
involves the following steps:

First thing we need are the audio files that need to be included. Depending upon
our requirement, we may need only a small portion of an audio track. So we will
develop a general application considering this possibility. This is illustrated in the
time-line illustrated earlier.
Next, we need to make sure that these audio pieces are played in a specified order.
There should be a 'blank' or a 'silent' audio in-between the two audio pieces.
Next, we will also implement audio fade-out effect for each of the pieces in the
track. This will ensure that the audio doesn't end abruptly.

Media 'timeline' explained
Before we begin this project, it is important to understand the concept of a timeline. A
timeline can be viewed as the overall representation of a path where you can control the
time for which an individual audio clip is played.

In this project, since we are saving the resultant audio, it is the same as the total playback
time of the resultant audio. In this timeline, we can specify 'when' an audio needs to be
played and how long it needs to be played. This is better explained with the illustration
below. Consider a timeline with a total duration of 250 seconds. This is represented by the
central thick line with circles at the end. Suppose there are three audio clips, namely, Media
#1, Media #2 and Media #3 as indicated in the illustration. We wish to include a portion of
each of these audio clips in the main timeline (the audio file to be saved). In the main media
timeline, the audio between 0 seconds to 80 second represents a portion from Media #1. It
corresponds to the audio between 30 seconds to 110 seconds in Media #1. Likewise, audio
between 90 to 200 seconds on main media timeline represents a chunk from Media #2 and
so on. Thus, we can tweak the priority and position of the individual audio clips on the main
media timeline to create the desired audio output.

Main media timeline is represented with multiple media tracks in the preceding image.

x

x

Chapter 6

[1�5]

Time for action – creating custom audio by combining clips
Let's develop an application where we will combine multiple audio clips into a
single audio file.

1. Download the file CombiningAudio.py. This file contains all the code necessary
to run this application. As done earlier, we will discuss only the most important
methods in this class.

2. Write the following code.

1 import os, sys, time
2 import thread
3 import gobject
4 from optparse import OptionParser
5
6 import pygst
7 pygst.require("0.10")
8 import gst
9
10 class AudioMerger:
11 def __init__(self):
12 pass
13 def constructPipeline(self):
14 pass
15 def addFadingEffect(self):
16 pass
17 def setupFadeBin(self):
18 pass
19 def addGnlFileSources(self):
20 pass
21 def gnonlin_pad_added(self, gnonlin_elem, pad):
22 pass
23 def run(self):
24 pass
25 def connectSignals(self):
26 pass
27 def printUsage(self):
28 pass
29 def printFinalStatus(self):
30 pass
31 def message_handler(self, bus, message):
32 pass
33 #Run the program
34 audioMerger = AudioMerger()
35 thread.start_new_thread(audioMerger.run, ())
36 gobject.threads_init()
37 evt_loop = gobject.MainLoop()
38 evt_loop.run()

x

x

Audio Controls and Effects

[1�6]

The overall structure of the code is identical to several other examples in this
book. We will expand some of the class methods such as addFadingEffect,
setupFadeBin in the next steps.

3. Now, let's review the constructPipeline method.

1 def constructPipeline(self):
2 self.pipeline = gst.Pipeline()
3 self.composition = (
4 gst.element_factory_make("gnlcomposition"))
5
6 # Add audio tracks to the gnl Composition
7 self.addGnlFileSources()
8
9 self.encoder = gst.element_factory_make("lame",
10 "mp3_encoder")
11 self.filesink = gst.element_factory_make("filesink")
12 self.filesink.set_property("location",
13 self.outFileLocation)
14
15 # Fade out the individual audio pieces
16 # when that audio piece is approaching end
17 self.addFadingEffect()
18
19 self.pipeline.add(self.composition,
20 self.fadeBin,
21 self.encoder,
22 self.filesink)
23
24 gst.element_link_many(self.fadeBin,
25 self.encoder,
26 self.filesink)

We used functionality such as gnlcomposition, gnlcontroller, and so on while
implementing audio fading effects in an earlier section. These modules will be used
in this project as well. On line 7, all the audio clips we wish to include are added
to the timeline or gnlcomposition. We will review this method later. Note that
the gnlcomposition uses dynamic pads. The pad-added signal is connected in
self.connectSignals. On line 17, a fading effect is set up for the audio clips.
This ensures smooth termination of individual audio clips in the timeline. Finally,
the code block between lines 19 to 26 constructs the pipeline and links various
GStreamer elements in the pipeline. Let's review other important methods in this
class one by one.

x

x

Chapter 6

[1�7]

4. The method self.addGnlFileSources does multiple things. It adds the audio
clips to the main timeline in a desired order. This method also ensures that there
is some 'breathing space' or a blank audio of a short duration in between any two
audio clips. Write the following method.

1 def addGnlFileSources(self):
2 #Parameters for gnlfilesources
3 start_time_1 = 0
4 duration_1 = 20
5 media_start_time_1 = 20
6 media_duration_1 = 20
7 inFileLocation_1 = "C:/AudioFiles/audio1.mp3"
8
9 start_time_2 = duration_1 + 3
10 duration_2 = 30
11 media_start_time_2 = 20
12 media_duration_2 = 30
13 inFileLocation_2 ="C:/AudioFiles/audio2.mp3"
14
15 #Parameters for blank audio between 2 tracks
16 blank_start_time = 0
17 blank_duration = start_time_2 + duration_2 + 3
18
19 # These timings will be used for adding fade effects
20 # See method self.addFadingEffect()
21 self.fade_start_1 = duration_1 - 3
22 self.fade_start_2 = start_time_2 + duration_2 - 3
23 self.fade_end_1 = start_time_1 + duration_1
24 self.fade_end_2 = start_time_2 + duration_2
25
26 filesrc1 = gst.element_factory_make("gnlfilesource")
27 filesrc1.set_property("uri",
28 "file:///" + inFileLocation_1)
29 filesrc1.set_property("start", start_time_1*gst.SECOND)
30 filesrc1.set_property("duration",
31 duration_1 * gst.SECOND)
32 filesrc1.set_property("media-start",
33 media_start_time_1*gst.SECOND)
34 filesrc1.set_property("media-duration",
35 media_duration_1*gst.SECOND)
36 filesrc1.set_property("priority", 1)
37
38 # Setup a gnl source that will act like a blank audio
39 # source.

x

x

Audio Controls and Effects

[1��]

40 gnlBlankAudio= gst.element_factory_make("gnlsource")
41 gnlBlankAudio.set_property("priority", 4294967295)
42 gnlBlankAudio.set_property("start",blank_start_time)
43 gnlBlankAudio.set_property("duration",
44 blank_duration * gst.SECOND)
45
46 blankAudio = gst.element_factory_make("audiotestsrc")
47 blankAudio.set_property("wave", 4)
48 gnlBlankAudio.add(blankAudio)
49
50 filesrc2 = gst.element_factory_make("gnlfilesource")
51 filesrc2.set_property("uri",
52 "file:///" + inFileLocation_2)
53 filesrc2.set_property("start",
54 start_time_2 * gst.SECOND)
55 filesrc2.set_property("duration",
56 duration_2 * gst.SECOND)
57 filesrc2.set_property("media-start",
58 media_start_time_2*gst.SECOND)
59 filesrc2.set_property("media-duration",
60 media_duration_2*gst.SECOND)
61 filesrc2.set_property("priority", 2)
63
63 self.composition.add(gnlBlankAudio)
64 self.composition.add(filesrc1)
65 self.composition.add(filesrc2)

First we declare various parameters needed to put the audio clips in the main
timeline. Here, the audio clips are mostly the gnlfilesource elements whereas
the timeline is the total length of the output audio track. This parameter setting is
done by the code between lines 3 to 13. In this example, we are combining only two
audio clips. Replace the audio file paths on lines 7 and 13 with the appropriate file
paths on your machine.

Important note for Windows users: Make sure to specify the file path
with forward slashes '/' as shown on line 13 of the code snippet. If
the path is specified as, for instance, C:\AudioFiles\audio2.
mp3, the '\a' is treated differently by GStreamer! A workaround could
be to normalize the path or to always use forward slashes while
specifying the path. In this case C:/AudioFiles/audio2.mp3.

x

x

Chapter 6

[1��]

The first media file will be placed for 20 seconds on the main timeline. The total
duration of the audio is specified by the parameter media_duration_1. The
parameter media_start_1 specifies the actual time of the first audio file which will
be the start_time_1 on the main timeline. The basic concept behind timeline is
explained earlier in this section. Try tweaking a few parameters to get a good grasp
of how the timeline works. For the second audio, notice how the start_time_2 is
specified. It is equal to duration_1 + 3. A time of 3 seconds is added so that there
is a 'sound of silence' between two tracks. You can change this to a silent duration of
your choice.

5. Next, the parameters necessary for the blank audio are defined. In general, the
gnlcomposition will 'play' the blank audio when nothing else is being played (this
is with the assumption that a proper priority is set). We define the total duration
of this silent track sufficiently long enough, longer than the combined duration
of all the audio clips, so that this track is 'available to play' when the time comes.
Note that gnlcomposition won't play the silent track for its complete duration!
It is just so that we have a long enough track that can be played at various points.
In this project, we are only using two audio files. So, it is not really necessary to set
blank duration parameter as greater than or equal to the total timeline duration.
It is okay if we just have it for 3 seconds. But imagine that you have more than 2
audio clips. The silent audio will be played between tracks 1 and 2 but then it won't
be available for tracks between 2 and 3! If we were to have 3 audio tracks, then the
blank audio duration can be set as illustrated in the following code snippet and by
adding another gnlfilesource to the self.composition. You can also test the
resultant audio file by specifying blank_duration = 3. In that case, there won't be
a silent track between audio clips 2 and 3!

start_time_3 = start_time_2 + duration_2 + 3
duration_3 = 30
media_start_time_3 = 0
media_duration_3 = 30
inFileLocation_3 ="C:\AudioFiles\audio3.mp3"
Parameters for blank audio between 2 tracks
blank_start_time = 0
blank_duration = start_time_3 + duration_3 + 3

6. The code between lines 19 to 24 sets up some instance variables needed to add
fade-out effect to the individual audio clips in the gnlcomposition. These will be
used in the self.addFadingEffect method.

x

x

Audio Controls and Effects

[1�0]

7. The code blocks 26-36 and 50-61 define the gnlfilesource elements to be added
to the self.composition along with their properties. We have already learned
about gnlfilesource, so these code blocks should be self-explanatory. However,
see the code on lines 36 ad 61? Here we set the priority of the audio clips in the
main timeline. It is important step. If you don't define the priority, by default, each
gnlsource will have highest priority indicated by value '0'. This is a little bit tricky.
It is best explained by tweaking certain values and actually playing the output audio!
Let's keep it simple for now. See the next 'Have a go Hero' section that asks you to
experiment a few things related to the priority.

8. Let's review the code block 40-44. Here, a gnlsource (and not gnlfilesource) is
created on line 40. We call it gnlBlankAudio. Line 41 is very important. It tells the
program to consider this element last. That is, gnlBlankAudio is set with the least
possible priority among the elements added to the gnlcomposition. This ensures
that the blank piece of audio is played only between the tracks and not as an audio
clip of its own. Whenever the start point of the next audio in the gnlcomposition
approaches, it will push the gnlBlankAudio to a backseat and start playing this
new audio clip instead. This is because the other audio clips are set at a higher
priority than the gnlBlankAudio. You might be wondering what the value
4294967295 for priority signifies. If you run gst-inspect-0.10 command on
gnlsource you will notice that the priority has a range from 0 to4294967295.
Thus the least possible priority level is 4294967295. In this example, we can get
away with the priority level of 3 because we have specified the blank_duration
parameter appropriately. But, suppose you don't know beforehand what blank_
duration should be and you set it to a large number. In this case, if you have set
the priority of gnlBlankAudio as 3, at the end of the output audio it will play the
remaining portion of the gnlBlankAudio. Thus, the total track duration will be
unnecessarily increased. Instead, if you use priority as 4294967295, it won't play
the surplus portion of the blank audio. If you have multiple of audio tracks and if
their number is not known to begin with, the least priority level we are using is the
safest value for the blank audio clip. As mentioned earlier, the following priority for
gnlBlankAudio should work as well.

gnlBlankAudio.set_property("priority", 3)

x

x

Chapter 6

[1�1]

9. On line 46, an audiotestsrc element is created. This plugin should be available
in your installation of GStreamer. This plugin can be used to generate several
elementary audio signals such as a sine waveform, a silent wave form, and so
on. Run gst-inspect-0.10 on audiotestsrc to see what types of audio
signals it can generate. The type of audio signal we need can be specified by
the 'wave' property of audiotestsrc . The value of 4 for wave property
corresponds to a silence waveform. A value of 3 generates triangle wave forms
and so on. On line 48, the audiotestsrc element is added to the gnlsource
element (gnlBlankAudio). This simply means that when we start playing the
gnlcomposition, the silent audio pertaining gnlsource element is generated
using audiotestsrc element within it.

10. Finally, the code between lines 63-65 adds the gnlfilesource and gnlsource
elements to the self.composition.

11. Now we will quickly review the method self.addFadingEffect().

1 def addFadingEffect(self):
2 self.setupFadeBin()
3
4 #Volume control element
5 self.volumeControl = gst.Controller(self.volume,
6 "volume")
7 self.volumeControl.set_interpolation_mode("volume",
8 gst.INTERPOLATE_LINEAR)
9
10 fade_time = 20
11 fade_volume = 0.5
12 fade_end_time = 30
13
14 reset_time = self.fade_end_1 + 1
15
16 self.volumeControl.set("volume",
17 self.fade_start_1 * gst.SECOND,
18 1.0)
19 self.volumeControl.set("volume",
20 self.fade_end_1 * gst.SECOND,
21 fade_volume*0.2)
22 self.volumeControl.set("volume",
23 reset_time * gst.SECOND,
24 1.0)
25 self.volumeControl.set("volume",
26 self.fade_start_2 * gst.SECOND,
27 1.0)
28 self.volumeControl.set("volume",
29 self.fade_end_2 * gst.SECOND,
30 fade_volume*0.2)

x

x

Audio Controls and Effects

[1�2]

12. In Fading effects section, we added fade-out effect to an audio file. In that section
individual elements such as audio convert and volume were added and linked in the
main pipeline. Here, we will follow a different way, so as to learn a few more things
in GStreamer. We will create a GStreamer bin element to add the fade-out effect
to the audio clips. You can choose to do it the old way, but creating a bin provides
a certain level of abstraction. The bin element is created by the highlighted line of
code. We will review that method next. The rest of the code in this method is very
similar to the one developed earlier. The self.volumeControl is a GStreamer
Controller element. We specify volume at appropriate time intervals in the
timeline to implement fade-out effect for the individual audio clips. It is important to
adjust the level of volume back to the original one after each fade_end time. This
ensures that the next clip starts with an appropriate level of volume. This is achieved
by code between lines 22-24.

13. Now let's see how to construct a GStreamer bin element for the fading effect.

1 def setupFadeBin(self):
2 self.audioconvert = gst.element_factory_make(
3 "audioconvert")
4 self.volume = gst.element_factory_make("volume")
5 self.audioconvert2 = gst.element_factory_make(
6 "audioconvert")
7
8 self.fadeBin = gst.element_factory_make("bin",
9 "fadeBin")
10 self.fadeBin.add(self.audioconvert,
11 self.volume,
12 self.audioconvert2)
13
14 gst.element_link_many(self.audioconvert,
15 self.volume,
16 self.audioconvert2)
17
18 # Create Ghost pads for fadeBin
19 sinkPad = self.audioconvert.get_pad("sink")
20 self.fadeBinSink = gst.GhostPad("sink", sinkPad)
21 self.fadeBinSrc = (
22 gst.GhostPad("src", self.audioconvert2.get_pad("src")))
23
24 self.fadeBin.add_pad(self.fadeBinSink)
25 self.fadeBin.add_pad(self.fadeBinSrc)

x

x

Chapter 6

[1�3]

14. On lines 2-6, we define the elements necessary to change volume of an audio in
a GStreamer pipeline. This is nothing new. On line 8, we create self.fadeBin, a
GStreamer bin element. A bin is a container that manages the element objects
added to it. The essential elements are added to this bin on line 10. The elements
are then linked the same way we link elements in a GStreamer pipeline. The bin
itself is pretty much set up. But there is one more important thing. We need to
ensure that this bin can be linked with other elements in a GStreamer pipeline.
For that we need to create ghost pads.

15. Recall what a ghost pad is from the last chapter. A bin element is an 'abstract
element'. It doesn't have pads of its own. But in order to work like an element, it
needs pads to connect to the other elements within the pipeline. So the bin uses
a pad of an element within it as if it was its own pad. This is called a ghost pad.
Thus the ghost pads are used to connect an appropriate element inside a bin.
It enables using a bin object as an abstract element in a GStreamer pipeline. We
create two ghost pads. One as src pad and one as sink pad. It is done by the
code on lines 19-22. Note that we use sink pad of self.audioconvert as the
sink ghost pad of the bin and src pad of self.audioconvert2 as src ghost
pad. Which pad to use as src or sink is decided by how we link elements within the
bin. Looking at the code between lines 14 to 17 will make it clear. Finally, the ghost
pads are added to the self.fadeBin on lines 24 and 25.

16. The method self.gnonlin_pad_added() gets called whenever the pad-added
signal is emitted for self.composition. Notice that compatible_pad in this
method is obtained from self.fadeBin.

def gnonlin_pad_added(self, gnonlin_elem, pad):
 caps = pad.get_caps()
 compatible_pad = \
 self.fadeBin.get_compatible_pad(pad, caps)
 pad.link(compatible_pad)

17. Develop the rest of the methods by reviewing the code in file CombiningAudio.
py. Be sure to specify appropriate input and output audio file locations. Once all the
pieces are in place, run the program as:

python CombiningAudio.py

This should create the output audio file containing audio clips combined together!

x

x

Audio Controls and Effects

[1�4]

What just happened?
In this project we developed a cool application that can combine two or more audio clips
into a single audio file. To accomplish this, we used many audio processing techniques
learned in earlier sections and the previous chapter on audio processing. We made use of
various elements from gnonlin plugin such as gnlcomposition, gnlfilesource, and
gnlsource . We learned how to create and link a GStreamer bin container to represent
the fade-out effect as an abstract element in the pipeline. Among other things, we learned
how to insert a blank audio in-between audio clips.

Have a go hero – change various properties of 'gnlfilesource'
In the earlier Time for action section, we set priority property for the two gnlfilesource
elements added to the gnlcomposition. Tweak the start and the priority properties
of the two gnlfilesource elements to see what happens to the output audio. For
example, swap the priority of two gnlfilesource elements and change the start_time_
2 to duration_1, and see what happens. Notice how it affects the playback of the first
audio clip!

Audio mixing
Imagine that you have some instrumental music files in your collection. You have a hidden
desire to become a playback singer and you wish to sing these songs with the background
music. What will you do? Well, the simplest thing to do is to put on headphones and play any
instrumental music. Then sing along and record your vocal. OK, what's next? You need to mix
the instrumental music and your own vocal together to get what you want!

Let's see how to mix two audio tracks together. The interleave is a GStreamer plugin that
facilitates mixing of two audio tracks. It merges multiple mono channel input audios into
a single audio stream in a non-contiguous fashion. This plugin should be available in your
default GStreamer installation.

Time for action – mixing audio tracks
Let's write a utility that can mix two audio streams together.

1. Download the file AudioMixer.py which contains the source code for this utility.

2. Now we will review the constructPipeline method. The API method
gst.parse_launch() explained in the previous chapter will be used here.

1 def constructPipeline(self):
2 audio1_str = (" filesrc location=%s ! "
3 "decodebin ! audioconvert ! "

x

x

Chapter 6

[1�5]

4 % (self.inFileLocation_1))
5
6 audio2_str = (" filesrc location=%s "
7 "! decodebin ! audioconvert ! "
8 %(self.inFileLocation_2))
9
10 interleave_str = ("interleave name=mix ! "
11 " audioconvert ! lame ! "
12 " filesink location=%s"%self.outFileLocation)
13
14 queue_str = " ! queue ! mix."
15
16 myPipelineString = (
17 interleave_str + audio1_str + queue_str +
18 audio2_str + queue_str)
19
20 self.pipeline = gst.parse_launch(myPipelineString)

3. The audio1_str and audio2_str are the portions of the main pipeline strings.
Each of these contain filesrc , decodebin, and audioconvert elements. The
filesrc provides the location of respective input audio files. By now, we very well
know what this portion of a GStreamer pipeline does.

4. On lines 10-12, the interleave_str defines another portion of the main pipeline
string. The data output from the interleave element needs to be converted into
a format expected by the encoder element. The encoder is then connected to the
filesink element where the output audio will be stored.

5. As mentioned earlier, the interleave merges multiple audio channels into a
single audio stream. In this case, the interleave element reads in data from two
different audio streams via queue elements.

The sink pad of the queue element is linked with the audioconvert element.
The queue element is a buffer to which the audio data from the audioconvert
is written. Then this data is further read by the interleave element. This
linkage within the GStreamer pipeline can be represented by the following string
"audioconvert ! queue ! mix.". Note that the dot '.' after 'mix' is
important. It is a part of the syntax when gst.parse_launch is used.

6. To summarize, the data streamed from the portions of the pipeline,
audio1_str and audio2_str, will be ultimately read by the interleave
via 'queue' elements and then it will follow the rest of the pipeline represented
by interleave_str.

On line 20, the pipeline string is fed to gst.parse_launch to create a GStreamer
pipeline instance.

x

x

Audio Controls and Effects

[1�6]

7. Review the rest of the code from the source file AudioMixer.py. Change the
input and output audio file path strings represented by self.inFileLocation_1,
self.inFileLocation_2, and self.outFileLocation. Then run the code as:

$python AudioMixer.py

This should create the interleaved audio output. If you play this audio file, you will
hear both the audio clips playing at once. Try selecting only a single audio channel,
such as "Left" channel or "Right" channel. In this case, you will notice that each of
these audio clips is sent stored on a separate channel. For example, if you play only
the left channel, only one of these audio clips will be heard, so would be the case for
the other channel.

What just happened?
Using interleave element, we merged two audio tracks to create an interleaved audio.
This can be used as an audio mixing utility. We learned how to use queue element as an
audio data buffer which is then read by the interleave element.

Visualizing an audio track
Most of the popular audio players provide a feature to 'visualize' the audio being played. This
visualization effect is typically generated on the fly and is synchronized with the audio signal.
Typically, the visualizer responds to changes in audio frequency and volume level among
other properties. These changes are then shown by use of animated graphics. GStreamer
provides certain plugins to visualize a track. The 'monoscope' visualization plugin is generally
available in the default GStreamer installation. It displays a highly stabilized waveform of the
streaming audio. Make sure that the GStreamer installation has the monoscope plugin by
running the gst-inspect-0.10 command. There are several other popular plugins such
as goom and libvisual. But these are not available by default in the GStreamer binary
installed on Windows XP. You can install these plugins and try using these to add
visualization effects.

Time for action – audio visualizer
The visualization effect can be added to the streaming audio using different techniques. We
will use the simplest approach of all to develop a Music Visualizer utility.

Here, we will be using the playbin plugin of GStreamer. Recall that the playbin was first
used in the Playing an audio from a Website section of the Working with Audios chapter. This
plugin provides a higher level audio /video player and it should be available in the default
GStreamer installation.

x

x

Chapter 6

[1�7]

1. Download the file MusicVisualizer.py from the Packt website. This is a small
program. The class methods are represented below. Look at the code from this file
for more details.

class AudioPlayer:
 def __init__(self):
 pass
 def connectSignals(self):
 pass
 def play(self):
 pass
 def message_handler(self, bus, message):
 pass

Most of the code is identical to the one illustrated in the Playing audio from a
website section of the previous chapter. The only difference here is the constructor
of the class where various properties of the playbin element are defined.

Now let's review the constructor of the class AudioPlayer.

1 def __init__(self):
2 self.is_playing = False
3 inFileLocation = "C:/AudioFiles/audio1.mp3"
4
5 #Create a playbin element
6 self.player = gst.element_factory_make("playbin")
7
8 # Create the audio visualization element.
9 self.monoscope = gst.element_factory_make("monoscope")
10 self.player.set_property("uri",
11 "file:///" + inFileLocation)
12 self.player.set_property("vis-plugin", self.monoscope)
13 self.connectSignals()

2. Modify the inFileLocation on line 3 to match an audio file path on your
computer. On line 6 and 8, the playbin and monoscope elements are created.
The latter is a plugin that enables audio visualization. On line 12, we set the
value for property vis-plugin as the monoscope element created earlier.
The vis-plugin stands for 'visualization plugin' that the playbin element
should use to visualize the music.

3. That's all! You can review the rest of the code from the file MusicVisualizer.py.
Now run the program from the command line as:

$python MusicVisualizer.py

x

x

Audio Controls and Effects

[1��]

This should start playing the input audio file and at the same time, it should also pop
up a small window where you can 'visualize' the streaming audio.

Note: The overall performance of this application may depend on the
number of processes running at the time this program is run. It may also
depend on the specifications of your computer such as processor speed.

Here, the stable audio waveform will be shown as the music plays. The following
shows a snapshot of this visualization window at two different timeframes.

Snapshots at some random timeframes using Music Visualizer using 'monoscope' are
depicted here.

What just happened?
We used the GStreamer plugins playbin and monoscope to develop an audio visualization
utility for a streaming audio. The monoscope element provided a way to visualize highly
stable audio waveforms.

Have a go hero – use other visualization plugins
To illustrate visualization effects for an audio, the monoscope plugin was used. If you have
some other visualization plugins available in the GStreamer installation, use those to create
different visualization effects. The following are some of the plugins that can be used for
this purpose: goom, goom2k1, libvisual, and synaesthesia. The audio visualization
accomplished by synaesthesia plugin is shown in the next illustration.

x

x

Chapter 6

[1��]

Music Visualizer using 'synaesthesia': Snapshots at some random timeframes is
depicted here.

Summary
We learned a lot in this chapter about various audio enhancement and control techniques.
The GStreamer multimedia framework was used to accomplish this. We specifically covered:

Audio controls: How to control the streaming of an audio data. With the help of
coding illustrations, we learned about playback controls such as play, pause, seek,
and stop. These controls were then used in a project where a portion of an audio
was extracted.

Adding effects: Enhancing the audio by adding audio effects such as fade-in,
echo/reverberation, and so on.

Non-linear audio editing: How to combine two or more audio streams into a single
track. This was done in one of the projects we undertook.

Audio mixing technique to merge multiple mono channel audio streams into a single
interleaved audio.

Additionally, we also learned techniques such as visualizing an audio. This concludes our
discussion on audio processing in Python using GStreamer framework.

In the next chapter, we will learn how to process videos using Python.

x

x

x

x

7
Working with Videos

Photographs capture the moment, but it is the video that helps us relive
that moment! Video has become a major part of our lives. We preserve our
memories by capturing the family vacation on a camcorder. When it comes to
digitally preserving those recorded memories, the digital video processing plays
an important role. In the previous chapter, to learn various audio processing
techniques, the GStreamer multimedia framework was used. We will continue
to use GStreamer for learning the fundamentals of video processing.

In this chapter, we shall:

Develop a simple command-line video player

Perform basic video manipulations such as cropping, resizing, and tweaking the
parameters such as brightness, contrast, and saturation levels of a streaming video

Add text string on top of a video stream

Learn how to convert video between different video formats

Write a utility that separates audio and video tracks from an input video file

Mix audio and video tracks to create a single video file

Save one or more video frames as still images

So let's get on with it.

x

x

Working with Videos

[202]

Installation prerequisites
We will use Python bindings of GStreamer multimedia framework to process video data.
See the installation instructions in Chapter 5, Working with Audios to install GStreamer
and other dependencies.

For video processing, we will be using several GStreamer plugins not introduced earlier.
Make sure that these plugins are available in your GStreamer installation by running the
gst-inspect-0.10 command from the console (gst-inspect-0.10.exe for Windows
XP users). Otherwise, you will need to install these plugins or use an alternative if available.

Following is a list of additional plugins we will use in this chapter:

autoconvert: Determines an appropriate converter based on the capabilities. It
will be used extensively used throughout this chapter.

autovideosink: Automatically selects a video sink to display a streaming video.

ffmpegcolorspace: Transforms the color space into a color space format that can
be displayed by the video sink.

capsfilter: It's the capabilities filter—used to restrict the type of media data
passing down stream, discussed extensively in this chapter.

textoverlay: Overlays a text string on the streaming video. Used in the Adding
text and time on a video stream section.

timeoverlay: Adds a timestamp on top of the video buffer.

clockoverlay: Puts current clock time on the streaming video.

videobalance: Used to adjust brightness, contrast, and saturation of the images.
It is used in the Video manipulations and effects section.

videobox: Crops the video frames by specified number of pixels—used in the
Cropping section.

ffmux_mp4: Provides muxer element for MP4 video muxing.

ffenc_mpeg4: Encodes data into MPEG4 format.

ffenc_png: Encodes data in PNG format—used in the Saving video frames as
images section.

x

x

Chapter 7

[203]

Playing a video
Earlier, we saw how to play an audio. Like audio, there are different ways in which a video
can be streamed. The simplest of these methods is to use the playbin plugin. Another
method is to go by the basics, where we create a conventional pipeline and create and
link the required pipeline elements. If we only want to play the 'video' track of a video file,
then the latter technique is very similar to the one illustrated for audio playback. However,
almost always, one would like to hear the audio track for the video being streamed. There
is additional work involved to accomplish this. The following diagram is a representative
GStreamer pipeline that shows how the data flows in case of a video playback.

In this illustration, the decodebin uses an appropriate decoder to decode the media data
from the source element. Depending on the type of data (audio or video), it is then further
streamed to the audio or video processing elements through the queue elements. The two
queue elements, queue1 and queue2, act as media data buffer for audio and video data
respectively. When the queue elements are added and linked in the pipeline, the thread
creation within the pipeline is handled internally by the GStreamer.

Time for action – video player!
Let's write a simple video player utility. Here we will not use the playbin plugin. The use of
playbin will be illustrated in a later sub-section. We will develop this utility by constructing
a GStreamer pipeline. The key here is to use the queue as a data buffer. The audio and video
data needs to be directed so that this 'flows' through audio or video processing sections of
the pipeline respectively.

1. Download the file PlayingVidio.py from the Packt website. The file has the
source code for this video player utility.

x

x

Working with Videos

[204]

2. The following code gives an overview of the Video player class and its methods.

import time
import thread
import gobject
import pygst
pygst.require("0.10")
import gst
import os

class VideoPlayer:
 def __init__(self):
 pass
 def constructPipeline(self):
 pass
 def connectSignals(self):
 pass
 def decodebin_pad_added(self, decodebin, pad):
 pass
 def play(self):
 pass
 def message_handler(self, bus, message):
 pass

Run the program
player = VideoPlayer()
thread.start_new_thread(player.play, ())
gobject.threads_init()
evt_loop = gobject.MainLoop()
evt_loop.run()

As you can see, the overall structure of the code and the main program execution
code remains the same as in the audio processing examples. The thread module is
used to create a new thread for playing the video. The method VideoPlayer.play
is sent on this thread. The gobject.threads_init() is an initialization function
for facilitating the use of Python threading within the gobject modules. The main
event loop for executing this program is created using gobject and this loop is
started by the call evt_loop.run().

Instead of using thread module you can make use of threading
module as well. The code to use it will be something like:

1. import threading

2. threading.Thread(target=player.play).start()

x

x

Chapter 7

[205]

You will need to replace the line thread.start_new_thread(player.
play, ()) in earlier code snippet with line 2 illustrated in the code snippet
within this note. Try it yourself!

3. Now let's discuss a few of the important methods, starting with
self.contructPipeline:

1 def constructPipeline(self):
2 # Create the pipeline instance
3 self.player = gst.Pipeline()
4
5 # Define pipeline elements
6 self.filesrc = gst.element_factory_make("filesrc")
7 self.filesrc.set_property("location",
8 self.inFileLocation)
9 self.decodebin = gst.element_factory_make("decodebin")
10
11 # audioconvert for audio processing pipeline
12 self.audioconvert = gst.element_factory_make(
13 "audioconvert")
14 # Autoconvert element for video processing
15 self.autoconvert = gst.element_factory_make(
16 "autoconvert")
17 self.audiosink = gst.element_factory_make(
18 "autoaudiosink")
19
20 self.videosink = gst.element_factory_make(
21 "autovideosink")
22
23 # As a precaution add videio capability filter
24 # in the video processing pipeline.
25 videocap = gst.Caps("video/x-raw-yuv")
26 self.filter = gst.element_factory_make("capsfilter")
27 self.filter.set_property("caps", videocap)
28 # Converts the video from one colorspace to another
29 self.colorSpace = gst.element_factory_make(
30 "ffmpegcolorspace")
31
32 self.videoQueue = gst.element_factory_make("queue")
33 self.audioQueue = gst.element_factory_make("queue")
34
35 # Add elements to the pipeline
36 self.player.add(self.filesrc,
37 self.decodebin,
38 self.autoconvert,

x

x

Working with Videos

[206]

39 self.audioconvert,
40 self.videoQueue,
41 self.audioQueue,
42 self.filter,
43 self.colorSpace,
44 self.audiosink,
45 self.videosink)
46
47 # Link elements in the pipeline.
48 gst.element_link_many(self.filesrc, self.decodebin)
49
50 gst.element_link_many(self.videoQueue, self.autoconvert,
51 self.filter, self.colorSpace,
52 self.videosink)
53
54 gst.element_link_many(self.audioQueue,self.audioconvert,
55 self.audiosink)

4. In various audio processing applications, we have used several of the elements
defined in this method. First, the pipeline object, self.player, is created. The
self.filesrc element specifies the input video file. This element is connected
to a decodebin.

5. On line 15, autoconvert element is created. It is a GStreamer bin that
automatically selects a converter based on the capabilities (caps). It translates
the decoded data coming out of the decodebin in a format playable by the
video device. Note that before reaching the video sink, this data travels through
a capsfilter and ffmpegcolorspace converter. The capsfilter element is
defined on line 26. It is a filter that restricts the allowed capabilities, that is, the type
of media data that will pass through it. In this case, the videoCap object defined on
line 25 instructs the filter to only allow video-xraw-yuv capabilities .

6. The ffmpegcolorspace is a plugin that has the ability to convert video frames to
a different color space format. At this time, it is necessary to explain what a color
space is. A variety of colors can be created by use of basic colors. Such colors form,
what we call, a color space. A common example is an rgb color space where a range
of colors can be created using a combination of red, green, and blue colors. The
color space conversion is a representation of a video frame or an image from one
color space into the other. The conversion is done in such a way that the converted
video frame or image is a closer representation of the original one.

x

x

Chapter 7

[207]

The video can be streamed even without using the combination of
capsfilter and the ffmpegcolorspace. However, the video
may appear distorted. So it is recommended to use capsfilter and
ffmpegcolorspace converter. Try linking the autoconvert element
directly to the autovideosink to see if it makes any difference.

7. Notice that we have created two sinks, one for audio output and the other for
the video. The two queue elements are created on lines 32 and 33. As mentioned
earlier, these act as media data buffers and are used to send the data to audio and
video processing portions of the GStreamer pipeline. The code block 35-45 adds all
the required elements to the pipeline.

8. Next, the various elements in the pipeline are linked. As we already know, the
decodebin is a plugin that determines the right type of decoder to use. This
element uses dynamic pads. While developing audio processing utilities, we
connected the pad-added signal from decodebin to a method decodebin_pad_
added. We will do the same thing here; however, the contents of this method will
be different. We will discuss that later.

9. On lines 50-52, the video processing portion of the pipeline is linked. The
self.videoQueue receives the video data from the decodebin. It is linked
to an autoconvert element discussed earlier. The capsfilter allows only
video-xraw-yuv data to stream further. The capsfilter is linked to a
ffmpegcolorspace element, which converts the data into a different color
space. Finally, the data is streamed to the videosink, which, in this case, is an
autovideosink element. This enables the 'viewing' of the input video. The audio
processing portion of the pipeline is very similar to the one used in earlier chapter.

10. Now we will review the decodebin_pad_added method.

1 def decodebin_pad_added(self, decodebin, pad):
2 compatible_pad = None
3 caps = pad.get_caps()
4 name = caps[0].get_name()
5 print "\n cap name is =%s"%name
6 if name[:5] == 'video':
7 compatible_pad = (
8 self.videoQueue.get_compatible_pad(pad, caps))
9 elif name[:5] == 'audio':
10 compatible_pad = (
11 self.audioQueue.get_compatible_pad(pad, caps))
12
13 if compatible_pad:
14 pad.link(compatible_pad)

x

x

Working with Videos

[20�]

11. This method captures the pad-added signal, emitted when the decodebin creates
a dynamic pad. In an earlier chapter, we simply linked the decodebin pad with a
compatible pad on the autoaudioconvert element. We could do this because the
caps or the type media data being streamed was always the audio data. However,
here the media data can either represent an audio or video data. Thus, when a
dynamic pad is created on the decodebin, we must check what caps this pad
has. The name of the get_name method of caps object returns the type of media
data handled. For example, the name can be of the form video/x-raw-rgb when
it is a video data or audio/x-raw-int for audio data. We just check the first five
characters to see if it is video or audio media type. This is done by the code block
4-11 in the code snippet. The decodebin pad with video media type is linked with
the compatible pad on self.videoQueue element. Similarly, the pad with audio
caps is linked with the one on self.audioQueue.

12. Review the rest of the code from the PlayingVideo.py. Make sure you specify an
appropriate video file path for the variable self.inFileLocation and then run
this program from the command prompt as:

 $python PlayingVideo.py

This should open a GUI window where the video will be streamed. The
audio output will be synchronized with the playing video.

What just happened?
We created a command-line video player utility. We learned how to create a GStreamer
pipeline that can play synchronized audio and video streams. It explained how the queue
element can be used to process the audio and video data in a pipeline. In this example, the
use of GStreamer plugins such as capsfilter and ffmpegcolorspace was illustrated.
The knowledge gained in this section will be applied in the upcoming sections in this chapter.

Have a go hero – add playback controls
In Chapter 6, Audio Controls and Effects we learned different techniques to control the
playback of an audio. Develop command-line utilities that will allow you to pause the video
or directly jump to a specified position on the video track.

Playing video using 'playbin'
The goal of the previous section was to introduce you to the fundamental method of
processing input video streams. We will use that method one way or another in the
future discussions. If just video playback is all that you want, then the simplest way to
accomplish this is by means of playbin plugin. The video can be played just by replacing
the VideoPlayer.constructPipeline method in file PlayingVideo.py with the

x

x

Chapter 7

[20�]

following code. Here, self.player is a playbin element. The uri property of playbin is
set as the input video file path.

def constructPipeline(self):
 self.player = gst.element_factory_make("playbin")
 self.player.set_property("uri",
 "file:///" + self.inFileLocation)

Video format conversion
Saving the video in a different file format is one of the frequently performed tasks—for
example, the task of converting a recorded footage on to your camcorder to a format
playable on a DVD player. So let's list out the elements we need in a pipeline to carry
out the video format conversion.

A filesrc element to stream the video file and a decodebin to decode the
encoded input media data.

Next, the audio processing elements of the pipeline, such as audioconvert,
an encoder to encode the raw audio data into an appropriate audio format
to be written.

The video processing elements of the pipeline, such as a video encoder element to
encode the video data.

A multiplexer or a muxer that takes the encoded audio and video data streams and
puts them into a single channel.

There needs to be an element that, depending on the media type, can send the
media data to an appropriate processing unit. This is accomplished by queue
elements that act as data buffers. Depending on whether it is an audio or video
data, it is streamed to the audio or video processing elements. The queue is also
needed to stream the encoded data from audio pipeline to the multiplexer.

Finally, a filesink element to save the converted video file (containing both audio
and video tracks).

Time for action – video format converter
We will create a video conversion utility that will convert an input video file into a
format specified by the user. The file you need to download from the Packt website is
VideoConverter.py. This file can be run from the command line as:

python VideoConverter.py [options]

x

x

Working with Videos

[210]

Where, the options are as follows:

--input_path: The full path of the video file we wish to convert. The video format
of the input files. The format should be in a supported list of formats. The supported
input formats are MP4, OGG, AVI, and MOV.

--output_path: The full path of the output video file. If not specified, it will create
a folder OUTPUT_VIDEOS within the input directory and save the file there with
same name.

--output_format: The audio format of the output file. The supported output
formats are OGG and MP4.

As we will be using a decodebin element for decoding the
input media data; there is actually a wider range of input formats
this utility can handle. Modify the code in VideoPlayer.
processArguments or add more formats to dictionary
VideoPlayer.supportedInputFormats.

1. If not done already, download the file VideoConverter.py from the
Packt website.

2. The overall structure of the code is:

import os, sys, time
import thread
import getopt, glob
import gobject
import pygst
pygst.require("0.10")
import gst

class VideoConverter:
 def __init__(self):
 pass
 def constructPipeline(self):
 pass
 def connectSignals(self):
 pass
 def decodebin_pad_added(self, decodebin, pad):
 pass
 def processArgs(self):
 pass
 def printUsage(self):
 pass
 def printFinalStatus(self, starttime, endtime):
 pass

x

x

Chapter 7

[211]

 def convert(self):
 pass
 def message_handler(self, bus, message):
 pass

Run the converter
converter = VideoConverter()
thread.start_new_thread(converter.convert, ())
gobject.threads_init()
evt_loop = gobject.MainLoop()

evt_loop.run()

A new thread is created by calling thread.start_new_thread,
to run the application. The method VideoConverter.convert
is sent on this thread. It is similar to the VideoPlayer.play
method discussed earlier. Let's review some key methods of the
class VideoConverter.

3. The __init__ method contains the initialization code. It also calls methods
to process command-line arguments and then build the pipeline. The code is
illustrated as follows:

1 def __init__(self):
2 # Initialize various attrs
3 self.inFileLocation = ""
4 self.outFileLocation = ""
5 self.inputFormat = "ogg"
6 self.outputFormat = ""
7 self.error_message = ""
8 # Create dictionary objects for
9 # Audio / Video encoders for supported
10 # file format
11 self.audioEncoders = {"mp4":"lame",
12 "ogg": "vorbisenc"}
13
14 self.videoEncoders={"mp4":"ffenc_mpeg4",
15 "ogg": "theoraenc"}
16
17 self.muxers = {"mp4":"ffmux_mp4",
18 "ogg":"oggmux" }
19
20 self.supportedOutputFormats = self.audioEncoders.keys()
21
22 self.supportedInputFormats = ("ogg", "mp4",
23 "avi", "mov")

x

x

Working with Videos

[212]

24
25 self.pipeline = None
26 self.is_playing = False
27
28 self.processArgs()
29 self.constructPipeline()
30 self.connectSignals()

To process the video file, we need audio and video encoders. This utility will support
the conversion to only MP4 and OGG file formats. This can be easily extended to
include more formats by adding appropriate encoders and muxer plugins. The values
of the self.audioEncoders and self.videoEncoders dictionary objects specify
the encoders to use for the streaming audio and video data respectively. Therefore,
to store the video data in MP4 format, we use the ffenc_mp4 encoder. The encoders
illustrated in the code snippet should be a part of the GStreamer installation on your
computer. If not, visit the GStreamer website to find out how to install these plugins.
The values of dictionary self.muxers represent the multiplexer to use in a specific
output format.

4. The constructPipeline method does the main conversion job. It builds the
required pipeline, which is then set to playing state in the convert method.

1 def constructPipeline(self):
2 self.pipeline = gst.Pipeline("pipeline")
3
4 self.filesrc = gst.element_factory_make("filesrc")
5 self.filesrc.set_property("location",
6 self.inFileLocation)
7
8 self.filesink = gst.element_factory_make("filesink")
9 self.filesink.set_property("location",
10 self.outFileLocation)
11
12 self.decodebin = gst.element_factory_make("decodebin")
13 self.audioconvert = gst.element_factory_make(
14 "audioconvert")
15
16 audio_encoder = self.audioEncoders[self.outputFormat]
17 muxer_str = self.muxers[self.outputFormat]
18 video_encoder = self.videoEncoders[self.outputFormat]
19
20 self.audio_encoder= gst.element_factory_make(
21 audio_encoder)
22 self.muxer = gst.element_factory_make(muxer_str)
23 self.video_encoder = gst.element_factory_make(
24 video_encoder)

x

x

Chapter 7

[213]

25
26 self.videoQueue = gst.element_factory_make("queue")
27 self.audioQueue = gst.element_factory_make("queue")
28 self.queue3 = gst.element_factory_make("queue")
29
30 self.pipeline.add(self.filesrc,
31 self.decodebin,
32 self.video_encoder,
33 self.muxer,
34 self.videoQueue,
35 self.audioQueue,
36 self.queue3,
37 self.audioconvert,
38 self.audio_encoder,
39 self.filesink)
40
41 gst.element_link_many(self.filesrc, self.decodebin)
42
43 gst.element_link_many(self.videoQueue,
44 self.video_encoder, self.muxer, self.filesink)
45
46 gst.element_link_many(self.audioQueue,self.audioconvert,
47 self.audio_encoder, self.queue3,
48 self.muxer)

In an earlier section, we covered several of the elements used in the previous pipe-
line. The code on lines 43 to 48 establishes linkage for the audio and video process-
ing elements. On line 44, the multiplexer, self.muxer is linked with the video
encoder element. It puts the separate parts of the stream—in this case, the video
and audio data, into a single file. The data output from audio encoder, self.au-
dio_encoder, is streamed to the muxer via a queue element, self.queue3. The
muxed data coming out of self.muxer is then streamed to the self.filesink.

5. Let's quickly review the VideoConverter.convert method.

1 def convert(self):
2 # Record time before beginning Video conversion
3 starttime = time.clock()
4
5 print "\n Converting Video file.."
6 print "\n Input File: %s, Conversion STARTED..." %
7 self.inFileLocation
8
9 self.is_playing = True
10 self.pipeline.set_state(gst.STATE_PLAYING)
11 while self.is_playing:
12 time.sleep(1)

x

x

Working with Videos

[214]

13
14 if self.error_message:
15 print "\n Input File: %s, ERROR OCCURED." %
16 self.inFileLocation
17 print self.error_message
18 else:
19 print "\n Input File: %s, Conversion COMPLETE " %
20 self.inFileLocation
21
22 endtime = time.clock()
23 self.printFinalStatus(starttime, endtime)
24 evt_loop.quit()

On line 10, the GStreamer pipeline built earlier is set to playing. When the
conversion is complete, it will generate the End Of Stream (EOS) message. The
self.is_playing flag is modified in the method self.message_handler. The
while loop on line 11 is executed until the EOS message is posted on the bus or
some error occurs. Finally, on line 24, the main execution loop is terminated.

On line 3, we make a call to time.clock(). This actually gives
the CPU time spent on the process.

6. The other methods such as VideoConverter.decodebin_pad_added are
identical to the one developed in the Playing a video section. Review the remaining
methods from the file VideoConverter.py and then run this utility by specifying
appropriate command-line arguments. The following screenshot shows sample
output messages when the program is run from the console window.

This is a sample run of the video conversion utility from the console.

x

x

Chapter 7

[215]

What just happened?
We created another useful utility that can convert video files from one format to the other.
We learned how to encode the audio and video data into a desired output format and then
use a multiplexer to put these two data streams into a single file.

Have a go hero – batch-convert the video files
The video converter developed in previous sections can convert a single video file at a time.
Can you make it a batch-processing utility? Refer to the code for the audio conversion utility
developed in the Working with Audios chapter. The overall structure will be very similar.
However, there could be challenges in converting multiple video files because of the use of
queue elements. For example, when it is done converting the first file, the data in the queue
may not be flushed when we start conversion of the other file. One crude way to address this
would be to reconstruct the whole pipeline and connect signals for each audio file. However,
there will be a more efficient way to do this. Think about it!

Video manipulations and effects
Suppose you have a video file that needs to be saved with an adjusted default brightness
level. Alternatively, you may want to save another video with a different aspect ratio. In this
section, we will learn some of the basic and most frequently performed operations on a
video. We will develop code using Python and GStreamer for tasks such as resizing a video
or adjusting its contrast level.

Resizing
The data that can flow through an element is described by the capabilities (caps) of a pad on
that element. If a decodebin element is decoding video data, the capabilities of its dynamic
pad will be described as, for instance, video/x-raw-yuv. Resizing a video with GStreamer
multimedia framework can be accomplished by using a capsfilter element, that has
width and height parameters specified. As discussed earlier, the capsfilter element
limits the media data type that can be transferred between two elements. For example, a
cap object described by the string, video/x-raw-yuv, width=800, height=600 will set
the width of the video to 800 pixels and the height to 600 pixels.

x

x

Working with Videos

[216]

Time for action – resize a video
We will now see how to resize a streaming video using the width and height parameters
described by a GStreamer cap object.

1. Download the file VideoManipulations.py from the Packt website. The overall
class design is identical to the one studied in the Playing a video section.

2. The methods self.constructAudioPipeline() and self.
constructVideoPipeline(), respectively, define and link elements related to
audio and video portions of the main pipeline object self.player. As we have
already discussed most of the audio/video processing elements in earlier sections,
we will only review the constructVideoPipeline method here.

1 def constructVideoPipeline(self):
2 # Autoconvert element for video processing
3 self.autoconvert = gst.element_factory_make(
4 "autoconvert")
5 self.videosink = gst.element_factory_make(
6 "autovideosink")
7
8 # Set the capsfilter
9 if self.video_width and self.video_height:
10 videocap = gst.Caps(
11 "video/x-raw-yuv," "width=%d, height=%d"%
12 (self.video_width,self.video_height))
13 else:
14 videocap = gst.Caps("video/x-raw-yuv")
15
16 self.capsFilter = gst.element_factory_make(
17 "capsfilter")
18 self.capsFilter.set_property("caps", videocap)
19
20 # Converts the video from one colorspace to another
21 self.colorSpace = gst.element_factory_make(
22 "ffmpegcolorspace")
23
24 self.videoQueue = gst.element_factory_make("queue")
25
26 self.player.add(self.videoQueue,
27 self.autoconvert,
28 self.capsFilter,
29 self.colorSpace,
30 self.videosink)
31

x

x

Chapter 7

[217]

32 gst.element_link_many(self.videoQueue,
33 self.autoconvert,
34 self.capsFilter,
35 self.colorSpace,
36 self.videosink)

The capsfilter element is defined on line 16. It is a filter that restricts the type
of media data that will pass through it. The videocap is a GStreamer cap object
created on line 10. This cap specifies the width and height parameters of the
streaming video. It is set as a property of the capsfilter, self.capsFilter. It
instructs the filter to only stream video-xraw-yuv data with width and height
specified by the videocap object.

In the source file, you will see an additional element self.videobox
linked in the pipeline. It is omitted in the above code snippet. We will see
what this element is used for in the next section.

3. The rest of the code is straightforward. We already covered similar methods
in earlier discussions. Develop the rest of the code by reviewing the file
VideoManipulations.py. Make sure to specify an appropriate video file
path for the variable self.inFileLocation .Then run this program from
the command prompt as:

 $python VideoManipulations.py

This should open a GUI window where the video will be streamed. The default
size of this window will be controlled by the parameters self.video_width
and self.video_height specified in the code.

What just happened?
The command-line video player developed earlier was extended in the example we just
developed. We used capsfilter plugin to specify the width and height parameters
of the streaming video and thus resize the video.

Cropping
Suppose you have a video that has a large 'gutter space' at the bottom or some unwanted
portion on a side that you would like to trim off. The videobox GStreamer plugin facilitates
cropping the video from left, right, top, or bottom.

x

x

Working with Videos

[21�]

Time for action – crop a video
Let's add another video manipulation feature to the command-line video player
developed earlier.

1. The file we need here is the one used in the earlier section,
VideoManipulations.py.

2. Once again, we will focus our attention on the constructVideoPipeline method
of the class VideoPlayer. The following code snippet is from this method. The rest
of the code in this method is identical to the one reviewed in the earlier section.

1 self.videobox = gst.element_factory_make("videobox")
2 self.videobox.set_property("bottom", self.crop_bottom)
3 self.videobox.set_property("top", self.crop_top)
4 self.videobox.set_property("left", self.crop_left)
5 self.videobox.set_property("right", self.crop_right)
6
7 self.player.add(self.videoQueue,
8 self.autoconvert,
9 self.videobox,
10 self.capsFilter,
11 self.colorSpace,
12 self.videosink)
13
14 gst.element_link_many(self.videoQueue,
15 self.autoconvert,
16 self.videobox,
17 self.capsFilter,
18 self.colorSpace,
19 self.videosink)

3.	 The code is self-explanatory. The videobox element is created on line 1. The
properties of videobox that crop the streaming video are set on lines 2-5.
It receives the media data from the autoconvert element. The source pad
of videobox is connected to the sink of either capsfilter or directly the
ffmpegcolorspace element.

4. Develop the rest of the code by reviewing the file VideoManipulations.
py. Make sure to specify an appropriate video file path for the variable self.
inFileLocation. Then run this program from the command prompt as:

 $python VideoManipulations.py

This should open a GUI window where the video will be streamed. The video will be
cropped from left, right, bottom, and top sides by the parameters self.crop_left,
self.crop_right, self.crop_bottom, and self.crop_top respectively.

x

x

Chapter 7

[21�]

What just happened?
We extended the video player application further to add a GStreamer element that can crop
the video frames from sides. The videobox plugin was used to accomplish this task.

Have a go hero – add borders to a video
1. In the previous section, we used videobox element to trim the video from sides.

The same plugin can be used to add a border around the video. If you set negative
values for videobox properties, such as, bottom, top, left and right, instead of
cropping the video, it will add black border around the video. Set negative values
of parameters such as self.crop_left to see this effect.

2. The video cropping can be accomplished by using videocrop plugin. It is similar
to the videobox plugin, but it doesn't support adding a border to the video frames.
Modify the code and use this plugin to crop the video.

Adjusting brightness and contrast
We saw how to adjust the brightness and contrast level in Chapter 3, Enhancing Images.
If you have a homemade video recorded in poor lighting conditions, you would probably
adjust its brightness level. The contrast-level highlights the difference between the color and
brightness level of each video frame. The videobalance plugin can be used to adjust the
brightness, contrast, hue, and saturation. The next code snippet creates this element and
sets the brightness and contrast properties. The brightness property can accept values in the
range -1 to 1, the default (original) brightness level is 0. The contrast can have values in the
range 0 to 2 with the default value as 1.

self.videobalance = gst.element_factory_make("videobalance")
self.videobalance.set_property("brightness", 0.5)
self.videobalance.set_property("contrast", 0.5)

The videobalance is then linked in the GStreamer pipeline as:

gst.element_link_many(self.videoQueue,
 self.autoconvert,
 self.videobalance,
 self.capsFilter,
 self.colorSpace,
 self.videosink)

Review the rest of the code from file VideoEffects.py.

x

x

Working with Videos

[220]

Creating a gray scale video
The video can be rendered as gray scale by adjusting the saturation property of the
videobalance plugin. The saturation can have a value in the range 0 to 2. The default
value is 1. Setting this value to 0.0 converts the images to gray scale. The code is illustrated
as follows:

self.videobalance.set_property("saturation", 0.0)

You can refer to the file VideoEffects.py, which illustrates how to use the videobalance
plugin to adjust saturation and other parameters discussed in earlier sections.

Adding text and time on a video stream
Ability to add a text string or a subtitles track to a video is yet another desirable feature one
needs when processing videos. The GStreamer plugin textoverlay enables overlaying
informative text string, such as the name of the file, on top of a video stream. The other
useful plugins such as timeoverlay and clockoverlay provide a way to put the video
buffer timestamp and the CPU clock time on top of the streaming video.

Time for action – overlay text on a video track
Let's see how to add a text string on a video track. We will write a simple utility, which
essentially has the same code structure as the one we developed in the Playing a video
section. This tool will also add the buffer timestamp and the current CPU clock time
on the top of the video. For this section, it is important that you have textoverlay,
timeoverlay, and clockoverlay plugins available in your GStreamer installation.
Otherwise, you need to install these plugins or use some other plugins, such as
cairotextoverlay, if available.

1. Download the file VideoTextOverlay.py from the Packt website.

2. The constructVideoPipeline method of the class VideoPlayer is illustrated
in the following code snippet:

1 def constructVideoPipeline(self):
2 # Autoconvert element for video processing
3 self.autoconvert = gst.element_factory_make(
4 "autoconvert")
5 self.videosink = gst.element_factory_make(
6 "autovideosink")
7
8 # Set the capsfilter
9 videocap = gst.Caps("video/x-raw-yuv")

x

x

Chapter 7

[221]

10 self.capsFilter = gst.element_factory_make(
11 "capsfilter")
12 self.capsFilter.set_property("caps", videocap)
13
14 # Converts the video from one colorspace to another
15 self.colorSpace = gst.element_factory_make(
16 "ffmpegcolorspace")
17
18 self.videoQueue = gst.element_factory_make("queue")
19
20 self.textOverlay = gst.element_factory_make(
21 "textoverlay")
22 self.textOverlay.set_property("text", "hello")
23 self.textOverlay.set_property("shaded-background",
24 True)
25
26 self.timeOverlay = gst.element_factory_make(
27 "timeoverlay")
28 self.timeOverlay.set_property("valign", "top")
29 self.timeOverlay.set_property("shaded-background",
30 True)
31
32 self.clockOverlay = gst.element_factory_make(
33 "clockoverlay")
34 self.clockOverlay.set_property("valign", "bottom")
35 self.clockOverlay.set_property("halign", "right")
36 self.clockOverlay.set_property("shaded-background",
37 True)
38
39 self.player.add(self.videoQueue,
40 self.autoconvert,
41 self.textOverlay,
42 self.timeOverlay,
43 self.clockOverlay,
44 self.capsFilter,
45 self.colorSpace,
46 self.videosink)
47
48 gst.element_link_many(self.videoQueue,
49 self.autoconvert,
50 self.capsFilter,
51 self.textOverlay,
52 self.timeOverlay,
53 self.clockOverlay,
54 self.colorSpace,
55 self.videosink)

x

x

Working with Videos

[222]

As you can see, the elements for overlaying text, time, or clock can be simply
added and linked in a GStreamer pipeline like other elements. Let's discuss various
properties of these elements now. On lines 20-23, the textoverlay element is
defined. The text property sets the text string that appears on the streaming video.
To ensure that the text string is clearly visible in the video, we add a background
contrast to this text. This is done on line 23 by setting the shaded-background
property to True. The other properties of this plugin help fix the text position on
the video. Run gst-inspect-0.10 on textoverlay plugin to see what these
properties are.

3. Next, on lines 25-36, the time and clock overlay elements are defined. The
properties are similar to the ones available in textoverlay plugin. The clock time
will appear on the bottom-left corner of the streaming video. This is accomplished
by setting the valign and halign properties. These three elements are then
linked in the GStreamer pipeline. The internal order in which they are linked
doesn't matter.

4. Develop the rest of the code by reviewing the file VideoTextOverlay.py.
Make sure you specify an appropriate video file path for the variable self.
inFileLocation. Then run this program from the command prompt as:

 $python VideoTextOverlay.py

This should open a GUI window where the video will be streamed. The video will
show a text string "hello" along with the running time and the clock time. This is
illustrated by the following snapshot of a video frame.

The screenshot depicts a video frame showing text, time, and clock overlay.

x

x

Chapter 7

[223]

What just happened?
We learned how to use elements such as textoverlay, timeoverlay, and
clockoverlay in a GStreamer pipeline to add text string, timestamp, and clock
respectively, on top of a video buffer. The textoverlay element can be used further
to add a subtitle track to the video file.

Have a go hero – add subtitles to a video track!
Extend the code we just developed to add a subtitles track to the video file. To add a subtitle
track, you will need the subparse plugin. Note that this plugin is not available by default
in the windows installation of GStreamer using the GStreamer-WinBuilds binary. Thus,
Windows users may need to install this plugin separately. Review the subparse plugin
reference to see how to accomplish this task. The following code snippet shows how to
create the subparse element.

self.subtitlesrc = gst.element_factory_make("filesrc")
self.subtitlesrc.set_property("location",
 "/path/to/subtitles/file")
self.subparse = gst.element_factory_make("subparse")

Separating audio and video tracks
There are times when you would like to separate an audio and a video track. Imagine that
you have a collection of your favorite video songs. You are going on a long drive and the old
CD player in your car can only play audio files in a specific file format. Let's write a utility that
can separate out the audio from a video file!

Time for action – audio and video tracks
We will develop code that takes a video file as an input and then creates two output files,
one with only the audio track of the original file and the other with the video portion.

1. Download the file SeparatingAudio.py from the Packt website. The structure
of the class AudioSeparator is similar to the one seen in the Playing a Video
section. We will review two methods of this class, constructPipeline and
decodebin_pad_added.

2. Let's start with the code in the constructPipeline method.

1 def constructPipeline(self):
2 # Create the pipeline instance
3 self.player = gst.Pipeline()
4

x

x

Working with Videos

[224]

5 # Define pipeline elements
6 self.filesrc = gst.element_factory_make("filesrc")
7
8 self.filesrc.set_property("location",
9 self.inFileLocation)
10
11 self.decodebin = gst.element_factory_make("decodebin")
12
13 self.autoconvert = gst.element_factory_make(
14 "autoconvert")
15
16 self.audioconvert = gst.element_factory_make(
17 "audioconvert")
18
19 self.audio_encoder = gst.element_factory_make("lame")
20
21 self.audiosink = gst.element_factory_make("filesink")
22 self.audiosink.set_property("location",
23 self.audioOutLocation)
24
25 self.video_encoder = gst.element_factory_make("
26 ffenc_mpeg4")
27 self.muxer = gst.element_factory_make("ffmux_mp4")
28
29 self.videosink = gst.element_factory_make("filesink")
30 self.videosink.set_property("location",
31 self.videoOutLocation)
32
33 self.videoQueue = gst.element_factory_make("queue")
34 self.audioQueue = gst.element_factory_make("queue")
35 # Add elements to the pipeline
36 self.player.add(self.filesrc,
37 self.decodebin,
38 self.videoQueue,
39 self.autoconvert,
40 self.video_encoder,
41 self.muxer,
42 self.videosink,
43 self.audioQueue,
44 self.audioconvert,
45 self.audio_encoder,
46 self.audiosink)
47
49 # Link elements in the pipeline.

x

x

Chapter 7

[225]

50 gst.element_link_many(self.filesrc, self.decodebin)
51
52 gst.element_link_many(self. videoQueue,
53 self.autoconvert,
54 self.video_encoder,
55 self.muxer,
56 self.videosink)
57
58 gst.element_link_many(self.audioQueue,
59 self.audioconvert,
60 self.audio_encoder,
61 self.audiosink)

We have already used all the necessary elements in various examples. The key here
is to link them properly. The self.audiosink and self.videoSink elements are
filesink elements that define audio and video output file locations respectively.
Note that, in this example, we will save the output audio in MP3 format and video
in MP4 format. Thus, the lame encoder is used for the audio file whereas we use
encoder ffenc_mpeg4 and multiplexer ffmux_mp4 for the video output. Note that
we have not used ffmpegcolorspace element. It just helps to get an appropriate
color space format for the video sink (in this case, the output video file). In this case,
it is not needed. You can always link it in the pipeline if the output file doesn't ap-
propriately display the video frames. The media data decoded by self.decodebin
needs to be streamed to the audio and video portions of the pipeline, using the
queue elements as data buffers.

3. The decodebin creates dynamic pads to decode the input audio and video data.
The decodebin_pad_added method needs to check the capabilities (caps) on the
dynamic pad of the decodebin.

1 def decodebin_pad_added(self, decodebin, pad):
2 compatible_pad = None
3 caps = pad.get_caps()
4 name = caps[0].get_name()
5 print "\n cap name is = ", name
6 if name[:5] == 'video':
7 compatible_pad = (
8 self.videoQueue.get_compatible_pad(pad, caps))
9 elif name[:5] == 'audio':
10 compatible_pad = (
11 self. audioQueue.get_compatible_pad(pad,caps))
12
13 if compatible_pad:
14 pad.link(compatible_pad)

x

x

Working with Videos

[226]

4. This check is done by the code block 6-12. If capabilities indicate it's an audio
data, the decodebin pad is linked to the compatible pad on self.audioQueue.
Similarly, a link between to self.videoQueue and self.decodebin is created
when caps indicate it is the video data.

5. You can work through the remaining code in the file SeparatingAudio.
py. Replace the paths represented by self.inFileLocation, self.
audioOutLocation, and self.videoOutLocation with appropriate paths on
your computer and then run this utility as:

 $python SeparatingAudio.py

This should create two output files—a file in MP3 format that contains only the
audio track from the input file and a file in MP4 format containing the video track.

What just happened?
We build a GStreamer pipeline that separates audio and video tracks from an input video
file. Several of the GStreamer elements that we learned about in a number of examples
earlier were used to develop this utility. We also learned how to use the capabilities (caps)
on the dynamic pads of decodebin to make proper linkage between the decodebin and
the queue elements.

Mixing audio and video tracks
Suppose you have recorded your friend's wedding on your camcorder. For some specific
moments, you would like to mute all other sounds and replace those with background music.
To accomplish this, first you need to save the video track without the audio as a separate file.
We just learned that technique. Then you need to combine this video track with audio track
containing the background music you wish to play. Let's now learn how to mix audio and
video tracks into a single video file.

Time for action – audio/video track mixer
We will develop a program that generates a video output file, by mixing an audio and a video
track. Think about what change we will need to incorporate when compared to the audio/
video track separation utility developed earlier. In that application, two filesink elements
were required as two output files were created. Here, we need the opposite. We require two
filesrc elements containing the audio and video data and a single filesink element
that will contain both the audio and the video track.

1. Download the file AudioVideoMixing.py from the Packt website. We will review
some of the important methods of class AudioVideoMixer.

x

x

Chapter 7

[227]

2. The constructPipeline method, as usual, builds the GStreamer pipeline with all
necessary elements.

1 def constructPipeline(self):
2 self.pipeline = gst.Pipeline("pipeline")
3
4 self.audiosrc = gst.element_factory_make("filesrc")
5 self.audiosrc.set_property("location",
6 self.audioInLocation)
7
8 self.videosrc = gst.element_factory_make("filesrc")
9 self.videosrc.set_property("location",
10 self.videoInLocation)
11
12 self.filesink = gst.element_factory_make("filesink")
13 self.filesink.set_property("location",
14 self.outFileLocation)
15
16 self.audio_decodebin = gst.element_factory_make(
17 "decodebin")
18 self.video_decodebin= gst.element_factory_make(
19 "decodebin")
20
21 self.audioconvert = gst.element_factory_make(
22 "audioconvert")
23 self.audio_encoder= gst.element_factory_make("lame")
24
25 self.video_encoder = (
26 gst.element_factory_make("ffenc_mpeg4"))
27 self.muxer = gst.element_factory_make("ffmux_mp4")
28 self.queue = gst.element_factory_make("queue")
29
30
31 videocap = gst.Caps("video/x-raw-yuv")
32 self.capsFilter = gst.element_factory_make(
33 "capsfilter")
34 self.capsFilter.set_property("caps", videocap)
35 # Converts the video from one colorspace to another
36 self.colorSpace = gst.element_factory_make(
37 "ffmpegcolorspace")
38
39 self.pipeline.add(self.videosrc,
40 self. video_decodebin,
41 self.capsFilter,

x

x

Working with Videos

[22�]

42 self.colorSpace,
43 self.video_encoder,
44 self.muxer,
45 self.filesink)
46
47 self.pipeline.add(self.audiosrc,
48 self.audio_decodebin,
49 self.audioconvert,
50 self.audio_encoder,
51 self.queue)
52
53 # Link audio elements
54 gst.element_link_many(self.audiosrc,
55 self.audio_decodebin)
56 gst.element_link_many(self.audioconvert,
57 self.audio_encoder,
58 self.queue, self.muxer)
59 #Link video elements
60 gst.element_link_many(self.videosrc,
61 self.video_decodebin)
62 gst.element_link_many(self.capsFilter,
63 self.colorSpace,
64 self.video_encoder,
65 self.muxer,
66 self.filesink)

3. The audio and video file sources are defined by the elements self.audiosrc and
self.videosrc respectively. These are connected to two separate decodebins
(see lines 54 and 59). The pad-added signals of self.audio_decodebin and
self.video_decodebin are connected in the connectSignals method.

The audio and video data then travels through a chain of audio and video
processing elements respectively. The data is encoded by their respective encoders.
The encoded data streams are combined so that the output video file contains
both audio and video tracks. This job is done by the multiplexer, self.muxer. It is
linked with the video encoder element. The audio data is streamed to the muxer
through a queue element (line 57). The data is 'muxed' and fed to the filesink
element, self.filesink. Note that the ffmpegcolorspace element and the
capsfilter, self.capsfiter is not really required. In this case, the output
video should have proper display format. You can try running this application by
removing those two elements to see if it makes any difference.

x

x

Chapter 7

[22�]

4. In the decodebin_pad_added method, we will check a few extra things before
linking the dynamic pads.

1 def decodebin_pad_added(self, decodebin, pad):
2 compatible_pad = None
3 caps = pad.get_caps()
4 name = caps[0].get_name()
5 print "\n cap name is =%s"%name
6 if (name[:5] == 'video' and
7 (decodebin is self.video_decodebin)):
8 compatible_pad = (
9 self.capsFilter.get_compatible_pad(pad, caps))
10 elif (name[:5] == 'audio' and
11 (decodebin is self.audio_decodebin)):
12 compatible_pad = (
13 self.audioconvert.get_compatible_pad(pad, caps))
14
15 if compatible_pad:
16 pad.link(compatible_pad)

It could happen that each of the input files contains audio as well as video data. For
example, both self.audiosrc and self.videosrc represent different video
files with both audio and video data. The file self.audiosrc is linked to self.
audio_decodebin. Thus, we should make sure that when the self.audio_de-
codebin generates a pad-added signal, the dynamic pad is linked only when its
caps have audio data. On similar lines, the pad on self.video_decodebin is
linked only when caps represent video data. This is ensured by the code block 6 – 13.

5. Develop the rest of the code by reviewing file AudioVideoMixer.py. Replace the
paths represented by, self.audioInLocation, self.videoInLocation, and
self.outFileLocation with appropriate paths on your computer and then run
this utility as:

$python AudioVideoMixer.py

This should create an output video file in MP4 format that contains the audio and
video tracks from the specified input files!

What just happened?
We developed a tool that mixes input audio and video tracks and stores them into a single
output file. To accomplish this task we used most of the audio/video processing elements
that were used in video conversion utility. We learned how to link the dynamic pads on
decodebin based on the streaming data represented by its 'caps'. The multiplexer plugin
ffmux_mp4 element was used to put the audio and video data together.

x

x

Working with Videos

[230]

Saving video frames as images
Imagine that you have a wildlife video and it has recorded a very special moment. You would
like to save this image. Let's learn how this can be achieved using the GStreamer framework.

Time for action – saving video frames as images
This file can be run from the command line as:

python ImagesFromVideo.py [options]

Here the [options] are:

--input_file: The full path to input video file from which one or more frames
need to be captured and saved as images.

--start_time: The position in seconds on the video track. This will be the starting
position from which one or more video frames will be captured as still image(s). The
first snapshot will always be at start_time.

--duration: The duration (in seconds) of the video track starting from the
start_time. 'N' number of frames will be captured starting from the start_time.

--num_of_captures: Total number of frames that need to be captured from
start_time (including it) up to, end_time= start_time + duration
(but not including the still image at end_time).

1. If not already done, download the file ImagesFromVideo.py from the Packt
website. Following is an outline of the code for saving video frames.

import os, sys, time
import thread
import gobject
import pygst
pygst.require("0.10")
import gst
from optparse import OptionParser

class ImageCapture:
 def __init__(self):
 pass
 def connectSignals(self):
 pass
 def constructPipeline(self):
 pass
 def gnonlin_pad_added(self, gnonlin_elem, pad):
 pass

x

x

Chapter 7

[231]

 def captureImage(self):
 pass
 def capture_single_image(self, media_start_time):
 pass
 def message_handler(self, bus, message):
 pass
 def printUsage(self):
 pass
 def printFinalStatus(self, starttime, endtime):
 pass

Run the program
imgCapture = ImageCapture()
thread.start_new_thread(imgCapture.captureImage, ())
gobject.threads_init()
evt_loop = gobject.MainLoop()
evt_loop.run()

The program execution starts by calling the captureImage method. The
gnlfilesource element discussed in audio processing chapters will be used
here to seek a particular frame on the streaming video. The capture_single_im-
age does the main job of saving a single frame as an image. We will discuss some of
these methods next.

2. Let's start with the constructPipeline method which defines and links various
elements needed to capture the video frames.

1 def constructPipeline(self):
2 self.pipeline = gst.Pipeline()
3 self.gnlfilesrc = (
4 gst.element_factory_make("gnlfilesource"))
5
6 self.gnlfilesrc.set_property("uri",
7 "file:///" + self.inFileLocation)
8 self.colorSpace = gst.element_factory_make(
9 "ffmpegcolorspace")
10
11 self.encoder= gst.element_factory_make("ffenc_png")
12
13 self.filesink = gst.element_factory_make("filesink")
14
15 self.pipeline.add(self.gnlfilesrc,
16 self.colorSpace,
17 self.encoder,
18 self.filesink)

x

x

Working with Videos

[232]

19
20 gst.element_link_many(self.colorSpace,
21 self.encoder,
22 self.filesink)

We already know how to create and connect the gnlfilesource element (called
self.gnlfilesrc). In the examples we have seen so far, the encoder element
used in a GStreamer pipeline encoded the streaming media data either in an audio
or a video format. On line 11, we define a new encoder element that enables saving
a particular frame in the streaming video as an image. In this example, we use the
encoder ffenc_png to save the video frame as an image file with PNG file format.
This plugin should be available by default in your GStreamer installation. If not,
you will need to install it. There are similar plugins available to save the image in
different file formats. For example, use jpegenc plugin to save it as a JPEG image
and so on.

The self.gnlfilesrc uses dynamic pad, which is connected to an appropriate
pad on ffmpegcolorspace discussed earlier. The self.colorspace element
converts the color space and this video data is then encoded by the ffenc_png
element. The self.filesink defines the location to save a particular video
frame as an image.

3.		 The captureImage is the main controlling method. The overall structure is very
similar to the audio conversion utility developer in Chapter 5, Working with Audios.
This method runs the top-level controlling loop to capture the frames specified as
an argument to the program.

1 def captureImage(self):
2 # Record start time
3 starttime = time.clock()
4
5 # Note: all times are in nano-seconds
6 media_end = self.media_start_time + self.media_duration
7 start = self.media_start_time
8 while start < media_end:
9 self.capture_single_image(start)
10 start += self.deltaTime
11
12 endtime = time.clock()
13 self.printFinalStatus(starttime, endtime)
14 evt_loop.quit()

x

x

Chapter 7

[233]

The method capture_single_image does the main job of saving each of these
frames. The self.media_start_time defines the position on the streaming
video from which this utility should start saving the video frames as images. This is
specified as a command-line argument to this utility. The media_end variable
defines the position on the video track at which the program should 'stop' capturing
the still images (the video frames). The self.media_start_time is when the first
video frame will be saved as an image. This is the initial value assigned to the local
variable start, which is then incremented in the loop.

The while loop (lines 8-10) calls the capture_single_image method for each
of the video frames we wish to save as an image. The self.deltaTime variable
defines the incremental time steps for capturing video frames. Its value is
determined in the constructor as follows:

self.deltaTime = int(self.media_duration /
 self.numberOfCaptures)

Here, self.numberOfCaptures is specified as an argument. If this argument is
not specified, it will save only a single frame as an image. It is used to increment the
variable start.

4. Now, let's see what ImageCapture.capture_single_image does. As the name
suggests, its job is to save a single image corresponding to the video frame at
media_start_time in the streaming video.

1 def capture_single_image(self, media_start_time):
2 # Set media_duration as int as
3 # gnlfilesrc takes it as integer argument
4 media_duration = int(0.01*gst.SECOND)
5
6 self.gnlfilesrc.set_property("media-start",
7 media_start_time)
8 self.gnlfilesrc.set_property("media-duration",
9 media_duration)
10
11 # time stamp in seconds, added to the name of the
12 # image to be saved.
13 time_stamp = float(media_start_time)/gst.SECOND
14 outFile = os.path.join(self.outputDirPath,
15 "still_%.4f.png"%time_stamp)
16 print "\n outfile = ", outFile
17 self.filesink.set_property("location", outFile)
18 self.is_playing = True
19 self.pipeline.set_state(gst.STATE_PLAYING)
20 while self.is_playing:
21 time.sleep(1)

x

x

Working with Videos

[234]

The media_duration is set to a very small value (0.01 seconds), just enough to
play the video frame at media_start_time. The media_start_time and me-
dia_duration used to set the properties of the gnlfilesource represented by
self.gnlfilesrc. On line 14, the location of the output image file is specified.
Note that the filename is appended with a timestamp that represents the time on
the timeline of the streaming video, at which this snapshot was taken. After setting
up the necessary parameter, the pipeline is 'started' on line 20 and will be played
until the EOS message is posted on the bus, that is, when it finishes writing the
output PNG file.

Review the remaining methods from the file ImagesFromVideo.py and then
run this utility by specifying appropriate command-line arguments. The following
screenshot shows sample output messages when the program is run from the
console window.

What just happened?
We developed a very useful application that can save specified frames in a streaming video
as image files. To accomplish this, we re-used several of the GStreamer elements/plugins
studied earlier. For example, elements such as gnlfilesource, ffmpegcolorspace,
and so on were used to construct the GStreamer pipeline. Additionally, we used an image
encoder to save the video data in an image format.

x

x

Chapter 7

[235]

Summary
We learned fundamentals of GStreamer API in previous chapters on audio processing.

In this chapter we moved one step further to develop some useful video processing
utilities using Python and GStreamer. To accomplish this task, we learned about several
new GStreamer plugins required for processing videos.

Specifically, we covered:

Pipeline that handles audio and video: We learned how to build a GStreamer
pipeline that can handle both audio and video tracks from the input video file.
This was used to 'play' a video file and it was also the basic pipeline used in
several video-processing tools developed in this chapter.

Separating audio/video: With the help of example, we learned how to save an
audio/video track of a video file into two different files.

Mixing audio/video: We wrote a program that can mix an audio and video stream
into a single video file.

Video effects: How to adjust the properties such as brightness, contrast, and
saturation for a streaming video.

Text overlay: We developed a utility that can add text, timestamp, and clock strings
on the streaming video.

Still images from video: We learned how to save a video frame of a streaming video
as an image.

This concludes our discussion on video processing using Python and GStreamer. For the
audio as well as video processing, we mostly developed various command-line tools. It
gave us a good understanding of the use of the underlying components of a multimedia
framework. There was no user interface component involved in our discussion. The default
GUI appeared only while playing a video.

The focus of the next chapter will be on GUI-based audio and video applications.

x

x

x

x

�
GUI-based Media Players Using

QT Phonon

The earlier chapters had focused on developing audio and video processing
tools. The involvement of Graphical User Interface (GUI) was intentionally kept
aside so that we could learn 'pure' multimedia-processing techniques using the
GStreamer framework. However, to just 'play' an audio or a video, we would
always prefer a media player with a user interface that provides an easy way
to control the playback, adjust the volume, and so on.

In this chapter, we shall:

Develop a GUI for audio and video players using QT

Learn fundamental components of the Phonon framework, such as MediaObject,
MediaSource, AudioOutput, and so on to build a media graph

Learn how to use QT Phonon framework to create media players with graphical
user interface

So let's get on with it.

x

x

GUI-based Media Players Using QT Phonon

[23�]

Installation prerequisites
We will cover the prerequisites for the installation of QT Python in this section.

PyQt4
This package provides Python bindings for QT libraries. We will use PyQt4 to generate GUI
for the image processing application to be developed later in this chapter. The GPL version
is available at:

http://www.riverbankcomputing.co.uk/software/pyqt/download

Note that you should install PyQt4 binary for Python version 2.6. The PyQt4 for Python version
2.5 or earlier may not support the Phonon module. Check the PyQt4 documentation to know
more. The installation instructions for PyQt4 were already discussed in Chapter 2, Working
with Images. Refer to that chapter for further details. The following table summarizes the
installation prerequisites.

Summary of installation prerequisites

Package Download location Version Windows
platform

Linux/Unix/OS X platforms

Python http://python.org/
download/releases/

2.6.4
(or any
2.6.x)

Install using
binary
distribution

Install from binary. Also
install additional developer
packages (for example, with
python-devel in the package
name for rpm-based linux
distributions).

Build and install from the
source tarball.

PyQt4 http://www.
riverbankcomputing.
co.uk/software/
pyqt/download

4.6.2 or
later

Install using
binary
pertaining to
Python2.6

First install SIP 4.9 or later.

Then install PyQt4.

Introduction to QT Phonon
In earlier chapters on audio and video processing, we extensively used GStreamer
multimedia framework. Phonon is a multimedia framework used by QT to provide
audio/video playback. With the GStreamer API knowledge under our belt, it should be
very easy to grasp the fundamental concepts behind the Phonon multimedia framework.

x

x

Chapter 8

[23�]

Main components
Let's briefly discuss some of the fundamental components and concepts behind the
Phonon architecture.

Media graph
This is analogous to a GStreamer pipeline. The media graph specifies various nodes
(analogous to GStreamer elements) for processing the media stream. For example, the sink
node gives the media data as output. To begin streaming the media data within the Graph,
we call the play()method of the MediaObject module.

Media object
This object is used for the media playback. It is analogous to the portion of a GStreamer
pipeline that handles the input media data. The instance of MediaObject class is used for
this purpose. It provides methods to control the playback, such as playing, pausing, and
stopping the streaming media.

Sink
Just like in GStreamer, Phonon has a media Sink. For example, an audio sink is used to
output the audio through an audio output device.

Path
The Path object is used to connect nodes within a media graph in Phonon. For example,
a MediaObject node is linked to an AudioOutput node to stream an audio.

Effects
To manipulate the streaming media, we need to insert Effects nodes within the Graph,
between the source (MediaObject) and the Sink nodes. These nodes are also called
processors. The Effect class of the Phonon framework facilitates adding various effects
to the streaming media.

Backends
It is a backend that does the heavy lifting, which is, processing a media stream in Phonon.
On Windows platform the backend framework is DirectShow. If you are using Linux, the
backend framework for Phonon is GStreamer and, it is QuickTime in case you use Mac OS X.
The supported functionality (for example, the media formats supported) may vary depending
on the platform.

x

x

GUI-based Media Players Using QT Phonon

[240]

The namespace, Phonon.BackendCapabilities, includes functions that provide
information about what the Phonon backend is capable of doing. For example, the function
BackendCapabilities.availableMimeTypes() returns a list of all the mime types that
the backend is capable of decoding. Additionally, it provides information about the available
audio output devices and available effects.

Modules
Qt Phonon includes several modules that help to quickly develop applications for audio and
video playback. We will briefly discuss a few of the important modules.

MediaNode
This is the superclass for all the nodes within a Phonon media graph. Therefore, it is
inherited by modules such as MediaObject, Effect, and AudioOutput, which
will be discussed next.

MediaSource
As the name indicates, this is used to the input the media source. The MediaObject uses
the media data it provides. The following line of code shows how this is accomplished.

self.mediaObj.setCurrentSource(self.mediaSource)

The API method, setCurrentSouce of class MediaObject, is used to specify the
MediaSource object from which to obtain the media data.

MediaObject
As mentioned earlier, the MediaObject module defines an API to manage the playback. The
methods such as play(), pause(), and stop() provide playback controls.

Path
The Path class links the nodes within a graph. It can be created using an API method,
Phonon.createPath. The following code snippet shows an example usage:

self.audioPath = Phonon.createPath(self.mediaObj, self.audioSink)

Here, self.audioPath is an instance of Path class. It links the instance of class
MediaObject with self.audioSink, which is an instance of class AudioOutPut.
More nodes can be added to the graph by using Path.insertEffect.

x

x

Chapter 8

[241]

AudioOutput
The instance of this class provides an audio output node in the Phonon media graph. The
output device is typically the sound card. AudioOutput is connected to the MediaObject
(and Effect instances) using the Path object we just discussed. The property
AudioOutput.outputDevice() contains information about the output device.

Effect
The instance of class Effect can be inserted as a node into the media graph. The
Path.insertEffect can bring about this effect whereas Path.removeEffect facilitates
removal of that node from the graph. This object modifies the streaming media data. For
example, an echo effect will add an echo to the audio. Use BackendCapabilities.
availableAudioEffects to find out which effects are supported by the Phonon backend.

VideoPlayer
This class provides an important functionality. It has several built-in features that eliminate
the need of explicitly creating nodes such as MediaObject. We will discuss this in detail
while developing the video player application.

SeekSlider
SeekSlider is a GUI widget. This class provides a slider to seek a specific position in the
streaming media. It handles all the necessary updates and signal connections internally.
All it needs is the media object instance.

volumeSlider
This class provides a widget for controlling the volume. It makes a programmer's job easy by
internally connecting signals. The following line of code sets the audio output device for a
volume slider.

volumeSlider.setAudioOutput(self.audioSink)

Here, the volumeSlider will control the volume for the audio output device of
self.audioSink.

Project: GUI-based music player
Let's get straight to the business. We will develop a simple GUI-based music player using QT
Phonon. The goal of this project is to learn how to put together important components of
the Phonon framework discussed earlier. It will help us get familiar with the overall Phonon
framework. In the second project, we will learn an even simpler way to accomplish the
same task.

x

x

GUI-based Media Players Using QT Phonon

[242]

The application to be developed here will play an opened audio file. It will have GUI widgets
to control the playback and add various effects to the streaming audio. The screenshot of the
music player application is shown in the following illustration of its graphical user interface:

GUI elements in the music player
The illustrated music player application uses the following QT widgets.

QMainWindow: This class provides the main application window. In this window,
other elements such as buttons and menus are added in a layout.

QToolButton: The play, pause, and stop buttons are created using the
QToolButton class. The appearance of these QToolButtons can be
tweaked using a number of properties; for example, calling QToolButtoon.
setAutoRaise(True): Removes the raised button effect. On mouse hover, the
button will be highlighted and appear raised above the surface.

VolumeSlider: As discussed earlier, the volume slider widget is used for
controlling the volume of the output audio device.

SeekSlider: Used to seek a position within the streaming media. While the music
is being played, its position is automatically updated. You can drag the slider using
mouse to jump to a different position on the track.

QLineEdit: This widget is used to display the full path of the media file currently
being played.

QMenubar: This is the menu bar above the QLineEdit. Here, we add different
menus such as File and Effects.

QAction: Various audio effect options are added to the Effects menu as
QAction instances.

x

x

Chapter 8

[243]

Some of these QT elements just discussed are pointed out in the following illustration of a
music player application displaying various QT widgets used:

Generating the UI code
The required GUI is built using the QT Designer application. This should be included in the
binary installer of PyQT4. QT Designer provides a quick way to design and develop the user
interface code. It supports a number of commonly used QT widgets. One can interactively
add these widgets to a layout. This tool is also very useful to enhance the aesthetic appeal of
the application. For example, the widget colors and other properties can easily be changed
using various features available in QT Designer.

Time for action – generating the UI code
The UI file necessary for this application is already created for you. The purpose of this
section is not to show you how to generate the UI from scratch. It will just illustrate some
of the important aspects of developing GUI using QT Designer for this application. You can
then experiment with it further to add new widgets to the music player application. We used
QT Designer while developing the 'Thumbnail Maker' application in Chapter 2, Working with
Images. We will cover some of those things here as well.

1. Download the file Ui_AudioPlayerDialog.ui from the Packt website.

2. Start the QT Designer application that comes with the PyQt4 installation.

3. Open this file in QT Designer. Click on each widget element within this audio player
dialog. The QT class associated with the selected widget will be displayed in the
Property Editor panel of the QT Designer.

x

x

GUI-based Media Players Using QT Phonon

[244]

4. Notice the red-colored borders around various UI widgets within the dialog. These
borders indicate a 'layout' in which the widgets are arranged. The layouts are
created using the QLayout class and its various subclasses. It is a critical component
of the user interface design using QT. Without a layout in place, the UI elements may
appear distorted when you run the application and, for instance, resize the dialog.

The following illustration shows how the dialog appears when opened in QT
Designer—the music player dialog (.ui file) in QT Designer.

Closely observe the borders around the widgets that indicate the presence
of a layout. You will notice that there are multiple borders. This implies that
we have placed the widgets in multiple layouts. For example, the buttons
Play, Pause, and Stop are arranged in a horizontal layout, QHBoxLayout.
These are further arranged in another horizontal layout with the
volumeSlider element. Refer to QT4 and QT Designer
documentation to know how to arrange widgets in a layout.

5. If you click on the Type Here placeholder in the menu bar, it becomes editable. With
this, you can add a new menu to the menu bar. Similarly, you can add menu items to
the File and Effects menus by opening those menus and clicking on Type Here menu
item. The File menu has two menu items: Open and Exit. Note that the Effects menu
is empty. We will add menu items to this menu later. In the following few steps, we
will make minor changes to this dialog just to get a feel of QT Designer.

6. We will now add a widget that can display digits. This widget can be used to update
the playtime information of the streaming media. The left panel shows a bunch of
widgets that can be mouse dragged and dropped inside the Audio Player dialog
window. This is illustrated by the following screenshot:

x

x

Chapter 8

[245]

You can see the Display widget panel of QT Designer and the LCD number
widget inserted into the dialog.

The inserted LCD number widget is shown selected in the screenshot on
the right-hand side. It is inserted in a layout that arranges QToolButtons
and the volumeSlider widgets in a horizontal fashion. Also, notice that
the inserted LCD number widget has a default size. This size needs to
be adjusted so that other widgets get their share of the space. Various
parameters can be adjusted using the property editor panel within QT
Designer for this widget. Here, we adjust the maximum size values as
illustrated in the following screenshot.

The Property Editor for LCD number widget—the screenshot on the right-
hand side shows the edited size parameters.

x

x

GUI-based Media Players Using QT Phonon

[246]

Once the maximum width and height parameters are adjusted, the LCD
number widget fits in nicely within the horizontal layout. The resultant
dialog is shown in the next illustration.

That's it! You can keep this LCD number widget in the dialog for now. After
completion of this project, you can use it to add a feature that displays the
time information for the streaming media. Note that LCD Number widget is
not the only option to display the play time. You can even use a QTextLabel
and update the label string with the time.

7. As mentioned in the chapter, Chapter 2, Working with Images, the QT Designer
saves the user interface file with an extension .ui. To convert this into Python
source code, PyQt4 provides a conversion utility called pyuic4. On Windows XP,
for standard Python installation, the path for this utility is C:\Python26\Lib\
site-packages\PyQt4\pyuic4.bat. Add the path to the environment variable.
Alternatively, specify the whole path each time you want to convert .ui file to
Python source file. The conversion utility can be run from the command prompt as:

pyuic4 UI_AudioPlayerDialog.ui -o Ui_AudioPlayerDialog.py

This script will create a Python source file, Ui_AudioPlayerDialog.py
from the input .ui file. You can further review this file to understand how
the UI code is set up. We will use this file 'as-is' for the further discussion.

It is not a good idea to modify the autogenerated Python source file, Ui_
AudioPlayerDialog.py; if you make any changes to the corresponding
.ui file of the QT Designer and run the pyuic4 script again, it will overwrite
the previous Python source file, Ui_AudioPlayerDialog.py, provided we
use the same filename. Instead, you can use the autogenerated file as a base
class and create a subclass to add custom UI elements programmatically.

x

x

Chapter 8

[247]

What just happened?
This section gave us a working knowledge of tweaking a user interface using QT Designer.
Just to get the feel of user interface editing, we added a LCD number widget to the Audio
Player dialog. We learned how to autogenerate the Python source code from a .ui file
created with the help of QT Designer.

Connecting the widgets
The command-line utility pyuic4 (pyuic4.bat for Windows users) enabled conversion of
the user interface created by the QT-Designer into a Python source file. However, various
widgets in this UI need to respond to the user actions. For example, when the Play button
is clicked, it must start streaming the media file. Thus, we need to add necessary code
that will instruct these widgets what they should do when a certain event occurs. This is
accomplished using the slots and signals. A signal is emitted when a particular GUI event
occurs. For example, when a user clicks on the Pause button, a "clicked()" signal is
emitted. A slot is a method that is called for this signal. This is very similar to the how
we connected pad-added signal by a decodebin element to a method decodebin_pad_
added in earlier chapter. Refer to the PyQt4/ QT4 documentation that has a comprehensive
list of available signals for various widgets.

Time for action – connecting the widgets
Let's learn how to make widgets respond to a particular user action, such as a button click.

1. Download the file AudioPlayerDialog.py from the Packt website. It defines the
class AudioPlayerDialog.

2. We will now review the method that connects class methods to the emitted signals.
These signals are generated whenever a particular 'event' occurs.

1 def _connect(self):
2 """
3 Connect slots with signals.
4 """
5 self.connect(self._dialog.fileOpenAction,
6 SIGNAL("triggered()"),
7 self._openFileDialog)
8
9 self.connect(self._dialog.fileExitAction,
10 SIGNAL("triggered()"),
11 self.close)
12

x

x

GUI-based Media Players Using QT Phonon

[24�]

13 self.connect(self._dialog.menuAudioEffects,
14 SIGNAL("triggered(QAction*)"),
15 self._changeAudioEffects)
16
17 self.connect(self._dialog.playToolButton,
18 SIGNAL("clicked()"),
19 self._playMedia)
20
21 self.connect(self._dialog.stopToolButton,
22 SIGNAL("clicked()"),
23 self._stopMedia)
24
25 self.connect(self._dialog.pauseToolButton,
26 SIGNAL("clicked()"),
27 self._pauseMedia)

Here, the self._dialog is an instance of class Ui_AudioPlayerDialog.
Note that, the self.connect is an inherited method of the QT class
QMainWindow. It takes the following arguments (QObject, SIGNAL,
callable). The QObject is any widget type; SIGNAL is generated when
a specific event occurs. The callable is a method that handles this event.
The AudioPlayer._connect method connects all the necessary signals
with class methods.

3. The File menu in the Audio Player dialog contains two QActions, namely,
fileOpenAction and fileExitAction. When File->Open is selected, a signal
"triggered" is generated for the QAction. We need to watch out for this signal
and then call a method that will do the job of opening a file. This signal is connected
by the code between lines 5-7. Thus, when "triggered()" signal is emitted, for
fileopenAction, a method AudioPlayer._openFileDialog is called that has
necessary code to open an audio file.

4. Let's review the code on line 9-12. This code connects all the QActions within a
QMenu to a method of class AudioPlayer. The first argument, self._dialog.
menuAudioEffects, is the Effects menu in the menu bar. This is a QMenu. The
second argument SIGNAL("triggered(QAction*)") tells QT that we want to
capture the triggered signal for any of the QActions within the Effects menu. This
is best explained with an example. Imagine that the audio Effects menu has menu
items (QActions) such as Echo and Distortion. When a user selects Effects | Echo
or Effects | Distortion, the triggered(QAction*) signal is emitted. The argument
QAction* is just a pointer to that QAction. The third argument is the receiver
method, self._changeAudioEffects that is called when this signal is emitted.

x

x

Chapter 8

[24�]

The clicked() signal emitted when a QToolButton, such as, Play, Pause,
or Stop is clicked. This signal is connected to appropriate methods of class
AudioPlayer by the code block 13-23.

5. Notice that we didn't connect the SeekSlider and VolumeSlider. The signals for
these widgets are connected internally. All you need to do is set MediaObject and
AudioOutput for these widgets respectively. We will learn how that's done in the
next section.

What just happened?
We reviewed AudioPlayerDialog._connect() method to learn how various widgets
within the Audio Player dialog are connected to internal methods. This helped us learn some
preliminary concepts of GUI programming using QT.

Developing the audio player code
The discussion so far has been focused on the graphical user interface. We learned how
to use QT Designer to create user interface and then generate a Python source file
representing this UI. We also reviewed the code that connects the frontend of our
application with the backend (the class methods). Now, it is time to review the workhorse
audio processing code responsible for playing the audio, controlling the playback, and
operations like adding audio effects.

x

x

GUI-based Media Players Using QT Phonon

[250]

Time for action – developing the audio player code
The source file, AudioPlayerDialog.py, used in the earlier section will be used here
as well. The class AudioPlayerDialog inherits QMainWindow.

1. If you have not done so already, download the Python source file
AudioPlayerDialog.py.

2. Let's start with the constructor of the class, AudioPlayerDialog.

1 def __init__(self):
2 QMainWindow.__init__(self)
3 self.mediaSource = None
4 self.audioPath = ''
5 self.addedEffects = {}
6 self.effectsDict = {}
7
8 # Initialize some other variables.
9 self._filePath = ''
10 self._dirPath = ''
11 self._dialog = None
12 # Create media object , audio sink and path
13 self.mediaObj = phonon.Phonon.MediaObject(self)
14 self.audioSink = Phonon.AudioOutput(
15 Phonon.MusicCategory,
16 self)
17 self.audioPath = Phonon.createPath(self.mediaObj,
18 self.audioSink)
19
20 # Create self._dialog instance and call
21 # necessary methods to create a user interface
22 self._createUI()
23
24 # Connect slots with signals.
25 self._connect()
26
27 # Show the Audio player.
28 self.show()

The code block from lines 2 to 6 initializes some instance variables to be
used later. The dictionary object self.effectsDict will be used
to store information about the available audio effects. Whereas, self.
addedEffects is used to check if an audio effect is already added to the
streaming media.

x

x

Chapter 8

[251]

On line 13, the instance of Phonon.MediaObject is created. It will be
used for controlling the playback of a MediaSource.

An audio output node in the Phonon media graph is created by the code on
lines 14-16. We will call it as self.audioSink, the terminology used in
earlier chapter. The first argument for AudioOutput is used to specify the
category. It is an object of class Phonon.Category. Since this is a music
player application, we define the category as Phonon.MusicCategory.
Review QT documentation to know more about the categories. The second
argument is used as a parent for this audio sink.

The Phonon.Path class links the nodes within a media graph. This object is
created using an API method, Phonon.createPath. On line 17, the Path
self.audioPath links the media object self.mediaObject with the
audio output self.audioSink.

The call to the _createUI method handles the defining of the user
interface. We already learned how the frontend communicates with the
backend using the connections set up in the _connect method.

Finally, on line 28, the API method QMainWindow.show()displays the
audio player.

3. The method _createUI delegates most of the GUI creation to the class
UI_AudioPlayerDialog. The method also has the code that further
modifies the GUI.

1 def _createUI(self):
2 # Define the instance to access the the UI elements
3 defined in class Ui_AudioPlayerDialog.
4 self._dialog = Ui_AudioPlayerDialog()
5 self._dialog.setupUi(self)
6 self._dialog.retranslateUi(self)
7 playIcon= QIcon("play.png")
8 pauseIcon= QIcon("pause.png")
9 stopIcon= QIcon("stop.png")
10 musicIcon= QIcon("music.png")
11
12 self._dialog.playToolButton.setIcon(playIcon)
13 self._dialog.pauseToolButton.setIcon(pauseIcon)
14 self._dialog.stopToolButton.setIcon(stopIcon)
15 self.setWindowIcon(musicIcon)
16 self._setupEffectsMenu()
17 self._dialog.seekSlider.setMediaObject(self.mediaObj)
18 self._dialog.volumeSlider.setAudioOutput(
19 self.audioSink)

x

x

GUI-based Media Players Using QT Phonon

[252]

The instance of class UI_AudioPlayerDialog is created on line 4.
setupUI and retranslateUI are the automatically generated methods.
These are generated when the QT Designer file with the UI is converted into
a Python source file. The AudioPlayerDialog instance is passed as an
argument to these two methods.

The code block 7 to 14 sets up the icons for the three QToolButton
instances. The setIcon API method takes QIcon instance as an argument.
The music player icon in the caption (on top-left corner of the dialog)
is created by the code on line 15. As mentioned earlier, the Phonon.
SeekSlider signals are internally connected. We only need to tell which
MediaObject it will handle. This is done on line 17. Similarly, on line 18,
the setAudioOutput method of volumeSlider sets up the self.
audiosink as the audio output for this volumeSlider. While setting up
the UI design, we did not add any menu items to the Effects menu. This is
done now, by calling the _setupEffectsMenu method on line 16.

4. Let's review the method _setupEffectsMenu. It adds various available audio
effects in the Phonon framework as menu items to the Effects menu.

1 def _setupEffectsMenu(self):
2 availableEffects = (
3 Phonon.BackendCapabilities.availableAudioEffects())
4 for e in availableEffects:
5 effectName = e.name()
6 self.effectsDict[effectName] = e
7 action = QAction(effectName,
8 self._dialog.menuAudioEffects)
9 action.setCheckable(True)
10 self._dialog.menuAudioEffects.addAction(action)

The namespace, Phonon.BackendCapabilities includes functions
that provide information about the capability of the Phonon backend.
BackendCapabilities.availableAudioeffects() returns
a list of all audio effects supported by Phonon on a given platform.
The list, availableEffects, contains objects of the class Phonon.
EffectDescription. self.effectsDict stores the name of the
effect and the EffectDescription object as key-value pairs. This
dictionary will be used later. The Effects menu, menuAudioEffects,
is populated with the QAction instances corresponding to each of the
available audio effects. QAction is created on line 6. The setCheckable
property of QAction toggles the checked state of the action on mouse click.
The following screenshot shows the Effects menu items on Windows XP.

x

x

Chapter 8

[253]

5. The method _openFileDialog is called when File | Open is clicked from the
music player.

1 def _openFileDialog(self):
2
3 self._filePath = ''
4
5 self._filePath = (
6 str(QFileDialog.getOpenFileName(
7 self,
8 "Open Audio File",
9 "",
10 "MP3 file (*.mp3);;wav(*.wav);;All Files
11 (*.*);;")))
12 if self._filePath:
13 self._filePath = os.path.normpath(self._filePath)
14 self._dialog.fileLineEdit.setText(self._filePath)
15 self._loadNewMedia()

This pops up a QFileDialog with the file type filters as specified on
line 10. To know about the supported media formats, you can use the
Phonon.BackEndCapabilities as illustrated by the following line
of code.

types = Phonon.BackendCapabilities.availableMimeTypes()

Where, types is a list of available mime types.

The path of the file specified by the user is then stored in the variable
self._filePath. This path is displayed in the fileLineEdit field of the
dialog. On line 15, the method _loadNewMedia is called. We will review
that next.

x

x

GUI-based Media Players Using QT Phonon

[254]

6. The method _loadNewMedia sets up the media source for the MediaObject.

1 def _loadNewMedia(self):
2 # This is required so that the player can play another
3 # file, if loaded while first one is still playing.
4 if self.mediaSource:
5 self._stopMedia()
6 del self.mediaSource
7 self.mediaSource = phonon.Phonon.MediaSource(
8 self._filePath)
9 self.mediaObj.setCurrentSource(self.mediaSource)

The if block on line 4 ensures that the current streaming audio (if any)
is stopped by the media object before setting the new media source to a
playing state. Although it is not necessary, the memory occupied by the
MediaSource object is cleared up by the code on line 6. Line 8 creates a new
instance of class MediaSource. The API method, setCurrentSouce of the
class MediaObject is used to specify the MediaSource that provides the
media data. With this, our media player is all set to stream the audio file.

7. When you click on the Play button in the music player, the
AudioPlayerDialog._playMedia method is called.

1 def _playMedia(self):
2 if not self._okToPlayPauseStop():
3 return
4
5 if self.mediaObj is None:
6 print "Error playing Audio"
7 return
8
9 self.mediaObj.play()

First the program carries out some primary checks to ensure that the media
is playable and then calls the play() method of Phonon.MediaObject,
which begins streaming the audio. The methods _pauseMedia and
_stopMedia of class AudioPlayerDialog contain similar code.

We just learned how to set up the media graph, stream the media,
and control its playback. Now let's see how to add audio effects to this
streaming media. If any of the items in the Effects menu are clicked, the
AudioPlayerDialog._changeAudioEffects method is called:

1 def _changeAudioEffects(self, action):
2 effectName = action.text()
3
4 if action.isChecked():
5 effectDescription = self.effectsDict[effectName]
6 effect = Phonon.Effect(effectDescription)

x

x

Chapter 8

[255]

7 self.addedEffects[effectName] = effect
8 self.audioPath.insertEffect(effect)
9 else:
10 effect = self.addedEffects[effectName]
11 self.audioPath.removeEffect(effect)
12 del self.addedEffects[effectName]

The if and else blocks in the preceding code snippet add and remove
effects nodes from the media graph respectively. The if block is
executed when an action in the Effects menu is checked. When an
already checked action is toggled, the program executes the else block.
In the if block, an instance of Phonon.Effect is created on line 6.
This takes an EffectDescription object as an argument. As seen in
the _setupEffectsMenu method, self.effectsDict stores the
EffectDescription objects as the dictionary values. On line 8, this
effect is inserted as a node in the media graph. The self.audioPath links
all the nodes within the media graph.

The dictionary, self.addedEffects keeps track of all the audio
effects inserted within the media graph. The else block removes an already
added effect.

On line 11, an added effect is removed by calling the removeEffect API
method of Phonon.Path. The corresponding key-value pair of self.
addedEffects is also deleted on line 12. This also ensures that there is no
memory leak.

QT Phonon allows adding the same audio effect multiple times. For
example, you can create multiple 'Chorus' effect nodes within the
media graph using Path.insertEffect. Each of the added
effects will have its own contribution. However, in our application,
we support adding an effect only once. You can extend this to
support adding the same effect multiple times. For this, you will
need to tweak the Effects menu UI and make some other changes
in the code to keep track of the added effects.

8. The application will not terminate properly if you close the GUI window while an
audio file is being played. To safely terminate the application without any memory
leaks, AudioPlayerDialog overrides the QMainWindow.closeEvent. Before
closing the window, we do the necessary cleanup to avoid memory leaks. The code
is illustrated below.

1 def closeEvent(self, evt):
2 print "\n in close event"
3 if self.mediaObj:
4 self.mediaObj.stop()
5

x

x

GUI-based Media Players Using QT Phonon

[256]

6 self.mediaObj = None
7 self._clearEffectsObjects()
8 QMainWindow.closeEvent(self, evt)

The streaming media, if any, is first stopped. The call to
_clearEffectsObject deletes all the Phonon.Effect and
Phonon.EffectDescription objects (if present). The method
_clearEffectsObject is self-explanatory.

9. The following code creates an instance of QApplication and executes
this program.

1 app = QApplication(sys.argv)
2 musicPlayer = AudioPlayerDialog()
3 app.exec_()

10. Review the rest of the code from the file AudioPlayerDialog.py and then run
the music player as:

$python AudioPlayerDialog.py

This should display the music player GUI window. Use File | Open to specify
a music file and then click on the Play button to enjoy the music!

What just happened?
We just created our own music player! We developed a frontend for this music player using
QT Phonon multimedia framework. Use of various modules in QT Phonon was thoroughly
discussed. We learned how to set up audio controls and effects in a media graph by using
modules such as MediaObject, AudioOutput, Path, and so on. We also gained some
higher-level understanding of GUI programming aspects using QT.

Have a go hero – add more features to the audio player
In the Generating the UI code section, we added a widget to the music player GUI window.
This is an LCD number widget that can display the frame numbers. Connect this widget to
the Audio Player backend, so that it can display the current media time. The next illustration
shows this LCD number widget in action for a streaming audio file.

Extend this music player application so that it can play all the songs from a directory
or CD one after the other. There are a number of ways to create a user interface to
display the files. For example, you can try using widgets such as QDirectoryView ,
QTreeView, or QTableWidget.

x

x

Chapter 8

[257]

Music player displaying the frame number (time) in the LCD number widget:

Project: GUI-based video player
In the first project, we learned the fundamentals of the QT Phonon framework. In this
project, we will extend that knowledge further by developing a video player. The Audio
player was developed by building a media graph. Various nodes such as MediaObject,
AudioOutput, and Effects were linked together by creating a Phonon.Path. If the goal is
just to develop a simple audio or video player, the job is even simpler. Phonon has a module
VideoPlayer that provides an abstract way to play an audio or a video without the need
to explicitly create MediaObject, AudioOutput, and some other objects. All it needs
is a MediaSource. It is also possible to create a custom media graph by adding various
audio-effect nodes. We will see how to do it later. For now, let's write a simple video player
application using QT Phonon. The following illustration shows the video player in action.

x

x

GUI-based Media Players Using QT Phonon

[25�]

Generating the UI code
QT Designer is an excellent resource for generating user interface interactively. As we have
seen, most of the user interface for this project is built using QT Designer. In addition, some
important points about the user interface design using QT were covered. This section will
just walk you through the user interface generation for this application using QT Designer
and pyuic4.

Time for action – generating the UI code
The .ui file is already created. In the following discussion, we will simply use this file and
go through some of the GUI elements needed for this application.

1. Download the file Ui_VideoPlayerDialog.ui from the Packt website.

2. Open this file in QT Designer. Click on each widget element. The QT class associated
with the selected widget will be displayed in the Property Editor panel on the
right-hand side. Most of the widgets used here are same as the ones used in the
earlier project. The only widget that is different is the Phonon.VideoPlayer. The
following illustration shows how the dialog appears when opened in QT Designer.
It also points out various Phonon widgets used in the dialog.

The video player widget in QT Designer appears as shown in the
preceding screenshot.

x

x

Chapter 8

[25�]

3. Click on the VideoPlayer widget shown in the preceding illustration. The Property
Editor will display its properties. Pay attention to how the size of this widget is
defined. This Video Player will support an option to view the video in 'Full Screen'
mode. Therefore, the maximum size parameters for the VideoPlayer widget are
set to high values as shown in the next screenshot. In fact, we are using the QT
default values for the maximum size property. The only property modified is the
minimum size of the widget. This minimum size will be the default size of the video
player widget.

The Property editor for Video Player widget:

4. The rest of the widgets are the same as the one used in an earlier project. You
can add the LCD Number widget or a simple text label that displays the current
time for the streaming media. Refer to the last project for instructions on adding
such widgets.

x

x

GUI-based Media Players Using QT Phonon

[260]

5. Next, convert the .ui file into .py using the pyuic4 conversion utility. The
conversion utility can be run from the command prompt as:

pyuic4 UI_VideoPlayerDialog.ui -o Ui_VideoPlayerDialog.py

This script will create a Python source file, Ui_VideoPlayerDialog.py,
from the input .ui file. We will use this file 'as-is' for the further discussion.

What just happened?
The previous discussion served as a refresher on use of QT Designer to generate most of the
user interface elements needed for this project. The pyuic4 conversion utility was used
to convert the .ui file to a Python source file.

Connecting the widgets
Most of the widgets used in the previous project are re-used here. Therefore, this is going
to be a short discussion. In this project, we have not included an Effects menu. Thus, the
VideoPlayerDialog._connect method has minor changes. This method is illustrated
as follows:

def _connect(self):
 self.connect(self._dialog.fileOpenAction,
 SIGNAL("triggered()"),
 self._openFileDialog)

 self.connect(self._dialog.fileExitAction,
 SIGNAL("triggered()"),
 self.close)

 self.connect(self._dialog.fullScreenAction,
 SIGNAL("toggled(bool)"),
 self._toggleFullScreen)

 self.connect(self._dialog.playToolButton,
 SIGNAL("clicked()"),
 self._playMedia)

 self.connect(self._dialog.stopToolButton,
 SIGNAL("clicked()"),
 self._stopMedia)

 self.connect(self._dialog.pauseToolButton,
 SIGNAL("clicked()"),
 self._pauseMedia)

x

x

Chapter 8

[261]

The highlighted lines of code are a new widget connection. The rest of the connections are
the same as the ones discussed in the previous project. When View | Full Screen is selected,
the toggled(bool) signal of fullScreenAction is emitted. When this happens the slot
method self._toggleFullScreen is called. The next section will have more details about
this method.

Developing the video player code
The generated frontend is connected to the backend for processing the media. In this
section, we will review the video player backend that actually streams the media and
controls the playback and volume. Our job is easier here. Most of the good work we did in
the earlier project will be re-used here. There will be some minor modifications because we
will be using Phonon.VideoPlayer for video processing instead of explicitly creating the
objects such as MediaObject.

Time for action – developing the video player code
Let's develop the rest of the video player backend. We will re-use several methods from the
AudioPlayerDialog class with a few minor changes. Only the important methods will be
covered in this section.

1. Download the file VideoPlayerDialog.py from the Packt website.

2. The constructor of the class is shown below.

1 def __init__(self):
2 QMainWindow.__init__(self)
3 self.mediaSource = None
4 self.audioPath = ''
5
6 # Initialize some other variables.
7 self._filePath = ''
8 self._dialog = None
9
10 # Create self._dialog instance and call
11 # necessary methods to create a user interface
12 self._createUI()
13
14 self.mediaObj = self._dialog.videoPlayer.mediaObject()
15 self.audioSink = self._dialog.videoPlayer.audioOutput()
16
17 self._dialog.seekSlider.setMediaObject(self.mediaObj)
18 self._dialog.volumeSlider.setAudioOutput(
19 self.audioSink)
20

x

x

GUI-based Media Players Using QT Phonon

[262]

21 # Connect slots with signals.
22 self._connect()
23
24 # Show the Audio player.
25 self.show()

The self._dialog creates an instance of class Phonon.VideoPlayer.
Once a media source is specified, self._dialog.videoPlayer is able
to stream the media. Thus, for the media streaming itself, we don't need to
create the nodes MediaObject and AudioOutput explicitly; the Phonon.
VideoPlayer internally builds the media graph. However, MediaObject
and AudioOutput are required for seekSlider and volumeControl
widgets respectively. On lines 14 and 15, these objects are obtained from
self._dialog.videoPlayer.

3. The _createUI method is almost identical to the corresponding method in
AudioPlayerDialog, except that it doesn't have the Effects menu-related code.

4. Following that, the method to review is _playMedia:

1 def _playMedia(self):
2 if not self._okToPlayPauseStop():
3 return
4 self._dialog.videoPlayer.play(self.mediaSource)

The code is self-explanatory. The self.mediaSource is set in
VideoPlayerDialog._loadNewMedia. This MediaSource instance
is passed as an argument to the API method VideoPlayer.play. The
videoPlayer then builds the media graph internally and plays the given
media file.

5. This simple video player supports an option to view the streaming video in
full screen mode. QMainWindow class provides an easy way to change the
view between full screen and normal viewing mode. This is done by the
method _toggleFullScreen.

def _toggleFullScreen(self, val):
 """
 Change between normal and full screen mode.
 """

 # Note: The program starts in Normal viewing mode
 # by default.

 if val:
 self.showFullScreen()
 else:

 self.showNormal()

x

x

Chapter 8

[263]

The method, self.showFullScreen() is inherited from class
QMainWindow. If the QAction in the View menu (View | Full Screen) is
checked, the video player window is set to full screen. QMainWindow.
showNormal() changes the video player back to the normal viewing mode.
The following screenshot shows the video player in the full screen mode.
Notice that the window caption bar is hidden in the full screen mode.

Video player in full screen mode is illustrated as shown in the next image:

6. Review the rest of the code from file VideoPlayerDialog.py. Keep this file in the
same directory as Ui_VideoPlayerDialog.py and then run the program from
the command line as:

 $python VideoPlayerDialog.py

7. The video player GUI window will appear. Open any supported audio or video file
and click on the Play button to begin the playback.

x

x

GUI-based Media Players Using QT Phonon

[264]

What just happened?
We wrote our own video player. This video player is capable of playing video as well as audio
files of supported formats. The module Phonon.VideoPlayer that enables media playback
and control was used here. We also learned how to toggle view between full screen and
normal viewing mode using the API methods of class QMainWindow.

Have a go hero – do more with the video player
1. Here is a simple enhancement. The full screen mode shows widgets such as playback

control buttons, seek, and volume sliders. Hide these widgets when the View | Full
Screen action is checked. Also, add a keyboard shortcut to toggle between normal
and full screen view mode.

2. Add audio effects to the video player GUI. We already learned how to add audio
effects to the media graph in the first project. You can re-use that code here.
However, you will need an appropriate Phonon.Path object to which the effects
node needs to be added. In the last project, we used Phonon.createPath—we
can't create a new path as it is created internally by the VideoPlayer. Instead, the
path can be obtained using API method MediaObject.outputPaths(). This
method returns a list containing output (audio and video) paths. The line of
code is shown as an example.

self.audioPath = self.mediaObj.outputPaths()[0]

However, be careful with the memory leaks. If you add audio effects, and
then exit the application, the program may freeze. This could be because
the effect nodes are not deleted from the original audio path. Alternatively,
you can build the video player from basic principles. That is, don't use
Phonon.VideoPlayer. Instead, build a custom media graph just like
how we did for the audio player project. In this case, you will need to use
modules such as Phonon.VideoWidget.

Summary
This chapter taught us several things about GUI multimedia application development using
QT. We worked on two exciting projects where audio and video players using QT Phonon
framework were developed. To accomplish these tasks, we:

Used QT Designer to generate the UI source code

Handled the QT generated events by connecting slots (class methods) with signals

Used Phonon framework to set up media graphs for streaming of audio and video

x

x

Index
Symbols
--end_time option 167
--input_file option 167
--start_time option 167
--verbose_mode option 167
-output_file option 167
__init__ method 164
_addTextWorker() method 75
_connect method 48
_createUI method 251
_makeThumbnail method 50
_resizeImage method 50
_rotateImage method 50

A
addDateStamp() method 73, 77
addText() method 73, 75
addTransparency() function 68
addTransparency() method 78
addWaterMark() method 73
anchor_x property 105
anchor_y property 105
animation

about 91
bouncing ball animation 102-107
creating, different image regions used 113
creating, sequential images used 100, 102
creating, single animation used 102-107
developing, with Pyglet 97
drive on a rainy day project 117-122
raindrop animation, creating 114, 116
simple bowling animation project 108-112
viewing, Pyglet used 98, 99

Animation.from_image_sequence method
100-102

AnimationFrame module 95
Animation module 95
animations 11, 12
audio

part, extracting 150
playing, from playlist 137
playing, from website 141
playing, GStreamer used 132-136

audio-video track
mixing 226
seperating 223-225

audio-video track mixer
developing 226-229

audio and video processing
about 10
compression 10
editing 11
mixing 11

audio clips
combining 183-189

audioconvert element 151
AudioConverter.convert() method 150
AudioCutter.extractAudio() method 170
audioecho plugin 182
audio effects

about 175
echo effect 179-182
fade-out effect, adding 175-178
panorama effect 182

audioFileExists() function 144
audio file format

converting 142

x

x

[�66]

audio file format converter
about 142
features 143-150

audioop module 12
AudioOutput module, QT Phonon 241
audiopanorama plugin 183
AudioPlayer._connect method 248
AudioPlayer._openFileDialog method 248
AudioPlayer.play() method 134, 148
AudioPlayer class 133
AudioPlayerDialog._connect() method 249
audio recording 156-159
audiotestsrc element 191
audio tracks

extracting, playback controls used 166-172
mixing 194, 195
pausing 162-165
resuming 162-165
visualizing 196-198
volume, adjusting 173-175

audio visualizer
audio tracks, visualizing 196-198

autoaudiosink element 132, 156
autoaudiosink plugin 145
autoaudiosrc element 157
autocontrast function 58
autoconvert element 206, 218
autoconvert plugin 202
autovideosink plugin 202

B
backends, QT Phonon 239
batch-processing utility 215
bin element 192, 193
bins, GStreamer 129
blending 9
blending, image enhancement

about 65, 68
two images, blending 65-67

blurring 84
border

adding 88
brightness and contrast, image enhancement

adjusting 56-58

brightness and contrast level
adjusting 219

built-in multimedia modules
audioop 12
wave 13
winsound 12

bus, GStreamer 131

C
caps, GStreamer 131
capsfilter element 206
capsfilter plugin 202
captureImage method 231
Clock module 95
clockoverlay plugin 220
color space 206
colors tweaking, image enhancement

about 59
colors, swaping within image 59, 60
flower color, changing 61, 62
gray scale images 63
individual image band, changing 61
negative, creating 64

components, QT Phonon
effects 239
media graph 239
media object 239
path 239
sink 239

composite() method 79
composites

making, with image mask 70-72
compression, audio and video processing

about 10
lossless compression 10
lossy compression 10

connectSignals method 155
constructPipeline() method 169
constructPipeline method 208, 212
constructVideoPipeline method 216
convert_single_audio method 148
convert method 212
createDrawableObjects method 104
cropping, image manipulations 39

x

x

[�67]

cropping, video manipulations
about 217
borders, adding 219
video, cropping 218, 219

Cygwin 125

D
darwinports 125
decodebin_pad_added method 207
decodebin plugin 128
def convertImage method 26
def processArgs method 26
digital multimedia 8
Display module, PyAudiere 14
Draw module, PyAudiere 14
drive on a rainy day project 117-122
dshowaudiosrc plugin 157
dynamic pad 130

E
echo effect

about 179
adding 179-182

EDGE_ENHANCE filter 87
edge detection and enhancement filters 85
edges, image

detecting 85, 86
enhancing 85, 86

editing, audio and video compression 11
Effect module, QT Phonon 241
effects, QT Phonon components 239
Effects node 239
egg file 93
element linking 140
embossing 87
event module, PyAudiere 15

F
fade-out effect

adding 175-178
fakesrc element 130
fast-forward control 166
ffenc_mpeg4 plugin 202
ffenc_png plugin 202

ffmpegcolorspace converter 206
ffmpegcolorspace plugin 202
ffmux_mp4 plugin 202
filesink element 209
filesrc element 134, 157
flipping, image manipulations 35
for loop 105
freetype2

about 23
URL 23

G
get_name method 208
getbands() method 59
getOutImagePath method 50
ghost pad 131, 193
glClearColor call 98
gnlcomposition element 151, 186, 189, 194
gnlcontroller element 186
gnlfilesource element 151, 188, 189, 194, 231

properties 151
gnloperation element 151
gnlsource element 151
gnlurisource element 151
gnonlin_pad_added method 155
Gnonlin plugin

about 151, 166
elements 151
features 151
gnlcomposition element 151
gnlfilesource element 151
gnloperation element 151
gnlsource element 151
gnlurisource element 151

GObject 125
gobject modules 204
goom2k1 visualization plugin 198
goom visualization plugin 196-198
grayscale video

creating 220
gst-inspect-0.10 command 173, 196
gst-inspect command, GStreamer 128
gst-launch command, GStreamer 128
gst.Bin class 129
gst.Bus.gst_bus_post() method 131

x

x

[�68]

gst.Element.add_pad() method 130
gst.FORMAT_TIME argument 166
gst.parse_launch() method 194, 195
gst.QueryError exception 164
gst.SECOND argument 166
gst.SEEK_GLAG_FLUSH argument 166
gst.STATE_NULL state 165
gst.STATE_PAUSED state 162
gst.STATE_PLAYING state 162
GStreamer

about 13, 124
audio, playing 133, 134
bins 129
bus 131
caps 131
elements 128
essential elements, for audio play 132
gst-inspect command 128
gst-launch command 128
music, playing 132
on, other platform 125
on, Windows platform 124
other platform 125
pads 130
pipeline 128
playbin/playbin2 131
plug-ins 129

GStreamer installation
testing 127

GStreamer Pipeline
creating 137, 139

GStreamer plugins
autoconvert 202
autovideosink 202
capsfilter 202
clockoverlay 202
ffenc_mpeg4 202
ffenc_png 202
ffmpegcolorspace 202
ffmux_mp4 202
textoverlay 202
timeoverlay 202
videobalance 202
videobox 202

GStreamer WinBuilds 124

GUI-based music player project
audio player code, developing 249-256
developing, QT Phonon used 241, 242
elements, used 242, 243
features, adding to audio player 256
UI code, generating 243-246
widgets, connecting 247-249

GUI-based video player project
developing 257
features, adding to video player 264
UI code, generating 258, 259
video player code, developing 261-263
widgets, connecting 260, 261

I
image

blurring 84
border, adding 88
displaying, Pyglet used 96
edge detection and enhancements 85
embossing 87, 88
sharpening 84
smoothing 82-84

image.Animation class 98
Image.blend method 66
image.blit 96
Image.composite function 79
image.load_animation method 98
Image.merge() method 60
Image.new method 69
Image.paste function 78
Image.point method 69
Image.putalpha() method 68
Image.resize method 30
Image.save method 27
Image.split() method 60
Image.thumbnail method 33
Image.transpose method 35
image blitting 96
ImageEnhance.Contrast class 57
image enhancement techniques

about 55
blending 65
border, adding 88
brightness and contrast, adjusting 56-58

x

x

[�69]

colors, swaping within image 59, 60
colors, tweaking 59
composites, making with image mask 70
image filters, applying 81
installation prerequisites 56
transparent images, creating 68
Watermark Maker Tool project 72

ImageEnhance module 56
image file converter

building 27
features, adding 30

ImageFilter.BLUR filter 84
ImageFilter.EMBOSS filter 87
ImageFilter.SHARPEN filter 84
ImageFilter module 82
image filters

applying 81
ImageGrid 115
image manipulations

about 30
cropping 39
flipping 35
pasting 40, 41
resizing 30-33
rotating 33, 34
screenshots, capturing 38

Image module 95
image module, PyAudiere 15
image noise 9
ImageOps module 58
image processing

about 8
image smoothing filter example 9

image re-sampling 30
images

creating, from scratch 28
reading, from archive 29

image smoothing 9
imgDrawer method 29
installation, Pyglet

prerequisites 92, 93
testing 93

installation prerequisites
PyQt4 23
Python 21
Python Imaging Library (PIL) 22

installation prerequisites, QT Python
about 238
PyQt4 238

interleave plugin 194-196

K
keyboard controls, Pyglet 97

L
libjpeg

about 23
URL 23

libvisual visualization plugin 196-198
linkedelement 130
Linux

Pyglet, installing 92
lossless compression 10
lossy compression 10

M
Mac OS X

Pyglet, installing 92
map function 102
media graph, QT Phonon components 239
media module 97
MediaNode module, QT Phonon 240
media object, QT Phonon components 239
MediaObject module, QT Phonon 240
MediaSource module, QT Phonon 240
message_handler method 131, 165
mixing, audio and video compression 11
modules, Pyglet

Animation 95
AnimationFrame 95
Clock 95
Image 95
media 97
Sprite 95
Window 94

modules, QT Phonon
about 240
AudioOutput 241
Effect 241

x

x

[�70]

MediaNode 240
MediaObject 240
MediaSource 240
Path 240
SeekSlider 241
VideoPlayer 241
volumeSlider 241

monoscope visualization plugin 196-198
MP3 cutter

about 152
creating 167-172
extending 156

multimedia
about 8
digital multimedia 8

multimedia frameworks
GStreamer 13
PIL 13
PyGame 14
Pyglet 14
PyMedia 13
QT Phonon 18

multimedia libraries
PyAudiere 20
Snack Sound Toolkit 19

multimedia processing
about 8
animations 11, 12
audio and video processing 10
image processing 8, 9

music module, PyAudiere 15
muxer 209

N
new image containing some text

creating 28

O
on_draw method 96, 99, 104
on_key_press method 97, 111
on_mouse_press method 97
os.path.join method 96
os.path.normpath method 96

P
pads, GStreamer

about 130
dynamic pads 130
ghost pads 131
sink pads 130

panning effect. See panorama effect
panorama effect

about 182
controlling 183

panorama property 183
pasting, image manipulations 40, 41
path, QT Phonon components 239
Path module, QT Phonon 240
pause control 162-165
Phonon 238
picture

enclosing, in photoframe 89
pipeline, GStreamer

about 128, 129
building, from elements 137

pipeline element 166
pixels 30
play() method 97, 239, 254
playback controls

about 161
adding 208
audio, extracting 166-172
fast-forward 166
pause 162-165
play 162
resume 162-165
rewind 166
stop 165

playbin, GStreamer 131
playbin2, GStreamer 132
playbin plugin 196-198
play control 162
plug-ins, GStreamer

about 129
audioecho 129
autoconvert 202
autovideosink 202
capsfilter 202

x

x

[�71]

clockoverlay 202
decodebin plugin 129
ffenc_mpeg4 202
ffenc_png 202
ffmpegcolorspace 202
ffmux_mp4 202
gnonlin 129
interleave 129
monoscope 129
textoverlay 202
timeoverlay 202
videobalance 202
videobox 202

point function 62
printUsage() method 75
priority property 194
processArgs() method 75, 153
processImage method 50
processors 239
properties, gnlfilesource element

media-duration 151
media-start 151
uri 151

PyAudiere 20
PyGame

about 14
Display module 14
Draw module 14
Event module 15
Image module 15
Music module 15
simple application 15, 16
Sprite module 14
Surface module 14
URL 14

Pyglet
about 14, 91, 92
animations, developing 97
benefits 94
existing animation, viewing 98, 99
image, displaying 96
installing, on Linux 92
installing, on Mac OS X 92
installing, on Windows 92
installing, prerequisites 92, 93

keyboard controls 97
mouse controls 97
sound effects, adding 97
URL 92

Pyglet modules
Animation 95
AnimationFrame 95
Clock 95
Image 95
media 97
Sprite 95
Window 94

pyglet.image.load_animation method 97
pyglet.image package 95
PyGObject

about 125
on other platform 125
on Windows platform 125

PyGTK website 125
PyMedia 13
PyQt4

about 23, 238
other platforms 24
Windows platform 23

Python
about 21
download link 21
other platforms 22
Windows platform 22

Python Imaging Library (PIL)
about 13
other platforms 22
Windows platform 22

Q
QAction, QT widgets 242
QLayout class 244
QLayouts

grid layout 45
horizontal 45
vertical 45

QLineEdit, QT widgets 242
QMainWindow, QT widgets 242
QMenubar, QT widgets 242

x

x

[�7�]

QToolButton, QT widgets 242
QT Phonon

about 18, 238
backends 239
components 239
modules 240

QT Phonon modules
about 240
AudioOutput 241
Effect 241
MediaNode 240
MediaObject 240
MediaSource 240
Path 240
SeekSlider 241
VideoPlayer 241
volumeSlider 241

QT Python
installation prerequisites 238

QT widgets
QAction 242
QLineEdit 242
QMainWindow 242
QMenubar 242
QToolButton 242
SeekSlider 242
VolumeSlider 242

query_position call 164

R
raindrop animation

creating 114-116
resizing, image manipulations 30-33
resizing, video manipulations

about 215
streaming video, resizing 216, 217

resume control 162-165
reverberation effect

adding 182
rewind control 166
rotating, image manipulations 33, 35

S
screenshots

capturing 38
seek_simple method 166

SeekSlider, QT widgets 242
SeekSlider module, QT Phonon 241
self.clear() call 105
self.connectSignals() method 146
self.filesrc element 206
self.player object 206
self.play method 163
sharpening 84
simple application, PyAudiere 15, 16
simple bowling animation project 108-112
SingleImageAnimation class 104
sink, QT Phonon components 239
sink node 239
sink pads 130
slot method 261
smoothing 82
Snack Sound Toolkit 19
Sprite module 95
Sprite module, PyAudiere 14
Sprite objects 96
start property 194
stop control 165
subparse plugin 223
Surface module, PyAudiere 14
synaesthesia visualization plugin 198, 199

T
textoverlay plugin 202, 220
ThumbnailMakerDialog._connect() method 49
Thumbnail Maker project

enhancing 52
image processing code, developing 49-51
running 44
UI code, generating 45, 46
ui file, tweaking 47
widgets, connecting 47, 48

timeline 184
timeoverlay plugin 202, 220
transparent images

creating 68, 69
tuple 134

U
UI code, Thumbmail Maker project

generating 45, 46

x

x

[�7�]

V
video

playing 203
playing, playbin used 208

videobalance plugin 202, 219
videobox element 218
videobox plugin 202, 219
video conversion utility

creating 209-214
video file

audio track, seperating 223-225
video track, seperating 223-225

video file format
coverting 209

video frames
saving, as images 230-234

video manipulations and effects
about 215
brightness and contrast level, adjusting 219
cropping 217, 218
grayscale video, creating 220
resizing 215

VideoPlayer.play method 204
VideoPlayerDialog._connect method 260
VideoPlayer module, QT Phonon 241
video player utility

writing 203-208

video stream
text and time, adding 220

video track
subtitles, adding 223
text string, adding 220, 222

volume element 173
volume property 175
VolumeSlider, QT widgets 242
volumeSlider module, QT Phonon 241

W
watermark 77
Watermark Maker Tool project

creating 72-79
features 80

wave module 13
Window module 94
Windows

Pyglet, installing 92
winsound module 12

Z
zib

about 23
URL 23

x

x

Thank you for buying
Python Multimedia Beginner's Guide

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our unique
business model allows us to bring you more focused information, giving you more of what you need to
know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, cutting-edge
books for communities of developers, administrators, and newbies alike. For more information, please
visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to continue
its focus on specialization. This book is part of the Packt Open Source brand, home to books published
on software built around Open Source licences, and offering information to anybody from advanced
developers to budding web designers. The Open Source brand also runs Packt's Open Source Royalty
Scheme, by which Packt gives a royalty to each Open Source project about whose software a book
is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be sent
to author@packtpub.com. If your book idea is still at an early stage and you would like to discuss it
first before writing a formal book proposal, contact us; one of our commissioning editors will get in
touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

x

x

Matplotlib for Python Developers
ISBN: 978-1-847197-90-0 Paperback: 308 pages

Build remarkable publication-quality plots the
easy way

1. Create high quality 2D plots by using Matplotlib
productively

2. Incremental introduction to Matplotlib, from the
ground up to advanced levels

3. Embed Matplotlib in GTK+, Qt, and wxWidgets
applications as well as web sites to utilize them in
Python applications

4. Deploy Matplotlib in web applications and expose it
on the Web using popular web frameworks such as
Pylons and Django

Expert Python Programming
ISBN: 978-1-847194-94-7 Paperback: 372 pages

Best practices for designing, coding, and distributing your
Python software

1. Learn Python development best practices from
an expert, with detailed coverage of naming and
coding convention

2. Apply object-oriented principles, design patterns,
and advanced syntax tricks

3. Manage your code with distributed
version control

4. Profile and optimize your code

Please check www.PacktPub.com for information on our titles

x

x

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	Table of Contents
	Preface
	Chapter 1: Python and Multimedia
	Multimedia
	Multimedia processing
	Image processing
	Audio and video processing
	Compression
	Mixing
	Editing

	Animations

	Built-in multimedia support
	winsound
	audioop
	wave

	External multimedia libraries and frameworks
	Python Imaging Library
	PyMedia
	GStreamer
	Pyglet
	PyGame
	Sprite
	Display
	Surface
	Draw
	Event
	Image
	Music

	Time for action – a simple application using PyGame
	QT Phonon
	Other multimedia libraries
	Snack Sound Toolkit
	PyAudiere

	Summary

	Chapter 2: Working with Images
	Installation prerequisites
	Python
	Windows platform
	Other platforms

	Python Imaging Library \⠀倀䤀䰀尩
	Windows platform
	Other platforms

	PyQt4
	Windows platform
	Other platforms

	Summary of installation prerequisites

	Reading and writing images
	Time for action – image file converter
	Creating an image from scratch

	Time for action – creating a new image containing some text
	Reading images from archive

	Time for action – reading images from archives
	Basic image manipulations
	Resizing

	Time for action – resizing
	Rotating

	Time for action – rotating
	Flipping

	Time for action – flipping
	Capturing screenshots

	Time for action – capture screenshots at intervals
	Cropping

	Time for action – cropping an image
	Pasting

	Time for action – pasting: mirror the smiley face!
	Project: Thumbnail Maker
	Time for action – play with Thumbnail Maker application
	Generating the UI code

	Time for action – generating the UI code
	Connecting the widgets

	Time for action – connecting the widgets
	Developing the image processing code

	Time for action – developing image processing code
	Summary

	Chapter 3: Enhancing Images
	Installation and download prerequisites
	Adjusting brightness and contrast
	Time for action—adjusting brightness and contrast
	Tweaking colors
	Time for action – swap colors within an image!
	Changing individual image band

	Time for action – change the color of a flower
	Gray scale images
	Cook up negatives

	Blending
	Time for action – blending two images
	Creating transparent images
	Time for action – create transparency
	Making composites with image mask
	Time for action – making composites with image mask
	Project: Watermark Maker Tool
	Time for action – Watermark Maker Tool
	Applying image filters
	Smoothing

	Time for action – smoothing an image
	Sharpening
	Blurring
	Edge detection and enhancements

	Time for action – detecting and enhancing edges
	Embossing

	Time for action – embossing
	Adding a border
	Time for action – enclosing a picture in a photoframe
	Summary

	Chapter 4: Fun with Animations
	Installation prerequisites
	Pyglet
	Windows platform
	Other platforms

	Summary of installation prerequisites
	Testing the installation

	A primer on Pyglet
	Important components
	Window
	Image
	Sprite
	Animation
	AnimationFrame
	Clock

	Displaying an image
	Mouse and keyboard controls
	Adding sound effects

	Animations with Pyglet
	Viewing an existing animation

	Time for action – viewing an existing animation
	Animation using a sequence of images

	Time for action – animation using a sequence of images
	Single image animation

	Time for action – bouncing ball animation
	Project: a simple bowling animation

	Time for action – a simple bowling animation
	Animations using different image regions

	Time for action – raindrops animation
	Project: drive on a rainy day!
	Time for action – drive on a rainy day!
	Summary

	Chapter 5: Working with Audios
	Installation prerequisites
	GStreamer
	Windows platform
	Other platforms

	PyGobject
	Windows platform
	Other platforms

	Summary of installation prerequisites
	Testing the installation

	A primer on GStreamer
	gst-inspect and gst-launch
	Elements and pipeline
	Plugins
	Bins
	Pads
	Dynamic pads
	Ghost pads

	Caps
	Bus
	Playbin/Playbin2

	Playing music
	Time for action – playing an audio: method 1
	Building a pipeline from elements

	Time for action – playing an audio: method 2
	Playing an audio from a website

	Converting audio file format
	Time for action – audio file format converter
	Extracting part of an audio
	The Gnonlin plugin

	Time for action – MP3 cutter!
	Recording
	Time for action – recording
	Summary

	Chapter 6: Audio Controls and Effects
	Controlling playback
	Play
	Pause/resume

	Time for action – pause and resume a playing audio stream
	Stop
	Fast-forward/rewind
	Project: extract audio using playback controls

	Time for action – MP3 cutter from basic principles
	Adjusting volume
	Time for action – adjusting volume
	Audio effects
	Fading effects

	Time for action – fading effects
	Echo echo echo...

	Time for action – adding echo effect
	Panning/panorama

	Project: combining audio clips
	Media 'timeline' explained

	Time for action – creating custom audio by combining clips
	Audio mixing
	Time for action – mixing audio tracks
	Visualizing an audio track
	Time for action – audio visualizer
	Summary

	Chapter 7: Working with Videos
	Installation prerequisites
	Playing a video
	Time for action – video player!
	Playing video using 'playbin'

	Video format conversion
	Time for action – video format converter
	Video manipulations and effects
	Resizing

	Time for action – resize a video
	Cropping

	Time for action – crop a video
	Adjusting brightness and contrast
	Creating a gray scale video

	Adding text and time on a video stream
	Time for action – overlay text on a video track
	Separating audio and video tracks
	Time for action – audio and video tracks
	Mixing audio and video tracks
	Time for action – audio/video track mixer
	Saving video frames as images
	Time for action – saving video frames as images
	Summary

	Chapter 8: GUI-based Media Players Using QT Phonon
	Installation prerequisites
	PyQt4
	Summary of installation prerequisites

	Introduction to QT Phonon
	Main components
	Media graph
	Media object
	Sink
	Path
	Effects

	Backends
	Modules
	MediaNode
	MediaSource
	MediaObject
	Path
	AudioOutput
	Effect
	VideoPlayer
	SeekSlider
	volumeSlider

	Project: GUI-based music player
	GUI elements in the music player
	Generating the UI code

	Time for action – generating the UI code
	Connecting the widgets

	Time for action – connecting the widgets
	Developing the audio player code

	Time for action – developing the audio player code
	Project: GUI-based video player
	Generating the UI code

	Time for action – generating the UI code
	Connecting the widgets
	Developing the video player code

	Time for action – developing the video player code
	Summary

	Index

