
Safari | Python Essential Reference, Second Edition

Linux/Unix > Python Essential Reference, Second Edition See All Titles

Front Matter
Table of Contents
About the Author

Python Essential Reference, Second Edition

David M Beazley
Publisher: New Riders Publishing

Second Edition June 07, 2001
ISBN: 0-7357-1091-0, 416 pages

Buy Print Version

Python Essential Reference, Second Edition, concisely describes the Python
Programming language and its large library of standard modules, collectively
known as the Python programming environment. It is arranged into four major
parts. First, a brief tutorial and introduction is presented, then an informal
language reference will cover lexical conventions, functions, statements,
control flow, datatypes, classes, and execution models. The third section covers
the Python library, and the final section covers the Python C API that is used to
write Python extensions.

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%20Py...20Second%20Edition/python_essencial_ref/index.html [2003/1/1 ､W､ﾈ 02:55:16]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
http://www.informit.com/safari/author_bio.asp?ISBN=0735710910
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/printed.asp?editor=informit&mode=add&locale=en-US-INFM02&CF__AUX_STORE_FRONT=IT&sku=0735710910&ofrurl=http%3A%2F%2Fsafari%2Eoreilly%2Ecom%2Fmain%2Easp

Safari | Python Essential Reference, Second Edition -> About the Author

Linux/Unix > Python Essential Reference, Second Edition > About the Author See All Titles

 Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238110137111061152135198201065003

About the Author

David M. Beazley is the developer of SWIG, a popular software package for integrating C
programs with interpreted languages including Python, Perl, and Tcl. He has been actively involved
with the Python community since 1996 and is currently working on projects related to mixed-mode
debugging of scripting language extensions. Dave spent seven years working in the Theoretical
Physics Division at Los Alamos National Laboratory, where he helped pioneer the use of Python
with high-performance simulation software running on parallel computers. He is currently an
assistant professor in the Department of Computer Science at the University of Chicago, where he
enjoys tormenting students with insane programming projects in operating systems, networks, and
compilers courses. He can be reached at beazley@cs.uchicago.edu.

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

 Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%20P...e,%20Second%20Edition/python_essencial_ref/2.html [2003/1/1 ､W､ﾈ 02:55:17]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=2
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+8%3A29%3A24+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read7.asp?bookname=0735710910&snode=2&now=5%2F28%2F2002+8%3A29%3A24+PM
mailto:beazley@cs.uchicago.edu
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=2

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/new_toc.html

<= Return to book index

About the Author
About the Technical Reviewers
Acknowledgments
Tell Us What You Think
Introduction
 What’s Inside?
1. A Tutorial Introduction
 Running Python
 Variables and Arithmetic Expressions
 Conditionals
 File Input and Output
 Strings
 Lists and Tuples
 Loops
 Dictionaries
 Functions
 Classes
 Exceptions
 Modules
2. Lexical Conventions and Syntax
 Line Structure and Indentation
 Identifiers and Reserved Words
 Literals
 Operators, Delimiters, and Special Symbols
 Documentation Strings
3. Types and Objects
 Terminology
 Object Identity and Type
 Reference Counting and Garbage Collection
 References and Copies
 Built-in Types
 Special Methods
 Performance and Memory Considerations
4. Operators and Expressions
 Operations on Numbers
 Operations on Sequences
 Operations on Dictionaries
 Augmented Assignment
 The Attribute (.) Operator

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...ond%20Edition/python_essencial_ref/new_toc.html (1 / 4) [2003/1/1 ､W､ﾈ 02:55:18]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/new_toc.html

 Type Conversion
 Unicode Strings
 Boolean Expressions and Truth Values
 Object Equality and Identity
 Order of Evaluation
5. Control Flow
 Conditionals
 Loops
 Exceptions
 Defining New Exceptions
 Assertions and _ _debug_ _
6. Functions and Functional Programming
 Functions
 Parameter Passing and Return Values
 Scoping Rules
 Recursion
 The apply() Function
 The lambda Operator
 map() , zip() , reduce() , and filter()
 List Comprehensions
 eval() , exec , execfile() , and compile()
7. Classes and Object-Oriented Programming
 The class statement
 Class Instances
 Reference Counting and Instance Destruction
 Inheritance
 Polymorphism
 Information Hiding
 Operator Overloading
 Classes, Types, and Membership Tests
8. Modules and Packages
 Modules
 The Module Search Path
 Module Loading and Compilation
 Module Reloading
 Packages
9. Input and Output
 Reading Options and Environment Variables
 Files
 Standard Input, Output, and Error
 The print Statement

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...ond%20Edition/python_essencial_ref/new_toc.html (2 / 4) [2003/1/1 ､W､ﾈ 02:55:18]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/new_toc.html

 Persistence
 Unicode I/O
10. Execution Environment
 Interpreter Options and Environment
 Interactive Sessions
 Launching Python Applications
 Site Configuration Files
 Enabling Future Features
 Program Termination
A. The Python Library
 Built-in Functions and Exceptions
 Python Services
 Mathematics
 String Handling
 Data Management and Object Persistence
 Operating System Services
 Threads
 Network Programming
 Internet Data Handling and Encoding
 Restricted Execution
 Miscellaneous Modules
 The Python Debugger
 The Python Profiler
 Undocumented Modules
B. Extending and Embedding Python
 Enabling Optional Modules
 Compilation of Extensions
 Converting Data from Python to C
 Converting Data from C to Python
 Error Handling
 Reference Counting
 Calling Python from C
 Abstract Object Layer
 Low-Level Functions on Built-in Types
 Defining New Types
 Special Methods for Types
 Threads
 Embedding
 Extension Building Tools
C. Summary of Changes
 Python 1.6

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...ond%20Edition/python_essencial_ref/new_toc.html (3 / 4) [2003/1/1 ､W､ﾈ 02:55:18]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/new_toc.html

 Python 2.0
 Python 2.1

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...ond%20Edition/python_essencial_ref/new_toc.html (4 / 4) [2003/1/1 ､W､ﾈ 02:55:18]

Safari | Python Essential Reference, Second Edition -> About the Technical Reviewers

Linux/Unix > Python Essential Reference, Second Edition > About the Technical
Reviewers

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238110137111061152128145089209122

About the Technical Reviewers
These reviewers contributed their considerable hands-on expertise to the entire development process
for Python Essential Reference, Second Edition. As the book was being written, these dedicated
professionals reviewed all the material for technical content, organization, and flow. Their feedback
was critical to ensuring that Python Essential Reference, Second Edition fits our reader’s need for
the highest-quality technical information.

Paul F. Dubois graduated from the University of California at Berkeley with a degree in
mathematics. He obtained a Ph.D. in mathematics from the University of California at Davis in
1970. After six years of teaching and research, in 1976 he joined Lawrence Livermore National
Laboratory. He has held a variety of positions at LLNL as a technical leader in numerical
mathematics and computer science. In 1999 he joined the Program for Climate Model Diagnosis and
Intercomparison in the Atmospheric Sciences Division, where he is putting Python to work creating
analysis tools for climate modelers.

Paul’s work includes pioneering work on computational steering and the use of object technology
for scientific programming. He is the Editor of the Scientific Programming Department for the
journal IEEE Computing in Science and Engineering.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...20Second%20Edition/python_essencial_ref/4.html (1 / 2) [2003/1/1 ､W､ﾈ 02:55:18]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=4
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+8%3A29%3A54+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read1.asp?bookname=0735710910&snode=4&now=5%2F28%2F2002+8%3A29%3A54+PM

Safari | Python Essential Reference, Second Edition -> About the Technical Reviewers

Mats Wichmann is a consultant and trainer. A 1980 computer science graduate of the University of
California at Berkeley, he managed operating systems development for several UNIX companies in
the 1980s before becoming a consultant. His search for a programming language that spans the
range from scripting system administration tasks to developing serious applications has found a
happy conclusion in Python. Mats is the author of a Python training course for a major training
provider. Living in Questa, New Mexico, he can be reached at m.wichmann@ieee.org.

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...20Second%20Edition/python_essencial_ref/4.html (2 / 2) [2003/1/1 ､W､ﾈ 02:55:18]

mailto:m.wichmann@ieee.org
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=4

Safari | Python Essential Reference, Second Edition -> Acknowledgments

Linux/Unix > Python Essential Reference, Second Edition > Acknowledgments See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238110137110161234159017080168038

Acknowledgments
This book would not be possible without the input and support of many people. First, I would like to
thank technical reviewers Mats Wichmann and Paul Dubois for their feedback. I would also like to
thank the technical reviewers of the first edition, David Ascher and Paul Dubois, for their valuable
comments and continued advice. Guido van Rossum, Jeremy Hylton, Fred Drake, Roger Masse,
Barry Warsaw, and the rest of the Python developers also provided tremendous assistance with the
first edition.

I’d also like to thank the folks at New Riders for their commitment to the project and assistance. A
special thanks is in order for freelance editor Robin Drake for her amazing editing of both editions,
and to compositors Ron Wise and Amy Parker (freelance and in-house, respectively), whose
patience and stamina exceeded expectations and made it possible to finish this edition on time. I
would also like to acknowledge the heroic efforts of Tim Bell, who not only provided a substantial
number of suggestions for improving the first edition, but jumped in at the last moment to proofread
this edition.

The following individuals also supplied feedback from the first edition: Jan Decaluwe, Mike
Coleman, Andrew Kuchling, Greg Ward, Richard Wolff, Holger Dürer, Patrick Moran, Christian
Norgaard Storm Pedersen, Dustin Mitchell, Benjamin Smith, Michael Drumheller, Brett Porter, Tim
Bell, Michael Dyck, Ian Thomas Cohen, Steve Burns, David Morrill, Dennis McCoy, Paul DuBois,
Peter Koren, Richard Gruet, Hamish Lawson, Michael Rodgers, Eric Rowe, Phil Austin,Aaron
Digulla, Jack Gilbert, Joseph Sachs, Cecil Edwards, and Daniel Klein. I have done my best to
incorporate your suggestions.

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%20P...e,%20Second%20Edition/python_essencial_ref/6.html [2003/1/1 ､W､ﾈ 02:55:19]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=6
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+8%3A30%3A49+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read0.asp?bookname=0735710910&snode=6&now=5%2F28%2F2002+8%3A30%3A49+PM
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=6

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/8.html

Linux/Unix > Python Essential Reference, Second Edition > Tell Us What You Think See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238110137110160242235221126023002

Tell Us What You Think
As the reader of this book, you are our most important critic and commentator. We value your
opinion and want to know what we’re doing right, what we could do better, what areas you’d like to
see us publish in, and any other words of wisdom you’re willing to pass our way.

As an Executive Editor for the Web Development team at New Riders Publishing, I welcome your
comments. You can fax, email, or write me directly to let me know what you did or didn’t like about
this book—as well as what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this book, and that
due to the high volume of mail I receive, I might not be able to reply to every message.

When you write, please be sure to include this book’s title and author as well as your name and
phone or fax number. I will carefully review your comments and share them with the author and
editors who worked on the book.

Fax: 317-581-4663

Email: Stephanie.Wall@newriders.com

Mail: Stephanie Wall
Executive Editor
New Riders Publishing
201 West 103rd Street
Indianapolis, IN 46290 USA

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%20P...e,%20Second%20Edition/python_essencial_ref/8.html [2003/1/1 ､W､ﾈ 02:55:19]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=8
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+8%3A31%3A05+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read0.asp?bookname=0735710910&snode=8&now=5%2F28%2F2002+8%3A31%3A05+PM
mailto:Stephanie.Wall@newriders.com
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=8

Safari | Python Essential Reference, Second Edition -> Introduction

Linux/Unix > Python Essential Reference, Second Edition > Introduction See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238110137110160242233249017210109

Introduction
This book is intended to be a concise reference to the Python programming language. Although an
experienced programmer will probably be able to learn Python from this book, it’s not intended to
be an extended tutorial or a treatise on how to program. Rather, the goal is to present the core
Python language, the contents of the Python library, and the Python extension API in a manner
that’s accurate and succinct. This book assumes that the reader has prior programming experience
with Python or other languages such as C or Java. In addition, a general familiarity with systems
programming topics (for example, basic operating system concepts, process management, and
network programming) may be useful in understanding certain parts of the library reference.

Python is freely available for download at http://www.python.org. Versions are available for UNIX,
Windows, Macintosh, and Java. In addition, this site includes links to documentation, how-to
guides, and a wide assortment of extension modules.

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%20P...,%20Second%20Edition/python_essencial_ref/10.html [2003/1/1 ､W､ﾈ 02:55:19]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=10
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+8%3A31%3A21+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read5.asp?bookname=0735710910&snode=10&now=5%2F28%2F2002+8%3A31%3A21+PM
http://www.python.org/
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=10

Safari | Python Essential Reference, Second Edition -> What’s Inside?

Linux/Unix > Python Essential Reference, Second Edition > Introduction > What’s
Inside?

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238110137110160242232029007026194

What’s Inside?

The contents of this book are based on Python 2.1. However, readers should be aware that Python is
a constantly evolving language. Most of the topics described herein are likely to be applicable to
future versions of Python 2.x. In addition, most topics are applicable to earlier releases. To a lesser
extent, the topics in this book also apply to JPython, an implementation of Python entirely in Java.
However, that is not the primary focus of this book.

It should be noted that just as Python is an evolving language, the Second Edition of Python
Essential Reference has evolved to make use of new language features and new library modules
added in Python 2.1. Rather than merely describing new language features as an afterthought,
recently added features have been freely used and incorporated throughout the text. Although no
distinction is given to new additions, detailed descriptions of language changes can easily be found
online.

Finally, note that Python is distributed with hundreds of pages of reference documentation. The
contents of this book are largely based on that documentation, but with a number of enhancements,
additions, and omissions. First, this reference presents most of the same material in a more compact
form, with different examples and alternative descriptions of many topics. Second, a significant
number of topics in the library reference have been expanded to include additional outside reference
material. This is especially true for low-level system and networking modules in which effective use
of a module normally relies on a myriad of options listed in UNIX manual pages and outside
reference material. In addition, in order to produce a more concise reference, a number of
deprecated and relatively obscure library modules have been omitted. Finally, this reference doesn’t
attempt to cover large frameworks such as Tkinter, XML, or the COM extensions, as these topics
are beyond the scope of this book and are described in books of their own.

In writing this book, it has been my goal to produce a reference containing virtually everything I
have needed to use Python and its large collection of modules. Although this is by no means a gentle
introduction to the Python language, I hope that you find the contents of this book to be a useful
addition to your programming reference library for many years to come. I welcome your comments.

—David Beazley Chicago, IL 6/1/2001

Conventions Used in This Book

Convention Usage

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/11.html (1 / 2) [2003/1/1 ､W､ﾈ 02:55:20]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=11
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+8%3A31%3A37+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read5.asp?bookname=0735710910&snode=11&now=5%2F28%2F2002+8%3A31%3A37+PM

Safari | Python Essential Reference, Second Edition -> What’s Inside?

monospace text Datatypes, classes, modules, constants, and so on—basically, anything that constitutes part
of the Python language or any command you could present to the computer. The
monospaced font is also used for Internet addresses such as www.python.org.

italic monospace Variables such as x in abs(x) .

[] Brackets are used in syntax lines to indicate optional elements, such as object in
dir([object]). In the syntax [arg = value], value indicates the default value
of arg . Brackets are also used to denote Python lists; in all coding examples, this is the
interpretation.

Code-continuation characters are inserted into code when a line shouldn’t be broken, but
we simply ran out of room on the page.

Web Site

For downloadable source files from the code listings in this book, visit www.newriders.com.

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/11.html (2 / 2) [2003/1/1 ､W､ﾈ 02:55:20]

http://www.newriders.com/
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=11

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/13.html

Linux/Unix > Python Essential Reference, Second Edition > 1. A Tutorial Introduction See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238110137110160242238039134046118

Chapter 1. A Tutorial Introduction
This chapter provides a quick introduction to Python. The goal is to illustrate Python’s essential
features without getting too bogged down in special rules or details. To do this, the chapter briefly
covers basic concepts such as variables, expressions, control flow, functions, and input/output. This
chapter is not intended to provide comprehensive coverage, nor does it cover many of Python’s
more advanced features. However, experienced programmers should be able to extrapolate from the
material in this chapter to create more advanced programs. Beginners are encouraged to try a few
examples to get a feel for the language.

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%20P...,%20Second%20Edition/python_essencial_ref/13.html [2003/1/1 ､W､ﾈ 02:55:20]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=13
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+8%3A31%3A57+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read1.asp?bookname=0735710910&snode=13&now=5%2F28%2F2002+8%3A31%3A57+PM
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=13

Safari | Python Essential Reference, Second Edition -> Running Python

Linux/Unix > Python Essential Reference, Second Edition > 1. A Tutorial Introduction >
Running Python

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238110137110163131200150148053063

Running Python

Python programs are executed by an interpreter. On UNIX machines, the interpreter is started by
typing python. On Windows and the Macintosh, the interpreter is launched as an application
(either from the Start menu or by double-clicking the interpreter’s icon). When the interpreter starts,
a prompt appears at which you can start typing programs into a simple read-evaluation loop. For
example, in the following output, the interpreter displays its copyright message and presents the user
with the >>> prompt, at which the user types the familiar “Hello World” command:

Python 2.1 (#1, Apr 20 2001, 14:34:45)
[GCC 2.95.2 19991024 (release)] on sunos5
Type "copyright", "credits" or "license" for more information.
>>> print "Hello World"
Hello World
>>>

Programs can also be placed in a file such as the following:

helloworld.py
print "Hello World"

Python source files have a .py suffix. The # character denotes a comment that extends to the end of
the line.

To execute the helloworld.py file, you provide the filename to the interpreter as follows:

% python helloworld.py
Hello World
%

On Windows, Python programs can be started by double-clicking a .py file. This launches the
interpreter and runs the program in a console window. In this case, the console window disappears
immediately after the program completes its execution (often before you can read its output). To
prevent this problem, you should use an integrated development environment such as Idle or
Pythonwin. An alternative approach is to launch the program using a .bat file containing a

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/14.html (1 / 2) [2003/1/1 ､W､ﾈ 02:55:20]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=14
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+8%3A32%3A17+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read9.asp?bookname=0735710910&snode=14&now=5%2F28%2F2002+8%3A32%3A17+PM

Safari | Python Essential Reference, Second Edition -> Running Python

statement such as python -i helloworld.py that instructs the interpreter to enter interactive
mode after program execution.

On the Macintosh, programs can be executed from the included integrated development
environment. In addition, the BuildApplet utility (included in the distribution) turns a Python
program into a document that automatically launches the interpreter when opened.

Within the interpreter, the execfile() function runs a program, as in the following example:

>>> execfile("helloworld.py")
Hello World

On UNIX, you can also invoke Python using #! in a shell script:

#!/usr/local/bin/python
print "Hello World"

The interpreter runs until it reaches the end of the input file. If running interactively, you can exit by
typing the EOF (end of file) character or by selecting Exit from a pull-down menu. On UNIX, EOF
is Ctrl+D; on Windows, Ctrl+Z. A program can also exit by calling the sys.exit() function or
raising the SystemExit exception. For example:

>>> import sys
>>> sys.exit()

or

>>> raise SystemExit

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/14.html (2 / 2) [2003/1/1 ､W､ﾈ 02:55:20]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=14

Safari | Python Essential Reference, Second Edition -> Variables and Arithmetic Expressions

Linux/Unix > Python Essential Reference, Second Edition > 1. A Tutorial Introduction >
Variables and Arithmetic Expressions

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238110137110163131203146201222029

Variables and Arithmetic Expressions

The program in Listing 1.1 shows the use of variables and expressions by performing a simple
compound-interest calculation:

Listing 1.1 Simple Compound-Interest Calculation

principal = 1000 # Initial amount
rate = 0.05 # Interest rate
numyears = 5 # Number of years
year = 1
while year <= numyears:
 principal = principal*(1+rate)
 print year, principal
 year += 1

The output of this program is the following table:

1050.0
1102.5
1157.625
1215.50625
1276.2815625

Python is a dynamically typed language in which names can represent values of different types
during the execution of the program. In fact, the names used in a program are really just labels for
various quantities and objects. The assignment operator simply creates an association between that
name and a value. This is different from C, for example, in which a name represents a fixed size and
location in memory into which results are placed. The dynamic behavior of Python can be seen in
Listing 1.1 with the principal variable. Initially, it’s assigned to an integer value. However, later
in the program it’s reassigned as follows:

principal = principal*(1+rate)

This statement evaluates the expression and reassociates the name principal with the result.
When this occurs, the original binding of principal to the integer 1000 is lost. Furthermore, the

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/15.html (1 / 2) [2003/1/1 ､W､ﾈ 02:55:21]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=15
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+8%3A32%3A28+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read6.asp?bookname=0735710910&snode=15&now=5%2F28%2F2002+8%3A32%3A28+PM
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/15#2.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/15#2.html

Safari | Python Essential Reference, Second Edition -> Variables and Arithmetic Expressions

result of the assignment may change the type of a variable. In this case, the type of principal
changes from an integer to a floating-point number because rate is a floating-point number.

A newline terminates each individual statement. You also can use a semicolon to separate
statements, as shown here:

principal = 1000; rate = 0.05; numyears = 5;

The while statement tests the conditional expression that immediately follows. If the tested
expression is true, the body of the while statement executes. The condition is then retested and the
body executed again until the condition becomes false. Because the body of the loop is denoted by
indentation, the three statements following the while in Listing 1.1 execute on each iteration.
Python doesn’t specify the amount of required indentation, as long as it’s consistent within a block.

One problem with the program in Listing 1.1 is that the output isn’t very pretty. To make it better,
you could right-align the columns and limit the precision of principal to two digits by
modifying the print to use a format string, like this:

print "%3d %0.2f" % (year, principal)

Now the output of the program looks like this:

1050.00
1102.50
1157.63
1215.51
1276.28

Format strings contain ordinary text and special formatting-character sequences such as "%d",
"%s", or "%f". These sequences specify the formatting of a particular type of data such as an
integer, string, or floating-point number, respectively. The special-character sequences can also
contain modifiers that specify a width and precision. For example, "%3d" formats an integer right-
aligned in a column of width 3, and "%0.2f" formats a floating-point number so that only two
digits appear after the decimal point. The behavior of format strings is almost identical to the C
sprintf() function and is described in detail in Chapter 4, “Operators and Expressions.”

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/15.html (2 / 2) [2003/1/1 ､W､ﾈ 02:55:21]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/15#2.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/15#2.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=15

Safari | Python Essential Reference, Second Edition -> Conditionals

Linux/Unix > Python Essential Reference, Second Edition > 1. A Tutorial Introduction >
Conditionals

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238110137110163131205251112200021

Conditionals

The if and else statements can perform simple tests. For example:

Compute the maximum (z) of a and b
if a < b:
 z = b
else:
 z = a

The bodies of the if and else clauses are denoted by indentation. The else clause is optional.

To create an empty clause, use the pass statement as follows:

if a < b:
 pass # Do nothing
else:
 z = a

You can form Boolean expressions by using the or, and, and not keywords:

if b >= a and b <= c:
 print "b is between a and c"
if not (b < a or b > c):
 print "b is still between a and c"

To handle multiple-test cases, use the elif statement, like this:

if a == '+':
 op = PLUS
elif a == '-':
 op = MINUS
elif a == '*':
 op = MULTIPLY

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/16.html (1 / 2) [2003/1/1 ､W､ﾈ 02:55:21]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=16
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+8%3A32%3A42+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read9.asp?bookname=0735710910&snode=16&now=5%2F28%2F2002+8%3A32%3A42+PM

Safari | Python Essential Reference, Second Edition -> Conditionals

else:
 raise RuntimeError, "Unknown operator"

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/16.html (2 / 2) [2003/1/1 ､W､ﾈ 02:55:21]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=16

Safari | Python Essential Reference, Second Edition -> File Input and Output

Linux/Unix > Python Essential Reference, Second Edition > 1. A Tutorial Introduction >
File Input and Output

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238110137110163131204076091195237

File Input and Output

The following program opens a file and reads its contents line by line:

f = open("foo.txt") # Returns a file object
line = f.readline() # Invokes readline() method on file
while line:
 print line, # trailing ',' omits newline character
 line = f.readline()
f.close()

The open() function returns a new file object. By invoking methods on this object, you can
perform various file operations. The readline() method reads a single line of input, including
the terminating newline. The empty string is returned at the end of the file. To make the output of a
program go to a file, you can give the file to the print statement using >> as shown in the
following example:

f = open("out","w") # Open file for writing
while year <= numyears:
 principal = principal*(1+rate)
 print >>f,"%3d %0.2f" %% (year,principal)
 year += 1
f.close()

In addition, files support a write() method that can be used to write raw data. For example, the
print statement in the previous example could have been written this way:

f.write("%3d %0.2f\n" % (year,principal))

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%20P...,%20Second%20Edition/python_essencial_ref/17.html [2003/1/1 ､W､ﾈ 02:55:22]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=17
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+8%3A32%3A53+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read3.asp?bookname=0735710910&snode=17&now=5%2F28%2F2002+8%3A32%3A53+PM
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=17

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/18.html

Linux/Unix > Python Essential Reference, Second Edition > 1. A Tutorial Introduction >
Strings

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238110137110162165011202136172174

Strings

To create string literals, enclose them in single, double, or triple quotes as follows:

a = 'Hello World'
b = "Python is groovy"
c = """What is footnote 5?"""

The same type of quote used to start a string must be used to terminate it. Triple-quoted strings
capture all the text that appears prior to the terminating triple quote, as opposed to single- and
double-quoted strings, which must be specified on one logical line. Triple quotes can be done with
either single quotes (as in the following example) or double quotes (as in the above example). Triple-
quoted strings are useful when the contents of a string literal span multiple lines of text such as the
following:

print '''Content-type: text/html

<h1> Hello World </h1>
Click here.
'''

Strings are sequences of characters indexed by integers starting at zero. To extract a single character,
use the indexing operator s [i] like this:

a = "Hello World"
b = a[4] # b = 'o'

To extract a substring, use the slicing operator s [i :j]. This extracts all elements from s whose
index k is in the range i <= k < j . If either index is omitted, the beginning or end of the string
is assumed, respectively:

c = a[0:5] # c = "Hello"
d = a[6:] # d = "World"
e = a[3:8] # e = "lo Wo"

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/18.html (1 / 2) [2003/1/1 ､W､ﾈ 02:55:22]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=18
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+8%3A33%3A10+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read1.asp?bookname=0735710910&snode=18&now=5%2F28%2F2002+8%3A33%3A10+PM

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/18.html

Strings are concatenated with the plus (+) operator:

g = a + " This is a test"

Other datatypes can be converted into a string by using either the str() or repr() function or
backquotes (`), which are a shortcut notation for repr(). For example:

s = "The value of x is " + str(x)
s = "The value of y is " + repr(y)
s = "The value of y is " + `y`

In many cases, str() and repr() return identical results. However, there are subtle differences
in semantics that are described in later chapters.

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/18.html (2 / 2) [2003/1/1 ､W､ﾈ 02:55:22]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=18

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/19.html

Linux/Unix > Python Essential Reference, Second Edition > 1. A Tutorial Introduction > Lists and Tuples See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238110137110162165008178174077032

Lists and Tuples

Just as strings are sequences of characters, lists and tuples are sequences of arbitrary objects. You create a list as follows:

names = ["Dave", "Mark", "Ann", "Phil"]

Lists are indexed by integers starting with zero. Use the indexing operator to access and modify individual items of the
list:

a = names[2] # Returns the third item of the list, "Ann"
names[0] = "Jeff" # Changes the first item to "Jeff"

The length of a list can be obtained using the len() function:

print len(names) # prints 4

To append new items to a list, use the append() method:

names.append("Kate")

To insert an item into the list, use the insert() method:

names.insert(2, "Sydney")

You can extract or reassign a portion of a list by using the slicing operator:

b = names[0:2] # Returns ["Jeff", "Mark"]
c = names[2:] # Returns ["Sydney", "Ann", "Phil", "Kate"]
names[1] = 'Jeff' # Replace the 2nd item in names with "Jeff"
names[0:2] = ['Dave','Mark','Jeff'] # Replace the first two items of
 # the list with the list on the right.

Use the plus (+) operator to concatenate lists:

a = [1,2,3] + [4,5] # Result is [1,2,3,4,5]

Lists can contain any kind of Python object, including other lists, as in the following example:

a = [1,"Dave",3.14, ["Mark", 7, 9, [100,101]], 10]

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/19.html (1 / 3) [2003/1/1 ､W､ﾈ 02:55:23]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=19
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+8%3A33%3A26+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read6.asp?bookname=0735710910&snode=19&now=5%2F28%2F2002+8%3A33%3A26+PM

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/19.html

Nested lists are accessed as follows:

a[1] # Returns "Dave"
a[3][2] # Returns 9
a[3][3][1] # Returns 101

The program in Listing 1.2 illustrates a few more advanced features of lists by reading a list of numbers from a file and
outputting the minimum and maximum values.

Listing 1.2 Advanced List Features

import sys # Load the sys module
f = open(sys.argv[1]) # Filename on the command line
svalues = f.readlines() # Read all lines into a list
f.close()

Convert all of the input values from strings to floats
fvalues = [float(s) for s in svalues]

Print min and max values
print "The minimum value is ", min(fvalues)
print "The maximum value is ", max(fvalues)

The first line of this program uses the import statement to load the sys module from the Python library.

The open() method uses a filename that has been supplied as a command-line option and stored in the list sys.argv.
The readlines() method reads all the input lines into a list of strings.

The expression [float(s) for s in svalues] constructs a new list by looping over all the strings in the list
svalues and applying the function float() to each element. This particularly powerful method of constructing a list
is known as a list comprehension.

After the input lines have been converted into a list of floating-point numbers, the built-in min() and max() functions
compute the minimum and maximum values.

Closely related to lists is the tuple datatype. You create tuples by enclosing a group of values in parentheses or with a
comma-separated list, like this:

a = (1,4,5,-9,10)
b = (7,) # Singleton (note extra ,)
person = (first_name, last_name, phone)

Sometimes Python recognizes that a tuple is intended even if the parentheses are missing:

a = 1,4,5,-9,10
b = 7,
person = first_name, last_name, phone

Tuples support most of the same operations as lists, such as indexing, slicing, and concatenation. The only difference is
that you cannot modify the contents of a tuple after creation––that is, you cannot modify individual elements, or append
new elements to a tuple.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/19.html (2 / 3) [2003/1/1 ､W､ﾈ 02:55:23]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/19#2.html

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/19.html

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/19.html (3 / 3) [2003/1/1 ､W､ﾈ 02:55:23]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=19

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/20.html

Linux/Unix > Python Essential Reference, Second Edition > 1. A Tutorial Introduction >
Loops

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238110137110162165009205247068184

Loops

The simple loops shown earlier used the while statement. The other looping construct is the for
statement, which iterates over the members of a sequence, such as a string, list, or tuple. Here’s an
example:

for i in range(1,10):
 print "2 to the %d power is %d" % (i, 2**i)

The range(i ,j) function constructs a list of integers with values from i to j-1 . If the starting
value is omitted, it’s taken to be zero. An optional stride can also be given as a third argument. For
example:

a = range(5) # a = [0,1,2,3,4]
b = range(1,8) # b = [1,2,3,4,5,6,7]
c = range(0,14,3) # c = [0,3,6,9,12]
d = range(8,1,-1) # d = [8,7,6,5,4,3,2]

The for statement can iterate over any sequence type and isn’t limited to sequences of integers:

a = "Hello World"
Print out the characters in a
for c in a:
 print c

b = ["Dave","Mark","Ann","Phil"]
Print out the members of a list
for name in b:
 print name

range() works by constructing a list and populating it with values according to the starting,
ending, and stride values. For large ranges, this process is expensive in terms of both memory and
runtime performance. To avoid this, you can use the xrange() function, as shown here:

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/20.html (1 / 2) [2003/1/1 ､W､ﾈ 02:55:23]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=20
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+8%3A33%3A39+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read6.asp?bookname=0735710910&snode=20&now=5%2F28%2F2002+8%3A33%3A39+PM

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/20.html

for i in xrange(1,10):
 print "2 to the %d power is %d" % (i, 2**i)

a = xrange(100000000) # a = [0,1,2, ..., 99999999]
b = xrange(0,100000000,5) # b = [0,5,10, ...,99999995]

Rather than creating a sequence populated with values, the sequence returned by xrange()
computes its values from the starting, ending, and stride values whenever it’s accessed.

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/20.html (2 / 2) [2003/1/1 ､W､ﾈ 02:55:23]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=20

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/21.html

Linux/Unix > Python Essential Reference, Second Edition > 1. A Tutorial Introduction >
Dictionaries

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238110137110162165014051008045182

Dictionaries

A dictionary is an associative array or hash table that contains objects indexed by keys. Create a
dictionary by enclosing the values in curly braces ({ }) like this:

a = {
 "username" : "beazley",
 "home" : "/home/beazley",
 "uid" : 500
 }

To access members of a dictionary, use the key-indexing operator as follows:

u = a["username"]
d = a["home"]

Inserting or modifying objects works like this:

a["username"] = "pxl"
a["home"] = "/home/pxl"
a["shell"] = "/usr/bin/tcsh"

Although strings are the most common type of key, you can use many other Python objects,
including numbers and tuples. Some objects, including lists and dictionaries, cannot be used as keys,
because their contents are allowed to change.

Dictionary membership is tested with the has_key() method, as in the following example:

if a.has_key("username"):
 username = a["username"]
else:
 username = "unknown user"

This particular sequence of steps can also be performed more compactly as follows:

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/21.html (1 / 2) [2003/1/1 ､W､ﾈ 02:55:24]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=21
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+8%3A33%3A49+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read3.asp?bookname=0735710910&snode=21&now=5%2F28%2F2002+8%3A33%3A49+PM

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/21.html

username = a.get("username", "unknown user")

To obtain a list of dictionary keys, use the keys() method:

k = a.keys() # k = ["username","home","uid","shell"]

Use the del statement to remove an element of a dictionary:

del a["username"]

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/21.html (2 / 2) [2003/1/1 ､W､ﾈ 02:55:24]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=21

Safari | Python Essential Reference, Second Edition -> Functions

Linux/Unix > Python Essential Reference, Second Edition > 1. A Tutorial Introduction >
Functions

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238110137110162165015143224220233

Functions

You use the def statement to create a function, as shown in the following example:

def remainder(a,b):
 q = a/b
 r = a - q*b
 return r

To invoke a function, simply use the name of the function followed by its arguments enclosed in
parentheses, such as result = remainder(37,15). You can use a tuple to return multiple
values from a function, as in the following example:

def divide(a,b):
 q = a/b # If a and b are integers, q is an integer
 r = a - q*b
 return (q,r)

When returning multiple values in a tuple, it’s often useful to invoke the function as follows:

quotient, remainder = divide(1456,33)

To assign a default value to a parameter, use assignment:

def connect(hostname,port,timeout=300):
 # Function body

When default values are given in a function definition, they can be omitted from subsequent
function calls. For example:

connect('www.python.org', 80)

You also can invoke functions by using keyword arguments and supplying the arguments in

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/22.html (1 / 2) [2003/1/1 ､W､ﾈ 02:55:24]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=22
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+8%3A33%3A59+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read0.asp?bookname=0735710910&snode=22&now=5%2F28%2F2002+8%3A33%3A59+PM

Safari | Python Essential Reference, Second Edition -> Functions

arbitrary order. For example:

connect(port=80,hostname="www.python.org")

When variables are created or assigned inside a function, their scope is local. To modify the value of
a global variable from inside a function, use the global statement as follows:

a = 4.5
...
def foo():
 global a
 a = 8.8 # Changes the global variable a

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/22.html (2 / 2) [2003/1/1 ､W､ﾈ 02:55:24]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=22

Safari | Python Essential Reference, Second Edition -> Classes

Linux/Unix > Python Essential Reference, Second Edition > 1. A Tutorial Introduction >
Classes

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238110137110165121169154060231060

Classes

The class statement is used to define new types of objects and for object-oriented programming.
For example, the following class defines a simple stack:

class Stack:
 def _ _init_ _(self): # Initialize the stack
 self.stack = []
 def push(self,object):
 self.stack.append(object)
 def pop(self):
 return self.stack.pop()
 def length(self):
 return len(self.stack)

In the class definition, methods are defined using the def statement. The first argument in each
method always refers to the object itself. By convention, self is the name used for this argument.
All operations involving the attributes of an object must explicitly refer to the self variable.
Methods with leading and trailing double underscores are special methods. For example, _
init _ is used to initialize an object after it’s created.

To use a class, write code such as the following:

s = Stack() # Create a stack
s.push("Dave") # Push some things onto it
s.push(42)
s.push([3,4,5])
x = s.pop() # x gets [3,4,5]
y = s.pop() # y gets 42
del s # Destroy s

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%20P...,%20Second%20Edition/python_essencial_ref/23.html [2003/1/1 ､W､ﾈ 02:55:25]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=23
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+8%3A34%3A09+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read5.asp?bookname=0735710910&snode=23&now=5%2F28%2F2002+8%3A34%3A09+PM
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=23

Safari | Python Essential Reference, Second Edition -> Exceptions

Linux/Unix > Python Essential Reference, Second Edition > 1. A Tutorial Introduction >
Exceptions

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238110137104026065049168166116064

Exceptions

If an error occurs in your program, an exception is raised and an error message such as the following
appears:

Traceback (most recent call last):
 File "<interactive input>", line 42, in foo.py
NameError: a

The error message indicates the type of error that occurred, along with its location. Normally, errors
cause a program to abort. However, you can catch and handle exceptions using the try and
except statements, like this:

try:
 f = open("file.txt","r")
except IOError, e:
 print e

If an IOError occurs, details concerning the cause of the error are placed in e and control passes
to the code in the except block. If some other kind of exception is raised, it’s passed to the
enclosing code block (if any). If no errors occur, the code in the except block is ignored.

The raise statement is used to signal an exception. When raising an exception, you can use one of
the built-in exceptions, like this:

raise RuntimeError, "Unrecoverable error"

Or you can create your own exceptions, as described in the section “Defining New Exceptions” in
Chapter 5, “Control Flow.”

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%20P...,%20Second%20Edition/python_essencial_ref/24.html [2003/1/1 ､W､ﾈ 02:55:25]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=24
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+8%3A52%3A18+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read7.asp?bookname=0735710910&snode=24&now=5%2F28%2F2002+8%3A52%3A18+PM
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=24

Safari | Python Essential Reference, Second Edition -> Modules

Linux/Unix > Python Essential Reference, Second Edition > 1. A Tutorial Introduction >
Modules

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238110137104026065050119086242034

Modules

As your programs grow in size, you’ll probably want to break them into multiple files for easier
maintenance. To do this, Python allows you to put definitions in a file and use them as a module that
can be imported into other programs and scripts. To create a module, put the relevant statements and
definitions into a file that has the same name as the module. (Note: The file must have a .py suffix.)
For example:

file : div.py
def divide(a,b):
 q = a/b # If a and b are integers, q is an integer
 r = a - q*b
 return (q,r)

To use your module in other programs, you can use the import statement:

import div
a, b = div.divide(2305, 29)

import creates a new namespace that contains all the objects defined in the module. To access this
namespace, simply use the name of the module as a prefix, as in div.divide() in the preceding
example.

If you want to import a module using a different name, supply the import statement with an optional
as qualifier as follows:

import div as foo
a,b = foo.divide(2305,29)

To import specific definitions into the current namespace, use the from statement:

from div import divide
a,b = divide(2305,29) # No longer need the div prefix

To load all of a module’s contents into the current namespace, you can also use the following:

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/25.html (1 / 2) [2003/1/1 ､W､ﾈ 02:55:25]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=25
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+8%3A52%3A29+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read4.asp?bookname=0735710910&snode=25&now=5%2F28%2F2002+8%3A52%3A29+PM

Safari | Python Essential Reference, Second Edition -> Modules

from div import *

Finally, the dir() function lists the contents of a module and is a useful tool for interactive
experimentation, since it can be used to provide a list of available functions and variables:

>>> import string
>>> dir(string)
['_ _builtins_ _', '_ _doc_ _', '_ _file_ _', '_ _name_ _', '_idmap',
 '_idmapL', '_lower', '_swapcase', '_upper', 'atof', 'atof_error',
 'atoi', 'atoi_error', 'atol', 'atol_error', 'capitalize',
 'capwords', 'center', 'count', 'digits', 'expandtabs', 'find',
...
>>>

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/25.html (2 / 2) [2003/1/1 ､W､ﾈ 02:55:25]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=25

Safari | Python Essential Reference, Second Edition -> 2. Lexical Conventions and Syntax

Linux/Unix > Python Essential Reference, Second Edition > 2. Lexical Conventions
and Syntax

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238110137104026065051247078103180

Chapter 2. Lexical Conventions and Syntax
This chapter describes the syntactic and lexical conventions of a Python program. Topics include
line structure, grouping of statements, reserved words, literals, operators, and tokens. In addition, the
use of Unicode string literals is described in detail.

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%20P...,%20Second%20Edition/python_essencial_ref/27.html [2003/1/1 ､W､ﾈ 02:55:26]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=27
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+8%3A52%3A38+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read8.asp?bookname=0735710910&snode=27&now=5%2F28%2F2002+8%3A52%3A38+PM
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=27

Safari | Python Essential Reference, Second Edition -> Line Structure and Indentation

Linux/Unix > Python Essential Reference, Second Edition > 2. Lexical Conventions
and Syntax > Line Structure and Indentation

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238110137104026065052201181119006

Line Structure and Indentation

Each statement in a program is terminated with a newline. Long statements can span multiple lines
by using the line-continuation character (\), as shown in the following example:

a = math.cos(3*(x-n)) + \
 math.sin(3*(y-n))

You don’t need the line-continuation character when the definition of a triple-quoted string, list,
tuple, or dictionary spans multiple lines. More generally, any part of a program enclosed in
parentheses (...), brackets [...], braces {...}, or triple quotes can span multiple lines
without use of the line-continuation character.

Indentation is used to denote different blocks of code, such as the bodies of functions, conditionals,
loops, and classes. The amount of indentation used for the first statement of a block is arbitrary, but
the indentation of the entire block must be consistent. For example:

if a:
 statement1 # Consistent indentation
 statement2
else:
 statement3
 statement4 # Inconsistent indentation (error)

If the body of a function, conditional, loop, or class is short and contains only a few statements, they
can be placed on the same line, like this:

if a: statement1
else: statement2

To denote an empty body or block, use the pass statement. For example:

if a:
 pass

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/28.html (1 / 2) [2003/1/1 ､W､ﾈ 02:55:26]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=28
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+8%3A52%3A48+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read4.asp?bookname=0735710910&snode=28&now=5%2F28%2F2002+8%3A52%3A48+PM

Safari | Python Essential Reference, Second Edition -> Line Structure and Indentation

else:
 statements

Although tabs can be used for indentation, this practice is discouraged. When tab characters are
encountered, they’re converted into the number of spaces required to move to the next column that’s
a multiple of 8. (For example, a tab appearing in column 11 inserts enough spaces to move to
column 16.) Running Python with the -t option prints warning messages when tabs and spaces are
mixed inconsistently within the same program block. The -tt option turns these warning messages
into TabError exceptions.

To place more than one statement on a line, separate the statements with a semicolon (;). A line
containing a single statement can also be terminated by a semicolon.

The # character denotes a comment that extends to the end of the line. A # appearing inside a
quoted string doesn’t start a comment, however.

Finally, the interpreter ignores all blank lines except when running in interactive mode.

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/28.html (2 / 2) [2003/1/1 ､W､ﾈ 02:55:26]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=28

Safari | Python Essential Reference, Second Edition -> Identifiers and Reserved Words

Linux/Unix > Python Essential Reference, Second Edition > 2. Lexical Conventions
and Syntax > Identifiers and Reserved Words

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238110137104027027050077005253035

Identifiers and Reserved Words

An identifier is a name used to identify variables, functions, classes, modules, and other objects.
Identifiers can include letters, numbers, and the underscore character (_), but must always start with
a non-numeric character. Letters are currently confined to the characters A–Z and a–z in the ISO-
Latin character set. Because identifiers are case sensitive, FOO is different from foo. Special
symbols such as $, %, and @ are not allowed in identifiers. In addition, words such as if, else, and
for are reserved and cannot be used as identifier names. The following list shows all the reserved
words:

and elif global or
assert else if pass
break except import print
class exec in raise
continue finally is return
def for lambda try
del from not while

Identifiers starting or ending with underscores often have special meanings. For example, identifiers
starting with a single underscore such as _foo are not imported by the from module import
* statement. Identifiers with leading and trailing double underscores such as _ _init_ _ are
reserved for special methods, and identifiers with leading double underscores such as _ _bar are
used to implement private class members as described in Chapter 7, “Classes and Object-Oriented
Programming.” General-purpose use of similar identifiers should be avoided.

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%20P...,%20Second%20Edition/python_essencial_ref/29.html [2003/1/1 ､W､ﾈ 02:55:27]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=29
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+8%3A53%3A01+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read5.asp?bookname=0735710910&snode=29&now=5%2F28%2F2002+8%3A53%3A01+PM
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=29

Safari | Python Essential Reference, Second Edition -> Literals

Linux/Unix > Python Essential Reference, Second Edition > 2. Lexical Conventions
and Syntax > Literals

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238110137104027027051146142231049

Literals

There are four built-in numeric types: integers, long integers, floating-point numbers, and complex
numbers.

A number such as 1234 is interpreted as a decimal integer. To specify octal and hexadecimal
integers, precede the value with 0 or 0x, respectively— 0644 or 0x100fea8. Write a long integer
using a trailing l (ell) or L character, as in 1234567890L. Unlike integers, which are limited by
machine precision, long integers can be of any length (up to the maximum memory of the machine).
Numbers such as 123.34 and 1.2334e+02 are interpreted as floating-point numbers. An integer
or floating-point number with a trailing j or J, such as 12.34J, is an imaginary number. You can
create complex numbers with real and imaginary parts by adding a real number and an imaginary
number, as in 1.2 + 12.34J.

Python currently supports two types of string literals:

● 8-bit character data (ASCII)

● Unicode (16-bit wide character data)

The most commonly used string type is 8-bit character data, because of its use in representing
characters from the ASCII or ISO-Latin character set as well as representing raw binary data as a
sequence of bytes. By default, 8-bit string literals are defined by enclosing text in single ('), double
("), or triple (''' or """) quotes. You must use the same type of quote to start and terminate a
string. The backslash (\) character is used to escape special characters such as newlines, the
backslash itself, quotes, and nonprinting characters. Table 2.1 shows the accepted escape codes.
Unrecognized escape sequences are left in the string unmodified and include the leading backslash.
Furthermore, strings may contain embedded null bytes and binary data. Triple-quoted strings can
span multiple lines and include unescaped newlines and quotes.

Table 2.1. Standard Character Escape Codes

Character Description

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/30.html (1 / 4) [2003/1/1 ､W､ﾈ 02:55:27]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=30
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+8%3A53%3A13+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read1.asp?bookname=0735710910&snode=30&now=5%2F28%2F2002+8%3A53%3A13+PM
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/30#2.html

Safari | Python Essential Reference, Second Edition -> Literals

\ Newline continuation

\\ Backslash

\' Single quote

\" Double quote

\a Bell

\b Backspace

\e Escape

\0 Null

\n Line feed

\v Vertical tab

\t Horizontal tab

\r Carriage return

\f Form feed

\OOO Octal value (000 to \377)

\xhh Hexadecimal value (x00 to \xff)

\uhhh Unicode character value (Unicode strings only)

Unicode strings are used to represent multibyte international character sets and allow for 65,536
unique characters. Unicode string literals are defined by preceding an ordinary string literal with a u
or U, such as in u"hello". In Unicode, each character is internally represented by a 16-bit integer
value. For the purposes of notation, this value is written as U+XXXX, where XXXX is a four-digit
hexadecimal number. (Note: This notation is only a convention used to describe Unicode characters
and is not Python syntax.) For example, U+0068 is the Unicode character for the letter h in the
Latin-1 character set. When Unicode string literals are defined, ordinary characters and escape codes
are directly mapped as Unicode ordinals in the range [U+0000, U+00FF]. For example, the string

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/30.html (2 / 4) [2003/1/1 ､W､ﾈ 02:55:27]

Safari | Python Essential Reference, Second Edition -> Literals

"hello\n" is mapped to the sequence of ASCII values 0x68, 0x65, 0x6c, 0x6c, 0x6f, 0x0a,
whereas the Unicode string u"hello\n" is mapped to the sequence U+0068, U+0065, U+006C,
U+006C, U+006F, U+000A. Arbitrary Unicode characters are defined using the \uXXXX escape
sequence. This sequence can only appear inside a Unicode string literal and must always specify a
four-digit hexadecimal value. For example:

s = u"\u0068\u0065\u006c\u006c\u006f\u000a"

In older versions of Python, the \xXXXX escape could be used to define Unicode characters.
Although this is still allowed, the \uXXXX sequence should be used instead. In addition, the \OOO
octal escape sequence can be used to define Unicode characters in the range [U+0000, U+01FF].

Unicode string literals should not be defined using a sequence of raw bytes that correspond to a
multibyte Unicode data encoding such as UTF-8 or UTF-16. For example, writing a raw UTF-8
encoded string such as u'M\303\274ller' produces the seven-character Unicode sequence
U+004D, U+00C3, U+00BC, U+006C, U+006C, U+0065, U+0072, which is probably not what you
wanted. This is because in UTF-8, the multibyte sequence \303\274 is supposed to represent
U+00FC, not U+00C3, U+00BC. For more details about Unicode encodings, see Chapter 3, “Types
and Objects,” Chapter 4, “Operators and Expressions,” and Chapter 9, “Input and Output.”

Optionally, you can precede a string with an r or R, such as in r"\n\" '. These strings are known
as raw strings because all their backslash characters are left intact—that is, the string literally
contains the enclosed text, including the backslashes. Raw strings cannot end in a single backslash,
such as r"\". When raw Unicode strings are defined by preceding the string with ur or UR,
\uXXXX escape sequences are still interpreted as Unicode characters, provided that the number of
preceding \ characters is odd. For instance, ur"\u1234" defines a raw Unicode string with the
character U+1234, whereas ur"\\u1234" defines a seven-character Unicode string in which the
first two characters are slashes and the remaining five characters are the literal "u1234". Also,
when defining raw Unicode string literals the “r” must appear after the “u” as shown.

Adjacent strings (separated by white space or a newline continuation character) such as "hello"
'world' are concatenated to form a single string: "helloworld". String concatenation works
with any mix of ordinary, raw, and Unicode strings. However, whenever one of the strings is
Unicode, the final result is always coerced to Unicode. Therefore, "hello" u"world" is the
same as u"hello" + u"world". In addition, due to subtle implementation aspects of Unicode,
writing "s1" u"s2" may produce a result that’s different from writing u"s1s2". The details of
this coercion process are described further in Chapter 4 and Appendix A (the Python library).

If Python is run with the -U command-line option, all string literals are interpreted as Unicode.

Values enclosed in square brackets [...], parentheses (...), and braces {...} denote lists,

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/30.html (3 / 4) [2003/1/1 ､W､ﾈ 02:55:27]

Safari | Python Essential Reference, Second Edition -> Literals

tuples, and dictionaries, respectively, as in the following example:

 a = [1, 3.4, 'hello'] # A list
 b = (10, 20, 30) # A tuple
 c = { 'a': 3, 'b':42 } # A dictionary

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/30.html (4 / 4) [2003/1/1 ､W､ﾈ 02:55:27]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=30

Safari | Python Essential Reference, Second Edition -> Operators, Delimiters, and Special Symbols

Linux/Unix > Python Essential Reference, Second Edition > 2. Lexical Conventions and
Syntax > Operators, Delimiters, and Special Symbols

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238110137104027027049180116078243

Operators, Delimiters, and Special Symbols

The following operator tokens are recognized:

+ - * ** / % << >> & | ^
+= -= *= **= /= %= <<= >>= &= |= ^=
~ < > <= >= == != <>

The following tokens serve as delimiters for expressions, lists, dictionaries, and various parts of a
statement:

() [] { } , : . ` = ;

For example, the equal (=) character serves as a delimiter between the name and value of an assignment,
while the comma (,) character is used to delimit arguments to a function, elements in lists and tuples, and
so on. The period (.) is also used in floating-point numbers and in the ellipsis (...) used in extended
slicing operations.

Finally, the following special symbols are also used:

' " # \

The characters @, $, and ? cannot appear in a program except inside a quoted string literal.

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%20P...,%20Second%20Edition/python_essencial_ref/31.html [2003/1/1 ､W､ﾈ 02:55:28]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=31
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+8%3A53%3A30+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read2.asp?bookname=0735710910&snode=31&now=5%2F28%2F2002+8%3A53%3A30+PM
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=31

Safari | Python Essential Reference, Second Edition -> Documentation Strings

Linux/Unix > Python Essential Reference, Second Edition > 2. Lexical Conventions
and Syntax > Documentation Strings

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238110137104027027054249055221165

Documentation Strings

If the first statement of a module, class, or function definition is a string, that string becomes a
documentation string for the associated object, as in the following example:

def fact(n):
 "This function computes a factorial"
 if (n <= 1): return 1
 else: return n*fact(n-1)

Code-browsing and documentation-generation tools sometimes use documentation strings. The
strings are accessible in the _ _doc_ _ attribute of an object, as shown here:

>>> print fact._ _doc_ _
This function computes a factorial
>>>

The indentation of the documentation string must be consistent with all the other statements in a
definition. Furthermore, adjacent strings appearing on different lines are not concatenated to form a
single documentation string.

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%20P...,%20Second%20Edition/python_essencial_ref/32.html [2003/1/1 ､W､ﾈ 02:55:28]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=32
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+8%3A53%3A43+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read1.asp?bookname=0735710910&snode=32&now=5%2F28%2F2002+8%3A53%3A43+PM
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=32

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/34.html

Linux/Unix > Python Essential Reference, Second Edition > 3. Types and Objects See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238110137104027027055234173032085

Chapter 3. Types and Objects
All the data stored in a Python program is built around the concept of an object. Objects include
fundamental datatypes such as numbers, strings, lists, and dictionaries. It’s also possible to create
user-defined objects in the form of classes or extension types. This chapter describes the Python
object model and provides an overview of the built-in datatypes. Chapter 4, “Operators and
Expressions,” further describes operators and expressions.

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%20P...,%20Second%20Edition/python_essencial_ref/34.html [2003/1/1 ､W､ﾈ 02:55:29]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=34
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+8%3A53%3A55+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read9.asp?bookname=0735710910&snode=34&now=5%2F28%2F2002+8%3A53%3A55+PM
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=34

Safari | Python Essential Reference, Second Edition -> Terminology

Linux/Unix > Python Essential Reference, Second Edition > 3. Types and Objects >
Terminology

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238110137104028131048028205197128

Terminology

Every piece of data stored in a program is an object. Each object has an identity, a type, and a value.

For example, when you write a = 42, an integer object is created with the value of 42. You can
view the identity of an object as a pointer to its location in memory. In this example, a is a name that
refers to this specific location.

The type of an object (which is itself a special kind of object) describes the internal representation of
the object as well as the methods and operations that it supports. When an object of a particular type
is created, that object is sometimes called an instance of that type (although an instance of a type
should not be confused with an instance of a user-defined class). After an object is created, its
identity and type cannot be changed. If an object’s value can be modified, the object is said to be
mutable. If the value cannot be modified, the object is said to be immutable. An object that contains
references to other objects is said to be a container or collection.

In addition to holding a value, many objects define a number of data attributes and methods. An
attribute is a property or value associated with an object. A method is a function that performs some
sort of operation on an object when the method is invoked. Attributes and methods are accessed
using the dot (.) operator, as shown in the following example:

a = 3 + 4j # Create a complex number
r = a.real # Get the real part (an attribute)

b = [1, 2, 3] # Create a list
b.append(7) # Add a new element using the append method

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%20P...,%20Second%20Edition/python_essencial_ref/35.html [2003/1/1 ､W､ﾈ 02:55:29]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=35
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+8%3A54%3A06+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read1.asp?bookname=0735710910&snode=35&now=5%2F28%2F2002+8%3A54%3A06+PM
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=35

Safari | Python Essential Reference, Second Edition -> Object Identity and Type

Linux/Unix > Python Essential Reference, Second Edition > 3. Types and Objects >
Object Identity and Type

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238110137104028131049071235155082

Object Identity and Type

The built-in function id() returns the identity of an object as an integer. This integer usually
corresponds to the object’s location in memory, although this is specific to the implementation. The
is operator compares the identity of two objects. The built-in function type() returns the type of
an object. For example:

Compare two objects
def compare(a,b):
 print 'The identity of a is ', id(a)
 print 'The identity of b is ', id(b)
 if a is b:
 print 'a and b are the same object'
 if a == b:
 print 'a and b have the same value'
 if type(a) is type(b):
 print 'a and b have the same type'

The type of an object is itself an object. This type object is uniquely defined and is always the same
for all instances of a given type. Therefore, the type can be compared using the is operator. The
standard module types contains the type objects for all the built-in types and can be used to
perform type-checking. For example:

import types
if type(s) is types.ListType:
 print 'Is a list'
else:
 print 'Is not a list'

When comparing object types in which user-defined classes are involved, it may be better to use the
isinstance() function as described in Chapter 7, “Classes and Object-Oriented Programming.”
The isinstance(s , C) function correctly detects instances s of classes descended from the
class C, as well as instances of C itself.

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/36.html (1 / 2) [2003/1/1 ､W､ﾈ 02:55:29]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=36
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+8%3A54%3A14+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read1.asp?bookname=0735710910&snode=36&now=5%2F28%2F2002+8%3A54%3A14+PM

Safari | Python Essential Reference, Second Edition -> Object Identity and Type

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/36.html (2 / 2) [2003/1/1 ､W､ﾈ 02:55:29]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=36

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/37.html

Linux/Unix > Python Essential Reference, Second Edition > 3. Types and Objects >
Reference Counting and Garbage Collection

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238110137104028131050041033147213

Reference Counting and Garbage Collection

All objects are reference-counted. An object’s reference count is increased whenever it’s assigned to
a new name or placed in a container such as a list, tuple, or dictionary, as shown here:

a = 3.4 # Creates an object '3.4'
b = a # Increases reference count on '3.4'
c = []
c.append(b) # Increases reference count on '3.4'

This example creates a single object containing the value 3.4. The variable a is merely a name that
refers to the newly created object. When b is assigned a, b becomes a new name for the same
object, and the object’s reference count increases. Likewise, when you place b into a list, the
object’s reference count increases again. In the example, only one object contains 3.4. All other
operations are simply creating new references to the object.

An object’s reference count is decreased by the del statement or whenever a reference goes out of
scope (or is reassigned). For example:

del a # Decrease reference count of 3.4
b = 7.8 # Decrease reference count of 3.4
c[0]=2.0 # Decrease reference count of 3.4

When an object’s reference count reaches zero, it is garbage collected. However, in some cases a
circular dependency may exist among a collection of objects that are no longer in use. For example:

a = { }
b = { }
a['b'] = b # a contains reference to b
b['a'] = a # b contains reference to a
del a
del b

In this example, the del statements decrease the reference count of a and b and destroy the names
used to refer to the underlying objects. However, because each object contains a reference to the

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/37.html (1 / 2) [2003/1/1 ､W､ﾈ 02:55:30]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=37
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+8%3A54%3A25+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read7.asp?bookname=0735710910&snode=37&now=5%2F28%2F2002+8%3A54%3A25+PM

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/37.html

other, the reference count doesn’t drop to zero and the objects remain allocated. To address this
problem, the interpreter periodically executes a cycle-detector that searches for cycles of
inaccessible objects and deletes them. The cycle-detection algorithm can be fine-tuned and
controlled using functions in the gc module described in Appendix A, “The Python Library.”

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/37.html (2 / 2) [2003/1/1 ､W､ﾈ 02:55:30]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=37

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/38.html

Linux/Unix > Python Essential Reference, Second Edition > 3. Types and Objects >
References and Copies

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238110137104028131051005091197004

References and Copies

When a program makes an assignment such as a = b, a new reference to b is created. For
immutable objects such as numbers and strings, this assignment effectively creates a copy of b.
However, the behavior is quite different for mutable objects such as lists and dictionaries. For
example:

b = [1,2,3,4]
a = b # a is a reference to b
a[2] = -100 # Change an element in 'a'
print b # Produces '[1, 2, -100, 4]'

Because a and b refer to the same object in this example, a change made to one of the variables is
reflected in the other. To avoid this, you have to create a copy of an object rather than a new
reference.

Two types of copy operations are applied to container objects such as lists and dictionaries: a
shallow copy and a deep copy. A shallow copy creates a new object, but populates it with references
to the items contained in the original object. For example:

b = [1, 2, [3,4]]
a = b[:] # Create a shallow copy of b.
a.append(100) # Append element to a.
print b # Produces '[1,2, [3,4]]'. b unchanged.
a[2][0] = -100 # Modify an element of a.
print b # Produces '[1,2, [-100,4]]'.

In this case, a and b are separate list objects, but the elements they contain are shared. Thus, a
modification to one of the elements of a also modifies an element of b as shown.

A deep copy creates a new object and recursively copies all the objects it contains. There is no built-
in function to create deep copies of objects. However, the copy.deepcopy() function in the
standard library can be used, as shown in the following example:

import copy

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/38.html (1 / 2) [2003/1/1 ､W､ﾈ 02:55:30]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=38
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+8%3A54%3A35+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read5.asp?bookname=0735710910&snode=38&now=5%2F28%2F2002+8%3A54%3A35+PM

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/38.html

b = [1, 2, [3, 4]]
a = copy.deepcopy(b)

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/38.html (2 / 2) [2003/1/1 ､W､ﾈ 02:55:30]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=38

Safari | Python Essential Reference, Second Edition -> Built-in Types

Linux/Unix > Python Essential Reference, Second Edition > 3. Types and Objects >
Built-in Types

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238110137104028131052206173015093

Built-in Types

Approximately two dozen types are built into the Python interpreter and grouped into a few major
categories, as shown in Table 3.1. Some categories include familiar objects such as numbers and
sequences. Others are used during program execution and are of little practical use to most
programmers. The next few sections describe the most commonly used built-in types.

Table 3.1. Built-in Python Types

Type Category Type Name Description

None NoneType The null object

Numbers IntType

LongType

FloatType

ComplexType

Integer

Arbitrary-precision integer

Floating-point number

Complex number

Sequences StringType

UnicodeType

ListType

TupleType

XRangeType

BufferType

Character string

Unicode character string

List

Tuple

Returned by xrange()

Buffer; returned by buffer()

Mapping DictType Dictionary

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...0Second%20Edition/python_essencial_ref/39.html (1 / 18) [2003/1/1 ､W､ﾈ 02:55:32]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=39
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+8%3A54%3A47+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read5.asp?bookname=0735710910&snode=39&now=5%2F28%2F2002+8%3A54%3A47+PM
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/39#2.html

Safari | Python Essential Reference, Second Edition -> Built-in Types

Callable BuiltinFunctionType

BuiltinMethodType

ClassType

FunctionType

InstanceType

MethodType

UnboundMethodType

Built-in functions

Built-in methods

Class object

User-defined function

Class object instance

Bound class method

Unbound class method

Modules ModuleType Module

Classes ClassType Class definition

Class Instance InstanceType Class instance

Files FileType File

Internal CodeType

FrameType

TracebackType

SliceType

EllipsisType

Byte-compiled code

Execution frame

Stack traceback of an exception

Generated by extended slices

Used in extended slices

Note: ClassType and InstanceType appear twice in Table 3.1 because classes and instances are both callable under special
circumstances.

Note: ClassType and InstanceType appear twice in Table 3.1 because classes and instances
are both callable under special circumstances.

The None Type

The None type denotes a null object. Python provides exactly one null object, which is written as
None in a program. This object is returned by functions that don’t explicitly return a value. None is
frequently used as the default value of optional arguments, so that the function can detect whether

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...0Second%20Edition/python_essencial_ref/39.html (2 / 18) [2003/1/1 ､W､ﾈ 02:55:32]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/39#2.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/39#2.html

Safari | Python Essential Reference, Second Edition -> Built-in Types

the caller has actually passed a value for that argument. None has no attributes and evaluates to
false in Boolean expressions.

Numeric Types

Python uses four numeric types: integers, long integers, floating-point numbers, and complex
numbers. All numeric objects are signed and immutable.

Integers represent whole numbers in the range of –2147483648 to 2147483647 (the range may be
larger on some machines). Internally, integers are stored as 2’s complement binary values, in 32 or
more bits. If the result of an operation exceeds the allowed range of values, an OverflowError
exception is raised. Long integers represent whole numbers of unlimited range (limited only by
available memory).

Floating-point numbers are represented using the native double-precision (64-bit) representation of
floating-point numbers on the machine. Normally this is IEEE 754, which provides approximately
17 digits of precision and an exponent in the range of –308 to 308. This is the same as the double
type in C. Python doesn’t support 32-bit single-precision floating-point numbers. If space and
precision are an issue in your program, consider using Numerical Python
(http://numpy.sourceforge.net).

Complex numbers are represented as a pair of floating-point numbers. The real and imaginary parts
of a complex number z are available in z .real and z .imag.

Sequence Types

Sequences represent ordered sets of objects indexed by non-negative integers and include strings,
Unicode strings, lists, tuples, xrange objects, and buffer objects. Strings and buffers are sequences of
characters, xrange objects are sequences of integers, and lists and tuples are sequences of arbitrary
Python objects. Strings, Unicode strings, and tuples are immutable; lists allow insertion, deletion,
and substitution of elements. Buffers are described later in this section.

Table 3.2 shows the operators and methods that you can apply to all sequence types. Element i of a
sequence s is selected using the indexing operator s [i], and a subsequence is selected using the
slicing operator s [i :j]. (These operations are described in Chapter 4.) The length of any
sequence is returned using the built-in len(s) function. You can find the minimum and maximum
values of a sequence by using the built-in min(s) and max(s) functions. However, these
functions only work for sequences in which the elements can be ordered (typically numbers and
strings).

Table 3.3 shows the additional operators that can be applied to mutable sequences such as lists.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...0Second%20Edition/python_essencial_ref/39.html (3 / 18) [2003/1/1 ､W､ﾈ 02:55:32]

http://numpy.sourceforge.net/
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/39#10.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/39#12.html

Safari | Python Essential Reference, Second Edition -> Built-in Types

Table 3.2. Operations and Methods Applicable to All Sequences

Item Description

s [i] Returns element i of a sequence

s [i :j] Returns a slice

len(s) Number of elements in s

min(s) Minimum value in s

max(s) Maximum value in s

Table 3.3. Operations Applicable to Mutable Sequences

Item Description

s [i] = v Item assignment

s [i :j] = t Slice assignment

del s [i] Item deletion

del s [i :j] Slice deletion

Additionally, lists support the methods shown in Table 3.4. The built-in function list(s)
converts any sequence type to a list. If s is already a list, this function constructs a new list that’s a
shallow copy of s . The s .append(x) method appends a new element x to the end of the list.
The s .index(x) method searches the list for the first occurrence of x . If no such element is
found, a ValueError exception is raised. Similarly, the s .remove(x) method removes the
first occurrence of x from the list. The s .extend(t) method extends list s by appending the
elements in sequence t .The s .sort() method sorts the elements of a list and optionally accepts
a comparison function. This function should take two arguments and return negative, zero, or
positive, depending on whether the first argument is smaller, equal to, or larger than the second
argument, respectively. The s .reverse() method reverses the order of the items in the list. Both
the sort() and reverse() methods operate on the list elements in place and return None.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...0Second%20Edition/python_essencial_ref/39.html (4 / 18) [2003/1/1 ､W､ﾈ 02:55:32]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/39#14.html

Safari | Python Essential Reference, Second Edition -> Built-in Types

Table 3.4. List Methods

Method Description

list(s) Converts sequence s to a list.

s .append(x) Appends a new element x to the end of s .

s .extend(t) Appends a new list t to the end of s .

s .count(x) Counts occurrences of x in s .

s .index(x) Returns the smallest i where s[i] == x .

s .insert(i,x) Inserts x at index i .

s .pop([i]) Returns the element i and removes it from the list. If i is omitted, the last element is
returned.

s .remove(x) Searches for x and removes it from s .

s .reverse() Reverses items of s in place.

s .sort([cmpfunc]) Sorts items of s in place. cmpfunc is a comparison function.

Python provides two string object types. Standard strings are sequences of bytes containing 8-bit
data. They may contain binary data and embedded null bytes. Unicode strings are sequences of 16-
bit characters encoded in a format known as UCS-2. This allows for 65,536 unique character values.
Although the latest Unicode standard supports up to 1 million unique character values, these extra
characters are not currently supported by Python. Instead, they must be encoded as a special two-
character (4-byte) sequence known as a surrogate pair—the interpretation of which is up to the
application. Python does not check data for Unicode compliance or the proper use of surrogates.

Both standard and Unicode strings support the methods shown in Table 3.5. Although these methods
operate on string instances, none of these methods actually modifies the underlying string data.
Thus, methods such as s .capitalize(), s .center(), and s .expandtabs() always
return a new string as opposed to modifying the string s . Character tests such as s .isalnum()
and s .isupper() return true or false if all the characters in the string s satisfy the test.
Furthermore, these tests always return false if the length of the string is zero. The s .find(), s

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...0Second%20Edition/python_essencial_ref/39.html (5 / 18) [2003/1/1 ､W､ﾈ 02:55:32]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/39#16.html

Safari | Python Essential Reference, Second Edition -> Built-in Types

.index(), s .rfind(), and s .rindex() methods are used to search s for a substring. All
these functions return an integer index to the substring in s . In addition, the find() method
returns -1 if the substring isn’t found, whereas the index() method raises a ValueError
exception. Many of the string methods accept optional start and end parameters, which are
integer values specifying the starting and ending indices in s . The s .translate() method is
used to perform character substitutions, and is described in the string module in Appendix A. The
s .encode() method is used to transform the string data into a specified character encoding. As
input it accepts an encoding name such as 'ascii', 'utf-8', or 'utf-16'. This method is
most commonly used to convert Unicode strings into a data encoding suitable for I/O operations and
is described further in Chapter 9, “Input and Output.” More details about string methods can be
found in the documentation for the string module (see Appendix A).

Table 3.5. String Methods

Method Description

s .capitalize() Capitalizes the first character of s .

s .center(width) Centers the string in a field of length width .

s .count(sub [,start [,end]]) Counts occurrences of the specified substring sub .

s .encode([encoding [,errors]]) Returns an encoded version of the string.

s .endswith(suffix [,start [,end]]) Checks the end of the string for a suffix.

s .expandtabs([tabsize]) Expands tabs.

s .find(sub [,start [,end]]) Finds the first occurrence of the specified substring sub .

s .index(sub [,start [,end]]) Finds the first occurrence of sub or raises an exception.

s .isalnum() Checks whether all characters are alphanumeric.

s .isalpha() Checks whether all characters are alphabetic.

s .isdigit() Checks whether all characters are digits.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...0Second%20Edition/python_essencial_ref/39.html (6 / 18) [2003/1/1 ､W､ﾈ 02:55:32]

Safari | Python Essential Reference, Second Edition -> Built-in Types

s .islower() Checks whether all characters are lowercase.

s .isspace() Checks whether all characters are whitespace.

s .istitle() Checks whether the string is title-cased (first letter of each
word capitalized).

s .isupper() Checks whether all characters are uppercase.

s .join(t) Joins the strings in list t using s as a delimiter.

s .ljust(width) Left-aligns s in a string of size width .

s .lower() Returns s converted to lowercase.

s .lstrip() Removes leading whitespace.

s .replace(old , new [,maxreplace]) Replaces the substring old with new .

s .rfind(sub [,start [,end]]) Finds the last occurrence of a substring.

s .rindex(sub [,start [,end]]) Finds the last occurrence of sub or raises an exception.

s .rjust(width) Right-aligns s in a string of length width .

s .rstrip() Removes trailing whitespace.

s .split([sep [,maxsplit]]) Splits a string using sep as a delimiter. maxsplit is the
maximum number of splits to perform.

s .splitlines([keepends]) Splits a string into a list of lines. If keepends is 1, trailing
newlines are preserved.

s .startswith(prefix [,start [,end]]) Checks whether a string starts with prefix .

s .strip() Removes leading and trailing whitespace.

s .swapcase() Returns s with uppercase converted to lowercase and vice
versa.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...0Second%20Edition/python_essencial_ref/39.html (7 / 18) [2003/1/1 ､W､ﾈ 02:55:32]

Safari | Python Essential Reference, Second Edition -> Built-in Types

s .title() Returns a title-cased version of the string.

s .translate(table [,deletechars]) Translates a string using a character translation table.

s .upper() Returns s converted to uppercase.

The built-in function range([i ,]j [,stride]) constructs a list and populates it with
integers k such that i < = k < j . The first index i and the stride are optional and have
default values of 0 and 1, respectively. The built-in function xrange([i ,]j [,stride])
performs a similar operation, but returns an immutable sequence of type XRangeType. Rather than
storing all the values in a list, this sequence calculates its values whenever it’s accessed.
Consequently, it’s much more memory efficient when working with large sequences of integers. The
XRangeType provides a single method, s .tolist(), that converts its values to a list.

Buffer objects are typically used to provide a sequence interface to a region of memory in which
each byte is treated as an 8-bit character.Although there is no special syntax for creating a buffer
object, they can be created using the built-in function buffer(obj [, offset [, size]]).
Buffer objects usually share the same memory as that of the underlying object obj . Because of
this, they can sometimes be used as a more memory-efficient mechanism for taking slices of strings
and other byte-oriented data. In addition, buffers can sometimes be used to access the raw data used
to store the contents of other Python types such as arrays in the array module and Unicode strings.
Buffers may or may not be mutable, depending on the mutability of obj .

Mapping Types

A mapping object represents an arbitrary collection of objects that are indexed by another collection
of nearly arbitrary key values. Unlike a sequence, a mapping object is unordered and can be indexed
by numbers, strings, and other objects. Mappings are mutable.

Dictionaries are the only built-in mapping type and are Python’s version of a hash table or
associative array. You can use any immutable object as a dictionary key value (strings, numbers,
tuples, and so on). Lists, dictionaries, or tuples containing mutable objects cannot be used as keys.
(The dictionary type requires key values to remain constant.)

To select an item in a mapping object, use the key index operator m [k] where k is a key value. If
the key is not found, a KeyError exception is raised. The len(m) function returns the number of
items contained in a mapping object. Table 3.6 lists methods and operations.

Table 3.6. Methods and Operations for Mapping Types

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...0Second%20Edition/python_essencial_ref/39.html (8 / 18) [2003/1/1 ､W､ﾈ 02:55:32]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/39#20.html

Safari | Python Essential Reference, Second Edition -> Built-in Types

Item Description

len(m) Returns the number of items in m .

m [k] Returns the item of m with key k .

m [k] = x Sets m [k] to x .

del m [k] Removes m [k] from m .

m .clear() Removes all items from m .

m .copy() Returns a copy of m .

m .has_key(k) Returns 1 if m has key k , 0 otherwise.

m .items() Returns a list of (key ,value) pairs.

m .keys() Returns a list of key values.

m .update(b) Adds all objects from dictionary b to m .

m .values() Returns a list of all values in m .

m .get(k [,v]) Returns m [k] if found; otherwise, returns v .

m .setdefault(k [, v]) Returns m [k] if found; otherwise, returns v and sets m [k] = v .

m .popitem() Removes a random (key ,value) pair from m and returns it as a tuple.

The m .clear() method removes all items. The m .copy() method makes a shallow copy of the
items contained in a mapping object and places them in a new mapping object. The m .items()
method returns a list containing (key,value) pairs. The m .keys() method returns a list with all the
key values and the m .values() method returns a list with all the objects. The m .update(b)
method updates the current mapping object by inserting all the (key,value) pairs found in the
mapping object b . The m .get(k [,v]) method retrieves an object, but allows for an optional
default value v that’s returned if no such object exists. The m .setdefault(k [,v]) method is
similar to m .get() except that in addition to returning v if no object exists, it sets m [k] = v .

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...0Second%20Edition/python_essencial_ref/39.html (9 / 18) [2003/1/1 ､W､ﾈ 02:55:32]

Safari | Python Essential Reference, Second Edition -> Built-in Types

If v is omitted, it defaults to None. The m .popitem() method is used to iteratively destroy the
contents of a dictionary.

Callable Types

Callable types represent objects that support the function call operation. There are several flavors of
objects with this property, including user-defined functions, built-in functions, and methods
associated with classes.

User-defined functions are callable objects created at the module level by using the def statement
or lambda operator. (Functions defined within class definitions are called methods and are
described shortly.) Functions are first-class objects that behave just like any other Python object. As
a result, you can assign them to variables or place them in lists, tuples, and dictionaries, as shown in
the following example:

def foo(x,y):
 print '%s + %s is %s' % (str(x), str(y), str(x+y))

Assign to a new variable
bar = foo
bar(3,4) # Invokes 'foo' defined above

Place in a container
d = { }
d['callback'] = foo
d['callback'](3,4) # Invokes 'foo'

A user-defined function f has the following attributes:

Attribute(s) Description

f ._ _doc_ _ or f .func_doc Documentation string

f ._ _name_ _ or f .func_name Function name

f ._ _dict_ _ or f .func_dict Dictionary containing function attributes

f .func_code Byte-compiled code

f .func_defaults Tuple containing the default arguments

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...0Second%20Edition/python_essencial_ref/39.html (10 / 18) [2003/1/1 ､W､ﾈ 02:55:32]

Safari | Python Essential Reference, Second Edition -> Built-in Types

f .func_globals Dictionary defining the global namespace

f .func_closure Tuple containing data related to nested scopes

Methods are functions that operate only on instances of an object. Typically, methods are defined
inside a class definition, as shown in Listing 3.1.

Listing 3.1 Defining a Method

A queue of objects ranked by priorities
class PriorityQueue:
 def _ _init_ _(self):
 self.items = [] # List of (priority, item)
 def insert(self,priority,item):
 for i in range(len(self.items)):
 if self.items[i][0] > priority:
 self.items.insert(i,(priority,item))
 break
 else:
 self.items.append((priority,item))
 def remove(self):
 try:
 return self.items.pop(0)[1]
 except IndexError:
 raise RuntimeError, 'Queue is empty'

An unbound method object is a method that hasn’t yet been associated with a specific instance of an
object. The methods contained within a class definition are unbound until they’re attached to a
specific object. For example:

m = PriorityQueue.insert # Unbound method

To invoke an unbound method, supply an instance of an object as the first argument:

pq = PriorityQueue()
m = PriorityQueue.insert
m(pq,5,"Python") # Invokes pq.insert(5,"Python")

A bound method object is a function that has been bound to a specific object instance. For example:

pq = PriorityQueue() # Create a PriorityQueue instance

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...0Second%20Edition/python_essencial_ref/39.html (11 / 18) [2003/1/1 ､W､ﾈ 02:55:32]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/39#24.html

Safari | Python Essential Reference, Second Edition -> Built-in Types

n = pq.insert # n is a method bound to pq

A bound method implicitly contains a reference to the associated instance, so it can be invoked as
follows:

n(5,"Python") # Invokes pq.insert(5,"Python")

Bound and unbound methods are no more than a thin wrapper around an ordinary function object.
The following attributes are defined for method objects:

Attribute Description

m ._ _doc_ _ Documentation string

m ._ _name_ _ Method name

m ._ _dict_ _ Method attributes

m .im_class Class in which this method was defined

m .im_func Function object implementing the method

m .im_self Instance associated with the method (None if unbound)

So far, this discussion has focused on functions and methods, but class objects (described shortly)
are also callable. When a class is called, a new class instance is created. In addition, if the class
defines an _ _init_ _() method, it’s called to initialize the newly created instance. The creation
of a PriorityQueue in the earlier example illustrates this behavior.

A class instance is also callable if its class defines a special method _ _call_ _(). If this
method is defined for a class instance x , then x (args) invokes the method

x._ _call_ _ (args).

The final types of callable objects are built-in functions and methods. Built-in functions and methods
correspond to code written in extension modules and are usually written in C or C++. The following
attributes are available for built-in methods:

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...0Second%20Edition/python_essencial_ref/39.html (12 / 18) [2003/1/1 ､W､ﾈ 02:55:32]

Safari | Python Essential Reference, Second Edition -> Built-in Types

Attribute Description

b ._ _doc_ _ Documentation string

b ._ _name_ _ Function/method name

b ._ _self_ _ Instance associated with the method

b ._ _members_ _ List of method attribute names

For built-in functions such as len(), the _ _self_ _ is set to None, indicating that the function
isn’t bound to any specific object. For built-in methods such as x .append() where x is a list
object, _ _self_ _ is set to x .

Modules

The module type is a container that holds objects loaded with the import statement. When the
statement import foo appears in a program, for example, the name foo is assigned to the
corresponding module object. Modules define a namespace that’s implemented using a dictionary
accessible in the attribute _ _dict_ _. Whenever an attribute of a module is referenced (using
the dot operator), it’s translated into a dictionary lookup. For example, m .x is equivalent to m ._
dict _["x "]. Likewise, assignment to an attribute such as m .x = y is equivalent to m ._
dict _["x"] = y . The following attributes are available:

Attribute Description

m ._ _dict_ _ Dictionary associated with the module

m ._ _doc_ _ Module documentation string

m ._ _name_ _ Name of the module

m ._ _file_ _ File from which the module was loaded

m ._ _path_ _ Fully qualified package name, defined when the module object refers to a package

Classes

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...0Second%20Edition/python_essencial_ref/39.html (13 / 18) [2003/1/1 ､W､ﾈ 02:55:32]

Safari | Python Essential Reference, Second Edition -> Built-in Types

Classes are created using the class statement, as described in Chapter 7. Like modules, classes are
implemented using a dictionary that contains all the objects defined within the class, and defines a
namespace. References to class attributes such as c .x are translated into a dictionary lookup c ._
dict _["x "]. If an attribute isn’t found in this dictionary, the search continues in the list of
base classes. This search is depth first, left to right, in the order that base classes were specified in
the class definition. Attribute assignment such as c .y = 5 always updates the _ _dict_ _
attribute of c , not the dictionaries of any base class.

The following attributes are defined by class objects:

Attribute Description

c ._ _dict_ _ Dictionary associated with the class

c ._ _doc_ _ Class documentation string

c ._ _name_ _ Name of the class

c ._ _module_ _ Name of the module in which the class was defined

c ._ _bases_ _ Tuple containing base classes

Class Instances

A class instance is an object created by calling a class object. Each instance has its own local
namespace that’s implemented as a dictionary. This dictionary and the associated class object have
the following attributes:

Attribute Description

x ._ _dict_ _ Dictionary associated with an instance

x ._ _class_ _ Class to which an instance belongs

When the attribute of an object is referenced, such as in x .a , the interpreter first searches in the
local dictionary for x ._ _dict_ _["a "]. If it doesn’t find the name locally, the search
continues by performing a lookup on the class defined in the _ _class_ _ attribute. If no match
is found, the search continues with base classes as described earlier. If still no match is found and
the object’s class defines a _ _getattr_ _() method, it’s used to perform the lookup. The

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...0Second%20Edition/python_essencial_ref/39.html (14 / 18) [2003/1/1 ､W､ﾈ 02:55:32]

Safari | Python Essential Reference, Second Edition -> Built-in Types

assignment of attributes such as x .a = 4 always updates x ._ _dict_ _, not the dictionaries of
classes or base classes.

Files

The file object represents an open file and is returned by the built-in open() function (as well as a
number of functions in the standard library). For more details about this type, see Chapter 9.

Internal Types

A number of objects used by the interpreter are exposed to the user. These include traceback objects,
code objects, frame objects, slice objects, and the Ellipsis object.

Code Objects

Code objects represent raw byte-compiled executable code or bytecode and are typically returned by
the built-in compile() function. Code objects are similar to functions except that they don’t
contain any context related to the namespace in which the code was defined, nor do code objects
store information about default argument values. A code object c has the read-only attributes
described in the following table:

Attribute Description

c .co_name Function name.

c .co_argcount Number of positional arguments (including default values).

c .co_nlocals Number of local variables used by the function.

c .co_varnames Tuple containing names of local variables.

c .co_code String representing raw bytecode.

c .co_consts Tuple containing the literals used by the bytecode.

c .co_names Tuple containing names used by the bytecode.

c .co_filename Filename of the file in which the code was compiled.

c .co_firstlineno First line number of the function.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...0Second%20Edition/python_essencial_ref/39.html (15 / 18) [2003/1/1 ､W､ﾈ 02:55:32]

Safari | Python Essential Reference, Second Edition -> Built-in Types

c .co_lnotab String encoding bytecode offsets to line numbers.

c .co_stacksize Required stack size (including local variables).

c .co_flags Integer containing interpreter flags. Bit 2 is set if the function uses a variable number of
positional arguments using "*args". Bit 3 is set if the function allows arbitrary keyword
arguments using "**kwargs". All other bits are reserved.

Frame Objects

Frame objects are used to represent execution frames and most frequently occur in traceback objects
(described next). A frame object f has the following read-only attributes:

Attribute Description

f .f_back Previous stack frame (toward the caller).

f .f_code Code object being executed.

f .f_locals Dictionary used for local variables.

f .f_globals Dictionary used for global variables.

f .f_builtins Dictionary used for built-in names.

f .f_restricted Set to 1 if executing in restricted execution mode.

f .f_lineno Line number.

f .f_lasti Current instruction. This is an index into the bytecode string of f_code.

The following attributes can be modified (and are used by debuggers and other tools):

Attribute Description

f .f_trace Function called at the start of each source code line

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...0Second%20Edition/python_essencial_ref/39.html (16 / 18) [2003/1/1 ､W､ﾈ 02:55:32]

Safari | Python Essential Reference, Second Edition -> Built-in Types

f .f_exc_type Most recent exception type

f .f_exc_value Most recent exception value

f .f_exc_traceback Most recent exception traceback

Traceback Objects

Traceback objects are created when an exception occurs and contains stack trace information. When
an exception handler is entered, the stack trace can be retrieved using the sys.exc_info()
function. The following read-only attributes are available in traceback objects:

Attribute Description

t .tb_next Next level in the stack trace (toward the execution frame where the exception occurred)

t .tb_frame Execution frame object of the current level

t .tb_lineno Line number where the exception occurred

t .tb_lasti Instruction being executed in the current level

Slice Objects

Slice objects are used to represent slices given in extended slice syntax, such as a [i :j :stride
], a [i :j , n :m], or a […, i :j]. Slice objects are also created using the built-in
slice([i ,] j [,stride]) function. The following read-only attributes are available:

Attribute Description

s .start Lower bound of the slice; none if omitted

s .stop Upper bound of the slice; none if omitted

s .step Stride of the slice; none if omitted

Ellipsis Object

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...0Second%20Edition/python_essencial_ref/39.html (17 / 18) [2003/1/1 ､W､ﾈ 02:55:32]

Safari | Python Essential Reference, Second Edition -> Built-in Types

The Ellipsis object is used to indicate the presence of an ellipsis (…) in a slice. There is a single
object of this type, accessed through the built-in name Ellipsis. It has no attributes and evaluates
as true.

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...0Second%20Edition/python_essencial_ref/39.html (18 / 18) [2003/1/1 ､W､ﾈ 02:55:33]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=39

Safari | Python Essential Reference, Second Edition -> Special Methods

Linux/Unix > Python Essential Reference, Second Edition > 3. Types and Objects >
Special Methods

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238110137104029061153098000086086

Special Methods

All the built-in datatypes consist of some data and a collection of special object methods. The names
of special methods are always preceded and followed by double underscores (_ _). These methods
are automatically triggered by the interpreter as a program executes. For example, the operation x +
y is mapped to an internal method x ._ _add_ _ (y), and an indexing operation x [k] is
mapped to x ._ _getitem_ _ (k). The behavior of each datatype depends entirely on the set
of special methods that it implements.

Although it’s not possible to alter the behavior of built-in types (or even to invoke any of their
special methods directly by name, as just suggested), it’s possible to use class definitions to define
new objects that behave like the built-in types. To do this, supply implementations of the special
methods described in this section.

Object Creation, Destruction, and Representation

The methods in Table 3.7 initialize, destroy, and represent objects. The _ _init_ _() method
initializes the attributes of an object and is called immediately after an object has been newly
created. The _ _del_ _() method is invoked when an object is about to be destroyed. This
method is invoked only when an object is no longer in use. It’s important to note that the statement
delx x only decrements an object’s reference count and doesn’t necessarily result in a call to this
function.

Table 3.7. Special Methods for Object Creation, Destruction, and Representation

Method Description

_ _init_ _(self [,args]) Called to initialize a new instance

_ _del_ _(self) Called to destroy an instance

_ _repr_ _(self) Creates a full string representation of an object

_ _str_ _ (self) Creates an informal string representation

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...0Second%20Edition/python_essencial_ref/40.html (1 / 10) [2003/1/1 ､W､ﾈ 02:55:34]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=40
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+8%3A55%3A00+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read3.asp?bookname=0735710910&snode=40&now=5%2F28%2F2002+8%3A55%3A00+PM
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/40#4.html

Safari | Python Essential Reference, Second Edition -> Special Methods

_ _cmp_ _(self ,other) Compares two objects and returns negative, zero, or positive

_ _hash_ _(self) Computes a 32-bit hash index

_ _nonzero_ _(self) Returns 0 or 1 for truth-value testing

The _ _repr_ _() and _ _str_ _() methods create string representations of an object. The
_ _repr_ _() method normally returns an expression string that can be evaluated to re-create
the object. This method is invoked by the built-in repr() function and by the backquotes operator
(`). For example:

a = [2,3,4,5] # Create a list
s = repr(a) # s = '[2, 3, 4, 5]'
 # Note : could have also used s = `a`
b = eval(s) # Turns s back into a list

If a string expression cannot be created, the convention is for _ _repr_ _() to return a string of
the form <...message ...>, as shown here:

f = open("foo")
a = repr(f) # a = "<open file 'foo', mode 'r' at dc030>"

The _ _str_ _() method is called by the built-in str() function and by the print statement.
It differs from _ _repr_ _() in that the string it returns can be more concise and informative to
the user. If this method is undefined, the _ _repr_ _() method is invoked.

The _ _cmp_ _(self ,other) method is used by the other comparison operators. It returns a
negative number if self < other , zero if self == other , and positive if self > other .
If this method is undefined for an object, the object will be compared by object identity. In addition,
an object may define an alternative set of comparison functions for each of the relational operators.
These are known as rich comparisons, and are described shortly. The _ _nonzero_ _() method
is used for truth-value testing and should return 0 or 1. If undefined, the _ _len_ _() method is
invoked to determine truth. Finally, the _ _hash_ _() method computes an integer hash key
used in dictionary operations. (The hash value can also be returned using the built-in function
hash().) The value returned should be identical for two objects that compare as equal.
Furthermore, mutable objects should not define this method; any changes to an object will alter the
hash value and make it impossible to locate an object on subsequent dictionary lookups. An object
should not define a _ _hash_ _() method without also defining _ _cmp_ _().

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...0Second%20Edition/python_essencial_ref/40.html (2 / 10) [2003/1/1 ､W､ﾈ 02:55:34]

Safari | Python Essential Reference, Second Edition -> Special Methods

Attribute Access

The methods in Table 3.8 read, write, and delete the attributes of an object using the dot (.) operator
and the del operator, respectively.

Table 3.8. Special Methods for Attribute Access

Method Description

_ _getattr_ _(self , name) Returns the attribute self .name

_ _setattr_ _(self , name , value) Sets the attribute self .name = value

_ _delattr_ _(self , name) Deletes the attribute self .name

For example:

a = x.s # Invokes _ _getattr_ _(x,"s")
x.s = b # Invokes _ _setattr_ _(x,"s", b)
del x.s # Invokes _ _delattr_ _(x,"s")

For class instances, the _ _getattr_ _() method is invoked only if the search for the attribute
in the object’s local dictionary or corresponding class definition fails. This method should return the
attribute value or raise an AttributeError exception on failure.

Sequence and Mapping Methods

The methods in Table 3.9 are used by objects that want to emulate sequence and mapping objects.

Table 3.9. Methods for Sequences and Mappings

Method Description

_ _len_ _(self) Returns the length of self

_ _getitem_ _(self , key) Returns self [key]

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...0Second%20Edition/python_essencial_ref/40.html (3 / 10) [2003/1/1 ､W､ﾈ 02:55:34]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/40#8.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/40#12.html

Safari | Python Essential Reference, Second Edition -> Special Methods

_ _setitem_ _(self , key , value) Sets self [key] = value

_ _delitem_ _(self , key) Deletes self [key]

_ _getslice_ _(self ,i ,j) Returns self [i :j]

_ _setslice_ _(self ,i ,j ,s) Sets self [i :j] = s

_ _delslice_ _(self ,i ,j) Deletes self [i :j]

_ _contains_ _(self ,obj) Returns obj in self

For example:

a = [1,2,3,4,5,6]
len(a) # _ _len_ _(a)
x = a[2] # _ _getitem_ _(a,2)
a[1] == 7 # _ _setitem_ _(a,1,7)
del a[2] # _ _delitem_ _(a,2)
x = a[1:5] # _ _getslice_ _(a,1,5)
a[1:3] = [10,11,12] # _ _setslice_ _(a,1,3,[10,11,12])
del a[1:4] # _ _delslice_ _(a,1,4)

The _ _len_ _ method is called by the built-in len() function to return a non-negative length.
This function also determines truth values unless the _ _nonzero_ _() method has also been
defined.

For manipulating individual items, the _ _getitem_ _() method can return an item by key
value. The key can be any Python object, but is typically an integer for sequences. The _
setitem _() method assigns a value to an element. The _ _delitem_ _() method is
invoked whenever the del operation is applied to a single element.

The slicing methods support the slicing operator s [i :j]. The _ _getslice_ _() method
returns a slice, which is normally the same type of sequence as the original object. The indices i and
j must be integers, but their interpretation is up to the method. Missing values for i and j are
replaced with 0 and sys.maxint, respectively. The _ _setslice_ _() method assigns
values to a slice. Similarly, _ _delslice_ _() deletes all the elements in a slice.

The _ _contains_ _() method is used to implement the in operator.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...0Second%20Edition/python_essencial_ref/40.html (4 / 10) [2003/1/1 ､W､ﾈ 02:55:34]

Safari | Python Essential Reference, Second Edition -> Special Methods

In addition to implementing the methods just described, sequences and mappings implement a
number of mathematical methods, including _ _add_ _(), _ _radd_ _(), _ _mul_ _(),
and _ _rmul_ _() to support concatenation and sequence replication. These methods are
described shortly.

Finally, Python supports an extended slicing operation that’s useful for working with
multidimensional data structures such as matrices and arrays. Syntactically, you specify an extended
slice as follows:

a = m[0:100:10] # Strided slice (stride=10)
b = m[1:10, 3:20] # Multidimensional slice
c = m[0:100:10, 50:75:5] # Multiple dimensions with strides
m[0:5, 5:10] = n # extended slice assignment
del m[:10, 15:] # extended slice deletion

The general format for each dimension of an extended slice is i :j [:stride], where stride
is optional. As with ordinary slices, you can omit the starting or ending values for each part of a
slice. In addition, a special object known as the Ellipsis and written as … is available to denote any
number of trailing or leading dimensions in an extended slice:

a = m[..., 10:20] # extended slice access with Ellipsis
m[10:20, ...] = n

When using extended slices, the _ _getitem_ _(), _ _setitem_ _(), and _
delitem _() methods implement access, modification, and deletion, respectively. However,
instead of an integer, the value passed to these methods is a tuple containing one or more slice
objects and at most one instance of the Ellipsis type. For example,

a = m[0:10, 0:100:5, ...]

invokes _ _getitem_ _() as follows:

a = _ _getitem_ _(m, (slice(0,10,None), slice(0,100,5), Ellipsis))

At this time, none of the built-in datatypes supports extended slices, so using them is likely to result
in an error. However, special-purpose extensions, especially those with a scientific flavor, may
provide new types and objects that support the extended slicing operation.

Mathematical Operations

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...0Second%20Edition/python_essencial_ref/40.html (5 / 10) [2003/1/1 ､W､ﾈ 02:55:34]

Safari | Python Essential Reference, Second Edition -> Special Methods

Table 3.10 lists special methods that objects must implement to emulate numbers. Mathematical
operations associate from left to right; when an expression such as x + y appears, the interpreter
tries to invoke the method x ._ _add_ _(y). The special methods beginning with r support
operations with reversed operands. These are invoked only if the left operand doesn’t implement the
specified operation. For example, if x in x + y doesn’t support the _ _add_ _() method, the
interpreter tries to invoke the method y ._ _radd_ _(x).

Table 3.10. Methods for Mathematical Operations

Method Result

_ _add_ _(self ,other) self + other

_ _sub_ _(self ,other) self - other

_ _mul_ _(self ,other) self * other

_ _div_ _(self ,other) self / other

_ _mod_ _(self ,other) self % other

_ _divmod_ _(self ,other) divmod(self ,other)

_ _pow_ _(self ,other [,modulo]) self ** other , pow(self , other , modulo)

_ _lshift_ _(self ,other) self << other

_ _rshift_ _(self ,other) self >> other

_ _and_ _(self ,other) self & other

_ _or_ _(self ,other) self | other

_ _xor_ _(self ,other) self ^ other

_ _radd_ _(self ,other) other + self

_ _rsub_ _(self ,other) other - self

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...0Second%20Edition/python_essencial_ref/40.html (6 / 10) [2003/1/1 ､W､ﾈ 02:55:34]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/40#16.html

Safari | Python Essential Reference, Second Edition -> Special Methods

_ _rmul_ _(self ,other) other * self

_ _rdiv_ _(self ,other) other / self

_ _rmod_ _(self ,other) other % self

_ _rdivmod_ _(self ,other) divmod(other ,self)

_ _rpow_ _(self ,other) other ** self

_ _rlshift_ _(self ,other) other << self

_ _rrshift_ _(self ,other) other >> self

_ _rand_ _(self ,other) other & self

_ _ror_ _(self ,other) other | self

_ _rxor_ _(self ,other) other ^ self

_ _iadd_ _(self ,other) self += other

_ _isub_ _(self ,other) self -= other

_ _imul_ _(self ,other) self *= other

_ _idiv_ _(self ,other) self /= other

_ _imod_ _(self ,other) self %= other

_ _ipow_ _(self ,other) self **= other

_ _iand_ _(self ,other) self &= other

_ _ior_ _(self ,other) self |= other

_ _ixor_ _(self ,other) self ^= other

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...0Second%20Edition/python_essencial_ref/40.html (7 / 10) [2003/1/1 ､W､ﾈ 02:55:34]

Safari | Python Essential Reference, Second Edition -> Special Methods

_ _ilshift_ _(self ,other) self <<= other

_ _irshift_ _(self ,other) self >>= other

_ _neg_ _(self) -self

_ _pos_ _(self) +self

_ _abs_ _(self) abs(self)

_ _invert_ _(self) ~self

_ _int_ _(self) int(self)

_ _long_ _(self) long(self)

_ _float_ _(self) float(self)

_ _complex_ _(self) complex(self)

_ _oct_ _(self) oct(self)

_ _hex_ _(self) hex(self)

_ _coerce_ _(self ,other) Type coercion

The methods _ _iadd_ _(), _ _isub_ _(), and so forth are used to support in-place
arithmetic operators such as a+=b and a-=b (also known as augmented assignment). A distinction
is made between these operators and the standard arithmetic methods because the implementation of
the in-place operators might be able to provide certain customizations such as performance
optimizations. For instance, if the self parameter is not shared, it might be possible to modify its
value in place without having to allocate a newly created object for the result.

The conversion methods _ _int_ _(), _ _long_ _(), _ _float_ _(), and _
complex _() convert an object into one of the four built-in numerical types. The _ _oct_
_() and _ _hex_ _() methods return strings representing the octal and hexadecimal values of
an object, respectively.

The _ _coerce_ _(x ,y) method is used in conjunction with mixed-mode numerical

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...0Second%20Edition/python_essencial_ref/40.html (8 / 10) [2003/1/1 ､W､ﾈ 02:55:34]

Safari | Python Essential Reference, Second Edition -> Special Methods

arithmetic. This method returns either a 2-tuple containing the values of x and y converted to a
common numerical type, or None if no such conversion is possible. To evaluate an operation x op
y where op is an operation such as +, the following rules are applied, in order:

1. If x has a _ _coerce_ _() method, replace x and y with the values returned by x ._
coerce _(y). If None is returned, skip to step 3.

2. If x has a method _ _op _ _(), return x ._ _op _ _(y). Otherwise, restore x and y to
their original values and continue.

3. If y has a _ _coerce_ _() method, replace x and y with the values returned by y ._
coerce _(x). If None is returned, raise an exception.

4. If y has a method _ _rop_ _(), return y ._ _rop_ _(x). Otherwise, raise an
exception.

Although strings define a few arithmetic operations, the _ _coerce_ _() method is not used in
operations involving standard and Unicode strings.

The interpreter supports only a limited number of mixed-type operations involving the built-in
types, in particular the following:

● If x is a string, x % y invokes the string-formatting operation, regardless of the type of y.

● If x is a sequence, x + y invokes sequence concatenation.

● If either x or y is a sequence and the other operand is an integer, x * y invokes sequence
repetition.

Comparison Operations

Table 3.11 lists special methods that objects can implement to provide individualized versions of the
relational operators (<, >, <=, >=, ==, !=). These are known as rich comparisons and were first
introduced in Python 2.1. Each of these functions takes two arguments and can return any kind of
object, including a Boolean value, a list, or any other Python type. For instance, a numerical package
might use this to perform an element-wise comparison of two matrices, returning a matrix with the
results. If a comparison cannot be made, these functions may also raise an exception.

Table 3.11. Methods for Comparisons

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...0Second%20Edition/python_essencial_ref/40.html (9 / 10) [2003/1/1 ､W､ﾈ 02:55:34]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/40#20.html

Safari | Python Essential Reference, Second Edition -> Special Methods

Method Result

_ _lt_ _(self ,other) self < other

_ _le_ _(self ,other) self <= other

_ _gt_ _(self ,other) self > other

_ _ge_ _(self ,other) self >= other

_ _eq_ _(self ,other) self == other

_ _ne_ _(self ,other) self != other

Callable Objects

Finally, an object can emulate a function by providing the _ _call_ _(self [,args])
method. If an object x provides this method, it can be invoked like a function. That is, x (arg1 ,
arg2 , ...) invokes x ._ _call_ _(self , arg1 , arg2 , ...).

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...0Second%20Edition/python_essencial_ref/40.html (10 / 10) [2003/1/1 ､W､ﾈ 02:55:34]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=40

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/41.html

Linux/Unix > Python Essential Reference, Second Edition > 3. Types and Objects > Performance
and Memory Considerations

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238110137104029061152217152035180

Performance and Memory Considerations

All Python objects minimally include an integer reference count, a descriptor defining the type, and the
representation of the actual data. Table 3.12 shows the approximate memory requirements of various built-in
objects based on the C implementation of Python 2.0 running on a 32-bit machine. The precise values may vary
slightly according to the implementation of the interpreter and machine architecture. (For instance, the memory
requirements may double on a 64-bit machine.) Although you may never need to think about memory utilization,
Python is used in a variety of high-performance and memory-critical applications ranging from supercomputing
to mobile computing. The memory footprint of the built-in types is presented here to help programmers make
informed design decisions in memory-critical settings.

Table 3.12. Memory Size of Built-in Datatypes

Type Size

Integer 12 bytes

Long integer 12 bytes + (nbits/16 + 1)*2 bytes

Floats 16 bytes

Complex 24 bytes

List 16 bytes + 4 bytes for each item

Tuple 16 bytes + 4 bytes for each item

String 20 bytes + 1 byte per character

Unicode string 24 bytes + 2 bytes per character

Dictionary 24 bytes + 12*2n bytes, n = log2(nitems)+1

Class instance 16 bytes plus a dictionary object

Xrange object 24 bytes

Because strings are used so frequently, the interpreter uses a number of optimizations. First, a string s can be
interned using the built-in function intern(s). This function looks in an internal hash table to see whether the

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/41.html (1 / 3) [2003/1/1 ､W､ﾈ 02:55:35]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=41
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+8%3A55%3A15+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read4.asp?bookname=0735710910&snode=41&now=5%2F28%2F2002+8%3A55%3A15+PM
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/41#2.html

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/41.html

string value already exists. If so, a reference to that string—instead of a copy of the string data—is stored in the
string object. If not, the data in s is added to the hash table. Interned strings live until the interpreter exits; if
you’re concerned about memory, you shouldn’t intern infrequently used strings. Also, to increase the
performance of dictionary lookups, strings cache their last computed hash-table value.

Dictionaries are implemented using a hash table with open indexing. The number of entries allocated to a
dictionary is equal to twice the smallest power of 2 that’s greater than the number of objects stored in the
dictionary. When a dictionary expands, its size doubles. On average, about half of the entries allocated to a
dictionary are unused.

The execution of a Python program is primarily a sequence of function calls involving the special methods
described in the earlier section “Special Methods.” Next to choosing the most efficient algorithm, performance
improvements can be made by understanding Python’s object model and trying to minimize the number of
special method calls that occur during execution. This is especially true for name lookups on modules and
classes. For example, consider the following code:

import math
d = 0.0
for i in xrange(1000000):
 d = d + math.sqrt(i)

In this case, each iteration of the loop involves two name lookups. First, the math module is located in the global
namespace; then it’s searched for a function object named sqrt. Now consider the following modification:

from math import sqrt
d = 0.0
for i in xrange(1000000):
 d = d + sqrt(i)

In this case, one name lookup is eliminated from the inner loop. In fact, when running on the author’s speedy 200
MHz PC, this simple change makes the code run more than twice as fast as before.

Unnecessary method calls can also be eliminated by making careful use of temporary values and avoiding
unnecessary lookups in sequences and dictionaries. For example, consider the two classes shown in Listing 3.2:

Listing 3.2 Unnecessary Method Calls

class Point:
 def _ _init_ _(self,x,y,z):
 self.x = x
 self.y = y
 self.z = z

class Poly:
 def _ _init_ _(self):
 self.pts = []
 def addpoint(self,pt):
 self.pts.append(pt)
 def perimeter(self):

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/41.html (2 / 3) [2003/1/1 ､W､ﾈ 02:55:35]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/41#4.html

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/41.html

 d = 0.0
 self.pts.append(self.pts[0]) # Temporarily close the polygon
 for i in xrange(len(self.pts)-1):
 d2 = (self.pts[i+1].x - self.pts[i].x)**2 + \
 (self.pts[i+1].y - self.pts[i].y)**2 + \
 (self.pts[i+1].z - self.pts[i].z)**2
 d = d + math.sqrt(d2)
 self.pts.pop() # Restore original list of points
 return d

In the perimeter() method, each occurrence of self.pts[i] involves two special-method lookups—one
involving a dictionary and another involving a sequence. You can reduce the number of lookups by rewriting the
method as shown in Listing 3.3:

Listing 3.3 Improved Version of Listing 3.2

class Poly:
 ...
 def perimeter(self):
 d = 0.0
 pts = self.pts
 pts.append(pts[0])
 for i in xrange(len(pts)-1):
 p1 = pts[i+1]
 p2 = pts[i]
 d2 = (p1.x - p2.x)**2 + \
 (p1.y - p2.y)**2 + \
 (p1.z - p2.z)**2
 d = d + math.sqrt(d2)
 pts.pop()
 return d

Although the performance gains made by such modifications are often modest (15–20%), an understanding of the
underlying object model and the manner in which special methods are invoked can result in faster programs. Of
course, if performance is extremely critical, you often can export functionality to a Python extension module
written in C.

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/41.html (3 / 3) [2003/1/1 ､W､ﾈ 02:55:35]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/41#6.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=41

Safari | Python Essential Reference, Second Edition -> 4. Operators and Expressions

Linux/Unix > Python Essential Reference, Second Edition > 4. Operators and
Expressions

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238110137104029061155026089199138

Chapter 4. Operators and Expressions
This chapter describes Python’s built-in operators as well as precedence rules used in the evaluation
of expressions.

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%20P...,%20Second%20Edition/python_essencial_ref/43.html [2003/1/1 ､W､ﾈ 02:55:35]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=43
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+8%3A55%3A27+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read1.asp?bookname=0735710910&snode=43&now=5%2F28%2F2002+8%3A55%3A27+PM
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=43

Safari | Python Essential Reference, Second Edition -> Operations on Numbers

Linux/Unix > Python Essential Reference, Second Edition > 4. Operators and
Expressions > Operations on Numbers

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238110137104029061157121123232120

Operations on Numbers

The following operations can be applied to all numeric types:

Operation Description

x + y Addition

x - y Subtraction

x * y Multiplication

x / y Division

x ** y Power (x y)

x % y Modulo (x mod y)

-x Unary minus

+x Unary plus

For integers, division truncates the result to an integer. Thus, 7/4 is 1, not 1.75. The modulo
operator returns the remainder of the division x / y . For example, 7 % 4 is 3. For floating-point
numbers, the modulo operator returns the floating-point remainder of x / y , which is x - int(x
/ y) * y . For complex numbers, the modulo operator returns x - int((x / y).real) *
y .

The following shifting and bitwise logical operators can only be applied to integers and long
integers:

Operation Description

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/44.html (1 / 3) [2003/1/1 ､W､ﾈ 02:55:35]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=44
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+8%3A55%3A43+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read7.asp?bookname=0735710910&snode=44&now=5%2F28%2F2002+8%3A55%3A43+PM

Safari | Python Essential Reference, Second Edition -> Operations on Numbers

x << y Left shift

x >> y Right shift

x & y Bitwise and

x | y Bitwise or

x ^ y Bitwise xor (exclusive or)

~x Bitwise negation

The bitwise operators assume that integers are represented in a 2’s complement binary
representation. For long integers, the bitwise operators operate as if the sign bit is infinitely extended
to the left.

In addition, you can apply the following built-in functions to all the numerical types:

Function Description

abs(x) Absolute value

divmod(x ,y) Returns (int(x / y), x % y)

pow(x ,y [,modulo]) Returns (x ** y) x % modulo

round(x ,[n]) Rounds to the nearest multiple of 10-n (floating-point numbers only)

The abs() function returns the absolute value of a number. The divmod() function returns the
quotient and remainder of a division operation. The pow() function can be used in place of the **
operator, but also supports the ternary power-modulo function (often used in cryptographic
algorithms). The round() function rounds a floating-point number x to the nearest multiple of 10
to the power of -n . If n is omitted, it’s set to 0. If x is equally close to two multiples, rounding is
performed away from zero (for example, 0.5 is rounded to 1 and -0.5 is rounded to -1).

The following comparison operators have the standard mathematical interpretation and return an
integer value of 1 for true, 0 for false:

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/44.html (2 / 3) [2003/1/1 ､W､ﾈ 02:55:35]

Safari | Python Essential Reference, Second Edition -> Operations on Numbers

Operation Description

x < y Less than

x > y Greater than

x == y Equal to

x != y Not equal to (same as <>)

x >= y Greater than or equal to

x <= y Less than or equal to

Comparisons can be chained together, such as in w < x < y < z . Such expressions are evaluated
as w < x and x < y and y < z . Expressions such as x < y > z are legal, but are likely to
confuse anyone else reading the code (it’s important to note that no comparison is made between x
and z in such an expression).

Comparisons involving complex numbers are only valid for equality (= =) and inequality (!=).
Attempts to compare complex numbers with <, <=, >, and >= are mathematically meaningless and
will raise a TypeError exception.

Operations involving numbers are valid only if the operands are of the same type. If the types differ,
a coercion operation is performed to convert one of the types to the other:

1. If either operand is a complex number, the other operand is converted to a complex number.

2. If either operand is a floating-point number, the other is converted to a float.

3. If either operand is a long integer, the other is converted to a long integer.

4. Otherwise, both numbers must be integers and no conversion is performed.

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/44.html (3 / 3) [2003/1/1 ､W､ﾈ 02:55:35]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=44

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/45.html

Linux/Unix > Python Essential Reference, Second Edition > 4. Operators and
Expressions > Operations on Sequences

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238110137104029061156021238067083

Operations on Sequences

The following operators can be applied to sequence types, including strings, lists, and tuples:

Operation Description

s + r Concatenation

s * n , n * s Makes n copies of s , where n is an integer

s % d String formatting (strings only)

s [i] Indexing

s [i :j] Slicing

x in s , x not in s Membership

for x in s : Iteration

len(s) Length

min(s) Minimum item

max(s) Maximum item

The + operator concatenates two sequences of the same type. The s * n operator makes n copies of
a sequence. However, these are shallow copies that replicate elements by reference only. For
example, consider the following code:

a = [3,4,5] # A list
b = [a] # A list containing a
c = 4*b # Make four copies of b

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/45.html (1 / 6) [2003/1/1 ､W､ﾈ 02:55:36]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=45
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+8%3A55%3A53+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read7.asp?bookname=0735710910&snode=45&now=5%2F28%2F2002+8%3A55%3A53+PM

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/45.html

Now modify a
a[0] == -7

Look at c
print c

The output of this program is the following:

[[-7, 4, 5], [-7, 4, 5], [-7, 4, 5], [-7, 4, 5]]

In this case, a reference to the list a was placed in the list b. When b was replicated, four additional
references to a were created. Finally, when a was modified, this change was propagated to all of the
other “copies” of a. This behavior of sequence multiplication is often unexpected and not the intent
of the programmer. One way to work around the problem is to manually construct the replicated
sequence by duplicating the contents of a. For example:

a = [3,, 4, 5]
c = [a[:] for j in range((4)] # [:] makes a copy of a list

The copy module in the standard library can also be used to make copies of objects.

The indexing operator s [n] returns the nth object from a sequence in which s [0] is the first
object. Negative indices can be used to fetch items from the end of a sequence. For example, s [-
1] returns the last item. Otherwise, attempts to access elements that are out of range result in an
IndexError exception.

The slicing operator s [i :j] extracts a subsequence from s consisting of the elements with index
k where i <= k < j . Both i and j must be integers or long integers. If the starting or ending
index is omitted, the beginning or end of the sequence is assumed, respectively. Negative indices are
allowed and assumed to be relative to the end of the sequence. If i or j is out of range, they’re
assumed to refer to the beginning or end of a sequence, depending on whether their value refers to
an element before the first item or after the last item, respectively.

The x in s operator tests to see whether the object x is in the sequence s and returns 1 if true, 0 if
false. Similarly, the x not in s operator tests whether x is not in the sequence s . The for x
in s operator iterates over all the elements of a sequence and is described further in Chapter 5,
“Control Flow.” len(s) returns the number of elements in a sequence. min(s) and max(s)
return the minimum and maximum values of a sequence, although the result may only make sense if
the elements can be ordered with respect to the < operator. (For example, it would make little sense
to find the maximum value of a list of file objects.)

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/45.html (2 / 6) [2003/1/1 ､W､ﾈ 02:55:36]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/45.html

Strings and tuples are immutable and cannot be modified after creation. Lists can be modified with
the following operators:

Operation Description

s [i] = x Index assignment

s [i :j] = r Slice assignment

del s [i] Deletes an element

del s [i :j] Deletes a slice

The s [i] = x operator changes element i of a list to refer to object x , increasing the reference
count of x . Negative indices are relative to the end of the list and attempts to assign a value to an
out-of-range index result in an IndexError exception. The slicing assignment operator s [i :j
] = r replaces elements k where i <= k < j with elements from sequence r . Indices may have
the same values as for slicing and are adjusted to the beginning or end of the list if they’re out of
range. If necessary, the sequence s is expanded or reduced to accommodate all the elements in r .
For example:

a = [1,2,3,4,5]
a[1] = 6 # a = [1,6,3,4,5]
a[2:4] = [10,11] # a = [1,6,10,11,5]
a[3:4] = [-1,-2,-3] # a = [1,6,10,-1,-2,-3,5]
a[2:] = [0] # a = [1,6,0]

The del s [i] operator removes element i from a list and decrements its reference count. del
s [i :j] removes all the elements in a slice.

Sequences are compared using the operators <, >, <=, >=, ==, and !=. When comparing two
sequences, the first elements of each sequence are compared. If they differ, this determines the
result. If they’re the same, the comparison moves to the second element of each sequence. This
process continues until two different elements are found or no more elements exist in either of the
sequences. If a is an initial subsequence of b , then a < b . Strings are compared using
lexicographical ordering. Each character is assigned a unique index determined by the machine’s
character set (such as ASCII or Unicode). A character is less than another character if its index is
less.

The modulo operator s % d produces a formatted string, given a format string s and a collection of

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/45.html (3 / 6) [2003/1/1 ､W､ﾈ 02:55:36]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/45.html

objects in a tuple or mapping object (dictionary). The string s may be a standard or a Unicode
string. The behavior of this operator is similar to the C sprintf() function. The format string
contains two types of objects: ordinary characters (which are left unmodified) and conversion
specifiers—each of which is replaced with a formatted string representing an element of the
associated tuple or mapping. If d is a tuple, the number of conversion specifiers must exactly match
the number of objects in d . If d is a mapping, each conversion specifier must be associated with a
valid key name in the mapping (using parentheses, as described shortly). Each conversion specifier
starts with the % character and ends with one of the conversion characters shown in Table 4.1.

Table 4.1. String Formatting Conversions

Character Output Format

d,i Decimal integer or long integer.

u Unsigned integer or long integer.

o Octal integer or long integer.

x Hexadecimal integer or long integer.

X Hexadecimal integer (uppercase letters).

f Floating point as [-]m .dddddd .

e Floating point as [-]m .dddddde ±xx .

E Floating point as [-]m .ddddddE ±xx .

g,G Use %e or %E for exponents less than -4 or greater than the precision; otherwise, use %f.

s String or any object. The formatting code uses str() to generate strings.

r Produces the same string as produced by repr().

c Single character.

% Literal %.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/45.html (4 / 6) [2003/1/1 ､W､ﾈ 02:55:36]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/45#2.html

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/45.html

Between the % and the conversion character, the following modifiers may appear, in this order:

1. A key name in parentheses, which selects a specific item out of the mapping object. If no
such element exists, a KeyError exception is raised.

2. One or more of the following:

❍ sign, indicating left alignment.

❍ + sign, indicating that the numeric sign should be included (even if positive).

❍ 0, indicating a zero fill.

3. A number specifying the minimum field width. The converted value will be printed in a field
at least this wide and padded on the left (or right if the flag is given) to make up the field
width.

4. A period separating the field width from a precision.

5. A number specifying the maximum number of characters to be printed from a string, the
number of digits following the decimal point in a floating-point number, or the minimum
number of digits for an integer.

In addition, the asterisk (*) character may be used in place of a number in any width field. If
present, the width will be read from the next item in the tuple.

The following code illustrates a few examples:

a = 42
b = 13.142783
c = "hello"
d = {'x':13, 'y':1.54321, 'z':'world'}
e = 5628398123741234L

print 'a is %d' % a # "a is 42"
print '%10d %f' % (a,b) # " 42 13.142783"
print '%+010d %E' % (a,b) # "+000000042 1.314278E+01"
print '%(x)-10d %(y)0.3g' % d # "13 1.54"
print '%0.4s %s' % (c, d['z']) # "hell world"
print '%*.*f' % (5,3,b) # "13.143"
print 'e = %d' % e # "e = 5628398123741234"

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/45.html (5 / 6) [2003/1/1 ､W､ﾈ 02:55:36]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/45.html

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/45.html (6 / 6) [2003/1/1 ､W､ﾈ 02:55:36]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=45

Safari | Python Essential Reference, Second Edition -> Operations on Dictionaries

Linux/Unix > Python Essential Reference, Second Edition > 4. Operators and
Expressions > Operations on Dictionaries

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238110137104030195077107231032185

Operations on Dictionaries

Dictionaries provide a mapping between names and objects. You can apply the following operations
to dictionaries:

Operation Description

x = d [k] Indexing by key

d [k] = x Key assignment

del d [k] Deletes an item by key

len(d) Number of items in the dictionary

Key values can be any immutable object, such as strings, numbers, and tuples. In addition,
dictionary keys can be specified as a comma-separated list of values like this:

d = { }
d[1,2,3] = "foo"
d[1,0,3] = "bar"

In this case, the key values represent a tuple, making the above assignments identical to the
following:

d[(1,2,3)] = "foo"
d[(1,0,3)] = "bar"

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%20P...,%20Second%20Edition/python_essencial_ref/46.html [2003/1/1 ､W､ﾈ 02:55:37]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=46
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+8%3A56%3A06+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read6.asp?bookname=0735710910&snode=46&now=5%2F28%2F2002+8%3A56%3A06+PM
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=46

Safari | Python Essential Reference, Second Edition -> Augmented Assignment

Linux/Unix > Python Essential Reference, Second Edition > 4. Operators and
Expressions > Augmented Assignment

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238110137104030195076075218197060

Augmented Assignment

Python provides the following set of augmented assignment operators:

Operation Description

x += y x = x + y

x -= y x = x - y

x *= y x = x * y

x /= y x = x / y

x **= y x = x ** y

x %= y x = x % y

x &= y x = x & y

x |= y x = x | y

x ^= y x = x ^ y

x >>= y x = x >> y

x <<= y x = x << y

These operators can be used anywhere that ordinary assignment is used. For example:

a = 3
b = [1,2]
c = "%s %s"

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/47.html (1 / 2) [2003/1/1 ､W､ﾈ 02:55:37]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=47
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+8%3A56%3A16+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read1.asp?bookname=0735710910&snode=47&now=5%2F28%2F2002+8%3A56%3A16+PM

Safari | Python Essential Reference, Second Edition -> Augmented Assignment

a += 1 # a = 4
b[1] += 10 # b = [1, 12]
c %= ("Douglas", "Adams") # c = "Douglas Adams"

Augmented assignment doesn’t violate mutability or perform in-place modification of objects.
Therefore, writing x += y creates an entirely new object x with the value x + y . User-defined
classes can redefine the augmented assignment operators using the special methods described in
Chapter 3, “Types and Objects.”

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/47.html (2 / 2) [2003/1/1 ､W､ﾈ 02:55:37]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=47

Safari | Python Essential Reference, Second Edition -> The Attribute (.) Operator

Linux/Unix > Python Essential Reference, Second Edition > 4. Operators and
Expressions > The Attribute (.) Operator

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238110137104030195079253249172173

The Attribute (.) Operator

The dot (.) operator is used to access the attributes of an object. For example:

foo.x = 3
print foo.y
a = foo.bar(3,4,5)
del foo.x

More than one dot operator can appear in a single expression, such as in foo.y.a.b. The dot
operator can also be applied to the intermediate results of functions, as in a =
foo.bar(3,4,5).spam. An attribute can be deleted using the del statement as in del
foo.x.

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%20P...,%20Second%20Edition/python_essencial_ref/48.html [2003/1/1 ､W､ﾈ 02:55:37]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=48
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+8%3A56%3A25+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read6.asp?bookname=0735710910&snode=48&now=5%2F28%2F2002+8%3A56%3A25+PM
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=48

Safari | Python Essential Reference, Second Edition -> Type Conversion

Linux/Unix > Python Essential Reference, Second Edition > 4. Operators and
Expressions > Type Conversion

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238110137104030195078083247235198

Type Conversion

Sometimes it’s necessary to perform conversions between the built-in types. The following built-in
functions perform explicit type conversions:

Function Description

int(x [,base]) Converts x to an integer

long(x [,base]) Converts x to a long integer

float(x) Converts x to a floating-point number

complex(real [,imag]) Creates a complex number

str(x) Converts object x to a string representation

repr(x) Converts object x to an expression string

eval(str) Evaluates a string and returns an object

tuple(s) Converts sequence s to a tuple

list(s) Converts sequence s to a list

chr(x) Converts an integer to a character

unichr(x) Convert an integer to a Unicode character

ord(x) Converts a single character to its integer value

hex(x) Converts an integer to a hexadecimal string

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/49.html (1 / 2) [2003/1/1 ､W､ﾈ 02:55:38]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=49
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+8%3A56%3A35+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read2.asp?bookname=0735710910&snode=49&now=5%2F28%2F2002+8%3A56%3A35+PM

Safari | Python Essential Reference, Second Edition -> Type Conversion

oct(x) Converts an integer to an octal string

You also can write the repr(x) function using backquotes as `x `. Note that the str() and
repr() functions may return different results. repr() typically creates an expression string that
can be evaluated with eval() to re-create the object. On the other hand, str() produces a
concise or nicely formatted representation of the object (and is used by the print statement). The
ord() function returns the integer ordinal value for a standard or Unicode character. The chr()
and unichr() functions convert integers back into standard or Unicode characters, respectively.

To convert strings back into numbers and other objects, use the int(), long(), and float()
functions. The eval() function can also convert a string containing a valid expression to an object.
For example:

a = int("34") # a = 34
b = long("0xfe76214", 16) # b = 266822164L (0xfe76214L)
b = float("3.1415926") # b = 3.1415926
c = eval("3, 5, 6") # c = (3,5,6)

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/49.html (2 / 2) [2003/1/1 ､W､ﾈ 02:55:38]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=49

Safari | Python Essential Reference, Second Edition -> Unicode Strings

Linux/Unix > Python Essential Reference, Second Edition > 4. Operators and
Expressions > Unicode Strings

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238110137104030195073070001013164

Unicode Strings

The use of standard strings and Unicode strings in the same program presents a number of subtle
complications. This is because such strings may be used in a variety of operations, including string
concatenation, comparisons, dictionary key lookups, and as arguments to built-in functions.

To convert a standard string s to a Unicode string, the built-in function unicode(s [,
encoding [,errors]]) is used. To convert a Unicode string u to a standard string, the string
method u .encode([encoding [, errors]]) is used. Both of these conversion operators
require the use of a special encoding rule that specifies how 16-bit Unicode character values are
mapped to a sequence of 8-bit characters in standard strings and vice versa. The encoding parameter
is specified as a string and consists of one of the following values:

Value Description

'ascii' 7-bit ASCII

'latin-1' or 'iso-8859-1' ISO 8859-1 Latin-1

'utf-8' 8-bit variable-length encoding

'utf-16' 16-bit variable-length encoding (may be little or big endian)

'utf-16-le' UTF-16, little-endian encoding

'utf-16-be' UTF-16, big-endian encoding

'unicode-escape' Same format as Unicode literals u"string"

'raw-unicode-escape' Same format as raw Unicode literals ur"string"

The default encoding is set in the site module and can be queried using
sys.getdefaultencoding(). In most cases, the default encoding is 'ascii', which means
that ASCII characters with values in the range [0x00,0x7f] are directly mapped to Unicode
characters in the range [U+0000, U+007F]. Details about the other encodings can be found in

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/50.html (1 / 4) [2003/1/1 ､W､ﾈ 02:55:38]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=50
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+8%3A56%3A43+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read8.asp?bookname=0735710910&snode=50&now=5%2F28%2F2002+8%3A56%3A43+PM

Safari | Python Essential Reference, Second Edition -> Unicode Strings

Chapter 9, “Input and Output.”

When converting string values, a UnicodeError exception may be raised if a character that can’t
be converted is encountered. For instance, if the encoding rule is 'ascii', a Unicode character
such as U+1F28 can’t be converted because its value is too large. Similarly, the string "\xfc"
can’t be converted to Unicode because it contains a character outside the range of valid ASCII
character values. The errors parameter determines how encoding errors are handled. It’s a string
with one of the following values:

Value Description

'strict' Raises a UnicodeError exception for decoding errors

'ignore' Ignores invalid characters

'replace' Replaces invalid characters with a replacement character (U+FFFD in Unicode, '?' in standard
strings)

The default error handling is 'strict'.

When standard strings and Unicode strings are mixed in an expression, standard strings are
automatically coerced to Unicode using the built-in unicode() function.

For example:

s = "hello"
t = u"world"
w = s + t # w = unicode(s) + t

When Unicode strings are used in string methods that return new strings (as described in Chapter 3),
the result is always coerced to Unicode. For example:

a = "Hello World"
b = a.replace("World", u"Bob") # Produces u"Hello Bob"

Furthermore, even if zero replacements are made and the result is identical to the original string, the
final result is still a Unicode string.

If a Unicode string is used as the format string with the % operator, all the arguments are first
coerced to Unicode and then put together according to the given format rules. If a Unicode object is

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/50.html (2 / 4) [2003/1/1 ､W､ﾈ 02:55:38]

Safari | Python Essential Reference, Second Edition -> Unicode Strings

passed as one of the arguments to the % operator, the entire result is coerced to Unicode at the point
at which the Unicode object is expanded. For example:

c = "%s %s" % ("Hello", u"World") # c = "Hello " + u"World"
d = u"%s %s" % ("Hello", "World") # d = u"Hello " + u"World"

When applied to Unicode strings, the str() and repr() functions automatically coerce the value
back to a standard string. For Unicode string u , str(u) produces the value u .encode() and
repr(u) produces u"%s" % repr(u .encode('unicode-escape')).

In addition, most library and built-in functions that only operate with standard strings will
automatically coerce Unicode strings to a standard string using the default encoding. If such a
coercion is not possible, a UnicodeError exception is raised.

Standard and Unicode strings can be compared. In this case, standard strings are coerced to Unicode
using the default encoding before any comparison is made. This coercion also occurs whenever
comparisons are made during list and dictionary operations. For example, 'x' in [u'x',
u'y', u'z'] coerces 'x' to Unicode and returns true. For character containment tests such as
'W' in u'Hello World' the character 'W' is coerced to Unicode before the test.

When computing hash values with the hash() function, standard strings and Unicode strings
produce identical values, provided that the Unicode string only contains characters in the range
[U+0000, U+007F]. This allows standard strings and Unicode strings to be used interchangeably as
dictionary keys, provided that the Unicode strings are confined to ASCII characters. For example:

a = { }
a[u"foo"] = 1234
print a["foo"] # Prints 1234

However, it should be noted that this dictionary key behavior may not hold if the default encoding is
ever changed to something other than 'ascii' or if Unicode strings contain non–ASCII
characters. For example, if 'utf-8' is used as a default character encoding, it’s possible to
produce pathological examples in which strings compare as equal, but have different hash values.
For example:

a = u"M\u00fcller" # Unicode string
b = "M\303\274ller" # utf-8 encoded version of a
print a == b # Prints '1', true
print hash(a)==hash(b) # Prints '0', false

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/50.html (3 / 4) [2003/1/1 ､W､ﾈ 02:55:38]

Safari | Python Essential Reference, Second Edition -> Unicode Strings

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/50.html (4 / 4) [2003/1/1 ､W､ﾈ 02:55:38]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=50

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/51.html

Linux/Unix > Python Essential Reference, Second Edition > 4. Operators and
Expressions > Boolean Expressions and Truth Values

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238110137104030195072077016073191

Boolean Expressions and Truth Values

The and, or, and not keywords can form Boolean expressions. The behavior of these operators is
as follows:

Operator Description

x or y If x is false, return y ; otherwise, return x .

x and y If x is false, return x ; otherwise, return y .

not x If x is false, return 1 ; otherwise, return 0 .

When you use an expression to determine a true or false value, any nonzero number or nonempty
string, list, tuple, or dictionary is taken to be true. Zero, None, and empty lists, tuples, and
dictionaries evaluate as false. Boolean expressions are evaluated from left to right and consume the
right operand only if it’s needed to determine the final value. For example, a and b evaluates b
only if a is true.

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%20P...,%20Second%20Edition/python_essencial_ref/51.html [2003/1/1 ､W､ﾈ 02:55:39]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=51
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+8%3A56%3A53+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read9.asp?bookname=0735710910&snode=51&now=5%2F28%2F2002+8%3A56%3A53+PM
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=51

Safari | Python Essential Reference, Second Edition -> Object Equality and Identity

Linux/Unix > Python Essential Reference, Second Edition > 4. Operators and
Expressions > Object Equality and Identity

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238110137104031089151165159136080

Object Equality and Identity

The equality operator x == y tests the values of x and y for equality. In the case of lists and tuples,
all the elements are compared and evaluated as true if they’re of equal value. For dictionaries, a true
value is returned only if x and y have the same set of keys and all the objects with the same key
have equal values.

The identity operators x is y and x is not y test two objects to see whether they refer to the
same object in memory. In general, it may be the case that x == y , but x is not y .

Comparison between objects of non-compatible types such as a file and a floating-point number
may be allowed, but the outcome is arbitrary and may not make any sense. In addition, comparison
between incompatible types may result in an exception.

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%20P...,%20Second%20Edition/python_essencial_ref/52.html [2003/1/1 ､W､ﾈ 02:55:39]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=52
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+8%3A57%3A01+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read9.asp?bookname=0735710910&snode=52&now=5%2F28%2F2002+8%3A57%3A01+PM
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=52

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/53.html

Linux/Unix > Python Essential Reference, Second Edition > 4. Operators and
Expressions > Order of Evaluation

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238110137104031089150149081137077

Order of Evaluation

Table 4.2 lists the order of operation (precedence rules) for Python operators. All operators except
the power (**) operator are evaluated from left to right and are listed in the table from highest to
lowest precedence. That is, operators listed first in the table are evaluated before operators listed
later. (Note: Operators included together within subsections—such as x * y , x / y , and x % y ,
have equal precedence.)

Table 4.2. Order of Evaluation (Highest to Lowest)

Operator Name

(...), [...], {...} Tuple, list, and dictionary creation

`...` String conversion

s [i], s [i:j], s .attr Indexing and slicing attributes

f (...) Function calls

+x , -x , ~x Unary operators

x ** y Power (right associative)

x * y , x / y , x % y Multiplication, division, modulo

x + y , x - y Addition, subtraction

x << y , x >> y Bit shifting

x & y Bitwise and

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/53.html (1 / 2) [2003/1/1 ､W､ﾈ 02:55:39]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=53
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+8%3A57%3A12+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read9.asp?bookname=0735710910&snode=53&now=5%2F28%2F2002+8%3A57%3A12+PM
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/53#2.html

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/53.html

x ^ y Bitwise exclusive or

x | y Bitwise or

x < y , x <= y ,

x > y , x >= y ,

x == y , x != y

x <> y

x is y , x is not y

x in s , x not in s

Comparison, identity, and sequence membership tests

not x Logical negation

x and y Logical and

x or y Logical or

lambda args : expr Anonymous function

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/53.html (2 / 2) [2003/1/1 ､W､ﾈ 02:55:39]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=53

Safari | Python Essential Reference, Second Edition -> 5. Control Flow

Linux/Unix > Python Essential Reference, Second Edition > 5. Control Flow See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238110137104031089149152240044117

Chapter 5. Control Flow
This chapter describes statements related to the control flow of a program. Topics include
conditionals, loops, and exceptions.

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%20P...,%20Second%20Edition/python_essencial_ref/55.html [2003/1/1 ､W､ﾈ 02:55:40]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=55
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+8%3A57%3A27+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read1.asp?bookname=0735710910&snode=55&now=5%2F28%2F2002+8%3A57%3A27+PM
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=55

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/56.html

Linux/Unix > Python Essential Reference, Second Edition > 5. Control Flow >
Conditionals

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238110137104031089147127048229091

Conditionals

The if, else, and elif statements control conditional code execution. The general format of a
conditional statement is as follows:

if expression:
 statements
elif expression:
 statements
elif expression:

 statements
...
else:
 statements

If no action is to be taken, you can omit both the else and elif clauses of a conditional. Use the
pass statement if no statements exist for a particular clause:

if expression:
 pass # Do nothing
else:
 statements

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%20P...,%20Second%20Edition/python_essencial_ref/56.html [2003/1/1 ､W､ﾈ 02:55:40]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=56
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+8%3A57%3A40+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read3.asp?bookname=0735710910&snode=56&now=5%2F28%2F2002+8%3A57%3A40+PM
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=56

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/57.html

Linux/Unix > Python Essential Reference, Second Edition > 5. Control Flow > Loops See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238110137104031089146150053204098

Loops

You implement loops using the for and while statements. For example:

while expression:
 statements

for i in s:
 statements

The while statement executes statements until the associated expression evaluates to false. The
for statement iterates over all the elements in a sequence until no more elements are available. If
the elements of the sequence are tuples of identical size, you can use the following variation of the
for statement:

for x,y,z in s:
 statements

In this case, s must be a sequence of tuples, each with three elements. On each iteration, the
contents of the variables x , y , and z are assigned the contents of the corresponding tuple.

To break out of a loop, use the break statement. For example, the following function reads lines of
text from the user until an empty line of text is entered:

while 1:
 cmd = raw_input('Enter command > ')
 if not cmd:
 break # No input, stop loop
 # process the command
 ...

To jump to the next iteration of a loop (skipping the remainder of the loop body), use the
continue statement. This statement tends to be used less often, but is sometimes useful when the
process of reversing a test and indenting another level would make the program too deeply nested or
unnecessarily complicated.As an example, the following loop prints only the non-negative elements
of a list:

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/57.html (1 / 2) [2003/1/1 ､W､ﾈ 02:55:41]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=57
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+8%3A57%3A50+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read7.asp?bookname=0735710910&snode=57&now=5%2F28%2F2002+8%3A57%3A50+PM

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/57.html

for a in s:
 if a < 0:
 continue # Skip negative elements
 print a

The break and continue statements apply only to the innermost loop being executed. If it’s
necessary to break out of a deeply nested loop structure, you can use an exception. Python doesn’t
provide a goto statement.

You can also attach the else statement to loop constructs, as in the following example:

while-else
while i < 10:
 do something
 i = i + 1
else:
 print 'Done'

for-else
for a in s:
 if a == 'Foo':
 break
else:
 print 'Not found!'

The else clause of a loop executes only if the loop runs to completion. This either occurs
immediately (if the loop wouldn’t execute at all) or after the last iteration. On the other hand, if the
loop is terminated early using the break statement, the else clause is skipped.

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/57.html (2 / 2) [2003/1/1 ､W､ﾈ 02:55:41]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=57

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/58.html

Linux/Unix > Python Essential Reference, Second Edition > 5. Control Flow >
Exceptions

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238110137104031089146158228043172

Exceptions

Exceptions indicate errors and break out of the normal control flow of a program. An exception is
raised using the raise statement. The general format of the raise statement is raise
exception [, value] where exception is the exception type and value is an optional
value giving specific details about the exception. For example:

raise RuntimeError, 'Unrecoverable Error'

If the raise statement is used without any arguments, the last exception generated is raised again
(although this works only while handling a previously raised exception).

To catch an exception, use the try and except statements, as shown here:

try:
 f = open('foo')
except IOError, e:
 print "Unable to open 'foo': ", e

When an exception occurs, the interpreter stops executing statements in the try block and looks for
an except clause that matches the exception that has occurred. If found, control is passed to the
first statement in the except clause. Otherwise, the exception is propagated up to the block of code
in which the try statement appeared. This code may itself be enclosed in a try-except that can
handle the exception. If an exception works its way up to the top level of a program without being
caught, the interpreter aborts with an error message. If desired, uncaught exceptions can also be
passed to a user-defined function sys.excepthook() as described in Appendix A, “The Python
Library,” sys module.

The optional second argument to the except statement is the name of a variable in which the
argument supplied to the raise statement is placed if an exception occurs. Exception handlers can
examine this value to find out more about the cause of the exception.

Multiple exception-handling blocks are specified using multiple except clauses, such as in the
following example:

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/58.html (1 / 5) [2003/1/1 ､W､ﾈ 02:55:41]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=58
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+8%3A57%3A58+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read8.asp?bookname=0735710910&snode=58&now=5%2F28%2F2002+8%3A57%3A58+PM

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/58.html

try:
 do something
except IOError, e:
 # Handle I/O error
 ...
except TypeError, e:
 # Handle Type error
 ...
except NameError, e:
 # Handle Name error
 ...

A single handler can catch multiple exception types like this:

try:
 do something
except (IOError, TypeError, NameError), e:
 # Handle I/O, Type, or Name errors
 ...

To ignore an exception, use the pass statement as follows:

try:
 do something
except IOError:
 pass # Do nothing (oh well).

To catch all exceptions, omit the exception name and value:

try:
 do something
except:
 print 'An error occurred'

Table 5.1. Built-in Exceptions

Exception Description

Exception The root of all exceptions

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/58.html (2 / 5) [2003/1/1 ､W､ﾈ 02:55:41]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/58.html

SystemExit Generated by sys.exit()

StandardError Base for all built-in exceptions

ArithmeticError Base for arithmetic exceptions

FloatingPointError Failure of a floating-point operation

OverflowError Arithmetic overflow

ZeroDivisionError Division or modulus operation with 0

AssertionError Raised by the assert statement

AttributeError Raised when an attribute name is invalid

EnvironmentError Errors that occur externally to Python

IOError I/O or file-related error

OSError Operating system error

WindowsError Error in Windows

EOFError Raised when the end of the file is reached

ImportError Failure of the import statement

KeyboardInterrupt Generated by the interrupt key (usually Ctrl+C)

LookupError Indexing and key errors

IndexError Out-of-range sequence offset

KeyError Nonexistent dictionary key

MemoryError Out of memory

NameError Failure to find a local or global name

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/58.html (3 / 5) [2003/1/1 ､W､ﾈ 02:55:41]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/58.html

UnboundLocalError Unbound local variable

RuntimeError A generic catch-all error

NotImplementedError Unimplemented feature

SyntaxError Parsing error

TabError Inconsistent tab usage (generated with -tt option)

IndentationError Indentation error

SystemError Nonfatal system error in the interpreter

TypeError Passing an inappropriate type to an operation

ValueError Inappropriate or missing value

UnicodeError Unicode encoding error

The try statement also supports an else clause, which must follow the last except clause. This
code is executed if the code in the try block doesn’t raise an exception. Here’s an example:

try:
 f = open('foo', 'r')
except IOError:
 print 'Unable to open foo'
else:
 data = f.read()
 f.close()

The finally statement defines a cleanup action for code contained in a try block. For example:

f = open('foo','r')
try:
 # Do some stuff
 ...
finally:
 f.close()
 print "File closed regardless of what happened."

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/58.html (4 / 5) [2003/1/1 ､W､ﾈ 02:55:41]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/58.html

The finally clause isn’t used to catch errors. Rather, it’s used to provide code that must always
be executed, regardless of whether an error occurs. If no exception is raised, the code in the
finally clause is executed immediately after the code in the try block. If an exception occurs,
control is first passed to the first statement of the finally clause. After this code has executed, the
exception is re-raised to be caught by another exception handler. The finally and except
statements cannot appear together within a single try statement.

Python defines the built-in exceptions listed in Table 5.1. (For specific details about these
exceptions, see Appendix A.)

All the exceptions in a particular group can be caught by specifying the group name in an except
clause. For example,

try:
 statements
except LookupError: # Catch IndexError or KeyError
 statements

or

try:
 statements
except StandardError: # Catch any built-in exception
 statements

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/58.html (5 / 5) [2003/1/1 ､W､ﾈ 02:55:41]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/58#2.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=58

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/59.html

Linux/Unix > Python Essential Reference, Second Edition > 5. Control Flow > Defining
New Exceptions

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238110137104016132043219194028022

Defining New Exceptions

All the built-in exceptions are defined in terms of classes. To create a new exception, create a new
class definition that inherits from exceptions. Exception such as the following:

import exceptions
Exception class
class NetworkError(exceptions.Exception):
 def _ _init_ _(self,args=None):
 self.args = args

The name args should be used as shown. This allows the value used in the raise statement to be
properly printed in tracebacks and other diagnostics. In other words,

raise NetworkError, "Cannot find host."

creates an instance of NetworkError using the call

NetworkError("Cannot find host.")

The object that is created will print itself as NetworkError: Cannot find host. If you use
a name other than self.args or you don’t store the argument, this feature won’t work correctly.

When an exception is raised, the optional value supplied in the raise statement is used as the
argument to the exception’s class constructor. If the constructor for an exception requires more than
one argument, it can be raised in two ways:

import exceptions
Exception class
class NetworkError(exceptions.Exception):
 def _ _init_ _(self,errno,msg):
 self.args = (errno, msg)
 self.errno = errno
 self.errmsg = msg

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/59.html (1 / 2) [2003/1/1 ､W､ﾈ 02:55:42]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=59
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+8%3A58%3A06+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read7.asp?bookname=0735710910&snode=59&now=5%2F28%2F2002+8%3A58%3A06+PM

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/59.html

Raises an exception (multiple arguments)
def error2():
 raise NetworkError(1, 'Host not found')

Raises an exception (multiple arguments)
def error3():
 raise NetworkError, (1, 'Host not found')

Class-based exceptions enable you to create hierarchies of exceptions. For instance, the
NetworkError exception defined earlier could serve as a base class for a variety of more specific
errors. For example:

class HostnameError(NetworkError):
 pass

class TimeoutError(NetworkError):
 pass

def error3():
 raise HostnameError

def error4():
 raise TimeoutError

try:
 error3()
except NetworkError:
 import sys
 print sys.exc_type # Prints exception type

In this case, the exceptNetworkError statement catches any exception derived from
NetworkError. To find the specific type of error that was raised, examine the variable
sys.exc_type. Similarly, the sys.exc_value variable contains the value of the last
exception. Alternatively, the sys.exc_info() function can be used to retrieve exception
information in a manner that doesn’t rely on global variables and is thread-safe.

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/59.html (2 / 2) [2003/1/1 ､W､ﾈ 02:55:42]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=59

Safari | Python Essential Reference, Second Edition -> Assertions and _ _debug_ _

Linux/Unix > Python Essential Reference, Second Edition > 5. Control Flow >
Assertions and _ _debug_ _

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238110137104016132042164068215009

Assertions and _ _debug_ _

The assert statement is used to add debugging code into a program. The general form of assert
is

assert test [, data]

where test is an expression that should evaluate to true or false. If test evaluates to false,
assert raises an AssertionError exception with the optional data supplied to the assert
statement. For example:

def write_data(file,data):
 assert file, "write_data: file is None!"
 ...

Internally, the assert statement is translated into the following code:

if _ _debug_ _:
 if not (test):
 raise AssertionError, data

_ _debug_ _ is a built-in read-only value that’s set to 1 unless the interpreter is running in
optimized mode (specified with the -O option). Although _ _debug_ _ is used by assertions, you
also can use it to include any sort of debugging code.

The assert statement should not be used for code that must be executed to make the program
correct, since it won’t be executed if Python is run in optimized mode. In particular, it’s an error to
use assert to check user input. Instead, assert statements are used to check things that should
always be true; if one is violated, it represents a bug in the program, not an error by the user.

For example, if the function write_data() shown here were intended for use by an end user, the
assert statement should be replaced by a conventional if statement and the desired error
handling.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/60.html (1 / 2) [2003/1/1 ､W､ﾈ 02:55:42]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=60
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+8%3A58%3A16+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read5.asp?bookname=0735710910&snode=60&now=5%2F28%2F2002+8%3A58%3A16+PM

Safari | Python Essential Reference, Second Edition -> Assertions and _ _debug_ _

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/60.html (2 / 2) [2003/1/1 ､W､ﾈ 02:55:42]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=60

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/62.html

Linux/Unix > Python Essential Reference, Second Edition > 6. Functions and
Functional Programming

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238110137104016132041212158193218

Chapter 6. Functions and Functional
Programming
Most substantial programs are broken up into functions for better modularity and ease of
maintenance. Python makes it easy to define functions, but borrows a number of ideas from
functional programming languages that simplify certain tasks. This chapter describes functions,
anonymous functions, and functional programming features, as well as the eval() and
execfile() functions and the exec statement. It also describes list comprehensions, a powerful
list-construction technique.

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%20P...,%20Second%20Edition/python_essencial_ref/62.html [2003/1/1 ､W､ﾈ 02:55:42]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=62
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+8%3A58%3A24+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read7.asp?bookname=0735710910&snode=62&now=5%2F28%2F2002+8%3A58%3A24+PM
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=62

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/63.html

Linux/Unix > Python Essential Reference, Second Edition > 6. Functions and
Functional Programming > Functions

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238110137104016132040103212187138

Functions

Functions are defined with the def statement:

def add(x,y):
 return x+y

Invoke the function by writing the function name followed by a tuple of function arguments, such as
a = add(3,4). The order and number of arguments must match those given in the function
definition. If a mismatch exists, a TypeError exception is raised.

By assigning values, you can attach default arguments to function parameters:

def foo(x,y,z = 42):

When a function defines a parameter with a default value, that parameter and all the parameters that
follow are optional. If values are not assigned to all the optional parameters in the function
definition, a SyntaxError exception is raised.

Default parameter values are always set to the objects that were supplied as values when the
function was defined. For example:

a = 10
def foo(x = a):
 print x

a = 5 # Reassign 'a'.
foo() # Prints '10' ((default value not changed)

However, the use of mutable objects as default values can lead to unintended behavior:

a = [10]
def foo(x = a):
 print x

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/63.html (1 / 4) [2003/1/1 ､W､ﾈ 02:55:43]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=63
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+8%3A58%3A35+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read4.asp?bookname=0735710910&snode=63&now=5%2F28%2F2002+8%3A58%3A35+PM

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/63.html

a.append(20)
foo() # Prints '[10, 20]'

A function can accept a variable number of parameters if an asterisk (*) is added to the last
parameter name:

def fprintf(file, fmt, *args):
 file.write(fmt % args)

Use fprintf. args gets (42, "hello world", 3.45)
fprintf(out,"%d %s %f", 42, "hello world", 3.45)

In this case, all the remaining arguments are placed into the args variable as a tuple. To pass a
tuple args to another function as if they were parameters, the *args syntax can be used as
follows:

def printf(fmt, *args):
 # Call another function and pass along args
 fprintf(sys.stdout, fmt, *args)

You can also pass function arguments by explicitly naming each parameter and specifying a value:

def foo(w,x,y,z):
 print w,x,y,z

Keyword invocation
foo(x=3, y=22, w='hello', z=[1,2])

With keyword arguments, the order of the parameters doesn’t matter. However, unless you’re using
default values, you must explicitly name all the function parameters. If you omit any of the required
parameters or if the name of a keyword doesn’t match any of the parameter names in the function
definition, a TypeError exception is raised.

Positional arguments and keyword arguments can appear in the same function call, provided that all
the positional arguments appear first. For example:

foo('hello', 3, z=[1,2], y=22)

If the last argument of a function definition begins with **, all the additional keyword arguments
(those that don’t match any of the parameter names) are placed in a dictionary and passed to the
function. For example:

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/63.html (2 / 4) [2003/1/1 ､W､ﾈ 02:55:43]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/63.html

def spam(**parms):
 print "You supplied the following args:"
 for k in parms.keys():
 print "%s = %s" % (k, parms[k])

spam(x=3, a="hello", foobar=(2, 3))

You can combine extra keyword arguments with variable-length argument lists, as long as the **
parameter appears last:

Accept variable number of positional or keyword arguments
def spam(x, *args, **keywords):
 print x, args, keywords

Keyword arguments can also be passed to another function using the **keywords syntax:

def callfunc(func, *args, **kwargs):
 print args
 print kwargs
 func(*args, **kwargs)

Finally, starting in Python 2.1, functions and methods can have arbitrary attributes attached to them.
For example:

def foo():
 print "Hello world"

foo.secure = 1
foo.private = 1

Function attributes are stored in a dictionary that’s available as the _ _dict_ _ attribute of a
function or method.

The primary use of function attributes is in specialized applications such as parser generators or
network applications that would like to attach additional information to a function. Previously, the
docstring was the only place to store such information.

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/63.html (3 / 4) [2003/1/1 ､W､ﾈ 02:55:43]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=63

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/63.html

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/63.html (4 / 4) [2003/1/1 ､W､ﾈ 02:55:43]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/64.html

Linux/Unix > Python Essential Reference, Second Edition > 6. Functions and
Functional Programming > Parameter Passing and Return Values

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238110137104016132047023109078082

Parameter Passing and Return Values

When a function is invoked, its parameters are passed by reference. If a mutable object (such as a
list or dictionary) is passed to a function where it’s then modified, those changes will be reflected in
the caller. For example:

a = [1,2,3,4,5]
def foo(x):
 x[3] = -55 # Modify an element of x

foo(a) # Pass a
print a # Produces [1,2,3,-55,5]

The return statement returns a value from a function. If no value is specified or you omit the
return statement, the None object is returned. To return multiple values, place them in a tuple:

def factor(a):
 d = 2
 while (d <= (a/2)):
 if ((a/d)*d == a):
 return ((a/d),d)
 d = d + 1
 return (a,1)

Multiple return values returned in a tuple can be assigned to individual variables:

x,y = factor(1243) # Return values placed in x and y.
(x,y) = factor(1243) # Alternate version. Same behavior.

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%20P...,%20Second%20Edition/python_essencial_ref/64.html [2003/1/1 ､W､ﾈ 02:55:43]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=64
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+8%3A58%3A43+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read6.asp?bookname=0735710910&snode=64&now=5%2F28%2F2002+8%3A58%3A43+PM
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=64

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/65.html

Linux/Unix > Python Essential Reference, Second Edition > 6. Functions and
Functional Programming > Scoping Rules

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238110137104016132046068203195106

Scoping Rules

Each time a function executes, a new local namespace is created. This namespace contains the
names of the function parameters, as well as the names of variables that are assigned inside the
function body. When resolving names, the interpreter first searches the local namespace. (See the
comments on the next page regarding nested scopes.) If no match exists, it searches the global
namespace. The global namespace for a function is always the module in which the function was
defined. If the interpreter finds no match in the global namespace, it makes a final check in the built-
in namespace. If this fails, a NameError exception is raised.

One peculiarity of namespaces is the manipulation of global variables from within a function. For
example, consider the following code:

a = 42
def foo():
 a = 13
foo()
print a

When executed, the value 42 prints, despite the appearance that we might be modifying the variable
a inside the function foo. When variables are assigned in a function, they’re always bound to the
function’s local namespace; as a result, the variable a in the function body refers to an entirely new
object containing the value 13. To alter this behavior, use the global statement. global simply
marks a list of names as belonging to the global namespace, and is necessary only when global
variables will be modified. It can be placed anywhere in a function body and used repeatedly. For
example:

a = 42
def foo():
 global a # 'a' is in global namespace
 a = 13
foo()
print a

All versions of Python allow nested function definitions. However, prior to Python 2.1, nested
functions didn’t provide nested scopes. As a result, a program using a nested function might not

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/65.html (1 / 2) [2003/1/1 ､W､ﾈ 02:55:44]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=65
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+8%3A58%3A54+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read8.asp?bookname=0735710910&snode=65&now=5%2F28%2F2002+8%3A58%3A54+PM

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/65.html

work as you expect. For example in Python 2.0, the following program is legal, but doesn’t execute
properly:

def bar():
 x = 10
 def spam(): # Nested function definition
 print 'x is ', x # Looks for x in global scope of bar()
 while x > 0:
 spam() # Fails with a NameError on 'x'
 x -= 1

In this case, when the nested function spam() executes, its global namespace is the same as the
global namespace for bar(), the module in which the function is defined. As a result, spam() is
unable to resolve any symbols in the namespace of bar() and fails with a NameError.

Starting with Python 2.1, support for nested scopes is provided (so the above example will work).
With nested scopes, names are resolved by first checking the local scope and then all enclosing
scopes. If no match is found, the global and built-in namespaces are checked as before. Note that in
Python 2.1 nested scopes are an optional feature that must be enabled by including from _
future _ import nested_scopes in your program (see Chapter 10, “Execution
Environment”). In addition, if you care about compatibility with older versions of Python, avoid
using nested functions.

If a local variable is used before it’s assigned a value, an UnboundLocalError exception is
raised. For example:

def foo():
 print i # Results in UnboundLocalError exception
 i = 0

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/65.html (2 / 2) [2003/1/1 ､W､ﾈ 02:55:44]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=65

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/66.html

Linux/Unix > Python Essential Reference, Second Edition > 6. Functions and
Functional Programming > Recursion

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238110137104017178095199240087250

Recursion

Python places a limit on the depth of recursive function calls. The function
sys.getrecursionlimit() returns the current maximum recursion depth and the function
sys.setrecursionlimit() can be used to change the value. The default value is 1000.
When the recursion depth is exceeded, a RuntimeError exception is raised.

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%20P...,%20Second%20Edition/python_essencial_ref/66.html [2003/1/1 ､W､ﾈ 02:55:44]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=66
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+8%3A59%3A01+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read4.asp?bookname=0735710910&snode=66&now=5%2F28%2F2002+8%3A59%3A01+PM
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=66

Safari | Python Essential Reference, Second Edition -> The apply() Function

Linux/Unix > Python Essential Reference, Second Edition > 6. Functions and
Functional Programming > The apply() Function

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238110137104017178095193183090056

The apply() Function

The apply(func [, args [, kwargs]]) function is used to invoke a function indirectly
where the arguments have been constructed in the form of a tuple or dictionary. args is a tuple
containing the positional argument to be supplied to the function. If omitted, no arguments are
passed. kwargs is a dictionary containing keyword arguments. The following statements produce
identical results:

foo(3,"x", name='Dave', id=12345)
apply(foo, (3,"x"), { 'name': 'Dave', 'id': 12345 })

In older versions of Python, apply() was the only mechanism for calling a function in which the
arguments were contained in a tuple or dictionary. This capability is now handled by the following
syntax:

a = (3,"x")
b = { 'name' : 'Dave', 'id': 12345 }
foo(*a,**b) # Same as code above

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%20P...,%20Second%20Edition/python_essencial_ref/67.html [2003/1/1 ､W､ﾈ 02:55:44]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=67
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+8%3A59%3A07+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read2.asp?bookname=0735710910&snode=67&now=5%2F28%2F2002+8%3A59%3A07+PM
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=67

Safari | Python Essential Reference, Second Edition -> The lambda Operator

Linux/Unix > Python Essential Reference, Second Edition > 6. Functions and
Functional Programming > The lambda Operator

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238110137104017178094161143100029

The lambda Operator

To create an anonymous function in the form of an expression, use the lambda statement:

lambda args: expression

args is a comma-separated list of arguments and expression is an expression involving those
arguments. For example:

a = lambda x,y : x+y
print a(2,3) # produces 5

The code defined with lambda must be a valid expression. Multiple statements and other
nonexpression statements such as print, for, and while cannot appear in a lambda statement.
lambda expressions follow the same scoping rules as functions.

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%20P...,%20Second%20Edition/python_essencial_ref/68.html [2003/1/1 ､W､ﾈ 02:55:44]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=68
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+8%3A59%3A19+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read8.asp?bookname=0735710910&snode=68&now=5%2F28%2F2002+8%3A59%3A19+PM
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=68

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/69.html

Linux/Unix > Python Essential Reference, Second Edition > 6. Functions and
Functional Programming > map() , zip() , reduce() , and filter()

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238110137104017178093174198134036

map(), zip(), reduce(), and filter()

The t = map(func , s) function applies the function func to each of the elements in s and
returns a new list t . Each element of t is t [i] = func(s [i]). The function given to
map() should require only one argument. For example:

a = [1, 2, 3, 4, 5, 6]
def foo(x):
 return 3*x

b = map(foo,a) # b = [3, 6, 9, 12, 15, 18]

Alternatively, this could be calculated using an anonymous function as follows:

b = map(lambda x: 3*x, a) # b = [3, 6, 9, 12, 15, 18]

The map() function can also be applied to multiple lists such as t = map(func , s1 , s2 ,
..., sn). In this case, each element of t is t [i] = func s1 [i], s2 [i], ..., sn
[i]), and the function given to map() must accept the same number of arguments as the number
of lists given. The result has the same number of elements as the longest list in s1 , s2 , ...
sn . During the calculation, short lists are extended with values of None to match the length of the
longest list, if necessary.

If the function is set to None, the identity function is assumed. If multiple lists are passed to
map(None, s1 , s2 , ... sn), the function returns a list of tuples in which each tuple
contains an element from each list. For example:

a = [1,2,3,4]
b = [100,101,102,103]
c = map(None, a, b) # c = [(1,100), (2,101), (3,102), (4,103)]

As an alternative to map(), a list of tuples can also be created using the zip(s1 , s2 , ...,
sn) function. zip() takes a collection of sequences and returns a new list t in which each
element of t is t [i] = (s1 [i], s2 [i], ..., sn [i]). Unlike map(), zip()

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/69.html (1 / 2) [2003/1/1 ､W､ﾈ 02:55:45]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=69
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+8%3A59%3A25+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read7.asp?bookname=0735710910&snode=69&now=5%2F28%2F2002+8%3A59%3A25+PM

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/69.html

truncates the length of t to the shortest sequence in s1 , s2 , ... sn . For example:

d = [1,2,3,4,5,6,7]
e = [10,11,12]
f = zip(d,e) # f = [(1,10), (2,11), (3,12)]

The reduce(func , s) function collects information from a sequence and returns a single
value (for example, a sum, maximum value, and so on). reduce() works by applying the function
func to the first two elements of s . This value is then combined with the third element to yield a
new value. This result is then combined with the fourth element, and so forth until the end of the
sequence. The function func must accept two arguments and return a single value. For example:

def sum(x,y):
 return x+y

b = reduce(sum, a) # b = (((1+2)+3)+4) = 10

The filter(func ,s) function filters the elements of s using a filter function func () that
returns true or false.A new sequence is returned consisting of all elements x of s for which func
(x) is true. For example:

c = filter(lambda x: x < 4, a) # c = [1, 2, 3]

If func is set to None, the identity function is assumed and filter() returns all elements of s
that evaluate to true.

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/69.html (2 / 2) [2003/1/1 ､W､ﾈ 02:55:45]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=69

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/70.html

Linux/Unix > Python Essential Reference, Second Edition > 6. Functions and
Functional Programming > List Comprehensions

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238110137104017178092175082019016

List Comprehensions

Many operations involving map() and filter() can be replaced with a list construction operator
known as a list comprehension. The syntax for a list comprehension is as follows:

[expression for item1 in sequence1
 for item2 in sequence2
 ...
 for itemN in sequenceN
 if condition]

This syntax is roughly equivalent to the following code:

s = []
for item1 in sequence1:
 for item2 in sequence2:
 ...
 for itemN in sequenceN:
 if condition: s.append(expression)

To illustrate, consider the example in Listing 6.1:

Listing 6.1 List Comprehensions

a = [-3,5,2,-10,7,8]
b = 'abc'

c = [2*s for s in a] # c = [-6,10,4,-20,14,16]
d = [s for s in a if s >= 0] # d = [5,2,7,8]
e = [(x,y) for x in a # e = [(5,'a'),(5,'b'),(5,'c'),
 for y in b # (2,'a'),(2,'b'),(2,'c'),
 if x > 0] # (7,'a'),(7,'b'),(7,'c'),
 # (8,'a'),(8,'b'),(8,'c')]

f = [(1,2), (3,4), (5,6)]
g = [math.sqrt(x*x+y*y) # f = [2.23606, 5.0, 7.81024]
 for x,y in f]

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/70.html (1 / 2) [2003/1/1 ､W､ﾈ 02:55:45]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=70
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+8%3A59%3A36+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read7.asp?bookname=0735710910&snode=70&now=5%2F28%2F2002+8%3A59%3A36+PM
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/70#2.html

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/70.html

h = reduce(lambda x,y: x+y, # Sum of squares
 [math.sqrt(x*x+y*y)
 for x,y in f])

The sequences supplied to a list comprehension don’t have to be the same length because they’re
iterated over their contents using a nested set of for loops, as previously shown. The resulting list
contains successive values of expressions. The if clause is optional; however, if it’s used,
expression is evaluated and appended to the result only if condition is true.

If a list comprehension is used to construct a list of tuples, the tuple values must be enclosed in
parentheses. For example, [(x,y) for x in a for y in b] is legal syntax, whereas
[x,y for x in a for y in b] is not.

Finally, it is important to note that the variables defined within a list comprehension are evaluated
within the current scope and remain defined after the list comprehension has executed. For example,
in [x for x in a], the iteration variable x overwrites any previously defined value of x and is
set to the value of the last item in a after the list is created.

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/70.html (2 / 2) [2003/1/1 ､W､ﾈ 02:55:45]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=70

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/71.html

Linux/Unix > Python Essential Reference, Second Edition > 6. Functions and Functional
Programming > eval() , exec , execfile() , and compile()

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238110137104017178091035069051057

eval(), exec, execfile(), and compile()

The eval(str [,globals [,locals]]) function executes an expression string and returns the
result. For example:

a = eval('3*math.sin(3.5+x) + 7.2')

Similarly, the exec statement executes a string containing arbitrary Python code. The code supplied to
exec is executed within the namespace of the caller as if the code actually appeared in place of the exec
statement. For example:

a = [3, 5, 10, 13]
exec "for i in a: print i"

Finally, the execfile(filename [,globals [,locals]]) function executes the contents of a file.
For example:

execfile("foo.py")

All these functions execute within the namespace of the caller (which is used to resolve any symbols that
appear within a string or file). Optionally, eval(), exec, and execfile() can accept one or two
dictionaries that serve as the global and local namespaces for the code to be executed, respectively. For
example:

globals = {'x': 7,
 'y': 10,
 'birds': ['Parrot', 'Swallow', 'Albatross']
 }

locals = { }

Execute using the above dictionaries as the global and local namespace
a = eval("3*x + 4*y", globals, locals)
exec "for b in birds: print b" in globals, locals # Note unusual syntax
execfile("foo.py", globals, locals)

If you omit one or both namespaces, the current values of the global and local namespaces are used. Also,
due to issues related to nested scopes, the use of exec or execfile() inside a function body may result

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/71.html (1 / 2) [2003/1/1 ､W､ﾈ 02:55:46]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=71
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+8%3A59%3A47+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read3.asp?bookname=0735710910&snode=71&now=5%2F28%2F2002+8%3A59%3A47+PM

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/71.html

in a SyntaxError exception if that function also contains nested function definitions or uses the lambda
operator.

Note that the syntax of the exec statement in the example is different from that of eval() and
execfile(). exec is a statement (much like print or while), whereas eval() and execfile()
are built-in functions.

When a string is passed to exec, eval(), or execfile(), the parser first compiles it into bytecode.
Because this process is expensive, it may be better to precompile the code and reuse the bytecode on
subsequent calls if the code will be executed multiple times.

The compile(str ,filename ,kind) function compiles a string into bytecode in which str is a
string containing the code to be compiled and filename is the file in which the string is defined (for use in
traceback generation). The kind argument specifies the type of code being compiled— 'single' for a
single statement, 'exec' for a set of statements, or 'eval' for an expression. The code object returned by
the compile() function can also be passed to the eval() function and exec statement. For example:

str = "for i in range(0,10): print i"
c = compile(str,"','exec') # Compile into a code object
exec c # Execute it

str2 = "3*x + 4*y"
c2 = compile(str2, '', 'eval') # Compile into an expression
result = eval(c2) # Execute it

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/71.html (2 / 2) [2003/1/1 ､W､ﾈ 02:55:46]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=71

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/73.html

Linux/Unix > Python Essential Reference, Second Edition > 7. Classes and Object-
Oriented Programming

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238110137104017178090250006073101

Chapter 7. Classes and Object-Oriented
Programming
Classes are the primary mechanism used to create data structures and new kinds of objects. This
chapter covers the details of classes, but is not intended to be an introduction to object-oriented
programming and design. It’s assumed that the reader has prior experience with data structures and
object-oriented programming in other languages such as C or Java. (Chapter 3, “Types and Objects,”
contains additional information about the terminology and internal implementation of objects.)

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%20P...,%20Second%20Edition/python_essencial_ref/73.html [2003/1/1 ､W､ﾈ 02:55:46]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=73
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+8%3A59%3A57+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read9.asp?bookname=0735710910&snode=73&now=5%2F28%2F2002+8%3A59%3A57+PM
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=73

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/74.html

Linux/Unix > Python Essential Reference, Second Edition > 7. Classes and Object-Oriented
Programming > The class statement

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238111161105086039024252108091154

The class statement

A class defines a set of attributes that are associated with a collection of objects known as instances. These
attributes typically include variables that are known as class variables and functions that are known as
methods.

Classes are defined using the class statement. The body of a class contains a series of statements that are
executed when the class is first defined (see Listing 7.1).

Listing 7.1 Classes

class Account:
 "A simple class"
 account_type = "Basic"
 def _ _init_ _(self,name,balance):
 "Initialize a new Account instance"
 self.name = name
 self.balance = balance
 def deposit(self,amt):
 "Add to the balance"
 self.balance = self.balance + amt
 def withdraw(self,amt):
 "Subtract from the balance"
 self.balance = self.balance - amt
 def inquiry(self):
 "Return the current balance"
 return self.balance

The objects created during the execution of the class body are placed into a class object that serves as a
namespace. For example, the members of the Account class are accessible as follows:

Account.account_type
Account._ _init_ _
Account.deposit
Account. withdrawAccount.
inquiry

It’s important to note that a class statement doesn’t create any instances of a class (for example, no
accounts are actually created in the preceding example). Rather, a class only defines the set of attributes
that are shared by all of the instances that will be created.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/74.html (1 / 2) [2003/1/1 ､W､ﾈ 02:55:46]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=74
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+9%3A00%3A09+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read7.asp?bookname=0735710910&snode=74&now=5%2F28%2F2002+9%3A00%3A09+PM
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/74#2.html

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/74.html

The functions defined within a class (methods) always operate on a class instance that’s passed as the first
argument. By convention, this argument is called self, although any legal identifier name can be used.
Class variables such as account_type are shared among all instances of a class (that is, they’re not
individually assigned to each instance). Although a class defines a namespace, this namespace is not a
scope for code appearing inside the class body. Thus, references to other attributes of a class must use a
fully qualified name, as shown in the following example:

class Foo:
 def bar(self):
 print "bar!"
 def spam(self):
 bar(self) # Incorrect! 'bar' generates a NameError
 Foo.bar(self) # This works

Finally, you cannot define class methods that don’t operate on instances:

class Foo:
 def add(x,y):
 return x+y

a = Foo.add(3,4) # TypeError. Need class instance as first argument

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/74.html (2 / 2) [2003/1/1 ､W､ﾈ 02:55:46]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=74

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/75.html

Linux/Unix > Python Essential Reference, Second Edition > 7. Classes and Object-Oriented Programming >
Class Instances

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238111161105086039026000243077235

Class Instances

Instances of a class are created by calling a class object as a function. This creates a new instance and calls the _
init _() method of the class (if defined). For example:

Create a few accounts
a = Account("Guido", 1000.00) # Invokes Account._ _init_ _(a,"Guido",1000.00)
b = Account("Bill", 100000000000L)

Once created, the attributes and methods of the newly created instances are accessible using the dot (.) operator as
follows:

a.deposit(100.00) # Call Account.deposit(a,100.00)
b.withdraw(sys.maxint) # Call Account.withdraw(b,sys.maxint)
name = a.name # Get account name
print a.account_type # Print account type

Internally, each instance is implemented using a dictionary that’s accessible as the instance’s _ _dict_ _ attribute
(described in detail in Chapter 3).This dictionary contains the information that’s unique to each instance. For example:

>>> print a._ _dict_ _
{'balance': 1100.0, 'name': 'Guido'}
>>> print b._ _dict_ _
{'balance': 97852516353L, 'name': 'Bill'}

Whenever the attributes of an instance are modified, these changes are made to the instance’s local dictionary. Within
methods defined in the class, attributes are changed through assignment to the self variable as shown in the _
init _(), deposit(), and withdraw() methods of Account. However, new attributes can be added to an
instance at any time, like this:

a.number = 123456 # Add attribute 'number' to a._ _dict_ _

Although the assignment of attributes is always performed on the local dictionary of an instance, attribute access is
somewhat more complicated. Whenever an attribute is accessed, the interpreter first searches the dictionary of the
instance. If no match is found, the interpreter searches the dictionary of the class object used to create the instance. If this
fails, a search of base classes is performed. (See the later section “Inheritance” for details on base classes.) If this fails, a
final attempt to find the attribute is made by attempting to invoke the _ _getattr_ _() method of the class (if
defined). If this fails, an AttributeError exception is raised.

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/75.html (1 / 2) [2003/1/1 ､W､ﾈ 02:55:47]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=75
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+9%3A00%3A22+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read3.asp?bookname=0735710910&snode=75&now=5%2F28%2F2002+9%3A00%3A22+PM
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=75

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/75.html

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/75.html (2 / 2) [2003/1/1 ､W､ﾈ 02:55:47]

Safari | Python Essential Reference, Second Edition -> Reference Counting and Instance Destruction

Linux/Unix > Python Essential Reference, Second Edition > 7. Classes and Object-
Oriented Programming > Reference Counting and Instance Destruction

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238111161105086039027214181029120

Reference Counting and Instance Destruction

All instances have a reference count. If the reference count reaches zero, the instance is destroyed.
When the instance is about to be destroyed, the interpreter looks for a _ _del_ _() method
associated with the object and calls it. In practice, it’s rarely necessary for a class to define a _
del _() method. The only exception is when the destruction of an object requires a cleanup
action such as closing a file, shutting down a network connection, or releasing other system
resources. Even in these cases, it’s dangerous to rely on _ _del_ _() for a clean shutdown, as
there’s no guarantee that this method will be called when the interpreter exits. A better approach
may be to define a method such as close() that a program can use to explicitly perform a
shutdown. Finally, note that instances for which _ _del_ _() is defined cannot be collected by
Python’s cyclic garbage collector (which is a strong reason not to define _ _del_ _ unless you
need it). See Appendix A, “The Python Library,” gc gc module for details.

Occasionally, a program will use the del statement to delete a reference to an object. If this causes
the reference count of the object to reach zero, the _ _del_ _() method is called. However, in
general, the del statement doesn’t directly call _ _del_ _().

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%20P...,%20Second%20Edition/python_essencial_ref/76.html [2003/1/1 ､W､ﾈ 02:55:47]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=76
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+9%3A00%3A34+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read2.asp?bookname=0735710910&snode=76&now=5%2F28%2F2002+9%3A00%3A34+PM
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/108#16.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=76

Safari | Python Essential Reference, Second Edition -> Inheritance

Linux/Unix > Python Essential Reference, Second Edition > 7. Classes and Object-
Oriented Programming > Inheritance

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238111161105086039028125016133222

Inheritance

Inheritance is a mechanism for creating a new class that specializes or modifies the behavior of an
existing class. The original class is called a base class or a superclass. The new class is called a
derived class or a subclass. When a class is created via inheritance, it “inherits” the attributes
defined by its base classes. However, a derived class may redefine any of these attributes and add
new attributes of its own.

Inheritance is specified with a comma-separated list of base-class names in the class statement.
For example:

class A:
 varA = 42
 def method1(self):
 print "Class A : method1"

class B:
 varB = 37
 def method1(self):
 print "Class B : method1"
 def method2(self):
 print "Class B : method2"
class C(A,B): # Inherits from A and B
 varC = 3.3
 def method3(self):
 print "Class C : method3"

class D: pass
class E(C,D): pass

When searching for an attribute defined in a base class, the base classes are searched using a depth-
first search algorithm in the same order as specified in the class definition. For example, in class E
in the preceding example, base classes are searched in the order C,A, B, D. In the event that multiple
base classes define the same symbol, the first symbol encountered in the search process is used. For
example:

c = C() # Create a 'C'

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/77.html (1 / 2) [2003/1/1 ､W､ﾈ 02:55:47]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=77
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+9%3A00%3A48+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read5.asp?bookname=0735710910&snode=77&now=5%2F28%2F2002+9%3A00%3A48+PM

Safari | Python Essential Reference, Second Edition -> Inheritance

c.method3() # Invoke C.method3(c)
c.method1() # Invoke A.method1(c)
c.varB # Access B.varB

If a derived class defines an attribute with the same name as an attribute in a base class, instances of
the derived class use the attributes in the derived class. If it’s ever necessary to access the original
attribute, a fully qualified name can be used as follows:

class D(A):
 def method1(self):
 print "Class D : method1"
 A.method1(self) # Invoke base class method

One notable use of this is in the initialization of class instances. When an instance is created, the _
init _() methods of base classes are not invoked. Thus, it’s up to a derived class to perform
the proper initialization of its base classes, if necessary. For example:

class D(A):
 def _ _init_ _(self, args1):
 # Initialize the base class
 A._ _init_ _(self)
 # Initialize myself
 ...

Similar steps may also be necessary when defining cleanup actions in the _ _del_ _() method.

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/77.html (2 / 2) [2003/1/1 ､W､ﾈ 02:55:47]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=77

Safari | Python Essential Reference, Second Edition -> Polymorphism

Linux/Unix > Python Essential Reference, Second Edition > 7. Classes and Object-
Oriented Programming > Polymorphism

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238111161105086039029049015236074

Polymorphism

Polymorphism, or dynamic binding, is handled entirely through the attribute lookup process
described for inheritance in the preceding section.Whenever a method is accessed as obj .method
(), method is located by searching the _ _dict_ _ attribute of the instance, the instance’s class
definition, and base classes, in that order. The first match found is used as the method.

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%20P...,%20Second%20Edition/python_essencial_ref/78.html [2003/1/1 ､W､ﾈ 02:55:48]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=78
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+9%3A00%3A58+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read7.asp?bookname=0735710910&snode=78&now=5%2F28%2F2002+9%3A00%3A58+PM
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=78

Safari | Python Essential Reference, Second Edition -> Information Hiding

Linux/Unix > Python Essential Reference, Second Edition > 7. Classes and Object-
Oriented Programming > Information Hiding

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238111161105087128015175094165224

Information Hiding

By default, all attributes are “public.” This means that all attributes of a class instance are accessible
without any restrictions. It also implies that everything defined in a base class is inherited and
accessible within a derived class. This behavior is often undesirable in object-oriented applications
because it exposes the internal implementation of an object and it can lead to namespace conflicts
between objects defined in a derived class and those defined in a base class.

To fix this problem, all names in a class that start with a double underscore, such as _ _Foo, are
mangled to form a new name of the form _Classname _ _Foo. This effectively provides a way
for a class to have private attributes, since private names used in a derived class won’t collide with
the same private names used in a base class. For example:

class A:
 def _ _init_ _(self):
 self._ _X = 3 # Mangled to self._A_ _X

class B(A):
 def _ _init_ _(self):
 A._ _init_ _(self)
 self._ _X = 37 # Mangled to self._B_ _X

Although this scheme provides the illusion of data hiding, there’s no strict mechanism in place to
prevent access to the “private” attributes of a class. In particular, if the name of the class and
corresponding private attribute are known, they can be accessed using the mangled name.

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%20P...,%20Second%20Edition/python_essencial_ref/79.html [2003/1/1 ､W､ﾈ 02:55:48]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=79
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+9%3A01%3A05+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read9.asp?bookname=0735710910&snode=79&now=5%2F28%2F2002+9%3A01%3A05+PM
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=79

Safari | Python Essential Reference, Second Edition -> Operator Overloading

Linux/Unix > Python Essential Reference, Second Edition > 7. Classes and Object-Oriented
Programming > Operator Overloading

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238111161105087128014158189098045

Operator Overloading

User-defined objects can be made to work with all of Python’s built-in operators by adding
implementations of the special methods described in Chapter 3 to a class. For example, the class in
Listing 7.2 implements the complex numbers with some of the standard mathematical operators and type
coercion to allow complex numbers to be mixed with integers and floats.

Listing 7.2 Mathematical Operators and Type Coercion

class Complex:
 def _ _init_ _(self,real,imag=0):
 self.real = float(real)
 self.imag = float(imag)
 def _ _repr_ _(self):
 return "Complex(%s,%s)" % (self.real, self.imag)
 def _ _str_ _(self):
 return "(%g+%gj)" % (self.real, self.imag)
 # self + other
 def _ _add_ _(self,other):
 return Complex(self.real + other.real, self.imag + other.imag)
 # self - other
 def _ _sub_ _(self,other):
 return Complex(self.real - other.real, self.imag - other.imag)
 # -self
 def _ _neg_ _(self):
 return Complex(-self.real, -self.imag)
 # other + self
 def _ _radd_ _(self,other):
 return Complex._ _add_ _(other,self)
 # other - self
 def _ _rsub_ _(self,other):
 return Complex._ _sub_ _(other,self)
 # Coerce other numerical types to complex
 def _ _coerce_ _(self,other):
 if isinstance(other,Complex):
 return self,other
 try: # See if it can be converted to float
 return self, Complex(float(other))
 except ValueError:
 pass

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/80.html (1 / 2) [2003/1/1 ､W､ﾈ 02:55:48]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=80
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+9%3A01%3A16+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read1.asp?bookname=0735710910&snode=80&now=5%2F28%2F2002+9%3A01%3A16+PM
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/80#2.html

Safari | Python Essential Reference, Second Edition -> Operator Overloading

In this example, there are a few items of interest:

● First, the normal behavior of _ _repr_ _() is to create a string that can be evaluated to re-
create the object. In this case, a string of the form "Complex(r,i)" is created. On the other
hand, the _ _str_ _() method creates a string that’s intended for nice output formatting (this
is the string that would be produced by the print statement).

● Second, to handle operators in which complex numbers appear on both the left and right side of
operators, both the _ _op_ _() and _ _rop_ _() methods for each operation must be
provided.

● Finally, the _ _coerce_ _ method is used to handle operations involving mixed types. In this
case, other numeric types are converted to complex numbers so that they can be used in the
complex arithmetic methods.

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/80.html (2 / 2) [2003/1/1 ､W､ﾈ 02:55:48]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=80

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/81.html

Linux/Unix > Python Essential Reference, Second Edition > 7. Classes and Object-
Oriented Programming > Classes, Types, and Membership Tests

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238111161105087128013202153097093

Classes, Types, and Membership Tests

Currently, there’s a separation between types and classes. In particular, built-in types such as lists
and dictionaries cannot be specialized via inheritance, nor does a class define a new type. In fact, all
class definitions have a type of ClassType, while all class instances have a type of
InstanceType. Thus, the following expression is true for any two objects that are instances of a
class (even if they were created by different classes):

type(a) == type(b)

To test for membership in a class, use the built-in function isinstance(obj ,cname). This
function returns true if an object obj belongs to the class cname or any class derived from cname
. For example:

class A: pass
class B(A): pass
class C: pass

a = A() # Instance of 'A'
b = B() # Instance of 'B'
c = C() # Instance of 'C'

isinstance(a,A) # Returns 1
isinstance(b,A) # Returns 1, B derives from A
isinstance(b,C) # Returns 0, C not derived from A

Similarly, the built-in function issubclass(A ,B) returns true if the class A is a subclass of
class B . For example:

issubclass(B,A) # Returns 1
issubclass(C,A) # Returns 0

The isinstance() function can be used to perform type-checking against any of the built-in
types:

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/81.html (1 / 2) [2003/1/1 ､W､ﾈ 02:55:49]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=81
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+9%3A01%3A25+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read1.asp?bookname=0735710910&snode=81&now=5%2F28%2F2002+9%3A01%3A25+PM

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/81.html

import types
isinstance(3, types.IntType) # Returns 1
isinstance(3, types.FloatType) # Returns 0

This is the recommended way to perform type-checking with the built-in types, as the distinction
between types and classes may disappear in a future release.

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/81.html (2 / 2) [2003/1/1 ､W､ﾈ 02:55:49]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=81

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/83.html

Linux/Unix > Python Essential Reference, Second Edition > 8. Modules and Packages See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238111161105087128012088069210091

Chapter 8. Modules and Packages
Large Python programs are often organized as a package of modules. In addition, a large number of
modules are included in the Python library. This chapter describes the module and package system
in more detail.

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%20P...,%20Second%20Edition/python_essencial_ref/83.html [2003/1/1 ､W､ﾈ 02:55:49]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=83
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+9%3A01%3A32+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read3.asp?bookname=0735710910&snode=83&now=5%2F28%2F2002+9%3A01%3A32+PM
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=83

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/84.html

Linux/Unix > Python Essential Reference, Second Edition > 8. Modules and Packages >
Modules

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238111161105087128011106194131013

Modules

You can turn any valid source file into a module by loading it with the import statement. For
example, consider the following code:

file : spam.py
a = 37 # A variable
def foo: # A function
 print "I'm foo"
class bar: # A class
 def grok(self):
 print "I'm bar.grok"
b = bar() # Create an instance

To load this code as a module, you use the statement import spam. The first time import is used
to load a module, it does three things:

1. It creates a new namespace that serves as a namespace to all the objects defined in the
corresponding source file. This is the namespace accessed when functions and methods defined
within the module use the global statement.

2. It executes the code contained in the module within the newly created namespace.

3. It creates a name within the caller that refers to the module namespace. This name matches the
name of the module and is used as follows:

import spam # Loads and executes the module 'spam'
print spam.a # Accesses a member of module 'spam'
spam.foo()
c = spam.bar()
...

To import multiple modules, supply import with a comma-separated list of module names, like this:

import socket, os, regex

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/84.html (1 / 3) [2003/1/1 ､W､ﾈ 02:55:49]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=84
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+9%3A01%3A43+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read9.asp?bookname=0735710910&snode=84&now=5%2F28%2F2002+9%3A01%3A43+PM

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/84.html

Modules can be imported using alternative names by using the as qualifier. For example:

import os as system
import socket as net, thread as threads
system.chdir("..")
net.gethostname()

Use the from statement to load specific definitions within a module into the current namespace. The
from statement is identical to import except that instead of creating a name referring to the newly
created module namespace, references to one or more of the objects defined in the module are placed
into the current namespace:

from socket import gethostname
 # Put gethostname in current namespace

print gethostname() # Use without module name
socket.gethostname() # NameError: socket

The from statement also accepts a comma-separated list of object names. The asterisk (*) wildcard
character can also be used to load all the definitions in a module except those that start with an
underscore. For example:

from socket import gethostname, socket
from socket import * # Load all definitions into current namespace

Modules can more precisely control the set of names that are imported by from module import *
by defining a list _ _all_ _. For example:

module: foo.py
_ _all_ _ = ['bar', 'spam'] # Names to be imported by *

In addition, the as qualifier can be used to rename specific objects imported with from. For example:

from socket import gethostname as hostname
h = hostname()

The import statement can appear at any point in a program. However, the code in each module is
loaded and executed only once, regardless of how often you use the import statement. Subsequent
import statements simply create a reference to the module namespace created on a previous import.
You can find a dictionary containing all currently loaded modules in the variable sys.modules,

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/84.html (2 / 3) [2003/1/1 ､W､ﾈ 02:55:49]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/84.html

which is a dictionary that maps module names to module objects. The contents of this dictionary are
used to determine whether import loads a fresh copy of a module.

The from module import * statement can only be used at the top level of a module. In particular,
it’s illegal to use this form of import inside function bodies, due to the way in which it interacts with
function scoping rules.

Each module defines a variable _ _name_ _ that contains the module name. Programs can examine
this variable to determine the module in which they’re executing. The top-level module of the
interpreter is named _ _main_ _. Programs specified on the command line or entered interactively
run inside the _ _main_ _ module. Sometimes, a program may alter its behavior, depending on
whether it has been imported as a module or is running in _ _main_ _. This can be done as follows:

Check if running as a program
if _ _name_ _ == '_ _main_ _':
 # Yes
 statements
else:
 # No, I must have been imported as a module
 statements

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/84.html (3 / 3) [2003/1/1 ､W､ﾈ 02:55:49]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=84

Safari | Python Essential Reference, Second Edition -> The Module Search Path

Linux/Unix > Python Essential Reference, Second Edition > 8. Modules and Packages >
The Module Search Path

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238111161105087128010061196073087

The Module Search Path

When loading modules, the interpreter searches the list of directories in sys.path. The following
is a typical value of sys.path:

['', '/usr/local/lib/python2.0',
 '/usr/local/lib/python2.0/plat-sunos5',
 '/usr/local/lib/python2.0/lib-tk',
 '/usr/local/lib/python2.0/lib-dynload',
 '/usr/local/lib/python2.0/site-packages']

The empty string '' refers to the current directory.

To add new directories to the search path, simply append them to this list.

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%20P...,%20Second%20Edition/python_essencial_ref/85.html [2003/1/1 ､W､ﾈ 02:55:50]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=85
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+9%3A01%3A54+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read2.asp?bookname=0735710910&snode=85&now=5%2F28%2F2002+9%3A01%3A54+PM
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=85

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/86.html

Linux/Unix > Python Essential Reference, Second Edition > 8. Modules and Packages >
Module Loading and Compilation

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238111161105084124003001139038249

Module Loading and Compilation

So far, this chapter has presented modules as files containing Python code. However, modules
loaded with import really fall into four general categories:

● Programs written in Python (.py files)

● C or C++ extensions that have been compiled into shared libraries or DLLs

● Packages containing a collection of modules

● Built-in modules written in C and linked into the Python interpreter

When looking for a module foo, the interpreter searches each of the directories in sys.path for
the following files (listed in search order):

1. A directory foo defining a package

2. foo.so, foomodule.so, foomodule.sl, or foomodule.dll (compiled extensions)

3. foo.pyo (only if the -O or -OO option has been used)

4. foo.pyc

5. foo.py

Packages are described shortly; compiled extensions are described in Appendix B, “Extending and
Embedding Python.” For .py files, when a module is first imported, it’s compiled into bytecode
and written back to disk as a .pyc file. On subsequent imports, the interpreter loads this
precompiled bytecode unless the modification date of the .py file is more recent (in which case, the
.pyc file is regenerated). Files ending in .pyo are used in conjunction with the interpreter’s -O
option. These files contain bytecode stripped of line numbers, assertions, and other debugging
information. As a result, they’re somewhat smaller and allow the interpreter to run slightly faster. If
the -OO option is specified instead of -O, documentation strings are also stripped from the file. This
removal of documentation strings occurs only when .pyo files are created—not when they’re
loaded. If none of these files exists in any of the directories in sys.path, the interpreter checks

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/86.html (1 / 2) [2003/1/1 ､W､ﾈ 02:55:50]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=86
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+9%3A02%3A02+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read4.asp?bookname=0735710910&snode=86&now=5%2F28%2F2002+9%3A02%3A02+PM

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/86.html

whether the name corresponds to a built-in module name. If no match exists, an ImportError
exception is raised.

The compilation of files into .pyc and .pyo files occurs only in conjunction with the import
statement. Programs specified on the command line or standard input don’t produce such files.

When import searches for files, it matches filenames in a case-sensitive manner— even on
machines where the underlying filesystem is not case-sensitive, such as Windows. (Such systems are
case-preserving, however.) Thus, import foo will only import a file foo.py and not a file
FOO.PY. However, note that versions of Python prior to 2.1 didn’t handle this case correctly on all
platforms. If you’re concerned about backward compatibility, avoid the use of module names that
differ in case only.

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/86.html (2 / 2) [2003/1/1 ､W､ﾈ 02:55:50]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=86

Safari | Python Essential Reference, Second Edition -> Module Reloading

Linux/Unix > Python Essential Reference, Second Edition > 8. Modules and Packages >
Module Reloading

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238111161105084124002225148015018

Module Reloading

The built-in function reload() can be used to reload and execute the code contained within a
module previously loaded with import. It accepts a module object as a single argument. For
example:

import foo
... some code ...
reload(foo) # Reloads foo

All operations involving the module after the execution of reload() will utilize the newly loaded
code. However, reload() doesn’t retroactively update objects created using the old module.
Thus, it’s possible for references to coexist for objects in both the old and new versions of a module.
Furthermore, compiled extensions written in C or C++ cannot be reloaded using reload().

As a general rule, avoid module reloading except during debugging and development.

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%20P...,%20Second%20Edition/python_essencial_ref/87.html [2003/1/1 ､W､ﾈ 02:55:51]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=87
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+9%3A02%3A10+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read9.asp?bookname=0735710910&snode=87&now=5%2F28%2F2002+9%3A02%3A10+PM
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=87

Safari | Python Essential Reference, Second Edition -> Packages

Linux/Unix > Python Essential Reference, Second Edition > 8. Modules and Packages >
Packages

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238111161105084124002233103235139

Packages

Packages allow a collection of modules to be grouped under a common package name. This
technique helps resolve namespace conflicts between module names used in different applications.
A package is defined by creating a directory with the same name as the package and creating a file _
init _.py in that directory. You can then place additional source files, compiled extensions,
and subpackages in this directory as needed. For example, a package might be organized as follows:

Graphics/
 _ _init_ _.py
 Primitive/
 _ _init_ _.py
 lines.py
 fill.py
 text.py
 ...
 Graph2d/
 _ _init_ _.py
 plot2d.py
 ...
 Graph3d/
 _ _init_ _.py
 plot3d.py
 ...
 Formats/
 _ _init_ _.py
 gif.py
 png.py
 tiff.py
 jpeg.py

The import statement is used to load modules from a package in a number of ways:

● import Graphics.Primitive.fill

This loads the submodule Graphics.Primitive.fill. The contents of this module
have to be explicitly named, such as

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/88.html (1 / 4) [2003/1/1 ､W､ﾈ 02:55:51]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=88
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+9%3A02%3A17+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read4.asp?bookname=0735710910&snode=88&now=5%2F28%2F2002+9%3A02%3A18+PM

Safari | Python Essential Reference, Second Edition -> Packages

Graphics.Primitive.fill.floodfill(img,x,y,color).

● from Graphics.Primitive import fill

This loads the submodule fill but makes it available without the package prefix; for
example, fill.floodfill(img,x,y,color).

● from Graphics.Primitive.fill import floodfill

This loads the submodule fill but makes the floodfill function directly accessible; for
example, floodfill(img,x,y,color).

Whenever any part of a package is imported, the code in the file _ _init_ _.py is executed.
Minimally, this file may be empty, but it can also contain code to perform package-specific
initializations. All the _ _init_ _.py files encountered during an import are executed. Thus, the
statement import Graphics.Primitive.fill shown earlier would execute the _ _init_
_.py files in both the Graphics directory and the Primitive directory.

One peculiar problem with packages is the handling of this statement:

from Graphics.Primitive import *

The intended outcome of this statement is to import all the modules associated with a package into
the current namespace. However, because filename conventions vary from system to system
(especially with regard to case sensitivity), Python cannot accurately determine what modules those
might be. As a result, this statement just imports all the references defined in the _ _init_ _.py
file in the Primitive directory. This behavior can be modified by defining a list _ _all_ _
that contains all the module names associated with the package. This list should be defined in the
package _ _init_ _.py file, like this:

Graphics/Primitive/_ _init_ _.py
_ _all_ _ = ["lines","text","fill",...]

Now when the user issues a from Graphics.Primitive import * statement, all the listed
submodules are loaded as expected.

Importing a package name alone doesn’t import all the submodules contained in the package. For
example, the following code doesn’t work:

import Graphics

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/88.html (2 / 4) [2003/1/1 ､W､ﾈ 02:55:51]

Safari | Python Essential Reference, Second Edition -> Packages

Graphics.Primitive.fill.floodfill(img,x,y,color) # Fails!

However, because the importGraphics statement executes the _ _init_ _.py file in the
Graphics directory, it could be modified to import all the submodules automatically as follows:

Graphics/_ _init_ _.py
import Primitive, Graph2d, Graph3d

Graphics/Primitive/_ _init_ _.py
import lines, fill, text, ...

Now the importGraphics statement imports all the submodules and makes them available using
their fully qualified names.

The modules contained within the same directory of a package can refer to each other without
supplying a full package name. For example, the Graphics.Primitive.fill module could
import the Graphics.Primitive.lines module simply by using import lines.
However, if a module is located in a different subdirectory, its full package name must be used. For
example, if the plot2d module of Graphics.Graph2d needs to use the lines module of
Graphics.Primitive, it must use a statement such as from Graphics.Primitive
import lines. If necessary, a module can examine its _ _name_ _ variable to find its fully
qualified module name. For example, the following code imports a module from a sibling
subpackage knowing only the name of the sibling (and not that of its top-level package):

Graphics/Graph2d/plot2d.py

Determine the name of the package where my package is located
import string
base_package = string.join(string.split(_ _name_ _,'.')[:-2],'.')

Import the ../Primitive/fill.py module
exec "from %s.Primitive import fill" % (base_package,)

Finally, when Python imports a package, it defines a special variable _ _path_ _ that contains a
list of directories that are searched when looking for package submodules. (The variable _ _path_
_ is a package-specific version of the sys.path variable.) _ _path_ _ is accessible to the code
contained in _ _init_ _.py files and initially contains a single item with the directory name of
the package. If necessary, a package can add additional directories to the _ _path_ _ list to alter
the search path used for finding submodules.

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/88.html (3 / 4) [2003/1/1 ､W､ﾈ 02:55:51]

Safari | Python Essential Reference, Second Edition -> Packages

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/88.html (4 / 4) [2003/1/1 ､W､ﾈ 02:55:51]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=88

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/90.html

Linux/Unix > Python Essential Reference, Second Edition > 9. Input and Output See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238111161105084124001103204239038

Chapter 9. Input and Output
This chapter describes the details of Python input/output, including command-line options,
environment variables, file I/O, Unicode, and object persistence.

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%20P...,%20Second%20Edition/python_essencial_ref/90.html [2003/1/1 ､W､ﾈ 02:55:51]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=90
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+9%3A02%3A28+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read8.asp?bookname=0735710910&snode=90&now=5%2F28%2F2002+9%3A02%3A28+PM
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=90

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/91.html

Linux/Unix > Python Essential Reference, Second Edition > 9. Input and Output >
Reading Options and Environment Variables

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238111161105084124000125051049191

Reading Options and Environment Variables

When the interpreter starts, command-line options are placed in the list sys.argv. The first
element is the name of the program. Subsequent elements are the options presented on the command
line after the program name. The following program shows how to access command-line options:

printopt.py
Print all of the command-line options
import sys
for i in range(len(sys.argv)):
 print "sys.argv[%d] = %s" % (i, sys.argv[i])

Running the program produces the following:

% python printopt.py foo bar -p
sys.argv[0] = printopt.py
sys.argv[1] = foo
sys.argv[2] = bar
sys.argv[3] = -p
%

Environment variables are accessed in the dictionary os.environ. For example:

import os
path = os.environ["PATH"]
user = os.environ["USER"]
editor = os.environ["EDITOR"]
... etc ...

To modify the environment variables, set the os.environ variable. Alternatively, you can use the
os.putenv() function. For example:

os.environ["FOO"] = "BAR"
os.putenv("FOO","BAR")

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/91.html (1 / 2) [2003/1/1 ､W､ﾈ 02:55:52]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=91
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+9%3A02%3A38+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read0.asp?bookname=0735710910&snode=91&now=5%2F28%2F2002+9%3A02%3A38+PM

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/91.html

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/91.html (2 / 2) [2003/1/1 ､W､ﾈ 02:55:52]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=91

Safari | Python Essential Reference, Second Edition -> Files

Linux/Unix > Python Essential Reference, Second Edition > 9. Input and Output > Files See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238111161105084124007242194071231

Files

The built-in function open(name [,mode]) opens and creates files, as shown here:

f = open('foo') # Opens 'foo' for reading
f = open('foo','w') # Open for writing

The file mode is 'r' for read, 'w' for write, or 'a' for append. The mode character can be
followed by 'b' for binary data, such as 'rb' or 'wb'. This is optional on UNIX, but required on
Windows, and should be included if you’re concerned about portability. In addition, a file can be
opened for updates by supplying a plus (+) character, such as 'r+' or 'w+'. When a file is opened
for update, you can perform both input and output, as long as all output operations flush their data
before any subsequent input operations. If a file is opened using 'w+' mode, its length is first
truncated to zero.

open() returns a file object that supports the methods shown in Table 9.1.

Table 9.1. File Methods

Method Description

f .read([n]) Reads at most n bytes.

f .readline([n]) Reads a single line of input up to n characters. If n is omitted, reads the
entire line.

f .readlines() Reads all the lines and returns a list.

f .xreadlines() Returns an opaque sequence object where each iteration reads a new line
from the file.

f .write(s) Writes string s .

f .writelines(l) Writes all strings in list l .

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/92.html (1 / 3) [2003/1/1 ､W､ﾈ 02:55:52]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=92
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+9%3A02%3A47+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read3.asp?bookname=0735710910&snode=92&now=5%2F28%2F2002+9%3A02%3A47+PM
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/92#2.html

Safari | Python Essential Reference, Second Edition -> Files

f .close() Closes the file.

f .tell() Returns the current file pointer.

f .seek(offset [, where]) Seeks to a new file position.

f .isatty() Returns 1 if f is an interactive terminal.

f .flush() Flushes the output buffers.

f .truncate([size]) Truncates the file to at most size bytes.

f .fileno() Returns an integer file descriptor.

f .readinto(buffer ,nbytes) Read nbytes of data into a writable buffer object.

The read() method returns the entire file as a string unless an optional length parameter is
given specifying the maximum number of bytes. The readline() method returns the next line of
input, including the terminating newline; the readlines() method returns all the input lines as a
list of strings. The readline() method optionally accepts a maximum line length n . If a line
longer than n bytes is read, the first n bytes are returned. The remaining line data is not discarded
and will be returned on subsequent read operations. Both the readline() and readlines()
methods are platform-aware and handle different representations of newlines properly (for example,
'\n' versus '\r\n'). The xreadlines() method returns a special opaque sequence object
that allows the lines of a file to be read using iteration instead of first being read entirely into
memory, as with the readlines() method. For example:

for line in f.xreadlines():
 # Do something with line
 ...

The write() method writes a string to the file, and the writelines() method writes a list of
strings to the file. In all these cases, the string can contain binary data, including embedded null
characters.

The seek() method is used to randomly access parts of a file given an offset and a placement
rule in where . If where is 0 (the default), seek() assumes that offset is relative to the start
of the file; if where is 1, the position is moved relative to the current position; and if where is 2,
the offset is taken from the end of the file. The fileno() method returns the integer file-

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/92.html (2 / 3) [2003/1/1 ､W､ﾈ 02:55:52]

Safari | Python Essential Reference, Second Edition -> Files

descriptor for a file and is sometimes used in low-level I/O operations in certain library modules. On
machines that support large files (greater than 2GB), the seek() and tell() methods use long
integers. However, enabling such support may require a reconfiguration and recompilation of the
Python interpreter.

File objects also have the data attributes shown in the following table.

Attribute Description

f .closed Boolean value indicates the file state: 0 if the file is open, 1 if closed.

f .mode The I/O mode for the file.

f .name Name of the file if created using open(). Otherwise, it will be a string indicating the source of
the file.

f .softspace Boolean value indicating whether a space character needs to be printed before another value when
using the print statement. Classes that emulate files must provide a writable attribute of this
name that’s initially initialized to zero.

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/92.html (3 / 3) [2003/1/1 ､W､ﾈ 02:55:52]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=92

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/93.html

Linux/Unix > Python Essential Reference, Second Edition > 9. Input and Output >
Standard Input, Output, and Error

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238111161105084124006204201004115

Standard Input, Output, and Error

The interpreter provides three standard file objects, known as standard input, standard output, and
standard error, which are available in the sys module as sys.stdin, sys.stdout, and
sys.stderr, respectively. stdin is a file object corresponding to the stream of input characters
supplied to the interpreter. stdout is the file object that receives output produced by print.
stderr is a file that receives error messages. More often than not, stdin is mapped to the user’s
keyboard, while stdout and stderr produce text onscreen.

The methods described in the preceding section can be used to perform raw I/O with the user. For
example, the following function reads a line of input from standard input:

def gets():
 text = ""
 while 1:
 c = sys.stdin.read(1)
 text = text + c
 if c == '\n': break
 return text

Alternatively, the built-in function raw_input(prompt) can read a line of text from stdin:

s = raw_input("type something : ")
print "You typed '%s'" % (s,)

Finally, keyboard interrupts (often generated by Ctrl+C) result in a KeyboardInterrupt
exception that can be caught using an exception handler.

If necessary, the values of sys.stdout, sys.stdin, and sys.stderr can be replaced with
other file objects, in which case the print statement and raw input functions use the new values.
The original values of sys.stdout, sys.stdin, and sys.stderr at interpreter startup are
also available in sys._ _stdout_ _, sys._ _stdin_ _, and sys._ _stderr_ _,
respectively.

Note that in some cases sys.stdin, sys.stdout, and sys.stderr may be altered by the use

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/93.html (1 / 2) [2003/1/1 ､W､ﾈ 02:55:53]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=93
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+9%3A02%3A59+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read6.asp?bookname=0735710910&snode=93&now=5%2F28%2F2002+9%3A02%3A59+PM

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/93.html

of an integrated development environment (IDE). For example, when running Python under Idle,
sys.stdin is replaced with an object that behaves like a file, but is really an object in the
development environment. In this case, certain low-level methods such as read() and seek()
may be unavailable.

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/93.html (2 / 2) [2003/1/1 ､W､ﾈ 02:55:53]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=93

Safari | Python Essential Reference, Second Edition -> The print Statement

Linux/Unix > Python Essential Reference, Second Edition > 9. Input and Output > The
print Statement

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238111161105085094125052078027057

The print Statement

The print statement produces output on the file contained in sys.stdout. print accepts a
comma-separated list of objects such as the following:

print "The values are", x, y, z

For each object, the str() function is invoked to produce an output string. These output strings are
then joined and separated by a single space to produce the final output string. The output is
terminated by a newline unless a trailing comma is supplied to the print statement. In this case,
only a trailing space is printed. For example:

print "The values are ", x, y, z, w
Print the same text, using two print statements
print "The values are ", x, y, # Omits trailing newline
print z, w

To produce formatted output, use the string-formatting operator (%) as described in Chapter 4,
“Operators and Expressions.” For example:

print "The values are %d %7.5f %s" % (x,y,z) # Formatted I/O

You can change the destination of the print statement by adding the special >>file modifier,
where file is a file object that allows writes. Here’s an example:

f = open("output","w")
print >>f, "hello world"
...
f.close()

Combining formatted I/O using dictionaries with triple-quoted strings is a powerful way to write
computer-generated text. For example, you might want to write a short form letter, filling in a
name, an item name, and an amount, like this:

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/94.html (1 / 2) [2003/1/1 ､W､ﾈ 02:55:53]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=94
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+9%3A03%3A10+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read2.asp?bookname=0735710910&snode=94&now=5%2F28%2F2002+9%3A03%3A10+PM

Safari | Python Essential Reference, Second Edition -> The print Statement

Dear Mr. Bush,
Please send back my blender or pay me $50.00.

 Sincerely yours,

 Joe Python User

To do this, you can form a triple-quoted string containing text and dictionary-based format specifiers
such as this:

form = """\
Dear %(name)s,
Please send back my %(item)s or pay me $%(amount)0.2f.

 Sincerely yours,

 Joe Python User
"""
print form % { 'name': 'Mr. Bush',
 'item': 'blender',
 'amount': 50.00,
 }

For forms involving many lines and many items to be substituted, this is much clearer than using
one print statement per line or a large tuple of items to format.

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/94.html (2 / 2) [2003/1/1 ､W､ﾈ 02:55:53]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=94

Safari | Python Essential Reference, Second Edition -> Persistence

Linux/Unix > Python Essential Reference, Second Edition > 9. Input and Output >
Persistence

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238111161105085094125061049248110

Persistence

It’s often necessary to save and restore the contents of an object to a file. One approach to this
problem is to write a pair of functions that read and write data from a file in a special format. An
alternative approach is to use the pickle and shelve modules.

The pickle module serializes an object into a stream of bytes that can be written to a file. For
example, the following code writes an object to a file:

import pickle
object = someObject()
f = open(filename,'w')
pickle.dump(object, f) # Save object

To restore the object, you can use the following code:

import pickle
f = open(filename,'r')
object = pickle.load(f) # Restore the object

The shelve module is similar, but saves objects in a dictionary-like database:

import shelve
object = someObject()
dbase = shelve.open(filename) # Open a database
dbase['key'] = object # Save object in database
...
object = dbase['key'] # Retrieve it
dbase.close() # Close the database

In both cases, only serializable objects can be saved to a file. Most Python objects can be serialized,
but special-purpose objects such as files maintain an internal state that cannot be saved and restored
in this manner. For more details about the pickle and shelve modules, see Appendix A, “The
Python Library.”

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/95.html (1 / 2) [2003/1/1 ､W､ﾈ 02:55:53]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=95
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+9%3A03%3A19+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read2.asp?bookname=0735710910&snode=95&now=5%2F28%2F2002+9%3A03%3A19+PM

Safari | Python Essential Reference, Second Edition -> Persistence

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/95.html (2 / 2) [2003/1/1 ､W､ﾈ 02:55:53]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=95

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/96.html

Linux/Unix > Python Essential Reference, Second Edition > 9. Input and Output >
Unicode I/O

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238111161105085094126174128119118

Unicode I/O

Internally, Unicode strings are represented as sequences of 16-bit integer character values.As in 8-
bit strings, all characters are the same size, and most common string operations are simply extended
to handle strings with a larger range of character values. However, whenever Unicode strings are
converted to a stream of bytes, a number of issues arise. First, to preserve compatibility with
existing software, it may be desirable to convert Unicode to an 8-bit representation compatible with
software that expects to receive ASCII or other 8-bit data. Second, the use of 16-bit characters
introduces problems related to byte ordering. For a Unicode character U+HHLL, little endian
encoding places the low-order byte first, as in LL HH. Big endian encoding places the high-order
byte first, as in HH LL. Because of this difference, it’s generally not possible to simply write raw
Unicode data to a file without also specifying the encoding used.

To address these problems, external representation of Unicode strings is always done according to a
specific encoding rule. This rule precisely defines how Unicode characters are to be represented as a
byte sequence. In Chapter 4, encoding rules were first described for the unicode() function and
the s .encode() string method. For example:

a = u"M\u00fcller"
b = "Hello World"
c = a.encode('utf-8') # Convert a to a UTF-8 string
d = unicode(b) # Convert b to a Unicode string

For Unicode I/O, a similar technique is implemented through the use of the built-in codecs
module. The codecs module contains a collection of functions for converting byte-oriented data to
and from Unicode strings under a variety of different data-encoding schemes.A specific codec is
selected by calling the codecs.lookup(encoding) function. This function returns a four-
element tuple (enc_func, decode_func, stream_reader, stream_writer). For
example:

import codecs
(utf8_encode, utf8_decode, utf8_reader, utf8_writer) = \
 codecs.lookup('utf-8')

The enc_func (u [,errors]) function takes a Unicode string u and returns a tuple (s ,

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/96.html (1 / 6) [2003/1/1 ､W､ﾈ 02:55:54]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=96
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+9%3A03%3A27+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read0.asp?bookname=0735710910&snode=96&now=5%2F28%2F2002+9%3A03%3A27+PM

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/96.html

len) in which s is an 8-bit string containing a portion or all of the Unicode string u , converted
into the desired encoding, and len contains the number of Unicode characters converted. The
decode_func (s [,errors]) function takes an 8-bit string s and returns a tuple (u , len
) containing a Unicode string u and the number of characters in s that were converted. The
errors parameter determines how errors are handled and is one of 'strict', 'ignore', or
'replace'. In 'strict' mode, encoding errors raise a UnicodeError exception. In
'ignore' mode, encoding errors are ignored. In 'replace' mode, characters that can’t be
converted are replaced by a replacement character. The replacement character is U+FFFD in
Unicode and '?' in 8-bit strings.

stream_reader is a class that implements a wrapper for reading Unicode data from a file object.
Calling stream_reader (file) returns an object in which the read(), readline(), and
readlines() methods read Unicode string data. stream_writer is a class that provides a
wrapper for writing Unicode to a file object. Calling stream_writer (file) returns a file
object in which the write() and writelines() methods translate Unicode strings to the given
encoding on the output stream.

The following example illustrates how to read and write UTF-8 encoded Unicode data using these
functions:

Output Unicode data to a file
ustr = u'M\u00fcller' # A Unicode string

outf = utf8_writer(open('foo','w')) # Create UTF-8 output stream
outf.write(ustr)
outf.close()

Read Unicode data from a file
infile = utf8_reader(open('bar'))
ustr = infile.read()
infile.close()

When working with Unicode files, the data encoding is usually embedded in the file itself. For
example, XML parsers may look at the first few bytes of the string '<?xml ...>' to determine
the document encoding. If the first four values are 3C 3F 78 6D ('<?xm'), the encoding is
assumed to be UTF-8. If the first four values are 00 3C 00 3F or 3C 00 3F 00, the encoding
is assumed to be UTF-16 big endian or UTF-16 little endian, respectively. Alternatively, a document
encoding may appear in MIME headers or as an attribute of other document elements. For example:

<?xml ... encoding="ISO-8859-1" ?>

When the encoding is read from a document, code similar to the following might be used:

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/96.html (2 / 6) [2003/1/1 ､W､ﾈ 02:55:54]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/96.html

f = open("somefile")
Determine encoding
...
(encoder,decoder,reader,writer) = codecs.lookup(encoding)
f = reader(f) # Wrap file with Unicode reader
data = f.read() # Read Unicode data
f.close()

Unicode Data Encoding

Table 9.2 lists all of the currently available encoders in the codecs module.

Table 9.2. Encoders in the codecs Module

Encoder Description

'ascii' ASCII encoding

'latin-1', 'iso-8859-1' Latin-1 or ISO-8859-1 encoding

'utf-8' 8-bit variable length encoding

'utf-16' 16-bit variable length encoding

'utf-16-le' UTF-16, but with explicit little endian encoding

'utf-16-be' UTF-16, but with explicit big endian encoding

'unicode-escape' Same format as u"string "

'raw-unicode-escape' Same format as ur"string "

The following paragraphs describe each of the encoders in more detail.

'ascii' encoding:

In 'ascii' encoding, character values are confined to the ranges [0,0x7f] and [U+0000,
U+007F]. Any character outside this range is invalid.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/96.html (3 / 6) [2003/1/1 ､W､ﾈ 02:55:54]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/96#4.html

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/96.html

'iso-8859-1' or 'latin-1' encoding:

Characters can be any 8-bit value in the ranges [0,0xff] and [U+0000, U+00FF]. Values in
the range [0,0x7f] correspond to characters from the ASCII character set.Values in the range
[0x80,0xff] correspond to characters from the ISO-8859-1 or extended ASCII character set.
Any characters with values outside the range [0,0xff] result in an error.

'utf-8' encoding:

UTF-8 is a variable-length encoding that allows all Unicode characters to be represented. A single
byte is used to represent ASCII characters in the range 0–127. All other characters are represented
by multibyte sequences of two or three bytes. The encoding of these bytes is shown in the following
table.

Unicode Characters Byte 0 Byte 1 Byte 2

U+0000 - U+007F 0nnnnnnn

U+007F - U+07FF 110nnnnn 10nnnnnn

U+0800 - U+FFFF 1110nnnn 10nnnnnn 10nnnnnn

For two-byte sequences, the first byte always starts with the bit sequence 110. For three-byte
sequences, the first byte starts with the bit sequence 1110. All subsequent data bytes in multibyte
sequences start with the bit sequence 10.

In full generality, the UTF-8 format allows for multibyte sequences of up to six bytes. In Python,
four-byte UTF-8 sequences are used to encode a pair of Unicode characters known as a surrogate
pair. Both characters have values in the range [U+D800, U+DFFF] and are combined to encode a
20-bit character value. The surrogate encoding is as follows:The four-byte sequence 111100nn
10nnnnnn 10nnmmmm 10mmmmmm is encoded as the pair U+D800 + N , U+DC00 + M , where
N is the upper 10 bits and M is the lower 10 bits of the 20-bit character encoded in the four-byte UTF-
8 sequence. Five- and six-byte UTF-8 sequences (denoted by starting bit sequences of 111110 and
1111110, respectively) are used to encode character values up to 32 bits in length. These values
are not supported by Python and currently result in a UnicodeError exception if they appear in
an encoded data stream.

UTF-8 encoding has a number of useful properties that allow it to be used by older software. First,
the standard ASCII characters are represented in their standard encoding. This means that a UTF-8
encoded ASCII string is indistinguishable from a traditional ASCII string. Second, UTF-8 doesn’t

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/96.html (4 / 6) [2003/1/1 ､W､ﾈ 02:55:54]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/96.html

introduce embedded null bytes for multibyte character sequences. Thus, existing software based on
the C library and programs that expect null-terminated 8-bit strings will work with UTF-8 strings.
Finally, UTF-8 encoding preserves the lexicographic ordering of strings. That is, if a and b are
Unicode strings and a < b, then a < b also holds when a and b are converted to UTF-8.
Therefore, sorting algorithms and other ordering algorithms written for 8-bit strings will also work
for UTF-8.

'utf-16' , 'utf-16-be' , and 'utf-16-le' encoding:

UTF-16 is a variable-length 16-bit encoding in which Unicode characters are written as 16-bit
values. Unless a byte ordering is specified, big endian encoding is assumed. In addition, a byte-order
marker of U+FEFF can be used to explicitly specify the byte ordering in a UTF-16 data stream. In
big endian encoding, U+FEFF is the Unicode character for a zero-width nonbreaking space, whereas
the reversed value U+FFFE is an illegal Unicode character. Thus, the encoder can use the byte
sequence FE FF or FF FE to determine the byte ordering of a data stream. When reading Unicode
data, Python removes the byte-order markers from the final Unicode string.

'utf-16-be' encoding explicitly selects UTF-16 big endian encoding. 'utf-16-le' encoding
explicitly selects UTF-16 little ending encoding.

Although there are extensions to UTF-16 to support character values greater than 16 bits, none of
these extensions are currently supported.

'unicode-escape' and 'raw-unicode-escape' encoding:

These encoding methods are used to convert Unicode strings to the same format as used in Python
Unicode string literals and Unicode raw string literals. For example:

s = u'u\14a8\u0345\u2a34'
t = s.encode('unicode-escape') #t = '\u14a8\u0345\u2a34'

Unicode Character Properties

In addition to performing I/O, programs that use Unicode may need to test Unicode characters for
various properties such as capitalization, numbers, and whitespace. The unicodedata module
provides access to a database of character properties. General character properties can be obtained
with the unicodedata.category(c) function. For example,
unicodedata.category(u"A") returns 'Lu', signifying that the character is an uppercase
letter. Further details about the Unicode character database and the unicodedata module can be
found in Appendix A.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/96.html (5 / 6) [2003/1/1 ､W､ﾈ 02:55:54]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/96.html

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/96.html (6 / 6) [2003/1/1 ､W､ﾈ 02:55:54]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=96

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/98.html

Linux/Unix > Python Essential Reference, Second Edition > 10. Execution Environment See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238111161105085094127252088042155

Chapter 10. Execution Environment
This chapter describes the environment in which Python programs are executed. The goal is to
describe the runtime behavior of the interpreter, including program startup, site configuration, and
program termination.

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%20P...,%20Second%20Edition/python_essencial_ref/98.html [2003/1/1 ､W､ﾈ 02:55:54]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=98
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+9%3A03%3A37+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read8.asp?bookname=0735710910&snode=98&now=5%2F28%2F2002+9%3A03%3A37+PM
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=98

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/99.html

Linux/Unix > Python Essential Reference, Second Edition > 10. Execution Environment
> Interpreter Options and Environment

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238111161105085094121179040058246

Interpreter Options and Environment

The interpreter has a number of options that control its runtime behavior and environment. On
UNIX and Windows, options are given to the interpreter in the form of command-line options such
as the following:

python [options] [-c cmd | filename | -] [args]

On the Macintosh, options to the Python interpreter are set using a separate program,
EditPythonPrefs.

The following command-line options are available:

Option Description

-d Generates parser debugging information.

-h Prints a list of all available command-line options.

-i Enters interactive mode after program execution.

-O Optimized mode.

-OO Optimized mode plus removal of documentation strings.

-S Prevents inclusion of the site initialization module.

-t Reports warnings about inconsistent tab usage.

-tt Inconsistent tab usage results in a TabError exception.

-u Unbuffered binary stdout and stdin.

-U Unicode literals. All string literals are handled as Unicode.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/99.html (1 / 3) [2003/1/1 ､W､ﾈ 02:55:55]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=99
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+9%3A03%3A50+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read0.asp?bookname=0735710910&snode=99&now=5%2F28%2F2002+9%3A03%3A50+PM

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/99.html

-v Verbose mode.

-V Prints the version number and exits.

-x Skips the first line of the source program.

-c cmd Executes cmd as a string.

-Wfilter Adds a warning filter.

The -d option debugs the interpreter and is of limited use to most programmers. The -i option
starts an interactive session immediately after a program has finished execution, and is useful for
debugging. The -O and -OO options apply some optimization to byte-compiled files, and are
described in Chapter 8, “Modules and Packages.” The -S option omits the site initialization module
described in the later section “Site Configuration Files.” The -t, -tt, and -v options report
additional warnings and debugging information. The -x optionP 94 ignores the first line of a
program in the event that it’s not a valid Python statement (for example, when the first line starts the
Python interpreter in a script). The -U option forces the interpreter to treat all string literals as
Unicode. The -W option is used to specify a warning filter and is described further in the warnings
module in Appendix A, “The Python Library.”

The program name appears after all the interpreter options. If no name is given, or the hyphen ()
character is used as a filename, the interpreter reads the program from standard input. If standard
input is an interactive terminal, a banner and prompt are presented. Otherwise, the interpreter opens
the specified file and executes its statements until an end-of-file marker is reached. The -c cmd
option can be used to execute short programs in the form of a command-line option.

Command-line options appearing after the program name or hyphen () are passed to the program in
sys.argv, as described in the section “Reading Options and Environment Variables” in Chapter
9, “Input and Output.”

Additionally, the interpreter reads the following environment variables:

Variable Description

PYTHONPATH Colon-separated module search path

PYTHONSTARTUP File executed on interactive startup

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/99.html (2 / 3) [2003/1/1 ､W､ﾈ 02:55:55]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/108#42.html

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/99.html

PYTHONHOME Location of the Python installation

PYTHONINSPECT Implies the -i option

PYTHONUNBUFFERED Implies the -u option

PYTHONCASEOK Use non–case-sensitive matching for module names used by import (Python 2.1)

PYTHONPATH specifies a module search path that is inserted into the beginning of sys.path,
which is described in Chapter 8. PYTHONSTARTUP specifies a file to execute when the interpreter
runs in interactive mode. The PYTHONHOME variable is used to set the location of the Python
installation but is rarely needed, since Python knows how to find its own libraries and the site-
packages directory where extensions are normally installed. If a single directory such as
/usr/local is given, the interpreter expects to find all files in that location. If two directories are
given, such as /usr/local:/usr/local/sparc-solaris-2.6, the interpreter searches
for platform-independent files in the first directory and platform-dependent files in the second.
PYTHONHOME has no effect if no valid Python installation exists at the specified location.

On Windows, some of the environment variables such as PYTHONPATH are read from Registry
entries found in HKEY_LOCAL_MACHINE/Software/Python. On the Macintosh, the
environment variables can be adjusted using the EditPythonPrefs program.

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...20Second%20Edition/python_essencial_ref/99.html (3 / 3) [2003/1/1 ､W､ﾈ 02:55:55]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=99

Safari | Python Essential Reference, Second Edition -> Interactive Sessions

Linux/Unix > Python Essential Reference, Second Edition > 10. Execution Environment
> Interactive Sessions

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238111161105082191049141199181067

Interactive Sessions

If no program name is given and the standard input to the interpreter is an interactive terminal,
Python starts in interactive mode. In this mode, a banner message is printed and the user is presented
with a prompt. In addition, the interpreter evaluates the script contained in the PYTHONSTARTUP
environment variable (if set). This script is evaluated as if part of the input program (that is, it isn’t
loaded using an import statement). One application of this script might be to read a user
configuration file such as .pythonrc.

When accepting interactive input, two user prompts appear. The >>> prompt appears at the
beginning of a new statement; the ... prompt indicates a statement continuation. For example:

Python 2.0 (#1, Oct 27 2000, 14:34:45)
[GCC 2.95.2 19991024 (release)] on sunos5
Type "copyright", "credits" or "license" for more information..
>>> for i in range(0,4):
... print i
...
0
1
2
3
>>>

In customized applications, you can change the prompts by modifying the values of sys.ps1 and
sys.ps2.

On some systems, Python may be compiled to use the GNU readline library. If enabled, this library
provides command histories, completion, and other additions to Python’s interactive mode. The
special key bindings provided by the readline library are described in the readline module in
Appendix A.

By default, the output of commands issued in interactive mode is generated by printing the output of
the built-in repr() function on the result. Starting with Python 2.1, this can be changed by setting
the variable sys.displayhook. For example:

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/100.html (1 / 2) [2003/1/1 ､W､ﾈ 02:55:55]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=100
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+9%3A04%3A01+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read8.asp?bookname=0735710910&snode=100&now=5%2F28%2F2002+9%3A04%3A01+PM
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112#118.html

Safari | Python Essential Reference, Second Edition -> Interactive Sessions

>>> def my_display(x):
... print "result = %s" % repr(x)
...
>>> sys.displayhook = my_display
>>> 3+4
result = 7
>>>

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/100.html (2 / 2) [2003/1/1 ､W､ﾈ 02:55:55]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=100

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/101.html

Linux/Unix > Python Essential Reference, Second Edition > 10. Execution Environment
> Launching Python Applications

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238111161105082191049133047181010

Launching Python Applications

In most cases, you’ll want programs to start the interpreter automatically, rather than first having to
start the interpreter manually. On UNIX, this is done using shell scripts by setting the first line of a
program to something like this:

#!/usr/local/bin/python
Python code from this point on...
import string
print "Hello world"
...

On Windows, double-clicking a .py, .pyw, .wpy, .pyc, or .pyo file automatically launches the
interpreter. Normally, programs run in a console window unless they’re renamed with a .pyw suffix
(in which case the program runs silently). If it’s necessary to supply options to the interpreter,
Python can also be started from a .bat file.

On the Macintosh, clicking a .py file normally launches the editor that was used to create the file.
However, two special programs in the Macintosh distribution can be used to build applications.
Dropping a .py file on the BuildApplet program converts the program into a file that
automatically launches the Python interpreter when opened. The BuildApplication program
converts a Python program into a standalone application that can be distributed and executed on
machines that don’t have a Python installation.

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%20P...%20Second%20Edition/python_essencial_ref/101.html [2003/1/1 ､W､ﾈ 02:55:56]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=101
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+9%3A04%3A09+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read1.asp?bookname=0735710910&snode=101&now=5%2F28%2F2002+9%3A04%3A09+PM
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=101

Safari | Python Essential Reference, Second Edition -> Site Configuration Files

Linux/Unix > Python Essential Reference, Second Edition > 10. Execution Environment
> Site Configuration Files

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238111161105082191048160103216105

Site Configuration Files

A typical Python installation may include a number of third-party modules and packages. To
configure these packages, the interpreter first imports the module site. The role of site is to
search for package files and to add additional directories to the module search path sys.path. In
addition, the site module sets the default encoding for Unicode string conversions. For details on
the site module, see Appendix A.

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%20P...%20Second%20Edition/python_essencial_ref/102.html [2003/1/1 ､W､ﾈ 02:55:56]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=102
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+9%3A04%3A17+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read4.asp?bookname=0735710910&snode=102&now=5%2F28%2F2002+9%3A04%3A17+PM
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/108#32.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=102

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/103.html

Linux/Unix > Python Essential Reference, Second Edition > 10. Execution Environment
> Enabling Future Features

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238111161105082191051205119161086

Enabling Future Features

Starting in Python 2.1, new language features that affect compatibility with older versions of Python
may be disabled when they first appear in a release. To enable these features, the statement from _
_ future_ _ import feature can be used. For example:

Enable nested scopes in Python 2.1
from __ future __ import nested_scopes

When used, this statement should appear as the first statement of a module or program. Furthermore,
the intent of the _ _ future_ _ module is to introduce features that will eventually be a
standard part of the Python language (in which case, the use of _ _ future_ _ will not be
required).

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%20P...%20Second%20Edition/python_essencial_ref/103.html [2003/1/1 ､W､ﾈ 02:55:56]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=103
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+9%3A04%3A26+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read8.asp?bookname=0735710910&snode=103&now=5%2F28%2F2002+9%3A04%3A26+PM
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=103

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/104.html

Linux/Unix > Python Essential Reference, Second Edition > 10. Execution Environment > Program
Termination

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238111161105082191050116112014099

Program Termination

A program terminates when no more statements exist to execute in the input program, when an uncaught
SystemExit exception is raised (as generated by sys.exit()), or when the interpreter receives a SIGTERM or
SIGHUP signal (on UNIX). On exit, the interpreter decrements the reference count of all objects in all the currently
known namespaces (and destroys each namespace as well). If the reference count of an object reaches zero, the object
is destroyed and its _ _ del_ _ () method is invoked. It’s important to note that in some cases the _ _ del_ _
() method might not be invoked at program termination. This can occur if circular references exist between objects (in
which case objects may be allocated, but accessible from no known namespace). Although Python’s garbage collector
can reclaim unused circular references during execution, it isn’t normally invoked on program termination.

Because there’s no guarantee that _ _ del_ _ () will be invoked at termination, it may be a good idea to explicitly
clean up certain objects, such as open files and network connections. To accomplish this, add specialized cleanup
methods (for example, close()) to user-defined objects. Another possibility is to write a termination function and
register it with the atexit module, as follows:

import atexit
connection = open_connection("deaddot.com")

def cleanup():
 print "Going away..."
 close_connection(connection)

atexit.register(cleanup)

The garbage collector can also be invoked in this manner:

import atexit, gc
atexit.register(gc.collect)

One final peculiarity about program termination is that the _ _ del_ _ method for some objects may try to access
global data or methods defined in other modules. Since these objects may already have been destroyed, a NameError
exception occurs in _ _ del_ _, and you may get an error such as the following:

Exception exceptions.NameError: 'c' in <method Bar._ _ del_ _ of Bar instance at
c0310>

ignored

If this occurs, it means that _ _ del_ _ has aborted prematurely. It also implies that it may have failed in an attempt
to perform an important operation (such as cleanly shutting down a server connection). If this is a concern, it’s
probably a good idea to perform an explicit shutdown step in your code, rather than relying on the interpreter to destroy
objects cleanly at program termination. The peculiar NameError exception can also be eliminated by declaring
default arguments in the declaration of the _ _ del_ _ () method:

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/104.html (1 / 2) [2003/1/1 ､W､ﾈ 02:55:57]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=104
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+9%3A04%3A35+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read1.asp?bookname=0735710910&snode=104&now=5%2F28%2F2002+9%3A04%3A35+PM

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/104.html

import foo
class Bar:
 def _ _ del_ _ (self, foo=foo):
 foo.bar() # Use something in module foo

In some cases, it may be useful to terminate program execution without performing any cleanup actions. This can be
accomplished by calling os._exit(status). This function provides an interface to the low-level exit() system
call responsible for killing the Python interpreter process.When invoked, the program immediately terminates.

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/104.html (2 / 2) [2003/1/1 ､W､ﾈ 02:55:57]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=104

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/106.html

Linux/Unix > Python Essential Reference, Second Edition > A. The Python Library See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238111161105082191053160024023103

Appendix A. The Python Library
Python is bundled with a large collection of modules that provide a wide range of services ranging
from interacting with the operating system to multimedia support. These modules are collectively
known as the Python library. Currently, the library consists of approximately 200 modules that have
been contributed by dozens of users.

This appendix describes most of the more frequently used modules in the Python library, with a
focus on built-in functions, Python services, string processing, operating system interfaces, threads,
and network programming. A brief overview of background material is introduced as necessary, but
the reader is assumed to be reasonably familiar with basic operating system and programming
concepts. Furthermore, because much of the library is based on C programming APIs, a good C
programming book may help with some of the finer points of some modules. Extensive online
documentation for the library is also available at http://www.python.org/doc/lib.

This appendix is largely based on the contents of the online library documentation as of Python
version 2.1. However, a number of substantial modifications have been made:

● The library reference has been abridged to fit into a more compact format.

● Additional reference material has been added to better describe certain modules—especially
with respect to operating system interfaces and network programming.

● Several modules require significant understanding of outside topics such as low-level
network protocols and data formats. In these cases, only a brief description is given, along
with references to related information.

● Special-purpose modules applicable to a single platform are omitted (for instance, SGI
multimedia extensions).

● Large frameworks such as Tkinter, XML processing, and the Win32 extensions are omitted
because they’re beyond the scope of this book (and they’re covered in books of their own).

● Obsolete modules are omitted, even though these modules are still included in the standard
distribution.

It’s also important to note that the Python library is always being improved and extended with new
functionality. Although the modules covered here are the most stable, their contents are still likely to

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/106.html (1 / 2) [2003/1/1 ､W､ﾈ 02:55:57]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=106
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+9%3A04%3A42+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read4.asp?bookname=0735710910&snode=106&now=5%2F28%2F2002+9%3A04%3A42+PM
http://www.python.org/doc/lib

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/106.html

change slightly over time. When in doubt, consult the online documentation.

Finally, a few words on compatibility and availability. Unless otherwise indicated, each module is
available on all platforms. When platform-specific issues are discussed, they’re clearly marked.

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/106.html (2 / 2) [2003/1/1 ､W､ﾈ 02:55:57]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=106

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/107.html

Linux/Unix > Python Essential Reference, Second Edition > A. The Python Library >
Built-in Functions and Exceptions

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238111161105082191052001041189214

Built-in Functions and Exceptions

This section describes Python’s built-in functions and exceptions. Much of this material is covered
less formally in the chapters of this book. Additional details and some of the more subtle aspects of
many built-in functions can be found here.

Built-in Functions

The functions in this section are always available to the interpreter and are contained within the _
builtin _ module. In addition, the _ _builtins_ _ attribute of each module usually
refers to this module (except when running in a restricted execution environment as described in the
“Restricted Execution” section).

_ (Underscore)

By default, the _ variable is set to the result of the last expression evaluated when the interpreter is
running in interactive mode.

? See Also sys.displayhook (118).

_ _import_ _(name [, globals [, locals [, fromlist]]])

This function is invoked by the import statement to load a module. name is a string containing the
module name, globals is an optional dictionary defining the global namespace, locals is a
dictionary defining the local namespace, and fromlist is a list of targets given to the from
statement. For example, the statement import spam results in a call to _ _import_
_('spam', globals(), locals(), []), while the statement from spam import
foo results in a call _ _import_ _ ('spam', globals(), locals(), ['foo']). If
the module name is prefixed by a package name such as foo.bar and fromlist is empty, the
corresponding module object is returned. If fromlist is not empty, only the top-level package is
returned.

This function is intended to be a low-level interface to the module loader. It doesn’t perform all the
steps performed by an import statement (in particular, the local namespace is not updated with
names referring to objects contained within the module). This function can be redefined by the user

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/107.html (1 / 15) [2003/1/1 ､W､ﾈ 02:55:58]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=107
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+9%3A04%3A54+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read5.asp?bookname=0735710910&snode=107&now=5%2F28%2F2002+9%3A04%3A54+PM

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/107.html

to implement new behaviors for import. The default implementation doesn’t even look at the
locals parameter, while globals is only used to determine package context (these parameters
are supplied so that alternative implementations of _ _import_ _() have full access to the
global and local namespace information where import statements appear).

abs(x)

Returns the absolute value of x .

apply(func [, args [, keywords]])

Performs a function call operation on a callable object func. args is a tuple containing
positional arguments and keywords is a dictionary containing keyword arguments. The apply()
function can also be written as func (*args ,**keywords).

buffer(sequence [, offset [, size]])

Creates a new buffer object. A buffer is typically a byte-oriented subsequence of another sequence
such as a string. For the most part, buffers appear like strings except that they don’t support string
methods and can’t be used with the functions in the string module.

callable(object)

Returns 1 if object is a callable object, 0 otherwise.

chr(i)

Converts an integer or long integer value i , 0 <= i <= 255, into a one-character string.

cmp(x, y)

Compares x and y and returns a negative number if x < y , 0 if x == y , and a positive number if
x > y . Any two objects can be compared, although the result may be meaningless if the two
objects have no meaningful comparison method defined (for example, comparing a number with a
file object). In certain circumstances, such comparisons may also raise an exception.

coerce(x, y)

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/107.html (2 / 15) [2003/1/1 ､W､ﾈ 02:55:58]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/107.html

Returns a tuple containing the values of x and y converted to a common numerical type. See the
section “Mathematical Operations” in Chapter 3, “Types and Objects.”

compile(string, filename, kind)

Compiles string into a code object for use with exec or eval(). filename is a string
containing the name of the file in which the string was defined. kind is 'exec' for a sequence of
statements, 'eval' for a single expression, or 'single' for a single executable statement.

complex(real [, imag])

Creates a complex number.

delattr(object, attr)

Deletes an attribute of an object. attr is a string. Same as del object .attr .

dir([object])

Returns a sorted list of attribute names. These are taken from the object’s _ _dict_ _, _
methods _, and _ _members_ _ attributes. If no argument is given, the names in the
current local symbol table are returned.

divmod(a, b)

Returns the quotient and remainder of long division as a tuple. For integers, the value (a / b , a
% b) is returned. For floats, (math.floor(a / b), a % b) is returned.

eval(expr [, globals [, locals]])

Evaluates an expression. expr is a string or a code object created by compile(). globals and
locals define the global and local namespaces for the operation. If omitted, the expression is
evaluated in the namespace of the caller.

execfile(filename [, globals [, locals]])

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/107.html (3 / 15) [2003/1/1 ､W､ﾈ 02:55:58]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/40#14.html

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/107.html

Executes the statements in the file filename . globals and locals define the global and local
namespaces in which the file is executed. If omitted, the file’s contents are executed in the
namespace of the caller. This function should not be used inside a function body because it is
incompatible with nested scopes.

filter(function, list)

Creates a new list consisting of the objects from list for which function evaluates to true. If
function is None, the identity function is used and all the elements of list that are false are
removed.

float(x)

Converts x to a floating-point number.

getattr(object, name [, default])

Returns an attribute of an object. name is a string. default is an optional value to return if no
such attribute exists. Same as object .name .

globals()

Returns a dictionary corresponding to the global namespace of the caller.

hasattr(object, name)

Returns 1 if name is the name of an attribute of object , 0 otherwise. name is a string.

hash(object)

Returns an integer hash value for an object (if possible). The hash value is the same for any two
objects that compare as equals. Mutable objects don’t define a hash value.

hex(x)

Converts an integer or long integer x to a hexadecimal string.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/107.html (4 / 15) [2003/1/1 ､W､ﾈ 02:55:58]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/107.html

id(object)

Returns the unique integer identity of object .

input([prompt])

Same as eval(raw_input(prompt)).

int(x [, base])

Converts a number or string x to an integer. base optionally specifies a base when converting from
a string.

intern(string)

Checks to see whether string is contained in an internal table of strings. If found, a copy of the
internal string is returned. If not, string is added to the internal table and returned. This function
is primarily used to get better performance in operations involving dictionary lookups. Interned
strings are never garbage-collected. Not applicable to Unicode strings.

isinstance(object, classobj)

Returns true if object is an instance of classobj or a subclass of classobj . Can also be
used for type checking if classobj is a type object.

issubclass(class1, class2)

Returns true if class1 is a subclass of (derived from) class2 .

Note: issubclass(A , A) is true.

len(s)

Returns the number of items contained in the sequence s .

list(s)

Returns a new list consisting of the items in the sequence s .

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/107.html (5 / 15) [2003/1/1 ､W､ﾈ 02:55:58]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/107.html

locals()

Returns a dictionary corresponding to the local namespace of the caller.

long(x [, base])

Converts a number or string x to a long integer. base optionally specifies the base of the
conversion when converting from a string.

map(function, list, ...)

Applies function to every item of list and returns a list of results. If multiple lists are supplied,
function is assumed to take that many arguments, with each argument taken from a different list.
If function is None, the identity function is assumed. If None is mapped to multiple lists, a list
of tuples is returned, wherein each tuple contains an element from each list. Short lists are extended
with values of None to match the length of the longest list, if necessary. Consider using list
comprehensions instead of map. For example, map(function , alist) can be replaced by
[function (x) for x in alist].

? See Also zip (105).

max(s [, args, ...])

For a single argument s , returns the maximum value of the sequence s . For multiple arguments,
returns the largest of the arguments.

min(s [, args, ...])

For a single argument s , returns the minimum value of the sequence s . For multiple arguments,
returns the smallest of the arguments.

oct(x)

Converts an integer or long integer x to an octal string.

open(filename [, mode [, bufsize]])

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/107.html (6 / 15) [2003/1/1 ､W､ﾈ 02:55:58]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/107.html

Opens the file filename and returns a new file object (see Chapter 10, “Execution Environment”).
mode indicates how the file should be opened: 'r' for reading, 'w' for writing, and 'a' for
appending. An optional '+' can be added to the mode to open the file for updating (which allows
both reading and writing). A mode of 'w+' truncates the file to zero length if it already exists. A
mode of 'r+' or 'a+' opens the file for both reading and writing, but leaves the original contents
intact when the file is opened. Append 'b' to the mode to indicate binary mode on platforms such
as Windows, where a distinction is made between text and binary files. If the mode is omitted, a
mode of 'r' is assumed. The bufsize argument specifies the buffering behavior, where 0 is
unbuffered, 1 is line buffered, and any other positive number indicates an approximate buffer size in
bytes. A negative number indicates that the system default buffering should be used (this is the
default behavior).

ord(c)

Returns the integer ordinal value of a single character c . For ordinary characters, a value in the
range [0,255] is returned. For Unicode characters, a value in the range [0,65535] is returned.

pow(x, y [, z])

Returns x ** y . If z is supplied, returns (x ** y) % z .

range([start,] stop [, step])

Creates a list of integers from start to stop . step indicates a stride and is set to 1 if omitted. If
start is omitted (when range() is called with one argument), it defaults to 0. A negative step
creates a list of numbers in descending order.

? See Also xrange (105).

raw_input([prompt])

Reads a line of input from standard input (sys.stdin) and returns it as a string. If prompt is
supplied, it’s first printed to standard output (sys.stdout). Trailing newlines are stripped and an
EOFError exception is raised if an EOF is read. If the readline module is loaded, this function
will use it to provide advanced line-editing and command-completion features.

reduce(func, seq [, initializer])

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/107.html (7 / 15) [2003/1/1 ､W､ﾈ 02:55:58]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/107.html

Applies a function func cumulatively to the items in the sequence seq and returns a single value.
func is expected to take two arguments and is first applied to the first two items of seq . This
result and subsequent elements of seq are then combined one at a time in a similar manner, until all
elements of seq have been consumed. initializer is an optional starting value used in the first
computation and when seq is empty.

reload(module)

Reloads an already imported module. module must refer to an existing module object. The use of
this function is discouraged except for debugging. Keep the following issues in mind:

● When a module is reloaded, the dictionary defining its global namespace is retained. Thus,
definitions in the old module that aren’t part of the newly reloaded module are retained.
Modules can exploit this to see if they have been previously loaded.

● It’s usually illegal to reload dynamically loaded modules written in C.

● If any other modules have imported this module by using the from statement, they’ll
continue to use the definitions in the previously imported module. This problem can be
avoided by either reissuing the from statement after a module has been reloaded or using
fully qualified names such as module .name .

● If there are any object instances created by classes in the old module, they’ll continue to use
methods defined in the old module.

repr(object)

Returns a string representation of object . This is the same string generated by backquotes
(`object`). In most cases, the returned string is an expression that can be passed to eval() to re-
create the object.

round(x [, n])

Returns the result of rounding the floating-point number x to the closest multiple of 10 to the power
minus n . If n is omitted, it defaults to 0. If two multiples are equally close, rounding is done away
from 0 (for example, 0.5 is rounded to 1.0 and -0.5 is rounded to -1.0).

setattr(object, name, value)

Sets an attribute of an object. name is a string. Same as object .name = value .

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/107.html (8 / 15) [2003/1/1 ､W､ﾈ 02:55:58]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/107.html

slice([start,] stop [, step])

Returns a slice object representing integers in the specified range. Slice objects are also generated by
extended slice syntax. See the section “Sequence and Mapping Methods” in Chapter 3 for details.

str(object)

Returns a string representing the printable form of an object. This is the same string as would be
produced by the print statement.

tuple(s)

Creates a tuple whose items are taken from the sequence s . If s is already a tuple, it’s returned
unmodified.

type(object)

Returns the type of object. The type is returned as a type object as defined in the types module.

? See Also isinstance (102).

unichr(i)

Converts the integer or long integer i , 0 <= i <= 65535, to a single Unicode character.

unicode(string [, encoding [, errors]])

Converts string to a Unicode string. encoding specifies the data encoding of string . If
omitted, the default encoding as returned by sys.getdefaultencoding() is used. errors
specifies how encoding errors are handled and is one of 'strict', 'ignore', or 'replace'.
See Chapter 9 (“Input and Output”) and Chapter 3 (“Types and Objects”) for details.

vars([object])

Returns the symbol table of object (usually found in its _ _dict_ _ attribute). If no argument
is given, a dictionary corresponding to the local namespace is returned.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/107.html (9 / 15) [2003/1/1 ､W､ﾈ 02:55:58]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/40#10.html

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/107.html

xrange([start,] stop [, step])

Works like range() except that an XRangeType object is returned. This object produces the
same values as stored in the list created by range(), but without actually storing them. This is
useful when working with very large ranges of integers that would consume a large amount of
memory.

zip(s1 [, s2 [,..]])

Returns a list of tuples where the nth tuple is (s1 [n], s2 [n], ...). The resulting list is
truncated to the length of the shortest argument sequence.

Built-in Exceptions

Built-in exceptions are contained in the exceptions module, which is always loaded prior to the
execution of any program. Exceptions are defined as classes. The following exceptions serve as base
classes for all the other exceptions:

Exception

The root class for all exceptions. All built-in exceptions are derived from this class. User-defined
exceptions are encouraged to use this as a base class.

StandardError

The base class for all built-in exceptions except for SystemExit.

ArithmeticError

Base class for arithmetic exceptions, including OverflowError, ZeroDivisionError, and
FloatingPointError.

LookupError

Base class for indexing and key errors, including IndexError and KeyError.

EnvironmentError

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/107.html (10 / 15) [2003/1/1 ､W､ﾈ 02:55:58]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/107.html

Base class for errors that occur outside Python, including IOError and OSError.

The preceding exceptions are never raised explicitly. However, they can be used to catch certain
classes of errors. For instance, the following code would catch any sort of numerical error:

try:
 # Some operation
 ...
except ArithmeticError, e:
 # Math error

When an exception is raised, an instance of an exception class is created. This instance is placed in
the optional variable supplied to the except statement. For example:

except IOError, e:
 # Handle error
 # 'e' has an instance of IOError

Most exceptions have an associated value that can be found in the args attribute of the exception
instance ('e.args' in the preceding example). In most cases, this is a string describing the error.
For EnvironmentError exceptions, the value is a 2-tuple or 3-tuple containing an integer error
number, string error message, and an optional filename (these values are also available as exception
attributes as described below).

The following exceptions are raised by programs:

AssertionError

Failed assert statement.

AttributeError

Failed attribute reference or assignment.

EOFError

End of file. Generated by the built-in functions input() and raw_input(). Note: A number of
I/O methods such as read() and readlines() return an empty string for EOF.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/107.html (11 / 15) [2003/1/1 ､W､ﾈ 02:55:58]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/107.html

FloatingPointError

Failed floating-point operation. A subclass of ArithmeticError.

IOError

Failed I/O operation. The value is an IOError instance with attributes errno, strerror, and
filename. errno is an integer error number, strerror is a string error message, and
filename is an optional filename. A subclass of EnvironmentError.

ImportError

Raised when an import statement can’t find a module or when from can’t find a name in a
module.

IndentationError

Indentation error. A subclass of SyntaxError.

IndexError

Sequence subscript out of range. A subclass of LookupError.

KeyError

Key not found in a dictionary. A subclass of LookupError.

KeyboardInterrupt

Raised when the user hits the interrupt key (usually Ctrl+C).

MemoryError

Recoverable out-of-memory error.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/107.html (12 / 15) [2003/1/1 ､W､ﾈ 02:55:58]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/107.html

NameError

Name not found in local or global namespaces.

NotImplementedError

Unimplemented feature. Can be raised by base classes that require derived classes to implement
certain methods. A subclass of RuntimeError.

OSError

Operating system error. Primarily raised by functions in the os module. The value is the same as for
IOError. A subclass of EnvironmentError.

OverflowError

Result of arithmetic operation is too large to be represented. A subclass of ArithmeticError.

RuntimeError

A generic error not covered by any of the other categories.

SyntaxError

Parser syntax error. Instances have the attributes filename, lineno, offset, and text that
can be used to gather more information.

SystemError

Internal error in the interpreter. The value is a string indicating the problem.

SystemExit

Raised by the sys.exit() function. The value is an integer indicating the return code. If it’s
necessary to exit immediately, os._exit() can be used.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/107.html (13 / 15) [2003/1/1 ､W､ﾈ 02:55:58]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/107.html

TabError

Inconsistent tab usage. Generated when Python is run with the -tt option. A subclass of
SyntaxError.

TypeError

Operation or function applied to an object of inappropriate type.

UnboundLocalError

Unbound local variable referenced. This error occurs if a variable is referenced before it’s defined in
a function. A subclass of NameError.

UnicodeError

Unicode encoding or decoding error. A subclass of ValueError.

ValueError

Generated when the argument to a function or operation is the right type, but of inappropriate value.

WindowsError

Generated by failed system calls on Windows. A subclass of OSError.

ZeroDivisionError

Dividing by zero. A subclass of ArithmeticError.

The exceptions module also defines the exception objects Warning, UserWarning,
DeprecationWarning, RuntimeWarning, and SyntaxWarning. These exceptions are
used as part of the Python warning framework and are described further in the warnings module.

? See Also warnings (121).

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/107.html (14 / 15) [2003/1/1 ､W､ﾈ 02:55:58]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/108#42.html

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/107.html

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/107.html (15 / 15) [2003/1/1 ､W､ﾈ 02:55:58]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=107

Safari | Python Essential Reference, Second Edition -> Python Services

Linux/Unix > Python Essential Reference, Second Edition > A. The Python Library > Python Services See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238111161105083198027148244229119

Python Services

The modules in this section are primarily used to interact with the Python interpreter and its environment.

atexit

The atexit module is used to register functions to execute when the Python interpreter exits. A single function is
provided:

register(func [, args [, kwargs]])

Adds function func to a list of functions that will execute when the interpreter exits. args is a tuple of arguments to pass
to the function. kwargs is a dictionary of keyword arguments. The function is invoked as func (*args ,**kwargs).

Note

● The atexit module should be used instead of setting the sys.exitfunc variable.

? See Also sys (116).

copy

The copy module provides functions for making shallow and deep copies of compound objects, including lists, tuples,
dictionaries, and class instances.

copy(x)

Makes a shallow copy of x by creating a new compound object and duplicating the members of x by reference.

deepcopy(x [, visit])

Makes a deep copy of x by creating a new compound object and recursively duplicating all the members of x . visit is an
optional dictionary that’s used internally to detect and avoid cycles in recursively defined data structures.

A class can implement its own copy methods by implementing the methods _ _copy_ _(self) and _ _deepcopy_
_(self , visit). Both methods should return a copy of the object. In addition, the _ _deepcopy_ _() method
must accept a dictionary visit as described for the deepcopy() function. When writing _ _deepcopy_ _(), it’s
not necessary to modify visit . However, visit should be passed to subsequent calls to deepcopy() (if any)
performed inside the _ _deepcopy_ _() method.

Notes

● This module can be used with simple types such as integers and strings, but there’s little need to do so.

● The copy functions don’t work with modules, class objects, functions, methods, tracebacks, stack frames, files,

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/108.html (1 / 23) [2003/1/1 ､W､ﾈ 02:56:02]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=108
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+9%3A05%3A07+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read1.asp?bookname=0735710910&snode=108&now=5%2F28%2F2002+9%3A05%3A07+PM
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/108#34.html

Safari | Python Essential Reference, Second Edition -> Python Services

sockets, or other similar types. When an object can’t be copied, the copy.error exception is raised.

● The copy_reg module is not used by this module.

? See Also pickle (113).

copy_reg

The copy_reg module extends the capabilities of the pickle and cPickle modules to handle the serialization of
objects described by extension types (as defined in C extension modules). To do this, extension writers use this module to
register reduction and construction functions that are used to serialize and unserialize an object, respectively.

constructor(cfunc)

Declares cfunc to be a valid constructor function. cfunc must be a callable object that accepts the tuple of values
returned by the reduction function given to the pickle() function.

pickle(type, rfunc [, cfunc])

Registers rfunc as a reduction function for objects of type type . rfunc is a function that takes an object of the
specified type and returns a tuple containing the constructor function and a tuple of arguments to pass to that function in
order to reassemble the object. If supplied, cfunc is the constructor function that’s registered using the constructor()
function.

Example

The following example shows how this module would be used to pickle complex numbers. (Note: Because complex
numbers are already pickleable, this example is only intended to illustrate the use of this module.)

Register a method for pickling complex numbers
import copy_reg

Create a complex number from two reals
def construct_complex(real,imag):
 return complex(real,imag) # Built-in function

Take a complex number 'c' and turn it into a tuple of floats
def reduce_complex(c):
 return construct_complex, (c.real, c.imag)

Register our handler
copy_reg.pickle(type(1j),reduce_complex, construct_complex)

When complex numbers are pickled, the reduce_complex() function is called. When the object is later unpickled, the
function construct_complex() is called, using the tuple of values originally returned by reduce_complex().

Notes

● copy_reg is a misnomer—this module isn’t used by the copy module.

● It’s not necessary to use this module when pickling instances of user-defined classes.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/108.html (2 / 23) [2003/1/1 ､W､ﾈ 02:56:02]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/108#28.html

Safari | Python Essential Reference, Second Edition -> Python Services

? See Also pickle (113).

gc

The gc module provides an interface for controlling the garbage collector used to collect cycles in objects such as lists,
tuples, dictionaries, and instances. As various types of container objects are created, they’re placed on a list that’s internal to
the interpreter. Whenever container objects are deallocated, they’re removed from this list. If the number of allocations
exceeds the number of deallocations by a userdefinable threshold value, the garbage collector is invoked. The garbage
collector works by scanning this list and identifying collections of objects that are no longer being used, but that haven’t
been deallocated due to circular dependencies. In addition, the garbage collector uses a three-level generational scheme in
which objects that survive the initial garbage-collection step are placed onto lists of objects that are checked less frequently.
This provides better performance for programs that have a large number of long-lived objects.

collect()

Runs a full garbage collection. This function checks all generations and returns the number of unreachable objects found.

disable()

Disables garbage collection.

enable()

Enables garbage collection.

garbage

A variable containing a read-only list of the uncollectable objects that the garbage collector could not release for some
reason. See notes.

isenabled()

Returns true if garbage collection is enabled.

set_debug(flags)

Set the garbage-collection debugging flags, which can be used to debug the behavior of the garbage collector. flags is the
bitwise-or of the constants DEBUG_STATS, DEBUG_COLLECTABLE, DEBUG_UNCOLLECTABLE, DEBUG_INSTANCES,
DEBUG_OBJECTS, DEBUG_SAVEALL, and DEBUG_LEAK.

get_debug()

Returns the debugging flags currently set.

get_threshold()

Returns the current collection threshold as a tuple.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/108.html (3 / 23) [2003/1/1 ､W､ﾈ 02:56:02]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/108#28.html

Safari | Python Essential Reference, Second Edition -> Python Services

set_threshold(threshold0 [, threshold1[, threshold2]])

Sets the collection frequency of garbage collection. Objects are classified into three generations, where generation 0
contains the youngest objects and generation 2 contains the oldest objects. Objects that survive a garbage-collection step are
moved to the next-oldest generation. Once an object reaches generation 2, it stays in that generation. threshold0 is the
difference between the number of allocations and deallocations that must be reached before garbage collection occurs in
generation 0. threshold1 is the number of collections of generation 0 that must occur before generation 1 is scanned.
threshold2 is the number of collections that must occur in generation 1 before generation 2 is collected. The default
threshold is currently set to (700,10,10). Setting threshold0 to zero disables garbage collection.

Notes

● Circular references involving objects with a _ _del_ _() method are not garbage-collected and are placed on the
list gc.garbage (uncollectable objects). These objects are not collected due to difficulties related to object
finalization and the order in which _ _del_ _() methods should be invoked.

● To debug a leaky program, use gc.set_debug(gc.DEBUG_LEAK).

● The gc module first appeared in Python 2.0.

marshal

The marshal module is used to serialize Python objects. marshal is similar to the pickle and shelve modules, but
is less powerful and intended for use only with simple objects. It shouldn’t be used to implement persistent objects in
general (use pickle instead).

dump(value, file)

Writes the object value to the open file object file . If value is an unsupported type, a ValueError exception is
raised.

dumps(value)

Returns the string written by the dump() function. If value is an unsupported type, a ValueError exception is raised.

load(file)

Reads and returns the next value from the open file object file . If no valid value is read, an EOFError, ValueError,
or TypeError exception will be raised.

loads(string)

Reads and returns the next value from the string string .

Notes

● Data is stored in a binary architecture-independent format.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/108.html (4 / 23) [2003/1/1 ､W､ﾈ 02:56:02]

Safari | Python Essential Reference, Second Edition -> Python Services

● Only None, integers, long integers, floats, complex numbers, strings, Unicode strings, tuples, lists, dictionaries, and
code objects are supported. Lists, tuples, and dictionaries can only contain supported objects. Class instances and
recursive references in lists, tuples, and dictionaries are not supported.

● marshal is significantly faster than pickle, but isn’t as flexible.

? See Also pickle (113), shelve (153).

new

The new module is used to create various types of objects used by the interpreter. The primary use of this module is by
applications that need to create objects in a nonstandard manner (such as when unmarshalling data).

instance(class, dict)

Creates a class instance of class with dictionary dict without calling the _ _init_ _() method.

instancemethod(function, instance, class)

Creates a method object, bound to instance . function must be a callable object. If instance is None, an unbound
instance method is created.

function(code, globals [, name [, argdefs]])

Creates a function object with the given code object and global namespace. name is the name of the function or None (in
which case the function name is taken from code .co_name). argdefs is a tuple containing default parameter values.

code(argcount, nlocals, stacksize, flags, codestring, constants, names, varnames,
filename, name, firstlineno, lnotab)

Creates a new code object. See the section “Code Objects” in Chapter 3 for a description of the arguments.

module(name)

Creates a new module object. name is the module name.

classobj(name, baseclasses, dict)

Creates a new class object. name is the class name, baseclasses is a tuple of base classes, and dict is a dictionary
defining the class namespace.

? See Also Chapter 3.

operator

The operator module provides functions that access the built-in operators and special methods of the interpreter
described in Chapter 3. For example, add(3, 4) is the same as 3 + 4. When the name of a function matches the name

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/108.html (5 / 23) [2003/1/1 ､W､ﾈ 02:56:02]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/108#28.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/111#34.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/39#36.html

Safari | Python Essential Reference, Second Edition -> Python Services

of a special method, it can also be invoked using its name with double underscores—for example, _ _add_ _(3, 4).

Function Description

add(a , b) Returns a + b for numbers

sub(a , b) Returns a - b

mul(a , b) Returns a * b for numbers

div(a , b) Returns a / b

mod(a , b) Returns a % b

neg(a) Returns -a

pos(a) Returns +a

abs(a) Returns the absolute value of a

inv(a) Returns the inverse of a

lshift(a , b) Returns a << b

rshift(a , b) Returns a >> b

and_(a , b) Returns a & b (bitwise and)

or_(a , b) Returns a | b (bitwise or)

xor(a , b) Returns a ^ b (bitwise xor)

not_(a) Returns not a

truth(a) Returns 1 if a is true, 0 otherwise

concat(a , b) Returns a + b for sequences

repeat(a , b) Returns a * b for a sequence a and integer b

contains(a , b) Returns the result of b in a

sequenceIncludes(a , b) Returns the result of b in a (deprecated)

countOf(a , b) Returns the number of occurrences of b in a

indexOf(a , b) Returns the index of the first occurrence of b in a

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/108.html (6 / 23) [2003/1/1 ､W､ﾈ 02:56:02]

Safari | Python Essential Reference, Second Edition -> Python Services

getitem(a , b) Returns a [b]

setitem(a , b , c) a [b] = c

delitem(a , b) del a [b]

getslice(a , b , c) Returns a [b :c]

setslice(a , b , c , v) Sets a [b :c] = v

delslice(a , b , c) del a [b :c]

In addition, the operator module defines the following functions for testing object properties. Note: These functions are
not entirely reliable for user-defined instances, since they don’t perform an exhaustive test of the interface to see whether all
functions are implemented.

Function Description

isMappingType(o) Tests whether o supports the mapping interface

isNumberType(o) Tests whether o supports the number interface

isSequenceType(o) Tests whether o supports the sequence interface

? See Also “Special Methods” in Chapter 3.

pickle and cPickle

The pickle and cPickle modules are used to serialize Python objects into a stream of bytes suitable for storing in a file,
transferring across a network, or placing in a database. This process is variously called pickling, serializing, marshalling, or
flattening. The resulting byte stream can also be converted back into a series of Python objects using an unpickling process.

The pickling and unpickling process is controlled by using Pickler and Unpickler objects as created by the following
two functions:

Pickler(file [, bin])

Creates a pickling object that writes data to the file object file . bin specifies that data should be written in binary
format. By default, a less efficient—but readable—text format is used.

Unpickler(file)

Creates an unpickling object that reads data from the file object file . The unpickler automatically detects whether the
incoming data is in binary or text format.

To serialize an object x onto a file f , the dump() method of the pickler object is used. For example:

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/108.html (7 / 23) [2003/1/1 ､W､ﾈ 02:56:02]

Safari | Python Essential Reference, Second Edition -> Python Services

f = open('myfile', 'w')
p = pickle.Pickler(f) # Send pickled data to file f
p.dump(x) # Dump x

To later unpickle the object from the file, do the following:

f = open('myfile')
u = pickle.Unpickler(f)
x = u.load() # Restore x from file f

Multiple calls to the dump() and load() methods are allowed, provided that the sequence of load() calls used to
restore a collection of previously stored objects matches the sequence of dump() calls used during the pickling process.

The following functions are available as shortcuts to common pickling operations:

dump(object, file [, bin])

Dumps a pickled representation of object to the file object file . Same as Pickler(file , bin
).dump(object).

dumps(object [, bin])

Same as dump(), but returns a string containing the pickled data.

load(file)

Loads a pickled representation of an object from the file object file . Same as Unpickler(file).load().

loads(string)

Same as load(), but reads the pickled representation of an object from a string.

The following objects can be pickled:

● None

● Integers, long integers, floating-point numbers, and complex numbers

● Tuples, lists, and dictionaries containing only pickleable objects

● Normal and Unicode strings

● Classes defined at the top level of a module

● Instances of classes defined at the top level of a module

When class instances are pickled, their corresponding class definition must appear at the top level of a module (that is, no
nested classes). When instances are unpickled, the module in which their class definition appeared is automatically

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/108.html (8 / 23) [2003/1/1 ､W､ﾈ 02:56:02]

Safari | Python Essential Reference, Second Edition -> Python Services

imported. In addition, when instances are re-created, their _ _init_ _() method is not invoked. If it’s necessary to call
_ _init_ _() when unpickling, the class must define a special method _ _getinitargs_ _() that returns a tuple
of arguments to be supplied to _ _init_ _(). If present, pickle will call this function and encode the constructor
arguments in the byte stream for use when unpickling.

It’s also worth noting that when pickling class instances in which the corresponding class definition appears in _ _main_
_, that class definition must be manually reloaded prior to unpickling a saved object (because there’s no way for the
interpreter to know how to automatically load the necessary class definitions back into _ _main_ _ when unpickling).

A class can define customized methods for saving and restoring its state by implementing the special methods _
getstate _() and _ _setstate_ _(). The _ _getstate_ _() method must return a pickleable object
(such as a string) representing the state of the object. The _ _setstate_ _() method accepts the pickled object and
restores its state. If no _ _getstate_ _() method is found, pickle simply pickles an object’s _ _dict_ _
attribute.

When an attempt is made to pickle an unsupported object type, the pickle.PicklingError exception is raised. If an
error occurs while unpickling, the pickle.UnpicklingError exception is raised.

Notes

● Recursive objects (objects containing references to themselves) and object sharing are handled correctly. However, if
the same object is dumped to a Pickler object more than once, only the first instance is saved (even if the object
has changed between dumps).

● When class instances are pickled, their class definitions and associated code for methods are not saved. This allows
classes to be modified or upgraded while still being able to read data saved from older versions.

● pickle defines Pickler and Unpickler as classes that can be subclassed if necessary.

● The cPickle module is significantly faster than pickle, but doesn’t allow subclassing of the Pickler and
Unpickler objects.

● The data format used by pickle is Python-specific and shouldn’t be assumed to be compatible with any external
standards such as XDR.

● Any object that provides write(), read(), and readline() methods can be used in place of a file.

● The copy_reg module is used to register new types with the pickle module.

? See Also shelve (153), marshal (111), copy_reg (109).

site

The site module is automatically imported when the interpreter starts and is used to perform site-wide initialization of
packages and to set the default Unicode encoding. The module works by first creating a list of up to four directory names
created from the values of sys.prefix and sys.exec_prefix. On Windows or Macintosh platforms, the list of
directories is as follows:

[sys.prefix,
 sys.exec_prefix]

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/108.html (9 / 23) [2003/1/1 ､W､ﾈ 02:56:02]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/111#34.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/108#20.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/108#10.html

Safari | Python Essential Reference, Second Edition -> Python Services

On UNIX, the directories are as follows:

[sys.prefix + '/lib/pythonvers/site-packages',
 sys.prefix + '/lib/site-python',
 sys.exec_prefix + '/lib/pythonvers/site-packages',
 sys.exec_prefix + '/lib/site-python']

For each directory in the list, a check is made to see whether the directory exists. If so, it’s added to the sys.path
variable. Next, a check is made to see whether it contains any path configuration files (files with a .pth suffix). A path
configuration file contains a list of directories relative to the location of the path file that should be added to sys.path.
For example:

foo package configuration file 'foo.pth'
foo
bar

Each directory in the path configuration file must be listed on a separate line. Comments and blank lines are ignored. When
the site module loads the file, it checks to see whether each directory exists. If so, the directory is added to sys.path.
Duplicated items are added to the path only once.

After all paths have been added to sys.path, an attempt is made to import a module named sitecustomize. The
purpose of this module is to perform any additional (and arbitrary) site customization. If the import of sitecustomize
fails with an ImportError, the error is silently ignored.

The site module is also responsible for setting the default Unicode encoding. By default, the encoding is set to 'ascii'.
However, the encoding can be changed by placing code in sitecustomize.py that calls
sys.setdefaultencoding() with a new encoding such as 'utf-8'. If you’re willing to experiment, the source
code of site can also be modified to automatically set the encoding based on the machine’s locale settings.

? See Also sys (116), Chapter 8, Chapter 10.

sys

The sys module contains variables and functions that pertain to the operation of the interpreter and its environment. The
following variables are defined:

argv

List of command-line options passed to a program. argv[0] is the name of the program.

builtin_module_names

Tuple containing names of modules built into the Python executable.

byteorder

Native byte-ordering of the machine— 'little' for little-endian or 'big' for big-endian.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/108.html (10 / 23) [2003/1/1 ､W､ﾈ 02:56:02]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/108#34.html

Safari | Python Essential Reference, Second Edition -> Python Services

copyright

String containing copyright message.

_ _displayhook_ _

Original value of the displayhook() function.

_ _excepthook_ _

Original value of the excepthook() function.

dllhandle

Integer handle for the Python DLL (Windows).

exec_prefix

Directory where platform-dependent Python files are installed.

executable

String containing the name of the interpreter executable.

exitfunc

Function object that’s called when the interpreter exits. It can be set to a function taking no parameters. By default,
exitfunc is not defined. Direct use of this variable is discouraged—use the atexit module instead.

? See Also atexit (108).

hexversion

Integer whose hexadecimal representation encodes the version information contained in sys.version_info. The value
of this integer is always guaranteed to increase with newer versions of the interpreter.

last_type, last_value, last_traceback

These variables are set when an unhandled exception is encountered and the interpreter prints an error message.
last_type is the last exception type, last_value is the last exception value, and last_traceback is a stack trace.
Note: The use of these variables is not thread-safe. sys.exc_info() should be used instead.

maxint

Largest integer supported by the integer type.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/108.html (11 / 23) [2003/1/1 ､W､ﾈ 02:56:02]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/108#2.html

Safari | Python Essential Reference, Second Edition -> Python Services

modules

Dictionary mapping module names to module objects.

path

List of strings specifying the search path for modules. See Chapter 8, “Modules and Packages.”

platform

Platform identifier string, such as 'linux-i386'.

prefix

Directory where platform-independent Python files are installed.

ps1, ps2

Strings containing the text for the primary and secondary prompts of the interpreter. Initially, ps1 is set to '>>> ' and
ps2 is set to '... '. The str() method of whatever object is assigned to these values is evaluated to generate the
prompt text.

stdin, stdout, stderr

File objects corresponding to standard input, standard output, and standard error. stdin is used for the raw_input()
and input() functions. stdout is used for print and the prompts of raw_input() and input(). stderr is used
for the interpreter’s prompts and error messages. These variables can be assigned to any object that supports a write()
method operating on a single string argument.

_ _stdin_ _, _ _stdout_ _, _ _stderr_ _

File objects containing the values of stdin, stdout, and stderr at the start of the interpreter.

tracebacklimit

Maximum number of levels of traceback information printed when an unhandled exception occurs. The default value is
1000. A value of 0 suppresses all traceback information and causes only the exception type and value to be printed.

version

Version string.

version_info

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/108.html (12 / 23) [2003/1/1 ､W､ﾈ 02:56:02]

Safari | Python Essential Reference, Second Edition -> Python Services

Version information represented as a tuple (major, minor, micro, releaselevel, serial). All values are
integers except releaselevel, which is a string 'alpha', 'beta', 'candidate', or 'final'.

warnoptions

List of warning options supplied to the interpreter with the -W command-line option.

winver

The version number used to form registry keys on Windows.

The following functions are available:

displayhook([value])

This function is called to print the result of an expression when the interpreter is running in interactive mode. By default, the
value of repr(value) is printed to standard output and value is saved in the variable _ _ builtin_ _._.
displayhook can be redefined to provide different behavior if desired.

excepthook(type, value, traceback)

This function is called when an uncaught exception occurs. type is the exception class, value is the value supplied by the
raise statement, and traceback is a traceback object. The default behavior is to print the exception and traceback to
standard error. However, this function can be redefined to provide alternative handling of uncaught exceptions (which may
be useful in specialized applications such as debuggers or CGI scripts).

exc_info()

Returns a tuple (type , value , traceback) containing information about the exception that’s currently being handled.
type is the exception type, value is the exception parameter passed to raise, and traceback is a traceback object
containing the call stack at the point where the exception occurred. Returns None if no exception is currently being
handled.

exit([n])

Exits from Python by raising the SystemExit exception. n is an integer exit code indicating a status code. A value of 0 is
considered normal (the default); nonzero values are considered abnormal. If a noninteger value is given to n, it’s printed to
sys.stderr and an exit code of 1 is used.

getdefaultencoding()

Gets the default string encoding in Unicode conversions. Returns a value such as 'ascii' or 'utf-8'. The default
encoding is set by the site module.

_getframe([depth])

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/108.html (13 / 23) [2003/1/1 ､W､ﾈ 02:56:02]

Safari | Python Essential Reference, Second Edition -> Python Services

Returns a frame object from the call stack. If depth is omitted or is zero, the topmost frame is returned. Otherwise, the
frame for that many calls below the current frame is returned. For example, _getframe(1) returns the caller’s frame.
Raises ValueError if depth is invalid.

getrecursionlimit()

Returns the recursion limit for functions.

getrefcount(object)

Returns the reference count of object .

setcheckinterval(n)

Sets the number of Python virtual machine instructions that must be executed by the interpreter before it checks for periodic
events such as signals and thread context switches. The default value is 10.

setdefaultencoding(enc)

Sets the default encoding. enc is a string such as 'ascii' or 'utf-8'. This function is only defined inside the site
module. It can be called from user-definable sitecustomize modules.

? See Also site (115).

setprofile(pfunc)

Sets the system profile function that can be used to implement a source code profiler. See the later section “The Python
Profiler” for information about the Python profiler.

setrecursionlimit(n)

Changes the recursion limit for functions. The default value is 1000.

settrace(tfunc)

Sets the system trace function, which can be used to implement a debugger. See the later section “The Python Debugger”
for information about the Python debugger.

traceback

The traceback module is used to gather and print stack traces of a program after an exception has occurred. The
functions in this module operate on traceback objects such as the third item returned by the sys.exc_info() function.

print_tb(traceback [, limit [, file]])

Prints up to limit stack trace entries from traceback to the file file . If limit is omitted, all the entries are printed.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/108.html (14 / 23) [2003/1/1 ､W､ﾈ 02:56:02]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/108#32.html

Safari | Python Essential Reference, Second Edition -> Python Services

If file is omitted, the output is sent to sys.stderr.

print_exception(type, value, traceback [, limit [, file]])

Prints exception information and a stack trace to file . type is the exception type and value is the exception value.
limit and file are the same as in print_tb().

print_exc([limit [, file]])

Same as print_exception() applied to the information returned by the sys.exc_info() function.

print_last([limit [, file]])

Same as print_exception(sys.last_type, sys.last_value, sys.last_traceback, limit ,
file).

print_stack([frame [, limit [, file]]])

Prints a stack trace from the point at which it’s invoked. frame specifies an optional stack frame from which to start.
limit and file have the same meaning as for print_tb().

extract_tb(traceback [, limit])

Extracts the stack trace information used by print_tb().

extract_stack([frame [, limit]])

Extracts the stack trace information used by print_stack().

format_list(list)

Formats stack trace information for printing.

format_exception_only(type, value)

Formats exception information for printing.

format_exception(type, value, traceback [, limit])

Formats an exception and stack trace for printing.

format_tb(traceback [, limit])

Same as format_list(extract_tb(traceback , limit)).

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/108.html (15 / 23) [2003/1/1 ､W､ﾈ 02:56:02]

Safari | Python Essential Reference, Second Edition -> Python Services

format_stack([frame [, limit]])

Same as format_list(extract_stack(frame , limit)).

tb_lineno(traceback)

Returns the line number set in a traceback object.

Additional details are available in the online documentation.

? See Also sys (116),“The Python Debugger” (289), Chapter 3, and http://www.python.org/doc/lib/module-traceback.html.

types

The types module defines names for all the built-in object types. The contents of this module are often used in
conjunction with the built-in isinstance() function and other type-related operations. The module defines the
following variables:

Variable Description

BufferType Buffer object.

BuiltinFunctionType Built-in functions.

CodeType Code object.

ComplexType Complex numbers.

ClassType User-defined class.

DictType Dictionaries.

DictionaryType Alternative name for dictionaries.

EllipsisType Type of Ellipsis.

FileType File object.

FloatType Floating-point numbers.

FrameType Execution frame object.

FunctionType User-defined functions and lambdas.

InstanceType Instance of a user-defined class.

IntType Integers.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/108.html (16 / 23) [2003/1/1 ､W､ﾈ 02:56:02]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/108#34.html
http://www.python.org/doc/lib/module-traceback.html

Safari | Python Essential Reference, Second Edition -> Python Services

LambdaType Alternative name for FunctionType.

ListType Lists.

LongType Long integers.

MethodType User-defined class method.

ModuleType Modules.

NoneType Type of None.

SliceType Extended slice object. Returned by slice().

StringType Strings.

TracebackType Traceback objects.

TupleType Tuples.

TypeType Type of type objects.

UnboundMethodType Alternative name for MethodType.

UnicodeType Unicode string.

XRangeType Object created by using xrange().

Example

import types
if isinstance(s, types.ListType):
 print 'Is a list'
else:
 print 'Is not a list'

? See Also Chapter 3.

warnings

The warnings module provides functions to issue and filter warning messages. Unlike exceptions, warnings are intended
to alert the user to potential problems, but without generating an exception or causing execution to stop. One of the primary
uses of the warnings module is to inform users about deprecated language features that may not be supported in future
versions of Python. For example:

>>> import regex
_ _main_ _:1: DeprecationWarning: the regex module is deprecated; please use the re

module
>>>

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/108.html (17 / 23) [2003/1/1 ､W､ﾈ 02:56:02]

Safari | Python Essential Reference, Second Edition -> Python Services

Like exceptions, warnings are organized into a class hierarchy that describe general categories of warnings. The following
table lists the currently supported categories:

Category Description

Warning Base class of all warning types

UserWarning User-defined warning

DeprecationWarning Deprecated feature

SyntaxWarning Potential syntax problem

RuntimeWarning Potential runtime problem

Each of these classes is available in the _ _builtin_ _ module as well as the exceptions module. In addition,
they’re instances of Exception. This makes it possible to easily convert warnings into errors.

Warnings are issued using the warn() function. For example:

warnings.warn("feature X is deprecated.")
warnings.warn("feature Y might be broken.", RuntimeWarning)

If desired, warnings can be filtered. The filtering process can be used to alter the output behavior of warning messages,
ignore warnings, or turn warnings into exceptions. The filterwarnings() function is used to add a filter for a specific
type of warning. For example:

warnings.filterwarnings(action="ignore",
 message=".*regex.*",
 category=DeprecationWarning)
import regex # Warning message disappears

Limited forms of filtering can also be specified using the -W option to the interpreter. For example:

% python -Wignore:the\ regex::DeprecationWarning

The following functions are defined in the warnings module:

warn(message[, category[, stacklevel]])

Issues a warning. message is a string containing the warning message. category is the warning class, such as
DeprecationWarning. stacklevel is an integer that specifies the stack frame from which the warning message
should originate. By default, category is UserWarning and stacklevel is 1.

warn_explicit(message, category, filename, lineno[, module[, registry]])

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/108.html (18 / 23) [2003/1/1 ､W､ﾈ 02:56:02]

Safari | Python Essential Reference, Second Edition -> Python Services

This is a low-level version of the warn() function. message and category have the same meaning as for warn().
filename , lineno , and module explicitly specify the location of the warning. registry is an object representing
all the currently active filters. If registry is omitted, the warning message is not suppressed.

showwarning(message, category, filename, lineno[, file])

Writes a warning to a file. If file is omitted, the warning is printed to sys.stderr.

formatwarning(message, category, filename, lineno)

Creates the formatted string that’s printed when a warning is issued.

filterwarnings(action[, message[, category[, module[, lineno[, append]]]]])

Adds an entry to the list of warning filters. action is one of 'error', 'ignore ', 'always', 'default',
'once', or 'module', as described in the following table. message is a regular expression string used to match against
the warning message. category is a warning class such as DeprecationError. module is a regular expression
string that’s matched against the module name. lineno is a specific line number or 0 to match against all lines. append
specifies that the filter should be appended to the list of all filters (checked last). By default, new filters are added to the
beginning of the filter list. If any argument is omitted, it defaults to a value that matches all warnings.

Action Description

'error' Convert the warning into an exception.

'ignore' Ignore the warning.

'always' Always print a warning message.

'default' Print the warning once for each location where the warning occurs.

'module' Print the warning once for each module in which the warning occurs.

'once' Print the warning once regardless of where it occurs.

resetwarnings()

Resets all the warning filters. This discards all previous calls to filterwarnings() as well as options specified with -
W.

Notes

● The list of currently active filters is found in the warnings.filters variable.

● The warnings module was first added to Python 2.1.

● When warnings are converted to exceptions, the warning category becomes the exception type. For instance, an error
on DeprecationWarning raises a DeprecationWarning exception.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/108.html (19 / 23) [2003/1/1 ､W､ﾈ 02:56:02]

Safari | Python Essential Reference, Second Edition -> Python Services

● The -W option can be used to specify a warning filter on the command line. The general format of this option is as
follows:

-Waction:message:category:module:lineno

Each part has the same meaning as in the filterwarning() function. However, in this case the message and
module fields specify substrings (instead of regular expressions) for the first part of the warning message and
module name to be filtered.

weakref

The weakref module provides support for weak references. Normally, a reference to an object causes its reference count
to increase—effectively keeping the object alive until the reference goes away. A weak reference, on the other hand,
provides a way of referring to an object without increasing its reference count. A weak reference is created using the
weakref.ref() function as follows:

>>> class A: pass
>>> a = A()
>>> ar = weakref.ref(a) # Create a weak reference to a
>>> print ar
<weakref at 0x135a24; to 'instance' at 0x12ce0c>

Once created, the original object can be obtained from a weak reference by simply calling it as a function with no
arguments. If the underlying object still exists, it will be returned. Otherwise, None is returned to indicate that the original
object no longer exists. For example:

>>> print ar() # Print original object
<_ _main_ _.A instance at 12ce0c>
>>> del a # Delete the original object
>>> print ar() # a is gone, so this now returns None
None
>>>

The following functions are defined by the weakref module:

ref(object[, callback])

Creates a weak reference to object . callback is an optional function that will be called when object is about to be
destroyed. If supplied, this function should accept a single argument that’s the corresponding weak reference object. More
than one weak reference may refer to the same object. In this case, the callback functions will be called in order from the
most recently applied reference to the oldest reference. object can be obtained from a weak reference by calling the
returned weak reference object as a function with no arguments. If the original object no longer exists, None will be
returned.

proxy(object[, callback])

Creates a proxy using a weak reference to object . The returned proxy object is really a wrapper around the original
object that provides access to its attributes and methods. As long as the original object exists, manipulation of the proxy
object will transparently mimic the behavior of the underlying object. On the other hand, if the original object has been

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/108.html (20 / 23) [2003/1/1 ､W､ﾈ 02:56:02]

Safari | Python Essential Reference, Second Edition -> Python Services

destroyed, operations on the proxy will raise a weakref.ReferenceError to indicate that the object no longer exists.
callback is a callback function with the same meaning as for the ref() function. The type of a proxy object is either
ProxyType or CallableProxyType, depending on whether the original object is callable.

getweakrefcount(object)

Returns the number of weak references and proxies that refer to object .

getweakrefs(object)

Returns a list of all weak reference and proxy objects that refer to object .

WeakKeyDictionary([dict])

Creates a dictionary in which the keys are referenced weakly. When there are no more strong references to a key, the
corresponding entry in the dictionary is automatically removed. If supplied, the items in dict are initially added to the
returned WeakKeyDictionary object. Because only certain types of objects can be weakly referenced, there are many
restrictions on acceptable key values. In particular, built-in strings cannot be used as weak keys. However, instances of user-
defined classes that define a _ _hash_ _() method can be used as keys.

WeakValueDictionary([dict])

Creates a dictionary in which the values are referenced weakly. When there are no more strong references to a value,
corresponding entries in the dictionary will be discarded. If supplied, the entries in dict are added to the returned
WeakValueDictionary.

Example

One application of weak references is to create caches of recently computed results. For instance, if a function takes a long
time to compute a result, it might make sense to cache these results and reuse them as long as they’re still in use someplace
in the application. For example:

_resultcache = { }
def foocache(x):
 if _resultcache.has_key(x):
 r = _resultcache[x]() # Get weak ref and dereference it
 if r is not None: return r
 r = foo(x)
 _resultcache[x] = weakref.ref(r)
 return r

Notes

● Only class instances, functions, and methods currently support weak references. Built-in functions and most built-in
types such as lists, dictionaries, strings, and numbers cannot be used.

● The dictionaries returned by WeakKeyDictionary and WeakValueDictionary are subclasses of
UserDict in the UserDict module. WeakKeyDictionary and WeakValueDictionary can also be
subclassed.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/108.html (21 / 23) [2003/1/1 ､W､ﾈ 02:56:02]

Safari | Python Essential Reference, Second Edition -> Python Services

● If an exception occurs during the execution of a callback registered with ref() or proxy(), the exception is
printed to standard error and ignored.

● Weak references are hashable as long as the original object is hashable. Moreover, the weak reference will maintain
its hash value after the original object has been deleted, provided that the original hash value is computed while the
object still exists.

● Weak references can be tested for equality, but not for ordering. If the objects are still alive, references are equal if
the underlying objects have the same value. Otherwise, references are equal if they are the same reference.

● Weak references were first added to Python 2.1.

UserDict, UserList, and UserString

The UserDict, UserList, and UserString modules provide class wrappers around the built-in dictionary, list, and
string types. These wrappers can be used as a base class for classes that want to override or add new methods to these types.
Each module defines a single class UserDict, UserList, and UserString, respectively:

UserDict([initialdata])

Returns a class instance that simulates a dictionary.

UserList([list])

Returns a class instance that simulates a list. list is an optional list that will be used to set the initial value. If omitted, the
list will be set to [].

UserString([sequence])

Returns a class instance that simulates a string. The initial value of the string is

set to the value of str(sequence).

In all cases, the real dictionary, list, or string object can be accessed in the data attribute of the instance.

Example

A dictionary with case-insensitive keys
from UserDict import UserDict
import string

class MyDict(UserDict):
 # Perform a case-insensitive lookup
 def _ _getitem_ _(self,key):
 return self.data[key.lower()]
 def _ _setitem_ _(self,key,value):
 self.data[key.lower()] = value
 def _ _delitem_ _(self,key):
 del self.data[key.lower()]
 def has_key(self,key):
 return self.data.has_key(key.lower())

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/108.html (22 / 23) [2003/1/1 ､W､ﾈ 02:56:02]

Safari | Python Essential Reference, Second Edition -> Python Services

Use new dictionary-like class
d = MyDict()
d['Content-Type'] = 'text/html'
print d['content-type'] # Returns 'text/html'

The UserString module also defines a class MutableString that provides an implementation of mutable strings. For
example:

a = UserString.MutableString("Hello World!")
a[1] = 'a' # a = "Hallo World!"
a[6:] = 'Welt!' # a = "Hallo Welt!"

Although mutable strings are a frequently requested Python feature, the implementation provided by MutableString
has a number of drawbacks. First, the standard string methods such as s .replace() and s .upper() return new
strings as opposed to modifying the string in place. Second, mutable strings cannot be used as dictionary keys. Finally, the
mutable string implementation doesn’t provide extra memory efficiency or runtime performance, as you might expect. For
instance, all changes to a MutableString object involve a full memory copy of the underlying string, as opposed to
simply modifying the contents in place.

Notes

● Use of the MutableString class should generally be discouraged, since it provides no significant benefit over the
use of standard strings. In fact, it will probably make your application run more slowly.

● Subclasses of UserList should provide a constructor that takes one or no arguments.

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/108.html (23 / 23) [2003/1/1 ､W､ﾈ 02:56:02]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=108

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/109.html

Linux/Unix > Python Essential Reference, Second Edition > A. The Python Library >
Mathematics

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238111161105083198025091079203031

Mathematics

The modules in this section provide a variety of mathematical functions.

array

The array module defines a new object type ArrayType that works almost exactly like other
sequence types except that its contents are constrained to a single type. The type of an array is
determined at the time of creation, using one of the following typecodes:

Type Code Description C Type Minimum Size (in bytes)

'c' 8-bit character char 1

'b' 8-bit integer signedchar 1

'B' 8-bit unsigned integer unsignedchar 1

'h' 16-bit integer short 2

'H' 16-bit unsigned integer unsignedshort 2

'i' integer int 4 or 8

'I' unsigned integer unsigned int 4 or 8

'l' long integer long 4 or 8

'L' unsigned long integer unsigned long 4 or 8

'f' single-precision float float 4

'd' double-precision float double 8

The representation of integers and long integers is determined by the machine architecture (they

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/109.html (1 / 9) [2003/1/1 ､W､ﾈ 02:56:03]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=109
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+9%3A05%3A29+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read5.asp?bookname=0735710910&snode=109&now=5%2F28%2F2002+9%3A05%3A29+PM

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/109.html

may be 32 or 64 bits).When values stored as 'L' or 'I' are returned, they’re returned as Python
long integers.

The module defines the following function:

array(typecode [, initializer])

Creates an array of type typecode . initializer is a string or list of values used to initialize
values in the array. The following attributes and methods apply to an array object a :

Item Description

a .typecode Typecode character used to create the array.

a .itemsize Size of items stored in the array (in bytes).

a .append(x) Appends x to the end of the array.

a .buffer_info() Returns (address , length), giving the memory location and length of the buffer
used to store the array.

a .byteswap() Swaps the byte ordering of all items in the array from big-endian to little-endian or vice
versa. This is only supported for integer values.

a .count(x) Returns the number of occurrences of x in a .

a .extend(b) Appends array b to the end of array a .

a .fromfile(f , n) Reads n items (in binary format) from the file object f and appends to the end of the
array. f must be a file object. Raises EOFError if fewer than n items can be read.

a .fromlist(list) Appends items from list to the end of the array.

a .fromstring(s) Appends items from string s where s is interpreted as a string of binary values—same as
would have been read using fromfile().

a .index(x) Returns the index of the first occurrence of x in a . Raises ValueError if not found.

a .insert(i , x) Inserts x before position i .

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/109.html (2 / 9) [2003/1/1 ､W､ﾈ 02:56:03]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/109.html

a .pop([i]) Removes item i from the array and returns it. If i is omitted, the last element is
removed.

a .remove(x) Remove the first occurrence of x from the array. Raises ValueError if not found.

a .reverse() Reverses the order of the array.

a .tofile(f) Writes all items to file f . Data is saved in native binary format.

a .tolist() Converts the array to an ordinary list of values.

a .tostring() Converts to a string of binary data—the same data as would be written using
tofile().

When items are inserted into an array, a TypeError exception is generated if the type of the item
doesn’t match the type used to create the array.

Notes

● This module is used to create large lists in a storage-efficient manner. The resulting arrays
are not suitable for numeric work. For example, the addition operator doesn’t add the
corresponding elements of the arrays; it appends one array to the other. To create storage-
and calculation-efficient arrays, use the Numeric extension available at
http://numpy.sourceforge.net/. Note that the Numeric API is completely different.

● The type of an array object is array.ArrayType.

? See Also struct (144), xdrlib (277) .

cmath

The cmath module provides mathematical functions for complex numbers. All functions accept
and return complex numbers.

Function Description

acos(x) Returns the arccosine of x

acosh(x) Returns the arc hyperbolic cosine of x

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/109.html (3 / 9) [2003/1/1 ､W､ﾈ 02:56:03]

http://numpy.sourceforge.net/
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/110#22.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/115#40.html

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/109.html

asin(x) Returns the arcsine of x

asinh(x) Returns the arc hyperbolic sine of x

atan(x) Returns the arctangent of x

atanh(x) Returns the arc hyperbolic tangent of x

cos(x) Returns the cosine of x

cosh(x) Returns the hyperbolic cosine of x

exp(x) Returns e ** x

log(x) Returns the natural logarithm of x

log10(x) Returns the base 10 logarithm of x

sin(x) Returns the sine of x

sinh(x) Returns the hyperbolic sine of x

sqrt(x) Returns the square root of x

tan(x) Returns the tangent of x

tanh(x) Returns the hyperbolic tangent of x

The following constants are defined:

Constant Description

pi Mathematical constant pi, as a real

e Mathematical constant e, as a real

? See Also math (129).

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/109.html (4 / 9) [2003/1/1 ､W､ﾈ 02:56:03]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/109#8.html

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/109.html

math

The math module defines standard mathematical functions. These functions operate on integers and
floats, but don’t work with complex numbers.

Function Description

acos(x) Returns the arccosine of x

asin(x) Returns the arcsine of x

atan(x) Returns the arctangent of x

atan2(y , x) Returns atan(y / x)

ceil(x) Returns the ceiling of x

cos(x) Returns the cosine of x

cosh(x) Returns the hyperbolic cosine of x

exp(x) Returns e ** x

fabs(x) Returns the absolute value of x

floor(x) Returns the floor of x

fmod(x , y) Returns x % y

frexp(x) Returns the positive mantissa and exponent of x

hypot(x , y) Returns the Euclidean distance, sqrt(x * x + y * y)

ldexp(x , i) Returns x * (2 ** i)

log(x) Returns the natural logarithm of x

log10(x) Returns the base 10 logarithm of x

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/109.html (5 / 9) [2003/1/1 ､W､ﾈ 02:56:03]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/109.html

modf(x) Returns the fractional and integer parts of x (both have the same sign as x)

pow(x , y) Returns x ** y

sin(x) Returns the sine of x

sinh(x) Returns the hyperbolic sine of x

sqrt(x) Returns the square root of x

tan(x) Returns the tangent of x

tanh(x) Returns the hyperbolic tangent of x

The following constants are defined:

Constant Description

pi Mathematical constant pi

e Mathematical constant e

? See Also cmath (129).

random

The random module provides a variety of functions for generating pseudo-random numbers as well
as functions for randomly generating values according to various distributions on the real numbers.
Most of the functions in this module depend on the function random(), which generates uniformly
distributed numbers in the range (0.0, 1.0) using the standard Wichmann-Hill generator.

The following functions are used to control the state of the underlying random-number generator:

seed([x])

Initializes the random-number generator. If x is omitted or is None, the system time is used to seed
the generator. Otherwise, if x is an integer or long integer, its value is used. If x is not an integer, it
must be a hashable object and the value of hash(x) is used as a seed.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/109.html (6 / 9) [2003/1/1 ､W､ﾈ 02:56:03]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/109#6.html

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/109.html

getstate()

Returns an object representing the current state of the generator. This object can later be passed to
setstate() to restore the state.

setstate(state)

Restores the state of the random-number generator from an object returned by getstate().

jumpahead(n)

Quickly changes the state of the generator to what it would be if random() were called n times in
a row. n must be a non-negative integer.

The following function can be used to generate random integers:

randrange(start, stop [, step])

Returns a random integer in range(start ,stop ,step). Doesn’t include the endpoint.

The following functions can be used to randomly manipulate sequences:

choice(seq)

Returns a random element from the nonempty sequence seq .

shuffle(x [, random])

Randomly shuffles the items in the list x in place. random is an optional argument that specifies a
random-generation function. If supplied, it must be a function that takes no arguments and that
returns a floating-point number in the range (0.0, 1.0).

The following functions generate random numbers on real numbers. Parameter names correspond to
the names in the distribution’s standard mathematical equation.

betavariate(alpha, beta)

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/109.html (7 / 9) [2003/1/1 ､W､ﾈ 02:56:03]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/109.html

Returns a value between 0 and 1 from the Beta distribution. alpha > -1 and beta > -1.

cunifvariate(mean, arc)

Circular uniform distribution. mean is the mean angle and arc is the range of the distribution,
centered around the mean angle. Both of these values must be specified in radians in the range
between 0 and pi. Returned values are in the range (mean - arc /2, mean + arc /2).

expovariate(lambd)

Exponential distribution. lambd is 1.0 divided by the desired mean. Returns values in the range
(0, +8).

gamma(alpha, beta)

Gamma distribution. alpha > -1, beta > 0.

gauss(mu, sigma)

Gaussian distribution with mean mu and standard deviation sigma . Slightly faster than
normalvariate().

lognormvariate(mu, sigma)

Log normal distribution. Taking the natural logarithm of this distribution results in a normal
distribution with mean mu , standard deviation sigma .

normalvariate(mu, sigma)

Normal distribution with mean mu and standard deviation sigma .

paretovariate(alpha)

Pareto distribution with shape parameter alpha .

vonmisesvariate(mu, kappa)

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/109.html (8 / 9) [2003/1/1 ､W､ﾈ 02:56:03]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/109.html

von Mises distribution where mu is the mean angle in radians between 0 and 2 * pi, and kappa
is a non-negative concentration factor. If kappa is zero, the distribution reduces to a uniform
random angle over the range 0 to 2 * pi.

weibullvariate(alpha, beta)

Weibull distribution with scale parameter alpha and shape parameter beta .

Notes

● The Numeric extension also provides a number of efficient generators for large samples
and creating independent random-number streams.

● The functions in this module are not thread-safe. If you’re generating random numbers in
different threads, you should use locking to prevent concurrent access.

● The period of the random-number generator (before numbers start repeating) is
6,953,607,871,644. Although this is better than that found in many programming libraries,
it’s not suitable for all applications—especially those related to cryptography.

● New types of random-number generators can be created by subclassing random.Random
and implementing the random(), seed(), getstate(), getstate(), and
jumpahead() methods. All the other functions in this module are actually internally
implemented as methods of Random. Thus, they could be accessed as methods on an
instance of the new random-number generator.

● Significant modifications were made to this module in Python 2.1. Furthermore, some of its
functionality was previously found in the deprecated whrandom module. Please refer to the
online documentation for details of these changes.

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/109.html (9 / 9) [2003/1/1 ､W､ﾈ 02:56:03]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=109

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/110.html

Linux/Unix > Python Essential Reference, Second Edition > A. The Python Library >
String Handling

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238111161105083198031187007140042

String Handling

The modules in this section are used for string processing.

codecs

The codecs module provides an interface for accessing different string encoding and decoding
functions (codecs) as well as a collection of base classes that can be used to define new codecs. The
following functions are available:

register(search_function)

Registers a new codec search function. This function should take a single argument in the form of an
encoding string (for example, 'utf-8') and return a tuple of functions (encoder , decoder ,
streamreader , streamwriter).

lookup(encoding)

Looks up a codec in the codec registry. encoding is a string such as 'utf-8'. Returns a tuple of
functions (encoder , decoder , streamreader , streamwriter). Internally, this
function keeps a cache of previously used encodings. If a match is not found in the cache, all the
registered search functions are invoked until a match is found. If no match is found, LookupError is
raised.

open(filename, mode[, encoding[, errors[, buffering]]])

Opens filename in the given mode and provides transparent data encoding/ decoding according to
the encoding specified in encoding . errors is one of 'strict', 'ignore', or 'replace'.
The default is 'strict'. buffering has the same meaning as for the built-in open() function.

EncodedFile(file, inputenc[, outputenc [, errors]])

A class that provides an encoding wrapper around a file object file . Data written to the file is first
interpreted according to the input encoding inputenc and then written to the file using the output

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/110.html (1 / 26) [2003/1/1 ､W､ﾈ 02:56:06]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=110
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+9%3A05%3A46+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read7.asp?bookname=0735710910&snode=110&now=5%2F28%2F2002+9%3A05%3A46+PM

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/110.html

encoding outputenc . Data read from the file is decoded according to inputenc . If outputenc
is omitted, it defaults to inputenc . errors has the same meaning as for open() and defaults to
'strict'.

To define new codecs, the codecs module defines a base class Codec that is subclassed when
defining encoders and decoders. The interface to a Codec object c is as follows:

c.encode(self, input [, errors])

Encodes input and returns a tuple (output , length) where length is the length of the data in
input that was consumed in the encoding. errors is one of 'strict', 'ignore', or
'replace' and defaults to 'strict'.

c.decode(self, input [, errors])

Decodes input and returns a tuple (output , length) where length is the length of the data that
was consumed in the decoding. errors defaults to 'strict'.

Neither the encode() nor decode() method should maintain internal state. In addition, both
methods must be able to operate with zero-length input, producing a zero-length output object of the
proper type.

In addition, the codecs module provides base classes for four different types of I/O interfaces. All of
these classes are subclasses of Codec.

StreamWriter(stream [, errors])

Provides a wrapper around stream for producing an encoded output stream. An instance w of
StreamWriter provides the same methods as stream . In addition, the following methods are
defined:

w.write(object)

Writes an encoded version of object to w .

w.writelines(list)

Writes a concatenated list of strings to w .

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/110.html (2 / 26) [2003/1/1 ､W､ﾈ 02:56:06]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/110.html

w.reset()

Flushes the output buffers and resets the internal encoding state.

StreamReader(stream [, errors])

Provides a wrapper around stream for reading an encoded input stream. An instance r of
StreamReader provides the same methods as stream in addition to the following methods:

r.read([size])

Reads decoded data from r . size is the approximate number of bytes to read. The decoder may
adjust this value slightly to accommodate the underlying encoding. If size is omitted, all data is read
and decoded.

r.readline([size])

Reads a single line of input using the underlying stream’s readline() method and returns as
decoded data. size is simply passed to the underlying readline() method.

r.readlines([size])

Reads all lines and returns as a list of decoded lines.

r.reset()

Resets the codec buffers. This is usually used to recover from decoding errors.

StreamReaderWriter(stream, reader, writer [, errors])

Provides a wrapper around a stream that provides both encoding and decoding. stream is any file
object. reader must be a factory function or class implementing the StreamReader interface.
writer must be a factory function or class implementing the StreamWriter interface. A
StreamWriter instance provides the combined interface of StreamReader and
StreamWriter.

StreamRecoder(stream, encode, decode, reader, writer [, errors])

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/110.html (3 / 26) [2003/1/1 ､W､ﾈ 02:56:06]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/110.html

Provides a wrapper around stream that allows for conversion between two different encodings (for
example, UTF-8 to and from UTF-16). stream may be any filelike object. The encode and
decode arguments define the encoding and decoding functions that are returned or accepted by the
read() and write() methods, respectively; that is, data returned by read() is encoded according
to encode and data given to write() is decoded according to decode . reader and writer are
the StreamReader and StreamWriter classes used to read and write the actual contents of the
data stream. A StreamRecoder object provides the combined interface of StreamReader and
StreamWriter.

codecs also defines the following byte-order marker constants that can be used to help interpret
platform-specific files:

Constant Description

BOM Native byte-order marker for the machine

BOM_BE Big-endian byte-order marker

BOM_LE Little-endian byte-order marker

BOM32_BE 32-bit big-endian marker

BOM32_LE 32-bit little-endian marker

BOM64_BE 64-bit big-endian marker

BOM64_LE 64-bit little-endian marker

Example

The following example illustrates the implementation of a new encoding using simple exclusive-or
(XOR) based encryption. This only works for 8-bit strings, but it could be extended to support
Unicode:

xor.py: Simple encryption using XOR
import codecs

Encoding/decoding function (works both ways)
def xor_encode(input, errors = 'strict', key=0xff):
 output = "".join([chr(ord(c) ^ key) for c in input])
 return (output,len(input))

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/110.html (4 / 26) [2003/1/1 ､W､ﾈ 02:56:06]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/110.html

XOR Codec class
class Codec(codecs.Codec):
 key = 0xff
 def encode(self,input, errors='strict'):
 return xor_encode(input,errors,self.key)
 def decode(self,input, errors='strict'):
 return xor_encode(input,errors,self.key)

StreamWriter and StreamReader classes
class StreamWriter(Codec,codecs.StreamWriter):
 pass

class StreamReader(Codec,codecs.StreamReader):
 pass

Factory functions for creating StreamWriter and
StreamReader objects with a given key value.

def xor_writer_factory(stream,errors,key=0xff):
 s = StreamWriter(stream,errors)
 s.key = key
 return s;

def xor_reader_factory(stream,errors,key=0xff):
 r = StreamReader(stream,errors)
 r.key = key
 return r

Function registered with the codecs module. Recognizes any
encoding of the form 'xor-hh' where hh is a hexadecimal number.

def lookup(s):
 if (s[:4] == 'xor-'):
 key = int(s[4:],16)
 # Create some functions with key set to desired value
 e = lambda x,err='strict',key=key:xor_encode(x,err,key)
 r = lambda x,err='strict',key=key:xor_reader_factory(x,err,key)
 w = lambda x,err='strict',key=key:xor_writer_factory(x,err,key)
 return (e,e,r,w)

Register with the codec module
codecs.register(lookup)

Now, here’s a short program that uses the encoding:

import xor, codecs
f = codecs.open("foo","w","xor-37")
f.write("Hello World\n") # Writes an "encrypted" version

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/110.html (5 / 26) [2003/1/1 ､W､ﾈ 02:56:06]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/110.html

f.close()

(enc,dec,r,w) = codecs.lookup("xor-ae")
a = enc("Hello World")
a = ('\346\313\302\302\301\216\371\301\334\302\312', 11)

Notes

● Further use of the codecs module is described in Chapter 9.

● Most of the built-in encodings are provided to support Unicode string encoding. In this case, the
encoding functions produce 8-bit strings and the decoding functions produce Unicode strings.

? See Also Chapter 9.

re

The re module is used to perform regular-expression pattern matching and replacement in strings.
Both ordinary and Unicode strings are supported. Regular-expression patterns are specified as strings
containing a mix of text and special-character sequences. Since patterns often make extensive use of
special characters and the backslash, they’re usually written as “raw” strings such as r'(?P<int
>\d+)\.(\d*)'. For the remainder of this section, all regular-expression patterns are denoted using
the raw string syntax.

The following special-character sequences are recognized in regular expression patterns:

Character(s) Description

text Matches the literal string text .

. Matches any character except newline.

^ Matches the start of a string.

$ Matches the end of the string.

* Matches zero or more repetitions of the preceding expression, matching as many repetitions as
possible.

+ Matches one or more repetitions of the preceding expression, matching as many repetitions as
possible.

? Matches zero repetitions or one repetition of the preceding expression.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/110.html (6 / 26) [2003/1/1 ､W､ﾈ 02:56:06]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/110.html

*? Matches zero or more repetitions of the preceding expression, matching as few repetitions as
possible.

+? Matches one or more repetitions of the preceding expression, matching as few repetitions as
possible.

?? Matches zero or one repetitions of the preceding expression, matching as few repetitions as
possible.

{m , n } Matches from m to n repetitions of the preceding expression, matching as many repetitions as
possible.

{m , n }? Matches from m to n repetitions of the preceding expression, matching as few repetitions as
possible.

[...] Matches a set of characters such as r'[abcdef]' or r'[a-zA-z]'. Special characters such
as * are not active inside a set.

[^...] Matches the characters not in the set, such as r'[^0-9]'.

A |B Matches either A or B where A and B are both regular expressions.

(...) Matches the regular expression inside the parentheses as a group and saves the matched substring.

(?iLmsux) Interprets the letters 'i', 'L', 'm', 's', 'u', and 'x' as flag settings corresponding to the
re.I, re.L, re.M, re.S, re.U, re.X flag settings given to re.compile().

(?:...) Matches the regular expression inside the parentheses, but discards the matched substring.

(?P<name >...) Matches the regular expression in the parentheses and creates a named group.The group name
must be a valid Python identifier.

(?P=name) Matches the same text that was matched by an earlier named group.

(?#...) A comment. The contents of the parentheses are ignored.

(?=...) Matches the preceding expression only if followed by the pattern in the parentheses. For example,
r'Hello (?=World)' matches 'Hello ' only if followed by 'World'.

(?!...) Matches the preceding expression only if it’s not followed by the pattern in parentheses. For
example, r'Hello (?!World)' matches 'Hello ' only if it’s not followed by 'World'.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/110.html (7 / 26) [2003/1/1 ､W､ﾈ 02:56:06]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/110.html

(?<=...) Matches the following expression if it’s preceded by a match of the pattern in parentheses. For
example, r'(?<=abc)def' matches 'def' only if it’s preceded by 'abc'.

(?<!...) Matches the following expression only if it’s not preceded by a match of the pattern in
parentheses. For example, r'(?<!abc)def' matches 'def' only if it’s not preceded by
'abc'.

Standard character escape sequences such as '\n' or '\t' are recognized as standard characters in a
regular expression; for example, r'\n+' would match one or more newline characters. In addition,
literal symbols that normally have special meaning in a regular expression can be specified by
preceding them with a backslash. For example, r'*' matches the character *. In addition, a number
of backslash sequences correspond to special sets of characters:

Character(s) Description

\number Matches the text that was matched by a previous group number. Groups are numbered from 1 to 99,
starting from the left.

\A Matches only at the start of the string.

\b Matches the empty string at the beginning or end of a word. A word is a sequence of alphanumeric
characters terminated by whitespace or any other non-alphanumeric character.

\B Matches the empty string not at the beginning or end of a word.

\d Matches any decimal digit. Same as r'[0-9]'.

\D Matches any non-digit character. Same as r'[^0-9]'.

\s Matches any whitespace character. Same as r'[\t\n\r\f\v]'.

\S Matches any non-whitespace character. Same as r'[^ \t\n\r\f\v]'.

\w Matches any alphanumeric character.

\W Matches any character not contained in the set defined by \w.

\Z Matches only at the end of the string.

\\ Matches a literal backslash.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/110.html (8 / 26) [2003/1/1 ､W､ﾈ 02:56:06]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/110.html

The following functions are used to perform pattern matching and replacement.

compile(str [, flags])

Compiles a regular-expression pattern string into a regular-expression object. This object can be passed
as the pattern argument to all the functions that follow. flags is the bitwise-or of the following:

Flag Description

I or IGNORECASE Performs non–case-sensitive matching.

L or LOCALE Uses locale settings for \w, \W, \b, and \B.

M or MULTILINE Makes ^ and $ apply to each line in addition to the beginning and end of the entire string.
(Normally ^ and $ apply only to the beginning and end of an entire string.)

S or DOTALL Makes the dot (.) character match all characters, including the newline.

U or UNICODE Uses information from the Unicode character properties database for \w, \W, \b, and \B.

X or VERBOSE Ignores unescaped whitespace and comments.

search(pattern, string [, flags])

Searches string for the first match of pattern . flags has the same meaning as for
compile(). Returns a MatchObject on success, None if no match was found.

match(pattern, string [, flags])

Checks whether zero or more characters at the beginning of string match pattern . Returns a
MatchObject on success, or None.

split(pattern, string [, maxsplit = 0])

Splits string by the occurrences of pattern . Returns a list of strings including the text matched
by any groups in the pattern. maxsplit is the maximum number of splits to perform. By default, all
possible splits are performed.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/110.html (9 / 26) [2003/1/1 ､W､ﾈ 02:56:06]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/110.html

findall(pattern, string)

Returns a list of all non-overlapping matches of pattern in string , including empty matches. If
the pattern has groups, a list of the text matched by the groups is returned. If more than one group is
used, each item in the list is a tuple containing the text for each group.

sub(pattern, repl, string [, count = 0])

Replaces the leftmost non-overlapping occurrences of pattern in string by the replacement
repl . repl can be a string or a function. If it’s a function, it’s called with a MatchObject and
should return the replacement string. If repl is a string, back references such as '\6' are used to
refer to groups in the pattern.The sequence '\g<name >' is used to refer to a named group. count
is the maximum number of substitutions to perform. By default, all occurrences are replaced. Although
these functions don’t accept a flags parameter like compile(), the same effect can be achieved by
using the (?iLmsux) notation described earlier in this section.

subn(pattern, repl, string [, count = 0])

Same as sub(), but returns a tuple containing the new string and the number of substitutions.

escape(string)

Returns a string with all non-alphanumerics backslashed.

A compiled regular-expression object r created by the compile() function has the following
methods and attributes:

r.search(string [, pos [, endpos]])

Searches string for a match. pos and endpos specify the starting and ending positions for the
search. Returns a MatchObject for a match, None otherwise.

r.match(string [, pos [, endpos]])

Checks whether zero or more characters at the beginning of string match. pos and endpos specify
the range of string to be searched. Returns a MatchObject for a match, None otherwise.

r.split(string [, maxsplit = 0])

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/110.html (10 / 26) [2003/1/1 ､W､ﾈ 02:56:06]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/110.html

Identical to the split() function.

r.findall(string)

Identical to the findall() function.

r.sub(repl, string [, count = 0])

Identical to the sub() function.

r.subn(repl, string [, count = 0])

Identical to the subn() function.

r.flags

The flags argument used when the regular expression object was compiled, or 0.

r.groupindex

A dictionary mapping symbolic group names defined by r'(?P<id >)' to group numbers.

r.pattern

The pattern string from which the regular expression object was compiled.

The MatchObject instances returned by search() and match() contain information about the
contents of groups as well as positional data about where matches occurred. A MatchObject
instance m has the following methods and attributes:

m. expand(template)

Returns a string that would be obtained by doing regular-expression backslash substitution on the
string template . Numeric back-references such as "\1" and "\2" and named references such as
"\g<n >" and "\g<name >" are replaced by the contents of the corresponding group. Note: These
sequences should be specified using raw strings or with a literal backslash character such as r'\1' or
'\\1'.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/110.html (11 / 26) [2003/1/1 ､W､ﾈ 02:56:06]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/110.html

m.group([group1, group2, ...])

Returns one or more subgroups of the match. The arguments specify group numbers or group names. If
no group name is given, the entire match is returned. If only one group is given, a string containing the
text matched by the group is returned. Otherwise, a tuple containing the text matched by each of the
requested groups is returned. An IndexError is raised if an invalid group number or name is given.

m.groups([default])

Returns a tuple containing the text matched by all groups in a pattern. default is the value returned
for groups that didn’t participate in the match (the default is None).

m.groupdict([default])

Returns a dictionary containing all the named subgroups of the match. default is the value returned
for groups that didn’t participate in the match (the default is None).

m.start([group])
m.end([group])

Returns the indices of the start and end of the substring matched by a group. If group is omitted, the
entire matched substring is used. Returns None if the group exists but didn’t participate in the match.

m.span([group])

Returns a 2-tuple (m .start(group), m .end(group)). If group didn’t contribute to the
match, this returns (None, None). If group is omitted, the entire matched substring is used.

m.pos

The value of pos passed to the search() or match() function.

m.endpos

The value of endpos passed to the search() or match() function.

m.re

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/110.html (12 / 26) [2003/1/1 ､W､ﾈ 02:56:06]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/110.html

The regular-expression object whose match() or search() method produced this MatchObject
instance.

m.string

The string passed to match() or search().

When pattern strings don’t specify a valid regular expression, the re.error exception is raised.

m.lastindex

The integer index of the last matched capturing group. None if no group was matched.

m.lastgroup

The name of the last matched capturing group. None if the group didn’t have a name or no group was
matched.

Examples

import re
s = open('foo').read() # Read some text

Replace all occurrences of 'foo' with 'bar'
t = re.sub('foo','bar',s)

Get the title of an HTML document
tmatch = re.search(r'<title>(.*?)</title>',s, re.IGNORECASE)
if tmatch: title = tmatch.group(1)

Extract a list of possible e-mail addresses from s
pat = re.compile(r'([a-zA-Z][\w-]*@[\w-]+(?:\.[\w-]+)*)')
addrs = re.findall(pat,s)

Replace strings that look like URLs such as 'http://www.python.org'
with an HTML anchor tag of the form
http://www.python.org

pat = re.compile(r'((ftp|http)://[\w-]+(?:\.[\w-]+)*(?:/[\w-]*)*)')
t = pat.sub('\\1', s)

Notes

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/110.html (13 / 26) [2003/1/1 ､W､ﾈ 02:56:06]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/110.html

● The implementation of the re module is actually found in the module sre, which provides
support for standard and Unicode strings. An older implementation of re that supports only
standard strings is available in the pre module.

● Detailed information about the theory and implementation of regular expressions can be found
in textbooks on compiler construction. The book Mastering Regular Expressions by Jeffrey
Friedl (O’Reilly & Associates, 1997) may also be useful.

● The re module is 8-bit clean and can process strings that contain null bytes and characters
whose high bit is set. Regular expression patterns cannot contain null bytes, but can match
against the null byte by writing the escape sequence '\000'.

? See Also string (142).

string

The string module contains a number of useful constants and functions for manipulating strings.
Most of the functionality of this module is also available in the form of string methods. The following
constants are defined:

Constant Description

digits The string '0123456789'.

hexdigits The string '0123456789abcdefABCDEF'.

letters Concatenation of lowercase and uppercase.

lowercase String containing all lowercase letters.

octdigits The string '01234567'.

punctuation String of ASCII punctuation characters.

printable String of ASCII characters considered to be printable.

uppercase String containing all uppercase letters.

whitespace String containing all whitespace characters. This usually includes space, tab, linefeed, return,
formfeed, and vertical tab.

The following functions are available:

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/110.html (14 / 26) [2003/1/1 ､W､ﾈ 02:56:06]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/110#14.html

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/110.html

atof(s)

Converts string s to a floating-point number. See the built-in float() function.

atoi(s [, base])

Converts string s to an integer. base is an optional base. See the built-in int() function.

atol(s [, base])

Converts string s to a long integer. base is an optional base. See the built-in long() function.

capitalize(s)

Capitalizes the first character of s . Same as s .capitalize().

capwords(s)

Capitalizes the first letter of each word in s , replaces repeated whitespace characters with a single
space, and removes leading and trailing whitespace.

count(s, sub [, start [, end]])

Counts the number of non-overlapping occurrences of sub in s [start :end]. Same as s
.count(sub , start , end).

expandtabs(s [, tabsize=8])

Expands tabs in string s with whitespace. tabsize specifies the number of characters between tab
stops. Same as s .expandtab(tabsize).

find(s, sub [, start [, end]])
index(s, sub [, start [, end]])

Returns the first index in s [start :end] where the substring sub is found. If start and end
are omitted, the entire string is searched. find() returns -1 if not found, while index() raises a

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/110.html (15 / 26) [2003/1/1 ､W､ﾈ 02:56:06]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/110.html

ValueError exception. Same as s .find(sub ,start ,end) and s .index(sub ,start
,end).

rfind(s, sub [, start [, end]])
rindex(s, sub [, start [, end]])

Like find() and index(), but finds the highest index. Same as s .rfind(sub ,start ,end)
and s .rindex(sub ,start ,end).

lower(s)

Converts all uppercase characters in s to lowercase. Same as s .lower().

maketrans(from, to)

Creates a translation table that maps each character in from to the character in the same position in to
. from and to must be the same length.

split(s [, sep [, maxsplit]])
splitfields(s [, sep [, maxsplit]])

Returns a list of words in s . If sep is omitted or None, the words are separated by whitespace.
Otherwise, the string in sep is used as a delimiter. maxsplit specifies the maximum number of
splits that can occur.The remainder of the string will be returned as the last element. split() is the
same as s .split(sep ,maxsplit).

join(words [, sep])
joinfields(words [, sep])

Concatenates a sequence of words into a string, with words separated by the string in sep . If omitted,
the words are separated by whitespace. Same as sep .join(words).

lstrip(s)
rstrip(s)
strip(s)

Strips leading and/or trailing whitespace from s . Same as s .lstrip(), s .rstrip(), and s
.strip().

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/110.html (16 / 26) [2003/1/1 ､W､ﾈ 02:56:06]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/110.html

swapcase(s)

Changes uppercase to lowercase and lowercase to uppercase in s . Same as s .swapcase().

translate(s, table [, delchars])

Deletes all characters from s that are in delchars and translates the remaining characters using
table . table must be a 256-character string mapping characters to characters as created by
maketrans(). Same as s .translate(table ,delchars).

upper(s)

Converts all lowercase characters in s to uppercase. Same as s .upper().

ljust(s, width)
rjust(s, width)
center(s, width)

Left-aligns, right-aligns, or centers s in a field of width width . Same as s .ljust(width), s
.rjust(width), and s .center(width).

zfill(s, width)

Pads a numeric string on the left with 0 digits up to the given width.

replace(str, old, new [, max])

Replaces max occurrences of old with new in str . If max is omitted, all occurrences are replaced.
Same as s .replace(old ,new ,max).

Notes

● This module is officially considered to be deprecated due to the addition of string methods in
Python 2.0, but is still widely used in existing Python programs.

● Unicode and standard strings are supported by the module, but standard strings are coerced to
Unicode when necessary.

? See Also re (136), Chapter 3.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/110.html (17 / 26) [2003/1/1 ､W､ﾈ 02:56:06]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/110#8.html

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/110.html

StringIO and cStringIO

The StringIO and cStringIO modules define an object that behaves like a file but reads and
writes data from a string buffer.

StringIO([buffer])

Creates a new StringIO object. buffer is an initial value (by default, the empty string).

A StringIO object supports all the standard file operations— read(), write(), and so on—and
the following methods:

s.getvalue()

Returns the contents of the string buffer before close() is called.

s.close()

Releases the memory buffer.

Note

● The StringIO module defines StringIO as a class. cStringIO defines it as an extension
type and provides significantly faster performance.

? See Also Chapter 9, the section “Files” (for file methods).

struct

The struct module is used to convert data between Python and binary data structures (represented as
Python strings). These data structures are often used when interacting with functions written in C or
with binary network protocols.

pack(fmt, v1, v2, ...)

Packs the values v1 , v2 , and so on into a string according to the format string in fmt .

unpack(fmt, string)

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/110.html (18 / 26) [2003/1/1 ､W､ﾈ 02:56:06]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/110.html

Unpacks the contents of string according to the format string in fmt . Returns a tuple of the
unpacked values.

calcsize(fmt)

Calculates the size in bytes of the structure corresponding to a format string fmt .

The format string is a sequence of characters with the following interpretations:

Format C Type Python Type

'x' pad byte No value

'c' char String of length 1

'b' signed char Integer

'B' unsigned char Integer

'h' short Integer

'H' unsigned short Integer

'i' int Integer

'I' unsigned int Integer

'l' long Integer

'L' unsigned long Integer

'f' float Float

'd' double Float

's' char[] String

'p' char[] String with length encoded in the first byte

'P' void * Integer

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/110.html (19 / 26) [2003/1/1 ､W､ﾈ 02:56:06]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/110.html

Each format character can be preceded by an integer to indicate a repeat count (for example, '4i' is
the same as 'iiii'). For the 's' format, the count represents the maximum length of the string, so
'10s' represents a 10-byte string. A format of '0s' indicates a string of zero length. The 'p'
format is used to encode a string in which the length appears in the first byte, followed by the string
data. This is useful when dealing with Pascal code, as is sometimes necessary on the Macintosh. Note:
The length of the string in this case is limited to 255 characters.

When the 'I' and 'L' formats are used to unpack a value, the return value is a Python long integer.
In addition, the 'P' format may return an integer or long integer, depending on the word size of the
machine.

The first character of each format string can also specify a byte ordering and alignment of the packed
data, as shown in the following table.

Format Byte Order Size and Alignment

'@' Native Native

'=' Native Standard

'<' Little-endian Standard

'>' Big-endian Standard

'!' Network (big-endian) Standard

Native byte ordering may be little-endian or big-endian, depending on the machine architecture. The
native sizes and alignment correspond to the values used by the C compiler and are implementation-
specific. The standard alignment assumes that no alignment is needed for any type. The standard size
assumes that short is 2 bytes, int is 4 bytes, long is 4 bytes, float is 32 bits, and double is 64
bits. The 'P' format can only use native byte ordering.

Sometimes it’s necessary to align the end of a structure to the alignment requirements of a particular
type. To do this, end the structure-format string with the code for that type with a repeat count of zero.
For example, the format 'llh0l' specifies a structure that ends on a four-byte boundary (assuming
that longs are aligned on four-byte boundaries). In this case, two pad bytes would be inserted after the
short value specified by the 'h' code. This only works when native size and alignment are being
used—standard size and alignment don’t enforce alignment rules.

? See Also array (127), xdrlib (277).

unicodedata

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/110.html (20 / 26) [2003/1/1 ､W､ﾈ 02:56:06]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/109#2.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/115#40.html

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/110.html

The unicodedata modules provide access to the Unicode character database, which contains
character properties for all Unicode characters.

decimal(unichr[, default])

Returns the decimal integer value assigned to the character unichr . If unichr is not a decimal
digit, default is returned or ValueError is raised.

digit(unichr[, default])

Returns the integer digit value assigned to the character unichr . If unichr is not a digit, default
is returned or ValueError is raised. This function differs from decimal() in that it works with
characters that may represent digits, but that are not decimal digits.

numeric(unichr[, default])

Returns the value assigned to the Unicode character unichr as a floating-point number. If no numeric
value is defined, default is returned or ValueError is raised. For example, the numeric value of
U+2155 (the character for the fraction '1/5') is 0.2.

category(unichr)

Returns a string describing the general category of unichr . The returned string is one of the
following values:

Value Description

Lu Letter, Uppercase

Ll Letter, Lowercase

Lt Letter,Titlecase

Mn Mark, Non-Spacing

Mc Mark, Spacing Combining

Me Mark, Enclosing

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/110.html (21 / 26) [2003/1/1 ､W､ﾈ 02:56:06]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/110.html

Nd Number, Decimal Digit

Nl Number, Letter

No Number, Other

Zs Separator, Space

Zl Separator, Line

Zp Separator, Paragraph

Cc Other, Control

Cf Other, Format

Cs Other, Surrogate

Co Other, Private Use

Cn Other, Not Assigned

Lm Letter, Modifier

Lo Letter, Other

Pc Punctuation, Connector

Pd Punctuation, Dash

Ps Punctuation, Open

Pe Punctuation, Close

Pi Punctuation, Initial quote

Pf Punctuation, Final quote

Po Punctuation, Other

Sm Symbol, Math

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/110.html (22 / 26) [2003/1/1 ､W､ﾈ 02:56:06]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/110.html

Sc Symbol, Currency

Sk Symbol, Modifier

So Symbol, Other

bidirectional(unichr)

Returns the bi-directional category assigned to unichr as a string, or an empty string if no such value
is defined. Returns one of the following:

Value Description

L Left-to-Right

LRE Left-to-Right Embedding

LRO Left-to-Right Override

R Right-to-Left

AL Right-to-Left Arabic

RLE Right-to-Left Embedding

RLO Right-to-Left Override

PDF Pop Directional Format

EN European Number

ES European Number Separator

ET European Number Terminator

AN Arabic Number

CS Common Number Separator

NSM Non-Spacing Mark

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/110.html (23 / 26) [2003/1/1 ､W､ﾈ 02:56:06]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/110.html

BN Boundary Neutral

B Paragraph Separator

S Segment Separator

WS Whitespace

ON Other Neutrals

combining(unichr)

Returns an integer describing the combining class for unichr , or 0 if no combining class is defined.
One of the following values is returned:

Value Description

0 Spacing, split, enclosing, reordrant, and Tibetan subjoined

1 Overlays and interior

7 Nuktas

8 Hiragana/Katakana voicing marks

9 Viramas

10-199 Fixed position classes

200 Below left attached

202 Below attached

204 Below right attached

208 Left attached

210 Right attached

212 Above left attached

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/110.html (24 / 26) [2003/1/1 ､W､ﾈ 02:56:06]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/110.html

214 Above attached

216 Above right attached

218 Below left

220 Below

222 Below right

224 Left

226 Right

228 Above left

230 Above

232 Above right

233 Double below

234 Double above

240 Below (iota subscript)

mirrored(unichr)

Returns 1 if unichr is a “mirrored” character in bi-directional text, 0 otherwise.

decomposition(unichr)

Returns a string containing the decomposition mapping of unichr , or the empty string if no such
mapping is defined. Typically, characters containing accent marks can be decomposed into
multicharacter sequences. For example, decomposition(u'\u00fc') ('ü') returns the string
'0075 0308' corresponding to the letter u and the umlaut (¨) accent mark. The string returned by
this function may also include the following strings:

Value Description

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/110.html (25 / 26) [2003/1/1 ､W､ﾈ 02:56:07]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/110.html

 A font variant (for example, a blackletter form)

<noBreak> A nonbreaking version of a space or hyphen

<initial> An initial presentation form (Arabic)

<medial> A medial presentation form (Arabic)

<final> A final presentation form (Arabic)

<isolated> An isolated presentation form (Arabic)

<circle> An encircled form

<super> A superscript form

<sub> A subscript form

<vertical> A vertical layout presentation form

<wide> A wide (or zenkaku) compatibility character

<narrow> A narrow (or hankaku) compatibility character

<small> A small variant form (CNS compatibility)

<square> A CJK squared-font variant

<fraction> A vulgar fraction form

<compat> Otherwise unspecified compatibility character

Note

● For further details about the Unicode character database, see http://www.unicode.org.

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/110.html (26 / 26) [2003/1/1 ､W､ﾈ 02:56:07]

http://www.unicode.org/
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=110

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/111.html

Linux/Unix > Python Essential Reference, Second Edition > A. The Python Library >
Data Management and Object Persistence

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238111161105080005016228139083140

Data Management and Object Persistence

The modules in this section are used to store data in a variety of DBM-style database formats. These
databases operate like a large disk-based hash table in which objects are stored and retrieved using
unique keys represented by standard strings. Most of these modules are optional Python extensions
that require third-party libraries and that must be enabled when Python is built. See Appendix B,
“Extending and Embedding Python,” for details on enabling optional modules.

All the databases are opened using a variation of the open() function (defined in each database
module):

open(filename [, flag [, mode]])

Opens the database file filename and returns a database object. flag is 'r' for read-only
access, 'w' for read-write access, 'c' to create the database if it doesn’t exist, or 'n' to force the
creation of a new database. mode is the file-access mode (the default is 0666 on UNIX).

The object returned by the open() function supports the following dictionary-like operations:

Operation Description

d [key] = value Inserts value into the database

value = d [key] Gets data from the database

del d [key] Removes a database entry

d .close() Closes the database

d .has_key(key) Tests for a key

d .keys() Returns a list of keys

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/111.html (1 / 9) [2003/1/1 ､W､ﾈ 02:56:08]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=111
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+9%3A06%3A00+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read0.asp?bookname=0735710910&snode=111&now=5%2F28%2F2002+9%3A06%3A00+PM

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/111.html

In all cases, key must be a standard string. In addition, value must be a standard string for all the
database modules except the shelve module. Unicode strings cannot be used for keys in any of the
modules and cannot be used for values in any module except shelve.

Note

● Most of the database packages described rely on third-party libraries that must be installed in
addition to Python.

anydbm

The anydbm module provides a generic interface that’s used to open a database without knowing
which of the lower-level database packages are actually installed and available. When imported, it
looks for one of the bsddb, gdbm, or dbm modules. If none are installed, the dumbdbm module is
loaded.

A database object is created using the open() function:

open(filename [, flag='r' [, mode]])

Opens the database file filename and returns a database object. If the database already exists, the
whichdb module is used to determine its type and the corresponding database module to use. If the
database doesn’t exist, an attempt is made to create it using the first installed module in the above
list of database modules. flags and mode are as described in the introduction to this section,“Data
Management and Object Persistence” (p. 149).

error

A tuple containing the exceptions that can be raised by each of the supported database modules.

Programs wanting to catch errors should use this tuple as an argument to except. For example:

try:
 d = anydbm.open('foo','r')
except anydbm.error:
 # Handle error

Note

● If the dumbdbm module is the only installed database module, attempts to reopen a
previously created database with anydbm might fail in certain older versions of Python. Use

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/111.html (2 / 9) [2003/1/1 ､W､ﾈ 02:56:08]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/111.html

dumbdbm.open() instead.

? See Also dumbdbm (152), whichdb (154).

bsddb

The bsddb module provides an interface to the Berkeley DB library. Hash, btree, or record-based
files can be created using the appropriate open() call:

hashopen(filename [, flag='r' [, mode]])

Opens the hash format file named filename .

btopen(filename [, flag='r' [, mode]])

Opens the btree format file named filename .

rnopen(filename [, flag='r' [, mode]])

Opens a DB record format file named filename .

Databases created by this module behave like dictionaries, as described in the introduction to this
section (“Data Management and Object Persistence,” p. 149), and additionally provide methods for
moving a “cursor” through records:

Method Description

d .set_location(key) Sets the cursor to the item indicated by the key and returns it.

d .first() Sets the cursor to the first item in the database and returns it.

d .next() Sets the cursor to the next item in the database and returns it.

d .previous() Sets the cursor to the previous item in the DB file and returns it. Not supported on
hash table databases.

d .last() Sets the cursor to the last item in the DB file and returns it. Not supported on hash
table databases.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/111.html (3 / 9) [2003/1/1 ､W､ﾈ 02:56:08]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/111#24.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/111#38.html

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/111.html

d .sync() Synchronizes the database on disk.

Exception

error

Exception raised on non–key-related database errors.

Notes

● This module uses the version 1.85 API of the Berkeley DB package available at
http://www.sleepycat.com.

● All the open() functions accept additional optional arguments that are rarely used. Consult
the online documentation for details.

● Consult New Riders’ Berkeley DB (2001, ISBN 0-7357-1064-3).

? See Also dbhash (151), http://www.python.org/doc/lib/module-bsddb.html.

dbhash

The dbhash module is used to open databases using the bsddb module, but with an interface that
closely matches the interface of the other database modules.

open(filename [, flag='r' [, mode])

Opens a DB database and returns the database object.

A database object d returned by open() behaves like a dictionary and also provides the following
methods:

Method Description

d .first() Returns the first key in the database

d .last() Returns the last key in a database traversal

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/111.html (4 / 9) [2003/1/1 ､W､ﾈ 02:56:08]

http://www.sleepycat.com/
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/111#14.html
http://www.python.org/doc/lib/module-bsddb.html

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/111.html

d .next(key) Returns the next key following key in the database

d .previous(key) Returns the item that comes before key in a forward traversal of the database

d .sync() Writes unsaved data to the disk

Exception

error

Exception raised on database errors other than KeyError. Same as bsddb.error.

Note

● The bsddb module must be installed.

? See Also bsddb (151).

dbm

The dbm module provides an interface to the UNIX dbm library.

open(filename [, flag='r' [, mode]])

Opens a dbm database and returns a dbm object. filename is the name of the database file
(without the .dir or .pag extension). The returned object behaves like a dictionary, as described
in the section introduction (“Data Management and Object Persistence,” p. 149).

Exception

error

Exception raised for dbm-specific errors other than KeyError.

? See Also anydbm (150), gdbm (153).

dumbdbm

The dumbdbm module is a simple DBM-style database implemented in Python. It should only be

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/111.html (5 / 9) [2003/1/1 ､W､ﾈ 02:56:08]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/111#8.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/111#4.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/111#28.html

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/111.html

used when no other DBM database modules are available.

open(filename [, flag [, mode]])

Opens the database file filename . filename should not include any suffixes such as .dat or
.dir. The returned database object behaves like a dictionary, as described in the section
introduction (“Data Management and Object Persistence,” p. 149).

Exception

error

Exception raised for database-related errors other than KeyError.

? See Also anydbm (150), whichdb (154).

gdbm

The gdbm module provides an interface to the GNU DBM library.

open(filename [, flag='r' [, mode]])

Opens a gdbm database with filename filename . Appending 'f' to the flag opens the database
in fast mode. In this mode, altered data is not automatically written to disk after every change,
resulting in better performance. If used, the sync() method should be used to force unwritten data
to be written to disk on program termination.

A gdbm object d behaves like a dictionary as described in the section introduction (“Data
Management and Object Persistence,” p. 149), but also supports the following methods:

Method Description

d .firstkey() Returns the starting key in the database.

d .nextkey(key) Returns the key that follows key in a traversal of the database.

d .reorganize() Reorganizes the database and reclaims unused space. This can be used to shrink the size of
the gdbm file after a lot of deletions have occurred.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/111.html (6 / 9) [2003/1/1 ､W､ﾈ 02:56:08]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/111#4.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/111#38.html

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/111.html

d .sync() Forces unwritten data to be written to disk.

Exception

error

Exception raised for gdbm -specific errors.

Note

● The GNU DBM library is available at www.gnu.org/software/gdbm/gdbm.html.

? See Also anydbm (150), whichdb (154).

shelve

The shelve module provides support for persistent objects using a special “shelf” object. This
object behaves like a dictionary except that all the objects it contains are stored on disk using a
database such as dbm or gdbm. A shelf is created using the shelve.open() function.

open(filename [, flag='c'])

Opens a shelf file. If the file doesn’t exist, it’s created. filename should be the database filename
and should not include a suffix. flag has the same meaning as in the open() function and is one
of 'r', 'w', 'c', or 'n'. If the database file doesn’t exist, it is created. Returns a shelf object.

Once opened, the following dictionary operations can be performed on a shelf:

Operation Description

d [key] = data Stores data at key . Overwrites existing data.

data = d [key] Retrieves data at key .

del d [key] Deletes data at key .

d .has_key(key) Tests for the existence of key .

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/111.html (7 / 9) [2003/1/1 ､W､ﾈ 02:56:08]

http://www.gnu.org/software/gdbm/gdbm.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/111#4.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/111#38.html

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/111.html

d .keys() Returns all keys.

d .close() Closes the shelf.

d .sync() Write unsaved data to disk.

The key values for a shelf must be strings. The objects stored in a shelf must be serializable using
the pickle module.

? See Also open (103).

Shelf (dict)

A class that implements the functionality of a shelf. dict is an existing dictionary object. This
function can be used to create a shelf object that utilizes a preferred database engine. For example, s
= Shelf(dbm.open("foo","c")).

Note

● The shelve module differs from other database modules in that it allows almost any Python
object to be stored.

? See Also pickle (113), Chapter 9.

whichdb

The whichdb module provides a function that attempts to guess which of the several simple
database modules (dbm, gdbm, or dbhash) should be used to open a database file.

whichdb(filename)

filename is a filename without any suffixes. Returns None if the file cannot be opened because
it’s unreadable or doesn’t exist. Returns the empty string if the file format cannot be guessed.
Otherwise, a string containing the required module name is returned, such as 'dbm' or 'gdbm'.

? See Also anydbm (150).

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/111.html (8 / 9) [2003/1/1 ､W､ﾈ 02:56:08]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/108#28.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/111#4.html

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/111.html

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/111.html (9 / 9) [2003/1/1 ､W､ﾈ 02:56:08]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=111

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112.html

Linux/Unix > Python Essential Reference, Second Edition > A. The Python Library > Operating System Services See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238111161105080005017050165152143

Operating System Services

The modules in this section provide access to a wide variety of operating system services with an emphasis on file, process,
and terminal management.

Note: A general familiarity with basic operating system concepts is assumed in this section. Furthermore, a number of
modules provide advanced functionality which is beyond the scope of this book to introduce, but which is presented for
readers who know what they’re doing.

Most of Python’s operating system modules are based on POSIX interfaces. POSIX is a standard that defines a core set of
operating system interfaces. Most UNIX systems support POSIX, and other platforms such as Windows and Macintosh
support large portions of the interface.

Readers may want to supplement the material presented here with additional references. The C Programming Language,
Second Edition by Brian W. Kernighan and Dennis M. Ritchie (Prentice Hall, 1989, ISBN 0-13-110362-8) provides a good
overview of files, file descriptors, and the low-level interfaces on which many of the modules in this section are based. More
advanced readers may want to consult a book such as W. Richard Stevens’ Advanced Programming in the UNIX
Environment (Addison-Wesley, 1992, ISBN 0-201-56317-7). Background material regarding operating system concepts can
be found in a text such as Operating Systems Concepts, 5th Edition by Abraham Silberschatz and Peter Baer Galvin (John
Wiley & Sons, 1998). Threads and network programming are presented in separate sections of this appendix.

commands

The commands module is used to execute system commands as a string and return their output as a string.

getoutput(cmd)

Executes cmd in a shell and returns a string containing both the standard output and standard error streams of the command.

getstatus(filename)

Returns the output of 'ls -ld filename ' as a string. UNIX.

getstatusoutput(cmd)

Like getoutput() except that a 2-tuple (status , output) is returned, where status is the exit code as returned by
the os.wait() function and output is the string returned by getoutput().

mkarg(str)

Turns str into an argument that can be safely used within a command string (using quoting rules of the shell).

Notes

● The os.popen2() call is used to execute commands. This module is available on most UNIX systems, but is not

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/112.html (1 / 81) [2003/1/1 ､W､ﾈ 02:56:19]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=112
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+9%3A06%3A12+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read7.asp?bookname=0735710910&snode=112&now=5%2F28%2F2002+9%3A06%3A12+PM

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112.html

supported on all versions of Windows.

● The returned output strings don’t include a trailing newline.

? See Also os (180), popen2 (195).

crypt

The crypt module provides an interface to the UNIX crypt() routine that’s used to encrypt passwords on many UNIX
systems.

crypt(word, salt)

Encrypts word using a modified DES algorithm. salt is a two-character seed used to initialize the algorithm. Returns the
encrypted word as a string. Only the first eight characters of word are significant.

Example

The following code reads a password from the user and compares it against the value in the system password database:

import getpass
import pwd
import crypt
uname = getpass.getuser() # Get username from environment
pw = getpass.getpass() # Get entered password
realpw = pwd.getpwnam(uname)[1] # Get real password
entrpw = crypt.crypt(pw,realpw[:2]) # Encrypt
if realpw == entrpw: # Compare
 print 'Password Accepted'
else:
 print 'Get lost.'

Note

● Many modern UNIX systems use MD5 or other crytographic hashing algorithms to store passwords.

? See Also pwd (196), getpass (167).

errno

The errno module defines symbolic names for the integer error codes returned by various operating system calls. These
codes are typically found in the errno attribute of an OSError or IOError exception. The os.strerror() function
can be used to translate an error code into a string error message. The following dictionary can also be used to translate an
integer error code into its symbolic name:

errorcode

Dictionary mapping errno integers to symbolic names (such as 'EPERM').

The following list shows the POSIX symbolic names for many system error codes. Not all names are available on all
machines. Some platforms may define additional codes. The codes U,W, M, and A are used to indicate availability of the
following codes for UNIX,Windows, Macintosh, and all platforms, respectively.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/112.html (2 / 81) [2003/1/1 ､W､ﾈ 02:56:19]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112#90.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112#110.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112#114.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112#44.html

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112.html

Error Code Platform Description

E2BIG A Arg list too long.

EACCES A Permission denied.

EADDRINUSE A Address already in use.

EADDRNOTAVAIL A Cannot assign requested address.

EADV U Advertise error.

EAFNOSUPPORT A Address family not supported by protocol.

EAGAIN A Try again.

EALREADY A Operation already in progress.

EBADE U Invalid exchange.

EBADF A Bad file number.

EBADFD U File descriptor in bad state.

EBADMSG U Not a data message.

EBADR U Invalid request descriptor.

EBADRQC U Invalid request code.

EBADSLT U Invalid slot.

EBFONT U Bad font file format.

EBUSY A Device or resource busy.

ECHILD A No child processes.

ECHRNG U Channel number out of range.

ECOMM U Communication error on send.

ECONNABORTED A Software caused connection abort.

ECONNREFUSED A Connection refused.

ECONNRESET A Connection reset by peer.

EDEADLK A Resource deadlock would occur.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/112.html (3 / 81) [2003/1/1 ､W､ﾈ 02:56:19]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112.html

EDEADLOCK U,W File-locking deadlock error.

EDESTADDRREQ A Destination address required.

EDOM A Math argument out of domain of func.

EDOTDOT U RFS-specific error.

EDQUOT A Quota exceeded.

EEXIST A File exists.

EFAULT A Bad address.

EFBIG A File too large.

EHOSTDOWN A Host is down.

EHOSTUNREACH A No route to host.

EIDRM U Identifier removed.

EILSEQ U,W Illegal byte sequence.

EINPROGRESS U,W Operation now in progress.

EINTR A Interrupted system call.

EINVAL A Invalid argument.

EIO A I/O error.

EISCONN A Transport endpoint is already connected.

EISDIR A Is a directory.

EISNAM U Is a named type file.

EL2HLT U Level 2 halted.

EL2NSYNC U Level 2 not synchronized.

EL3HLT U Level 3 halted.

EL3RST U Level 3 reset.

ELIBACC U Cannot access a needed shared library.

ELIBBAD U Accessing a corrupted shared library.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/112.html (4 / 81) [2003/1/1 ､W､ﾈ 02:56:19]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112.html

ELIBEXEC U Cannot exec a shared library directly.

ELIBMAX U Attempting to link in too many shared libraries.

ELIBSCN U .lib section in a.out corrupted.

ELNRNG U Link number out of range.

ELOOP A Too many symbolic links encountered.

EMFILE A Too many open files.

EMLINK U,W Too many links.

EMSGSIZE U,W Message too long.

EMULTIHOP U Multihop attempted.

ENAMETOOLONG U Filename too long.

ENAVAIL U No XENIX semaphores available.

ENETDOWN U,W Network is down.

ENETRESET U,W Network dropped connection because of reset.

ENETUNREACH U,W Network is unreachable.

ENFILE U,W File table overflow.

ENOANO U No anode.

ENOBUFS A No buffer space available.

ENOCSI U No CSI structure available.

ENODATA U No data available.

ENODEV A No such device.

ENOENT A No such file or directory.

ENOEXEC A exec format error.

ENOLCK A No record locks available.

ENOLINK U Link has been severed.

ENOMEM A Out of memory.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/112.html (5 / 81) [2003/1/1 ､W､ﾈ 02:56:19]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112.html

ENOMSG U No message of desired type.

ENONET U Machine is not on the network.

ENOPKG U Package not installed.

ENOPROTOOPT A Protocol not available.

ENOSPC A No space left on device.

ENOSR U Out of streams resources.

ENOSTR U Device not a stream.

ENOSYS A Function not implemented.

ENOTBLK U, M Block device required.

ENOTCONN A Transport endpoint is not connected.

ENOTDIR A Not a directory.

ENOTEMPTY A Directory not empty.

ENOTNAM U Not a XENIX named type file.

ENOTSOCK A Socket operation on non-socket.

ENOTTY A Not a terminal.

ENOTUNIQ U Name not unique on network.

ENXIO A No such device or address.

EOPNOTSUPP A Operation not supported on transport endpoint.

EOVERFLOW U Value too large for defined data type.

EPERM A Operation not permitted.

EPFNOSUPPORT A Protocol family not supported.

EPIPE A Broken pipe.

EPROTO U Protocol error.

EPROTONOSUPPORT A Protocol not supported.

EPROTOTYPE A Protocol wrong type for socket.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/112.html (6 / 81) [2003/1/1 ､W､ﾈ 02:56:19]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112.html

ERANGE A Math result not representable.

EREMCHG U Remote address changed.

EREMOTE A Object is remote.

EREMOTEIO U Remote I/O error.

ERESTART U Interrupted system call should be restarted.

EROFS A Read-only filesystem.

ESHUTDOWN A Cannot send after transport endpoint shutdown.

ESOCKTNOSUPPORT A Socket type not supported.

ESPIPE A Illegal seek.

ESRCH A No such process.

ESRMNT U srmount error.

ESTALE A Stale NFS file handle.

ESTRPIPE U Streams pipe error.

ETIME U Timer expired.

ETIMEDOUT A Connection timed out.

ETOOMANYREFS A Too many references: Cannot splice.

ETXTBSY U, M Text file busy.

EUCLEAN U Structure needs cleaning.

EUNATCH U Protocol driver not attached.

EUSERS A Too many users.

EWOULDBLOCK A Operation would block.

EXDEV A Cross-device link.

EXFULL U Exchange full.

WSAEACCES W Permission denied.

WSAEADDRINUSE W Address already in use.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/112.html (7 / 81) [2003/1/1 ､W､ﾈ 02:56:19]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112.html

WSAEADDRNOTAVAIL W Cannot assign requested address.

WSAEAFNOSUPPORT W Address family not supported by protocol family.

WSAEALREADY W Operation already in progress.

WSAEBADF W Invalid file handle.

WSAECONNABORTED W Software caused connection abort.

WSAECONNREFUSED W Connection refused.

WSAECONNRESET W Connection reset by peer.

WSAEDESTADDRREQ W Destination address required.

WSAEDISCON W Remote shutdown.

WSAEDQUOT W Disk quota exceeded.

WSAEFAULT W Bad address.

WSAEHOSTDOWN W Host is down.

WSAEHOSTUNREACH W No route to host.

WSAEINPROGRESS W Operation now in progress.

WSAEINTR W Interrupted system call.

WSAEINVAL W Invalid argument.

WSAEISCONN W Socket already connected.

WSAELOOP W Cannot translate name.

WSAEMFILE W Too many open files.

WSAEMSGSIZE W Message too long.

WSAENAMETOOLONG W Name too long.

WSAENETDOWN W Network is down.

WSAENETRESET W Network dropped connection on reset.

WSAENETUNREACH W Network is unreachable.

WSAENOBUFS W No buffer space is available.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/112.html (8 / 81) [2003/1/1 ､W､ﾈ 02:56:19]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112.html

WSAENOPROTOOPT W Bad protocol option.

WSAENOTCONN W Socket is not connected.

WSAENOTEMPTY W Cannot remove non-empty directory.

WSAENOTSOCK W Socket operation on non-socket.

WSAEOPNOTSUPP W Operation not supported.

WSAEPFNOSUPPORT W Protocol family not supported.

WSAEPROCLIM W Too many processes.

WSAEPROTONOSUPPORT W Protocol not supported.

WSAEPROTOTYPE W Protocol wrong type for socket.

WSAEREMOTE W Item not available locally.

WSAESHUTDOWN W Cannot send after socket shutdown.

WSAESOCKTNOSUPPORT W Socket type not supported.

WSAESTALE W File handle no longer available.

WSAETIMEDOUT W Connection timed out.

WSAETOOMANYREFS W Too many references to a kernel object.

WSAEUSERS W Quota exceeded.

WSAEWOULDBLOCK W Resource temporaily unavailable.

WSANOTINITIALISED W Successful WSA Startup not performed.

WSASYSNOTREADY W Network subsystem not available.

WSAVERNOTSUPPORTED W Winsock.dll version out of range.

? See Also os (180).

fcntl

The fcntl module performs file and I/O control on UNIX file descriptors. File descriptors can be obtained using the
fileno() method of a file or socket object. This module relies on a large number of constants defined in the FCNTL
module (that should also be imported).

fcntl(fd, cmd [, arg])

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/112.html (9 / 81) [2003/1/1 ､W､ﾈ 02:56:19]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112#90.html

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112.html

Performs command cmd on an open file descriptor fd . cmd is an integer command code. arg is an optional argument that’s
either an integer or a string. If arg is passed as an integer, the return value of this function is an integer. If arg is a string,
it’s interpreted as a binary data structure, and the return value of the call is the contents of the buffer converted back into a
string object. The following commands are available (these constants are defined in the FCNTL module):

Command Description

F_DUPFD Duplicates a file descriptor. arg is the lowest number that the new file descriptor can assume. Similar to the os.dup() system
call.

F_SETFD Sets the close-on-exec flag to arg (0 or 1). If set, the file is closed on an exec() system call.

F_GETFD Returns the close-on-exec flag.

F_SETFL Sets status flags to arg , which is the bitwise-or of the following:

O_NDELAY—Nonblocking I/O (System V).

O_APPEND—Append mode (System V).

O_SYNC—Synchronous write (System V).

FNDELAY—Nonblocking I/O (BSD).

FAPPEND—Append mode (BSD).

FASYNC—Sends SIGIO signal to process group when I/O is possible (BSD).

F_GETFL Gets status flags as set by F_SETFL.

F_GETOWN Gets process ID or process group ID set to receive SIGIO and SIGURG signals (BSD).

F_SETOWN Sets process ID or process group ID to receive SIGIO and SIGURG signals (BSD).

F_GETLK Returns flock structure used in file locking operations.

F_SETLK Locks a file, returning -1 if the file is already locked.

F_SETLKW Locks a file, but waits if the lock cannot be acquired.

An IOError exception is raised if the fcntl() function fails. The F_GETLK and F_SETLK commands are supported
through the lockf() function.

ioctl(fd, op, arg)

This function is like the fcntl() function, except that the operations are defined in the library module IOCTL. The IOCTL
module may be unavailable on some platforms.

flock(fd, op)

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/112.html (10 / 81) [2003/1/1 ､W､ﾈ 02:56:19]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112.html

Performs a lock operation op on file descriptor fd . op is the bitwise-or of the following constants found in fnctl:

Item Description

LOCK_EX Exclusive lock.

LOCK_NB Don’t lock when locking.

LOCK_SH Shared lock.

LOCK_UN Unlock.

In nonblocking mode, an IOError exception is raised if the lock cannot be acquired.

lockf(fd, op [, len [, start [, whence]]])

Performs record or range locking on part of a file. op is the same as for the flock() function. len is the number of bytes
to lock. start is the starting position of the lock relative to the value of whence . whence is 0 for the beginning of the
file, 1 for the current position, and 2 for the end of the file.

Examples

import fcntl, FCNTL

Set the close-on-exec bit for a file object f
fcntl.fcntl(f.fileno(), FCNTL.F_SETFD, 1)

Lock a file (blocking)
fcntl.flock(f.fileno(), fcntl.LOCK_EX)

Lock the first 8192 bytes of a file (nonblocking)
try:
 fcntl.lockf(f.fileno(), fcntl.LOCK_EX | fcntl.LOCK_NB, 8192, 0, 0)
except IOError,e:
 print "Unable to acquire lock", e

Notes

● The set of available fcntl() commands and options is system-dependent. The FCNTL module may contain well
over 100 constants on some platforms.

● Many of the functions in this module can also be applied to the file descriptors of sockets.

? See Also os (180), socket (252).

filecmp

The filecmp module provides functions that can be used to compare files and directories.

cmp(file1, file2 [, shallow[, use_statcache]])

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/112.html (11 / 81) [2003/1/1 ､W､ﾈ 02:56:19]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112#90.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/114#64.html

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112.html

Compares the files file1 and file2 and returns 1 if they’re equal, 0 if not. By default, files that have identical attributes
as returned by os.stat() are considered to be equal. If the shallow parameter is specified and is false, the contents of
the two files are compared to determine equality. In this case, subsequent comparisons between the same two files will return
a cached result unless the os.stat() data for one of the files changes. If use_statcache is given, values of
os.stat() are cached and used in subsequent comparisons. This latter option improves performance, but prevents the
module from detecting changes to previously compared files.

cmpfiles(dir1, dir2, common[, shallow[, use_statcache]])

Compares the contents of the files contained in the list common in the two directories dir1 and dir2 . Returns a tuple
containing three lists of filenames (match , mismatch ,errors). match lists the files that are the same in both
directories, mismatch lists the files that don’t match, and errors lists the files that could not be compared for some
reason. The shallow and use_statcache parameters have the same meaning as for cmp().

dircmp(dir1, dir2 [, ignore[, hide]])

Creates a directory comparison object that can be used to perform various comparison operations on the directories dir1 and
dir2 . ignore is a list of filenames to ignore and has a default value of ['RCS','CVS','tags']. hide is a list of
filenames to find and defaults to the list [os.curdir, os.pardir] (['.', '..'] on UNIX).

A directory object d returned by dircmp() has the following methods and attributes:

d.report()

Compares directories dir1 and dir2 and prints a report to sys.stdout.

d.report_partial_closure()

Compares dir1 and dir2 and common immediate subdirectories.

d.report_full_closure()

Compares dir1 and dir2 and all subdirectories recursively.

d.left_list

Lists the files and subdirectories in dir1 . The contents are filtered by hide and ignore .

d.right_list

Lists the files and subdirectories in dir2 . The contents are filtered by hide and ignore .

d.common

Lists the files and subdirectories found in both dir1 and dir2 .

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/112.html (12 / 81) [2003/1/1 ､W､ﾈ 02:56:19]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112.html

d.left_only

Lists the files and subdirectories found only in dir1 .

d.right_only

Lists the files and subdirectories found only in dir2 .

d.common_dirs

Lists the subdirectories that are common to dir1 and dir2 .

d.common_files

Lists the files that are common to dir1 and dir2 .

d.common_funny

Lists the files in dir1 and dir2 with different types or for which no information can be obtained from os.stat().

d.same_files

Lists the files with identical contents in dir1 and dir2 .

d.diff_files

Lists the files with different contents in dir1 and dir2 .

d.funny_files

Lists the files that are in both dir1 and dir2 , but that could not be compared.

d.subdirs

A dictionary that maps names in d .common_dirs to additional dircmp objects.

Note

● The attributes of a dircmp object are evaluated lazily and not determined at the time the dircmp object is first
created.

fileinput

The fileinput module iterates over a list of input files and reads their contents line by line. The main interface to the
module is the following function:

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/112.html (13 / 81) [2003/1/1 ､W､ﾈ 02:56:19]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112.html

input([files [, inplace [, backup]]])

Creates an instance of the FileInput class. files is an optional list of filenames to be read (a single filename is also
permitted). If omitted, the filenames are read from the command line in sys.argv[1:]. An empty list implies input from
stdin, as does a filename of '-'. If inplace is set to 1, each input file is moved to a backup file and sys.stdout is
redirected to overwrite the original input file. The backup file is then removed when the output is closed. The backup option
specifies a filename extension such as .bak that is appended to each filename in order to create the names of backup files.
When given, the backup files are not deleted. By default, backup is the empty string and no backup files are created.

All FileInput instances have the following methods. These methods are also available as functions that apply to the last
instance created by the input() function.

Method Description

filename() Returns the name of the file currently being read

lineno() Returns the cumulative line number just read

filelineno() Returns the line number in the current file

isfirstline() Returns true if the line just read was the first line of a file

isstdin() Returns true if the input is stdin

nextfile() Closes the current file and skips to the next file

close() Closes the file sequence

In addition, the FileInput instance returned by input() can be used as an iterator for reading all input lines.

Example

The following code reads and prints all the input lines from a list of files supplied on the command line:

import fileinput
for line in fileinput.input():
 print '%5d %s' % (fileinput.lineno(), line),

Notes

● All files opened by this module are opened in text mode.

● An IOError is raised if a file cannot be opened.

● Empty files are opened and closed immediately.

● All lines returned include trailing newlines unless the last line of an input file doesn’t include a newline.

● MS-DOS/Windows short filenames (eight characters plus a three-letter suffix) are not supported.

? See Also glob (170), fnmatch (165).

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/112.html (14 / 81) [2003/1/1 ､W､ﾈ 02:56:19]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112#58.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112#32.html

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112.html

findertools

The findertools module is used to access some of the functionality in the Macintosh Finder. All file and folder
parameters can be specified either as full pathname strings or as FSSpec objects as created using the macfs module.

launch(file)

Launches a file either by launching an application or by opening a document in the correct application.

Print(file)

Prints a file.

copy(file, destdir)

Copies file to the folder destdir .

move(file, destdir)

Moves file to the folder destdir .

sleep()

Puts the Macintosh to sleep (if supported).

restart()

Restarts the machine.

shutdown()

Shuts down the machine.

? See Also macfs (173), macostools (176).

fnmatch

The fnmatch module provides support for matching filenames using UNIX shell-style wildcard characters:

Character(s) Description

* Matches everything

? Matches any single character

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/112.html (15 / 81) [2003/1/1 ､W､ﾈ 02:56:19]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112#76.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112#78.html

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112.html

[seq] Matches any character in seq

[!seq] Matches any character not in seq

The following functions can be used to test for a wildcard match:

fnmatch(filename, pattern)

Returns true or false depending on whether filename matches pattern . Case sensitivity depends on the operating
system (certain platforms, such as Windows, are not case sensitive).

fnmatchcase(filename, pattern)

Performs a case-sensitive comparison of filename against pattern .

Examples

fnmatch('foo.gif', '*.gif') # Returns true
fnmatch('part37.html', 'part3[0-5].html') # Returns false

? See Also glob (170).

getopt

The getopt module is used to parse command-line options (typically passed in sys.argv).

getopt(args, options [, long_options])

Parses the command-line options supplied in the list args . options is a string of letters corresponding to the single-letter
options that a program wants to recognize (for example, '-x'). If an option requires an argument, the option letter must be
followed by a colon. If supplied, long_options is a list of strings corresponding to long option names. When supplied in
args , these options are always preceded by a double hyphen (-) such as in '--exclude' (the leading -is not supplied in
long_options). Long option names requiring an argument should be followed by an equal sign (=). The function returns
a list of (option , value) pairs matched and a list of program arguments supplied after all of the options. The options
are placed in the list in the same order in which they were found. Long and short options can be mixed. Option names are
returned with the leading hyphen () or double hyphen (-).

Exception

error

Exception raised when an unrecognized option is found or when an option requiring an argument is given none. The
exception argument is a string indicating the cause of the error.

Example

>>> import getopt
>>> args = ['-a', '-b', 'foo', '-cd', 'blah', '--exclude','bar', 'x1', 'x2']

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/112.html (16 / 81) [2003/1/1 ､W､ﾈ 02:56:19]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112#58.html

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112.html

>>> opts, pargs = getopt.getopt(args, 'ab:cd:', ['exclude='])
>>> opts
[('-a', ''), ('-b', 'foo'), ('-c',''), ('-d,'blah'),('--exclude', 'bar')]
>>> pargs
['x1', 'x2']
>>>

Notes

● Only single-letter command-line options can be recognized with a single hyphen (). For example, '-n 3' is legal,
but '-name 3' isn’t.

● More than one single-letter option can be combined, provided that all but the last option take no arguments. The '-cd
blah' option in the example illustrates this behavior.

? See Also sys (116).

getpass

The getpass module provides support for reading passwords and usernames.

getpass([prompt])

Prompts the user for a password without echoing. The default prompt is 'Password: '. Returns the entered password as a
string.

getuser()

Returns the login name of the user by first checking the environment variables $LOGNAME, $USER, $LNAME, and
$USERNAME and then checking the system password database. Raises a KeyError exception if no name can be found.
UNIX and Windows.

Notes

● An example of getpass is shown in the documentation for the crypt module.

● On UNIX, the getpass module depends on the termios module, which is disabled by default on some systems.

? See Also pwd (196), crypt (155).

gettext

The gettext module provides an interface to the GNU gettext library, which is used to provide support for
internationalization (i18n). The primary use of gettext is to provide translation of selected program text in a way that’s
easy to extend and that’s mostly transparent to the programmer. For example, if you’re writing a program that prompts a user
for a password, you might want it to print password in English, passwort in German, contraseña in Spanish, and so
forth.

gettext works by making simple string substitutions of selected program text. To do this, it consults a specially
constructed locale database that contains mappings of the original program text to translated versions in various languages.
This database is application-specific and must be constructed with special tools (described shortly).

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/112.html (17 / 81) [2003/1/1 ､W､ﾈ 02:56:19]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/108#34.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112#114.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112#6.html

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112.html

The standard interface to gettext relies on the following functions, which are used to both locate the translation database
and produce translated strings.

bindtextdomain(domain [, localedir])

Sets the location of the locale directory for a given domain. domain is typically the name of the application and
localedir is a path such as /usr/local/share/locale.

When searching for translation text, gettext looks for a file in the directory localedir /language
/LC_MESSAGES/domain.mo where language is a language name such as en, de, fr, etc. Normally, the value of
language is determined according to one of the following environment variables: $LANGUAGE, $LANG,
$LC_MESSAGES, $LC_ALL. The language parameter and environment variables can also be a colon-separated list of
acceptable languages. If localedir is omitted, the current binding for domain is returned.

textdomain([domain])

Sets the domain that will be used for subsequent text translations. If domain is omitted, the name of the current domain is
returned.

gettext(message)

Returns the translated version of message according to the values of the current domain, locale database location, and
language. If no suitable translation can be found, message is returned unmodified. This function is usually aliased to _()
as described below.

dgettext(domain, message)

Like gettext(), but message is looked up in the specified domain .

Example

The following example shows how the gettext module is used in an application and how a programmer can construct the
translation database.

myapp.py
import getpass
import gettext

gettext.bindtextdomain("myapp","./locale") # Set locale directory
gettext.textdomain("myapp") # Enabled 'myapp'
_ = gettext.gettext # Alias _() to gettext()

pw = getpass.getpass(_("password:"))
if pw != "spam":
 print _("Authorization failed.\n");
 raise SystemExit

The use of the _() alias is a critical feature of the application. For one thing, this shortens the amount of code that needs to
be typed. More importantly, in order to construct the translation database, automatic tools are used to extract translation text
from program source by looking for special sequences such as _ ("..."). For Python, the program pygettext.py

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/112.html (18 / 81) [2003/1/1 ､W､ﾈ 02:56:19]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112.html

(found in the Tools/i18n directory of the Python distribution) is used to do this. For example:

% pygettext.py -o myapp.po myapp.py

The output of pygettext.py is a human-readable .po file that contains information about the translation strings marked
by _("...') in the original source. To support a new language, the entries of this file are edited by supplying a foreign
language translation. For example, an edited version of myapp.po might look like this:

#: myapp.py:8
msgid "Password:"
msgstr "Passwort:"
#: myapp.py:10
msgid "Authorization failed.\n"
msgstr "Authorisierung fehlgeschlagen.\n"

Once the translations for a specific language are entered, the myapp.po file is converted to a binary form using the special
msgfmt.py program (found in the same directory as pygettext.py). For example:

% msgfmt.py myapp

This produces a file myapp.mo that can be copied to an appropriate subdirectory with the locale directory; for example,
locale/de/LC_MESSAGES/myapp.mo. At this point, you can test the translation by setting the $LANGUAGE
environment variable to the string "de" and running the application. You should now see translated text being printed
instead of the original program text.

Class-Based Interface

In addition to the standard gettext interface, Python provides a class-based interface that provides better support for
Unicode and is more flexible. The following functions are used for this interface:

find(domain[, localedir[, languages]])

Locates the appropriate translation file (.mo file) based on the given domain, locale directory, and languages setting.
domain and localedir are the same strings as used with the bindtextdomain() function. languages is a list of
language strings to be searched. If localedir and languages are omitted, they default to the same values as for
bindtextdomain(). Returns the filename of the translation file on success or None if no match is found.

install(domain[, localedir[, unicode]])

Installs the _() function in the built-in namespace using the settings of domain and localedir . The unicode flag
makes translation strings return as Unicode strings.

translation(domain[, localedir[, languages[, class_]]])

Returns an instance of a translation object for the given domain , localedir , and languages parameters. domain
and localedir are strings and languages is a list of language names. The class _ parameter specifies alternative
translation implementations and is primarily reserved for future expansion. The default value is GNUTranslations.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/112.html (19 / 81) [2003/1/1 ､W､ﾈ 02:56:19]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112.html

The translation object t returned by translation() supports the following methods and attributes:

t.gettext(message)

Returns the translated version of message as a standard string.

t.ugettext(message)

Returns the translated version of message as a Unicode string.

t.info()

Returns a dictionary containing meta-data about the translation, including the character set, author, creation date, and so
forth.

t.charset()

Returns the character set encoding for the translation, such as 'ISO-8859-1'.

Example

The following example illustrates the use of the class-based interface:

myapp.py
import getpass
import gettext

gettext.install("myapp","./locale")
pw = getpass.getpass(_("password:"))
if pw != "spam":
 print _("Authorization failed.\n");
 raise SystemExit

Alternatively, you can directly control a translation instance as follows:

import gettext
t = gettext.translation("myapp","./locale", ["de"])
a = t.gettext("password:")

Notes

● Currently, only the GNU gettext format is supported by this module. However, the module may be modified to
support alternative translation encoding at a later date.

● When Python is run interactively, the _ variable is used to hold the result of the last evaluated expression. This has the
potential to clash with the _() function installed by the gettext module. However, such clashes are probably
unlikely in practice.

glob

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/112.html (20 / 81) [2003/1/1 ､W､ﾈ 02:56:19]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112.html

The glob module returns all filenames in a directory that match a pattern specified using the rules of the UNIX shell (as
described in the fnmatch module).

glob(pattern)

Returns a list of pathnames that match pattern .

Examples

glob('*.html')
glob('image[0-5]*.gif')

Note

● Tilde (~) and shell variable expansion are not performed. Use os.path.expanduser() and
os.path.expandvars(), respectively, to perform these expansions prior to calling glob().

? See Also fnmatch (165), os.path (193).

grp

The grp module provides access to the UNIX group database.

getgrgid(gid)

Returns the group database entry for a group ID as a 4-tuple (gr_name , gr_passwd , gr_gid , gr_mem):

● gr_name is the group name.

● gr_passwd is the group password (if any).

● gr_gid is the integer group ID.

● gr_mem is a list of usernames in the group.

Raises KeyError if the group doesn’t exist.

getgrnam(name)

Same as getgrgid(), but looks up a group by name.

getgrall()

Returns all available group entries as a list of tuples as returned by getgrgid().

? See Also pwd (196).

gzip

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/112.html (21 / 81) [2003/1/1 ､W､ﾈ 02:56:19]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112#32.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112#32.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112#108.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112#114.html

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112.html

The gzip module provides a class GzipFile that can be used to read and write files compatible with the GNU gzip
program. GzipFile objects work like ordinary files except that data is automatically compressed or decompressed.

GzipFile([filename [, mode [, compresslevel [, fileobj]]]])

Opens a GzipFile. filename is the name of a file and mode is one of 'r', 'rb', 'a', 'ab', 'w', or 'wb'. The
default is 'rb'. compresslevel is an integer from 1 to 9 that controls the level of compression. 1 is the fastest and
produces the least compression. 9 is the slowest and produces the most compression (the default). fileobj is an existing
file object that should be used. If supplied, it’s used instead of the file named by filename .

open(filename [, mode [, compresslevel]])

Same as GzipFile(filename , mode , compresslevel). The default mode is 'rb'. The default
compresslevel is 9.

Notes

● Calling the close() method of a GzipFile object doesn’t close files passed in fileobj . This allows additional
information to be written to a file after the compressed data.

● Files produced by the UNIX compress program are not supported.

● This module requires the zlib module.

? See Also zlib (217), zipfile (214).

locale

The locale module provides access to the POSIX locale database, which allows programmers to handle certain cultural
issues in an application without knowing all the specifics of each country where the software is executed. A “locale” defines
a set of parameters that describe the representation of strings, time, numbers, and currency. These parameters are grouped
into the following category codes:

Category Description

LC_CTYPE Character conversion and comparison.

LC_COLLATE String sorting. Affects strcoll() and strxfrm().

LC_TIME Time formatting. Affects time.strftime().

LC_MONETARY Formatting of monetary values.

LC_MESSAGES Message display. This may affect error messages returned by functions such as os.strerror().

LC_NUMERIC Number formatting. Affects format(), atoi(), atof(), and str().

LC_ALL A combination of all locale settings.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/112.html (22 / 81) [2003/1/1 ､W､ﾈ 02:56:19]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112#176.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112#172.html

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112.html

The following functions are available:

setlocale(category [, locale])

If locale is specified, this function changes the locale setting for a particular category. locale is a string that specifies
the locale name. If set to 'C', the portable locale is selected (the default). If the empty string, the default locale from the
user’s environment is selected. If locale is omitted, a string representing the setting for the given category is returned.
Raises the exception locale.Error on failure.

localeconv()

Returns the database of local conventions as a dictionary.

strcoll(string1, string2)

Compares two strings according to the current LC_COLLATE setting. Returns a negative, positive, or zero value depending
on whether string1 collates before or after string2 or is equal to it.

strxfrm(string)

Transforms a string to one that can be used for the built-in function cmp() and still return locale-aware results.

format(format, val [, grouping = 0])

Formats a number val according to the current LC_NUMERIC setting. The format follows the conventions of the %
operator. For floating-point values, the decimal point is modified, if appropriate. If grouping is true, the locale grouping is
taken into account.

str(float)

Formats a floating-point number using the same format as the built-in function str(float), but takes the decimal point
into account.

atof(string)

Converts a string to a floating-point number according to the LC_NUMERIC settings.

atoi(string)

Converts a string to an integer according to the LC_NUMERIC conventions.

Exception

Error

Raised on failure of the setlocale() function.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/112.html (23 / 81) [2003/1/1 ､W､ﾈ 02:56:19]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112.html

Note

● Additional information about this module is available in the online library reference.

? See Also http://www.python.org/doc/lib/module-locale.html.

macfs

The macfs module is used to manipulate files and aliases on the Macintosh. For any function or method that expects a file
argument, the argument may be a full or partial Macintosh pathname string, an FSSpec object, or a 3-tuple (wdRefNum ,
parID , name).

FSSpec(file)

Creates an FSSpec object for the specified file.

RawFSSpec(data)

Creates an FSSpec object, given the raw data for the underlying FSSpec C data structure as a string.

RawAlias(data)

Creates an Alias object, given the raw data for the underlying alias C data structure as a string.

FInfo()

Creates a zero-filled FInfo object.

ResolveAliasFile(file)

Resolves an alias file. Returns a 3-tuple (fsspec , isfolder , aliased) in which fsspec is the resulting FSSpec
object, isfolder is true if fsspec points to a folder, and aliased is true if the file was an alias.

StandardGetFile([type1 [, type2 [, ...]]])

Presents an “open input file” dialog and requests the user to select a file. Up to four four-character file types can be passed to
limit the types of files from which the user can choose. Returns a tuple containing an FSSpec object and a flag indicating
whether the user completed the dialog without canceling.

PromptGetFile(prompt type1 [, type2, [, ...]])

Similar to StandardGetFile(), but allows a prompt to be specified.

StandardPutFile(prompt [, default])

Presents an “open output file” dialog and requests the user to select a filename. prompt is a prompt string and default is

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/112.html (24 / 81) [2003/1/1 ､W､ﾈ 02:56:19]

http://www.python.org/doc/lib/module-locale.html

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112.html

the default filename. Returns a tuple containing an FSSpec object and a flag indicating whether the user completed the
dialog without canceling.

GetDirectory([prompt])

Presents a “select a directory” dialog. prompt is a prompt string. Returns a tuple containing an FSSpec object and a
success indicator.

SetFolder([fsspec])

Sets the folder that’s initially presented to the user when one of the file selection dialogs is presented. fsspec should point
to a file in the folder, not the folder itself (the file need not exist, though). If no argument is passed, the folder will be set to
the current directory.

FindFolder(where, which, create)

Locates a special Macintosh folder such as the Trash or Preferences folder. where is the disk to search and is typically set to
MACFS.kOnSystemDisk. which is a four character string specifying the folder to locate. (These strings are often
specified using one of the symbols in the following table.) create , if set to 1, causes the folder to be created if it doesn’t
exist. Returns a tuple (vrefnum , dirid). The contents of this tuple can be used as the first two elements of the 3-tuple
(vrefnum , dirid , name) suitable for use as a filename.

The following list shows the symbolic names in the MACFS module used for the which parameter of FindFolder():

kALMLocationsFolderType kModemScriptsFolderType

kALMModulesFolderType kOpenDocEditorsFolderType

kALMPreferencesFolderType kOpenDocFolderType

kAppleExtrasFolderType kOpenDocLibrariesFolderType

kAppleMenuFolderType kOpenDocShellPlugInsFolderType

kApplicationAliasType kPreferencesFolderType

kApplicationSupportFolderType kPrintMonitorDocsFolderType

kApplicationsFolderType kPrinterDescriptionFolderType

kAssistantsFolderType kPrinterDriverFolderType

kChewableItemsFolderType kScriptingAdditionsFolderType

kColorSyncProfilesFolderType kSharedLibrariesFolderType

kContextualMenuItemsFolderType kShutdownItemsDisabledFolderType

kControlPanelDisabledFolderType kStartupFolderType

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/112.html (25 / 81) [2003/1/1 ､W､ﾈ 02:56:19]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112.html

kControlPanelFolderType kStartupItemsDisabledFolderType

kControlStripModulesFolderType kStationeryFolderType

kDesktopFolderType kSystemExtensionDisabledFolderType

kDocumentsFolderType kSystemFolderType

kEditorsFolderType kTemporaryFolderType

kExtensionDisabledFolderType kTextEncodingsFolderType

kExtensionFolderType kThemesFolderType

kFavoritesFolderType kTrashFolderType

kFontsFolderType kUtilitiesFolderType

kGenEditorsFolderType kVoicesFolderType

kHelpFolderType kVolumeRootFolderType

kInternetPlugInFolderType kWhereToEmptyTrashFolderType

kMacOSReadMesFolderType

NewAliasMinimalFromFullPath(pathname)

Returns a minimal alias object that points to the given file, which must be specified as a full pathname. This is the only way
to create an alias pointing to a nonexistent file.

FindApplication(creator)

Locates the application with the four-character creator code creator . The function returns an FSSpec object pointing to
the application.

An instance f of an FSSpec object has the following attributes and methods:

f.data

The raw data from the underlying FSSpec object.

f.as_pathname()

Returns the full pathname.

f.as_tuple()

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/112.html (26 / 81) [2003/1/1 ､W､ﾈ 02:56:19]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112.html

Returns the (wdRefNum, parID , name) tuple of the file.

f.NewAlias([file])

Creates an Alias object pointing to the file described by f . If the optional file parameter is given, the alias is created
relative to that file; otherwise, it’s absolute.

f.NewAliasMinimal()

Creates a minimal alias pointing to this file.

f.GetCreatorType()

Returns the four-character creator code and file type.

f.SetCreatorType(creator, type)

Sets the four-character creator and type of the file.

f.GetFInfo()

Returns the FInfo object describing the finder information for the file.

f.SetFInfo(finfo)

Sets the finder info for the file to the values in the FInifo object finfo .

f.GetDates()

Returns a tuple with three floating-point values representing the creation date, modification date, and backup date of the file.

f.SetDates(crdate, moddate, backupdate)

Sets the creation, modification, and backup dates of the file.

An Alias object a has the following attributes and methods:

a.data

The raw data for the Alias record as a binary string.

a.Resolve([file])

Resolves the alias and returns a tuple containing the FSSpec for the file pointed to and a flag indicating whether the Alias
object was modified during the search process. If the file doesn’t exist but the path leading up to it does, a valid FSSpec is

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/112.html (27 / 81) [2003/1/1 ､W､ﾈ 02:56:19]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112.html

returned. file is an optional file that must be supplied if the alias was originally created as a relative alias.

a.GetInfo(index)

Retrieves alias information. index is an integer code that specifies the information to retrieve, and is one of the following
values:

Value Description

-3 Zone name

-2 Server name

-1 Volume name

0 Target name

1 Parent directory name

a.Update(file [, file2])

Updates the alias to point to file . If file2 is present, a relative alias will be created. An FInfo object finfo has the
following attributes:

finfo.Creator

The four-character creator code of the file.

finfo.Type

The four-character type code of the file.

finfo.Flags

The finder flags for the file, as 16-bit integers. The bit values in Flags are defined by the following constants defined in the
module MACFS: kHasBeenInited, kHasBundle, kHasCustomIcon, kIsAlias, kIsInvisible, kIsOnDesk,
kIsShared, kIsStationary, kNameLocked.

finfo.Location

A pointer giving the position of the file’s icon in its folder.

finfo.Fldr

The folder the file is in (as an integer).

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/112.html (28 / 81) [2003/1/1 ､W､ﾈ 02:56:19]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112.html

? See Also macostools (176), findertools (165), http://www.python.org/doc/mac (Macintosh Library Reference).

macostools

The macostools module contains functions for file manipulation on the Macintosh.

copy(src, dst [, createpath [, copytimes]])

Copies file src to dst . If createpath is nonzero, dst must be a pathname, and the folders leading to the destination are
created if necessary. By default, the data and resource forks are copied in addition to some Finder information. If
copytimes is nonzero, the creation, modification, and backup times are copied as well. Custom icons, comments, and icon
positions are not copied. If src is an alias, the original to which the alias points is copied, not the alias file.

copytree(src, dst)

Recursively copies a file tree from src to dst , creating folders as needed. src and dst must be pathname strings.

mkalias(src, dst)

Creates a Finder alias dst pointing to src .

touched(dst)

Tells the finder that the Finder information of dst has changed and that the Finder should update the file’s icon and other
currently viewable information.

BUFSIZ

The buffer size used for copying (in bytes). The default is 1 megabyte.

Note

● Except for copytree(), filenames can be specified as strings or as FSSpec objects created by the macfs module.

? See Also macfs (173).

mmap

The mmap module provides support for a memory-mapped file object. This object behaves both like a file and a string and
can be used in most places where an ordinary file or string is expected. Furthermore, the contents of a memory-mapped file
are mutable. This means that modifications can be made using index-assignment and slice-assignment operators. Unless a
private mapping of the file has been made, such changes directly alter the contents of the underlying file.

A memory-mapping file is created by the mmap() function, which is slightly different on UNIX and Windows.

mmap(fileno, length [, flags, prot])

(UNIX) Returns an mmap object that maps length bytes from the file with integer file descriptor fileno . flags
specifies the nature of the mapping and is the bitwise-or of the following:

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/112.html (29 / 81) [2003/1/1 ､W､ﾈ 02:56:19]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112#78.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112#30.html
http://www.python.org/doc/mac
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112#76.html

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112.html

Flag Meaning

MAP_PRIVATE Create a private copy-on-write mapping. Changes to the object will be private to this process.

MAP_SHARED Share the mapping with all other processes mapping the same areas of the file. Changes to the object will affect all
mappings.

MAP_ANON Used when creating an anonymous shared-memory region on BSD.

MAP_DENYWRITE Disallow writes (not available on all platforms).

MAP_EXECUTABLE Map memory as executable (not available on all platforms).

The default flags setting is MAP_SHARED. prot specifies the memory protections of the object and is the bitwise-or of
the following:

Setting Meaning

PROT_READ Data can be read from the object.

PROT_WRITE Modifications can be made to the object.

PROT_EXEC The object can contain executable instructions.

The default value of prot is PROT_READ | PROT_WRITE. The modes specified in prot must match the access
permissions used to open the underlying file descriptor fileno . In most cases, this means that the file should be opened in
read/write mode (for example, os.open(name , os.O_RDWR)).

mmap(fileno, length[, tagname])

(Windows) Returns an mmap object that maps length bytes from the file specified by the integer file descriptor fileno .
This file should be open for both reading and writing or an error will be generated. tagname is an optional string that can be
used to name the mapping. If the tagname refers to an existing mapping, that mapping is opened. Otherwise, a new
mapping is created. If tagname is None, an unnamed mapping is created.

A memory-mapped file object m supports the following methods.

m.close()

Closes the file. Subsequent operations will result in an exception.

m.find(string[, start])

Returns the index of the first occurrence of string . start specifies an optional starting position. Returns -1 if no match
is found.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/112.html (30 / 81) [2003/1/1 ､W､ﾈ 02:56:19]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112.html

m.flush([offset, size])

Flushes modifications of the in-memory copy back to the filesystem. offset and size specify an optional range of bytes
to flush. Otherwise, the entire mapping is flushed.

m.move(dst, src, count)

Copies count bytes starting at index src to the destination index dst . This copy is performed using the C memmove()
function, which is guaranteed to work correctly when the source and destination regions happen to overlap.

m.read(n)

Reads up to n bytes from the current file position and returns the data as a string.

m.read_byte()

Reads a single byte from the current file position and returns it as a string of length 1.

m.readline()

Returns a line of input starting at the current file position.

m.resize(newsize)

Resizes the memory-mapped object to contain newsize bytes.

m.seek(pos [, whence])

Sets the file position to a new value. pos and whence have the same meaning as for the seek() method on file objects.

m.size()

Returns the length of the file. This value may be larger than the size of the memory-mapped region.

m.tell()

Returns the value of the file pointer.

m.write(string)

Writes a string of bytes to the file at the current file pointer.

m.write_byte(byte)

Writes a single byte into memory at the current file pointer.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/112.html (31 / 81) [2003/1/1 ､W､ﾈ 02:56:19]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112.html

Notes

● Certain memory mappings may only work with a length that’s a multiple of the system pagesize, which is contained in
the constant mmap.PAGESIZE.

● On UNIX SVR4 systems, anonymous mapped memory can be obtained by calling mmap() on the file /dev/zero,
opened with appropriate permissions.

● On UNIX BSD systems, anonymous mapped memory can be obtained by calling mmap() with a negative file
descriptor and the flag mmap.MAP_ANON.

msvcrt

The msvcrt module provides access to a number of useful functions in the Microsoft Visual C runtime library. This module
is available only on Windows.

getch()

Reads a keypress and returns the resulting character. This call blocks if a keypress is not available. If the pressed key was a
special function key, the call returns '\000' or '\xe0' and the next call returns the keycode. This function doesn’t echo
characters to the console, nor can the function be used to read Ctrl+C.

getche()

Like getch() except that characters are echoed (if printable).

get_osfhandle(fd)

Returns the file handle for file descriptor fd . Raises IOError if fd is not recognized.

heapmin()

Forces the internal Python memory manager to return unused blocks to the operating system. This works only on Windows
NT and raises IOError on failure.

kbhit()

Returns true if a keypress is waiting to be read.

locking(fd, mode, nbytes)

Locks part of a file, given a file descriptor from the C runtime. nbytes is the number of bytes to lock relative to the current
file pointer. mode is one of the following integers:

Setting Description

0 Unlocks the file region (LK_UNLCK)

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/112.html (32 / 81) [2003/1/1 ､W､ﾈ 02:56:19]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112.html

1 Locks the file region (LK_LOCK)

2 Locks the file region; nonblocking (LK_NBLCK)

3 Locks for writing (LK_RLCK)

4 Locks for writing; nonblocking (LK_NBRLCK)

Attempts to acquire a lock that take more than approximately 10 seconds result in an error.

open_osfhandle(handle, flags)

Creates a C runtime file descriptor from the file handle handle . flags is the bitwise-or of os.O_APPEND,
os.O_RDONLY, and os.O_TEXT. Returns an integer file descriptor that can be used as a parameter to os.fdopen() to
create a file object.

putch(char)

Prints the character char to the console without buffering.

setmode(fd, flags)

Sets the line-end translation mode for file descriptor fd . flags is os.O_TEXT for text mode and os.O_BINARY for
binary mode.

ungetch(char)

Causes the character char to be “pushed back” into the console buffer. It will be the next character read by getch() or
getche().

Note

● A wide variety of Win32 extensions are available that provide access to the Microsoft Foundation Classes, COM
components, graphical user interfaces, and so forth. These topics are far beyond the scope of this book, but detailed
information about many of these topics is available in Python Programming on Win32 by Mark Hammond and Andy
Robinson (O’Reilly & Associates, 1999). http://www.python.org also maintains an extensive list of contributed
modules for use under Windows.

? See Also _winreg (211).

os

The os module provides a portable interface to common operating-system services. It does this by searching for an OS-
dependent built-in module such as mac or posix and exporting the functions and data as found there. Unless otherwise
noted, functions are available on Windows, Macintosh, and UNIX.

The following general-purpose variables are defined:

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/112.html (33 / 81) [2003/1/1 ､W､ﾈ 02:56:19]

http://www.python.org/
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112#170.html

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112.html

environ

A mapping object representing the current environment variables. Changes to the mapping are reflected in the current
environment.

linesep

The string used to separate lines on the current platform. May be a single character such as '\n' for POSIX or '\r' for
MacOS, or multiple characters such as '\r\n' for Windows.

name

The name of the OS-dependent module imported: 'posix', 'nt', 'dos', 'mac', or 'os2'.

path

The OS-dependent standard module for pathname operations. This module can also be loaded using import os.path.

Process Environment

The following functions are used to access and modify various parameters related to the environment in which a process runs.
Process, group, process group, and session IDs are integers unless otherwise noted.

chdir(path)

Changes the current working directory to path .

ctermid()

Returns a string with the filename of the control terminal for the process. UNIX.

getcwd()

Returns a string with the current working directory.

getegid()

Returns the effective group ID. UNIX.

geteuid()

Returns the effective user ID. UNIX.

getgid()

Returns the real group ID of the process. UNIX.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/112.html (34 / 81) [2003/1/1 ､W､ﾈ 02:56:19]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112.html

getgroups()

Return a list of integer group IDs to which the process owner belongs. UNIX.

getpgrp()

Returns the ID of the current process group. Process groups are typically used in conjunction with job control. The process
group is not necessarily the same as the group ID of the process. UNIX.

getpid()

Returns the real process ID of the current process. UNIX and Windows.

getppid()

Returns the process ID of the parent process. UNIX.

getuid()

Returns the real user ID of the current process. UNIX.

putenv(varname, value)

Sets environment variable varname to value . Changes affect subprocesses started with os.system(), popen(),
fork(), and execv(). Assignments to items in os.environ automatically call putenv(). However, calls to
putenv() don’t update os.environ. UNIX and Windows.

setgid(gid)

Sets the group ID of the current process. UNIX.

setpgrp()

Creates a new process group by calling the system call setpgrp() or setpgrp(0, 0), depending on which version is
implemented (if any). Returns the ID of the new process group. UNIX.

setpgid(pid, pgrp)

Assigns process pid to process group pgrp . If pid is equal to pgrp , the process becomes a new process group leader. If
pid is not equal to pgrp , the process joins an existing group. If pid is 0, the process ID of the calling process is used. If
pgrp is 0, the process specified by pid becomes a process group leader. UNIX.

setreuid(ruid, euid)

Set the real and effective user ID of the calling process. UNIX.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/112.html (35 / 81) [2003/1/1 ､W､ﾈ 02:56:19]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112.html

setregid(rgid, egid)

Set the real and effective group ID of the calling process. UNIX.

setsid()

Creates a new session and returns the newly created session ID. Sessions are typically associated with terminal devices and
the job control of processes that are started within them. UNIX.

setuid(uid)

Sets the real user ID of the current process. This function is privileged and often can be performed only by processes running
as root. UNIX.

strerror(code)

Returns the error message corresponding to the integer error code . UNIX and Windows.

? See Also errno (156).

umask(mask)

Sets the current numeric umask and returns the previous umask. The umask is used to clear permissions bits on files created
by the process. UNIX and Windows.

? See Also os.open (184).

uname()

Returns a tuple of strings (sysname , nodename , release , version , machine) identifying the system type. UNIX.

File Creation and File Descriptors

The following functions provide a low-level interface for manipulating files and pipes. In these functions, files are
manipulated in terms of an integer file descriptor fd . The file descriptor can be extracted from a file object by invoking its
fileno() method.

close(fd)

Closes the file descriptor fd previously returned by open() or pipe().

dup(fd)

Duplicates file descriptor fd . Returns a new file descriptor that’s the lowest-numbered unused file descriptor for the process.
The new and old file descriptors can be used interchangeably. Furthermore, they share state such as the current file pointer
and locks. UNIX and Windows.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/112.html (36 / 81) [2003/1/1 ､W､ﾈ 02:56:19]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112#12.html

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112.html

dup2(oldfd, newfd)

Duplicates file descriptor oldfd to newfd . If newfd already corresponds to a valid file descriptor, it’s closed first. UNIX
and Windows.

fdopen(fd [, mode [, bufsize]])

Returns an open file object connected to file descriptor fd . The mode and bufsize arguments have the same meaning as
in the built-in open() function.

fpathconf(fd, name)

Returns configurable pathname variables associated with the open file with descriptor fd . name is a string that specifies the
name of the value to retrieve. The values are usually taken from parameters contained in system header files such as
<limits.h> and <unistd.h>. POSIX defines the following constants for name :

Constant Description

"PC_ASYNC_IO" Indicates whether asynchronous I/O can be performed on fd .

"PC_CHOWN_RESTRICTED" Indicates whether the chown() function can be used. If fd refers to a directory, this applies to all files in the
directory.

"PC_FILESIZEBITS" Maximum size of a file.

"PC_LINK_MAX" Maximum value of the file’s link count.

"PC_MAX_CANON" Maximum length of a formatted input line. fd refers to a terminal.

"PC_MAX_INPUT" Maximum length of an input line. fd refers to a terminal.

"PC_NAME_MAX" Maximum length of a filename in a directory.

"PC_NO_TRUNC" Indicates whether an attempt to create a file with a name longer than PC_NAME_MAX for a directory will fail
with an ENAMETOOLONG error.

"PC_PATH_MAX" Maximum length of a relative pathname when the directory fd is the current working directory.

"PC_PIPE_BUF" Size of the pipe buffer when fd refers to a pipe or FIFO.

"PC_PRIO_IO" Indicates whether priority I/O can be performed on fd .

"PC_SYNC_IO" Indicates whether synchronous I/O can be performed on fd .

"PC_VDISABLE" Indicates whether fd allows special-character processing to be disabled. fd must refer to a terminal.

Not all names are available on all platforms, and some systems may define additional configuration parameters. However, a
list of the names known to the operating system can be found in the directionary os.pathconf_names. If a known
configuration name is not included in os.pathconf_names, its integer value can also be passed as name . Even if a

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/112.html (37 / 81) [2003/1/1 ､W､ﾈ 02:56:19]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112.html

name is recognized by Python, this function may still raise an OSError if the host operating system doesn’t recognize the
parameter or associate it with the file fd . This function is available only on some versions of UNIX.

fstat(fd)

Returns the status for file descriptor fd . Returns the same values as the os.stat() function. UNIX and Windows.

fstatvfs(fd)

Returns information about the filesystem containing the file associated with file descriptor fd . Returns the same values as
the os.statvfs() function. UNIX.

ftruncate(fd, length)

Truncates the file corresponding to file descriptor fd , so that it’s at most length bytes in size. UNIX.

lseek(fd, pos, how)

Sets the current position of file descriptor fd to position pos . Values of how are as follows: 0 sets the position relative to
the beginning of the file, 1 sets it relative to the current position, and 2 sets it relative to the end of the file.

open(file [, flags [, mode]])

Opens the file file . flags is the bitwise-or of the following constant values:

Value Description

O_RDONLY Open the file for reading.

O_WRONLY Open the file for writing.

O_RDWR Open for reading and writing (updates).

O_APPEND Append bytes to the end of the file.

O_CREAT Create the file if it doesn’t exist.

O_NONBLOCK Don’t block on open, read,or write (UNIX).

O_NDELAY Same as O_NONBLOCK (UNIX).

O_DSYNC Synchronous writes (UNIX).

O_NOCTTY When opening a device, don’t set controlling terminal (UNIX).

O_TRUNC If the file exists, truncates to zero length.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/112.html (38 / 81) [2003/1/1 ､W､ﾈ 02:56:19]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112.html

O_RSYNC Synchronous reads (UNIX).

O_SYNC Synchronous writes (UNIX).

O_EXCL Error if O_CREAT and the file already exists.

O_TEXT Text mode (Windows).

O_BINARY Binary mode (Windows).

Synchronous I/O modes (O_SYNC, O_DSYNC, O_RSYNC) force I/O operations to block until they’ve been completed at the
hardware level (for example, a write will block until the bytes have been physically written to disk). The mode parameter
contains the file permissions represented as the bitwise-or of the following octal values:

Mode Meaning

0100 User has execute permission.

0200 User has write permission.

0400 User has read permission.

0010 Group has execute permission.

0020 Group has write permission.

0040 Group has read permission.

0001 Others have execute permission.

0002 Others have write permission.

0004 Others have read permission.

The default mode of a file is (0777 & ~umask) where the umask setting is used to remove selected permissions. For
example, a umask of 0022 removes write permission for groups and others. The umask can be changed using the
os.umask() function. The umask setting has no effect on Windows and Macintosh.

openpty()

Opens a pseudo-terminal and returns a pair of file descriptors (master ,slave) for the PTY and TTY. Available on
some versions of UNIX.

pipe()

Creates a pipe that can be used to establish unidirectional communication with another process. Returns a pair of file
descriptors (r , w) usable for reading and writing, respectively. This function is usually called prior to executing a
fork() function. After the fork(), the sending process closes the read end of the pipe and the receiving process closes the

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/112.html (39 / 81) [2003/1/1 ､W､ﾈ 02:56:19]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112.html

write end of the pipe. At this point, the pipe is activated and data can be sent from one process to another using read() and
write() functions. UNIX.

popen(command [, mode [, bufsize]])

Opens a pipe to or from a command. The return value is an open file object connected to the pipe, which can be read or
written depending on whether mode is 'r' (the default) or 'w'. bufsize has the same meaning as in the built-in open()
function. The exit status of the command is returned by the close() method of the returned file object, except that when
the exit status is zero, None is returned.

popen2(cmd [, bufsize[, mode]])

Executes cmd as a subprocess and returns the file objects (child_stdin , child_stdout). bufsize is the buffer
size. mode is 't' or 'b' to indicate text or binary mode, which is needed on Windows.

popen3(cmd [, bufsize[, mode]])

Executes cmd as a subprocess and returns three file objects (child_stdin , child_stdout , child_stderr).

popen4(cmd [, bufsize[, mode]])

Executes cmd as a subprocess and returns two file objects (child_stdin , child_stdout_stderr), in which the
standard output and standard error of the child are combined.

read(fd, n)

Reads at most n bytes from file descriptor fd . Returns a string containing the bytes read.

tcgetpgrp(fd)

Returns the process group associated with the control terminal given by fd . UNIX.

tcsetpgrp(fd, pg)

Sets the process group associated with the control terminal given by fd . UNIX.

ttyname(fd)

Returns a string that specifies the terminal device associated with file descriptor fd . If fd is not associated with a terminal
device, an exception is raised. UNIX.

write(fd, str)

Writes the string str to file descriptor fd . Returns the number of bytes actually written.

Files and Directories

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/112.html (40 / 81) [2003/1/1 ､W､ﾈ 02:56:19]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112.html

The following functions and variables are used to manipulate files and directories on the filesystem. To handle variances in
file-naming schemes, the following variables contain information about the construction of pathnames:

Variable Description

altsep An alternative character used by the OS to separate pathname components, or None if only one separator character exists. This is set
to '/' on DOS and Windows systems, where sep is a backslash.

curdir The string used to refer to the current working directory: '.' for UNIX and Windows and ':' for Macintosh.

pardir The string used to refer to the parent directory: '..' for UNIX and Windows and '::' for Macintosh.

pathsep The character used to separate search path components (as contained in the $PATH environment variable): ':' for UNIX and ';'
for DOS and Windows.

sep The character used to separate pathname components: '/' for UNIX and Windows and ':' for Macintosh.

The following functions are used to manipulate files:

access(path, accessmode)

Checks read/write/execute permissions for this process or file path. accessmode is R_OK, W_OK, X_OK, or F_OK for read,
write, execute, or existence, respectively. Returns 1 if access is granted, 0 if not. UNIX.

chmod(path, mode)

Changes the mode of path . mode has the same values as described for the open() function. UNIX and Windows.

chown(path, uid, gid)

Changes the owner and group ID of path to the numeric uid and gid . UNIX.

getbootvol()

Returns the name of the boot disk. Macintosh.

link(src, dst)

Creates a hard link named dst that points to src . UNIX.

listdir(path)

Returns a list containing the names of the entries in the directory path . The list is returned in arbitrary order and doesn’t
include the special entries of '.' and '..'.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/112.html (41 / 81) [2003/1/1 ､W､ﾈ 02:56:19]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112.html

lstat(path)

Like stat(), but doesn’t follow symbolic links. UNIX.

mkfifo(path [, mode])

Creates a FIFO (a named pipe) named path with numeric mode mode . The default mode is 0666. UNIX.

mkdir(path [, mode])

Creates a directory named path with numeric mode mode . The default mode is 0777. On non–UNIX systems, the mode
setting may have no effect or be ignored.

makedirs(path [, mode])

Recursive directory-creation function. Like mkdir(), but makes all the intermediate-level directories needed to contain the
leaf directory. Raises an OSError exception if the leaf directory already exists or cannot be created.

pathconf(path, name)

Returns configurable system parameters related to the pathname path . name is a string that specifies the name of the
parameter and is the same as described for the fpathconf() function. UNIX.

? See Also fpathconf (182).

readlink(path)

Returns a string representing the path to which a symbolic link path points. UNIX.

remove(path)

Removes the file path . This is identical to the unlink() function.

removedirs(path)

Recursive directory-removal function. Works like rmdir() except that, if the leaf directory is successfully removed,
directories corresponding to the rightmost path segments will be pruned away until either the whole path is consumed or an
error is raised (which is ignored, because it generally means that a parent directory isn’t empty). Raises an OSError
exception if the leaf directory could not be removed successfully.

rename(src, dst)

Renames the file or directory src to dst .

renames(old, new)

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/112.html (42 / 81) [2003/1/1 ､W､ﾈ 02:56:19]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112.html

Recursive directory-renaming or file-renaming function. Works like rename() except first attempting to create any
intermediate directories needed to make the new pathname. After the rename, directories corresponding to the rightmost path
segments of the old name will be pruned away using removedirs().

rmdir(path)

Removes the directory path .

stat(path)

Performs a stat() system call on the given path to extract information about a file. The return value is a tuple of at least
10 integers in the order st_mode , st_ino , st_dev , st_nlink , st_uid , st_gid , st_size , st_atime ,
st_mtime , st_ctime . More items may be added at the end by some implementations, and on non–UNIX platforms
some items are filled with dummy values. The standard module stat defines functions and constants that are useful for
extracting information from a stat tuple.

statvfs(path)

Performs a statvfs() system call on the given path to get information about the filesystem. The return value is a tuple
of 10 integers in the order f_bsize , f_frsize , f_blocks , f_bfree , f_bavail , f_files , f_ffree ,
f_favail , f_flag , f_namemax . The standard module statvfs defines constants that can be used to extract
information from the returned statvfs data. UNIX.

symlink(src, dst)

Creates a symbolic link named dst that points to src .

sync()

Syncs the filesystem. Macintosh.

unlink(path)

Removes the file path . Same as remove().

utime(path, (atime, mtime))

Sets the access and modified time of the file to the given values. (The second argument is a tuple of two items.) The time
arguments are specified in terms of the numbers returned by the time.time() function.

xstat(path)

Like stat(), but the returned tuple includes three additional fields containing the size of the resource fork and the four-
character creator and type codes. Macintosh.

Process Management

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/112.html (43 / 81) [2003/1/1 ､W､ﾈ 02:56:19]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112.html

The following functions and variables are used to create, destroy, and manage processes.

abort()

Generates a SIGABRT signal that’s sent to the calling process. Unless the signal is caught with a signal handler, the default is
for the process to terminate with an error.

defpath

This variable contains the default search path used by the exec*p*() functions if the environment doesn’t have a 'PATH'
variable.

execl(path, arg0, arg1, ...)

Equivalent to execv(path , (arg0 , arg1 , ...)). UNIX and Windows.

execle(path, arg0, arg1, ..., env)

Equivalent to execve(path , (arg0 , arg1 , ...), env). UNIX and Windows.

execlp(path, arg0, arg1, ...)

Equivalent to execvp(path , (arg0 , arg1 , ...)). UNIX and Windows.

execv(path, args)

Executes the executable program path with argument list args , replacing the current process (that is, the Python
interpreter). The argument list may be a tuple or list of strings. UNIX and Windows.

execve(path, args, env)

Executes a new program like execv(), but additionally accepts a dictionary env that defines the environment in which the
program runs. env must be a dictionary mapping strings to strings. UNIX and Windows.

execvp(path, args)

Like execv(path , args), but duplicates the shell’s actions in searching for an executable file in a list of directories.
The directory list is obtained from environ['PATH']. UNIX and Windows.

execvpe(path, args, env)

Like execvp(), but with an additional environment variable as in the execve() function. UNIX and Windows.

_exit(n)

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/112.html (44 / 81) [2003/1/1 ､W､ﾈ 02:56:19]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112.html

Exits immediately to the system with status n , without performing any cleanup actions. Note: The standard way to exit
Python programs is sys.exit(n). UNIX and Windows.

fork()

Creates a child process. Returns 0 in the newly created child process and the child’s process ID in the original process. The
child process is a clone of the original process and shares many resources such as open files. UNIX.

forkpty()

Creates a child process using a new pseudo-terminal as the child’s controlling terminal. Returns a pair (pid , fd) in which
pid is 0 in the child and fd is a file descriptor of the master end of the pseudo-terminal. This function is available only in
certain versions of UNIX.

kill(pid, sig)

Sends the process pid the signal sig . A list of signal names can be found in the signal module. UNIX.

nice(increment)

Adds an increment to the scheduling priority (the “niceness”) of the process. Returns the new niceness. Typically, users can
only decrease the priority of a process, since increasing the priority requires root access. UNIX.

plock(op)

Locks program segments into memory, preventing them from being swapped. The value of op is an integer that determines
which segments are locked. The value of op is platform-specific, but is typically one of UNLOCK, PROCLOCK, TXTLOCK,or
DATLOCK. These constants are not defined by Python, but might be found in the <sys /lock.h> header file. This function
is not available on all platforms and often can be performed only by a process with an effective user ID of 0 (root). UNIX.

spawnv(mode, path, args)

Executes the program path in a new process, passing the arguments specified in args as command-line parameters. args
can be a list or a tuple. The first element of args should be the name of the program. mode is one of the following
constants:

Constant Description

P_WAIT Executes the program and waits for it to terminate. Returns the program’s exit code.

P_NOWAIT Executes the program and returns the process handle.

P_NOWAITO Same as P_NOWAIT.

P_OVERLAY Executes the program and destroys the calling process (same as the exec functions).

P_DETACH Executes the program and detaches from it. The calling program continues to run, but cannot wait for the spawned process.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/112.html (45 / 81) [2003/1/1 ､W､ﾈ 02:56:19]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112.html

spawnv() is available on Windows and some versions of UNIX.

spawnve(mode, path, args, env)

Executes the program path in a new process, passing the arguments specified in args as command-line parameters and the
contents of the mapping env as the environment. args can be a list or a tuple. mode has the same meaning as described for
spawnv(). Windows and UNIX.

startfile(path)

Launches the application associated with the file path . This performs the same action as would occur if you double-clicked
the file in Windows Explorer. The function returns as soon as the application is launched. Furthermore, there is no way to
wait for completion or to obtain exit codes from the application. path is relative to the current directory. Windows.

system(command)

Executes command (a string) in a subshell. On UNIX, the return value is the exit status of the process as returned by
wait(). On Windows, the exit code is always 0. UNIX and Windows.

times()

Returns a 5-tuple of floating-point numbers indicating accumulated times in seconds. On UNIX, the tuple contains the user
time, system time, children’s user time, children’s system time, and elapsed real time. On Windows, the tuple contains the
user time, system time, and zeros for the other three values. UNIX and Windows. Not supported on Windows 95/98.

wait([pid])

Waits for completion of a child process and returns a tuple containing its process ID and exit status. The exit status is a 16-bit
number whose low byte is the signal number that killed the process, and whose high byte is the exit status (if the signal
number is zero). The high bit of the low byte is set if a core file was produced. pid , if given, specifies the process to wait
for. If omitted, wait() returns when any child process exits. UNIX.

waitpid(pid, options)

Waits for a change in the state of a child process given by process ID pid , and returns a tuple containing its process ID and
exit status indication, encoded as for wait(). options should be 0 for normal operation or WNOHANG to avoid hanging if
no child process status is available immediately. This function can also be used to gather information about child processes
that have only stopped executing for some reason (refer to the UNIX man pages for waitpid for details). UNIX.

The following functions take a process status code as returned by waitpid() and are used to examine the state of the
process (UNIX only).

WIFSTOPPED(status)

Returns true if the process has been stopped.

WIFSIGNALED(status)

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/112.html (46 / 81) [2003/1/1 ､W､ﾈ 02:56:19]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112.html

Returns true if the process exited due to a signal.

WIFEXITED(status)

Returns true if the process exited using the exit() system call.

WEXITSTATUS(status)

If WIFEXITED(status) is true, returns the integer parameter to the exit() system call. Otherwise, the return value is
meaningless.

WSTOPSIG(status)

Returns the signal that caused the process to stop.

WTERMSIG(status)

Returns the signal that caused the process to exit.

System Configuration

The following functions are used to obtain system configuration information:

confstr(name)

Returns a string-valued system configuration varible. name is a string specifying the name of the variable. The acceptable
names are platform-specific, but a dictionary of known names for the host system is found in os.confstr_names. If a
configuration value for a specified name is not defined, the empty string is returned. If name is unknown, ValueError is
raised. An OSError may also be raised if the host system doesn’t support the configuration name. The parameters returned
by this function mostly pertain to the build environment on the host machine and include paths of system utilities, compiler
options for various program configurations (for example, 32-bit, 64-bit, and largefile support), and linker options. UNIX.

sysconf(name)

Returns an integer-valued system configuration variable. name is a string specifying the name of the variable. The names
defined on the host system can be found in the dictionary os.sysconf_names. Returns -1 if the configuration name is
known but the value is not defined. Otherwise a ValueError or OSError may be raised. Some systems may define well
over 100 different system parameters. However, the following table lists the parameters defined by POSIX.1 that should be
available on most UNIX systems:

Parameter Description

"SC_ARG_MAX" Maximum length of the arguments that can be used with exec().

"SC_CHILD_MAX" Maximum number of processes per user ID.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/112.html (47 / 81) [2003/1/1 ､W､ﾈ 02:56:19]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112.html

"SC_CLK_TCK" Number of clock ticks per second.

"SC_NGROUPS_MAX" Maximum number of simultaneous supplementary group IDs.

"SC_STREAM_MAX" Maximum number of streams a process can open at one time.

"SC_TZNAME_MAX" Maximum number of bytes in a timezone name.

"SC_OPEN_MAX" Maximum number of files a process can open at one time.

"SC_JOB_CONTROL" System supports job control.

"SC_SAVED_IDS" Indicates whether each process has a saved set-user-ID and a saved set-group-ID.

Exception

error

Exception raised when a function returns a system-related error. This is the same as the built-in exception OSError. The
exception carries two values: errno and strerr. The first contains the integer error value as described for the errno
module. The latter contains a string error message. For exceptions involving the filesystem, the exception also contains a
third attribute, filename, which is the filename passed to the function.

Example

The following example uses the os module to implement a minimalistic UNIX shell that can run programs and perform I/O
redirection:

import os, sys, string
print 'Welcome to the Python Shell!'
while 1:
 cmd = string.split(raw_input('pysh % '))
 if not cmd: continue
 progname = cmd[0]
 outfile = None
 infile = None
 args = [progname]
 for c in cmd[1:]:
 if c[0] == '>':
 outfile = c[1:]
 elif c[0] == '<':
 infile = c[1:]
 else:
 args.append(c)
 # Check for a change in working directory
 if progname == 'cd':
 if len(args) > 1:
 try:
 os.chdir(args[1])
 except OSError,e:
 print e
 continue

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/112.html (48 / 81) [2003/1/1 ､W､ﾈ 02:56:19]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112.html

 # Exit from the shell
 if progname == 'exit':
 sys.exit(0)
 # Spawn a process to run the command
 pid = os.fork()
 if not pid:
 # Open input file (redirection)
 if infile:
 ifd = os.open(infile,os.O_RDONLY)
 os.dup2(ifd,sys.stdin.fileno())
 # Open output file (redirection)
 if outfile:
 ofd = os.open(outfile,os.O_WRONLY | os.O_CREAT | os.O_TRUNC)
 os.dup2(ofd,sys.stdout.fileno())
 # Run the command
 os.execvp(progname, args)
 else:
 childpid,ec = os.wait(pid)
 if ec:
 print 'Exit code ',ec

Note

● The os.popen2(), os.popen3(), and os.popen4() functions can also be found in the popen2 module.
However, the order of the returned file objects is different.

? See Also os.path (193), stat (202), statvfs (203), time (208) , popen2 (195), signal (200), fcntl (161).

os.path

The os.path module is used to manipulate pathnames in a portable manner. It’s imported by the os module.

abspath(path)

Returns an absolute version of the pathname path , taking the current working directory into account. For example,
abspath('../Python/foo') might return '/home/beazley/Python/foo'.

basename(path)

Returns the basename of pathname path . For example, basename('/usr/local/python') returns 'python'.

commonprefix(list)

Returns the longest string that’s a prefix of all strings in list . If list is empty, returns the empty string.

dirname(path)

Returns the directory name of pathname path . For example, dirname('/usr/local/python') returns
'/usr/local'.

exists(path)

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/112.html (49 / 81) [2003/1/1 ､W､ﾈ 02:56:20]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112#108.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112#138.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112#142.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112#162.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112#110.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112#132.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112#14.html

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112.html

Returns true if path refers to an existing path.

expanduser(path)

Replaces pathnames of the form '~user' with a user’s home directory. If the expansion fails or path does not begin with
'~', the path is returned unmodified.

expandvars(path)

Expands environment variables of the form '$name ' or '${name }' in path . Malformed or nonexistent variable names
are left unchanged.

getatime(path)

Returns the time of last access as the number of seconds since the epoch (see the time module).

getmtime(path)

Returns the time of last modification as the number of seconds since the epoch (see the time module).

getsize(path)

Returns the file size in bytes.

isabs(path)

Returns true if path is an absolute pathname (begins with a slash).

isfile(path)

Returns true if path is a regular file. This function follows symbolic links, so both islink() and isfile() can be true
for the same path.

isdir(path)

Returns true if path is a directory. Follows symbolic links.

islink(path)

Returns true if path refers to a symbolic link. Returns false if symbolic links are unsupported.

ismount(path)

Returns true if path is a mount point.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/112.html (50 / 81) [2003/1/1 ､W､ﾈ 02:56:20]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112#162.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112#162.html

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112.html

join(path1 [, path2 [, ...]])

Intelligently joins one or more path components into a pathname. For example, join('/home', 'beazley',
'Python') returns '/home/beazley/Python' on UNIX.

normcase(path)

Normalizes the case of a pathname. On non–case-sensitive filesystems, this converts path to lowercase. On Windows,
forward slashes are also converted to backslashes.

normpath(path)

Normalizes a pathname.This collapses redundant separators and up-level references so that 'A//B', 'A/./B', and
'A/foo/../B' all become 'A/B'. On Windows, forward slashes are converted to backslashes.

samefile(path1, path2)

Returns true if path1 and path2 refer to the same file or directory. Macintosh and UNIX.

sameopenfile(fp1, fp2)

Returns true if the open file objects fp1 and fp2 refer to the same file. Macintosh and UNIX.

samestat(stat1, stat2)

Returns true if the stat tuples stat1 and stat2 as returned by fstat(), lstat(),or stat() refer to the same file.
Macintosh and UNIX.

split(path)

Splits path into a pair (head , tail) where tail is the last pathname component and head is everything leading up to
that. For example, '/home/user/foo' gets split into ('/home/user', 'foo'). This tuple is the same as would be
returned by (dirname(), basename()).

splitdrive(path)

Splits path into a pair (drive , filename) where drive is either a drive specification or the empty string. drive is
always the empty string on machines without drive specifications.

splitext(path)

Splits a pathname into a base filename and suffix. For example, splitext('foo.txt') returns ('foo', '.txt').

walk(path, visitfunc, arg)

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/112.html (51 / 81) [2003/1/1 ､W､ﾈ 02:56:20]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112.html

This function recursively walks all the directories rooted at path and calls the function visitfunc(arg , dirname ,
names) for each directory. dirname specifies the visited directory and names is a list of the files in the directory as
retrieved using os.listdir(dirname). The visitfunc function can modify the contents of names to alter the search
process if necessary.

? See Also fnmatch (165), glob (170), os (180).

popen2

The popen2 module is used to spawn processes and connect to their input/ output/error streams using pipes on UNIX and
Windows. Note that these functions are also available in the os module with slightly different return values.

popen2(cmd [, bufsize [, mode]])

Executes cmd as a subprocess and returns a pair of file objects (child_stdout , child_stdin) corresponding to the
input and output streams of the subprocess. bufsize specifies the buffer size for the I/O pipes. mode is one of 't' or 'b'
to indicate text or binary data, which is needed on Windows.

popen3(cmd [, bufsize [, mode]])

Executes cmd as a subprocess like popen2(), but returns a triple (child_stdout , child_stdin ,
child_stderr) that includes the standard error stream.

popen4(cmd [, bufsize [, mode]])

Executes cmd as a subprocess like popen2(), but returns a pair of file objects (child_stdout_stderr ,
child_stdin) in which the standard output and standard error streams have been combined.

In addition to the functions just described, the UNIX version of this module provides the following classes that can be used to
control processes:

Popen3(cmd [, capturestderr [, bufsize]])

This class represents a child process. cmd is the shell command to execute in a subprocess. The capturestderr flag, if
true, specifies that the object should capture standard error output of the child process. bufsize is the size of the I/O
buffers.

Popen4(cmd [, bufsize])

Like the class Popen3, but combines standard output and standard error.

An instance p of the Popen3 or Popen4 class has the following methods and attributes:

p.poll()

Returns the exit code of the child or -1 if the child process has not finished yet.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/112.html (52 / 81) [2003/1/1 ､W､ﾈ 02:56:20]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112#32.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112#58.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112#90.html

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112.html

p.wait()

Waits for the child process to terminate and returns its exit code.

p.fromchild

A file object that captures the output of the child process.

p.tochild

A file object that sends input to the child process.

p.childerr

A file object that captures the standard error stream of the child process. May be None.

p.pid

Process ID of the child.

Note

● The order of file objects returned by popen2(), popen3(), and popen4() differs from the standard UNIX
ordering of stdin , stdout , and stderr . The versions in the os module correct this.

? See Also commands (155), os.popen (185).

pwd

The pwd module provides access to the UNIX password database.

getpwuid(uid)

Returns the password database entry for a numeric user ID uid . Returns a 7-tuple (pw_name , pw_passwd , pw_uid
, pw_gid , pw_gecos , pw_dir , pw_shell). The pw_uid and pw_gid items are integers; all others are
strings. KeyError is raised if the entry cannot be found.

getpwnam(name)

Returns the password database entry for a username.

getpwall()

Returns a list of all available password database entries. Each entry is a tuple as returned by getpwuid().

Example

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/112.html (53 / 81) [2003/1/1 ､W､ﾈ 02:56:20]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112#2.html

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112.html

>>> import pwd
>>> pwd.getpwnam('beazley')
('beazley', 'x', 100, 1, 'David M. Beazley', '/home/beazley', '/usr/local/bin/tcsh')
>>>

? See Also grp (171), getpass (167), crypt (155) .

readline

The readline module enables and provides an interface to the GNU readline library on UNIX. This library extends
Python’s interactive mode with command history, command completion, and advanced editing capabilities. These features
are also extended to functions such as raw_input() and input().

The readline module enables the following key bindings when running interactively:

Key(s) Description

Ctrl+a Moves to the start of the line.

Ctrl+b Moves back one character.

Esc b Moves back one word.

Esc c Capitalizes the current word.

Ctrl+d Deletes the character under the cursor.

Esc d Kills to the end of the current word.

Del Deletes the character to the left of the cursor.

Esc Del Kills to the start of the previous word.

Ctrl+e Moves to the end of the line.

Ctrl+f Moves forward one character.

Esc f Moves forward one word.

Ctrl+k Kills the text to the end of the line.

Ctrl+l Clears the screen.

Esc l Converts the current word to lowercase.

Ctrl+n Moves down through the history list.

Ctrl+p Moves up through the history list.

Ctrl+r Reverses incremental search through the history.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/112.html (54 / 81) [2003/1/1 ､W､ﾈ 02:56:20]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112#64.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112#44.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112#6.html

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112.html

Ctrl+t Transposes characters.

Esc t Transposes words.

Esc u Converts the current word to uppercase.

Ctrl+w Kills from the cursor to the previous whitespace.

Ctrl+y Yanks back the most recently killed text.

Esc y Rotates the kill-ring and yanks the new top.

Esc < Goes to the first line in history.

Esc > Goes to the last line in history.

Notes

● Key sequences involving Esc are sometimes available using the Meta key.

● Many commands accept a numeric argument that’s entered by first typing Esc nnn . For example, typing Esc 5 0
Ctrl+f moves forward 50 characters.

● The readline module is an optional Python feature. If you’re installing from source and want to use the
readline module, you’ll need to enable it by following the directions given in the distribution (these vary by
Python version).

? See Also rlcompleter (http://www.python.org/doc/lib/module-rlcompleter.html).

resource

The resource module is used to measure and control the system resources used by a program on UNIX systems. Resource
usage is limited using the setrlimit() function. Each resource is controlled by a soft limit and a hard limit. The soft limit
is the current limit, and may be lowered or raised by a process over time. The hard limit can be lowered to any value greater
than the soft limit, but never raised (except by the superuser).

getrlimit(resource)

Returns a tuple (soft , hard) with the current soft and hard limits of a resource. resource is one of the following
symbolic constants:

Constant Description

RLIMIT_CORE The maximum core file size (in bytes).

RLIMIT_CPU The maximum CPU time (in seconds). If exceeded, a SIGXCPU signal is sent to the process.

RLIMIT_FSIZE The maximum file size that can be created.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/112.html (55 / 81) [2003/1/1 ､W､ﾈ 02:56:20]

http://www.python.org/doc/lib/module-rlcompleter.html

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112.html

RLIMIT_DATA The maximum size (in bytes) of the process heap.

RLIMIT_STACK The maximum size (in bytes) of the process stack.

RLIMIT_RSS The maximum resident set size.

RLIMIT_NPROC The maximum number of processes that can be created.

RLIMIT_NOFILE The maximum number of open file descriptors.

RLIMIT_OFILE The BSD name for RLIMIT_NOFILE.

RLIMIT_MEMLOC The maximum memory size that can be locked in memory.

RLIMIT_VMEM The largest area of mapped memory that can be used.

RLIMIT_AS The maximum area (in bytes) of address space that can be used.

setrlimit(resource, limits)

Sets new limits for a resource. limits is a tuple (soft, hard) of two integers describing the new limits. A value of -1
can be used to specify the maximum possible upper limit.

getrusage(who)

This function returns a large tuple that describes the resources consumed by either the current process or its children. who is
one of the following values:

Value Description

RUSAGE_SELF Information about the current process

RUSAGE_CHILDREN Information about child processes

RUSAGE_BOTH Information about both current and child processes

The returned tuple contains system resource-usage data in the following order:

Offset Resource

0 Time in user mode (float)

1 Time in system mode (float)

2 Maximum resident set size (pages)

3 Shared memory size (pages)

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/112.html (56 / 81) [2003/1/1 ､W､ﾈ 02:56:20]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112.html

4 Unshared memory size (pages)

5 Unshared stack size (pages)

6 Page faults not requiring I/O

7 Page faults requiring I/O

8 Number of swapouts

9 Block input operations

10 Block output operations

11 Messages sent

12 Messages received

13 Signals received

14 Voluntary context switches

15 Involuntary context switches

getpagesize()

Returns the number of bytes in a system page.

Exception

error

Exception raised for unexpected failures of the getrlimit() and setrlimit() system calls.

Note

● Not all resource names are available on all systems.

? See Also UNIX man pages for getrlimit(2).

shutil

The shutil module is used to perform high-level file operations such as copying, removing, and renaming.

copyfile(src, dst)

Copies the contents of src to dst .

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/112.html (57 / 81) [2003/1/1 ､W､ﾈ 02:56:20]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112.html

copymode(src, dst)

Copies the permission bits from src to dst .

copystat(src, dst)

Copies the permission bits, last access time, and last modification time from src to dst . The contents, owner, and group of
dst are unchanged.

copy(src, dst)

Copies the file src to the file or directory dst , retaining file permissions.

copy2(src, dst

Like copy(), but also copies the last access and modification times.

copytree(src, dst [, symlinks])

Recursively copies an entire directory tree rooted at src . The destination directory dst will be created (and should not
already exist). Individual files are copied using copy2(). If symlinks is true, symbolic links in the source tree are
represented as symbolic links in the new tree. If symlinks is false or omitted, the contents of linked files are copied to the
new directory tree. Errors are reported to standard output.

rmtree(path [, ignore_errors [, onerror]])

Deletes an entire directory tree. If ignore_errors is true, errors will be ignored. Otherwise, errors are handled by the
onerror function (if supplied). This function must accept three parameters (func , path , excinfo), where func is the
function that caused the error (os.remove() or os.rmdir()), path is the pathname passed to the function, and
excinfo is the exception information returned by sys.exc_info(). If an error occurs and onerror is omitted, an
exception is raised.

Note

● On MacOS, the resource fork is ignored on file copies.

? See Also os.path (193), macostools (176).

signal

The signal module is used to write signal handlers in Python. Signals usually correspond to asychronous events that are
sent to a program due to the expiration of a timer, arrival of incoming data, or some action performed by a user. The signal
interface emulates that of UNIX, although the module is supported on other platforms.

alarm(time)

If time is nonzero, schedules a SIGALRM signal to be sent to the program in time seconds.Any previously scheduled
alarm is canceled. If time is zero, no alarm is scheduled and any previously set alarm is canceled. Returns the number of
seconds remaining before any previously scheduled alarm, or zero if no alarm was scheduled. UNIX.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/112.html (58 / 81) [2003/1/1 ､W､ﾈ 02:56:20]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112#108.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112#78.html

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112.html

getsignal(signalnum)

Returns the signal handler for signal signalnum . The returned object is a callable Python object. The function may also
return SIG_IGN for an ignored signal, SIG_DFL for the default signal handler, or None if the signal handler was not
installed from the Python interpreter.

pause()

Goes to sleep until the next signal is received. UNIX.

signal(signalnum, handler)

Sets a signal handler for signal signalnum to the function handler . handler must be a callable Python object taking
two arguments: the signal number and frame object. SIG_IGN or SIG_DFL can also be given to ignore a signal or use the
default signal handler, respectively. The return value is the previous signal handler, SIG_IGN, or SIG_DFL. When threads
are enabled, this function can only be called from the main thread. Otherwise, a ValueError exception is raised.

Individual signals are identified using symbolic constants of the form SIG*. These names correspond to integer values that
are machine-specific. Typical values are as follows:

Signal Name Description

SIGABRT Abnormal termination

SIGALRM Alarm

SIGBUS Bus error

SIGCHLD Change in child status

SIGCLD Change in child status

SIGCONT Continue

SIGFPE Floating-point error

SIGHUP Hangup

SIGILL Illegal instruction

SIGINT Terminal interrupt character

SIGIO Asynchronous I/O

SIGIOT Hardware fault

SIGKILL Terminate

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/112.html (59 / 81) [2003/1/1 ､W､ﾈ 02:56:20]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112.html

SIGPIPE Write to pipe, no readers

SIGPOLL Pollable event

SIGPROF Profiling alarm

SIGPWR Power failure

SIGQUIT Terminal quit character

SIGSEGV Segmentation fault

SIGSTOP Stop

SIGTERM Termination

SIGTRAP Hardware fault

SIGTSTP Terminal stop character

SIGTTIN Control TTY

SIGTTOU Control TTY

SIGURG Urgent condition

SIGUSR1 User defined

SIGUSR2 User defined

SIGVTALRM Virtual time alarm

SIGWINCH Window size change

SIGXCPU CPU limit exceeded

SIGXFSZ File size limit exceeded

In addition, the module defines the following variables:

Variable Description

SIG_DFL Signal handler that invokes the default signal handler

SIG_IGN Signal handler that ignores a signal

NSIG One more than the highest signal number

Example

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/112.html (60 / 81) [2003/1/1 ､W､ﾈ 02:56:20]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112.html

The following example illustrates a timeout on establishing a network connection:

import signal, socket
def handler(signum, frame):
 print 'Timeout!'
 raise IOError, 'Host not responding.'
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
signal.signal(signal.SIGALRM, handler)
signal.alarm(5) # 5-second alarm
sock.connect('www.python.org', 80) # Connect
signal.alarm(0) # Clear alarm

Notes

● Signal handlers remain installed until explicitly reset, with the exception of SIGCHLD (whose behavior is
implementation-specific).

● It’s not possible to temporarily disable signals.

● Signals are only handled between the atomic instructions of the Python interpreter. The delivery of a signal can be
delayed by long-running calculations written in C (as might be performed in an extension module).

● If a signal occurs during an I/O operation, the I/O operation may fail with an exception. In this case, the errno value
is set to errno .EINTR to indicate an interrupted system call.

● Certain signals such as SIGSEGV cannot be handled from Python.

● Python installs a small number of signal handlers by default. SIGPIPE is ignored, SIGINT is translated into a
KeyboardInterrupt exception, and SIGTERM is caught in order to perform cleanup and invoke
sys.exitfunc.

● Extreme care is needed if signals and threads are used in the same program. Currently, only the main thread of
execution can set new signal handlers or receive signals.

● Signal handling on Windows and Macintosh is of only limited functionality. The number of supported signals is
extremely limited on these platforms.

? See Also thread (219), errno (156).

stat

The stat module defines constants and functions for interpreting the results of os.stat(), os.fstat() and
os.lstat(). These functions return a 10-tuple containing file information. The following variables define the indices
within the tuple for certain items:

Variable Description

ST_MODE Inode protection mode

ST_INO Inode number

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/112.html (61 / 81) [2003/1/1 ､W､ﾈ 02:56:20]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/113#6.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112#12.html

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112.html

ST_DEV Device the inode resides on

ST_NLINK Number of links to the inode

ST_UID User ID of the owner

ST_GID Group ID of the owner

ST_SIZE File size in bytes

ST_ATIME Time of last access

ST_MTIME Time of last modification

ST_CTIME Time of last status change

The following functions can be used to test file properties given the mode value returned using os.stat(path
)[stat.ST_MODE]:

Function Description

S_ISDIR(mode) Returns nonzero if mode is from a directory.

S_ISCHR(mode) Returns nonzero if mode is from a character-special device file.

S_ISBLK(mode) Returns nonzero if mode is from a block-special device file.

S_ISREG(mode) Returns nonzero if mode is from a regular file.

S_ISFIFO(mode) Returns nonzero if mode is from a FIFO (named pipe).

S_ISLNK(mode) Returns nonzero if mode is from a symbolic link.

S_ISSOCK(mode) Returns nonzero if mode is from a socket.

S_IMODE(mode) Returns the portion of the file’s mode that can be set by os.chmod(). This is the file’s permission bits, sticky bit, set-
group-ID, and set-user-ID bits.

S_IFMT(mode) Returns the portion of the file’s mode that describes the file type (used by the S_IS*() functions above).

Note

● Much of the functionality in this module is also provided in a more portable form by the os.path module.

? See Also os (180), os.path (193), statvfs (203).

statvfs

The statvfs module defines constants used to interpret the result of the os.statvfs() function on UNIX. The

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/112.html (62 / 81) [2003/1/1 ､W､ﾈ 02:56:20]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112#90.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112#108.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112#142.html

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112.html

constants defined in this module define the indices into the tuple returned by os.statvfs() for specific information.

Constant Description

F_BSIZE Preferred filesystem block size

F_FRSIZE Fundamental filesystem block size

F_BLOCKS Total number of blocks in the filesystem

F_BFREE Total number of free blocks

F_BAVAIL Free blocks available to a non-superuser

F_FILES Total number of file nodes

F_FFREE Total number of free file nodes

F_FAVAIL Free nodes available to a non-superuser

F_FLAG Flags (system-dependent)

F_NAMEMAX Maximum filename length

? See Also os (180), stat (202).

tempfile

The tempfile module is used to generate temporary filenames and files:

mktemp([suffix])

Returns a unique temporary filename. suffix is an optional file suffix to append to the filename. This function only
generates a unique filename and doesn’t actually create or open a temporary file.

gettempprefix()

Returns the prefix used to generate temporary files. Does not include the directory in which the file would reside.

TemporaryFile([mode [, bufsize [, suffix]]])

Creates a temporary file and returns a file-like object that supports the same methods as an ordinary file object. mode is the
file mode and defaults to 'w+b'. bufsize specifies the buffering behavior and has the same meaning as for the open()
function. suffix is the suffix to append to the filename (if any). The object returned by this function is only a wrapper
around a built-in file object that’s accessible in the file attribute. The file created by this function is automatically destroyed
when the temporary file object is destroyed.

Two global variables are used to construct temporary names. They can be assigned to new values if desired. Their default
values are system-dependent.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/112.html (63 / 81) [2003/1/1 ､W､ﾈ 02:56:20]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112#90.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112#138.html

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112.html

Variable Description

tempdir The directory in which filenames returned by mktemp() reside.

template The prefix of filenames generated by mktemp(). A string of decimal digits is added to template to generate unique filenames.

termios

The termios module provides a POSIX-style interface for controlling the behavior of TTYs and other serial
communication devices on UNIX systems.All the functions operate on integer file descriptors such as those returned by the
os.open() function or the fileno() method of a file object. In addition, the module relies on a large collection of
constants that are defined in the TERMIOS module, which should also be loaded.

tcgetattr(fd)

Returns a list [iflag , oflag , cflag , lflag , ispeed , ospeed , cc] of TTY attributes for a file
descriptor fd . The meaning of these fields is as follows:

Field Description

iflag Input modes (integer)

oflag Output modes (integer)

cflag Control modes (integer)

lflag Local modes (integer)

ispeed Input speed (integer)

ospeed Output speed (integer)

cc A list of control characters (as strings)

The mode fields iflag , oflag , cflag , and lflag are bit fields that are interpreted using constants in TERMIOS.

Input Modes

Mode Description

TERMIOS.IGNBRK Ignore break condition on input.

TERMIOS.BRKINT Generate SIGINT signal on break if IGNBRK is not set.

TERMIOS.IGNPAR Ignore framing and parity errors.

TERMIOS.PARMRK Mark characters with a parity error.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/112.html (64 / 81) [2003/1/1 ､W､ﾈ 02:56:20]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112.html

TERMIOS.INPCK Enable input parity checking.

TERMIOS.ISTRIP Strip off the eighth bit.

TERMIOS.INLCR Translate newlines to carriage returns.

TERMIOS.IGNCR Ignore carriage returns.

TERMIOS.ICRNL Translate carriage returns to newlines.

TERMIOS.IUCLC Map uppercase characters to lowercase.

TERMIOS.IXON Enable XON/XOFF flow control on output.

TERMIOS.IXANY Enable any character to restart output.

TERMIOS.IXOFF Enable XON/XOFF flow control on input.

TERMIOS.IXMAXBEL Ring bell when the input queue is full.

Output Modes

Mode Description

TERMIOS.OPOST Implementation-defined output processing.

TERMIOS.OLCUC Map lowercase to uppercase on output.

TERMIOS.ONLCR Map newlines to carriage returns.

TERMIOS.OCRNL Map carriage returns to newlines.

TERMIOS.ONLRET Don’t output carriage returns.

TERMIOS.OFILL Send fill characters for delay.

TERMIOS.OFDEL Set the fill character to ASCII DEL.

TERMIOS.NLDLY Newline delay mask.Values are NL0 and NL1.

TERMIOS.CRDLY Carriage return delay mask.Values are CR0, CR1, CR2, or CR3.

TERMIOS.TABDLY Horizontal tab delay mask: TAB0, TAB1, TAB2, TAB3, or XTABS.

TERMIOS.BSDLY Backspace delay mask: BS0 or BS1.

TERMIOS.VTDLY Vertical tab delay mask: VT0 or VT1.

TERMIOS.FFDLY Formfeed delay mask: FF0 or FF1.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/112.html (65 / 81) [2003/1/1 ､W､ﾈ 02:56:20]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112.html

Control Modes

Mode Description

TERMIOS.CSIZE Character size mask: CS5, CS6, CS7, or CS8.

TERMIOS.CSTOPB Set two stop bits.

TERMIOS.CREAD Enable receiver.

TERMIOS.PARENB Enable parity generation and checking.

TERMIOS.PARODD Use odd parity.

TERMIOS.HUPCL Lower modem control lines when device is closed.

TERMIOS.CLOCAL Ignore modem control lines.

TERMIOS.CRTSCTS Flow control.

Local Modes

Mode Description

TERMIOS.ISIG Generate corresponding signals when INTR, QUIT, SUSP, or DSUSP characters are received.

TERMIOS.ICANON Enable canonical mode.

TERMIOS.XCASE Perform case conversion if ICANON is set.

TERMIOS.ECHO Echo input characters.

TERMIOS.ECHOE If ICANON is set, the ERASE character erases the preceding input character. WERASE erases the preceding word.

TERMIOS.ECHOK If ICANON is set, the KILL character erases the current line.

TERMIOS.ECHONL If ICANON is set, echo newline (NL) characters.

TERMIOS.ECHOCTL If ECHO is set, echo control characters as ^X.

TERMIOS.ECHOPRT Print characters as they’re erased.

TERMIOS.ECHOKE Echo KILL by erasing each character one at a time.

TERMIOS.FLUSHO Output is being flushed.

TERMIOS.NOFLSH Disable flushing the input/output queues when generating the SIGINT and SIGQUIT signals.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/112.html (66 / 81) [2003/1/1 ､W､ﾈ 02:56:20]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112.html

TERMIOS.TOSTOP Send the SIGTTOU signal to the process group of a background process that writes to its controlling terminal.

TERMIOS.PENDIN Reprint all characters in the input queue when the next character is typed.

TERMIOS.IEXTEN Enable implementation-defined input processing.

Speeds

Speeds are defined by constants such as TERMIOS.B0, TERMIOS.B50, TERMIOS.B75, and TERMIOS.B230400
indicating a baud rate. The available values are implementation-specific and defined in TERMIOS.

Control Characters

The following symbols in TERMIOS are indices into the cc list. This can be used to changed various key bindings.

Character Description

TERMIOS.VINTR Interrupt character (typically Ctrl+C)

TERMIOS.VQUIT Quit

TERMIOS.VERASE Erase the preceding character (typically Del)

TERMIOS.VWERASE Erase the preceding word (Ctrl+w)

TERMIOS.VKILL Delete the entire line

TERMIOS.VREPRINT Reprint all characters that have not been read yet

TERMIOS.VEOF End of file (Ctrl+D)

TERMIOS.VNL Line delimiter (line feed)

TERMIOS.VSUSP Suspend (Ctrl+Z)

TERMIOS.VSTOP Stop output (Ctrl+S)

TERMIOS.VSTART Start output (Ctrl+Q)

tcsetattr(fd, when, attributes)

Sets the TTY attributes for a file descriptor fd . attributes is a list in the same form as returned by tcgetattr(). The
when argument determines when the changes take effect:

Argument Description

TERMIOS.TCSANOW Changes take place immediately

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/112.html (67 / 81) [2003/1/1 ､W､ﾈ 02:56:20]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112.html

TERMIOS.TCSADRAIN After transmitting queued output

TERMIOS.TCSAFLUSH After transmitting queued output and discarding queued input

tcsendbreak(fd, duration)

Sends a break on file descriptor fd . A duration of zero sends a break for approximately 0.25–0.5 seconds. A nonzero
duration is implementation-defined.

tcdrain(fd)

Waits until all output written to file descriptor fd has been transmitted.

tcflush(fd, queue)

Discards queued data on file descriptor fd . queue determines which data to discard:

Queue Description

TERMIOS.TCIFLUSH Input queue

TERMIOS.TCOFLUSH Output queue

TERMIOS.TCIOFLUSH Both queues

tcflow(fd, action)

Suspends or resumes input or output on file descriptor fd . action is one of the following:

Action Description

TERMIOS.TCOOFF Suspends output

TERMIOS.TCOON Restarts output

TERMIOS.TCIOFF Suspends input

TERMIOS.TCION Restarts input

Example

The following function prompts for a password with local echoing turned off:

def getpass():
 import termios, TERMIOS, sys
 fd = sys.stdin.fileno()

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/112.html (68 / 81) [2003/1/1 ､W､ﾈ 02:56:20]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112.html

 tc = termios.tcgetattr(fd)
 old = tc[3] & TERMIOS.ECHO
 tc[3] = tc[3] & ~TERMIOS.ECHO # Disable echo
 try:
 termios.tcsetattr(fd, TERMIOS.TCSADRAIN, tc)
 passwd = raw_input('Password: ')
 finally:
 tc[3] = tc[3] | old # Restore old echo setting
 termios.tcsetattr(fd, TERMIOS.TCSADRAIN, tc)
 return passwd

? See Also tty (211), getpass (167), signal (200).

time

The time module provides various time-related functions. In Python, time is measured as the number of seconds since the
“epoch.” The epoch is the beginning of time (the point at which time = 0 seconds). The epoch is January 1, 1970 on UNIX
and Windows, and January 1, 1900 on the Macintosh.

The following variables are defined:

accept2dyear

A Boolean value that indicates whether two-digit years are accepted. Normally this is true, but it’s set to false if the
environment variable $PYTHONY2K is set to a non-empty string. The value can be changed manually as well.

altzone

The timezone used during daylight saving time (DST), if applicable.

daylight

Sets to a nonzero value if a DST timezone has been defined.

timezone

The local (non–DST) timezone.

tzname

A tuple containing the name of the local timezone and the name of the local daylight saving timezone (if defined).

The following functions can be used:

asctime([tuple])

Converts a tuple representing a time as returned by gmtime() or localtime() to a string of the form 'Mon Jul 16
14:45:23 2001'. If no arguments are supplied, the current time is used.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/112.html (69 / 81) [2003/1/1 ､W､ﾈ 02:56:20]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112#166.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112#44.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112#132.html

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112.html

clock()

Returns the current CPU time in seconds as a floating-point number.

ctime([secs])

Converts a time expressed in seconds since the epoch to a string representing local time. ctime(secs) is the same as
asctime(localtime(secs)). If secs is omitted, the current time is used.

gmtime([secs])

Converts a time expressed in seconds since the epoch to a time tuple in UTC (Coordinated Universal Time, a.k.a. Greenwich
Mean Time). The returned tuple consists of nine integers of the form (year , month , day , hour , minute ,
second , weekday , day , dst). The following numerical ranges are used for tuple elements:

Element Value

year A four-digit value such as 2002

month 1-12

day 1-31

hour 0-23

minute 0-59

second 0-61

weekday 0-6 (0 =Monday)

day 1-366

dst -1, 0, 1

The dst field is 1 if daylight saving time is in effect, 0 if not, and -1 if no information is available. If secs is omitted, the
current time is used.

localtime([secs])

Returns a time tuple such as gmtime(), but corresponding to the local timezone. If secs is omitted, the current time is
used.

mktime(tuple)

This function takes a time tuple representing a time in the local timezone (in the same format as returned by localtime())
and returns a floating-point number representing the number of seconds since the epoch. An OverflowError exception is

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/112.html (70 / 81) [2003/1/1 ､W､ﾈ 02:56:20]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112.html

raised if the input value is not a valid time.

sleep(secs)

Puts the current process to sleep for secs seconds. secs is a floating-point number.

strftime(format [, tuple])

Converts a tuple representing a time as returned by gmtime() or localtime() to a string. format is a format string in
which the following format codes can be embedded:

Directive Meaning

%a Locale’s abbreviated weekday name

%A Locale’s full weekday name

%b Locale’s abbreviated month name

%B Locale’s full month name

%c Locale’s appropriate date and time representation

%d Day of the month as a decimal number [01-31]

%H Hour (24-hour clock) as a decimal number [00-23]

%I Hour (12-hour clock) as a decimal number [01-12]

%j Day of the year as a decimal number [001-366]

%m Month as a decimal number [01-12]

%M Minute as a decimal number [00-59]

%p Locale’s equivalent of either AM or PM

%S Seconds as a decimal number [00-61]

%U Week number of the year [00-53] (Sunday as first day)

%w Weekday as a decimal number [0 (Sunday) -6]

%W Week number of the year (Monday as first day)

%x Locale’s appropriate date representation

%X Locale’s appropriate time representation

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/112.html (71 / 81) [2003/1/1 ､W､ﾈ 02:56:20]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112.html

%y Year without century as a decimal number [00-99]

%Y Year with century as a decimal number

%Z Timezone name (or empty string if no timezone exists)

%% The % character

The format codes can include a width and precision in the same manner as used with the % operator on strings. If tuple is
omitted, the time tuple corresponding to the current time is used.

strptime(string [, format])

Parses a string representing a time and returns a time tuple of the same form as returned by localtime() or gmtime().
The format parameter uses the same specifiers as used by strftime() and defaults to '%a %b %d %H:%M:%S %Y'.
This is the same format as produced by the ctime() function. If the string cannot be parsed, a ValueError exception is
raised.

time()

Returns the current time as the number of seconds since the epoch in UTC (Coordinated Universal Time).

Notes

● When two-digit years are accepted, they’re converted to four-digit years according to the POSIX X/Open standard,
where the values 69-99 are mapped to 1969-1999 and the values 0-68 are mapped to 2000-2068.

● The functions in this module are not intended to handle dates and times far in the past or future. In particular, dates
before the epoch are illegal, as are dates beyond the maximum time (231 seconds since the epoch on many machines).

● In versions of Python prior to 2.1, the optional arguments to asctime(), ctime(), gmtime(), localtime(),
and strftime() were required. If you’re concerned with backward compatibility, remember to supply these
arguments.

● The range of values for secs is 0 to 61 in order to account for leap seconds.

? See Also locale (172).

tty

The tty module provides functions for putting a TTY into cbreak and raw modes on UNIX systems. Raw mode forces a
process to receive every character on a TTY with no interpretation by the system. Cbreak mode enables system processing
for special keys such as the interrupt and quit keys (which generate signals).

setraw(fd [, when])

Changes the mode of the file descriptor fd to raw mode. when specifies when the change occurs and is
TERMIOS.TCSANOW, TERMIOS.TCSADRAIN, or TERMIOS.TCSAFLUSH (the default).

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/112.html (72 / 81) [2003/1/1 ､W､ﾈ 02:56:20]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112#70.html

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112.html

setcbreak(fd [, when])

Changes the mode of file descriptor fd to cbreak mode. when has the same meaning as in setraw().

Note

● Requires the termios module.

? See Also termios (204).

_winreg

The _winreg module provides a low-level interface to the Windows Registry. The Registry is a large hierarchical tree in
which each node is called a key. The children of a particular key are known as subkeys and may contain additional subkeys or
values. For example, the setting of the Python sys.path variable is typically contained in the Registry as follows:

\HKEY_LOCAL_MACHINE\Software\Python\PythonCore\2.0\PythonPath

In this case, Software is a subkey of HKEY_LOCAL_MACHINE, Python is a subkey of Software, and so forth. The
value of the PythonPath key contains the actual path setting.

Keys are accessed through open and close operations. Open keys are represented by special handles (which are wrappers
around the integer handle identifiers normally used by Windows).

CloseKey(key)

Closes a previously opened registry key with handle key .

ConnectRegistry(computer_name, key)

Returns a handle to a predefined registry key on another computer. computer_name is the name of the remote machine as
a string of the form \\computername . If computer_name is None, the local registry is used. key is a predefined
handle such as HKEY_CURRENT_USER or HKEY_USERS. Raises EnvironmentError on failure.

CreateKey(key, sub_key)

Creates or opens a key and returns a handle. key is a previously opened key or a predefined key defined by the HKEY_*
constants. sub_key is the name of the key that will be opened or created. If key is a predefined key, sub_key may be
None, in which case key is returned.

DeleteKey(key, sub_key)

Deletes sub_key . key is an open key or one of the predefined HKEY_* constants. sub_key is a string that identifies the
key to delete. sub_key must not have any sub-keys or EnvironmentError is raised.

DeleteValue(key, value)

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/112.html (73 / 81) [2003/1/1 ､W､ﾈ 02:56:20]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112#146.html

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112.html

Deletes a named value from a registry key. key is an open key or one of the predefined HKEY_* constants. value is a
string containing the name of the value to remove.

EnumKey(key, index)

Returns the name of a subkey by index. key is an open key or one of the predefined HKEY_* constants. index is an integer
that specifies the key to retrieve. If index is out of range, an EnvironmentError is raised.

EnumValue(key, index)

Returns a value of an open key. key is an open key or a predefined HKEY_* constant. index is an integer specifying the
value to retrieve. The function returns a tuple (name , data , type) in which name is the value name, data is an
object holding the value data, and type is an integer that specifies the type of the value data. The following type codes are
currently defined:

Code Description

REG_BINARY Binary data

REG_DWORD 32-bit number

REG_DWORD_LITTLE_ENDIAN 32-bit little-endian number

REG_DWORD_BIG_ENDIAN 32-bit number in big-endian format

REG_EXPAND_SZ Null-terminated string with unexpanded references to environment variables

REG_LINK Unicode symbolic link

REG_MULTI_SZ Sequence of null-terminated strings

REG_NONE No defined value type

REG_RESOURCE_LIST Device driver resource list

REG_SZ Null-terminated string

FlushKey(key)

Writes the attributes of key to the Registry, forcing changes to disk. This function should only be called if an application
requires absolute certainty that Registry data is stored on disk. Does not return until data is written. It is not necessary to use
this function under normal circumstances.

RegLoadKey(key, sub_key, filename)

Creates a subkey and stores registration information from a file into it. key is an open key or a predefined HKEY_* constant.
sub_key is a string identifying the subkey to load. filename is the name of the file from which to load data. The contents
of this file must be created with the SaveKey() function and the calling process must have the

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/112.html (74 / 81) [2003/1/1 ､W､ﾈ 02:56:20]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112.html

SE_RESTORE_PRIVILEGE for this to work. If key was returned by ConnectRegistry(), filename should be a path
that’s relative to the remote computer.

OpenKey(key, sub_key[, res [, sam]])

Opens a key. key is an open key or an HKEY_* constant. sub_key is a string identifying the subkey to open. res is a
reserved integer that must be zero (the default). sam is an integer defining the security access mask for the key. The default is
KEY_READ. Other possible values for sam :

● KEY_ALL_ACCESS

● KEY_CREATE_LINK

● KEY_CREATE_SUB_KEY

● KEY_ENUMERATE_SUB_KEYS

● KEY_EXECUTE

● KEY_NOTIFY

● KEY_QUERY_VALUE

● KEY_READ

● KEY_SET_VALUE

● KEY_WRITE

OpenKeyEx()

Same as OpenKey().

QueryInfoKey(key)

Returns information about a key as a tuple (num_subkeys , num_values , last_modified) in which
num_subkeys is the number of subkeys, num_values is the number of values, and last_modified is a long integer
containing the time of last modification. Time is measured from January 1, 1601, in units of 100 nanoseconds.

QueryValue(key, sub_key)

Returns the unnamed value for a key as a string. key is an open key or an HKEY_* constant. sub_key is the name of the
subkey to use, if any. If omitted, the function returns the value associated with key instead. This function returns the data for
the first value with a null name. However, the type is returned (use QueryValueEx instead).

QueryValueEx(key, value_name)

Returns a tuple (value , type) containing the data and type for a key. key is an open key or HKEY_* constant.
value_name is the name of the value to return. The returned type is one of the integer codes as described for the

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/112.html (75 / 81) [2003/1/1 ､W､ﾈ 02:56:20]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112.html

EnumValue() function.

SaveKey(key, filename)

Saves key and all of its subkeys to a file. key is an open key or a predefined HKEY_* constant. filename must not
already exist and should not include a filename extension. Furthermore, the caller must have backup privileges for the
operation to succeed.

SetValue(key, sub_key, type, value)

Sets the value of a key. key is an open key or HKEY_* constant. sub_key is the name of the subkey with which to
associate the value. type is an integer type code, currently limited to REG_SZ. value is a string containing the value data.
If sub_key does not exist, it is created. key must have been opened with KEY_SET_VALUE access for this function to
succeed.

SetValueEx(key, value_name, reserved, type, value)

Sets the value field of a key. key is an open key or an HKEY_* constant. value_name is the name of the value. type is
an integer type code as described for the EnumValue() function. value is a string containing the new value. When setting
the values of numeric types (for example, REG_DWORD), value is still a string containing the raw data. This string can be
created using the struct module. reserved is currently ignored and can be set to anything (the value is not used).

zipfile

The zipfile module is used to manipulate files encoded in the popular ZIP format. The following functions are available:

is_zipfile(filename)

Tests filename to see whether it’s a valid ZIP file. Returns 1 if filename is a ZIP file, None otherwise.

ZipFile(filename [, mode [, compression]])

Opens a ZIP file filename and returns a ZipFile instance. mode is 'r' to read from an existing file, 'w' to truncate
the file and write a new file, or 'a' to append to an existing file. For 'a' mode, if filename is an existing ZIP file, new
files are added to it. If filename is not a ZIP file, the archive is simply appended to the end of the file. compression is
the ZIP compression method used when writing to the archive and is one of ZIP_STORED or ZIP_DEFLATED. The default
is ZIP_STORED.

PyZipFile(filename [, mode[, compression]])

Opens a ZIP file like ZipFile(), but returns a special PyZipFile instance with one extra method writepy() that’s
used to add Python source files to the archive.

ZipInfo([filename [, date_time]])

Manually creates a new ZipInfo instance, used to contain information about an archive member. Normally, it’s not
necessary to call this function except when using the z .writestr() method of a ZipFile instance (described below).

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/112.html (76 / 81) [2003/1/1 ､W､ﾈ 02:56:20]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112.html

An instance z of ZipFile or PyZipFile supports the following methods and attributes:

z.close()

Closes the archive file. This must be called in order to flush records to the ZIP file before program termination.

z.getinfo(name)

Returns information about the archive member name as a ZipInfo instance (described below).

z.infolist()

Returns a list of ZipInfo objects for all the members of the archive.

z.namelist()

Returns a list of the archive member names.

z.printdir()

Prints the archive directory to sys.stdout.

z.read(name)

Reads archive contents for member name and returns the data as a string.

z.testzip()

Reads all the files in the archive and verifies their CRC checksums. Returns the name of the first corrupted file or None if all
files are intact.

z.write(filename[, arcname[, compress_type]])

Writes filename to the archive with archive name arcname . compress_type is the compression parameter and is one
of ZIP_STORED or ZIP_DEFLATED. By default, the compression parameter given to the ZipFile() or PyZipFile()
function is used. The archive must be open in 'w' or 'a' mode for writes to work.

z.writepy(pathname[, basename])

This method, available only with PyZipFile instances, is used to write Python source files (*.py files) to a ZIP archive
and can be used to easily package Python applications for distribution. If pathname is a file, it must end with .py. In this
case, one of the corresponding .pyo, .pyc, or .py files will be added (in that order). If pathname is a directory and the
directory is not a Python package directory, all of the corresponding .pyo, .pyc, or .py files are added at the top level. If
the directory is a package, the files are added under the package name as a file path. If any sub-directories are also package
directories, they are added recursively. basename is used internally and is not normally specified.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/112.html (77 / 81) [2003/1/1 ､W､ﾈ 02:56:20]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112.html

z.writestr(zinfo, bytes)

Writes a string of bytes to the archive. Information about the bytes is contained in the ZipInfo instance zinfo , which
must minimally contain a filename, date, and time. The ZipInfo() function can be used to create a ZipInfo instance.

z.debug

Debugging level in the range of 0 (no output) to 3 (most output).

ZipInfo instances returned by the ZipInfo(), z .getinfo(), and z .infolist() functions have the following
attributes:

zinfo.filename

Archive member name.

zinfo.date_time

Tuple (year ,month ,day ,hours ,minutes ,seconds) containing the last modification time. month and day
are numbers in the range 1-12 and 1-31, respectively. All other values start at 0.

zinfo.compress_type

Compression type for the archive member. Only ZIP_STORED and ZIP_DEFLATED are currently supported by this
module.

zinfo.comment

Archive member comment.

zinfo.extra

Expansion field data, used to contain additional file attributes. The data stored here depends on the system that created the
file.

zinfo.create_system

Integer code describing the system that created the archive. Common values include those in the following table:

Value Description

0 MS-DOS (FAT/VFAT/FAT32 filesystems)

3 UNIX

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/112.html (78 / 81) [2003/1/1 ､W､ﾈ 02:56:20]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112.html

7 Macintosh

10 Windows NTFS

zinfo.create_version

Integer PKZIP version code that created the ZIP archive.

zinfo.extract_version

Minimum PKZIP version needed to extract the archive.

zinfo.reserved

Reserved field. Currently set to 0.

zinfo.flag_bits

ZIP flag bits that describe the encoding of the data, including encryption and compression.

zinfo.volume

Volume number of the file header.

zinfo.internal_attr

Describes the internal structure of the archive contents. If the low-order bit is 1, the data is ASCII text. Otherwise, binary
data is assumed.

zinfo.external_attr

External file attributes. Operating system dependent.

zinfo.header_offset

Byte offset to the file header.

zinfo.file_offset

Byte offset to the start of the file data.

zinfo.CRC

CRC-32 checksum of the uncompressed file.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/112.html (79 / 81) [2003/1/1 ､W､ﾈ 02:56:20]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112.html

zinfo.compress_size

Size of the compressed file data.

zinfo.file_size

Size of the uncompressed file.

Notes

● This module requires the use of the zlib module.

● Detailed documentation about the internal structure of ZIP files can be found as a PKZIP Application Note at
http://www.pkware.com/appnote.html.

zlib

The zlib module supports data compression by providing access to the zlib library.

adler32(string [, value])

Computes the Adler-32 checksum of string . value is used as the starting value (which can be used to compute a
checksum over the concatenation of several strings). Otherwise, a fixed default value is used.

compress(string [, level])

Compresses the data in string , where level is an integer from 1 to 9 controlling the level of compression. 1 is the least
(fastest) compression and 9 is the best (slowest) compression. The default value is 6. Returns a string containing the
compressed data or raises error if an error occurs.

compressobj([level])

Returns a compression object. level has the same meaning as in the compress() function.

crc32(string [, value])

Computes a CRC checksum of string . If value is present, it’s used as the starting value of the checksum. Otherwise, a
fixed value is used.

decompress(string [, wbits [, buffsize]])

Decompresses the data in string . wbits controls the size of the window buffer and buffsize is the initial size of the
output buffer. Raises error if an error occurs.

decompressobj([wbits])

Returns a compression object. The wbits parameter controls the size of the window buffer.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/112.html (80 / 81) [2003/1/1 ､W､ﾈ 02:56:20]

http://www.pkware.com/appnote.html

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112.html

A compression object c has the following methods:

c.compress(string)

Compresses string . Returns a string containing compressed data for at least part of the data in string . This data should
be concatenated to the output produced by earlier calls to c .compress() to create the output stream. Some input data may
be stored in internal buffers for later processing.

c.flush([mode])

Compresses all pending input and returns a string containing the remaining compressed output. mode is Z_SYNC_FLUSH,
Z_FULL_FLUSH, or Z_FINISH (the default). Z_SYNC_FLUSH and Z_FULL_FLUSH allow further compression and are
used to allow partial error recovery on decompression. Z_FINISH terminates the compression stream.

A decompression object d has the following methods:

d.decompress(string)

Decompresses string and returns a string containing uncompressed data for at least part of the data in string . This data
should be concatenated with data produced by earlier calls to decompress() to form the output stream. Some input data
may be stored in internal buffers for later processing.

d.flush()

All pending input is processed, and a string containing the remaining uncompressed output is returned. The decompression
object cannot be used again after this call.

Exception

error

Exception raised on compression and decompression errors.

Note

● The zlib library is available at http://www.cdrom.com/pub/infozip/zlib.

? See Also gzip (171).

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/112.html (81 / 81) [2003/1/1 ､W､ﾈ 02:56:20]

http://www.cdrom.com/pub/infozip/zlib
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112#66.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=112

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/113.html

Linux/Unix > Python Essential Reference, Second Edition > A. The Python Library > Threads See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238111161105080005019029193022105

Threads

This section describes modules that can be used to develop multithreaded applications. First, a little terminology and
background.

Thread Basics

A running program is called a process. Associated with each process is a system state including memory, lists of open
files, a program counter that keeps track of the instruction being executed, and a call stack used to hold the local variables
of functions. Normally, a process executes statements in a single sequence of control flow. This sequence is sometimes
called a thread (or main thread).

When a program creates new processes by using the os.system(), os.fork(), os.spawnv(), and similar system
calls, these processes run as independent programs, each with its own set of system resources and main thread of
execution. However, it’s also possible for a program to create additional threads of execution that exist inside the calling
process and share data and system resources with the original thread of execution. Threads are particularly useful when an
application wants to perform tasks concurrently without spawning child processes, or when subtasks need to read and
write shared data.

A multithreaded program executes by dividing its processing time between all active threads. For example, a program with
10 active threads of execution would allocate approximately 1/10 of its CPU time to each thread and cycle between
threads in rapid succession.

Since threads share the same data, an extreme degree of caution is required whenever shared data structures are updated
by one of the threads. In particular, attempts to update a data structure by multiple threads at approximately the same time
can lead to a corrupted and inconsistent program state (a problem formally known as a race condition). To fix these
problems, threaded programs need to lock critical sections of code by using mutual-exclusion locks and other similar
synchronization primitives.

More information regarding the theory and implementation of threads and locks can be found in most operating system
textbooks.

Python Threads

Python supports threads on Windows, Solaris, and systems that support the POSIX threads library (pthreads).
However, threads are often disabled by default, so it may be necessary to rebuild the interpreter with thread support before
using any of the modules in this section. (Beginning with Python 2.1, thread support is enabled by default.)

The scheduling of threads and thread switching is tightly controlled by a global interpreter lock that allows only a single
thread of execution to be running in the interpreter at once. Furthermore, thread switching can only occur between the
execution of individual bytecodes in the interpreter. The frequency with which the interpreter checks for thread switching
is set by the sys.setcheckinterval() function. By default, the interpreter checks for thread switching after every
10 bytecode instructions.

When working with extension modules, the interpreter may invoke functions written in C. Unless specifically written to
interact with a threaded Python interpreter, these functions block the execution of all other threads until they complete
execution. Thus, a long-running calculation in an extension module may limit the effectiveness of using threads. However,
most of the I/O functions in the standard library have been written to work in a threaded environment.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/113.html (1 / 10) [2003/1/1 ､W､ﾈ 02:56:21]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=113
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+9%3A06%3A34+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read7.asp?bookname=0735710910&snode=113&now=5%2F28%2F2002+9%3A06%3A34+PM

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/113.html

Finally, programmers need to be aware that threads can interact strangely with signals and interrupts. For instance, the
KeyboardInterrupt exception can be received by an arbitrary thread, while signals used in conjunction with the
signal module are only received by the main thread.

thread

The thread module provides low-level functions for working with threads. This module is available only on UNIX and
Windows.

allocate_lock()

Creates a new lock object of type LockType. Locks are initially unlocked.

exit()

Raises the SystemExit exception. Forces a thread to exit.

get_ident()

Returns the integer “thread identifier” of the current thread.

start_new_thread(func, args [, kwargs])

Executes the function func in a new thread. func is called using apply(func , args , kwargs). On success,
control is immediately returned to the caller. When the function func returns, the thread exits silently. If the function
terminates with an unhandled exception, a stack trace is printed and the thread exits (other threads continue to run,
however).

A lock object lck returned by allocate_lock() has the following methods:

lck.acquire([waitflag])

Acquires the lock, waiting until the lock is released by another thread if necessary. If waitflag is omitted, the function
returns None when the lock is acquired. If waitflag is set to 0, the lock is acquired only if it can be acquired
immediately without waiting. If waitflag is nonzero, the method blocks until the lock is released. When waitflag is
supplied, the function returns 1 if the lock was acquired successfully, 0 if not.

lck.release()

Releases the lock.

lck.locked()

Returns the lock status: 1 if locked, 0 if not.

Example

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/113.html (2 / 10) [2003/1/1 ､W､ﾈ 02:56:21]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/113.html

The following example shows a simple thread that prints the current time every five seconds:

import thread
import time
def print_time(delay):
 while 1:
 time.sleep(delay)
 print time.ctime(time.time())

Start the new thread
thread.start_new_thread(print_time,(5,))
Now go do something else while the thread runs
while 1:
 pass

Exception

error

Exception raised on thread-specific errors.

Notes

● Calling sys.exit() or raising the SystemExit exception is equivalent to calling thread.exit().

● The acquire() method on a lock cannot be interrupted.

● When the main thread exits, whether the other threads survive depends on the system. On most systems, they’re
killed immediately without executing any cleanup. Furthermore, the cleanup actions of the main thread are
somewhat limited. In particular, standard I/O files are not flushed, nor are object destructors invoked.

? See Also threading (221).

threading

The threading module provides high-level thread support with a Thread class and classes for various synchronization
primitives. It’s built using the lower-level thread module.

The following utility functions are available:

activeCount()

Returns the number of currently active Thread objects.

currentThread()

Returns the Thread object corresponding to the caller’s thread of control.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/113.html (3 / 10) [2003/1/1 ､W､ﾈ 02:56:21]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/113#14.html

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/113.html

enumerate()

Returns a list of all currently active Thread objects.

Thread Objects

The Thread class is used to represent a separate thread of control. A new thread can be created as follows:

Thread(group=None, target=None, name=None, args=(), kwargs={})

Creates a new Thread instance. group is None and is reserved for future extensions. target is a callable object
invoked by the run() method when the thread starts. By default, it’s None, meaning that nothing is called. name is the
thread name. By default, a unique name of the form "Thread-N " is created. args is a tuple of arguments that are
passed to the target function. kwargs is a dictionary of keyword arguments that are passed to target .

A Thread object t supports the following methods:

t.start()

Starts the thread by invoking the run() method in a separate thread of control. This method can be invoked only once.

t.run()

This method is called when the thread starts. By default, it calls the target function passed in the constructor. This method
can also be redefined in subclasses of Thread.

t.join([timeout])

Waits until the thread terminates or a timeout occurs. timeout is a floating-point number specifying a timeout in
seconds. A thread cannot join itself, and it’s an error to join a thread before it has been started.

t.getName()

Returns the thread name.

t.setName(name)

Sets the thread name.

t.isAlive()

Returns 1 if the thread is alive, 0 otherwise. A thread is alive from the moment the start() method returns until its
run() method terminates.

t.isDaemon()

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/113.html (4 / 10) [2003/1/1 ､W､ﾈ 02:56:21]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/113.html

Returns the thread’s daemon flag.

t.setDaemon(daemonic)

Sets the thread’s daemon flag to the Boolean value daemonic . This must be called before start() is called. The
initial value is inherited from the creating thread. The entire Python program exits when no active non-daemon threads are
left.

A thread can be flagged as a “daemon thread” using the setDaemon() method. If only daemon threads remain, a
program will exit.All programs have a main thread that represents the initial thread of control. It’s not a daemon thread.

In some cases, dummy thread objects are created. These are threads of control started outside the threading module
such as from a C extension module. Dummy threads are always considered alive, active, and daemonic, and cannot be
joined. Furthermore, they’re never deleted, so it’s impossible to detect the termination of such threads.

As an alternative to explicitly creating a Thread object, the Thread class can also be subclassed. If this approach is
used, the run() method can be overridden to perform the activity of the thread. The constructor can also be overridden,
but it’s very important to invoke the base class constructor Thread._ _init_ _() in this case. It’s an error to
override any other methods of the Thread class.

Lock Objects

A primitive lock (or mutual exclusion lock) is a synchronization primitive that’s in either a “locked” or “unlocked” state.
Two methods, acquire() and release(), are used to change the state of the lock. If the state is locked, attempts to
acquire the lock are blocked until the lock is released. If more than one thread is waiting to acquire the lock, only one is
allowed to proceed when the lock is released. The order in which waiting threads proceed is undefined.

A new Lock instance is created using the following constructor:

Lock()

Creates a new lock object, initially unlocked.

A Lock object lck supports the following methods:

lck.acquire([blocking = 1])

Acquires the lock, blocking until the lock is released if necessary. If blocking is supplied and set to zero, the function
returns immediately with a value of 0 if the lock could not be acquired, or 1 if locking was successful.

lck.release()

Releases a lock. It’s an error to call this method when the lock is in an unlocked state.

RLock

A reentrant lock is a synchronization primitive that’s similar to a Lock, but that can be acquired multiple times by the
same thread. This allows the thread owning the lock to perform nested acquire() and release() operations. In this
case, only the outermost release() operation resets the lock to its unlocked state.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/113.html (5 / 10) [2003/1/1 ､W､ﾈ 02:56:21]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/113.html

A new RLock object is created using the following constructor:

RLock()

Creates a new reentrant lock object.

An RLock object rlck supports the following methods:

rlck.acquire([blocking = 1])

Acquires the lock, blocking until the lock is released if necessary. If no thread owns the lock, it’s locked and the recursion
level is set to 1. If this thread already owns the lock, the recursion level of the lock is increased by one and the function
returns immediately.

rlck.release()

Releases a lock by decrementing its recursion level. If the recursion level is zero after the decrement, the lock is reset to
the unlocked state. Otherwise, the lock remains locked. This function should only be called by the thread that currently
owns the lock.

ConditionVariables

A condition variable is a synchronization primitive, built on top of another lock, that’s used when a thread is interested in
a particular change of state or event to occur. A typical use is a producer-consumer problem where one thread is producing
data to be consumed by another thread. A new Condition instance is created using the following constructor:

Condition([lock])

Creates a new condition variable. lock is an optional Lock or RLock instance. If not supplied, a new RLock instance is
created for use with the condition variable.

A condition variable cv supports the following methods:

cv.acquire(*args)

Acquires the underlying lock. This method calls the corresponding acquire(*args) method on the underlying lock
and returns its return value.

cv.release()

Releases the underlying lock. This method calls the corresponding release() method on the underlying lock.

cv.wait([timeout])

Waits until notified or until a timeout occurs. This method is called after the calling thread has already acquired the lock.
When called, the underlying lock is released, and the thread goes to sleep until it’s awakened by a notify() or

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/113.html (6 / 10) [2003/1/1 ､W､ﾈ 02:56:21]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/113.html

notifyAll() call performed on the condition variable by another thread. Once awakened, the thread reacquires the
lock and the method returns. timeout is a floating-point number in seconds. If this time expires, the thread is awakened,
the lock reacquired, and control returned.

cv.notify([n])

Wakes up one or more threads waiting on this condition variable. This method is called only after the calling thread has
acquired the lock, and does nothing if no threads are waiting. n specifies the number of threads to awaken and defaults to
1. Awakened threads don’t return from the wait() call until they can reacquire the lock.

cv.notifyAll()

Wakes up all threads waiting on this condition.

Examples

The following examples show a producer-consumer problem using condition variables:

Consume one item
def consumer():
 cv.acquire()
 while not item_is_available():
 cv.wait() # Wait for item
 cv.release()
 consume_item() # Consume the item

Produce one item
def produce():
 produce_item() # Produce the item
 cv.acquire()
 make_item_available()
 cv.notify() # Notify the consumer
 cv.release()

Semaphore

A semaphore is a synchronization primitive based on a counter that’s decremented by each acquire() call and
incremented by each release() call. If the counter ever reaches zero, the acquire() method blocks until some other
thread calls release().

Semaphore([value])

Creates a new semaphore. value is the initial value for the counter. If omitted, the counter is set to a value of 1.

A Semaphore instance s supports the following methods:

s.acquire([blocking])

Acquires the semaphore. If the internal counter is larger than zero on entry, decrements it by one and returns immediately.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/113.html (7 / 10) [2003/1/1 ､W､ﾈ 02:56:21]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/113.html

If it’s zero, blocks until another thread calls release(). The blocking argument has the same behavior as described
for Lock and RLock objects.

s.release()

Releases a semaphore by incrementing the internal counter by one. If the counter is zero and another thread is waiting, that
thread is awakened. If multiple threads are waiting, only one will be returned from its acquire() call. The order in
which threads are released is not deterministic.

Events

Events are used to communicate between threads. One thread signals an “event” and one or more other threads wait for it.
An Event instance manages an internal flag that can be set to true with the set() method and reset to false with the
clear() method. The wait() method blocks until the flag is true.

Event()

Creates a new Event instance with the internal flag set to false.

An Event instance e supports the following methods:

e.isSet()

Returns true only if the internal flag is true.

e.set()

Sets the internal flag to true. All threads waiting for it to become true are awakened.

e.clear()

Resets the internal flag to false.

e.wait([timeout])

Blocks until the internal flag is true. If the internal flag is true on entry, returns immediately. Otherwise, blocks until
another thread calls set() to set the flag to true, or until the optional timeout occurs. timeout is a floating-point
number specifying a timeout period in seconds.

Example

The following example illustrates the use of the threading module by fetching a collection of URLs in separate threads. In
this example, threads are defined by subclassing the Thread class.

import threading
import urllib
class FetchUrlThread(threading.Thread):

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/113.html (8 / 10) [2003/1/1 ､W､ﾈ 02:56:21]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/113.html

 def __init__(self, url,filename):
 threading.Thread.__init__(self)
 self.url = url
 self.filename = filename
 def run(self):
 print self.getName(), 'Fetching ', self.url
 urllib.urlretrieve(self.url,self.filename)
 print self.getName(), 'Saved in ', self.filename
urls = [('http://www.python.org','/tmp/index.html'),
 ('ftp://ftp.python.org/pub/python/2.1/Python-2.1.tgz', '/tmp/py21.tgz'),
 ('http://www.petaflop.org/p.png','/tmp/p.png'),
 ('http://www.pud.com','/tmp/pud.html')
]

Go fetch a bunch of URLs in separate threads
for url,file in urls:
 t = FetchUrlThread(url,file)
 t.start()

? See Also thread (219), Queue (226).

Queue

The Queue module implements a multi-producer, multi-consumer FIFO queue that can be used to safely exchange
information between multiple threads of execution. It’s available only if thread support has been enabled.

The Queue module defines the following class:

Queue(maxsize)

Creates a new queue in which maxsize is the maximum number of items that can be placed in the queue. If maxsize is
less than or equal to zero, the queue size is infinite.

A Queue object q has the following methods:

q.qsize()

Returns the approximate size of the queue. Because other threads may be updating the queue, this number is not entirely
reliable.

q.empty()

Returns 1 if the queue is empty, 0 otherwise.

q.full()

Returns 1 if the queue is full, 0 otherwise.

q.put(item [, block])

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/113.html (9 / 10) [2003/1/1 ､W､ﾈ 02:56:21]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/113#6.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/113#32.html

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/113.html

Puts item into the queue. If optional argument block is 1 (the default), the caller blocks until a free slot is available.
Otherwise (block is 0), the Full exception is raised if the queue is full.

q.put_nowait(item)

Equivalent to q .put(item , 0).

q.get([block])

Removes and returns an item from the queue. If optional argument block is 1 (the default), the caller blocks until an
item is available. Otherwise (block is 0), the Empty exception is raised if the queue is empty.

q.get_nowait()

Equivalent to q .get(0).

Exceptions

Empty

Exception raised when nonblocking get() or get_nowait() is called on a Queue object that’s empty or locked.

Full

Exception raised when nonblocking put() or put_nowait() is called on a Queue object that’s full or locked.

? See Also thread (219), threading (221).

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/113.html (10 / 10) [2003/1/1 ､W､ﾈ 02:56:21]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/113#6.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/113#14.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=113

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/114.html

Linux/Unix > Python Essential Reference, Second Edition > A. The Python Library > Network Programming See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238111161105080005021224021244047

Network Programming

This section describes the modules used to implement network servers and clients. Python provides extensive network
support ranging from access to low-level network interfaces to high-level clients and frameworks for writing network
applications. Before beginning, a very brief (and admittedly terse) introduction to network programming is presented.
Readers are advised to consult a book such as UNIX Network Programming, Volume 1: Networking APIs - Sockets and
XTI by W. Richard Stevens (Prentice Hall, 1997, ISBN 0-13-490012-X) for many of the advanced details.

Python’s network programming modules primarily support two Internet protocols: TCP and UDP. The TCP protocol is a
reliable connection-oriented protocol used to establish a two-way communications stream between machines. UDP is a
lower-level packet-based protocol (connectionless) in which machines send and receive discrete packets of information
without formally establishing a connection. Unlike TCP, UDP communication is unreliable and thus inherently more
complicated to manage in applications that require reliable communications. Consequently, most Internet protocols utilize
TCP connections.

Both network protocols are handled through a programming abstraction known as a socket. A socket is an object similar to
a file that allows a program to accept incoming connections, make outgoing connections, and send and receive data.
Before two machines can establish a connection, both must create a socket object.

Furthermore, the machine receiving the connection (the server) must bind its socket object to a port. A port is a 16-bit
number in the range 0–65535 that’s managed by the operating system and used by clients to uniquely identify servers.
Ports 0–1023 are reserved by the system and used by common network protocols. The following table shows the port
assignments for a number of common protocols:

Service Port Number

FTP-Data 20

FTP-Control 21

Telnet 23

SMTP (Mail) 25

Finger 79

HTTP (WWW) 80

NNTP (News) 119

HTTPS (Secure WWW) 443

The process of establishing a TCP connection involves a precise sequence of steps on both the server and client, as shown
in Figure A.1.

Figure A.1. TCP connection protocol.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/114.html (1 / 45) [2003/1/1 ､W､ﾈ 02:56:26]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=114
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+9%3A06%3A59+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read6.asp?bookname=0735710910&snode=114&now=5%2F28%2F2002+9%3A06%3A59+PM
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/114#2.html

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/114.html

For TCP servers, the socket object used to receive connections is not the same socket used to perform subsequent
communication with the client. In particular, the accept() system call returns a new socket object that’s actually used
for the connection. This allows a server to manage connections from a large number of clients simultaneously.

UDP communication is performed in a similar manner except that clients and servers don’t establish a “connection” with
each other, as shown in Figure A.2.

Figure A.2. UDP connection protocol.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/114.html (2 / 45) [2003/1/1 ､W､ﾈ 02:56:26]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/114#4.html

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/114.html

The following example illustrates the TCP protocol with a client and server written using the socket module. In this
case, the server simply returns the current time to the client as a string.

Time server program
from socket import *
import time

s = socket(AF_INET, SOCK_STREAM) # Create a TCP socket
s.bind(('',8888)) # Bind to port 8888
s.listen(5) # Listen, but allow no more than
 # 5 pending connections.
while 1:
 client,addr = s.accept() # Get a connection
 print 'Got a connection from ',addr
 client.send(time.ctime(time.time())) # Send back to client
 client.close()

Here’s the client program:

Time client program
from socket import *
s = socket(AF_INET,SOCK_STREAM) # Create a TCP socket
s.connect(('foo.bar.com', 8888)) # Connect to the server
tm = s.recv(1024) # Receive no more than 1024 bytes
s.close()
print 'The time is ', tm

The remainder of this section describes modules of two different flavors. First are modules and frameworks related to
socket programming. Second are a variety of modules that implement the client-side interface to common Internet
protocols. With the exception of HTTP, the details of these protocols are not presented. However, details can be found in
the online documentation and in relevant Internet Request for Comments (RFCs) available at http://www.ietf.org. Where
applicable, RFC numbers and sources for additional information are stated.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/114.html (3 / 45) [2003/1/1 ､W､ﾈ 02:56:26]

http://www.ietf.org/

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/114.html

asyncore

The asyncore module is used to build network applications in which network activity is handled asynchronously as a
series of events dispatched by an event loop, built using the select() system call. Such an approach is useful in
network programs that want to provide concurrency, but without the use of threads or processes. This method can also
provide the best performance for short transactions. All the functionality of this module is provided by the dispatcher
class, which is a thin wrapper around an ordinary socket object.

dispatcher([sock])

Base class defining an event-driven nonblocking socket object. sock is an existing socket object. If omitted, a socket
must be created using the create_socket() method (described shortly). Once created, network events are handled by
special handler methods (described later). In addition, all open dispatcher objects are saved in an internal list that’s used by
a number of polling functions.

The following methods of the dispatcher class are called to handle network events. They should be defined in classes
derived from dispatcher.

d.handle_read()

Called when new data is available to be read from a socket.

d.handle_write()

Called when an attempt to write data is made.

d.handle_expt()

Called when out-of-band (OOB) data for a socket is received.

d.handle_connect()

Called when a connection is made.

d.handle_close()

Called when the socket is closed.

d.handle_accept()

Called on listening sockets when a new connection arrives.

d.readable()

This function is used by the select() loop to see whether the object is willing to read data. Returns 1 if so, 0 if not.
This method is called to see if the handle_read() method should be called with new data.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/114.html (4 / 45) [2003/1/1 ､W､ﾈ 02:56:26]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/114.html

d.writable()

Called by the select() loop to see whether the object wants to write data. Returns 1 if so, 0 otherwise. This method is
always called to see whether the handle_write() method should be called to produce output.

In addition to the preceding methods, the following methods are used to perform low-level socket operations. They’re
similar to those available on a socket object.

d.create_socket(family, type)

Creates a new socket.Arguments are the same as for socket.socket().

d.connect(address)

Makes a connection. address is a tuple (host , port).

d.send(data)

Sends data .

d.recv(size)

Receives at most size bytes.

d.listen([backlog])

Listens for incoming connections.

d.bind(address)

Binds the socket to address . address is typically a tuple (host , port).

d.accept()

Accepts a connection. Returns a pair (client , addr) where client is a socket object used to send and receive data
on the connection and addr is the address of the client.

d.close()

Closes the socket.

The following functions are used to handle events:

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/114.html (5 / 45) [2003/1/1 ､W､ﾈ 02:56:26]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/114.html

poll([timeout [, ignore_exception]])

Polls all the open dispatcher objects for network events using select() and calls the appropriate handler functions if
necessary. timeout is an optional timeout, 0.0 by default. ignore_exception , if set, causes all exceptions
generated in event handlers to be ignored (the default).

loop([timeout])

Polls for events indefinitely. Does nothing but repeatedly call poll(). timeout is the timeout period and is set to 30
seconds by default.

Example

The following example implements a minimalistic Web server using asyncore. It implements two classes—
asynhttp for accepting connections and asynclient for processing client requests.

A minimal HTTP server with no error checking.
import asyncore, socket
import string, os, stat, mimetypes
Class that does nothing but accept connections
class asynhttp(asyncore.dispatcher):
 def __init__(self, port):
 asyncore.dispatcher.__init__(self)
 self.create_socket(socket.AF_INET,socket.SOCK_STREAM)
 self.bind(('',port))
 self.listen(5)
 # Accept an incoming connection and create a client
 def handle_accept(self):
 client,addr = self.accept()
 print 'Connection from ', addr
 return asynclient(client)
Handle clients
class asynclient(asyncore.dispatcher):
 def __init__(self, sock = None):
 asyncore.dispatcher.__init__(self,sock)
 self.got_request = 0 # Read HTTP request?
 self.request_data = []
 self.responsef = None # Response file
 self.sent_headers = 0 # Send HTTP headers?
 self.clientf = sock.makefile('r+',0) # Request file
 # Only readable if request header not read
 def readable(self):
 if not self.got_request: return 1
 # Read request header (until blank line)
 def handle_read(self):
 data = string.strip(self.clientf.readline())
 if data:
 self.request_data.append(data)
 return
 self.got_request = 1
 request = string.split(self.request_data[0])
 if request[0] == 'GET':
 filename = request[1][1:]

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/114.html (6 / 45) [2003/1/1 ､W､ﾈ 02:56:26]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/114.html

 self.responsef = open(filename)
 self.content_type,enc = mimetypes.guess_type(filename)
 self.content_length = os.stat(filename)[stat.ST_SIZE]
 else:
 self.close()
 # Only writable if a response is ready
 def writable(self):
 if self.responsef: return 1
 return 0
 # Write response data
 def handle_write(self):
 # Send HTTP headers if not sent yet
 if not self.sent_headers:
 self.send('HTTP/1.0 200 OK\n')
 if not self.content_type:
 self.content_type = 'text/plain'
 self.send('Content-type: %s\n' % (self.content_type,))
 self.send('Content-length: %d\n\n' % (self.content_length,))
 self.sent_headers = 1
 # Read some data and send it
 data = self.responsef.read(8192)
 if data:
 sent = self.send(data)
 # Adjust for unsent data
 self.responsef.seek(sent-len(data),1)
 else:
 self.responsef.close()
 self.close()
Create the server
a = asynhttp(80)
Poll forever
asyncore.loop()

Notes

● This module requires the select module.

? See Also socket (252), select (250), httplib (243), SocketServer (258).

BaseHTTPServer

The BaseHTTPServer module defines two base classes used to implement HTTP servers.

HTTPServer(server_address, request_handler)

Creates a new HTTPServer object. server_address is a tuple of the form (host , port) on which the server
will listen. request_handler is a class object used to handle requests (described shortly).

The HTTPServer class is derived from SocketServer.TCPServer and supports the same methods. In particular,
the following functions are most relevant:

Function Description

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/114.html (7 / 45) [2003/1/1 ､W､ﾈ 02:56:26]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/114#64.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/114#52.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/114#34.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/114#72.html

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/114.html

h .handle_request() Processes a single request

h .serve_forever() Handles an infinite number of requests

Requests are handled by defining a handler derived from the following class:

BaseHTTPRequestHandler(request, client_address, server)

This class is used to handle HTTP requests. When a connection is received, the request and HTTP headers are parsed. An
attempt is then made to execute a method of the form do_REQUEST based on the request type. For example, a 'GET'
method invokes do_GET() and a 'POST' method invokes do_POST. By default, this class does nothing, so these
methods must be defined in subclasses.

The following class variables are defined for BaseHTTPRequestHandler:

BaseHTTPRequestHandler.server_version

Specifies the server software version string—for example, 'ServerName/1.2'.

BaseHTTPRequestHandler.sys_version

Python system version, such as 'Python/2.0'.

BaseHTTPRequestHandler.error_message_format

Format string used to build error messages sent to the client. The format string is applied to a dictionary containing the
attributes code, message, and explain. For example:

'''<head>
 <title>Error response</title>
 </head>
 <body>
 <h1>Error response</h1>
 <p>Error code %(code)d.
 <p>Message: %(message)s.
 <p>Error code explanation: %(code)s = %(explain)s.
 </body>'''

BaseHTTPRequestHandler.protocol_version

HTTP protocol version used in responses. The default is 'HTTP/1.0'.

BaseHTTPRequestHandler.MessageClass

Class used to parse HTTP headers.The default is mimetools.Message.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/114.html (8 / 45) [2003/1/1 ､W､ﾈ 02:56:27]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/114.html

BaseHTTPRequestHandler.responses

Mapping of integer error codes to two-element tuples (message , explain) that describe the problem.

An instance b of the BaseHTTPRequestHandler has the following attributes:

Attribute Description

b .client_address Client address as a tuple (host , port)

b .command Request type such as 'GET', 'POST', 'HEAD', and so on

b .path Contains the request path

b .request_version HTTP version string from the request, such as 'HTTP/1.0'

b .headers HTTP headers, typically represented as mimetools.Message object

b .rfile Input stream for optional input data

b .wfile Output stream for writing a response back to the client

The following methods are used:

b.handle()

Request dispatcher. Parses the request and calls a method of the form do_*().

b.send_error(code [, message])

Sends an error reply to the client. code is the numeric HTTP error code. message is an optional error message.

b.send_response(code [, message])

Sends a response header. The HTTP response line is sent, followed by Server and Date headers.

b.send_header(keyword, value)

Writes a MIME header entry to the output stream. keyword is the header keyword, value is its value.

b.end_headers()

Sends a blank line to signal the end of the MIME headers.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/114.html (9 / 45) [2003/1/1 ､W､ﾈ 02:56:27]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/114.html

b.log_request([code [, size]])

Logs a successful request. code is the HTTP code and size is the size of the response in bytes (if available).

b.log_error(format, ...)

Logs an error message. By default, b .log_message() is called.

b.log_message(format, ...)

Logs an arbitrary message to sys.stderr. format is a format string applied to any additional arguments passed. The
client address and current time are prefixed to every message.

b.version_string()

Returns the server software’s version string—a combination of the server_version and sys_version variables.

b.date_time_string()

Returns the current date and time, formatted for a header.

b.log_date_time_string()

Returns the current date and time, formatted for logging.

b.address_string()

Performs a name lookup on the client’s IP address and returns a hostname formatted for logging.

Example

The following example handles GET methods and simply echoes the request back to the client on a Web page.

import BaseHTTPServer
class EchoHandler(BaseHTTPServer.BaseHTTPRequestHandler):
 # Echo the request information back on a Web page
 def do_GET(self):
 self.send_response(200)
 self.send_header('Content-type','text/html')
 self.end_headers()
 self.wfile.write('''
<html><head><title>Your Request</title></head>
<body>
<pre>
You requested the following : %s
The request headers were :
%s

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/114.html (10 / 45) [2003/1/1 ､W､ﾈ 02:56:27]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/114.html

</pre></body></html>
''' % (self.path, self.headers))

server = BaseHTTPServer.HTTPServer(('',80),EchoHandler)
server.serve_forever()

Note

● The contents of this module are rarely used directly. See the SimpleHTTPServer and CGIHTTPServer modules.

? See Also SimpleHTTPServer (251), CGIHTTPServer (239), SocketServer (258), httplib (243), mimetools (266).

cgi

The cgi module is used to implement CGI scripts in Web applications. CGI scripts are programs executed by a Web
server when it wants to process user input submitted through an HTML form such as the following:

<FORM ACTION='/cgi-bin/foo.cgi' METHOD='GET'>
Your name : <INPUT type='Text' name='name' size='30'>
Your email address: <INPUT type='Text' name='email' size='30'>
<INPUT type='Submit' name='submit-button' value='Subscribe'>
</FORM>

When the form is submitted, the Web server executes the CGI program foo.cgi. CGI programs receive input from two
sources: sys.stdin and environment variables set by the server. The following table lists common environment
variables set by Web servers:

Variable Description

AUTH_TYPE Authentication method

CONTENT_LENGTH Length of data passed in sys.stdin

CONTENT_TYPE Type of query data

DOCUMENT_ROOT Document root directory

GATEWAY_INTERFACE CGI revision string

HTTP_ACCEPT MIME types accepted by the client

HTTP_COOKIE Netscape persistent cookie value

HTTP_FROM Email address of client (often disabled)

HTTP_REFERER Referring URL

HTTP_USER_AGENT Client browser

PATH_INFO Extra path information passed

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/114.html (11 / 45) [2003/1/1 ､W､ﾈ 02:56:27]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/114#58.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/114#22.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/114#58.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/114#22.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/114#72.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/114#34.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/115#16.html

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/114.html

PATH_TRANSLATED Translated version of PATH_INFO

QUERY_STRING Query string

REMOTE_ADDR Remote IP address of the client

REMOTE_HOST Remote hostname of the client

REMOTE_IDENT User making the request

REMOTE_USER Authenticated username

REQUEST_METHOD Method ('GET' or 'POST')

SCRIPT_NAME Name of the program

SERVER_NAME Server hostname

SERVER_PORT Server port number

SERVER_PROTOCOL Server protocol

SERVER_SOFTWARE Name and version of the server software

As output, a CGI program writes to standard output sys.stdout. The gory details of CGI programming can be found in
a book such as CGI Programming with Perl, 2nd Edition by Shishir Gundavaram (O’Reilly & Associates, 1999). For our
purposes, there are really only two things to know. First, the contents of an HTML form are passed to a CGI program in a
sequence of text known as a query string. In Python, the contents of the query string are accessed using the
FieldStorage class. For example:

import cgi
form = cgi.FieldStorage()
name = form['name'].value # Get 'name' field from a form
email = form['email'].value # Get 'email' field from a form

Second, the output of a CGI program consists of two parts: an HTTP header and the raw data (which is typically
HTML).A simple HTTP header looks like this:

print 'Content-type: text/html' # HTML Output
print # Blank line (required!)

The rest of the output is the raw output. For example:

print '<TITLE>My CGI Script</TITLE>'
print '<H1>Hello World!</H1>'
print 'You are %s (%s)' % (name, email)

Most of the work in the cgi module is performed by creating an instance of the FieldStorage class. This class reads

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/114.html (12 / 45) [2003/1/1 ､W､ﾈ 02:56:27]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/114.html

the contents of a form by reading and parsing the query string passed in an environment variable or standard input.
Because input can be read from standard input, only one instance should be created. An instance f of FieldStorage
has the following attributes:

Attribute Description

f .name The field name, if specified

f .filename Client-side filename used in uploads

f .value Value as a string

f .file File-like object from which data can be read

f .type Content type

f .type_options Dictionary of options specified on the content-type line of the HTTP request

f .disposition The 'content-disposition' field; None if not specified

f .disposition_options Dictionary of disposition options

f .headers A dictionary-like object containing all the HTTP header contents

In addition, the cgi module defines a class MiniFieldStorage that contains only the attribute’s name and value. This
class is used to represent individual fields of a form passed in the query string, whereas FieldStorage is used to
contain multiple fields and multipart data.

Instances of FieldStorage are accessed like a Python dictionary where the keys are the field names on the form. When
accessed in this manner, the objects returned are themselves an instance of FieldStorage for multipart data or file
uploads, an instance of MiniFieldStorage for simple fields, or a list of such instances in cases where a form contains
multiple fields with the same name.

If a field represents an uploaded file, accessing the value attribute reads the entire file into memory as a string. Because
this may consume a large amount of memory on the server, it may be preferable to read uploaded data in smaller pieces by
reading from the file attribute directly. For instance, the following example reads uploaded data line by line:

fileitem = form['userfile']
if fileitem.file:
 # It's an uploaded file; count lines
 linecount = 0
 while 1:
 line = fileitem.file.readline()
 if not line: break
 linecount = linecount + 1

The following functions provide a more low-level CGI interface:

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/114.html (13 / 45) [2003/1/1 ､W､ﾈ 02:56:27]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/114.html

escape(s [, quote])

Converts the characters '&', '<', and '>' in string s to HTML-safe sequences such as '&', '<', and '>'. If the
optional flag quote is true, the double-quote character (") is also translated.

parse([fp [, environ [, keep_blank_values [, strict_parsing]]]])

Parses a form into a dictionary. fp is a file object from which data is read (defaults to stdin). environ is a dictionary
containing environment variables (defaults to os.environ). keep_blank_values , if set to 1, instructs the parser to
map blank entries into empty strings. Otherwise, blank entries are ignored (the default). The strict_parsing option
specifies what to do with parsing errors. By default, errors are ignored. If set, parsing errors result in a ValueError
exception. Returns a dictionary mapping field names to lists of values.

parse_header(string)

Parses the data supplied after an HTTP header field such as 'content-type'. The data is split into a primary value
and a dictionary of secondary parameters that are returned in a tuple. For example, this command:

parse_header("text/html; a=hello; b='world'")

returns this result:

('text/html', {'a':'hello', 'b':'world'}).

parse_multipart(fp,pdict)

Parses input of type 'multipart/form-data' as is commonly used with file uploads. fp is the input file and
pdict is a dictionary containing parameters of the content-type header. Returns a dictionary mapping field names to lists
of values. This function doesn’t work with nested multipart data. The FieldStorage class should be used instead.

parse_qs(qs [, keep_blank_values [, strict_parsing]]):

Parses a query string qs . keep_blank_values and strict_parsing have the same meaning as in parse().
Returns a dictionary mapping field names to lists of values.

parse_qsl(qs [, keep_blank_values [, strict_parsing]])

Like parse_qs() except that a list of (name , value) pairs is returned.

print_directory()

Formats the contents of the current working directory in HTML. Used for debugging.

print_environ()

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/114.html (14 / 45) [2003/1/1 ､W､ﾈ 02:56:27]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/114.html

Formats the shell environment in HTML. Used for debugging.

print_environ_usage()

Prints a list of useful environment variables in HTML. Used for debugging.

print_form(form)

Formats the data supplied on a form in HTML. form must be an instance of FieldStorage. Used for debugging.

test()

Writes a minimal HTTP header and prints all the information provided to the script in HTML format. Primarily used for
debugging.

Notes

● The process of installing a CGI program varies widely according to the type of Web server being used. Typically
programs are placed in a special cgi-bin directory. A server may also require additional configuration.

● On UNIX, Python CGI programs may require a line such as the following as the first line of the program:

#!/usr/local/bin/python
import cgi
...

● To simplify debugging, it’s sometimes useful to set sys.stderr to s ys.stdout. This will force Python error
messages to be sent to the output stream (which will then appear in the text sent to the browser).

● If you invoke an external program—for example, via the os.system() or os.popen() function—be careful
not to pass arbitrary strings received from the client to the shell. This is a well-known security hole that hackers can
use to execute arbitrary shell commands on the server (because the command passed to these functions is first
interpreted by the UNIX shell as opposed to being executed directly). In particular, never pass any part of a URL or
form data to a shell command unless it has first been thoroughly checked by making sure that the string contains
only alphanumeric characters, dashes, underscores, and periods.

● On UNIX, don’t give a CGI program setuid mode. This is a security liability and not supported on all machines.

● Don’t use 'from cgi import *' with this module. The cgi module defines a wide variety of names and
symbols that you probably don’t want in your namespace.

● The original CGI specification can be found at http://hoohoo.ncsa.uiuc.edu/cgi/interface.html.

? See Also CGIHTTPServer (239).

CGIHTTPServer

The CGIHTTPServer module provides a simple HTTP server handler that can run CGI scripts. The server is defined by
the following request handler class, intended for use with the BaseHTTPServer module:

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/114.html (15 / 45) [2003/1/1 ､W､ﾈ 02:56:27]

http://hoohoo.ncsa.uiuc.edu/cgi/interface.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/114#22.html

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/114.html

CGIHTTPRequestHandler(request, client_address, server)

Serves files from the current directory and all its subdirectories. In addition, the handler will run a file as a CGI script if
it’s located in a special CGI directory. The handler supports both GET and POST methods.

The list of valid CGI directories is contained in the following attribute:

CGIHTTPRequestHandler.cgi_directories

List of CGI directories. Defaults to ['/cgi-bin', '/htbin'].

Example

from BaseHTTPServer import HTTPServer
from CGIHTTPServer import CGIHTTPRequestHandler
import os
Change to the document root
os.chdir('/home/httpd/html')
Start the CGI server
serv = HTTPServer(('',80),CGIHTTPRequestHandler)
serv.serve_forever()

Notes

● For security, CGI scripts are executed with a UID of user nobody.

● Problems with the CGI script will be translated to HTTP error 403.

● Requests are handled using the do_GET and do_POST methods, both of which can be redefined in subclasses.

● To prevent problems in the execution of CGI scripts, it’s usually a good idea to use CGI directory names that don’t
contain any embedded whitespace.

? See Also BaseHTTPServer (p. x), SimpleHTTPServer (p. x), cgi (p. x), httplib (p. x).

Cookie

The Cookie module provides support for managing HTTP cookies. Cookies are used to provide state management in
CGI scripts that implement sessions, user logins, shopping carts, and related features. To drop a cookie on a user’s
browser, an HTTP server typically adds an HTTP header similar to the following to an HTTP response (see the httplib
module):

Set-Cookie: session=8273612; expires=Sun, 18-Feb-2001 15:00:00 GMT; \
 path=/; domain=cs.uchicago.edu

Alternatively, a cookie can be set by embedding JavaScript in an HTML document:

<SCRIPT LANGUAGE="JavaScript">
document.cookie = "session=8273612; expires=Sun, 18-Feb-2001 15:00:00 GMT; \

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/114.html (16 / 45) [2003/1/1 ､W､ﾈ 02:56:27]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/114#12.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/114#58.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/114#18.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/114#34.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/114#34.html

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/114.html

 Path=/; Domain=cs.uchicago.edu;"
</SCRIPT>

The Cookie module simplifies the task of generating cookie values by providing a special dictionary-like object that
stores and manages collections of cookie values known as morsels. Each morsel has a name, a value, and a set of optional
attributes containing meta-data to be supplied to the browser {expires, path, comment, domain, max-age,
secure, version}. The name is usually a simple identifier such as "name " and must not be the same as one of the
meta-data names such as "expires" or "path". The value is usually a short string. To create a cookie, simply create a
cookie object like this:

c = Cookie.SimpleCookie()

Once created, cookie values (morsels) can be set using ordinary dictionary assignment:

c["session"] = 8273612
c["user"] = "beazley"

Additional attributes of a specific morsel are set as follows:

c["session"]["path"] = "/"
c["session"]["domain"] = "cs.uchicago.edu"
c["session"]["expires"] = "18-Feb-2001 15:00:00 GMT"

To output the cookie data as a set of HTTP headers, the c.output() method is used. For example:

print c.output()
Produces two lines of output
Set-Cookie: session=8273612; expires=...; path=/; domain=...
Set-Cookie: user=beazley

When a browser sends a cookie back to an HTTP server, it is encoded as a string of key=value pairs such as
"session=8273612; user=beazley". Optional attributes such as expires, path, and domain are not
returned. The cookie string can usually be found in the HTTP_COOKIE environment variable, which can be read by CGI
applications. To recover cookie values, use code similar to the following:

c = Cookie.SimpleCookie(os.environ["HTTP_COOKIE"])
session = c["session"].value
user = c["user"].value

In the above example, the cookie instance c is derived from a class BaseCookie that provides the following common
methods:

c.value_decode(val)

Takes a string val and returns a decoded cookie value. This function is used to interpret a cookie value returned to a
server by a browser.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/114.html (17 / 45) [2003/1/1 ､W､ﾈ 02:56:27]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/114.html

c.value_encode(val)

Takes an object val and returns it as an encoded string suitable for use in an HTTP header. A server would use this to
encode cookie values being sent to the browser.

c.output([attrs [,header [,sep]]])

Generates a string suitable for use in setting cookie values in HTTP headers. attrs is an optional list of the optional
attributes to include ("expires", "path", "domain", and so on). header is the HTTP header to use, 'Set-
Cookie:' by default. sep is the character used to join the headers together and is a newline by default.

c.js_output([attrs])

Generates a string containing JavaScript code that will set the cookie if executed on a browser supporting JavaScript.
attrs is an optional list of the attributes to include.

c.load(rawdata)

Loads the cookie c with data found in rawdata . If rawdata is a string, it’s assumed to be in the same format as the
HTTP_COOKIE environment variable in a CGI program. If rawdata is a dictionary, each key-value pair is
interpreted by setting c [key]=value .

The following classes provide specialized implementations of cookie objects. Each of these classes is derived from a class
BaseCookie.

SimpleCookie([input])

Defines a cookie object in which cookie values are interpreted as simple strings. The c .value_decode() method is
the identity function and the c .value_encode() method uses the str() function to generate encoded values.

SerialCookie([input])

Defines a cookie object in which the cookie values are interpreted using the pickle module. The c
.value_decode() method uses pickle.loads() and the c .value_encode() method uses
pickle.dumps(). See the later security note.

SmartCookie([input])

Like SerialCookie() except that strings are left unmodified. If the cookie value cannot be successfully unpickled, c
.value_decode() returns its value as a string. In addition, the c .value_encode() method only calls
pickle.dumps() if the value is not a string. See the later security note.

Internally, the key/value pairs used to store a cookie value are instances of a Morsel class.An instance m of Morsel
behaves like a dictionary and allows the optional "expires", "path", "comment", "domain", "max-age",
"secure", and "version" keys to be set. In addition, a morsel m has the following methods and attributes:

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/114.html (18 / 45) [2003/1/1 ､W､ﾈ 02:56:27]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/114.html

m.value

The raw value of the cookie.

m.coded_value

The encoded value of the cookie that would be sent to or received from the browser.

m.key

The cookie name.

m.set(key,value,coded_value)

Sets the values of m .key, m .value, and m .coded_value.

m.isReservedKey(k)

Tests whether k is a reserved keyword such as "expires", path", "domain", etc.

m.output([attrs [,header]])

Produces the HTTP header string for this morsel. attrs is an optional list of the additional attributes to include
("expires", "path", and so on). header is the header string to use, 'Set-Cookie:' by default.

m.js_output([attrs])

Outputs JavaScript code that sets the cookie when executed.

m.OutputString([attrs])

Returns the cookie string without any HTTP headers or JavaScript code.

If an error occurs during the parsing or generation of cookie values, a CookieError exception is raised.

Notes

● More information about persistent cookies can be found in almost any book on CGI programming. For an official
specification, see RFC-2109.

● The SerialCookie() and SmartCookie() classes have known security problems, since the pickle
module allows arbitrary client-code to be executed on the server during unpickling. These should not be used
unless your application has a way to validate cookie values before unpickling.

● Most browsers place limits on the size and number of cookie values. You should limit the size of cookie data to a
few hundred bytes at most.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/114.html (19 / 45) [2003/1/1 ､W､ﾈ 02:56:27]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/114.html

? See Also cgi (235), httplib (243).

ftplib

The ftplib module is used to implement the client side of the FTP protocol. It’s rarely necessary to use this module
directly, as the urllib module provides a higher-level interface. The following example illustrates the use of this
module:

>>> import ftplib
>>> ftp = ftplib.FTP('ftp.python.org')
>>> ftp.login()
>>> ftp.retrlines('LIST')
total 40
drwxrwxr-x 12 root 4127 512 Apr 6 19:57 .
drwxrwxr-x 12 root 4127 512 Apr 6 19:57 ..
drwxrwxr-x 2 root 4127 512 Aug 25 1998 RCS
lrwxrwxrwx 1 root bin 11 Jun 29 18:34 README -> welcome.msg
drwxr-xr-x 3 root wheel 512 May 19 1998 bin
...
>>> ftp.retrbinary('RETR README', open('README', 'wb').write)
'226 Transfer complete.'
>>> ftp.quit()

Consult the online documentation for a complete description of the functionality contained in this module.

? See Also urllib (260), Internet RFC 959, http://www.python.org/doc/lib/module-ftplib.html.

httplib

This module implements the client side of the Hypertext Transfer Protocol (HTTP) used in Web applications. Both
HTTP/1.0 and HTTP/1.1 protocols are supported. In addition, if Python is configured with OpenSSL support, connections
can be made using secure sockects. The HTTP/1.0 protocol is a simple text-based protocol that works as follows:

1. A client makes a connection to a Web server and sends a request header of the following form:

GET /document.html HTTP/1.0
Connection: Keep-Alive
User-Agent: Mozilla/4.61 [en] (X11; U; SunOS 5.6 sun4u)
Host: rustler.cs.uchicago.edu:8000
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, image/png, */*
Accept-Encoding: gzip
Accept-Language: en
Accept-Charset: iso-8859-1,*,utf-8

Data (optional)
...

The first line defines the request type, document (the selector), and protocol version. Following the request line are
a series of header lines containing various information about the client, such as passwords, cookies, cache
preferences, and client software. Following the header lines, a single blank line indicates the end of the header
lines. After the header, data may appear in the event that the request is sending from a form or uploading a file.
Each of the lines in the header should be terminated by a carriage return and a newline ('\r\n').

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/114.html (20 / 45) [2003/1/1 ､W､ﾈ 02:56:27]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/114#18.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/114#34.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/114#76.html
http://www.python.org/doc/lib/module-ftplib.html

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/114.html

2. The server sends a response of the following form:

HTTP/1.0 200 OK
Content-type: text/html
Content-length: 72883 bytes
...
Header: data

Data
...

The first line of the server response indicates the HTTP protocol version, a success code, and return message.
Following the response line are a series of header fields that contain information about the type of the returned
document, the document size, Web server software, cookies, and so forth. The header is terminated by a single
blank line followed by the raw data of the requested document.

The following request methods are the most common:

Method Description

GET Get a document

POST Post data to a form

HEAD Return header information only

PUT Upload data to the server

The following response codes are returned by servers:

Code Description

Success Codes (2xx)

200 OK

201 Created

202 Accepted

204 No content

Redirection (3xx)

300 Multiple choices

301 Moved permanently

302 Moved temporarily

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/114.html (21 / 45) [2003/1/1 ､W､ﾈ 02:56:27]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/114.html

303 Not modified

Client Error (4xx)

400 Bad request

401 Unauthorized

403 Forbidden

404 Not found

Server Error (5xx)

500 Internal server error

501 Not implemented

502 Bad gateway

503 Service unavailable

A wide range of optional header fields can appear in both the request and response headers. These headers are specified in
a format known as RFC 822, in which headers are specified in the form Header: data. For example:

Date: Fri, 16 Jul 1999 17:09:33 GMT
Server: Apache/1.3.6 (Unix)
Last-Modified: Mon, 12 Jul 1999 19:08:14 GMT
ETag: "741d3-44ec-378a3d1e"
Accept-Ranges: bytes
Content-Length: 17644
Connection: close
Content-Type: text/html

The following classes can be used to create HTTP/1.0 connections with a Web server:

HTTP([host [, port]])

Establishes an HTTP/1.0 connection with an HTTP server. host is the hostname and port is an optional port number. If
no port number is given, the port is extracted from the hostname if it’s of the form 'host:port '. Otherwise, port 80 is
used. If no host is passed, no connection is made and the connect() method should be used to make the connection
manually.

HTTPS([host [, port [, key_file=kfile [, cert_file=cfile]])

Establishes a secure HTTP/1.0 connection. Works like HTTP() except that the default port is 443. In addition, optional
keyword parameters key_file and cert_file specify the names of a client private-key file and a client certificate
file to be supplied to the server.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/114.html (22 / 45) [2003/1/1 ､W､ﾈ 02:56:27]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/114.html

An instance h of the HTTP or HTTPS class has the following methods:

h.connect(host [, port])

Connects to the server given by host and port . This should be called only if the instance was created without a host.

h.send(data)

Sends data to the server. This should only be used after the endheaders() method.

h.putrequest(request, selector)

Sends a line to the server containing the request string, selector string, and the HTTP version (HTTP/1.0).

h.putheader(header, argument [, ...])

Sends an RFC 822–style header to the server. It sends a line to the server consisting of the header, a colon and a space, and
the first argument. If more arguments are given, continuation lines are sent, each consisting of a tab and an argument.

h.endheaders()

Sends a blank line to the server, indicating the end of the headers.

h.getreply()

Closes the sending end of the connection, reads the reply from the server, and returns a triple (replycode , message
, headers). replycode is the integer reply code from the request, such as 200 on success. message is the message
string corresponding to the reply code. headers is an instance of the class mimetools.Message, containing the
HTTP headers received from the server.

h.getfile()

Returns a file object from which the data returned by the server can be read, using the read(), readline(), or
readlines() method.

Example

import httplib
h = httplib.HTTP('www.python.org')
h.putrequest('GET', '/index.html')
h.putheader('Accept', 'text/html')
h.putheader('Accept', 'text/plain')
h.endheaders()
errcode, errmsg, headers = h.getreply()
print errcode # Should be 200
f = h.getfile()

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/114.html (23 / 45) [2003/1/1 ､W､ﾈ 02:56:27]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/114.html

data = f.read() # Get the raw HTML
f.close()

HTTP/1.1 extends the HTTP/1.0 protocol by allowing multiple request/response data streams to be multiplexed over a
single network connection. To handle multiple connections, HTTP/1.1 manages the network connection by putting it into
one of three states:

State Description

_CS_IDLE Connection idle

_CS_REQ_STARTED Request started

_CS_REQ_SENT Request sent

New requests can be sent only when the connection is in the _CS_IDLE state. Once an HTTP request has been sent, the
connection doesn’t return to the idle state until the server response has been received and read on the client.

To support HTTP/1.1, the following classes are provided:

HTTPConnection(host [, port])

Creates an HTTP/1.1 connection. host is the hostname and port is the remote port number. The default port is 80.
Returns an HTTPConnection instance.

HTTPSConnection(host [, port [, key_file= kfile [, cert_file= cfile]]])

Like HTTP/1.1, but uses a secure socket connection. The default port is 443. key_file and cert_file are optional
keyword arguments that specify client private-key and certificate files. Returns an HTTPSConnection instance.

An instance h of HTTPConnection or HTTPSConnection supports the following methods:

h.connect()

Initializes the connection to the host and port given to HTTPConnection() or HTPPSConnection().

h.close()

Closes the connection.

h.send(str)

Sends a string str to the server. Direct use of this function with HTTP/1.1 is discouraged, because it may break the
underlying response/request protocol. It’s most commonly used to send data to the server after h .endheaders() has
been called.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/114.html (24 / 45) [2003/1/1 ､W､ﾈ 02:56:27]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/114.html

h.putrequest(method, url)

Sends a request to the server. method is the HTTP method, such as 'GET' or 'POST'. url specifies the object to be
returned, such as '/index.html'. If h is not in the _CS_IDLE state, a CannotSendRequest exception is
generated. Otherwise, h is moved to _CS_REQ_STARTED state, in which additional headers can be added to the request.

h.putheader(header, value)

Sends an RFC 822–style header to the server. It sends a line to the server, consisting of the header, a colon and a space,
and the value. Raises a CannotSendHeader exception if h is not in the _CS_REQ_STARTED state.

h.endheaders()

Sends a blank line to the server, indicating the end of the header lines. Changes the connection state to _CS_REQ_SENT.

h.request(method, url [, body [, headers]])

Sends a complete HTTP request to the server. method and url have the same meaning as for h .putrequest().
body is an optional string containing data to upload to the server after the request has been sent. headers is a dictionary
containing header :value pairs to be given to the h .putheader() method.

h.getresponse()

Gets a response from the server and returns an HTTPResponse instance that can be used to read data. Raises a
ResponseNotReady exception if h is not in the _CS_REQ_STATE.

An HTTPResponse instance as returned by the getresponse() method supports the following methods:

r.close()

Closes the connection. This doesn’t close the underlying HTTP connection. Only the file object used to read data in this
specific response is closed.

r.isclosed()

Returns true if the underlying connection has been closed.

r.read([size])

Reads up to size bytes from the server. If size is omitted, all the data for this request is returned.

r.getheader(name [, default])

Gets a response header. name is the name of the header. default is the default value to return if not found.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/114.html (25 / 45) [2003/1/1 ､W､ﾈ 02:56:27]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/114.html

r.version

HTTP version used by server.

r.status

HTTP status code returned by the server.

r.reason

HTTP error message returned by the server.

r.length

Number of bytes left in the response.

r.will_close

Set if the server will close the connection after the response has been sent.

Example

The following example shows how the HTTPConnection class can be used to open an HTTP/1.1 connection and fetch
several files.

import httplib

files = ['/index.html', '/doc/index.html', '/News.html']
h = httplib.HTTPConnection("www.python.org",80)
h.connect()

for f in files:
 h.putrequest('GET','f')
 h.putheader('Accept','text/html')
 h.putheader('Accept','text/plain')
 h.endheaders()

 r = h.getresponse()
 if r.status == 200:
 data = r.read()
 print ":::: %s ::::" % f
 print data
 r.close()

h.close()

Notes

● This module is used by the urllib module, which provides a higher-level interface for accessing URLs.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/114.html (26 / 45) [2003/1/1 ､W､ﾈ 02:56:27]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/114.html

● Secure HTTP is not available unless Python has also been compiled with OpenSSL support.

? See Also urllib (260), mimetools (266), asyncore (229), BaseHTTPServer (232), SimpleHTTPServer (251),
CGIHTTPServer (239).

imaplib

The imaplib module provides a low-level client-side interface for connecting to an IMAP4 mail server using the
IMAP4rev1 protocol. Documents describing the protocol, as well as sources and binaries for servers implementing it, can
be found at the University of Washington’s IMAP Information Center (http://www.cac.washington.edu/imap).

The following example shows how the module is used by opening a mailbox and printing all messages:

import getpass, imaplib, string
m = imaplib.IMAP4()
m.login(getpass.getuser(), getpass.getpass())
m.select()
typ, data = m.search(None, 'ALL')
for num in string.split(data[0]):
 typ, data = m.fetch(num, '(RFC822)')
 print 'Message %s\n%s\n' % (num, data[0][1])
m.logout()

? See Also poplib (249), http://www.python.org/doc/lib/module-imaplib.html, http://www.cac.washington.edu/imap,
Internet RFC 1730, RFC 2060.

nntplib

The nntplib module provides a low-level interface to the client side of NNTP (Network News Transfer Protocol). For
details about using this module, see the online documentation (http://www.python.org/doc/lib/module-nntplib.html). The
following example shows how the module can be used to post a news message from a file containing valid news headers:

s = NNTP('news.foo.com')
f = open('article')
s.post(f)
s.quit()

? See Also http://www.python.org/doc/lib/module-nntplib.html, Internet RFC 977.

poplib

The poplib module provides a low-level client-side connection to a POP3 mail server. Consult the online reference at
http://www.python.org/doc/lib/module-poplib.html for specific details. The following example opens a mailbox and
retrieves all messages:

import getpass, poplib
M = poplib.POP3('localhost')
M.user(getpass.getuser())
M.pass_(getpass.getpass())
numMessages = len(M.list()[1])
for i in range(numMessages):

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/114.html (27 / 45) [2003/1/1 ､W､ﾈ 02:56:27]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/114#76.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/115#16.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/114#6.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/114#12.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/114#58.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/114#22.html
http://www.cac.washington.edu/imap
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/114#46.html
http://www.python.org/doc/lib/module-imaplib.html
http://www.cac.washington.edu/imap
http://www.python.org/doc/lib/module-nntplib.html
http://www.python.org/doc/lib/module-nntplib.html
http://www.python.org/doc/lib/module-poplib.html

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/114.html

 for j in M.retr(i+1)[1]:
 print j

? See Also http://www.python.org/doc/lib/module-poplib.html, Internet RFC 1725.

robotparser

The robotparser module provides a class that can be used to fetch and query information contained in the
robots.txt files that Web sites use to instruct Web crawlers and spiders. The contents of this file typically look like
this:

robots.txt
User-agent: *
Disallow: /warheads/designs # Don't allow robots here

RobotFileParser()

Creates an object that can be used to read and query a single robots.txt file.

An instance r of RobotFileParser has the following attributes and methods:

r.set_url(url)

Sets the URL of the robots.txt file.

r.read()

Reads the robots.txt file and parses it.

r.parse(lines)

Parses a list of lines obtained from a robots.txt file.

r.can_fetch(useragent, url)

Returns true if useragent is allowed to fetch url .

r.mtime()

Returns the time at which the robots.txt file was last fetched.

r.modified()

Sets the time at which robots.txt was last fetched to the current time.

Note

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/114.html (28 / 45) [2003/1/1 ､W､ﾈ 02:56:27]

http://www.python.org/doc/lib/module-poplib.html

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/114.html

● Details about the robots.txt format can be found at
http://info.webcrawler.com/mak/projects/robots/norobots.html.

select

The select module provides access to the select() system call. select() is typically used to implement polling or
to multiplex processing across multiple input/output streams without using threads or subprocesses. On UNIX and
Macintosh, it works for files, sockets, pipes, and most other file types. On Windows, it only works for sockets.

select(iwtd, owtd, ewtd [, timeout])

Queries the input, output, and exceptional status of a group of file descriptors. The first three arguments are lists
containing either integer file descriptors or objects with a method fileno() that can be used to return a file descriptor.
The iwtd parameter specifies objects waiting for input, owtd specifies objects waiting for output, and ewtd specifies
objects waiting for an exceptional condition. Each list may be empty. timeout is a floating-point number specifying a
timeout period in seconds. If omitted, the function waits until at least one file descriptor is ready. If 0, the function merely
performs a poll and returns immediately. The return value is a triple of lists containing the objects that are ready. These are
subsets of the first three arguments. If none of the objects is ready before the timeout occurs, three empty lists are returned.
If an error occurs, a select.error exception raised. Its value is the same as that returned by IOError and OSError.

Example

The following code shows how select() could be used in an event loop that wants to periodically query a collection of
sockets for an incoming connection:

import socket, select
Create a few sockets
s1 = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s1.bind(("",8888))
s1.listen(5)
s2 = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s2.bind(("",8889))
s2.listen(5)
Event loop
while 1:
 ... processing ...
 # Poll the sockets for activity
 input,output,exc = select.select([s1,s2],[],[],0)
 # Loop over all of the sockets that have pending input
 for sock in input:
 # Accept an incoming connection
 client = sock.accept()
 ... handle client ...
 client.close()
Done. Carry on.
... more processing ...

Note

● There’s usually an upper limit on the number of file selectors that can be given to select(). It’s often 64 for
Windows and 256 for UNIX.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/114.html (29 / 45) [2003/1/1 ､W､ﾈ 02:56:27]

http://info.webcrawler.com/mak/projects/robots/norobots.html

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/114.html

? See Also asyncore (229), socket (252), os (180).

SimpleHTTPServer

The SimpleHTTPServer module provides a simple HTTP server handler that can serve files from the current directory.
The module defines the following handler class, intended for use with the BaseHTTPServer module:

SimpleHTTPRequestHandler(request, client_address, server)

Serves files from the current directory and all its subdirectories. The class implements the do_HEAD() and do_GET()
methods to support HEAD and GET requests, respectively. All IOError exceptions result in a 404 File not found
error. Attempts to access a directory result in a 403 Directory listing not supported error.

The following class attributes are available:

SimpleHTTPRequestHandler.server_version

Server version string.

SimpleHTTPRequestHandler.extensions_map

A dictionary mapping suffixes into MIME types. Unrecognized file types are considered to be of type 'text/plain'.

Example

from BaseHTTPServer import HTTPServer
from SimpleHTTPServer import SimpleHTTPRequestHandler
import os
Change to the document root
os.chdir("/home/httpd/html")
Start the SimpleHTTP server
serv = HTTPServer(("",80),SimpleHTTPRequestHandler)
serv.serve_forever()

? See Also BaseHTTPServer (232), CGIHTTPServer (239), httplib (243).

smtplib

The smtplib module provides a low-level SMTP client interface that can be used to send mail. For specific details about
the module, see the online reference at http://www.python.org/doc/lib/module-smtplib.html. The following example shows
how the module might be used by prompting the user for an address and sending a message:

import string, sys
import smtplib
def prompt(prompt):
 sys.stdout.write(prompt + ": ")
 return string.strip(sys.stdin.readline())
fromaddr = prompt("From")

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/114.html (30 / 45) [2003/1/1 ､W､ﾈ 02:56:27]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/114#6.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/114#64.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112#90.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/114#12.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/114#22.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/114#34.html
http://www.python.org/doc/lib/module-smtplib.html

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/114.html

toaddrs = string.splitfields(prompt("To"), ',')
print "Enter message, end with ^D:"
msg = ""
while 1:
 line = sys.stdin.readline()
 if not line:
 break
 msg = msg + line
print "Message length is " + `len(msg)`
server = smtplib.SMTP('localhost')
server.sendmail(fromaddr, toaddrs, msg)
server.quit()

? See Also poplib (249), http://www.python.org/doc/lib/module-smtplib.html, imaplib (248), Internet RFC 821 (Simple
Mail Transfer Protocol), Internet RFC 1869 (SMTP Service Extensions).

socket

The socket module provides access to the BSD socket interface. Although it’s based on UNIX, this module is available
on all platforms.

fromfd(fd, family, type [, proto])

Creates a socket object from an integer file descriptor fd . The address family, socket type, and protocol number are the
same as for socket(). The file descriptor must refer to a previously created socket. Returns an instance of
SocketType.

getfqdn([name])

Returns the fully qualified domain name of name . If name is omitted, the local machine is assumed. For example,
getfqdn("stonecrusher") might return "stonecrusher.cs.uchicago.edu".

gethostbyname(hostname)

Translates a hostname such as 'www.python.org' to an IP address. The IP address is returned as a string, such as
'132.151.1.90'.

gethostbyname_ex(hostname)

Translates a hostname to an IP address, but returns a triple (hostname , aliaslist , ipaddrlist) in which
hostname is the primary hostname, aliaslist is a list of alternative hostnames for the same address, and
ipaddrlist is a list of IP addresses for the same interface on the same host. For example,
gethostbyname_ex('www.python.org') returns ('parrot.python.org', ['www.python.org'],
['132.151.1.90']).

gethostname()

Returns the hostname of the local machine.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/114.html (31 / 45) [2003/1/1 ､W､ﾈ 02:56:27]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/114#46.html
http://www.python.org/doc/lib/module-smtplib.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/114#42.html

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/114.html

gethostbyaddr(ip_address)

Returns the same information as gethostbyname_ex(), given an IP address such as '132.151.1.90'.

getprotobyname(protocolname)

Translates an Internet protocol name such as 'icmp' to a protocol number (such as the value of IPPROTO_ICMP) that
can be passed to the third argument of the socket() function.

getservbyname(servicename, protocolname)

Translates an Internet service name and protocol name to a port number for that service. For example,
getservbyname('ftp', 'tcp') returns 21. The protocol name should be 'tcp' or 'udp'.

ntohl(x)

Converts 32-bit integers from network (big-endian) to host byte order.

ntohs(x)

Converts 16-bit integers from network to host byte order.

htonl(x)

Converts 32-bit integers from host to network byte order.

htons(x)

Converts 16-bit integers from host to network byte order.

ssl(sock, key_file, cert_file)

Creates a client-side secure socket. sock is an existing socket instance that has already established a connection using its
connect() method. key_file is the name of a client private-key file. cert_file is the name of a client certificate
file. key_file and cert_file must both be set to None or set to the names of PEM format files containing the client
key and certificate. This function is available only if Python has been configured with OpenSSL support. In addition, this
function cannot be used to create server-side secure sockets. See the notes.

socket(family, type [, proto])

Creates a new socket using the given address family, socket type, and protocol number. family is one of the following
constants:

Constant Description

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/114.html (32 / 45) [2003/1/1 ､W､ﾈ 02:56:27]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/114.html

AF_INET IPv4 protocols (TCP, UDP)

AF_UNIX UNIX domain protocols

The socket type is one of the following constants:

Constant Description

SOCK_STREAM Stream socket (TCP)

SOCK_DGRAM Datagram socket (UDP)

SOCK_RAW Raw socket (available with AF_INET only)

SOCK_SEQPACKET Sequenced connection-mode transfer of records

The protocol number is usually omitted (and defaults to 0). It’s usually used only in conjunction with raw sockets
(SOCK_RAW) and is set to one of the following constants when used: IPPROTO_ICMP, IPPROTO_IP, IPPROTO_RAW,
IPPROTO_TCP, IPPROTO_UDP.

To open a TCP connection, use socket(AF_INET, SOCK_STREAM). To open a UDP connection, use
socket(AF_INET, SOCK_DGRAM). To open a raw IP socket, use socket(AF_INET, SOCK_RAW). Access to
raw sockets is privileged and will only succeed if the effective user ID is 0 (root) on UNIX systems. The function returns
an instance of SocketType (described shortly).

Sockets are represented by an instance of type SocketType. The following methods are available on a socket s :

s.accept()

Accepts a connection and returns a pair (conn , address) where conn is a new socket object that can be used to send
and receive data on the connection, and address is the address of the socket on the other end of the connection.

s.bind(address)

Binds the socket to an address. The format of address depends on the address family. In most cases, it’s a tuple of the
form (hostname , port). For IP addresses, the empty string represents INADDR_ANY, and the string
'<broadcast>' represents INADDR_BROADCAST. The INADDR_ANY hostname (the empty string) is used to indicate
that the server allows connections on any Internet interface on the system. This is often used when a server is multihomed.
The INADDR_BROADCAST hostname ('<broadcast>') is used when a socket is being used to send a broadcast
message.

s.close()

Closes the socket. Sockets are also closed when they’re garbage-collected.

s.connect(address)

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/114.html (33 / 45) [2003/1/1 ､W､ﾈ 02:56:27]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/114.html

Connects to a remote socket at address . The format of address depends on the address family, but it’s normally a
pair (hostname , port). Raises socket.error if an error occurs.

If you’re connecting to a server on the same computer, you can use the name 'localhost' as the first argument to s
.connect().

s.connect_ex(address)

Like connect(address), but returns 0 on success or the value of errno on failure.

s.fileno()

Returns the socket’s file descriptor.

s.getpeername()

Returns the remote address to which the socket is connected as a pair (ipaddr , port). Not supported on all systems.

s.getsockname()

Return the socket’s own address as a pair (ipaddr , port).

s.getsockopt(level, optname [, buflen])

Returns the value of a socket option. level defines the level of the option and is SOL_SOCKET for socket-level options
or a protocol number such as IPPROTO_IP for protocol-related options. optname selects a specific option. If buflen
is omitted, an integer option is assumed and its integer value is returned. If buflen is given, it specifies the maximum
length of the buffer used to receive the option. This buffer is returned as a string, where it’s up to the caller to decode its
contents using the struct module or other means. The following list shows commonly used option names for level
SOL_SOCKET:

Option Name Value Description

SO_KEEPALIVE 0, 1 Periodically probes the other end of the connection and terminates if it’s half-open

SO_RCVBUF int Size of receive buffer (in bytes)

SO_SNDBUF int Size of send buffer (in bytes)

SO_REUSEADDR 0, 1 Allows local address reuse

SO_RCVLOWAT int Number of bytes read before select() returns the socket as readable

SO_SNDLOWAT int Number of bytes available in send buffer before select() returns the socket as writable

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/114.html (34 / 45) [2003/1/1 ､W､ﾈ 02:56:27]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/114.html

SO_RCVTIMEO tvalue Timeout on receive calls in seconds

SO_SNDTIMEO tvalue Timeout on send calls in seconds

SO_OOBINLINE 0, 1 Places out-of-band data into the input queue

SO_LINGER linger Lingers on close() if the send buffer contains data

SO_DONTROUTE 0, 1 Bypasses routing table lookups

SO_ERROR int Gets error status

SO_BROADCAST 0, 1 Allows sending of broadcast datagrams

SO_TYPE int Gets socket type

SO_USELOOPBACK 0, 1 Routing socket gets copy of what it sends

tvalue is a binary structure that’s decoded as

(second, microsec) = struct.unpack("ll", tvalue).

linger is a binary structure that’s decoded as

(linger_onoff, linger_sec) = struct.unpack("ii", linger).

The following options are available for level IPPROTO_IP:

Option Name Value Description

IP_ADD_MEMBERSHIP ipmreg Join multicast group (set only)

IP_DROP_MEMBERSHIP ipmreg Leave a multicast group (set only)

IP_HDRINCL int IP header included with data

IP_MULTICAST_IF inaddr Outgoing interface

IP_MULTICAST_LOOP uchar Loopback

IP_MULTICAST_TTL uchar Time to live

IP_OPTIONS char[44] IP header options

IP_TOS int Type of service

IP_TTL int Time to live

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/114.html (35 / 45) [2003/1/1 ､W､ﾈ 02:56:27]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/114.html

inaddr is a 32-bit binary structure containing an IP address (struct.unpack('bbbb', inaddr)). ipmreg is
a 64-bit binary structure containing two IP addresses in the same format as inaddr . uchar is a one-byte unsigned
integer as created by struct.pack('b',uvalue). char[44] is a string containing at most 44 bytes.

Not all options are available on all machines. Refer to an advanced networking book for specific details about each option.

s.listen(backlog)

Starts listening for incoming connections. backlog specifies the maximum number of pending connections the operating
system should queue before connections are refused. The value should be at least 1, with 5 being sufficient for most
applications.

s.makefile([mode [, bufsize]])

Creates a file object associated with the socket. mode and bufsize have the same meaning as with the built-in open()
function. The file object uses a duplicated version of the socket file descriptor, created using os.dup(), so the file object
and socket object can be closed or garbage-collected independently.

s.recv(bufsize [, flags])

Receives data from the socket. The data is returned as a string. The maximum amount of data to be received is specified
by bufsize . flags provides additional information about the message and is usually omitted (in which case it defaults
to zero). If used, it’s usually set to one of the following constants (system-dependent):

Constant Description

MSG_PEEK Look at data, but don’t discard (receive only)

MSG_WAITALL Don’t return until the requested number of bytes have been read (receive only)

MSG_OOB Receive/send out-of-band data

MSG_DONTROUTE Bypass routing table lookup (send only)

s.recvfrom(bufsize [, flags])

Like the recv() method except that the return value is a pair (data , address) in which data is a string containing
the data received and address is the address of the socket sending the data. The optional flags argument has the same
meaning as for recv(). This function is primarily used in conjunction with the UDP protocol.

s.send(string [, flags])

Sends data in string to a connected socket. The optional flags argument has the same meaning as for recv(),
described earlier. Returns the number of bytes sent.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/114.html (36 / 45) [2003/1/1 ､W､ﾈ 02:56:27]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/114.html

s.sendto(string [, flags], address)

Sends data to the socket. flags has the same meaning as for recv(). address is a tuple of the form (host , port)
that specifies the remote address. The socket should not already be connected. Returns the number of bytes sent. This
function is primarily used in conjunction with the UDP protocol.

s.setblocking(flag)

If flag is zero, the socket is set to nonblocking mode. Otherwise, the socket is set to blocking mode (the default). In
nonblocking mode, if a recv() call doesn’t find any data or if a send() call cannot immediately send the data, the
socket.error exception is raised. In blocking mode, these calls block until they can proceed.

s.setsockopt(level, optname, value)

Sets the value of the given socket option. level and optname have the same meaning as for getsockopt(). The
value can be an integer or a string representing the contents of a buffer. In the latter case, it’s up to the caller to ensure that
the string contains the proper data. See getsockopt() for socket option names, values, and descriptions.

s.shutdown(how)

Shuts down one or both halves of the connection. If how is 0, further receives are disallowed. If how is 1, further sends
are disallowed. If how is 2, further sends and receives are disallowed.

Exception

error

This exception is raised for socket or address-related errors. It returns a pair (errno , mesg) with the error returned by
the underlying system call.

Example

A simple example of a TCP connection is shown on page 226 (in the introduction to network programming).The following
example illustrates a simple UDP client and server:

UDP message server
Receive small packets from anywhere and print them out
import socket
s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
s.bind(("",10000))
while 1:
 data, address = s.recvfrom(256)
 print address[0], "said : ", data

UDP message client
Send a message packet to the server
import socket
s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
while 1:
 msg = raw_input("Say something : ")

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/114.html (37 / 45) [2003/1/1 ､W､ﾈ 02:56:27]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/114.html

 if msg:
 s.sendto(msg, ("servername",10000))
 else:
 break
s.close()

Notes

● Not all constants and socket options are available on all platforms.

● The socket module currently doesn’t support a number of other network protocols such as IPX and IPv6.
However, a number of additions to the socket module are likely to appear in future Python releases.

? See Also SocketServer (258), asyncore (229), select (250).

SocketServer

The SocketServer module is used to write TCP, UDP, and UNIX domain socket servers. Rather than having to
implement servers using the low-level socket module, this module provides four classes that implement the above
protocols:

TCPServer(address, handler)

A server supporting the TCP protocol. address is a 2-tuple of the form (host , port), where host is the hostname
and port is the port number. Typically, host is set to the empty string. handler is an instance of a subclass of the
BaseRequestHandler class described later.

UDPServer(address, handler)

A server supporting the Internet UDP protocol. address and handler are the same as for TCPServer().

UnixStreamServer(address, handler)

A server implementing a stream-oriented protocol using UNIX domain sockets.

UnixDatagramServer(address, handler)

A server implementing a datagram protocol using UNIX domain sockets.

Instances of all four server classes have the following methods and attributes:

s.fileno()

Returns the integer file descriptor for the server socket.

s.handle_request()

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/114.html (38 / 45) [2003/1/1 ､W､ﾈ 02:56:27]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/114#72.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/114#6.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/114#52.html

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/114.html

Waits for a request and handles it by creating an instance of the handler class (described shortly) and invoking its
handle() method.

s.serve_forever()

Handles an infinite number of requests.

s.address_family

The protocol family of the server, either socket.AF_INET or socket.AF_UNIX.

s.RequestHandlerClass

The user-provided request handler class that was passed to the server constructor.

s.server_address

The address on which the server is listening, such as ('127.0.0.1', 80).

s.socket

The socket object being used for incoming requests.

In addition, the server classes define the following class attributes (<ServerClass > should be filled in with the name
of one of the four available classes):

<ServerClass>.request_queue_size

The size of the request queue that’s passed to the socket’s listen() method. The default value is 5.

<ServerClass>.socket_type

The socket type used by the server, such as socket.SOCK_STREAM or socket.SOCK_DGRAM.

Requests are handled by defining a subclass of the class BaseRequestHandler. When the server receives a
connection, it creates an instance h of the handler class and invokes the following methods:

h.finish()

Called to perform cleanup actions after the handle() method has completed. By default, it does nothing. It’s not called
if either the setup() or handle() method generates an exception.

h.handle()

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/114.html (39 / 45) [2003/1/1 ､W､ﾈ 02:56:27]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/114.html

This method is called to perform the actual work of a request. It’s called with no arguments, but several instance variables
are set to useful values. h .request contains the request, h .client_address contains the client address, and h
.server contains an instance of the server that called the handler. For stream services such as TCP, the h .request
attribute is a socket object. For datagram services, it’s a string containing the received data.

h.setup()

This method is called before the handle() method to perform initialization actions. By default, it does nothing.

The process of creating a server involves the following steps:

1. Define a request handler class by subclassing BaseRequestHandler.

2. Create an instance of one of the server classes by passing the server’s address and the request handler class.

3. Call the handle_request() or serve_forever() method of the server to process connections.

The following code illustrates the process for a very simple HTTP server that simply echoes the HTTP request back in a
Web page:

import SocketServer
import socket
import string
Read an HTTP request from a client and bounce it back in a Web page
class EchoHandler(SocketServer.BaseRequestHandler):
 def handle(self):
 f = self.request.makefile()
 self.request.send("HTTP/1.0 200 OK\r\n")
 self.request.send("Content-type: text/plain\r\n\r\n")
 self.request.send("Received connection from %s\r\n\r\n" %
 (self.client_address,))
 while 1:
 line = f.readline()
 self.request.send(line)
 if not string.strip(line):
 break
 f.close()
Create the server and start serving
serv = SocketServer.TCPServer(("",80),EchoHandler)
serv.serve_forever()

By default, the server classes process requests one at a time in a synchronous manner. The servers can alternatively handle
requests in a subprocess, using os.fork(), or as a separate thread by instantiating one of the following server classes
instead of the four classes listed earlier:

● ForkingUDPServer(address , handler)

● ForkingTCPServer(address , handler)

● ThreadingUDPServer(address , handler)

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/114.html (40 / 45) [2003/1/1 ､W､ﾈ 02:56:27]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/114.html

● ThreadingTCPServer(address , handler)

Finally, two additional classes can be used as base classes for handlers: StreamRequestHandler and
DatagramRequestHandler. When used, these classes override the setup() and finish() methods of the handle
to provide two file attributes, self.rfile and self.wfile, that can be used to read and write data to and from the
client, respectively. For example:

Read an HTTP request from a client and bounce it back
class EchoHandler(SocketServer.StreamRequestHandler):
 def handle(self):
 self.wfile.write("HTTP/1.0 200 OK\r\n")
 self.wfile.write("Content-type: text/plain\r\n\r\n")
 self.wfile.write("Received connection from %s\r\n\r\n" %
 (self.client_address,))
 while 1:
 line = self.rfile.readline()
 self.wfile.write(line)
 if not string.strip(line):
 break

Note

● All the server classes can be specialized by subclassing. The online documentation contains more information
about this topic.

? See Also socket (252), BaseHTTPServer (232), SimpleHTTPServer (251), CGIHTTPServer (239), thread (219), os
(180).

urllib

The urllib module is used to fetch data from the Web.

urlopen(url [, data])

Given a uniform resource locator (URL) such as http://www.python.org or ftp://foo.com/pub/foo.tar,
this function opens a network connection and returns a file-like object. If the URL doesn’t have a scheme identifier such as
ftp: or http:, or if it’s file:, a local file is opened. If a connection cannot be made or an error occurs, an IOError
exception is raised. If the URL is an HTTP request, the optional data argument specifies that the request should be made
using a POST method, in which case the data is uploaded to the server. In this case, the data must be encoded in an
'application/x-www-form-urlencoded' format as produced by the urlencode() function.

urlretrieve(url [, filename [, hook]])

Opens a URL and copies its data to a local file, if necessary. If url is a local file or a cached copy of the data exists, no
copying is performed. filename specifies the name of the local file in which data will be saved. If omitted, a temporary
filename will be generated. hook is a function called after a connection has been made and after each block of data has
been read. It’s called with three arguments: the number of blocks transferred so far, the block size in bytes, and the total
size of the file in bytes.The function returns a tuple (filename , headers) in which filename is the name of the
local file where the data was saved and headers is the information returned by the info() method as described for
urlopen(). If the URL corresponds to a local file or if a cached copy was used, headers will be None. Raises an

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/114.html (41 / 45) [2003/1/1 ､W､ﾈ 02:56:27]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/114#64.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/114#12.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/114#58.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/114#22.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/113#6.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112#90.html

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/114.html

IOError if an error occurs.

urlcleanup()

Clears the local cache created by urlretrieve().

quote(string [, safe])

Replaces special characters in string with escape sequences suitable for including in a URL. Letters, digits, and the
underscore (_), comma (,) period (.), and hyphen () characters are unchanged. All other characters are converted into
escape sequences of the form '%xx'. safe provides additional characters that should not be quoted and is '/' by
default.

quote_plus(string [, safe])

Calls quote() and additionally replaces all spaces with plus signs.

unquote(string)

Replaces escape sequences of the form '%xx' with their single-character equivalent.

unquote_plus(string)

Like unquote(), but also replaces plus signs with spaces.

urlencode(dict)

Converts a dictionary to a URL-encoded string suitable for use as the data argument of the urlopen() function. The
resulting string is a series of 'key=value ' pairs separated by '&' characters, where both key and value are quoted
using quote_plus().

The file-like object returned by urlopen() supports the following methods:

Method Description

u .read([nbytes]) Reads nbytes of data.

u .readline() Reads a single line of text.

u .readlines() Reads all input lines and returns a list.

u .fileno() Returns the integer file descriptor.

u .close() Closes the connection.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/114.html (42 / 45) [2003/1/1 ､W､ﾈ 02:56:27]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/114.html

u .info() Returns the mimetools.Message object containing meta-information associated with the URL. For HTTP, the
HTTP headers included with the server response are returned. For FTP, the headers include 'content-
length'. For local files, the headers include a date, 'content-length', and 'content-type' field.

u .geturl() Returns the real URL of the returned data, taking into account any redirection that may have occurred.

Notes

● The only supported protocols are HTTP, FTP, Gopher, and local files. Although the httplib module supports
HTTP/1.1, this module uses HTTP/1.0 retrieve documents.

● If Python is configured with OpenSSL support, secure HTTP (https://name) is also supported.

● The urlopen() function works transparently with proxies that don’t require authentication. On UNIX and
Windows, proxy servers should be set with the $http_proxy, $ftp_proxy, and $gopher_proxy
environment variables.

● Caching is currently not implemented.

● If a URL points to a local file but the file cannot be opened, the URL is opened using the FTP protocol.

● The urllib2 module (available with Python 2.1) provides more advanced support for fetching URLs, dealing
with redirection, and handling user authentication. Details about this module are available at
http://www.python.org/doc/current/lib/module-urllib2.html.

? See Also httplib (243), ftplib (242), urlparse (262), mimetools (266).

urlparse

The urlparse module is used to manipulate URL strings such as " http://www.python.org ". The general form
of a URL is as follows:

"scheme://netloc/path;parameters?query#fragment"

urlparse(urlstring [, default_scheme [, allow_fragments]])

Parses the URL in urlstring and returns a tuple (scheme , netloc , path , parameters , query ,
fragment). default_scheme specifies the scheme ("http", "ftp", and so on) to be used if none is present in the
URL. If allow_fragments is zero, fragment identifiers are not allowed.

urlunparse(tuple)

Constructs a URL string from a tuple as returned by urlparse().

urljoin(base, url [, allow_fragments])

Constructs an absolute URL by combining a base URL base with a relative URL url . allow_fragments has the

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/114.html (43 / 45) [2003/1/1 ､W､ﾈ 02:56:27]

http://www.python.org/doc/current/lib/module-urllib2.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/114#34.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/114#32.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/114#80.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/115#16.html

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/114.html

same meaning as for urlparse(). If the last component of the base URL is not a directory, it’s stripped.

Examples

>>> urlparse("http://www.python.org/index.html")
('http', 'www.python.org', '/index.html', '', '', '')

>>> urlunparse(('http', 'www.python.org', '/index.html', '', '', ''))
'http://www.python.org/index.html'

>>> urljoin("http://www.python.org/index.html","Help.html")
'http://www.python.org/Help.html'

? See Also urllib (260), Internet RFC 1738, Internet RFC 1808.

webbrowser

The webbrowser module provides functions for opening documents in a Web browser in a platform-independent
manner. The module tries to determine the current browser using the environment of the local machine.

open(url [, new])

Displays url with the default browser. If new is set, a new browser window is opened.

open_new(url)

Displays url in a new window of the default browser.

get([name])

Returns a controller object for manipulating a browser. name is the name of the browser type and is typically one of
'netscape', 'kfm', 'grail', 'windows-default', 'internet-config', or 'command-line'.

register(name, constructor[, controller])

Registers a new browser type for use with the get() function. name is the name of the browser. constructor is
called without arguments to create a controller object for manipulating the browser. controller is a controller instance
to use instead. If supplied, constructor is ignored and may be None.

A controller instance c returned by the get() function has the following methods:

c.open(url [, new])

Same as the open() function.

c.open_new(url)

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/114.html (44 / 45) [2003/1/1 ､W､ﾈ 02:56:27]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/114#76.html

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/114.html

Same as the open_new() function.

Note

● If set, the $BROWSER environment variable determines the name of the default browser.

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/114.html (45 / 45) [2003/1/1 ､W､ﾈ 02:56:27]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=114

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/115.html

Linux/Unix > Python Essential Reference, Second Edition > A. The Python Library > Internet Data
Handling and Encoding

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238111161105081080061094143037034

Internet Data Handling and Encoding

The modules in this section are used to encode and decode data formats that are widely used in Internet applications.

base64

The base64 module is used to encode and decode data using base64 encoding. base64 is commonly used to encode
binary data in mail attachments.

decode(input, output)

Decodes base64-encoded data. input is a filename or a file object open for reading. output is a filename or a file
object open for writing.

decodestring(s)

Decodes a base64-encoded string s . Returns a string containing the decoded binary data.

encode(input, output)

Encodes data using base64. input is a filename or a file object open for reading. output is a filename or a file
object open for writing.

encodestring(s)

Encodes a string s using base64.

? See Also binascii (264), Internet RFC 1421.

binascii

The binascii module is used to convert data between binary and a variety of ASCII encodings such as base64,
binhex, and uuencode.

a2b_uu(string)

Converts a line of uuencoded data to binary. Lines normally contain 45 (binary) bytes, except for the last line. Line
data may be followed by whitespace.

b2a_uu(data)

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/115.html (1 / 24) [2003/1/1 ､W､ﾈ 02:56:30]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=115
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+9%3A07%3A30+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read5.asp?bookname=0735710910&snode=115&now=5%2F28%2F2002+9%3A07%3A30+PM
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/115#4.html

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/115.html

Converts a string of binary data to a line of uuencoded ASCII characters. The length of data should not be more than
45 bytes.

a2b_base64(string)

Converts a string of base64-encoded data to binary.

b2a_base64(data)

Converts a string of binary data to a line of base64-encoded ASCII characters. The length of data should not be
more than 57 bytes.

a2b_hex(string)

Converts a string of hex digits to a string of binary data. string must contain an even number of digits.

b2a_hex(data)

Converts a string of binary data to a string of hex digits.

a2b_hqx(string)

Converts a string of binhex4-encoded data to binary without performing RLE decompression.

rledecode_hqx(data)

Performs an RLE (Run-Length Encoding) decompression of the binary data in data. Returns the decompressed data
unless the data input is incomplete, in which case the Incomplete exception is raised.

rlecode_hqx(data)

Performs a binhex4 RLE compression of data .

b2a_hqx(data)

Converts the binary data to a string of binhex4-encoded ASCII characters. data should already be RLE coded and
have a length divisible by three.

crc_hqx(data, crc)

Computes the binhex4 CRC checksum of the data. crc is a starting value of the checksum.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/115.html (2 / 24) [2003/1/1 ､W､ﾈ 02:56:30]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/115.html

crc32(data [, oldcrc])

Computes the CRC-32 checksum of data . If supplied, the oldcrc parameter allows for incremental calculation of
the checksum.

Exceptions

Error

Exception raised on errors.

Incomplete

Exception raised on incomplete data. This exception occurs when multiple bytes of data are expected, but the input
data has been truncated.

? See Also base64 (263), binhex (265), uu (277).

binhex

The binhex module is used to encode and decode files in binhex4, a format commonly used to represent files on the
Macintosh.

binhex(input, output)

Converts a binary file with name input to a binhex file. output is a filename or an open file-like object supporting
write() and close() methods.

hexbin(input [, output])

Decodes a binhex file. input is either a filename or a file-like object with read() and close() methods.
output is the name of the output file. If omitted, the output name is taken from the binhex file.

Notes

● Both the data and resource forks are handled on the Macintosh.

● Only the data fork is handled on other platforms.

? See Also binascii (264), macostools (176).

mailcap

The mailcap module is used to read UNIX mailcap files. Mailcap files are used to tell mail readers and Web
browsers how to process files with different MIME types. The contents of a mailcap file typically look something like
this:

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/115.html (3 / 24) [2003/1/1 ､W､ﾈ 02:56:30]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/115#2.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/115#8.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/115#38.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/115#4.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112#78.html

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/115.html

video/mpeg; xmpeg %s
application/pdf; acroread %s

When data of a given MIME type is encountered, the mailcap file is consulted to find an application for handling that
data.

getcaps()

Reads all available mailcap files and returns a dictionary mapping MIME types to a mailcap entry. Mailcap files are
read from $HOME/.mailcap, /etc/mailcap, /usr/etc/mailcap, and /usr/local/etc/mailcap.

findmatch(caps, mimetype [, key [, filename [, plist]]])

Searches the dictionary caps for a mailcap entry matching mimetype . key is a string indicating an action and is
typically 'view', 'compose', or 'edit'. filename is the name of the file that’s substituted for the %s
keyword in the mailcap entry. plist is a list of named parameters and is described further in the online
documentation at http://www.python.org/doc/lib/module-mailcap.html. Returns a tuple (cmd , mailcap)
containing the command from the mailcap file and the raw mailcap entry.

Example

import mailcap
import urllib
import os
Go fetch a document
urllib.urlretrieve("http://www.swig.org/Doc1.1/PDF/Python.pdf", "/tmp/tmp1234")

caps = mailcap.getgaps()
cmd, mc = mailcap.findmatch(caps,'application/pdf',filename='/tmp/tmp1234')
if cmd:
 os.system(cmd + " &")
else:
 print "No application for type application/pdf"

? See Also http://www.python.org/doc/lib/module-mailcap.html, mimetypes (268), Internet RFC 1524.

mimetools

The mimetools module provides a number of functions for manipulating MIME-encoded messages. MIME
(Multipurpose Internet Mail Extensions) is a standard for sending multipart multimedia data through Internet mail.
Parts of the standard are also used in other settings, such as the HTTP protocol. A MIME-encoded message looks
similar to this:

Content-Type: multipart/mixed; boundary="====_931526447=="
Date: Fri, 06 Jul 2001 03:20:47 -0500
From: John Doe <johndoe@foo.com>
To: Jane Doe (janedoe@foo.com>
Subject: Important Message From John Doe

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/115.html (4 / 24) [2003/1/1 ､W､ﾈ 02:56:30]

http://www.python.org/doc/lib/module-mailcap.html
http://www.python.org/doc/lib/module-mailcap.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/115#18.html

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/115.html

--====_931526447==
Content-Type: text/plain; charset="us-ascii"

Here is that document you asked for ... don't show anyone else ;-)

--====_931526447==
Content-Type: application/msword; name="list.doc"
Content-Transfer-Encoding: base64
Content-Disposition: attachment; filename="list.doc"

SXQgd2FzIGEgbG9uZyBob3QgZGF5IGluIHRoZSBtb250aCBvZiBKdWx5LCB3aGVuIExhcnJ5IHN0
YXJ0ZWQgdGFsa2luZwphYm91dCBzb2Npby1wb2xpdGljYWwgc2NhbGFibGUgaW1tZXJzaXZlIHZp
cnR1YWwgdGVtcG9yYWwKY29sbGFib3JhdGl2ZSBwYXJhbGxlbCBoaWdoIHBlcmZvcm1hbmNlIHdl
Yi1iYXNlZCBtb2JpbGUKb2JqZWN0LW9yaWVudGVkIHNjaWVudGlmaWMgY29tcHV0aW5nIGVudmly
b25tZW50cy4gIEZvcnR1bmF0ZWx5LCBQZXRlCmhhZCByZW1lbWJlcmVkIHRvIGJyaW5nIGhpcyAu
NDUuLi4KCg==

--====_931526447==--

MIME messages are broken into parts delimited by a line separator such as --====_931526447== above. This
separator always starts with a double hyphen as shown. The final separator has a trailing double hyphen (-) appended
to indicate the end of the message. Immediately following each separator is a set of RFC 822 headers describing the
content-type and encoding. Data is separated from the headers by a single blank line.

The mimetools module defines the following functions to parse headers and decode data:

Message(file [, seekable])

Parses MIME headers and returns a Message object derived from the rfc822.Message class. file and
seekable have the same meaning as for rfc822.Message.

choose_boundary()

Creates a unique string of the form 'hostipaddr.uid.pid.timestamp.random ' that can be used as a part
boundary when generating a message.

decode(input, output, encoding)

Reads encoded data from the open file object input and writes the decoded data to the open file object output .
encoding specifies the encoding method: 'base64', 'quoted-printable', or 'uuencode'.

encode(input, output, encoding)

Reads data from the open file object input , encodes it, and writes it to the open file object output . Encoding
types are the same as for decode().

copyliteral(input, output)

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/115.html (5 / 24) [2003/1/1 ､W､ﾈ 02:56:30]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/115.html

Read lines of text from the open file input until EOF and writes them to the open file output .

copybinary(input, output)

Read blocks of binary data from the open file input until EOF and writes them to the open file output .

Instances of the Message class support all the methods described in the rfc822 module. In addition, the following
methods are available:

m.getplist()

Returns the parameters for the content-type header as a list of strings. If the message contains the header 'Content-
type: text/html; charset=US-ASCII', for example, this function returns ['charset=US-ASCII'].
For parameters of the form 'key=value ', key is converted to lowercase, while value is unchanged.

m.getparam(name)

Returns the value of the first parameter of the form 'name=value ' from the 'content-type' header. If
value is surrounded by quotes of the form '<...>' or "...", they’re removed.

m.getencoding()

Returns the encoding specified in the 'content-transfer-encoding' message header. If no such header
exists, returns '7bit'.

m.gettype()

Returns the message type from the 'content-type' header. Types are returned as a string of the form
'type/subtype '. If no content-type header is available, 'text/plain' is returned.

m.getmaintype()

Returns the primary type from the 'content-type' header. If no such header exists, returns 'text'.

m.getsubtype()

Returns the subtype from the 'content-type' header. If no such header exists, returns 'plain'.

? See Also rfc822 (274), mimetypes (268), MimeWriter (271), multifile (272), mailcap (265), Internet RFC 1521.

mimetypes

The mimetypes module is used to guess the MIME type associated with a file, based on its filename extension. It

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/115.html (6 / 24) [2003/1/1 ､W､ﾈ 02:56:30]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/115#32.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/115#18.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/115#20.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/115#24.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/115#12.html

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/115.html

also converts MIME types to their standard filename extensions. MIME types consist of a type/subtype pair. The
following table shows the MIME types currently recognized by this module:

File Suffix MIME Type

.a application/octet-stream

.ai application/postscript

.aif audio/x-aiff

.aifc audio/x-aiff

.aiff audio/x-aiff

.au audio/basic

.avi video/x-msvideo

.bcpio application/x-bcpio

.bin application/octet-stream

.cdf application/x-netcdf

.cpio application/x-cpio

.csh application/x-csh

.dll application/octet-stream

.dvi application/x-dvi

.exe application/octet-stream

.eps application/postscript

.etx text/x-setext

.gif image/gif

.gtar application/x-gtar

.hdf application/x-hdf

.htm text/html

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/115.html (7 / 24) [2003/1/1 ､W､ﾈ 02:56:30]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/115.html

.html text/html

.ief image/ief

.jpe image/jpeg

.jpeg image/jpeg

.jpg image/jpeg

.latex application/x-latex

.man application/x-troff-man

.me application/x-troff-me

.mif application/x-mif

.mov video/quicktime

.movie video/x-sgi-movie

.mpe video/mpeg

.mpeg video/mpeg

.mpg video/mpeg

.ms application/x-troff-ms

.nc application/x-netcdf

.o application/octet-stream

.obj application/octet-stream

.oda application/oda

.pbm image/x-portable-bitmap

.pdf application/pdf

.pgm image/x-portable-graymap

.pnm image/x-portable-anymap

.png image/png

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/115.html (8 / 24) [2003/1/1 ､W､ﾈ 02:56:30]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/115.html

.ppm image/x-portable-pixmap

.py text/x-python

.pyc application/x-python-code

.ps application/postscript

.qt video/quicktime

.ras image/x-cmu-raster

.rgb image/x-rgb

.rdf application/xml

.roff application/x-troff

.rtf application/rtf

.rtx text/richtext

.sgm text/x-sgml

.sgml text/x-sgml

.sh application/x-sh

.shar application/x-shar

.snd audio/basic

.so application/octet-stream

.src application/x-wais-source

.sv4cpio application/x-sv4cpio

.sv4crc application/x-sv4crc

.t application/x-troff

.tar application/x-tar

.tcl application/x-tcl

.tex application/x-tex

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/115.html (9 / 24) [2003/1/1 ､W､ﾈ 02:56:30]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/115.html

.texi application/x-texinfo

.texinfo application/x-texinfo

.tif image/tiff

.tiff image/tiff

.tr application/x-troff

.tsv text/tab-separated-values

.txt text/plain

.ustar application/x-ustar

.wav audio/x-wav

.xbm image/x-xbitmap

.xml text/xml

.xsl application/xml

.xpm image/x-xpixmap

.xwd image/x-xwindowdump

.zip application/zip

guess_type(filename)

Guesses the MIME type of a file based on its filename or URL. Returns a tuple (type , encoding) in which
type is a string of the form type/subtype and encoding is the program used to encode the data (for example,
compress or gzip). Returns (None , None) if the type cannot be guessed.

guess_extension(type)

Guesses the standard file extension for a file based on its MIME type. Returns a string with the filename extension
including the leading dot (.). Returns None for unknown types.

init([files])

Initializes the module. files is a sequence of filenames that are read to extract type information. These files contain
lines that map a MIME type to a list of acceptable file suffixes such as the following:

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/115.html (10 / 24) [2003/1/1 ､W､ﾈ 02:56:30]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/115.html

image/jpeg: jpe jpeg jpg
text/html: htm html
...

read_mime_types(filename)

Loads type mapping from a given filename. Returns a dictionary mapping filename extensions to MIME type strings.
Returns None if filename doesn’t exist or cannot be read.

knownfiles

List of common names for mime.types files.

suffix_map

Dictionary mapping suffixes to suffixes. This is used to allow recognition of encoded files for which the encoding and
the type are indicated by the same extension. For example, the .tgz extension is mapped to .tar.gz to allow the
encoding and type to be recognized separately.

encodings_map

Dictionary mapping filename extensions to encoding types.

types_map

Dictionary mapping filename extensions to MIME types.

? See Also mimetools (266).

MimeWriter

The MimeWriter module defines the class MimeWriter that’s used to generate MIME-encoded multipart files.

MimeWriter(fp)

Creates a new instance of the MimeWriter class. fp is an open file object to be used for writing. A StringIO
object can also be used.

An instance m of the MimeWriter class has the following methods:

m.addheader(key, value [, prefix])

Adds a header line of the form "key: value " to the MIME message. prefix determines where the header is
inserted; 0 appends to the end (the default) and 1 inserts at the start.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/115.html (11 / 24) [2003/1/1 ､W､ﾈ 02:56:30]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/115#16.html

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/115.html

m.flushheaders()

Writes all the headers accumulated so far.

m.startbody(ctype [, plist [, prefix]])

Returns a file-like object that’s used to write to the body of the message. ctype specifies the content type and
plist is a list of tuples of the form (name , value) containing additional parameters for the content-type
declaration. prefix has the same meaning as for the addheader() method except that its default value is set to
insert at the start.

m.startmultipartbody(subtype [, boundary [, plist [, prefix]]])

Returns a file-like object that’s used to write the body of a multipart message. subtype specifies the multipart
subtype such as 'mixed' and boundary can be used to provide a user-defined boundary specifier. plist is a list
containing optional parameters for the subtype, and prefix is the same as in the startbody() method. Subparts
are created using nextpart().

m.nextpart()

Returns a new instance of MimeWriter that represents an individual part in a multipart message.
startmultipartbody() must be called prior to calling this method.

m.lastpart()

Used to indicate the last part of a multipart message. Should always be called to terminate a multipart message.

Example

The following example takes a list of files passed on the command line and produces a multipart MIME document in
which each file is encoded using base64 encoding:

import sys
import mimetools, mimetypes, MimeWriter
Open the output file and create a MimeWriter
out = open("output.txt","w")
writer = MimeWriter.MimeWriter(out)
Start a multipart message
writer.startmultipartbody("mixed")
writer.flushheaders()
Iterate over files passed on the command line
for file in sys.argv[1:]:
 subpart = writer.nextpart() # Create a new subpart
 # Attempt to guess the file's MIME type and encoding
 type,encoding = mimetypes.guess_type(file)

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/115.html (12 / 24) [2003/1/1 ､W､ﾈ 02:56:30]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/115.html

 if encoding:
 subpart.addheader("Content-encoding",encoding)
 subpart.addheader("Content-transfer-encoding", "base64")
 if type:
 pout = subpart.startbody(type, [("name",file)])
 else:
 pout = subpart.startbody("text/plain",[("name",file)])
 infile = open(file,"rb")
 # Encode the raw data using base64
 mimetools.encode(infile,pout,'base64')
 infile.close()

Clean up
writer.lastpart()
out.close()

? See Also mimetypes (268), mimetools (266), rfc822 (274), multifile (272).

multifile

The multifile module defines an object that can be used to read multipart text files as found in MIME-encoded
messages. The multifile object works by splitting a file into a series of logical file-like objects that are delimited
by a unique boundary string such as the following:

--216.150.6.70.100.4397.932677969.082.3036
Part 1
...
--216.150.6.70.100.4397.932677969.082.3036
Part 2
...
--216.150.6.70.100.4397.932677969.082.3036--

In this case, the boundary string is of the form returned by the mimetools.choose_boundary() function. The
last boundary string (with a trailing -) marks the end of the multipart data.

MultiFile(fp [, seekable])

Creates a multifile object. fp is a file-like object containing input data. The input object’s readline() method is
used to read data. If the seekable option is set, the multifile object allows random access using the seek() and
tell() methods.

A MultiFile object m supports the following methods:

m.push(str)

Pushes a boundary string into the reader. When this string is encountered in the input, it signals an end of section or
end of message. More than one boundary marker can be pushed to handle nested multipart data. However,
encountering any other boundary than the most recently pushed value raises an error.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/115.html (13 / 24) [2003/1/1 ､W､ﾈ 02:56:30]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/115#18.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/115#16.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/115#32.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/115#24.html

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/115.html

m.readline()

Reads a line of text. If the line matches the most recently pushed boundary, '' is returned to indicate the end of the
part. Furthermore, if the boundary corresponds to an end marker, the m.last attribute is set to 1. Raises Error if
an EOF is encountered before all boundary strings have been popped.

m.readlines()

Returns all lines remaining in the current part as a list of strings.

m.read()

Reads all lines remaining in the current part and returns as a single string.

m.next()

Skips to the next section. Returns true if a next section exists, false if an end marker is encountered.

m.pop()

Pops a section boundary. This boundary will no longer be interpreted as EOF.

m.seek(pos [, whence])

Seeks to a new position within the current section. The pos and whence arguments are interpreted as for a file seek.

m.tell()

Returns the file position relative to the start of the current section.

Finally, MultiFile instances have two public-instance variables:

m.level

Nesting depth of the current part.

m.last

True if the last end-of-file was an end-of-message marker.

Example

Unpack a MIME encoded mail message into parts

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/115.html (14 / 24) [2003/1/1 ､W､ﾈ 02:56:30]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/115.html

import mimetools, multifile, sys
def unpack_part(file,partno=0):
 headers = mimetools.Message(file) # Get headers
 type = headers.getmaintype() # Get main content type
 if type == 'multipart': # Multipart?
 boundary = headers.getparam("boundary")
 file.push(boundary)
 file.readlines()
 while not file.last:
 file.next()
 partno = partno + 1
 unpack_part(file,partno)
 file.pop()
 return
 name = headers.getparam("name") # Get filename
 if not name: name = "part%d" % (partno,)
 encoding = headers.getencoding()
 print "Unpacking '%s'. Encoding = %s" % (name, encoding)
 if encoding == '7bit':
 outfile = open(name,"w")
 mimetools.copyliteral(file,outfile)
 else:
 outfile = open(name,"wb")
 mimetools.decode(file,outfile,encoding)
 outfile.close()
Read a filename from options and unpack it
f = open(sys.argv[1])
mf = multifile.MultiFile(f,0)
unpack_part(mf)

Note

● The MultiFile class defines a number of methods that can be specialized in a subclass. Please refer to the
online library reference at http://www.python.org/doc/lib/module-multifile.html.

? See Also mimetools (266), MimeWriter (271), http://www.python.org/doc/lib/module-multifile.html.

quopri

The quopri module performs quoted-printable transport encoding and decoding. This format is used primarily to
encode text files.

decode(input, output)

Decodes. input and output are file objects.

encode(input, output, quotetabs)

Encodes. input and output are file objects. quotetabs , if set to true, forces tab characters to be quoted in
addition to the normal quoting rules.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/115.html (15 / 24) [2003/1/1 ､W､ﾈ 02:56:30]

http://www.python.org/doc/lib/module-multifile.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/115#16.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/115#20.html
http://www.python.org/doc/lib/module-multifile.html

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/115.html

? See Also binascii (264), Internet RFC 1521.

rfc822

The rfc822 module is used to parse email headers presented in a format defined by the Internet standard RFC 822.
Headers of this form are used in a number of contexts, including mail handling and in the HTTP protocol. A
collection of RFC 822 headers looks like this:

Return-Path: <beazley@cs.uchicago.edu>
Date: Sun, 15 Apr 03:18:21 -0500 (CDT)
Message-Id: <199907171518.KAA24322@gargoyle.cs.uchicago.edu>
Reply-To: beazley@cs.uchicago.edu
References: <15065.6056.897223.775915@empire-builder.cs.uchicago.edu>
 <20010415041130.008D1D1D8@smack.cs.uchicago.edu>
Mime-Version: 1.0 (generated by tm-edit 7.78)
Content-Type: text/plain; charset=US-ASCII
From: David Beazley <beazley@cs.uchicago.edu>
To: techstaff@cs
Subject: Modem problem

I'm having some trouble running MPI over the ultra-scalable modem array on our
Beowulf cluster. Can someone take a look at it?

Each header line is of the form 'headername : values ' and may span multiple lines provided that additional
lines are indented with whitespace. Header names are not case sensitive, so a field name of 'Content-Type' is the
same as 'content-type'. A list of headers is terminated by a single blank line.

RFC 822 headers are parsed by creating an instance of the Message class.

Message(file [, seekable])

Reads RFC 822 headers from the file-like object file and returns a Message object. Headers are read using file
.readline() until a blank line is encountered. seekable is a flag that’s set to zero if file is unseekable (such
as a file created from a socket).

A Message object m behaves like a dictionary except that its key values are not case sensitive and it doesn’t support
certain dictionary operations, including update() and clear().

Method Description

m [name] Returns the value for header name.

m [name]=value Adds a header.

m .keys() Returns a list of header names.

m .values() Returns a list of header values.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/115.html (16 / 24) [2003/1/1 ､W､ﾈ 02:56:30]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/115#4.html

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/115.html

m .items() Returns a list of header (name , value) pairs.

m .has_key(name) Tests for the existence of a header name.

m .get(name [, default]) Gets a header value. Returns default if not found.

len(m) Returns the number of headers.

str(m) Converts headers to an RFC 822–formatted string.

In addition, the following methods are available:

m.getallmatchingheaders(name)

Returns a list of all lines with headers that match name , including continuation lines (if any).

m.getfirstmatchingheader(name)

Returns the list of lines for the first header matching name , including any continuation lines. Returns None if name
doesn’t match any headers.

m.getrawheader(name)

Returns a string containing the raw text after the colon for the first header matching name . Returns None if no
match is found.

m.getheader(name [, default])

Like getrawheader(name), but strips all leading and trailing whitespace. default specifies a default value to
return if no matching header is found.

m.getaddr(name)

Returns a pair (full_name , email_address) for a header containing an email address. If no header matches
name , (None, None) is returned.

m.getaddrlist(name)

Parses a header containing a list of email addresses and returns a list of tuples as returned by the getaddr()
method. If multiple headers match the named header, all are parsed for addresses (for example, multiple 'cc'
headers).

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/115.html (17 / 24) [2003/1/1 ､W､ﾈ 02:56:30]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/115.html

m.getdate(name)

Parses a header containing a date and returns a 9-tuple compatible with time.mktime(). Returns None if no
match is found or the date cannot be parsed.

m.getdate_tz(name)

Parses a header containing a date and returns a 10-tuple in which the first nine elements are the same as returned by
getdate() and the tenth is a number with the offset of the date’s timezone from UTC (Greenwich Mean Time).
Returns None if no match is found or the date is unparsable.

Finally, messages have two instance attributes:

m.headers

A list containing the entire set of header lines.

m.fp

The file-like object passed when the Message was created.

In addition to Message, the rfc822 module defines the following utility functions:

parsedate(date)

Parses an RFC 822–formatted date such as 'Mon, 16 Apr 2001 17:30:08 -0600' and returns a 9-tuple
that’s compatible with the time.mktime() function. Returns None if date cannot be parsed.

parsedate_tz(date)

Parses a date, but returns a 10-tuple where the first nine elements are the same as returned by parsedate() and the
tenth item is the offset of the date’s timezone from UTC. Returns None if date cannot be parsed.

mktime_tz(tuple)

Turns a 10-tuple as returned by parsedate_tz() into a UTC timestamp. If the timezone item is None, assumes
local time.

AddressList(addrlist)

Converts a string containing a list of email addresses into an AddressList object. The following operations can be
performed on AddressList objects:

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/115.html (18 / 24) [2003/1/1 ､W､ﾈ 02:56:30]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/115.html

Operation Description

len(a) Number of addresses in a list

str(a) Converts a back into a string of email addresses

a + b Combines two lists of addresses, removing duplicates

a - b Removes all addresses in list b from list a

Example

import rfc822
Open a mail message
f = open("mailmessage")
Read the headers
m = rfc822.Message(f)
Extract a few fields
m_from = m["From"]
m_to = m.getaddr("To")
m_subject = m["Subject"]

Note

● The Message class defines a few additional methods that can be specialized in a subclass. For details, please
refer to the online documentation at http://www.python.org/doc/lib/module-rfc822.html.

? See Also mimetools (266), MimeWriter (271), mimetypes (268), mailcap (265), Internet RFC 822,
http://www.python.org/doc/lib/module-rfc822.html.

uu

The uu module is used to encode and decode files in uuencode format, commonly used for transferring binary data
over an ASCII-only connection.

encode(input, output [, name [, mode]])

Uuencodes a file. input is a file object opened for reading or a filename. output is a file object opened for writing
or a filename. name specifies the name of the file that’s encoded in the uuencoded file. mode specifies the mode of
the file. By default, name and mode are taken from the input file.

decode(input [, output [, mode]])

Decodes a uuencoded file. input is a file object opened for reading or a filename. output is a file object opened
for writing or a filename. mode is used to set permission bits and overrides the setting encoded in the input file.

? See Also binascii (264).

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/115.html (19 / 24) [2003/1/1 ､W､ﾈ 02:56:30]

http://www.python.org/doc/lib/module-rfc822.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/115#16.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/115#20.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/115#18.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/115#12.html
http://www.python.org/doc/lib/module-rfc822.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/115#4.html

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/115.html

xdrlib

xdrlib is used to encode and decode data in the Sun XDR (External Data Representation) format. XDR is often
used as a portable way to encode binary data for use in networked applications. It’s used extensively in applications
involving remote procedure calls (RPC).

Encoding and decoding is controlled through the use of two classes:

Packer()

Creates an object for packing data into an XDR representation.

Unpacker(data)

Creates an object for unpacking XDR-encoded data. data is a string containing XDR-encoded data values.

An instance p of the Packer class supports the following methods:

p.get_buffer()

Returns the current pack buffer as a string.

p.reset()

Resets the pack buffer to the empty string.

p.pack_uint(x)

Packs a 32-bit unsigned integer x .

p.pack_int(x)

Packs a 32-bit signed integer x .

p.pack_enum(x)

Packs an enumeration x (an integer).

p.pack_bool(x)

Packs a Boolean value x .

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/115.html (20 / 24) [2003/1/1 ､W､ﾈ 02:56:30]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/115.html

p.pack_uhyper(x)

Packs a 64-bit unsigned integer x .

p.pack_hyper(x)

Packs a 64-bit signed integer x .

p.pack_float(x)

Packs a single-precision floating-point number.

p.pack_double(x)

Packs a double-precision floating-point number.

p.pack_fstring(n, s)

Packs a fixed-length string of length n .

p.pack_fopaque(n, data)

Packs a fixed-length opaque data stream. Similar to pack_fstring().

p.pack_string(s)

Packs a variable-length string s .

p.pack_opaque(data)

Packs a variable-length opaque data string data . Similar to pack_string().

p.pack_bytes(bytes)

Packs a variable-length byte stream bytes . Similar to pack_string().

p.pack_list(list, pack_func)

Packs a list of homogeneous items. pack_func is the function called to pack each data item (for example, p
.pack_int). For each item in the list, an unsigned integer 1 is packed first, followed by the data item. An unsigned
integer 0 is packed at the end of the list.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/115.html (21 / 24) [2003/1/1 ､W､ﾈ 02:56:30]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/115.html

p.pack_farray(n, array, pack_func)

Packs a fixed-length list of homogeneous items. n is the list length, array is a list containing the data, and
pack_func is the function called to pack each data item.

p.pack_array(list, pack_func)

Packs a variable-length list of homogeneous items by first packing its length and then calling the pack_farray()
method.

An instance u of the Unpacker class supports the following methods:

u.reset(data)

Resets the string buffer with the given data.

u.get_position()

Returns the current unpack position in the data buffer.

u.set_position(position)

Sets the data buffer unpack position to position .

u.get_buffer()

Returns the current unpack data buffer as a string.

u.done()

Indicates unpack completion. Raises an Error exception if all the data has not been unpacked.

In addition, every data type that can be packed with a Packer can be unpacked with an Unpacker. Unpacking
methods are of the form unpack_type(), and take no arguments. They return the unpacked object.

u.unpack_int()

Unpacks and returns a 32-bit signed integer.

u.unpack_uint()

Unpacks and returns a 32-bit unsigned integer. If the unsigned value is larger than sys.maxint, it’s returned as an
unsigned long integer.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/115.html (22 / 24) [2003/1/1 ､W､ﾈ 02:56:30]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/115.html

u.unpack_enum()

Unpacks and returns an enumeration (an integer).

u.unpack_bool()

Unpacks a Boolean value and returns it as an integer.

u.unpack_hyper()

Unpacks and returns a 64-bit signed integer as a Python long integer.

u.unpack_uhyper()

Unpacks and returns a 64-bit unsigned integer as a Python long integer.

u.unpack_float()

Unpacks and returns a single-precision floating-point number. The value will be converted to double precision when
it is returned as a Python floating-point number.

u.unpack_double()

Unpacks and returns a double-precision floating-point number.

u.unpack_fstring(n)

Unpacks and returns a fixed-length string. n is the number of characters expected.

u.unpack_fopaque(n)

Unpacks and returns a fixed-length opaque data stream, similarly to unpack_fstring().

u.unpack_string()

Unpacks and returns a variable-length string.

u.unpack_opaque()

Unpacks and returns a variable-length opaque data string.

u.unpack_bytes()

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/115.html (23 / 24) [2003/1/1 ､W､ﾈ 02:56:30]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/115.html

Unpacks and returns a variable-length byte stream.

u.unpack_list(unpack_func)

Unpacks and returns a list of homogeneous items as packed by pack_list(). unpack_func is the function
called to perform the unpacking for each item (for example, u .unpack_int).

u.unpack_farray(n, unpack_func)

Unpacks and returns (as a list) a fixed-length array of homogeneous items. n is the number of list elements to expect
and unpack_func is the function used to unpack each item.

u.unpack_array(unpack_func)

Unpacks and returns a variable-length list of homogeneous items. unpack_func is the function used to unpack each
item.

Exceptions

Error

The base exception class. Error has a single public data member msg containing the description of the error.

ConversionError

Class derived from Error. Contains no additional instance variables.

Note

● Objects created with xdrlib can be pickled using the pickle module.

? See Also struct (144), array (127), Internet RFC 1014.

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%...Second%20Edition/python_essencial_ref/115.html (24 / 24) [2003/1/1 ､W､ﾈ 02:56:30]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/110#22.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/109#2.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=115

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/116.html

Linux/Unix > Python Essential Reference, Second Edition > A. The Python Library > Restricted
Execution

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238111161105081080058112185106252

Restricted Execution

Normally, a Python program has complete access to the machine on which it runs. In particular, it can open files and
network connections, and perform other potentially sensitive operations. In certain applications, however, this is
undesirable—especially in Internet applications, in which a program may be subject to attackers or when code from
an untrusted source is executed.

To provide some measure of safety, Python provides support for restricted execution. Restricted execution is based
on the notion of separating trusted and untrusted code. In particular, a program running in trusted mode (a
supervisor) can create an execution environment (or sandbox) in which untrusted code can be executed with limited
privileges. The capabilities of the untrusted code are tightly controlled by the supervisor, which can restrict the set of
objects that can be accessed as well as the behavior of individual functions.

Python’s restricted execution mode is implemented by playing a number of tricks with dictionaries, namespaces, and
the environment in which untrusted code executes. As a result, untrusted code uses the same set of function names
and modules that would be used in a normal program (as opposed to separate, secure APIs). The only difference is
that certain modules and built-in functions may be unavailable (or redefined to secure versions).

Internally, the interpreter determines whether a piece of code is restricted by looking at the identity of the _
builtins _ object in its global namespace. If it’s the same as the standard _ _builtin_ _ module, the
code is unrestricted. Otherwise, it’s restricted. When running in restricted mode, the interpreter imposes a number of
further restrictions that are designed to prevent untrusted code from becoming privileged:

● The _ _dict_ _ attribute of classes and instances is not accessible.

● The func_globals attribute of functions is not accessible.

These restrictions are imposed to prevent untrusted code from altering its global namespace (which is used by the
supervisor to restrict the set of objects that are accessible).

Finally, it should be noted that although the Python restricted execution environment prevents access to critical
operations, it doesn’t prevent denial-of-service attacks, in which an untrusted program might try to exhaust memory
or use an unlimited amount of CPU time.

Restricted execution is supported through the use of two modules: rexec and Bastion. rexec restricts the
environment in which code runs. Bastion restricts the access that untrusted code has to objects created by the
supervisor.

rexec

The rexec module is used to run code in a restricted environment. The environment is encapsulated in a class
RExec that contains attributes specifying the capabilities for the code to execute.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/116.html (1 / 5) [2003/1/1 ､W､ﾈ 02:56:31]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=116
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+9%3A07%3A42+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read3.asp?bookname=0735710910&snode=116&now=5%2F28%2F2002+9%3A07%3A42+PM

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/116.html

RExec([hooks [, verbose]])

Creates an instance of the RExec class that represents a restricted environment. hooks is an instance of a class
used to implement nonstandard methods for importing modules and is not described here. verbose is a flag that
causes some debugging output to be printed to standard output.

The following class variables are used by the _ _init_ _() method when an instance of the RExec class is
created. Changing them on an instance has no effect, so it’s better to create a subclass of RExec that modifies their
values.

RExec.nok_builtin_names

A tuple of strings containing the names of built-in functions not available to restricted programs. The default value is
('open', 'reload', '_ _import_ _').

RExec.ok_builtin_modules

A tuple of strings containing the names of built-in modules that can be safely imported. The default value is as
follows:

('audioop', 'array', 'binascii', 'cmath', 'errno', 'imageop', 'marshal',
'math', 'md5', 'operator', 'parser', 'pcre', 'regex', 'rotor',
'select', 'strop', 'struct', 'time')

RExec.ok_path

The list of directories that are searched when an import is performed in the restricted environment. The default value
is the same as sys.path.

RExec.ok_posix_names

A tuple of names for functions in the os module that are available to restricted programs. The default value is as
follows:

('error', 'fstat', 'listdir', 'lstat', 'readlink',
'stat', 'times', 'uname', 'getpid', 'getppid',
'getcwd', 'getuid', 'getgid', 'geteuid', 'getegid')

RExec.ok_sys_names

A tuple of names for functions and variables in the sys module that are available to restricted programs. The default
value is as follows:

('ps1', 'ps2', 'copyright', 'version', 'platform', 'exit', 'maxint')

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/116.html (2 / 5) [2003/1/1 ､W､ﾈ 02:56:31]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/116.html

An instance r of RExec uses the following methods to execute restricted code:

r.r_eval(code)

Like eval() except that code is executed in the restricted environment. code is a string or a compiled code object.
Returns the value of the resulting expression.

r.r_exec(code)

Like the exec statement except that execution is performed in the restricted environment. code is a string or a
compiled code object.

r.r_execfile(filename)

Like execfile() except that code is executed in the restricted environment.

r.s_eval(code)

Like r_eval() except that access to sys.stdin, sys.stdout, and sys.stderr is allowed.

r.s_exec(code)

Like r_exec() except that access to sys.stdin, sys.stdout, and sys.stderr is allowed.

r.s_execfile(code)

Like r_execfile() except that access to sys.stdin, sys.stdout, and sys.stderr is allowed.

The following methods are called implicitly by code executing in the restricted environment and can be redefined in
subclasses of RExec:

r.r_import(modulename [, globals [, locals [, fromlist]]])

Imports a module modulename . An ImportError exception should be raised if the module is unsafe.

r.r_open(filename [, mode [, bufsize]])

Opens a file in the restricted environment. The arguments are the same as the built-in open() function. By default,
files can be opened for reading, but not for writing.

r.r_reload(module)

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/116.html (3 / 5) [2003/1/1 ､W､ﾈ 02:56:31]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/116.html

Reloads the module object module .

r.r_unload(module)

Unloads the module object module .

r.s_import(modulename [, globals [, locals [, fromlist]]])

Like r_import(), but with access to standard I/O streams.

r.s_reload(module)

Like r_reload(), but with access to standard I/O streams.

r.s_unload(module)

Like r_unload(), but with access to standard I/O streams.

Example

The following program executes Python code submitted through a CGI script in a restricted environment along with
limits on CPU and memory usage:

#!/usr/local/bin/python
import rexec
import cgi, StringIO, sys, string, resource
form = cgi.FieldStorage()
code = form["code"].value # Get some arbitrary code to execute
code = string.replace(code,"\015","")
sys.stderr = sys.stdout # Make error messages appear

print "Content-type: text/plain\n\n"
print "The output of your program is : \n\n"
class CGIExec(rexec.RExec):
 def r_open(*args):
 raise SystemError, "open not supported"
r = CGIExec() # Create sandbox
Restrict memory usage to 4 Mbytes
resource.setrlimit(resource.RLIMIT_DATA,(4000000,4000000))
Set CPU time limit to 10 seconds
resource.setrlimit(resource.RLIMIT_CPU,(10,10))
Go run the code
r.s_exec(code) # Execute the untrusted code

? See Also Bastion (283).

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/116.html (4 / 5) [2003/1/1 ､W､ﾈ 02:56:31]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/116#6.html

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/116.html

Bastion

The Bastion module restricts access to attributes of objects. It’s primarily used in conjunction with the rexec
module when a privileged program wants to allow restricted programs to access attributes of unrestricted objects.
The idea behind a Bastion is simple—a wrapper is placed around an object, causing every method access to be
redirected through a filter function that’s responsible for accepting or rejecting the access. Furthermore, all access to
data attributes (non-methods) is prohibited.

Bastion(object [, filter [, name [, class]]])

Returns a bastion for the object object . filter is a function that accepts a string containing a method name and
returns true or false if access to the method is permitted or denied, respectively. name is the name of the object
that’s printed by the bastion’s str() method. class is the class object that implements Bastion objects and is not
described here (it’s rarely necessary to supply this).

Example

In this example, you want to restrict access to a StringIO object so that only read operations are permitted (see
the StringIO module):

import StringIO, Bastion

str = StringIO("")
...
strbast = Bastion.Bastion(str, lambda x: x in ['read','readline','readlines'])
strbast.readline() # Okay
strbast.write("Ha ha") # Fails. AttributeError : write

Notes

● If the filter function is omitted, a bastion limits access to all methods beginning with an underscore.

● Bastions cannot be placed around built-in types such as files and sockets.

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/116.html (5 / 5) [2003/1/1 ､W､ﾈ 02:56:31]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/110#18.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=116

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/117.html

Linux/Unix > Python Essential Reference, Second Edition > A. The Python Library >
Miscellaneous Modules

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238111161105081080059255003146110

Miscellaneous Modules

The modules in this category are used for miscellaneous tasks that don’t fit into any of the other
categories.

bisect

The bisect module provides support for keeping lists in sorted order. It uses a bisection algorithm
to do most of its work.

bisect(list, item [, low [, high]])

Returns the index of the proper insertion point for item to be placed in list in order to maintain
list in sorted order. low and high are indices specifying a subset of the list to be considered.

insort(list, item [, low [, high]])

Inserts item into list in sorted order.

cmd

The cmd module provides a class Cmd that’s used as a framework for building a line-oriented
command interpreter. The Cmd class is never instantiated directly, but is used as a base class for a
class that actually implements the interpreter. An instance c of the Cmd class provides the following
methods:

c.cmdloop([intro])

Prints a banner message contained in intro and repeatedly issues a prompt, reads a line of input,
and dispatches an appropriate action. For each line of text, the first word is stripped off and used as a
command name. For a command name of 'foo', an attempt is made to invoke a method
do_foo() with the remainder of the input line as a string argument. If a line contains only the
character '?', a predefined method do_help() is dispatched. If the command name is '!', a
method do_shell() is invoked (if defined). An end-of-file is converted into a string 'EOF' and

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/117.html (1 / 9) [2003/1/1 ､W､ﾈ 02:56:32]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=117
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+9%3A07%3A51+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read7.asp?bookname=0735710910&snode=117&now=5%2F28%2F2002+9%3A07%3A51+PM

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/117.html

dispatched to a command do_EOF.

Subclasses of Cmd inherit a predefined method do_help(). When this method is invoked with an
argument 'bar', it tries to invoke the method help_bar(). With no arguments, do_help()
lists all the available help topics by listing all commands with corresponding help_* methods,
undocumented commands (commands without corresponding help_* methods), and miscellaneous
topics (help methods without a corresponding command). Each of the command methods should
return an integer code indicating success or failure. A negative value indicates an error and causes
the interpreter to return. Otherwise, the interpreter continues to read input after each command. If
the readline module has been loaded, the command interpreter will have line editing and history
capabilities.

c.onecmd(str)

Interprets str as a single line of input.

c.emptyline()

This method is called when an empty line of input is typed. It should be defined by the user. If not
overridden, it repeats the last nonempty command entered.

c.default(line)

Called when an unrecognized command is typed. By default, it prints an error message and exits.

c.precmd()

Method executed just before the input prompt is issued. It should be overridden by derived classes.

c.postcmd()

Method executed immediately after a command dispatch has finished.

c.preloop()

Method executed once when cmdloop() is executed.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/117.html (2 / 9) [2003/1/1 ､W､ﾈ 02:56:32]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/117.html

c.postloop()

Method executed when cmdloop() is about to return.

The following instance variables should also be defined by a subclass of Cmd.

Variable Description

c .prompt Prompt printed to solicit input.

c .identchars String of characters accepted for the command prefix.

c .lastcmd Last nonempty command seen.

c .intro Intro text banner; overridden using the argument to cmdloop().

c .doc_header Header to issue if the help section has a section for documented commands.

c .misc_header Header to issue for miscellaneous help topics.

c .undoc_header Header for undocumented commands.

c .ruler Character used to draw separator lines under help message headers. If empty, no ruler line is
drawn. The default is '='.

Example

The following example shows how this module can be used to implement an interpreter wrapper
around the callable objects of a module. It also shows the interesting feature of code being executed
in a class definition.

cmdhelp.py
Builds a command interpreter that allows arbitrary Python
commands to be typed, but reads their doc strings to create
a collection of help commands. Just do an execfile(cmdhelp.py)
in a module to utilize this.

import cmd, sys, traceback

Define the interpreter class
class Interpreter(cmd.Cmd):

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/117.html (3 / 9) [2003/1/1 ､W､ﾈ 02:56:32]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/117.html

 symbols = globals()
 prompt = "?>> "
 intro = "Interpreter for " + _ _name_ _

 # Find all of the callable objects and look for
 # their doc strings
 for n in symbols.keys():
 c = symbols[n]
 if callable(c):
 if c._ _doc_ _:
 exec """
def help_%s(self):print %s._ _doc_ _
""" % (n,n)

 # Execute an arbitrary statement
 def default(self,l):
 try:
 exec self.lastcmd in globals()
 except:
 traceback.print_exc()

 # Do nothing on empty line
 def emptyline(self):
 pass

 def do_EOF(self,arg):
 return -1

Create an instance
interp = Interpreter()

The following code shows how this code might be used:

Python 2.0 (#1, Feb 25 2001, 07:54:16)
[GCC 2.95.2 19991024 (release)] on sunos5
Type "copyright", "credits" or "license" for more information.
>>> from socket import *
>>> execfile("cmdhelp.py")
>>> interp.cmdloop()
Interpreter for _ _main_ _
?>> help
Miscellaneous help topics:
==========================
getservbyname gethostbyaddr htons socket
ntohs gethostbyname fromfd getprotobyname
gethostname htonl

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/117.html (4 / 9) [2003/1/1 ､W､ﾈ 02:56:32]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/117.html

Undocumented commands:
======================
EOF help
?>> help socket
socket(family, type[, proto]) -> socket object
Open a socket of the given type. The family argument
specifies the address family; it is normally AF_INET,
sometimes AF_Unix. The type argument specifies whether this
is a stream (SOCK_STREAM) or datagram (SOCK_DGRAM) socket.
The protocol argument defaults to 0, specifying the default
protocol.
?>> s = socket(AF_INET, SOCK_STREAM)
?>> s.connect("www.python.org",80)
...

? See Also shlex (288).

md5

The md5 module implements RSA’s MD5 message-digest algorithm. MD5 takes a sequence of
input text and produces a 128-bit hash value. To compute the hash value, create an md5 object using
the new() function, feed data to it using the update() method, and then call the digest()
method to get the hash value.

new([arg])

Returns a new md5 object. If arg is present, the method call update(arg) is also made.

An md5 object m has the following methods:

m.update(arg)

Updates the md5 object m with the string arg . Repeated calls are equivalent to a single call with
the concatenation of all the arguments.

m.digest()

Returns the digest of all data passed to the object using the update() method so far. Returns a 16-
byte string that may contain nonprintable characters, including null bytes.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/117.html (5 / 9) [2003/1/1 ､W､ﾈ 02:56:32]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/117#16.html

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/117.html

m.copy()

Returns a copy of the md5 object.

Example

import md5
m = md5.new() # Create a new MD5 object
m.update("Hello")
m.update("World")
d = m.digest() # Get the digest

The following shortcut can also be used:

d = md5.new("Hello World").digest()

? See Also sha (287), Internet RFC 1321.

sha

The sha module implements the secure hash algorithm (SHA). SHA takes a sequence of input text
and produces a 160-bit hash value. To compute the hash value, create an sha object using the
new() function and feed data to it.

new([string])

Returns a new sha object. If string is present, the method call update(string) is made.

blocksize

Size of the blocks fed into the hash function. This is always 1.

digestsize

The size of the resulting digest in bytes. This is always 20.

An instance s of an sha object has the following methods:

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/117.html (6 / 9) [2003/1/1 ､W､ﾈ 02:56:32]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/117#12.html

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/117.html

s.update(arg)

Updates the sha object with the string arg . Repeated calls are equivalent to a single call with the
concatenation of all the arguments.

s.digest()

Returns the digest of all data passed to the object using the update() method so far. Returns a 20-
byte string that may contain nonprintable characters, including null bytes.

s.copy()

Returns a copy of the sha object.

s.hexdigest()

Returns the digest value as a string of hexadecimal digits.

Note

● The SHA algorithm is defined by NIST document FIPS PUB 180-1: Secure Hash Standard.
It’s available online at http://csrc.nist.gov/fips/fip180-1.ps.

? See Also md5 (286).

shlex

The shlex module provides a class shlex that can be used to build lexical analyzers for simple
syntaxes such as shells.

shlex([stream])

Creates an instance of the shlex class. stream specifies a file or stream-like object where
characters will be read. This object must provide read() and readline() methods. If omitted,
input is taken from sys.stdin.

An instance s of the shlex class supports the following methods:

s.get_token()

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/117.html (7 / 9) [2003/1/1 ､W､ﾈ 02:56:32]

http://csrc.nist.gov/fips/fip180-1.ps
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/117#8.html

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/117.html

Returns a token (as a string). If tokens have been saved with push_token(), a token is popped
off the stack. Otherwise, the token is read from the input stream. An end-of-file returns an empty
string.

s.push_token(str)

Pushes a token onto the token stack.

In addition, the following instance variables can be set:

Variable Description

s .commenters String of characters recognized as starting a comment. Comments continue to the end of the line.
Includes '#' by default.

s .wordchars String of characters that form multi-character tokens. Includes all ASCII alphanumeric
characters and the underscore by default.

s .whitespace String of whitespace characters that will be skipped.

s .quotes Characters that will be considered to be string quotes. Includes single and double quotes by
default.

s .lineno Source line number.

s .token The token buffer.

Note

● Any character not declared to be a word character, whitespace, or a quote is returned as a
single-character token. Also, words must be delimited by whitespace. Special symbols such
as quotes and comments are not recognized within words. Thus, a word such as isn't is
returned as a single token.

? See Also cmd (284).

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/117.html (8 / 9) [2003/1/1 ､W､ﾈ 02:56:32]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/117#4.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=117

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/117.html

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/117.html (9 / 9) [2003/1/1 ､W､ﾈ 02:56:32]

Safari | Python Essential Reference, Second Edition -> The Python Debugger

Linux/Unix > Python Essential Reference, Second Edition > A. The Python Library > The Python
Debugger

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238111161105094192220113220094088

The Python Debugger

The Python debugger is loaded by importing the pdb module. The pdb module provides an interactive source
code debugger that allows post-mortem debugging, inspection of stack frames, breakpoints, single stepping of
source lines, and code evaluation.

The debugger is started by loading the pdb module and issuing one of the following functions:

run(statement [, globals [, locals]])

Executes the string statement under debugger control. The debugger prompt will appear immediately
before any code executes. Typing 'continue' will force it to run. globals and locals define the
global and local namespaces in which the code runs.

runeval(expression [, globals [, locals]])

Evaluates the expression string under debugger control. The debugger prompt will appear before any code
executes, as with run(). On success, the value of the expression is returned.

runcall(function [, argument, ...])

Calls a function within the debugger. function is a callable object. The debugger prompt will appear before
any code executes. The return value of the function is returned upon completion.

set_trace()

Starts the debugger at the point at which this function is called. This can be used to hard-code a debugger
breakpoint into a specific code location.

post_mortem(traceback)

Starts post-mortem debugging of a traceback object.

pm()

Enters post-mortem debugging using the traceback in sys.last_traceback.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/118.html (1 / 5) [2003/1/1 ､W､ﾈ 02:56:33]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=118
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+9%3A08%3A03+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read4.asp?bookname=0735710910&snode=118&now=5%2F28%2F2002+9%3A08%3A03+PM

Safari | Python Essential Reference, Second Edition -> The Python Debugger

When the debugger starts, it will present a prompt such as the following:

>>> import pdb
>>> import buggymodule
>>> pdb.run('buggymodule.start()')
> <string>(0)?()
(Pdb)

(Pdb) is the debugger prompt at which the following commands are recognized. Note: Some commands
have a short and a long form. In this case, parentheses are used to indicate both forms. For example, h(elp)
means that either h or help is acceptable.

h(elp) [command]

Shows the list of available commands. Specifying a command returns help for that command.

w(here)

Prints a stack trace.

d(own)

Moves the current frame one level down in the stack trace.

u(p)

Moves the current frame one level up in the stack trace.

b(reak) [loc [, condition]]

Sets a breakpoint at location loc . loc is one of the following:

Setting Description

n A line number in the current file

filename :n A line number in another file

function A function name in the current file

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/118.html (2 / 5) [2003/1/1 ､W､ﾈ 02:56:33]

Safari | Python Essential Reference, Second Edition -> The Python Debugger

filename :function A function name in another file

If loc is omitted, all the current breakpoints are printed. condition is an expression that must evaluate to
true before the breakpoint is honored.

tbreak [loc [, condition]]

Sets a temporary breakpoint that’s removed after its first hit.

cl(ear) [bpnumber [bpnumber...]]

Clears a list of breakpoint numbers. If breakpoints are not specified, all breaks are cleared.

disable [bpnumber [bpnumber...]]

Disables the set of specified breakpoints. Unlike with clear, they can be reenabled later.

enable [bpnumber [bpnumber...]]

Enables a specified set of breakpoints.

ignore bpnumber [count]

Ignores a breakpoint for count executions.

condition bpnumber [condition]

Places a condition on a breakpoint. condition is an expression that must evaluate to true before the
breakpoint is recognized. Omitting the condition clears any previous condition.

s(tep)

Executes a single source line and stops inside called functions.

n(ext)

Executes until the next line of the current function. Skips the code contained in function calls.

r(eturn)

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/118.html (3 / 5) [2003/1/1 ､W､ﾈ 02:56:33]

Safari | Python Essential Reference, Second Edition -> The Python Debugger

Runs until the current function returns.

c(ont(inue))

Continues execution until the next breakpoint is encountered.

l(ist) [first [, last]]

Lists source code. Without arguments, lists 11 lines around the current line. With one argument, lists 11 lines
around that line. With two arguments, lists lines in a given range. If last is less than first , it’s interpreted
as a count.

a(rgs)

Prints the argument list of the current function.

p expression

Evaluates the expression in the current context and prints its value.

alias [name [command]]

Creates an alias called name that executes command . The substrings '%1', '%2', and so forth are replaced
by parameters when the alias is typed. '%*' is replaced by all parameters. If no command is given, the current
alias list is shown. Aliases can be nested and can contain anything that can be legally typed at the Pdb prompt.
For example:

#Print instance variables (usage "pi classInst")
alias pi for k in %1._ _dict_ _.keys(): print "%1.",k,"=",%1._ _dict_ _[k]
#Print instance variables in self
alias ps pi self

unalias name

Deletes the specified alias.

[!] statement

Executes the (one-line) statement in the context of the current stack frame. The exclamation point can be
omitted unless the first word of the statement resembles a debugger command. To set a global variable, you
can prefix the assignment command with a "global" command on the same line:

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/118.html (4 / 5) [2003/1/1 ､W､ﾈ 02:56:33]

Safari | Python Essential Reference, Second Edition -> The Python Debugger

(Pdb) global list_options; list_options = ['-l']
(Pdb)

q(uit)

Quits from the debugger.

Notes

● Entering a blank line repeats the last command entered.

● Commands that the debugger doesn’t recognize are assumed to be Python statements and are executed
in the context of the program being debugged.

● If a file .pdbrc exists in the user’s home directory or in the current directory, it’s read in and
executed as if it had been typed at the debugger prompt.

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/118.html (5 / 5) [2003/1/1 ､W､ﾈ 02:56:33]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=118

Safari | Python Essential Reference, Second Edition -> The Python Profiler

Linux/Unix > Python Essential Reference, Second Edition > A. The Python Library > The Python Profiler See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238111161105094192221162198121240

The Python Profiler

This section describes the Python profiler—a tool that can be used to analyze the runtime performance of a program.

profile

The profile module is used to collect profiling information.

run(command [, filename])

Executes the contents of command using the exec statement under the profiler. filename is the name of a file in
which raw profiling data is saved. If omitted, a report such as the following is printed to standard output:

126 function calls (6 primitive calls) in 5.130 CPU seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
 1 0.030 0.030 5.070 5.070 <string>:1(?)
 121/1 5.020 0.041 5.020 5.020 book.py:11(process)
 1 0.020 0.020 5.040 5.040 book.py:5(?)
 2 0.000 0.000 0.000 0.000 exceptions.py:101(_ _init_ _)
 1 0.060 0.060 5.130 5.130 profile:0(execfile('book.py'))
 0 0.000 0.000 profile:0(profiler)

Different parts of the report generated by run() are interpreted as follows:

Section Description

primitive calls Number of nonrecursive function calls

ncalls Total number of calls (including self-recursion)

tottime Time spent in this function (not counting subfunctions)

percall tottime/ncalls

cumtime Total time spent in the function

percall cumtime/(primitive calls)

filename:lineno(function) Location and name of each function

When there are two numbers in the first column (for example, "121/1"), the latter is the number of primitive calls,

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/119.html (1 / 3) [2003/1/1 ､W､ﾈ 02:56:33]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=119
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+9%3A08%3A16+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read4.asp?bookname=0735710910&snode=119&now=5%2F28%2F2002+9%3A08%3A16+PM

Safari | Python Essential Reference, Second Edition -> The Python Profiler

and the former is the actual number of calls.

Notes

● Analysis of saved profile data is performed by the pstats module.

● To obtain accurate information, it may be necessary to calibrate the profiler. Please refer to
http://www.python.org/doc/lib/profile.html for details.

pstats

The pstats module defines a class Stats that’s used to analyze the data saved by the profile module.

Stats(filename)

Reads profiling data from filename —a file previously created by the profile.run() function. Returns a
statistics object that can be used to print reports.

A statistics object s has the following methods:

s.strip_dirs()

Removes leading path information from filenames.

s.add(filename [, ...])

Accumulates additional profiling information into the current profile. filename is the name of a file containing data
previously saved by profile.run().

s.sort_stats(key [, ...])

Sorts statistics according to a series of keys. Each key can be one of the following values:

Key Name Description

'calls' Call count

'cumulative' Cumulative time

'file' Filename

'module' Filename

'pcalls' Primitive call count

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/119.html (2 / 3) [2003/1/1 ､W､ﾈ 02:56:33]

http://www.python.org/doc/lib/profile.html

Safari | Python Essential Reference, Second Edition -> The Python Profiler

'line' Line number

'name' Function name

'nfl' Name/file/line

'stdname' Standard name

'time' Internal time

Time values and call counts are sorted in descending order. Line numbers and filenames are sorted in ascending order.

s.print_stats(restriction [, ...])

Prints a profile report to standard output. The order is the same as produced by the last sort_stats() method. The
arguments are used to eliminate entries in the report. Each restriction can be an integer to select a maximum line
count, a decimal to select a percentage of the lines, or a regular expression to pattern-match against the names that are
printed.

s.print_callers(restrictions [, ...])

Prints a list of all functions that called each function in the profile database. The ordering is identical to
print_stats(). restrictions has the same meaning as for print_stats().

s.print_callees(restrictions [, ...])

Prints a list of a functions that were called by each function. restrictions has the same meaning as for
print_stats().

Note

● If the pstats module is run as a script, it launches an interactive profile statistics browser. Type 'help' for
a list of the available commands. This is a new Python 2.1 feature.

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/119.html (3 / 3) [2003/1/1 ､W､ﾈ 02:56:33]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=119

Safari | Python Essential Reference, Second Edition -> Undocumented Modules

Linux/Unix > Python Essential Reference, Second Edition > A. The Python Library >
Undocumented Modules

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238111161105094192222208195166043

Undocumented Modules

The modules listed in this section are not covered in detail in this book, but have descriptions in the
online library reference and elsewhere.

Python Services

Module Description

code Code object support

codeop Compiles Python code

compileall Byte-compiles Python files in a directory

dis Disassembler

fpectl Floating-point exception control

imp Provides access to the implementation of the import statement

inspect Inspects live objects

keyword Tests whether a string is a Python keyword

linecache Retrieves lines from files

parser Accesses parse-trees of Python source code

pprint Prettyprinter for objects

pyclbr Extracts information for class browsers

py_compile Compiles Python source to bytecode files

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/120.html (1 / 6) [2003/1/1 ､W､ﾈ 02:56:34]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=120
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+9%3A08%3A24+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read6.asp?bookname=0735710910&snode=120&now=5%2F28%2F2002+9%3A08%3A24+PM

Safari | Python Essential Reference, Second Edition -> Undocumented Modules

repr Alternate implementation of the repr() function

symbol Constants used to represent internal nodes of parse trees

tabnanny Detection of ambiguous indentation

token Terminal nodes of the parse tree

tokenize Scanner for Python source code

user User configuration file parsing

String Processing

Module Description

difflib Functions for computing deltas

fpformat Floating-point number formatting

regex Regular expression matching (obsolete)

regsub Regular expression substitution (obsolete)

Operating System Modules

Module Description

curses Curses library interface

dl Access to UNIX shared libraries

dircache Directory cache

mutex Mutual exclusion locks

pty Pseudo-terminal handling

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/120.html (2 / 6) [2003/1/1 ､W､ﾈ 02:56:34]

Safari | Python Essential Reference, Second Edition -> Undocumented Modules

pipes Interface to shell pipelines

posixfile File locking

nis Interface to Sun’s NIS

rlcompleter Completion function for GNU readline

sched Event scheduler

statcache Caching version of stat() function

syslog Interface to UNIX syslog daemon

Network

Module Description

gopherlib Gopher protocol

telnetlib Telnet protocol

urllib2 Extensible library for opening URLs

Internet Data Handling

Module Description

formatter Generic output formatting

htmllib HTML parsing

mailbox Reading various mailbox formats

mhlib Access to MH mailboxes

mimify MIME processing of mail messages

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/120.html (3 / 6) [2003/1/1 ､W､ﾈ 02:56:34]

Safari | Python Essential Reference, Second Edition -> Undocumented Modules

netrc Netrc file processing

sgmllib Simple SGML parsing

xml XML parsing package

xmllib Simple XML parsing

Multimedia Services

Module Description

audioop Manipulates raw audio data

imageop Manipulates raw image data

aifc Reads and writes AIFF and AIFC files

sunau Reads and writes Sun AU files

wave Reads and writes WAV files

chunk Reads IFF chunked data

colorsys Conversions between color systems

rgbimg Reads and writes SGI RGB files

imghdr Determines the type of an image

sndhdr Determines the type of a sound file

SGI Irix

Module Description

al Audio functions on SGI

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/120.html (4 / 6) [2003/1/1 ､W､ﾈ 02:56:34]

Safari | Python Essential Reference, Second Edition -> Undocumented Modules

cd CD-ROM access on SGI

fl FORMS library

flp FORMS design loader

fm Font manager interface

gl Graphics library interface

imgfile Support for SGI imglib files

jpeg Reads and writes JPEG files

Sun-Specific Services

Module Description

sunaudiodev Access to Sun audio hardware

Miscellaneous

Module Description

ConfigParser Configuration file parser

calendar Calendar-generation functions

doctest Testing support based on docstrings

unittest Unit testing framework

whrandom Random number generation

winsound Playing sounds on Windows

xreadlines Efficient iteration over a file

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/120.html (5 / 6) [2003/1/1 ､W､ﾈ 02:56:34]

Safari | Python Essential Reference, Second Edition -> Undocumented Modules

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/120.html (6 / 6) [2003/1/1 ､W､ﾈ 02:56:34]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=120

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/122.html

Linux/Unix > Python Essential Reference, Second Edition > B. Extending and
Embedding Python

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238111161105094192223136156217174

Appendix B. Extending and Embedding Python
This appendix covers the C API used to build extension modules and embed the Python interpreter
into other applications. It’s not intended to be a tutorial, so readers may want to consult the
“Embedding and Extending the Python Interpreter” document available at
http://www.python.org/doc/ext, as well as the “Python/C API Reference Manual” available at
http://www.python.ord/doc/api. The functions described in this section are current as of Python 2.1
and are likely to be compatible with future releases of Python 2.x.

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%20P...%20Second%20Edition/python_essencial_ref/122.html [2003/1/1 ､W､ﾈ 02:56:34]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=122
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+9%3A08%3A32+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read9.asp?bookname=0735710910&snode=122&now=5%2F28%2F2002+9%3A08%3A32+PM
http://www.python.org/doc/ext
http://www.python.ord/doc/api
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=122

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/123.html

Linux/Unix > Python Essential Reference, Second Edition > B. Extending and
Embedding Python > Enabling Optional Modules

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238111161105094192216208231183024

Enabling Optional Modules

A number of modules in the standard library are disabled due to system differences and dependencies
on third-party packages. To enable these modules, you must edit a configuration file and rebuild the
interpreter (note that this is primarily an issue for UNIX systems).

For versions of Python prior to 2.1, the file Modules/Setup in the Python source distribution
contains configuration data for modules built into the Python interpreter. It contains entries of this
form:

signal signalmodule.c # signal(2)
...
#readline readline.c -lreadline -ltermcap

Each line indicates the name of a module, followed by source files, compiler options, and link
libraries needed to compile that module. A line starting with # is a comment and denotes modules
that have been disabled. Long lines can be broken into multiple lines by placing a backslash (\) at the
end of lines to be continued. To enable an optional module, the Setup file should be edited to reflect
the installation locations of required third-party libraries. For example, to enable the readline
module, the Setup file might be modified as follows:

...
readline readline.c -I/usr/local/include -L/usr/local/lib \
 -lreadline -ltermcap

The interpreter must be rebuilt and reinstalled by typing make and make install in the top-level
directory of the source tree for the changes to Setup to take effect.

Beginning with Python 2.1, much of the need to edit the Setup file has been removed because the
Python installation process has been modified to compile only a core of necessary modules into the
Python executable. Most modules are now configured as dynamic modules and some effort is made
to detect them automatically if it’s possible to build them. For instance, a build of Python 2.1 will
automatically enable the readline module if it can detect that the necessary libraries are installed
during its configuration process. If it’s necessary to manually modify the build process, changes
should be made to the setup.py file in the main Python 2.1 source directory.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/123.html (1 / 4) [2003/1/1 ､W､ﾈ 02:56:35]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=123
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+9%3A08%3A46+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read8.asp?bookname=0735710910&snode=123&now=5%2F28%2F2002+9%3A08%3A46+PM

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/123.html

Extension Module Example

Extension modules are used to extend the interpreter with functions in C. For example, suppose you
wanted to access the following C functions in a Python module named spam:

/* Compute the greatest common divisor of positive
 integers x and y */
int gcd(int x, int y) {
 int g;
 g = y;
 while (x > 0) {
 g = x;
 x = y % x;
 y = g;
 }
 return g;
}
/* Print some data */
void print_data(char *name, char *email, char *phone) {
 printf("Name : %s\n", name);
 printf("Email : %s\n", email);
 printf("Phone : %s\n", phone);
}

To access these functions from an extension module, you must write code such as that in Listing B.1:

Listing B.1 Accessing Functions from an Extension Module

/* "spam" module **/
/* Include the Python C API */
#include "Python.h"

/* External declarations */
extern int gcd(int,int);
extern void print_data(char *, char *, char *);

/* Wrapper for the gcd() function */
PyObject *spam_gcd(PyObject *self, PyObject *args) {
 int x, y, g;
 /* Get Python arguments */
 if (!PyArg_ParseTuple(args,"ii",&x,&y)) {
 return NULL;
 }
 /* Call the C function */
 g = gcd(x,y);

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/123.html (2 / 4) [2003/1/1 ､W､ﾈ 02:56:35]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/123.html

 return Py_BuildValue("i",g);
}
/* Wrapper for the print_data() function */
PyObject *
spam_print_data(PyObject *self, PyObject *args, PyObject *kwargs)
{
 char *name = "None";
 char *email = "None";
 char *phone = "None";
 static char *argnames[] = {"name","email","phone",NULL};

 /* Get Python arguments */
 if (!PyArg_ParseTupleAndKeywords(args,kwargs,"|sss",argnames,
 &name,&email,&phone)) {
 return NULL;
 }
 /* Call the C function */
 print_data(name,email,phone);
 return Py_BuildValue(""); /* Return None */
}
/* Method table mapping names to wrappers */
static PyMethodDef spammethods[] = {
 {"gcd", spam_gcd, METH_VARARGS},
 {"print_data", spam_print_data, METH_VARARGS | METH_KEYWORDS },
 {NULL, NULL}
};
/* Module initialization function */
initspam(void) {
 Py_InitModule("spam", spammethods);
}

Extension modules always need to include "Python.h". For each C function to be accessed, a
wrapper function is written. These wrapper functions either accept two arguments (self and args,
both of type PyObject *) or three arguments (self, args, and kwargs, all of type PyObject
*). The self parameter is used when the wrapper function is implementing a built-in method to be
applied to an instance of some object. In this case, the instance is placed in the self parameter.
Otherwise, self is set to NULL. args is a tuple containing the function arguments passed by the
interpreter. kwargs is a dictionary containing keyword arguments.

Arguments are converted from Python to C using the PyArg_ParseTuple() or
PyArg_ParseTupleAndKeywords() function. Similarly, the Py_BuildValue() function is
used to construct an acceptable return value. These functions are described in later sections.

Functions signal an error by returning NULL. If a function has no return value (that is, void), the
None object must be returned. For example:

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/123.html (3 / 4) [2003/1/1 ､W､ﾈ 02:56:35]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/123.html

PyObject *wrap_foo(PyObject *self, PyObject *args) {
 ...
 /* Return None */
 return Py_BuildValue("");
}

None can also be returned as follows:

PyObject *wrap_foo(PyObject *self, PyObject *args) {
 ...
 /* Return None */
 Py_INCREF(Py_None);
 return Py_None;
}

The method table spammethods in Listing B.1 is used to associate Python names with the C
wrapper functions. These are the names used to call the function from the interpreter. The
METH_VARARGS flag indicates the calling conventions for a wrapper.

In this case, only positional arguments in the form of a tuple are accepted. It can also be set to
METH_VARARGS | METH_KEYWORDS to indicate a wrapper function accepting keyword
arguments.

The module initialization function initspam is used to initialize the contents of the module. In this
case, the Py_InitModule('spam",spammethods) function creates a module spam and
populates it with built-in function objects corresponding to the functions listed in the method table.

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/123.html (4 / 4) [2003/1/1 ､W､ﾈ 02:56:35]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=123

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/124.html

Linux/Unix > Python Essential Reference, Second Edition > B. Extending and Embedding Python
> Compilation of Extensions

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238111161105094192217201128182154

Compilation of Extensions

Extension modules are usually compiled into shared libraries or DLLs that can be dynamically loaded by the
interpreter. The low-level details of this process vary by machine, but the distutils module in the Python
library can be used to simplify the process. To create an extension module using distutils, follow these
steps:

1. Create a file called setup.py that starts with the following code:

setup.py
from distutils.core import setup, Extension

2. Add some source information about your extension as follows:

setup(name="spam", version="1.0",
 ext_modules=[Extension("spam", ["spam.c", "spamwrapper.c"])])

3. To build your extension, type the following:

python setup.py build

At this point, a shared library such as spammodule.so (or some variant of this name such as
spammodule.sl or spammodule.dll) will be created in a special “build” directory. If you want to
install the extension, you can type python setup.py install. This command will copy the shared
library to the site-packages directory (for example, /usr/local/lib/python2.1/site-
packages).

If you need to supply additional build information such as include directories, libraries, and preprocessor
macros, they can also be included in the setup.py file as follows:

setup(name="spam", version="1.0",
 ext_modules=[
 Extension(
 "spam",
 ["spam.c", "spamwrapper.c"],
 include_dirs = ["/usr/include/X11","/opt/include"],
 define_macros = [('DEBUG',1'),
 ('NEED_CPLUSPLUS',0)],

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/124.html (1 / 3) [2003/1/1 ､W､ﾈ 02:56:35]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=124
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+9%3A08%3A55+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read4.asp?bookname=0735710910&snode=124&now=5%2F28%2F2002+9%3A08%3A55+PM

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/124.html

 undef_macros = ['HAVE_FOO','HAVE_NOT'],
 library_dirs= ["/usr/lib/X11", "/opt/lib"],
 libraries = ["X11", "Xt", "blah"]
)
]
)

At this point, it’s worth noting that the distutils module can more generally be used to create Python
packages suitable for distribution and installation by other users. For instance, it allows packages to be
distributed as a mix of scripts and compiled extensions. It also knows how to create RPM spec files and self-
extracting ZIP files on Windows. Further details about the distutils module are available at
http://www.python.org/doc/current/dist/dist.html.

In some situations, you may want to build an extension module manually. This almost always requires
advanced knowledge of various compiler and linker options. The following is an example on Linux:

linux % gcc -c -fpic -I/usr/local/include/python2.1 spam.c spamwrapper.c
linux % gcc -shared spam.o spamwrapper.o -o spammodule.so

When building a module, it’s important to note that the name of the shared library must match the name of the
module used in the wrapper code. For example, if the module is named spam, the initialization function must
be named initspam and the shared library must be called spammodule.so (possibly with a different file
extension, depending on your machine).

Once compiled, an extension module is used like any other module, by simply using the import statement:

% python
Python 2.0 (#1, Oct 27 2000, 14:34:45)
[GCC 2.95.2 19991024 (release)] on sunos5
Type "copyright", "credits" or "license" for more information..
>>> import spam
>>> spam.gcd(63,56)
7
>>> spam.gcd(71,89)
1
>>> spam.print_data(name="Dave",phone="555-1212")
Name : Dave
Email : None
Phone : 555-1212
>>>

When searching for an extension module, Python uses the same search path as it uses for .py files. Thus, to
properly find an extension module, it should be located in the current working directory or in one of the
directories in sys.path.

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/124.html (2 / 3) [2003/1/1 ､W､ﾈ 02:56:35]

http://www.python.org/doc/current/dist/dist.html

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/124.html

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/124.html (3 / 3) [2003/1/1 ､W､ﾈ 02:56:35]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=124

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/125.html

Linux/Unix > Python Essential Reference, Second Edition > B. Extending and
Embedding Python > Converting Data from Python to C

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238111161105095080112008053028057

Converting Data from Python to C

The following functions are used to convert arguments passed from Python to C.

int PyArg_ParseTuple(PyObject * args, char * format, ...);

Parses a tuple of objects in args into a series of C variables. format is a format string containing
zero or more of the specifier strings from Table B.1, which describes the expected contents of args .
All the remaining arguments contain the addresses of C variables into which the results will be
placed. The order and types of these arguments must match the specifiers used in format and use
the C datatypes listed in Table B.1. Zero is returned if the arguments could not be parsed.

int PyArg_ParseTupleAndKeywords(PyObject * args, PyObject * kwdict,
 char * format, char ** kwlist, ...);

Parses both a tuple of arguments and a dictionary containing keyword arguments contained in
kwdict . format has the same meaning as for PyArg_ParseTuple(). The only difference is
that kwlist is a null-terminated list of strings containing the names of all the arguments. Returns 1
on success, 0 on error.

Note: In Table B.1, results of a conversion (for example, in char *r or char **r) are always
placed in the parameter labeled r . When applicable, a length is stored in len .

Table B.1. Base Format Specifiers and Associated C Datatypes for PyArg_Parse*

Format Python Type C Type

"s" String or Unicode char **r

"s#" String or Unicode char **r , int *len

"z" String, Unicode, or None char **r

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/125.html (1 / 5) [2003/1/1 ､W､ﾈ 02:56:36]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=125
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+9%3A09%3A04+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read5.asp?bookname=0735710910&snode=125&now=5%2F28%2F2002+9%3A09%3A04+PM
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/125#2.html

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/125.html

"z#" String, Unicode, or None char **r, int *len

"u" Unicode Py_UNICODE **r

"u#" Unicode Py_UNICODE **r , int *len

"es" String, Unicode, or buffer const char *enc , char **r

"es#" String, Unicode, or buffer const char *enc , char **r , int *len

"b" Integer char *r

"h" Integer short *r

"i" Integer int *r

"l" Integer long int *r

"c" String of length 1 char *r

"f" Float float *r

"d" Float double *r

"D" Complex Py_complex *r

"O" Any PyObject **r

"O!" Any PyTypeObject *type , PyObject **r

"O&" Any int (*converter)(PyObject *, void *), void *r

"S" String PyObject **r

"U" Unicode PyObject **r

"t#' Read-only buffer char **r , int *len

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/125.html (2 / 5) [2003/1/1 ､W､ﾈ 02:56:36]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/125.html

"w" Read-write buffer char **r

"w#" Read-write buffer char **r , int *len

When converting integer values, an OverflowError exception is raised if the Python integer is
too large to fit into the requested C datatype. Long integers may also be used anyplace an integer is
expected, provided that they’re small enough to fit.

When converting strings with the "s", "s#", "z", or "z#" specifiers, both standard and Unicode
strings may be used. The "z" specifiers also allow None to be passed, in which case a NULL pointer
is returned. In both cases, it’s unnecessary to allocate space for the returned string—a pointer to the
raw string data stored in the Python interpreter is returned. When Unicode strings are passed, they’re
first converted to an 8-bit string using the default Unicode encoding. The "u" and "u#" specifiers
require a Unicode string and return a pointer to raw Unicode string data, where each character is of
type Py_UNICODE (which is currently the same as the C wchar_t type). The "s#", "z#", and
"u#" specifiers return the string length in addition to the string data.

The "es" and "es#" specifiers are used to read a string or Unicode string that has been encoded
according to a specific encoding rule. For example:

char *buffer;
PyArg_ParseTuple(args,"es","utf-8",&buffer);

In this case, PyArg_ParseTuple() first reads an encoding name and then returns a pointer to a
buffer in which an encoded version of the string has been placed. This buffer contains dynamically
allocated memory and must be explicitly deallocated using PyMem_Free() after the caller has
finished using the encoded contents. The "es#" specifier optionally accepts a buffer length. In this
case, a user can pass the address and length of a preallocated buffer in which encoded string data will
be placed. The len parameter is always set to the actual length of the encoded data upon return.

The "t#", "w", and "w#" specifiers are similar to the string-conversion specifiers, but return a
pointer to byte-oriented data stored in a Python object implementing the buffer interface. String and
Unicode objects provide this interface, as do selected types in the standard library, such as arrays
created with the array module and mmap objects created by the mmap module.

The "O", "S", and "U" specifiers return raw Python objects of type PyObject *. "S" and "U"
restrict this object to be a string or Unicode string, respectively.

The "O!" conversion requires two C arguments: a pointer to a Python type object and a pointer to a
PyObject * into which a pointer to the object is placed. A TypeError is raised if the type of the
object doesn’t match the type object. For example:

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/125.html (3 / 5) [2003/1/1 ､W､ﾈ 02:56:36]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/125.html

/* Parse a List Argument */
PyObject *listobj1;
PyArg_ParseTuple(args,"O!", &PyList_Type, &listobj1);

The "O&" conversion takes two arguments (converter , addr) and uses a function to convert a
PyObject * to a C datatype. converter is a pointer to a function with the prototype int
converter (PyObject *obj , void *addr), where obj is the passed Python object, and
addr is the address supplied as the second argument. converter () should return 1 on success, 0
on failure. On error, the converter should also raise an exception. For example:

struct Point {
 int x;
 int y;
};

int convert_point(PyObject *obj, void *addr) {
 Point *p = (Point *) addr;
 return PyArg_ParseTuple(obj,"ii", &p->x, &p->y);
}
...
PyObject *wrapper(PyObject *self, PyObject *args) {
 Point p;
 ...
 /* Get a point */
 if (!PyArg_ParseTuple(args,'O&",convert_point, &p))
 return NULL;
 ...
}

Table B.2 lists format modifiers that can also be used in format strings.

Table B.2. Format String Modifiers

Format String Description

"(items)" A tuple of objects

"|" Start of optional arguments

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/125.html (4 / 5) [2003/1/1 ､W､ﾈ 02:56:36]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/125#4.html

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/125.html

":" End of arguments (the remaining text is the function name)

";" End of arguments (the remaining text is the error message)

"|" specifies that all remaining arguments are optional. This can appear only once in a format
specifier and cannot be nested. ":" indicates the end of the arguments. Any text that follows is used
as the function name in any error messages. ";" signals the end of the arguments. Any following
text is used as the error message. Note: Only one of : and ; should be used. Listing B.2 shows some
examples:

Listing B.2 Format Specifiers

int ival, ival2, len;
double dval;
char *sval;
PyObject *o1, *o2;

/* Parse an integer, double, and a string */
PyArg_ParseTuple(args,"ids", &ival, &dval, &sval);

/* Parse a string and length */
PyArg_ParseTuple(args,"s#", &sval, &len);

/* Parse optional arguments */
PyArg_ParseTuple(args,"id|s", &ival, &dval, &sval);

/* Parse with an error message */
PyArg_ParseTuple(args,"ii; gcd requires 2 integers", &ival, &ival2);

/* Parse two tuples */
PyArg_ParseTuple(args,"(ii)(ds)", &ival, &ival2, &dval, &sval);

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/125.html (5 / 5) [2003/1/1 ､W､ﾈ 02:56:36]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/125#6.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=125

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/126.html

Linux/Unix > Python Essential Reference, Second Edition > B. Extending and
Embedding Python > Converting Data from C to Python

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238111161105095080113234039226186

Converting Data from C to Python

The following function is used to convert the values contained in C variables to a Python object:

PyObject *Py_BuildValue(char *format, ...)

This constructs a Python object from a series of C variables. format is a string describing the
desired conversion. The remaining arguments are the values of C variables to be converted.

The format specifier (see Table B.3) is similar to that used with the PyArg_Parse* functions.

Table B.3. Format Specifiers for Py_BuildValue()

Format PyType C Type Description

"s" String char * Null-terminated string. If the C string pointer is NULL,
None is returned.

"s#" String char *, int String and length. May contain null bytes. If the C string
pointer is NULL, None is returned.

"z" String or None char * Same as "s".

"z#" String or None char *, int Same as "s#".

"u" Unicode Py_UNICODE * Null-terminated Unicode string. If the C string pointer is
NULL, None is returned.

"u#" Unicode Py_UNICODE *, int Unicode string and length.

"b" Integer char 8-bit integer.

"h" Integer short Short 16-bit integer.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/126.html (1 / 3) [2003/1/1 ､W､ﾈ 02:56:37]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=126
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+9%3A09%3A14+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read6.asp?bookname=0735710910&snode=126&now=5%2F28%2F2002+9%3A09%3A14+PM
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/126#2.html

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/126.html

"i" Integer int Integer.

"l" Integer long Long integer.

"c" String char Single character. Creates a Python string of length 1.

"f" Float float Single-precision floating point.

"d" Float double Double-precision floating point.

"O" Any PyObject * Any Python object. The object is unchanged except for its
reference count, which is incremented by 1. If a NULL
pointer is given, a NULL pointer is returned.

"O&" Any converter , any C data processed through a converter function.

"S" String PyObject * Same as "O".

"U" Unicode PyObject * Same as "O".

"N" Any PyObject * Same as "O" except that the reference count is not
incremented.

"(items)" Tuple vars Creates a tuple of items. items is a string of format
specifiers from this table. vars is a list of C variables
corresponding to the items in items .

"[items]" List vars Creates a list of items. items is a string of format
specifiers. vars is a list of C variables corresponding to
the items in items .

"{items }" Dictionary vars Creates a dictionary of items.

Examples:

Py_BuildValue("") None
Py_BuildValue("i",37) 37
Py_BuildValue("ids",37,3.4,"hello") (37, 3.5, "hello")
Py_BuildValue("s#","hello",4) "hell"
Py_BuildValue("()") ()
Py_BuildValue("(i)",37) (37,)

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/126.html (2 / 3) [2003/1/1 ､W､ﾈ 02:56:37]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/126.html

Py_BuildValue("[ii]",1,2) [1,2]
Py_BuildValue("[i,i]",1,2) [1,2]
Py_BuildValue("{s:i,s:i}","x",1,"y",2) {'x':1, 'y':2}

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/126.html (3 / 3) [2003/1/1 ､W､ﾈ 02:56:37]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=126

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/127.html

Linux/Unix > Python Essential Reference, Second Edition > B. Extending and Embedding Python >
Error Handling

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238111161105095080114204070017095

Error Handling

Errors are indicated by returning NULL to the interpreter. Prior to returning NULL, an exception should be set or
cleared using one of the following functions:

void PyErr_Clear()

Clears any previously raised exceptions.

PyObject *PyErr_Occurred()

Checks to see whether an error has been generated. If so, returns the current exception object. Otherwise,
returns NULL.

void PyErr_NoMemory()

Raises a MemoryError exception.

void PyErr_SetFromErrno(PyObject *exc)

Raises an exception. exc is an exception object. The value of the exception is taken from the errno variable
in the C library.

void PyErr_SetFromErrnoWithFilename(PyObject *exc, char *filename)

Like PyErr_SetFromErrno() but includes the filename in the exception value as well.

void PyErr_SetObject(PyObject *exc, PyObject *val)

Raises an exception. exc is an exception object and val is an object containing the value of the exception.

void PyErr_SetString(PyObject *exc, char *msg)

Raises an exception. exc is an exception object and msg is a message describing what went wrong.

The exc argument in these functions can be set to one of the following:

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/127.html (1 / 4) [2003/1/1 ､W､ﾈ 02:56:37]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=127
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+9%3A09%3A25+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read0.asp?bookname=0735710910&snode=127&now=5%2F28%2F2002+9%3A09%3A25+PM

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/127.html

C Name Python Exception

PyExc_ArithmeticError ArithmeticError

PyExc_AssertionError AssertionError

PyExc_AttributeError AttributeError

PyExc_EnvironmentError EnvironmentError

PyExc_EOFError EOFError

PyExc_Exception Exception

PyExc_FloatingPointError FloatingPointError

PyExc_ImportError ImportError

PyExc_IndexError IndexError

PyExc_IOError IOError

PyExc_KeyError KeyError

PyExc_KeyboardInterrupt KeyboardInterrupt

PyExc_LookupError LookupError

PyExc_MemoryError MemoryError

PyExc_NameError NameError

PyExc_NotImplementedError NotImplementedError

PyExc_OSError OSError

PyExc_OverflowError OverflowError

PyExc_RuntimeError RuntimeError

PyExc_StandardError StandardError

PyExc_SyntaxError SyntaxError

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/127.html (2 / 4) [2003/1/1 ､W､ﾈ 02:56:37]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/127.html

PyExc_SystemError SystemError

PyExc_SystemExit SystemExit

PyExc_TypeError TypeError

PyExc_UnicodeError UnicodeError

PyExc_ValueError ValueError

PyExc_ZeroDivisionError ZeroDivisionError

The following example shows how an exception is typically set and an error returned in extension code:

PyErr_SetString(PyExc_ValueError,"Expected a positive value!");
return NULL;

An extension module can define a new exception type by using the following function:

PyObject *PyErr_NewException(char *excname, PyObject *base, PyObject *dict)

Creates a new exception object. excname is the name of the exception in the form "modulename
.excname ", base is an optional base class for the exception, and dict is an optional dictionary used as the
_ _dict_ _ attribute of the resulting exception class. Both of these arguments are normally set to NULL. The
returned object is a class object.

The following example shows how a new exception is created in an extension module:

static PyObject *SpamError;
...

/* Module initialization function */
initspam(void) {
 PyObject *m, *d;
 m = Py_InitModule("spam",SpamMethods);
 d = PyModule_GetDict(m);
 SpamError = PyErr_NewException("spam.error", NULL, NULL);
 PyDict_SetItemString(d,"error",SpamError);
 ...
}

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/127.html (3 / 4) [2003/1/1 ､W､ﾈ 02:56:37]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=127

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/127.html

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/127.html (4 / 4) [2003/1/1 ､W､ﾈ 02:56:37]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/128.html

Linux/Unix > Python Essential Reference, Second Edition > B. Extending and
Embedding Python > Reference Counting

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238111161105095080115231005169016

Reference Counting

Unlike programs written in Python, C extensions have to manipulate the reference count of Python
objects. This is done using the following macros:

Macro Description

Py_INCREF(obj) Increments the reference count of obj , which must be non-NULL

Py_DECREF(obj) Decrements the reference count of obj , which must be non-NULL

Py_XINCREF(obj) Increments the reference count of obj , which may be NULL

Py_XDECREF(obj) Decrements the reference count of obj , which may be NULL

Manipulating the reference count of Python objects in C is a delicate topic, and readers are strongly
advised to consult the “Extending and Embedding the Python Interpreter” document available at
http://www.python.org/doc/ext before proceeding any further. With this in mind, all Python objects
are manipulated in C through the use of pointers of type PyObject *. Furthermore, these pointers
are classified into two categories: owned references and borrowed references. An owned reference is
a pointer to a Python object in which the reference count of that object has been updated to reflect
the fact that some piece of C code or a C data structure is holding a pointer to it. A borrowed
reference, on the other hand, is simply a bare pointer to a Python object in which the reference count
of the object has not been updated.

Owned references are most commonly created by functions that create new Python objects, such as
Py_BuildValue(), PyInt_FromLong(), and PyList_New(). When called, a new Python
object is created and the object is said to be owned by the calling function. Borrowed references
often appear when a function obtains a pointer to a Python object from elsewhere or when the
contents of Python objects such as lists and dictionaries are extracted. For example, the self and
args parameters of a wrapper function are borrowed references, as is the pointer returned by
functions such as PyList_GetItem().

The owner of a reference must either give up ownership using the Py_DECREF() macro or transfer
ownership elsewhere. For example, temporary objects created inside a wrapper function should be

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/128.html (1 / 2) [2003/1/1 ､W､ﾈ 02:56:38]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=128
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+9%3A09%3A38+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read9.asp?bookname=0735710910&snode=128&now=5%2F28%2F2002+9%3A09%3A38+PM
http://www.python.org/doc/ext

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/128.html

destroyed using Py_DECREF(), whereas the return value of a wrapper is an owned reference that’s
given back to the interpreter. Likewise, the holder of a borrowed reference can obtain ownership
using the Py_INCREF() macro. However, special care is in order. For example, decrementing the
reference count of a borrowed reference may cause the interpreter to crash with a segmentation fault
at a later time during execution. Likewise, failure to release an owned reference or inadvertently
increasing the reference count of an object will lead to memory leaks.

Figuring out Python’s reference-counting scheme is tricky because there are several inconsistencies
in its treatment of references. However, here are a few general rules:

● Functions that create new Python objects always return owned references.

● If you want to save a reference to a Python object, use Py_INCREF() to increase the
reference count.

● To dispose of an owned reference, use Py_DECREF().

● Many (but not all) functions that return pointers to objects contained in sequences and
mapping objects return owned references.

● Many (but not all) functions that store objects in containers such as sequences and mappings
increase the reference count of objects they contain.

● All C wrapper functions must return an owned reference.

Exceptions to these rules are noted in later sections of this appendix.

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/128.html (2 / 2) [2003/1/1 ､W､ﾈ 02:56:38]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=128

Safari | Python Essential Reference, Second Edition -> Calling Python from C

Linux/Unix > Python Essential Reference, Second Edition > B. Extending and Embedding Python >
Calling Python from C

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238111161105095080116218138201087

Calling Python from C

Sometimes it’s useful to call Python functions from C programs. To do this, the following functions can be used:

PyObject *PyEval_CallObject(PyObject *func, PyObject *args)

Call func with arguments args . func is a Python callable object (function, method, class, and so on). args is a
tuple of arguments.

PyObject *PyEval_CallObjectWithKeywords(PyObject *func, PyObject *args, PyObject
*kwargs)

Call func with positional arguments args and keyword arguments kwargs . func is a callable object, args is a
tuple, and kwargs is a dictionary.

The following example illustrates the use of these functions:

/* Call a python function */

PyObject *func; /* Callable object. */
PyObject *args;
PyObject *result;
int arg1, arg2;

func = get_python_function() /* See below */
args = Py_BuildValue("(ii)", arg1, arg2); /* Build argument list */
result = PyEval_CallObject(func,args); /* Call function */

The only remaining problem is that C code, at compile time, cannot know the address of a Python object that has not
yet been created, since Python is dynamic. One approach is to let Python create the function object and then register the
address with a callback function. To deal with this, extension code such as the following can be used to set the callback
function:

static PyObject *func = 0; /* Callback function */

static PyObject *
set_callback(PyObject *self, PyObject *args) {
 PyObject *f;
 if (PyArg_ParseTuple(args,"O",&f)) {
 if (!PyCallable_Check(f)) {
 PyErr_SetString(PyExc_TypeError, "expected a callable");
 return NULL;
 }
 Py_XINCREF(f); /* Save reference to callback */

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/129.html (1 / 2) [2003/1/1 ､W､ﾈ 02:56:38]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=129
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+9%3A09%3A49+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read7.asp?bookname=0735710910&snode=129&now=5%2F28%2F2002+9%3A09%3A49+PM

Safari | Python Essential Reference, Second Edition -> Calling Python from C

 Py_XDECREF(func); /* Release any previous callback */
 func = f;
 Py_INCREF(Py_None);
 return Py_None;
 }
 return NULL;
}

This function would then be invoked from the interpreter as follows:

Some function
def foo(x,y):
return x+y
...
set_callback(foo)

Alternatively, it might be possible to obtain Python callable objects using functions in the embedding API, described
later in this appendix.

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/129.html (2 / 2) [2003/1/1 ､W､ﾈ 02:56:38]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=129

Safari | Python Essential Reference, Second Edition -> Abstract Object Layer

Linux/Unix > Python Essential Reference, Second Edition > B. Extending and
Embedding Python > Abstract Object Layer

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238111161105095080117111038137200

Abstract Object Layer

The functions in Tables B.4 through B.8 are used to manipulate objects from C, in much the same
manner as from the interpreter. All the functions in this section that return an int return -1 if an
error occurs. Likewise, functions that return a PyObject * return NULL on failure. Note that an
“error” in this context is not the same as the false result of a test. For instance, the
PyNumber_Check(PyObject *obj) function returns 0 if obj is not a number, but this isn’t
the same as an error. Finally, unless otherwise noted, all functions in this section that return a
PyObject * return ownership with the object. It’s up to the caller to decrement the reference
count of the returned object if necessary.

Table B.4. Objects

Type Function

int PyCallable_Check(PyObject *o)

PyObject * PyObject_CallFunction(PyObject *callable_object , char *format ,...)

PyObject * PyObject_CallMethod(PyObject *o , char *methodname , char *format ,
...)

PyObject * PyObject_CallObject(PyObject *callable_object , PyObject *args)

void PyObject_ClearWeakRefs(PyObject *obj)

int PyObject_Cmp(PyObject *o1 , PyObject *o2 , int *result)

int PyObject_Compare(PyObject *o1 , PyObject *o2)

int PyObject_DelAttr(PyObject *o , PyObject *attr_name)

int PyObject_DelAttrString(PyObject *o , char *attr_name)

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/130.html (1 / 7) [2003/1/1 ､W､ﾈ 02:56:39]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=130
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+9%3A09%3A57+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read9.asp?bookname=0735710910&snode=130&now=5%2F28%2F2002+9%3A09%3A57+PM

Safari | Python Essential Reference, Second Edition -> Abstract Object Layer

int PyObject_DelItem(PyObject *o , PyObject *key)

PyObject * PyObject_GetAttr(PyObject *o , PyObject *attr_name)

PyObject * PyObject_GetAttrString(PyObject *o , char *attr_name)

PyObject * PyObject_GetItem(PyObject *o , PyObject *key)

int PyObject_HasAttr(PyObject *o , PyObject *attr_name)

int PyObject_HasAttrString(PyObject *o , char *attr_name)

int PyObject_Hash(PyObject *o)

int PyObject_IsTrue(PyObject *o)

int PyObject_Length(PyObject *o)

int PyObject_Print(PyObject *o , FILE *fp , int flags)

PyObject * PyObject_Repr(PyObject *o)

PyObject * PyObject_RichCompare(PyObject *o1 , PyObject *o2 , int op)

int PyObject_RichCompareBool(PyObject *o1 , PyObject *o2 , int op)

int PyObject_SetAttr(PyObject *o , PyObject *attr_name , PyObject *v)

int PyObject_SetAttrString(PyObject *o , char *attr_name , PyObject *v)

int PyObject_SetItem(PyObject *o , PyObject *key , PyObject *v)

PyObject * PyObject_Str(PyObject *o)

PyObject * PyObject_Type(PyObject *o)

The flags argument of PyObject_Print() is used to select printing options. Currently, the
only option is Py_PRINT_RAW, which forces PyObject_Print() to produce output using

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/130.html (2 / 7) [2003/1/1 ､W､ﾈ 02:56:39]

Safari | Python Essential Reference, Second Edition -> Abstract Object Layer

PyObject_Str() as opposed to PyObject_Repr() (the default).

PyObject_Hash() and PyObject_Length() return a positive integer result on success and -
1 on error.

The op argument to PyObject_RichCompare() and PyObject_RichCompareBool() is
one of Py_EQ, Py_NE, Py_LT, Py_GT, Py_GE, or Py_LE.

Table B.5. Numbers

Type Function

PyObject * PyNumber_Absolute(PyObject *o)

PyObject * PyNumber_Add(PyObject *o1 , PyObject *o2)

PyObject * PyNumber_And(PyObject *o1 , PyObject *o2)

int PyNumber_Check(PyObject *o)

PyObject * PyNumber_Coerce(PyObject **p1 , PyObject **p2)

PyObject * PyNumber_Divide(PyObject *o1 , PyObject *o2)

PyObject * PyNumber_Divmod(PyObject *o1 , PyObject *o2)

PyObject * PyNumber_Float(PyObject *o)

PyObject * PyNumber_Int(PyObject *o)

PyObject * PyNumber_Invert(PyObject *o)

PyObject * PyNumber_Long(PyObject *o)

PyObject * PyNumber_Lshift(PyObject *o1 , PyObject *o2)

PyObject * PyNumber_Multiply(PyObject *o1 , PyObject *o2)

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/130.html (3 / 7) [2003/1/1 ､W､ﾈ 02:56:39]

Safari | Python Essential Reference, Second Edition -> Abstract Object Layer

PyObject * PyNumber_Negative(PyObject *o)

PyObject * PyNumber_Or(PyObject *o1 , PyObject *o2)

PyObject * PyNumber_Positive(PyObject *o)

PyObject * PyNumber_Power(PyObject *o1 , PyObject *o2 , PyObject *o3)

PyObject * PyNumber_Remainder(PyObject *o1 , PyObject *o2)

PyObject * PyNumber_Rshift(PyObject *o1 , PyObject *o2)

PyObject * PyNumber_Subtract(PyObject *o1 , PyObject *o2)

PyObject * PyNumber_Xor(PyObject *o1 , PyObject *o2)

PyObject * PyNumber_InPlaceAdd(PyObject *o1 , PyObject *o2)

PyObject * PyNumber_InPlaceSubtract(PyObject *o1 , PyObject *o2)

PyObject * PyNumber_InPlaceMultiply(PyObject *o1 , PyObject *o2)

PyObject * PyNumber_InPlaceDivide(PyObject *o1 , PyObject *o2)

PyObject * PyNumber_InPlaceRemainder(PyObject *o1 , PyObject *o2)

PyObject * PyNumber_InPlacePower(PyObject *o1 , PyObject *o2)

PyObject * PyNumber_InPlaceLshift(PyObject *o1 , PyObject *o2)

PyObject * PyNumber_InPlaceRshift(PyObject *o1 , PyObject *o2)

PyObject * PyNumber_InPlaceAnd(PyObject *o1 , PyObject *o2)

PyObject * PyNumber_InPlaceXor(PyObject *o1 , PyObject *o2)

PyObject * PyNumber_InPlaceOr(PyObject *o1 , PyObject *o2)

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/130.html (4 / 7) [2003/1/1 ､W､ﾈ 02:56:39]

Safari | Python Essential Reference, Second Edition -> Abstract Object Layer

Table B.6. Sequences

Type Function

int PySequence_Check(PyObject *o)

PyObject * PySequence_Concat(PyObject *o1 , PyObject *o2)

int PySequence_Contains(PyObject *o , PyObject *value)

int PySequence_Count(PyObject *o , PyObject *value)

int PySequence_DelItem(PyObject *o , int)

int PySequence_DelSlice(PyObject *o , int i1 , int i2)

PyObject * PySequence_GetItem(PyObject *o , int)

PyObject * PySequence_GetSlice(PyObject *o , int i1 , int i2)

int PySequence_In(PyObject *o , PyObject *value)

int PySequence_Index(PyObject *o , PyObject *value)

PyObject * PySequence_List(PyObject *o)

PyObject * PySequence_Repeat(PyObject *o , int count)

int PySequence_SetItem(PyObject *o , int , PyObject *v)

int PySequence_SetSlice(PyObject *o , int i1 , int i2 , PyObject *v)

PyObject * PySequence_Tuple(PyObject *o)

PyObject * PySequence_InPlaceConcat(PyObject *o1 , PyObject *o2)

PyObject * PySequence_InPlaceRepeat(PyObject *o1 , int count)

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/130.html (5 / 7) [2003/1/1 ､W､ﾈ 02:56:39]

Safari | Python Essential Reference, Second Edition -> Abstract Object Layer

PyObject * PySequence_Fast(PyObject *o , const char *errmsg)

PyObject * PySequence_Fast_GET_ITEM(PyObject *o , int)

The PySequence_Fast() function returns o unmodified if it’s already a tuple or a list and
increases its reference count. Otherwise, o must be a sequence type. If it’s not a sequence, a
TypeError is raised and errmsg is used as the error message. The
PySequence_Fast_GET_ITEM() function should only be used with objects returned by
PySequence_Fast().

Table B.7. Mappings

Type Function

int PyMapping_Check(PyObject *o)

int PyMapping_Clear(PyObject *o)

int PyMapping_DelItem(PyObject *o , PyObject *key)

int PyMapping_DelItemString(PyObject *o , char *key)

PyObject * PyMapping_GetItemString(PyObject *o , char *key)

int PyMapping_HasKey(PyObject *o , PyObject *key)

int PyMapping_HasKeyString(PyObject *o , char *key)

PyObject * PyMapping_Items(PyObject *o)

PyObject * PyMapping_Keys(PyObject *o)

int PyMapping_Length(PyObject *o)

int PyMapping_SetItemString(PyObject *o , char *key , PyObject *v)

PyObject * PyMapping_Values(PyObject *o)

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/130.html (6 / 7) [2003/1/1 ､W､ﾈ 02:56:39]

Safari | Python Essential Reference, Second Edition -> Abstract Object Layer

Table B.8. Buffer Interface

Type Function

int PyObject_AsCharBuffer(PyObject *, const char **buffer , int *len)

int PyObject_AsReadBuffer(PyObject *, const void **buffer , int *len)

int PyObject_AsWriteBuffer(PyObject *, void **buffer , int *len)

The buffer interface is used by objects that want to expose the raw bytes used to store data to the
caller without having to make a copy. Typically this is only used by strings, Unicode strings, and
arrays as created in the array module. The size and interpretation of the data depends on the
underlying object.

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/130.html (7 / 7) [2003/1/1 ､W､ﾈ 02:56:39]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=130

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/131.html

Linux/Unix > Python Essential Reference, Second Edition > B. Extending and
Embedding Python > Low-Level Functions on Built-in Types

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238111161104058145059051143020002

Low-Level Functions on Built-in Types

The functions in Tables B.9 through B.21 can be used to manipulate various built-in types.
Functions of the form Py<type >_Check() are used to check the type of an object and return 1
if an object is the correct type, 0 otherwise. Functions of the form Py<type >_From<type > are
used to create a Python object from a C datatype. Functions of the form Py<type >_As<type >
are used to convert from Python to C. These functions are presented without further description.

Table B.9. Integers

Type Function

long PyInt_AsLong(PyObject *iobj)

int PyInt_Check(PyObject *obj)

PyObject * PyInt_FromLong(long)

long PyInt_GetMax(void)

Table B.10. Long Integers

Type Function

double PyLong_AsDouble(PyObject *lobj)

long PyLong_AsLong(PyObject *lobj)

long long PyLong_AsLongLong(PyObject *lobj)

unsigned long PyLong_AsUnsignedLong(PyObject *lobj)

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/131.html (1 / 9) [2003/1/1 ､W､ﾈ 02:56:41]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=131
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+9%3A10%3A11+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read7.asp?bookname=0735710910&snode=131&now=5%2F28%2F2002+9%3A10%3A11+PM

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/131.html

unsigned long long PyLong_AsUnsignedLongLong(PyObject *lobj)

void * PyLong_AsVoidPtr(PyObject *lobj)

int PyLong_Check(PyObject *obj)

PyObject * PyLong_FromDouble(double)

PyObject * PyLong_FromLong(long)

PyObject * PyLong_FromLongLong(long long)

PyObject * PyLong_FromUnsignedLong(unsigned long)

PyObject * PyLong_FromUnsignedLongLong(unsigned long long)

PyObject * PyLong_FromVoidPtr(void *)

Table B.11. Floats

Type Function

int PyFloat_Check(PyObject *obj)

double PyFloat_AsDouble(PyObject *fobj)

PyObject * PyFloat_FromDouble(double)

Table B.12. Complex

Type Function

Py_complex PyComplex_AsCComplex(PyObject *cobj)

int PyComplex_Check(PyObject *obj)

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/131.html (2 / 9) [2003/1/1 ､W､ﾈ 02:56:41]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/131.html

PyObject * PyComplex_FromCComplex(Py_complex *cobj)

PyObject * PyComplex_FromDoubles(double real , double imag)

double PyComplex_ImagAsDouble(PyObject *cobj)

double PyComplex_RealAsDouble(PyObject *cobj)

Table B.13. Strings

Type Function

char * PyString_AsString(PyObject *str)

PyObject * PyString_AsEncodedString(PyObject *unicode , const char *encoding ,
const char *errors)

int PyString_Check(PyObject *obj)

void PyString_Concat(PyObject **str , PyObject *newpart)

void PyString_ConcatAndDel(PyObject **str , PyObject *newpart)

PyObject * PyString_Decode(const char *s , int size , const char *encoding ,
const char *errors)

PyObject * PyString_Encode(const Py_UNICODE *s , int size , const char
*encoding , const char *errors)

PyObject * PyString_Format(PyObject *format , PyObject *args)

PyObject * PyString_FromString(char *str)

PyObject * PyString_FromStringAndSize(char *str , int len)

int PyString_Resize(PyObject **str , int newsize)

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/131.html (3 / 9) [2003/1/1 ､W､ﾈ 02:56:41]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/131.html

int PyString_Size(PyObject *str)

Note: Encode and Decode functions expect encoding and error parameters that are the same as
the built-in unicode() function.

Table B.14. Unicode

Type Function

int PyUnicode_Check(PyObject *o)

PyObject * PyUnicode_FromUnicode(Py_UNICODE *, int size)

Py_UNICODE * PyUnicode_AsUnicode(PyObject *o)

int PyUnicode_GetSize(PyObject *o)

PyObject * PyUnicode_FromEncodedObject(PyObject *obj , const char *encoding ,
const char *errors)

PyObject * PyUnicode_FromObject(PyObject *o)

PyObject * PyUnicode_FromWideChar(const wchar_t *, int size)

int PyUnicode_AsWideChar(PyObject *o , wchar_t *buf , int maxlen)

Table B.15. Lists

Type Function

int PyList_Append(PyObject *list , PyObject *obj)

PyObject * PyList_AsTuple(PyObject *list)

int PyList_Check(PyObject *obj)

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/131.html (4 / 9) [2003/1/1 ､W､ﾈ 02:56:41]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/131.html

PyObject * PyList_GetItem(PyObject *list , int index)

PyObject * PyList_GetSlice(PyObject *list , int i , int j)

int PyList_Insert(PyObject *list , int index , PyObject *obj)

PyObject * PyList_New(int size)

int PyList_Reverse(PyObject *list)

int PyList_SetItem(PyObject *list , int index , PyObject *obj)

int PyList_SetSlice(PyObject *list , int i , int j , PyObject *slc)

int PyList_Size(PyObject *list)

int PyList_Sort(PyObject *list)

Note: PyList_GetItem() returns a borrowed reference.

Table B.16. Tuples

Type Function

int PyTuple_Check(PyObject *obj)

PyObject * PyTuple_GetItem(PyObject *tup , int index)

PyObject * PyTuple_GetSlice(PyObject *tup , int i , int j)

PyObject * PyTuple_New(int size)

int PyTuple_SetItem(PyObject *tup , int index , PyObject *obj)

int PyTuple_Size(PyObject *tup)

Note: PyTuple_SetItem() increments the reference count of obj even if it fails, and

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/131.html (5 / 9) [2003/1/1 ､W､ﾈ 02:56:41]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/131.html

PyTuple_GetItem() returns a borrowed reference.

Table B.17. Dictionaries

Type Function

int PyDict_Check(PyObject *obj)

void PyDict_Clear(PyObject *dict)

int PyDict_DelItem(PyObject *dict , PyObject *key)

int PyDict_DelItemString(PyObject *dict , char *key)

PyObject * PyDict_GetItem(PyObject *dict , PyObject *key)

PyObject * PyDict_GetItemString(PyObject *dict , char *key)

PyObject * PyDict_Items(PyObject *dict)

PyObject * PyDict_Keys(PyObject *dict)

PyObject * PyDict_New(void)

int PyDict_SetItem(PyObject *dict , PyObject *key , PyObject *value)

int PyDict_SetItemString(PyObject *dict , char *key , PyObject *value)

int PyDict_Size(PyObject *dict)

PyObject * PyDict_Values(PyObject *dict)

Note: PyDict_GetItem() and PyDict_GetItemString() return borrowed references.

Table B.18. Buffer Objects

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/131.html (6 / 9) [2003/1/1 ､W､ﾈ 02:56:41]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/131.html

Type Function

int PyBuffer_check(PyObject *o)

PyObject * PyBuffer_FromObject(PyObject *base , int offset , int size)

PyObject * PyBuffer_FromReadWriteObject(PyObject *base , int offset , int size
)

PyObject * PyBuffer_FromMemory(void *ptr , int size)

PyObject * PyBuffer_FromReadWriteMemory(void *ptr , int size)

PyObject * PyBuffer_New(int size)

Table B.19. Files

Type Function

FILE * PyFile_AsFile(PyObject *file)

int PyFile_Check(PyObject *obj)

PyObject * PyFile_FromFile(FILE *, char *, char *, int (*)(FILE *))

PyObject * PyFile_FromString(char *name , char *mode)

PyObject * PyFile_GetLine(PyObject *file , int)

PyObject * PyFile_Name(PyObject *file)

void PyFile_SetBufSize(PyObject *file , int size)

int PyFile_SoftSpace(PyObject *file , int)

int PyFile_WriteObject(PyObject *file , PyObject *obj , int)

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/131.html (7 / 9) [2003/1/1 ､W､ﾈ 02:56:41]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/131.html

int PyFile_WriteString(char *str , PyObject *file)

Table B.20. Modules

Type Function

int PyModule_Check(PyObject *obj)

PyObject * PyModule_GetDict(PyObject *mod)

char * PyModule_GetFilename(PyObject *mod)

char * PyModule_GetName(PyObject *mod)

PyObject * PyModule_New(char *name)

Table B.21. CObjects

Type Function

int PyCObject_Check(PyObject *o)

PyObject * PyCObject_FromVoidPtr(void *cobj , void (*destr)(void *))

PyObject * PyCObject_FromVoidPtrAndDesc(void *cobj , void *desc , void
(*destr)(void *, void *))

void * PyCObject_AsVoidPtr(PyObject *self)

void * PyCObject_GetDesc(PyObject *self)

Note: The CObject interface is typically used to provide a wrapper around an arbitrary C pointer.
These objects are mostly used by extension-building tools such as SWIG.

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/131.html (8 / 9) [2003/1/1 ､W､ﾈ 02:56:41]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/131.html

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/131.html (9 / 9) [2003/1/1 ､W､ﾈ 02:56:41]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=131

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/132.html

Linux/Unix > Python Essential Reference, Second Edition > B. Extending and Embedding Python
> Defining New Types

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238111161104058145056204253196054

Defining New Types

New types of objects can also be defined in extension modules. However, this process is considerably more
advanced than simply accessing a few C functions. Because of this complexity, you should consider
implementing a new type only in the following situations:

● The type is not easily constructed from existing Python types.

● The type requires interaction with the operating system or another special feature not provided by the
interpreter or the standard library.

● The type hasn’t already been implemented elsewhere. For example, efficient matrix types have already
been implemented, so it would make little sense to reinvent them. It’s always a good idea to check the
Python libraries and newsgroups before implementing a new type. The Vaults of Parnassas Python
Resources (http://www.vex.net/parnassus) is also an excellent resource for finding previously
implemented extension modules.

The process of creating a new Python type involves the following steps:

1. Define a data structure that contains the actual data stored in the type—for example, the List type has
an array of elements containing the list items.

2. Define the functions that are going to serve as methods of the type—for example, the append()
method of a List object.

3. Define a pair of functions for creating and destroying the type.

4. Define a set of functions that implement the special methods such as _ _add_ _() and _
getitem _() that are supported by the type, as described in Chapter 3, “Types and Objects.”

5. Fill in a data structure containing pointers to the numeric operations of a type.

6. Fill in a data structure containing pointers to the sequence operations of the type.

7. Fill in a data structure containing pointers to the mapping operators of the type.

8. Define a type object that contains all the properties of the object and its associated methods.

9. Register methods and any additional functions with the interpreter in the module initialization function.

Listing B.3 illustrates the process of creating a new Python type by implementing a SharedBuffer object.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/132.html (1 / 9) [2003/1/1 ､W､ﾈ 02:56:41]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=132
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+9%3A10%3A26+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read4.asp?bookname=0735710910&snode=132&now=5%2F28%2F2002+9%3A10%3A26+PM
http://www.vex.net/parnassus
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/132#3.html

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/132.html

A shared buffer is a special data structure that contains data shared by multiple Python interpreters running as
different processes. Whenever a change is made by one interpreter, it’s automatically reflected in shared
buffers of the other interpreters. This implementation of a shared buffer utilizes an operating system feature
known as memory-mapped files, in which the contents of a “file” are mapped into the address space of a
process and can be accessed as ordinary memory. Memory-mapped files are supported on both UNIX and
Windows, although Listing B.3 shows only the UNIX implementation. Also, this example is only intended to
illustrate the process of creating a new type—if you really want to use memory-mapped files, it might be
easier to use the mmap module in the standard library.

Listing B.3 Shared Buffer Type

/***
 * sbuffer.c
 *
 * A shared buffer object implemented using mmap().
 ***/
#include "Python.h"
#include <unistd.h>
#include <fcntl.h>
#include <sys/mman.h>
#include <sys/stat.h>

/***
 * sbufferobject information
***/
typedef struct {
 PyObject_HEAD
 char *buffer; /* Memory buffer */
 int size; /* Size of the structure */
 int fd; /* File descriptor */
 int prot; /* Protection bits */
 int offset; /* File offset */
} sbufferobject;

/* Exception object used by this module */
static PyObject *AccessError;

/* Forward declaration of type descriptor.
 staticforward is a macro defined in Python.h that
 provides a portable way of creating forward references
 to static functions */
staticforward PyTypeObject SharedBufferType;

/***
 * Instance methods
 * sbuffer.lock() - Lock the shared buffer
 * sbuffer.unlock() - Unlock the shared buffer
 * sbuffer.get() - Get data as a NULL-terminated string
 * sbuffer.store() - Store data as a NULL-terminated string
 ***/
static PyObject *

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/132.html (2 / 9) [2003/1/1 ､W､ﾈ 02:56:42]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/132#3.html

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/132.html

sbuffer_lock(sbufferobject *self, PyObject *args) {
 if (!PyArg_ParseTuple(args,"")) return NULL;
 lockf(self->fd,F_LOCK,0);
 return Py_BuildValue("");
}
static PyObject *
sbuffer_unlock(sbufferobject *self, PyObject *args) {
 if (!PyArg_ParseTuple(args,"")) return NULL;
 lockf(self->fd,F_ULOCK,0);
 return Py_BuildValue("");
}

static PyObject *
sbuffer_get(sbufferobject *self, PyObject *args) {
 int i;
 if (!PyArg_ParseTuple(args,"")) return NULL;
 if (self->prot & PROT_READ) {
 for (i = 0; i < self->size; i++) {
 if (!self->buffer[i]) break;
 }
 return PyString_FromStringAndSize(self->buffer,i);
 } else {
 return PyString_FromString("");
 }
}

static PyObject *
sbuffer_store(sbufferobject *self, PyObject *args) {
 char *str;
 int len;
 if (!PyArg_ParseTuple(args,"s",&str)) return NULL;
 if (self->prot & PROT_WRITE) {
 len = strlen(str)+1;
 if (len > self->size) len = self->size;
 memcpy(self->buffer,str,len);
 } else {
 PyErr_SetString(AccessError,"SharedBuffer is read-only");
 return NULL;
 }
 return Py_BuildValue("");
}

/* Instance methods table. Used by sbuffer_getattr() */
static struct PyMethodDef sbuffer_methods[] = {
 {"lock", sbuffer_lock, METH_VARARGS},
 {"unlock", sbuffer_unlock, METH_VARARGS},
 {"get", sbuffer_get, METH_VARARGS},
 {"store", sbuffer_store, METH_VARARGS},
 { NULL, NULL }
};

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/132.html (3 / 9) [2003/1/1 ､W､ﾈ 02:56:42]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/132.html

/***
 * Basic Operations
 ***/

/* Create a new shared buffer object */
static sbufferobject *
new_sbuffer(int fd, int size, int offset, int prot)
{
 sbufferobject *self;
 void *buffer;
 buffer = mmap(0,size,prot,MAP_SHARED,fd,offset);
 if (buffer <= 0) {
 PyErr_SetFromErrno(PyExc_OSError);
 return NULL;
 }
 self = PyObject_NEW(sbufferobject, &SharedBufferType);
 if (self == NULL) return NULL;
 self->buffer = (char *) buffer;
 self->size = size;
 self->offset = offset;
 self->prot = prot;
 self->fd = fd;
 return self;
}

/* Release a shared buffer */
static void
sbuffer_dealloc(sbufferobject *self) {
 munmap(self->buffer, self->size);
 close(self->fd);
 PyMem_DEL(self);
}

/* Get an attribute */
static PyObject *
sbuffer_getattr(sbufferobject *self, char *name) {
 if (strcmp(name,"prot") == 0) {
 return Py_BuildValue("i", self->prot); /* self.prot */
 } else if (strcmp(name,"fd") == 0) {
 return Py_BuildValue("i", self->fd); /* self.fd */
 }
 /* Look for a method instead */
 return Py_FindMethod(sbuffer_methods, (PyObject *)self, name);
}

/* repr() function */
static PyObject *
sbuffer_repr(sbufferobject *self) {
 char rbuffer[256];
 sprintf(rbuffer,"<SharedBuffer, fd = %d, length = %d, prot = %d at %x>",
 self->fd, self->size, self->prot, self);

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/132.html (4 / 9) [2003/1/1 ､W､ﾈ 02:56:42]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/132.html

 return PyString_FromString(rbuffer);
}

/***
 * Sequence operations
 ***/

/* len() */
static int
sbuffer_length(sbufferobject *self) {
 return self->size;
}

/* getitem - Get a single character */
static PyObject *
sbuffer_getitem(sbufferobject *self, int index) {
 if (index < 0 || index >= self->size) {
 PyErr_SetString(PyExc_IndexError, "index out-of-bounds");
 return NULL;
 }
 if (!(self->prot & PROT_READ)) {
 PyErr_SetString(AccessError,"SharedBuffer is not readable");
 return NULL;
 }
 return Py_BuildValue("c",self->buffer[index]);
}

/* setitem - Store a single character */
static int
sbuffer_setitem(sbufferobject *self, int index, PyObject *obj)
{
 char *str;
 int strsize;
 if (!PyString_Check(obj)) {
 PyErr_SetString(PyExc_TypeError, "Expected a string.");
 return 1;
 }
 if (PyString_Size(obj) != 1) {
 PyErr_SetString(PyExc_ValueError,"Expected a one character string.");
 return 1;
 }
 if (index < 0 || index >= self->size) {
 PyErr_SetString(PyExc_IndexError, "index out-of-bounds");
 return 1;
 }
 if (!(self->prot & PROT_WRITE)) {
 PyErr_SetString(AccessError,"SharedBuffer is read-only");
 return 1;
 }
 self->buffer[index] = *(PyString_AsString(obj));
 return 0;

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/132.html (5 / 9) [2003/1/1 ､W､ﾈ 02:56:42]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/132.html

}

/* getslice - Get a slice out of the buffer */
static PyObject *
sbuffer_getslice(sbufferobject *self, int start, int end) {
 if (start < 0) start = 0;
 if (end > self->size) end = self->size;
 if (end < start) end = start;
 if (!(self->prot & PROT_READ)) {
 PyErr_SetString(AccessError,"SharedBuffer is not readable");
 return NULL;
 }
 return PyString_FromStringAndSize(self->buffer+start, (end-start));
}

/* setslice - Set a slice in the buffer */
static int
sbuffer_setslice(sbufferobject *self, int start, int end, PyObject *obj)
{
 int size;
 if (start < 0) start = 0;
 if (end > self->size) end = self->size;
 if (end < start) end = start;
 if (!PyString_Check(obj)) {
 PyErr_SetString(PyExc_TypeError, "Expected a string.");
 return 1;
 }
 if (!(self->prot & PROT_WRITE)) {
 PyErr_SetString(AccessError,"SharedBuffer is read-only");
 return 1;
 }
 size = PyString_Size(obj);
 if (size < (end-start)) end = start+size;
 memcpy(self->buffer+start,PyString_AsString(obj),(end-start));
 return 0;
}

/* Sequence methods table */
static PySequenceMethods sbuffer_as_sequence = {
 (inquiry) sbuffer_length, /* sq_length : len(x) */
 (binaryfunc) 0, /* sq_concat : x + y */
 (intargfunc) 0, /* sq_repeat : x * n */
 (intargfunc) sbuffer_getitem, /* sq_item : x[i] */
 (intintargfunc) sbuffer_getslice, /* sq_slice : x[i:j] */
 (intobjargproc) sbuffer_setitem, /* sq_ass_item : x[i] = v */
 (intintobjargproc) sbuffer_setslice, /* sq_ass_slice : x[i:j] = v */
};

/* Type object for shared buffer objects */
static PyTypeObject SharedBufferType = {
 PyObject_HEAD_INIT(&PyType_Type) /* Required initialization */

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/132.html (6 / 9) [2003/1/1 ､W､ﾈ 02:56:42]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/132.html

 0, /* ob_size : Usually 0 */
 "SharedBuffer", /* tp_name : Type name */
 sizeof(sbufferobject), /* tp_basicsize : Object size */
 0, /* tp_itemsize : Usually 0 */

 /* Standard methods */
 (destructor) sbuffer_dealloc, /* tp_dealloc, : refcount = 0 */
 (printfunc) 0, /* tp_print : print x */
 (getattrfunc) sbuffer_getattr, /* tp_getattr : x.attr */
 (setattrfunc) 0, /* tp_setattr : x.attr = v */
 (cmpfunc) 0, /* tp_compare : x > y */
 (reprfunc) sbuffer_repr, /* tp_repr : repr(x) */

 /* Type categories */
 0, /* tp_as_number : Number methods */
 &sbuffer_as_sequence, /* tp_as_sequence: Sequence methods */
 0, /* tp_as_mapping : Mapping methods */
 (hashfunc) 0, /* tp_hash : dict[x] */
 (ternaryfunc) 0, /* tp_call : x() */
 (reprfunc) 0, /* tp_str : str(x) */
};

/***
 * Module level functions
 ***/

/* Create a new shared buffer object as
 SharedBuffer(filename,size,offset,prot) */
static PyObject *
sbufferobject_new(PyObject *self, PyObject *args) {
 char *filename;
 int size;
 int fd, flags;
 int prot = PROT_READ | PROT_WRITE;
 int offset = 0;
 struct stat finfo;

 if (!PyArg_ParseTuple(args,"si|ii",&filename,&size,&offset,&prot)) {
 return NULL;
 }
 if (stat(filename,&finfo) < 0) {
 PyErr_SetFromErrno(PyExc_OSError);
 return NULL;
 }
 if (size + offset > finfo.st_size) {
 PyErr_SetString(PyExc_IndexError,
 "Requested size and offset is too large.");
 return NULL;
 }
 if ((fd = open(filename,O_RDWR, 0666)) < 0) {
 PyErr_SetFromErrno(PyExc_OSError);

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/132.html (7 / 9) [2003/1/1 ､W､ﾈ 02:56:42]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/132.html

 return NULL;
 }
 return (PyObject *) new_sbuffer(fd,size,offset,prot);
}

/* Module Methods Table */
static struct PyMethodDef sbuffertype_methods[] = {
 { "SharedBuffer", sbufferobject_new, METH_VARARGS },
 { NULL, NULL }
};

/* Module initialization function */
void initsbuffer() {
 PyObject *m, *d;
 m = Py_InitModule("sbuffer",sbuffertype_methods);
 d = PyModule_GetDict(m);

 /* Add a few useful constants for the prot parameter */
 PyDict_SetItemString(d,"PROT_READ",PyInt_FromLong(PROT_READ));
 PyDict_SetItemString(d,"PROT_WRITE",PyInt_FromLong(PROT_WRITE));

 /* Define the exception */
 AccessError = PyErr_NewException("sbuffer.AccessError",NULL,NULL);
 PyDict_SetItemString(d,"AccessError",AccessError);
}

Finally, Listing B.4 uses the new SharedBuffer type. In this case, a shared buffer is used to exchange data
between a parent and a child process created with os.fork(). The example (motivated by a problem posted
to the Python mailing list) performs a hostname-to-IP address translation with a timeout.

Listing B.4 Python Program Using a SharedBuffer

Hostname lookup with a timeout.
(with apologies to Andy D.)

import sbuffer, socket, os, sys, signal

Create the memory mapped region
buffer = open("address","w")
buffer.write(" "*2048)
buffer.close()

Open the file as a shared buffer object
buffer = sbuffer.SharedBuffer("address",2048)

Return hostname or "" if it can't be resolved
in less than 1 second.
def gethostbyname(hostname):
 buffer.store("") # Clear the address buffer
 pid = os.fork() # Create a subprocess
 if pid == 0:

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/132.html (8 / 9) [2003/1/1 ､W､ﾈ 02:56:42]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/132.html

 # Child process
 signal.alarm(1) # Start the clock
 try:
 name = socket.gethostbyname(hostname)
 except:
 sys.exit()
 buffer.store(name) # Save the name in the buffer
 sys.exit() # Done
 else:
 os.wait() # Wait for completion
 return buffer.get() # Get the address
Try it out
ip = gethostbyname("www.python.org")

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/132.html (9 / 9) [2003/1/1 ､W､ﾈ 02:56:42]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=132

Safari | Python Essential Reference, Second Edition -> Special Methods for Types

Linux/Unix > Python Essential Reference, Second Edition > B. Extending and
Embedding Python > Special Methods for Types

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238111161104058145062051086240154

Special Methods for Types

This section describes the C data structures used to implement types. This is an advanced topic and
the presentation here is only intended to be a quick reference.

Types are defined by a structure with the following fields. Many of the fields in this structures use
typedef names such as hashfunc, binaryfunc, intargfunc, and so forth. These types are
defined later in this appendix in Table B.26.

typedef struct _typeobject {

 PyObject_VAR_HEAD
 char *tp_name;
 int tp_basicsize;
 int tp_itemsize;
 destructor tp_dealloc;
 printfunc tp_print;
 getattrfunc tp_getattr;
 setattrfunc tp_setattr;
 cmpfunc tp_compare;
 reprfunc tp_repr;

 PyNumberMethods *tp_as_number;
 PySequenceMethods *tp_as_sequence;
 PyMappingMethods *tp_as_mapping;

 hashfunc tp_hash;
 ternaryfunc tp_call;
 reprfunc tp_str;
 getattrofunc tp_getattro;
 setattrofunc tp_setattro;

 PyBufferProcs *tp_as_buffer;
 long tp_flags;
 traverseproc tp_traverse;
 inquiry tp_clear;
 richcmpfunc tp_richcompare;
 long tp_weaklistoffset;

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/133.html (1 / 6) [2003/1/1 ､W､ﾈ 02:56:43]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=133
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+9%3A10%3A40+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read0.asp?bookname=0735710910&snode=133&now=5%2F28%2F2002+9%3A10%3A40+PM
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/133#10.html

Safari | Python Essential Reference, Second Edition -> Special Methods for Types

} PyTypeObject;

Most of the special methods for a type are encapsulated in four data structures:
PySequenceMethods, PyMappingMethods, PyNumberMethods, and PyBufferProcs.
Tables B.22 through B.26 show the contents of these structures.

Table B.22. PySequenceMethods Structure

C Datatype Name Python Method

(inquiry) sq_length _ _len_ _(x)

(binaryfunc) sq_concat _ _add_ _(x ,y)

(intargfunc) sq_repeat _ _mul_ _(x ,n)

(intargfunc) sq_item _ _getitem_ _(x ,n)

(intintargfunc) sq_slice _ _getslice_ _(x ,i ,j)

(intobjargproc) sq_ass_item _ _setitem_ _(x ,n ,v)

(intintobjargproc) sq_ass_slice _ _setslice_ _(x ,i ,j ,v)

(objobjproc) sq_contains _ _contains_ _(x ,o)

(binaryfunc) sq_inplace_concat _ _iadd_ _(x ,y)

(intargfunc) sq_inplace_repeat _ _imul_ _(x ,n)

Table B.23. PyMappingMethods Structure

C Datatype Name Python Method

(inquiry) mp_length _ _len_ _(x)

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/133.html (2 / 6) [2003/1/1 ､W､ﾈ 02:56:43]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/133#2.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/133#10.html

Safari | Python Essential Reference, Second Edition -> Special Methods for Types

(binaryfunc) mp_subscript _ _getitem_ _(x ,key)

(objobjargproc) mp_ass_subscript _ _setitem_ _(x ,key ,value)

Table B.24. PyNumberMethods Structure

C Datatype Name Python Method

(binaryfunc) nb_add _ _add_ _(x ,y)

(binaryfunc) nb_subtract _ _sub_ _(x ,y)

(binaryfunc) nb_multiply _ _mul_ _(x ,y)

(binaryfunc) nb_divide _ _div_ _(x ,y)

(binaryfunc) nb_remainder _ _mod_ _(x ,y)

(binaryfunc) nb_divmod _ _divmod_ _(x ,y)

(ternaryfunc) nb_power _ _pow_ _(x ,y ,n)

(unaryfunc) nb_negative _ _neg_ _(x)

(unaryfunc) nb_positive _ _pos_ _(x)

(unaryfunc) nb_absolute _ _abs_ _(x)

(inquiry) nb_nonzero _ _zero_ _(x)

(unaryfunc) nb_invert _ _invert_ _(x)

(binaryfunc) nb_lshift _ _lshift_ _(x ,y)

(binaryfunc) nb_rshift _ _rshift_ _(x ,y)

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/133.html (3 / 6) [2003/1/1 ､W､ﾈ 02:56:43]

Safari | Python Essential Reference, Second Edition -> Special Methods for Types

(binaryfunc) nb_and _ _and_ _(x ,y)

(binaryfunc) nb_xor _ _xor_ _(x ,y)

(binaryfunc) nb_or _ _or_ _(x ,y)

(coercion) nb_coerce _ _coerce_ _(x ,y)

(unaryfunc) nb_int _ _int_ _(x)

(unaryfunc) nb_long _ _long_ _(x)

(unaryfunc) nb_float _ _float_ _(x)

(unaryfunc) nb_oct _ _oct_ _(x)

(unaryfunc) nb_hex _ _hex_ _(x)

(binaryfunc) nb_inplace_add _ _iadd_ _(x ,y)

(binaryfunc) nb_inplace_subtract _ _isub_ _(x ,y)

(binaryfunc) nb_inplace_multiply _ _imul_ _(x ,y)

(binaryfunc) nb_inplace_divide _ _idiv_ _(x ,y)

(binaryfunc) nb_inplace_remainder _ _imod_ _(x ,y)

(ternaryfunc) nb_inplace_power _ _ipow_ _(x ,y ,n)

(binaryfunc) nb_inplace_lshift _ _ilshift_ _(x ,y)

(binaryfunc) nb_inplace_rshift _ _irshift_ _(x ,y)

(binaryfunc) nb_inplace_and _ _iand_ _(x ,y)

(binaryfunc) nb_inplace_xor _ _ixor_ _(x ,y)

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/133.html (4 / 6) [2003/1/1 ､W､ﾈ 02:56:43]

Safari | Python Essential Reference, Second Edition -> Special Methods for Types

(binaryfunc) nb_inplace_or _ _ior_ _(x ,y)

Table B.25. PyBufferProcs Methods

C Datatype Python Method

(getreadbufferproc) bf_getreadbuffer

(getwritebufferproc) bf_getwritebuffer

(getsegcountproc) bf_getsegcount

(getcharbufferproc) bf_getcharbuffer

Table B.26. C Prototypes for Methods Defined in This Section

C Datatype Prototype

(inquiry) int (*)(PyObject *)

(unaryfunc) PyObject (*)(PyObject *)

(binaryfunc) PyObject (*)(PyObject *, PyObject *)

(ternaryfunc) PyObject (*)(PyObject *, PyObject *, PyObject *)

(coercion) int (*)(PyObject **, PyObject **)

(intargfunc) PyObject (*)(PyObject *, int)

(intintargfunc) PyObject (*)(PyObject *, int, int)

(intobjargproc) int (*)(PyObject *, int, PyObject *)

(intintobjargproc) int (*)(PyObject *, int, int, PyObject *)

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/133.html (5 / 6) [2003/1/1 ､W､ﾈ 02:56:43]

Safari | Python Essential Reference, Second Edition -> Special Methods for Types

(destructor) void (*)(PyObject *)

(printfunc) int (*)(PyObject *, FILE *, int)

(getattrfunc) PyObject (*)(PyObject *, char *)

(getattrofunc) PyObject (*)(PyObject *, PyObject *)

(setattrfunc) int (*)(PyObject *, char *, PyObject *)

(setattrofunc) int (*)(PyObject *, PyObject *, PyObject *)

(cmpfunc) int (*)(PyObject *, PyObject *)

(reprfunc) PyObject (*)(PyObject *)

(hashfunc) long (*)(PyObject *)

(objobjfunc) int (*)(PyObject *, PyObject *)

(getreadbufferproc) int (*)(PyObject *, int, void **)

(getwritebufferproc) int (*)(PyObject *, int, void **)

(getsegcountproc) int (*)(PyObject *, int *)

(getcharbufferproc) int (*)(PyObject *, int, const char **)

(richcmpfunc) PyObject *(*)(PyObject *, PyObject *, int);

(visitproc) int (*)(PyObject *, void *)

(traverseproc) int (*)(PyObject *, visitproc, void *)

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/133.html (6 / 6) [2003/1/1 ､W､ﾈ 02:56:43]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=133

Safari | Python Essential Reference, Second Edition -> Threads

Linux/Unix > Python Essential Reference, Second Edition > B. Extending and
Embedding Python > Threads

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238111161104058145062058222054053

Threads

When using threads, a global interpreter lock is used to prevent more than one thread from executing
in the interpreter at once. If a function written in an extension module executes for a long time, it
will block the execution of other threads until it completes. This is because the lock is held
whenever an extension function is invoked. If the extension module is thread-safe, the following
macros can be used to release and reacquire the global interpreter lock:

Py_BEGIN_ALLOW_THREADS

Releases the global interpreter lock and allows other threads to run in the interpreter. The C
extension must not invoke any functions in the Python C API while the lock is released.

Py_END_ALLOW_THREADS

Reacquires the global interpreter lock. The extension will block until the lock can be acquired
successfully in this case.

The following example illustrates the use of these macros:

PyObject *spamfunction(PyObject *self, PyObject *args) {
 ...
 PyArg_ParseTuple(args, ...)
 Py_BEGIN_ALLOW_THREADS
 result = run_long_calculation(args);
 Py_END_ALLOW_THREADS
 ...
 return Py_BuildValue(fmt,result);
}

Many more subtle aspects of threads are not covered here. Readers are strongly advised to consult
the C API Reference Manual. In addition, you may need to take steps to make sure that your C
extension is thread-safe, as it could be invoked by other Python threads shortly after the interpreter
lock is released.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/134.html (1 / 2) [2003/1/1 ､W､ﾈ 02:56:43]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=134
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+9%3A10%3A49+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read2.asp?bookname=0735710910&snode=134&now=5%2F28%2F2002+9%3A10%3A49+PM

Safari | Python Essential Reference, Second Edition -> Threads

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/134.html (2 / 2) [2003/1/1 ､W､ﾈ 02:56:43]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=134

Safari | Python Essential Reference, Second Edition -> Embedding

Linux/Unix > Python Essential Reference, Second Edition > B. Extending and Embedding Python >
Embedding

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238111161104058145063173173115236

Embedding

The Python interpreter can also be embedded into other applications. When embedding the interpreter on
UNIX, you must include the file config.c (usually found in a place such as <python
>/lib/python2.1/config/config.c, where <python > is the directory where Python was installed)
and link against the library libpython2.1.a. (A comparable but more complex process is required on
Windows and the Macintosh. Consult the online documentation for details.) The following functions are used to
call the interpreter to execute code and control its operation:

int PyRun_AnyFile(FILE *fp, char *filename)

If fp is an interactive device such as TTY in UNIX, this function calls PyRun_InteractiveLoop().
Otherwise, PyRun_SimpleFile() is called. If filename is NULL, a default string of "???" is used as
the filename.

int PyRun_SimpleString(char *command)

Executes command in the _ _main_ _ module of the interpreter. Returns 0 on success, -1 if an exception
occurred.

int PyRun_SimpleFile(FILE *fp, char *filename)

Similar to PyRun_SimpleString(), except that the program is read from a file fp .

int PyRun_InteractiveOne(FILE *fp, char *filename)

Executes a single interactive command.

int PyRun_InterativeLoop(FILE *fp, char *filename)

Runs the interpreter in interactive mode.

int PyRun_String(char *str, int start, PyObject *globals, PyObject *locals)

Executes the code in str in the global and local namespaces defined by globals and locals. start is a start
token to use when parsing the source code. Returns the result of execution or NULL if an error occurred.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/135.html (1 / 4) [2003/1/1 ､W､ﾈ 02:56:43]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=135
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+9%3A10%3A57+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read9.asp?bookname=0735710910&snode=135&now=5%2F28%2F2002+9%3A10%3A57+PM

Safari | Python Essential Reference, Second Edition -> Embedding

int PyRun_File(FILE *fp, char *filename, int start, PyObject *globals,
 PyObject *locals)

Like PyRun_String() except that code is read from the file fp .

PyObject *Py_CompileString(char *str, char *filename, int start)

Compiles code in str into a code object. start is the starting token and filename is the filename that will
be set in the code object and used in tracebacks. Returns a code object on success, NULL on error.

Py_Initialize(void)

Initializes the Python interpreter. This function should be called before using any other functions in the C API,
with the exception of Py_SetProgramName(), PyEval_InitThreads(),
PyEval_ReleaseLock(), and PyEval_AcquireLock().

int Py_IsInitialized(void)

Returns 1 if the interpreter has been initialized, 0 if not.

Py_Finalize(void)

Cleans up the interpreter by destroying all of the sub-interpreters and objects that were created since calling
Py_Initialize(). Normally, this function frees all the memory allocated by the interpreter. However,
circular references and extension modules may introduce memory leaks that cannot be recovered by this
function.

void Py_SetProgramName(char *name)

Sets the program name that’s normally found in the argv[0] argument of the sys module. This function
should only be called before Py_Initialize().

char *Py_GetProgramName(void)

Returns the program name as set by Py_SetProgramName(void).

char *Py_GetPrefix(void)

Returns the prefix for installed platform-independent files.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/135.html (2 / 4) [2003/1/1 ､W､ﾈ 02:56:43]

Safari | Python Essential Reference, Second Edition -> Embedding

char *Py_GetExecPrefix(void)

Returns the exec-prefix for installed platform-dependent files.

char *Py_GetProgramFullPath(void)

Returns the full pathname of the Python executable.

char *Py_GetPath(void)

Returns the default module search path. The path is returned as a string consisting of directory names separated
by a platform-dependent delimiters (: on UNIX, ; on DOS/Windows, and '\n' on Macintosh).

const char *Py_GetVersion(void)

Returns the version of the interpreter as a string.

const char *Py_GetPlatform(void)

Returns the platform identifier string for the current platform.

const char *Py_GetCopyright(void)

Returns the official copyright string.

const char *Py_GetCompiler(void)

Returns the compiler string.

const char *Py_GetBuildInfo(void)

Returns build information about the interpreter.

int PySys_SetArgv(int argc, char **argv)

Sets command-line options used to populate the value of sys.argv. This should only be called by
Py_Initialize().

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/135.html (3 / 4) [2003/1/1 ､W､ﾈ 02:56:43]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=135

Safari | Python Essential Reference, Second Edition -> Embedding

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/135.html (4 / 4) [2003/1/1 ､W､ﾈ 02:56:43]

Safari | Python Essential Reference, Second Edition -> Extension Building Tools

Linux/Unix > Python Essential Reference, Second Edition > B. Extending and
Embedding Python > Extension Building Tools

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238111161104059122181083095130218

Extension Building Tools

A number of tools are available to simplify the construction of Python extensions.

Extension Classes

Extension classes, written by Jim Fulton and available at
http://www.digicool.com/releases/ExtensionClass/, provide a mechanism for defining extension
types that are more class-like. In particular, they can be subclassed in C or Python, and provide
better interaction with documentation strings and other aspects of the interpreter.

CXX

The CXX extension, developed by Paul Dubois, simplifies the process of creating extension modules
in C++ (http://cxx.sourceforge.net).

pyfort

pyfort, also developed by Paul Dubois, can be used to build Python extension modules from
Fortran code. Details are available at http://pyfortran.sourceforge.net.

f2py

f2py is a Fortran-to-Python interface generator developed by Pearu Peterson. Details are available
at http://cens.ioc.ee/projects/f2py2e/.

Boost Python Library

The Boost Python Library provides a tool for wrapping C++ libraries into Python extensions. The
library provides a number of advanced features, including support for overloaded functions and
operators. Details are available at http://www.boost.org/libs/python/doc/index.html.

SWIG

SWIG (Simplified Wrapper and Interface Generator), developed by the author and available at
http://www.swig.org, can be used to create Python extensions automatically from annotated C

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/136.html (1 / 2) [2003/1/1 ､W､ﾈ 02:56:44]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=136
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+9%3A11%3A05+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read8.asp?bookname=0735710910&snode=136&now=5%2F28%2F2002+9%3A11%3A05+PM
http://www.digicool.com/releases/ExtensionClass/
http://cxx.sourceforge.net/
http://pyfortran.sourceforge.net/
http://cens.ioc.ee/projects/f2py2e/
http://www.boost.org/libs/python/doc/index.html
http://www.swig.org/

Safari | Python Essential Reference, Second Edition -> Extension Building Tools

header files.

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/136.html (2 / 2) [2003/1/1 ､W､ﾈ 02:56:44]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=136

Safari | Python Essential Reference, Second Edition -> C. Summary of Changes

Linux/Unix > Python Essential Reference, Second Edition > C. Summary of Changes See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238111161104059122180004076155027

Appendix C. Summary of Changes
This appendix briefly describes some of the more important changes to Python since the first edition
of Python Essential Reference, which described Python 1.5.2. The primary focus here is on core
language changes that may cause incompatibilities between Python versions.

Detailed changes to individual library modules are not covered. For a more comprehensive list of
changes, readers are encouraged to consult the documentation at http://www.python.org. The
Misc/NEWS file in the Python source distribution also contains a very detailed list of language
changes.

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%20P...%20Second%20Edition/python_essencial_ref/138.html [2003/1/1 ､W､ﾈ 02:56:44]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=138
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+9%3A11%3A15+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read1.asp?bookname=0735710910&snode=138&now=5%2F28%2F2002+9%3A11%3A15+PM
http://www.python.org/
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=138

Safari | Python Essential Reference, Second Edition -> Python 1.6

Linux/Unix > Python Essential Reference, Second Edition > C. Summary of Changes >
Python 1.6

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238111161104059122183081254219098

Python 1.6

Python 1.6 was released only about a week before the release of Python 2.0. The story behind this
release is complicated and somewhat political. However, the bottom line is that there is very little
reason to use this release, given its similarity to Python 2.0.

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%20P...%20Second%20Edition/python_essencial_ref/139.html [2003/1/1 ､W､ﾈ 02:56:44]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=139
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+9%3A11%3A26+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read6.asp?bookname=0735710910&snode=139&now=5%2F28%2F2002+9%3A11%3A26+PM
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=139

Safari | Python Essential Reference, Second Edition -> Python 2.0

Linux/Unix > Python Essential Reference, Second Edition > C. Summary of Changes >
Python 2.0

See All Titles

< BACK Make Note | Bookmark CONTINUE >
155117184014003188065099048180054212144238241179195140058238111161104059122182070167086172

Python 2.0

● Unicode support.

● List comprehensions.

● Augmented assignment operators (+=, -=, *=, /=, %=, **=, &=, |=, ^=, >>=, and <<=)
and associated special methods _ _iadd_ _, _ _isub_ _, etc.

● The syntax f (*args ,**kwargs) can now be used to call a function with positional
arguments args and keyword arguments kwargs . Previously, the built-in apply()
function was used for this purpose.

● Garbage collection of cyclical data structures and the gc module.

● Enhanced print statement. print >>f , obj now redirects its output to the file object
f .

● The import statement has been enhanced with the as modifier; for example, import
foo as bar. However, as is not a new Python reserved word.

● String methods added to both standard and Unicode strings. These methods replace most of
the functionality in the string module.

● d .setdefault() method added to dictionaries.

● New built-in functions: zip(), unichr(), unicode().

● New modules described in Appendix A, “The Python Library”: gc, UserString,
_winreg, zipfile, unicodedata, encodings, codecs, atexit, filecmp,
gettext, mmap, robotparser, webbrowser.

● New exceptions: UnboundLocalError, UnicodeError.

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/140.html (1 / 2) [2003/1/1 ､W､ﾈ 02:56:45]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=140
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+9%3A11%3A36+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read7.asp?bookname=0735710910&snode=140&now=5%2F28%2F2002+9%3A11%3A36+PM

Safari | Python Essential Reference, Second Edition -> Python 2.0

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/140.html (2 / 2) [2003/1/1 ､W､ﾈ 02:56:45]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=140

Safari | Python Essential Reference, Second Edition -> Python 2.1

Linux/Unix > Python Essential Reference, Second Edition > C. Summary of Changes >
Python 2.1

See All Titles

< BACK Make Note | Bookmark
155117184014003188065099048180054212144238241179195140058238111161104059122177194220160032

Python 2.1

● Functions now define nested scopes. Currently, this feature must be enabled by including
from _ _future_ _ import nested_scopes in your program. In future releases,
this feature will be enabled by default.

● Rich comparisons and the associated _ _le_ _(), _ _lt_ _(), _ _eq_ _(), _
ne _(), _ _gt_ _(), and _ _ge_ _() methods.

● d .popitem() method added to dictionaries.

● f .xreadline() method added to files to support fast iteration over lines.

● Functions and methods can now have attributes attached to them.

● Support for weak references added. A new module, weakref, provides an interface.

?; See Also weakref (124).

● Warning framework added. The warnings module provides an interface.

?; See Also warnings (121).

● Case-sensitive import now supported on non–case-sensitive platforms.

● Interactive display hook (sys.displayfunc) added.

● Uncaught exception hook (sys.exceptfunc) added.

● from _ _future_ _ directive added to allow optional use of new features.

● Complex numbers can now only be compared for equality. Comparisons of <, >, <=, or >=
raise a TypeError exception.

● The continue statement can now be used inside try blocks. This was previously illegal.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/141.html (1 / 2) [2003/1/1 ､W､ﾈ 02:56:45]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=141
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/5%2F28%2F2002+9%3A11%3A44+PM.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/read8.asp?bookname=0735710910&snode=141&now=5%2F28%2F2002+9%3A11%3A44+PM
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/108#46.html
file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/108#42.html

Safari | Python Essential Reference, Second Edition -> Python 2.1

● New modules described in Appendix A: warnings, weakref.

● Modules can now specify a list of symbols to export in the from module import *
statement by specifying a list _ _all_ _.

● Many minor changes to output formatting. The %x, %X, and %o format codes now always
produce a sign character for negative long integers. The repr() function uses standard
character escape codes such as "\n" instead of "\012".

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

< BACK Make Note | Bookmark

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%2...0Second%20Edition/python_essencial_ref/141.html (2 / 2) [2003/1/1 ､W､ﾈ 02:56:45]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/popanote.asp?pubui=oreilly&bookname=0735710910&snode=141

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%...eference,%20Second%20Edition/python_essencial_ref/front_matter.html

Linux/Unix > Python Essential Reference, Second Edition See All Titles

Python Essential Reference, Second Edition

Copyright © 2001 by New Riders Publishing

SECOND EDITION: June, 2001

All rights reserved. No part of this book may be reproduced or transmitted in any form
or by any means, electronic or mechanical, including photocopying, recording, or by
any information storage and retrieval system, without written permission from the
publisher, except for the inclusion of brief quotations in a review.

Library of Congress Catalog Card Number: 00-110880

05 04 03 02 01 7 6 5 4 3 2 1

Interpretation of the printing code: The rightmost double-digit number is the year of the
book’s printing; the rightmost single-digit number is the number of the book’s printing.
For example, the printing code 01-1 shows that the first printing of the book occurred in
2001.

Printed in the United States of America

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have
been appropriately capitalized. New Riders Publishing cannot attest to the accuracy of
this information. Use of a term in this book should not be regarded as affecting the
validity of any trademark or service mark.

Solaris® is a registered trademark of Sun Microsystems, Inc. Windows® is a registered
trademark of Microsoft Corporation.

Warning and Disclaimer

This book is designed to provide information about the Python programming language.
Every effort has been made to make this book as complete and as accurate as possible,
but no warranty or fitness is implied.

The information is provided on an as-is basis. The author and New Riders Publishing
shall have neither liability nor responsibility to any person or entity with respect to any
loss or damages arising from the information contained in this book or from the use of

file:///D¦/Downloads/eDonkey/incoming/[ebook]%20...20Edition/python_essencial_ref/front_matter.html (1 / 3) [2003/1/1 ､W､ﾈ 02:57:14]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/main.asp?list

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%...eference,%20Second%20Edition/python_essencial_ref/front_matter.html

the discs or programs that may accompany it.

Credits

Publisher

David Dwyer

Associate Publisher

AlValvano

Executive Editor

Stephanie Wall

Managing Editor

Gina Brown

Acquisitions Editor

Ann Quinn

Editor

Robin Drake

Product Marketing Manager

Stephanie Layton

Publicity Manager

Susan Petro

Manufacturing Coordinator

Jim Conway

Book Designer

Louisa Klucznik

file:///D¦/Downloads/eDonkey/incoming/[ebook]%20...20Edition/python_essencial_ref/front_matter.html (2 / 3) [2003/1/1 ､W､ﾈ 02:57:14]

file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%...eference,%20Second%20Edition/python_essencial_ref/front_matter.html

Cover Designer

Brainstorm Design, Inc.

Cover Production

Aren Howell

Proofreaders

Debra Neel

Tim Bell

Composition

Ron Wise

Amy Parker

For my parents.

Last updated on 3/28/2002
Python Essential Reference, Second Edition, © 2002 New Riders Publishing

© 2002, O'Reilly & Associates, Inc.

file:///D¦/Downloads/eDonkey/incoming/[ebook]%20...20Edition/python_essencial_ref/front_matter.html (3 / 3) [2003/1/1 ､W､ﾈ 02:57:14]

	本地磁碟
	Safari | Python Essential Reference, Second Edition
	Safari | Python Essential Reference, Second Edition -> About the Author
	file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/new_toc.html
	Safari | Python Essential Reference, Second Edition -> About the Technical Reviewers
	Safari | Python Essential Reference, Second Edition -> Acknowledgments
	file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/8.html
	Safari | Python Essential Reference, Second Edition -> Introduction
	Safari | Python Essential Reference, Second Edition -> What’s Inside?
	file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/13.html
	Safari | Python Essential Reference, Second Edition -> Running Python
	Safari | Python Essential Reference, Second Edition -> Variables and Arithmetic Expressions
	Safari | Python Essential Reference, Second Edition -> Conditionals
	Safari | Python Essential Reference, Second Edition -> File Input and Output
	file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/18.html
	file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/19.html
	file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/20.html
	file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/21.html
	Safari | Python Essential Reference, Second Edition -> Functions
	Safari | Python Essential Reference, Second Edition -> Classes
	Safari | Python Essential Reference, Second Edition -> Exceptions
	Safari | Python Essential Reference, Second Edition -> Modules
	Safari | Python Essential Reference, Second Edition -> 2. Lexical Conventions and Syntax
	Safari | Python Essential Reference, Second Edition -> Line Structure and Indentation
	Safari | Python Essential Reference, Second Edition -> Identifiers and Reserved Words
	Safari | Python Essential Reference, Second Edition -> Literals
	Safari | Python Essential Reference, Second Edition -> Operators, Delimiters, and Special Symbols
	Safari | Python Essential Reference, Second Edition -> Documentation Strings
	file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/34.html
	Safari | Python Essential Reference, Second Edition -> Terminology
	Safari | Python Essential Reference, Second Edition -> Object Identity and Type
	file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/37.html
	file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/38.html
	Safari | Python Essential Reference, Second Edition -> Built-in Types
	Safari | Python Essential Reference, Second Edition -> Special Methods
	file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/41.html
	Safari | Python Essential Reference, Second Edition -> 4. Operators and Expressions
	Safari | Python Essential Reference, Second Edition -> Operations on Numbers
	file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/45.html
	Safari | Python Essential Reference, Second Edition -> Operations on Dictionaries
	Safari | Python Essential Reference, Second Edition -> Augmented Assignment
	Safari | Python Essential Reference, Second Edition -> The Attribute (.) Operator
	Safari | Python Essential Reference, Second Edition -> Type Conversion
	Safari | Python Essential Reference, Second Edition -> Unicode Strings
	file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/51.html
	Safari | Python Essential Reference, Second Edition -> Object Equality and Identity
	file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/53.html
	Safari | Python Essential Reference, Second Edition -> 5. Control Flow
	file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/56.html
	file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/57.html
	file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/58.html
	file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/59.html
	Safari | Python Essential Reference, Second Edition -> Assertions and _ _debug_ _
	file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/62.html
	file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/63.html
	file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/64.html
	file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/65.html
	file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/66.html
	Safari | Python Essential Reference, Second Edition -> The apply() Function
	Safari | Python Essential Reference, Second Edition -> The lambda Operator
	file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/69.html
	file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/70.html
	file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/71.html
	file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/73.html
	file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/74.html
	file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/75.html
	Safari | Python Essential Reference, Second Edition -> Reference Counting and Instance Destruction
	Safari | Python Essential Reference, Second Edition -> Inheritance
	Safari | Python Essential Reference, Second Edition -> Polymorphism
	Safari | Python Essential Reference, Second Edition -> Information Hiding
	Safari | Python Essential Reference, Second Edition -> Operator Overloading
	file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/81.html
	file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/83.html
	file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/84.html
	Safari | Python Essential Reference, Second Edition -> The Module Search Path
	file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/86.html
	Safari | Python Essential Reference, Second Edition -> Module Reloading
	Safari | Python Essential Reference, Second Edition -> Packages
	file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/90.html
	file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/91.html
	Safari | Python Essential Reference, Second Edition -> Files
	file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/93.html
	Safari | Python Essential Reference, Second Edition -> The print Statement
	Safari | Python Essential Reference, Second Edition -> Persistence
	file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/96.html
	file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/98.html
	file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/99.html
	Safari | Python Essential Reference, Second Edition -> Interactive Sessions
	file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/101.html
	Safari | Python Essential Reference, Second Edition -> Site Configuration Files
	file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/103.html
	file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/104.html
	file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/106.html
	file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/107.html
	Safari | Python Essential Reference, Second Edition -> Python Services
	file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/109.html
	file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/110.html
	file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/111.html
	file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/112.html
	file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/113.html
	file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/114.html
	file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/115.html
	file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/116.html
	file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/117.html
	Safari | Python Essential Reference, Second Edition -> The Python Debugger
	Safari | Python Essential Reference, Second Edition -> The Python Profiler
	Safari | Python Essential Reference, Second Edition -> Undocumented Modules
	file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/122.html
	file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/123.html
	file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/124.html
	file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/125.html
	file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/126.html
	file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/127.html
	file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/128.html
	Safari | Python Essential Reference, Second Edition -> Calling Python from C
	Safari | Python Essential Reference, Second Edition -> Abstract Object Layer
	file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/131.html
	file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/132.html
	Safari | Python Essential Reference, Second Edition -> Special Methods for Types
	Safari | Python Essential Reference, Second Edition -> Threads
	Safari | Python Essential Reference, Second Edition -> Embedding
	Safari | Python Essential Reference, Second Edition -> Extension Building Tools
	Safari | Python Essential Reference, Second Edition -> C. Summary of Changes
	Safari | Python Essential Reference, Second Edition -> Python 1.6
	Safari | Python Essential Reference, Second Edition -> Python 2.0
	Safari | Python Essential Reference, Second Edition -> Python 2.1
	file:///D|/Downloads/eDonkey/incoming/[ebook]%20Python%20Essential%20Reference,%20Second%20Edition/python_essencial_ref/front_matter.html

