

Professional
Python® Frameworks

Web 2.0 Programming with Django®

and TurboGears™

Dana Moore

Raymond Budd

William Wright

Wiley Publishing, Inc.

ffirs.indd vffirs.indd v 9/8/07 3:32:26 PM9/8/07 3:32:26 PM

ffirs.indd ivffirs.indd iv 9/8/07 3:32:26 PM9/8/07 3:32:26 PM

Professional
Python® Frameworks

Web 2.0 Programming with Django®
and TurboGears™

Acknowledgments ... xiii

Introduction .. xxi

Part I: Introduction to Python Frameworks

Chapter 1: Web 2.0, Python, and Frameworks ...3

Chapter 2: Web 2.0 with Traditional Python ..19

Chapter 3: Introducing the Frameworks ..47

Part II: TurboGears

Chapter 4: Introduction to TurboGears ..101

Chapter 5: User Identity and Visitor Tracking ..137

Chapter 6: Widgets ...169

Chapter 7: Advanced TurboGears Topics ...203

Part III: Django

Chapter 8: Dblog: A Blog Implemented in Django ..241

Chapter 9: Django Views and Users ..275

Chapter 10: Advanced Django Topics: AJAX, RSS, and More305

Part IV: Advanced Client-Side Topics

Chapter 11: MochiKit — Pythonic JavaScripting ...337

Chapter 12: Flash-Based Interfaces and TurboGears359

Appendix A: Tools Used ..395

Index ..405

ffirs.indd iffirs.indd i 9/8/07 3:32:24 PM9/8/07 3:32:24 PM

ffirs.indd iiffirs.indd ii 9/8/07 3:32:26 PM9/8/07 3:32:26 PM

 Professional
Python® Frameworks

Web 2.0 Programming with
Django® and TurboGears™

ffirs.indd iiiffirs.indd iii 9/8/07 3:32:26 PM9/8/07 3:32:26 PM

ffirs.indd ivffirs.indd iv 9/8/07 3:32:26 PM9/8/07 3:32:26 PM

Professional
Python® Frameworks

Web 2.0 Programming with Django®

and TurboGears™

Dana Moore

Raymond Budd

William Wright

Wiley Publishing, Inc.

ffirs.indd vffirs.indd v 9/8/07 3:32:26 PM9/8/07 3:32:26 PM

www.wiley.com

Professional Python® Frameworks: Web 2.0 Programming
Django® and TurboGears™
Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2007 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN-13: 978-0-470-13809-0

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

Library of Congress Cataloging-in-Publication Data

Moore, Dana, 1947-
 Professional Python frameworks : Web 2.0 programming with Django and Turbogears / Dana Moore,
Raymond Budd, William Wright.
 p. cm.
 Includes index.
 ISBN 978-0-470-13809-0 (pbk.)
 1. Web site development. 2. Python (Computer program language) I. Budd, Raymond, 1976- II. Wright, William,
1964- III. Title.
 TK5105.888.M663 2007
 006.7'6—dc22

2007032138

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections
107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or
authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood
Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be
addressed to the Legal Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317)
572-3447, fax (317) 572-4355, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties
with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties,
including without limitation warranties of fitness for a particular purpose. No warranty may be created or ex-
tended by sales or promotional materials. The advice and strategies contained herein may not be suitable for every
situation. This work is sold with the understanding that the publisher is not engaged in rendering legal, account-
ing, or other professional services. If professional assistance is required, the services of a competent professional
person should be sought. Neither the publisher nor the author shall be liable for damages arising herefrom. The
fact that an organization or Website is referred to in this work as a citation and/or a potential source of further in-
formation does not mean that the author or the publisher endorses the information the organization or Website
may provide or recommendations it may make. Further, readers should be aware that Internet Websites listed in
this work may have changed or disappeared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within
the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related trade dress
are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and
other countries, and may not be used without written permission. Python is a registered trademark of Python Soft-
ware Foundation. Django is a registered trademark of The World Company Corporation. TurboGears is a trade-
mark of Kevin Dangoor. All other trademarks are the property of their respective owners. Wiley Publishing, Inc., is
not associated with any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic books.

ffirs.indd viffirs.indd vi 9/8/07 3:32:27 PM9/8/07 3:32:27 PM

www.wiley.com

For Jane, who, in our 35 years of love, has encouraged in me the belief that I can reach for and attain higher goals
than I could ever imagine. And for my cherished daughter Caitlin, who is for me both luminous and a conductor of

light; both possessing genius and having the power to stimulate it in others.
—DM

For Leah. You continually amaze me with your thoughtfulness, unwavering support, and above all your remarkable
ability to make me laugh and smile. Also for my sisters, who have helped me out so many different times in so many

different ways.
—RB

For my two favorite girls, Karan and Annette. Your encouragement and inspiration make all things seem possible.
—WW

ffirs.indd viiffirs.indd vii 9/8/07 3:32:28 PM9/8/07 3:32:28 PM

ffirs.indd viiiffirs.indd viii 9/8/07 3:32:28 PM9/8/07 3:32:28 PM

About the Authors
Dana Moore is a division scientist with BBN Technologies and is an acknowledged expert in the fields of
peer-to-peer and collaborative computing, software agent frameworks, and assistive environments. Prior
to joining BBN, Dana was chief scientist for Roku Technologies and a distinguished member of technical
staff at Bell Laboratories. Dana is a popular conference speaker and a university lecturer. He has written
articles for numerous computing publications and coauthored the books Peer-to-Peer: Building Secure,
Scalable, and Manageable Networks; Jabber Developer’s Handbook; and Rich Internet Applications. Dana holds a
Master of Science degree from the University of Maryland and a Bachelor of Science degree in industrial
design, also from the University of Maryland.

Raymond Budd is a software engineer with BBN Technologies. He has designed, developed, and sup-
ported a variety of web applications and other distributed systems in Java, Ruby, and Python. He has
been published in several conference proceedings such as the Eighteenth National Conference on Artificial
Intelligence and journals including Applied Intelligence. Additional areas of interest include knowledge
representations, knowledge engineering, and distributed planning and scheduling. He received a Bache-
lor of Science degree in computer science from the University of Pittsburgh.

William Wright is a senior principal investigator with SPARTA, where he develops networking software
for systems distributed across the globe. His interests include real-time embedded systems, software
 architecture for reuse, and software agent frameworks. A frequent conference speaker, William has also
written for Dr. Dobb’s Journal, Java Developer’s Journal, and Embedded Systems Programming, among others.
He coauthored the books Jabber Developer’s Handbook and Beginning Java Networking. William holds a
Master of Science degree in computer science from George Mason University and a Bachelor of Music
degree in education from Indiana University.

ffirs.indd ixffirs.indd ix 9/8/07 3:32:28 PM9/8/07 3:32:28 PM

ffirs.indd xffirs.indd x 9/8/07 3:32:29 PM9/8/07 3:32:29 PM

Credits
Acquisitions Editor
Jenny Watson

Development Editor
Maureen Spears

Production Editor
Elizabeth Ginns Britten

Copy Editor
Kathryn Duggan

Editorial Manager
Mary Beth Wakefield

Production Manager
Tim Tate

Vice President and Executive Group Publisher
Richard Swadley

Vice President and Executive Publisher
Joseph B. Wikert

Project Coordinator
Adrienne Martinez

Proofreader
Candace English

Indexer
Jack Lewis

Anniversary Logo Design
Richard Pacifico

ffirs.indd xiffirs.indd xi 9/8/07 3:32:29 PM9/8/07 3:32:29 PM

ffirs.indd xiiffirs.indd xii 9/8/07 3:32:29 PM9/8/07 3:32:29 PM

Acknowledgments

The authors wish to thank the industry leaders who shared their thoughts with us in interviews. We
thank Kevin Dangoor, creator of TurboGears, for sharing his insights on the design and development of
Web 2.0 applications and the evolution of web application tools. We also appreciate the insights of
Adrian Holovaty, leader of the Django project, whose thoughts on high-level languages for web applica-
tions show where we’ve been and where we’re going.

We express our thanks to Edward Benson for his help managing the source code for this book. Thanks
also to Patrick Pinkowski for his assistance with the cover photo. We are especially grateful for the efforts
of Maureen Spears, our development editor at Wiley. Her combination of high standards and encourage-
ment made the development of this book a joy.

Finally, and most importantly, we thank our friends, families, and significant others for their forbearance.
Writing is a solitary activity that tends to exclude others, even those most important to us, and we appre-
ciate all their support and promise to somehow make up for the lost time and opportunities.

ffirs.indd xiiiffirs.indd xiii 9/8/07 3:32:29 PM9/8/07 3:32:29 PM

ffirs.indd xivffirs.indd xiv 9/8/07 3:32:29 PM9/8/07 3:32:29 PM

Contents

Acknowledgments xiii
Introduction xxi

Part I: Introduction to Python Frameworks

Chapter 1: Web 2.0, Python, and Frameworks 3

The Starting Line 4
What’s Web 2.0? 4
The History of Application Design for Content Creation (In One Easy Dose) 4

The Role of AJAX in Web 2.0 10
Leveraging the Power of DSLs 10
Leveraging the Power of TurboGears 11
Leveraging the Power of Django 12
Leveraging the Power of Python 12
Comparing the Frameworks 13

The Historical Perspective 13
Controller Invocation 14

Summary 17

Chapter 2: Web 2.0 with Traditional Python 19

Old-School Web Technologies 19
XML 19
HTML 21
HTTP 23
SQL 24
JavaScript 25
CGI and Python 25

A Simple Example 25
Architecture 29
The HTML Page 30
The JavaScript Code 33
The Database 38
The Python CGI Program 42

Summary 45

ftoc.indd xvftoc.indd xv 9/10/07 11:33:01 AM9/10/07 11:33:01 AM

xvi

Chapter 3: Introducing the Frameworks 47

Web Application Frameworks 48
MVC in Web Application Frameworks 48
Common Web Application Framework Capabilities 50

Introduction to TurboGears 52
TurboGears History 52
Main TurboGears Components 52
Alternate Components 53
MVC Architecture in TurboGears 53
Creating an Example Application 54
The Controller and View 61

Introduction to Django 71
Django History 71
Main Django Components 71
Alternate Components 72
MVC Architecture in Django 72
Creating an Example Application 73

Summary 92

Part II: TurboGears

Chapter 4: Introduction to TurboGears 101

TurboGears Components 101
TurboGears Models (SQLObjects) 101
TurboGears Controllers 102
TurboGears Views (Kid Templates and MochiKit) 103
TurboGears Widgets 104

An Example: A Simple Blog Site 104
Creating the Project 105
Defining the Model 105
Using TGCrud 108
Creating the Blog Author Views with TGCrud 110
Creating the Blog Entry Views with TGCrud 118
Replacing the Blog Welcome Page 128
Changing Your Site’s Look and Feel 131

Summary 136

Chapter 5: User Identity and Visitor Tracking 137

Tracking Visits through Cookies 138
Managing User Identity 140

Contents

ftoc.indd xviftoc.indd xvi 9/10/07 11:33:03 AM9/10/07 11:33:03 AM

xvii

User Identity Model Objects 140
Identity Configuration Options 143
Other Identity Framework Components 144
Using the Identity Model Objects 144
Using the Identity Module 150

Visitor Tracking 159
Visitor Tracking Model Objects 160
Visitor Tracking Configuration Options 161
Visitor Tracking Plug-Ins 162
Adding Visitor Tracking 162

Summary 168

Chapter 6: Widgets 169

TurboGears Widgets 170
Using the Widget Browser 172
Using Existing Widgets 173

Defining the Model Object 173
Accepting User Comments 174

Creating New Widgets 185
Creating a Simple Hello Widget 185
Creating a Comment Widget 189

Summary 201

Chapter 7: Advanced TurboGears Topics 203

Your Assignment 204
The Operational Concept 205
Designing the Model 206

TurboGears Toolbox 206
The Model 210
The Controller 216

The View 227
Adding RSS Feed Capability 234
Summary 237

Part III: Django

Chapter 8: Dblog: A Blog Implemented in Django 241

Django Design Philosophies 241
An Example: A Simple Blog Site 242

Contents

ftoc.indd xviiftoc.indd xvii 9/10/07 11:33:03 AM9/10/07 11:33:03 AM

xviii

Initializing the Project 242
Initializing the Application 245
Creating the Model 246
Exploring the Model with Django’s Admin Interface 251
Creating the Views 255

Summary 273

Chapter 9: Django Views and Users 275

Template Inheritance 276
The DRY Problem 276
Defining a Base Template 277
Using the {% extends %} Directive 279

Generic Views 282
List-Detail Generic Views 282
Other Generic Views 284

User Authentication and Authorization 285
Installing User Management 285
The User Model 286
Authenticating a User 287
Enhancing the Base Template 290
User Permissions 293
Creating a User 297

Summary 303

Chapter 10: Advanced Django Topics: AJAX, RSS, and More 305

AJAX and Django 306
MochiKit 306
Django Serialization for AJAX 307
AJAX-ified Blog Example 311

Django Add-Ons 320
django.contrib Add-Ons 320
Other Add-Ons 321
RSS in Detail 321

Deploying Django with Apache HTTPD 327
Installing and Configuring Apache 327
Configuring Other Items 328

Summary 329

Contents

ftoc.indd xviiiftoc.indd xviii 9/10/07 11:33:03 AM9/10/07 11:33:03 AM

xix

Part IV: Advanced Client-Side Topics

Chapter 11: MochiKit — Pythonic JavaScripting 337

Why MochiKit? 338
What Is MochiKit? 341

What’s Inside MochiKit? 341
MochiKit.Async 342
MochiKit.Base 349
MochiKit.DOM 351
MochiKit.Logging 352
MochiKit.Signal 352
MochiKit.Visual 355
MochiKit Miscellany 357

Summary 357

Chapter 12: Flash-Based Interfaces and TurboGears 359

The Flex Difference 359
What’s Flex and Why Should I Use It? 360

A Flex2-based Blog 380
The Supporting Model 381
The Application Controller 382
The Flex Front-End 384
FBlog’s MXML Implementation 385
Deconstructing FBlog 387

Summary 392

Appendix A: Tools Used 395

Index 405

Contents

ftoc.indd xixftoc.indd xix 9/10/07 11:33:04 AM9/10/07 11:33:04 AM

ftoc.indd xxftoc.indd xx 9/10/07 11:33:04 AM9/10/07 11:33:04 AM

 Introduction

 We Python developers have always been a proud lot, able to create desktop solutions with a variety of
user experience libraries, ranging from GTK to PythonCard to WxPython. We Pythonists have always
prided ourselves in being the best example of an end-to-end, batteries-included delivery system that
could create anything imaginable for the desktop user. Even in the early days of the Web, Pythonistas
led the way with Zope, and later Twisted.

 Imagine the surprise of many of us when Ruby on Rails appeared suddenly and seemed to suck all the
air out of the room when the topic of Web 2.0 frameworks was discussed. Python’s rarely challenged
 position of agile-language king of the desktop hardly mattered anymore.

 Most Python developers had become accustomed to having a common set of rich client APIs for Win-
dows, MAC OS X, and Linux. Thus, many Pythonists, although familiar with the Rich Client Platform
(RCP) model, were suddenly in the uncomfortable and unfamiliar position of having fallen behind in the
emerging Web 2.0 world.

 Now this status quo has changed, and there are two strong end-to-end frameworks (Django and Turbo-
Gears) available for the Python Web 2.0 developer. Even if you haven’t had exposure to the buzzwords
or development model for Web 2.0 applications, this book will help you along that path. AJAX (Asyn-
chronous JavaScript and XML), for example, is a hugely important element of the Web 2.0 interaction
model, and it is well covered and explained in examining both Django and TurboGears.

 In addition, there’s now growing recognition, even in the most stolid of enterprises, of an important shift in
customer demand that promises to change the very foundations of how we develop and deploy applica-
tions. Customers are now specifying Web 2.0 capabilities in new applications development and even in ret-
rofitting current applications to this new model, and the Web itself is undergoing a shift from a collection of
news articles, static forms, and bulletin boards to a virtual application-hosting platform in and of itself.

 This book is right at the front of this trend for Python developers. Together, we will explore the elements
of this change in browser-based applications—from greater dynamism and responsiveness to faster de-
velopment cycles to greater embrace of social networking. In this book, the objective is to prepare both
the corporate and the independent developer to take advantage of this new emerging landscape. As the
world of shrink-wrapped boxes of client-side software begins to wane, a new ecology of Rich Internet
Applications (RIAs) is emerging to bring both developers and end users new benefits that take full ad-
vantage of today’s connected world. Python developers who can reap the benefits of this new ecology
will prosper and stay at the front of their professional ranks.

 Who Is This Book For?
 This book is for people who are (or want to be) professional web application developers. In this book,
you’ll see how to take advantage of the latest technology to create compelling web applications, and cre-
ate them fast . All of the techniques and technologies you’ll see in this book are designed to help you get a
professional website up quickly, without creating an unmaintainable pile of spaghetti code.

flast.indd xxiflast.indd xxi 9/7/07 11:37:54 AM9/7/07 11:37:54 AM

xxii

 We do assume that you know at least a little Python. If you’re not already on the Python bandwagon, maybe
the tools and techniques in this book can convince you to hop on. Python is a very readable language and
there are tons of good tutorials and references in print and on the Web to help you get up to speed.

 What Is This Book’s Focus?
Like our readers, the authors are all professional corporate software developers who use agile languages
such as Python and Ruby with Web 2.0 techniques to deliver network-based applications to real custom-
ers, both commercial and government. We know that the quickest road to understanding code and APIs
is to review working code examples, but often books consist of a stream of simple didactic examples. Al-
though this approach may reveal important points of a topic, it ultimately leaves you unfulfilled because
the examples don’t build anything more compelling outside the context of the point the author is trying
to make. This book builds an interesting and feature-complete application in each of three paradigms
(Django, TurboGears, and Flash/Flex2-fronting TurboGears) as a unifying theme holding the book
 together and to give you points of comparison for multiple Python-based solutions to the same problem.

 Leveraging the Rest of the Book: The Roadmap
 As mentioned back at the beginning of this introduction, this book was written by and for developers. We
 developers (you included) are a simple tribe. Give us some fun examples to work with and we’ll figure out
everything we need for working through them. So that’s the goal for the book—to cover the important topics
in Web 2.0 and show you how to achieve results using a combination of Python and modern frameworks.

 Part I: Introduction to Python Frameworks
 In Chapter 1 , “Web 2.0, Python, and Frameworks,” you’ll have a whirlwind history lesson about applica-
tion development from the desktop to the Web 2.0 era. You’ll see how the need for web frameworks
evolved and how some of the early responses (think J2EE) failed for most developers. You’ll have a brief
introduction to the set of tools used later in the book, including AJAX, domain-specific languages (DSLs),
Python, TurboGears, Django, JavaScript, and so on. At the end of this chapter, you’ll understand how
they are not just the new thing, but a fundamentally different and better thing.

 In Chapter 2 , “Web 2.0 with Traditional Python,” you’ll see an example of Web 2.0 created without using
any frameworks at all. That will help to reinforce the notion that you can use normal Python libraries to
write perfectly good Web 2.0 applications. This chapter offers a tutorial web application that demon-
strates this point. All the hallmark features of a modern Web 2.0 application, including AJAX interaction
and XMLHttpRequest (XHR) handling using a combination of Python CGI scripting on the server and
JavaScript on the browser, will be shown. From the example application, you’ll be able to understand
that the skills you already have can produce Web 2.0 applications that are as compelling as those pro-
duced by advanced frameworks.

 However, after you finish Chapter 3 , “Introducing the Frameworks,” chances are good you will never want to
return to writing modern RIAs the painful old-school way. You’ll be introduced to an easier way to combine
Python with frameworks to write Web 2.0 applications, and get initial exposure to both frameworks covered
by the book. After this chapter, you will have a much greater appreciation of why frameworks are important,
why they are likely to save major time and frustration in the development cycle, and what characterizes a
framework. The differences in creating an application using only the techniques explained in Chapter 2 ver-
sus using the frameworks approach should be much clearer by the end of this chapter. The chapter ends with

Introduction

flast.indd xxiiflast.indd xxii 9/7/07 11:37:55 AM9/7/07 11:37:55 AM

xxiii

an engaging interview with Kevin Dangoor, creator of TurboGears, who has clarity of vision and appreciation
for the Zen of Python that all Pythonistas will appreciate.

 Part II : TurboGears
 Chapter 4 (“Introduction to TurboGears“) begins Part II, which features the in-depth exploration of
 TurboGears, perhaps the most complete development tool suite available to the Python developer. This
chapter shows a sophisticated and complete (yet accessible) application delivered in TurboGears.
The chapter also introduces the concept of HTML templates and template engines, as well as client-side
AJAX scripting and data model handling on the server side.

 In Chapter 5 (“User Identity and Visitor Tracking“), you learn about the crucial issues surrounding user-
level security and other user-management issues and the TurboGears library support for user manage-
ment. This chapter also examines how you can use the visitor tracking components of TurboGears to
capture statistics about the logged-in and anonymous users that visit your site.

 In Chapter 6 (“Widgets”) you explore the details of TurboGears widgets as you implement your own
widget and use it throughout an example application. A widget is a key component in TurboGears that
bundles HTML, JavaScript, and Cascading Style Sheets (CSS) to provide all aspects of a single slice of
functionality.

 Chapter 7 (“Advanced TurboGears Topics”) covers important TurboGears functionality that hasn’t been
covered in the previous chapters. This chapter is dedicated to presenting all the other things you need to
know when working with TurboGears—the things that you encounter quickly after departing the famil-
iar terrain of pages and single-table models.

 Part III : Django
 Chapter 8 (“Dblog: A Blog Implemented in Django”) begins the in-depth coverage of Django by revisiting the
familiar ground of Chapter 4 , except this time in Django instead of TurboGears. This chapter shows you how
Django automates the production of common web development tasks so that you (the developer) can concen-
trate on higher-level application issues instead of low-level handling of data. Specifically, you’ll see how
Django supports MVC separation of concerns in a way that’s different than TurboGears.

 Chapter 9 (“Django Views and Users”) again covers familiar ground but also points out the differences
in implementation detail. In this chapter, you’ll see how to leverage Django’s generic views to make
common tasks simple. You’ll also see how Django’s built-in user management functions can help you
manage user permissions and identities.

 Chapter 10 (“Advanced Django Topics: AJAX, RSS, and More”) shows you some of Django’s unique
strengths with its roots in content management. You’ll see how to serve RSS feeds and AJAX-enabled
 applications, too. As a bonus, this chapter includes an interview with Adrian Holovaty, the original lead
developer of Django.

 Part IV : Advanced Client-Side Topics
 JavaScript is a necessary evil in most AJAX applications, but in Chapter 11 (“MochiKit—Pythonic
 JavaScripting”) you’ll see how to use the most Pythonic JavaScript toolkit to make the process less painful.

 Chapter 12 (“Flash-Based Interfaces and TurboGears“) presents an exciting pairing of technologies,
 TurboGears and Macromedia’s Flash SDK. Although Flex is not itself open source, all modern browsers

Introduction

flast.indd xxiiiflast.indd xxiii 9/7/07 11:37:55 AM9/7/07 11:37:55 AM

xxiv

build in the capability to host Flash, and a large number of widget sets have been developed that do not
require a developer investment in Macromedia’s integrated development environments (IDEs). Using
Flash opens an additional layer of possibilities for professional developers. This chapter covers two open
source strategies that enable developers to roll out Flash-based applications. The Flex2 platform is not
open source, but it is free for development and deployment, and is at the core of many new applications.
ActionScript is an open source wrapper class library that provides a full set of desktop-style widgets
 rivaling those provided in client operating systems.

 What You Need to Run the Examples
 Don’t get out your checkbook—all of the software you need to run the examples in this book is open
source or free. The specific instructions for downloading, installing, and configuring each tool are in
 Appendix A . As you move into a production environment, you may want to incorporate commercial
software as your database or web server, but you don’t need any commercial software to run the code in
this book. You can find the latest copy of the code on Wiley Publishing’s Wrox site (www.wrox.com).

 Conventions
 To help you get the most from the text and keep track of what’s happening, we’ve used a number of con-
ventions throughout the book.

 Code has several styles. If we’re talking about code within the text (such as helloForm), it appears in
 this font .

 In code examples we highlight new and important code with a gray background.

 The gray highlighting is not used for code that’s less important in the present context, or has been
shown before.

 Note that most long blocks of code include listing numbers and titles, as shown in the following exam-
ple. Most of these listings contain code that have numbered lines so that the authors can more easily
refer to specific lines and listings during the discussions that generally follow the code block.

 Listing 2-1: Simple XML Example

 1 <?xml version=’1.0’ encoding=’ISO-8859-1’?>

2 <top>

3 Text within the “top” element.

4 <sub1 attrib=”anAttribute”>

5 Text within the first “sub1” element.

6 </sub1>

7 <sub1 another_attrib=”secondAttribute”>

8 Text within the second “sub1” element.

9 <subsub1>

10 Text in < brackets >

11 </subsub1>

12 </sub1>

13 <sub2/>

14 </top>

Introduction

flast.indd xxivflast.indd xxiv 9/7/07 11:37:55 AM9/7/07 11:37:55 AM

xxv

 Sometimes you see a mixture of styles. For example, if certain sections of code are changed and are being
discussed, they are presented in bold as shown in the following example.

 Listing 2-10: Pet O wner.py

 1 ##

 2 # A simple class to hold a petowner’s name and

 3 # a list of pets

 4 ##

 5 class PetOwner :

 6 def __init__(self, firstname, lastname, pets):

 7 self.firstname = firstname

 8 self.lastname = lastname

 9 self.pets = pets

10

11 def __str__(self):

12 ret = self.firstname+” “+self.lastname+\

13 “ has %d pets named”%len(self.pets)

14 for p in self.pets:

15 ret = ret + “ “ + p

16

17 return ret

 Here are some other styles used in the text:

❑ New terms and important words are italicized when first introduced.

❑ Command, class, object, module, path, directory, file, and view names within text are formatted
in this font . Example URLs also use this font .

❑ URLs for active sites are formatted in this font .

❑ A break in a line of code is indicated with the ➦ symbol.

 Source Code
 As you work through the examples in this book, you may choose either to type in all the code manually
or to use the source code files that accompany the book. All of the source code used in this book is avail-
able for download at www.wrox.com . When you get to the site, simply locate the book’s title (either by
using the Search box or by using one of the title lists) and click the Download Code link on the book’s
detail page to obtain all the source code for the book.

 Because many books have similar titles, you may find it easiest to search by ISBN. This book’s ISBN is
978-0-40-13809-0.

 Once you download the code, just decompress it with your favorite compression tool. Alternately, you
can go to the main Wrox code download page at www.wrox.com/dynamic/books/download.aspx to
see the code available for this book and all other Wrox books.

Introduction

flast.indd xxvflast.indd xxv 9/7/07 11:37:56 AM9/7/07 11:37:56 AM

xxvi

 Errata
 We make every effort to ensure that there are no errors in the text or in the code. However, no one is per-
fect, and mistakes do occur. If you find an error in one of our books, like a spelling mistake or faulty
piece of code, we would be very grateful for your feedback. By sending in errata, you may save another
reader hours of frustration and, at the same time, you will be helping us provide even higher-quality
information.

 To find the errata page for this book, go to www.wrox.com and locate the title using the Search box or one
of the title lists. Then, on the book details page, click the Book Errata link. On this page, you can view all
errata that has been submitted for this book and posted by Wrox editors. A complete book list, including
links to each book’s errata, is also available at www.wrox.com/misc-pages/booklist.shtml .

 If you don’t spot your error on the Book Errata page, go to www.wrox.com/contact/techsupport
.shtml and complete the form there to send us the error you have found. We’ll check the information and, if
appropriate, post a message to the book’s errata page and fix the problem in subsequent editions of the book.

 p2p.wrox.com
 For author and peer discussion, join the P2P forums at p2p.wrox.com . The forums are a web-based
 system for you to post messages relating to Wrox books and related technologies and interact with other
readers and technology users. The forums offer a subscription feature to e-mail you topics of interest of
your choosing when new posts are made to the forums. Wrox authors, editors, other industry experts,
and your fellow readers are present on these forums.

 At p2p.wrox.com , you will find a number of different forums that will help you not only as you read
this book, but also as you develop your own applications. To join the forums, just follow these steps:

1. Go to p2p.wrox.com and click the Register link.

2. Read the terms of use and click Agree.

3. Complete the required information to join as well as any optional information you wish to pro-
vide, and click Submit.

4. You will receive an e-mail with information describing how to verify your account and complete
the joining process.

 You can read messages in the forums without joining P2P, but in order to post your own messages, you
must join.

 Once you join, you can post new messages and respond to messages other users post. You can read
 messages at any time on the Web. If you would like to have new messages from a particular forum
e-mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

 For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to ques-
tions about how the forum software works as well as many common questions specific to P2P and Wrox
books. To read the FAQs, click the FAQ link on any P2P page.

Introduction

flast.indd xxviflast.indd xxvi 9/7/07 11:37:56 AM9/7/07 11:37:56 AM

xxvii

 Let Us Know What You Think
 We hope you find the material in this book as useful as we do. We believe that the power of Python for
web frameworks is revolutionizing web development. We’ve tried to put together examples and expla-
nations that make this clear and engaging. Please let us know if we’ve succeeded.

 Dana Moore (dana.virtual@gmail.com)

 Raymond Budd (ray.budd@gmail.com)

 William Wright (billwright1234@gmail.com)

Introduction

flast.indd xxviiflast.indd xxvii 9/7/07 11:37:56 AM9/7/07 11:37:56 AM

flast.indd xxviiiflast.indd xxviii 9/7/07 11:37:56 AM9/7/07 11:37:56 AM

 Professional
Python® Frameworks

Web 2.0 Programming with
Django® and TurboGears™

flast.indd xxixflast.indd xxix 9/7/07 11:37:56 AM9/7/07 11:37:56 AM

flast.indd xxxflast.indd xxx 9/7/07 11:37:57 AM9/7/07 11:37:57 AM

Part I

Introduction to Python
Frameworks

Chapter 1: Web 2.0, Python, and Frameworks

Chapter 2: Web 2.0 with Traditional Python

Chapter 3: Introducing the Frameworks

c01.indd 1c01.indd 1 9/7/07 10:31:53 AM9/7/07 10:31:53 AM

c01.indd 2c01.indd 2 9/7/07 10:31:54 AM9/7/07 10:31:54 AM

 Web 2.0, Python, and
Frameworks

 You had me at “Hello.”

— Renée Zellweger in Jerry Maguire

 The authors know you. Or at least they know a few things about you. If you’ve grabbed this book
from your favorite online (or even brick-and-mortar) bookseller, chances are that you’re an accom-
plished Python developer, or you’re on your way to becoming one. You may well have created
web content using your Python skills, or perhaps you’ve written your share of web services
backed by Python code as a Common Gateway Interface (CGI) script. You may have just heard the
term “Web 2.0” or “AJAX,” or you may already be an accomplished user of one or many Web 2.0
sites and are wondering how to plug into the action as a developer. You may be aware of web
frameworks in other languages, such as Ruby on Rails (also referred to simply as Rails) or Google
Widget Toolkit (GWT), and you may even have experimented with one or more them. If you’ve
been unable to embrace any of these other frameworks, it may be because they have one annoying
aspect — they’re not Python. Actually, if you’ve worked with other frameworks, the fact that they
don’t follow the Python philosophy (they’re not Pythonic) may be the least of your negative
impressions.

 The good news is that now you don’t have to abandon the language that you love to get the
(admittedly significant) benefits of a comprehensive framework. The Python-based frameworks
covered in the chapters that follow are every bit as capable and fun to use as any other, and it
might be argued, perhaps even better in some ways. The Rails language, for example, demands a
certain adherence to convention that sometimes gets in the way of a coder’s freedom of expression.
GWT is essentially a Java-based page-element composer that enables you to bypass writing
ECMAScript directly, but lacks the design center for dynamic partial page replacement for which
the Python Turbogears framework is becoming renowned.

c01.indd 3c01.indd 3 9/7/07 10:31:54 AM9/7/07 10:31:54 AM

Part I: Introduction to Python Frameworks

4

 The Star ting Line
 The goal of this book is to help you discover a new methodology for designing, coding, testing, and
deploying rich applications that reside primarily in the network cloud, rather than primarily on the
desktop. This application style is at the heart of so many modern tools and sites that even if you haven’t
had experience in developing using the model, you have certainly experienced many sites built this way.

 The problem with learning an entirely new way to create applications is, as always, where to start. The
authors, being developers rather like you, have always believed that one well-worked example is worth
hundreds of words of prose. You’ll find those in profusion in this book, but it’s important to have an
understanding of why Web 2.0 is important to you as a developer or entrepreneur and how the frame-
works covered will allow you to leverage your Python skills in different and powerful new ways. Thus,
that’s the starting point for the book, and even though this chapter is short on code, it’s long on ideas, so
it will be worth your time to at least skim it. To understand why web frameworks were even designed in
the first place, you should understand a little about the whole Web 2.0 revolution.

 What’s Web 2.0?
 Skeptics claim that Web 2.0 is little more than a marketer’s buzzword. Mystically inclined types say that,
“To know what it means, you have to know what it means . Like art or smut, you’ll know it when you see
it.” Pragmatists explain that, “Google Maps is Web 2.0. Yahoo! Mail (old style) is not .” The more curmud-
geonly types, such as industry pundit John C. Dvorak, decry the whole meme by saying, “How can you
have a Web 2.0 when we can’t even explain what 1.0 was?” Finally, others in the avant garde claim that
“We’re already on version 3.0!”

 Whatever the characterization, most nondevelopers agree that the phrase is very handy for encapsulat-
ing a whole aggregation of cool, modern stuff that’s going on. As a developer, though, you can begin at a
much different starting line, because you have a far deeper understanding of design mechanisms and
implementations than nontechnical types. Web 2.0 begins with understanding the difference between the
traditional Rich Client Platform (RCP) model and the emerging Rich Internet Application (RIA) model.

 The History of Application Design for Content Creation
(In One Easy Dose)

 As the title of Neal Stephenson’s famous article explains it, “In the Beginning was the Command Line.”
However, the capsule history in this section begins after the advent of windowed graphical user inter-
faces (GUIs), and the emergence of powerful operating systems on expensive compute platforms.

 The Desktop Era — No Web
 You’re certainly familiar with the RCP model, even if you know it by another nomenclature, such as the
desktop application model . Almost every application you’ve written, used, managed, or deployed over the
last three decades on microcomputers adheres to RCP capabilities and limitations. When you think in the
mode of an RCP developer, you take for granted that the operating system, data access and storage, and

c01.indd 4c01.indd 4 9/7/07 10:31:55 AM9/7/07 10:31:55 AM

Chapter 1: Web 2.0, Python, and Frameworks

5

the user’s experience of the application are tightly bound to the desktop, operating in general ignorance
of the larger networked world. When you think like an RCP end user, you often feel trapped by your
tools in the sense that if you lose the use of them, or if you lose your disk drive, you also lose your data
in a most profound way. For example, it will be hard to read your next great novel written in Enormicorp
PerfectWord if you don’t have Enormicorp PerfectWord.

 One effect of the isolation of both the user and the application is that designers and developers of tradi-
tional (RCP) applications never considered it desirable to enable the easy sharing of content created by a
specific proprietary tool, except through arrangements like OLE or OpenDoc, which open up data shar-
ing on the operating system or on proprietary tools made by the same vendor. Additionally, they never
considered building significant community or social aspects into traditional software.

 As discussed in the “Design Patterns for Web 2.0” sidebar later in the chapter, community aspects such
as user-created content, tagging, and commentary (common in Web 2.0 applications such as YouTube
and Wikipedia) would not have made sense in the era of one user executing one application on one com-
puter. User isolation was a condition of life — an application and the content the end user produced
existed on a solitary plane.

 Sharing and dissemination of data was done by ad hoc means — for example, by attaching it to e-mail.
The intended recipient could share in the data only if they bought and supported the correct version of
the proprietary tool. This was true during the first couple of decades of modern computing. The gap
between the end users’ need to create, publish, and share their creations and the ability of pre-Web–era
software design to deliver even a modicum of capability in that regard was filled by what was called
 desktop publishing or DTP . DTP was King: the big important designs and design ideas were all about put-
ting words, numbers, and static images onto something that looks like a page, and then printing these
pages for sharing. Python was an early response to the needs of system administrators and scientific
programmers.

 And Then the Web (1.0) Happened
 Eventually, people began to wonder why they needed to produce paper at all, and thus when the World
Wide Web (the Web) sprang into existence, DTP morphed almost overnight into Web publishing or WP.
Almost overnight, WP became the new King, efficiently producing HTML to drive applications and
 represent words, numbers, and multiple media types such as still and moving images. When the Web
(1.0) came along, agile languages such as Python began to make inroads into areas very unlike the origi-
nal class of applications written mostly to enable a higher level of scripting. With the emergence of
Twisted Python as a networked-applications engine some years ago, a mimetic light bulb lit. People
began to think in terms of frameworks , and the notion of code that writes code began to circulate. Python,
Perl, and PHP developers in particular began to get a sense of empowerment, while puzzling out the
reason for all the manufactured buzz over expensive tools being developed by the same proprietary ven-
dors who dominated the RCP and DTP era. Wasn’t everything really just an elaboration of a snippet of
code that could write a page in response to a URL invocation of a cgi-bin script, such as the Python
snippet in Listing 1-1 shows?

c01.indd 5c01.indd 5 9/7/07 10:31:55 AM9/7/07 10:31:55 AM

Part I: Introduction to Python Frameworks

6

 Listing 1-1: Simple Python HTML page generator

 print(“Content-type: text/html”)

page = “””

<html>

 <head>

 <title>Hello World Page!</title>

 </head>

 <body>

 <p>Hello World</p>

 </body>

</html>

“””

print page

 The answer was both yes and no. In the abstract sense, what every website was striving to do was to
generate HTML code (initially) to present material as a substitute for the printed page, and then (later) as
a substitute for earlier form-based styles that mimicked human interaction. However, there was also an
emerging need to create and maintain transactions for a new style of commerce in which the vendor side
of the equation was entirely autonomous and could support a variety of free-form interactions. For that,
designers had to evolve a style of architecture that clearly separated the manipulation of the underlying
model from the management of the user experience, and from the business logic behind the form. This
led to the rediscovery of the model-view-controller (MVC) design center (discussed in more detail in
 Chapter 3) just in time for the emergence of Web 2.0.

 Web 2.0, the Next Generation
 The problem with creating applications and tools based on the first set of technologies underlying the
Web was that the user interaction model was really rather wretched. Creating a word-processing tool,
such as Google Documents, would have been difficult, if not impossible. Consider the capabilities that a
typical Web 2.0 word processor exhibits:

❑ Every keystroke and input is reflected on the screen as soon as it happens.

❑ Document modifications are silently persisted into the model, which is online and secured from
the possibility of loss from the failure of an individual PC.

❑ The tool must support a reasonable number of formatting capabilities and enable the insertion
of structured content such as tables or images.

 In short, such a tool must be largely indistinguishable from the earlier generation’s RCP equivalent.

 The responsiveness that an interactive user needs in such a case could have been partially mimicked in
HTML using HTTP in the Web 1.0 era, but because a write-back to the model could have been accom-
plished only with a synchronous HTTP request, which also would have resulted in a full page refresh,
the experience would have been disorienting for the end user. The result certainly wouldn’t have looked
or performed like a typical RCP. As Figure 1-1 depicts, every outbound call results in a complete
page refresh.

c01.indd 6c01.indd 6 9/7/07 10:31:55 AM9/7/07 10:31:55 AM

Chapter 1: Web 2.0, Python, and Frameworks

7

 What changed the landscape forever was embedding a capability in the browser that enabled it to make
an asynchronous call to the server for rendering the web page, and the supporting JavaScript capability
to accept the returned data and update a portion of the page (a <DIV/> or element of the page)
without refreshing the entire page (an idea that Microsoft Internet Explorer 5 initially advanced). This
was nothing short of revolutionary and morphed quickly into a realization by developers that the
browser could now host applications that mimicked and in some aspects (scalability, robustness, accessi-
bility, and collaboration) improved on the older RCP applications’ capabilities.

 Thus, the term Rich Internet Application (RIA) was born, ushering in the Web 2.0 era of tools and sites
based on the simple idea that the Internet was becoming a hosting environment, not just for static pages
and forms, but also for applications that once were restricted to the desktop.

 Applications for such tasks as word processing, photo image manipulation, personal information
management — which had been a stronghold for a tiny group of vendors, and were exorbitantly priced
with restrictive usage covenants (the infamous and seldom comprehensible end user license agreement or
 EULA) — were suddenly left in the dust by browser-based versions that were not only free but con-
sumed no private disk space. All because Web 2.0 applications are designed according to a ubiquitous
standard (MVC) and use an asynchronous HTTP request with data returned in XML or Javascript Object
Notation (JSON). The request-and-return path is called an XMLHttpRequest or XHR , and the technique
works in all modern browsers.

1 Enter URL

5 Forward user to a new HTML page

6 Request newURL -- Submit form/Select
Button

10 Display new complete HTML page

TIM
E

2 Make synchronous HTTP request

7 Make synchronous HTTP request

9 Return HTTP response

4 Return HTTP response

3 Retrieve file to
satisfy request

8 Look up URL

WEB 1.0 Process-Example Interaction

User Web Browser Web Server

KEY:
Interacting with page 1
Interacting with page 2
WaitingFigure 1-1

c01.indd 7c01.indd 7 9/7/07 10:31:56 AM9/7/07 10:31:56 AM

Part I: Introduction to Python Frameworks

8

 Suddenly, word processors, spreadsheets, and calendar management are woven directly into the fabric
of the Internet, are executed entirely within the confines of the web browser, and are no longer the pri-
vate preserve of a specific vendor. What’s more, the Web 2.0 design doesn’t stop at desktop tool replace-
ments, important as that category is. New classes of applications, such as Base Camp, Flickr, YouTube,
and Picasa are useful specifically because of their networked context — they wouldn’t make much sense
as desktop-only applications. In contrast to Figure 1-1 , Figure 1-2 illustrates that asynchronous outbound
calls may result in a portion of the page being refreshed without a complete browser reload.

1 Enter URL

5 Forward user to a new HTML page

6 Interact with page

13 Interact with updated page

12 Display update

TIM
E

2 Make synchronous HTTP request

7 Make asynchronous request with
interactions captured as parameters

10 Invoke callback with results
from asynchronous request

4 Return HTTP response

3 Retrieve file to
 satisfy request

8 Process
 asynchronous
 request

WEB 2.0 Process-Example Interaction

User Web Browser Web Server

9 Continue interacting with page

KEY:
Interacting with page 1
Waiting

11 Update position of page to reflect
results of asynchronous request

Figure 1-2

 This is not to say that there are no problems for designers and developers to solve (yes, we will all still
have jobs come the revolution). Even though RIAs usually have several advantages over applications
that run on the client, they’re not without some limitations. For example, compare an RIA e-mail client
like Google Mail (GMail) to a client application like Mozilla Thunderbird. GMail has the advantage of
centralized virus scanning, whereas Thunderbird relies on operating-system scanners. On the other
hand, when you upload an attachment into an e-mail message, Thunderbird allows you to drag and
drop files from any file window into the message, whereas GMail requires you to type in a full file path
and name, or use a less convenient file chooser dialog box. Overall, though, these represent browser lim-
itations or operating system limitations, rather than defects in the RIA model itself.

 The following table illustrates some of the capabilities you get for free, just by writing to the Web 2.0
specification.

c01.indd 8c01.indd 8 9/7/07 10:31:56 AM9/7/07 10:31:56 AM

Chapter 1: Web 2.0, Python, and Frameworks

9

Web 2.0 Capability Description

Plasticity and flexible
 recombination

Web 2.0 applications (RIAs) can be remixed into new applications
in ways the original designer and developer may never have con-
sidered. Because they implement MVC, RIAs expose their server-
side invocation syntax to the curious and return their data in a
common format (XML or JSON) that any arbitrary process can
parse (although there are ways to prevent users from invoking
your service, such as requiring private API keys to be passed with
the XHR). Overall, this means that your clever server-side logic can
be leveraged more widely, gaining you fame, perhaps fortune, and
the undying gratitude of your peers.

Invisibility and applications
as services

Applications woven into the Web are no longer software — they
are services that people take for granted. This is a better thing in
the RIA world than it is in the relationship world, because, in the
case of your well-written RIA, it may get you the kind of notice
that changes your career and lifestyle. Just ask the creators of
YouTube what being taken for granted is worth (in their case it was
over $1.6 billion).

Ubiquity of access For almost all Web 2.0 applications, if you have a web browser on a
computer somewhere and a broadband connection (both of which
are attainable in most of the First World), you can get to the content
you have created whether it’s the original manuscript for a book or
your vacation pictures.

Low switching cost, lower total
cost of ownership (TCO)

End users are switching from desktop applications to web-based
applications primarily because of the virtues mentioned previ-
ously. The cost of switching from the use of tools that shackle the
user to services to those that just offer access to their content is
actually pretty low. Further, without having to act as an ad hoc sys-
tem administrator, the cost of using a software capability is lower
for the user, and without integrating with a specific operating sys-
tem, the cost of production is lowered for you, the software devel-
oper. In general, Web 2.0 applications eliminate application
installation, maintenance, update, and configuration management.

Zero footprint and zero
 configuration

Although some may argue that a browser is hardly zero footprint,
the point is that for the cost of installing and maintaining a modern
browser, the end user receives a magic box, from which all manner
of applications can spring forth, none of which leaves a footprint
on the desktop. The developer (you) receives the gift of a unifying
API and development strategy, which is also enabled because of
the next point.

Leveraging industry-wide data
transport API (HTTP)

This means that the applications you write have worldwide reach.

Table continued on following page

c01.indd 9c01.indd 9 9/7/07 10:31:56 AM9/7/07 10:31:56 AM

Part I: Introduction to Python Frameworks

10

Web 2.0 Capability Description

Leveraging industry-wide
 display standards (HTML,
Flex, and JavaScript)

This means that you can erase phrases such as Windows Foundation
Classes (WFCs), Cocoa, and Abstract Window Toolkit (AWT) from
your memory.

Leveraging a common data
format (XML or JSON)

This means that data sharing among applications is straight-
forward.

Leveraging high-speed
 networking

This makes running Web 2.0 applications generally as seamless as
running desktop applications.

Platform-independent
 development

Writing to a standard that is above the platform level means that
you can develop applications without having to worry about
which operating systems, browsers, and so on they will run on
(with caveats).

 The Role of AJAX in Web 2.0
 The ability to make an asynchronous call to a URL and have the data return handled by code within the
browser is key to creating the RIA experience for the user. Without AJAX (Asynchronous JavaScript and
XML), browser-resident RIAs would not be feasible for the reasons discussed previously. Additionally,
not only can AJAX make asynchronous external method calls (out from the browser), but it can also make
 internal method calls (within the browser). The latter capability is the basis for providing changes in
visual elements within the RIA, including special effects like growing and shrinking areas, tabbed pages,
and drag and drop.

 As good and as useful as AJAX is in this regard, the fact is that AJAX must be implemented in JavaScript,
and that is the source of a good deal of pain for the developer. Although JavaScript has only recently
been taken seriously as a development language, its idiosyncrasies and tendency to be broken in differ-
ent ways in different browsers is a constant source of consternation to developers and end users alike.
Even in a nonbroken world though, it’s great to have a level of abstraction sitting atop JavaScript.
 Fortunately, MochiKit and other libraries are there to help.

 MochiKit is covered specifically in Chapter 11 , but you will find code snippets and explanations of its
use in other chapters in this book.

 Leveraging the Power of DSL s
 Domain-specific languages (DSL s) are limited computer languages designed for a specific class of problem.
However, using a special-purpose language that’s really good at creating solutions in a specific
 problem domain is not a brand-new idea. Developers have been creating special syntaxes in languages
since way back when, especially in the bygone heyday of early work in Lisp (list processing) and artifi-
cial intelligence. In Python and one or two other languages classified as scripting languages, creating a
special syntax on top of the basic language becomes a highly tractable problem.

c01.indd 10c01.indd 10 9/7/07 10:31:57 AM9/7/07 10:31:57 AM

Chapter 1: Web 2.0, Python, and Frameworks

11

 This is often called metaprogramming , which refers to programming structures that operate on other pro-
gramming structures. Another way to think of the Python frameworks covered in the following chapters
is that they are code that writes code, or even self-modifying code.

 As a Python programmer, you may have come across one or two such structures in Python, even if you
aren’t a master of metaprogramming. The addition of decorators in Python 2.4, which are lines of code
preceded by an @ (at sign), make metaprogramming much less of a mystery and really easy to use. A
 decorator is a function that takes a method as an argument and returns a method (or method-like) object.
The Python interpreter generally ignores decorators, but the signs are meaningful to TurboGears,
which has over a dozen of them and uses them as part of its controller structure. (Django doesn’t use
this approach.)

 When you mention self-modifying code to most developers, you may evoke a shiver and some whis-
pered words of deprecation, but if it’s used correctly and in the right places (as with the frameworks cov-
ered in subsequent chapters), such code can lead to some very clean programming, or at least, from your
standpoint, very clean-looking code. But don’t forget that Python presents broader capabilities to write
this type of code than almost any other mainstream language in use today. Long before TurboGears, you
could dynamically modify any Python object by adding a new attribute to an instance of an object, or
dynamically acquire new methods and add those to an instance.

 In contrast to Ruby on Rails, which is almost another language than Ruby, both Python frameworks cov-
ered in this book require you to make minimal changes in coding style versus writing normal Python
methods. For example, a TurboGears controller method has an expose decorator right before the func-
tion, which designates the template to be used and returns a Python dictionary filled with the values to
be plugged into the template — everything other than that looks just like normal Python code.

 You’ll find a similar method at work in the Kid templating language, which uses a mixture of standard
HTML and some special constructs as a Pythonic control language within the template. Another place
you’ll see special syntactic constructs at work is in MochiKit, which although implemented atop
 JavaScript, has method calls and other constructs that look remarkably (and by design) like Python code.

 In Chapter 12 you’ll see the ultimate pairing of DSLs. That chapter explores the mating of Flash (Adobe’s
DSL for creating compelling user experiences) with TurboGears. By the end of the book, you will become
very familiar and comfortable with the general idea of DSLs as a way to make simple things easy and
hard things possible.

 Leveraging the Power of TurboGears
 By the definition, TurboGears can arguably be called a domain-specific language. What makes its use
compelling is that TurboGears is one of a new generation of Web 2.0 frameworks. In this context, the
term framework means software that enables you to write full-scope software. When people talk about full
scope , they mean that all aspects of a rich Internet application are addressed, from the user experience,
through the controller logic, to the underlying data model.

 So why use a framework at all — why not just write dynamic HTML, server logic, and a database han-
dler in straight Python, or Java, or [insert name of favorite language here]? The answer to that is the same as
it’s always been. For every level of abstraction you can move up in software development, you gain an
 ability to encompass greater complexity.

c01.indd 11c01.indd 11 9/7/07 10:31:57 AM9/7/07 10:31:57 AM

Part I: Introduction to Python Frameworks

12

 TurboGears accomplishes the few important goals that matter:

❑ It enables separation of concerns, which makes maintenance, revision, and the addition of fea-
tures easier.

❑ It is excellent in the role of a DSL layer that acts as the binding force for well-crafted Pythonic
components at every level:

❑ SQLObject handles the model translation from a relational form (from a SQLite or MySQL
 database) to a Python object form (and back).

❑ The Kid templating engine, which can be used standalone at design time as well as in the
 deployed RIA, is filled in by the TurboGears layer with data from the model. The advantage
to running standalone at design time without the backing model or controller logic having
been fully developed is that it enables application developers and UI designers to work in-
dependently, in parallel, and then converge somewhere along the development path.

❑ Within the browser, JavaScript logic is organized through MochiKit, which has the
avowed aim to “make JavaScript suck less.” Put in more polite language, MochiKit collects
a wide array of loosely related JavaScript functions into a single library, and offers a very
 Pythonic-looking API for method invocation. Chapter 11 covers MochiKit in greater detail.

❑ CherryPy creates the web server layer and the control path for transmitting the business
logic to the Python code — at least for the development phase. It is likely that for deploy-
ment, especially if you use a commercial-grade ISP, you will have to deploy primarily on a
web service engine such as Apache.

 Leveraging the Power of Django
 Django’s design center is rooted in the specific domain of content management systems. As such, it’s
somewhat more focused than TurboGear, which as suggested in the previous section, is much more of a
general tool for producing Web 2.0 applications. Thus, where TurboGears is widely focused, Django
tends to feel more narrowly focused. Django was created to facilitate creating a daily online newspaper
with dynamically generated columns and pages. As you work with both of these frameworks, you will
come to appreciate the differences and, more importantly, why the application spaces of interest to dif-
ferent designers forced specific design decisions.

 Leveraging the Power of Python
 There is probably very little you don’t know about Python unless you’re new both to Web 2.0 develop-
ment and to agile languages. But at the risk of telling you things you may already know, there are a few
important things that ought to be said of Python as an undercarriage for Web 2.0 frameworks. If you pro-
gram in Python, you already have experienced some of the attributes that make it a very suitable base.

 First of all, Python is an agile, high-level, and interpreted language. For Web 2.0 development, this
means that you can write a little, test a little, and deploy a little. This is a perfect quality for iterative
development, and is especially perfect for creating the experimental, fast-changing applications in the
Web 2.0 space. Applications change quickly here during development and testing, because they are
 generally driven by the passion of small teams rather than large companies seeking to implement a
 service-oriented architecture with many moving parts and several months or years to achieve results.

c01.indd 12c01.indd 12 9/7/07 10:31:57 AM9/7/07 10:31:57 AM

Chapter 1: Web 2.0, Python, and Frameworks

13

 Thus, a language that writes compact, dynamically typed code at a high level of abstraction is a big plus.
Additionally, Web 2.0 frameworks need to be able to create specific syntaxes that will speed RIA devel-
opment without getting in the way. As mentioned in the section “Leveraging the Power of DSLs,” a lan-
guage that enables dynamic self-modification through code that writes code is another important fea-
ture, and Python is among the few modern languages that excel in this regard.

 Additonally, there are the attributes that you may already cherish. Python is often said to be a solid,
 batteries included (in other words, complete) language. Here’s why:

❑ It is solidly supported by a large and passionate community led by a pragmatic, benevolent
dictator.

❑ It is solidly designed to provide functional programming, object-oriented programming (OOP),
and metaprogramming.

❑ It is solidly deployed in countless contexts, from system administration to scientific
programming.

 Finally, Python’s ability to integrate other libraries and components makes it an excellent gap-filling lan-
guage. It is perfect for automating the many tedious parts of Web 2.0 MVC applications. You should
have to write only the parts of your RIA that make it different and compelling, and not all the scaffolding
that every RIA must have. Those you will always prefer to delegate to a capable framework. Python
helps create the frameworks that make that possible.

 Comparing the Frameworks
 No parent ever wants to compare their children by saying that Caitlin is better than Sean (they’re both
better, just in different ways) and in this case the same is true. The Django and TurboGears frameworks
are each the best at certain things.

 Both the Django and TurboGears frameworks implement a strict MVC design center and depend on
AJAX within the browser to invoke a server-side controller. Because they are both implemented in
Python, they both promote an agile development style. To choose the best one for your needs, consider
the differences presented in the following sections.

 The Historical Perspective
 Both the Django and TurboGears frameworks were motivated by observing that the component parts of
specific application implementations were good enough to make them generic. This opened them to the
possibility of reusability in other ongoing projects that were quite different from the original. Some of
you may recall that Python itself had a similar genesis. TurboGears sprang from an RCP RSS newsreader
client. TurboGears tends to be a little more dependent on the momentum of the open source community
than Django, simply because of the number of open source components that constitute its moving parts
(SQLObject, Kid, and CherryPy). Django originated in response to the need to produce a highly scalable
and dynamic online newspaper, one that gets millions of page hits per day.

 As a result of the differing design centers, the Django team tends to focus on content management.
That’s a fancy way of saying that their concern is rooted in the need to create developer methodology

c01.indd 13c01.indd 13 9/7/07 10:31:58 AM9/7/07 10:31:58 AM

Part I: Introduction to Python Frameworks

14

that enables content-based applications to be constructed quickly. The TurboGears team has focused on
the RIA space as a whole and has created a highly pluggable architecture. What this means in a practical
sense is that even though there are reasonable default choices for supporting componentry, substitutions
may easily be made (such as using SQLite instead of MySQL for model representation, or Cheetah
instead of Kid for templating).

 Controller Invocation
 As suggested by Figure 1-2 , a URL address in the TurboGears framework results in a server-side call to a
method (whose name is a part of the URL) in a file called controller.py . As you will discover when
you start adding methods to the controller, the method becomes instantly available. You don’t have a
recompile step nor do you have to restart a virtual machine (VM) or the web server layer. TurboGears
provides instant developer gratification.

 In Ruby on Rails, there’s a lot of chatter about favoring convention over configuration. Django takes the
opposite approach because it uses a mapping file to map URLs to the controller code. This strategy
decouples the URL path composition from the actual underlying implementation, which in turn enables
Django-hosted applications to maximize code reuse and controller deployment.

 JavaScript
 Much as Prototype is the preferred JavaScript and AJAX library implementation in Rails, TurboGears
uses MochiKit to create some very useful binding capabilities for form and effects handling. Django
doesn’t really have a demonstrated preference for a JavaScript library nor even a loose binding to one in
particular. As you’ll see demonstrated later in the book, where a project using TurboGears and Flex is
shown, there are no real limits to how the user experience or the asynchronous call-and-response system
is handled.

 Licensing
 Licensing is always a critical deployment issue. It’s important to know whether you can deploy your
 creation unencumbered before setting out to build it in the first place. We (the authors of this book) both
contribute to and strongly advocate the use of open source. Here are some guidelines to help you do
the same:

❑ Because TurboGears is a composition layer sitting atop other frameworks, it can’t be considered
independent of its moving parts. Kid, the default templating engine, is licensed under the MIT
License (www.opensource.org/licenses/mit-license.php), which supports full transitiv-
ity with respect to derived works. This means that, basically, you can use it without worry.

❑ MochiKit is dual-licensed under the terms of the MIT License, or under the Academic Free
 License (AFL), which is a very tolerant license with respect to the rights to use, deploy, subli-
cense, and distribute derivative works. SQLObject, the object-relational mapping (ORM) layer, is
protected by the Lesser General Public License (LGPL), which is a bit more restrictive. If you
modify the source of the SQLObject library itself, you’ll have to make those changes available to
all. Of course, that doesn’t mean that your derived works are in jeopardy. You can create and sell
them or give them away without concern.

❑ Django, because it was created from whole cloth, is under a single open source license (the BSD
license). This is very generous with respect to improvements in Django itself and makes no
 demands on derived works.

c01.indd 14c01.indd 14 9/7/07 10:31:58 AM9/7/07 10:31:58 AM

Chapter 1: Web 2.0, Python, and Frameworks

15

 Design Patterns for Web 2.0
 In the book Rich Internet Applications: AJAX and Beyond (Wiley Publishing, 2007), the au-
thors present seven crucial high-level design patterns for Web 2.0 developers. They are
repeated here in slightly altered form for your consideration. These are important as-
pects that create the design center for most of the applications you’ll write in this new,
highly net-centric paradigm.

 Design Pattern 1: Expose (at Least Some of) the Remote API
 RIA developers should create content in such a way that mediating applications which
other developers or end users might dream up can interact with it, display it, or repur-
pose its content. User-level content repurposing is extremely common in the Web 2.0
era in the form of mashups . Mashups and remixes occur when new applications (origi-
nally unintended) are constructed from data and services originally intended for some
other purpose.

 Design Pattern 2: Use a Common Data Format
 A different (but similar) pattern suggests that RIA developers create data models un-
derlying the service-based applications, so that they or another developer can leverage
them. No matter what format the back-end server uses to store the data model (regard-
less of whether it’s a SQLite relational database, an NFS-mounted, flat-file system, or
an XML data store), the output to the user view should be expressed as something that
any number of readers or parsers can handle.

 Design Pattern 3: The Browser Creates the User Experience
 In most commercially available browsers, application capabilities are limited only by
the stability, extensibility, and support for JavaScript. You, the developer, can deal with
this limitation because, as a trade-off, it’s a lot better than the tall stack of entry limita-
tions and barriers that drove you crazy during the previous software epoch. If you
need visual sophistication beyond the capability of the modern browser, you can use
other browser-pluggable alternatives, such as Adobe Flash (and write code in Python
on the server side and Flex on the browser side).

 Design Pattern 4: Applications Are Always Services
 Although this was already mentioned briefly, it’s a sufficiently important design pat-
tern to bear repetition. RIAs are part of a service-oriented architecture (SOA) in which
applications are services, created from scratch or as artifacts from recombining other
application facets. Subject to limitations (such as the availability of some other service
on which your application may depend), SOA creates the software equivalent of evolu-
tionary adaptation. Remarkably, no protocol stack by a committee of desktop vendors
was required to create this pattern. Unlike the UDDI or WDSL stack, the Web 2.0 SOA
is simple and almost intuitive.

 Design Pattern 5: Enable User Agnosticism
 RIAs won’t force the user to worry about operating systems or browsers. As long as the
browser supports scripting, applications can unobtrusively just do their work. Devel-
opers could choose to take advantage of secret handshakes or other backend imple-
mentations that assure vendor or OS lockdown (and you can probably think of one
browser and one OS vendor that does this), but the downside of making such a devil’s

(continued)

c01.indd 15c01.indd 15 9/7/07 10:31:58 AM9/7/07 10:31:58 AM

Part I: Introduction to Python Frameworks

16

bargain is that ultimately you, as a developer, will wind up expending more cycles
when, after getting some user traction on a specific platform, you find that your best
interests are served by extending your application to every other platform. It’s better
not to support vendors with their own back-end implementation agenda, and to design
from the start to avoid the slippery slope that leads to the trap of relying on vendor- or
browser-specific APIs. Thus, it’s best if your design steers clear of OS and native library
dependencies. That way, you can safely ignore much of the annoying Byzantine detail
of writing applications, and specifically the parts that tend to make applications most
brittle. Instead, you can concentrate on the logic of what it is that you’re trying to ac-
complish for the user.

 Design Pattern 6: The Network Is the Computer
 Originally a Sun Microsystems marketing slogan from the 1980s, this bromide goes in
and out of vogue. In the 1980s, Java applets exemplified it with the X11/Motif distrib-
uted models; in the 1990s, both models ultimately failed, on infrastructural weak-
nesses. X11 failed because it exacted a huge performance cost on the expensive work-
station CPUs of the era, and because its network model couldn’t extend beyond the
LAN (with the broadband era still a decade or so away). Java applets failed because of
their size (long load time) and sluggish performance (again, broadband was a few
years away). Today, broadband is near ubiquitous in much of the cyber landscape. In
addition, because the current RIA user experience is small and fits comfortably in the
memory footprint of the modern browser, failure seems far less likely. Thus, the oper-
ating system for this new generation of applications is not a single specific OS at all,
but rather the Internet as a whole. Accordingly, you can develop to the separation of
concerns afforded by the MVC paradigm, while ignoring (for the most part) the net-
work in the middle of the application. There are still some real concerns about the
 network in the middle, and given this reality, you do need to code to protect the user
experience.

 Design Pattern 7: Web 2.0 Is a Cultural Phenomenon
 Except for the earliest days of personal computing, when the almost exclusively male
Homebrew Computer Club (which gave birth to the first Apple) defined the culture of
 hackerdom , the PC desktop has never been a cultural phenomenon. In contrast,
Web 2.0 has always been about the culture. Community is everywhere in the culture
of Web 2.0, and end users rally around affinity content. Craigslist, Digg, and Slashdot
exist as aggregation points for user commentary. Narrow-focus podcasts have become
the preferred alternative to broadcast TV and radio for many; and blogging has become
a popular alternative to other publishing mass-distribution formats. Remixing and
mashups are enabled by the fact that data models, normally closed or proprietary, are
exposed by service APIs, but they also wouldn’t exist without end users’ passion and
sweat equity. Some enterprising developers (such as Ning at www.ning.com) have
even managed to monetize this culture, offering a framework for creative hobbyists
who create social applications based on existing APIs. When you create an application,
you should consider the social culture that may arise to embrace your application. You
can likely build in collaborative and social capabilities (such as co-editing and social
tagging) pretty easily. If there’s a downside to having an application exist only “in the
cloud,” the best upside is that a networked application also obeys the power law of
networks: The application’s value increases as a log function for the number of users.
Most RIAs in the wild have many or all of these characteristics.

c01.indd 16c01.indd 16 9/7/07 10:31:59 AM9/7/07 10:31:59 AM

Chapter 1: Web 2.0, Python, and Frameworks

17

 Consider the elder statesman of content-sharing applications, the blog, and its close rel-
ative, the wiki. Many blogs approach or exceed print journalism in their reader pene-
tration, and wikis are far more flexible than their power-hungry desktop predecessors
(such as Microsoft Office Groove) in supporting multi-user coordination and
collaboration.

 Summary
 In a relatively short span of time, Python developers have seen the Web move from active to interactive
to transactive. In the same span, the role of Python has evolved from page generator, to server-side con-
trol software, to the basis of exciting and capable frameworks that reduce developer burden while
enabling a new class of Rich Internet Applications (RIAs). LAMP (Linux servers running Apache as Web
server, backed by a MySQL Relational database, and mediated by Python, Perl, or PHP) has evolved
into Web 2.0 and now developers can benefit from making the transition by using the tools and
 techniques described in this book. It’s going to be an exciting and fun ride, so ladies and gentlemen,
start your engines.

c01.indd 17c01.indd 17 9/7/07 10:31:59 AM9/7/07 10:31:59 AM

c01.indd 18c01.indd 18 9/7/07 10:31:59 AM9/7/07 10:31:59 AM

 Web 2.0 with Traditional
Python

 Each success only buys an admission ticket to a more difficult problem.

— Henry Kissinger

 All of the frameworks and tools shown in this book rely on some fairly simple underlying technol-
ogies, like JavaScript, Python, CGI, HTML, and HTTP, which have been used since the dawn of
Web 1.0. In this chapter, you’ll see how you can build Web 2.0 applications using just those old-
school technologies. Even if you decide to use higher-level frameworks and tools (and you will),
you’ll still benefit from seeing how the nuts and bolts work together at the ground level. The
example at the end of this chapter illustrates how you can build a simple Web 2.0 application using
just these traditional tools. The rest of this book shows how you can use frameworks to make the
job easier, more efficient, and more fun.

 Old-School Web Technologies
 First, this section reviews the technologies that have been used in web applications for a long time
and continue to be the foundation for Web 2.0.

 XML
 The eXtensible Markup Language (XML) is a text document format that specifies the content and
structure of a document. However, in general, it says nothing about how the document should be
displayed. It is a hierarchical document format in which elements are delineated by tags like this:
 <tag> . Listing 2-1 shows an example of a simple XML document.

c02.indd 19c02.indd 19 9/7/07 10:33:32 AM9/7/07 10:33:32 AM

Part I: Introduction to Python Frameworks

20

 Listing 2-1: Simple XML Example

 1 <?xml version=’1.0’ encoding=’ISO-8859-1’?>

2 <top>

3 Text within the “top” element.

4 <sub1 attrib=”anAttribute”>

5 Text within the first “sub1” element.

6 </sub1>

7 <sub1 another_attrib=”secondAttribute”>

8 Text within the second “sub1” element.

9 <subsub1>

10 Text in < brackets >

11 </subsub1>

12 </sub1>

13 <sub2/>

14 </top>

 If you load this XML file into Firefox, it displays the document tree shown in Figure 2-1 .

 Figure 2-1

 Here’s a breakdown of what’s happening in the example code:

❑ Line 1 identifies the version and text encoding standard of this document. In this example,
you’re using version 1.0 XML and encoding text per the ISO 8859-1 standard. This is boilerplate
text that is rarely changed unless you need to support multibyte characters.

c02.indd 20c02.indd 20 9/7/07 10:33:33 AM9/7/07 10:33:33 AM

Chapter 2: Web 2.0 with Traditional Python

21

❑ Line 2 begins the meat of the document with the open tag for the top-level document element
called <top> . Each opening tag requires a matching closing tag and the closing tag for this one
is at the end of the document at line 14 (</top>). In between these tags are three subelements
called <sub1> (at lines 4–6), <sub1> (at lines 7–12), and <sub2> (at line 13). Notice that the
names of the enclosed elements don’t have to be unique. As you’ll see in the examples that
 follow later in this chapter, this property is useful for making unordered lists of subelements.
The second <sub1> element has its own subelement called <subsub1> starting at line 9. The
nesting of elements can be as deep as needed.

❑ Line 4 shows an example of an element attribute — in this case, attrib has the value
 “anAttribute” . Attributes can be handy for attaching metadata to document elements.

❑ Line 10 shows how you can use escape codes to allow the less than (<) and greater than (>)
 characters to appear in text. Here you use < to represent < and > to represent >.

❑ If an element is empty, you can open and close it with one tag, as shown in line 12.

 XML can be as simple or as complicated as you like. For more details about XML, check out the World
Wide Web Consortium (W3C) standard at www.w3.org/XML/ .

 HTML
 HyperText Markup Language (HTML) is the formatting language used by web page authors to control the
content of their pages. It contains the header and body information for a page. Within the header and body
sections, HTML also includes directives for page layout as well as the page content itself. It’s called Hyper-
Text Markup Language because HTML documents can also include hypertext links to other documents.

 Early versions of HTML parsers were pretty loose about the document-formatting requirements. This
was considered a feature and not a bug because who wants to get all worked up about details like closing
tags? Unfortunately, this laxity led to problems with web pages that would display correctly in one ven-
dor’s browser but not another. Most people these days use XHTML — a stricter version of HTML in
which the HTML document is also a valid XML document. XHTML documents usually display correctly
in all browsers, although you can still write one that will break certain browsers if you work at it.

 Listing 2-2 shows a simple HTML document.

 Listing 2-2: Example HTML Document

 1 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”

 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

 2 <html xmlns=”http://www.w3.org/1999/xhtml”>

 3 <head>

 4 <meta http-equiv=”Content-Type” content=”text/html;

 charset=utf-8”/>

 5

 6 <title>Simple HTML Document</title>

 7 <link rel=StyleSheet href=”Style.css”

 TYPE=”text/css”>

 8 </head>

 9 <body>

10 <div id=”header”>

11 <h1>Here’s some H1 header text</h1>

(continued)

c02.indd 21c02.indd 21 9/7/07 10:33:34 AM9/7/07 10:33:34 AM

Part I: Introduction to Python Frameworks

22

Listing 2-2 (continued)

12 <h2>

13 Here’s some H2 header text

14 line breaks are not important in here

15 </h2>

16 </div>

17 <!-- You can insert comments like this -->

18 <p/> <!-- Add some blank space -->

19

20

21 Here is some regular text....

22

23 <p>

24

25 This text is a link to the file “somepage.html”

26 </p>

27 <p>

28

29 This text is a link to another web site.

30 </p>

31 </body>

32 </html>

 This document looks like Figure 2-2 in a browser. Pretty simple stuff.

 Figure 2-2

c02.indd 22c02.indd 22 9/7/07 10:33:34 AM9/7/07 10:33:34 AM

Chapter 2: Web 2.0 with Traditional Python

23

 Listing 2-2 has a few highlights worth examining more closely. The first line is more boilerplate text that
says this is an XHTML document of a particular version (1.0 in this case). Line 2 is the opening tag of the
main element of this XHTML document, which is always <html> . The <html> element contains the
 following two subelements:

❑ <head> lines 3–8: Meta-information about the page.

❑ <body> lines 9–31: The content and display directives for the page.

 In this example, the <head> element contains the following three subelements:

❑ <meta> line 4: Its attributes define the text encoding type of the document.

❑ <title> line 6: Includes the text that will be displayed in the title bar of the browser.

❑ <link> line 7: Directs the browser to load another file, which in this case is a Cascading Style
Sheets (CSS) file that defines the colors and fonts for the page.

 Notice that, as with the XML example, blank lines like line 5 have no effect. Line 9 starts the <body> of
the document, which contains the following:

❑ Lines 10–16: The element at lines 10 through 16 is a <div> (division) element. The <div> allows
you to give names to parts of the document (in this case, “header”) so you can refer to them
from other places, like CSS files and JavaScript code. By referring to document divisions by
name, you can dynamically update them using JavaScript to get that dynamic page effect that is
the hallmark of Web 2.0.

❑ Line 11 shows some text to be displayed as top-level header (h1) text, and lines 12-15 show some
second-level header (h2) text. The actual display attributes (such as font and color) of these
headers are in the CSS file. Notice that although the h2 text is in the HTML file as two lines, the
browser displays it on one line.

❑ Comments in XML and HTML start with a <!-- symbol and end with a --> symbol. Line 17
shows a comment that is legal in XML or XHTML. The <p/> elements at lines 18–20 add a few
blank lines before some text on line 21, which is displayed in the default text style for the page.

❑ Lines 23–30 show two example hyperlinks, represented as the <a> elements. The href
 attribute is the URL that the browser will load if the user clicks the link. The text within the <a>
 element is shown in a special style that identifies it as a clickable link. Line 24 shows an href
that is relative to the current page. If clicked, it directs the browser to a different file on the same
server. The link on line 28 directs the browser to another server on the Internet.

❑ Line 31 closes the <body> element that was started on line 9.

 Line 32 closes the <html> element that was started on line 2.

 HTTP
 HyperText Transfer Protocol (HTTP) is a very simple text-based networking protocol layered on top of
TCP/IP, which has become the dominant protocol for web communications. It defines a request-
response protocol in which a client makes a request of a server and receives a response. There are only a

c02.indd 23c02.indd 23 9/7/07 10:33:35 AM9/7/07 10:33:35 AM

Part I: Introduction to Python Frameworks

24

few request types (called methods in HTTP parlance) and only a couple of them are significant to devel-
opers, as shown in the following table.

 Consult the HTTP specification at www.w3.org/Protocols/ for details on the other methods.

 HTTP also defines a number of response codes that indicate the status of a request. These include the
ever-popular 404 (not found) and 500 (server error) that we all see occasionally in our everyday web
surfing. Response code 200 (OK) is returned when there is no error.

 SQL
 Enterprise data have been stored using relational database and Structured Query Language (SQL) tech-
nologies for generations. Although most software is now object-oriented, object-oriented databases have
never really caught on, so relational databases remain the dominant back-end for most web applications.

 Relational databases are made up of tables with data stored in the rows and columns of those tables.
Some elements in one table can be related to elements in other tables, hence the “ relational ” in relational
databases.

 Data are stored in and retrieved from relational databases using SQL statements like this:

 SELECT name FROM people WHERE height > 66

 If you run this SQL statement on the following table, it will return “Robert” and “Bobby.”

 The impedance mismatch between a set of software objects with complicated interrelationships and the
flat, two-dimensional tables that they must be stored in is, to put it mildly, difficult to deal with. The
chore of converting back and forth between software objects and relational database tables is called
 object-relational mapping (ORM). Later in this chapter, you’ll see a simple example of manual ORM and
see why automated ORM is one of the most valuable tools provided by web software frameworks.

 HTTP Method Action

 GET Retrieves information from the server.

 PUT Sends information to or updates information on the server.

 HTTP Method Action

 GET Retrieves information from the server.

 PUT Sends information to or updates information on the server.

 Name Height Weight Hair Color

 Bob 66 150 Brown

 Robert 67 145 Black

 Bobby 68 155 Blonde

 Name Height Weight Hair Color

 Bob 66 150 Brown

 Robert 67 145 Black

 Bobby 68 155 Blonde

c02.indd 24c02.indd 24 9/7/07 10:33:35 AM9/7/07 10:33:35 AM

Chapter 2: Web 2.0 with Traditional Python

25

 JavaScript
 Despite its name, JavaScript is not related to the Java programming language. It can be embedded in web
pages and interpreted by the browser to give a page active content not possible with HTML alone. Even
though this is a book about Python, you’ll see lots of examples of JavaScript in this book. A good refer-
ence for JavaScript is at http://developer.mozilla.org/en/docs/About_JavaScript .

 CGI and Python
 In the Web 1.0 era, when a browser made a request of a web server, the server would usually just read an
HTML file and send it to the client. Occasionally, the content of the page needs to be computed when
requested. The Common Gateway Interface (CGI) meets this need by providing a protocol for a web
server to run an external program, which computes the content of the requested page. The server then
sends the content back to the client browser. Figure 2-3 shows what happens when a CGI script is invoked.

Browser Web
Server

CGI
Program

HTTP request

HTML page

exec w/environ

stdout

 Figure 2-3

 As shown on the left side of Figure 2-3 , the browser makes a request of the server using standard HTTP.
The server is configured to treat certain requests as CGI invocations rather than simple page retrievals.
When it looks at the request, it discovers that this request is for a particular CGI script. The server takes
the relevant request parameters, writes them into the execution environment for a new process, and
 executes the configured CGI program. Although the CGI program can be implemented in any language,
you’ll use Python, of course.

 As shown on the right side of Figure 2-3 , the CGI program reads its environment to get any request
parameters, and generates the page. The CGI program just writes the HTML response to standard output
using something like print statements in Python, printf in C, System.out.writeln in Java, and so on.

 The web server reads the standard output of the CGI program and relays the output back to the client
browser.

 The next section provides a simple example that ties all of these technologies together into a simple web
application.

 A Simple Example
 In this section, you look at a simple social application in which people can enter and retrieve their names
and the names of their pets. We’re keeping it very simple to show how these Web 2.0 technologies interact
at their lowest level. Anything more complicated calls for one of the frameworks shown later in the book.

c02.indd 25c02.indd 25 9/7/07 10:33:36 AM9/7/07 10:33:36 AM

Part I: Introduction to Python Frameworks

26

 First you explore what the application does, and then you look at how it’s implemented. Figure 2-4
shows the user interface for this little application.

 Figure 2-4

 There are two buttons to store and retrieve records. When clicked, the button labeled Pet Owner Search
makes a request to the server to look up the list of pets given the owner’s first and last names. The but-
ton labeled Store Pet Owner sends a pet owner’s names and a list of pet names to the server to be stored.

 Here’s how the application works:

1. The user enters the pet owner’s first and last names and his pets’ names, and then clicks Store
Pet Owner. The page makes an asynchronous request to the server to store that information.
While the server is writing the record, the page displays a banner that says “Storing …” Notice
that the page is active now, and unlike a Web 1.0 application, it is not waiting for the server to
respond. Figure 2-5 shows the page while the data store is in progress.

 Figure 2-5

c02.indd 26c02.indd 26 9/7/07 10:33:36 AM9/7/07 10:33:36 AM

Chapter 2: Web 2.0 with Traditional Python

27

2. After the data record is stored, the developer can report the status to the user by removing the
“Storing…” banner and displaying the result. The updated page is shown in Figure 2-6 .

3. After the record is stored in the database, the end user can now retrieve it. Try entering the same
first and last names into the Pet Owner Search area, click the button, and see what you get.
 Figure 2-7 shows the page while the search is in progress. The status banner now says
“ Loading” rather than “Storing.”

 Figure 2-6

 Figure 2-7

c02.indd 27c02.indd 27 9/7/07 10:33:37 AM9/7/07 10:33:37 AM

Part I: Introduction to Python Frameworks

28

4. After the search is complete, the page is updated again to display the results. Figure 2-8 shows
what you’ve found.

 Figure 2-8

 What happens if you search for a name that doesn’t exist? First the page is updated to look like
 Figure 2-7 while the search is in progress, and then the status bar displays the word “ERROR” to
 indicate that the pet owner was not found (see Figure 2-9). Obviously, this is not very user-friendly.
You’ll want a more informative error message in a production application.

 Figure 2-9

c02.indd 28c02.indd 28 9/7/07 10:33:37 AM9/7/07 10:33:37 AM

Chapter 2: Web 2.0 with Traditional Python

29

 That’s all there is to it. In the next section, you look at the architecture and implementation of this
 example application.

 Architecture
 The example application is made from the following four main parts:

❑ The HTML code that contains the structure of the document and the CSS file that specifies how
it should be displayed

❑ The client-side JavaScript code embedded in the HTML page that controls how the page
 responds to button presses and interacts with the back-end server

❑ The Python CGI script that receives requests from the JavaScript code and responds with XML
documents

❑ The back-end database that stores the data

 Figure 2-10 shows how the parts interact. When one of the buttons is clicked, the JavaScript updates the
status banner of the HTML page and makes a request of the server. The server passes that request
to the Python CGI program, which queries or updates the database and responds with an XML docu-
ment. The server passes that document back to the JavaScript running in the browser, which parses the
XML and updates the HTML page accordingly. Sounds simple enough. The next sections examine each
part in detail.

Database

JavaScript

HTML

Web
Server

Python
Program

XMLHTTP request

XML data

Up
da

te
 H

TM
L

QUERY_STRING

XML data

SQ
L

 Figure 2-10

c02.indd 29c02.indd 29 9/7/07 10:33:38 AM9/7/07 10:33:38 AM

Part I: Introduction to Python Frameworks

30

 The HTML Page
 The HTML page is a tree structure of document elements. The significant ones are as follows:

 <html>: The top-level document container object

 <head>: Imports the JavaScript and CSS information for

 the page <body>: The contents of the document

 header: A document section for the static text at

 the top of the page.

 state: A section for the “Loading...” or

 “Searching...” status message that

 displays while a server operation is in

 progress.

 operation: The section in which you display

 information about whether

 the last action was a store operation or a

 search operation.

 firstname: This section displays the first name from

 the last action. It’s empty when the page

 is first loaded.

 lastname: This section displays the last name from

 the last action. It’s empty when the page

 is first loaded.

 PetsFound: This section displays the pet names stored

 or retrieved in the last action. It’s

 empty when the page is first loaded.

 <div>: This unnamed div holds the input elements for

 the search function.

 unnamed button: When clicked, it calls the doQuery

 JavaScript function.

 searchfirstname: Text input box that holds the pet

 owner’s first name.

 Searchlastname: Text input box that holds the pet

 owner’s last name.

 <div>: This unnamed div holds the input elements for

 the store function.

 unnamed button: When clicked, it calls the doStore

 JavaScript function.

 savefirstname: Text input box that holds the pet

 owner’s first name to be stored.

 Savelastname: Text input box that holds the pet

 owner’s last name to be stored.

 Pets: Text input box that holds the pet names to

 be stored.

c02.indd 30c02.indd 30 9/7/07 10:33:38 AM9/7/07 10:33:38 AM

Chapter 2: Web 2.0 with Traditional Python

31

 Listing 2-3 shows the XHTML code for the example.

 Listing 2-3: PetsExample.html

 1 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”

 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-

 strict.dtd”>

 2 <html xmlns=”http://www.w3.org/1999/xhtml”>

 3 <head>

 4 <meta http-equiv=”Content-Type” content=”text/html;

 charset=utf-8”/>

 5

 6 <title>Simple XML Parsing</title>

 7 <!-- Load our color and font preferences -->

 8 <link rel=StyleSheet href=”Style.css”

 TYPE=”text/css”>

 9 <!-- Load xml processing JavaScript libraries -->

10 <script src=”xmlw3cdom.js” type=”text/javascript”>

 </script>

11 <script src=”xmlsax.js” type=”text/javascript”>

 </script>

12 <!-- Load our own JavaScript library -->

13 <script src=”PetsExample.js” type=”text/javascript”>

 </script>

14 </head>

15 <body onload=”onLoad()”>

16 <!-- Static text section -->

17 <div id=”header”>

18 <h1>Store Your Pet Names Here !</h1>

19 <h2>

20 A simple dynamic page in which we invoke a

 python CGI

21 service to store and retrieve database records.

22 </h2>

23 </div>

24

25

26 <!-- Display server interaction state in this section -->

27 <div class=”stateelement” id=”State”></div>

28 <p>

29 <!-- Display server results in these sections -->

30

31

32

33

(continued)

c02.indd 31c02.indd 31 9/7/07 10:33:39 AM9/7/07 10:33:39 AM

Part I: Introduction to Python Frameworks

32

Listing 2-3 (continued)

34 </p>

35 <!-- Button and text fields for search function -->

36 <div class=”inputelement”>

 <button onClick=”doQuery()”>

37 Pet Owner Search</button>

38 <input id=”searchfirstname”

 value=”firstname” size=”10”> </input>

39 <input id=”searchlastname”

 value=”lastname” size=”10”></input>

40 </div>

41

42 <!-- Button and text fields for store function -->

43 <div class=”inputelement”>

 <button onClick=”doStore()”>

44 Store Pet Owner</button>

45 <input id=”savefirstname”

 value=”firstname” size=”10”> </input>

46 <input id=”savelastname”

 value=”lastname” size=”10”> </input>

47 <input id=”pets”

 value=”pet1,pet2” size=”20”></input>

48 </div>

49

50 </body>

51 </html>

 Lines 1 and 2 of the HTML document contain boilerplate text that identifies this as an XHTML
document.

 Lines 3 through 14 are the <head> section of the document. In it, you give the page a title and import the
CSS and JavaScript files necessary. Line 13 imports the custom JavaScript that implements the behavior
of the page.

 Lines 15 through 50 form the <body> section of the document. This section includes the various static
text, input fields, and dynamic text elements referenced by the JavaScript. There are three points at
which the HTML page invokes the JavaScript. The first one is at line 15:

 15 <body onload=”onLoad()”>

 The onload attribute of the <body> tag specifies a JavaScript function that should be invoked when the
page is loaded. The other two JavaScript invocations are the button clicks at lines 36 and 43:

 36 <div class=”inputelement”><button onClick=”doQuery()”>

43 <div class=”inputelement”><button onClick=”doStore()”>

 The onClick element of the <button> tag specifies a JavaScript function that should be invoked when
the button is clicked. You’ll see these functions when you look at the JavaScript code in the next section.

c02.indd 32c02.indd 32 9/7/07 10:33:39 AM9/7/07 10:33:39 AM

Chapter 2: Web 2.0 with Traditional Python

33

 The JavaScript Code
 The JavaScript code is loaded when the HTML when the page is loaded or the user clicks one of the
buttons. Listings 2-4 through 2-7 show the important functions in the JavaScript.

 Listing 2-4: PetsExample.js Utility Functions

 1 var xmlhttp = false;

 2

 3 function onLoad() {

 4 if (window.XMLHttpRequest) {

 5 xmlhttp = new XMLHttpRequest();

 6 xmlhttp.overrideMimeType(‘text/xml’);

 7 } else if (window.ActiveXObject) {

 8 xmlhttp = new

 ActiveXObject(“Microsoft.XMLHTTP”);

 9 }

10 }

11

12 function cleanupResponseString(response){

13 return response.slice(response.indexOf(“<”),

14 response.lastIndexOf(“>”)+1);

15 }

16 function clearResults() {

17 document.getElementById(“operation”).innerHTML = ‘’;

18 document.getElementById(“PetsFound”).innerHTML = ‘’;

19 document.getElementById(“firstname”).innerHTML = ‘’;

20 document.getElementById(“lastname”).innerHTML = ‘’;

21 }

22

 The first three functions in PetsExample.js are utility functions that are called from various places in
the JavaScript and HTML code. The onLoad() function (lines 3–10) is called when the page is first
loaded. It initializes the XMLHTTPRequest object, and the way in which it does so depends on the
browser type. Lines 4 through 6 are appropriate for most browsers; lines 7 and 8 are appropriate for
Microsoft browsers. As you’ll see later in the book, a good framework will do this kind of thing for you.

 The cleanupResponseString() function (lines 12–13) strips any leading or trailing characters from an
XML document by removing everything before the first > character and everything after the last >
character.

 The clearResults() function (lines 16–21) removes all of the text from the four output document
 sections. It uses document.getElementById() to find those document sections by name.

 Listing 2-5 shows the functions that get called in response to the button clicks: doQuery() and
 doStore() .

c02.indd 33c02.indd 33 9/7/07 10:33:39 AM9/7/07 10:33:39 AM

Part I: Introduction to Python Frameworks

34

 Listing 2-5: PetsExample.js Button Handling Functions

 96 function doQuery() {

 97 var firstname =

➦

 document.getElementById(“searchfirstname”).value;

 98 var lastname =

➦

 document.getElementById(“searchlastname”).value;

 99 var uri =

➦

 “load&firstname=”+firstname+”&lastname=”+lastname;

100 clearResults()

101 queryHandler(uri, parseQueryResult, “Loading...”);

102 }

103 function doStore() {

104 var firstname =

➦

 document.getElementById(“savefirstname”).value;

105 var lastname =

➦

 document.getElementById(“savelastname”).value;

106 var pets = document.getElementById(“pets”).value;

107 var uri = “save&firstname=”+firstname+

108 “&lastname=”+lastname+”&pets=”+pets;

109 clearResults()

110 queryHandler(uri, parseStoreResult, “Storing...”);

111 }

 The doQuery() and doStore() functions are very similar in that they do these things:

1. Read the appropriate input text fields.

2. Build a URI query string to be parsed by the Python CGI script.

3. Clear any old results from the display using clearResults() .

4. Call queryHandler() to post a request to the server.

 The doQuery() function reads the first name and last name of the pet owner from the
 searchfirstname and searchlastname document elements. For example, if the fields contain
the name “Bill Wright” it builds those into a query string that looks like this:

 load&firstname=Bill&lastname=Wright

 The doStore() function is similar, but it takes its input data from savefirstname , savelastname , and
the pet input text fields. For example, if the owner name fields contain “Bill Wright” and the pet name
field contains “Fluffy,Poochie” it builds those into a URI query string that looks like this:

 save&firstname=Bill&lastname=Wright&pets=Fluffy,Poochie

 Such strings are passed to the Python CGI program, where they get parsed and converted into database
operations.

 The doQuery() and doStore() functions both invoke the queryHandler() function. Its arguments are
the URI query string, a function to be invoked when the server response is received, and a status string
to be displayed while the query is in progress.

c02.indd 34c02.indd 34 9/7/07 10:33:40 AM9/7/07 10:33:40 AM

Chapter 2: Web 2.0 with Traditional Python

35

The function that handles the interactions with the server is shown in Listing 2-6.

 Listing 2-6: PetsExample.js queryHandler Function

 23 function queryHandler(target, parseFunc, status) {

24 try {

25 netscape.security.PrivilegeManager.

26 enablePrivilege(“UniversalBrowserRead”);

27 } catch (e) {

28 }

29 if(target !== “”){

30 var url = ‘cgi-bin/backend.py?’ + target;

31 xmlhttp.open(‘GET’, url, true);

32 xmlhttp.onreadystatechange = function() {

33 if(xmlhttp.readyState == 4 &&

 xmlhttp.status == 200) {

34 var cleanXMLText =

 cleanupResponseString(xmlhttp.responseText);

35 parseFunc(cleanXMLText);

36 } else {

37 document.getElementById(‘State’).innerHTML =

 status;

38 }

39 };

40 xmlhttp.send(null);

41 }

42 }

 This function creates the complete URL for the server request and makes the request. The code in lines 24
through 28 attempts to raise a security privilege that is necessary in some browsers. This is another one
of those details that a good framework handles automatically. Line 30 builds the entire URL that will be
invoked on the server using the base URL (cgi-bin/backend.py) and the query string target passed in
by the caller. A full URL might look like this:

 cgi-bin/backend.py?load&firstname=Bill&lastname=Wright

 The web server will resolve cgi-bin/backend.py to the Python script and pass the rest to the
script itself.

 Line 31, xmlhttp.open , starts the asynchronous HTTP request, passing it your URL. The GET argument
tells the request to use the GET HTTP method (rather than POST method, for example). The true
 argument makes this an asynchronous request, meaning the JavaScript will keep executing while the
server is processing the request.

 The code in lines 32 through 39 defines the function that will get called when there is a state change on
the xmlhttp request. This function checks to see if the response is ready (readyState ==4) and there
was no HTTP error (status ==200). If these two conditions are met, it cleans up the response text sent
from the server and invokes the parseFunc to process the response. If not, it updates the State
 document element with the status text passed in by the caller of the function.

c02.indd 35c02.indd 35 9/7/07 10:33:40 AM9/7/07 10:33:40 AM

Part I: Introduction to Python Frameworks

36

 After the response XML is successfully received, one of the following two functions is called:

❑ If the request was a query, parseQueryResult() is called.

❑ If the request was a search, parseSearchResult() is called.

 These two functions are very similar and could probably be combined into one function without too
much trouble, but they are kept separate here for clarity. Listing 2-7 shows both functions.

 Listing 2-7: PetsExample.js XML Parsing Functions

 44 function parseQueryResult(xml) {

45 var parser = new DOMImplementation();

46 var domDoc = parser.loadXML(xml);

47 //get the root node (in this case, it is petowner)

48 var docRoot = domDoc.getDocumentElement();

49 //display the data

50 if (docRoot.getElementsByTagName(“error”).item(0)) {

51 document.getElementById(‘State’).innerHTML = “ERROR”;

52 } else {

53 document.getElementById(“operation”).innerHTML = “Pets retrieved for “

54 document.getElementById(“firstname”).innerHTML =

55 docRoot.getElementsByTagName(“firstname”).item(0).

56 getFirstChild().getNodeValue();

57 document.getElementById(“lastname”).innerHTML =

58 docRoot.getElementsByTagName(“lastname”).item(0).

59 getFirstChild().getNodeValue();

60 document.getElementById(“PetsFound”).innerHTML = “”;

61 var i = 0;

62 for (i=0;

 pet = docRoot.getElementsByTagName(“pet”).item(i);

 i++) {

63 petname = pet.getFirstChild().getNodeValue();

64 document.getElementById(“PetsFound”).innerHTML += petname;

65 document.getElementById(“PetsFound”).innerHTML +=

 “ “;

66 }

67 document.getElementById(‘State’).innerHTML = “”;

68 }

69 } // end function parseQueryResult

70

71 function parseStoreResult(xml) {

72 var parser = new DOMImplementation();

73 var domDoc = parser.loadXML(xml);

74 var docRoot = domDoc.getDocumentElement();

75 if (docRoot.getElementsByTagName(“error”).item(0)) {

76 document.getElementById(‘State’).innerHTML = “ERROR”;

77 } else {

78 document.getElementById(“operation”).innerHTML = “Pets stored for “

79 document.getElementById(“firstname”).innerHTML =

80 docRoot.getElementsByTagName(“firstname”).item(0).

81 getFirstChild().getNodeValue();

c02.indd 36c02.indd 36 9/7/07 10:33:41 AM9/7/07 10:33:41 AM

Chapter 2: Web 2.0 with Traditional Python

37

82 document.getElementById(“lastname”).innerHTML =

83 docRoot.getElementsByTagName(“lastname”).item(0).

84 getFirstChild().getNodeValue();

85 var i = 0;

86 document.getElementById(“PetsFound”).innerHTML = “”;

87 for (i=0;

 pet = docRoot.getElementsByTagName(“pet”).item(i);

 i++) {

88 petname = pet.getFirstChild().getNodeValue();

89 document.getElementById(“PetsFound”).innerHTML +=

 petname;

90 document.getElementById(“PetsFound”).innerHTML +=

 “ “;

91 }

92 document.getElementById(‘State’).innerHTML = “”;

93 }

94 } // end function parseStoreResult

95

 It’s easier to follow the XML parsing code if you know what the response XML document looks like.
Listing 2-8 shows an example of an XML document that might be returned from the server.

 Listing 2-8: Example XML Response

 <?xml version=’1.0’ encoding=’ISO-8859-1’?>

<petowner>

 <firstname>Bill</firstname>

 <lastname>Wright</lastname>

 <pet>Fluffy</pet>

 <pet>Poochie</pet>

</petowner>

 This document contains <petowner> as its root element. Inside that element are one <firstname>
 element, one <lastname> element, and zero or more <pet> elements. The server returns the same docu-
ment for search and save operations. Simple is good. If there is any kind of error, the document in
 Listing 2-9 is returned.

 Listing 2-9: XML Error Response

 <?xml version=’1.0’ encoding=’ISO-8859-1’?>

<error/>

 The error document has a single, empty root element. Enhancing this to include details about the error is
left to the reader.

 Now, let’s return to Listing 2-7 to see how these documents are parsed. Line 45 instantiates a new XML
parser, and line 46 loads the server response text into it. The DOMImplementation instantiated at line 45
is a DOM XML parser, so you can now reference any element by position and name. Line 46 fetches the
top-level document element, which should be either <petowner> or <error> . Lines 50 and 51 check to
see if this is an error response, and update the Status element if it is. Otherwise, you assume that it is a
 <petowner> element and extract the <firstname> and <lastname> elements at lines 54 through 59.

c02.indd 37c02.indd 37 9/7/07 10:33:41 AM9/7/07 10:33:41 AM

Part I: Introduction to Python Frameworks

38

 Line 53 updates the operation element to reflect that this was a query and not a store operation. This is
the only difference between parseQueryResult() and parseStoreResult() . The equivalent line in
 parseStoreResult is line 78.

 Lines 61 through 66 loop through all of the <pet> elements and append their names to the PetsFound
HTML page section. Line 67 clears the status banner to indicate that the operation is complete.

 The Database
 You need some way to store the pet owner data, and a relational database is a good choice. It’s easy to
store data and retrieve it using SQL. You just have to handle the object-relational mapping.

 The first thing you need to do is define a Python class to hold your pet owner data, as shown in
Listing 2-10 .

 Listing 2-10: PetOwner.py

 1 ##

 2 # A simple class to hold a pet owner’s name and

 3 # a list of pets

 4 ##

 5 class PetOwner:

 6 def __init__(self, firstname, lastname, pets):

 7 self.firstname = firstname

 8 self.lastname = lastname

 9 self.pets = pets

10

11 def __str__(self):

12 ret = self.firstname+” “+self.lastname+\

13 “ has %d pets named”%len(self.pets)

14 for p in self.pets:

15 ret = ret + “ “ + p

16

17 return ret

18

19 # Test the class a little

20 if __name__ == “__main__”:

21 dana = PetOwner(“Dana”, “Moore”, \ (“Fluffy”, “Poochie”))

22 ray = PetOwner(“Ray”, “Budd”, (“Itchy”, “Scratchy”))

23 bill = PetOwner(“Bill”, “Wright”, (“Snowball1”, “Snowball2”))

24

25 print dana

 As you can see, there’s not a lot to this class. There is a constructor in lines 6 through 9 that just initializes
three instance variables: firstname , lastname , and pets . The firstname and lastname variables are
intended to be strings; the pets variable is a list of strings.

 You define the str function in lines 11 through 17 so you can test it easily. The class test code in lines 19
through 25 just makes three instances of PetOwner and prints one out.

c02.indd 38c02.indd 38 9/7/07 10:33:41 AM9/7/07 10:33:41 AM

Chapter 2: Web 2.0 with Traditional Python

39

 Now you need a way to store these objects in a relational database. There are lots of ways to do this, but
you can’t just use one table. Tables have a fixed number of columns, but there could be an arbitrary num-
ber of pets associated with any firstname - lastname pair, so you need to define two related tables. You
can define one table called people and one called pets . The CGI program will store first names and last
names and references into the pets table. The pets table will store references to the people table and
the pet names. Figure 2-11 shows the relationship between these two tables with some example data.

people table
given_name surname id

Dana
Ray
Bill

Moore
Budd

Wright

1
2
3

pets table
owner_id name

1
1
2

Fluffy
Poochie

Itchy
2 Scratchy
3 Snowball1
3 Snowball2

 Figure 2-11

 Listing 2-11 shows a little Python program that initializes the database for you. It uses pysqlite for its
database, but other databases are similar. Consult the appendix for details on installing pysqlite .

 Listing 2-11: mkdb.py

 1 ##

 2 # A little program to initialize the two database tables

 3 ##

 4 from pysqlite2 import dbapi2 as sqlite

 5 con = sqlite.connect(“petowners”)

 6 cursor = con.cursor()

 7

 8 # Delete the tables if they already exist \

 9 try:

10 cursor.execute(“drop table pets”)

11 cursor.execute(“drop table people”)

12 except:

13 print “failed drop”

14

15 # Make the two tables

16 try:

17 cursor.execute(“create table people \

18 (given_name varchar(64), \

19 surname varchar(64), \

20 id integer primary key autoincrement)”)

21 cursor.execute(“create table pets (name varchar(64), \

22 owner_id integer)”)

23 except:

24 print “failed create”

25

26 cursor.close()

27 con.close()

c02.indd 39c02.indd 39 9/7/07 10:33:42 AM9/7/07 10:33:42 AM

Part I: Introduction to Python Frameworks

40

 Here’s what’s going on in Listing 2-11 :

❑ Line 4 imports the pysqlite package, line 5 connects to the petowners database file, and line 6
creates a cursor that you’ll use to query the database. First, you clear the database if it already
exists by dropping (deleting) both tables in lines 10 and 11. If the tables don’t exist, you’ll get an
exception, but no worries.

❑ Line 17 creates the people table. The given_name and surname columns can hold character
strings up to 64 characters wide. The id column is an integer that you’ll use to index into the
 pets table. The primary key autoincrement qualifiers allow you to have SQLite automati-
cally generate a unique number for you. You’ll see how that works in the next example.

❑ Line 21 creates the pets table. The name column can hold character strings up to 64 characters
wide, and the owner_id is an integer that you’ll use to reference the people table.

❑ Lines 26 and 27 disconnect from the database.

 Now you have a Python object to represent your pet owner data and database tables to receive the data —
you just need the code to convert between them. Listing 2-12 shows the Python code to store and retrieve
 PetOwner objects.

 Listing 2-12: persistpetowner.py

 1 ###

 2 # Functions to store and retrieve PetOwner objects

 3 # from the relational database

 4 ##

 5 from pysqlite2 import dbapi2 as sqlite

 6 from petowner import PetOwner

 7

 8 # insert or replace an entry for this pet owner

 9 def savePetOwner(petowner, cursor):

10 q = “SELECT people.id FROM people \

11 WHERE people.given_name = ‘%s’ \

12 AND people.surname = ‘%s’”%\

13 (petowner.firstname, petowner.lastname)

14 cursor.execute(q)

15 data = cursor.fetchall()

16 # make a new entry if necessary

17 if (len(data) == 0):

18 cursor.execute(“INSERT INTO people VALUES \

19 (‘%s’,’%s’, NULL)”%\

20 (petowner.firstname, petowner.lastname))

21 cursor.execute(“select max(id) FROM people”)

22 data = cursor.fetchall()

23 id = data[0][0]

24 cursor.execute(\

 “DELETE FROM pets WHERE owner_id = %d”%id)

25 for p in petowner.pets:

26 cursor.execute(\

27 “INSERT INTO pets VALUES (‘%s’,’%d’)”%(p, id))

28 # retrieve a pet owner record if one exists

29 def loadPetOwner(firstname, lastname, cursor):

c02.indd 40c02.indd 40 9/7/07 10:33:43 AM9/7/07 10:33:43 AM

Chapter 2: Web 2.0 with Traditional Python

41

30 q = “SELECT people.given_name, people.surname, pets.name “ +\

31 “FROM people, pets “ +\

32 “WHERE people.id=pets.owner_id “+ \

33 “ AND people.given_name = ‘%s’”%firstname + \

34 “ AND people.surname = ‘%s’”%lastname \

35

36 cursor.execute(q)

37 data = cursor.fetchall()

38 if (len(data) == 0):

39 return None

40 firstname = data[0][0]

41 lastname = data[0][1]

42 pets = []

43 for d in data:

44 pets.append(d[2])

45 return PetOwner(firstname, lastname, pets)

46

47 # Test the persistence code

48 if __name__ == “__main__”:

49 con = sqlite.connect(“ex1”, isolation_level=None)

50 cursor = con.cursor()

51

52 dana = PetOwner(“Dana”, “Moore”, \

53 (“Fluffy”, “Poochie”))

54 ray = PetOwner(“Ray”, “Budd”, (“Itchy”, “Scratchy”))

55 bill = PetOwner(“Bill”, “Wright”, \

56 (“Snowball1”, “Snowball2”))

57

58 save(dana, cursor)

59 save(ray, cursor)

60 save(bill, cursor)

61

62 d = load(“Dana”, “Moore”, cursor)

63 print d

64

65 cursor.close()

66 con.close()

 There are two functions in this file:

❑ savePetOwner(petowner, cursor) : Takes a PetOwner object and stores it in the database
 referenced by the cursor

❑ loadPetOwner(firstname, lastname, cursor) : Queries the database referenced by the
cursor for a PetOwner that matches the firstname and lastname parameters

 Lines 5 and 6 import the pysqlite database code and the PetOwner object so you can convert
between them.

c02.indd 41c02.indd 41 9/7/07 10:33:43 AM9/7/07 10:33:43 AM

Part I: Introduction to Python Frameworks

42

 The savePetOwner function starts at line 9. First, you look to see if there is already a record for this
 firstname - lastname pair by building the query in line 10. For example, if you’re looking for a record
for Dana Moore, the result will be a SQL query like this:

 SELECT people.id FROM people WHERE people.given_name = ‘Dana’ AND people.surname =

 ‘Moore’

 This query is executed in line 14 and the results are extracted in line 15. If there is no record matching the
requested firstname - lastname pair, you insert a new record into the people table by building a query
like the following in lines 18 through 20:

 INSERT INTO people VALUES (‘Dana’, ‘Moore’, NULL)

 The NULL for the id column tells SQLite to create a new integer key for you, which you fetch with the
next query in line 21.

 Now that you know the ID for your people table, you can insert the pet names into the pets table. First,
you delete any existing pet records with the DELETE query in line 24, and then you look through the pets
list, inserting each pet name at lines 25 and 26.

 To retrieve the PetOwners , you need a SELECT query. This query is built in lines 30 through 34. It is a lit-
tle more complicated than the other queries because it is returning data from two tables. In this case, a
query for “Dana Moore” would look like the following:

 SELECT people.given_name, people.surname, pets.name FROM

 people, pets WHERE people.id=pets.owner_id AND

 people.given_name = ‘Dana’ AND people.surname = ‘Moore’

 The code executes this query at line 36 and retrieves the results in line 37. If there are no results, it returns
 None at line 39. Otherwise, it fetches the firstname and lastname from the first record at lines 40 and
41. The names are going to match the queried values, so they could be omitted from the query. Lines 43
and 44 look through all of the results and build a pets list. Finally, the code calls the PetOwner construc-
tor and returns the new object at line 45.

 Lines 47 through 66 are test code that stores and retrieves a few objects. It’s always nice to have some
test code.

 The Python CGI Program
 Now that you’ve seen the browser side of our little application, we’ll show you the server-side code. The
request for the HTML page is handled by the web server (the Apache HTTP Server, for example) so you
don’t have to write any code to handle it. The interesting part starts when one of the two buttons is
clicked and the JavaScript is invoked to send an asynchronous HTTP request to the server. The web
server is configured to route that request to our CGI program, as shown in Listing 2-13 .

c02.indd 42c02.indd 42 9/7/07 10:33:43 AM9/7/07 10:33:43 AM

Chapter 2: Web 2.0 with Traditional Python

43

 Listing 2-13: backend.py

 1 #!g:\python24\python.exe

 2 ##

 3 ##

 4 import os

 5 from pysqlite2 import dbapi2 as sqlite

 6 from petowner import PetOwner

 7 from persistpetowner import savePetOwner, loadPetOwner

 8

 9 def PetOwnerToXML(po):

10 print “<petowner>”

11 print “<firstname>%s</firstname><lastname>%s</lastname>”%\

12 (po.firstname, po.lastname)

13 for p in po.pets:

14 print “<pet>%s</pet>”%p

15 print “</petowner>”

16

17 def EmptyResponse():

18 print “<error/>”

19

20

21 #####################################

22 # Start of main script

23 #####################################

24

25 # Print HTTP and XML headers

26 print “Content-type: text/xml; charset=iso-8859-1\n”

27 print “<?xml version=’1.0’ encoding=’ISO-8859-1’?>”

28

29 # Separate the elements of the URL query string

30 args = os.environ.get(“QUERY_STRING”).rstrip(‘”’).lstrip(‘”’)

31 commands = args.split(“&”)

32

33 if len(commands) == 0:

34 exit

35

36 con = sqlite.connect(“petowners”, isolation_level=None)

37 cursor = con.cursor()

38

39 po = None

40

41 if commands[0] == “save”:

42 firstname = None

43 lastname = None

44 pets = None

45 for cmd in commands:

46 if cmd.startswith(“firstname=”):

47 firstname = cmd.split(‘=’)[1]

48 if cmd.startswith(“lastname=”):

49 lastname = cmd.split(‘=’)[1]

50 if cmd.startswith(“pets=”):

51 pets = cmd.split(‘=’)[1].split(‘,’)

52 if (firstname != None) and (lastname != None) and (pets != None):

(continued)

c02.indd 43c02.indd 43 9/7/07 10:33:44 AM9/7/07 10:33:44 AM

Part I: Introduction to Python Frameworks

44

Listing 2-13 (continued)

53 po = PetOwner(firstname, lastname, pets)

54 savePetOwner(po, cursor)

55

56 elif commands[0] == “load”:

57 firstname = None

58 lastname = None

59 for cmd in commands:

60 if cmd.startswith(“firstname=”):

61 firstname = cmd.split(‘=’)[1]

62 if cmd.startswith(“lastname=”):

63 lastname = cmd.split(‘=’)[1]

64 if (firstname != None) and (lastname != None):

65 po = loadPetOwner(firstname, lastname, cursor)

66

67 else:

68 print “ERROR -- unknown command”

69

70 if po != None:

71 PetOwnerToXML(po)

72 else:

73 EmptyResponse()

74

75 cursor.close()

76 con.close()

 This script just uses the other scripts that you’ve already seen. The web server or the operating system
parses line 1 to find the Python interpreter for this script. Lines 4 through 7 import the scripts that you
saw previously.

 Lines 9 through 15 contain a Python function that prints a PetOwner object in the XML format expected
by the JavaScript in the web page. Refer back to Listing 2-8 for an example of this format. It would be a
reasonable design decision to include this as a method of PetOwner , too. The function EmptyResponse
sends the error response as shown previously in Listing 2-9 .

 The main body of the script starts at lines 26 and 27 by printing the headers required to tell the HTTP
processing that this is XML content (that’s the Content-type: text/xml part) and printing the XML
header. Line 30 cleans up any extra characters from the URL query string, and line 31 separates it using
 & as the delimiter. So if you send a query string like this:

 save&firstname=Bill&lastname=Wright&pets=Fluffy,Poochie

 you will get a Python list like this:

 [‘save’, ‘firstname=Bill’, ‘lastname=Wright’, ‘pets=Fluffy,Poochie’]

 Lines 36 and 37 connect to the petowners database. The isolation_level=None in line 36 puts the
connection in autocommit mode, which makes changes to the database effective as soon as the
command completes.

c02.indd 44c02.indd 44 9/7/07 10:33:44 AM9/7/07 10:33:44 AM

Chapter 2: Web 2.0 with Traditional Python

45

 Then, at line 41, you test whether this is a save operation by looking at the first element of the list. If it is
a save, you loop through the other elements of the query string and split out the firstname , lastname ,
and pets . After the loop, if you found all three, you make a new PetOwner object at line 53 and save it
to the database at line 54.

 If it’s not a save operation, it should be a load operation. You check for this at line 56 by looking at the
first element of the list broken out of the query string to see if it matches the “load” string. If it does,
then you loop through the other elements of the query string to extract the firstname and lastname
strings for the database query. At line 65, you call the loadPetOwner function to execute the query on
the database and return the PetOwner object (or None , if it doesn’t exist).

 Finally, lines 70 through 73 generate the XML content to be sent back to the client. If any function has
made a PetOwner object, line 70 converts it to XML and sends it. Otherwise, line 73 sends the empty
error response. The web server sends the XML back to the JavaScript client, and the interaction
is complete.

 Summary
 You saw several technologies in this chapter that are not really new, but are being used in new ways to
build Web 2.0 applications. You saw the following:

❑ HTML documents that include some content, but are mostly structured for dynamic updates by
the embedded JavaScript

❑ Simple XML documents that are easily generated in Python and parsed by JavaScript

❑ JavaScript code that generates asynchronous requests of a back-end server, parses the results of
those request, and dynamically updates the HTML document

❑ A simple Python class that represents the example data, and the SQL and Python code needed to
carry out the object-relational mapping to store and retrieve those objects

❑ A Python CGI program that accepts the asynchronous requests from the JavaScript by way of
the web server, queries the database, and returns the results as XML documents

 Although this chapter used a very simple example, its architecture is not much different than most real-
world Web 2.0 applications. It illustrates how the various client-side and server-side components interact
to produce the dynamic content that makes Web 2.0 so engaging.

 The rest of the book shows you how to use these concepts, along with higher-level frameworks, to build
Web 2.0 applications on a scale so large they would be difficult or impossible to hand-code with the
 techniques shown in this chapter.

c02.indd 45c02.indd 45 9/7/07 10:33:44 AM9/7/07 10:33:44 AM

c02.indd 46c02.indd 46 9/7/07 10:33:45 AM9/7/07 10:33:45 AM

 Introducing the Frameworks

 Out of intense complexities intense simplicities emerge.

 —Winston Churchill

 If we wish to count lines of code, we should not regard them as lines produced but as
lines spent.

— Edsger Dijkstra

 At the dawn of the Internet age, web developers designed simple web pages that returned simple
HTML for a simple request. Since then, the web page has grown increasingly complex. The role of
a web site has evolved from the simple act of presenting a user with a view of information, to a
Rich Internet Application that can provide the user with a highly interactive experience. Applica-
tions like word processors, spreadsheets, and calendars can exist exclusively online and have the
capabilities commonly found in a rich client application.

 Of course all of these additional capabilities don’t come without a price. The technology necessary
to produce complex behavior in web sites has also gotten increasingly complex. It all started with
the incorporation of basic server-side PHP, and simple client-side JavaScript to make a web site
more reactive to a user’s actions. Now a web site may have large, sometimes unwieldy sets of
objects defined in Java or Python (among a slew of other possible languages) that retrieve the data
from a database for presentation. There may be complex business objects that add domain logic
and process the data before it’s presented. A site may also make use of increasingly complex inter-
faces that incorporate client-side JavaScript to create complex UI controls, manipulate the elements
of a page on the fly, or make asynchronous calls to the server.

 When faced with all of this complexity, it’s easy to get discouraged unless you bear in mind the
advantages you can leverage when faced with these issues. Consider that most applications
 perform the same types of operations, like generating asynchronous requests, or harder work, like
maintaining data in a database. These operations also typically include a lot of boilerplate code
that can be greatly condensed.

c03.indd 47c03.indd 47 9/7/07 10:35:01 AM9/7/07 10:35:01 AM

48

Part I: Introduction to Python Frameworks

 Think about the asynchronous request that you created in Chapter 2, “Web 2.0 with Traditional Python.”
It took 10 lines of code to instantiate the request and to ensure it would work in Internet Explorer and
other browsers. Because you almost always want to create a request that works in any browser, you’re
relegated to spend 10 lines of code on this operation in every application.

 This leads to the development and use of frameworks that can save developers from having to rewrite
the complex components to manage database interactions, or map URLs to operations that the applica-
tion should perform. It also saves developers from having to write and read lines of duplicate or boiler-
plate code. Without frameworks, a developer is relegated to needlessly reinvent (or rewrite) the wheel
with every new web application.

 In this chapter, you’re given an introduction to the design of many web application frameworks, and
you’ll learn the basic capabilities that they can provide. Then you’ll learn about the TurboGears and
Django frameworks and get a chance to see them in action as you use them to re-implement the example
from the previous chapter.

 Web Application Frameworks
 Recently, a lot of work has been done to develop frameworks that are intended to address and ease all
aspects of web application development. The model-view-controller (MVC) pattern is commonly used as
the underlying architectural pattern for the frameworks, which can be utilized to very rapidly produce a
full-featured MVC web application. They do impose limitations, though, and the utility and applicability
of any framework ultimately depends on the requirements of the system being developed. One signifi-
cant advantage to using a framework is that you’re required to write only a minimal amount of code to
get up and running from scratch. The architecture of your web application also provides benefits
because, by using MVC, you follow a commonly used, powerful, and well-vetted pattern.

 MVC in Web Application Frameworks
 The MVC pattern is an architectural pattern originally developed for Smalltalk, an object-oriented pro-
gramming (OOP) language. It enables the clean separation of the presentation logic, control logic, and
business objects. Architectures and frameworks incorporating aspects of the MVC concept have
appeared in a multitude of applications to solve problems that require any nontrivial presentation layer.
The toolkits and frameworks that are used to develop the majority of rich-client applications for Win-
dows, Mac, Linux, and UNIX platforms incorporate the MVC concept in some way. Many common vari-
ations of the concept have been defined, and approaches to applying MVC to a variety of problems have
been documented in both a language-specific and language-neutral way.

 The MVC pattern defines the three main components as follows:

❑ View: Manages the output to the display (graphical or textual). This consists of the logic neces-
sary to create the user interface components and use the model to load data into the
components.

❑ Controller: Manages keyboard and mouse inputs from the user. The control examines and
 interprets the inputs provided. Based on the inputs, it then forwards commands to the model
and/or view.

c03.indd 48c03.indd 48 9/7/07 10:35:02 AM9/7/07 10:35:02 AM

Chapter 3: Introducing the Frameworks

49

❑ Model: Manages domain data and processing. This includes establishing a persistence represen-
tation for the domain data, and operations that can be performed on the data.

 The pattern also specifies the following constrained relationships between each of the objects:

❑ The view and controller should have a direct one-to-one correspondence. Every view should
have a reference to a controller, and vice versa.

❑ The relationships between the view and model and between the controller and model are less
direct. Therefore, a notification protocol should be used whereby a view or controller is regis-
tered as being interested in a set of models. When a model changes its internal state, it should
notify the set of all of its interested controllers and views. A model should never directly interact
with a controller or view.

 Note that when you’re adapting the MVC pattern to a web application, the relationships between the
view and model and between the controller and model are not maintained typically. This is not a practi-
cal approach given the disconnected nature of web applications. Not only does it introduce significant
additional complexity, but this type of close synchronization is not usually required in a web application.
Figure 3-1 is an object model diagram of the MVC relationships when an MVC pattern is applied to a
web application. Notice that the model is completely independent of the view and controller, and it can’t
notify them when it is updated.

Model

Controller

View

�theModel

�theModel

�theController

�theView

Web Application MVC Pattern

Figure 3-1

 This places a responsibility on the view and controller to look for changes in the model when necessary.
Depending on the requirements of the application developed, you can typically employ one of two
approaches to refresh the view based on updated model data. One option, which you can frequently
use when the model is unlikely to get stale, is to look for an updated model as the user interacts with
the page. For example, look for updates when the user moves to a new page in the application or clicks
a button on the page. The other alternative, which you generally use when the model frequently
changes, is to periodically look for changes in the model with JavaScript. If you use AJAX in the web
application, it is simple to make an asynchronous request to look for an updated model every time a
timeout expires.

c03.indd 49c03.indd 49 9/7/07 10:35:03 AM9/7/07 10:35:03 AM

50

Part I: Introduction to Python Frameworks

 Common Web Application Framework Capabilities
 Before looking at Django and TurboGears in more detail, it is useful to consider the basic types of capa-
bilities frequently provided by a web application framework designed for Python, or any language.
Although no frameworks provide everything, most provide similar capabilities to facilitate the definition
of the view, controller, and model (or database) interactions, as well as a variety of project administration
utilities.

 View Capabilities
 Common capabilities that aid a web developer when defining aspects of the view such as HTML pages
or client-side JavaScript include the following:

❑ JavaScript library: Although not included in Django out of the box, many frameworks include a
JavaScript library as an embedded or optional component. For example, TurboGears comes with
MochiKit as an optional library.

❑ Template engine: A template engine is a component that allows you to embed a language like
Python in an otherwise normal HTML page. Python code blocks can be included among stan-
dard HTML, when they are outlined with special characters. In a code block, you can use any of
the capabilities of the Python language, such as assigning values to variables, or defining control
flow statements like if or for .

❑ Default templates for data access and manipulation: Because many web applications are so
datacentric, a framework usually provides a mechanism for creating templates or views to per-
form basic database operations. Simply defining a model, creating the database, and updating
the application controller may be sufficient to let you add, edit, delete, and view the correspond-
ing database data.

❑ View composition: Views frequently share the same components, such as headers and footers.
Typically, the view specification language includes a mechanism that enables a composition
view from a set of partial views.

❑ Data validation framework: Another convenience provided by a lot of frameworks is the inher-
ent support for validating data. Whether it’s done on the client, the server, or both, the valida-
tion of data specified by a user is a common issue in web applications that can be greatly
 simplified through the incorporation of standard validation logic.

❑ Web server: Traditionally, even the deployment of a web application for testing is a nontrivial
activity. You may need to package a set of files, relocate to a web server deployment directory,
and restart the server. Frameworks usually simplify this process by embedding a simple web
server into the framework. You’re usually required to execute only a single command to start the
web server and deploy your test application. You don’t need to restart the server as you make
changes to your web application either, because servers are usually configured to automatically
detect and load changes to the application.

 Controller Capabilities
 Similar to the capabilities for reducing the complexity of client-side development, a framework can pro-
vide the following capabilities to simplify the controller component of a web application:

❑ Controller definition: A fundamental aspect of most frameworks is a standard mechanism for
defining controllers. This usually includes a base controller object that handles a lot of the lower-
level details of HTTP requests and responses.

c03.indd 50c03.indd 50 9/7/07 10:35:03 AM9/7/07 10:35:03 AM

Chapter 3: Introducing the Frameworks

51

❑ URL routing and controller-view association: One main aspect included in most frameworks is
a mechanism to ease URL routing, and the association of controllers and views. Simple conven-
tions are frequently employed to allow URLs to be transparently translated to specific control-
lers or controller functions.

❑ Controller routing and inheritance: Common functions such as user login must be performed
in almost all web applications. Frameworks usually simplify the specification of common con-
troller behavior through a combination of controller inheritance and a URL routing utility.

 Model and Database Capabilities
 Capabilities included to ease model and database development are typically focused on providing
object-relational mapping (ORM) utilities and reducing the pain of database integration. These capabili-
ties commonly include the following:

❑ Automated ORM: Frameworks typically include a mechanism to automatically translate
between model objects and database tables. The implementation may vary between frame-
works, but generally the database table structure is based on the model objects or vice versa.

❑ Manual ORM: Although very powerful, the automated translation between model objects and
database tables is practical only when you’re starting with a new web application and don’t
have an existing database. Most frameworks provide a mechanism to map model objects to an
existing database in case you’re not starting from scratch. However, the offerings of the frame-
work should be explored fully before a selection is made, because the level of support for and
the efficiency of these tools vary greatly between frameworks.

❑ Database interaction abstraction: Any ORM component included in a framework also has the
ability to abstract database interactions. A web application developer typically interacts with
model objects only and isn’t required to write any SQL in the web application. One huge advan-
tage of this is that the web application isn’t tied to any particular dialect of SQL or any particular
database. This means that you can change from one database implementation to another with-
out worrying about updating all the SQL in your web application.

❑ Developmental database implementation: Many frameworks include a simple database imple-
mentation that is usable with minimal or no reconfiguration out of the box. In many cases this is
the SQLite relational database management system, but other implementations may be used.

❑ Production database integration: When you’re ready to deploy a web application that you’ve
developed with a framework, you will probably need a more sophisticated database implemen-
tation that can handle greater loads. This is usually accomplished by modifying a simple
 database configuration and rebuilding the models. Although the production database imple-
mentations supported by each framework may be different, most frameworks support the major
database implementations such as MySQL, PostgreSQL, and Microsoft SQL Server.

 General Capabilities
 Of course, the framework must provide some general capabilities that reduce the complexity of other
aspects of a web application. Typically these include the following:

❑ Test framework: The web application and software engineering community has widely adopted
the practice of writing and automating unit tests, and many frameworks have been developed to
support testing in a variety of languages. Most frameworks include mechanisms to aid you
when developing and running unit tests.

c03.indd 51c03.indd 51 9/7/07 10:35:04 AM9/7/07 10:35:04 AM

52

Part I: Introduction to Python Frameworks

❑ Console: For interpreted languages like Python, a console is usually included. When you start
the console within a particular project, it is initialized to the configuration of the project. This
 allows you to use it as a preconfigured sandbox in which you can interactively test or otherwise
interact with your new objects, the project database, and other project scripts.

❑ Standardized project directory structure: All projects developed with the framework conform
to the same directory structure. This usually consists of locations for third-party component
 configuration (such as a database or web server); source code divided into model, view, and
controller modules; unit test files; and so on. Utilities are commonly provided to create the shell
of a project to which you can add application logic.

❑ Community tools: Apart from the core framework capabilities and tools, many frameworks
have additional tools that you can download separately. These tools are usually developed
within the user community, are freely available, and are intended to help you get the most out of
a framework.

 Now that you’ve seen the common elements frequently provided by a web application framework,
you’re ready to look at two Python web frameworks in more detail. You’ll first be introduced to the
 TurboGears framework, followed by the Django framework.

 Introduction to TurboGears
 In this section you get a whirlwind introduction to the TurboGears framework. First you learn a little
about the framework’s motivation, history, and capabilities. Then you take a look at the primary Turbo-
Gears components, the wealth of alternates available, and how the main components relate to the MVC
architecture.

 TurboGears History
 Rather than being developed from the ground up as a stand-alone application, the majority of
 TurboGears is based on several preexisting components. The open source framework was created by
Kevin Dangoor and first released in 2005. It was originally developed to be the framework behind Zesty
News, a news aggregator project started by Kevin Dangoor in 2005 that has yet to be released.

 Main TurboGears Components
 TurboGears was created from a number of existing components. All of these components are packaged
separately, and can be downloaded and used without TurboGears. The main components include the
following:

❑ MochiKit: A JavaScript library that includes components such as logging, drag and drop, and
other visual effects which are common to many libraries. The site www.mochikit.com contains
documentation and downloads of the library for use without TurboGears.

❑ Kid: A template language that enables you to include embedded Python in an XHTML page.
You can either embed Python code explicitly with a Python tag, or use an included set of attri-
butes such as loops and conditionals to define dynamic content. You can download Kid and get
detailed documentation at www.kid-templating.org .

c03.indd 52c03.indd 52 9/7/07 10:35:04 AM9/7/07 10:35:04 AM

Chapter 3: Introducing the Frameworks

53

❑ CherryPy: An object-oriented framework that enables you to develop web applications in
Python. CherryPy includes mechanisms to do webcentric operations such as simple URL map-
ping, server control, and request filtering. For more information on CherryPy, or to download
the standalone version, go to http://cherrypy.org/ .

❑ SQLObject: A simple ORM that includes a mechanism for mapping Python objects to a rela-
tional database. It also includes a Python-based abstraction of standard SQL mechanisms that
enables developers to interact with databases from a Python script or shell. For further informa-
tion and downloads, go to www.sqlobject.org/ .

 TurboGears also includes a wide variety of other features and utilities, including web-based and command-
line utilities to help with common project administration tasks, a project build tool, an embedded web
server, a test framework, and a web-based utility for the administration of model objects, among others.

 Alternate Components
 TurboGears allows you to use a wide variety of alternate implementations of the various components,
with the exception of CherryPy. A JavaScript library like Dojo Toolkit (http://dojotoolkit.org/) or
script.aculo.us (http://script.aculo.us/) can easily be used in place of or in addition to MochiKit. In
several cases, TurboGears developers have contributed add-on components that package the JavaScript
as TurboGears widgets. Basically, a widget is a piece of a web site (including HTML, CSS, and/or
 JavaScript) that is repackaged as a reusable Python component. (You’ll learn more about widgets later.)

 You can also use several template engines in place of Kid, such as HtmlPy (http://dwayneb.free.fr/
turbohtmlpy/) or Myghty (http://www.myghty.org/) among several others. You can even plug the
Django template engine into TurboGears.

 Additionally, you can use SQLAlchemy (http://www.sqlalchemy.org/) as an alternative to
 SQLObject. This very popular ORM is under development with an enthusiastic community, and may
even eventually replace SQLObject as the default ORM implementation in TurboGears.

 MVC Architecture in TurboGears
 The TurboGears framework incorporates the MVC architecture in much the same way that most other
current web application frameworks (such as Ruby on Rails) do. The TurboGears components that corre-
spond to the MVC components are shown in the following table.

 MVC TurboGears
Component Component Description

 View Kid templates Responsible for presenting the data selected by a controller to a
user. For a given web application, all Kid templates are generally
located in a templates directory under the project’s main package.

 Controller Root controller In TurboGears, controller objects are located in controller.py
 class in the main package of the project. Several classes may be

defined in this file. The TurboGears controller contains the logic
to look up database data and select a Kid template for display,
given a requested URL.

Table continued on following page

c03.indd 53c03.indd 53 9/7/07 10:35:05 AM9/7/07 10:35:05 AM

54

Part I: Introduction to Python Frameworks

 MVC TurboGears
Component Component Description

 Model SQLObjects In TurboGears, models are maintained in model.py under the
project’s main package. Each object usually corresponds to a data-
base table and typically includes the specification of the column
details. The model specification usually determines the structure
of the database.

 Creating an Example Application
 Now that you’re a bit more familiar the components that make up TurboGears and the main capabilities
it provides, you’re ready to get into more detail with an example. In Chapter 2 you developed a simple
web application that allows a user to store and load his name as well as the name of his pets. In this
chapter you implement the same basic application using TurboGears.

 Creating the Project Skeleton
 The first step in developing a TurboGears project is to create a new project with the tg-admin tool. There
is a variety of tg-admin subcommands (a subset is shown in the table below), but you can create a new
project with the quickstart command, optionally providing the name of the project that you’re creat-
ing. You’ll be prompted for the name of the package with a default value defined, which you’ll usually
want to use as is. The package is simply a version of the project name that conforms to Python package
formatting conventions and can be referenced in your Python code. You’re also asked if you need to
manage multiple users. You’ll learn more about this in Part II, TurboGears, but for now say no .

 Script Command Example Description

 tg-admin quickstart
[project name]

 tg-admin
 quickstart

PetInfoStore

 Create a new project.

tg-admin shell tg-admin shell Start a Python interactive
shell initialed to your project.

tg-admin sql [command] tg-admin sql

 create

Manage your database
defined by your SQL Object
classes. The example creates a
database that corresponds to
your model files.

tg-admin toolbox tg-admin toolbox Start the TurboGears web
toolkit.

start-[project

name].py

n/a python start-

petinfostore.py

Start the embedded web
server for a project.

setup.py build python setup.py

build

Build the web application.

c03.indd 54c03.indd 54 9/7/07 10:35:05 AM9/7/07 10:35:05 AM

Chapter 3: Introducing the Frameworks

55

 For this example you’ll create a pet-information storage project called PetInfoStore . To do this, open a
command shell in the directory where you want to create the project, and enter the following:

 C:\turbogears-examples>tg-admin quickstart PetInfoStore

Enter package name [petinfostore]:

Do you need Identity (usernames/passwords) in this project?

 [no]

 This creates the base project directory PetInfoStore as well as a set of standard project files that
include the following:

 PetInfoStore

 + PetInfoStore.egg-info

 + petinfostore

 + config

 - app.cfg

 - log.cfg

 - controllers.py

 - json.py

 - model.py

 - release.py

 + sqlobject-history

 + static

 + css

 - style.css

 + images

 + javascript

 + templates

 - login.kid

 - master.kid

 - welcome.kid

 + tests

 - test_controllers.py

 - test_model.py

 - dev.cfg

 - sample-prod.cfg

 - setup.py

 - start-petinfostore.py

 - test.cfg

 These files represent the fundamental components of a TurboGears application.

 The base project directory also contains a few scripts and configuration files. For example, you can use
 setup.py to build your project and create distributions among several other operations as follows:

 C:\turbogears-examples\PetInfoStore>python setup.py build

 You can get the complete details on the setup.py script in the online TurboGears documentation or by
passing the --help and --help-message arguments to the script, but you probably won’t need to
worry about building and deploying with this script as you’re experimenting with basic projects.

c03.indd 55c03.indd 55 9/7/07 10:35:06 AM9/7/07 10:35:06 AM

56

Part I: Introduction to Python Frameworks

The advantage of a framework for an interpreted language like Python makes it simple to run a web
 application for testing purposes. For your initial testing all you need to do is start the web application on
the web server provided with TurboGears. To do this, invoke the start-petinfostore.py script as
follows:

 C:\turbogears-examples\PetInfoStore>python start-petinfostore.py

 This automatically generates a test page for your web application. To see this page, open your browser
and go to http://localhost:8080/ as shown in Figure 3-2 .

Figure 3-2

 There is also a variety of configuration files in the top-level directory and the petinfostore/config
subdirectory. You don’t have to worry too much about these for now if you’re using SQLLite as your
database because the default development configuration works without any changes. Note, however,
that the development environment configuration (dev.cfg) and production environment configuration
(sample-prod.cfg) are separate.

c03.indd 56c03.indd 56 9/7/07 10:35:06 AM9/7/07 10:35:06 AM

Chapter 3: Introducing the Frameworks

57

 The petinfostore directory shows a variety of subdirectories that you can use to define your project
tests (tests), Kid templates (templates), and static web content (static). The most interesting files to
note initially are the Python scripts at this level. The release.py script can be used to define some sim-
ple information about your project. Several variables are defined in this file that you may want to
uncomment and tailor to your project. The main scripts in this package, however, make up the model
(model.py) and controller (controllers.py) components of the MVC architecture used by the frame-
work. The view is defined by the Kid templates.

 The Model
 Now that you’ve created the project and explored the main files in the project directory, you’re ready to
define a model that can store the information for a user and a pet. The database you created in Chapter 2
contained two tables: one for pets, and one for people. The people table maintained the given name
(first name) and the surname (last name) of the pet owner, and the pet table included the pet name and
the Identifier (ID) of the pet owner as a reference to the people table.

 Defining the Model Classes
 To define a structure in the TurboGears project that is similar to the database created in Chapter 2 ,
open the model.py file and define two new classes, Person and Pet , that inherit from the base
 SQLObject class as shown in Listing 3-1 . In general, any model object that you define should inherit
from SQLObject so you can incorporate the object into the database and perform database operations
such as select or update.

 Listing 3-1: The TurboGears model.py file

 1 from turbogears.database import PackageHub

 2 from sqlobject import *

 3

 4 hub = PackageHub(“petinfostore”)

 5 __connection__ = hub

 6

 7 # class YourDataClass(SQLObject):

 8 # pass

 9

 10 class Person(SQLObject):

 11 given_name = StringCol()

 12 surname = StringCol()

 13 def __str__(self):

 14 return “%s %s” % (self.given_name, self.surname)

 15

 16 class Pet(SQLObject):

 17 name = StringCol()

 18 owner = ForeignKey(‘Person’)

 Note that the model file contains some boilerplate code on lines 1 through 6. Lines 7 and 8 include a
commented-out, empty sample data object to show you where to define your models.

c03.indd 57c03.indd 57 9/7/07 10:35:06 AM9/7/07 10:35:06 AM

58

Part I: Introduction to Python Frameworks

 The Person class defines the given_name and surname attributes, which are database columns that
contain the string objects denoted by StringCol . The class also establishes the string representation of
the object as the given name followed by the surname on lines 13 and 14.

 The Pet class holds the name of the pet (line 17), and a reference to a row in the Person table accom-
plished by initializing the attribute to a ForeignKey object and providing the name of the Person table
as an argument (line 18).

 Creating the Database
 At this point you’ve defined the basic data elements of the pet information store. You can now create the
database tables and even start playing around with them in a Python shell. To create the database, use
the tg-admin command from the base project directory as follows:

 C:\turbogears-examples\PetInfoStore>tg-admin sql create

 The sql subcommand allows you to interact with your database and takes a variety of commands. Here
are some of the most useful ones:

❑ create : You can use this command to create all the database tables for the SQLObject sub-
classes in the project.

❑ execute : Executes an arbitrary SQL command. Simply include the SQL commands you want to
execute in quotes on the command line. For example, the following uses the SQL command to
select all rows in the Person table:

 C:\turbogears-examples\PetInfoStore>tg-admin sql execute “select * from person;”

Using database URI sqlite:///C|\turbogears-

 examples\PetInfoStore/devdata.sqlite

id given_name surname

C:\turbogears-examples\PetInfoStore>

 Although this command is quite handy if you’re writing scripts to interact with the database,
you probably wouldn’t want to use it to interactively initialize or analyze the database. For this,
you can use the shell provided by TurboGears that simplifies interactively manipulating the
database.

❑ list : Generates a list of all the SQLObject classes that will be created with a create command.

❑ sql : Shows the SQL command that will be used to create the tables with a create command.

 Initializing the Database with the Interactive Shell
 As noted in the previous section, you could use the execute command to load the database from the
command line, but TurboGears also provides an interactive shell that makes this much simpler. To start
the shell, invoke the tg-admin command from the base project directory again, this time providing the
 shell subcommand as follows:

 C:\turbogears-examples\PetInfoStore>tg-admin shell

 This starts an interactive Python shell, initialized to the configuration of your project. It gives you access
to all your model classes, as well as any other classes you’ve defined. Listing 3-2 shows a sample interac-
tion with the shell that creates two new people and one pet.

c03.indd 58c03.indd 58 9/7/07 10:35:07 AM9/7/07 10:35:07 AM

Chapter 3: Introducing the Frameworks

59

 Listing 3-2: An example of TurboGears Python shell interaction

 1 C:\turbogears-examples\PetInfoStore>tg-admin shell

 2 Python 2.4.4 (#71, Oct 18 2006, 08:34:43) [MSC

➦

 v.1310 32 bit (Intel)] on win32

 3 Type “help”, “copyright”, “credits” or “license” for more information.

 4 (CustomShell)

 5 >>> ray = Person(given_name=”Ray”, surname=”Budd”)

 6 >>> dana = Person(given_name=”Dana”, surname=”Moore”)

 7 >>> everyone = Person.select()

 8 >>> list(everyone)

 9 [<Person 1 given_name=’Ray’ surname=’Budd’>,

➦

 <Person 2 given_name= ‘Dana’ surname=’Moore’>]

 10 >>> p = Person.select(Person.q.surname==’Budd’)

 11 >>> list(p)

 12 [<Person 1 given_name=’Ray’ surname=’Budd’>]

 13 >>> p = Person.get(2)

 14 >>> str(p)

 15 ‘Dana Moore’

 16 >>> thepets = Pet.select()

 17 >>> list(thepets)

 18 []

 19 >>> kat = Pet(name=”Herr Kat”, owner=ray)

 20 >>> str(kat)

 21 “<Pet 1 name=’Herr Kat’ ownerID=1>”

 22 >>> p = Pet(name=”Boots”, owner=2)

 23 >>> list(Pet.select())

 24 [<Pet 1 name=’Herr Kat’ ownerID=1>, <Pet 2 name=’Boots’ ownerID=2>]

 25 >>> hub.commit()

 26 >>> ^Z

 27 Do you wish to commit your database changes? [yes]

 28

 29 C:\turbogears-examples\PetInfoStore>

 The example interactive session in this listing shows the following useful methods to invoke when inter-
acting with the database:

❑ To create a new row in the database, simply create a new instance of the object as shown on lines
5 and 6. The object specification includes the values to assign to the object’s given_name and
 surname variables.

❑ The select method retrieves a list of rows as shown on line 7, and takes an optional expression
as shown on line 10. Note that the expression on line 10 accesses a special object q , defined for
all SQL objects, that should be used when creating select queries.

❑ To retrieve a single row when you know the identifier, use the get method with the automati-
cally generated identifier of the row to retrieve (line 13).

❑ To insert a row with a foreign key, you can either pass a variable initialized to the foreign table
entry (line 19), or reference the ID of the foreign table entry (line 22).

❑ When you exit the shell, you’ll be asked whether or not you want to save the changes to the
 database. You can also explicitly commit your changes with the commit method (line 25).

c03.indd 59c03.indd 59 9/7/07 10:35:07 AM9/7/07 10:35:07 AM

60

Part I: Introduction to Python Frameworks

 Initializing the Database with CatWalk
 Another alternative to interacting with your model objects via the interactive shell is to use CatWalk, a
web-based model administration tool that can be used to manage the data in the database. You can
access CatWalk using the toolbox subcommand of tg-admin , a web-based project administration tool.

 First, start the TurboGears Toolbox from the base project directory as shown here:

 C:\turbogears-examples\PetInfoStore>tg-admin toolbox

 This displays the web page shown in Figure 3-3 . It includes CatWalk and a variety of other utilities that
are initialized to the settings of your project. Most notably, these utilities include WebConsole, which is a
Python interpreter, ModelDesigner, which is used to design and generate code for SQLObjects, and
 Widget Browser, which lets you explore the widgets available for your project (discussed in Chapter 4).

Figure 3-3

c03.indd 60c03.indd 60 9/7/07 10:35:08 AM9/7/07 10:35:08 AM

Chapter 3: Introducing the Frameworks

61

 Click the CatWalk link, and you’re presented with the Person and Pet tables. If you select a table,
you’re shown all the records in the table, and through this interface you can add, delete, view, or modify
all the records in the database as shown in Figure 3-4 . You can even modify the columns displayed and
the order of the displayed columns.

Figure 3-4

 The Controller and View
 At this point, you’re ready to define the controller and view. In the following sections you’ll see what the
quick start generates for the default controller and learn a bit about how to add new pages to a web
application. You’ll also see several approaches to defining controllers and views that allow you to edit
and view pet owner and pet data.

c03.indd 61c03.indd 61 9/7/07 10:35:08 AM9/7/07 10:35:08 AM

62

Part I: Introduction to Python Frameworks

 The Quickstart Controller
 The generated project skeleton includes a default controller file, PetInfoStore\petinfostore\
controller.py . The controller initially displays a default web page with the time and a welcome mes-
sage, as shown previously in Figure 3-2 . To see how this is done, look at the generated controller file:

 1 from turbogears import controllers, expose

 2 # from model import *

 3 # import logging

 4 # log = logging.getLogger(“petinfostore.controllers”)

 5

 6 class Root(controllers.RootController):

 7 @expose(template=”petinfostore.templates.welcome”)

 8 def index(self):

 9 import time

 10 # log.debug(“Happy TurboGears Controller Responding For Duty”)

 11 return dict(now=time.ctime())

 This default code shows you the basics of the controller structure. Chapter 4 goes into more detail about
the web application controller, but for now you can just note a few general things about this controller
specification:

❑ The root controller is called Root and inherits from the controllers.RootController object.
A default version of this is automatically defined for you when you create a project skeleton as
shown on lines 6 through 11.

❑ The root controller gets associated with the root of the project’s URI (/), and serves as the pri-
mary controller for the web application.

❑ You can include additional controllers by defining a reference to them in the root controller. The
name of the reference automatically gets mapped to a subpath in the URL. For example, adding
the following attribute between lines 6 and 7 would associate the FooController with the web
site path ‘/foo’ and cause the FooController to be invoked when the user enters the location
 http://localhost:8080/foo into a web browser:

 foo = FooController()

 You’ll see an example of this when you incorporate the CatWalk controller in your web application in the
section “Adding CatWalk to the Controller” later in this chapter.

❑ Each method definition maintains the logic necessary to look up any required database data and
select a KID template to display the data based on the URI entered.

 Incorporating a Model Object Editor
 There are several ways to provide access to the pet data store and allow the user to specify and retrieve
the information. Each has its own strengths and limitations. Some require modification of the controller
only, and others require you to define a set of templates capable of displaying your data. In general, to
provide access to a model, you can do the following:

❑ Incorporate CatWalk into your application. The simplest approach to allow a user to access
your data objects is to simply embed the CatWalk utility in your application. All you need to do

c03.indd 62c03.indd 62 9/7/07 10:35:09 AM9/7/07 10:35:09 AM

Chapter 3: Introducing the Frameworks

63

is create a CatWalk controller as an attribute of your project’s root controller. This is by far the
simplest approach, but it is also the least practical in a real-world application due to the fact that
CatWalk provides direct access to any table and has a standard interface. Your real-world web
applications would most likely have tables that you don’t want to give the user direct access to,
as well as customized views to manipulate the data.

❑ Use the FastData extension. This is an extension to TurboGears that provides a basic editor for
database tables. It is similar to CatWalk in that you simply add the FastData DataController into
your root controller. There has been some discussion about incorporating FastData as a base
component of TurboGears, but it is still missing many features, and future support for it is
unknown. Therefore, it isn’t covered in detail here, but if you’re adventurous you can find
installation and usage information at http://docs.turbogears.org/1.0/FastData .

❑ Use the TGCrud extension. This is another extension to TurboGears that helps you incorporate
basic SQL object manipulation functions into your web application. Rather than provide a con-
troller and predefined templates like CatWalk or FastData, TGCrud generates controller and
template code that you can tailor to provide the basic data manipulation for your project. This
requires a little more work up front, but it ultimately pays off because you tailor the views to the
requirements of the web application (discussed in more detail in Chapter 4).

❑ Manually define the controller and view. Of course, you’re always free to define your own
views manually. This is useful in cases where you don’t want to provide basic retrieval and
 update logic, and would rather tailor the interaction with the model objects of the web
application.

 Adding CatWalk to the Controller
 The easiest way to provide access to model objects is by including the CatWalk utility in your web
 application. All that you need to do to provide this capability is add the CatWalk controller to the root
controller of your project. To do this, open the skeleton controller file, PetInfoStore\petinfostore\
controller.py , and add the code shown on lines 2 and 8 here:

 1 from turbogears import controllers, expose

 2 from turbogears.toolbox import catwalk

 3 # from model import *

 4 # import logging

 5 # log = logging.getLogger(“petinfostore.controllers”)

 6

 7 class Root(controllers.RootController):

 8 catwalk = catwalk.CatWalk()

 9 @expose(template=”petinfostore.templates.welcome”)

 10 def index(self):

 11 ...

 Line 2 simply imports the CatWalk utility from the turbogears.toolbox package. Line 8 adds a new
path called /catwalk to your web application that gets forwarded to the CatWalk controller. Note that
the name of the new path is determined by the name of the attribute on line 8. For example, if the attri-
bute were named edit , the path created would be /edit .

c03.indd 63c03.indd 63 9/7/07 10:35:09 AM9/7/07 10:35:09 AM

64

Part I: Introduction to Python Frameworks

 If you save the file at this point and the web application is already running, the web server detects
the changed file and automatically reloads the web application for you. Otherwise, you can start the
web application by running the start-petinfostore.py script, and open a browser to the web
application at http://localhost:8080/ . Notice that the index still shows the welcome template.
This is due to the index mapping at line 10. However, you can get to the new path by browsing to
 http://localhost:8080/catwalk . The result is the same page that was shown previously in
Figure 3-4 .

 Defining a Tailored View
 In the real world, you’ll generally want to use tailored views either generated with the TGCrud exten-
sion or manually written instead of using CatWalk. This allows a web application to create a more user-
friendly and unique look and feel, as well as to more effectively control access to the components in the
model. In this section you’ll see how to create a simple view (a Kid template) that shows the pet informa-
tion for a particular pet owner.

 You can use a Kid template to embed Python code in an XHTML document. In a TurboGears project, the
Kid templates for a package appear in a templates directory under the package directory. The example
pet information store project includes a PetInfoStore/petinfostore/templates directory that
already contains the following three template files:

❑ login.kid: Ignore this for now. It’s used when performing multi-user management, which isn’t
applicable to this example pet information store application.

❑ master.kid: This is an example of a template that establishes the look and feel of all pages on the
site. One advantage to using Kid templates is that common web site components like the header
and footer need to be defined only once. These components are defined in a master template
that gets extended by each template responsible for creating a specific view. (You’ll learn more
about how to define common behaviors in Kid templates in Part II.)

❑ welcome.kid: This template creates the default view presented for a new project (previously
shown in Figure 3-2). Note that this template uses the master template to create a
common header.

 To create the tailored view, define a new Kid template, petinfov1.kid , under the templates directory
as shown in Listing 3-3 .

 Listing 3-3: The initial version of the petinfov1.kid template

 1 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”

 2 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

 3 <html xmlns=”http://www.w3.org/1999/xhtml”xmlns:py=”http://purl.org/kid/ns#”

 4 py:extends=”’master.kid’”>

 5 <head>

 6 <meta content=”text/html; charset=utf-8”

 7 http-equiv=”Content-Type” py:replace=”’’”/>

 8 <title>Welcome to the Pet Information Store</title>

 9 </head>

c03.indd 64c03.indd 64 9/7/07 10:35:09 AM9/7/07 10:35:09 AM

Chapter 3: Introducing the Frameworks

65

Figure 3-5

 10 <body>

 11 <select id=”personOption”>

 12 <option py:for=”person in people”

 13 id=”${person.id}” value=”${person.id}”>

 14 ${person.given_name} ${person.surname}

 15 </option>

 16 </select>

 17 <div id=”pets-div” name=”pets-div”></div>

 18 </body>

 19 </html>

 This template takes a list of Person model objects as input and creates a select element containing an
entry for each person, as shown in Figure 3-5 .

 At first glance, it doesn’t appear much different than a standard HTML document. A few important dif-
ferences should be noted, though:

❑ The template includes an additional namespace defined by xmlns:py=”http://purl.org/
kid/ns#” on line 3. This establishes a set of attributes and elements specific to Python that can
be used to incorporate Pythonic elements into an otherwise normal HTML element. Any
 elements or attributes that start with py are from this namespace.

c03.indd 65c03.indd 65 9/7/07 10:35:10 AM9/7/07 10:35:10 AM

66

Part I: Introduction to Python Frameworks

❑ Line 4 adds the attribute py:extends to the HTML element, which causes the template to
adopt the common look and feel of the web site as defined in master.kid . This removes the
 TurboGears header and footer, as shown in Figure 3-6 .

Figure 3-6

❑ On line 12, the py:for attribute is used to create a Python for loop construct. This causes an
 option element to be created for each element in the list of people.

❑ A Python expression can be embedded in the Kid template by enclosing it in braces with a lead-
ing dollar sign, as in ${<expr>}) . This is shown on line 13 where the ID and value of the option
are set to the Person model object’s id attribute value.

❑ Line 14 defines two expressions that retrieve the given_name and surname from the person
model object to create the value displayed in the drop-down list.

❑ Line 17 creates an empty div element that will be extended later to include the pets associated
with the selected person.

 Calling the View from the Controller
 Now that you’ve defined the view, you have to add a bit of plumbing to allow it to be accessed as a part
of the web application. In this section, you define a new path in the root controller that goes to the new
 petinfo.kid template.

 Previously, you defined a new path in the web application when you added a reference to CatWalk to
the root controller. You can also add a path by defining a new method in the root controller, as shown in
Listing 3-4 where the petview method is defined.

c03.indd 66c03.indd 66 9/7/07 10:35:11 AM9/7/07 10:35:11 AM

Chapter 3: Introducing the Frameworks

67

 Listing 3-4: Defining an additional petview path in the root controller

 1 from turbogears import controllers, expose

 2 from turbogears.toolbox import catwalk

 3 from model import *

 4 import logging

 5 log = logging.getLogger(“petinfostore.controllersv1”)

 6

 7 class Root(controllers.RootController):

 8 catwalk = catwalk.CatWalk()

 9

 10 @expose(template=”petinfostore.templates.welcome”)

 11 def index(self):

 12 import time

 13 # log.debug(“Happy TurboGears Controller Responding For Duty”)

 14 return dict(now=time.ctime())

 15

 16 @expose(template=”petinfostore.templates.petinfov1”)

 17 def petview(self):

 18 log.info(“loading the pet view”)

 19 return dict(people=Person.select())

 There are several interesting aspects of a controller that are exhibited in the listing:

❑ The method defined on lines 16 through 19 adds a new path, /petview , in the web application.
The path name is determined by the name of the method (line 17).

❑ The Kid template must be exposed with the decorator in order to be called with an external
request. The template should be specified with the full package name of the template (which in
this case is petinfostore.templates) and the name of the template without the .kid exten-
sion (petinfov1).

❑ Recall that line 12 of Listing 3-3 defined a for loop that iterates over the people variable con-
taining a list of Person model objects. The controller is responsible for defining any such vari-
ables accessed in the Kid template and returning them in a dictionary. In this case, the select
method is used on line 19 to select all the Person model objects. The result of the select
 statement is associated with the people key in the dictionary that gets returned from the
 petview method.

❑ To perform logging in your controller, you can use the standard Python logging method.
In Listing 3-4 , this was done as follows:

❑ Line 4 imports the logging package.

❑ Line 5 creates a log variable and initializes it to the controller logger.

❑ Line 18 uses the standard log method info.

 At this point, if you save your controller and browse to http://localhost:8080/petview , you’ll
see the new view in the web application (which should be similar to what was shown previously in
 Figure 3-5).

c03.indd 67c03.indd 67 9/7/07 10:35:11 AM9/7/07 10:35:11 AM

68

Part I: Introduction to Python Frameworks

 Extending the Template to Display the Pet Names
 The next step in defining the web application is to extend the Kid template to make an asynchronous call
to the server and get the list of pets associated with a given pet owner. In Chapter 2 you had to write
 several lines of code to correctly set up, configure, and make an asynchronous call. In this section, you’ll
see how to avoid writing most of the boilerplate code by using the MochiKit JavaScript library.

 With MochiKit, you can define the XMLHttpRequest in a single line and associate it with a simple call-
back function on another line. To see how this is done, define the template file petinfov2.kid as shown
in Listing 3-5 .

 Listing 3-5: The petinfov2.kid template file

 1 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”

 2 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

 3 <html xmlns=”http://www.w3.org/1999/xhtml”

 4 xmlns:py=”http://purl.org/kid/ns#”

 5 py:extends=”’master.kid’”>

 6 <head>

 7 <meta content=”text/html; charset=utf-8”

 8 http-equiv=”Content-Type” py:replace=”’’”/>

 9 <title>Welcome to the Pet Information Store</title>

 10 <script src=”${tg.tg_js}/MochiKit.js”/>

 11 <script>

 12 function handleChange() {

 13 var owner = $(“personOption”).value;

 14 d = loadJSONDoc(“/search”, {owner: owner});

 15 d.addCallback(handleCallback);

 16 }

 17

 18 function handleCallback(result) {

 19 var petDiv = $(“pets-div”);

 20 petDiv.innerHTML = “<p>has “ + result.pets.length +

 21 “ pets: “ + result.pets + “</p>”

 22 }

 23 </script>

 24 </head>

 25 <body>

 26 <select id=”personOption” onchange=”handleChange()”>

 27 <option py:for=”person in people”

 28 id=”${person.id}” value=”${person.id}”>

 29 ${person.given_name} ${person.surname}

 30 </option>

 31 </select>

 32 <div id=”pets-div” name=”pets-div”></div>

 33 </body>

 34 </html>

 This listing shows how easy it is to define an XMLHttpRequest and callback in TurboGears. Specifically:

❑ The MochiKit library must be included in the template, as is done on line 10. The tg.tg_js
variable is automatically available to your templates and specifies the location of MochiKit.js .
As a result, your template can use any of the MochiKit library components.

c03.indd 68c03.indd 68 9/7/07 10:35:12 AM9/7/07 10:35:12 AM

Chapter 3: Introducing the Frameworks

69

❑ The script on lines 10 through 23 defines two functions. handleChange gets invoked when the
user changes the personOption element, and handleCallback is the function that gets
 invoked when the asynchronous request completes.

 More specifically, the handleChange function does the following:

1. The selected value is retrieved on line 13 and saved in the owner variable. This uses a con-
venient $(<id>) function that is defined in MochiKit and is basically shorthand for a call
to getElementById .

2. The XMLHttpRequest is created with the call to loadJSONDoc() on line 14. The function
takes a URI, “ /search ”, and an optional argument list contains a single key-value pair
where the key is “owner” and the value is the ID of the selected person.

3. The function returns an instance of a Deferred object. This is a special class defined in
MochiKit that is essentially a wrapper for asynchronous XMLHttpRequests. Don’t worry
too much about the details of the Deferred object — you learn about these in much
greater detail in Part II. For now, assume you can create a variety of different types of asyn-
chronous requests that get turned into XMLHttpRequest objects.

4. The callback is added to the Deferred object on line 15. This effectively tells the request to
 invoke the callback when the request has completed.

 The handleCallback function displays the results of the asynchronous call as follows:

1. The pet-div is retrieved on line 19, again using the $() shorthand notation for
getElementById.

2. After the div is retrieved, the innerHTML of the div is set to a snippet of HTML based on
the response from the server (lines 20 and 21).

3. The value of the result variable is set to the response from the server.

❑ Line 26 defines an event handler for the personOption element that invokes the handleChange
function when the user changes the selected option element.

 Defining the Search View in the Controller
 At this point, the view is finished. Each time the user selects a different pet owner, an asynchronous call
will be made to http://localhost:8080/search with the selected owner ID. The only step that
remains is to define the path, /search , and have it return the list of pets for a given owner ID.
To do this, add the following new method to controllers.py :

 @expose()

 def search(self, owner):

 pets = [(entry.name) for entry in Pet.select(Pet.q.ownerID == owner)]

 log.info(“Got the pets for owner “ + owner + “: “ + str(pets))

 return dict(pets=pets)

c03.indd 69c03.indd 69 9/7/07 10:35:12 AM9/7/07 10:35:12 AM

70

Part I: Introduction to Python Frameworks

 This method does the following:

1. It takes the ID of an owner as an input argument.

2. It performs a select operation on the Pet model object looking for all Pet objects where the
 ownerID is the same as the owner input argument. Note that the owner ID is not explicitly
 defined for the Pet model object, but is an automatic ID that generated by SQLObject for most
model objects.

3. It loops over the selected pets, and for each pet (entry), itsaves the value of the name attribute
in an array called pets .

4. It returns a dictionary containing a single key, pets , that gets set to the array of pet names.

 Now if you save all the modified files and browse to http://localhost:8080/petview , you should
get a page that looks similar to the one shown in Figure 3-7 . This page displays the final version of the
list of pets for a given pet owner.

Figure 3-7

 Next you’ll explore Django, another popular web framework that is similar to TurboGears in many ways
but is quite different in other ways. This is due to the fact that the motivation for developing Django was
quite different from the motivation behind TurboGears even though both frameworks are intended to
address similar needs.

c03.indd 70c03.indd 70 9/7/07 10:35:12 AM9/7/07 10:35:12 AM

Chapter 3: Introducing the Frameworks

71

 Introduction to Django
 Now that you’ve seen the basics of TurboGears, you’re ready to explore Django, another similar yet very
different Python web framework. Here you’ll get an overview of Django’s history and capabilities that
the framework provides. After this introduction, you’ll get into the code with another example. In this
case, you’ll take the example that you just implemented in TurboGears and reimplement it in Django. As
you proceed, you’ll see many of the similarities and differences between the two frameworks.

 Django History
 Looking at the history of Django helps put the capabilities that are or are not included in the framework
into better perspective. Django was originally developed at World Online, a web development company
for a newspaper in Lawrence, Kansas. The company maintains web sites related to the newspaper,
among other sites. The group of web developers responsible for the original development of Django
includes Adrian Holovaty, Jacob Kaplan-Moss, Simon Willison, and Wilson Miner. Django development
was started in the fall of 2003 and open sourced in 2005. It was developed from scratch to be a frame-
work that helps produce web sites rapidly. Given the need to frequently and quickly update the sites to
post the latest news, the framework is focused on reducing the pain required to do this.

 Two central principles of the Django framework (outlined as design philosophies) are to maintain
loose coupling between the layers of the framework, and the Don’t Repeat Yourself (DRY)
philosophy. Loose coupling between the component layers ensures that undue dependencies aren’t
introduced into the system, and the DRY attempts to remove any redundancy such as specifying the
makeup of a model object in both the database and the model class specification.

 Main Django Components
 The most apparent difference between TurboGears and Django is that Django was developed from the
ground up, incorporating no existing components, whereas TurboGears is made up almost entirely of
existing components.

 Work with What You Have … or Not
 Django and TurboGears have very different design philosophies. At the most basic
level, TurboGears is generally focused on integrating existing components, whereas the
driving force for Django was to implement a framework from the ground up due to
limitations in existing components when it was being developed.

 Both projects provide an outline of the project philosophy, which gives developers an idea
of where the technologies will be headed in the future. You can read the Django design
philosophy at www.djangoproject.com/documentation/design_ philosophies/ .
The TurboGears philosophy is outlined at http://docs.turbogears.org/1.0/
Philosophy , and you can garner additional insights at www.turbogears.org/about/
index.html .

c03.indd 71c03.indd 71 9/7/07 10:35:13 AM9/7/07 10:35:13 AM

72

Part I: Introduction to Python Frameworks

 The main Django components include the following:

❑ Templates: Django templates allow you to define control logic and embed variables in a normal
HTML page similar to the way you would for Kid pages in TurboGears. The template language
is intended to provide the power necessary to dynamically determine the content of a page
based on changing data, while remaining simple enough for nonprogrammers to use.

❑ Views: The view is responsible for gathering model data and processing a template in the con-
text of the gathered data in order to create an HTML page. A view is simply a Python function
that returns the generated HTML page in an HTTP response for the given request.

❑ URL mappings: URL mappings are used to translate a request from a browser to an invocation
of a view function. Based on regular expressions, they allow you to easily define readable URLs
and translate from a request like http://localhost:8000/petview/1 to a Django view
function.

❑ Models: A model is the Django ORM. Model objects can be mapped automatically to and from
database tables. Like SQLObjects, the base Django model object provides an abstraction of stan-
dard SQL operations. This simplifies the code required to interact with the database from a
Python shell or script.

 Like TurboGears, Django also includes a wide variety of other features and utilities, such as a command-
line project administration tool, a powerful and highly configurable web-based administration utility, a
syndication framework for generating RSS and ATOM feeds, and an embedded web server.

 An important difference between TurboGears and Django is that TurboGears uses the concept of a
 project, whereas Django uses the concepts of both a project and an application. An application contains
the specification of the models and views, and the project includes configuration details like the database
configuration and URL mappings. A single project can contain multiple applications.

 Alternate Components
 Because it is not based on existing components like TurboGears is, Django isn’t quite as focused on inte-
gration and support for alternate components. It does, however, allow you to use a different template
language. You can also use a different ORM to create the model — with one significant drawback. A
 powerful web-based project administration utility included with Django is tightly coupled to the
 model classes and can’t be used with alternate implementations.

 MVC Architecture in Django
 Although Django uses the MVC architecture, the developers have a slightly different interpretation of
the MVC concept when compared to TurboGears and most other web frameworks. Unfortunately, this
can cause a lot of confusion when a developer initially investigates different frameworks, but ultimately
the capabilities are quite similar. In Django the distinctions between the three main components exist as
they do in other frameworks, but the names and responsibilities of each component are a bit different.
Basically, the main components are as follows:

c03.indd 72c03.indd 72 9/7/07 10:35:13 AM9/7/07 10:35:13 AM

Chapter 3: Introducing the Frameworks

73

❑ Templates: Even though these are quite similar to Kid templates in scope, they are not consid-
ered the view in Django due to the fact that they simply present the data rather than determine
what data should be displayed. Templates are maintained in separate directories from the other
project files, and can be shared across projects and applications.

❑ View functions: The view looks similar to a controller in other web frameworks, but is consid-
ered the view in Django because it determines what data should be displayed. Unfortunately,
this may be a point of some confusion for developers when they’re initially examining different
frameworks. Views are defined in the views.py file in the application’s home directory. Each
view is a function that consists of the incoming HTTP request and arguments.

❑ Django framework and URL mappings: Django developers consider the framework, and more
specifically the process of URL mapping, as the controller because it is though this process that a
view is selected based on user input (the URL of the web request). URL mappings are defined
for a project and shared across applications. The definition is in the urls.py file in the project
home directory.

❑ Model classes: The model in Django is determined by the model classes maintained for an appli-
cation. This is very similar to the approach in TurboGears and most other web frameworks. Like
views, model classes are specific to an application and are maintained in a models.py file in the
application’s home directory. Much like TurboGears, each model includes the column specifica-
tion and is frequently used to construct the database.

 The reasoning behind this interpretation of MVC is described fully in an FAQ at www.djangopro-
ject.com/documentation/faq/#django-appears-to-be-a-mvc-framework-but-you-

call-the-controller-the-view-and-the-view-the-template-how-come-you-

don-t-use-the-standard-names.

 Creating an Example Application
 To get a better feel for the differences and similarities between TurboGears and Django, you’ll now see
how to implement the same pet information store application that you implemented in TurboGears, this
time using Django.

 Creating the Project Skeleton
 Similar to the TurboGears tg-admin command, Django provides two commands — django-admin.
py and manage.py — that you can use to perform administrative tasks such as creating a project
 skeleton and creating a project database. Both command scripts take the same set of subcommands, but
django-admin.py is project-independent, whereas manage.py is generated when you create a new
project and should be used only when working with that project. The following table lists and describes
some of the commands commonly encountered when managing a Django project.

c03.indd 73c03.indd 73 9/7/07 10:35:14 AM9/7/07 10:35:14 AM

74

Part I: Introduction to Python Frameworks

 Script Subcommand Example Description

 django-admin.py startproject
[project name]

 python
django-admin.py

 startproject

petinfosite

 Create a new project.

 manage.py startapp
[application

name]

 python manage.py
startapp

 petinfostore

 Create a new application for
a project.

 manage.py runserver python manage.py
runserver

 Start the embedded web
server for a project.

 manage.py syncdb python manage.py
syncdb

 Create the database for a
 project.

 manage.py shell python manage.py
shell

 Start an interactive Python
shell initialized to the project
settings.

 To start the example application, use the following command to create a new empty project called
 petinfosite :

 C:\django-examples>python django-admin.py startproject petinfosite

 This creates a new petinfosite directory that contains the basic skeleton necessary to build a web site.
It includes the following:

❑ manage.py : As mentioned previously, you can invoke this script to perform administrative
tasks on your project.

❑ settings.py : This script defines a collection of settings such as the database configuration or
time zone of the project.

❑ urls.py : This is a list of URLs that this project contains.

 You may have noticed that the project does not have any skeletons for models, views, or controllers.
This is because Django structures projects in a slightly different way than TurboGears does. A project can
consist of multiple applications, each containing the models, views, and controllers necessary for
the application.

 Next, create a new application for your pet information store using the manage.py script as follows:

 C:\django-examples\petinfosite>python manage.py startapp petinfostore

 This creates a new directory called petinfostore that contains Python scripts to hold the application’s
models (models.py) and views (views.py).

c03.indd 74c03.indd 74 9/7/07 10:35:14 AM9/7/07 10:35:14 AM

Chapter 3: Introducing the Frameworks

75

 Before getting into the details of the model definition, you need to configure the database to be used by
the project. Open settings.py and set the database to use a SQLite database file in the project’s home
directory by defining the DATABASE_ENGINE and DATABASE_NAME as follows:

 DATABASE_ENGINE = ‘sqlite3’

DATABASE_NAME = ‘c:/django-examples/petinfosite/site.db’

 You also need to add your new application to the list of applications installed in the project. This is done
by adding a line for the application in the INSTALLED_APPS setting as follows:

 INSTALLED_APPS = (

 ‘django.contrib.auth’,

 ‘django.contrib.contenttypes’,

 ‘django.contrib.sessions’,

 ‘django.contrib.sites’,

 ‘petinfosite.petinfostore’

)

 Like TurboGears, Django allows you to automatically test your web application on a web server with a
single command. However, rather than including a specific script as you did in TurboGears, you start the
embedded web server with the manage.py command as follows:

 C:\django-examples\petinfosite>python manage.py runserver

 Browse to http://localhost:8000 and you’ll see the welcome screen shown in Figure 3-8 .

Figure 3-8

c03.indd 75c03.indd 75 9/7/07 10:35:15 AM9/7/07 10:35:15 AM

76

Part I: Introduction to Python Frameworks

 The Model
 Similar to the example in Chapter 2 and the TurboGears example earlier in this chapter, the first step in
defining the MVC web application is to define the model. In Django, this involves extending the applica-
tion models file, models.py , to include the project-specific model classes that are required.

 Defining the Model Classes
 Like the TurboGears project, the Django model consists of two objects: Person and Pet . Define these
objects by modifying the petinfostore/models.py file as shown in Listing 3-6 .

 Listing 3-6: The Django models.py file

 1 from django.db import models

 2

 3 # Create your models here.

 4 class Person(models.Model):

 5 given_name = models.CharField(‘given name’, maxlength=50)

 6 surname = models.CharField(maxlength=50)

 7 def __str__(self):

 8 return “%s %s” % (self.given_name, self.surname)

 9

 10 class Pet(models.Model):

 11 name = models.CharField(maxlength=50)

 12 owner = models.ForeignKey(Person)

 13 def __str__(self):

 14 return self.name

 The listing shows how similar the TurboGears and Django model definitions are on the surface. One dif-
ference is that Django provides its own base model class, model.Model , for the application model
instead of using SQLObject . In addition, the internal implementations of the SQLObject and Model base
classes are quite different. Although these classes have similar functionality, they provide very different
methods and attributes for manipulating the models, as you’ll see when you explore the interactive
Python shell later in this chapter. The field variables are also initialized using different classes. Django
uses models.CharField to define a character column, and it uses model.ForeignKey for foreign keys.

 The Person class is defined on lines 4 through 8, and includes the given name and the surname. Note
that model.CharField requires you to specify a maxlength value, and you can provide a friendlier ver-
sion of the field name as an optional initial argument (line 5). The Pet class is defined on lines 10
through 14, and contains a pet name as well as a foreign key reference to the Person model object. Both
classes override Python’s standard string method __str__ to ensure the object is presented in a human-
readable format.

 Creating the Database
 After defining your model objects, you’re ready to create the database. To do this, you use the syncdb
subcommand of manage.py as shown in Listing 3-7 . When the syncdb command is run the first time, it
doesn’t just create tables for your application’s model objects (the petinfostore_person and
 petinfostore_pet tables). It also creates and initializes a variety of tables for the applications defined
in the project’s INSTALLED_APPS setting that manage other aspects of the project, such as the session- or
user management provided by the framework. During the execution of the syncdb command, you are
asked if you want to create a superuser. Answer yes to this question and define a name, e-mail address,
and password for the user as shown in Listing 3-7.

c03.indd 76c03.indd 76 9/7/07 10:35:15 AM9/7/07 10:35:15 AM

Chapter 3: Introducing the Frameworks

77

 Listing 3-7: Creating the database with the syncdb command

 C:\django-examples\petinfosite>python manage.py syncdb

Creating table auth_message

Creating table auth_group

Creating table auth_user

Creating table auth_permission

Creating many-to-many tables for Group model

Creating many-to-many tables for User model

Creating table django_content_type

Creating table django_session

Creating table django_site

Creating table petinfostore_pet

Creating table petinfostore_person

You just installed Django’s auth system, which means you don’t have any superusers

 defined.

Would you like to create one now? (yes/no): yes

Username: root

E-mail address: root@nosite.com

Password:

Password (again):

Superuser created successfully.

Adding permission ‘message | Can add message’

...

 Initializing the Database with the Interactive Shell
 Django also provides an interactive shell you can use to load or explore the database. To invoke this
interactive shell, use the shell subcommand with the manage.py script as shown in Listing 3-8 .

 Listing 3-8: An example of a Django shell interaction

 1 C:\django-examples\petinfosite>python manage.py shell

 2 Python 2.4.4 (#71, Oct 18 2006, 08:34:43) [MSC v.1310 32 bit (Intel)]

➦

 on win32

 3 Type “help”, “copyright”, “credits” or “license” for more information.

 4 (InteractiveConsole)

 5 >>> from petinfosite.petinfostore.models import Pet, Person

 6 >>> bill = Person(given_name=”Bill”, surname=”Wright”)

 7 >>> dana = Person(given_name=”Dana”, surname=”Moore”)

 8 >>> everyone = Person.objects.all()

 9 >>> str(everyone)

 10 ‘[]’

 11 >>> bill.save()

 12 >>> dana.save()

 13 >>> everyone = Person.objects.all()

 14 >>> str(everyone)

 15 ‘[<Person: Bill Wright>, <Person: Dana Moore>]’

 16 >>> Person.objects.filter(id=1)

 17 [<Person: Bill Wright>]

 18 >>> Person.objects.filter(id=2)

 19 [<Person: Dana Moore>]

 20 >>> Person.objects.filter(surname=”Wright”)

 21 [<Person: Bill Wright>]

(continued)

c03.indd 77c03.indd 77 9/7/07 10:35:15 AM9/7/07 10:35:15 AM

78

Part I: Introduction to Python Frameworks

 Listing 3-8 (continued)

 22 >>> max = Pet(name=”Max”, owner=bill)

 23 >>> max.save()

 24 >>> Pet.objects.all()

 25 [<Pet: Max>]

 26 >>> bill.pet_set.create(name=’Ginger’)

 27 <Pet: Ginger>

 28 >>> baxter = Pet(name=”Baxter”, owner=2)

 29 Traceback (most recent call last):

 30 File “<console>”, line 1, in ?

 31 File “c:\utilities\python-2.4\lib\site-packages\django-0.95.1-

➦

 py2.4.egg\django\db\models\base.py”, line 113, in __init__

 32 raise TypeError, “Invalid value: %r should be a %s instance, not a

➦

 %s” % (f.name, f.rel.to, type(rel_obj))

 33 TypeError: Invalid value: ‘owner’ should be a <class

➦

 ‘petinfosite.petinfostore.models.Person’> instance, not a <type ‘int’>

 34 >>> dana.pet_set.create(name=’Baxter’)

 35 <Pet: Baxter>

 36 >>> Pet.objects.all()

 37 [<Pet: Max>, <Pet: Ginger>, <Pet: Baxter>]

 38 >>> Pet.objects.exclude(owner=bill)

 39 [<Pet: Baxter>]

 40 >>> Pet.objects.filter(owner=bill).filter(name=”Ginger”)

 41 [<Pet: Ginger>]

 42 >>> Pet.objects.get(pk=2)

 43 <Pet: Ginger>

 44 >>> bill.pet_set.all()

 45 [<Pet: Max>, <Pet: Ginger>]

 46 >>> Pet.objects.get(name=”Ginger”)

 47 <Pet: Ginger>

 48 >>> Pet.objects.get(owner=bill)

 49 Traceback (most recent call last):

 50 File “<console>”, line 1, in ?

 51 File “c:\utilities\python-2.4\lib\site-packages\django-0.95.1-

➦

 py2.4.egg\django\db\models\manager.py”, line 67, in get

 52 return self.get_query_set().get(*args, **kwargs)

 53 File “c:\utilities\python-2.4\lib\site-packages\django-0.95.1-

➦

 py2.4.egg\django\db\models\query.py”, line 214, in get

 54 assert len(obj_list) == 1, “get() returned more than one %s --

➦

 it returned %s! Lookup parameters were %s” % (self.model._meta.object_name,

➦

 len(obj_list), kwargs)

 55 AssertionError: get() returned more than one Pet -- it returned 2!

➦

 Lookup

 parameters were {‘owner’: <Person: Bill Wright>}

 56 >>> ^Z

 57

 58 C:\django-examples\petinfosite>

 This example session shows the basics of interacting with the Django model objects:

❑ Before you can use an application’s model objects, they must be imported with an import state-
ment as shown on line 5.

❑ You can create a new instance of a Person model object and assign it to a variable by providing
the given_name and surname as shown on lines 6 and 7.

c03.indd 78c03.indd 78 9/7/07 10:35:16 AM9/7/07 10:35:16 AM

Chapter 3: Introducing the Frameworks

79

❑ You can select all rows in the database for a model object by using the all method as shown on
lines 8 and line 13. Notice that the result of the all method on line 8 is empty because the bill
and dana Person objects have not been saved to the database.

❑ Before you can create an object as a row in the database, you need to save it by invoking the
 save method (lines 11 and 12). Notice that after the bill and dana objects are saved, the result
of the all invocation is a list of two model objects.

❑ You can use the filter method to select a list of model objects that match a given attribute, as
shown on lines 16 through 21.

❑ You can create an object with a foreign key by referencing a variable that holds the object the for-
eign key refers to. For example, on line 22, a new Pet named Max is created, and the owner is
defined as a Person named bill . However, as is shown on lines 28 through 33, an attempt to
use the ID of the foreign key alone results in an error indicating the type does not match.

❑ When a foreign key (the key to the Person table in this example) is defined, a set is created in the
foreign table (the Person table itself). You can also create an object using the create method on
this set as shown on lines 26 and 34. Line 26 causes a new Pet to be created with the name
 Ginger , and the owner is set to the Person named Bill Wright . The object is automatically
included in the pet_set for Bill Wright . Note that you don’t have to save the object in this case.

❑ You can use the exclude method to select a list of model objects that do not match a given attri-
bute (line 38).

❑ You can chain together filter and exclude method calls to produce simple logic for mode
object selection. For example, line 40 gets all pets named Ginger who are owned by Bill Wright.

❑ You can use the get method to select a single model object (line 46), but do so with caution
 because it reports an error when multiple records match a single call (lines 48 through 55).

 The Administration Application
 The interactive shell isn’t the only way to define the model objects in the database — Django provides a
more user-friendly web-based approach as well. Similar to the CatWalk utility in TurboGears, Django
includes an administration utility that allows you to edit and view your model objects. In the following
sections, you’ll see how to incorporate and tailor this utility for the pet information store, as well as the
learning basics for interacting with the utility.

 Incorporating the Administration Application in the Web Site
 One very handy aspect of Django is that it provides a highly powerful and configurable administration
utility that can be incorporated in a web application with a minimum of fuss. To include the administra-
tion utility in the pet information store, do the following:

1. Update the installed applications setting in settings . py to reference the administration
application:

 INSTALLED_APPS = (

 ‘django.contrib.auth’,

 ‘django.contrib.contenttypes’,

 ‘django.contrib.sessions’,

 ‘django.contrib.sites’,

 ‘django.contrib.admin’,

 ‘petinfosite.petinfostore’

)

c03.indd 79c03.indd 79 9/7/07 10:35:16 AM9/7/07 10:35:16 AM

80

Part I: Introduction to Python Frameworks

2. Use the syncdb command to rebuild the database, which adds new tables used by the adminis-
tration application to it:

 C:\django-examples\petinfosite>python manage.py syncdb

Creating table django_admin_log

Adding permission ‘log entry | Can add log entry’

Adding permission ‘log entry | Can change log entry’

Adding permission ‘log entry | Can delete log entry’

3. Add the URLs used by the administration application to the list of URLs for the web site that is
maintained in petinfosite/urls.py . Django makes this even easier by including commented-
out code that can do this for you. Simply open the file and uncomment the include line in the
file as follows:

 # Uncomment this for admin:

 (r’^admin/’, include(‘django.contrib.admin.urls’)),

4. Start the web application with the runserver command. At this point, if you go to
 http://localhost:8000/admin/ you’re presented with the login screen shown in Figure 3-9 .

Figure 3-9

c03.indd 80c03.indd 80 9/7/07 10:35:17 AM9/7/07 10:35:17 AM

Chapter 3: Introducing the Frameworks

81

 This is all that’s required to get a basic administration utility for the project. You can now log in to the
administration site using the username and password you defined when you ran the syncdb command
for the first time (in Listing 3-7). After logging in, you are taken to the default administration page
shown in Figure 3-10 . This page allows you to manipulate the users, groups, and sites defined in the
project. For now, don’t worry too much about the details of this basic site administration (you’ll learn
more about this in Part III).

Figure 3-10

 Adding Models to the Administration Application
 Although the initial administration application is useful for general site management, it doesn’t provide
any capabilities that are specific to the pet information store application. The administrator of the pet
information store should be able to view and modify the Pet and Person model objects. To provide
these capabilities, you need to specify a special Admin inner class for each model in petinfosite/
petinfostore/models.py that causes the model to be incorporated in the administration interface.
Define this Admin class as follows:

 1 from django.db import models

 2

 3 # Create your models here.

 4 class Person(models.Model):

 5 given_name = models.CharField(‘given name’, maxlength=50)

 6 surname = models.CharField(maxlength=50)

 7 def __str__(self):

 8 return “%s %s” % (self.given_name, self.surname)

(continued)

c03.indd 81c03.indd 81 9/7/07 10:35:20 AM9/7/07 10:35:20 AM

82

Part I: Introduction to Python Frameworks

 9 class Admin:

 10 pass

 11

 12 class Pet(models.Model):

 13 name = models.CharField(maxlength=50)

 14 owner = models.ForeignKey(Person)

 15 def __str__(self):

 16 return self.name

 17 class Admin:

 18 pass

 Note that the Admin class initially includes only the pass statement to indicate that the class has no
methods. If you reload the main admininistration web page, you’ll see that the model classes are now
included in the list of site administration elements, as shown in Figure 3-11 .

Figure 3-11

 Using the Administration Application
 Now that your model objects are included in the administration view, you can easily add, delete, or
modify instances of the model objects as follows:

❑ On the main administration page, select either Pets or Persons object, or click the corresponding
Change button. This displays the administration page for the model object, with a list of all
instances of the model object from the database (see Figure 3-12). You can use the Add button
on either the main administration page (previously shown in Figure 3-11) or the page for each
model object (Figure 3-12) to create a new model object. Click this button and add a new
user now.

c03.indd 82c03.indd 82 9/7/07 10:35:20 AM9/7/07 10:35:20 AM

Chapter 3: Introducing the Frameworks

83

Figure 3-12

❑ Select any model object instance from the model object administration page to open the editor
for that object. Figure 3-13 shows the pet editor. Notice that the administrator utility selects an
appropriate form control based on the type of data maintained in the column. For example, the
pet owner is a drop-down list populated with the list of Person objects.

Figure 3-13

c03.indd 83c03.indd 83 9/7/07 10:35:21 AM9/7/07 10:35:21 AM

84

Part I: Introduction to Python Frameworks

❑ The history of all model object changes made through the administration view are also main-
tained. To see the changes made to a model object, click the History button. The history of recent
actions is also shown on the right side of the main administration page (as previously shown in
Figure 3-11). For example, if you change Ginger’s owner to Dana Moore, click the Save button,
and view Ginger’s history, you’ll see the change in ownership as shown in Figure 3-14 .

Figure 3-14

 Tailoring the Administration Application
 The administration application also allows you to easily tailor each view in a variety of ways. You’ll
learn more about this in Part III, but you can make two simple enhancements to the pet information store
example now. One nice enhancement would be to show the name of the pet owner next to the name of
the pet on the list of pets. You can do this by specifying a list_display attribute in the Admin inner
class of Pet that defines the way the list of model objects is presented. By default, the string representa-
tion of the object is shown in list view, but when you add the list_display attribute, you can explicitly
define the columns that will be included in the list view. For example, to include the name and owner of
the pet in the list of pets as shown in Figure 3-15 , you redefine the Admin class as follows:

 class Admin:

 list_display=(‘name’, ‘owner’)

c03.indd 84c03.indd 84 9/7/07 10:35:21 AM9/7/07 10:35:21 AM

Chapter 3: Introducing the Frameworks

85

Figure 3-15

 You can even add the ability to filter the displayed list of pets by adding the list_filter attribute as
follows:

 class Admin:

 list_display=(‘name’, ‘owner’)

 list_filter=[‘owner’]

 With this enhancement, the list of pets displayed on the right changes when the user selects elements in
the list filter on the left, as shown in Figure 3-16 .

Figure 3-16

c03.indd 85c03.indd 85 9/7/07 10:35:22 AM9/7/07 10:35:22 AM

86

Part I: Introduction to Python Frameworks

 Defining a View and a Template
 The administration application provides a powerful utility, but a web application generally still needs to
incorporate additional tailored views for site users. In this section you’ll see how to create a web page
that displays the pets for a selected owner. This new page will consist of a single template that contains
a drop-down list of all people model objects as well as an Update button, as shown in Figure 3-17 .
When the user selects a person and clicks the Update button, the pets owned by the selected person
are displayed (see Figure 3-18).

Figure 3-17

 In this simple example, you’ll implement a synchronous web page that completely refreshes the page
with each request rather than using an asynchronous request. This is not due to any inherent limitation
in the framework. A synchronous request is used here because by default Django doesn’t include a
 JavaScript library, but leaves the developer to select and incorporate a library on his or her own. As you
saw in the earlier MochiKit example, when you use a JavaScript library the creation of an asynchronous
request is greatly simplified. You’ll learn how to incorporate a third-party JavaScript library and make
asynchronous requests in Part III.

 Configuring the Project for Templates
 The first step in creating the new web page is to configure the project so it can use templates. When you
create a project skeleton, it doesn’t automatically define a location for the project’s template files. Instead,
you are required to explicitly create a location for your template files and reference that location in the
 TEMPLATE_DIRS setting in settings.py , which accepts multiple directories. This enables you to
 manage your template files separately and share them among multiple projects. On the other hand, it
also requires additional configuration when you’re setting up a new project, and requires additional
work to manage shared templates.

c03.indd 86c03.indd 86 9/7/07 10:35:22 AM9/7/07 10:35:22 AM

Chapter 3: Introducing the Frameworks

87

Figure 3-18

 For the pet information store example, create a new empty directory called templates under your base
project directory, c:/django-examples/petinfosite . Then define the new directory to the
 TEMPLATE_DIRS setting in settings.py as follows:

 TEMPLATE_DIRS = (

 # Put strings here, like “/home/html/django_templates”.

 # Always use forward slashes, even on Windows.

 “c:/django-examples/petinfosite/templates/”

)

 Defining the Template
 As previously discussed, a template file is a normal text file that looks a lot like an HTML file but it has
some additional capabilities. A template can inherit from another template, and it contains embedded
tags that define processing logic for the template as well as variables that get replaced with data when
the template is processed.

 There is a wide variety of tags that can be included in a template to add processing logic, such as stan-
dard flow-control tags for defining code blocks, loops, and conditionals. An embedded tag is surrounded
by braces and percent signs. For example, a code block named author can be defined with {% block
author %} . A variable is surrounded by double braces and contains the name of the variable. For exam-
ple, the variable foo would be referenced with {{ foo }} .

c03.indd 87c03.indd 87 9/7/07 10:35:23 AM9/7/07 10:35:23 AM

88

Part I: Introduction to Python Frameworks

 Django comes with a base set of tags, including tags that you can use to define control logic, among sev-
eral others. You can also define your own tags, or you can include external tag libraries for your project.
You can display a complete list of tags available to your web application from the administrator utility
(if it’s installed for the application) by browsing to http://localhost:8000/admin/doc/ . You can also
display this information by clicking the Documentation link in the upper-right corner of the administra-
tor utility. This link shows details about your project, including a list of the defined views and models.

 After configuring the templates directory for the project, create a new template called petinfo.html
under this directory and define it as shown in Listing 3-9 .

 Listing 3-9: The pet information template, petinfo.html

 1 <html>

 2 <head>

 3 <title>Welcome to the Pet Information Store</title>

 4 <script type=”text/javascript”>

 5 function doUpdate() {

 6 var owner = document.getElementById(“personOption”).value;

 7 window.location = “/petview/” + owner;

 8 }

 9 </script>

 10 </head>

 11 <body>

 12 <select id=”personOption”>

 13 {% for person in people %}

 14 <option id=”{{person.id}}” value=”{{person.id}}”>

 15 {{person.given_name}} {{person.surname}}

 16 </option>

 17 {% endfor %}

 18 </select>

 19 <button id=”updateBtn” onclick=”doUpdate()”>Update</button>

 20 {% if owner %}

 21 <p>

 22 {% if pets %}

 23 {{owner}} has pets:

 24 {% for pet in pets %}

 25 {{pet.name}}

 26 {% endfor %}

 27 {% else %}

 28 {{owner}} has no pets

 29 {% endif %}

 30 </p>

 31 {% endif %}

 32 </body>

 33 </html>

 This listing shows the basics of a template specification as follows:

❑ The template defines a basic HTML page that includes the normal base HTML elements such as
the head, title, and body.

❑ The template defines a select element, personOption , on line 12.

c03.indd 88c03.indd 88 9/7/07 10:35:23 AM9/7/07 10:35:23 AM

Chapter 3: Introducing the Frameworks

89

❑ The for loop defined on lines 13 through 17 creates an option element for each Person model
object in the people list. The template assumes that the people list will be provided as context
data when the template is evaluated. Note that the loop is explicitly terminated with the endfor
tag (line 17).

❑ The ID attribute of the option element is set to the ID of the person object, and the text dis-
played in the option defined on line 15 is the person’s given name and surname.

❑ The script defined on lines 4 through 9 is called when the user clicks the Update button. This
script gets the id of the currently selected person object and reloads the petview URL with this
value appended to the end. For example, when the user selects the person object that has an id
of Bill Wright , the URL that gets generated is http://localhost:8000/petview/1 .

❑ Lines 20 through 31 display the person’s name and a list of pets that the person owns when they
are provided as context data. However, the owner’s name and list of pets may not be included
in every request, because no one is selected when the user visits the page for the first time.

❑ Line 20 defines an if statement to verify that the owner was included with the request. When
no owner is included, the template doesn’t display any pet information.

❑ Line 22 uses another if statement to verify that the person has pets. If a person doesn’t have
any pets, the conditional returns false, and a message is displayed as defined on line 28.

❑ If the person has pets, the message on line 23 is displayed, and a for loop that begins on line 24
walks over the list of pets, prints out the name of each pet, and displays a message similar to
“Dana Moore has pets: Ginger Baxter” (as shown previously in Figure 3-18).

 Adding the View to the List of URL s
 Before defining the actual view object, you need to map a URL to the view. Django maintains the list
of URLs in a urlpatterns variable defined in the urls.py file at the project root. Recall that when
you added the administration utility, you uncommented a line in this file to include a set of URLs for
the utility:

 urlpatterns = patterns(‘’,

 # Example:

 # (r’^petinfosite/’, include(‘petinfosite.apps.foo.urls.foo’)),

 # Uncomment this for admin:

 (r’^admin/’, include(‘django.contrib.admin.urls’)),

)

 Look at this specification a bit more closely. The urlpatterns variable is defined by calling the
 patterns function with an initial empty string argument (you can ignore this for now) and a list of
 triples in the following order:

❑ The first element in the triple is a Python regular expression. For example, the regular expres-
sion r’^admin/’ matches the string “admin/” . Note that the leading ‘/’ is trimmed before
attempting to match against the expression. Therefore, the expression r’^/admin/’ is incorrect
and would not match the URL “http://localhost:8000/admin/” .

c03.indd 89c03.indd 89 9/7/07 10:35:23 AM9/7/07 10:35:23 AM

90

Part I: Introduction to Python Frameworks

❑ The second element in the triple has a few different formats, but is most commonly either an
 include statement or the name of a view function that should be invoked when the expression
is matched. In the case of the admin utility, the element includes a set of URL patterns defined in
 django.contrib.admin.urls . If you’re really curious about what’s being included here, you
can see the full set of administration URL patterns in <django-home>/django/contrib/
admin/urls.py . Alternatively, you can specify the name of a view function that should be
invoked when the expression matches. You’ll see an example of this with the specification of the
 petview function references in the next section.

❑ The third element in the triple is optional. It is a dictionary that can contain additional argu-
ments to the view function.

 The order of this list is important because when the server needs to find a page, it walks down the list
attempting to find a matching URL. When a match is found, the server invokes the associated view func-
tion. If no match is found, it returns a “page not found” error.

 Returning to the pet information store example, you will define a single new petview in the next
 section that should be referenced in two different ways. This requires you to add two new entries to the
 urlpatterns variable as follows:

 from django.conf.urls.defaults import *

urlpatterns = patterns(‘’,

 # Example:

 # (r’^petinfosite/’, include(‘petinfosite.apps.foo.urls.foo’)),

 # Uncomment this for admin:

 (r’^admin/’, include(‘django.contrib.admin.urls’)),

 (r’^petview/$’, ‘petinfosite.petinfostore.views.petview’),

 (r’^petview/(?P<owner_id>\d+)/$’, ‘petinfosite.petinfostore.views.petview’),

)

 The first entry matches the string “petview/” and simply causes the function petview to be
invoked. The second expression is a bit more interesting because it shows you how to map a URL sub-
path to an argument provided to the view function. As discussed in the previous section, when a user
selects a person and clicks the Update button, JavaScript (lines 4 through 9 in Listing 3-9) creates a URL
that encodes the ID of the selected person in the path. For example, if the user selects Bill Wright, the
URL http://localhost:8000/petview/1/ gets produced, and when the user selects Dana Moore,
the URL is http://localhost:8000/petview/2/ . This encoding can easily be mapped into an argu-
ment in the view function as shown in the second triple in the example code. The regular expression
 r’^petview/(?P<owner_id>\d+)/$’ matches the first part of the URL, petview/ . The second part of
the expression is enclosed in parentheses, which indicates that the value is captured and passed into the
view function as an argument. ?P<owner_id> establishes that the value should be assigned to an argu-
ment named owner_id , and \d+ matches against one or more numbers (which in this case is the
ID of the selected person).

 Defining the View
 Similar to a traditional controller in a web application, a view in Django acts as the glue between the
model and the templates. The view typically uses the model objects to look up data from the database,
and causes the template to be evaluated in the context of this data. Specifically, the pet information
view does the following:

c03.indd 90c03.indd 90 9/7/07 10:35:24 AM9/7/07 10:35:24 AM

Chapter 3: Introducing the Frameworks

91

1. It gathers all the context data required by the template. In this case, it creates variables for the
list of people (people), the owner (owner), and a list of pets (pets).

2. It evaluates the template with the context data and generates an HTML page.

3. It returns the generated HTML to the user as an HttpResponse object.

 Minimum View Requirements
 A view isn’t actually required to interact with model objects or evaluate a template.
The only strict requirement for a view is that it must return an HttpResponse object.
For example, you could add a trivial “hello world” view to views.py by defining a
view class as follows:

 # Create your views here.

from django.http import HttpResponse

def helloworld(request):

return HttpResponse(“Hello World”)

 You would also need to define a new URL mapping to reference the view in the
 urlpatterns attribute defined in urls.py at the base of the project directory:

 urlpatterns = patterns(‘’,

...

 (r’^helloworld/$’, ‘petinfosite.petinfostore.views.

 helloworld’),

...

 After defining the view and URL pattern, you can see the resulting web page at
 http://localhost:8000/helloworld .

 To define the new pet information view, edit the C:\django-examples\petinfosite\petinfostore\
views.py file to include the petview function for the pet information view as shown in Listing 3-10 .

 Listing 3-10: views.py revised to contain a petview function

 1 # Create your views here.

 2 from django.shortcuts import render_to_response

 3 from petinfosite.petinfostore.models import Person, Pet

 4

 5 def petview(request, owner_id=-1):

 6 people = Person.objects.all()

 7 if (owner_id != -1):

 8 owner = Person.objects.get(id=owner_id)

 9 pets = Pet.objects.filter(owner=owner_id)

 10 return render_to_response(‘petinfo.html’, {‘people’: people,

 11 ‘pets’: pets,

 12 ‘owner’: owner})

 13 return render_to_response(‘petinfo.html’, {‘people’: people})

c03.indd 91c03.indd 91 9/7/07 10:35:24 AM9/7/07 10:35:24 AM

92

Part I: Introduction to Python Frameworks

 This script does the following:

❑ It defines a single function called petview that takes an HttpRequest object called request as
an argument as well as an optional owner_id argument with a default value of −1. The
 request object contains all of the details associated with the incoming request, including the
method of the request (POST or GET) and any parameters that are part of the POST or GET
operation.

❑ It retrieves a list of all Person objects from the database and loads them into the people
 variable on line 6.

❑ The function render_to_response is defined in django.shortcuts and is used to generate
the HttpResponse on lines 10 through 13. This function is explored in more detail in Part III,
but basically it does the following:

1. It defines a context that contains the people list, pets list, and owner object.

2. It evaluates the petinfo.html template with the generated context.

3. It creates a new HttpResponse object from the evaluated context.

❑ When no owner ID is provided and the value of owner_id is -1 , the template is evaluated only
with the list of people as context data (line 13).

❑ When an owner ID is provided:

❑ An owner variable is initialized to the Person object with the given ID on line 8.

❑ The Pet model object is searched for all pets that have the owner with the given owner ID
defined by owner_id and stored in the pets variable.

❑ The three variables are defined as the context and the template is evaluated on lines 10
through 12.

 Now if you visit this view at http://localhost:8000/petview , you should get a page like the one
shown previously in Figure 3-17 .

 Summary
 In this chapter you saw the true power of the web application framework. You learned about the use of
MVC as the foundation of many frameworks, as well as the typical capabilities provided by frame-
works. You were introduced to the TurboGears and Django frameworks and got your feet wet by
implementing the example from the previous chapter in each framework. The next two parts of this
book build on this introduction to discuss these frameworks in more detail: TurboGears in Part II and
Django in Part III.

c03.indd 92c03.indd 92 9/7/07 10:35:24 AM9/7/07 10:35:24 AM

Chapter 3: Introducing the Frameworks

93

 Interview with Kevin Dangoor, Industry Leader
and Creator of TurboGears

 The authors drew much of their early beliefs in the capabilities of TurboGears (as well as the inspira-
tion for this book) from watching an excellent Kevin Dangoor video, The 20 Minute Wiki , on http://
turbogears.org/ . Kevin is an individual of boundless energy and enthusiasm, and possesses great
insight and wit. The authors sat down with him (virtually, that is) to chat in late May 2007. Here are a
few of his thoughts on the “how and why” of TurboGears and some of his observations on large-scale
open source projects and the future of Web 2.0.

 On the Initial Motivations for TurboGears

 Q: What motivated TurboGears? What led you to recognize the need for a Python framework to support Web
2.0 developers?

 Kevin: The need grew specifically from a project I was working on. At the time, Ruby on Rails was the
only full stack framework around and I needed all that same kind of functionality, but I needed it in
Python because Python had a bunch of other tools that I needed. So for me, TurboGears naturally grew
from that motivation. Additionally, as I looked over the library landscape, I realized that Python already
had the libraries in place, things such as SQLObject, and a number of reasonable choices to implement
the control layer in the MVC scheme. Finally, there were a bunch of templating languages, and I actually
tried several of them out in the discovery process, and what I settled on became TurboGears.
 A big motivator was that, for the web framework I was working on at the time, I needed a frame-
work that I could use for myself.

 Q: It seems both wonderful and perhaps even a little amazing that from the collection of libraries and frame-
works you wove together a real-life example of the whole being greater than the sum of its parts. This
 certainly seems to be a common attribute of successful mega-frameworks. In an interview with David
 Heinemeier Hansson for the book Rich Internet Applications (Wiley, 2007), Hansson suggested that there
was a “eureka” moment when he realized that the framework he built in response to the demands of a specific
problem could be the solution to the larger general class of network-centric applications. The result was Ruby
on Rails. Is there a compelling reason why we are in the midst of a “golden age” of mega-frameworks? Why
didn’t this happen five years ago, for example?

 Kevin: There are a couple of obvious reasons. First, the problem space is better understood. Over time
people have found the points of commonality — things that developers do over and over again. Further,
the general complexity of web applications has increased. Everyone has a relational backing store to deal
with; everyone has to deal with AJAX. So, it’s this combination — a well-defined problem space and
application complexity — that has acted as a forcing function. Think about it — people started working
on cgi-bin scripts 10 or more years ago, and the Web was a very different thing. The tools have simply
grown up around the problem space.

 Q: Thinking about the evolution of TurboGears, how did the set of “just right” components come together in
your mind?

 Kevin: There are actually two disparate things; the first being how the elements emerged. I actually
began by doing experimentation with a variety of tools in Python. The only thing that remained stable
over time was SQLObject. Practically everything else got switched out at some point in time. MochiKit
actually came out fairly late in the game. MochiKit was a great choice for me as a Python programmer
because it was idiomatically consistent, and it turns out that many of MochiKit’s affordances, such as

c03.indd 93c03.indd 93 9/7/07 10:35:25 AM9/7/07 10:35:25 AM

94

Part I: Introduction to Python Frameworks

iterators, are making it into JavaScript itself. Over time, I got a sense of what components seemed to
work well together.
 Mind you, this came about after a lot of experimentation, and it was aided by the fact that Python
has such a great and varied set of resources to begin with. It’s still evolving, as for example the transi-
tions from SQLObject to SQLAlchemy and from Kid to Genshi (which is going rather smoothly).
 SQLAlchemy is by far the best object-relational mapper you’re likely to find.
 The other point is the question of there being one way to do things. When you’re doing a full stack
framework, you need to include all the parts of the stack and all the parts need to work well together. Of
course, TurboGears is not exclusive. There are hooks provided in most places so that you can use what-
ever you want. For most developers, it’s a question of what you get for free and how much support the
framework gives you. Bear in mind that it’s all pretty much standard Python, so you can certainly re-
platform “to taste.”

 On the TurboGears Value for Developers

 Q: How do you perceive the value of TurboGears to developers?

Kevin: To a certain extent, you can say that all programming languages are Turing complete, and there-
fore, there are differences without distinction. You can do anything in any language. But, I think we all
know that some languages do feel more productive, and then after you get to a certain level of produc-
tivity, it becomes more a matter of taste. Looking at Ruby and Python: Although their syntaxes are, of
course, different, their expressive powers are very similar. Naturally, people have preferences.
 TurboGears provides a large number of capabilities that are somewhat similar (perhaps superficially at
least and perhaps not on a feature-by-feature basis) to things you might find in other frameworks, but
many people have said that they happen to like the “feel” of TurboGears in the way that its general inter-
action model works — for example, in the fact that you don’t need separate configuration files to handle
different URLs. I personally like having a baseline that is very easy to get into, very easy to get a first
application going, very easy to have things start showing up in the browser. From there, you can easily
and incrementally build your way up step-by-step.
 I don’t like things being too “magical.” It’s likely to be better for a developer to have to explicitly
import things from a specific and trackable source, so that if you’re ever wondering what’s going on
under the hood, you know exactly how to find out. That helps you improve what you are able to do with
the framework, and indeed, possibly also improve the framework itself.

 We tend to agree. It strikes us that TurboGears seems quite a bit more straightforward than other
frameworks. I claim that it’s possible to teach a user TurboGears in a small fraction of the time it
takes to wrap your head around Rails, for example. TurboGears may lack a few of the “Swiss Army
Knife” features of Rails (such as RJS), but on the other hand, it seems to adhere to the Python dictum
that there is usually one right way to accomplish something.

 On TurboGears Mindshare and Market Perceptions

 Q: As the creator of TurboGears, how strongly do you think it’s competing against really buzz-heavy
frameworks?

 Kevin: Well, it’s certainly not currently in the same league right now as, for example, Ruby on Rails.
Rails is perhaps an order of magnitude larger in terms of user community. Even so, when you look at the
broader spectrum of programming, most of what’s going on out there right now is PHP, Java, and .NET.
So in truth, those are actually the “big three.” Coming up quickly behind them is Rails. But going a little
deeper, the PHP community is looking for something with a little more structure; people coming from a

c03.indd 94c03.indd 94 9/7/07 10:35:25 AM9/7/07 10:35:25 AM

Chapter 3: Introducing the Frameworks

95

Java or .NET perspective are looking for something less structured, less restrictive, and certainly less
tedious so they can get their jobs done quicker. Thus, coming from these perspectives, Rails has attracted
enough mindshare (and certainly enough broad press), that developers have naturally started to gravi-
tate there. However, as mindshare around agile frameworks expands generally, it doesn’t take long for
them to discover TurboGears, Django, and other frameworks that are available for specific languages.
Thus, some portion of the community will convert out of Rails and into other frameworks. It’s really a
“rising tide raises all boats” situation right now. The very fact that any agile framework is drawing peo-
ple away from Java and PHP is simply good for the entire collection of frameworks out there that work
in a similar fashion to Ruby on Rails or TurboGears.

 Q: As TurboGears proliferates, it will naturally be compared for scalability (and on other features) to other
frameworks such as J2EE …

 Kevin: Sure, it’s a question that comes up frequently. First of all, application design makes a bigger dif-
ference than anything else. You have to keep the scalability requirements in mind and work with them.
The Web is inherently stateless. If you create something that’s designed to scale by adding more boxes,
trivially, you can say it’s likely to scale, because boxes are pretty cheap these days; and it probably will
work. Python is one of the great languages in terms of scalability. Think of it this way: Python itself is
not exceedingly fast (albeit faster than Ruby, for example, but not nearly as fast as Java). However,
there are so many ways in Python to get more speed. With Python, you can measure the application
hotspots and use the right tricks to optimize. If you have to, for example, you can jump down to C
code — there are a lot of Python libraries that are already in C that can help you out. There are also
tools like Pyrex and Psyco that can help you improve performance. There are so many things you can
do to improve raw performance when you need to, but generally speaking, I am a much bigger fan of
intelligent overall design decisions, such as avoiding sessions. Whenever people talk about sessions, I
advise them to instead think about how to comfortably spread the application across servers. As a gen-
eral rule, unless the user population is tiny and there are never going to be scalability concerns, you’re
much better off putting application data in a database, and using asynchronous means to access it.

 Q: Are you aware of any significant enterprise adopters of TurboGears? Our own suspicion is that the
use of TurboGears in the enterprise follows the technology S curve, where most users are currently in the
early-adopter community.

 Kevin: That may be correct. I have met scattered enterprise developers who are beginning to look at
 TurboGears for internal applications. There’s likely to be a whole lot of that going on as people work on
departmental applications. It’s a case where they need to get things done quickly and don’t have a lot of
budget to do it, so TurboGears fits that application space very ably.

 Q: That and the fact that there seems to be a wholesale rush toward zero footprint, zero-install application
designs going on currently, where both developers and IT people want to escape the no-win situation of hav-
ing to manage rich platform applications, coordinating distribution to 5,000 desktops …

 Kevin: Enterprises tend typically to move slowly when faced with the opportunity to create revolution-
ary change. An enterprise in general will not be at the leading edge. Remember that there are scads of
companies still creating Enterprise JavaBeans (EJBs), even though developers are sick to death of them!
Even though the weight of opinion is solidly against EJB2, it’s an infrastructure we’ll be seeing for a
long while.

c03.indd 95c03.indd 95 9/7/07 10:35:26 AM9/7/07 10:35:26 AM

96

Part I: Introduction to Python Frameworks

 On Managing Open Source Innovation

 Q: How large is the TurboGears team? How do you manage to “herd the cats”? What’s the development pro-
cess like?

 Kevin: At this juncture, I am no longer the “cat herder.” I stepped down as benevolent dictator at the
beginning of 2007. Personal commitments really had to take precedence over TurboGears (as exciting as
it all is). Alberto Valverde is the current project leader. I do hang out in the background, and we bounce
ideas off each other. In general, though, I can speak to how things have gone historically. Guiding a large
open source project is both an interesting thing and different from an enterprise project, where you can
count on having a certain level of resources to put against goals. People are often involved mainly to
“scratch their own itch.” They may have projects of their own where they are trying to do that, using
features of TurboGears that may not be fully robust, and when they realized this, they will work on that
portion of the problem only. So you really have to do whatever it takes to foster accomplishment in that
environment. You have to, for example, make sure that people feel comfortable asking questions — you
have to make the path from framework user, to someone who contributes patches, to framework devel-
opers as easy as possible. From the management standpoint, making sure that patches get into the
release quickly is key. Over time, you find the people who are exceptionally helpful in moving the proj-
ect ahead, and it’s important to smooth the path for them. Unfortunately, you often find that people are
able to contribute only sporadically. They may be extremely active for a time and then get moved off by
something else in their work life. Happily, though, in a vibrant project, new people often come forward
to take their place and so you have to be very comfortable with operating in a fluid and dynamic atmo-
sphere. It’s very different from the enterprise, where you have somewhat-known resources, timelines,
and feature sets.
 Something we have been discussing recently are things like how much time we can and should
spend with system administration, keeping spam off of the wiki, and more mundane tasks. If there’s a
little funding coming in for support, it may well be useful to put that money into helping people out
with this part of the mission. There is a momentum effect in which, when a project attains a certain size,
it’s increasingly self-sustaining, and there are more people and a more varied talent set. I actually felt
great about the fact that TurboGears got large enough for me to hand over to somebody else and the
project just keeps on running. It’s a real success milestone.

 Q: How do people go about evangelizing TurboGears in an organization that may be hidebound or risk-averse
to the point of self-injury?

 Kevin: Partially, it may come down to a people question — these things are sometimes emotional and
don’t necessarily yield to structured arguments. The best way to win is that the proof is in the pudding. If
you can whip up a prototype of something that would take a lot longer in Java, for example, that turns
out to be fairly compelling. Of course this is very hard if you are in an enterprise where you have an IT
group that controls all deployment of machines, though. The more forces you have built up to protect
the status quo, the harder the job becomes. Usually, you’ll have to start out as a “skunk works” effort,
perhaps in your spare time, or with the permission of a direct manager. Then, once others see how suc-
cessful the work is, they will latch on, and say, “Aha. I need to emulate that too. It would really help out
my budget!”
 Of course, today, it’s probably easier than it was a scant two years ago, owing again to the enor-
mous amount of publicity that Rails has gotten. It’s gotten so much attention that all the agile languages
benefit directly. Suddenly, we’re finding more people saying, “Perhaps J2EE is not the right approach
for everything.”

c03.indd 96c03.indd 96 9/7/07 10:35:26 AM9/7/07 10:35:26 AM

Chapter 3: Introducing the Frameworks

97

 Q: What drives the release priorities?

 Kevin: This being open source, it partly depends on what people have the time and inclination to work
on. At times, priorities coordinate with what external projects the committers are working on. If it’s
something essential to an enterprise or personal project, it’s likely to make it into TurboGears. The evolu-
tion of TurboGears has in part been driven by the fact that it’s been built on other projects. An example is
the continuing evolution of CherryPy, because TurboGears hooks into CherryPy rather deeply. So the
evolution in the “feel” of TurboGears has been driven by what’s going on in the major projects we use.
Thus, we tend to build our releases around what people have wanted and needed to work on.

 On Web 2.0 Directions

 Q: Where do you see Web 2.0 going, or to put it different way, what would Web 3.0 look like?

 Kevin: Well certainly JavaScript and standard browser technologies (as opposed, say, to Flex2) are here
to stay, particularly for sites that are more page-like, where there is a lot of content that you’re just really
laying out for the user. Now, for sites that are more like applications, things that might traditionally have
been done in a desktop client are going to move toward Flex, because it’s so much easier if you don’t
have to worry about browser incompatibility, and frankly it’s just plain faster, particularly if you’re com-
paring it to Internet Explorer running JavaScript. There are a couple of things that might serve to miti-
gate an all-out migration to Flex, though — for example, if browser JavaScript engines were to get really
fast and really soon, or if more standards compliance were to happen. However, for applications you’re
designing right now, you’d want to take a good hard look at Flex, especially with Flex becoming
open source.

c03.indd 97c03.indd 97 9/7/07 10:35:27 AM9/7/07 10:35:27 AM

c03.indd 98c03.indd 98 9/7/07 10:35:27 AM9/7/07 10:35:27 AM

Part II

TurboGears

Chapter 4: Introduction to TurboGears

Chapter 5: User Identity and Visitor Tracking

Chapter 6: Widgets

Chapter 7: Advanced TurboGears Topics

c04.indd 99c04.indd 99 9/7/07 10:36:39 AM9/7/07 10:36:39 AM

c04.indd 100c04.indd 100 9/7/07 10:36:40 AM9/7/07 10:36:40 AM

 Introduction to TurboGears

 Simplicity is prerequisite for reliability.

— Edsger W. Dijkstra

 In Chapter 3 you were introduced to the TurboGears and the Django frameworks. Here you’ll
learn more about the capabilities of the TurboGears framework, common framework components,
and the structure of a TurboGears project.

 In this chapter you’ll gain experience with TurboGears as you implement a blog. You’ll start by set-
ting up the project and defining a basic model. Then you’ll see how to use TGCrud, a controller
and view generator, to create a variety of views for manipulating your model objects. Finally,
you’ll learn about the capabilities of Kid templates as you modify the master design of the site.

 TurboGears Components
 Before getting into an example, it is necessary to explore some of the significant components of the
TurboGears framework in a little more detail than was discussed in Chapter 3 . In this section you’ll
learn a little more about what the models, controllers, views, and widgets are, and how they’re
typically used in TurboGears.

 TurboGears Models (SQLO bjects)
 SQLObject is object-relational mapping (ORM) that enables the translation between model
objects defined in Python and a relational database. Typically the model objects, defined in
the model.py , inherit from the base SQLObject and include the specification of attributes
that correspond to database columns. The main documentation for SQLObject is at
http://sqlobject.org/SQLObject.html .

c04.indd 101c04.indd 101 9/7/07 10:36:40 AM9/7/07 10:36:40 AM

Part II: TurboGears

102

 TurboGears Controllers
 CherryPy is the basis for the controller framework in TurboGears. This framework is used to define the
URIs available for a web application and associate those URIs with Kid templates and other Python
code. The main CherryPy documentation is at www.cherrypy.org/wiki/TableOfContents .

 A controller is made up of methods that establish new URIs available in the web application. A controller
can even contain a reference to another controller, which establishes an additional directory that can
define additional relative paths.

 The Root Controller
 Typically, a web application has a single root controller defined in controllers.py that inherits from a
base root controller class (controllers.RootController). The root controller serves as the main entry
point into the web application, and establishes any paths available from the top directory of the web
application. An example root controller is shown here:

 1 from turbogears import controllers, expose

 2

 3 class Root(controllers.RootController):

 4 @expose(template=”foo.templates.welcome”)

 5 def index(self):

 6 import time

 7 return dict(now=time.ctime())

 8

 9 @expose()

 10 def hello(self):

 11 return “Hello World”

 This example creates two URIs, /hello and / , and shows the basic components of a controller specifica-
tion as follows:

❑ Each method that is to be exposed should be preceded by the expose decorator as shown on
lines 4 and 9. The decorator is a construct in Python based on the decorator pattern (see
 http://wiki.python.org/moin/PythonDecorators for more information). The effect of
 expose is to create a new URI in the web application with the same name as the method it
 precedes. For example, the decorator on line 9 creates a new path, /hello , in the web
application.

❑ The expose decorator takes an optional template, as shown on line 4. This template is applied
when generating a response.

❑ The exposed controller method can return a dict containing arguments for use in the template.
The dict generated on line 7 causes a variable, now , to be passed to the template.

c04.indd 102c04.indd 102 9/7/07 10:36:41 AM9/7/07 10:36:41 AM

Chapter 4: Introduction to TurboGears

103

 Creating and Using a New Controller
 You can define additional controllers that generally extend the base controller class
(controllers.Controller). Any additional controller can be included in the root controller to
define an additional subdirectory in the web application. The following moves the hello
method from the previous example into a separate controller:

 1 from turbogears import controllers, expose

 2

 3 class GreetingController(controllers.Controller):

 4 @expose()

 5 def hello(self):

 6 return “<H1>Hello World</H1>”

 7

 8 class Root(controllers.RootController):

 9 greeting = GreetingController()

 10

 11 @expose(template=”foo.templates.welcome”)

 12 def index(self):

 13 import time

 14 return dict(now=time.ctime())

 This example creates a web application with two paths, / and /greeting/hello . Note that the name of
the subdirectory in the URI is determined by the attribute name of the controller (see line 9).

 TurboGears Views (Kid Templates and MochiKit)
 The Kid template engine is responsible for processing and creating views for a web application based on
a combination of HTML and Python. Kid templates are defined for a single view, and invoked by a
 controller when associated with an exposed controller method as shown previously. A comprehensive
reference to the Kid template language is available at http://kid-templating.org/language.html .

 The Kid template specification provides basic constructs such as conditionals and loops for use in a tem-
plate, and allows a template to extend other templates. This enables you to define common components
like style sheets, headers, and footers once and share them on all pages in a site.

 When generated with the quickstart command, a master template, master.kid , is created automati-
cally. This template is responsible for establishing the layout of the web application, including any
header, footer, menus, or other components. The content of each view is then defined in a separate Kid
template that extends master.kid .

 MochiKit is a client JavaScript library that provides a variety of JavaScript usability enhancements such
as drag and drop, improved event handling, and a simple yet powerful asynchronous request mecha-
nism. The MochiKit library is automatically included in Kid templates that extend the site template
included in TurboGears, or it can be included explicitly as follows:

 <script src=”${tg.tg_js}/MochiKit.js”/>

 See http://mochikit.com/doc/html/MochiKit/index.html for detailed MochiKit documentation.

c04.indd 103c04.indd 103 9/7/07 10:36:41 AM9/7/07 10:36:41 AM

Part II: TurboGears

104

 TurboGears Widgets
 The widget is another component used extensively in TurboGears. You can think of a widget as a
 complete and reusable piece of a web application. A widget is stateless, can take parameters, and
includes any of the details necessary to create the component, like HTML, JavaScript, and Cascading
Style Sheets (CSS).

 TurboGears provides a set of widgets that simplify form creation and management, such as widgets that
can help you create complex form elements for an AJAX-based autocomplete field. There are also wid-
gets that aid in the presentation of data, such as the DataGrid widget that simplifies the display of data
in a table.

 As a site developer, you can even extend a set of widgets by defining your own widget classes (which
you’ll learn about in Chapter 6, “Widgets”). Several very useful widgets not included with TurboGears
are available for download from The CogBin (www.turbogears.org/cogbin/), a repository of publicly
developed and contributed TurboGears extensions.

 The widgets available may vary depending on the TurboGears installation, and even the particular
 project. The TurboGears Toolbox provides a Widget Browser that shows information about the widgets
available for a particular TurboGears configuration. You access the TurboGears Toolbox with the
tg-admin toolbox command.

 An Example: A Simple Blog Site
 Now that you’ve learned a little more about the components that make up TurboGears, you’re ready to
implement a more complex web application. In this section, you explore the internals of TurboGears by
implementing a blog application that does the following:

❑ Maintains a list of blog authors:

❑ Allows the creation, and editing of authors

❑ Displays the details for a single blog author or a list of all authors

❑ Maintains a list of blog entries:

❑ Allows the creation and editing of a blog entry as plain text or HTML

❑ Shows each blog entry formatted as an HTML document

❑ Displays a list of all blog entry titles, authors, and creation dates

❑ Includes a main view that presents all blog entries over several pages

❑ Provides a tailored look and feel, rather than the default generated for a TurboGears project

c04.indd 104c04.indd 104 9/7/07 10:36:41 AM9/7/07 10:36:41 AM

Chapter 4: Introduction to TurboGears

105

 Creating the Project
 The first step is to create the TBlog project skeleton using the quickstart subcommand tg-admin as
follows:

 C:\turbogears-examples>tg-admin quickstart tblog

Enter package name [tblog]:

Do you need Identity (usernames/passwords) in this project? [no] yes

Selected and implied templates:

turbogears#tgbase tg base template

...

 As you learned in Chapter 3 , you can use the tg-admin tool to perform a variety of project administra-
tion tasks such as creating the database, starting a Python shell, and creating a new project skeleton.
Refer to Chapter 3 if you need a refresher on the basics of TurboGears; also see the second table in
 Chapter 3 for common tg-admin commands.

 When you are asked if you need identity in the project, answer yes . You won’t be making use of it in
this chapter, but you’ll use the generated identity elements in Chapter 5, “User Identity and Visitor
 Tracking,” to add user management to your web application.

 Defining the Model
 After you create the project skeleton, you’re ready to define the model the same way as you did in
 Chapter 3 . In this case, the model needs to include a representation for a blog author and a blog entry.

 Open c:/turbogears-examples/tblog/tblog/model.py , and add the BlogAuthor and BlogEntry
classes as shown in Listing 4-1 .

 Listing 4-1: The initial tblog model specification, model.py

 1 ...

 2 # class YourDataClass(SQLObject):

 3 # pass

 4

 5 class BlogAuthor(SQLObject):

 6 firstName = StringCol(varchar=True, length=10)

 7 lastName = StringCol()

 8 emailAddress = StringCol()

 9 def __str__(self):

 10 return “%s %s” % (self.firstName, self.lastName)

 11

 12 class BlogEntry(SQLObject):

 13 date = DateTimeCol()

 14 entryText = StringCol()

 15 entryTitle = StringCol()

 16 author = ForeignKey(“BlogAuthor”)

 17

 18 # identity models.

 19 class Visit(SQLObject):

 20 ...

c04.indd 105c04.indd 105 9/7/07 10:36:42 AM9/7/07 10:36:42 AM

Part II: TurboGears

106

 Note the following:

❑ The BlogAuthor class (lines 5 through10) extends the base class SQLObject and represents an
author of an entry in the blog.

❑ The BlogEntry class (lines 12 through 16) extends SQLObject and represents an entry in
the blog.

❑ The BlogAuthor specification includes three columns of type StringCol . The author’s name is
identified by the firstName (line 6) and lastName (line 7) columns, and the emailAddress
column defined on line 8 holds the author’s e-mail address.

❑ The string representation of a BlogAuthor is defined on line 9 and 10. It consists of the first and
last name of the author, separated by a space.

❑ Each BlogEntry includes an entry date (line 13) that contains a date and time value. Text for the
blog entry is defined as entryText (line 14). The title is defined as entryTitle and consists of
a short string description of the blog entry (line 15). Finally, the author of the blog is represented
as a foreign key from the BlogAuthor table (line 16). The value of this field is a reference to a
row in the BlogAuthor table.

❑ The column specification shown on lines 6 through 8 and lines 13 through 16 enables you to use
a variety of optional attributes, as shown on line 6. Some are common to all columns, whereas
others, such as varchar , are specific to a particular column type. Attributes common to all
 columns are shown in the following table.

❑ The file initially contains several models (beginning on line 18) that are needed to represent the
 required data for user identity. These can be ignored for now.

Attribute Description

dbName The name to use for the column in the database.

default The default value for the column.

alternateID A Boolean value that establishes whether or not the column can be used as an
alternate identifier. This should be True only when the unique attribute is True,
because additional methods are generated to retrieve the object based on this
 column.

unique A Boolean value that establishes whether or not the column must be unique.

notNone A Boolean value that establishes whether or not the column will accept null values.

sqlType The SQL type of the column, This attribute is necessary only when you’re not
using a column class from this table, and is used only when the SQLObject is being
used to create the database tables.

 The types of the columns in the model are not limited to StringCol , DateTimeCol , and ForeignKey .
See the following table for a guide to some common column types for SQLObject attributes.

c04.indd 106c04.indd 106 9/7/07 10:36:42 AM9/7/07 10:36:42 AM

Chapter 4: Introduction to TurboGears

107

 Building the Database for the Model
 After the model is defined, you need to create a database that corresponds to the model files. You can
accomplish this by using the tg-admin command as follows:

 C:\turbogears-examples\tblog>tg-admin sql create

Using database URI sqlite:///C|\turbogears-examples\tblog/devdata.sqlite

C:\turbogears-examples\tblog>

 Note that this listing uses the sql create command to create the tables in the database. There are
 several other subcommands available for sql , including the following:

❑ sql: Shows the sql used to create the database

❑ drop : Drops the tables from the database

Column Type Description

BLOBCol Contains binary data.

BoolCol Contains a Boolean value. This creates a value like 1/0 or t/f in the database
depending on the implementation used.

CurrencyCol Contains a monetary value. This is represented by a floating-point number with a
precision of 2.

DateTimeCol Contains a date and time and accepts datetime or mxDateTime objects.

DateCol Contains a date and accepts datetime or mxDateTime objects.

TimeCol Contains a time and accepts datetime or mxDateTime objects.

DecimalCol Contains a number with a fixed precision. This column type establishes size and
precision attributes to enable you to specify the number of digits stored and the
number of digits maintained after the decimal point.

EnumCol Contains an enumeration value. This establishes an enumValues attribute that
contains a list of possible enumeration values.

FloatCol Contains a floating-point number.

ForeignKey Defines a reference to a key from another table.

IntCol Contains an integer value.

PickleCol Contains a Python object.

StringCol Contains text data. This enables you to specify a length attribute that establishes
a maximum length for the column values. When a length is provided, you can
define the varchar with a Boolean value to indicate whether the column should
be created as a fixed CHAR type or a VARCHAR type (if supported by the database
implementation).

UnicodeCol A text data column that is encoded as UTF-8 when it’s stored.

c04.indd 107c04.indd 107 9/7/07 10:36:42 AM9/7/07 10:36:42 AM

Part II: TurboGears

108

❑ list : Shows the list of SQLObject classes found for your project

❑ help : Shows the complete list of available subcommands

 Using CatWalk
 You can use the CatWalk tool to view or modify data in the database (described in detail in Chapter 3).
Access CatWalk using the TurboGears Toolbox, which you can start as follows:

 C:\turbogears-examples\tblog>tg-admin toolbox

 Using TGC rud
 Now that you’ve set up the database and model for the blog, you need to define views that let the blog’s
users create new blog-entry authors and add new blog entries. There are other alternatives outlined in
Chapter 3 , but when you’re not defining a completely tailored view, you’ll frequently want to use the
TGCrud extension explored here.

 TGCrud is an extension to the core TurboGears framework that enables you to quickly generate and
 tailor views for the basic manipulation of a data object. It generates a skeleton for views and a controller
that allows the user to perform basic data manipulation operations like create, read, update, and delete
(CRUD). After generating the skeleton for a model object, the application developer modifies the skele-
ton to define the look and feel of each operation as required for the data.

 For this example, the blog entry authors use TGCrud v0.8, which includes a crud subcommand for
 tg-admin . The command takes the name of a model class and a package as arguments, and can be used
to generate the template code for a model class.

 A beta version of TGCrud 1.0 is also available. It includes support for both SQLObject and
 SQLAlchemy, as well as a mechanism that lets you to define your own view templates.

 Generated TGC rud Code
 When you run TGCrud, several files are generated that you can easily incorporate into your web appli-
cation. These include controllers.py , at the base directory for the generated code, and several Kid
templates under a templates subdirectory. The controllers.py file contains the specification of a
controller class that manages all the views created by TGCrud. You can use these views to do the
following:

❑ Create a new entry. For example, you can browse to the new path element at http://
localhost:8080/<controller-path>/new . This view is defined in the Kid template
 new.kid .

❑ Show all entries defined in the database. The list path is associated with the list.kid Kid
template and is available at http://localhost:8080/<controller-path>/list .

❑ Update an existing entry. The edit path element takes the identifier of a database row encoded
as a part of the URL. For example, http://localhost:8080/<controller-path>/edit/1 is
the URL that will show the view for the first row in the database with id=1 . The Kid template
 edit.kid is used to create this view.

c04.indd 108c04.indd 108 9/7/07 10:36:43 AM9/7/07 10:36:43 AM

Chapter 4: Introduction to TurboGears

109

❑ Delete an existing entry. Like edit , the destroy path element takes a database row identifier
as a part of the URL. Browsing to http://localhost:8080/<controller-path>/destroy/1
removes the row with id=1 from the database. There is no Kid template associated with the
 destroy operation.

❑ Show a single entry in the database. The show path element shows another view relevant to
only a single entry. Browse to http://localhost:8080/<controller-path>/show/1 to
 display the row with id=1 . This view uses the show.kid Kid template.

 The view templates are set up to facilitate navigation between each view. For example, the list
 template includes a link next to each list entry that allows the user to show, edit, or delete the entry.

 The generated code also includes a template called master.kid that is extended by each of the view’s
Kid templates. Note that this template is similar to the master template of the project. As you’ll see in
the section “Changing Your Site’s Look and Feel,” you’ll most likely want to use a single master
template for the entire site.

 The code generator further simplifies the views by using widgets to create the form used in the new
and edited views. The list of widgets used in the views is, however, left up to the developer as an
 additional setup task. This list is defined in a class in the controllers.py file that extends a base
 WidgetList class.

 The other bit of tailoring required is the definition of the code in the list and show views. A skeleton
provided in each view reduces the amount of tailoring required and helps make the requirement obvi-
ous. For example, the list view includes code that walks through the list of all records selected and
creates a row in a table for each entry.

 The final result is that after generating the code, you (the developer) need to perform only four addi-
tional steps:

1. Include the generated controller as an additional path in the web application.

2. Define the list of widgets displayed in the forms used by new and edit .

3. Tailor the list view to include the details of the model object being displayed.

4. Tailor the show view to include the details of the model object being displayed.

 Installing TGC rud
 Because TGCrud is not initially included as a core component of TurboGears, you need to install it before
you can use it. You can download it as a Python egg file from http://cheeseshop.python.org/
pypi/tgcrud/ , but it’s easiest to install it using the easy_install command as follows:

 C:\turbogears-examples\tblog>easy_install tgcrud

 This command automatically installs the latest version of TGCrud when none is currently installed, or
updates the currently installed version to be the latest available.

c04.indd 109c04.indd 109 9/7/07 10:36:43 AM9/7/07 10:36:43 AM

Part II: TurboGears

110

 Creating the Blog Author Views with TGC rud
 Now that you’ve learned about the basic capabilities and installed TGCrud, it’s time to get your feet wet
and use TGCrud to create the views and controller for the BlogAuthor model object.

 Generating the Code
 After installing TGCrud, you’re ready to generate the controller and views for the BlogAuthor . To do
this, run the following crud command with the name of the model object as the first argument and the
package name as the second argument:

 C:\turbogears-examples\tblog>tg-admin crud BlogAuthor BlogAuthorController

 This creates a new subdirectory named BlogAuthorController under c:\turbogears-examples\
tblog\tblog . The BlogAuthorController directory contains all the generated files, which initially
includes a controller (controllers.py) and a template subdirectory with a set of Kid files (edit.kid ,
 list.kid , new.kid , and show.kid) that define the CRUD operation views.

 Before getting into the details of tailoring the generated code, you may want to look over each of the
 generated files to get a sense of what’s going on. You don’t need to worry too much about the details
right now — you’ll learn more about each of these files as you tailor them for the BlogAuthor
model object.

 Creating a New Web Application Path
 The next thing you need to do is update the root controller in tblog\tblog\controllers.py to
include BlogAuthorController , as follows:

 ...

log = logging.getLogger(“tblog.controllers”)

from BlogAuthorController import BlogAuthorController

class Root(controllers.RootController):

 authors = BlogAuthorController()

 @expose(template=”tblog.templates.welcome”)

...

 The first change imports the generated controller from the BlogAuthorController package. The sec-
ond change creates a new path, http://localhost:8080/authors , in the web application. When the
user browses to anything under this path, it is delegated to BlogAuthorController .

 After adding the new reference, you can start the web application and see the new paths that were
 created. The application can be started with the following command:

 C:\turbogears-examples\tblog>python start-tblog.py

 The author list page is displayed by default. This page doesn’t contain any entries unless you’ve already
created blog authors with something like CatWalk. The path elements created for BlogAuthor include
 list , show , new , edit , and destroy for the basic operations, but you must tailor the controller and
views before the new views can be used.

c04.indd 110c04.indd 110 9/7/07 10:36:44 AM9/7/07 10:36:44 AM

Chapter 4: Introduction to TurboGears

111

 Defining the Widgets
 Next you need to tailor the BlogAuthorFields class defined in the BlogAuthorController
to include the list of widgets required to edit or define a new blog author. To do this, open
tblog/tblog/BlogAuthorController/controller.py and edit it as shown in Listing 4-2 .

 Listing 4-2: The controller for BlogAuthors defined in controller.py

 1 class BlogAuthorFields(WidgetsList):

 2 #Replace to your Fields

 3 #name = TextField(name=”name”, validator=validators.NotEmpty)

 4 #url = TextField(name=”url”)

 5 firstNameField = TextField(name=”firstName”, label=”First Name”,

 6 validator=validators.NotEmpty,

 7 default=”first”)

 8 lastNameField = TextField(name=”lastName”, label=”Last Name”,

 9 validator=validators.NotEmpty,

 10 default=”last”)

 11 emailAddressField = TextField(name=”emailAddress”,

 12 label = “Email Address”,

 13 validator=validators.Email(not_empty=True),

 14 attrs=dict(size=”30”))

❑ Notice that TextField widget attributes are automatically generated for the name and URL
 columns on lines 3 and 4. These have been commented out, and should be replaced with fields
that can be used for the columns in the BlogAuthor model object. You must define a field for
each column in your model object that doesn’t have a default value. The name value of the field
should correspond to the name of the model object column that the field value is stored in. For
example, the value of “firstName” used for the name attribute of the firstNameField ensures
that the data entered in the field is stored in the firstName attribute of the model object.

 You can set a variety of attributes for a widget that determine the appearance and behavior of the field.
The following table shows some common arguments that can be provided for a widget.

Attribute Description

name The name of the widget.

validator The validator to check the widget against when the form is submitted. The valida-
tion logic and processing are actually performed by a third-party project called
FormEncode (http://formencode.org/), which was developed by Ian Bicking.

attrs A dictionary of HTML attributes to set for the generated HTML element.

default The default value of the widget.

template The Kid template to use when creating the HTML. You don’t have to worry about
this one too much unless you’re defining your own widget.

label (For form widgets only.) The label to be displayed next to the form field.

help_text (For form widgets only.) Text to be displayed next to the form field. For example,
defining a help_text attribute with the value “Enter an e-mail address” in the
emailAddressField causes the string to be displayed next to the element.

c04.indd 111c04.indd 111 9/7/07 10:36:44 AM9/7/07 10:36:44 AM

Part II: TurboGears

112

 Returning to Listing 4-2 note the following:

Lines 5 through 7 define a firstNameField text field attribute and associate it with for the firstName
model object. This field uses a tailored label, cannot be empty, and has a default value of first .

 Lines 8 through 10 define a second text field attribute, lastNameField , which is similar to
 firstNameField .

 Lines 11 through 14 define an emailAddressField attribute and initialize it to a text field associated
with the emailAddress model object attribute. This text field uses the Email validator, which includes a
 not_empty attribute for accepting or rejecting empty e-mail addresses. It also uses the attrs attribute to
override the default size for the text field, setting it to 30 .

 At this point, you’ve made all the modifications necessary to edit or create a new blog author.
An example NewBlogAuthor page is shown in Figure 4-1 , which you access by browsing to
http://localhost:8080/authors and clicking the New BlogAuthor link, or by going
directly to http://localhost:8080/authors/new .

Figure 4-1

c04.indd 112c04.indd 112 9/7/07 10:36:45 AM9/7/07 10:36:45 AM

Chapter 4: Introduction to TurboGears

113

 If you add a few entries and return to the main view, it will look similar to Figure 4-2 . Notice that none of
the data for the authors is shown initially, which you’ll deal with next. For now, note the additional
Show, Edit, and Destroy links next to each row. If you click the Edit link for a row, you’re presented with
a view that is similar to the new view.

 Defining the List View
 The next step in tailoring the TGCrud-generated code is to tailor the list view so that it actually
 displays the data from the database. Luckily, a skeleton for this is generated for you in a Kid template
called tblog/tblog/BlogAuthorController/templates/list.kid . Simply open this file and
 modify it as shown in Listing 4-3 .

Figure 4-2

c04.indd 113c04.indd 113 9/7/07 10:36:45 AM9/7/07 10:36:45 AM

Part II: TurboGears

114

 Listing 4-3: The BlogAuthorController list template, list.kid, updated to include blog
author details

 1 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”

 2 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

 3 <html xmlns=”http://www.w3.org/1999/xhtml”

 4 xmlns:py=”http://purl.org/kid/ns#” py:extends=”’master.kid’”>

 5 <head>

 6 <meta content=”text/html; charset=utf-8”

 7 http-equiv=”Content-Type” py:replace=”’’”/>

 8 <title>list</title>

 9 </head>

 10 <body>

 11 <h1>Listing ${modelname}</h1>

 12

 13 <table>

 14 <tr>

 15 <!--th> name </th>

 16 <th> url </th-->

 17 <th> First Name </th>

 18 <th> Last Name </th>

 19 <th> Email </th>

 20 </tr>

 21 <tr py:for=”record in records”>

 22 <!--td>${record.name}</td>

 23 <td>${record.url}</td-->

 24 <td>${record.firstName}</td>

 25 <td>${record.lastName}</td>

 26 <td>

 27 ${record.emailAddress}</td>

 28 <td>Show</td>

 29 <td>Edit</td>

 30 <td><a href=”destroy/${record.id}”

 31 onclick=”if (confirm(‘Are you sure?’)) {

 32 var f = document.createElement(‘form’);

 33 this.parentNode.appendChild(f);

 34 f.method = ‘POST’;

 35 f.action = this.href;

 36 f.submit();

 37 };

 38 return false;”>

 39 Destroy</td>

 40 </tr>

 41 </table>

 42

 43

 44 New ${modelname}

 45 <!--span py:for=”page in tg.paginate.pages”>

 46 <a py:if=”page != tg.paginate.current_page”

 47 href=”${tg.paginate.get_href(page)}”>${page}

 48 <b py:if=”page == tg.paginate.current_page”>${page}

 49 </span-->

 50 </body>

 51 </html>

c04.indd 114c04.indd 114 9/7/07 10:36:46 AM9/7/07 10:36:46 AM

Chapter 4: Introduction to TurboGears

115

 Notice that the majority of the code shown in this listing is automatically generated. You’re required to
add only the table header (lines 17 through 19) and row detail (lines 24 through 27) for the BlogAuthor
model object.

 The listing also shows the basics of a typical Kid file specification. You can see the complete Kid template
language specification at http://kid-templating.org/language.html , but for now just take a look
at how Listing 4-2 uses this specification:

❑ The template looks much like a normal HTML document, but must conform to the XML
 specification. For example, any element specification must include both the opening tag (such
as <td>) and the closing tag (such as </td>) as shown on line 24, or use the shorthand (
)
as shown on line 43.

❑ A Python expression can be embedded in the Kid template by enclosing it in braces with a lead-
ing dollar sign (${<expr>}), as shown on line 24. When the template is evaluated, the expres-
sion is replaced with the expression result.

❑ Although this is not shown in the listing, you can also embed a Python code block in the
template with the Python processing instruction. For example, you can define a function in
the template for later use, as follows:

 <?python

 def doubleX(x):

 return x*2

 ?>

❑ A Kid template defines a Python namespace (line 4) and includes a variety of Python-specific
attributes from that namespace (such as py:extends on line 4 and py:for on line 21). The
 following table describes the available Python attributes.

Attribute Description

for This attribute is constructed like a normal for loop in Python and causes an
 element to be processed once for each item in a given list.

if A conditional attribute that takes an expression. An element and its descendents
are output only when the expression defined for the attribute evaluates to true.

content An attribute that can be used to generate content dynamically. It replaces any
descendants of the element with the result of the expression.

replace This is similar to the content attribute, but it replaces the element and its
 descendants with the result of the expression.

strip Similar to the if conditional attribute, this can be used to control whether or not
an element is output. When the containing expression evaluates to true, the
 element is not output. Unlike the if conditional attribute, this has no effect on
descendent elements.

attrs Allows the dynamic creation of attributes for an element. The evaluation of
the expression for this attribute should result in a dict, a list, or a comma-
 separated collection of key value pairs (such as k1=foo, k2=bar).

Table continued on following page

c04.indd 115c04.indd 115 9/7/07 10:36:46 AM9/7/07 10:36:46 AM

Part II: TurboGears

116

 After tailoring and saving the list template, you should see a page that looks similar to Figure 4-3 if
you browse to http://localhost:8080/authors/list or http://localhost:8080/authors .

Attribute Description

def Takes a name and argument list, and creates a named template function. An
 element containing this attribute and any of its descendents is not output during
normal template evaluation. It is included in the resulting HTML only when the
template is invoked by another template attribute.

match Allows you to define custom tags for use in a template. The element and its
descendents are output only when the tag defined for the element appears in
the document.

extends This should appear on the root element of the document. It takes the name of a
template and allows for inheritance, which causes any named template functions
(defined with def) and custom tags (defined with match) in the extended
 template to be inherited.

layout Like extends, this should appear only on the root element. It takes the name of a
template and causes the referenced template to be used to establish the layout of
a template. The named functions, custom tags, and other parameters defined in
the template containing the layout attribute are used by the layout template to
 generate the page content.

Figure 4-3

c04.indd 116c04.indd 116 9/7/07 10:36:46 AM9/7/07 10:36:46 AM

Chapter 4: Introduction to TurboGears

117

 Defining the Show View
 The final step in setting up the author CRUD views is to specify the show view. Similar to the list view,
this view is initially empty and appears as shown in Figure 4-4 .

 The show view is defined in the file tblog/BlogAuthorController/templates/show.kid and must
be tailored as shown in Listing 4-4 so that the author detail is displayed. Note that the url and name val-
ues in the generated file are replaced with references to the firstName , lastName , and emailAddress
columns of the author on lines 12 through 19.

 Listing 4-4: The BlogAuthorController show template, show.kid, updated to include
blog author details

 1 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”

 2 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

 3 <html xmlns=”http://www.w3.org/1999/xhtml”

 4 xmlns:py=”http://purl.org/kid/ns#” py:extends=”’master.kid’”>

 5 <head>

 6 <meta content=”text/html; charset=utf-8”

 7 http-equiv=”Content-Type” py:replace=”’’”/>

 8 <title>show</title>

 9 </head>

 10 <body>

 11 <table>

 12 <tr>

 13 <th>Name: </th>

Figure 4-4

(continued)

c04.indd 117c04.indd 117 9/7/07 10:36:47 AM9/7/07 10:36:47 AM

Part II: TurboGears

118

Listing 4-4 (continued)

 14 <td>${record.firstName} ${record.lastName}</td>

 15 </tr>

 16 <tr>

 17 <th>Email: </th>

 18 <td>${record.emailAddress}</td>

 19 </tr>

 20 </table>

 21

 22 Edit |

 23 Back

 24 </body>

 25 </html>

 After tailoring this view, you can see any author in the list by clicking the Show link next to the entry.
This displays a page similar to the one shown in Figure 4-5 .

Figure 4-5

 Creating the Blog Entry Views with TGC rud
 Now that you’ve created the CRUD views for the author, you’re ready to create a basic interface for blog
entries. To do this, you use TGCrud to create a controller and views for the BlogEntry .

c04.indd 118c04.indd 118 9/7/07 10:36:47 AM9/7/07 10:36:47 AM

Chapter 4: Introduction to TurboGears

119

 Generating the Code
 First you’ll need to generate the controller and views for BlogEntry objects. To do this, use the crud
subcommand of tg-admin with BlogEntry as an argument, as follows:

 C:\turbogears-examples\tblog>tg-admin crud BlogEntry BlogEntryController

 This creates the BlogEntryController directory and generates the CRUD view and controller code.

 Creating a New Web Application Path
 Once again, you need to edit the root application controller defined in tblog\tblog\controllers.py
to reference the new controller, as follows:

 ...

log = logging.getLogger(“tblog.controllers”)

from BlogAuthorController import BlogAuthorController

from BlogEntryController import BlogEntryController

class Root(controllers.RootController):

 authors = BlogAuthorController()

 entries = BlogEntryController()

 @expose(template=”tblog.templates.welcome”)

...

 This creates a new path called entries in the web application.

 Defining the Widgets
 Before you can create and edit new blog entries, you must define the set of widgets that describe a
 BlogEntry . After you tailor the blog entry fields, the new page (http://localhost:8080/entries/
new) and edit page (http://localhost:8080/entries/edit/<id>) will look similar to the page
shown in Figure 4-6 .

 Define the BlogEntryFields class in tblog/BlogEntryController/controllers.py as shown in
Listing 4-5 .

 Listing 4-5: The BlogEntryFields class defined in controllers.py

 1 from tblog.model import BlogAuthor

 2

 3 class BlogEntryFields(WidgetsList):

 4 #Replace to your Fields

 5 #name = TextField(name=”name”, validator=validators.NotEmpty)

 6 #url = TextField(name=”url”)

 7 author = SingleSelectField(name=”author”,

 8 options=[(entry.id,entry.firstName + “ “ +

 9 entry.lastName) for entry in

 10 BlogAuthor.select()])

 11

 12 date = CalendarDateTimePicker(name=”date”,

 13 label=”Entry Date”,

 14 validator=validators.DateTimeConverter())

(continued)

c04.indd 119c04.indd 119 9/7/07 10:36:48 AM9/7/07 10:36:48 AM

Part II: TurboGears

120

Listing 4-5 (continued)

 15 entryTitle = TextField(name=”entryTitle”, label=”Entry Title”,

 16 validator=validators.NotEmpty)

 17 entryText = TextArea(name=”entryText”, label=”blog Entry”,

 18 validator=validators.NotEmpty,

 19 rows=25, cols=70))

Figure 4-6

c04.indd 120c04.indd 120 9/7/07 10:36:48 AM9/7/07 10:36:48 AM

Chapter 4: Introduction to TurboGears

121

 The specification in this listing is similar to the BlogAuthorFields specification in Listing 4-1, with the
following significant similarities and differences:

❑ As in Listing 4-1 , the default name and url fields are commented out on lines 5 and 6.

❑ The author does not include a label attribute. This causes the default label to be used, which is
the name of the element with the first letter capitalized.

❑ In Listing 4-1 a variety of additional widgets are used instead of the TextField widget. Many
different types of widgets are available for use in your project, as shown in the following table.
You can find out the details of the widgets available for use in a project by starting the TurboGears
Toolbox from a project home directory and examining the Widget Browser shown on the
main TurboGears Toolbox site (available at http://localhost:7654/widgets/).

Widget Purpose

 AutoCompleteFormField An AJAX-based text field that suggests a text field value to the user.
As a user enters text in the field, a pop-up menu is populated with a
set of possible values provided by the server.

 Button The standard form button.

 CalendarDatePicker A text field linked to a pop-up calendar. It includes a button that dis-
plays a calendar when the user clicks it. When the user selects a date in
the pop-up calendar, the text field is populated with the selected date.

 CalendarDateTimePicker This is similar to the CalendarDatePicker, but allows the user to spec-
ify a time as well as the date in the pop-up calendar.

 CheckBox The standard form on/off check box.

 CheckBoxList A list of related check boxes.

 FieldSet A field that serves as a container for a set of related form fields.

 FileField A text field linked to a file browser. A Browse button displays a file
browser when clicked. After the user selects a file, the text field is
populated with the path name of the file.

 HiddenField The standard hidden form field. No field is displayed, but the param-
eter is included when the form data is sent to the server.

 ImageButton A button that displays an image rather than text.

 Label A read-only label to be displayed on the form.

 MultipleSelectField A list of predefined options, which allows multiple values to be
selected simultaneously.

 PasswordField A text-input field that replaces each entered letter with an asterisk (*)
for security purposes.

 RadioButtonList A collection of mutually exclusive buttons. Each button on the list
creates an entry in the form, but only one button may be clicked at
a time.

Table continued on following page

c04.indd 121c04.indd 121 9/7/07 10:36:48 AM9/7/07 10:36:48 AM

Part II: TurboGears

122

❑ Because the author is a foreign key, a SingleSelectField widget is used. This particular wid-
get creates a select form element populated with a list defined by the options attribute. This
attribute should contain a list of key-value pairs, where the key establishes the key of the select
field and the value defines the displayed value. In the case of the author select field, the list con-
tains keys made up of author IDs, and values contain the name of the author (lines 8–10).

❑ In Listing 4-5 the BlogAuthor must be imported on line 1 to enable the select function call
made on line 10.

❑ In Listing 4-5 the date of the blog entry uses the CalendarDateTimePicker widget (lines
12–14) to enable the user to specify a date and time more easily. This widget is shown in
Figure 4-7 .

❑ When used with the DateTimeConverter validator as specified on line 14 of Listing 4-5, the
text value of the field is automatically converted into a datetime object when the entry is added
or edited.

❑ Because the content of a blog entry is likely to be a large string, a TextArea widget is used in
Listing 4-5 instead of the TextField widget. This allows the user to input multiple lines, and
takes optional arguments rows and cols that allow the specification of the width and height of
the text area.

 Defining the List View
 After implementing the widgets for the new and edit views, you need to define the Kid template used
to create the list view. Listing 4-6 shows the updated Kid template tblog/BlogEntryController/
templates/list.kid .

Widget Purpose

 RepeatingFieldSet A collection of form fields that is included multiple times in the
same form.

 ResetButton The standard form Reset button, which resets the form to its
initial state.

 SingleSelectField A drop-down list containing a predefined set of options.

 SubmitButton The standard form Submit button, which causes the form field values
to be sent to the server.

 TextArea A multiline field for text input .

 TextField A single-line field for text input.

c04.indd 122c04.indd 122 9/7/07 10:36:49 AM9/7/07 10:36:49 AM

Chapter 4: Introduction to TurboGears

123

 Listing 4-6: The BlogEntryController list template, list.kid, updated to include blog
entry details

 1 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”

 2 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

 3 <html xmlns=”http://www.w3.org/1999/xhtml”

 4 xmlns:py=”http://purl.org/kid/ns#” py:extends=”’master.kid’”>

 5 <head>

 6 <meta content=”text/html; charset=utf-8”

 7 http-equiv=”Content-Type” py:replace=”’’”/>

 8 <title>list</title>

 9 </head>

Figure 4-7

(continued)

c04.indd 123c04.indd 123 9/7/07 10:36:49 AM9/7/07 10:36:49 AM

Part II: TurboGears

124

Listing 4-6 (continued)

 10 <body>

 11 <h1>Listing ${modelname}</h1>

 12 <table>

 13 <tr>

 14 <th> Date </th>

 15 <th> Blog Author </th>

 16 <th> Entry Title</th>

 17 </tr>

 18 <tr py:for=”record in records”>

 19 <td>${record.date}</td>

 20 <td>${record.author}</td>

 21 <td>${record.entryTitle}</td>

 22 <td>Show</td>

 23 <td>Edit</td>

 24 <td><a href=”destroy/${record.id}”

 25 onclick=”if (confirm(‘Are you sure?’)) {

 26 var f = document.createElement(‘form’);

 27 this.parentNode.appendChild(f); f.method = ‘POST’;

 28 f.action = this.href; f.submit(); };

 29 return false;”>Destroy</td>

 30 </tr>

 31 </table>

 32

 33 New ${modelname}

 34 <!--span py:for=”page in tg.paginate.pages”>

 35 <a py:if=”page != tg.paginate.current_page”

 36 href=”${tg.paginate.get_href(page)}”>${page}

 37 <b py:if=”page == tg.paginate.current_page”>${page}

 38 </span-->

 39

 40 </body>

 41 </html>

 As with the blog authors, the only changes you make here are to replace the url and name header and
row data with the blog entry column names (lines 14 through 16) and row detail (lines 19 through 21). In
this case, only the blog title is displayed to save space. After you make the changes in this listing, the
new blog entry list page (http://localhost:8080/entries/list) looks like Figure 4-8 .

 Defining the Edit View
 The final step in setting up the blog entry views is to tailor the edit view. Listing 4-7 shows the updated
Kid template, tblog/BlogEntryController/templates/edit.kid .

c04.indd 124c04.indd 124 9/7/07 10:36:50 AM9/7/07 10:36:50 AM

Chapter 4: Introduction to TurboGears

125

 Listing 4-7: The BlogEntryController edit template, edit.kid, updated to include blog
entry details

 1 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”

 2 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

 3 <html xmlns=”http://www.w3.org/1999/xhtml”

 4 xmlns:py=”http://purl.org/kid/ns#” py:extends=”’master.kid’”>

 5 <head>

 6 <meta content=”text/html; charset=utf-8”

 7 http-equiv=”Content-Type” py:replace=”’’”/>

 8 <title>show</title>

 9 </head>

 10 <body>

 11 <table>

 12 <tr>

 13 <th>${record.date} ${record.author} ${record.entryTitle}</th>

 14 </tr>

 15 <tr>

Figure 4-8

(continued)

c04.indd 125c04.indd 125 9/7/07 10:36:50 AM9/7/07 10:36:50 AM

Part II: TurboGears

126

Listing 4-7 (continued)

 16 <td>${XML(record.entryText)}</td>

 17 </tr>

 18 </table>

 19

 20 Edit | Back

 21 </body>

 22 </html>

 In this case, the format of the view is slightly different. Specifically:

❑ The date, author, and title for the entry make up the header of the table (line 13).

❑ The text of the entry makes up the single row of content for the table (line 16) so that lengthy
blog entries will be displayed correctly.

❑ The entry text is not referenced using simple expression substation as is done with the other
 elements like the date and author. Instead, the XML function is invoked with the entry text as an
argument. This function is very useful when the value of a variable is encoded as XML or

Figure 4-9

c04.indd 126c04.indd 126 9/7/07 10:36:50 AM9/7/07 10:36:50 AM

Chapter 4: Introduction to TurboGears

127

HTML, and causes the content to be included as XML rather than as a string. As a result, a blog
entry that is defined using HTML can be formatted appropriately. For example, Figure 4-9
shows the page created for the following entry:

 <h1>Wow!</h1>

<p>Can it be true that HTML is automatically picked up with the XML function in a

template?

Must Be!</p>

<p>Can I Even include images? You betcha!

Just check this out

Cool </p>

<p><i>Just remember to make sure the content is well formed!</i></p>

 When the entryText isn’t passed through the XML function, the result (shown in Figure 4-10) is much
less interesting.

 For this feature to work correctly, the data provided must be valid XML. If it isn’t, the Kid template will
raise an exception.

Figure 4-10

c04.indd 127c04.indd 127 9/7/07 10:36:51 AM9/7/07 10:36:51 AM

Part II: TurboGears

128

 Replacing the Blog Welcome Page
 At this point, the blog web application has a variety of pages that allow the specification and viewing of
blog entry and author details. One very critical aspect of the site is still missing, though. The site needs a
page that presents a read-only view of multiple blog entries for the blog’s viewers rather than the
authors. Of course, it’s possible to modify the list view defined in the BlogEntryController package
to present the data in a more user-friendly way, but the required view is not intended to be used in con-
junction with the other blog entry operations such as entry editing. Therefore, a new view should be
defined. In this section you specify the new view in the root controller and define it in the project’s main
template directory under tblog\tblog\templates .

 Defining the Kid Template
 The first step is to define a new Kid template, beView.kid . You do this in the tblog\tblog\templates
directory as shown in Listing 4-8 .

 Listing 4-8: The new Kid template, beView.kid

 1 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”

 2 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

 3 <html xmlns=”http://www.w3.org/1999/xhtml”

 4 xmlns:py=”http://purl.org/kid/ns#”

 5 py:extends=”’master.kid’”>

 6 <head>

 7 <meta content=”text/html; charset=utf-8”

 8 http-equiv=”Content-Type” py:replace=”’’”/>

 9 </head>

 10 <body>

 11 <div class=”blogEntry” py:for=”blogEntry in blogEntries”>

 12 <div class=”beHeader”>

 13 <h1>${blogEntry.entryTitle}</h1>

 14 <h2>${blogEntry.date}

 15 ${blogEntry.author}</h2>

 16 </div>

 17 <p>${XML(blogEntry.entryText)}</p>

 18 </div>

 19 <div class=”pageList”>

 20 Go to page:

 21

 22 <a py:if=”page != tg.paginate.current_page”

 23 href=”${tg.paginate.get_href(page)}”>${page}

 24 ${page}

 25

 26 </div>

 27 </body>

 28 </html>

 For the most part, this view is pretty straightforward. However, it does contain some interesting differ-
ences from other views:

❑ This view expects a list of BlogEntry objects to be provided in the blogEntries parameter.

❑ A for attribute is used on line 11 to create a div for each blogEntry in the blogEntries list.

c04.indd 128c04.indd 128 9/7/07 10:36:51 AM9/7/07 10:36:51 AM

Chapter 4: Introduction to TurboGears

129

❑ Similar to the show view in the BlogEntryController package, the BlogEntry entry content
is filtered through the XML function (line 17) to ensure that any HTML tags in the entry are used
to format the entry rather than being included as string data.

❑ Lines 19 through 26 define a div that makes use of the paginate feature in TurboGears. This
 feature greatly simplifies the presentation of large sets of data across multiple pages and is
 necessary to ensure that all blog entries aren’t shown on a single page.

 You can enable the paginate feature via a paginate decorator when creating your new web ap-
plication path (as described in the next section). This decorator ensures that several variables de-
scribing the page information are accessible from a template. For example:

❑ A list of all page numbers that are being paged over is retrieved with the
tg.paginate.pages attribute on line 21.

❑ The current page number is retrieved with tg.paginate.current_page .

❑ A page number can be translated into a URI with the tg.paginate.get_href function,
as shown on line 23.

 The paginate feature is described in greater detail at http://docs.turbogears.org/1.0/
PaginateDecorator .

 Creating a New Web Application Path
 After defining the new Kid template, all that remains is to modify the index path currently defined in the
root controller to use the new Kid template. To do this, open tblog\tblog\controllers.py and edit
the index function definition as shown in Listing 4-9 .

 Listing 4-9: The root controller, in controllers.py, extended to use the beView

 1 from turbogears import controllers, expose

 2 from model import *

 3 from turbogears import identity, redirect

 4 from cherrypy import request, response

 5 # from tblog import json

 6 # import logging

 7 # log = logging.getLogger(“tblog.controllers”)

 8 from BlogAuthorController import BlogAuthorController

 9 from BlogEntryController import BlogEntryController

 10 from turbogears import paginate

 11

 12 class Root(controllers.RootController):

 13 authors = BlogAuthorController()

 14 entries = BlogEntryController()

 15

 16 @expose(template=”tblog.templates.beView”)

 17 #@identity.require(identity.in_group(“admin”))

 18 @paginate(‘blogEntries’, limit=5)

(continued)

c04.indd 129c04.indd 129 9/7/07 10:36:51 AM9/7/07 10:36:51 AM

Part II: TurboGears

130

Listing 4-9 (continued)

 19 def index(self):

 20 blogEntries = BlogEntry.select(orderBy=BlogEntry.q.date).reversed()

 21 return dict(blogEntries = blogEntries)

 22

 23 @expose(template=”tblog.templates.login”)

 24 def login(self, forward_url=None, previous_url=None, *args, **kw):

 25 ...

 Here’s what’s being done in this listing:

❑ The model files are imported on line 2.

❑ The paginate decorator is imported on line 10. Note the following:

❑ The first argument to the paginate decorator is the name of the select result that should
be shown across multiple pages.

❑ The limit indicates the number of matching blog entries to include on each page.

❑ The decorator takes additional optional arguments to establish aspects of the paging, such
as the column that should be used when sorting the page data.

❑ The template exposed on line 16 is changed to use the new beView template.

❑ The index function specification is changed as well. The BlogEntry select method is used on
line 20 to get the list of all blog entries. The list returned is ordered by date, with the most recent
entries appearing first. Several additional options are available that affect the result returned by
a select statement:

❑ The orderBy argument is passed to select and given the name of the date column in the
blog entry. Notice that the database column must be used when defining a selection limiter
for the select statement (such as all entries before 1/1/01) or ordering the results of a
 selection. You do this by the accessing the column via the q attribute (BlogEntry.q.date),
rather than directly referencing the model object attribute (BlogEntry.date).

❑ The select function takes a distinct argument, which you can use to remove any dupli-
cate elements from the selection results. For example:

 BlogEntry.select(distinct=True)

❑ You can specify a selection limiter. For example, you can get all entries posted before the
current time with the following statement:

 BlogEntry.select(BlogEntry.q.date < datetime.now())

❑ By default, when ordering by date, the select result includes earlier dates in earlier posi-
tions in the list. However, you can use the reverse function to show the most recently
added blog entries at the top of the list.

❑ You can use the count function to return the count of matching elements. For example, use
the following statement to return the number of blog entries:

 BlogEntry.select().count()

c04.indd 130c04.indd 130 9/7/07 10:36:52 AM9/7/07 10:36:52 AM

Chapter 4: Introduction to TurboGears

131

 After defining and saving the new controller, you’ll get a page similar to the one shown in Figure 4-11
when you reload the index page at http://localhost:8080 .

Figure 4-11

 Changing Your Site’s Look and Feel
 At this point you have a fully functional blog. In this section you’ll make some enhancements to the look
and feel of the website by defining your own global template and using it in each of the views that
you’ve created.

c04.indd 131c04.indd 131 9/7/07 10:36:52 AM9/7/07 10:36:52 AM

Part II: TurboGears

132

 Thus far, you used the standard TurboGears master template, CRUD-specific master templates, and style
sheets as the basis for the site’s look and feel. However, the use of TurboGears labels and other standard
template elements isn’t practical for the majority of websites in the real world.

 The look and feel of the site is typically defined in a single master template that is extended by most (if
not all) views. This master template establishes standard style sheets, headers, and footers. To establish a
master template for your site and create a tailored look and feel for the entire site, you need to do the
following:

1. Define a master template, similar to the project’s master.kid , that establishes the look and feel
of the site.

2. Define a style sheet to be used by the master template when creating the site’s look and feel.

3. Change each view to extend the new master template.

 Defining the Master Template
 When you create a project in TurboGears, a master template is generated and included under the project
templates directory (tblog/templates/master.kid) . If you look at this file, you can see some of the
more advanced features of the Kid template system at work.

 To define a new template, start with the existing master as a basis, and create a new master template
named tblog/templates/blog-master.kid , as shown in Listing 4-10 .

 Listing 4-10: The master template, master.kid, tailored for TBlog

 1 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”

 2 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

 3 <?python import sitetemplate ?>

 4 <html xmlns=”http://www.w3.org/1999/xhtml”

 5 xmlns:py=”http://purl.org/kid/ns#” py:extends=”sitetemplate”>

 6 <head py:match=”item.tag==’{http://www.w3.org/1999/xhtml}head’”

 7 py:attrs=”item.items()”>

 8 <meta content=”text/html; charset=UTF-8” http-equiv=”content-type”

 9 py:replace=”’’”/>

 10 <title py:replace=”’’”>TBlog: A TurboGears Blog</title>

 11 <meta py:replace=”item[:]”/>

 12 <style type=”text/css”>

 13 #pageLogin

 14 {

 15 font-size: 10px;

 16 font-family: verdana;

 17 text-align: right;

 18 }

 19 </style>

 20 <style type=”text/css” media=”screen”>

 21 @import “/static/css/blog-style.css”;

 22 </style>

 23 </head>

 24 <body py:match=”item.tag==’{http://www.w3.org/1999/xhtml}body’”

 25 py:attrs=”item.items()”>

c04.indd 132c04.indd 132 9/7/07 10:36:53 AM9/7/07 10:36:53 AM

Chapter 4: Introduction to TurboGears

133

 26 <div py:if=”tg.config(‘identity.on’,False) and not ‘logging_in’

➦

 in locals()”

 27 id=”pageLogin”>

 28

 29 Login

 30

 31

 32 Welcome ${tg.identity.user.display_name}.

 33 Logout

 34

 35 </div>

 36 <div id=”header”>TBlog: A TurboGears Blog</div>

 37 <div id=”main_content”>

 38 <div py:if=”tg_flash” class=”flash”

 39 py:content=”tg_flash”>

 40 </div>

 41 <div py:replace=”[item.text]+item[:]”/>

 42 </div>

 43 <div id=”footer”>TBlog: A TurboGears Blog</div>

 44 </body>

 45 </html>

 There are several aspects of the template that are interesting to note:

❑ The template imports (line 3) and extends (line 5) another template, sitetemplate , which is
defined as part of the TurboGears framework.

❑ The template uses a standard style sheet (line 21), blog-style.css , which is defined under
 /static/css . (You’ll learn how and where to define this in the next section.)

❑ The main content provided in the body of a specific view is shown in the main_content div
(defined on lines 37 through 42). This is accomplished as follows:

❑ The match attribute is used to match the body tag in the content-producing view (line 24).

❑ When the body tag is matched, the content of the body tag (the child elements and text)
defined in the content-producing template is specified as an attribute list of the master
template body element with attrs (line 25).

❑ The replace attribute is used to replace an empty div with the value of the new attributes
(line 41).

❑ The relocation of any content allows the master template to define the following:

❑ A default title to be shared across views (line 10)

❑ A common header to be shared across views (line 36)

❑ A common footer to be shared across views (line 43)

❑ Controls (lines 26–35) and styles (lines 12–19) to handle user management are created and
shared across all views. These are retained from the original master template (discussed in more
detail in Chapter 5).

c04.indd 133c04.indd 133 9/7/07 10:36:53 AM9/7/07 10:36:53 AM

Part II: TurboGears

134

 Defining the Style Sheet
 A new default style sheet is defined in the new master template. The new style sheet, blog-style.css ,
is shown in Listing 4-11 , and should be defined under tblog/tblog/static/css/ .

 All static files appear under tblog/tblog/static/ . This directory serves as a location for files that
do not change at runtime, and are referenced statically by Kid templates and each other. This includes
subdirectories for common static elements like JavaScript (js/), cascading style sheets (css/), and
 images (images/).

 Listing 4-11: The style sheet for TBlog, blog-style.css

 1 #header {

 2 height: 50px;

 3 font-size: 20pt;

 4 text-align: center;

 5 border: thin solid black;

 6 background: #E1DEFE;

 7 margin: 10px auto 10px auto;

 8 }

 9

 10 html, body {

 11 color: #4D4B5F;

 12 font-family: verdana;

 13 font-size: 9pt;

 14 margin: auto 10px auto 10px;

 15 }

 16

 17 .beHeader {

 18 background: #E6FDC6;

 19 border: thin solid black;

 20 }

 21

 22 .beHeader h1 {

 23 margin: 2px;

 24 text-align: center;

 25 font-size: 12pt;

 26 }

 27

 28 .beHeader h2 {

 29 margin: 2px;

 30 text-align: right;

 31 font-size: 7pt;

 32 }

 33

 34 #footer {

 35 margin: 10px auto 10px auto;

 36 border: 1px solid #aaa;

 37 color: #999;

 38 background-color: #CCC;

 39 padding: 10px;

 40 font-size: 80%;

 41 text-align: center;

 42 vertical-align: bottom;

 43 }

c04.indd 134c04.indd 134 9/7/07 10:36:53 AM9/7/07 10:36:53 AM

Chapter 4: Introduction to TurboGears

135

 44

 45 .pageList {

 46 background: #E0FFFF;

 47 border: thin solid black;

 48 padding: 10px;

 49 }

 Using the Master Template
 Every TurboGears project gets a master template automatically generated under the project’s templates
directory as part of the project quickstart command. In many cases, it’s sufficient to modify this
 template to contain the tailored look and feel of your site, but TGCrud provides a separate master Kid
template for each controller package. This makes it necessary to update each of the Kid templates gener-
ated by TGCrud to use the new master template.

Figure 4-12

c04.indd 135c04.indd 135 9/7/07 10:36:54 AM9/7/07 10:36:54 AM

Part II: TurboGears

136

 To finish the modifications required to tailor the look and feel of the tblog site, you need to modify the
view extended by each generated view to be the new master view tblog/templates/blog-master.
kid . The files that are affected include any Kid files defined for your project, such as those defined under
 tblog/BlogAuthorController/templates and tblog/BlogEditorController/templates .
Replace the original extends attribute defined for the HTML element with one that references the new
master Kid template, as follows:

 py:extends=”’../../templates/tblog-master.kid’”

 After changing all the references and reloading the index page, you should see a page similar to the one
shown in Figure 4-12 .

 You can now change the look and feel of the web application simply by changing the master template or
the corresponding css file. For example, you can change the background of the header div for all pages
by changing the value of line 6 in Listing 4-9 .

 Summary
 In this chapter you explored some of the main components of TurboGears — controllers, widgets, and
Kid templates — in detail. You also gained more hands-on experience with TurboGears by implementing
an example blog application. Through this example, you learned how to do the following:

❑ Use controllers to separate your web application into a variety of paths and reduce the complex-
ity of the root controller.

❑ Use TGCrud to create and tailor basic views for model operations.

❑ Define a Kid template that makes use of the paginate feature to avoid presenting the user with
too much data on each page.

❑ Use a master template and style sheet to establish a common look and feel of a website and to
define common elements in a single file.

 In the next chapter you continue building your blog application and explore some of the more advanced
features of TurboGears, including user management and widget definition.

c04.indd 136c04.indd 136 9/7/07 10:36:54 AM9/7/07 10:36:54 AM

 User Identity and
Visitor Tracking

 How often, or on what system, the Thought Police plugged in any individual wire was
guesswork. It was even conceivable that they watched everybody all the time. But at
any rate, they could plug in your wire whenever they wanted to.

— George Orwell in 1984

 In the last chapter, you got a whirlwind introduction to TurboGears and created a usable blog
application. In this chapter, you’ll build on that foundation as you learn the ins and outs of user
identity and visitor tracking. The TurboGears Visit Tracking framework creates and tracks sessions
associated with the users of your web application; the TurboGears Identity framework enables you
to easily identify users and add security to a web application. More specifically, in this chapter
you’ll learn the following:

❑ How cookies are used to track known and anonymous user visits

❑ The main components of the Identity framework:

❑ User identity model objects that get generated when you create a new project

❑ The main user identity configuration options available for a project

❑ The main components provided by the user identity framework

❑ The main components of the Visit Tracking framework:

❑ The model objects used to track visitors

❑ The main configuration options that modify the behavior of the visitor tracking
framework

 ❑ How to write your own visitor tracking plug-ins to record and analyze site visitor
behavior

c05.indd 137c05.indd 137 9/7/07 10:37:57 AM9/7/07 10:37:57 AM

Part II: TurboGears

138

 You’ll gain hands-on experience as you expand the TBlog application to make use of the users, groups,
and security provided by the Identity framework. You’ll also use the Visit Tracking framework to
 collect and analyze information about your site’s visitors.

 This chapter builds on the example constructed in Chapter 4 . Ideally, you have already read that chapter
and explored the example, but it’s not absolutely required. If you’re comfortable with the basics of Turbo-
Gears and are interested in jumping right into user identity and visitor tracking, you can start with this
chapter. Just be sure to download and familiarize yourself with the code from the previous chapter.

 Tracking Visits through Cookies
 Before getting into the details of the components provided by the Identity and Visit Tracking frame-
works, you need to understand how the frameworks themselves work.

 The first time someone browses to a web application that uses identity management, the Identity frame-
work sends them a cookie. On subsequent requests from the same browser, the cookie is used to identify
that the browser has already accessed the site. If the browser doesn’t make any requests for some
amount of time, the Identity framework assumes that the person has gone on to do something else and
invalidates the cookie. At that point, if the user comes back to the application, making another request,
the Identity framework creates a new cookie and sends it to the browser. See Figure 5-1 for an example
interaction.

 From the perspective of an identified user, the ultimate effect is that after he logs in to the site, he
remains logged in until he either logs out or the session times out due to inactivity. Each time the user
makes a new request, the session is extended, meaning that it could continue indefinitely as long as the
user is interacting with the application.

 It’s important to note that the same process is used for logged-in users as well as anonymous users. This
is because the cookie gets issued on the first site request before the user has the opportunity to log in. A
user may have no idea that he’s being tracked by the web application. He may be completely anony-
mous and not even have a login name for the system. What you can do with this information is dis-
cussed in more detail under the “Visitor Tracking” section.

 If cookies aren’t enabled on the client, the visit tracking and user identification become much less useful.
The application attempts to set a cookie, but it is not accepted and therefore not included in subsequent
requests from the browser. The application doesn’t see a cookie with the next request, assumes that it’s a
new visitor, and tries to issue a new cookie. Figure 5-2 shows an example interaction with a browser that
has cookies disabled.

c05.indd 138c05.indd 138 9/7/07 10:37:58 AM9/7/07 10:37:58 AM

Chapter 5: User Identity and Visitor Tracking

139

Figure 5-1

Request
Initial request includes no cookie

Request
Include cookie with future requests

Request
Expired cookie not included in request

Response
Response is based on visitor info

(logged in/logged off)

Response
Issue cookie as a part of the response

Response
Issue new cookie as a part of the response

Web Browser Web Server

Recognize a
new visitor.
Generate and
send a new
cookie, saving
the information.

Recognize a
new visitor.
Generate and
send a new
cookie, saving
the information.

Compare sent
cookie with stored
information to
identify the visitor.
Extend the
visitor session.

�

Store cookie
on the user
machine.

Wait before
request.
Cookie
expires.

 You may want to test this out as you’re going through the examples later in the chapter. After complet-
ing the sections “Managing User Identity” and “Visitor Tracking,” disable cookies in your browser and
try visiting the site. You’ll get very different behavior than when the cookies are enabled.

c05.indd 139c05.indd 139 9/7/07 10:37:58 AM9/7/07 10:37:58 AM

Part II: TurboGears

140

 Managing User Identity
 Enabling user cookies causes user sessions to be maintained, which allows you to perform the higher-
level user management tasks discussed here. In this section, you’ll do the following:

❑ Learn about identity model objects and see how to incorporate them into TBlog

❑ Gain more experience with CatWalk as you use it to define new users and groups

❑ Explore different ways that you can use the Identity framework for web application security and
to tailor a user’s experience

 User Identity Model Objects
 When you created the TBlog project with the quickstart command in the previous chapter, you indi-
cated that the project required identity management. This option creates several model objects capable of
representing and managing user identity, including objects that can be used to maintain users, groups,
and permissions, as well as those that track the details of user visits. Figure 5-3 shows a class diagram of
the automatically generated identity model objects.

Request
Initial request includes no cookie

Request
Make a new request without cookie

Response
Issue cookie as a part of the response

Response
Issue cookie as a part of the response

Web Browser Web Server

Recognize a
new visitor.
Generate and
send a new
cookie, saving
the information.

Assume the
lack of a cookie
indicates a new
visitor. Create a
new session
and cookie,
saving the
information.

Reject and
disregard
the cookie.

Reject and
disregard
the cookie.

Figure 5-2

c05.indd 140c05.indd 140 9/7/07 10:37:58 AM9/7/07 10:37:58 AM

Chapter 5: User Identity and Visitor Tracking

141

 Any of these objects can be modified to include additional attributes, but by default the fields for these
objects provide the basic details necessary to perform role-based security for a web application. For
example, the user object could be augmented with a user’s birthday, or with a set of preferences that are
used to tailor the look and feel of the site based on the user’s specifications.

 There are two main types of objects generated for you. The User , Group , and Permission objects are
used to maintain information about user login and security rights. The Visit and VisitIdentity
objects are used to track known and unknown application visitors. These are discussed in more detail in
the “Visitor Tracking Model Objects” section.

 The User object represents a user that can log into the web application and includes the following fields:

❑ user_name: This represents the name that the user types in when he or she logs into the applica-
tion. By default, this is a Unicode column that is limited to 16 characters, but it can be changed.

 The user name is defined as an alternate identifier (alternateID). When this field is set to
 True , the generated table adds constraints on the column to ensure that it is unique. The field
also causes creates a method that enables you to select instances of the model object by the
 alternate identifier (user_name in this case).

 By default, the select method follows standard accessor method conventions and consists of
 get followed by the name of the field, with the first letter capitalized (which would be
getUser_name in this case). This behavior can be overridden with the alternateMethodName
argument passed into the column constructor. In the case of the user name, this is used to create
a by_user_name method, which enables you to look up a user by his or her username. For
 example, you could use the following statement to retrieve a user named “buddy”:

 User.by_user_name(“buddy”);

❑ email_address: The e-mail address for the user is another Unicode column limited to 255 char-
acters by default. This is also an alternate identifier and includes the by_email_address
method, which enables you to look up a user by his or her e-mail address, as in this example:

 User.by_email_address(“buddy@foo.com”)

Permission
Permission_name
description
groups

Group

VisitIdentity

group_name
display_name
created
users
permissions

visit_key
user_id

Visit
visit_key
created
expiry

User Users Groups Groups Permissions
User_name
email_address
display_name
password
created
groups

* * * *

Figure 5-3

c05.indd 141c05.indd 141 9/7/07 10:37:59 AM9/7/07 10:37:59 AM

Part II: TurboGears

142

❑ display_name: This is used to create a more user-friendly representation of the user’s name,
such as the user’s first and last name. This is maintained with a 255 character Unicode column.

❑ password: This field contains the user’s password. By default, it is a Unicode column limited to
40 characters.

❑ created: This field contains the date and time that the user was created.

❑ groups: These are the groups to which the user belongs. This field uses the RelatedJoin col-
umn type to create one end of a many-to-many relationship between the Group and User model
objects. You’ll see below that the Group model object establishes the other end of this relation-
ship in the users column. Ultimately, this column enables you to easily access the set of the
user’s groups with a query, as shown in the following example shell interaction:

 >>> User.by_user_name(‘bill’).groups

[<Group 1 group_name=u’authors’ display_name=u’Authors’

➦

created=’datetime.datetime...)’>]

 The Group object establishes groups to which the user can belong. Like other file-system or application
groups, you can use this to restrict the activities available to a user. Group fields include the following:

❑ group_name: This 16-character Unicode column denotes the name of the group. It is defined as
an alternate identifier to guarantee name uniqueness and allow the group object to be retrieved
with a by_group_name method as follows:

 Group.by_group_name(“admin”)

❑ display_name: This is the display name of the group, defined by a 255-character Unicode
column.

❑ created: This is the date and time that the group was created.

❑ users: As noted above, this field establishes the other end of the many-to-many relationship
with the User table. Like the groups field in the User table, this ultimately enables you to
 retrieve all the users that are in a given group, as shown in the following shell interaction:

 >>> Group.by_group_name(‘authors’).users

[<User 1 user_name=u’ray’ email_address=u’ray@foo.com’ display_name=u’Ray Budd’

➦

password=u’ray’ created=’datetime.datetime...)’>, <User 3 user_name=u’bill’

➦

email_address=u’bill@foo.com’ display_name=u’Bill Wright’ password=u’bill’

➦

created=’datetime.datetime...)’>]

❑ permissions: This is a set of permissions associated with the group. Similar to the many-to-
many relationship created between groups and users, this is used to establish one end of a
many-to-many relationship with the Permission object. It enables you to directly access the set
of permissions associated with a group.

 The final object is Permission , which enables you to establish multiple permissions associated with a
group and ascribed to users in that group. This makes it possible to concisely capture more complex rela-
tionships between user types with related responsibilities. For example, you may have two groups,
 authors and admins , which both have read and write permissions. The admins group may have an
additional permission, create_user , which enables this group’s members to create new web applica-
tion users. The permission fields include the following:

c05.indd 142c05.indd 142 9/7/07 10:37:59 AM9/7/07 10:37:59 AM

Chapter 5: User Identity and Visitor Tracking

143

❑ permission_name: This alternate identifier is represented with a 16-character Unicode column
and enables you to retrieve a Permission object with the by_permission_name method.

❑ description: This 255-character Unicode column contains a description of the permission.

❑ groups: This field contains the groups with which the permission is associated. It is the second
end of the many-to-many relationship between the Group and Permission objects.

 Identity Configuration Options
 The Identity framework has a variety of options, most of which are included and described in the
 application-level configuration file (tblog/tblog/config/app.cfg). These options enable you to
 tailor the model objects used to maintain identity as well as adjust the behavior of the Identity
framework. The following table lists some of the more common configuration options and their
default values. Note that several properties in the table begin with soprovider (such as
soprovider.model.user). These options are specific to the Identity framework implementation
in SQLObject and are ignored in SQLAlchemy projects. There are corresponding options that start
with saprovider (such as saprovider.model.user), which are generated when you use the
 quickstart command to create a SQLAlchemy project.

 In many cases, you need to restart the application, the TurboGears Toolbox, or the Python shell after
changing configuration option values before they will take effect.

Option Default Value Description

on True Determines whether identity management is on or
off. This should be True if your web application
makes use of the identity module.

failure_url /login When a site visitor attempts to access a page that he
or she doesn’t have access to, the request gets for-
warded to a new page determined by this property.

soprovider.model

.user

<packagename>

.model.User

 Contains user identity information. This can be
overridden so that you can specify your own user
identity class as long as it provides the same basic
capabilities.

soprovider

.model.group

<packagename>

.model.Group

Defines the class to use for Group data.

soprovider

.model.permission

<packagename>

.model.Permission

 Establishes the class to use for Permission
 information.

soprovider

.model.visit

Not specified Determines the class to use when tracking visitors
logged in to your web application (discussed in
more detail later in this chapter).

soprovider

.encryption_

 algorithm

None Establishes the type of encryption to use when stor-
ing passwords in the database. You are required to
set the password with User.password =
“value” for the value to be encrypted. Valid values
include “None”, “md5”, and “sha1”.

c05.indd 143c05.indd 143 9/7/07 10:38:00 AM9/7/07 10:38:00 AM

Part II: TurboGears

144

 Other Identity Framework Components
 The Identity framework provides several additional components that can help you use the model objects
described previously to log users in and out, and to control access to parts of your web application. Spe-
cifically, when you create a project that uses the Identity framework, you have the following additional
capabilities:

❑ Views to log a user in and out are automatically incorporated into the system as follows:

❑ The root controller (tblog/tblog/controller.py) has additional paths for /login and
 /logout that collect and validate the user login information.

❑ An additional Kid page (tblog/tblog/templates/login.kid) is provided to collect
and send the user login information. (It even encrypts the password for you.)

❑ The base template (tblog/tblog/templates/master.kid) automatically creates and
manages a link that the user can use to log in to and out of the system.

❑ Properties and methods that provide information about the currently logged in user (if any) are
available to the application controllers. The controller can do the following:

❑ Use identity.current to access details of the currently logged-in user as a user model
object.

❑ Use the Boolean property identity.current.anonymous to find out if a user is logged
in or not.

❑ The template can access the current property with tg.identity (for example, tg.identity.
user and tg.identity.anonymous).

❑ Controllers can easily restrict user access to parts of the application. Access can be restricted
with the following:

❑ The require property, which when specified for the controller restricts access to all paths
provided by the controller

❑ The identity.require decorator, which can be added to a controller method to restrict
access to a specific path

 You’ll see examples of each of these as you enhance the TBlog application to make use of the Identity
framework.

 Using the Identity Model Objects
 Now that you’re familiar with the Identity framework’s model objects, capabilities, and configuration
options, you’re ready to try them out with an example. In this section, you’ll see how to enhance the
existing TBlog application to use the Identity model objects provided by TurboGears.

 To use the new User model object rather than the BlogAuthor object, you need to make a few changes
to the existing controllers. In the previous chapter, you defined a controller and templates for viewing
and manipulating the BlogAuthor records. You’ll need to remove these references first.

 You also defined a controller and templates in the previous chapter for viewing and modifying the blog
entries. Because the blog entry structure has also changed, you’ll need to make a few small adjustments
to this component as well.

c05.indd 144c05.indd 144 9/7/07 10:38:00 AM9/7/07 10:38:00 AM

Chapter 5: User Identity and Visitor Tracking

145

 Updating the Model
 The first step is to update the model to use the User SQLObject rather than BlogAuthor . Open tblog/
tblog/model.py and replace the foreign key specification in the BlogEntry model object to reference
the User model object as shown here:

 class BlogEntry(SQLObject):

 date = DateTimeCol()

 entryText = StringCol()

 entryTitle = StringCol()

 author = ForeignKey(“User”)

 You can also remove, or comment out, the BlogAuthor model object at this point too, because it will no
longer be used.

 After modifying the database structure, you need to re-create your database by removing the old data
and tables with the drop command and creating the tables with the create command, as follows:

 C:\turbogears-examples\tblog>tg-admin sql drop

Using database URI sqlite:///C|\turbogears-examples\tblog/devdata.sqlite

C:\turbogears-examples\tblog>tg-admin sql create

Using database URI sqlite:///C|\turbogears-examples\tblog/devdata.sqlite

 Creating Users in CatWalk
 After the database is created, you can specify a new set of users with CatWalk or the Python shell. To use
CatWalk, start the TurboGears Toolbox as follows:

 C:\turbogears-examples\tblog>tg-admin toolbox

 Browse to CatWalk, and enter a set of users similar to the ones shown in Figure 5-4 .

 You also need to set up a new group to identify authors, rather than other types of users. To do this,
browse to the Group table and add a new group with a display_name of ‘Authors’ and a
 group_name of ‘authors’ .

 After creating the new group, you’re ready to add some of the users you specified previously to it.
Browse to the authors group in CatWalk and expand the users row. Click the Manage Relations link.
This displays a table containing the list of users in the authors group on the left, and the list of all users
in the database on the right. You can add or remove users from the group by highlighting one or more
users in the table on the left or right and clicking the add selected or remove selected link. In
 Figure 5-5 , ray and bill have been added to the group, while dave and dana are not members.

 Using Password Encryption
 In many cases, you’ll want encrypt the user passwords stored in the database to provide more
effective security. You can specify that passwords are encrypted in the database with the
 encryption_algorithm property in tblog/tblog/config/app.cfg . To see an example, set up
TBlog to use md5 encryption by removing the comment from the original property and replacing it
with the following:

 identity.soprovider.encryption_algorithm=’md5’

c05.indd 145c05.indd 145 9/7/07 10:38:01 AM9/7/07 10:38:01 AM

Part II: TurboGears

146

Figure 5-5

Figure 5-4

c05.indd 146c05.indd 146 9/7/07 10:38:01 AM9/7/07 10:38:01 AM

Chapter 5: User Identity and Visitor Tracking

147

 That’s all that’s required to enable the encryption, but you should know that whenever you change this
property, existing users won’t be able to log in with their passwords if they were stored with a different
encryption scheme. One other caveat concerning the use of encryption is that you can’t specify an
encrypted user password through CatWalk. This is because CatWalk doesn’t use the password field
(user.password) when creating user objects or updating user passwords.

 One simple option to encrypt existing passwords is to use the shell to read the old unencrypted pass-
words, and then write them back out again. This will encrypt them in the process. See Listing 5-1 for the
shell interaction when encrypting the passwords for the users shown in Figure 5-5 . Note that if you
restart the TurboGears Toolbox after committing these changes, the encrypted form of the password is
shown in CatWalk rather than in plain text.

 Listing 5-1: Python shell interaction to encrypt user passwords

 1 C:\turbogears-examples\tblog>tg-admin shell

 2 Python 2.4.4 (#71, Oct 18 2006, 08:34:43) [MSC v.1310 32 bit (Intel)] on win32

 3 Type “help”, “copyright”, “credits” or “license” for more information.

 4 (CustomShell)

 5 >>> allUsers = User.select()

 6 >>> for user in allUsers:

 7 ... user.password

 8 ...

 9 u’ray’

10 u’dana’

11 u’bill’

12 u’dave’

13 >>> for user in allUsers:

14 ... user.password = user.password

15 ...

16 2007-05-16 17:10:42,592 turbogears.identity.soprovider INFO Succesfully

➦

loaded “tblog.model.User”

...

32 >>> for user in allUsers:

33 ... user.password

34 ...

35 u’070dd72385b8b2b205db53237da57200’

36 u’21cb4e4be93c09542ffa73b2b5cb95ea’

37 u’e8375d7cd983efcbf956da5937050ffc’

38 u’1610838743cc90e3e4fdda748282d9b8’

39 >>> ^Z

40 Do you wish to commit your database changes? [yes] yes

 There are a few interesting things to note in this listing:

❑ Starting the shell from the project home makes the classes defined in the project model, such as
 User and Group , automatically available.

❑ In lines 9 through 12, the values for the passwords are simply retrieved and displayed (no data
has changed).

❑ The only real work is performed on lines 13 and 14, where the password is copied onto itself.
During this process, the password is encrypted.

❑ The encrypted form of the password is retrieved and displayed on lines 32 through 38.

c05.indd 147c05.indd 147 9/7/07 10:38:02 AM9/7/07 10:38:02 AM

Part II: TurboGears

148

 Of course, you can use the shell to change any user’s password if you change the value of the property
for the user object. However, in most cases, you’ll want to provide a component in the web application to
handle user registration.

 An alternative to writing your own user management capabilities is to use the registration package. This
component generates a set of standard user management pages for inclusion in your project. It’s docu-
mented at http://patrickhlewis.googlepages.com/registration.html and can be installed as
follows:

 easy_install registration

 The package can be used to generate a set of user management controllers, models, templates, and wid-
gets for a project as a part of the quickstart process. It provides a variety of capabilities for a project,
such as forms for creating new users and changing user passwords, as well as an e-mail address valida-
tion component.

 Removing the Blog Author Model and Controller
 With the model defined and the users created, you’re almost ready to incorporate them into the
project, but before you get started, you need to remove some old references to the BlogAuthor
 model object. At this point, because the BlogAuthor model object is no longer used, it’s safe to
remove the BlogAuthorController . First, delete the tblog/tblog/BlogAuthorController
 directory, and then remove the references to BlogAuthorController in the root controller
(tblog/tblog/controllers.py) as shown here:

 ...

#from BlogAuthorController import BlogAuthorController

...

class Root(controllers.RootController):

 #authors = BlogAuthorController()

 entries = BlogEntryController()

...

 Updating the BlogEntryController
 After removing the BlogAuthorController , you need to update the BlogEntryController to use
the User table instead of the BlogAuthor table. Open tblog/tblog/BlogEntryController/
controller.py and modify it as follows:

1. Replace the BlogAuthor import statement. Originally the BlogAuthor was imported from the
model package with the following statement:

 from tblog.model import BlogAuthor

 Replace this with an import of the User and Group from the model package, as follows:

 from tblog.model import User, Group

c05.indd 148c05.indd 148 9/7/07 10:38:02 AM9/7/07 10:38:02 AM

Chapter 5: User Identity and Visitor Tracking

149

2. Replace the author widget in BlogEntryFields . The list of widgets defined in the
 BlogEntryFields class originally created a drop-down list of author based on the values in the
 BlogAuthor table. This was accomplished with the specification of the author field shown
here:

 author = SingleSelectField(name=”authorID”,

 label=”Author”,

 options=[(entry.id,entry.firstName + “ “ +

 entry.lastName) for entry in

 BlogAuthor.select()])

 In the new version, the list should be populated with the name and ID of all users in the
 ‘ author’ group. To accomplish this, replace the author field with the following:

 authorGroup = Group.by_group_name(‘authors’);

 userList = [(entry.id, entry.display_name) for entry in authorGroup.users]

 author = SingleSelectField(name=”authorID”,

 label=”Author”,

 options=userList,

 validator=validators.NotEmpty)

 Note the following regarding these changes:

❑ The by_group_name method of Group retrieves the group with the name ‘authors’ .

❑ The userList is an array of user IDs, and displays names similar to the array of BlogAuthor
IDs, first names, and last names. The options argument of the SingleSelectField is set to
this value and is ultimately used to populate the drop-down list in the form.

 Now run the application with start-tblog.py , and browse to the new blog entry page at http://
localhost:8080/entries/new . Notice that the Author drop-down list is populated only with users in
the authors group (Ray Budd and Bill Wright). Other users (Dana Moore and Dave Clayton) are not
included.

 Displaying the Author Name
 There is one minor issue with the author name as it is currently implemented that should be fixed next.
If you add a new entry and look at the index page or the show or list view, you’ll notice that the author
name displayed by default isn’t very useful (see Figure 5-6).

 The initial implementation in Chapter 4 displayed the first and last name of the blog author, but now it
shows all the details of the User model object. This is because the author is a foreign key to another
model object, and when a foreign key attribute is used, the string representation of the model object
pointed to by the foreign key is used. By default, the string representation of a model object is a string of
all model object attributes, but the BlogAuthor model object specification includes the following over-
riding string function implementation:

 def __str__(self):

 return “%s %s” % (self.firstName, self.lastName)

c05.indd 149c05.indd 149 9/7/07 10:38:03 AM9/7/07 10:38:03 AM

Part II: TurboGears

150

 To fix the display of the author name, you simply need to add a new string method that returns the
user’s display name to the User model object in tblog/tblog/model.py as shown here:

 def __str__(self):

 return self.display_name

 If you reload the list page, you get a more useful value for the author name (see Figure 5-7).

 Using the Identity Module
 At this point, the Identity objects have been incorporated into the project, and you’re ready to use
them to provide security and tailor the users’ experience. With the identity module, it’s easy to restrict
access to a page or a path in a web application based on the logged-in user’s groups or permissions. The
 identity module also enables you to personalize the experience of a logged-in user. For example, you
can use details of the logged-in user to tailor the way information is presented, or to create elements in a
Kid template based on a user’s permissions or groups.

Figure 5-6

c05.indd 150c05.indd 150 9/7/07 10:38:03 AM9/7/07 10:38:03 AM

Chapter 5: User Identity and Visitor Tracking

151

 Restricting Page Access in a Controller
 After defining some users and establishing the author’s group, it’s simple to restrict access so
that only blog authors can add or modify the blog entries. All you need to do is modify
tblog/tblog/BlogEntryController/controllers.py as follows:

1. Uncomment or add an import statement to the identity module as follows:

 from turbogears import identity

2. Make BlogEntryController a secure resource by extending identity.SecureResource as
follows:

 ...

class BlogEntryController(controllers.Controller,identity.SecureResource):

 “””Basic model admin interface”””

...

Figure 5-7

c05.indd 151c05.indd 151 9/7/07 10:38:03 AM9/7/07 10:38:03 AM

Part II: TurboGears

152

3. Require the user to be in the authors group to have access to the controller. Do this by adding a
special require attribute to BlogEntryController as shown here:

 ...

class BlogEntryController(controllers.Controller,identity.SecureResource):

 “””Basic model admin interface”””

 require = identity.in_group(“authors”)

 modelname=”BlogEntry”

...

 This uses a predicate called in_group , which is defined in the identity module. This predicate
takes the name of a group and validates that the currently logged-in user is in the group.

 Note that although you simply restrict access to the entire entries path with the in_group function in
step 3, there are many other powerful options that you can use when you’re implementing identity
 management in a web application.

 The following table shows the available identity validation predicates. Through these predicates, you
can validate that a user has one or more permissions, belongs to one or more groups, or is coming from
one or more hosts. You can even use All or Any as described in the table to ensure that multiple valida-
tion conditions are satisfied.

Predicate Example Description

in_group(groupName) identity.in_

group(“authors”)

Succeeds when the logged-in user is in
the “authors” group.

in_any_

group(groupName, ...)

identity.in_any_

group(“authors”,

 “viewers”)

Succeeds when the logged-in user is in
either the “authors” or “viewers”
group.

in_all_

groups(groupName, ...)

identity.in_all_

groups(“authors”)

Succeeds when the logged-in user is in
both the “authors” and “viewers”
groups.

has_pernission

(permissionName)

identity.has_

permission(“write”)

Succeeds when the logged-in user has
the “write” permission.

has_any_permission

(permissionName, ...)

identity.has_any_

 permission (“write”,

“read”)

Succeeds when the logged-in user has
either the “write” or “read”
 permission.

has_all_permissions

(permissionName, ...)

identity.has_all_

 permissions (“write”,

“read”)

Succeeds when the logged-in user has
both the “write” and “read”
 permissions.

from_host(ipAddress) identity.from_

host(“127.0.0.1”)

Succeeds when the logged-in user is
looking at the page from the local host.
Note that either the IP address or the
hostname can be specified in the
browser (http://127.0.0.1:8080/
or http://localhost:8080).

c05.indd 152c05.indd 152 9/7/07 10:38:04 AM9/7/07 10:38:04 AM

Chapter 5: User Identity and Visitor Tracking

153

Predicate Example Description

from_any_

host(ipAddress, ...)

identity.from_any_host

(“127.0.0.1”,

“192.168.1.1”)

Succeeds when the logged-in user is
looking at the page from either the
local host or the host at 192.168.1.1.

All(predicate, ...) identity.All (identity

.from_host(“127.0.0.1”),

identity.in_

group(“authors”)

Succeeds when the logged-in user is in
the “authors” group and is looking
at the page from the the local host.

Any(predicate, ...) identity.All (identity

.has_permission

(“write”), identity. in_

group(“authors”)

Succeeds when the logged-in user is in
the “authors” group or has the
“write” permission.

 You can also restrict access to a specific path within the controller by using a require decorator,
which takes an identity validation predicate as an argument. For example, instead of using the
 require field, you could restrict access to the new and edited pages at http://localhost:8080/
entries/new and http://localhost:8080/entries/show by changing the appropriate methods
in the BlogEntryController as follows:

 ...

 @expose(template=’kid:tblog.BlogEntryController.templates.new’)

 @identity.require(identity.in_group(“authors”))

 def new(self, **kw):

 “””Create new records in model”””

...

 @expose(template=’kid:tblog.BlogEntryController.templates.edit’)

 @identity.require(identity.in_group(“authors”))

 def edit(self, id, **kw):

 “””Edit record in model”””

...

 In this case, it’s cleaner to restrict access to the entire BlogEntryController as shown here instead of
restricting each page specifically because any user without write permissions should typically access
only the main blog view at http://localhost:8080/ .

 After implementing the changes described in this section, any path under http://localhost:8080/
entries is restricted to authors. This means that if users aren’t logged into the system, they are for-
warded to the login page shown in Figure 5-8 if they try to access anything under the entries path.

 A logged-in user that is not a member of the appropriate group is also denied access to the page. For
example, if the user named “dana” tries to access the entries path, he is denied access and forwarded
to the login screen shown in Figure 5-9 because he’s not in the “authors” group.

 Of course, the read-only view of the blog at http://localhost:8080/ has no restrictions, and can still
be seen by a user who is logged in as dana or dave , or who isn’t even logged in at all.

c05.indd 153c05.indd 153 9/7/07 10:38:04 AM9/7/07 10:38:04 AM

Part II: TurboGears

154

Figure 5-8

 Selecting the Author Based on the Logged-In User
 Because the user is now required to be logged in before creating any blog entries, a simple and nice
enhancement is to automatically determine the author’s name based on the logged-in user. You can
accomplish this by looking up the currently logged-in user’s ID and including it as part of the request
when a new blog entry is created. Just do the following:

1. Open tblog/tblog/BlogEntryController/controllers.py , and edit the new function of
 BlogEntryController to include the ID of the currently logged-in user as follows:

 ...

class BlogEntryController(controllers.Controller,identity.SecureResource):

...

 @expose(template=’kid:tblog.BlogEntryController.templates.new’)

 def new(self, **kw):

 “””Create new records in model”””

 return dict(modelname = self.modelname,

c05.indd 154c05.indd 154 9/7/07 10:38:05 AM9/7/07 10:38:05 AM

Chapter 5: User Identity and Visitor Tracking

155

Figure 5-9

 data = dict(authorID=identity.current.user.id),

 form = model_form)

...

 Note the following:

❑ The identity module is used to retrieve the currently logged-in user with the
identity. current.user field. The authorID is then set to the ID of this user. A few
additional useful properties are defined for identity.current , as shown in the table that
 follows this procedure.

❑ A dict is created and includes an entry for the authorID that is the ID of the logged-in
user. You could easily establish different values for other form elements by specifying
 additional dict entries that have keys set to the names of other form widgets in
 BlogEntryField . For example, you can include a default title of “A New Entry” for all
new form fields by defining dict as follows:

 data = dict(authorID=identity.current.user.id, entryTitle=”A New Entry”)

c05.indd 155c05.indd 155 9/7/07 10:38:05 AM9/7/07 10:38:05 AM

Part II: TurboGears

156

2. Open tblog/tblog/BlogEntryController/templates/new.kid . Include the new data pa-
rameter as an argument to be used when the form is created; simply add a value attribute to the
form constructor as follows:

 ${form(value=data, action=’save’)}

 If you reload the page now and log in as bill , the author is automatically set to “Bill Wright” when a
new blog entry is created.

 property Description

 anonymous Indicates whether or not the site visitor has logged in. This is True after the user
has logged in, and False otherwise.

 user_name The name of the current user.

 user The User model object for the current user. This can be used to access any of
 attributes defined for the user, such as email_address or display_name .

 groups A list containing the name of each group to which the current user belongs.

 permissions A list containing the names of the permissions assigned to the current user.

 Restricting Element Display in a Template
 You can also use the identity module to restrict the elements that are displayed in a Kid template. To
see an example of this, you can create a link to the blog entry editor from the beView template that
serves as the application’s main page (http://localhost:8080/index). To avoid confusion, this link
should be shown only when a blog author is logged into the site. This change is as simple as adding
a few elements to the tblog/tblog/templates/beView.kid . At the start of the body tag add
the following:

 ...

 <body>

 <p>

 <a py:if=”’authors’ in tg.identity.groups” href=”/entries”>

 Edit Entries

 </p>

 <div class=”blogEntry” py:for=”blogEntry in blogEntries”>

...

 This change adds an Edit Entries link to the page when the currently logged-in user is in the
“authors” group. This is enabled via the Kid template’s tg.identity property. tg.identity is
 similar to identity.current (described previously) and has access to the same properties (shown in
the previous table).

 After making this change, if you log in as ray , you’ll see the index page shown in Figure 5-10 . Now log
off and log in again as dana . Note that the Edit Entries link does not appear on the page for this user
(shown in Figure 5-11).

c05.indd 156c05.indd 156 9/7/07 10:38:06 AM9/7/07 10:38:06 AM

Chapter 5: User Identity and Visitor Tracking

157

 You can see another example of a tg.identity user in tblog/tblog/templates/
blog-master.kid . This template is based on the master.kid generated by tg-admin
quickstart , and includes a div that displays the Login and Logout links that appear in the
upper-right corner of all the site’s pages (shown previously in Figures 5-7 and 5-10).

 Adding a Return Link to the Entries List
 You’ve finally finished all the changes that are required to secure the web application. To gain access to
the blog entry views, the user must be logged in and be a member of the “authors” group. You may,
however, want to make one small enhancement and add a return link from the entries list. This will
allow the web author to return to the main blog page after he or she has finished editing the entries with-
out having to manually type the URL into the browser.

Figure 5-10

c05.indd 157c05.indd 157 9/7/07 10:38:06 AM9/7/07 10:38:06 AM

Part II: TurboGears

158

 To add a return link, simply open tblog/tblog/BlogEntryController/templates/list.kid and
add the following after the link to create a new entry:

 New ${modelname}

 Return to Blog View

 <!--span py:for=”page in tg.paginate.pages”>

 After you save the template, browse to http://localhost:8080/entries/list . The new link is now
displayed on the page as shown in Figure 5-12 .

Figure 5-11

c05.indd 158c05.indd 158 9/7/07 10:38:06 AM9/7/07 10:38:06 AM

Chapter 5: User Identity and Visitor Tracking

159

 Visitor Tracking
 Now that you’ve seen how to manage logged-in users and provide security, you’re ready to explore
tracking users that may or may not have logged in. In this section, you focus on using the Visit Tracking
framework to collect statistics about your web application’s users.

 Because the Visit Tracking framework automatically creates cookies and tracks sessions with remote
users, it’s quite simple to use the framework to collect all types of information about an application’s
users over time. In many applications, it’s highly desirable to capture as much information about a site’s
users as possible for a variety of reasons.

 Example uses of the Visit Tracking framework include tracking the paths in a web application that are
requested by the user and tracking the order in which they’re requested. You can use this information to
see the popular and unpopular areas of your site, or analyze when a user starts a process (such as filling
out a survey or making a transaction in an online store) but ends it prematurely.

Figure 5-12

c05.indd 159c05.indd 159 9/7/07 10:38:07 AM9/7/07 10:38:07 AM

Part II: TurboGears

160

 You can also use the framework to analyze a wide variety of statistics about the site’s users, such as how
long the average user stays on the site, how frequently the same host accesses the site, or how many
 visitors to the site log in with usernames versus those that remain anonymous.

 In the remaining sections of the chapter, you enhance the blog example to capture some simple statistics
about the site visitors. You’ll see how to extend the blog to capture the IP address of each visitor, the
number of times a user has visited a site, and the time of his or her most recent visit. You also create a
simple template to present this information to registered blog authors.

 Visitor Tracking Model Objects
 To understand the visitor tracking model objects, recall the discussion and Figures 5-1 and 5-2 from the
“Tracking Visits through Cookies” section at the beginning of the chapter. When a user visits the applica-
tion for the first time, a cookie is generated and included in the server response. This cookie contains a
key that is based on information associated with the user’s initial request, such as the IP address.

 When the server generates the key and the cookie, it also stores the key in a model object that maintains
additional information about the session with the remote browser. On future requests from the browser,
the server uses the key to look up any additional details of the session.

 The Visit model object is used to capture the session time and key detail, and is defined in the project
model file (which is tblog/tblog/model.py). It includes the following attributes:

❑ visit_key: The key that is included in the cookie sent to the user. This is an alternate ID, and can
be looked up with by_visit_key as follows:

 aVisit = Visit.by_visit_key(“2beec2e1a1bfa7ee3023593f8fb71676058cca91”)

 On subsequent requests, the Visit object is looked up based on this field.

❑ created: The date and time that the visit was created.

❑ expiry: The date and time that the visit session will expire based on user inactivity. This is ini-
tially set to 20 minutes after the visit creation time, but is updated to be 20 minutes after the
 current time with each request. If a user is idle for more than 20 minutes, the time is exceeded
and the session is timed out.

❑ You can change the visit idle time with the visit.timeout property as shown later in this
 section. With each user request, the visit idle time is extended.

 Another model object related to the Visit Tracking framework is the VisitIdentity table. This
object is simply used to associate a Visit object with a logged-in user. After a user logs in, a new
 VisitIdentity instance is created with the current visit key and contains the ID of the newly
logged-in in user. The VisitIdentity table includes the following two columns:

❑ visit_key: As in the Visit table, this corresponds to the key included in the cookie sent to the
user. It is an alternate identifier that is retrievable with by_visit_key as follows:

 anIdentity = VisitIdentity.by_visit_key(“2beec2e1a1bfa7ee3023593f8fb71676058cca91”)

❑ user_id: This is maintained as an int value, but denotes the ID of a User model object. This
value corresponds to the ID of the user that logged in during this session.

c05.indd 160c05.indd 160 9/7/07 10:38:07 AM9/7/07 10:38:07 AM

Chapter 5: User Identity and Visitor Tracking

161

 As with all the other model objects that deal with identity and visitor tracking, this model object is used
only when you set the corresponding configuration property to the project’s model object. In this case,
you define the property soprovider.model.visit in your application configuration file (tblog/
tblog/config/app.cfg) by adding the following line:

 identity.soprovider.model.visit=”tblog.model.VisitIdentity”

 If you’re interested in seeing how visitors are tracked, add this line before you implement the example.

 Also note that VisitIdentity entries are cleaned up when a user logs out, whereas Visit entries are
not. This makes it possible to examine the Visit table periodically to track the length of user sessions or
perform other types of user analysis.

 Visitor Tracking Configuration Options
 Like the identity module, the visitor tracking component has a variety of options that can be tailored
to suit the requirements of each web application. These are defined and documented in the application
configuration file (tblog/tblog/config/app.cfg) generated for a project that uses the Identity frame-
work. The following table describes that options that are most commonly used.

 Option Default Description

 on True Determines whether visitors should be tracked or not.

 timeout 20 How long a visitor can be idle before the visit expires.
Note that this doesn’t effect the life of any cookies .

 cookie.name tg-visit The name to assign to the cookie sent to the visitor.

 cookie.domain None The domain to set on the cookie. This should typically
be None .

 cookie.path / The path of the cookie. This can be used to restrict the
scope of the cookie to a specific path in the application.

 soprovider <projectname> Like the Identity model classes shown in the first table
.model .model.Visit in this chapter (see the section “Identity Configuration

Options”), this option specifies the model object to use
when storing visit information. This can be overridden
so that you can provide your own visit identity class as
long as it provides the same basic capabilities.

c05.indd 161c05.indd 161 9/7/07 10:38:08 AM9/7/07 10:38:08 AM

Part II: TurboGears

162

 Visitor Tracking Plug-Ins
 The final component of the Visit Tracking framework is the visit plug-in. The framework follows a plug-
in model and allows you to define logic to be triggered within the context of a visit. Visit plug-ins are
invoked every time a browser makes a request to the server as long as visit tracking is turned on. You
can define as many plug-ins as you want — the only requirements are that they include a
record_request method and are enabled when the application starts up.

 The record_request method takes a Visit object that includes a key corresponding to the key
included with the request’s cookie and maintained in the visit_key field of the Visit model object,
and a Boolean is_true property. The is_true property is True if the request is the first request associ-
ated with a particular visitor key.

 You can register a plug-in with the enable_visit_plugin method that is included as a part of the Visit
Tracking framework. As you implement the controller in the example, you’ll see how you can incorpo-
rate a plug-in by adding it to a list of functions invoked when the project starts up.

 Adding Visitor Tracking
 After seeing the basic components of the Visit Tracking framework, you’re ready to extend the TBlog to
make use of it. In the remainder of the chapter, you’ll enhance TBlog to track the IP address of TBlog
 visitors, capture the latest visit time, and track how many repeat visits have been made from a particular
IP address.

 Defining the Model Object
 The first step in capturing additional user statistics is to define a model object to hold the details you
want to capture about your visitors. In this case, you’ll want to include the visitor IP address, the number
of visits, and the time of the latest visit from a particular host. In tblog/tblog/model.py , create a new
object called VisitorCount to maintain this data, as follows:

 class VisitorCount(SQLObject):

 hostname = StringCol(length=20, alternateID=True,

 alternateMethodName=”by_hostname”)

 count = IntCol(default=1)

 lastVisit = DateTimeCol(default=datetime.now)

 VisitorCount defines the following three properties (or columns):

❑ hostname is stored as a string and represents the IP address. It is a unique value that is accessi-
ble with by_hostname . For example, VisitorCount.by_hostname(‘127.0.0.1’) returns the
visitor count object that references 127.0.0.1.

❑ count is an integer value that corresponds be the number of times a new visitor key has been
created for the IP address. Note that the default count is 1 .

❑ lastVisit is a datetime that holds the time last visit was created, which by default is the
current time.

c05.indd 162c05.indd 162 9/7/07 10:38:08 AM9/7/07 10:38:08 AM

Chapter 5: User Identity and Visitor Tracking

163

 After defining the new model object and saving model.py , make sure that the TurboGears Toolbox and
web application aren’t running, and add the new table to the database with the following statement:

 tg-admin sql create

 Because you have only added a table and haven’t changed the structure of your existing tables, this
command adds the new VisitorCount table without corrupting any existing data in the database.

 Creating the Plug-In
 After the new model object is defined, you need to create a new plug-in that will populate the
table based on user visits. Listing 5-2 shows the code to define and incorporate the new plug-in,
 VisitorCountPlugin . Add this code to the bottom of your controller file
(tblog/tblog/controllers.py).

 Listing 5-2: The VisitorCountPlugin class defined in controllers.py

 1 class VisitorCountPlugin(object):

 2 def record_request(self, visit):

 3 log.info(“Got a record request call: “ + request.object_path)

 4

 5 if visit.is_new:

 6 log.info(“This is a new visitor: “ + request.object_path)

 7 vcSelectResults = VisitorCount.select(

 8 VisitorCount.q.hostname==cherrypy.request.remoteHost)

 9

 10 # Since the hostname is a unique ID there will only be one

 11 # response at most. Check to ensure it was found. If so,

 12 # update the count, and latest visit time.

 13 if vcSelectResults.count() == 1:

 14 log.info(“Found an existing visitor: “ +

 15 str(vcSelectResults))

 16 theVCount = vcSelectResults[0]

 17 newCount = theVCount.count+1

 18 theVCount.set(count=newCount, lastVisit=datetime.now())

 19 else:

 20 log.info(“Creating a new visitor for “ +

 21 cherrypy.request.remoteHost)

 22 VisitorCount(hostname=cherrypy.request.remoteHost)

 23

 24 def addVisitorCountPlugin():

 25 visit.enable_visit_plugin(VisitorCountPlugin())

 26

 27 startup.call_on_startup.append(addVisitorCountPlugin)

 You also need to add the following import statements and create a logger in the beginning of your con-
troller (if it isn’t already there):

 import logging

from model import VisitorCount

from turbogears import visit, startup

from datetime import datetime

log = logging.getLogger(“tblog.controllers”)

c05.indd 163c05.indd 163 9/7/07 10:38:08 AM9/7/07 10:38:08 AM

Part II: TurboGears

164

 Listing 5-2 shows the basics of plug-in specification and incorporation. The plug-in is specified on lines 1
through 22, and consists of a single method called record_request . This method creates a new
 VisitorCount record for new hostnames, or increments the count and visit time when the visitor count
already exists, as follows:

❑ The is_new property of the visit argument is used on line 5 to ensure that the visit is tracked
only when it’s created. This ensures that the same visit isn’t counted more than one time.

❑ If the visit is new, the VisitorCount table is examined to see if there is already an entry for the
hostname associated with the request. Line 7 selects all VisitorCount objects by hostname.

❑ The IP address of the host that generated the request is retrieved with the
cherrypy.request.remoteHost property on line 8.

❑ If a VisitorCount object was found for the hostname, the count of the results will be 1 (see line
13). In this case, the VisitorCount object will be retrieved from the select results (line 16), the
count for this object will be incremented (line 17), and VisitorCount will be updated to include
the new count and a new visit time set to the current time (line 18).

❑ If the IP address hasn’t been encountered before, the count property of VisitorCount will be 0 ,
and the else clause will be entered (line 19). This simply creates a new visitor count for the IP
address, which is initialized to the default visit time and count.

 The remaining lines (24 through 27) are used to incorporate the plug-in into the Visit Tracking
framework:

❑ The addVisitorCountPlugin function on lines 24 and 25 creates a new visitor count plug-in
and registers it with enable_visit_plugin .

❑ Line 27 incorporates the addVisitorCountPlugin method into the project startup by append-
ing it to the list of functions to be called at startup (turbogears.startup.call_on_startup)
with append .

 At this point, you’ve done everything necessary to record user visits. Restart your project and look at the
TBlog site. Then look at the VisitorCount table using quickstart or the shell, and you will see a new
record that captures the visit that you just made to the site.

 If you don’t have access to two machines for testing, you can use the local host as well as your real IP
address. First, point your browser to http://localhost:8080/ , and then use your real hostname
or IP address (such as http://192.168.1.1:8080/). This records multiple entries because one
 request uses the local loopback and originates from 127.0.0.1 rather than your actual IP address. After
you visit both addresses, you will have two entries in your VisitorCount table.

 Defining the Template
 Of course, it’s not very practical to force authors to use CatWalk to look at the count information. In this
section you’ll create a new simple view in tblog/tblog/templates/ called statistics.kid to show
the visitor statistics in a more user-friendly way. Listing 5-3 shows the new Kid template.

c05.indd 164c05.indd 164 9/7/07 10:38:09 AM9/7/07 10:38:09 AM

Chapter 5: User Identity and Visitor Tracking

165

 Listing 5-3: A simple view of visitor statistics, statistics.kid

 1 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”

 2 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

 3 <html xmlns=”http://www.w3.org/1999/xhtml”

 4 xmlns:py=”http://purl.org/kid/ns#”

 5 py:extends=”’blog-master.kid’”>

 6 <head>

 7 <meta content=”text/html; charset=utf-8”

 8 http-equiv=”Content-Type” py:replace=”’’”/>

 9 </head>

 10 <body>

 11 <h1>Visitor Statistics</h1>

 12 <table class=”statTable”>

 13 <tr>

 14 <th>Hostname</th>

 15 <th>Count</th>

 16 <th>Last Visit Time</th>

 17 </tr>

 18 <tr py:for=”entry in visitorcount”>

 19 <td>${entry.hostname}</td>

 20 <td>${entry.count}</td>

 21 <td>${entry.lastVisit}</td>

 22 </tr>

 23 </table>

 24 <p>

 25 Return to Blog View

 26 </p>

 27 </body>

 28 </html>

 Note the following aspects of statistics.kid in the listing:

❑ A single argument visitorcount is required for the template. This should contain the list of all
 VisitorCount objects in the database.

❑ The template extends the master template blog-master.kid (line 5) to ensure it has the stan-
dard look and feel.

❑ The template creates a single table to hold the visitor statistics (lines 12–23).

❑ Each row in the table corresponds to a different visitorcount element, and includes the host-
name, count, and last visit time.

❑ Rather than use the default visual formatting for the table, the statistics table is formatted using
the style sheet class statTable (line 12). You may also want update the style sheet to use a
 tailored appearance for each cell in the table. Listing 5-4 shows two additional classes that you
should add to the bottom of the site’s tblog/tblog/static/css/blog-style.css style sheet
to enhance the formatting of the table.

c05.indd 165c05.indd 165 9/7/07 10:38:09 AM9/7/07 10:38:09 AM

Part II: TurboGears

166

 Listing 5-4: Additions to blog-style.css to format the visitor statistics table

 .statTable {

 border: thin solid black;

 background: #E1DEFE;

 text-align: center;

}

.statTable td {

 border: thin solid black;

 background: white;

}

 Adding the Location to the Controller
 Now that you’ve created the template, you need to expose it in your controller and create a new path in
the web application. Open tblog/tblog/controllers.py , and add the following /statistics path
to the RootController specification:

 @expose(template=”tblog.templates.statistics”)

 @identity.require(identity.in_group(“authors”))

 def statistics(self):

 return dict(visitorcount=VisitorCount.select())

 This new method does the following:

❑ Uses the expose decorator to expose the statistics Kid template.

❑ Restricts this view to authors with the identity.require template. This decorator is similar to
the require property you specified for the BlogEntryController in the earlier example, but
is used to restrict access to a single path rather than all paths provided by the controller. This
means that if a user is not logged in and a member of the “authors” group, he will be for-
warded to the login screen if he attempts to access this path.

❑ Returns a visitorcount argument that consists of all VisitorCount objects.

 At this point, if you save and reload you’ll get a new http://localhost:8080/statistics path,
which is available if you’re a logged in as an author. Figure 5-13 shows the new Statistics view.

 Creating the New Link
 The final step is to add a link to the Statistics page that is similar to the Edit Entries link. You should add
the link to the main blog view. The link is visible only when a user is logged in and is a member of the
“authors” group. To add the link, open tblog/tblog/templates/beView.kid and add the following
after the Edit Entries link:

c05.indd 166c05.indd 166 9/7/07 10:38:10 AM9/7/07 10:38:10 AM

Chapter 5: User Identity and Visitor Tracking

167

Figure 5-13

 <body>

 <p>

 <a py:if=”’authors’ in tg.identity.groups” href=”/entries”>

 Edit Entries

 <a py:if=”’authors’ in tg.identity.groups” href=”/statistics”>

 View Statistics

 </p>

c05.indd 167c05.indd 167 9/7/07 10:38:10 AM9/7/07 10:38:10 AM

Part II: TurboGears

168

Figure 5-14

 Summary
 This chapter introduced you to the Identity and Visit Tracking frameworks that are provided by
 TurboGears. You learned about the frameworks’ capabilities as well as the model object and configura-
tion options that can be used to tailor the behavior for a specific project. You also got some hands-on
experience with the frameworks as you enhanced the blog example from Chapter 4 to make use of the
frameworks. The blog has been extended to manage your blog authors, restrict blog entry creation to
logged-in users that are authors, and collect statistics about your blog viewers.

 In the next chapter you’ll gain a deeper understanding of the widget framework. As you extend the
TBlog web application, you will see how to use existing widgets and create your own widgets by
c ombining HTML, CSS, and JavaScript into highly portable and reusable components.

 The main blog view will now have the additional View Statistics link as shown in Figure 5-14 .

c05.indd 168c05.indd 168 9/7/07 10:38:10 AM9/7/07 10:38:10 AM

 Widgets

 Always code as if the guy who ends up maintaining your code will be a violent
 psychopath who knows where you live.

— Martin Golding

 Regardless of the development language or type of application, developers should always attempt
to develop well-organized and reusable code. If the organization of code is ignored for an applica-
tion, the result is a tangle of duplicated code that is difficult to understand and maintain. In such
systems, a capability is typically implemented, and then copied and pasted into other parts of the
system as the need to reuse the capability is seen. This in turn makes it extremely difficult for you
or others to maintain the code after it’s written. A single change may have a ripple effect and
require a series of changes to many other similar pieces of code.

 Any language provides a set of programming constructs that help you write organized, maintain-
able code with minimal duplication. Procedural languages use procedures and functions to help
alleviate this issue by grouping common operations into logical chunks. These may be collected
further and organized into packages, modules, and libraries. Object-oriented languages take this a
step further with object specifications that enable you to group common functions and data into
a single entity. Inheritance is useful to ensure that common capabilities are specified only once in a
parent class, and inherited by subclasses.

 In a web application, however, it’s not always possible to represent a single reusable entity with
only the data and functions available in object-oriented languages. This is because a web applica-
tion typically relies on a combination of three very distinct elements that may produce a reusable
component only when taken together. The structure of the component is established with HTML,
JavaScript is required to define client-side behaviors for the component, and finally style sheets are
necessary to tailor the site’s appearance.

c06.indd 169c06.indd 169 9/7/07 10:39:28 AM9/7/07 10:39:28 AM

Part II: TurboGears

170

 TurboGears provides widgets to enable a web application developer to write reusable components that
include all the elements wrapped together in a single package. The ultimate effect is a reduction in
 duplicate code, a more maintainable and reusable component, and a more logical organization of all the
code that is necessary to create a component.

 In Chapter 4, “Introduction to TurboGears,” you were introduced to the concept of widgets when you
used TGCrud to generate a simple interface to view, modify, and delete blog authors and entries. In this
chapter you build on that introduction and explore the possibilities of the widget framework in more
detail, including the following:

❑ Widget design motivations and advantages

❑ The Widget Browser, a tool used to catalog and document widgets

❑ How to use existing widgets to easily add complex capabilities to a web application

❑ How to implement and package your own widgets for reuse in one or more web applications

 Throughout the chapter, you enhance the TBlog web application to represent, accept, and display user
comments for a given blog entry. First you use existing form elements to accept new comments, and then
you define your own widget that can be used to display user comments.

 This chapter builds on the TBlog example from Chapters 4 and 5 . You may want to explore those
 chapters before starting here, but it isn’t absolutely required. Before starting off with the widget exam-
ples here, however, you should download and review the Chapter 5 version of the TBlog application from
the book’s site.

 TurboGears Widgets
 Before jumping into the examples, it’s useful to explore a bit about the intent of the widget framework.
A widget is an extensible component that bundles Hypertext Markup Language (HTML), JavaScript,
and Cascading Style Sheets (CSS) to provide all aspects of a single slice of functionality. HTML is used to
establish the structure of the element, the behavior is provided with JavaScript, and the appearance is
determined by the CSS. The self-contained nature of widgets makes them quite portable and reusable.
Examples of standard widgets include an autocomplete field, or a field that allows a user to pick a date
from a JavaScript calendar (such as those found on hotel or air travel search forms).

 Figure 6-1 shows the elements of a widget definition, and the relationships between a widget specifica-
tion, instances, and other elements of a web application. Note that each element of a widget definition
can be overridden within each web application, and that widget instances are shared by all views within
a particular web application.

 As shown in the figure, a widget can be defined once and reused throughout the web application. This
makes it possible to change only the widget, and have the change reflected in all views that use the wid-
get. For example, consider a widget used in several places in a web application (or even in multiple web
applications) to create a formatted table for a given set of data. If you need to change the format of the
table, you need only to modify the widget, and all the views that contain the widget will make use of the
change automatically.

c06.indd 170c06.indd 170 9/7/07 10:39:29 AM9/7/07 10:39:29 AM

Chapter 6: Widgets

171

 Apart from the reusability within a single web application, the all-inclusive nature of a widget
makes it easy to use it across different web applications. This has led to the development and
packaging of widgets and widget libraries for public use. The TurboGears distribution even includes
a variety of widgets that provide several capabilities, such as simple AJAX-enabled components, and
simpler form-creation and form-handling techniques (which you saw in Chapter 4). The CogBin
(www.turbogears.org/cogbin/), a repository of existing TurboGears components, includes an even
larger set of widgets in the core library. It is designed to emphasize reusability and is available for public
use. Most widgets are installable with easy_install and are incorporated into the library of available
widgets.

 Another focus of the design of the widget framework is extensibility. Because widgets are normal Python
objects, it is easy for a developer to override any single aspect of a predefined widget when using it in a
web application. For example, if you want to change the appearance of the DataGrid widget (a widget
capable of showing arbitrary model objects in a table), all you need to do is define a widget that extends
 DataGrid and includes a different CSS specification, or simply provide a css argument when creating
the widget.

 One important aspect of widgets to bear in mind is that they are inherently stateless entities. A widget
doesn’t maintain any detail of the state of the system internally. What this means to the widget user is
that only one instance of a widget should be used across all pages in a web application. You’ll see an
example of this later when you use the same comment widget instance in three separate locations.

 A widget instance should also be considered immutable, and should not be changed after the widget is
created. This means that any detail of the widget that depends on the incoming request should be sent
only when the widget is rendered, rather than when it’s created. In this chapter, you learn how to pass
state information in a widget parameter that gets associated with the request when it is rendered.

Server Server

Web Application Web Application

View

Widget Instance A

Override
Appearance

View View

Widget
Instance B

Web Application

View

Widget Instance C

Override
Appearance

View

Override
Structure

Widget Definition

Behaviour
(JavaScript)

Appearance
(CSS)

Structure
(HTML)

Figure 6-1

c06.indd 171c06.indd 171 9/7/07 10:39:29 AM9/7/07 10:39:29 AM

Part II: TurboGears

172

 Using the Widget Browser
 The widget framework emphasizes reusability, portability, and extensibility. This means that any given
TurboGears installation may have a variety of widgets installed — some from the default installation,
and others developed locally or downloaded from CogBin. The Widget Browser, available from the
 TurboGears toolbox, is a web-based tool to help developers know which widgets are available for a
 particular installation. It displays and describes the available widgets as shown in Figure 6-2 .

Figure 6-2

c06.indd 172c06.indd 172 9/7/07 10:39:30 AM9/7/07 10:39:30 AM

Chapter 6: Widgets

173

 Using Existing Widgets
 Now that you’ve learned a bit more about the concept of a widget, you’re ready to explore it in more
detail with an example. In Chapter 4 you defined a form with widgets when using the code generated by
TGCrud. In this section you learn more about how the code generated by TGCrud works and get more
exposure to the existing widgets as you use the standard form widgets to create a form from scratch and
save data entered by a user. This example enhances the TBlog web application to represent user com-
ments for a given blog entry, and adds the ability to accept user comments.

 Defining the Model Object
 The first step required to add comment-handling to the TBlog is to define a new model object that
 represents the comment. Open tblog/tblog/model.py , and define a new BlogComment model object
as follows:

 class BlogComment(SQLObject):

 date = DateTimeCol(default=datetime.now)

 commentText = StringCol()

 commenter = StringCol()

 # Setting cascade to true causes any comments

 # associated with a blog entry to be deleted when

 # the blog entry is deleted.

 entry = ForeignKey(“BlogEntry”, cascade=True)

 The BlogComment model object includes the following four attributes:

❑ date: The date that the comment was left. Note that the column is initialized to the current time
by default.

❑ commentText: A string that holds the content of the comment being left.

❑ commenter: The name of the person leaving the comment. Notice that value is maintained as a
string rather than as a foreign key to the User table. This allows any viewer of the page to leave
a comment, regardless of whether they have a login name or not. If you wanted to accept com-
ments from logged-in users only, you could use a foreign key to the User table, similar to the
 author attribute of BlogEntry .

❑ entry : A reference to the BlogEntry that this comment pertains to. This is accomplished by
specifying a foreign key with the name of the table (BlogEntry) provided as the first argu-
ment. Notice that the cascade argument is used here to establish how referential integrity
should be maintained when a BlogEntry that has associated comments is deleted. In this case,
 cascade is set to True , which causes all BlogComment objects to be deleted when the associ-
ated BlogEntry is deleted. The possible values of the cascade option are shown in the
f ollowing table.

c06.indd 173c06.indd 173 9/7/07 10:39:30 AM9/7/07 10:39:30 AM

Part II: TurboGears

174

 Value Behavior

 None Deleting the row referenced by the foreign key doesn’t affect this row. For exam-
ple, deleting a BlogEntry would not change any of the associated BlogComment
objects. This is the default behavior when no cascade argument is given.

 False Deleting the row fails when you attempt to delete the row referenced by the
 foreign key, and raises a SQLObjectIntegrityError exception. For example, if
you attempt to delete a BlogEntry that has any comments defined for it, an
exception is raised.

 True Deleting the row referenced by the foreign key deletes all rows with the reference.
For example, when you delete a BlogEntry , any comments associated with that
 BlogEntry will be deleted as well.

 ‘null’ Deleting the row referenced by the foreign key sets the value of the column to
 null for any row with the reference. For example, when you delete a BlogEntry ,
any comments associated with the BlogEntry will remain in the database but
will not reference any BlogEntry .

 As with other changes to the model specification, you’re required to add the new table to the database
before it can be used. In this case, you don’t have to drop any existing tables from the database first,
because you’re adding a new table and haven’t changed the structure of any existing table. This enables
you to retain any data that you’ve already defined in the database. You simply need to run the
 sql create command as follows:

 C:\turbogears-examples\tblog>tg-admin sql create

Using database URI sqlite:///C|\turbogears-examples\tblog/devdata.sqlite

 Accepting User Comments
 Now that you’ve defined a comment model object, you could use CatWalk to add, edit, view, or delete
 BlogComment objects, but this isn’t typically practical in a real web application. You could also use
TGCrud to generate the skeleton for CRUD (create, read, update, and delete) operations as shown in
Chapter 4 . This would probably be overkill in this case, though, because you really only want to allow a
user to add a new comment or look at existing comments for a given blog entry. In this section, you learn
more about how to use form widgets by doing the following:

❑ Defining your own form widget that allows a user to create a new comment

❑ Creating a Kid template that uses the form widget

❑ Incorporating the template into the controller

❑ Writing a controller function to save the new comment

❑ Linking to the comment from the main blog view

c06.indd 174c06.indd 174 9/7/07 10:39:30 AM9/7/07 10:39:30 AM

Chapter 6: Widgets

175

 Defining the Form Widget
 The first step is to define a form widget that can capture a user comment. Typically a form widget is
made up of two main parts specified as two separate classes. The fields that appear on the form are
defined in a class that extends turbogears.widgets.WidgetList , and the form itself is defined in a
class that inherits from turbogears.widgets.TableForm and contains an instance of the widget list.
Finally, an instance of the form widget is typically instantiated. This form instance may then be used in
various controller methods, as the form is passed to Kid templates for display.

 Chapter 4 describes some common form widgets in the table under the section “Defining the Widgets,”
and outlines common widget attributes in table under the section “Defining the Model.” You may want
to reference these tables as you proceed through this example.

 In more complex web applications, you may want to specify your form widget in a separate
Python file, but for this example you can simply add it to your existing controller file, tblog/tblog/
controllers.py .

 Because all base widget classes and form widgets are defined in turbogears.widgets , you need to
import it along with some validation components and your new comment model object. Add the
 following to controllers.py after the last import statement:

 from turbogears.widgets import *

from turbogears import validators, validate

from model import BlogComment

 Now you’re ready to define the widget. Do this by adding the code shown in Listing 6-1 before the root
controller specification.

 Listing 6-1: The CommentFields and CommentForm classes defined in controllers.py

 1 class CommentFields(WidgetsList):

 2 entryField = Label(name=”entryTitle”,

 3 label=”Blog Entry”)

 4 entryId = HiddenField(name=”blogEntryId”)

 5 commenterField = TextField(name=”commenter”,

 6 label=”Commenter Name”,

 7 default=”Anonymous”,

 8 validator=validators.NotEmpty)

 9 commentField = TextArea(name=”commentText”,

 10 label=”Comment”,

 11 validator=validators.NotEmpty)

 12

 13 class CommentForm(TableForm):

 14 fields = CommentFields()

 15 submit_text = “Add Comment”

 16 action = “/saveComment”

 17 method = “POST”

 18

 19 comment_form = CommentForm()

 20

 21 class Root(controllers.RootController):

 22 ...

c06.indd 175c06.indd 175 9/7/07 10:39:31 AM9/7/07 10:39:31 AM

Part II: TurboGears

176

 The CommentFields object defined on lines 1 through 11 extends the WidgetsList (line 1) and has
attributes for each element that should appear on the field.

 Possible form field arguments are discussed in more detail in Chapter 4 , but in this case the name , label ,
 default , and validator are used as follows:

 Attributes in the CommentFields object include the following:

❑ The entryField attribute (lines 2–3) is a read-only Label rather than a form field for input
data. This serves to inform the user of the title of the blog entry to which the comment pertains.

❑ The entryId attribute (line 4) defines a hidden field that doesn’t appear on the form. This field
is initialized to the ID of the blog entry that the comment pertains to, and will be included in the
parameter list when the comment is saved. This is used to set the blog entry foreign key when
saving the comment.

❑ The commenterField attribute (lines 5–8) is a text field that captures the name of the person
leaving the comment. The only requirement established with the validator argument is that
the field cannot be empty. By default this is set to Anonymous .

❑ The commentField attribute (lines 9–11) is a text area that holds the actual comment. Like the
 commenterField , the only requirement is that this field cannot be empty.

 The CommentForm , defined on lines 13 through 16, extends the TableForm object. It includes the
 following attributes:

❑ The fields attribute (line 14) is simply an instance of the CommentFields widget list you
defined on lines 1 through 11.

❑ The submit_text attribute (line 15) is the string to display on the Submit button. When you
don’t specify this optional attribute, the Submit button is labeled with Submit Query .

❑ The action attribute (line 16) establishes the URL that should be used when the form is submit-
ted. In this case, the form will be sent to /saveComment , a new web application path that you
define in the section “Writing the Save Operation” later in this chapter.

❑ The optional method attribute (line 17) establishes the HTTP method that should be used when
submitting the request.

 Any additional attributes that should be included in the form tag or table tag can be specified with the
optional form_attrs , and table_attrs fields.

 TableForm is not the only possible base class for CommentForm . You could alternatively extend the
 ListForm class. The end result is quite similar — the primary difference is that the form fields are
embedded in an unordered list rather than a table.

 You also have the option of specifying either the form or the widget list for the form inline, rather than
using two separate classes. For example, the form in Listing 6-1 could be rewritten as follows:

c06.indd 176c06.indd 176 9/7/07 10:39:31 AM9/7/07 10:39:31 AM

Chapter 6: Widgets

177

 comment_form = TableForm(

 fields = [Label(name=”entryTitle”, label=”Blog Entry”),

 HiddenField(name=”blogEntryId”),

 TextField(name=”commenter”, label=”Commenter Name”,

 validator=validators.NotEmpty),

 TextArea(name=”commentText”, label=”Comment”,

 validator=validators.NotEmpty)],

 submit_text = “Add Comment”,

 action = “/saveComment”,

 method = “POST”)

 Another aspect to note about form widgets is that the widget list for a form (either specified inline or as
shown in Listing 6-1) is ultimately just a list. You can perform any of the list operations after you create
the form. For example, you could append a new field to the form as follows:

 comment_form.fields.append(TextArea(name=”commentText”, label=”Comment”,

 validator=validators.NotEmpty))

 You can also remove an element from the form. For example, the following statement removes the blog
entry label from the form:

 comment_form.fields.pop(0)

 The comment_form is instantiated to a CommentForm on line 19.

 Creating the Kid Template
 After defining the form, you’re ready to create a template that uses the form. Create a new tblog/
tblog/templates/comments.kid file and define the template as shown in Listing 6-2 .

 Listing 6-2: The comments Kid template, comments.kid

 1 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”

 2 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

 3 <html xmlns=”http://www.w3.org/1999/xhtml”

 4 xmlns:py=”http://purl.org/kid/ns#” py:extends=”’blog-master.kid’”>

 5 <head>

 6 <meta content=”text/html; charset=utf-8”

 7 http-equiv=”Content-Type” py:replace=”’’”/>

 8 </head>

 9 <body>

 10 <p>Back to Blog</p>

 11 <h1>Add Comment</h1>

 12 <div py:content=”form.display(formData)”></div>

 13 </body>

 14 </html>

 Most of the code in this listing is boilerplate template code (see Chapter 4 for the basics of Kid
 templates). The most important section to note is the body defined on lines 9 through 13. This includes a
link back to the main blog page on line 10, and a div that will contain the form that you defined in the
controller.

c06.indd 177c06.indd 177 9/7/07 10:39:32 AM9/7/07 10:39:32 AM

Part II: TurboGears

178

 As noted previously, a widget should be stateless, and any aspect of the form that depends on a specific
request should be provided as an argument to the display method. Recall from the widget list specifica-
tion in Listing 6-1 that the form includes a label for the title of the blog entry and a hidden field for the
ID of the blog entry that the comment pertains to. These bits of state data are added to a dict named
 formData , passed into the display method, and included in the form.

 You can also override other aspects of the form specification within the display method, depending on
state data. For example, you can remove the commenter fields by adding a disabled_fields argument
as follows:

 <div py:content=”form.display(formData, disabled_fields=[‘commenter’])”></div>

 The possible display method arguments for a TableForm are described in the following table.

Argument Example Description

 submit_text submit_text=’Send’ The text to include on the Submit button.

 disabled_fields disabled_fields=
‘entryTitle’]

 A list of form fields that aren’t relevant.

 table_attrs table_attrs =
dict(border=1)

 A dict containing additional attributes for the
 table element.

 form_attrs form_attrs =
dict(enctype=’app-

lication/x-www-

form-urlencoded’)

 A dict containing additional attributes for the
 form element.

 action action=’/save’ The URL to use when submitting the form.

 method method=’GET’ The HTTP method (either GET or POST) that
should be used for the request. POST is used by
default.

 convert convert=False Specifies whether the validator should be applied
to convert any existing data values when the form
is being displayed. This is set to True by default.

 Incorporating the Template in the Controller
 Now the template has been defined, but you still need to modify the root controller to expose it to the
user on a specified path in the web application. To do this, return to tblog/tblog/controllers.py ,
and add the new comments method as follows:

 1 class Root(controllers.RootController):

 2 entries = BlogEntryController()

 3 ...

 4 @expose(template=’tblog.templates.comments’)

 5 def comments(self, entryId, **kw):

 6 entryTitle = BlogEntry.get(entryId).entryTitle

 7 formData = dict(entryTitle=entryTitle, blogEntryId=entryId)

c06.indd 178c06.indd 178 9/7/07 10:39:32 AM9/7/07 10:39:32 AM

Chapter 6: Widgets

179

 8 return dict(form=comment_form, formData=formData, **kw)

 9 ...

 10 class VisitorCountPlugin(object):

 This comments method uses the @expose decorator on line 4 to make the comments Kid template avail-
able. The template path (/comments) is derived from the method name (line 5).

 Line 5 indicates that the comments method requires an argument, entryId . This argument identifies the
BlogEntry that the comment pertains to. Based on the entryId provided, the title of the blog entry is
retrieved on line 6.

 A dict named formData is created, and set to contain two entries. This dict contains items where the
key is a form field name, and the value is the initial value for that form field. In this case, the dictionary
includes the blog entry title for display on the form label, and the blog entry ID as the value of the hid-
den form field. Note the distinction between specifying an initial value for the form field, which can
make use of arguments provided in the associated request, and specifying a default value (as shown on
line 7 of Listing 6-1), which cannot rely on state information.

 A second dictionary containing the parameters passed to the Kid template is created on line 8. This
 dictionary includes an entry for the comment form, and the formData dictionary. Recall from Listing 6-2
that the Kid template calls the form parameter’s display method and passes the formData dictionary as
the set of initial values for the form fields.

 The comments method takes an unspecified number of additional arguments with **kw (line 5), and
 forwards these as parameters passed to the Kid template (line 8).

 If you save all the modified files at this point, the application will be reloaded and you will have access
to the new application path http://localhost:8080/comments . Attempting to browse to the path
without a blog entry ID will produce the following exception due to the lack of a parameter that identi-
fies the blog entry:

 TypeError: comments() takes at least 2 arguments (1 given)

 If you include a parameter with the ID of an existing blog entry as shown here:

 http://localhost:8080/comments?entryId=1

 or use the shorthand version of the same request like this:

 http://localhost:8080/comments/1

 you will get a page similar to the one shown in Figure 6-3 .

 Because you haven’t defined the saveComment path yet, you can’t submit the form with the Add com-
ment button. If you attempt to do this, you are forwarded to a page containing the following error:

 404 Not Found

The path ‘/saveComment’ was not found.

c06.indd 179c06.indd 179 9/7/07 10:39:32 AM9/7/07 10:39:32 AM

Part II: TurboGears

180

 Writing the Save Operation
 Now you’re ready to complete the capability that allows you to add a comment by defining the save
operation. To do this, you first need to import the error_handler decorator from TurboGears, as in
this example:

 from turbogears import error_handler

Figure 6-3

c06.indd 180c06.indd 180 9/7/07 10:39:33 AM9/7/07 10:39:33 AM

Chapter 6: Widgets

181

 After this, all you need to do is add a couple of new methods below comments in the controller, as
shown here:

 1 return dict(form=comment_form, formData=formData)

 2 ...

 3 @expose()

 4 def commentError(self, **kw):

 5 raise redirect(“../comments/” + kw[‘blogEntryId’],

 6 tg_flash=”Comment contains errors!”)

 7

 8 @expose()

 9 @error_handler(commentError)

 10 @validate(form=comment_form)

 11 def saveComment(self, **data):

 12 BlogComment(commentText=data[‘commentText’],

 13 commenter=data[‘commenter’],

 14 entry=BlogEntry.get(data[‘blogEntryId’]))

 15 raise redirect(“/comments”, entryId=data[‘blogEntryId’],

 16 tg_flash=”Comment Successfully Added”)

 17 ...

 18 class VisitorCountPlugin(object):

 The saveComment function defined on lines 8 through 16 includes the following:

❑ An empty expose decorator (line 8). This decorator is used because the path has no
 corresponding Kid template, and instead redirects the view on line 15.

❑ A validate decorator (line 10) that causes the form to be validated before the method is
invoked. The validation process applies all of the validators defined for the widget list
class to the data entered on the form. If the form fails validation, an error is raised and the
 error_handler is invoked.

❑ An error_handler decorator (line 9). This decorator indicates that when a validation error is
encountered, the view should be redirected to the commentError path (see lines 3 through 6). In
turn, the commentError page redirects to the comments view with an associated error message
encoded in tg_flash (see lines 5 through 6). When you use a master template based on the root
template, tg_flash parameters are automatically displayed below the standard header. Figure
 6-4 shows an example of the comments view after an attempt is made to insert a comment with
no value.

❑ All of the form data is encoded in the data argument (line 11).

❑ A new blog comment added to the database (lines 12 through 14). The attributes of the comment
are initialized to the corresponding form field values. Note that the entry associated with the
Blog comment (line 14) is looked up based on the hidden field in the form.

❑ The use of the tg_flash parameter (lines 6 and 16). When a comment is created successfully or
fails the site returns a tg_flash parameter that indicates the success or an error message. When
present, the tg_flash parameter is automatically displayed near the top of the page as long as
the page extends the autogenerated master template (which is blog-master in this case).
Figure 6-5 shows the comments view after a new comment has been added. If you’re curious to
see how this is done, look at how the tg_flash parameter is used in the master template
(tblog/tblog/templates/blog-master.kid).

c06.indd 181c06.indd 181 9/7/07 10:39:34 AM9/7/07 10:39:34 AM

Part II: TurboGears

182

Figure 6-4

 Linking to the Add Operation
 The final step in accepting new user comments is to create a link to the new comments page from the
main blog view. This simply requires you to open the index template, tblog/tblog/templates/
beView.kid , and augment the code that generates the header for each blog entry. The new template
should create a link to the comments for the entry as shown in the following code.

c06.indd 182c06.indd 182 9/7/07 10:39:34 AM9/7/07 10:39:34 AM

Chapter 6: Widgets

183

 <div class=”blogEntry” py:for=”blogEntry in blogEntries”>

 <div class=”beHeader”>

...

 <h2>${blogEntry.date}

 ${blogEntry.author}

 Comments</h2>

 </div>

...

Figure 6-5

c06.indd 183c06.indd 183 9/7/07 10:39:34 AM9/7/07 10:39:34 AM

Part II: TurboGears

184

 Notice that this code creates a URL that includes the ID of the blog entry in the shorthand form. For
example, http://localhost:8080/comments/4 is the URL generated for a blog entry with an ID of 4.
Figure 6-6 shows the new blog entry view.

Figure 6-6

c06.indd 184c06.indd 184 9/7/07 10:39:35 AM9/7/07 10:39:35 AM

Chapter 6: Widgets

185

 Creating New Widgets
 The widgets included in the TurboGears distribution (such as the form widgets) enable you to easily
incorporate and build up complex components in your web application, and can greatly simplify your
code. It’s important to bear in mind, however, that the capabilities of widgets aren’t limited to simple
reuse. As mentioned previously, one very powerful aspect of widgets is that they’re easy to build and
they’re highly portable. The widget library was designed with an emphasis on extensibility, and widgets
are inherently portable given the fact that a widget is self-contained. All the code for structure, appear-
ance, and behavior is localized so that you can reuse it in other situations. After a widget is defined, you
can use it on several pages within a web application and (with a little repackaging) make it available for
use in other projects.

 This section introduces you to the world of widget development. First you learn about the basic compo-
nents of a widget specification as you implement a very simple widget that displays a hello message.
Then you really get your hands dirty when you create a more complex widget from scratch that you can
use in TBlog.

 Creating a Simple Hello Widget
 To understand a bit more about what a widget is made up of, take a look at a very simple example. This
widget can be used to create a red div element that displays a personalized hello message. When the
hello message is clicked, an alert pops up.

 Defining the Widget
 Start by creating a new Python file called hellowidget.py under tblog/tblog , and define the widget
as shown in Listing 6-3 .

 Listing 6-3: The HelloWidget specification in hellowidget.py

 1 from turbogears import widgets

 2 from turbogears.widgets import JSSource, CSSSource

 3

 4 class HelloWidget(widgets.Widget):

 5 template= “””

 6 <div class=’hellodiv’ onclick=’handleClick(“${helloname}”)’>

 7 Hello ${helloname}!

 8 </div>

 9 “””

 10 css=[CSSSource(“””

 11 .hellodiv {

 12 background: #CC0000;

 13 color: #FFFFFF;

 14 }”””)]

 15

 16 javascript=[JSSource(“””

 17 function handleClick(thename) {

 18 alert(thename + ‘ clicked me!’); }”””)]

 19

 20 parameters=[“helloname”]

 21

 22 hello_widget = HelloWidget()

c06.indd 185c06.indd 185 9/7/07 10:39:35 AM9/7/07 10:39:35 AM

Part II: TurboGears

186

 This listing shows the basic anatomy of a widget. Specifically:

❑ The majority of the code is in the HelloWidget class itself, which extends widgets.Widget
(line 4).

❑ The widget contains four attributes commonly defined for a widget:

❑ template (lines 5–9): This attribute contains the widget template. In this case, there is a
single div with a CSS class set to hellodiv , and an onclick event handler that invokes
the handleClick JavaScript function. The content of the div is a hello message that refer-
ences the helloname parameter.

❑ css (lines 10–14): This is a list of CSS resources applicable to the widget. This includes a
single inline CSS resource defined with the CSSSource class. CSSSource takes a string of
CSS data and an optional media specification. The media specification is all by default,
and is included in the final page as an attribute of a style element generated to hold the
CSS source. Note that this class is actually a widget itself, and is described in the Widget
Browser.

❑ javascript (lines 16–18): Similar to the CSS attribute, this is a list of JavaScript resources
that are required for the widget. In this case, the JavaScript is defined using the JSSource
widget, and consists of a single function, handleClick , that takes a name argument.

 JSSource takes a string containing the JavaScript code, and an optional location
 argument that establishes where the JavaScript code should be embedded in the final
page. The default location for this code is the head of the document, but you can place it
at the top of the body using js_location.bodytop , or at the bottom using
js_location.bodybottom . For example, the following statement adds a bit of
code to the bottom of the body:

 javascript=[JSSource(“...”, location=js_location.bodybottom)

❑ parameters (line 20): The parameters that can be specified when displaying or creating
the widget. Here, the helloname parameter used by the template is the single element in
the list.

 The final aspect to note about the widget specification is that a global instance of the widget is created
for use within the web application. This is possible because the widget is stateless and should be reused
throughout the web application. Reusing the global widget saves you from having to waste time and
memory to create and maintain multiple instances.

 Using the Widget in a Template
 After defining the widget, you need to use it within a template. Create a new Kid template called
 helloWorld.kid under tblog/tblog/templates as shown in Listing 6-4 .

c06.indd 186c06.indd 186 9/7/07 10:39:35 AM9/7/07 10:39:35 AM

Chapter 6: Widgets

187

 Listing 6-4: The helloWorld.kid template

 1 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”

 2 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

 3 <html xmlns=”http://www.w3.org/1999/xhtml”

 4 xmlns:py=”http://purl.org/kid/ns#” py:extends=”’blog-master.kid’”>

 5 <head>

 6 <meta content=”text/html; charset=utf-8”

 7 http-equiv=”Content-Type” py:replace=”’’”/>

 8 </head>

 9 <body>

 10 <div py:content=”hello_widget.display(helloname=hello_name)”></div>

 11 </body>

 12 </html>

 This is primarily boilerplate template code, with a couple of exceptions. Line 10 creates a div and
invokes display on the hello_widget to generate the content. That state is passed into the template
via the helloname parameter, which gets initialized to a hello_name template parameter.

 Adding the Path to the Controller
 The final step in setting up the hello widget example is to create a new path in the web application for
the template, and passing the widget and hello_name parameter to that template when it’s invoked. To
do this, open tblog/tblog/controllers.py . Use the following statement to import the widget you
created:

 from tblog.hellowidget import hello_widget

 Then, define the method for the new path after the saveComment method as follows:

 ...

 @expose(template=’tblog.templates.helloworld’)

 def sayHello(self, aname):

 return dict(hello_widget=hello_widget, hello_name=aname)

...

class VisitorCountPlugin(object):

 Notice that the method assumes that a name parameter will be provided with the request. It forwards
this name parameter to the Kid template as the hello_name argument. Also note that the widget itself is
provided as a parameter to the template.

c06.indd 187c06.indd 187 9/7/07 10:39:35 AM9/7/07 10:39:35 AM

Part II: TurboGears

188

Figure 6-7

 At this point, you’ve completed the hello widget and incorporated it into the controller. If you save all
the modified files and browse to http://localhost:8080/sayHello/Ray , you’ll see the page shown
in Figure 6-7 .

c06.indd 188c06.indd 188 9/7/07 10:39:36 AM9/7/07 10:39:36 AM

Chapter 6: Widgets

189

 Creating a Comment Widget
 Now that you’ve seen the basic elements of a widget, you’re ready to create a component that can pro-
vide more useful functionality for the TBlog web application. In the section “Accepting User Comments”
earlier in the chapter, you enabled a user to leave comments for a given TBlog entry, but you still need a
mechanism to view the comments associated with a blog entry.

Figure 6-8

 If you click anywhere in the div containing the Hello Ray! message, you’ll be presented with the
pop-up message shown in Figure 6-8 .

c06.indd 189c06.indd 189 9/7/07 10:39:36 AM9/7/07 10:39:36 AM

Part II: TurboGears

190

 In this section you create and package a widget that is capable of showing the comments for a blog entry,
and you reuse this widget in several places in the web application. The component includes an optional
Show/ Hide button that enables you to toggle the comments. When the Show Comments button is
clicked, the comments associated with a blog entry are retrieved via an asynchronous request and
dynamically added to the page, and the button text changes to Hide Comments. Clicking the button
again removes the comments from the display and changes the button text back to Show Comments.

 After creating the widget, you’ll see how to incorporate it into the web application in three places. You’ll
add it to each blog entry in the index view, in the view shown when adding comments, and in the blog
entry editor view that shows a single blog entry.

 Packaging Your Widgets
 Although you can specify all the elements of a widget directly in a controller Python script as you did
with the hello widget, you will typically want to package the widget and all supporting components
apart from the controller. Not only does this reduce the complexity of your controller; it also makes it
easier to reuse the widget in other areas of the web application, and allows you to easily repackage the
widget for use in other web applications if desired.

 To reiterate, the main elements of a widget include the following:

❑ The widget specification itself

❑ Any templates required to render the widget

❑ Any CSS files that establish the appearance of the widget

❑ Any JavaScript files that are used to establish the behaviors required of the widget

 You can package these components together or in any directory structure desired, but the most common
approach is to mimic the structure used in a TurboGears project similar to the one shown in Listing 6-5 .

 Listing 6-5: The directory structure used for the comment widget

 tblog

 + tblog

 + widgets

 - __init__.py

 - widgets.py

 + static

 + css

 - comment.css

 + javascript

 - comment.js

 + templates

 - __init__.py

 - comment.kid

 This directory structure cleanly modularizes the widget by placing all widget-related files under the
main widgets directory. The main widget specification is in the top-level Python file, widgets.py . Any
Kid templates required to render the widget are maintained under templates . The comment includes a
single template, comment.kid .

c06.indd 190c06.indd 190 9/7/07 10:39:36 AM9/7/07 10:39:36 AM

Chapter 6: Widgets

191

 Any static supporting files used by the widget or Kid template appear under static. This may include
style sheets, JavaScript files, images, and so on. In the case of the comment widget, it uses a single
 JavaScript and style sheet.

 If you’re curious to see some example widget specifications and typical packaging, you can find them in
the core TurboGears library. Just look in the root Python directory under site-packages (for example,
 c:/Python-2.4/Lib/site-packages/TurboGears-1.0.1-py2.4.egg/turbogears/widgets/).

 Creating a Comment Widget Class
 The first step in defining the comment widget is to create the component that ties all the external
files together, the CommentWidget class. Create the tblog/tblog/widgets directory and an empty
__init__.py file. Next, define the widget in widget.py as shown in Listing 6-6 .

 Listing 6-6: The comment widget defined in widget.py

 1 from turbogears import widgets

 2 from turbogears.widgets.base import mochikit, CSSLink, JSLink

 3 from turbogears.widgets.base import register_static_directory

 4 import os.path

 5 import pkg_resources

 6 pkg_path = pkg_resources.resource_filename(“tblog”,

 7 os.path.join(“widgets”,

 8 “static”))

 9 register_static_directory(“tblog.widgets.static”, pkg_path)

 10

 11 class CommentWidget(widgets.Widget):

 12 template = “tblog.widgets.templates.comment”

 13 params = [“entry_id”, “initiallyVisible”, “showLabel”]

 14 css = [CSSLink(“tblog.widgets.static”, “css/comment.css”)]

 15 javascript = [mochikit, JSLink(“tblog.widgets.static”,

 16 “javascript/comment.js”)]

 17 initiallyVisible = False

 18 showLabel = True

 19

 20 comment_widget = CommentWidget()

 Before jumping into a widget specification itself, note the first few lines after the import statement,
 specifically lines 6–9. By default, a web page only has access to static content located under the standard
directory (tblog/static). Because you’re attempting to serve static content such as JavaScript and CSS
files from a different directory (tblog/widgets/static), you need register this directory so the web
page can access it.

 Line 6 uses pkg_resources to establish the fully qualified directory that contains the static files
(/projects/tblog/tblog/widgets/static), and line 7 registers the directory under the module
name tblog.widgets.static . This enables you to reference a resource in this directory relative to the
module name, as is done on line 14.

c06.indd 191c06.indd 191 9/7/07 10:39:37 AM9/7/07 10:39:37 AM

Part II: TurboGears

192

 The widget specification on lines 11 through 18 uses the same basic attributes you used to define the
 hello widget. In this case, however, the attributes reference external components, as follows:

❑ The template attribute (line 12) establishes that the widget should use a new Kid template,
 comment.kid , which you will create in the next section.

❑ The params attribute (line 13) defines the set of parameters that are relevant for the widget. The
comment widget takes an entry_id that corresponds to the ID of the blog entry that the
 comments pertain to.

❑ The css attribute (line 14) uses a CSSLink widget to create a link to the external CSS file
tblog/tblog/widgets/static/css/comment.css . A CSSLink is similar to CSSSource , but
it doesn’t include the code inline. Instead, it takes the module name for the CSS script followed
by the relative name to use when retrieving the deployed file. Because the module points to the
static directory, the relative name includes the css subdirectory in addition to the name of the
script. Also similar to the CSSSource class, an optional media parameter can be included.

❑ The first item in the javascript list (line 15) is a reference to the global mochikit defined in
the base widget package. This enables your JavaScript files to use the MochiKit library.

❑ The second item in the javascript list (lines 15 and 16) is similar to the css specification.
The JSLink class is used to create a link to an external JavaScript file, in this case tblog/
tblog/widgets/static/javascript/comment.js . Note that the parameters for the JSLink
are similar to CSLink , and include the module name and the relative path of the resource.

 An optional location parameter can be provided to establish the location of the JavaScript
(head, top of the body, or bottom of the body) as previously described for JSSource .

 As was the case with JSSource and CSSource , you can examine the JSLink and CSLink widgets in
detail in the Widget Browser.

❑ The initiallyVisible and showLabel attributes (lines 17 and 18) establish default values for
the parameters defined in params . If the template provides either of these parameters when
 displaying the widget, the override value will be used. Otherwise the defaults are used. For
example, a template can display the widget with initiallyVisible set to True as follows:

 comment_widget.display(initiallyVisible=True)

 The final aspect of the widget script in Listing 6-6 is the creation of a global comment_widget instance
on line 20. As mentioned previously, because widgets are stateless, this instance should be referenced by
all components instead of having each component create its own instance.

 Defining the Widget Template
 Now that you’ve set up the widget, it’s time to define all the external components that it references. The
first component that you’ll define is the Kid template for the widget. First create the template directory
 tblog/tblog/widgets/templates and an empty __init__.py . Next define the comment.kid
 template file as shown in Listing 6-7 .

c06.indd 192c06.indd 192 9/7/07 10:39:37 AM9/7/07 10:39:37 AM

Chapter 6: Widgets

193

 Listing 6-7: The comment widget’s template file, comment.kid.

 1 <div xmlns:py=”http://purl.org/kid/ns#” id=”commentDiv”>

 2 <label py:if=”showLabel” id=”commentlabel${entry_id}”

 3 class=”commentLabel” onclick=”updateCommentsDiv(${entry_id})”>

 4 Show Comments</label>

 5 <div id=”allComments${entry_id}”/>

 6

 7

 8 <script py:if=”initiallyVisible”>

 9 updateCommentsDiv(${entry_id})

 10 </script>

 11 </div>

 This is similar to most Kid files, but it doesn’t include the basic elements found at the beginning and end
of a typical site-wide template. This is because a widget is typically reused across several pages or appli-
cations, and will always be defined within a template. To make a widget more generic, it shouldn’t
inherit from a particular application’s master template.

 You can see an example of the differences between a widget and a typical Kid template if you compare
 comments.kid in Listing 6-7 with Listing 6-2 . Note that the widget doesn’t have doctype , html , head ,
or body tags. Instead, it simply starts with the div element. However, note that the widget template still
defines the py namespace on line 1.

 In Listing 6-7 , the div (lines 1 through 11) consists of a Label with the text Show Comments that invokes
a JavaScript function updateCommentsDiv when clicked. The if statement on line 2 ensures that label is
created only when the showLabel parameter is set to true . Otherwise, the label is not created, and the
comment display cannot be toggled.

 After the Label , an initially empty div is defined on line 5. This div will be used to hold the comments
when they are displayed.

 The final element is a script on lines 8 through 10 that gets generated only when the initiallyVisible
parameter is true . The script simply forces the comments to initially be shown by explicitly invoking the
 updateCommentDiv function on line 9.

 You may have also noticed that the label and div elements have ID values that are based on ID of the
blog entry, and that the blog entry ID is provided to the updateCommentsDiv function. As you write the
JavaScript and incorporate the widget into a few of your views, you’ll see that this enables you to show
and process multiple comments on the same page.

 Writing the Widget JavaScript
 After defining the template, you’re ready to write the widget’s JavaScript. Create the JavaScript directory
 tblog/tblog/widgets/static/javascript , and define the comment.js JavaScript file, as shown in
Listing 6-8 .

c06.indd 193c06.indd 193 9/7/07 10:39:37 AM9/7/07 10:39:37 AM

Part II: TurboGears

194

 Listing 6-8: The comment.js JavaScript file

 1 function updateCommentsDiv(entryId) {

 2 var allCommentsDiv = $(‘allComments’ + entryId);

 3 if (allCommentsDiv.hasChildNodes()) {

 4 replaceChildNodes(allCommentsDiv);

 5 var label = $(‘commentlabel’ + entryId);

 6 if (label) {

 7 label.childNodes[0].nodeValue = ‘Show Comments’;

 8 }

 9 } else {

 10 d = loadJSONDoc(‘/getComments/’ + entryId);

 11 d.addCallback(showComments, entryId);

 12 }

 13 }

 14

 15 function showComments(entryId, result) {

 16 var label = $(‘commentlabel’ + entryId);

 17 if (label) {

 18 label.childNodes[0].nodeValue = ‘Hide Comments’;

 19 }

 20 var allCommentsDiv = $(‘allComments’ + entryId);

 21 replaceChildNodes(allCommentsDiv,

 22 P({‘class’ : ‘commentInfo’},

 23 ‘Showing ‘ + result.comments.length + ‘ comments’));

 24

 25 for (i=0; i < result.comments.length; i++) {

 26 var headerStr = result.comments[i].date + ‘ ‘ +

 27 result.comments[i].commenter;

 28

 29 var commentDiv = DIV({‘class’ : ‘comment’});

 30 appendChildNodes(allCommentsDiv, commentDiv);

 31 appendChildNodes(commentDiv,

 32 DIV({‘class’ : ‘commentHeader’}, headerStr));

 33 appendChildNodes(commentDiv, P({‘class’ : ‘commentText’},

 34 result.comments[i].commentText));

 35 }

 36 }

 The JavaScript in this listing consists of two functions. The first function, updateCommentsDiv , is
invoked when the user clicks the comments label. This function either displays or hides the comments
depending on whether they are already displayed or hidden. When the comments are hidden, the
 function retrieves the comments via an asynchronous request and causes the second function,
 showComments , to be invoked as the request callback. When the comments are already displayed, the
function removes all the displayed comments.

 Looking at the updateCommentsDiv function (lines 1 through 13) in more detail shows the following:

❑ The function takes an argument for the ID of the blog entry that the comments pertain to.
This is used in several places to identify which div and label should be updated, as well as to
establish which set of comments should be retrieved from the server.

c06.indd 194c06.indd 194 9/7/07 10:39:38 AM9/7/07 10:39:38 AM

Chapter 6: Widgets

195

❑ On line 2, the div that contains the comments is retrieved with $() , which is the MochiKit
shorthand for getElementById and takes an element ID argument.

❑ Line 3 tests the allCommentsDiv to see if it contains anything. This determines whether or not
the comments have been retrieved.

❑ The if statement on lines 3 through 8 handles the situation when the comments are already
 displayed. Specifically:

❑ The MochiKit DOM function, replaceChildNodes , is used to remove all the nodes under
 allCommentsDiv (line 4). This function optionally takes one or more nodes to be added as
children of the first node argument (as is done on lines 21 through 23). This causes all the
comments to be removed from the resulting page.

❑ The label associated with the comment is retrieved (line 5) when defined. Recall from the
template code that this is determined by the Kid template parameter showLabel .

❑ If the label exists (line 6), the text is changed to Show Comments (line 7).

❑ When the comments aren’t currently displayed (line 9):

❑ An asynchronous request for getComments is created on line 10 with the blog entry ID
provided as an argument. For example, the request when displaying the comments for the
blog entry with an identifier of 1 would be http://localhost:8080/getComments/1 .

❑ The showComments function is added as a callback that will be invoked after the request
has completed (line 11).

 Proceeding to the showComments callback on lines 15 through 36, you can see that the empty div is
replaced with the list of comments and the label text is changed to Hide Comments . More specifically:

❑ The showComments function takes two arguments: entryId and result . The entryId
 argument is provided when the callback is registered on line 11, and the result argument is the
server response to the getComments request. In this case, the result is a comments attribute that
lists the BlogComment objects associated with the given blog entry.

❑ The label is retrieved on line 16, and when it exists, line 18 changes the text of the label to
 Hide Comments .

❑ The comment div is retrieved on line 20, and any existing children are replaced with a
 paragraph element (<p>) that indicates the number of comments being displayed (lines 21
through 23).

 This is an example of a very powerful feature of the MochiKit DOM API. Rather than build up a
convoluted string that creates the paragraph element and its children, the DOM element is cre-
ated with P . This is actually an alias for the createDOM function that allows you to efficiently
create various DOM elements. The first argument provided describes any attributes that need to
be set on the DOM element, or should be null when there are no attributes. The second argu-
ment takes a variety of objects that typically get translated into a child DOM node. (You’ll see
how this can be used to concisely build up DOM structures later.) Of course, in addition to the P
alias, there are aliases for most of the other HTML tags, like table or a , too.

c06.indd 195c06.indd 195 9/7/07 10:39:38 AM9/7/07 10:39:38 AM

Part II: TurboGears

196

❑ Beginning on line 25, a for loop goes through the list of comments and creates a div element
that serves as a container for two child div elements that make up the actual contents of the
comment. Specifically:

❑ A string of header information that includes the date of the comment as well as the name
of the commenter is constructed on lines 26 and 27.

❑ A div element, commentDiv , is created on line 29 using the DIV alias for createDOM ,
and is established as having the commentInfo class. It is then appended as a child of the
 allCommentsDiv on line 30. This separate div serves primarily to create a border around
the entire comment, including both the text and author.

❑ The commentDiv children are defined and appended to the commentDiv on lines 31
through 34. The first div has the commentHeader class and includes the header text. The
second div has the commentText class and holds the text of the comment.

 Defining the Widget’s Look and Feel
 The last element of the widget specification is the style sheet that defines the appearance of the widget.
Create the CSS directory under the static directory (tblog/tblog/widgets/static/css), and then
define a style sheet called comment.css as shown in Listing 6-9 .

 Listing 6-9: The widget stylesheet, comment.css

 1 .comment {

 2 border: thin solid black;

 3 color: black;

 4 font-size: 7pt;

 5 width: 80%;

 6 margin: 5px auto 5px auto;

 7 }

 8

 9 .commentHeader {

 10 font-weight: bold;

 11 margin: 2px;

 12 }

 13

 14 .commentText {

 15 margin: 2px;

 16 }

 17

 18 .commentInfo {

 19 margin: 2px;

 20 color: black;

 21 font-size: 7pt;

 22 }

 23

 24 .commentLabel {

 25 padding: 2px;

 26 color: black;

 27 border: thin solid black;

 28 background-color: #FEED78;

 29 }

c06.indd 196c06.indd 196 9/7/07 10:39:38 AM9/7/07 10:39:38 AM

Chapter 6: Widgets

197

 Defining the getComments Path
 Now that you’ve completed the widget specification, you need to create a new path in the controller
that is capable of retrieving the comments associated with a blog entry. To do this, open the root
 controller, tblog/tblog/controllers.py , and define a new getComments method after sayHello as
shown here:

 @expose()

 def getComments(self, entryId):

 comments = BlogComment.select(BlogComment.q.entryID == entryId,

 orderBy=BlogComment.q.date).reversed();

 return dict(comments=comments)

 This function takes a blog entry ID, entryId , and retrieves all the BlogComment objects that match the
ID. The comments are ordered by the date column and the reversed function to ensure that the most
recent comments appear first.

 Using the Comment Widget in the Main Blog View
 At this point, you’re ready to start using the widget. The first step is to add the widget to the main blog
view. Start by opening the root controller, tblog/tblog/controllers.py , and adding the following
import statement for the comment_widget :

 from tblog.widgets.widgets import comment_widget

 Next you need to change the index method to include the comment_widget as a parameter to beView as
shown here:

 @expose(template=”tblog.templates.beView”)

 #@identity.require(identity.in_group(“admin”))

 @paginate(‘blogEntries’, limit=3, allow_limit_override=True)

 def index(self, **kw):

 log.info(“User is logged in “ + str(identity.current.anonymous));

 blogEntries = BlogEntry.select(orderBy=BlogEntry.q.date).reversed()

 return dict(comment_widget=comment_widget,

 blogEntries = blogEntries, **kw)

 Finally, modify tblog/tblog/templates/beview.kid to display the widget after each blog entry by
calling display on the comment after the blog entry text as follows:

 <div class=”blogEntry” py:for=”blogEntry in blogEntries”>

 <div class=”beHeader”>

 <h1>${blogEntry.entryTitle}</h1>

 <h2>${blogEntry.date}

 ${blogEntry.author}

 Comments</h2>

 </div>

 <p>${XML(blogEntry.entryText)}</p>

 ${comment_widget.display(entry_id=blogEntry.id)}

 </div>

 Note that as each blog entry is encountered in the for loop, the entry_id parameter associates the
 comment_widget with the specific blog entry.

c06.indd 197c06.indd 197 9/7/07 10:39:39 AM9/7/07 10:39:39 AM

Part II: TurboGears

198

 That’s all you need to do to use the widget. If you reload the web application, you should see a page like
the one shown in Figure 6-9 . When you click Show Comments, the comments are asynchronously
retrieved and displayed under the blog entry. When you click Hide Comments, the comments are
removed again.

Figure 6-9

c06.indd 198c06.indd 198 9/7/07 10:39:39 AM9/7/07 10:39:39 AM

Chapter 6: Widgets

199

 Using the Comment Widget in the Other Views
 The real utility of widgets can be seen by how easily you can incorporate them into other views. To add
your new widget to the comment view, simply return to controllers.py , and provide the widget as a
parameter returned from the comments method as follows:

 @expose(template=’tblog.templates.comments’)

 def comments(self, entryId, **kw):

 entryTitle = BlogEntry.get(entryId).entryTitle

 formData = dict(entryTitle=entryTitle, blogEntryId=entryId)

 return dict(comment_widget=comment_widget,form=comment_form,

 formData=formData, **kw)

 Then, all you need to do is update the comments.kid template to use the widget. In this case, however,
you’ll also make use of the parameters to tailor the way the widget is presented. Update the template as
follows:

 <body>

 <p>Back to Blog</p>

 <h1>Comments</h1>

 <div py:content=”comment_widget.display(entry_id=formData[‘blogEntryId’],

 initiallyVisible=True, showLabel=False)”></div>

 <h1>Add Comment</h1>

 Because this view contains only a single comment, it makes sense to automatically show the comments
and remove the Show/Hide button. Calling display with the value of initiallyVisible set to True
causes the comments to be displayed automatically when the widget is loaded. Setting showLabel to
 False removes the label from the widget. The entry_id parameter is established based on the hidden
form field blogEntryId . Figure 6-10 shows the updated Add Comment view.

 You can also easily show the comments in the show view of the blog entry CRUD views. Simply use
the following statement to import the widget in the blog entry controller, tblog/tblog/
BlogEntryController/controllers.py :

 from tblog.widgets.widgets import comment_widget

 Then pass the widget as an argument to the show view as follows:

 @expose(template=’kid:tblog.BlogEntryController.templates.show’)

 def show(self,id, **kw):

 “””Show record in model”””

 record = BlogEntry.get(int(id))

 return dict(record = record, comment_widget=comment_widget)

 And finally, update the show template to call display on the widget at the bottom of the body
(tblog/tblog/BlogEntryController/templates/show.kid) as follows:

 Edit | Back

 <h1>Comments</h1>

 <div py:content=”comment_widget.display(entry_id=record.id,

 initiallyVisible=True, showLabel=False)”></div>

 </body>

</html>

c06.indd 199c06.indd 199 9/7/07 10:39:41 AM9/7/07 10:39:41 AM

Part II: TurboGears

200

Figure 6-10

 Figure 6-11 shows the updated show view.

 It’s just as simple to use the widget in other views as well. If you’re feeling adventurous, you may want
to experiment with adding the comments widget to the list view.

c06.indd 200c06.indd 200 9/7/07 10:39:41 AM9/7/07 10:39:41 AM

Chapter 6: Widgets

201

 Summary
 In this chapter, you learned about the using and developing widgets in depth. You were introduced to
the underpinnings of the widget framework, and saw the advantages of widget development and use.
You experimented with both the user and developer sides of widgets. First, as a widget user, you imple-
mented your own form to accept blog comments. Then, as a widget implementer, you saw how to
develop a widget from scratch and incorporate it into TBlog.

Figure 6-11

c06.indd 201c06.indd 201 9/7/07 10:39:41 AM9/7/07 10:39:41 AM

c06.indd 202c06.indd 202 9/7/07 10:39:42 AM9/7/07 10:39:42 AM

 Advanced TurboGears Topics

 It’s not easy being green.

 — Kermit the Frog

 In addition to being green, there are several other things that aren’t easy. This is especially true of
learning to create applications with a multifaceted framework. After the first examples you
encounter, the framework seems almost magical — as though achieving a working application
happens almost at the speed of thought. Then you begin to hit stone walls when the next applica-
tion’s nuances and subtleties starts testing the limits of the framework, or at least what you think
you know about the framework. In the worst-case scenario, you begin to see the imperfections and
shortcomings — places where the framework’s design center seems to have failed to take into
account something you urgently need in your application, or alternatively, perhaps the flaw is sim-
ply in your own level of understanding of how the framework was intended to function.

 This chapter is dedicated to presenting all those other things you need to know when working with
TurboGears — those things that you encounter quickly after departing the familiar terrain of pages
and single table models. Based on delving into the TurboGears forums and on the authors’ own
experiences in doing moderate (to hard) TurboGears projects, here are some of the questions you
are bound to encounter:

❑ Are there helper tools that I can use to aid my thinking on the application design, or that
generate code (beyond what TurboGears does for me already)?

❑ How do I integrate TurboGears with other web services? Does TurboGears preclude doing
mashups with other application programming interfaces (APIs)?

❑ How do I get information from multiple parts of the model? How do I do one-to-one and
one-to-many table joins?

❑ How do I coordinate elements of the visual model the RIA way (for example, coordinating
map and table data)?

c07.indd 203c07.indd 203 9/7/07 10:48:52 AM9/7/07 10:48:52 AM

Part II: TurboGears

204

❑ How do I do nifty on-page effects that seem to be everywhere in Web 2.0 applications?

❑ How do I create those cool RSS feeds that everyone finds so useful?

 Your Assignment
 Let’s start out with an imaginary (but realistic) application. Suppose you are charged with implementing
a Rich Internet Application (RIA)-based application for your local cable company’s repair scheduling.
You can imagine the elements of the problem. The company has a fixed fleet of repair trucks, but their
current locations could be anywhere within the confines of your operations area. There are multiple cus-
tomers to be served, and their outages are reported asynchronously. The operations controller at the
cable company wants to see the fleet, be alerted to the outages, assign a repair person, and have the
backing model updated as assignments are made. Because you’re writing a cool RIA management con-
sole, you want an uncluttered look and feel — you would like things (such as tables, forms, and maps) to
appear when the operations controller wants to access them and disappear when he doesn’t (aka the
 nifty effects requirement). Figure 7-1 shows the completed RIA in operation.

Figure 7-1

c07.indd 204c07.indd 204 9/7/07 10:48:55 AM9/7/07 10:48:55 AM

Chapter 7: Advanced TurboGears Topics

205

 This RIA has a primarily geospatial interface. That’s probably appropriate given the nature of the
 application. An attraction of many RIAs is that their functionality is largely self-evident and revealed by
the interface itself. If creating this application were your assignment in real life, you would want the
application to be useable by a range of people in roles varying from the operations controller to manag-
ers, and you would want to build on the interface to support forward growth of the particular applica-
tion from analysis of how long an average job takes to perhaps providing a simple front-end to a fancy
genetic algorithm scheduler back-end. In this version none of those more advanced elements are
included, but the fundamental hooks are included in the design to illustrate that you should design with
the future in mind.

 The Operational Concept
 Cable outages will be shown on a map of the company’s operational area along with the fleet of repair
trucks. When the controller wants to schedule a repair, he drags a truck to the location of an outage, and
the truck becomes assigned to the repair. When the cable guy calls back to say that the repair is done, he
becomes available for a new assignment. The dispatcher should be able to add a repair job by typing in a
valid address and clicking a button, and it should show up on the map and be recorded in the backing
data store simultaneously. Whenever someone makes a change to add or delete a job or reassign a repair
truck, the change should be reflected in the backing store and the visual elements.

 You can make up other constraints, but for the purposes of getting the hang of building a moderately
complex application with lots of moving parts, this will be a good starting point. Along the way, the code
narrative describes the design and implementation in greater detail so that you can see how your own
design decisions will translate into TurboGears structures and work in conjunction with external (non-
TurboGears) APIs.

 With these goals in mind, the next several sections cover the thinking and implementation involved in
creating an RIA that demonstrates the TurboGears approach to solving a complete, moderately challeng-
ing real-world problem. These sections present the application’s model, controller, and view.

 As Chapter 3 mentions, TurboGears applications are built using the model-view-controller (MVC) design
pattern paradigm, which comprises the following three parts:

❑ A model containing your data, as well as the methods and logic necessary to maintain that
data. In Python, this is usually expressed in the model.py module. An interesting feature of this
application is the use of multiple, loosely connected models for supporting the various views of
the data.

❑ Controller logic to process user actions, handle HTTP requests, and provide responses. In
Python, this is usually expressed in the controllers.py module. This controller is the channel
for translating user directives and inputs to the model.

❑ One or more views to orchestrate what the user sees and manipulates. In the TurboGears
 paradigm, views are expressed in Kid files, which contain mixed XHTML, tags with embedded
 Python directives, and possibly JavaScript to incorporate other elements. This application incor-
porates a map provided through the Google Maps API. Part of the application’s challenge (and
its appeal as a learning tool) is synchronizing the visual elements provided by the map with
those provided by the model.

c07.indd 205c07.indd 205 9/7/07 10:48:55 AM9/7/07 10:48:55 AM

Part II: TurboGears

206

 Designing the Model
 Although you can begin by arbitrarily designing any aspect of the application, it’s best if you first con-
sider and then solidify the data model. It might be tempting to work from the user experience back into
the model (and some very smart folks such as the creator of Ruby on Rails, David Heinemeier Hansson,
advocate this outside-to-inside approach); however, beginning with the object representation enables
you to make a late binding decision (and change your mind a few times along the way) about what the
user will see without having to recreate the data model every time. If you get the data model right to
begin with, everything else will be grounded in the vision of the data. Additionally, you’ll find that Kid
template development flows faster if you understand what data you need to supply to the template.

 TurboGears Toolbox
 This model was generated by hand, but you should know that the TurboGears Toolbox offers an attrac-
tive and reasonably robust web-based GUI model designer tool. You can invoke the Toolbox from the
command line with the following statement:

 tg-admin toolbox

 The initial page will resemble Figure 7-2 . Although the Toobox web interface supports a number of tools,
you’ll need only the CatWalk model browser and the ModelDesigner database design tool for this project.

Figure 7-2

c07.indd 206c07.indd 206 9/7/07 10:48:56 AM9/7/07 10:48:56 AM

Chapter 7: Advanced TurboGears Topics

207

 ModelDesigner
 From the initial TurboGears Toolbox web page, you can select the ModelDesigner tool. The
 ModelDesigner interface has three tab panes for working with a new or existing model: Diagram,
 Settings, and Generate Code.

 Figure 7-3 shows the Diagram tab with the visual diagram for the model behind the cable repair
 assignment application.

Figure 7-3

c07.indd 207c07.indd 207 9/7/07 10:48:57 AM9/7/07 10:48:57 AM

Part II: TurboGears

208

 You use the Settings tab to design and modify the model using a form-based page, as shown in
Figure 7-4 .

Figure 7-4

 When you’re satisfied with the model, you use the Generate Code tab to generate the model.py file
and create the application tables. The database that is used depends on what you specified in your
 project’s dev.cfg file. If you never change this, it defaults to sqlobject.dburi=”sqlite://
%(current_dir_uri)s/devdata.sqlite” . Figure 7-5 shows a portion of the code for the cable
repair assignment application.

c07.indd 208c07.indd 208 9/7/07 10:48:58 AM9/7/07 10:48:58 AM

Chapter 7: Advanced TurboGears Topics

209

 The model description for your project is saved in a file called model_designer.tmp when you select
Save Current Session from the interface.

 CatWalk
 Another tool available from the TurboGears Toolbox (shown previously in Figure 7-2) is a model browser
and manipulation tool called CatWalk, shown in Figure 7-6 . Although you can use SQL scripts and
 command-line tools to create and populate a database during development, using a GUI tool such as
CatWalk enables you to visualize the elements of a table and prevent annoying syntax errors.

Figure 7-5

c07.indd 209c07.indd 209 9/7/07 10:48:59 AM9/7/07 10:48:59 AM

Part II: TurboGears

210

 The Model
 Now that you’ve seen and perhaps had a chance to play with the TurboGears tools, let’s get back to the
actual design problem at hand (although playing with new tools is always a worthwhile diversion).
 Listing 7-1 presents the code for this model in its entirety, followed by a detailed discussion of the model
design and how to build this model.py code. You can either code this model by hand or construct it via
Web-based tools.

 Listing 7-1: The TurboGears model.py

 1 from turbogears.database import PackageHub

 2 from sqlobject import *

 3 from datetime import datetime

 4

 5 hub = PackageHub(“ce”)

 6 __connection__ = hub

 7

 8 class Location(SQLObject):

 9 address = UnicodeCol(notNone=True, length=256)

 10 lat = DecimalCol(size=10, precision=7, default=0.0)

 11 lon = DecimalCol(size=10, precision=7, default=0.0)

 12

 13 class Job(SQLObject):

Figure 7-6

c07.indd 210c07.indd 210 9/7/07 10:48:59 AM9/7/07 10:48:59 AM

Chapter 7: Advanced TurboGears Topics

211

 14 location = ForeignKey(‘Location’)

 15 priority = ForeignKey(‘Priority’)

 16

 17 class Resource(SQLObject):

 18 name = UnicodeCol(alternateID=True, notNone=True, length=30)

 19 location = ForeignKey(‘Location’)

 20 status = ForeignKey(‘Status’)

 21

 22 class Assignment(SQLObject):

 23 assignmentMade = DateTimeCol(default=datetime.now)

 24 jobStart= DateTimeCol(default=datetime.now)

 25 jobEnd = DateTimeCol(default=datetime.now)

 26 resource = ForeignKey(‘Resource’)

 27 job = ForeignKey(‘Job’)

 28

 29 class Status(SQLObject):

 30 status = StringCol(default=’AVAIL’, length=20)

 31

 32 class Priority(SQLObject):

 33 priority = StringCol(default=’MEDIUM’)

 34 icon = StringCol()

 This listing begins by importing the PackageHub class that connects your model code to the underlying
data storage, and then brings in the SQLObject package.

 Time is an important element in any service call, so it’s likely you’ll need to create some TIMESTAMP
objects (which SQLObject refers to as DateTime objects). In this application, you’ll see a quick and easy
way to create a TIMESTAMP using the datetime class. Import this class as follows:

 from turbogears.database import PackageHub

from sqlobject import *

from datetime import datetime

 In general, TurboGears models are simple to test via the tg-admin shell interface in a terminal window,
and that’s what will be used as the testing method for validating the model later in this chapter. In gen-
eral, you should always use test-driven development as well. TurboGears provides a test-model.py
file to exercise the model and check for regressions, but again you may also find it useful to simply
 exercise the model through the interpreter.

 Ultimately, it all depends on whether you trust the generated code. In the case of Java Hibernate, for
example, where the connection to the underlying data store is delivered through decorators, it is a little
harder to exercise the interface interactively, so you may be better off writing a suite of test cases. Here,
however, you can get almost instant feedback on the model validity through making a few Python calls
in the model.py code.

 The Location Class
 In this application, it is essential for the operations controller who takes the customer call to get the loca-
tion for the service outage. Additionally, the repair resources will be at some location in the operations
area, so the Location class will do double duty.

c07.indd 211c07.indd 211 9/7/07 10:49:00 AM9/7/07 10:49:00 AM

Part II: TurboGears

212

 Define the Location class as follows:

 class Location(SQLObject):

 address = UnicodeCol(notNone=True, length=256)

 lat = DecimalCol(size=10, precision=7, default=0.0)

 lon = DecimalCol(size=10, precision=7, default=0.0)

 In this code, you make the address field itself a UnicodeCol so that you can represent a wide character
set in place names. You also make it an alternate ID, because your crew controller is going to want to
look places up by something other than the system-generated ID field (the default primary key). By
specifying address as an alternate ID, you guarantee the uniqueness of the address string as well.

 This example uses the Google Maps API for its map interface, which requires a latitude and longitude
for placing a location on the map. You can just use the defaults for now — when the user makes the
 initial assignment, the API will return the latitude and longitude of the address and you’ll update
the model with those values. Notice that the precision values are fairly large — Google Maps is
very precise.

 Conversely, notice that the definition of what a location represents has been left pretty loose. If you’ve
filled out a typical web form with multiline address fields, this may surprise you. In this application
 context, the Google Maps geocoder needs only a loose textual description of an address to make its
 geocoding decision. Thus, you don’t need to overdesign the application logic. Be aware, though, that the
 geocoder makes a best-effort selection when it has multiple choices, so if this code is the basis for a real
application, you need to add some validation logic. The right place to do something like that is in the
 addjob method of controllers.py , which you will use to add job and truck resources later in
this chapter.

 You can validate that the model is working by firing up the interactive shell and creating a new
 Location as follows:

 > tg-admin shell

Python 2.4.4 (#1, Oct 18 2006, 10:34:39)

Type “copyright”, “credits” or “license” for more information.

In [1]: loc = Location(address=’1010 President St., Brooklyn, NY’)

In [2]: print loc

<Location 2 address=”u’1010 President ...’” lat=0.0 lon=0.0>

In [3]: Location.get(2)

Out[3]: <Location 2 address=”u’1010 President ...’” lat=0.0 lon=0.0>

In [4]: locs = Location.select()

In [5]: for l in locs: print l.address

 ...:

4 Irving Pl., NY, NY

1010 President St., Brooklyn, NY

 Obviously, the latitudes and longitudes are incorrect (unless someone moved Brooklyn to the west coast of
Africa while you were on coffee break), but because the interactive shell uses the Python classes declared
in your model.py , you can add and select Location records from the underlying database. Correct lati-
tude and longitude values are supplied by the Google Maps geocoder interface, which is implemented as
a part of the view (discussed in more detail in the section “The View” later in this chapter).

c07.indd 212c07.indd 212 9/7/07 10:49:00 AM9/7/07 10:49:00 AM

Chapter 7: Advanced TurboGears Topics

213

 Note that because you didn’t do any actual transactions (which would have required you to specify a
 hub.begin before the record and hub.commit after it), the bogus record and any other changes that you
make to the model will not persist beyond the session. You can see the methods available via the hub
class in the interactive shell by using the following Python dir request:

 In [7]: dir(hub.hub)

Out[7]:

[‘__class__’,

...

 ‘begin’,

 ‘commit’,

 ‘end’,

 ‘getConnection’,

 ‘params’,

 ‘reset’,

 ‘rollback’,

 ‘supports_transactions’,

 ‘threadConnection’,

 ‘threadingLocal’,

 ‘uri’]

 Following the control flow in an AJAX application is a little like following the bouncing karaoke ball, but
as long as you remember that visual elements of the server-based controller can act asynchronously
without forcing a page refresh, you don’t have to think too hard about the coordination. What you’ll see
in this application is that as soon as the user types an address and creates a new repair job, the location
passes to both the Google server and your own controllers.py . This sets off a chain of events that will
do the following:

1. Invoke the geocoder API (which resides somewhere on the Internet — where specifically is
 really unimportant from your standpoint).

2. Use the latitude and longitude returned by the geocoder plus the address typed by the user to
invoke your controller so it creates a new Location record.

3. Asynchronously refresh the onscreen map and onscreen repair jobs table so that the user gets
 visual confirmation that the repair job has been recorded.

 Model Class: Job
 Next you’ll create the job model. A simple job model might have a unique identifier, a location, and a
 priority. The Location class you created gives you a way to model locations for a job, so the logical
thing to do would be to hold a pointer to an instance of Location in your job model. You also want to
include some way to assign a priority to a job — perhaps the imaginary cable company will grow quite
large and will need to sort out important repairs from very important repairs. You could simply add a
priority indicator into the Job class, but it’s better to keep discrete, enumerable values in another part of
the model and have the Job class point to it. Create the Job class as follows:

 class Job(SQLObject):

 location = ForeignKey(‘Location’)

 priority = ForeignKey(‘Priority’)

c07.indd 213c07.indd 213 9/7/07 10:49:00 AM9/7/07 10:49:00 AM

Part II: TurboGears

214

 Notice that the SQLObject notation for saying “point to an instance of . . . ” is to use ForeignKey , pass-
ing it the name of the other table. Optionally, you can pass a specific column name, but by default the
value of the ForeignKey is the unique ID field of the other class. You don’t see a declaration of the ID
field, because it’s both hidden and assumed, but it’s there nonetheless. Now, open up the shell again and
test out the model as follows:

 In [1]: l = Location(address=”1700 . 17th St., Arlington, VA”)

In [2]: p = Priority(priority=”HIGH”)

In [3]: job = Job(location=l.id, priority=p.id)

In [4]: job.location.address

Out[4]: u’1700 . 17th St., Arlington, VA’

In [5]: job.priority.priority

Out[5]: u’HIGH’

 The semantic “this table in, that table field out” structure used as in lines 4 and 5 above is quite a com-
mon idiom in table joins, and there’s a certain beauty, even elegance of expression, in being able to
 operate the model this way. This is not precisely how you’ll create a new job via the controller, shown in
Listing 7-3 later in this chapter, but it illustrates the ease of new record construction.

 Model Class: Priority
 Before leaving the job model altogether, let’s take a look at Job’s companion, the Priority class. You
define this class as follows:

 class Priority(SQLObject):

 priority = StringCol(default=’MEDIUM’)

 icon = StringCol()

 As mentioned previously, the reason for breaking job priorities out into their own class is that it’s an easy
way to expand the range of priorities without breaking the job model. Even if all job records with a high
priority are cleared, the concept of a high priority itself should survive for use with the next job added
by the operations controller. Later, in the controlpanel.kid template and controller code, you’ll see
how relational integrity (which ensures that only legitimate values are associated with a job) is enforced.
Although you could create fields for job priorities in the Job class, that would clearly be wasteful —
every job would require a priority column — when all you really need is one instance of each value in
the priority and status tables, with many jobs pointing to the various values.

 Normally, this would suggest the use of a multijoin field in the Priority class as the “one” side of a
one-to-many relationship as well as a foreign key specification. However, for purposes of illustrating
 distributed value integrity enforcement, this design will serve.

 Here’s another structure that you will see frequently for value lookup–style tables:

 class Priority(SQLObject):

 priority = EnumCol(enumValues=[‘HIGH’, ‘MEDIUM’, ‘LOW’, ‘FIXED’],

➦

 default=’MEDIUM’)

 This works fine if the values are never likely to change. However, the disadvantage of this class design is
that any new values added would entail a schema change, with the attendant pains of unloading the
data, updating the schema, re-creating the tables, and reloading the data.

c07.indd 214c07.indd 214 9/7/07 10:49:01 AM9/7/07 10:49:01 AM

Chapter 7: Advanced TurboGears Topics

215

 Model Class: Resource
 The design rationale behind Resource is very similar to that for Job , the only difference being that, to
make the search for and retrieval of resources as user-friendly as possible, the Resource class for this
model uses a string identifier (name) as an alternate index to reference them. This class also holds point-
ers to a Location record and a Status record. Therefore, you define the Resource class for this model
as follows:

 class Resource(SQLObject):

 name = UnicodeCol(alternateID=True, notNone=True, length=30)

 location = ForeignKey(‘Location’)

 status = ForeignKey(‘Status’)

 Model Class: Status
 The Status class follows a rationale identical to the rationale for the Priority class. You define it as
follows:

 class Status(SQLObject):

 status = StringCol(default=’AVAIL’, length=20)

 Now you can test the Job class again, using the interactive shell as follows:

 tg-admin shell

Python 2.4.4 (#1, Oct 18 2006, 10:34:39)

In [1]: l = Location(address=’10 Moulton St., Cambridge, MA’)

In [2]: s = Status()

In [3]: r = Resource(name=”truck-001”, location=l.id, status=s.id)

In [4]: print r.name,”is at”, r.location.address,”and is “, r.status.state

truck-001 is at 10 Moulton St., Cambridge, MA and is AVAIL

 Model Class: Assignment
 The last model class in this example is Assignment . This class ensures that a resource’s location and a
job’s location are the same — which is good news for the cable subscriber, because it means that the cable
guy has arrived. Here’s how to define this class:

 class Assignment(SQLObject):

 assignmentMade = DateTimeCol(default=datetime.now)

 jobStart= DateTimeCol(default=datetime.now)

 jobEnd = DateTimeCol(default=datetime.now)

 resource = ForeignKey(‘Resource’)

 job = ForeignKey(‘Job’)

 You test the Assignment class with the same interactive shell as you’ve been using:

 In [5]: l2 = Location(address=’Fawcett St., Cambridge, MA’)

In [6]: p = Priority(priority=”HIGH”)

In [7]: j = Job(location=l.id, priority=p.id)

In [8]: j = Job(location=l2.id, priority=p.id)

In [9]: a = Assignment(resource=r, job=j)

c07.indd 215c07.indd 215 9/7/07 10:49:01 AM9/7/07 10:49:01 AM

Part II: TurboGears

216

 You can even create a statement as wacky as the following:

 In [10]: print “Job assignment located at”, a.job.location.address,”made

at”,a. assignmentMade, “to”,a.resource.name, “currently located at”,

a.resource.location.address

Job assignment located at Fawcett St., Cambridge, MA made at 2007-04-15 23:09:16 to

truck-001 currently located at 10 Moulton St., Cambridge, MA

 Note that in a fashion similar to the Ruby on Rails design philosophy of convention over
configuration, the names for the links to other classes were deliberately chosen. If the names chosen
for the ForeignKey variables in the Job , Resource , and Assignment classes are not the same as the
name of the referenced class, the syntactically elegant drill-down scheme will not work. If, for
example, the name for the ForeignKey link to the Resource class were ‘foo’ and not ‘resource’ , the
 a.foo.location.address subexpression would fail. TurboGears and SQLObject can orchestrate their
referencing magic explicitly because of consistency in naming. You can “pretty-print” the result of the
joined object model query as follows:

 In [9]: print “Job assignment located at”,Job.get(a.job).location.address, “ made

at”, a.assignmentMade,”to”, Resource.get(a.resource).name, “currently located at”,

Resource.get(a.resource).location.address

 And the interpreter will output the following:

 Job assignment located at 10 Fawcett St. Cambridge, MA made at 2007-04-15 22:27:41

to truck-001 currently located at 10 Moulton St., Cambridge, MA

 Now that you have a reasonable data model in place, you can start concentrating on the controller logic.

 The Controller
 The controller for this application, like most, fulfills the rather unglamorous role of mediating the put
and get functions from the underlying data model. In the next several sections, you will see the
 controller elements come together. The controller is shown complete in Listing 7-3 .

 The Imports Class
 The controller begins by importing a number of necessary libraries.

 from turbogears import controllers, expose, flash, redirect, url

from turbogears.toolbox import catwalk

from model import *

from docutils.core import publish_parts

import logging

log = logging.getLogger(“ce.controllers”)

import time

 The first statement brings into scope the necessary TurboGears imports and enables Python to resolve
such elements as the expose decorator and the controller class.

c07.indd 216c07.indd 216 9/7/07 10:49:01 AM9/7/07 10:49:01 AM

Chapter 7: Advanced TurboGears Topics

217

 Next, you import the CatWalk controller. This is optional, but as mentioned in Chapter 3 and earlier in
this chapter, it’s useful to have CatWalk easily available during development. If you need to take a look
at the backing store, you can simply invoke it with the following statement:

 Localhost:8088/catwalk

 After you bind CatWalk to the Root class (which you will do in the next section),you can use it without
having to start up the TurboGears Toolbox first.

 Next, the import of the model makes the model elements shown previously in Listing 7-1 available to the
controller.

 You then set up a logger by importing logging and constructing a log object. Log output will, by
default, go to the console and will be labeled with the identity of the issuing controller. Thus, if you
invoke the addjob method (shown below) with an HTTP GET with the proper elements — for example

 http://localhost:8080/addjob?address=1010%20President%20St.%2C%20%20Brooklyn%2C%20N

Y&lat=40.668822&lon=-73.958243&priority_id=2

— the controller, on successfully creating the record, will report the following in the console window:

 2007-04-17 00:14:54,002 ce.controllers DEBUG add Job succeeded; 11 1010 President

St., Brooklyn, NY 40.668822 -73.958243 MEDIUM

 You can tailor the reporting level to be more or less verbose, and redirect the output via the Python
 logging API.

 The Root Class
 Here you bind a variable catwalk to the TurboGears Root class, which is subclassed from a Python
class constructed from the methods of the current controller itself. Define the Root class for this model
as follows:

 class Root(controllers.RootController):

 catwalk = catwalk.CatWalk()

 @expose(template=”ce.templates.controlpanel”)

 def index(self, optmsg=None):

 now=time.ctime()

 content = publish_parts(now, writer_name=”html”)[‘html_body’]

 root = str(url(‘/’))

 if (optmsg):

 tg_flash = optmsg

 return dict(tg_flash=optmsg, data=content, priority=Priority.select(),

status=Status.select())

 The @ expose statement in this definition is a decorator . Decorators became an intrinsic part of Python in
release 2.4. TurboGears uses decorators to determine whether something (typically a method) can be
invoked via an HTTP request. When @expose precedes the index method definition as it does here, the
decorator accepts an optional argument: the template that’s completed with the values returned by
the method in this case.

c07.indd 217c07.indd 217 9/7/07 10:49:02 AM9/7/07 10:49:02 AM

Part II: TurboGears

218

 Any time you specify a template as an argument to the decorator, a new page is returned to the browser.
However, when AJAX calls affect the page from which the method was invoked, the affected portion of
the current page is refreshed with new data rather than the server returning a fresh page. Controller
methods invariably return an associative array, which is used as a namespace for rendering the Kid
 template (when one is supplied) into HTML. When a template isn’t supplied, it’s assumed that you are
returning into the calling page. You can specify both an input data format and a data return format.

 Returning to the index method defined in this code, the contents of the controlpanel.kid template
are published, as are all the Priority codes and Status codes, as follows:

 return dict(tg_flash=optmsg, data=content, priority=Priority.select(),

status=Status.select())

 The contents of these unordered arrays are used to populate the combo boxes for priority and status on
the page (previously shown in Figure 7-1).

 In summary, the expose decorator essentially enables you to make an explicit call, which maps a portion
of the URL directly to a method in the controller aggregated under the RootController . For example, if
you type http://localhost:8080/catwalk into the address bar, it displays the CatWalk tool page
because the controller for CatWalk is contained within the current controller.

 The Resourcelist Method
 The controller defines a resourcelist method as follows:

 @expose()

 @expose(“json”)

 def resourcelist(self):

 return dict(resources=[[r.id, r.name, r.location.address, r.location.lat,

 r.location.lon] for r in Resource.select(orderBy=Resource.q.name)]

 This method is similar to the other controller methods in that it returns an entire list of elements from the
backing store. The first expose statement makes the method public. It has no template declaration
because you’re going to be invoking the resourcelist method from Javascript in controlpanel.kid
(later in this chapter). The second expose statement tells TurboGears to return the data as JavaScript
Object Notation (JSON). JSON is a compact notation immediately useable by a JavaScript function as an
associative array.

 You can see the effect of returning the data as JSON by invoking a URL such as
http://localhost:8080/resourcelist on this controller as the code base. The call is routed to the
 resourcelist method defined here. Because the return data type is JSON, the result returned
to your browser will resemble something like Listing 7-2 . (You’ll see how the JSON elements returned by
the method are used in more detail later in this chapter.)

 Listing 7-2: TurboGears JSON

 {“tg_flash”: null,

“resources”: [

[1, “TRK-001”, “800 President St., Brooklyn, NY”, 40.674059, -73.976484],

[2, “TRK-006”, “1600 President St., Brooklyn, NY”, 40.667216, -73.934957],

[3, “TRK-007”, “1010 President St., Brooklyn, NY”, 40.668822, -73.958243]

]}

c07.indd 218c07.indd 218 9/7/07 10:49:02 AM9/7/07 10:49:02 AM

Chapter 7: Advanced TurboGears Topics

219

 The actual mechanism for resourcelist is interesting and speaks to the compactness and expressive-
ness of both Python and TurboGears. The production of the method is (as usual) an associative array,
whose value is a mutable list constructed via Python list comprehension. The Resource.select()
method (Resource is the class in this model) chooses an entire set of records from the backing store.

 The for loop iterates over the collection, choosing specific elements and building the list. Certain
 elements of the list are themselves composed of joins to other parts of the model. For example,
 r.location.address says “With the current resource row from the backing store, use the foreign key
called location that points to the Location object model, and get the address string.” It does the
same type of thing for the lat and lon attributes.

 It may be possible to construct a more succinct expression for doing a compound database fetch and
 creating an array of the results, but it probably wouldn’t be easy.

 You can see a similarly powerful expression in the assignmentlist method that gets the list of assign-
ments. In this model, the job assignments associate cable repair trucks and outages. The controller
method defines the assignmentlist method as follows:

 @expose()

 @expose(‘json’)

 def assignmentlist(self):

 return dict(assignments=[[assignment.id, assignment.resource.name,

 assignment.job.location.address, assignment.assignmentMade]

 for assignment in Assignment.select()]

 Here the expression assignment.job.location.address uses double-pointer chaining. It gets an
address string by using the Address instance’s pointer (a foreign key) to the associated Job instance and
using its pointer to get to the associated Location instance to get to its address attribute.

 None of this controller’s methods are providing anything in the way of exception handling or validation.
In truth, the example has been architected such that few errors are likely to crop up. That’s a hallmark of
reasonable front-to-back design, and it also makes a statement about the overall robustness of the Turbo-
Gears framework. Note though that error handling would be important in most real applications, and
because your sense of professionalism is screaming at you to provide error handling robustness anyway,
you will probably want to read the section “Controller Error Handling,” later in the chapter.

 Controller: addjob
 Next you need a method that adds a job location and assigns it a priority. To do this, you define the
 addjob controller method as follows:

 @expose()

 @expose(‘json’)

 def addjob(self, address, lat,lon, priority_id):

 l = Location(address=address, lat=lat, lon=lon)

 p = Priority.get(priority_id)

 j = Job(location=l.id, priority=p.id)

 log.debug(“add Job succeeded; “+str(j.id)+” “+j.location.address+”

 “+str(j.location.lat)+

 “ “+str(j.location.lon)+” “+j.priority.priority)

 return dict(job=[j.id,j.location.address,j.location.lat, j.location.lon,

j.priority.priority])

c07.indd 219c07.indd 219 9/7/07 10:49:03 AM9/7/07 10:49:03 AM

Part II: TurboGears

220

 The addjob method gets input via the user interface and creates a new data object in to controller. The
controller acts as a translator between the action in the view and the underlying model. The JavaScript in
the main page invokes the addjob method, passing it an address string (the latitude and longitude) and
a job priority.

 In the view, the user invokes addjob by entering a location and clicking the Add Job button, which
places a job marker on the map as shown in Figure 7-7 .

 Addjob demonstrates the affordances offered by the controller as a translator between the action in the
view and the underlying model. JavaScript in the main page invokes the addjob method, passing it an
address string, latitude and longitude and a job priority. In the view, the user invokes addjob by enter-
ing a location, and pressing the Add Job button. This user action along with the resulting placement of
the job marker is shown in Figure 7-7 .

Figure 7-7

c07.indd 220c07.indd 220 9/7/07 10:49:03 AM9/7/07 10:49:03 AM

Chapter 7: Advanced TurboGears Topics

221

 From the discussion earlier on mapping URLs to controller methods, you now know that the user action
results in an HTTP Get call being passed to the addjob method. If you could look at the call itself for the
address shown in Figure 7-7 , it would look like this:

 http://localhost:8888/addjob?address=5219%20Clarendon%20Rd%2C%20Brooklyn%2C%20NY&la

t=40.644569&lon=-73.927437&priority_id=3

 This call passes the address , lat , lon , and priority values to the method in the format it expects to
receive them. Recall from the model (Listing 7-1) that in order to create a new Job object, you need to
create a new Location object and associate an existing Priority object with it. The Job object itself
merely holds pointers to the Location and Priority .

 So this is exactly how you implement addjob . The following line shows the syntax for creating a new
Location object:

 l = Location(address=address, lat=lat, lon=lon)

That syntax results in a new record being created in the underlying data store. You use the Location
constructor with keyword arguments in whatever order you wish (another of Python’s developer-
friendly features), and this inserts a record into the database.

 You next use p = Priority.get() , passing it the ID from the invoking page. Because the index
method used in the initial construction of the page passed the legal values of priorities from the underly-
ing database, you are assured that the value is legitimate. Line 23 creates a new job, which, as you may
recall from Listing 7-1 simply holds IDs for the associated Location and Priority object.

 Next, as shown in the addjob code snippet shown earlier, you create a job via the following constructor:

 j = Job(location=l.id, priority=p.id)

 The log statement on the the line following the constructor for Job is functionally unnecessary but is
used in the code snippet above to demonstrate that whenever a new job is added, it logs a line to the
console.

 The Google Maps geocoder, which is called by JavaScript in the invoking page, assures that the address
the end user types will map to a legitimate latitude-longitude pair. If the user enters something totally
nonsensical such as etaoin shrdlu , the geocoder API’s external mapping returns an alert saying the loca-
tion can’t be found. On the other hand, if the user enters anything that’s even remotely address-like, he
or she will receive something from the geocoder in the view, even if it’s not the desired address.

 You will see the rest of the page-routing JavaScript code — from the request itself being made (the
 displayJobs method) to the result being posted on the map (the showJobs method) — later in this
chapter.

 Listing 7-3 shows the entire controllers.py code for this model.

c07.indd 221c07.indd 221 9/7/07 10:49:04 AM9/7/07 10:49:04 AM

Part II: TurboGears

222

 Listing 7-3: The complete controllers.py application controller

 1 from turbogears import controllers, expose, flash, redirect,url

 2 from turbogears.toolbox import catwalk

 3 from model import *

 4 from docutils.core import publish_parts

 5 import logging

 6 log = logging.getLogger(“ce.controllers”)

 7 import time

 8

 9 class Root(controllers.RootController):

 10 catwalk = catwalk.CatWalk()

 11 @expose(template=”ce.templates.controlpanel”)

 12 def index(self, optmsg=None):

 13 now=time.ctime()

 14 content = publish_parts(now, writer_name=”html”)[‘html_body’]

 15 root = str(url(‘/’))

 16 if (optmsg):

 17 tg_flash = optmsg

 18 return dict(tg_flash=optmsg, data=content,

 19 priority=Priority.select(), status=Status.select())

 20

 21 @expose()

 22 @expose(‘json’)

 23 def addjob(self, address, lat,lon, priority_id):

 24 l = Location(address=address, lat=lat, lon=lon)

 25 p = Priority.get(priority_id)

 26 j = Job(location=l.id, priority=p.id)

 27 log.debug(“add Job succeeded; “+str(j.id)+” “+j.location.address+

 28 “ “+str(j.location.lat)+

 29 “ “+str(j.location.lon)+” “+j.priority.priority)

 30 return dict(job=[j.id,j.location.address,j.location.lat,

 31 j.location.lon,j.priority.priority])

 32

 33 @expose()

 34 @expose(‘json’)

 35 def addresource(self, name, address,lat,lon,status_id):

 36 l = Location(address=address, lat=lat, lon=lon)

 37 s = Status.get(status_id)

 38 r = Resource(name=name, location=l.id, status=s.id)

 39 return dict(id=r.id, address=r.location.address,

 status=r.status.status)

 40

 41 @expose()

 42 @expose(‘json’)

 43 def addassignment(self, resource, joblocation):

 44 r = Resource.selectBy(name=resource)

 45 l = Location.selectBy(address=joblocation)

 46 j = Job.selectBy(location=l[0].id)

 47 a = Assignment(resource=r[0].id , job=j[0].id)

 48 return dict(id=a.id, resource=a.resource.name,

 49 location=a.job.location.address, assignmentMade=a.assignmentMade)

 50

 51 @expose()

 52 @expose(“json”)

c07.indd 222c07.indd 222 9/7/07 10:49:04 AM9/7/07 10:49:04 AM

Chapter 7: Advanced TurboGears Topics

223

 53 def resourcelist(self):

 54 return dict(resources= [[r.id, r.name, r.location.address,

 r.location.lat,

 55 r.location.lon]

 56 for r in Resource.select(orderBy=Resource.q.name)])

 57

 58 @expose()

 59 @expose(“json”)

 60 def joblistwithicons(self):

 61 return dict(jobs=[[j.id, j.location.address, j.location.lat,

 62 j.location.lon, j.priority.priority, j.priority.icon]

 63 for j in Job.select(orderBy=Job.q.id)])

 64

 65 @expose()

 66 @expose(‘json’)

 67 def assignmentlist(self):

 68 return dict(assignments=[[assignment.id, assignment.resource.name,

 69 assignment.job.location.address, assignment.assignmentMade]

 70 for assignment in Assignment.select()])

 71

 72 @expose()

 73 def default(self, *args, **kw):

 74 return self.index()

 Controller Error Handling
 In order to use relatively compact code, none of the methods you defined in the controller code include
anything in the way of error handling, but they really ought to. To add robustness in the face of possible
errors, there is a couple of simple, proven approaches.

 Consider adding a truck method that, given the ID of a truck resource, returns a JSON array containing
some relevant data about the truck. Such a method without error handling might look like Listing 7-4 .

 Listing 7-4: Truck method — version 1

 @expose(‘json’)

 def truck(self, ID):

 truck = Resource.get(ID)

 return dict(name=truck.name, address=truck.location.address,

➦

 status=truck.status.status)

 If you added this to the controller, you would then be able to invoke a URL such as
http:// localhost:8888/truck/1 , which is a method mapping style supported by TurboGears.
 TurboGears is smart enough to translate that syntax into a call to the truck method and parse the
 subsequent slash-delimited data as the arguments to the method. This is similar to the standard URL
addressing syntax (such as http://localhost:8888/truck?ID=1), except it’s more human-readable
and easier for your end user to type.

c07.indd 223c07.indd 223 9/7/07 10:49:05 AM9/7/07 10:49:05 AM

Part II: TurboGears

224

 Using either method invocation syntax, your controller will find the truck resource by its ID and return
the following:

 {“status”: “AVAIL”, “name”: “TRK-001”, “tg_flash”: null,

➦

“address”: “5219 Clarendon Rd, Brooklyn, NY”}

 Because you haven’t provided a template for the truck method to complete and return to the browser,
the browser will display only the contents of the associative array produced by the method. For example,
if you invoke truck with http://localhost:8888/truck/999999999 , you’ll get a “500 Internal
Server Error” message.

 There are some things that you can do to improve the feedback you provide to the end user so it’s not
just a sea of Python stack trace. To take a look at alternatives, create the Truck.kid template shown in
Listing 7-5 . This will give you a page to render into so that you can look at the effect of adding some
error handling.

 For the sake of brevity, the surrounding HTML is not included in this listing.

 Listing 7-5: Truck.kid

 <table id=”truck-info”>

 <tr>

 <td class=”fld”>Name:</td>

 <td class=”val”></td>

 </tr>

 <tr>

 <td class=”fld”>Address:</td>

 <td class=”val”></td>

 </tr>

 <tr>

 <td class=”fld”>Status:</td>

 <td class=”val”></td>

 </tr>

</table>

 This template will render a truck when you supply the controller with a valid ID, as shown in Figure 7-8 .

 However, if you supply an index into the backing store, you still get the onerous “500 Internal Server
Error” message. To ensure against this, there are some techniques you can try. For one thing, you can
surround the get() call with a try / except block to catch any exceptions and return a message to the
invoking page. Now your code should resemble Listing 7-6 .

 Listing 7-6: Truck method — version 2

 from sqlobject import SQLObjectNotFound

@expose(template=”ce.templates.truck”)

def truckV2(self, ID):

 try:

 truck = Resource.get(ID)

 return dict(name=truck.name, address=truck.location.address,

 status=truck.status.status)

c07.indd 224c07.indd 224 9/7/07 10:49:05 AM9/7/07 10:49:05 AM

Chapter 7: Advanced TurboGears Topics

225

 except SQLObjectNotFound:

 tg_flash=”NO truck, no way”

 return dict(tg_flash=”NO truck, no way”, name=””, address=””, status=””)

 This refactoring now catches the error and supplies an error text. By default, TurboGears returns a null
 tg_flash element. A tg_flash element, if returned to the page template as non-null, will render as a
text message of your choosing. Thus, you can conveniently supply an error string to the user whenever
necessary, as shown in Figure 7-9 .

Figure 7-8

Figure 7-9

c07.indd 225c07.indd 225 9/7/07 10:49:05 AM9/7/07 10:49:05 AM

Part II: TurboGears

226

 That’s an improvement. What else? A different approach to the error handling issue would be to just
route the error to a 404 (“Not Found”) type of exception, as shown in Listing 7-7 .

 Listing 7-7: Truck method — version 3

 from sqlobject import SQLObjectNotFound

@expose(template=”ce.templates.truck”)

def truckV2(self, ID):

 try:

 truck = Resource.get(ID)

 return dict(name=truck.name, address=truck.location.address,

 status=truck.status.status)

 except SQLObjectNotFound:

 tg_flash=”NO truck, no way”

 return dict(tg_flash=”NO truck, no way”, name=””, address=””, status=””)

 Your user will still get a torrent of traceback, though, so maybe it’s not all that much better. A third
 strategy is to redirect to a page that swallows the errors. This is shown in Listing 7-8 , which is another
refactoring of the truck method code.

 Listing 7-8: Truck method — version 4

 @expose(template=”ce.templates.truck”)

 def truckV4(self, ID):

 from sqlobject import SQLObjectNotFound

 from turbogears import redirect

 from cherrypy import NotFound

 try:

 truck = Resource.get(ID)

 except SQLObjectNotFound:

 raise redirect(“/index?optmsg=NOTFound”)

 return dict(name=truck.name, address=truck.location.address,

➦

status=truck.status.status)

 Add in a little refactoring of the index method to accept the optional message, as shown in Listing 7-9 ,
and now errors route the user back to the base control panel page.

 Listing 7-9: Refactored index method

 @expose(template=”ce.templates.controlpanel”)

 def index(self, optmsg=None):

 now=time.ctime()

 content = publish_parts(now, writer_name=”html”)[‘html_body’]

 root = str(url(‘/’))

 if (optmsg):

 tg_flash = optmsg

 return dict(tg_flash=optmsg, data=content,

 priority=Priority.select(),

 status=Status.select()))

c07.indd 226c07.indd 226 9/7/07 10:49:06 AM9/7/07 10:49:06 AM

Chapter 7: Advanced TurboGears Topics

227

 The View
 You now have much of the application defined, and can turn your attention to the user experience. As
stated at the start of the chapter, this model is representative of a real application, similar to one actually
working commercially. Much of the code implements the geospatial interface, which is interesting in its
own rite but doesn’t serve to illustrate crucial points about either TurboGears or MochiKit. Accordingly,
much of the code dealing with the map-handling aspects has been left out, but the full application code
is available for download at www.wiley.com .

 As discussed in Chapter 3 , the TurboGears framework supplies a template called master.kid , which
contains the elements, JavaScript methods, and styles that are common to all Kid template files. The
 master.kid in Listing 7-10 is no different with respect to its overall structure.

Figure 7-10

 Now calling a URL with a bad ID would display the message shown in Figure 7-10 , which is perhaps the
most reasonable of all.

c07.indd 227c07.indd 227 9/7/07 10:49:07 AM9/7/07 10:49:07 AM

Part II: TurboGears

228

 Listing 7-10: master.kid

 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<?python import sitetemplate ?>

<html xmlns=”http://www.w3.org/1999/xhtml” xmlns:py=”http://purl.org/kid/ns#”>

<head py:match=”item.tag==’{http://www.w3.org/1999/xhtml}head’”

py:attrs=”item.items()”>

 <meta py:replace=”item[:]”/>

 <style type=”text/css” media=”screen”>

 @import “/static/css/style.css”;

 </style>

<script src=”/static/javascript/MochiKit/MochiKit.js”

type=”text/javascript”></script>

 </head>

 <body py:match=”item.tag==’{http://www.w3.org/1999/xhtml}body’”

py:attrs=”item.items()”>

 <div id=”header”> </div>

 <div id=”main_content”>

 <div py:if=”tg_flash” class=”flash” py:content=”tg_flash”></div>

 <div py:replace=”[item.text]+item[:]”/>

 </div>

 <div id=”footer”>

 <button onClick=”toggleResourceList()”>Resources</button>

 <button onClick=”toggleJobList()”>Jobs</button>

 <button onClick=”toggleAssignmentList()”>Assignments</button>

 <div id=”resourcelist_results” style=”display: none;”></div>

 <div id=”joblist_results” style=”display: none;”></div>

 <div id=”assignmentlist_results” style=”display: none;”></div>

 </div>

 </body>

</html>

 In addition to the usual match instructions that enable you to replace whole segments of the body in
Kid templates, this one also creates a common footer (<div id=”footer”>) that enable you to populate,
show, and hide tables for jobs, truck resources, and job assignments. The footer contains the
Resources, Jobs, and Assignment buttons (previously shown in Figure 7-1) that activate callbacks in the
 controlpanel.KID file.

 The template also explicitly includes the MochiKit.js library. This is necessary only when you want to
get visual effects, as you do in this application. As of this book’s publication, MochiKit 1.4 is required
to get the MochiKit port of the script.aculo.us effects libraries but is not the default version directly
supported with the download of TurboGears. You can get a current version of MochiKit from
http://mochikit.com . For development purposes, you should put the JavaScript libraries in your
project path at <install-dir>/<projectname>/static/javascript .

 To assure that you get an overload of newer MochiKit, you will also need to override a stanza generated
by default from quickstart generation from quickstart, by removing the following:

c07.indd 228c07.indd 228 9/7/07 10:49:08 AM9/7/07 10:49:08 AM

Chapter 7: Advanced TurboGears Topics

229

 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<?python import sitetemplate ?>

<html xmlns=”http://www.w3.org/1999/xhtml” xmlns:py=”http://purl.org/kid/ns#”

py:extends=”sitetemplate”>

 and replacing it with

 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<?python import sitetemplate ?>

<html xmlns=”http://www.w3.org/1999/xhtml” xmlns:py=”http://purl.org/kid/ns#”>

 as shown in Listing 7-10 .

 Listing 7-11 shows selected elements of the page implementation previously shown in Figure 7-1 .

 Listing 7-11: controlpanel.kid page implementation

 <head>

<script src=”http://maps.google.com/maps?file=api&v=2&key= GMapsAPIKey ”

 type=”text/javascript”/>

...

function init(){

 setupDBG();

 refresh();

}

function setupDBG() {

 logDebug(“Page (re)loaded”);

}

function refresh(){ //Load all jobs and resources via the controller

 if (__map == null){ loadMap(); }

...

 displayJobs();

 displayTrucks();

}

function loadMap() {

if (GBrowserIsCompatible()) {

 __map = new GMap2(document.getElementById(“map”));

 ...

 }

}

function displayJobs(){

 __jobs = [];

 var deferred = loadJSONDoc(“${tg.url(‘/joblist’, tg_format=’json’)}”);

 deferred.addCallback(showJobs);

}

function displayTrucks(){

 __trucks = [];

 var deferred = loadJSONDoc(“${tg.url(‘/resourcelist’, tg_format=’json’)}”);

 deferred.addCallback(showTrucks);

}

...

</head>

c07.indd 229c07.indd 229 9/7/07 10:49:08 AM9/7/07 10:49:08 AM

Part II: TurboGears

230

 Setting Up and Debugging the View
 When the page is loaded, init() is called via <body onload=”init()”> (see Listing 7-11). The
 debugger is loaded, the map is loaded (using the Google Maps API), and the page with the data support-
ing the tables is loaded. Because you are including MochiKit, setting up a logger and debugger is so easy
that it’s almost ridiculous not to do so. (No longer will you have to pepper your page code with alert()
statements to trace program logic.)

 The MochiKit.Logging package includes several features that enable and enhance logging. A simple
example is the setupDBG function. If you are using Firefox (recommended) and the Firebug extension
(also critical for a developer, and available at https://addons.mozilla.org/en-US/firefox/
addon/1843), you will see a new panel that can be revealed or hidden as needed. In Listing 7-11 , the
 init function fires with the logDebug(“Page (re)loaded”) message from the setupDBG() method
and the following two JavaScript asynchronous HTTP GET calls to the controller to fetch the Jobs and
 Resource lists:

 GET http://localhost:8888/joblistwithicons?tg_format=json

GET http://localhost:8888/resourcelist?tg_format=json

 These calls are issued from the logic chain init � refresh � displayJobs and displayTrucks .
Figure 7-11 shows the result.

Figure 7-11

c07.indd 230c07.indd 230 9/7/07 10:49:08 AM9/7/07 10:49:08 AM

Chapter 7: Advanced TurboGears Topics

231

 The capabilities provided by Firebug are little short of miraculous, giving you a set of tabbed panes for
examining console output, stepping through the JavaScript logic, inspecting the Document Object Model
(DOM), seeing the application of style sheets, and analyzing the network calls from your page.

 Generally, you will see logging outputs to your browser’s console. Firefox has this built in, as do Safari
on Mac OS/X and Opera. Internet Explorer provides support for this feature via the Microsoft Script
Debugger. The easiest way to avoid all cross-browser inconsistencies (actually, Explorer is the only
inconsistent one) is to add a call to createLoggingPane(inline=true) in a page you want to debug.
This adds a new DOM element at the lowest point in the page and is almost as useful as Firefox.

 View: Map Loading
 The enabling Google Maps API is loaded with the following script specification (entered after the
 <head> tag in Listing 7-11):

 <script src=”http://maps.google.com/maps?file=api&v=2&key= GMapsAPIKey ”

 type=”text/javascript”/>

 Note that GMaps API Key in this code is simply a placeholder for an actual valid key. You will have to
acquire a good API key from Google (www.google.com/apis/maps/signup.html) in order to include
the JavaScript.

 After the JavaScipt library is visible to the page, you use the following simple call from loadMap() :

 if (GBrowserIsCompatible()) {

 __map = new GMap2(document.getElementById(“map”));

}

 and replace the map DOM element map (see Listing 7-12) with the actual map.

 There are some additional features added to the map in the online version of the code that are not shown
here, such as the navigation controls. Now your page has a map, courtesy of init � refresh � loadMap .
Next, you’ll get the Jobs and Truck resources from the controller, and then overlay the map with mark-
ers in the correct locations.

 View: Getting the Data
 The displayTrucks and displayJobs methods are very similar in their construction. They both
 create an AJAX call, assign it to a deferred object, and then assign a callback to that object. In
 displayTrucks , the code looks like this:

 var deferred = loadJSONDoc(“${tg.url(‘/resourcelist’, tg_format=’json’)}”);

deferred.addCallback(showTrucks);

c07.indd 231c07.indd 231 9/7/07 10:49:09 AM9/7/07 10:49:09 AM

Part II: TurboGears

232

 What happens here is that (in general terms) you don’t care precisely when the data result actually
comes back from the controller. Therefore, you set a deferred callback for sometime in the (hopefully
near) future so that when the event does complete and data are returned, a control thread will ensure
transfer to showTrucks . Figure 7-12 (shown later in the chapter) depicts both the outbound calls in the
debugger pane and the result overlaid onto the map.

 In the asynchronous call to the controller, you are calling loadJSONDoc . A possible alternative form is
 doSimpleHttpRequest with a URL argument. JSON was specified in the controller as shown in the fol-
lowing code snippet from Listing 7-3 :

 @expose()

 @expose(“json”)

 def resourcelist(self):

 As a result, the following call is constructed and issued by the page:

 http://localhost:8888/resourcelist?tg_format=json

 And showTrucks is assured that the return data will be JSON.

 View: Displaying the Map Data
 Both the showJobs and showTrucks methods shown in Listing 7-12 have similar logic. The method
 signature expects the argument to be an associative array formatted exactly as shown previously in
 Listing 7-2 . They add truck and job icons to the map in a separate layer above the tiled map background
and at the appropriate latitudes and longitudes.

 Listing 7-12: The showJobs and showTrucks methods of controlpanel.kid

 <head>

...

function showJobs(result){

 for (var i = 0; i < result[“jobs”].length; i++){

 var jobData = result[“jobs”][i];

 var location = jobData[1];

 var latLng = new GLatLng(Number(jobData[2]), Number(jobData[3]));

 var priority = jobData[4];

 var priority_icon = jobData[5];

 var job = new Job(location, latLng, priority);

 __jobs.push(job);

 var marker = hereMarker(latLng, location, priority, priority_icon);

 __map.addOverlay(marker);

 }

 if (__jobs.length > 0){

 __map.setCenter(__jobs[__jobs.length-1].pointOfJob, 13);

 }

}

c07.indd 232c07.indd 232 9/7/07 10:49:10 AM9/7/07 10:49:10 AM

Chapter 7: Advanced TurboGears Topics

233

function showTrucks(result){

 for (var i = 0; i < result[“resources”].length; i++){

 var truckData = result[“resources”][i];

 var name = truckData[1];

 var location = truckData[2];

 var latLng = new GLatLng(Number(truckData[3]), Number(truckData[4]));

 var marker = createTruckMarker(latLng, name);

 var truck = new Truck(location, latLng, name, marker);

 __trucks.push(truck);

 GEvent.addListener(marker, “dragstart”, function() {

 __oldTruckLocation = this.getPoint();

 __map.closeInfoWindow();

 });

 // A new event that returns the new latlng when the drag ends

 GEvent.addListener(marker, “dragend”, onTruckDrag);

 __map.addOverlay(marker);

 }

}

...

</head>

 As this listing shows, after the data is returned from the call, you access the contents of the array in a for
loop. The array of truck data is referenced by result[“resources”] . This was returned from the
 following controller method (discussed in detail previously in the section “The Resourcelist Method”):

 return dict(resources=[[r.id, r.name, r.location.address, r.location.lat,

 r.location.lon] for r in Resource.select(orderBy=Resource.q.name)]

 So now you can simply pick off the elements from the data. These are used to construct a Truck object in
JavaScript (not shown here, but available online at www.wrox.com with the complete application) to
manage the onscreen user interaction. The front-to-back chaining of the page logic is now complete:

 view:init � view:refresh � view:displayJobs � controller:joblist � (Deferred) view:
showJobs and view:init � view:refresh � view:displayTrucks � controller:resourcelist �
(Deferred) view:showTrucks .

 View: Displaying the Table Data
 A final task is to show the tabular data on demand. The master.kid template creates a button and fires
the toggleResourceList JavaScript method as follows:

 <button onClick=”toggleResourceList()”>Resources</button>

 Listing 7-13 shows the event chaining that results from a user click.

c07.indd 233c07.indd 233 9/7/07 10:49:10 AM9/7/07 10:49:10 AM

Part II: TurboGears

234

 Listing 7-13: Show and hide effects method in controlpanel.kid

 function toggleResourceList() {

 if ($(‘resourcelist_results’).style.display == “none”) {

 getResourceList();

 appear(‘resourcelist_results’)

 } else {

 dropOut(‘resourcelist_results’)

 }

}

function getResourceList(){

 var d = loadJSONDoc(“${tg.url(‘/resourcelist’, tg_format=’json’)}”);

 d.addCallback(buildResourceTBL);

}

function buildResourceTBL(result) {

 var resourceTBL = TABLE({‘border’: ‘2px’, ‘bgcolor’:”#eee”},

 THEAD(null,

 tblRow_display([“ID”, “Resource”, “Location”, “LAT”, “LON”])),

 TFOOT(null,

 tblRow_display([“ID”, “Resource”, “Location”, “LAT”, “LON”])),

 TBODY(null,

 map(tblRow_display, result[“resources”]))

);

 replaceChildNodes(“resourcelist_results”, resourceTBL);

 var resHeading = H1(“Resources”);

 insertSiblingNodesBefore(resourceTBL, resHeading);

}

 The first job of the toggleResourceList method is to determine whether the table is visible or not.
When the table is not visible, it reloads the table through an AJAX call to the controller, gets the list of
truck resources via getResourceList , and routes the deferred call to buildResourceTBL , which
 creates the table. Additionally, if the table is not visible, toggleResourceList uses the MochiKit
 appear effect to make the table appear; otherwise, it uses the dropOut visual effect to make it go away.

 The buildResourceTBL method uses MochiKit syntax to create the table and display it as shown in
 Figure 7-12 .

 The final logic in the buildResourceTBL method manipulates the page DOM to replace the
 resourcelist_results <div> with the newly constructed table.

 Adding RSS Feed Capability
 A final item to be covered is the ease with which TurboGears enables a page to generate a Really Simple
Syndication (RSS) feed. The FeedController class included with TurboGears makes this downright
simple. To take advantage of RSS publishing for your site, just include the following line in your
 controllers.py file:

 class Root(controllers.RootController):

 ...

 feed = Feed()

 ...

c07.indd 234c07.indd 234 9/7/07 10:49:10 AM9/7/07 10:49:10 AM

Chapter 7: Advanced TurboGears Topics

235

 Then create a simple Feed class as shown in Listing 7-14 .

 Listing 7-14: Feed.py

 from turbogears.feed import FeedController

from datetime import datetime

class Feed(FeedController):

 def get_feed_data(self):

 entries = []

 fakeFeed = {}

 fakeFeed[“updated”] = datetime.now()

 fakeFeed[“title”] = “All your base”

 fakeFeed[“published”]= datetime.now()

 fakeFeed[“link”] = “http://127.0.0.1:8888/truckV4/1”

 fakeFeed[“author”] = {“name”:”dana_virtual”, “uri”:”bbn.com”}

 fakeFeed[“summary”] = “Lorum ipsum”

 entrys.append(fakeFeed)

 return dict(

Figure 7-12

(continued)

c07.indd 235c07.indd 235 9/7/07 10:49:11 AM9/7/07 10:49:11 AM

Part II: TurboGears

236

 Listing 7-14 (continued)

 title=”Controller RSS Feeds”,

 link=”http://127.0.0.1:8888/truckV4/1”,

 author = {“name”:”Dana Moore”,”email”:”dana_virtual@yahoo.com”},

 id = “http://127.0.0.1:8888:8888”,

 subtitle=”Controller alerts”,

 entries = entrys

)

 Figure 7-13 shows the effects of calling a URL such as localhost:8080/feed .

Figure 7-13

c07.indd 236c07.indd 236 9/7/07 10:49:12 AM9/7/07 10:49:12 AM

Chapter 7: Advanced TurboGears Topics

237

 Summary
 In this chapter you took apart and reassembled a fairly complex real-life application and peered deeply
into the inner mechanisms of TurboGears. As stated early in the chapter, it’s not always easy to under-
stand the flow control of a framework-generated and -hosted Rich Internet Application (RIA). Although
the effort may have seemed tortuous, you now have a much deeper understanding of how TurboGears
applications work, and where to begin looking when things don’t work as you expected them to. That
inevitably turns out to be well worth the effort you expend. Chapter 8, “Dblog: A Blog Implemented in
Django,” begins coverage of Django, a framework more attuned to building user portal and content
management systems. Django uses a very different but no less effective programming model. Grab your
favorite beverage and buckle up for the ride.

Figure 7-14

 In this figure, the RSS feed has been offered, but the Firefox Bookmark sidebar has not yet been
 populated with the Controller RSS Feeds. When the user clicks Add, the feed is created and added to the
Firefox sidebar. Then when the user selects the “All your base” article, the feed contents are displayed as
shown in Figure 7-14 .

c07.indd 237c07.indd 237 9/7/07 10:49:14 AM9/7/07 10:49:14 AM

c07.indd 238c07.indd 238 9/7/07 10:49:14 AM9/7/07 10:49:14 AM

Part III

Django

Chapter 8: Dblog: A Blog Implemented in Django

Chapter 9: Django Views and Users

Chapter 10: Advanced Django Topics: AJAX, RSS, and More

c08.indd 239c08.indd 239 9/7/07 10:50:19 AM9/7/07 10:50:19 AM

c08.indd 240c08.indd 240 9/7/07 10:50:20 AM9/7/07 10:50:20 AM

 Dblog: A Blog Implemented
in Django

 Look with favor upon a bold beginning

— Virgil in The Georgics

 Django is a high-level Python web framework that supports rapid development and elegant
design. In this chapter you’ll see how Django works to automate production of common web-
 development tasks so that the developer can concentrate on higher-level application issues instead
of low-level data handling. You’ll see how Django supports the model-view-controller (MVC)
 separation of concerns in a way that makes development easier and more productive.

 Django Design Philosophies
 The developers of Django call it “The Web framework for perfectionists with deadlines.” We take
this to mean that clean design and adherence to some standard practices are not the enemy of
rapid development, but are required for it. With Django, as with most frameworks, you can follow
its model of how to design and structure your code and reap the benefits of the framework, or you
can fight with the framework and take your chances. So it’s worthwhile to examine some of the
Django design philosophies.

 The components that come in the Django stack have been designed with specific software best
practices in mind. Most of these are of the motherhood and apple pie variety, but explicitly
 stating them helps clarify the design. You examine the following important Django design philoso-
phies in this section (for the full set of Django design philosophies, consult the Django web site at
 http://www.djangoproject.com/documentation/design_philosophies/):

c08.indd 241c08.indd 241 9/7/07 10:50:20 AM9/7/07 10:50:20 AM

Part III: Django

242

❑ Loose coupling: Django aims to make each element of its stack independent of the others. For
example, there should be no references or dependencies between the template processor and the
URL redirector; and the data model classes shouldn’t need to know about HTML. A design like
this enables you to swap out parts of the stack if you choose without requiring a big rewrite of
the other pieces. Even if you plan to use the standard Django stack, loose coupling makes
 learning the stack easier because you can learn each element in isolation. More importantly,
loose coupling makes the code easier to maintain. The more loosely the stack components are
coupled, the less likely a change to one will break another in unforeseen ways.

❑ Less code: It stands to reason that the less code you have to write, the faster you can write it,
and Django is very much about rapid development. It’s also true that the less code you have to
write, the fewer bugs you’ll write. Because Django is implemented in Python, it can take full
advantage of Python’s ability to pack a lot of functionality into a few lines of code. Django also
tries to minimize the amount of boilerplate code that has to be written by providing code and
template inheritance for common functions.

❑ Quick development: The developers of Django built it to support a news website that has rapid
and frequent changes. “The Web framework for perfectionists with deadlines” implies that
every design decision should support rapid and robust development.

❑ Don’t Repeat Yourself (DRY): Every concept should be expressed in exactly one place. We’re all
familiar with systems that require you to make consistent changes in multiple places, and those
changes are prone to error. If you find yourself typing the same thing in two different places,
there’s probably a better way to do it.

❑ Explicit is better than implicit: The framework shouldn’t do too much magic. That is, the code
should be compact, but not depend on obscure tricks that may make it difficult to read and
maintain by developers who aren’t seasoned veterans.

❑ Consistency: A consistent framework is one that operates as expected at all levels. If you know
how to operate one aspect of the framework, learning another aspect is easy when they both use
consistent concepts.

 An Example: A Simple Blog Site
 As you saw in Chapter 3 , the best way to learn a framework is to put it to use, so in this section you
develop a simple blogging website. This site will do the following:

❑ Show a list of all blog entries

❑ Allow an author to submit a new entry

❑ Allow readers to comment on each entry

 Initializing the Project
 Once you’ve installed Django (see the appendix for details), it’s easy to set up a new project. Just use the
 django-admin.py command to make an empty project skeleton. Pick a place on the file system for the
code to live. Note that the code doesn’t need to be in your web server’s document root, and probably
shouldn’t be there to avoid any security issues. You sure don’t want a server misconfiguration to result
in your source code being sent to web browsers.

c08.indd 242c08.indd 242 9/7/07 10:50:22 AM9/7/07 10:50:22 AM

Chapter 8: Dblog: A Blog Implemented in Django

243

 Run this command at a shell to create a new project called simpleblog :

 django-admin.py startproject simpleblog

 If successful, this command prints no output, but creates a subdirectory called simpleblog with four
 little files in it. These files are described in the following table.

 File Description

 __init__.py This is an empty file that identifies this directory as a Python package.

 manage.py You run this file from the command line to administer the project. It actually just
calls django-admin.py after initializing some project-specific configuration.

 settings.py This file contains configuration information about things like database
 connections and file locations.

 urls.py Django uses this file to map the URL of web requests to specific Python methods.

 Django comes with a built-in web server that is very convenient for development. Just to see that every-
thing is working, try running the empty project using the runserver command of manage.py . Change
to the simpleblog directory and run the command like this:

 C:\simpleblog> python manage.py runserver

Validating models...

0 errors found.

Django version 0.95.1, using settings ‘simpleblog.settings’

Development server is running at http://127.0.0.1:8000/

Quit the server with CTRL-BREAK.

 Now that the development server is running, load that URL into a browser and you’ll see something like
Figure 8-1 . (Note that the default port for the development server is 8000, not 80).

Figure 8-1

c08.indd 243c08.indd 243 9/7/07 10:50:22 AM9/7/07 10:50:22 AM

Part III: Django

244

 For this example, configure the database to use a SQLite database file by editing the settings.py file in
the simpleblog directory. There are only two settings required to use SQLite, so find the section of
 settings.py that defines the database connection and set DATABASE_ENGINE and DATABASE_NAME to
look like this:

 MANAGERS = ADMINS

DATABASE_ENGINE = ‘sqlite3’ # ‘postgresql’, ‘mysql’, ‘sqlite3’ or ‘ado_mssql’.

DATABASE_NAME = r’databasefile’ # Or path to database file if using sqlite3.

DATABASE_USER = ‘’ # Not used with sqlite3.

DATABASE_PASSWORD = ‘’ # Not used with sqlite3.

DATABASE_HOST = ‘’ # Not used with sqlite3.

DATABASE_PORT = ‘’ # Not used with sqlite3.

 This tells Django to use a sqlite3 database stored in a file called databasefile .

 Next, initialize the database with the manage.py syncdb command. If this is the first time you’ve run
 syncdb , it will create the database tables used by Django and ask you to create a superuser. Create one
and remember the password for later. Here’s an example of what you’ll see when you initialize the
Django database:

 C:\simpleblog> python manage.py syncdb

Creating table auth_message

Creating table auth_group

Creating table auth_user

Creating table auth_permission

Creating many-to-many tables for Group model

Creating many-to-many tables for User model

Creating table django_content_type

Creating table django_session

Creating table django_site

You just installed Django’s auth system, which means you

 don’t have any superusers defined.

Would you like to create one now? (yes/no): yes

Username: root

E-mail address: root@root.com

Password:

Password (again):

Superuser created successfully.

Adding permission ‘message | Can add message’

Adding permission ‘message | Can change message’

Adding permission ‘message | Can delete message’

Adding permission ‘group | Can add group’

Adding permission ‘group | Can change group’

Adding permission ‘group | Can delete group’

Adding permission ‘user | Can add user’

Adding permission ‘user | Can change user’

Adding permission ‘user | Can delete user’

Adding permission ‘permission | Can add permission’

Adding permission ‘permission | Can change permission’

Adding permission ‘permission | Can delete permission’

Adding permission ‘content type | Can add content type’

Adding permission ‘content type | Can change content type’

c08.indd 244c08.indd 244 9/7/07 10:50:23 AM9/7/07 10:50:23 AM

Chapter 8: Dblog: A Blog Implemented in Django

245

Adding permission ‘content type | Can delete content type’

Adding permission ‘session | Can add session’

Adding permission ‘session | Can change session’

Adding permission ‘session | Can delete session’

Creating example.com Site object

Adding permission ‘site | Can add site’

Adding permission ‘site | Can change site’

Adding permission ‘site | Can delete site’

C:\simpleblog>

 Initializing the Application
 Like the default page in Figure 8-1 says, you haven’t really done any work yet. You’ll start by defining
the database properties in the settings.py file and then creating an application and the model classes
to go with it.

 First create the application called dblog (which stands for Django blog) by running the following com-
mand in the simpleblog directory.

 python manage.py startapp dblog

 The startapp command produces no output, but creates a subdirectory named dblog containing the
three files described in the following table.

File Description

 __init__.py As with the project, this is an empty file that identifies this directory as a Python
package.

 models.py This is the file in which you’ll code your model classes.

 views.py This is the file in which you’ll code your views.

 Next you need to add your new application to the Django project by adding it to INSTALLED_APPS in
the settings.py file. Toward the bottom of the settings.py file, change INSTALLED_APPS to look
like this:

 INSTALLED_APPS = (

 ‘django.contrib.auth’,

 ‘django.contrib.contenttypes’,

 ‘django.contrib.sessions’,

 ‘django.contrib.sites’,

 ‘django.contrib.admin’,

 ‘simpleblog.dblog’,

)

 Note that you’re also adding the Django admin interface as you did in Chapter 3 .

c08.indd 245c08.indd 245 9/7/07 10:50:24 AM9/7/07 10:50:24 AM

Part III: Django

246

 Creating the Model
 The class structure for the model is shown in Figure 8-2 .

Blog

1 *

�title
�post_date
�reply_to
�content

Comment
�content
�rating

�rating()

Figure 8-2

 This model contains just the following two simple classes:

❑ Blog: Represents an entry blog site and contains the four attributes described in the
following table.

 Attribute Description

 title The title of the entry

 post_date The datetime at which the entry was created

 reply_to The e-mail address of the posting author

 content The text of the blog entry

 The Blog class also includes a rating() operation, which computes the average of the ratings in the
comments list from 1 (bad) to 5 (good). You’ll often find it handy to have operations in your model
classes to compute values based on the model’s attributes.

❑ Comment: Represents the comments made on a blog entry by visitors to the site. It contains the
two attributes described in the following table.

Attribute Description

 content The text of the comment.

 rating The rating given to the blog entry by the
 commenting visitor. This can range from 1 to 5.

c08.indd 246c08.indd 246 9/7/07 10:50:24 AM9/7/07 10:50:24 AM

Chapter 8: Dblog: A Blog Implemented in Django

247

 To create this Django model, enter the Python code shown in Listing 8-1 .

 Listing 8-1: Dblog model classes

 1 “””Django model classes for a simple Blog site

2

3 This example shows a one-to-many relationship

 between aBlog and its Comments and various

4 computed fields.

5 “””

6

7 from django.db import models

8

9 class Blog(models.Model):

10 “””The class representing an entry in the blog”””

11

12 “””The title or subject of the blog entry”””

13 title = models.CharField(maxlength=128)

14

15 “””The date that the post was created”””

16 post_date = models.DateTimeField(‘date posted’)

17

18 “””The email address of the posting author”””

19 reply_to = models.EmailField()

20

21 “””The actual text content of the posting”””

22 content = models.TextField()

23

24 def rating(self):

25 “””Compute the average rating based

 on the comments received”””

26 comments = self.comment_set.all()

27

28 # Don’t divide by zero

29 if len(comments) == 0:

30 return “(unrated)”

31

32 sum = 0.0

33 for c in comments:

34 sum = sum + c.rating

35 average = float(sum)/len(comments)

36 return “%.2f”%average

37

38 “””The possible ratings for each blog entry”””

39 RATING_CHOICES = (

40 (1 , ‘Lame’),

41 (2 , ‘Weak’),

42 (3 , ‘OK’),

43 (4 , ‘Nice’),

44 (5 , ‘Rocks’),

45)

46 “””Empty class enables the Django

 admin web interface”””

(continued)

c08.indd 247c08.indd 247 9/7/07 10:50:25 AM9/7/07 10:50:25 AM

Part III: Django

248

 Listing 8-1 (continued)

47 class Admin:

48 pass

49

50 “””String representation is used by the

 Django admin interface”””

51 def __str__(self):

52 return “Blog(title = ‘%s’)”%(self.title)

53

54 class Comment(models.Model):

55

56 in_reference_to = models.ForeignKey(Blog)

57 content = models.TextField(maxlength=256)

58 rating = models.IntegerField(choices=Blog.RATING_CHOICES)

59

60

61 def ratingText(self):

62 “””Return this comment’s rating as a text

63 string rather than an integer”””

64 return Blog.RATING_CHOICES[self.rating-1][1]

65

66 “””Empty class enables the Django admin

 web interface”””

67 class Admin:

68 pass

69

70 def __str__(self):

71 “””String representation is used by the

 Django admin interface”””

72 return “Comment(content = ‘%s’, rating =

➦

 %s)”% \

73 (self.content, str(self.rating))

 This listing defines the two classes that make up the model: Blog (lines 9 through 52) and Comment (lines
54 through 73). The model’s Blog class is defined as follows:

❑ Line 7 imports the django.db.models package, which includes the models.Model superclass
that is required for Django models.

❑ Line 9 starts the definition of the Blog class and declares it a subclass of models.Model .

❑ Line 13 defines the first attribute of the Blog object: title . This is defined as a character field
with a maximum length (maxlength) of 128 characters. maxlength will be used to create the
SQL statement necessary to create the data column in the database defined in the settings.py
file (which is sqlite3 in this case).

❑ Line 16 defines the post_data attribute as a DateTime object. The ‘date posted’ string is a
human-readable name that will be used in the Django admin interface instead of the field’s
 identifier name.

❑ The e-mail address of the poster is stored in the reply_to attribute (line 19), and the free-form text
of the blog entry is stored in the content attribute (line 22). The Django object-relational mapping
(ORM) code maps all of the Blog class’s attributes directly into columns in a database table.

c08.indd 248c08.indd 248 9/7/07 10:50:25 AM9/7/07 10:50:25 AM

Chapter 8: Dblog: A Blog Implemented in Django

249

❑ The rating() method starts at line 24, loops through all of the attached comments
 (self.comment_set.all()) , and computes the average rating.

❑ RATING_CHOICES (lines 39 through 45) defines the set of ratings that commenters can assign to the
blog entry. This list is used by the view methods to build the appropriate HTML <select> input.

❑ Lines 47 and 48 define an inner Admin class that tells the code that generates the Django admin
web interface that the Blog class should be represented on the admin interface.

❑ Lines 51 and 52 define the Python-standard __str__ method that is used to get a human-
 readable string representation of this object.

 The Comment class is similar to the Blog class, but here are a few differences worth pointing out:

❑ Line 56 uses the models.ForeignKey class to identify the many-to-one relationship between
this class and the Blog class. Django will automatically create the columns and constraints
 necessary to implement this in the database.

❑ At line 58, you define an attribute to hold the rating associated with this comment as an
 Integer field. Because this field is constrained to the values 1 through 5, you use the optional
 choices argument to provide a list of legal values for the integer. Later in this chapter, you’ll
see how this list is used by the admin interface and your own views.

❑ Lines 61 through 64 define a convenience method that you can use however you want. The
model is just Python code, so you’re free to add whatever makes life easier.

 Now that you’ve coded the model classes, you need to load them into the database. Run the manage.py
syncdb command again to synchronize the database with the model classes. This creates the database
tables for your two new classes. If you’re curious about what SQL commands were run to make the
tables, you can use the manage.py sql command to show the table creation commands as follows:

 C:\simpleblog> python manage.py sql dblog

BEGIN;

CREATE TABLE “dblog_blog” (

 “id” integer NOT NULL PRIMARY KEY,

 “title” varchar(128) NOT NULL,

 “post_date” datetime NOT NULL,

 “reply_to” varchar(75) NOT NULL,

 “content” text NOT NULL

);

CREATE TABLE “dblog_comment” (

 “id” integer NOT NULL PRIMARY KEY,

 “in_reference_to_id” integer NOT NULL REFERENCES “dblog_blog” (“id”),

 “content” text NOT NULL,

 “rating” integer NOT NULL

);

COMMIT;

 The django.db.models package includes several field classes that you’ll find useful for creating your
data models. The following table briefly describes the most common classes. Consult the online Django
documentation at www.djangoproject.com/documentation/model_api/ for more details.

c08.indd 249c08.indd 249 9/7/07 10:50:26 AM9/7/07 10:50:26 AM

Part III: Django

250

 Field Class Description

 AutoField An integer auto-increment field as supported by most databases. You
 probably won’t need to use this because Django automatically creates a
 primary key field unless you tell it not to. The id fields in the two tables
 created in the previous SQL are examples of this type of field.

 BooleanField A field that takes a value of True or False , just like you’d expect.

 CharField A string of some maximum length. For a large amount of text, use a
 TextField instead. A maxlength argument is required.

 DateField A field for a date. Two optional arguments, auto_now and auto_now_add ,
cause the field to be set to the current time when the object is modified or
created, respectively.

 DateTimeField A field that holds the date and the time. It has the same optional arguments
as DateField .

 EmailField A CharField that is constrained to be a valid e-mail address. The maximum
length is fixed at 75 characters.

 FloatField This class represents a floating-point number.

 IntegerField This class represents an integer number.

 PhoneNumberField A CharField that is constrained to be in the format of a valid U.S. phone
number.

 TextField A large text field of indeterminate length.

 TimeField A field that holds the time of day. It has the same optional arguments as
 DateField .

 URLField A field for a URL. If the optional argument verify_exists is True ,
 URLField will try to verify that the URL exists.

 XMLField A TextField that verifies that its contents make a valid XML document.

 ForeignKey Defines a many-to-one relationship between two model classes. You saw an
example of this in the Comment class in Listing 8-1 .

 ManyToManyField Defines a many-to-many relationship between two model classes.

 OneToOneField Defines a one-to-one relationship between two model classes. The Django
developers discourage the use of the OneToOneField , because it’s expected
to change soon.

 In addition to the options listed in this table, all Field classes share a common set of options that you
may find useful. For all field types except the relationship fields, the first optional argument is a posi-
tional argument that defines a human-readable name. You saw examples of a few options in Listing 8-1 ,
and the following table describes the important ones. Again, for the complete list, consult the online
Django documentation at www.djangoproject.com/documentation/model_api/ .

c08.indd 250c08.indd 250 9/7/07 10:50:26 AM9/7/07 10:50:26 AM

Chapter 8: Dblog: A Blog Implemented in Django

251

 Field Class Description

 null If True , allow null values in the database for this field.

 blank If True , allow this field to be empty.

 choices A list or tuple of allowed values for this field. You saw an example of this in
the rating field of the Comment class in Listing 8-1 .

 db_column The name of the database column used for this field. The default is the same
as the field name.

 unique If True , Django ensures that this field’s value is unique among all instances
of the class.

 unique_for_date If True , Django ensures that this field’s value is unique among all instances
of the class that share the same date value for the referenced field. For
 example, if you added unique_for_date=”post_date” as an argument to
the reply_to field, no more than one entry by that author could be entered
per day.

 unique_for_month Similar to unique_for_date , this allows no more than one common value
of the field per month. If you added unique_for_month=”post_date” as
an argument to the reply_to field, no more than one entry by that author
could be entered per month.

 unique_for_year Similar to unique_for_date and unique_for_month this allows
no more than one common value of the field per month. If you added
 unique_for_year=”post_date” as an argument to the reply_to field,
no more than one entry by that author could be entered per year.

Exploring the Model with Django’s Admin Interface
 Now that you’ve created the model, you can use Django’s built-in admin interface to view and edit the
model. Run the development server using the manage.py runserver command like this.

 python manage.py runserver

 Then open a web browser, navigate to http://localhost:8000/admin , and log in using the username
and password you configured earlier. This should display the page shown in Figure 8-3 .

 Notice at the bottom that Blogs and Comments are now available for administration. This means you
can use the Django admin interface to create, edit, and delete blog entries and comments. Try adding a
blog and some comments to see how it works.

 First, click the Add link next to Blogs to add a new entry. The Django admin interface creates a form
based on the data types of the Blog fields, as shown in Figure 8-4 .

c08.indd 251c08.indd 251 9/7/07 10:50:27 AM9/7/07 10:50:27 AM

Part III: Django

252

Figure 8-3

Figure 8-4

c08.indd 252c08.indd 252 9/7/07 10:50:27 AM9/7/07 10:50:27 AM

Chapter 8: Dblog: A Blog Implemented in Django

253

 The Blog class doesn’t allow any of the fields to be null (by setting the optional null argument to
 True), so fill in something for each of the fields and click Save. You should see a page that shows the
blog successfully saved, similar to Figure 8-5 .

 Notice that the admin interface used the Blog class’s __str__ method to display the edit link for the
new entry. If you click that link, you’ll get the same edit form shown in Figure 8-5 , with an additional
option to delete the Blog .

Figure 8-5

 Now navigate back to the top-level administration page at http://localhost:8000/admin and try
adding some comments. This time, click the Add link next to Comments to add some comments. You
should see a form for editing a comment, as shown in Figure 8-6 .

 Notice how Django recognized that the In Reference To field is a foreign key reference to a Blog , so it
uses a <select> input populated with Blog objects. It also recognizes the choices option to the rating
field and uses a <select> there as well. Click Save and Add Another to commit the changes, and then
add another comment the same way. You should see a page like Figure 8-7 .

 So you can create, edit, and delete Blog and Comment objects from the Django admin interface, which is
pretty cool functionality “for free,” but now it’s time to add some custom views.

c08.indd 253c08.indd 253 9/7/07 10:50:30 AM9/7/07 10:50:30 AM

Part III: Django

254

Figure 8-6

Figure 8-7

c08.indd 254c08.indd 254 9/7/07 10:50:31 AM9/7/07 10:50:31 AM

Chapter 8: Dblog: A Blog Implemented in Django

255

 Creating the Views
 As mentioned in Chapter 3 , Django views are similar to what other MVC frameworks might call
 controllers but, setting aside semantics, how they work is what’s important. Django views are Python
methods that usually work with a template to generate an HTML page. In this section, you’ll build
Django views that enable the user to display, add, and edit blog entries and comments.

 Adding the index view method
 Earlier in this chapter, the manage.py startapp command created an empty file named views.py to
contain the view methods. Now you need to add the index method in Listing 8-2 to views.py as the
default blog entry list view.

 Listing 8-2: The index view method

 def index(request):

 “””Generate the context for the main summary page”””

 latest_blog_list = Blog.objects.all().order_by(’-post_date’)[:3]

 return render_to_response(‘templates/index.html’,

 {‘latest_blog_list’: latest_blog_list})

 This two-line method first uses Blog.objects.all() to retrieve a list of Blog objects. Then it uses
 order_by() to sort the list, passing the ‘-post_date’ argument to tell order_by() to order the Blog
objects in descending order using the post_date field. The Python list-slicing operation [:3] yields a
list containing only the three most recent blog entries.

 Next, this method uses the Django render_to_response function to populate a template from a dic-
tionary. In this case, the template is called templates/index.html , and the dictionary contains one
entry, latest_blog_list , for use by the template. That’s all there is to the view method.

 Your index template, shown in Listing 8-3 , is a little more interesting. Enter this code into the
 index.html template.

 Listing 8-3: The index template

 1 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”

2 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

3 <html xmlns=”http://www.w3.org/1999/xhtml”

4 xmlns:v=”urn:schemas-microsoft-com:vml”>

5

6 <head>

7 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”/>

8

9 <title>Simple Django Blog</title>

10

11 <!-- Load our color and font preferences -->

12 <link rel=StyleSheet href=”/scripts/style.css” TYPE=”text/css”>

13 </head>

14

15 <body>

(continued)

c08.indd 255c08.indd 255 9/7/07 10:50:31 AM9/7/07 10:50:31 AM

Part III: Django

256

 Listing 8-3 (continued)

16 <h1> Simple Django Blog </h1>

17 <hr>

18 <div class=”bloglist”>

19 {% if latest_blog_list %}

20

21 {% for blog in latest_blog_list %}

22 {{ blog.title }}

23 Posted on

24 {{ blog.post_date|date:”F j, Y” }}

25 by {{blog.reply_to}}

26

27

28 {% endfor %}

29

30 {% else %}

31 <p>No blogs are available.</p>

32 {% endif %}

33 <p/>

34 </div>

35 <hr>

36 <div class=”footerlink”>

37 Add new entry

38 </div>

39

40 </body>

41 </html>

 The template is an XHTML document with some Django template tags embedded between {% and %}
or between {{ and }} . Lines 1 through 18 are just regular XHTML with no Django template tags. The
template processor just passes this text through, unmodified, to the requesting client. The following
table lists the most common built-in Django template tags. For the complete reference, consult
www.djangoproject.com/documentation/templates/ .

Template Tag Description

 Block This tag defines a block that can be overridden by derived templates. You’ll learn
more about template inheritance in the next chapter.

 Comment Defines a comment. The terminator tag is {% endcomment %} .

 Debug This tag causes the template processor to print some debugging information.

 extends Defines the current template as a subclass of another template. You’ll learn more
about template inheritance in the next chapter.

 filter Passes the variable through a filter. This is similar in function and semantics to
Unix pipes.

 for Your basic for loop. The terminating tag is {% endfor %}.

c08.indd 256c08.indd 256 9/7/07 10:50:32 AM9/7/07 10:50:32 AM

Chapter 8: Dblog: A Blog Implemented in Django

257

Template Tag Description

 if Your basic conditional statement. It supports an optional {% else %} tag. The
terminating tag is {% endif %} .

 include Loads and interprets another template in the current context. This is similar to a
C #include statement.

 load Loads a set of custom template tags.

 now Displays the current datetime . It can be formatted using the same specifiers as
the PHP date() functions.

 templatetag Used to output the text of a template tag, such as {% or }} .

Line 19 in Listing 8-3 is the first line that requires interpretation by the template processor. This is
a conditional if statement, so lines 20 through 29 will be processed if the template context
latest_blog_list is not None , and line 31 will be processed if latest_blog_list is None .

 The blog entries are presented as a bulleted HTML list starting at line 20. Line 21 starts a loop through
the blogs in the list. Notice that the loop terminator is the endfor tag at line 28. Each element of the
list includes its title as a hypertext link to a detail page, the date of its posting, and the poster’s e-mail
address.

 First look at the link to the detail page:

 {{ blog.title }}

 The text {{blog.id}} is replaced with the automatically generated private key of the current blog entry,
and {{blog.title}} is replaced with the title of the current entry.

 Next, line 24 passes the post_date field of the current blog entry through the date template filter to
convert it to the desired text format, as follows:

 {{ blog.post_date|date:”F j, Y” }}

 The F is replaced by the month name, the j is replaced by the day of the month, and the Y is replaced by
the four-digit year. The other options to the date filter are the same as the PHP date() function and can
be found at http://php.net/date . The following table lists some of the common Django filters.
Consult www.djangoproject.com/documentation/templates/ for the complete list and details.

c08.indd 257c08.indd 257 9/7/07 10:50:32 AM9/7/07 10:50:32 AM

Part III: Django

258

Template Filter Description

 add Arithmetic addition.

 center Centers text in a field.

 cut Removes all occurrences of one string from another string.

 date Formats a date using PHP’s format specifiers.

 dictsort Sorts a list based on the property given as an argument.

 escape Converts < to < , > to > , and so on.

 first Takes only the first element in a list.

 floatformat Formats a floating-point number.

 length Returns the length of a list.

 lower Returns a lowercase version of the string

 pluralize Returns the plural suffix if the piped value is not 1 . The default is s .

 slice Extracts a sublist from a list the same way Python list slicing does .

 stringformat Formats a string the same way Python string formatting does .

 time Formats the time of day using PHP’s format specifiers .

 timesince Calculates and returns a string representation of the difference between now
(or any other datetime) and a time in the past.

 timeuntil Calculates and returns a string representation of the difference between now
(or any other datetime) and a time in the future.

 truncatewords Returns the first few words of a string.

 upper Returns an uppercase version of the string.

 wordcount Returns the number of words in the piped string.

 The last section of the template file (lines 34 through 41 in Listing 8-3) is just plain HTML that makes a
link to a page for authoring new blog entries.

 Before you can admire your new view into a browser, you still need to configure its URL and tell Django
where to find the template. Because the template references a CSS file (line 12 of Listing 8-3), you need to
configure the development server to serve static pages as well as Django views. Fortunately, there is a

c08.indd 258c08.indd 258 9/7/07 10:50:32 AM9/7/07 10:50:32 AM

Chapter 8: Dblog: A Blog Implemented in Django

259

built-in view that serves static files for development. To configure the URLs, edit the urls.py file to add
a line for the new page and an entry for the static file server like this:

 from django.conf.urls.defaults import *

urlpatterns = patterns(‘’,

 (r’^simpleblog/$’, ‘simpleblog.dblog.views.index’),

 (r’^scripts/(?P<path>.*)$’,

 ‘django.views.static.serve’,

 {‘document_root’: ‘./scripts’}),

 (r’^admin/’, include(‘django.contrib.admin.urls’)),

)

 Next, configure the settings.py file to include the new template file in the TEMPLATE_DIRS as follows.

 TEMPLATE_DIRS = (

 # Put strings here, like “/home/html/django_templates”.

 # Always use forward slashes, even on Windows.

 ‘/some/path/here’

)

 Now load http://localhost:8000/simpleblog into a browser to see the blog that you added with
the admin interface. It should look like Figure 8-8 .

Figure 8-8

 That was easy. Notice that My First Blog and Add New Entry are hypertext links. Next you’ll code the
pages to which these link.

c08.indd 259c08.indd 259 9/7/07 10:50:33 AM9/7/07 10:50:33 AM

Part III: Django

260

 URL Mapping
 The link behind My First Blog (the blog.title) was generated by line 22 in Listing 8-3 , repeated here
for ease of reference:

 22 {{ blog.title }}

 As a result, the link generated for a blog with an id of 1 , for example, would be the URL
 http://localhost:8000/simpleblog/blog/1 . Django maps URLs to views using the
urlpatterns variable defined in urls.py . You added a few entries by rote in the examples so
far, but it’s time to dig into how it works.

 The urlpatterns variable contains a list of string pairs. The first string in the pair is a Python regular
expression that is matched against the requested URL (not including a protocol://host:port/
 specifier such as http://localhost:8000/). The second string is the name of the view method that is
invoked if the regular expression matches the URL. The regular expressions are tried in the order they
appear in the list, so be careful that a pattern early in the list doesn’t shadow a pattern later in the list.

 Look again at the following pattern, which you used for the blog summary page:

 (r’^simpleblog/$’, ‘simpleblog.dblog.views.index’),

 When the regular expression “^simpleblog/$” matches a requested URL, the simpleblog.dblog
.views.index method is invoked to generate the response. The ̂ and $ are metacharacters that match
the beginning and end of the URL, respectively, so this pattern will match only a URL of exactly
 simpleblog/ and nothing else. The following table lists several metacharacters that you may find
 useful for URL pattern matching.

 Metacharacter Description

 ̂ (caret) Matches the beginning of the string.

 $ Matches the end of the string.

 . (period) Matches any single character.

 * Matches zero or more instances of the previous character (or other regular
expression).

 ? Matches one or more instances of the previous character (or other regular
expression).

 + Matches zero or one instances of the previous character (or other regular
expression).

 \d Matches a decimal digit.

 \D Matches any character except a decimal digit.

 \w Matches any alphanumeric character.

 \W Matches any character except an alphanumeric character.

c08.indd 260c08.indd 260 9/7/07 10:50:33 AM9/7/07 10:50:33 AM

Chapter 8: Dblog: A Blog Implemented in Django

261

Metacharacter Description

 \ Used to escape any metacharacter. For example the regular expression \.
would match the string ‘.’.

 (regex) Anything that matches the regular expression between the parentheses is
 captured as a group. You use this to extract pieces of the matched string and
refer to them by position.

 (?P<name>regex) Anything that matches the regular expression between the parentheses is
 captured as a group and given the name specified between < and > . You use
this to extract pieces of the matched string and refer to them by name.

 Regular expressions are a very powerful tool for text processing and should be in every programmer’s tool-
box. For more information on Python regular expressions, consult www.python.org/doc/howto/ .

 Next, add a line for the blog detail view page as follows:

 urlpatterns = patterns(‘’,

 (r’^simpleblog/$’, ‘simpleblog.dblog.views.index’),

 (r’^simpleblog/blog/(?P<blog_id>\d+)/$’, ‘simpleblog.dblog.views.readBlog’),

 (r’^scripts/(?P<path>.*)$’, ‘django.views.static.serve’,

 {‘document_root’: ‘./scripts’}),

 (r’^admin/’, include(‘django.contrib.admin.urls’)),

)

 Now any URL request that matches the pattern ̂ simpleblog/blog/(?P<blog_id>\d+)/$ will be
routed to the simpleblog.dblog.views.readBlog method (which you haven’t written yet). There are
three things to note about this regular expression:

❑ The caret at the beginning means that this URL path must start with simpleblog/blog/ .

❑ The expression (?P<blog_id>\d+) will match one or more decimal digits (that’s the \d+
metacharacter expression) and assign it the name blog_id .

❑ The $ at the end means that there must be nothing else following the blog_id number.

 As a result, the readBlog method is called with a named argument blog_id set to the primary key of
the blog to be displayed.

 Now look at the readBlog view method in Listing 8-4 , which you should add to the views.py file.

 Listing 8-4: The readBlog view method

 def readBlog(request, blog_id):

 “””Generate the context for the page that displays a

 single blog entry”””

 blog = get_object_or_404(Blog, pk=blog_id)

 return render_to_response(‘templates/readBlog.html’, {‘blog’: blog})

c08.indd 261c08.indd 261 9/7/07 10:50:34 AM9/7/07 10:50:34 AM

Part III: Django

262

 Unlike the previous view method, this method accepts two parameters: the request object and the
 blog_id . The blog_id is the number extracted from the URL by the regular expression. For example, if
the following URL is requested, the readBlog method is called with blog_id=100 :

 http://localhost:8000/simpleblog/blog/100

 There are only two lines of code in readBlog . The first one uses the Django get_object_or_404
 convenience method, which queries the database for an object by type and query field. It returns the
object if it’s found; otherwise it throws an exception that causes an HTTP 404 error (Not Found) to be
returned to the requestor.

 In this case, you’re looking up a Blog object by primary key (pk=blog_id) as follows:

 blog = get_object_or_404(Blog, pk=blog_id)

 When the object is retrieved, the method passes it to a template to be rendered and returned to the
requestor, like this:

 return render_to_response(‘templates/readBlog.html’, {‘blog’: blog})

 Now you need to write the readBlog.html template referenced by that render_to_response call.
Listing 8-5 shows an example you can use.

 Listing 8-5: The blog detail template

 1 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”

2 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

3 <html xmlns=”http://www.w3.org/1999/xhtml”

4 xmlns:v=”urn:schemas-microsoft-com:vml”>

5

6 <head>

7 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”/>

8

9 <title>Simple Django Blog</title>

10

11 <!-- Load our color and font preferences -->

12 <link rel=StyleSheet href=”/scripts/style.css” TYPE=”text/css”>

13 </head>

14

15 <body>

16

17 <h1>{{ blog.title }}</h1>

18

19 <p>Published on {{blog.post_date|date:”F j, Y”}}</p>

20 <p>Posted by {{blog.reply_to}}</p>

21 <p>Current rating is {{blog.rating}} out of 5</p>

22

23

24 <div class=”blogtext”>

25

26 {{blog.content}}

27

28 </div>

29 <hr/>

c08.indd 262c08.indd 262 9/7/07 10:50:34 AM9/7/07 10:50:34 AM

Chapter 8: Dblog: A Blog Implemented in Django

263

30 <div class=”footerlink”>

31 View {{blog.comment_set.count}}

32 comment{{blog.comment_set.count|pluralize}}

33 Return to Top

34

35 </div>

36 </body>

37 </html>

 Note the following in this listing:

❑ The first 16 lines of this template define the HTML header and are exactly the same as the previ-
ous template you saw. Of course, this violates Django’s DRY (Don’t Repeat Yourself) guidance.
You’ll see how to avoid this repetition in the next chapter, when you learn about template
inheritance.

❑ Lines 17 through 21 pull out several of the Blog fields and insert them into the HTML that the
template generates. Line 19 runs the Blog object’s post_date field through a date filter in the
same way the previous template did. Line 21 calls the Blog object’s rating method, which
 computes the average of all this Blog ’s comment ratings.

❑ The actual content text of the blog entry is inserted into a <div> at lines 24 through 28.

❑ The template includes a footer (lines 31 through 33) with a couple of links. The link generated by
lines 31 and 32 points to a page to view comments. This link uses the pluralize filter to add
the plural suffix to the word comment if there are zero comments or more than one comment.
The link generated by line 33 just points back to the index page. Figure 8-9 shows what this page
looks like rendered in a browser.

Figure 8-9

c08.indd 263c08.indd 263 9/7/07 10:50:35 AM9/7/07 10:50:35 AM

Part III: Django

264

 The URL in Figure 8-9 ends with /1/, so you know this blog entry has primary key 1 . Also notice that
the current rating displayed is 1.50, which is the average of the two comment ratings you entered previ-
ously (1 and 2).

 The two links in the footer area were rendered correctly, too. If you click the Return to Top link, the index
page is displayed. However, the View 2 Comments link won’t work, because you haven’t written that
page yet. That’s next.

 Drilling Down on the Blog Object
 As previously mentioned, lines 31 and 32 in Listing 8-5 generate the link for the comment view page.
This is relative to simpleblog/blog/1/ , so the full URL for this blog entry is as follows:

 http://localhost:8000/simpleblog/blog/1/comment/

 Add an entry to urlpatterns in urls.py to match this URL. Remember that you need to extract the
blog primary key from the middle of the URL. Here’s an example that works:

 (r’^simpleblog/blog/(?P<blog_id>\d+)/comment/$’, ‘simpleblog.dblog.views.comment’),

 This is like the URL pattern you added for the Blog detail page with the addition of the /comment/
string after the blog_id .

These URL s Look Funny
 You might be wondering why these URLs look different than most — they don’t use
URL query parameters. Here is one common way to encode the blog ID in a request:

 http://localhost:8000/simpleblog/blog?id=100

 URL parameters are ignored by the urlpatterns regular expression processing and
are not often used in Django applications. You can extract the query parameters from
the request object passed to the view method, but it’s usually easier to have the regular
expression extract parameters from the URL itself.

 Next, write the simpleblog.dblog.views.comment method invoked by this URL pattern, as shown in
Listing 8-6 .

 Listing 8-6: The comment list view method

 def comment(request, blog_id):

 “””Generate the context for the page that displays the

 comments for a particular blog entry”””

 blog = get_object_or_404(Blog, pk=blog_id)

 return render_to_response(‘templates/comment.html’,

 {‘comments’: blog.comment_set.all(),

 ‘blog’: blog})

 This method looks a lot like the readBlog method you saw in Listing 8-4 . It uses the get_object_or_
404 method to find the requested Blog object, and then calls render_to_response to render the

c08.indd 264c08.indd 264 9/7/07 10:50:35 AM9/7/07 10:50:35 AM

Chapter 8: Dblog: A Blog Implemented in Django

265

 template. The context for this template contains two objects: the Blog object (called blog) and the list of
comments on that Blog (called comments). This view method looks so much like the others that it seems
to violate the DRY principle again. In the next chapter you’ll see how Django’s generic views can help in
these cases.

 Enter the comment.html template as shown in Listing 8-7 .

 Listing 8-7: The comment template

 1 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”

2 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

3 <html xmlns=”http://www.w3.org/1999/xhtml”

4 xmlns:v=”urn:schemas-microsoft-com:vml”>

5

6 <head>

7 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”/>

8

9 <title>Simple Django Blog</title>

10

11 <!-- Load our color and font preferences -->

12 <link rel=StyleSheet href=”/scripts/style.css” TYPE=”text/css”>

13 </head>

14

15 <body>

16 <h1> Comments on “{{blog.title}}” </h1>

17 <hr>

18 <div class=”commentlist”>

19

20 {% if comments %}

21

22 {% for comment in comments %}

23

24 [{{comment.ratingText}}] --

25 {{ comment.content }}

26

27

28

29 {% endfor %}

30

31 {% else %}

32 <p>No comments on this entry.</p>

33 {% endif %}

34 </div>

35 <hr/>

36 <div class=”footerlink”>

37

38 Add a comment

39 Return to {{blog.title}}

40 Return to Top

41

42 </div>

43 </body>

44 </html>

c08.indd 265c08.indd 265 9/7/07 10:50:35 AM9/7/07 10:50:35 AM

Part III: Django

266

 The first 13 lines of this template define the HTML header. The first template operation is at line 16,
where the title of the Blog is printed in an <H1> heading. Line 20 tests to see if there are any comments.
If there are no comments, the else clause (which starts at line 31) prints “No comments on this entry.”
Otherwise, the loop (which starts at line 22) cycles through all of the Comment objects and prints their
rating text and contents as list elements.

 This page’s footer (lines 36 through 42) contains three links. The first one links to a page in which the
user can add a comment. It is a relative URL add link, so the full URL from this position for blog_id
100 would be as follows:

 http://localhost:8000/simpleblog/blog/100/comment/add

 The next link is a link back to the main Blog view, using the title of the Blog as the link text. The third
link in the footer links back to the Blog summary list page. Figure 8-10 shows the comment view page
for this example.

Figure 8-10

 Form Processing
 Now that you’ve written the pages to view the blogs and comments, you’ll need to write some pages for
composing those blogs and comments. Starting with the Blog summary page previously shown in
Figure 8-8 , notice that “Add a New Entry” is a hypertext link. In the index.html template, you defined
this link to point to http://localhost:8000/simpleblog/writeBlog , so now you need to define a
 urlpattern , view method, and template file for that page.

 Because the page doesn’t reference any particular data, the urlpattern entry is a simple regular expres-
sion. Add the following line to urlpatterns in urls.py :

c08.indd 266c08.indd 266 9/7/07 10:50:36 AM9/7/07 10:50:36 AM

Chapter 8: Dblog: A Blog Implemented in Django

267

 (r’^simpleblog/writeBlog/$’, ‘simpleblog.dblog.views.writeBlog’),

 This should look familiar by now. A URL request of http://localhost:8000/simpleblog/
writeBlog/ will get routed to the view method simpleblog.dblog.views.writeBlog . The regular
expression captures no parameters, so writeBlog will only need to accept the request parameter.

 Enter the writeBlog view as shown in Listing 8-8 .

 Listing 8-8: The blog entry view method

 def writeBlog(request):

 “””No context for this page.

 Just render the template”””

 return render_to_response(‘templates/blogEntry.html’)

 This template has no context to render, so this could even be a static page rather than a template. Listing
 8-9 shows the blogEntry.html file that you can use.

 Listing 8-9: The blog entry template

 1 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”

2 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

3 <html xmlns=”http://www.w3.org/1999/xhtml”

4 xmlns:v=”urn:schemas-microsoft-com:vml”>

5

6 <head>

7 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”/>

8

9 <title>Simple Django Blog</title>

10

11 <!-- Load our color and font preferences -->

12 <link rel=StyleSheet href=”/scripts/style.css” TYPE=”text/css”>

13 </head>

14

15 <body>

16

17 <h1>Post new blog entry</h1>

18

19 <form action=”/simpleblog/blog/postEntry/” method=”post”>

20 Title:

21 <input type=”text” name=”title”>

22 Author’s email address:

23 <input type=”text” name=”reply_to”>

24 <textarea rows=”30” cols=”80” name=”content”></textarea>

25 <p/>

26 <input type=”submit” value=”Post” />

27 </form>

28 </body>

29 </html>

c08.indd 267c08.indd 267 9/7/07 10:50:36 AM9/7/07 10:50:36 AM

Part III: Django

268

 The interesting part of this template starts at line 19 with the form that the blog author will use to create
the blog entry. The action attribute at line 19 means that, when submitted, this form is sent to the URL
/simpleblog/blog/postEntry (another view method that needs to be written). Lines 20 and 21 define a
text box for the blog title. Lines 22 and 23 define another text box for the author’s e-mail address. Line 24
defines a textarea for the Blog content text and line 26 adds the submit button. The view method at
/simpleblog/blog/postEntry will use the contents of the text fields to create a new Blog object.

 Figure 8-11 shows how the blog entry form looks in a browser.

Figure 8-11

 When the user clicks the Post button, the form is submitted to the view at /simpleblog/blog/
postEntry , so create that view next. Add the following urlpattern to urls.py :

 (r’^simpleblog/blog/postEntry/$’, ‘simpleblog.dblog.views.postEntry’),

 Just like the Blog entry form, this view needs no URL parameters. The browser sends the form contents
as HTTP POST data to the postEntry view method. Listing 8-10 shows the postEntry method you
can enter.

c08.indd 268c08.indd 268 9/7/07 10:50:36 AM9/7/07 10:50:36 AM

Chapter 8: Dblog: A Blog Implemented in Django

269

 Listing 8-10: The blog submission view

 1 def postEntry(request):

2 “””Accepts the HTTP POST data of a new blog entry and

3 updates the database accordingly”””

4 b = Blog()

5 b.title = request.POST[‘title’]

6 b.reply_to = request.POST[‘reply_to’]

7 b.content = request.POST[‘content’]

8 b.post_date = datetime.now()

9 b.save()

10 return HttpResponseRedirect(‘/simpleblog/blog/%s/’ % b.id)

 Line 4 of this postEntry method creates a new (empty) Blog object. Then lines 5 through 7 set the fields
in the new Blog object from the POST data in the request. The request object includes a dictionary called
 POST that contains the HTTP POST data. The string indexes in the square brackets ([]) correspond to the
input names in the HTML form that you entered in Listing 8-9 . The Blog object’s post_date field is set
to the current time using the standard Python datetime.now() method in line 8. Line 9 commits the
new Blog object to the database. The last line of postEntry redirects the requestor to the Blog view that
you wrote earlier, using the newly generated Blog primary key to format the correct URL. It’s a good
idea to redirect after a POST so the user doesn’t accidentally POST the same data twice by clicking the
browser’s Back button.

 Entering Blog Comments
 The last page you need to create enables visitors to enter comments on a blog entry. The comment
includes some text and also a rating. The URL for the addcomment page is generated by the template
code in Listing 8-7, line 38. That URL is of the following form:

 http://localhost:8000/simpleblog/blog/<blog_id>/comment/add

 So you need a URL pattern that captures the Blog primary key. This will do the trick:

 (r’^simpleblog/blog/(?P<blog_id>\d+)/comment/add/$’,

 ‘simpleblog.dblog.views.addComment’),

 This URL pattern routes matching requests to the addComment view method, which is shown in
Listing 8-11 .

 Listing 8-11: The comment entry view method

 def addComment(request, blog_id):

 “””Generate the context for the form in which new

 comments are entered”””

 blog = get_object_or_404(Blog, pk=blog_id)

 return render_to_response(‘templates/addComment.html’, {‘blog’: blog})

 The addComment method follows the familiar pattern for views. First it looks up a Blog object using
 get_object_or_404 , and then it uses render_to_response to render a template.

c08.indd 269c08.indd 269 9/7/07 10:50:37 AM9/7/07 10:50:37 AM

Part III: Django

270

 Create the addComment.html template file shown in Listing 8-12 , which contains an HTML form for
entering the Comment data.

 Listing 8-12: The addComment template

 1 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”

2 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

3 <html xmlns=”http://www.w3.org/1999/xhtml”

4 xmlns:v=”urn:schemas-microsoft-com:vml”>

5

6 <head>

7 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”/>

8

9 <title>Simple Django Blog</title>

10

11 <!-- Load our color and font preferences -->

12 <link rel=StyleSheet href=”/scripts/style.css” TYPE=”text/css”>

13 </head>

14

15 <body>

16

17 <h1>Comment on {{ blog.title }}</h1>

18

19 <form action=”/simpleblog/blog/{{ blog.id }}/postComment/”

20 method=”post”>

21 <textarea rows=”10” cols=”30” name=”content”></textarea>

22 <p/>

23 How do you rate this entry:

24 <select name=”rating”>

25 {% for r in blog.RATING_CHOICES %}

26 <!-- Use the template system to treat ‘.’

 as ‘[]’ r[0] is the rating number, r[1]

27 is the rating text -->

28 <option value=”{{r.0}}”>{{r.1}}</option>

29 {% endfor %}

30 </select>

31 <p/>

32 <input type=”submit” value=”Post” /7>

33 </form>

34 </body>

35 </html>

 Line 17 prints the title of the Blog for this comment. When this form is submitted, it is POSTed to the
URL configured at line 19. This URL includes the primary key of the Blog object so the view method can
update the correct Blog object. The form includes a textarea for the comment text (line 21) and a
 select element for the rating (lines 24 through 30). The choices in the select are extracted from the

c08.indd 270c08.indd 270 9/7/07 10:50:37 AM9/7/07 10:50:37 AM

Chapter 8: Dblog: A Blog Implemented in Django

271

 Blog model’s RATING_CHOICES field. Recall from Listing 8-1 that the RATING_CHOICES attribute was
defined as a tuple of tuples, like this:

 RATING_CHOICES = (

 (1 , ‘Lame’),

 (2 , ‘Weak’),

 (3 , ‘OK’),

 (4 , ‘Nice’),

 (5 , ‘Rocks’),)

 The first element of each two-tuple is the numeric rating value, and the second element is the human-
readable version. At line 28, the template populates the option value field with the number and dis-
plays the text in a drop-down box.

 Notice how the template processor requires r.0 and r.1 rather than r[0] and r[1] as you might
expect. When processing a dot operator, the template engine tries several approaches to convert the tem-
plate expression to Python code. If it finds a conversion that works, the template engine inserts the
resulting string into the output stream. It tries these approaches in the following order:

1. Dictionary lookup: In this case, r.0 would translate to the Python code r[‘0’] (no match).

2. Attribute lookup: In this case, r.0 would translate to the Python code r.0 (no match).

3. Method call: In this case, r.0 would translate to the Python code r.0() (no match).

4. List-index lookup: In this case, r.0 would translate to the Python code r[0] . This one works.

 Figure 8-12 shows what the comment entry form looks like in the browser.

Figure 8-12

c08.indd 271c08.indd 271 9/7/07 10:50:38 AM9/7/07 10:50:38 AM

Part III: Django

272

 When the form on this page is submitted, the contents are posted to the view mapped to /simpleblog/
blog/{{ blog.id }}/postComment/ as defined on line 19 of Listing 8-12 . Add the following line to
 urlpatterns in urls.py to create the mapping:

 (r’^simpleblog/blog/(?P<blog_id>\d+)/postComment/$’,

 ‘simpleblog.dblog.views.postComment’),

 As you saw with the other form submission, the HTTP POST parameters are passed to the postComment
method attached to the request parameter. Listing 8-13 shows the postComment view method you
can create.

 Listing 8-13: The postComment view method

 1 def postComment(request, blog_id):

2 “””Accepts the HTTP POST data of a new blog comment

3 and updates the database accordingly”””

4 blog = get_object_or_404(Blog, pk=blog_id)

5 comment = blog.comment_set.create(content=request.POST[‘content’],

6 rating=request.POST[‘rating’])

7 comment.save()

8 return HttpResponseRedirect(‘/simpleblog/blog/%s/comment’ % blog.id)

 At line 4, this method fetches the appropriate Blog object using get_object_or_404 as you’ve seen
before. Then, on lines 5 and 6, it creates a new Comment object associated with the Blog object using a
method that Django generated for the Blog model called comment_set_create() . This method initial-
izes the new Comment object using the named parameters, which were extracted from the HTTP POST
data as you saw in the previous form example. Line 7 commits the new Comment object to the database,
and line 8 redirects the requestor to the comment list page for this Blog so the commenter can see his or
her comment along with the others. Figure 8-13 shows how the comment list page looks in a browser.

Figure 8-13

c08.indd 272c08.indd 272 9/7/07 10:50:39 AM9/7/07 10:50:39 AM

Chapter 8: Dblog: A Blog Implemented in Django

273

 You now have a simple blogging website, as promised in the beginning of this chapter. You’ve built two
model classes, seven views, and five templates to implement a simple but complete application.

 Summary
 In this chapter you saw the details of writing a simple Django application, including the following:

❑ Initializing the project and application

❑ Configuring the database and template search path

❑ Writing the model classes and using them to configure the database tables

❑ Using the Django admin interface to view and edit the model data

❑ Creating web pages by editing urlpatterns , writing view methods, and making template files

 These are the core skills you need to build Django applications. In the next two chapters, you’ll build on
these skills as you develop applications that use some of the more advanced Django features.

c08.indd 273c08.indd 273 9/7/07 10:50:39 AM9/7/07 10:50:39 AM

c08.indd 274c08.indd 274 9/7/07 10:50:40 AM9/7/07 10:50:40 AM

 Django Views and Users

 I don’t want someone shoving his views down my throat, unless they’re covered in a
crunchy candy shell.

— Stephen Colbert

 In the previous chapter you saw some of the great features that make getting started with Django
easy. Django’s support for model-view-controller (MVC) web applications, automatic object-
 relational mapping (ORM), and powerful template processor make setting up simple web applica-
tions a snap. In this chapter you’ll learn about additional Django features that address some of the
issues affecting large-scale web applications. You’ll see examples of how to reduce duplicated code
through template reuse, how to use Django’s generic views to avoid writing boilerplate view
methods, and how to use Django’s built-in capability for user authentication and authorization to
manage user accounts and permissions.

 Although the simple blog application presented in the previous chapter worked, there are some
parts of its design that are less than ideal. For example, all of the templates contain text that is
exactly the same for all pages. This makes maintenance more difficult than necessary because any
change to that common text will have to be propagated correctly to all of the other copies. This is a
very error-prone and labor-intensive process. Django’s template inheritance enables you to put
that common text in one template file and reference it from other template files.

 Similarly, many of the view methods were very simple, consisting of the following two steps:

1. Populate a context from the database.

2. Render a template using that context.

 Django includes a set of generic views that can perform these two steps and don’t require you to
write and maintain any view methods.

c09.indd 275c09.indd 275 9/7/07 10:51:51 AM9/7/07 10:51:51 AM

276

Part III: Django

 Finally, the blog application you created in the previous chapter would allow anyone who wanders in off
the Internet to make blog entries and comments. In this chapter you see how to use Django’s built-in
authentication and authorization framework to control access permissions.

 Template Inheritance
 You surely noticed in the previous chapter that much of the template code was the same (or very similar)
in every page. This violates one of the core principles of Django design: Don’t Repeat Yourself (DRY).
Most of the pages were structured to contain the following elements:

❑ XHTML header: This sets up the start of the document, brings in the CSS file, and so on. It is
identical in every page.

❑ Title: The contents of this section vary, but the structure is always the same. It’s just a phrase
between <H1> tags.

❑ Main content: This part is the meat of each page and varies quite a bit between pages.

❑ Footer: This part of the page includes a few links that vary a little depending on the context.

 Ideally, you’d like to write the XHTML header section only once and have it included in every page.
Using Django’s template inheritance, you can make a single page that implements this structure and
includes all of the boilerplate and default contents.

 The DRY Problem
 To review, Listing 9-1 shows the main blog entry list page from the previous chapter.

 Listing 9-1: Master list template without inheritance

 1 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”

2 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

3 <head>

4 <meta http-equiv=”Content-Type”

5 content=”text/html; charset=utf-8”/>

6

7 <title>Simple Django Blog</title>

8

9 <!-- Load our color and font preferences -->

10 <link rel=StyleSheet href=”/scripts/style.css”

 TYPE=”text/css”>

11 </head>

12

13 <body>

14 <h1> Simple Django Blog </h1>

15 <hr>

16 <div class=”bloglist”>

17 {% if latest_blog_list %}

18

19 {% for blog in latest_blog_list %}

c09.indd 276c09.indd 276 9/7/07 10:51:53 AM9/7/07 10:51:53 AM

Chapter 9: Django Views and Users

277

20 {{ blog.title }}

21 Posted on

22 {{ blog.post_date|date:”F j, Y” }}

23 by {{blog.reply_to}}

24

25

26 {% endfor %}

27

28 {% else %}

29 <p>No blogs are available.</p>

30 {% endif %}

31 <p/>

32 </div>

33 <hr>

34 <div class=”footerlink”>

35 Add new entry

36 </div>

37

38 </body>

39 </html>

 Here’s a basic breakdown of this listing:

❑ Lines 1 through 13 contain the boilerplate header text that is identical for each page you wrote in
the previous chapter. This text will go in the base template so it is inherited by all pages in the
application.

❑ Lines 14 and 15 contain the inline title for the page. Each page has this section, but the text
between the <h1> and </h1> tags is different for each page. The base template will include this
section, but each inheriting template will override that text.

❑ Lines 16 through 32 contain the main content of the page. Each page has this section, but its
 contents vary widely. Some pages have forms to fill out, some have lists, and some have single
text fields. The base template will include this as a blank section for the inheriting template to
fill out.

❑ Lines 33 through 39 contain the footer text. Each page has a footer, and the contents are similar
on each one, so the base template will define a footer that is appropriate for most pages. The
pages that require a different footer can override or add to the default.

 Defining a Base Template
 A base template looks the same as the templates that you wrote in the previous chapter, with one
 exception. A base template defines some named blocks using the {% block %} and {% endblock %}
directives. Inheriting templates have the option of replacing the content between these directives by
defining their own blocks by the same name. They can also retain the contents of the base template’s
block by not overriding the named block.

 Listing 9-2 shows a base template that implements the structure and content described previously. Create
a template file called baseTemplate.html that contains the code in Listing 9-2 .

c09.indd 277c09.indd 277 9/7/07 10:51:53 AM9/7/07 10:51:53 AM

278

Part III: Django

 Listing 9-2: Base template

 1 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”

2 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

3 <html>

4 <head>

5 <meta http-equiv=”Content-Type”

6 content=”text/html; charset=utf-8”/>

7

8 <title>Simple Django Blog</title>

9

10 <!-- Load our color and font preferences -->

11 <link rel=StyleSheet href=”/scripts/style.css”

 TYPE=”text/css”>

12 </head>

13

14 <body>

15

16 <h1>

17 <div class=”title”>

18 {% block title %}{% endblock %}

19 </div>

20 </h1>

21 <hr>

22

23 <div class=”content”>

24 {% block content %}{% endblock %}

25 </div>

26

27 <hr>

28 <div class=”footer”>

29 {% block footer %}

30 Return to Top

31 {% endblock %}

32 </div>

33 </body>

34 </html>

 Here’s what’s going on in this template:

❑ Lines 1 through 17 are the XHTML header section. Because these lines are not in a {% block %}
/ {% endblock %} pair, they will be included verbatim in any page that inherits from this
template.

❑ Line 18 defines an empty block called title that inheriting templates can fill in with their
 specific title phrase.

❑ Lines 19 through 23 contain common structure code that will be in every page that inherits from
this template.

c09.indd 278c09.indd 278 9/7/07 10:51:53 AM9/7/07 10:51:53 AM

Chapter 9: Django Views and Users

279

❑ Line 24 is another empty block called content that the inheriting template will fill in with the
main content of the page.

❑ Lines 29 through 31 define a block called footer that inheriting templates can replace with their
own content, or they can use the default content provided in the base template.

 Using the {% extends %} Directive
 Now that you’ve written a base template, you need to modify the other templates to inherit it, starting
with the blog subject list page that is the top-level entry into the blog application. Figure 9-1 is a
reminder of how this page appears in a browser.

Figure 9-1

 This page has three sections separated by horizontal lines (HTML <hr> tags), which correspond to the
three sections that can be overridden in the base template. The top section is the title block, the middle
section is the content block, and the bottom section is the footer block.

 In this page, the inheriting template overrides all three sections. The title block gets the text “Simple
Django Blog,” the content block gets the list of blogs, and the footer block gets a link to the blog entry
page. The footer in the base template (previously shown on line 30 of Listing 9-2) just points to this page,
so it needs to be overridden anyway. Listing 9-3 shows how the template for this page is implemented.
This will be your new index.html .

c09.indd 279c09.indd 279 9/7/07 10:51:54 AM9/7/07 10:51:54 AM

280

Part III: Django

 Listing 9-3: Master list template with inheritance

 1 {% extends “dblog/baseTemplate.html” %}

2 {% block title %} Simple Django Blog {% endblock %}

3 {% block content %}

4 <div class=”bloglist”>

5 {% if object_list %}

6

7 {% for blog in latest_blog_list %}

8

 {{ blog.title }}

9 Posted on

10 {{ blog.post_date|date:”F j, Y” }}

11 by {{blog.reply_to}}

12

13

14 {% endfor %}

15

16 {% else %}

17 <p>No blogs are available.</p>

18 {% endif %}

19 <p/>

20 </div>

21 {% endblock %}

22 {% block footer %}

23 <div class=”footerlink”>

24 Add new entry

25 </div>

26 {% endblock %}

 Line 1 of this listing declares that this template extends the base template shown in Listing 9-2 . Line 2
uses the {% block %} and {% endblock %} directives to override the title section of the base
 template. The meat of this page is the content block on lines 3 through 21, which are the same as lines
16 through 30 of the original, noninheriting template shown previously in Listing 9-1 .

 You can follow a similar strategy for the blog detail page. Modify the blog detail page to extend the base
template and place the content that is specific to this page in the three blocks. Your template will then
look something like Listing 9-4 . This will be your new readBlog.html file.

 Listing 9-4: Blog detail with inheritance

 1 {% extends “dblog/baseTemplate.html” %}

2

3 {% block title %}

4 {{ blog.title }}

5 {% endblock %}

6

7 {% block content %}

8

9 <p>Published on {{blog.post_date|date:”F j, Y”}}</p>

10 <p>Posted by {{blog.reply_to}}</p>

11 <p>Current rating is {{blog.rating}} out of 5</p>

12

c09.indd 280c09.indd 280 9/7/07 10:51:54 AM9/7/07 10:51:54 AM

Chapter 9: Django Views and Users

281

13 <div class=”blogtext”>

14 {{blog.content}}

15 </div>

16

17 {% endblock %}

18

19 {% block footer %}

20 View {{blog.comment_set.count}}

21 comment{{blog.comment_set.count|pluralize}}

22 {{ block.super }}

23

24 {% endblock %}

 This template extends the same base template as the master blog list page, so it will automatically get all
of the same style sheet and header information. The template uses the attributes of the Blog object to fill
in the title block (lines 3 through 5), the content block (lines 7 through 17), and the footer block
(lines 19 through 24).

 Notice that the {{ block.super }} directive on line 22 pulls in the contents of the base template’s
 footer section. You can use this technique to add to a template block rather than replace it completely.

 The end result, shown in Figure 9-2 , looks exactly the same as the non-inheriting version, but has much
less code to write and maintain.

Figure 9-2

c09.indd 281c09.indd 281 9/7/07 10:51:54 AM9/7/07 10:51:54 AM

282

Part III: Django

 All of the other templates from the previous chapter will benefit similarly from extending the base tem-
plate. You can replace the template blocks with any content, so you can fill them in with forms,
images, or anything else you can imagine.

 The template inheritance hierarchy can be arbitrarily deep, so a template that extends another template
can itself be extended by a different one. Including this flexibility in your initial design can make your
site much easier to implement and maintain.

 Generic Views
 Now that you’ve eliminated (or at least minimized) the offensive duplicate code in the templates, turn
your attention to the unnecessary view methods. Most of the view methods that you wrote for the previ-
ous chapter look similar to the example in Listing 9-5 .

 Listing 9-5: Blog detail view

 def readBlog(request, blog_id):

 “””Generate the context for the page that

 displays a single blog entry”””

 blog = get_object_or_404(Blog, pk=blog_id)

 return render_to_response(‘templates/readBlog.html’,

 {‘blog’: blog})

 These view methods just read some stuff from the database using get_object_or_404() and send it to
the template processor using render_to_reponse() . Django’s generic view methods can do these
operations for you, reducing the amount of code you have to write and maintain.

 List-Detail Generic Views
 You still write the template when using a generic view, so you still control how the object or objects are
displayed, but you don’t have to handle querying the database and rendering the template yourself. The
following Django generic views are specially designed for rendering the type of list/detail pages used in
the blog application:

❑ django.views.generic.list_detail.object_list : Renders a summary list of objects.

❑ django.views.generic.list_detail.object_detail : Renders details about a specific
object.

 Try replacing the main blog summary list view with a django.views.generic.list_detail
.object_list view as follows:

1. Find the following line in the urls.py file:

 (r’^simpleblog/$’, ‘simpleblog.dblog.views.index’),

 And replace it with this:

 (r’^simpleblog/$’, ‘django.views.generic.list_detail.object_list’, blog_set),

c09.indd 282c09.indd 282 9/7/07 10:51:55 AM9/7/07 10:51:55 AM

Chapter 9: Django Views and Users

283

 Now when a browser requests the /simpleblog/ URL, it will be serviced by the object_list
generic view rather than your custom view.

2. Generic views require a set of objects to collect and pass to the template, so add the following
code before the urlpatterns in urls.py to define that set:

 blog_set = {

 ‘queryset’: Blog.objects.all(),

}

 The ‘ queryset ’ element of this dictionary is the set of Blog objects to be rendered by the
template. You could filter this set by date or author or whatever, but this example includes all
 Blog objects.

3. The object_list view fetches the objects from the database and populates a template context
with those objects. The template you wrote earlier expected the list of Blog objects to be named
 latest_blog_list . However, the object_list view calls the list of objects to be displayed
 object_list , so you need to update the template, changing latest_blog_list references “”
to object_list .

4. By default, the object_list generic view looks for a template called <app_label>/<model_
name>_list.html , so rename index.html to dblog/blog_list.html .

5. Edit settings.py to make sure that the renamed template is available from the TEMPLATE_
DIRS list.

6. Load the /simpleblog/ page in a browser. The page should look exactly the same as before,
but now you’re using the generic view to handle the request. You can delete the custom view
method index() from the views.py file now. It’s no longer referenced.

7. Convert a detail page to use the django.views.generic.list_detail.object_detail
 generic view. Find the following custom view line in urls.py :

 (r’^simpleblog/blog/(?P<blog_id>\d+)/$’, ‘simpleblog.dblog.views.readBlog’),

 And replace it with the following generic view lines:

 (r’^simpleblog/blog/ (?P<object_id>\d+) /$’,

 ‘django.views.generic.list_detail.object_detail’, blog_set),

 8. The object_detail generic view can use the same blog_set that you used previously for the
 object_list view, so there’s no need to add it again. The object_detail generic view will
select the requested object from the set using the object_id captured from the regular expres-
sion in the URL. The previous version of this view called it blog_id , so you’ll have to change
 (?P<blog_id>\d+) to (?P<object_id>\d+) in the urlpatterns list.

9. By default, the object_detail generic view looks for a template called <app_label>/
<model_name>_detail.html , so rename readBlog.html to dblog/blog_list.html . Then
load one of the blog detail views to see the results. Again, this page should look the same as the
nongeneric view you saw before, and you can delete the custom view readBlog() , which is no
longer used.

c09.indd 283c09.indd 283 9/7/07 10:51:55 AM9/7/07 10:51:55 AM

284

Part III: Django

10. You can use the object_detail generic view for the comment view page, too. Find the follow-
ing custom view lines in urls.py :

 (r’^simpleblog/blog/(?P<blog_id>\d+)/comment/$’, ‘simpleblog.dblog.views.comment’),

 And replace them with these generic view lines:

 (r’^simpleblog/blog/(?P<object_id>\d+)/comment/$’,

 ‘django.views.generic.list_detail.object_detail’,

 dict(blog_set, template_name=’dblog/comment.html’)),

11. Notice that you have to change the regular expression capture name from blog_id to object_
id as you did in the previous view because the generic view looks for the specific object instance
id using that name. Also, recall that the object_detail generic view renders a template called
 <app_label>/<model_name>_detail.html , which in this case would be dblog/blog_list
.html . You used that template name already, so you need to override the default by adding
 template_name to the dictionary passed as the third element of the URL pattern. The Python
function dict() returns a dictionary that includes all of the items of the dictionary in its first
 argument plus the item that follows as an additional mapping.

 Other Generic Views
 Django includes several other types of generic views that you may find useful. It provides the following
simple generic views for situations that don’t require access to the data model:

❑ django.views.generic.simple.direct_to_template : Renders a template passing a dic-
tionary called params , which contains only the parameters captured in the URL.

❑ django.views.generic.simple.redirect_to : Redirects the requestor to a different URL.

 Django includes generic views that make it easy to organize objects by their date of creation. Django was
developed to support an online news operation, and these views are especially useful for that kind of
time-sensitive data. They include the following:

❑ django.views.generic.date_based.archive_index : Shows the most recent objects in the
 queryset .

❑ django.views.generic.date_based.archive_year : Shows the available months in the
year.

❑ django.views.generic.date_based.archive_month : Shows the objects with dates within
the selected month.

❑ django.views.generic.date_based.archive_week : Shows the objects with dates
within the selected week.

❑ django.views.generic.date_based.archive_day : Shows the objects with datetime
 values that fall within the selected day. There is a special version of this view, called
 archive_today , which automatically selects the current date as the one to display.

❑ django.views.generic.date_based.object_detail : Shows a detailed view of an
 individual object by date and ID.

c09.indd 284c09.indd 284 9/7/07 10:51:56 AM9/7/07 10:51:56 AM

Chapter 9: Django Views and Users

285

 Generic views for creating, updating, and deleting individual objects are also available. They use the
Django forms framework, which makes creating, validating, and processing HTML forms easier. These
generic views include the following:

❑ django.views.generic.create_update.create_object : Presents a form that can be used
to create a new instance of an object, validate the form, and store the new object.

❑ django.views.generic.create_update.update_object : Presents a form that can be used
to edit an existing instance of an object, validate the form, and store the updated object.

❑ django.views.generic.create_update.delete_object : Displays a confirmation page
before an existing object is deleted.

 Django Forms Library
 At the time of this writing, the forms library is undergoing a major overhaul. The old
method has been deprecated, and the API for the new method is not finalized yet. For
that reason, we’re not going to discuss the forms library any further, but if you use a
lot of forms, you might want to check out the Django documentation page at
www.djangoproject.com/documentation/ for the latest status.

 The additional generic views discussed in this section are similar in operation to the object_list and
 object_detail generic views that you tried in the previous examples. Detailed documentation for
Django generic views is at www.djangoproject.com/documentation/generic_views/ .

 User Authentication and Authorization
 Most interactive websites include some kind of user management to control and track who accesses and
updates the content on the site. Django provides a mechanism for user management that is integrated
with the model classes, making it easy to control which users have access to which objects. In this section
you learn how the Django auth framework enables user authentication (logging in known users) and
user authorization (controlling which users have access to which functions).

 Installing User Management
 If you used the django-admin.py startproject command to initialize your project, you’ve already
installed the components required for user management. If you didn’t, adding them later just involves a
few edits to the settings.py file.

c09.indd 285c09.indd 285 9/7/07 10:51:56 AM9/7/07 10:51:56 AM

286

Part III: Django

 The django.contrib.auth Django application implements the user management functions. To enable
this application, edit your settings.py file and look for the INSTALLED_APPS setting. Add the
 django.contrib.auth application to it as follows:

 INSTALLED_APPS = (

 ‘django.contrib.auth’,

 ‘django.contrib.contenttypes’,

 ‘django.contrib.sessions’,

 ‘django.contrib.sites’,

 ‘django.contrib.admin’,

 ‘simpleblog.dblog’,

)

 After you change INSTALLED_APPS , you need to synchronize the database tables. To do this, run the
 following command:

 python manage.py syncdb

 This command creates any tables that the application models require and prompts you to create a super-
user account if one does not already exist. You don’t need to be concerned about whether you should run
the syncdb command. It creates tables only if it needs to. It doesn’t delete any tables or data, so if in
doubt, run it.

 Next, add the middleware components necessary for Django to hook the user objects into the
web request objects. Find the MIDDLWARE_CLASSES in settings.py , and add the django.contrib
.sessions.middlware.SessionMiddlware and django.contrib.auth.middlware
. AuthenticationMiddleware classes as follows:

 MIDDLEWARE_CLASSES = (

 ‘django.middleware.common.CommonMiddleware’,

 ‘django.contrib.sessions.middleware.SessionMiddleware’,

 ‘django.contrib.auth.middleware.AuthenticationMiddleware’,

 ‘django.middleware.doc.XViewMiddleware’,

)

 Now you’re all set to try out some user accounts.

 The User Model
 Django users, groups, and permissions are implemented as Django model classes, so you can treat them
in the same way as the Blog or Comment objects. The fields of the User model are listed in the following
table. Only the username and password fields are required.

c09.indd 286c09.indd 286 9/7/07 10:51:56 AM9/7/07 10:51:56 AM

Chapter 9: Django Views and Users

287

 Field Description

 Username A CharField of maximum length 30. This field is
required and must be unique.

 first_name A CharField of maximum length 30.

 last_name A CharField of maximum length 30.

 Email An EmailField

 Password A hash of the user’s password, stored as a
 CharField . To set the user’s password, use the
User.set_password method.

 is_staff If True , the user can access the Django admin pages.

 is_active If True , the user can log in. Set this to False to disable
an account.

 last_login The DateTime at which the user last logged in.

 date_joined The DateTime at which the User object was created.

 Groups A ManyToManyField of groups to which this user
belongs.

 user_permissions A ManyToManyField of permissions granted to
this user.

 is_superuser If True , the user has all permissions. Otherwise, only
the permissions enumerated in user_permissions are
granted.

 Authenticating a User
 The django.contrib.auth application includes view methods to handle user login and logout actions.
You can use these like you used the generic views earlier in this chapter to avoid writing custom views.
All you need to write is a template and a URL pattern. To add the login and logout views, add the
 following two entries to the urlpatterns in urls.py :

 (r’^accounts/login/$’, ‘django.contrib.auth.views.login’,

 {‘template_name’: ‘dblog/login.html’}),

(r’^accounts/logout/$’, ‘django.contrib.auth.views.logout’,

 {‘template_name’: ‘dblog/logout.html’}),

 The login.html template extends the same base template as the other pages. This gives the login page
the same look and feel as the other pages in the application. Listing 9-6 shows the template. You should
enter this code as a file named login.html in your templates directory.

c09.indd 287c09.indd 287 9/7/07 10:51:57 AM9/7/07 10:51:57 AM

288

Part III: Django

 Listing 9-6: User login template

 1 {% extends “dblog/baseTemplate.html” %}

2 {% block title %}

3 Login to DBlog

4 {% endblock %}

5

6 {% block content %}

7

8 {% if form.has_errors %}

9 <p>Login Failed. Please try again.</p>

10 {% endif %}

11

12 <form method=”post” action=”.”>

13 <h2>Login existing user</h2>

14 <table>

15 <tr>

16 <td><label for=”id_username”>Username:</label></td>

17 <td>{{ form.username }}</td>

18 <td><label for=”id_password”>Password:</label></td>

19 <td>{{ form.password }}</td>

20 </tr>

21 </table>

22

23 <input type=”submit” value=”Login” />

24 <input type=”hidden” name=”next” value=”{{ next }}” />

25 </form>

26

27 {% endblock %}

 Line 1 declares that this template extends the base template that you wrote earlier in this chapter. Recall
that the base template handles all of the HTML boilerplate and CSS references, and also defines three
sections that deriving templates can override if they choose. Lines 2 through 4 override the base tem-
plate’s title block with a descriptive title for this page. Lines 6 through 27 override the content block
with the username and password entry form. This template does not override the footer block, so the
 footer from the base template will appear at the bottom of this page.

 The django.contrib.auth.login view uses Django’s form validation to check that all of the fields
contain data and that the username and password are valid. If the form has been submitted before but
contained errors, lines 8 through 10 will display an error message on the page. Lines 12 through 25 are
the form in which the user can enter his or her username and password. This form contains a text
box for the username and one for the password. The Django forms library renders the directive
{{ form.username }} as the appropriate HTML input type (a string, in this case) with constraints
from the model (length, required, and so on) enforced by the form where possible.

 Line 24 of the listing defines a hidden field called “next” . If the user successfully logs in using the login
form, he or she will be redirected to the URL referenced by this field. Often, a user who hasn’t logged in
yet will navigate the pages that don’t require a login for awhile before clicking a link that redirects him
or her to a login. The “next” field holds the desired link so the user can be redirected to that page after a
successful login.

c09.indd 288c09.indd 288 9/7/07 10:51:57 AM9/7/07 10:51:57 AM

Chapter 9: Django Views and Users

289

 If you load this page in a browser, you’ll see the new login page shown in Figure 9-3 .

Figure 9-3

 If the user enters a valid username-password combination, he or she is logged in and redirected to the
 next link (if the form includes a value for next). If the login fails, the error message in lines 8 and 9
is displayed, and the user can try again.

 If the “next” value is empty, the user is redirected to the default user profile page accounts/profile/ ,
so you need to write that view next. Add the following line to urlpatterns in urls.py :

 (r’^accounts/profile/$’, ‘simpleblog.dblog.views.viewProfile’),

 The viewProfile view in Listing 9-7 is very simple, but adds one wrinkle that you haven’t seen yet.
Add this method to views.py .

c09.indd 289c09.indd 289 9/7/07 10:51:58 AM9/7/07 10:51:58 AM

290

Part III: Django

 Listing 9-7: User profile view

 1 def viewProfile(request):

2 return render_to_response(‘dblog/user_profile.html’, {},

3 RequestContext(request))

 The template user_profile.html requires access to the User object to display its fields, but the
 currently logged-in user is associated with the HTTP request, not an object ID extracted from the URL as
you’ve seen before. The RequestContext() method (line 3 of Listing 9-7) makes a template context
from a request object, making the request data available to the template.

 In the template, the current user is called user and can be referenced as shown in Listing 9-8 . Enter this
template code in a file called user_profile.html .

 Listing 9-8: User profile template

 1 {% extends “dblog/baseTemplate.html” %}

2

3 {% block title %}

4 Account for

5 {{ user.first_name }}

6 {{ user.last_name }}

7 {% endblock %}

8

9 {% block content %}

10

11 <p>Username: {{user.username}}</p>

12 <p>Email Address: {{user.email}}</p>

13 {% endblock %}

 The template in Listing 9-8 extends the same base template as the other templates (line 1), so it will
inherit the same look and feel as the other pages. It overrides the title block with the user’s
 first_name and last_name at lines 3 through 7. It overrides the content block with the user’s user-
name and e-mail address on lines 9 through 13. The footer block is not overridden, so the default
 footer will appear on this page.

 Figure 9-4 shows the account summary page for a user named some_user .

 Enhancing the Base Template
 Now that you have the login, logout, and account profile pages, you need to link to them from existing
pages on the site. You could edit every template to add links to the login and logout pages, but that
would be a bad idea (remember DRY).

 A better solution is to add the login and logout functions to the base template. That way, it automati-
cally appears on every page. Try adding the following capabilities to the base template:

❑ If the user is logged in, present a link to the logout page.

❑ If the user is not logged in, present a link to the login page and a link to the page that handles
creating new user accounts, which you’ll build later in this chapter.

c09.indd 290c09.indd 290 9/7/07 10:51:59 AM9/7/07 10:51:59 AM

Chapter 9: Django Views and Users

291

 The highlighted code in Listing 9-9 shows one way to include these links.

 Listing 9-9: Base template with login and logout functions

 1 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”

2 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

3

4 <head>

5 <meta http-equiv=”Content-Type” content=”text/html;

 charset=utf-8”/>

6

7 <title>Simple Django Blog</title>

8

9 <!-- Load our color and font preferences -->

10 <link rel=StyleSheet href=”/scripts/style.css”

 TYPE=”text/css”>

11 </head>

12

13 <body>

14

15 <h1>

16 <div class=”title”>

17 {% block title %}{% endblock %}

18 </div>

19 </h1>

Figure 9-4

(continued)

c09.indd 291c09.indd 291 9/7/07 10:51:59 AM9/7/07 10:51:59 AM

292

Part III: Django

 Listing 9-9 (continued)

20 <hr>

21

22 <div class=”content”>

23 {% block content %}{% endblock %}

24 </div>

25

26 <hr>

27 <div class=”footer”>

28 {% block footer %}

29 Return to Top

30 {% endblock %}

31

32 {% if user.is_authenticated %}

33 <p>Logout

 {{user.username }}.</p>

34 {% else %}

35 <p>Login here</p>

36 <p>

 Create new account here</p>

37 {% endif %}

38 </div>

39 </body>

40 </html>

Figure 9-5

c09.indd 292c09.indd 292 9/7/07 10:52:00 AM9/7/07 10:52:00 AM

Chapter 9: Django Views and Users

293

 Lines 32 through 37 add the login and logout links. Line 32 tests whether the user has successfully
authenticated (logged in) yet. If so, a link to the logout page is emitted by line 33; if not, lines 35 and 36
print a link to the login page and a link to the page used to create new user accounts.

 Notice that this listing places the login and logout links in the footer <div> but not within the footer
template block. This way, the links will get the same CSS settings as the footer, and they will appear on
every page, even if templates override the footer block. Of course, you may choose to place them else-
where in your application.

 Figure 9-5 shows how the main blog summary page looks with these changes. As you can see at the
bottom of the page, the two links show that this user is not authenticated yet.

 User Permissions
 The main reason to create user accounts is to control access to some part of the web application. For this
blog application, say you want to enforce these restrictions:

❑ Only authenticated users can enter comments.

❑ Only authenticated users with specific permission can make blog entries.

 You can enforce these restrictions by limiting access to specific views based on the attributes of the user
attempting to access them. To limit the comment entry function to authenticated users, you need to redi-
rect unauthenticated users to the login page when they try to access a view that requires authentication.

 Try it first with the page that presents the comment entry form. Unfortunately, you can’t use a generic
view directly when you’re requiring authentication, but you can write a one-liner view method that calls
only the generic view. Update the comment/add URL pattern in urls.py to reference that view method
as follows:

 (r’^simpleblog/blog/(?P<object_id>\d+)/comment/add/$’,

 ‘simpleblog.dblog.views.addComment’,

 dict(blog_set, template_name=’dblog/addComment.html’)),

 Now you need to add an addComment view to the views.py file; that view does two things:

1. It ensures that the user is authenticated.

2. If the user is authenticated, it renders the generic view.

 Django provides a convenient decorator to accomplish step 1. You just add the @login_required
 decorator to any view method that you want to restrict to authenticated users. If the user is logged
in, the decorator does nothing and access is allowed. If the user is not logged in, he or she is redirected
to the accounts/login page and “next” is filled in with the URL that the user originally requested. If
the user successfully logs in, he or she is redirected back to this view and @login_required will pass.

c09.indd 293c09.indd 293 9/7/07 10:52:00 AM9/7/07 10:52:00 AM

294

Part III: Django

 Listing 9-10 shows this view method. Add it to views.py .

 Listing 9-10: View with login required

 @login_required

def addComment(*args, **kwargs):

 return django.views.generic.list_detail.object_detail(*args, **kwargs)

 The first line is the decorator that ensures the user is logged in. If the user is logged in, the last line ren-
ders the generic object_detail template.

 Now you’ve restricted access to the comment entry form so unauthenticated users cannot enter
 comments using that form. However, a determined, nefarious individual could still hand-craft a POST
request to the postComment() view method, which is the method that actually commits the comment to
the database. Be sure to add the @login_required decorator to that view, too.

 User permissions are defined in the Django data model classes. For every class in the data model, Django
automatically creates three permissions that correspond to the canonical create , update , and delete
operations. These permissions are called add_ <name> , change_ <name> , and delete_ <name> where
 <name> is the class name of the object being modified.

 It’s important to note that these permissions are just names — Django doesn’t enforce permissions on
your model objects unless you enforce them in your views.

 You can also create custom permissions by adding them to your model’s Meta nested class. The Blog
model class in Listing 9-11 shows the syntax for creating a custom permission.

 Listing 9-11: Blog model with a custom permission

 1 class Blog(models.Model):

2 “””The class representing an entry in the blog”””

3

4 “””The title or subject of the blog entry”””

5 title = models.CharField(maxlength=128)

6

7 “””The date that the post was created”””

8 post_date = models.DateTimeField(‘date posted’)

9

10 “””The email address of the posting author”””

11 reply_to = models.EmailField()

12

13 “””The actual text content of the posting”””

14 content = models.TextField()

15

16 def rating(self):

17 “””Compute the average rating based on the comments received”””

18 comments = self.comment_set.all()

19

20 # Don’t divide by zero

21 if len(comments) == 0:

22 return “(unrated)”

23

24 sum = 0.0

c09.indd 294c09.indd 294 9/7/07 10:52:01 AM9/7/07 10:52:01 AM

Chapter 9: Django Views and Users

295

25 for c in comments:

26 sum = sum + c.rating

27 average = float(sum)/len(comments)

28 return “%.2f”%average

29

30 “””The possible ratings for each blog entry”””

31 RATING_CHOICES = (

32 (1 , ‘Lame’),

33 (2 , ‘Weak’),

34 (3 , ‘OK’),

35 (4 , ‘Nice’),

36 (5 , ‘Rocks’),

37)

38 “””Empty class enables the Django admin web interface”””

39 class Admin:

40 pass

41

42 “””This custom permission is required to create a new Blog entry”””

43 class Meta:

44 permissions = (

45 (“may_create_blogs”, “May Create Blogs”),

46)

47

48 “””String representation is used by the Django admin interface”””

49 def __str__(self):

50 return “Blog(title = ‘%s’)”%(self.title)

 Add lines 42 through 46 to your copy of models.py . Line 45 defines a new permission called
“ may_create_blogs” with the friendly name “May Create Blogs” that you will require before
you allow a user to create a new blog entry. Obviously, you could just use the automatic permission
 add_blog for this purpose, but a custom permission gives you more flexibility.

 After you add the Meta nested class to the Blog class, rerun manage.py as follows to create the new
permission:

 python manage.py syncdb

 Now you need to modify the blog entry views to require this permission. First add the
@login_required decorator to the view that renders the blog entry form (addEntry) and the view
that accepts the completed submission form (postEntry) so that unauthenticated users will be redi-
rected to the login page. Then add a line that checks for the specific permission in the addEntry view
method. Listing 9-12 shows how the updated view should look after you’re done.

 Listing 9-12: View requiring a custom permission

 1 @login_required

2 def addEntry(request, *args, **kwargs):

3 if not (request.user.has_perm(“dblog.may_create_blogs”)):

4 return HttpResponse(“Permission Denied”)

5 else:

6 return django.views.generic.simple.direct_to_template(request,

7 *args, **kwargs)

c09.indd 295c09.indd 295 9/7/07 10:52:01 AM9/7/07 10:52:01 AM

296

Part III: Django

 The decorator at line 1 ensures that the user is logged in. Line 3 checks that the requesting user possesses
the custom permission, “dblog.may_create_blogs” (notice that Django requires the module name
 dblog as prefix to the name of the custom permission). If the permission check fails, an error page is
returned at line 4. Otherwise, the blog entry form is rendered using the direct_to_template generic
view at lines 6 and 7. Figure 9-6 shows the really cool error page.

Figure 9-6

 Don’t forget to add the same permission check to the postEntry view method as shown in Listing 9-13 .

 Listing 9-13: Checking permissions on submitted data

 1 @login_required

2 def postEntry(request):

3 “””Accepts the HTTP POST data of a new blog entry and

4 updates the database accordingly”””

5 if not (request.user.has_perm(“dblog.may_create_blogs”)):

6 return HttpResponse(“Permission Denied”)

7 b = Blog()

8 b.title = request.POST[‘title’]

9 b.reply_to = request.POST[‘reply_to’]

10 b.content = request.POST[‘content’]

11 b.post_date = datetime.now()

12 b.save()

13 return HttpResponseRedirect(‘/simpleblog/blog/%s/’ % b.id)

 This view checks for the required permission at line 5 and returns the “Permission Denied” message if
the check fails. Otherwise, it proceeds to create and store the new Blog object.

c09.indd 296c09.indd 296 9/7/07 10:52:01 AM9/7/07 10:52:01 AM

Chapter 9: Django Views and Users

297

 Scroll down further, and click Save. The user now has permission to make new blog entries.

 Creating a User
 You can create users through the admin interface or through your own views. Figure 9-8 shows the top-
level Django admin screen in which you can see Groups and Users available for editing.

 You can grant users the may_create_blogs permission through the Django admin site. Log in to the
 admin site as the root user, click Users, and then click a username to edit. Scroll down to the User
 permissions section, and you should see blog � May Create Blogs as one of the available user per-
missions. Select it and click the right arrow between the boxes to add it to the list of chosen user
 permissions. The screen should now look like Figure 9-7 .

Figure 9-7

c09.indd 297c09.indd 297 9/7/07 10:52:02 AM9/7/07 10:52:02 AM

298

Part III: Django

 Click the Add link for Auth Users (under the pointer in Figure 9-8) to display the first of two forms for
entering new users in the admin application. This form is used to enter the two required data fields:
 username and password . Fill it out as shown in Figure 9-9 , and then click the Save and Continue
Editing button.

 The next form that is displayed provides entry fields for the optional components of the User object,
including the username, e-mail address, permissions, and group memberships. Fill in whatever you like
on this form, and then click the Save button to update the User object. The new user can now log in and
request the views that require authentication.

 Using the admin site to create a user account is part of the basic Django functionality, but it is probably
not the right solution for most sites. Many sites allow users to create their own accounts, but you
wouldn’t want to give everyone access to the admin site. The solution is to write your own view that
 creates a new user account.

 By now you know that to add a view you edit the urls.py file. Add the following custom view pattern
to the urlpatterns list:

 (r’^accounts/newUser/$’, ‘simpleblog.dblog.views.newUser’),

Figure 9-8

c09.indd 298c09.indd 298 9/7/07 10:52:02 AM9/7/07 10:52:02 AM

Chapter 9: Django Views and Users

299

 Notice that the URL starts with accounts , rather than simpleblog as all of the previous views did.
These accounts are global to the whole site, not just the simpleblog application, so it’s appropriate to
use a different URL prefix. As you’ll see later, many of Django’s account management functions assume
a default URL prefix of accounts , so this is a convenient choice.

 On an HTTP GET request to the accounts/newUser URL, respond with the form to be filled in with user
account data. This form will POST back to the same URL, so you need only one view method, but it will
handle GET and POST requests differently. Edit views.py to add the view method shown in Listing 9-14 .

 Listing 9-14: A view that adds a user account

 1 def newUser(request):

 2 “””Creates a new user with comment-only permissions”””

 3 if request.POST:

 4 try:

 5 username = request.POST[‘username’]

 6 password = request.POST[‘password’]

 7 email = request.POST[‘email’]

 8 firstname = request.POST[‘firstname’]

 9 lastname = request.POST[‘lastname’]

10 if (len(username) == 0 or

11 len(password) == 0 or

12 len(email) == 0 or

Figure 9-9

(continued)

c09.indd 299c09.indd 299 9/7/07 10:52:03 AM9/7/07 10:52:03 AM

300

Part III: Django

 Listing 9-14 (continued)

13 len(firstname) == 0 or

14 len(lastname) == 0):

15 return render_to_response(‘dblog/newUser.html’,

16 {‘username’:username,

17 ‘email’:email,

18 ‘firstname’:firstname,

19 ‘lastname’:lastname,

20 ‘msg’:’All fields are required. Please resubmit.’})

21 user = User.objects.create_user(username, email, password)

22 user.first_name = firstname

23 user.last_name = lastname

24 user.save()

25 # Log the user in here

26 # This should be successful because we just created the user

27 # with that password

28 newuser = authenticate(username=username, password=password)

29 login(request, newuser)

30 return HttpResponseRedirect(‘/accounts/profile/’)

31 except:

32 import sys,traceback

33 traceback.print_exc()

34 print sys.exc_info()

35

36 # If the username is already in use, a constraint error is thrown.

37 # The type of exception thrown depends on the database backend in use

38 # so here we assume that any exception is a

39 # “username already in use” error

40 return render_to_response(‘dblog/newUser.html’,

41 {‘email’:email,

42 ‘firstname’: firstname,

43 ‘lastname’: lastname,

44 ‘msg’:’Username “%s” is in use. Please choose another.’%

45 username})

46 # else:

47 return render_to_response(‘dblog/newUser.html’, {})

 Line 3 checks to see if this is a POST request. If it’s not, the view responds with the empty form
 template at line 47. Lines 5 through 9 read the five fields of the form from the request object, and lines 10
through 14 check to make sure a value was entered for each field. If any of the fields are blank, the
 render_to_response call at line 15 sends the form back to the user so he or she can try again. Lines 16
through 20 fill in template context with whatever values were entered, which the template uses to pre-
populate the input boxes for the next submission. This way the user only has to enter the missing fields,
not reenter all of the fields.

 Line 21 attempts to create the new user object with the requested username, password, and e-mail
address. If the user cannot be created, create_user() throws an exception, which is caught at line 31.
If the user is successfully created, lines 22 and 23 initialize the remaining two fields and line 24 commits
the new User object to the database.

c09.indd 300c09.indd 300 9/7/07 10:52:04 AM9/7/07 10:52:04 AM

Chapter 9: Django Views and Users

301

 At line 24, the new user is created, but he or she is not yet logged in. Line 28 calls the authenticate()
method, which checks a username and password against the database and, if they are valid, returns the
associated User object. If the username and password are invalid, authenticate() returns None .
Because you just created the user using this username and password pair, authenticate() should
return successfully. The login() method at line 28 associates the authenticated user with the current
session, and line 29 redirects the browser to the account profile page.

 Line 32 starts the exception-handling block that is invoked if the create_user() method at line 21 fails.
The specific type of exception thrown depends on the database backend, so lines 32 through 34 print the
exception to the text output of the Django development server just in case anyone’s interested. For exam-
ple, the exception thrown by the SQLite backend is pysqlite2.dbapi2.IntegrityError . Line 40
sends the browser back to the user entry form with appropriate fields pre-populated as in the other error
case at line 15.

 The template associated with the newUser view is a simple form, as you’d expect. Enter the code shown
in Listing 9-15 into the file newUser.html .

 Listing 9-15: New user entry form template

 1 {% extends “dblog/baseTemplate.html” %}

 2 {% block title %}

 3 Create New User

 4 {% endblock %}

 5

 6 {% block content %}

 7

 8 {% if msg %}

 9 <p>{{ msg }}</p>

10 {% endif %}

11

12 <form method=”post” action=”.”>

13

14 <p>Username: <input type=”text” name=”username”

15 maxlength=”30” value=”{{username}}”/></p>

16

17 <p>Password: <input type=”text” name=”password”

18 maxlength=”30”/></p>

19

20 <p>Firstname:<input type=”text” name=”firstname”

21 maxlength=”30” value=”{{firstname}}”/></p>

22

23 <p>Lastname: <input type=”text” name=”lastname”

24 maxlength=”30” value=”{{lastname}}”/></p>

25

26 <p>Email: <input type=”text” name=”email”

27 value=”{{email}}”/></p>

28

29 <input type=”submit” value=”Submit” />

30 </form>

31

32 {% endblock %}

c09.indd 301c09.indd 301 9/7/07 10:52:04 AM9/7/07 10:52:04 AM

302

Part III: Django

 This template, like all the others, extends the base template using the {% extends %} directive at line 1.
It overrides the title block at lines 2 through 4 and the content block at lines 6 through 32. It does not
override the footer block. Any error message passed in the template context is displayed at the top of
the form by lines 8 through 10. Lines 12 through 30 define the five input fields and the submit button
that make up this form. The value of each of the input elements can be filled in from the template con-
text, or they will be left empty if the template context doesn’t contain that element.

 Figure 9-10 shows how the new user input form looks in a browser.

Figure 9-10

 As you can see, the form picked up the colors and fonts from the base template, so it looks the same as
the rest of the site.

c09.indd 302c09.indd 302 9/7/07 10:52:04 AM9/7/07 10:52:04 AM

Chapter 9: Django Views and Users

303

 Summary
 In this chapter you saw some Django features that help maximize developer productivity for real-world
websites. You learned how:

❑ Template inheritance can reduce the amount of boilerplate template code you have to write.

❑ Generic views can reduce the amount of boilerplate Python code you have to write.

❑ Django’s user authentication and authorization package provides a convenient way to manage
user accounts and permissions on your site.

 In the next chapter you’ll see even more Django features that you can use to make professional-quality,
Rich Internet Applications.

c09.indd 303c09.indd 303 9/7/07 10:52:05 AM9/7/07 10:52:05 AM

c09.indd 304c09.indd 304 9/7/07 10:52:06 AM9/7/07 10:52:06 AM

 Advanced Django Topics:
 AJAX , RSS , and More

 The future is here. It’s just not widely distributed yet.

— William Gibson

 Now that you’ve seen some of the basics of how to use Django and some of the ways it can make
your life easier, it’s time to turn to the more advanced features of Django. Not that these things are
hard to do (they’re not), but they’re the kind of features that separate the amateur home page from
the professional web application.

 Asynchronous JavaScript and XML (AJAX) is all the rage lately as a technique for building
dynamic web pages that can be updated without a full page refresh, which traditional web usage
requires. The essence of AJAX is JavaScript on the web page that makes requests for data from the
server and updates Document Object Model (DOM) elements on the page while the user is view-
ing and interacting with the page. In this chapter, you learn how to use Django to handle those
back-end requests.

 When you’re deciding which, if any, framework to adopt for your project, it’s important to
 consider the availability of add-on modules that may not be part of the core code base, but can be
leveraged when you develop your site. This chapter provides an overview of some add-on mod-
ules available for Django and discusses the Really Simple Syndication (RSS) module in detail.

 You’ll also see some options for deploying Django with the popular Apache web server. Apache is
a great choice for deploying Django applications because it’s free, it’s good, and the mod_python
Apache module makes integration simple.

c10.indd 305c10.indd 305 9/7/07 11:29:07 AM9/7/07 11:29:07 AM

306

Part III: Django

 AJAX and Django
 You’ve seen a few examples of AJAX already in this book so you know it’s not rocket science. It’s just
some code in the browser talking to some code on the server. But if you’ve done much JavaScript
 programming, you know that it can be a royal pain. So, the browser-side code in this chapter uses the
MochiKit library, which its creators claim “makes JavaScript suck less.”

 Unlike TurboGears, which includes the MochiKit JavaScript library, Django ships without a JavaScript
library, leaving the decision about which library to use up to the developer. The philosophy is that many
sites won’t need any JavaScript library, and those that do will have the flexibility to select the one that
best meets their needs. As you’ll see, incorporating a JavaScript library is not difficult.

 Django does provide the mechanism to support AJAX on the server site. Specifically, it provides an easy
way to serialize model objects into JavaScript Object Notation (JSON), YAML Ain’t Markup Language
(YAML), or Extensible Markup Language (XML) in response to asynchronous requests.

 MochiKit
 The MochiKit JavaScript library that you’ll use with Django is the same one that is included with
 TurboGears, so the learning curve is not steep. It’s generally considered a Pythonic JavaScript library, so
we Python programmers tend to prefer it to other similar libraries. Its creators say MochiKit improves
programmers’ JavaScript experience by providing some high-level operations that are needed by most
AJAX applications, including:

❑ Managing asynchronous tasks

❑ Functional programming and comparisons

❑ DOM manipulation

❑ Drag-and-drop management

❑ Color handling

❑ Date and time handling

❑ String formatting

❑ Iterators and sorting

❑ Logging and debugging

❑ Cascading Style Sheets (CSS) manipulation

❑ Event handling

❑ Visual effects

 To enable MochiKit in your Django application using the development server, you just need
to unpack the MochiKit .js files into a directory, make that directory available using the
django.views.static.serve view, and link it in to the appropriate pages. For example, you might

c10.indd 306c10.indd 306 9/7/07 11:29:08 AM9/7/07 11:29:08 AM

Chapter 10: Advanced Django Topics: AJAX, RSS, and More

307

unpack the MochiKit code into the same /scripts/ URL that you used for the CSS files. Then the same
URL pattern that serves the CSS file will also serve the MochiKit code automatically. Here’s that URL
pattern as a reminder:

 (r’^scripts/(?P<path>.*)$’, ‘django.views.static.serve’,

 {‘document_root’: ‘./scripts’}),

 This URL pattern serves up all files at or below the level of the document_root value. Note that you
may have to change the document_root value if you put the CSS and JavaScript files somewhere else.

 To link MochiKit into your pages, just include the following line in the template:

 <script type=”text/javascript” src=”/scripts/MochiKit/MochiKit.js”></script>

 If you use MochiKit throughout your site, you might want to put it in your base template so it gets inher-
ited by all other templates. That’s all there is to integrating MochiKit with Django.

 Django Serialization for AJAX
 To transmit objects between the server-side Python code and the browser-side JavaScript code, they need
to be encoded, or serialized , into a form that can be transmitted over HTTP and interpreted by both lan-
guages. Here are a few of the most common serialization formats included with Django:

❑ XML: Good old XML put the X in AJAX.

❑ JSON: Trivial to parse into JavaScript and Python.

❑ YAML: A format intended to be both easy to parse and human-readable.

 Classes in the django.core.serializers package implement these serialization formats, so to use
these features in your view methods you need to import them with a line like this:

 from django.core import serializers

 Then you can serialize a list of objects as shown in the following table.

 Format Serialization Code Example

 XML xmltext = serializers.serialize(“xml”, [someObject])

 JSON jsontext = serializers.serialize(“json”, [someObject])

 YAML yamltext = serializers.serialize(“yaml”, [someObject])

 So you can see what this looks like, Listing 10-1 shows the Blog and Comment model objects as you
defined them in the previous chapters.

c10.indd 307c10.indd 307 9/7/07 11:29:09 AM9/7/07 11:29:09 AM

308

Part III: Django

 Listing 10-1: models.py

 1 “””Django model classes for a simple Blog site

 2

 3 This example shows a one-to-many relationship

 4 between a Blog and its Comments and various

 computed fields.

 5 “””

 6

 7 from django.db import models

 8

 9 class Blog(models.Model):

10 “””The class representing an entry in the blog”””

11

12 “””The title or subject of the blog entry”””

13 title = models.CharField(maxlength=128)

14

15 “””The date that the post was created”””

16 post_date = models.DateTimeField(‘date posted’)

17

18 “””The email address of the posting author”””

19 reply_to = models.EmailField()

20

21 “””The actual text content of the posting”””

22 content = models.TextField()

23

24 def rating(self):

25 “””Compute the average rating based on the

 comments received”””

26 comments = self.comment_set.all()

27

28 # Don’t divide by zero

29 if len(comments) == 0:

30 return “(unrated)”

31

32 sum = 0.0

33 for c in comments:

34 sum = sum + c.rating

35 average = float(sum)/len(comments)

36 return “%.2f”%average

37

38 “””The possible ratings for each blog entry”””

39 RATING_CHOICES = (

40 (1 , ‘Lame’),

41 (2 , ‘Weak’),

42 (3 , ‘OK’),

43 (4 , ‘Nice’),

44 (5 , ‘Rocks’),

45)

46 “””Empty class enables the Django admin web

 interface”””

47 class Admin:

48 pass

49

c10.indd 308c10.indd 308 9/7/07 11:29:09 AM9/7/07 11:29:09 AM

Chapter 10: Advanced Django Topics: AJAX, RSS, and More

309

50 “””This custom permission is required to create a

 new Blog entry”””

51 class Meta:

52 permissions = (

53 (“may_create_blogs”, “May Create Blogs”),

54)

55

56 “””String representation is used by the Django

 admin interface”””

57 def __str__(self):

58 return “Blog(title = ‘%s’)”%(self.title)

59

60 class Comment(models.Model):

61

62 in_reference_to = models.ForeignKey(Blog)

63 content = models.TextField(maxlength=256)

64 rating = models.IntegerField(choices=Blog.RATING_CHOICES)

65

66 def ratingText(self):

67 “””Return this comment’s rating as a text

68 string rather than an integer”””

69 return Blog.RATING_CHOICES[self.rating-1][1]

70

71 “””Empty class enables the Django admin web

 interface”””

72 class Admin:

73 pass

74

75 def __str__(self):

76 “””String representation is used by the

 Django admin interface”””

77 return “Comment(content = ‘%s’, rating = %s)”% \

78 (self.content, str(self.rating))

 This listing shows the model objects in Python, but to transmit an instance of an object, Django must
convert it to a language-independent form (XML, JSON, or YAML). In the abstract, the Blog object is
made up of these fields:

❑ title

❑ post_date

❑ reply_to

❑ content

❑ A list of comments, each of which contains the following:

❑ content

❑ rating

c10.indd 309c10.indd 309 9/7/07 11:29:09 AM9/7/07 11:29:09 AM

310

Part III: Django

 Serializing into XML
 Listing 10-2 shows how Django serializes a Blog object into XML.

 Listing 10-2: XML blog object

 1 <?xml version=”1.0” encoding=”utf-8”?>

2 <django-objects version=”1.0”>

3 <object pk=”3” model=”dblog.blog”>

4 <field type=”CharField” name=”title”> This is the blog title </field>

5 <field type=”DateTimeField” name=”post_date”> 2007- 05-26 13:48:36 </field>

6 <field type=”CharField” name=”reply_to”> myaddress@email.com </field>

7 <field type=”TextField” name=”content”>

8 This is the blog text. There’s not much to it, is there?

9 </field>

10 </object>

11 </django-objects>

 Notice the following about this XML:

❑ The fields of the model object are in lines 4 through 9. The field names are encoded in the name
XML attribute, and the value of the field is between the opening and closing tags.

❑ The XML includes several pieces of metadata that might be useful in certain circumstances. The
primary key and class name of the model object are included as attributes of the <object> at
line 3. These might be useful if you need to construct a URL in the JavaScript code. The type of
each field is also provided as an attribute of the <field> tag.

❑ Notice that the serializer did not serialize the related comment objects. If the serializer followed
references, it might get into circular relationships that would never end, so if you need to serial-
ize related objects, you’ll have to do it explicitly.

 Serializing into JSON
 Listing 10-3 shows how Django serializes a Blog object into JSON:

 Listing 10-3: JSON blog object

 1 [{“pk”: “3”,

2 “model”: “dblog.blog”,

3 “fields”: {

4 “post_date”: “ 2007-05-26 13:48:36 ”,

5 “reply_to”: “ myaddress@email.com ”,

6 “content”: “ This is the blog text. There’s not much to it, is there?” ,

7 “title”: “ This is the blog title ”}

8 }

 In this listing, the four data fields are in lines 4 through 7 as elements in a dictionary. The JSON serializer
includes a little less metadata than the XML serializer, but the important parts are still there. The primary
key is in line 1, and the class name of the model object is in line 2.

c10.indd 310c10.indd 310 9/7/07 11:29:10 AM9/7/07 11:29:10 AM

Chapter 10: Advanced Django Topics: AJAX, RSS, and More

311

 Serializing into YAML
 If you want to use the YAML serailizer, you’ll have to download PyYAML from http://pyyaml.org/
and follow the instructions to install it. Listing 10-4 shows how Django serializes a Blog object
into YAML.

 Listing 10-4: YAML blog object

 1 - fields: {content: ‘ This is the blog text. There’’s not much to it, is there? ’,

2 post_date: !!timestamp ‘ 2007-05-26 13:48:36.343000’ ,

3 reply_to: myaddress@email.com ,

4 title: This is the blog title }

5 model: dblog.blog

6 pk: ‘3

 The YAML in this listing contains the same information as the JSON in Listing 10-3 . The four fields are in
lines 1 through 4, the model class name is at line 5, and the object’s primary key is at line 6.

 Choosing a Serializer
 All three serializers emit the same information, so your choice of which to use depends mostly on how
well it integrates with other parts of the application. JSON is trivial to parse in JavaScript, so it’s becom-
ing a popular serialization format for AJAX applications. XML is interoperable with many other systems,
so it may be a better choice for other applications.

 AJAX -ified Blog Example
 With MochiKit on the browser and Django serialization on the server, you have the pieces you need to
update your blog application with some AJAX effects. The implementation from the previous chapter
used separate pages to view blog entries and comments. How could you change the blog view page to
show comments when requested? Figure 10-1 is a reminder of what the blog view page you created in
the previous chapter looks like.

 Notice the View 2 Comments link in the bottom box. This links to the comment view page. It is just a
 relative URL generated by this section of the blog_detail.html template.

 View {{object.comment_set.count}}

 comment{{object.comment_set.count|pluralize}}

 When clicked, this link takes the user to the comment view specified by this URL pattern in urls.py :

 (r’^simpleblog/blog/(?P<object_id>\d+)/comment/$’,

 ‘django.views.generic.list_detail.object_detail’,

 dict(blog_set, template_name=’dblog/comment.html’)),

 This loads a whole new page into the browser.

c10.indd 311c10.indd 311 9/7/07 11:29:10 AM9/7/07 11:29:10 AM

312

Part III: Django

 It works fine, but the approach is a little dated. If, instead, you want to dynamically update the
 blog_detail page and replace the link with the list of comments, you need to write some JavaScript
to do these things when the link is clicked:

❑ Start an asynchronous request for the comment model data.

❑ Replace the DOM element containing the link with some indication that the data is being
requested.

❑ When the comment model data arrive, replace the indicator DOM element with the comments
themselves.

Figure 10-1

c10.indd 312c10.indd 312 9/7/07 11:29:10 AM9/7/07 11:29:10 AM

Chapter 10: Advanced Django Topics: AJAX, RSS, and More

313

 Rewriting the blog_detail.html Template
 First, you need to rewrite the blog_detail.html template to link in MochiKit and your own JavaScript.
If you’re AJAX-ifying your whole application, you might want to update your base templates, but for
clarity Listing 10-5 shows a blog_detail.html template that doesn’t use Django’s template inheri-
tance. The shaded sections show the additions that you’ll need to add to support the AJAX functions
you’ll add later in this chapter.

 Listing 10-5: AJAX -ready blog_detail.html

 1 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”

 2 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

 3 <html>

 4 <head>

 5 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”/>

 6 <title>Simple Django Blog</title>

 7

 8 <!-- Load our color and font preferences -->

 9 <link rel=StyleSheet href=”/scripts/style.css” TYPE=”text/css”>

10

11 <!-- Load MochiKit and our own JavaScript -->

12 <script type=”text/javascript” src=”/scripts/MochiKit/MochiKit.js”>

13 </script>

14 <script type=”text/javascript” src=”/scripts/dblog.js”>

15 </script>

16 </head>

17

18 <body>

19 <h1>

20 <div class=”title”>

21 {{ object.title }}

22 </div>

23 </h1>

24 <hr>

25 <div class=”content”>

26 <p>Published on {{object.post_date|date:”F j, Y”}}</p>

27 <p>Posted by {{object.reply_to}}</p>

28 <p>Current rating is {{object.rating}} out of 5</p>

29 <div class=”blogtext”>

31 {{object.content}}

32 </div>

33 </div>

34

35 <hr>

36 <div class=”footer”>

37 <div id=”comment_view_area”>

38 View

39 {{object.comment_set.count}}

40 comment{{object.comment_set.count|pluralize}}

41 </div>

42 Return to Top

43

(continued)

c10.indd 313c10.indd 313 9/7/07 11:29:11 AM9/7/07 11:29:11 AM

314

Part III: Django

 Listing 10-5 (continued)

44 <script type=”text/javascript”>

45 var rating_choices = Array({{object.RATING_CHOICES|length}} + 1)

46 {% for r in object.RATING_CHOICES %}

47 rating_choices[{{r.0}}] = ”{{r.1}}”;

48 {% endfor %}

49 </script>

50 {% if user.is_authenticated %}

51 <script type=”text/javascript”>var is_authenticated = 1;</script>

52 <p>Logout {{user.username }}.</p>

53 {% else %}

54 <script type=”text/javascript”>var is_authenticated = 0;</script>

55 <p>Login here</p>

56 <p>Create new account here</p>

57 {% endif %}

58 </div>

59 </body>

60 </html>

 Notice the following about this listing:

❑ Lines 11 through 15 link in the MochiKit library and your own JavaScript file, dblog.js , which
you’ll write soon. Linking in these JavaScript files makes all of the functions and data in those
two files available in this page.

❑ Lines 37 through 41 replace the simple relative URL link with a call to the JavaScript function
 viewComments . Notice how the template variable for the blog’s {{object.id}} primary key
fills in the parameter to viewComments . The viewComments function will need that primary key
to construct the URL to which it will make its asynchronous data request. Lines 37 and 41 wrap
this little section in a named <DIV> to make it easier to find and replace in the DOM when the
time comes.

❑ Recall that the comment ratings are stored in the model as integers, but displayed as text strings
(with the options defined previously in lines 39 through 44 of Listing 10-1). Lines 45 through 48
of this listing create a JavaScript array that you can use to map the numbers to their correspond-
ing strings using the model’s RATING_CHOICES field. Of course, you could just explicitly define
the array here by copying and pasting the code, but that would violate the DRY principle, which
could create maintenance problems later on.

❑ Lines 50 through 57 fill out the footer with the login and create new account links if the
user is not already logged in or the logout link if the user is currently logged in. Notice
especially lines 51 and 54. They define a JavaScript variable called is_authenticated , which
the code will use in dblog.js to make similar decisions.

 Writing the JavaScript Functions in dblog.js
 Next, write the JavaScript functions in dblog.js as shown in Listing 10-6 . These functions will use the
MochiKit library to make the asynchronous requests and handle updating the page’s DOM.

c10.indd 314c10.indd 314 9/7/07 11:29:12 AM9/7/07 11:29:12 AM

Chapter 10: Advanced Django Topics: AJAX, RSS, and More

315

 Listing 10-6: dblog.js

 1

 2 /* Keeps track of the DOM element currently displayed */

 3 var currentElement;

 4

 5 /* Holds the DIV from the original HTML in case we

 6 want to swap it back in */

 7 var view_area;

 8

 9 /* The MochiKit asynchronous request object */

10 var thisRequest;

11

12 /* A couple shorthand CSS elements */

13 var headerClass = {‘class’: ‘commentheader’};

14 var dataClass = {‘class’: ‘commentdata’};

15

16 /*

17 * Called when the user clicks on the “View Comments”

18 * link. id = the primary key of the blog

19 */

20 function viewComments(id) {

21 currentElement = DIV(null, “Fetching...”)

22 view_area = getElement(“comment_view_area”);

23 swapDOM(view_area, currentElement);

24 thisRequest = loadJSONDoc(“/simpleblog/getComments/”+id);

25 thisRequest.addCallbacks(commentsReady, commentsError);

26 }

27

28 /*

29 * Called when the user clicks on the “Hide Comments”

30 * link. It swaps the original DIV in place of the

 * comment list.

31 */

32 function hideComments() {

33 swapDOM(currentElement, view_area);

34 currentElement = view_area;

35 }

36

37 /*

38 * This function formats a single row of the comment

 * display table

39 */

40 row_display = function (row) {

41 var d = rating_choices;

42 return TR(dataClass,

43 TD(dataClass, row.fields.content),

44 TD(dataClass, rating_choices[row.fields.rating]));

45 }

46

47 /*

48 * Called when the comment model objects are received

49 * from the server.

50 */

(continued)

c10.indd 315c10.indd 315 9/7/07 11:29:12 AM9/7/07 11:29:12 AM

316

Part III: Django

 Listing 10-6 (continued)

51 var commentsReady = function (meta) {

52 var commentList = evalJSONRequest(thisRequest.results[0]);

53

54 var newTable = TABLE({‘class’: ‘commenttable’},

55 THEAD(headerClass, TD(headerClass, “Comment”),

56 TD(headerClass, “Rating”)),

57 TBODY(null, map(row_display, commentList))

58);

59

60 var hide = P(null, ‘Hide ‘,

61 A({‘href’: ‘javascript:hideComments()’}, ‘comments’));

62 if (is_authenticated) {

63 var a = P(null, ‘Enter new ‘,

64 A({‘href’: ‘comment/add/’}, ‘comment’));

65 var newDiv = DIV({‘class’: ‘footer’}, hide, newTable, a);

66 } else {

67 var newDiv = DIV({‘class’: ‘footer’}, hide, newTable);

68 }

69 swapDOM(currentElement, newDiv);

70 currentElement = newDiv;

71 }

72

73 /*

74 * Error function called if an error occurs while

75 * fetching the async data

76 */

77 var commentsError = function (err) {

78 alert(“commentsError”);

79 }

 The first few lines of this file define some data elements that the functions that follow will use. The
 functions in this file will be swapping DOM elements in and out, so line 3 defines a variable used
to keep track of the currently active DOM element. When the link is first clicked, the original
“ comment_view_area” DOM element (the simple link and comment count) is replaced by some text
that shows that the data fetch is in progress. The view_area variable at line 7 holds that original element
so it can be reused if needed. Line 10 defines a variable that holds the MochiKit asynchronous request
object used to fetch the comment data. The last data items (lines 13 and 14) create two variables that you
can use as shorthand for specifying CSS attributes.

 The viewComments function (lines 20 through 26) is invoked when the user clicks the link previously
defined in lines 27 through 41 of Listing 10-5 . Its argument is the primary key of the blog being viewed.
Line 21 makes a new <DIV> DOM fragment using the MochiKit DIV() function that gives the user some
feedback that the comment fetch operation is in progress. MochiKit includes similar functions for most
common tags. These functions can really reduce the amount of ugly HTML you have to write, but you
can always create these tags manually if you prefer. Line 22 searches the DOM to find the DIV that
you’re going to replace, and line 23 uses the handy MochiKit swapDOM() to replace it with the
“Fetching...” DIV. (swapDOM() just replaces one DOM element with another.)

 Now that the user has been told that his request is in progress, it’s time to actually make the request.
Line 24 uses the MochiKit loadJSONDoc function to start an asynchronous request for data in JSON

c10.indd 316c10.indd 316 9/7/07 11:29:12 AM9/7/07 11:29:12 AM

Chapter 10: Advanced Django Topics: AJAX, RSS, and More

317

 format. Be aware that this is an asynchronous request, so the thisRequest object returned from
 loadJSONDoc is not the data itself, but rather a handle to the request. Line 25 connects two functions to
the request: commentsReady is called when the request completes successfully, and commentsError is
called if the request fails for some reason. Notice also how the argument in line 24 is constructed using
the primary key of the blog object. Your Django view uses this to fill in the response data.

 Figure 10-2 shows what the page looks like while the request is being processed.

Figure 10-2

 It looks the same as before the request except the View 2 Comments link has been replaced with a
 Fetching . . . message.

 When the comment data return successfully from the server, the commentsReady callback (lines 51
through 71) is invoked. The first thing this function does is extract the JSON object from the asynchro-
nous request object using MochiKit’s evalJSONRequest function at line 52. This object is created from
JSON data similar to Listing 10-7 .

c10.indd 317c10.indd 317 9/7/07 11:29:13 AM9/7/07 11:29:13 AM

318

Part III: Django

 Listing 10-7: JSON comment data

 [

 {“pk”: “6”,

 “model”:

 “dblog.comment”,

 “fields”: {

 “content”: “This is a comment on your blog”,

 “rating”: 1,

 “in_reference_to”: 3}

 },

 {“pk”: “7”,

 “model”: “dblog.comment”,

 “fields”: {

 “content”: “This is another comment on the blog”,

 “rating”: 3,

 “in_reference_to”: 3}

 }

]

 In this instance, the blog has two comments that are returned as a list, and all of the comment fields
include primary keys. For example, the “in_reference_to” field is the primary key of associated the
 Blog object. You can use this primary key to construct URLs for the object if necessary.

 Returning to Listing 10-6 , lines 54 through 58 create an HTML table using MochiKit’s DOM fragment
creation functions. Each row of the table is populated by the row_display function (lines 40 through 45).
The two <TD> elements are filled in with the content of the comment (line 43) and the rating of the comment
(line 44). Notice how line 44 uses the rating_choices array defined in the Django template (lines 45
through 48 of Listing 10-5).

 That completes the table of comments, but it would be nice to be able to hide the comments, too. Lines 60
and 61 of Listing 10-6 create a <P> element that that contains an <A> element that, when clicked, invokes
the hideComments() function. That function is defined on lines 32 through 35 and simply replaces the
element currently displayed with the original element.

 Also, it would be nice to insert a link to the Add a Comment page, but that page is available only to
registered users. Recall that the Django template for this page (lines 51 and 54 in Listing 10-5) created a
JavaScript variable called is_authenticated that is 1 (true) if the user is authenticated and 0 (false)
otherwise. If the user is authenticated, lines 63 and 64 in Listing 10-6 create a hypertext link to the
 comment entry page, and line 65 creates a new DIV that includes this link and the other new DOM
 elements. If the user is not authenticated, line 67 creates a new DIV without the link to the comment
entry page.

 Finally, line 69 swaps in the new DIV , and line 70 remembers it in case it needs to be swapped out again.

 Writing the Django View and getComments Function
 Ugh. That’s quite enough JavaScript for now — it’s time to get back to Python. The only piece left to
write is the Django view that serves up the JSON comment objects. As usual, you have to add a URL
 pattern to urls.py . Recall that the JavaScript will request /simpleblog/getComments/<blog_id> , so
this pattern needs to capture it and route it to the getComments Python function. To do this, add the
 following lines to urls.py :

c10.indd 318c10.indd 318 9/7/07 11:29:16 AM9/7/07 11:29:16 AM

Chapter 10: Advanced Django Topics: AJAX, RSS, and More

319

 (r’^simpleblog/getComments/(?P<blog_id>\d+)/$’,

 ‘simpleblog.dblog.views.getComments’),

 Next, write the getComments function in views.py . Like most Django views, it’s pretty simple.

 1 def getComments(request, blog_id):

2 b = get_object_or_404(Blog, pk=blog_id)

3 jsontext = serializers.serialize(“json”, b.comment_set.all())

4 time.sleep(2)

5 return HttpResponse(jsontext, “application/json”)

Figure 10-3

c10.indd 319c10.indd 319 9/7/07 11:29:16 AM9/7/07 11:29:16 AM

320

Part III: Django

 Line 2 fetches the Blog object from the database by primary key. Line 3 serializes its comment list to
JSON format, and line 5 returns it as the HTTP response. Line 4 is just a little delay to give the user a
chance to enjoy the Fetching . . . message.

 Figure 10-3 shows the updated comment page after comments have been received and the DOM is
updated.

 That’s the pattern for adding some dynamic AJAX to your application. It wasn’t trivial, but without tools
like Django and MochiKit, it would be a massive effort.

 Django Add-Ons
 Like most open source frameworks, Django has inspired several add-on packages that extend the capa-
bilities provided by the core distribution. The official Django distribution comes with a few useful add-
ons in the django.contrib package, and there are plenty more on source code repository sites like
SourceForge (http://sourceforge.net) and Google Code (http://code.google.com).

 django.contrib Add-Ons
 There are a few Django applications that come bundled with the Django core distribution. These add-ons
tend to be generally useful for web development, so they’re maintained and supported just like the core.
You’ve already seen a couple of the more useful contrib packages: django.contrib.admin , which
generates the administration site, and django.contrib.auth , which handles user authentication. Here
are some of the other Django contrib packages:

❑ django.contrib.comments : A framework for enabling visitors to your site to leave their com-
ments about the content. It has facilities for accepting comments from registered users or from
anonymous unregistered users. A commenter can do things like provide ratings, attach images,
and acquire a good (or bad) reputation over time. There is even a way for the administrator to
moderate the comments to keep out offensive posts.

❑ django.contrib.databrowse : Introspects Django models and generates a website for brows-
ing them. Unfortunately, this package is not available on the 0.96 version of Django, so you’ll
have to upgrade to a later version to get it.

❑ django.contrib.flatpages : Serves HTML content from a database and enables you to man-
age it from the Django admin interface. It also includes an API that you can use from any Python
code to access that content. You might use flatpages if you find it convenient to store simple,
static content in a database.

❑ django.contrib.redirects : Enables you to store and manage URL redirect information in
the database. It intercepts any 404 (Not Found) errors raised by a Django application and looks
in the database to see if that resource has moved. If so, the requestor is redirected to the new
location; if not, the 404 is processed as usual. You might find this application useful if you need
to move content around and change URLs frequently.

c10.indd 320c10.indd 320 9/7/07 11:29:17 AM9/7/07 11:29:17 AM

Chapter 10: Advanced Django Topics: AJAX, RSS, and More

321

❑ django.contrib.sites : Enables you to handle multiple websites from a single Django instal-
lation. It is especially useful if your sites share some content because you don’t have to maintain
multiple copies of the content — just share it between multiple sites. The sites also share the
Django admin interface, which makes it easier for one person to manage multiple sites. Several
of the other contrib add-ons make use of the sites framework when generating their content.

❑ django.contrib.sitemap : Automates the generation of sitemap XML files, which search
engines use to index your site and to keep track of content changes and the relative importance
of the pages. This framework enables you to express the contents of sitemap files in Python
code rather than XML.

❑ django.contrib.syndication : Enables you to generate RSS and Atom feeds from your site.
Users of your site can use RSS or Atom syndication to get automatic notification of content up-
dates. Later in this chapter, you’ll see a detailed RSS example that uses this add-on.

 Other Add-Ons
 Several people have built add-ons for Django that could be useful in particular situations, but aren’t gen-
eral enough or aren’t mature enough to be included in the django.contrib distribution. Browse
through the following list to see if there’s something you can use (and for even more add-ons, visit
 http://code.djangoproject.com/wiki/DjangoResources):

❑ django-registration : This is a simple user-registration application that implements a
typical self-registration model. The user requests an account and is e-mailed a registration link
that, when clicked, activates the account. The code and details for this application are at
 http://code.google.com/p/django-registration/ .

❑ django-databasetemplateloader : This is a custom template loader engine that gets its
templates from a database rather than the file system. You can get details and code at
 http://code.google.com/p/django-databasetemplateloader/ .

❑ django-tagging : This Django application manages the association and retrieval of tags with
model objects. You could use it to implement a social tagging site like http://del.icio.us .
You can get details and source code at http://code.google.com/p/django-tagging/ .

❑ django-xmlrpc : This application provides a way to make your views available as XML-RPC
 interfaces. XML-RPC is a simple protocol for web services that lets you enable other
applications to use your Django application. You can get the code at
http://code.google.com/p/django-xmlrpc/ .

 RSS in Detail
 In this section you’ll see how to add RSS to the example blog application using the
django.contrib.syndication framework. You’ll see how easy it is to add RSS feeds that can
alert your viewers to new blog posts.

 Syndication feeds are just small XML documents that contain a few standard fields. These fields describe
the feed, the current items in the feed, and URLs for each item. RSS and Atom are two similar means of
accomplishing syndication, and Django supports both of them directly. This example focuses on
 generating an RSS version 2.0 feed, but Atom works the same way. Listing 10-8 shows an example RSS
 version 2.0 document that describes a blog feed with three current entries.

c10.indd 321c10.indd 321 9/7/07 11:29:17 AM9/7/07 11:29:17 AM

322

Part III: Django

 Listing 10-8: An RSS feed

 1 <?xml version=”1.0” encoding=”utf-8”?>

 2 <rss version=”2.0”>

 3 <channel>

 4 <title>Latest blog entries</title>

 5 <link>http://localhost:8000/feeds/latest</link>

 6 <description>The most recent blog

 entries</description>

 7 <language>en-us</language>

 8 <item>

 9 <title>My First Blog</title>

10 <link>http://localhost:8000/simpleblog/blog/1/

 </link>

11 <description>Not very exciting, but here it is.

 </description>

12 <guid>http://localhost:8000/simpleblog/blog/1/

 </guid>

13 </item>

14 <item>

15 <title>This is the blog title</title>

16 <link>http://localhost:8000/simpleblog/blog/3/

 </link>

17 <description>This is the blog text. There’s...

 </description>

18 <guid>http://localhost:8000/simpleblog/blog/3/

 </guid>

19 </item>

20 <item>

21 <title>My Second Blog</title>

22 <link>http://localhost:8000/simpleblog/blog/2/

 </link>

23 <description>Here we go again....</description>

24 <guid>http://localhost:8000/simpleblog/blog/2/

 </guid>

25 </item>

26 </channel>

27 </rss>

 There are two main items of interest in this listing:

❑ The feed channel itself is described in lines 4 through 7. The <link> is the URL from which this
document is available.

❑ Each of the <item> elements (lines 8–13, 14–19, and 20–26) describes one of the blogs being
 syndicated by this feed. They contain the same type of information as the channel itself, includ-
ing a URL for each item. You can see in the <link> lines (line 10, for example) that the URL is
just the absolute URL for each blog entry’s blog_detail page.

c10.indd 322c10.indd 322 9/7/07 11:29:18 AM9/7/07 11:29:18 AM

Chapter 10: Advanced Django Topics: AJAX, RSS, and More

323

 Creating the RSS Feed
 It would be completely straightforward to write the Django template and the view method that generate
this document, but the django.contrib.syndication framework makes it dead easy. To create an RSS
feed for your site, you need to create a URL for it. Add the following expression to urlpatterns in
 urls.py :

 (r’^feeds/(?P<url>.*)/$’, ‘django.contrib.syndication.views.feed’,

 {‘feed_dict’: feeds}),

 This pattern associates the Django syndication view (django.contrib.syndication.views.feed)
with URLs that include /feeds/ url . The feed_dict argument to the URL pattern is a dictionary that
maps from feed name (the url) to the class that generates the feed content. Although you could make
lots of feeds, you’ll just make one feed for this example, so add the following dictionary to urls.py :

 from simpleblog.dblog.feeds import LatestEntries

feeds = {

 ‘latest’: LatestEntries,

}

 This dictionary associates the /feeds/latest URL with the LatestEntries feed class. The next step is
to write that class.

 Writing the LatestEntries Feed Class
 The LatestEntries class must be a subclass of the django.contrib.syndication.feeds.Feed
class, which defines the methods required for the syndication framework. You can put the
 LatestEntries class anywhere you want, but it’s convenient to put it in its own file, called feeds.py ,
in the same folder with models.py and views.py . Listing 10-9 shows a simple feeds.py that syndi-
cates the three newest blog entries.

 Listing 10-9: RSS feed class

 1 from django.contrib.syndication.feeds import Feed

 2 from simpleblog.dblog.models import Blog

 3

 4 class LatestEntries(Feed):

 5 title = “Latest blog entries”

 6 link = “/feeds/latest”

 7 description=”The most recent blog entries”

 8

 9 def items(self):

10 return Blog.objects.order_by(‘-post_date’)[:3]

11

12 def item_link(self, blog):

13 return “/simpleblog/blog/%d/”%blog.id

 Lines 5, 6, and 7 of this listing fill in the title , link , and description elements of the RSS XML docu-
ment (as previously shown on lines 4, 5, and 6 in Listing 10-8). On lines 9 and 10, the items() method
returns a list of Blog objects retrieved using the Django model. The ‘-post_date’ retrieves the list
sorted by date in descending order, and the [:3] selects the most recent three entries from that list.

c10.indd 323c10.indd 323 9/7/07 11:29:18 AM9/7/07 11:29:18 AM

324

Part III: Django

Figure 10-4

 Each subelement of the <item> element is filled in using information from the Blog object. The title
element and the description element are filled in using two templates. By default, the templates are
named < url_prefix >_title.html and < url_prefix >_description.html , where <url_prefix> is
 feeds/latest in this case. These templates receive two context variables: obj is an object from the list
returned from items() , and site is an object from the Django sites framework.

 These two templates won’t be elaborate. They just need to return a small piece of text, so they are both
one-liners. For the feeds/latest_title.html template, you just need to return the Blog title like this:

 {{ obj.title }}

c10.indd 324c10.indd 324 9/7/07 11:29:18 AM9/7/07 11:29:18 AM

Chapter 10: Advanced Django Topics: AJAX, RSS, and More

325

 For the feeds/latest_description.html , you can use the truncatewords template filter to return
the first 10 words of the blog entry content like this:

 {{obj.content|truncatewords:10}}

 There are two ways to specify the link subelement of the <item> element. You can define a get_
 absolute_url() method on the item returned in the items() list, or you can define an item_link()
method in the feed class that, given an object, returns the URL to that object. Listing 10-9 defines an
 item_link() method (lines 12 and 13) that returns the URL using the Blog object’s primary key.

 Accessing the RSS Feed
 Now that all the pieces are in place, you can access the new RSS feed. Figure 10-4 shows how Firefox
 displays the /feeds/latest URL.

 The three latest blog entries are shown, along with the titles and descriptions you just implemented. At
the top, Firefox gives some options for subscribing to the feed.

 Be aware that the syndication framework generates absolute URLs for the feed links by adding the
 sites framework’s notion of the site domain before the URLs that you provide (such as /feeds/
latest). If you haven’t configured the domain of your site using the Django admin interface, you’ll see
links like http://example.com/feeds/latest , which won’t work unless you happen to be building a
site for example.com Inc.

 Follow these steps to change the site domain:

1. Log in to the admin site and click the Change link for Sites, as shown in Figure 10-5 .

Figure 10-5

c10.indd 325c10.indd 325 9/7/07 11:29:22 AM9/7/07 11:29:22 AM

326

Part III: Django

2. Select the example.com domain name, as shown in Figure 10-6 .

Figure 10-6

3. Change example.com to a domain name that will work for your installation. You can specify
 localhost:8000 if you’re using the development server on the same machine as your browser;
otherwise, you need to use a real domain name. Figure 10-7 shows how to configure the devel-
opment server for local access.

4. Enter a display name that matches the domain name you entered in step 3 and click Save to
commit your changes. Now any absolute URLs should have the correct domain name, and all
your feeds will work from any location.

5. Provide a link so that readers can find your RSS feed. For example, add the following line to the
 footer section of the base template to have that link show up on every page:

 Subscribe to rss

 Now users can find and subscribe to your RSS feeds.

c10.indd 326c10.indd 326 9/7/07 11:29:22 AM9/7/07 11:29:22 AM

Chapter 10: Advanced Django Topics: AJAX, RSS, and More

327

 Deploying Django with Apache HTTPD
 The Django development server is great for developing your code and some light testing, but when it’s
time to go live, you need a production-quality server. The Django folks recommend the Apache HTTP
Server with the mod_python extension, so that’s what you learn about in this section. Other deployment
options are similar and are documented at www.djangoproject.com/documentation/ .

 Installing and Configuring Apache
 Follow these steps to configure the Apache HTTP Server:

1. If you haven’t already installed Apache, consult the appendix for instructions.

2. Download the latest version of mod_python from www.modpython.org/ . (The examples in this
section were developed using version 3.3.1, but another version greater than 3 will probably
work for you too.)

❑ For UNIX, download and build the source according to the instructions on the modpython site.

❑ For Windows, you can download one of the Win32 binaries, but make sure you get the
 binary that matches your Python version (2.3, 2.4, or 2.5) and your Apache version (2.0 or
2.2) or you’ll be hating life. The Win32 binary is an installer package that finds your
Apache installation and installs into it automatically.

Figure 10-7

c10.indd 327c10.indd 327 9/7/07 11:29:23 AM9/7/07 11:29:23 AM

328

Part III: Django

3. Configure the Apache server to load the mod_python module. Edit your httpd.conf file and
find the section with the LoadModule statements. Add the following line to that section:

 LoadModule python_module modules/mod_python.so

4. If you’d like to test your mod_python installation, follow the instructions at
www.modpython.org/live/current/doc-html/inst-testing.html .

5. Add the section shown in Listing 10-10 to the end of httpd.conf to tell Apache how to find
your Django application.

 Listing 10-10: mod_python apache configuration

 1 <LocationMatch “/(simpleblog|admin|accounts|feeds)”>

2 SetHandler python-program

3 PythonHandler django.core.handlers.modpython

4 SetEnv DJANGO_SETTINGS_MODULE simpleblog.settings

5 PythonDebug On

6 PythonPath “[‘C:\some\path\here\dblog’]+sys.path”

7 </LocationMatch>

 If you examine the URL patterns in urls.py , you’ll see that there are four top-level URLs in the
 simpleblog application:

❑ /simpleblog : The main application

❑ /admin : The Django administration interface

❑ /accounts : The user account management pages

❑ /feeds : The RSS syndication feeds

 In Listing 10-10 , the <LocationMatch> directive configures all four of these locations. Line 2 tells
Apache that these URLs should be handled by the mod_python module rather than just being read as
files from the file system. Line 3 tells the mod_python module that the requests will be handled by the
Django modpython request handler.

 Line 4 configures an environment variable that Django relies upon to find the settings.py file. Recall
that settings.py contains the database connection information and other important configuration
data. Line 5 turns on some debugging output, just in case something goes wrong. You’ll want to turn
debugging off on a production server so you don’t accidentally disclose sensitive information to a web
client. Line 6 adds the location of the simpleblog source code to the Python search path. You’ll have to
edit this example to reflect where you put your code.

 Configuring Other Items
 Now Apache knows how to find and run the code, but there are still a couple of pieces missing. Recall
that the development server served static data (CSS files, JavaScript, and so on) using the django
.views.static.serve view. You now need to configure Apache to serve those files. You can either add
some <Directory> directives to httpd.conf or just copy the directories that contain those files to
Apache’s htdocs directory. Here are the directories that need to be copied:

c10.indd 328c10.indd 328 9/7/07 11:29:24 AM9/7/07 11:29:24 AM

Chapter 10: Advanced Django Topics: AJAX, RSS, and More

329

❑ scripts/ : Contains the simpleblog JavaScript and CSS files. Copy this directory to
 htdocs/scripts .

❑ django/contrib/admin/media : Contains the static files for the Django admin interface. You’ll
find this in your Python site-packages directory. Copy it to htdocs/media .

 That takes care of the static files, but there are still a few more configuration items to check. If you’ve
been using relative paths to your database file and template directory in settings.py , you need to
change them to absolute paths. Apache doesn’t run in the same directory as the development server, so
relative paths won’t work. Make this change by editing your settings.py file and make sure that
 DATABASE_NAME is the fully qualified absolute path to the SQLite database file. Also make sure that the
directory in TEMPLATE_DIRS is the absolute path to the root of the directory containing the template files
(the directory that contains the dblog/ and feeds/ subdirectories).

 Finally, fire up the Django admin site and check the site configuration as you did previously in Figures
 10-5 , 10-6 , and 10-7 . The absolute URL to the simpleblog application probably changed when you
moved from the development server to Apache.

 That’s it. Now your Django application is up and running on a production-ready server. As you’ve seen,
there are a few configuration items to consider, but it’s easy to switch back and forth after they’re both
set up.

 Summary
 This concludes our whirlwind tour of Django. In this chapter, you saw some ways to use Django for
sophisticated web applications. It’s easy to add MochiKit or any other JavaScript library to your Django
application, and Django’s support for different serialization formats makes communicating data between
the browser and the server easy.

 You saw some of the add-on applications that are available with the Django distribution or through other
sources. Some of these add-ons, such as the authentication framework, are useful for most websites. Oth-
ers, such as the syndication framework, can make the difference between a good site and a great one in
special situations.

 Finally, you saw how easy it is to take a Django application constructed using the built-in development
server and deploy it to the Apache HTTP Server. This production-ready server is the recommended
deployment platform for Django applications.

 That concludes Part III of this book. We hope we’ve given you a flavor for what you can do with
Django. For more details and up-to-date changes, be sure to consult the Django documentation site at
 http://www. djangoproject.com/documentation/ . In Part IV you’ll see some exciting tools and
techniques for enhancing the client side of your Rich Internet Applications.

c10.indd 329c10.indd 329 9/7/07 11:29:24 AM9/7/07 11:29:24 AM

330

Part III: Django

A Conversation with Django’s Adrian Holovaty

 Adrian Holovaty led the initial development and implementation of Django as lead developer for the
World Online web department at the World Company news organization located in Lawrence, Kansas.
He now develops websites for the Washington Post Company, but he continues to oversee Django devel-
opment. He spoke with us about software development in general and Django in particular in May 2007.

 Q: What motivated Django and how did it come about?

 Adrian Holovaty: I was working for a small web-development team at a small newspaper in Lawrence,
Kansas, and in a newspaper environment, the deadlines are pretty stringent. For example, our boss, the
top editor would say, “Oh, there’s a big news event that’s happened, and we’ve got a bunch of data that
we need to publish online” or “A presidential debate is happening tonight and we’d like our readers to
be able to interact with each other on the website and discuss the debate after it happens and can you
please build that in two hours?” That’s the really rapid deadline environment.

 We originally used PHP to get that stuff done, but it became unmaintainable and not very fun, so we
developed Django. We really didn’t set about to create a framework in the first place; it just sort of grew
out of the conventions that we had written over time.

 Q: What do you consider Django’s primary value to developers?

 AH: It’s the fact that they don’t have to reinvent all sorts of web development tools. So the classic web
developer’s path (at least the one that I took and that a lot of my friends have taken) is that you create a
website from scratch, you create website number two from scratch, you realize what the two sites have
in common, and you somehow extract common code — the commonalities. Then you build website
number three and you see, “Oh, it has this other thing; if only I could tweak it and remove some redun-
dancy, and I’ll create another abstraction . . .” and before you know it you’ve invented this framework.
So, what Django developers avoid primarily is going through those steps. Also, because there are thou-
sands or tens of thousands of people using it around the world, you have this shared community and the
shared knowledge of the “best-practices” way of solving problems.

 Q: How do you compare Django to something that gets more buzzword press like Ruby on Rails?

 AH: I’ve never actually used Rails. I’ve had no reason to use it. I’ve got Django. People tend to not do
very much research and to assume that Django is a response to it, that it’s a sort of a “me too” frame-
work. But actually, almost four years ago was when we started to piece it together. Rails was open-
sourced first, while Django was still a proprietary project. I remember the day that Ruby on Rails was
released we saw the announcement and went to the website. The other Django developers and I said to
ourselves, “Wow, this is a lot like Django but they do all this stuff really differently and it’s kind of
crappy . . . we’ll stick with Python and Django.”

 Also, we’ve deliberately not done much marketing because we’re not yet at version 1.0 and we have
some backwards-incompatible changes to make. But once we hit version 1.0, we’re going to definitely do
a screencast and some pretty exciting things in the marketing arena.

 Q: What kind of things do you do to generate the kind of buzz that Rails has?

 AH: They’ve had a lot of success with dissing the big boys, particularly Java. What I think they were
really successful in doing was introducing not just Rails and Ruby but the concept of a high-level
dynamic language. Java people, who are used to the compilation stage and a lot of configuration and
XML all over the place, saw Ruby on Rails and they thought, “Oh, wow, what a breath of fresh air.” So I

c10.indd 330c10.indd 330 9/7/07 11:29:25 AM9/7/07 11:29:25 AM

Chapter 10: Advanced Django Topics: AJAX, RSS, and More

331

think that the Java people who adopt Ruby on Rails aren’t necessarily into Ruby on Rails, they’re just
new to this concept of high-level languages. Ruby on Rails was a confirmation that this was actually
usable in a production setting. So I think that the fact that it was Ruby on Rails doesn’t really matter; it
was more that it was some high-level language.

 Q: Do you think that there’s any chance that languages like Ruby will drag the Java camp into lightweight
languages?

 AH: Oh, yeah. A rising tide lifts all ships. I consider myself friends with David Hansson of Rails. We both
live in Chicago. I had him over to play the Wii the other day. We may publicly tease each other’s frame-
works, but really, we’re on the same team. He put it very well one time; he said that we really shouldn’t
be fighting over a tiny piece of the pie, which is the dynamic language piece of the pie. We should,
instead, be trying to expand the pie and get users of legacy — I don’t want to use the term “legacy”
because that carries too much baggage — but environments like Java, C++, and PHP, especially, and Perl.
So if people migrate from those technologies to something like Ruby on Rails, I’m a happy camper. If
they migrate from something like that to Python, I’m also a happy camper.

 Q: How many people are on the development team? How is the team structured and what is the development
process?

 AH: We have seven or eight committers spread across the world. I’m in Chicago, with people in
 Lawrence, Kansas, where Django was created, and in the U.K., Australia, New Zealand, and Germany.
Many of those people I’ve never actually met in person. I still get a kick, to this day, out of the fact that
there are people whom I haven’t met in person who contribute brilliant code. It’s just astounding.

 We keep the number of committers deliberately small. The reason is we prefer quality over quantity
when it comes to getting committers and also making changes to the code base. Although we do make
changes on an almost daily basis to the Django trunk, to the subversion repository, it’s not an over-
whelming amount. We’re trying to hit the sweet spot in terms of making smart improvements and not
making too many.

 The process is pretty standard when it comes to open source projects. We’ve got a bug-tracking sys-
tem that anyone can use. Anyone can submit a bug or a patch or a feature request. As soon as that gets
logged in there, we have a team of ticket triage people, not included in the seven or eight committers,
who are a second rung of people who look at every single change that comes in, every request that
comes in, every ticket. First of all, they verify that it’s a problem or whether it’s a good idea. In some
cases, they’re not qualified to make the decision, so they say “design decision needed,” and that flags it
for some of the committers on the mailing list to discuss. Then it gets shot over to the committers, and
we take care of it.

 Patches work the same way. People can submit a patch and that triage team will take a look at it and
make sure that it applies cleanly, make sure the code matches our standards, and make sure that it actu-
ally fixes the problem without breaking any other stuff. That triage level was something that we imple-
mented maybe two months ago, and it’s just revolutionized development and streamlined it in so many
good ways. Before then, the committers would haphazardly choose random tickets in the ticket system
whenever we had free time, so it’s a lot more efficient now.

 Q: You mentioned that you’re coming up on a version 1.0 release. What drives your product vision? How do
you decide on priorities and releases?

 AH: The main criterion that we always have in the back of our heads is, whatever proposed change is
being talked about, does that actually help in the real world? That philosophy stems from the fact that
this was a proprietary project for two years back when I was working for the team in Kansas. It wasn’t
until two years after we first conceived the framework that it was open source. Because of that, we have

c10.indd 331c10.indd 331 9/7/07 11:29:25 AM9/7/07 11:29:25 AM

332

Part III: Django

very focused design decisions. Because it was two or three people working on this full-time for a couple
years, it didn’t have the “design-by-committee” feel that some open source projects have.

 Because of that history, we are very oriented toward, “Does this proposed change fit in with our
 philosophy? Does it fit in with our look and feel? Does it actually help people in the real world? ”

 Q: Why did you decide to take Django from proprietary to open source?

 AH: That’s a really good question. It’s for a number of reasons. One, we wanted to give something back
to the open source community. That web operation used open source for everything from Apache and
PostgreSQL, sendmail . . . The company also owned an ISP, which could pretty much thank open source
for being profitable in the first place. If it weren’t for open source technologies, it would have to be pay-
ing all these license fees and it probably wouldn’t be in the black. So, there’s that feel-good reason for
wanting to give something back.

 Another reason was we were releasing a commercial content-management system for newspapers
called Ellington, named after Duke Ellington. Ellington was built on Django, so in order to get the word
out about it, we figured that if we open-sourced the underlying framework, that would at least give
some buzz to Ellington. And indeed it has. Ellington has been tremendously successful.

 Another thing was, hiring people. As a small web-development shop in the middle of Kansas, you
don’t really get top-notch job applicants. Sometimes you do, but it’s hard to convince people to move to
a small town in Kansas. So we figured, if we open-sourced this and it gains traction, that community of
people using it will be very ripe to hire people from. Not only would the Kansas operation have an
easy way to find people who know the technology, but these people would have no need for training.
Before we had an open source Django, we would hire a Python programmer, and that Python program-
mer would require some training in the framework that we developed because it was this proprietary
thing. By open-sourcing it, they removed that. Since we open-sourced Django almost two years ago, that
web-development team in Kansas has hired at least three, maybe four, people from the community who
are just top-notch developers.

 Another thing: open-sourcing the framework encourages contributions from people all over the
globe. That’s obvious. That’s a no-brainer. We figured that if we open-sourced Django, we would get all
sorts of contributions from people who were using it in a variety of ways that we never even thought of.
One of the first big contributions after we open-sourced it was the internationalization framework.
There’s no way a tiny newspaper in the middle of Kansas would have ever needed internationalization,
but we got it for free because we open-sourced it and a fellow in Germany worked with a group of other
Django developers and put that together. So now, because Django now has internationalization,
 Ellington, the commercial product that the operation is selling, now has that functionality.

 Q: Unlike some of the other open source frameworks, you don’t include a bunch of other open source tools
bundled in with Django. Why did you decide to structure it that way?

 AH: That’s an artifact of how we started almost four years ago. We did look for existing Python frame-
works and tools that we could somehow build on top of, but that long ago there really wasn’t anything
that great. We looked at the Cheetah templating system, the CherryPy, and they were okay, but Simon
Willison and I, the people who were originally building this, were and still are very picky web develop-
ers. So the stuff that was already out there just wasn’t up to snuff.

 Since we’ve open-sourced it, obviously there are all sorts of other Python libraries available now.
And some of them are actually pretty good, but we’re pretty committed to being the one, very, very
easy-to-use, full-stack framework. There are a number of benefits in being full-stack rather than being a
collection of disparate pieces, such as, there’s only one place to go for documentation. You don’t have “for
the database layer, you go over here” and maybe it’s not really written that well, and “for the template
language, you go over here” and the pieces don’t really know about each other so there’s no cohesive

c10.indd 332c10.indd 332 9/7/07 11:29:25 AM9/7/07 11:29:25 AM

Chapter 10: Advanced Django Topics: AJAX, RSS, and More

333

 documentation about how to use the pieces together — let alone the differences in styles and quality of the
documentation.

 Documentation is something we take very seriously. I’m a journalist by training. I’ve always worked
at newspaper websites. We have pretty stringent guidelines on our documentation in terms of the qual-
ity, the style, the grammar, and just the coverage, the breadth of the documentation. That’s an obvious
benefit.

 There’s a pretty obvious benefit in the fact that it all just works. You don’t have to worry about this
obscure error message in this layer versus this other layer that doesn’t interact with it that well.

 With that said, the various bits of Django are pretty loosely coupled, so just because it comes in one
package doesn’t mean that it is all this amalgam of spaghetti code. You can just use the Django template
system, or just use the database layer, or use another template system with Django.

 Q: We read that you’re working for The Washington Post now. Coming there as a new person, how do you
go about evangelizing tools like Django and Python in an organization that may have its own way of doing
things?

 AH: I kind of lucked out because, how can I put this, the newspaper industry is really backward when it
comes to the Internet, and there aren’t a lot of people who know how to use technology well in a journal-
ism setting. Because I had that experience and they were pretty keen on hiring me, I essentially was
given carte blanche in deciding which technology to use. So it was easy for me. I just said, “I’m not going
to work here unless it’s Python,” and they said, “Okay.” Another thing is journalists don’t know about
technology, so they’re willing to defer to you. It was really easy.

c10.indd 333c10.indd 333 9/7/07 11:29:26 AM9/7/07 11:29:26 AM

c10.indd 334c10.indd 334 9/7/07 11:29:26 AM9/7/07 11:29:26 AM

Part IV

Advanced Client-Side
Topics

Chapter 11: MochiKit—Pythonic JavaScripting

Chapter 12: Flash-Based Interfaces and TurboGears

c11.indd 335c11.indd 335 9/7/07 11:30:20 AM9/7/07 11:30:20 AM

c11.indd 336c11.indd 336 9/7/07 11:30:21 AM9/7/07 11:30:21 AM

 MochiKit — Pythonic
JavaScripting

 Once in seven years I burn all my sermons; for it is a shame if I cannot write better
sermons now than I did seven years ago.

— John Wesley

 Rather like the prescription to start fresh periodically offered by the founder of Methodism,
 JavaScript (in the opinion of many frustrated web developers) should have taken a trip back to the
drawing board at least a couple of times for a complete rewrite. Since its inception and deploy-
ment in Netscape 2 in 1995, JavaScript (now officially referred to as ECMAScript), has undergone a
number of ad hoc repairs, but it’s still the same basic language: syntactically similar to languages
like Java and C, but with semantics that are utterly different and an object model unrelated to and
largely incompatible with Java or Python.

 Small wonder that as the need for a robust in-browser language has grown from nice-to-have to
absolutely critical, a number of generally similar JavaScript library collections have appeared in
the open source community. Perhaps unsurprisingly, Django and TurboGears are the epitome of
tough employers when it comes to libraries and frameworks. Although they are both quite capable
of working with a number of underlying frameworks, they will toss the current choice aside when
something better comes along. TurboGears, for example is being re-based to move to Genji and
SQLAlchemy. In the case of the preferred JavaScript library, though, it’s unlikely that either Django
developers or TurboGears developers will want to move away from MochiKit — it’s quite simply
the best of its ilk. Not only that; its design center makes it something that most definitely appeals
to Pythonists.

c11.indd 337c11.indd 337 9/7/07 11:30:21 AM9/7/07 11:30:21 AM

338

Part IV: Advanced Client-Side Topics

 Why MochiKit?
 Why should you even bother with a JavaScript library at all? If you are doing something very simple,
with perhaps one or two method calls, no AJAX handling, no manipulation of page elements, you may
not even need JavaScript (or even need to read this book, for that matter). On the other hand, if you are
developing Rich Internet Applications (RIAs) of even moderate complexity, you are probably writing
lots of JavaScript — which is not likely to be a joyful experience. MochiKit’s avowed aim is to make this
side of RIA development less painful, or in the words of MochiKit’s creator, Bob Ippolito, “MochiKit
makes JavaScript suck less.”

 JavaScript is often considered a rather chaotic language — strangely familiar in some ways (at least if
you are a C or Java programmer), but curiously unlike C-based languages in other ways. In the early
Web era, JavaScript was used primarily to handle fairly simple on-page tasks; thus, it really didn’t need
to be a hugely capable language. Because JavaScript usually didn’t have to do anything beyond
the occasional page animation, there was little compromise in user experience regardless of whether the
JavaScript in a page actually worked or not.

 In truth, because the page could work quite well with or without JavaScript, developers didn’t work
exceptionally hard to assure that a particular piece of scripting worked in multiple browsers or in multi-
ple versions of the same browser. In the early days, JavaScript developers almost always tossed in a cod-
ing convention that effectively exempted the browser from the responsibility of either interpreting or
supporting JavaScript code. It essentially said, “Feel free to ignore the JavaScript altogether.” You’ve seen
the following type of convention used in the code examples in this book, or perhaps used it in your own
code development:

 <script type=”text/javascript”>

//<![CDATA[>

... JavaScript methods here ...

//]]>

</script>

 This is a kind of throwback to a simpler time when JavaScript was very much an afterthought — a vesti-
gial part of the browser’s implementation. Now however, pages and applications are far more interac-
tive, and the RIA model levies a much higher performance and capability requirement on any in-browser
language. Thus, the importance of JavaScript working correctly across browsers and browser versions as
a modern object-based language has grown more critical. Although it was considered broken as a lan-
guage by many developers, and vilified by many more, JavaScript has become a better language over
time (see Figure 11-1). ActionScript (discussed in detail in Chapter 12, “Flash-Based Interfaces and
 TurboGears,”) is used as the implementation language for Adobe Flex in an effort to create a more
robust, rigorously specified form of JavaScript, but the bottom line is that most developers have to learn
to work with basic JavaScript. Nothing better is going to suddenly and magically emerge. However, the
MochiKit library can make JavaScript more tractable, generally easier to work with, almost as exciting,
and more Pythonic .

 A most important, even critical, event occurs early on in the timeline shown in Figure 11-1 : the appear-
ance and support for XMLHttpRequest (XHR) in Internet Explorer 5. Because of XHR, communications
with server-side functionality was revolutionized, and static web pages suddenly came alive with con-
tent asynchronously contributed after page load. Amongst all the other capabilities enabled by modern
JavaScript, this one is the critical differentiator.

c11.indd 338c11.indd 338 9/7/07 11:30:23 AM9/7/07 11:30:23 AM

Chapter 11: MochiKit — Pythonic JavaScripting

339

 Although it’s clearly visible, XHR almost seems to be a footnote in history. It was lurking in the back-
ground, seemingly unnoticed, until Google made a huge splash with it by basing all their features, from
Google Maps to GMail, on it.

 To better understand the need for a unifying JavaScript library, consider the requirements of implement-
ing and handling an XHR. You have probably written a wiring diagram like Listing 11-1 many times in
creating responsive, server-backed RIAs. This example is excerpted from a companion book in this
series, Professional Rich Internet Applications: AJAX and Beyond (Wiley Publishing, 2007).

 Listing 11-1: XMLQueryExample.html (excerpt)

 <script type=”text/javascript”>

var xmlhttp = false;

 function onLoad() {

 if (window.XMLHttpRequest) {

 xmlhttp = new XMLHttpRequest();

 xmlhttp.overrideMimeType(‘text/xml’);

 } else if (window.ActiveXObject) {

 xmlhttp = new ActiveXObject(“Microsoft.XMLHTTP”);

 }

 }

...

 function queryHandler(url) {

 try {

 netscape.security.PrivilegeManager.enablePrivilege

➦

 (“UniversalBrowserRead”);

 } catch (e) {

 }

Figure 11-1

Modern
TimesM

acrom
edia Flash 7

Adobe Flex 8

ECM
AScript, Edition 1

ECM
AScript, Edition 3

JavaScript 1.1

1995 1997 1999

JavaScript 1.2
JavaScript 1.3
JavaScript 1.4

JavaScript 1.5
JavaScript 1.6

ActionScript 2.0 ActionScript 3.0

XHR support in
IE 5

Client-side
validations and
forms

Client-side Flash
components

Cambrian
Explosion

Client-side AJAX
libraries plus Rails,
TurboGears,
GWT, Django,
Cometd with Bayeux,
and more

2004 2006

Ancient
Times

(continued)

c11.indd 339c11.indd 339 9/7/07 11:30:23 AM9/7/07 11:30:23 AM

340

Part IV: Advanced Client-Side Topics

 Listing 11-1 (continued)

 if(url !== “”){

 xmlhttp.open(‘GET’, url, true);

 xmlhttp.onreadystatechange = function() {

 if(xmlhttp.readyState == 4 && xmlhttp.status == 200) {

 // update the document DOM

 } else {

 // do something else

 }

 };

 xmlhttp.send(null);

 }

 }

...

 function doQuery() {

 var uri =

➦

 “http://api.search.yahoo.com/ImageSearchService/V1/

➦

 imageSearch?appid=YahooDemo&query=orange

➦

 +&results=1&output=xml”;

 queryHandler(uri);

 }

</script>

<button onClick=”doQuery()”>Do Something</button>

 Without diverting your attention with a lengthy explanation of what’s going on in this listing, the fol-
lowing brief walkthrough is provided to illustrate that this is a fairly standard (and tedious) stanza of
code that you don’t want to have to write every time the code in your web pages talks with a server, nor
do you want to have to look it at every time you debug your code.

 What happens in the code is typical of the wiring you must create to effect communications with a back-
end service. You declare a variable (xmlhttp) that will, depending on the browser running this code, cre-
ate either a new ActiveXObject (if the browser is Internet Explorer), or an XMLHttpRequest object (for
everyone else). That’s the first point of pain you would like to avoid — browser testing. Next, notice that
the first thing you do in handling the query is another browser-specific check (netscape.security
.PrivilegeManager.enablePrivilege) — another point of pain. Then there’s remembering to
 specify a callback handler in doQuery , and handling the results in the callback (queryHandler) itself.
Could this last item — having to test completion states and mining the results of the xmlhttp object —
be any more of a pain?

 Clearly, it would be better to create abstractions for all this manipulation, and this is only one aspect of a
modern RIA. Consider all the repetitive code you find yourself writing to perform the simplest of tasks,
like analyzing or manipulating the document’s DOM.

 What to do? Well, of course you can do what we developers always do, which is to create another level
of abstraction. In fact, as JavaScript became more critical to RIAs, this is exactly what the open source
community did. The community started sharing snippets of commonly required JavaScript in places
such as SourceForge. However, as often happens with this approach, many code collections had no qual-
ity control, and worse yet, little or no functional coherence. Individual library efforts varied vastly in

c11.indd 340c11.indd 340 9/7/07 11:30:25 AM9/7/07 11:30:25 AM

Chapter 11: MochiKit — Pythonic JavaScripting

341

terms of how well they were written, how well they worked, how well-supported they were (especially
over the long haul), and how easy they were to use. Another issue was that they usually defined global
functions or variables that frequently conflicted when integrating with other scripts.

 Over time, though, a few winners began to emerge. One of the biggest winners in terms of its Pythonic
point of view is Bob Ippolito’s MochiKit.

 What Is MochiKit?
 MochiKit is a library implemented in JavaScript, but it sometimes resembles Python in its design
approach. It’s available at www.mochikit.com . MochiKit is medium-sized library that focuses on simpli-
fying JavaScript and provides extensible enhancements such as a framework for defining and handling
events. MochiKit is included in the TurboGears web application framework. MochiKit is said to be
 Pythonic , because many of its method calls emulate a Python coding style, and because its creator, Bob
Ippolito, comes from a Python development background.

 MochiKit is medium-sized in comparison to certain other JavaScript libraries such as Dojo Toolkit and
Yahoo! UI Library (YUI), because it has a running size of around 300KB (with a base script size of a little
over 100K on load) as compared with Dojo’s and YUI’s over-3.5MB running size. Even so, MochiKit has
complete functionality with affordances for DOM manipulation, browser-independent logging, AJAX
and callback handling, special effects (ported over from the popular script.aculo.us library,) and a
host of other handy usability features.

 Bob Ippolito initially released the MochiKit library in July of 2005. His primary goal at that time was to
provide a well-documented and tested library that didn’t interfere with normal JavaScript. Python,
which heavily influences the library, adds functional programming capabilities to JavaScript and incor-
porates many ideas from Twisted and other Python-related frameworks and libraries. MochiKit cur-
rently comes bundled with TurboGears.

 What’s Inside MochiKit?
 MochiKit packages all of its included subpackages in such a way that you can invoke any MochiKit func-
tionality simply by including MochiKit.js in a single <src/> tag in your HTML (or template file), like
this:

 <script src=”/static/javascript/MochiKit/MochiKit.js”

type=”text/javascript”></script>

 MochiKit is lazily loaded though (an advantage of good namespace packaging and separation), so not all
of the various library pieces are loaded initially. The base load is under 200KB, which is well within the
range of most end users’ network capacity.

 As is common with Python and other languages, you can use just the capabilities that you need in an
application. Thus, you can source the DOM manipulation library by including only MochiKit.Dom , or
the AJAX library with MochiKit.Async . The following table describes MochiKit’s modules and their
capabilities.

c11.indd 341c11.indd 341 9/7/07 11:30:26 AM9/7/07 11:30:26 AM

342

Part IV: Advanced Client-Side Topics

 Module Functionality

 Async Responsible for wiring up outbound AJAX calls and handling the asynchronous
results of the call.

 Base Makes certain things in JavaScript behave rationally, such as comparisons
between objects and array operations.

 Color Provides convenience and conversion functions for dealing with the differing
representations of color on the Web.

 DOM Well-formed HTML conforms to an XML document object model (DOM). The
DOM functions enable you to manipulate (add, replace, and delete) a document’s
tagged elements from inside the document.

 DateTime Date and time convenience functions.

 DragAndDrop Adds visual drag-and-drop capabilities to a page. This was added to MochiKit
prior to the introduction of the MochiKit.Visual library, so it is not implemented
as a script.acluo.us port.

 Format Includes useful precision string formatting functions.

 Iter Implements a very Pythonic iteration syntax.

 Logging A browser-agnostic solution for logging. (As Mochikit.org points out, “We’re
all tired of alert() .”)

 LoggingPane Works across browsers. (As opposed to Firebug, which is fabulous and a devel-
oper must-have, but is a Firefox-only solution.)

 Signal Provides generic event-handling capabilities.

 Sortable Unusual library that enables you to drag and drop DOM elements on a structured
basis.

 Style Cascading Style Sheets (CSS) helper functions.

 Visual A special visual effects library.

 The following sections describe some of MochiKit’s parts individually, beginning with the
AJAX- handling abstractions. Rather than offering an exhaustively long discussion of each of MochiKit’s
 sublibraries, the focus is on some of the best features. For more detailed information, consult the online
reference documentation at www.mochikit.com .

 MochiKit.Async
 The inspiration for MochiKit’s AJAX support was the Twisted event-driven networking framework in
Python. The core of this implementation is the concept of a Deferred object as an abstraction for any
asynchronous operation in JavaScript. You can create deferred objects that correspond to asynchronous
requests, and assign a collection of callback functions to be executed on successful or failed execution. It
also provides a useful loadJSONDoc function that enables you to make an XMLHttpRequest and get the
response as a JSON document.

c11.indd 342c11.indd 342 9/7/07 11:30:26 AM9/7/07 11:30:26 AM

Chapter 11: MochiKit — Pythonic JavaScripting

343

 As suggested in the previous section, creating an asynchronous request and setting up functions to han-
dle the successful and unsuccessful return could be made simpler, given a higher level of abstraction.
That’s exactly the point of the MochiKit.Async package. The Deferred object is created as a result of
making an outbound XMLHttpRequest . An easy way to explore this (and the other concepts in this
chapter) is to use the interactive interpreter at http://mochikit.com/examples/interpreter/
index.html . You can use this handy tool in much the same way as you would the Python command-
line interpreter. Figure 11-2 shows an example of using the interactive interpreter.

Figure 11-2

 Follow these steps to use the interpreter as shown in the figure:

1. Create a simple function that does something with the result from the XMLHttpRequest call. In
the figure, this function is as follows:

 showResult = function(xmlhttp){ alert(xmlhttp.responseText); }

2. Create another function to handle any errors that might occur:

 showErr = function(err){alert(err.text);)

c11.indd 343c11.indd 343 9/7/07 11:30:27 AM9/7/07 11:30:27 AM

344

Part IV: Advanced Client-Side Topics

3. Make the call itself:

 d = doSimpleXMLHttpRequest(“http://mochikit.com/examples/interpreter/index.html”);

4. Add callbacks for both result types, and link them to the deferred object:

 d.addCallbacks(showResult, showErr);

 In Figure 11-2 , the JavaScript functions have been entered and evaluated at runtime via the web-based
interpreter. As soon as the callbacks are added (shown at the bottom of the figure), they are invoked and
an alert box is displayed that contains the contents of the page returned in the XMLHttpRequest ’s
response text (see Figure 11-3).

Figure 11-3

 That’s really all there is to making a call. The following table shows additional method signatures on the
 Deferred object through which you can vary the handling of the result.

c11.indd 344c11.indd 344 9/7/07 11:30:27 AM9/7/07 11:30:27 AM

Chapter 11: MochiKit — Pythonic JavaScripting

345

 Method Signature Description

 d.addCallback(method_name) Adds a callback for the success case only

 d.addErrback(method_name) Adds a callback for the error case only

 d.addCallbacks(success_method_name, Adds both method callbacks
error_method_name)

 d.addBoth(method_name) Adds a single callback to handle both conditions

 The following table describes the methods for creating Deferred objects from XMLHttpRequest calls.

 Method Description

 doSimpleXMLHttpRequest(url) Creates a Deferred object from an XMLHttpRequest
using GET . The returned data are contained within an
XML stanza that must be parsed by the callback
method to be useful.

 loadJSONDoc(url) Creates a Deferred object from an XMLHttpRequest .
When the callback is triggered by successful comple-
tion, the result can be loaded directly into a JavaScript
object without additional XML processing.

 sendMXLHttpRequest(request, data) Creates a Deferred object from an asynchronous
 XMLHttpRequest .

 You saw some additional MochiKit.Async functionality in Chapter 7, “Advanced TurboGears Topics,”
where Listing 7-11 showed another variant of making an XMLHttpRequest and attaching a callback
method to the Deferred object. Here’s a stanza of code from controlpanel.kid :

 function displayTrucks(){

 __trucks = [];

 var d = loadJSONDoc(“${tg.url(‘/resourcelist’, tg_format=’json’)}”);

 d.addCallback(showTrucks);

}

 In this instance, the loadJSONDoc method was used because the contract with the controller logic was
guaranteed to return JSON. Here’s the correlated method signature from controllers.py :

 @expose()

@expose(“json”)

def resourcelist(self):

 ...

c11.indd 345c11.indd 345 9/7/07 11:30:30 AM9/7/07 11:30:30 AM

346

Part IV: Advanced Client-Side Topics

Call Restrictions
An astute observer will note that the outbound XMLHttpRequest shown in
Figure 11-2 made a call to the same site that served up the interpreter web page
(mochikit.com). If the call had been made to some other site (such as google.com
as shown in the first figure here), the call would have failed and an error callback
would have been fired (as shown in the second figure here).

Although this is not a MochiKit issue per se, it’s worth a minor diversion. The expla-
nation for why modern browsers restrict the call shown in Figure 11-2 is rooted in
concerns over desktop security that have arisen as a result of the clever misuse of
browsers to deliver nefarious code to unsuspecting end users.

c11.indd 346c11.indd 346 9/7/07 11:30:31 AM9/7/07 11:30:31 AM

Chapter 11: MochiKit — Pythonic JavaScripting

347

Originally browsers were equivalent to printing presses in that the user instantiated
a browser and typed in a URL, resulting in the end-to-end connection shown here:

Page served from HERE

WEB Server

Basic
Web

Application

You could even serve out web pages from your own host to test your HTML or your
server logic. Typically, in the Web 1.0 era, you could create this type of one-line
browser in Python:

python -m SimpleHTTPServer 8080 # for Python 2.4

(continued)

c11.indd 347c11.indd 347 9/7/07 11:30:31 AM9/7/07 11:30:31 AM

348

Part IV: Advanced Client-Side Topics

Call Restrictions (continued)

Or you could do this:

python -c “from SimpleHTTPServer import test; test()” # Python 2.3,

2.2

You then executed the file from the command line and served out the pages from the
folder for which the web server was started by accessing localhost:8080, as
 depicted here:

Page served from HERE

Data from HERE

Your Test
Web Server

XMLHttpRequest to
HERE

Basic
Web

Application

What you could not do is what you see in the next image — that is, route a request to
the web server that is serving up the page, pass the request to some other web server,
and have that web server return the page. Most browsers simply do not let the HTML
page served from one domain open a network connection of any kind to domains
other than the one that served up the HTML page.

Page served from HERE

Outbound data request to HERE

NO!!

Forwarding
Web

Application

The reason for this is that modern browsers prohibit cross-domain calls. The process
by which your page loads a request that originates from your browser and termi-
nates at http://mochikit.com/examples/interpreter/index.html cannot
hopscotch across to another site, fetch its content, and return that to your browser.

c11.indd 348c11.indd 348 9/7/07 11:30:32 AM9/7/07 11:30:32 AM

Chapter 11: MochiKit — Pythonic JavaScripting

349

 MochiKit.Base
 JavaScript is indisputably flawed as a language. Simple concepts such as object comparison just do not
work. Further, working with collection classes in general is nontrivial in the way that we Python devel-
opers have come to expect, and although the default collection class in JavaScript is a very nice and
Pythonic dictionary, even this does not work as expected (by a Python user) because JavaScript promotes
keys to String (although values may be any legal object). MochiKit.Base helps you cope with all
these annoyances and anomalies, as shown in the following examples.

 Object Comparisons
 JavaScript may appear insane in very basic ways to a Python programmer. For example, take a look at
this Python code:

 $ python

Python 2.4.4 (#1, Oct 18 2006, 10:34:39)

[GCC 4.0.1 (Apple Computer, Inc. build 5341)] on darwin

>>> a = [1,2,3]

>>> b = [1,2,3]

>>> a == b

True

 You would expect the True result, because Python’s comparison inspects the content of the arrays
deeply rather than asking whether the memory addresses are the same. This is what a rational developer
hopes for, and Python delivers it. But what happens if you try the same thing in JavaScript?

 Using MochiKit’s interactive interpreter, you could do the following:

 >>> a = [1,2,3];

[1, 2, 3]

>>> b = [1,2,3];

[1, 2, 3]

>>> a == b

false

 But this time the result is false . You would never want this result, and yet that’s what JavaScript gives
you. This is a simple demonstration of JavaScript insanity.

 The MochiKit.Base library fixes this. If you use the compare function, you get the following result:

 >>> compare(a,b);

0

Working around this sort of restriction is beyond the scope of this MochiKit
 discussion, and is even beyond the scope of this book, but a complete discussion of
the issue and workarounds can be found in the companion book in this series,
 Professional Rich Internet Applications: AJAX and Beyond (Wiley Publishing, 2007).

c11.indd 349c11.indd 349 9/7/07 11:30:33 AM9/7/07 11:30:33 AM

350

Part IV: Advanced Client-Side Topics

 This result follows the well known C/C++/Java convention that when the two objects being compared
are equivalent, 0 is returned; when the first is smaller than the second, -1 is returned, and when the first
is larger, 1 is returned as shown in the following code snippet:

 >>> c = [4,5,6];

[4, 5, 6]

>>> compare(a,c)

-1

>>> compare (c,a);

1

 MochiKit.Base also has a convenience function called objEqual , which you can use like this:

 >>>> objEqual(a,b);

true

>>> objEqual(a,c);

false

 Again you get just what you might hope for — reasonable and consistent results.

 So MochiKit fixes JavaScript cmparison brokenness. What else?

 Associative Arrays
 Both Python and JavaScript have the notion of associative arrays or dictionaries. The traditional and sane
Python method is to create a Python dictionary and populate it like this:

 $ python

>>> gamma = {}

>>> gamma[“life”] = 1

>>> gamma[“universe”] = 2

>>> gamma[‘everything’] = 42

 There’s also another way in Python to get dictionary-like behaviors. You could create an empty class and
just add attributes to it like this:

 $ python

>>> class Alpha: pass

...

>>> alpha = Alpha()

>>> alpha.life = 1

>>> alpha.universe = 2

>>> alpha.everything = 42

 Then you could reference the object instance’s attributes. This is an example of an unusual method for
creating a static (but not easily iterable) property and value pair, where the property name may be
thought of as a key.

 JavaScript attributes are rather like the second method. Again using the interactive JavaScript interpreter,
you could do the following:

c11.indd 350c11.indd 350 9/7/07 11:30:34 AM9/7/07 11:30:34 AM

Chapter 11: MochiKit — Pythonic JavaScripting

351

 (on mochikit.com/examples/interpreter/index.html):

>>> alpha = new Object();

alpha.life = 1;

alpha.universe = 2;

alpha.everything=42;

42

>>> alpha[“life”]

1

 One painful reality is that all keys are coerced to a string type, which may or may not make you happy.
Associated values retain their object type identity.

 MochiKit provides both keys and items methods, but not an elegant way of navigating key-value pairs,
as you can see here:

 >>> keys(alpha);

[“life”, “universe”, “everything”]

>>> items(alpha)

[[“life”, 1], [“universe”, 2], [“everything”, 42]]

 To move through key-value pairs (rather inelegantly compared to Python), you can do this:

 >>> key = keys(alpha)

>>> for (i in key) alert (“KEY>>>”+key[i]+” VALUE >>>”+alpha[key[i]]);

 The more you work with MochiKit.Base , the more you will grow to appreciate the way it provides a
myriad of JavaScript usability enhancements. This library contains several methods that range from
affordances for object creation and comparison, to better dictionary usability, manipulating dates and
times, improved array operations and iteration mechanisms, and a variety of string formatting and
manipulation functions.

 MochiKit.DOM
 MochiKit includes a large set of functions for DOM manipulation, including functions for adding,
replacing, and swapping out DOM nodes, elements, and attributes. Similar to script.aculo.us ,
MochiKit uses $() as a concise and useful encapsulation of the getElementById function. It also takes a
functional approach to the construction of documents that is quite powerful. But MochiKit’s real strength
is its ability to create, replace, and destroy DOM elements on the fly. The createDOM method makes a
new page DOM element according to the type specification provided as the method arguments. The
 following table describes the three DOM manipulations possible:

 Method Description

 appendChildNodes(parent, children...) Adds nodes via createDom and adds them to
the parent

 replaceChildNodes(parent, children...) Removes all subordinate nodes to the parent
and then appends children

 swapDOM(dest, src) Replaces dest with src , or nulls dest out if
 src is null

c11.indd 351c11.indd 351 9/7/07 11:30:34 AM9/7/07 11:30:34 AM

352

Part IV: Advanced Client-Side Topics

 MochiKit also supports aliases for HTML tag elements. Thus, as Figure 11-4 shows, the two expressions
of DOM creation will write identical DOM elements to the document (shown via the interactive
 JavaScript interpreter). In the first instance, the slightly more verbose createDOM notation is used. In
the second instance, the UL and LI synonyms are used.

Figure 11-4

 MochiKit.Logging
 MochiKit has an excellent browser-agnostic logging capability that includes several useful features. You
can write a message to the log at a specified level (such as debug or warn). This log can be captured in
the browser’s native JavaScript console (depending on the browser version), in a MochiKit console at the
bottom of the browser window, or in a MochiKit console in a separate window. The MochiKit console
also allows you to filter by log level or regular expression. When you want an independent logging and
debug window, you can simply add createLoggingPane() to create one. When you want a DIV at the
bottom of your browser window, use the alternate createLoggingPane(true) . Figure 11-5 shows an
example of the logging pane in use, with logging statements written to it.

 MochiKit.Signal
 MochiKit provides a powerful event handling system. This includes a replacement for the base event
API to handle events like onmouseover and onkeypress . It also enables you to define and broadcast
custom events. Even though all modern browsers (thankfully) implement in-page event handling, the
handling is frequently problematic, often for unseen reasons such as memory leaks in Internet Explorer.
 MochiKit.Signal gives you a easy-to-use model with a single, easy-to-remember API and consistently
working library. This in itself is a worthwhile reason for adoption.

c11.indd 352c11.indd 352 9/7/07 11:30:34 AM9/7/07 11:30:34 AM

Chapter 11: MochiKit — Pythonic JavaScripting

353

 Figure 11-6 shows an interactive visualizer session in which MochiKit.DOM is used as an alias for
 createDOM . In this session, a button is created with the ID MKBUTTON , and a callback function is allocated
to the button by the connect signal specification.

 The basic syntax for connecting a source, which can be either a string identifying the DOM element or a
JavaScript object, is simple and uniform:

 Connect(source_id_asString, signal_id_asString, method));

 Or

 Connect(source_object, signal_id_asString, method));

 An alternative signature is only slightly more complex:

 Connect(source_id_asString, signal_id_asString, dest, method);

Figure 11-5

c11.indd 353c11.indd 353 9/7/07 11:30:35 AM9/7/07 11:30:35 AM

354

Part IV: Advanced Client-Side Topics

 Or

 Connect(source_object, signal_id_asString, dest, method);

 In this form, the destination specifier is a JavaScript object or a method. If a non-null method is specified,
then it is applied to the object bound to dest .

 Additionally, note that the result returned by the Connect method is a unique identifier (a UID) for the
connection. If (similar to the toy code shown in Figure 11-6 showing input typed into the interactive
MochiKit interpreter), you had done

 var thisConnection = connect(“MKBUTTON”, “onclick”, buttonPressed);

 the variable thisConnection would actually be a UID.

Figure 11-6

c11.indd 354c11.indd 354 9/7/07 11:30:35 AM9/7/07 11:30:35 AM

Chapter 11: MochiKit — Pythonic JavaScripting

355

 Should you decide at some later point in the code to sever the connection, you could use the following
 disconnect method to do so:

 disconnect(thisConnection);

 And, as you might guess, there is a disconnectAll method as well, which severs all connections.

 MochiKit.Visual
 As this book is being written, MochiKit’s visual effect capability is the newest and possibly most exciting
of the library features. With MochiKit.Visual plus MochiKit.DragAndDrop , you can add significant
user appeal to your RIA. (Of course, if visual effects are overused, you can also add unneeded eye candy
and user annoyance.)

 You can include significant visual user aids with MochiKit. The demonstration web page at
http://mochikit.com/demos.html has a comprehensive set of examples, and Chapter 6, “Widgets,”
showed toggling visual elements (tables) in the mashup application. For your amusement and to give
you just a small sample of what MochiKit.Visual can do, this section gives you some examples that
you can try out in the interactive interpreter.

 Enter the following stanza in the interpreter:

 writeln(DIV({“class”: “presto-1”, “style” : “text-align:center; background:black;

color:white”}, “Square”));

writeln(DIV({“class”: “presto-2”, “style” : “text-align:center; background:black;

color:white”}, “ROUND”));

 You’ll see two DIVs appear, both with square corners. Now type in the following method call:

 roundClass(“div”, “presto-2”);

 The result should look like Figure 11-7 , where the corners of the specified DOM elements are now
rounded all over.

 Here’s another more dramatic effect you can try:

 writeln(DIV({“id”: “ghostly”, “class”:”pooka”, “style” : “text-align:center;

background:black; color:white”}, “BOO!”));

roundClass(“pooka”);

hideElement(“ghostly”);

 This creates a DIV and immediately hides it from view. Make it appear usin g one of the MochiKit.Visual
methods, such as the following:

 grow(“ghostly”);

 The DIV element will now appear to grow from the page.

c11.indd 355c11.indd 355 9/7/07 11:30:36 AM9/7/07 11:30:36 AM

356

Part IV: Advanced Client-Side Topics

 You can create a toggle effect by using the following toggle method:

 toggle(element [, effect, options]);

 In this method, element is an existing DOM element and effect specifies one of a set of paired effects.
Currently the visual effect pairs you can specify in the effects argument are slide , blind , appear , and
 size . The MochiKit documentation at http://mochikit.com/doc/html/MochiKit/Visual.html
contains a complete listing of visual effects and options for timing, opacity, and other fine-tuning
specifications.

Figure 11-7

c11.indd 356c11.indd 356 9/7/07 11:30:37 AM9/7/07 11:30:37 AM

Chapter 11: MochiKit — Pythonic JavaScripting

357

 MochiKit Miscellany
 MochiKit is the default JavaScript library that is shipped with TurboGears (and the one used in the
Django examples in this book), and it offers a first-rate collection of capabilities, providing a highly reus-
able and extensible set of components. In addition to the library packages discussed previously, here are
some other great capabilities that MochiKit provides:

❑ Namespace support: MochiKit takes a unique and effective approach to namespace support.
All components are defined in the MochiKit namespace, but the inclusion of the MochiKit
namespace is optional. If the following script is specified before including the MochiKit script
in your page, you can turn compatibility mode on:

 <script type=”text/javascript”>MochiKit = {__compat__: true};</script>

❑ When compatibility mode is on, you are required to use the fully qualified name for any
MochiKit function. For example, the compare function is executed with MochiKit.Base
.compare(x, y) . When compatibility mode is turned off, you aren’t required to include the
namespace, so the compare function is simplified to compare(x, y) .

❑ Element style manipulation: MochiKit includes a small set of functions that allow you to ana-
lyze and modify an element’s style. For example, you can reposition, show, or hide elements. It
also provides a set of functions for creating and manipulating colors. This includes mechanisms
to translate colors to and from a variety of formats (such as RGB or HSL), analyze a document to
ascertain its colors, and retrieve standard colors.

❑ Java-style number and currency formatting: MochiKit provides an extensible
number- formatting capability, patterned on regular expression syntax lifted from Java.

 Summary
 In this chapter, you experienced some of MochiKit’s extensive support for better JavaScript coding and
design. MochiKit is open source, is well supported, and has a lively developer community (make sure
you check out the Google groups for MochiKit questions, answers, bugs, tips, and tricks). Additionally,
the documentation at www.mochikit.com is extensive and easy to navigate. MochiKit’s creative team
has done an especially good job of documentation and unit testing, and the result is a fast, compact, and
robust language API for JavaScript. The design philosophy makes it easier to pick up MochiKit idioms
and coding style. Additionally, MochiKit is a good citizen when used in conjunction with other
 JavaScript in the same RIA. Because you can turn namespace support on or off, you’re not required to
use namespaces but can benefit from them when needed.

 The MochiKit design focus on component extensibility ensures that the library is reusable and adaptable
to a particular web application. It was designed with the intent that web developers would extend the
base objects with their own behaviors.

c11.indd 357c11.indd 357 9/7/07 11:30:37 AM9/7/07 11:30:37 AM

c11.indd 358c11.indd 358 9/7/07 11:30:37 AM9/7/07 11:30:37 AM

 Flash-Based Interfaces
and TurboGears

 You don’t understand! I coulda had class. I coulda been a contender. I could’ve been
somebody.

— Marlon Brando in On the Waterfront

 Thus far in this book, you’ve seen the user interface or view portion of Rich Internet Applications
(RIAs) either hand-crafted in HTML and Cascading Style Sheets (CSS), or constructed dynamically
on the server using a templating system such as Kid. This chapter covers the union of Flex with
Python frameworks — and make no mistake, this combination absolutely does have class, it is a
contender, and it’s destined to be a somebody .

 The Flex Difference
 The major difference between previous models and the Flex coding paradigm covered in this chap-
ter involves how the initial and subsequent pages are generated. In hand-coded Python, browsing
to a URL reference produces an initial page that is often static HTML, perhaps with embedded
JavaScript calling a Python service-side script via an XMLHttpRequest (XHR). This is illustrated in
Figure 12-1 .

 In using frameworks like Django, and TurboGears in particular, when the user browses to a URL,
the web server redirects the call, and pages spring into existence as a result of Python-based con-
troller code transforming a template into an HTML page and serving it up to the browser. An illus-
tration of this model is shown in Figure 12-2 .

c12.indd 359c12.indd 359 9/7/07 11:35:58 AM9/7/07 11:35:58 AM

360

Part IV: Advanced Client-Side Topics

HTML Page

Web Server

http://mysite.com

ECMAScript

Style Sheets

Web
Application

Figure 12-1

 In this chapter you’ll learn a third paradigm (illustrated in Figure 12-3) in which a separate build step
compiles source files into a binary form that is then loaded by the web server as part of the page load.
This may seem to run counter to major themes in this book, which advocate frameworks that implement
dynamic RIA construction. However, after reading this chapter, using Adobe’s Flex software develop-
ment kit (SDK) alone, and using it in conjunction with Python Web 2.0 frameworks, you may decide that
there are significant deployment flexibility advantages to this hybrid approach.

 In addition to introducing a third way of generating an RIA, this chapter also introduces the concept of
domain-specific languages (DSLs). Adobe’s Flex API is a DSL that is focused entirely on the creation
of user interfaces which are both visually stunning and potentially very feature-laden.

 What’s Flex and Why Should I Use It?
 Many of us can still remember back to a time when the Web was young and web page developers used
to decorate their sites with animations developed and implemented using a technology called Flash . The
idea behind Flash was that, using an animation toolkit, you could compile a sequence of images into

View
Template

Controller

Model

Web Server

Python Framework

RIA
Page

Figure 12-2

c12.indd 360c12.indd 360 9/7/07 11:35:59 AM9/7/07 11:35:59 AM

361

Chapter 12: Flash-Based Interfaces and TurboGears

object code, which could then be embedded into HTML. Provided the user downloaded a browser
 extension, page content would spring to life, changing flat, primarily textual sites into something
extraordinary (if not in the eyes of the end user, then at least in the opinion of the site creator). In the
infancy of the Web, Flash overuse was akin to the “ font abuse” (the inclusion of multiple fonts in a docu-
ment just because it was possible) that was seen in the infancy of the even-earlier desktop publishing era.

 After the novelty wore off however, much of the Flash content was replaced by an animated Graphic
Interchange Format (GIF) for the simple reasons that the effect was roughly equivalent to Flash anima-
tions and creating an animated GIF arguably took less skill (or at least less developer skill). The timeline-
style tools seemed more suited to moviemakers than to software developers. Over the course of the
Web’s evolution, however, something rather strange and wonderful happened. Macromedia (the original
developers of Flash) added a library of beautifully rendered and completely functional desktop widgets
to the collection of developer tools.

 As a result, a new meme began to emerge. Developers began to tumble to the notion that by using the
Flex widget set and embedding complex application controls into a browser that hosts a uniformly
implemented execution engine (the Flash plug-in), it would be possible to both create RIAs and gener-
ally stop worrying about the underlying platform dependencies altogether. This realization by and large
mirrored the same kind of “Aha!” moment that developers experienced when they discovered AJAX.
Accordingly, the authors of this book are giving Flex and Flash-based RIA tools and techniques specific
coverage because they may be less familiar to you than HTML, JavaScript, and CSS. Initially a few stand-
alone code examples are shown, and then one example illustrates the power of Flex and TurboGears
working together.

Web Server

MXML

HTML Page

ActionScript Style Sheets

MXML
Compiler

SWF File

WEB
APP

Figure 12-3

c12.indd 361c12.indd 361 9/7/07 11:36:00 AM9/7/07 11:36:00 AM

362

Part IV: Advanced Client-Side Topics

 Getting and Installing the Flex SDK
 One of the many great features of Flex is that the toolkit is freely available from its provider, Adobe. You
can download it from www.adobe.com/products/flex/sdk/ . Installing it is the usual one-step
 operation. Just make certain that the Flex compiler is in your execution path somewhere — perhaps in
 C:\Program Files on a Windows system, or in the default /Applications/Flex2 install location on
Mac OS X systems. Flex libraries themselves can be located in a convenient folder. Because Flex libraries
are compiled into a deployable object, relative location doesn’t have the same significance as it does for
other elements in a framework-based deployment.

 Creating Basic Flex Applications
 It’s entirely possible to create basic applications using just the Flex toolkit, stand-alone and without a
framework such as TurboGears backing it. This chapter first shows you the three basic varieties of how
the Flex SDK is commonly used to create applications that can exist either on the desktop or in a
browser. Then you learn some methods for incorporating TurboGears into a Flex-based application.

 This book is not intended to discuss Flex in great depth. What you can hope to pick up from this chapter
is a good, basic understanding of at least a few methods for creating applications using Flex.

 Flex Features
 As you saw in preceding chapters, modern development practices commonly use a combination of a
templating language and logic in an agile language, such as Python, to create distributed applications
that adhere to the model-view-controller (MVC) design paradigm. Flex is notionally similar but with a
bit of a twist: although it’s a DSL whose specific purpose is page layout and rendering (referred to as the
 view), Flex itself is a micro-MVC. The visual components can be described in an XML dialect called
MXML (for Macromedia XML) and collected in a Document Object Model (DOM) that is bound by a pair
of Application tags and expresses the look and feel of the application. However, the logic for dealing
with user interaction is always coded in ActionScript (a strongly typed variant of ECMAScript and
JavaScript).

 There’s no one recipe for how much of the look and feel you might decide to code in MXML versus
ActionScript. The same results can generally be achieved with various approaches. The layout can be
expressed completely in MXML, or in a combination of MXML for logic plus additional external
 ActionScript compile units that implement the logic of the view. Or it can be mostly ActionScript for both
layout and logic, with a thin MXML wrapper for declaring the outermost containment layer of the appli-
cation. Examples of these three options will be shown later in this chapter, while serving to remind you
that there is not necessarily a best-design strategy for Flex application development.

 Listings 12-2 , 12-6 , and 12-8 show examples of these three variations on a theme while serving to remind
that there is not necessarily a “best” design strategy for Flex application development. Depending on
your facility and comfort with writing straight XML as opposed to code (ActionScript), you will proba-
bly lean in one direction or another. If you enjoy writing raw HTML, then you may well prefer to create
your visual objects in MXML. Bear in mind, though, that because MXML is XML-based, it will not toler-
ate the ambiguity of unbalanced tags in the same way that HTML might.

c12.indd 362c12.indd 362 9/7/07 11:36:01 AM9/7/07 11:36:01 AM

363

Chapter 12: Flash-Based Interfaces and TurboGears

 Flex User Interface Controls
 Rather than the standard set of text markup tags that are included with HTML, MXML has a large set of
rich components that can be used to create complex visual fixtures with a high level of event-driven
functionality. The following list shows the basic controls. Because MXML-defined widgets are rendered
by the Flash Player plug-in in the browser, or by the stand-alone player (often used for debugging rather
than deployment), they provide a more desktop-type experience both visually and functionally than tra-
ditional HTML tagged widgets. Bear in mind that the objects in the list are extensible — because they
represent rich classes of user elements, you can tailor them by modifying their properties, or use them as
a superclass for your own custom-created widgets.

Alert

Button

ButtonBar

ButtonLabel-

Placement

CheckBox

ComboBase

ComboBox

Color-Picker

DataGrid

DateChooser

DateField

FormItem-Label

HorizontalList

HRule

HScrollBar

HSlider

Image

Label

LinkBar

LinkButton

List

Menu

MenuBar

NavBar

NumericStepper

PopUpButton

PopUpMenuButton

ProgressBar

ProgressBar-

Direction

ProgressBarLabel-

Placement

ProgressBarMode

RadioButton

RadioButton-Group

RichTextEditor

Spacer

SWFLoader

TabBar

Text

TextArea

TextInput

TileList

ToggleButtonBar

ToolTip

Tree

VideoDisplay

VRule

VScrollBar

VSlider

 As this list shows, Flex supports a set of user interface components, such as developers used to find only
in proprietary foundation frameworks for the desktop. In addition to traditional data input
controls — such as TextInput for single-line inputs; TextArea for free-form multi-line inputs; and
 CheckBox , RadioButton , and ComboBox for indicating user choices — MXML includes advanced
 components to model structured data (the Tree component) and support for tabular data (the
DataGrid component). Flex also provides navigation components to hide and reveal pieces of the
application. These can be seen in the TabNavigator , ViewStack , and Accordion components, which
act like smart panels.

 In addition to basic widget functionality, MXML components, being Flash-based, also support features
such as alpha transparency, animations, gradients, fades, and resizes that maintain the essential visual
characteristics of the application.

c12.indd 363c12.indd 363 9/7/07 11:36:01 AM9/7/07 11:36:01 AM

364

Part IV: Advanced Client-Side Topics

 Flex User Interface Containers
 A complaint that most developers have when creating RIAs using straight HTML components is that
layout and containment can sometimes go a bit haywire in different browser or on resize. Java and
Python wxWidgets developers will find much to be happy with in the Flex containment model, where
there are real panels, real layout managers, and real spacing elements. Using Flash-based containers
(shown in the following list) will give your RIAs the professional feel that cannot easily be matched
using HTML and CSS alone. Layout management and positioning in a Flex RIA can be either relative or
absolute, and as you’ll see in this chapter’s example code, the syntax and usage will be familiar to those
of you with experience in creating desktop applications.

Accordion

ApplicationControlBar

Box

BoxDirection

Canvas

ControlBar

DividedBox

Form

FormHeading

FormItem

FormItemDirection

Grid

GridItem

GridRow

HBox

HDividedBox

Panel

TabNavigator

Tile

TileDirection

TitleWindow

VBox

VDividedBox

ViewStack

 To allow accurate positioning of controls in the user interface, these Flex containers give you precise and
absolute layout management policies (when you want them) as well as a looser “relative” positioning. To
use the grid container, for example, you specify a cell in the grid as row and column coordinates an ele-
ment should occupy. Any grid cell can itself contain a grid and therefore, you can get decently fine-
grained positioning control.

 HBox e s and VBox es are examples of looser positioning rules. An HBox merely lays out the components
horizontally, in the order in which they are declared. In a similar fashion, a VBox lays out its contained
components vertically. The Canvas , which you’ll see used in the examples, doesn’t define any layout
management policy. Within a Canvas , you can use absolute positioning by providing x and y coordi-
nates. This can be very handy, but it can also take some iterating to get perfect.

 Flex User Interface Control Logic
 Visual element creation using a markup language is only part of the Flex story. XML is a declarative lan-
guage, and it’s just not sufficiently complete to express the complexity of programmatic interaction
between the user and the screen. In Flex, you do this by using ActionScript to create event handlers. To be
quite precise about the compilation process, even when you code user interface (UI) elements in MXML,
they are actually converted into ActionScript and then used to generate the resulting binary SWF file.

 You have already used ECMAScript and JavaScript in the examples in this book to control interaction
with the in-browser widgets, navigation of the screen real estate, appearance and hiding of elements,
and communications with the server-side logic and data model. With Flex-based RIAs, you’re doing
essentially the same things as before, except you’re using ActionScript.

c12.indd 364c12.indd 364 9/7/07 11:36:02 AM9/7/07 11:36:02 AM

365

Chapter 12: Flash-Based Interfaces and TurboGears

 ActionScript is based on the ECMA-262 standard. It is an optionally strongly typed object-oriented
l anguage, and it will certainly feel familiar to those of you who have coded in languages that use semico-
lons and curly braces such as Java or C#. Static typing is not mandatory for the use of ActionScript, but
because it’s incorporated, you may want to use this capability, especially if you’re a Java fan. If you don’t
use strong typing, you’ll get annoying warnings in the compile process.

 Listing 12-1 illustrates the similarities and differences in plain ECMAScript and the more strictly speci-
fied ActionScript. ActionScript usages are shown in bold.

 Listing 12-1: Similarities and differences between ECMAScript and ActionScript

 // semi-colons -- use ‘em please in both ActionScript and ECMAScript

 var foo: Number = getFoo(); // ActionScript

var foo = getFoo(); // ECMAscript

// object attributes and function: Use dot notation in both

someObject.someFunction();

someObject.someAttribute;

// typical function call, first in ActionScript and then in ECMAScript

 private function setHourRange(min: Number, max: Number):void{} // ActionScript

function setHourRange(min, max){}//ECMAScript

// both primitives and objects a la Java

 var foo: Number = getFoo(); // --> ActionScript syntax

var fooint = 42; // --> ECMAScript syntax

// lazy string declaration

var stringyThing = “Hello, I’m a Mac!”’// ECMAScript syntax

 var achyBrakeyString: String = “A formal \ //ActionScript

 string \

 says what?”;

// ActionScript formal String object creation syntax

 var aFormalString: String = new String(“Hello, I’m a Mac!”);

// Note that ActionScript works just the way us Java folks like it!

// --> [H,e,l,l,o, ,I,’,m, , a, ,M,a,c,!]

var aNumber = 42; // lazy number declaration --> 42

 var numberToo: Number = new Number (42); // --> 42 too; the ActionScript way

//Regular expressions are happily identical (and better than Java) in both,

// and have flexbile expression. Note the following two examples

// ECMAScript declaration

var stringyThing = “Hello, I’m a Mac!”;

stringyThing.replace(/Mac/, “PC”);// --> Hello, I’m a PC! In either

// ActionScript formal declaration/instantiation

 var stringyThing: String = new String(“Hello, I’m a Mac!”);

// ActionScript Java-like replacement syntax

stringyThing.replace(new RegExp(“Mac”), ‘PC’); // --> Hello, I’m a PC!

 As you can see in this listing, the syntactic differences between regular ECMAScript and ActionScript are
fairly pronounced. At first glance, ActionScript would seem syntactically at least somewhat like Java or
C#. Many constructs are similar — for example, when a variable is declared, its type is a part of the dec-
laration. Strong typing may be unfamiliar to a Python and even an ECMAScript developer, but it’s com-
mon in certain languages. At the same time, the declaration syntax, both for variables and for method
signatures, is unusual even for Java developers — the variable’s type is listed after the variable’s name
and after a mandatory colon as well, such as in the following declaration:

 var actionscriptString: String;

c12.indd 365c12.indd 365 9/7/07 11:36:02 AM9/7/07 11:36:02 AM

366

Part IV: Advanced Client-Side Topics

 ActionScript functions have protection qualifiers and should specify a return type as well, as in this
example:

 private function setHourRange(min: Number, max: Number):void{}

 The private qualifier prevents the function setHourRange from being called outside the class to which
it belongs, and the return type of void signifies a null return. Mixing in protection and other qualifiers
can become downright headspinning, as in the following example:

 private static const RIGHT:Number = 0x0100;

 In ActionScript as well as in ECMAScript and other C-like languages, don’t forget to separate state-
ments with a semicolon. Forgetting to do this religiously is almost always an invitation to grief and
much head-scratching over scripts that fail mysteriously.

 In summary, writing a Flex application normally involves using a combination of MXML to capture the
declarative set up of the user interface (primarily) and ActionScript to provide the logic for responding
to user interactions. After you have assembled MXML, ActionScript, and CSS files, you compile them
using the mxmlc compiler into a form that can be embedded in a normal web page.

 Although the SDK is free for development purposes and the object code is free from licensing or other
encumbrances, Adobe needs to realize revenue somehow. That somehow is the Flex Builder IDE that
plugs into Eclipse. Adobe sells a plug-in that has many niceties, such as code completion and a visual
layout editor. This chapter’s examples are simple enough to code by hand, however, so unless you are
flush with coin, you can simply download the SDK and fire up your favorite text editor or IDE.

 Simple Tester Version 1 — All Logic in MXML
 Listing 12-2 shows a simple example of Flex code. If you have downloaded the Flex 2 SDK, you can test
the next several applications by entering the code with your favorite IDE or text editor as usual, and then
compiling the parts using the mxmlc compiler. The resulting main application file is an SWF file with the
same name as the MXML file that defines the application. You can double-click the SWF file, provided
you have associated the file type with the desktop Flash Player, and test the application out. Listing 12-3
shows an example of a simple build script for a UNIX–like system (such as Linux and Mac OS X).

 Listing 12-2: Main.mxml

 1 <?xml version=”1.0”?>

 2

 3 <mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”>

 4 <mx:Script> <![CDATA[

 5 import flash.events.Event;

 6 // Event handler function to print a message

 7 // describing the selected Button control.

 8 private function printMessage(event:Event):void {

 9 message.text += event.target.label + “ pressed”;

10 }

11]]> </mx:Script>

12

c12.indd 366c12.indd 366 9/7/07 11:36:03 AM9/7/07 11:36:03 AM

367

Chapter 12: Flash-Based Interfaces and TurboGears

13 <mx:Button id=”MyButton” label=”Click Me”

 click=”printMessage(event);” />

14 <mx:TextArea id=”message” text=”” editable=”false” height=”100%”

 width=”100%” color=”#0000FF” />

15 </mx:Application>

 Listing 12-3: build . sh

 #!/bin/sh

OPTS=-use-network=false

cssFiles=`find . -name ‘*.css’ -print`

for css in ${csslFiles}; do

 echo “building $css”

 (${FLEX_HOME}/bin/mxmlc $OPTS ${css})

done

mxmlFiles=`find . -name ‘*.mxml’ -print`

for mxml in ${mxmlFiles}; do

 echo “building $mxml”

 (${FLEX_HOME}/bin/mxmlc $OPTS ${mxml})

done

 What gets sent to the compiler and compiled into one or more SWF files is any MXML files plus any CSS
files. ActionScript files are not compiled into SWF files, except when they are completely defined within
the MXML file. When you web-deploy, you need to assure that any ActionScript files in separate compi-
lation units are visible to the browser. The code supplied via the MXML files and CSS files will not be
exposed in the browser. Only the ActionScript will normally be viewable by a user inspecting the RIA
page source. Some developers have pointed out that not having your code open for the world to inspect
is not necessarily a bad thing. If you intend to web-deploy your Flex-based RIA, you need to set the
 environmental variable as follows before compiling:

 OPTS=-use-network=true

 Otherwise the application will terminate with a network security violation. The general rule is that when
you want to build and test on localhost , the use-network option should be false ; when you want to
web-deploy, the use-network option should be true .

 Returning to the Flex code in Listing 12-2 , notice that the file declares its conformance to the XML 1.0
standard. Accordingly, the elements of the application defined must be contained by an appropriate tag
pair. In MXML, an application must conform to the nomenclature of the particular XML dialect, which is
defined in the xmlns specification. Multiple namespaces can be included in the Application tag as a
way to use multiple libraries and still maintain namespace coherence.

 Figure 12-4 is a screenshot of an application run on the desktop by Adobe Flash Player. Because every
element must be bound by an Application tag pair, the visual button and text area are subnodes in the
application’s XML DOM. The Application , Button , and TextArea tags have a namespace qualifier of
 mx . When this qualifier is encountered in the mxml file that defines the application, the mxmlc compiler
knows that the tag definitions can be found at www.adobe.com/devnet/flex/mxml_as.html , so it
brings them into the compilation process, much as an import statement does in normal Python.

c12.indd 367c12.indd 367 9/7/07 11:36:03 AM9/7/07 11:36:03 AM

368

Part IV: Advanced Client-Side Topics

 A button is implemented in the DOM element as follows:

 <mx:Button id=”MyButton” label=”Click Me” click=”printMessage(event);” />

 A tag can contain a variety of optional clauses that customize behavior and specify event handling. You
may be familiar with the same concept from HTML. This tag style is sometimes called a partial form of
declarative programming, where logic and control flow is implied by the tag content describing what
something is like, rather than how to create it. Flex as a DSL exhibits these characteristics in part, at least.
This differs from an imperative programming language such as Python, which requires explicit
 explanation of the implementation algorithm. The declarative model falls apart slightly because the
implementation of click handling (as specified by the click clause) is delegated to an ActionScript
 function contained within the <mx:Script> tag.

Figure 12-4

c12.indd 368c12.indd 368 9/7/07 11:36:03 AM9/7/07 11:36:03 AM

369

Chapter 12: Flash-Based Interfaces and TurboGears

 The ActionScript function ties the Button to the TextArea (which is also created in the MXML) as
follows:

 private function printMessage(event:Event):void {

 message.text += event.target.label + “ pressed”;

}

 The message variable in this printMessage function refers to the TextArea instance via the
 id=”message” clause in the TextArea ’s declaration. The mechanics of implementing the button click
(noticing that a button has been clicked, transferring of control to the callback, and actually writing the
message to the TextArea) are deep within the Flash Player’s code, and the developer can just assume
they work. The product of compilation is a file called Main.swf that, as mentioned previously, can be
exercised directly with the Flash Player supplied with the SDK. Alternatively, you can embed the SWF in
an HTML page as illustrated in Listing 12-4 .

 Listing 12-4: Main.html (embedded in HTML)

 1 <html lang=”en”>

 2 <head>

 3 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8” />

 4 <title>Main</title>

 5 <style>

 6 body { margin: 0px; overflow:hidden }

 7 </style>

 8 </head>

 9

10 <body scroll=’no’>

11 <object classid=”clsid:D27CDB6E-AE6D-11cf-96B8-444553540000”

12 id=”Main” width=”100%” height=”100%”

13 codebase=”http://fpdownload.macromedia.com

➦

 /get/flashplayer/current/swflash.cab”>

14 <param name=”movie” value=”Main.swf” />

15 <param name=”quality” value=”high” />

16 <param name=”bgcolor” value=”#869ca7” />

17

18 <param name=”allowScriptAccess” value=”sameDomain” />

19 <embed src=”Main.swf” quality=”high” bgcolor=”#869ca7”

20 width=”100%” height=”100%” name=”Demo” align=”middle”

21 play=”true”

22 loop=”false”

23 quality=”high”

24 allowScriptAccess=”sameDomain”

25 type=”application/x-shockwave-flash”

26 pluginspage=”http://www.adobe.com/go/getflashplayer”>

27 </embed>

28 </object>

29 </body>

30 </html>

c12.indd 369c12.indd 369 9/7/07 11:36:05 AM9/7/07 11:36:05 AM

370

Part IV: Advanced Client-Side Topics

 In this listing, the SWF object is embedded in an HTML file. The file is pretty simple because the CSS and
JavaScript code referenced in the XML file are both a part of the compiled object and are hidden from
casual inspection. To deploy this version (to your ISP-hosted site, for example), you need only upload
the Main.html and Main.swf files. Even when there are ActionScript and CSS files incorporated, these
are fully contained within the embedded SWF file.

 The resulting Flex2 interface is shown in running in a browser in Figure 12-5 . At a minimum, your
HTML file should specify an <object> DOM element, and within that an <embed> tag should specify
the name of the SWF file.

Figure 12-5

c12.indd 370c12.indd 370 9/7/07 11:36:06 AM9/7/07 11:36:06 AM

371

Chapter 12: Flash-Based Interfaces and TurboGears

 Adding CSS
 In addition to using declarations in MXML to create and shape widgets, you can also avail yourself of a
traditional method for tailoring the look and feel of your page’s DOM elements: the well-known and
sometimes hated CSS. What’s different in this case is that in contrast to having to web-publish the style
sheets (and any external ActionScript files), they are published as a part of the binary SWF file. Another
great feature is that any fonts you define for your application will always be available — font definitions
are also embedded in the byte code of your SWF file. This ensures that fonts are rendered correctly even
if they’re not available on the end user’s machine.

 As of this writing, you don’t have to write style by hand. You can browse to a sample application at
 http://examples.adobe.com/flex2/consulting/styleexplorer/Flex2StyleExplorer.html
and use the excellent design aids there. This RIA is an interactive designer and CSS code generator. You
can simply take the style sheet that is generated and compile it into your MXML code, and from there,
into your SWF. Listing 12-5 shows a style sheet generated by this tool. (Of course, there’s never a
 problem with generating style sheets by hand, but this technique seems irresistibly attractive.)

 Listing 12-5: Main.css

 Application {

 backgroundGradientColors: #006699, #0033cc;

 themeColor: #0000ff;

 color: #0000ff;

}

Button {

 cornerRadius: 14;

 textIndent: 0;

 letterSpacing: 0;

 highlightAlphas: 0.17, 0.84;

 fillColors: #ffffff, #a10d0d, #cf9d1c, #eeeeee;

}

TextArea {

 fontFamily: Monaco;

 fontSize: 16;

 color: #0000ff;

 backgroundAlpha: 0.39;

 backgroundColor: #ffff00;

 borderColor: #003399;

 borderThickness: 6;

 cornerRadius: 11;

 dropShadowEnabled: true;

 shadowDirection: right;

 shadowDistance: 7;

}

 Although this is a pretty simple application, the CSS file demonstrates the richness of style specification
possible with MXML.

c12.indd 371c12.indd 371 9/7/07 11:36:06 AM9/7/07 11:36:06 AM

372

Part IV: Advanced Client-Side Topics

 Add the external style to the Main.MXML file as follows:

 <?xml version=”1.0”?>

<!-- logging/ButtonLifeCycle.mxml -->

<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”>

 <mx:Style source=”Main.css”/>

 <mx:Script><![CDATA[

 import flash.events.Event;

 // Event handler function to print a message

 // describing the selected Button control.

 private function printMessage(event:Event):void {

 message.text += event.target.label + “ pressed” + “\n”;

 }

]]></mx:Script>

 <mx:Button id=”MyButton” label=”Click Me” click=”printMessage(event);” />

 <mx:TextArea id=”message” text=”” editable=”false” height=”100%” width=”100%”

color=”#0000FF”/>

</mx:Application>

 The resulting page is stylistically transformed by the declarative language of the CSS inclusion in the
MXML, as shown in Figure 12-6 .

Figure 12-6

c12.indd 372c12.indd 372 9/7/07 11:36:06 AM9/7/07 11:36:06 AM

373

Chapter 12: Flash-Based Interfaces and TurboGears

 Simple Tester Version 2 — Logic Moved to ActionScript
 As you saw previously in Listing 12-3 , the MXML Button tag incorporates the event handler as an attri-
bute appropriate to the widget’s type, which in this case is the click=”printMessage(event)” handler
that responds to a user click. In the case of other elements, such as text input fields or combo boxes,
it’s important to react to any change in the content of the component — thus their event handlers are
appropriate to recognizing and responding to change.

 Flex is clearly event-driven, and for simple interactions, such as shown in Listing 12-3, coding the logic
inline (also shown in Listing 12-3) is a reasonable approach. However, RIAs are rarely that simple. When
the logic is more complex, you would do well to modularize the problem by putting the functional logic
into a separate ActionScript file and calling that function from the component event handler tag attri-
bute. Using separate compilation units, you could rewrite Main.MXML as shown in Listing 12-6 .

 Listing 12-6: AnotherMain.MXML — Main.mxml refactored into separate
compile units

 <?xml version=”1.0” encoding=”utf-8”?>

<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml” xmlns:local=”*” >

 <local:MainClass/>

</mx:Application>

 Now there’s no ActionScript within the MXML file at all — there’s simply a containment statement.
Where did all the objects go? And the code logic? Notice that there is a single object declaration:

 <local:MainClass/>

 Everything went in the Application tag of this MainClass . The object declaration and instantiations,
the visual control logic, everything except style tailoring is now in an ActionScript module. Would you
want to program the application this way? Perhaps so. To some degree, it depends on where you come
from as a software developer. Coding only in MXML has a decidedly web developer feel to it, much like
coding in HTML, only much less tolerant of sloppy coding (missing end tags especially). Without a
design tool and IDE, such as the Flex IDE plug-in for Eclipse, large application design and coding could
become burdensome.

 Working primarily in ActionScript, on the other hand, has a cleaner feel to it than MXML, especially if
you’re a Python developer used to working in environments such as WxPython or PythonCard.
 Listing 12-7 shows an example of code where everything is happening in the ActionScript.

 Listing 12-7: MainClass.as

 1 package {

 2

 3 import flash.display.*;

 4 import flash.events.*;

 5 import mx.containers.*;

 6 import mx.controls.*;

 7

 8 public class MainClass extends Canvas

 9 {

(continued)

c12.indd 373c12.indd 373 9/7/07 11:36:07 AM9/7/07 11:36:07 AM

374

Part IV: Advanced Client-Side Topics

 Listing 12-7 (continued)

10 private var a:Button = new Button();

11 private var b:ComboBox = new ComboBox();

12 private var c:TextInput = new TextInput();

13

14 public function MainClass(){

15 a.label = “Click Me!”;

16 a.addEventListener(MouseEvent.CLICK, printMessage, false, 0, true);

17 a.y = 10;

18 addChild(a);

19

20 b.dataProvider = [“one”, “two”, “three”];

21 b.y = 40;

22 addChild(b);

23

24 c.y = 70;

25 addChild(c);

26 }

27 public function printMessage(event:Event):void {

28 c.text += event.target.label + “ pressed” + “\n”;

29 }

30 } // end public class TestMainClass

31 } // end package

 The package statement is a namespace qualifier. As you saw previously in Listing 12-6 , the XML
namespace attribute of the Application tag (xmlns:local=”*”) assigns the name to a wildcard char-
acter to specify that mxmlc should regard every compilation module without a specific package name as
belonging to the local namespace. When the mxmlc compiler looks for elements to satisfy references to
 local:MainClass , it finds the MainClass.as defined in Listing 12-7 in the same folder as Main.MXML .
In the MXML file, it seems that whatever is within the application will be in MainClass.as .

 Remember that the way the mxmlc compiler works is that it converts MXML into ActionScript anyway,
so there should be no surprise that this coding style works well. The first order of business in
 MainClass.as is to import all the flash and mx packages needed in the class.

 As you can see from the declaration of MainClass.as , the MXML main application uses only publicly
visible classes. The private attribute may be used only on class property definitions, and as you can see
from the declarations of the Button , ComboBox , and TextInput components, these should (in true
 fashion for this mutant branch of the Java family tree) be declared private , because (in theory at least)
they should remain immune from external manipulation outside the boundaries of the class itself.

 Listing 12-7 compiles into the SWF file and the resulting application shown in Figure 12-7 Although the
figure doesn’t show it, you could as easily apply the styles from Listing 12-5 here as well. The
 ActionScript version is not as compact as the MXML version. You can see that each attribute is specified
on a separate line of code, and the arguments to the event handler are perhaps more verbose. Other than
these details, the functionality is essentially the same. One difference is that you must explicitly add a
component to the container through addChild() in order for it to become visible and operable. In this
case, MainClass extends the Canvas container, which is a weak layout manager, and the Canvas and all
its contained items are contained by the Application itself.

c12.indd 374c12.indd 374 9/7/07 11:36:07 AM9/7/07 11:36:07 AM

375

Chapter 12: Flash-Based Interfaces and TurboGears

 In Listing 12-7 , a ComboBox was added to illustrate the use of a data provider. You haven’t seen this
implementation yet, but it will be a significant part of the Flex and TurboGears shown as the application
example for this chapter. A component can have a data provider, which in this case is just an array of
strings. More usefully, an external (URL-style) data provider can support and update a component.
Knowing this, you might already be assuming that controllers.py would make a pretty fine data
 provider; and you would be correct in your assumptions, as you’ll soon see.

Figure 12-7

c12.indd 375c12.indd 375 9/7/07 11:36:08 AM9/7/07 11:36:08 AM

376

Part IV: Advanced Client-Side Topics

 Simple Tester Version 3 — Attribute Customization
 The point of this example is to illustrate that in addition to (or in place of) CSS, you can very specifically
manipulate the attributes of a component, and in particular its visual attributes. You do this with an
MXML specification like Listing 12-8 .

 Listing 12-8: ThirdAndMain.mxml

 <?xml version=”1.0”?>

<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”>

 <mx:Script>

 <![CDATA[

 import flash.events.Event;

 private function printMessage(event:Event):void {

 message.text += event.target.id + “ pressed” + “\n”;

 }

]]>

 </mx:Script>

 <mx:Panel title=”Button Control Example”

 height=”75%” width=”75%” layout=”horizontal”

 paddingTop=”10” paddingBottom=”10” paddingLeft=”10” paddingRight=”10”>

 <mx:VBox>

 <mx:Label width=”100%” color=”blue” text=”Select a Button control.”/>

 <!-- The button can contain an image -->

 <mx:Button id=”iconButton” icon=”@Embed(‘assets/bbn_logo.gif’)”

 label=”iconic”

 color=”#993300” click=”printMessage(event);”/>

 <mx:Button label=”Custom Button” id=”Custom” color=”#993300”

 toggle=”true” selected=”true”

 textAlign=”left” fontStyle=”italic” fontSize=”13”

 width=”{iconButton.width}”

 click=”printMessage(event);”/>

 <!-- The look and feel of the customized button is

 similar to the Default Button. -->

 <mx:Button label=”Default Button” id=”Default”

click=”printMessage(event);”/>

 </mx:VBox>

 <mx:TextArea id=”message” text=”” editable=”false” height=”100%”

width=”100%”

 color=”#0000FF”/>

 </mx:Panel>

</mx:Application>

 As you see in Figure 12-8 , the look and feel of the application is quite detailed and exhibits
per- component tailoring.

c12.indd 376c12.indd 376 9/7/07 11:36:08 AM9/7/07 11:36:08 AM

377

Chapter 12: Flash-Based Interfaces and TurboGears

 Adding Effects
 RIAs should provide the same level of user experience as Rich Client Platform (RCP) applications, and
increasingly, they do. A hallmark of RIAs is their apparent ease of use when compared to RCPs. Some
have argued that RCPs are intended to be used by highly trained employees in the enterprise, whereas
RIAs must rely on appealing to a wider audience. RIAs have to deliver a better end-user experience
rather than relying on organizational mandates to force usage. RIA UIs that are not self-evident or that
are unintuitive will not survive long.

Figure 12-8

c12.indd 377c12.indd 377 9/7/07 11:36:09 AM9/7/07 11:36:09 AM

378

Part IV: Advanced Client-Side Topics

 In this regard, effects are not simply eye candy or an attempt to cover up bad design (although they have
served both purposes from time to time). Effects, when applied correctly, provide users with cues about
the current context of the application. With MXML, you declaratively set up effects, often as an attribute
of a component, and then satisfy the logic of the effects.

 Listing 12-9 illustrates an effect from the Flex library of behaviors. This example applies the Move effect
to move a graphic to the focus of the mouse click on the background canvas. As with previous examples
in the chapter, you can compile this with mxmlc and run it directly with a double-click of the SWF file. In
the next mini-project (FBlog) you will need to embed the compiled SWF into an HTML file for reasons
that will be explained in greater detail then.

 Listing 12-9: EffectsSample.mxml

 <?xml version=”1.0”?>

<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”>

 <mx:Script>

 <![CDATA[

 private function moveImage():void {

 myMove.end();

 myMove.xTo=mouseX-60;

 myMove.play();

 }

]]>

 </mx:Script>

 <mx:Move id=”myMove” target=”{img}”/>

 <mx:Panel title=”Move Effect Example” width=”95%” height=”95%”

 paddingTop=”5” paddingLeft=”10” paddingRight=”10” paddingBottom=”5”>

 <mx:Text width=”100%” color=”blue”

 text=”Click anywhere on the canvas to move the image horizontally to

➦

that position”/>

 <mx:Canvas id=”canvas” width=”100%” height=”100% “ mouseDown=”moveImage();” >

 <mx:Image id=” img ” source=” @Embed(source=’assets/bbn_logo.png’) ”/>

 </mx:Canvas>

 </mx:Panel>

</mx:Application>

 This listing sets up a Canvas element that is sensitive to mouse clicks (“mouseDown=”moveImage();”).
It embeds an image, giving it an id of img , so that the ActionScript logic has a handle to the image. The
user of the @Embed directive (a feature you’re seeing for the first time) assures that the image will be
compiled into the resulting SWF file so it is available to the Flex application regardless of which website
it’s deployed from. ActionScript is invoked on mouseDown , and the logic of the move is provided by the
 moveImage method. The Move tag is one of the effects available in the Flex 2 library of effects elements.
Its target attribute instructs the player on the item to be moved. Note the succinctness of this tag. Once
again, it’s a declaration of what you want to have happen, but not how to do it — a hallmark of a DSL.
A screen shot of the resulting application is shown in Figure 12-9 .

c12.indd 378c12.indd 378 9/7/07 11:36:11 AM9/7/07 11:36:11 AM

379

Chapter 12: Flash-Based Interfaces and TurboGears

 For additional exploration of effects (as well as containers and components), the samples folder
 included with the Flex2 SDK is an excellent place to begin. Try invoking the ~/samples/explorer/
explorer.html file and looking at the examples (each of which has been generated from an MXML file,
exactly as you’re doing in this chapter).

 Figure 12-10 shows a screen shot with the index tree of potential choices, plus a mini-application that
uses the effect and the MXML source code for the application with the embedded effect below it.

Figure 12-9

c12.indd 379c12.indd 379 9/7/07 11:36:12 AM9/7/07 11:36:12 AM

380

Part IV: Advanced Client-Side Topics

 A Flex2-Based Blog
 This chapter concludes with an application type that has become a venerable tradition — another blog.
Blogs have been big in this book. You’ve created two blogs so far — one in TurboGear and one in Django.
Why not a third? Only this time, you’ll use your newly gained and freshly practiced skills with Flash to
flex your Flex.

 This blog application is illustrated in Figure 12-11 . Initially only a list of blog subjects is shown. When a
list item is clicked (Lorem Ipsum in this case) a window slides right and the blog entry surfaces, avail-
able for viewing and editing as shown in Figure 12-12 . If the end user clicks the Save button, the content
is written back to the data model. If the user clicks the New button, whatever subject and detail have
been entered are saved as a new record.

Figure 12-10

c12.indd 380c12.indd 380 9/7/07 11:36:13 AM9/7/07 11:36:13 AM

381

Chapter 12: Flash-Based Interfaces and TurboGears

 The Supporting Model
 As always in TurboGear, you begin by using tg-admin quickstart to create the project. Call this one
FBlog (for Flex Blog). This will create the fblog folder and contents and, as usual, stub versions of
model and controllers. The model will be trivially simple, containing just a subject and the text of the
entry. Because it’s neat to be able to support rich text in a blog, FBlog uses a RichTextEditor compo-
nent; thus the model will use SQLite, which supports the Unicode type natively (MySQL doesn’t).

 That’s really all the object support you’ll need for this application. The model is shown in Listing 12-10 .

 Listing 12-10: model.py for FBlog

 from turbogears.database import PackageHub

from sqlobject import *

hub = PackageHub(“fblog”)

__connection__ = hub

class FBlog(SQLObject):

 subject = UnicodeCol()

 entry = UnicodeCol()

Figure 12-11

c12.indd 381c12.indd 381 9/7/07 11:36:13 AM9/7/07 11:36:13 AM

382

Part IV: Advanced Client-Side Topics

 The Application Controller
 The interactive model for FBlog will support add , change , and delete blog entries as dictated by user
interaction with the Flex components. You won’t be using any of the templates in this application, so the
controller decorators don’t reference them. The controllers.py file shown in Listing 12-11 provides
the interface between the model and the visual interface.

Figure 12-12

c12.indd 382c12.indd 382 9/7/07 11:36:14 AM9/7/07 11:36:14 AM

383

Chapter 12: Flash-Based Interfaces and TurboGears

 Listing 12-11: controllers.py for FBlog

 1 from turbogears import controllers, expose, flash, redirect,url

 2 from turbogears.toolbox import catwalk

 3 from model import *

 4 import logging, time

 5 from docutils.core import publish_parts

 6

 7 from fblog import json

 8 log = logging.getLogger(“fblog.controllers”)

 9 class Root(controllers.RootController):

10 catwalk = catwalk.CatWalk()

11 @expose()

12 @expose(“json”)

13 def index(self):

14 fblog = FBlog.select()

15 return dict(fblog=fblog)

16

17 @expose()

18 def save(self, id=None, subject=””, entry=””):

19 if not id:

20 blog = FBlog(subject=subject, entry=entry)

21 else:

22 blog = FBlog.get(id)

23 blog.subject = subject

24 blog.entry = entry

25 return dict()

26

27 @expose()

28 def delete(self, id):

29 blog = FBlog.get(id)

30 blog.destroySelf() # yet another marvelous method on SQLObject

31 return dict()

 On lines 11, 17, and 27 of this listing, the simple @expose statements merely make the methods available
to the web server. The expose decorator at line 12 tells the index method to output the response as JSON.

 The index method will be called on to populate the list of subjects of the blog entries whenever a screen
refresh is needed. Because the select statement (line 14) is unqualified, it selects and returns all FBlog
records (line 15).

 The save method (line 18) enables the user to both modify current records and save new records. This
method uses a trivial differentiator to decide whether it’s being handed a new record or a modification
to a current one: The default value for the record ID is None . As defined on line 13, the index method
returns all existing FBlog records. The entire record is returned (including its id) and used to populate a
list of blog entries. Thus, if an object is handed back to the save method without the optional id argu-
ment (line 19), it’s assumed to be a new record and a new FBlog entry is constructed (line 20). Otherwise,
the existing record is fetched, and the subject and entry fields are updated (lines 21 through 24).
Because the method must return a dictionary by convention, it returns an empty one (line 25).

 The delete method (lines 28 through 30) will expect the ID of an existing record, fetch it, and use the
 destroySelf method to delete it from the backing store.

c12.indd 383c12.indd 383 9/7/07 11:36:14 AM9/7/07 11:36:14 AM

384

Part IV: Advanced Client-Side Topics

 Three fairly simple methods should be kept in mind in the design of the front-end, the next stop on
the tour.

 The Flex Front-End
 The first three Flex examples in this chapter were pretty simple, but they illustrated the spectrum of
expression you can achieve when you use a combination of MXML and ActionScript. This example
extends your Flex vocabulary by showing visual effects, state transitions, variables binding, and
 communications with a TurboGears back-end.

 If you choose to download and plug in the free trial version of the Flex IDE for Eclipse, create a new Flex
project and call it FBlog. Figure 12-13 shows the code view. You can switch between this view and the
visual design view shown in Figure 12-14 , and the code and design will remain synchronized.

Figure 12-13

c12.indd 384c12.indd 384 9/7/07 11:36:15 AM9/7/07 11:36:15 AM

385

Chapter 12: Flash-Based Interfaces and TurboGears

 FBlog’s MXML Implementation
 The design view in Figure 12-14 shows the visual elements of the application as well as a property
editor. For example, the major elements of the application are shown in a visual designer panel in
the middle of the figure. In addition to containers (Panel) and components (Buttons , TextInputs , and
 RichTextEditors), the view in the right-side panel also displays other items called states . These are
interesting nonvisual elements of the design, and are discussed in more detail in the next section.

 Listing 12-12 shows the MXML code for the FBlog application in its entirety, and then critical sections are
discussed in the sections that follow the listing.

Figure 12-14

c12.indd 385c12.indd 385 9/7/07 11:36:15 AM9/7/07 11:36:15 AM

386

Part IV: Advanced Client-Side Topics

 Listing 12-12: FBlog.mxml

 1 <?xml version=”1.0”?> 1 <?xml version=”1.0”?>

 2 <!--

 3 in order to avoid security complaints, this MXML file

 4 should be run in an HTML file called with local file URL semantics:

 5 for example: file://localhost/Users/Projects/FBlog/bin/FBlog.html

 6 This will permit it to make the localhost:8888 calls specified

 7 in the HTTPService tags.

 8 -->

 9 <mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

 layout=”vertical” creationComplete=”getSrv.send()”>

10 <mx:Script><![CDATA[

11 import flash.system.Security;

12 Security.allowDomain(“127.0.0.1”);

13 import com.adobe.serialization.json.JSON;

14 private function handleGetResult():void {

15 var decoded:Object=JSON.decode(getSrv.lastResult.toString());

16 blogs=new ArrayCollection(decoded.fblog);

17 }

18 private function doSave():void {

19 var newBlogItem:Object = new Object();

20 if (currentState==’detail’){

21 newBlogItem.id = l.selectedItem.id;

22 }

23 newBlogItem.subject = _subject.text;

24 newBlogItem.entry = _entry.text;

25 saveSrv.send(newBlogItem);

26 currentState = “”;

27 }

28 private function doNew():void{

29 currentState = ‘newBlog’ ;

30 l.selectedIndex = -1;

31 }

32 private function doDelete():void{

33 deleteSrv.send({id: l.selectedItem.id});

34 currentState = ‘’;

35 }

36]]></mx:Script>

37

38 <mx:ArrayCollection id=”blogs”/>

39 <mx:HTTPService id=”getSrv”

40 url=”http://localhost:8888/?tg_format=json”

41 resultFormat=”text” result=”handleGetResult()”

42 />

43 <mx:HTTPService id=”saveSrv”

 url=”http://localhost:8888/save” result=”getSrv.send()” />

44 <mx:HTTPService id=”deleteSrv”

 url=”http://localhost:8888/delete” result=”getSrv.send()” />

45

c12.indd 386c12.indd 386 9/7/07 11:36:16 AM9/7/07 11:36:16 AM

387

Chapter 12: Flash-Based Interfaces and TurboGears

46 <mx:states>

47 <mx:State name=”detail” basedOn=””>

48 <mx:AddChild relativeTo=”{panel1}” position=”lastChild”>

49 <mx:Form height=”100%”>

50 <mx:FormItem label=”Subject”>

51 <mx:TextInput id=”_subject”

 text=”{l.selectedItem.subject}” />

52 </mx:FormItem>

53 <mx:FormItem label=”Entry”>

54 <mx:TextArea id=”_entry”

 text=”{l.selectedItem.entry}” />

55 </mx:FormItem>

56 <mx:Button label=”Save” click=”doSave()”/>

57 </mx:Form>

58 </mx:AddChild>

59 </mx:State>

60 <mx:State name=”newBlog” basedOn=”detail”/>

61 </mx:states>

62

63 <mx:Panel layout=”horizontal” title=”Blogs” id=”panel1”

 resizeEffect=”Resize”>

64 <mx:List id=”l” width=”100%” height=”100%” labelField=”subject”

 dataProvider=”{blogs}”

65 change=”currentState = ‘detail’”

66 />

67 <mx:ControlBar>

68 <mx:Button label=”New” click=”doNew()”/>

69 <mx:Button label=”Delete” click=”doDelete()”

 enabled=”{l.selectedItem!=null}”/>

70 </mx:ControlBar>

71 </mx:Panel>

72 </mx:Application>

 Deconstructing FBlog
 As you have seen in the chapter’s previous examples, the application must be the XML DOM parent of
all contained objects. Some of these objects are typically visual, and others are not. For example, there
are State tags (lines 46 through 61 of Listing 12-12) that declare a certain visual context. If the
 currentState global variable is set to a different state, that part of the GUI is surfaced and focused. You
might think of this mechanism as implementing a finite state machine in a (mostly) declarative fashion,
where the state transitions are managed not by you directly but by the underlying Flash platform.

 The Application tag has the equivalent of an OnLoad attribute on an HTML <body> tag. It instructs the
Flash player to call getsrv.send() when the load of the SWF file into the browser is complete. Getsrv
is an HTTPService (declared on line 39).

 There are three HTTPService declarative tags in this application. There are also three URL destinations
(index , save , and delete) in the controller (as shown previously in Listing 12-11). Not surprisingly,
each declarative tags shown in Listing 12-12 maps to one of the controller methods.

c12.indd 387c12.indd 387 9/7/07 11:36:17 AM9/7/07 11:36:17 AM

388

Part IV: Advanced Client-Side Topics

 At line 13, the Application mixes in a little secret sauce:

 import com.adobe.serialization.json.JSON;

 To manipulate (both read and write) JSON directly from the index method in controller.py , you
need to download a library called corelib.swc from the Flex developer’s site (which you can find at
 http://as3corelib.googlecode.com/files/corelib-.90.zip as well as other mirror sites). In the
Flex world, SWF libraries are called .swc files. To install these files in your development path, unzip the
 corelib.zip to a location in your hard disk.

 Using the Flex Eclipse Plug-In
 If you are using the Eclipse Flex IDE plug-in, go to the Navigator view in the Flex Development Perspec-
tive, and then create a new folder named lib by right-clicking the project folder. Copy the corelib.swc
file from the bin folder of the unzipped corelib folder, and paste it in the newly created lib folder of
the project.

 Flex Builder still needs to know that corelib is associated with this project, so you need to specify it as
an external library in the Flex build path. If you’re following along and building everything by hand, just
include the library in the compilation of the MXML file into an SWF file with a compile line option. For
example, a simple build file for Linux and Mac OS X systems would modify Listing 12-3 to include the
following optional libraries:

 (${FLEX_HOME}/bin/mxmlc $OPTS -library_path+=<thePlaceWhereYouPutCoreLib> ${mxml})

 FBlog Event Handlers
 The handleGetResult function is implemented starting at line 13 in Listing 12-12 , and it has the
optional (and verbose for any Python programmer) return specified as void . This function responds
asynchronously to the HTTPService tag (lines 39 through 42). The URL is specified as
 http://localhost:8888/?tg_format=json . Thus, the function will return its data as JSON, as
indicated by the tg_format=json parameter passed to the HTTP GET Request URL, and it will expect
its data to be returned this way. You can prove this yourself by simply invoking the index page using the
same URL the application will use. Remember from Listing 12-11 that there’s no template for the index
page and that the Python index method returns a dictionary. The following is a sample of what the blog
entries would look like (a form you saw in Chapter 6, “Widgets,” and elsewhere in this book):

 {“tg_flash”: null,

 “fblog”: [{“entry”:

 “id”: 1,

 “Lorem ipsum dolor sit amet, consectetuer adipiscing elit. “,

 “subject”: “Lorem Ipsum”}

]}

 Because the callback handler in the FBlog application also expects to work with dictionaries, this turns
out to be a very happy conjunction of programming paradigms, as you can see here:

 private function handleGetResult():void {

 var decoded:Object= JSON.decode(getSrv.lastResult.toString());

 blogs = new ArrayCollection(decoded.fblog);

}

c12.indd 388c12.indd 388 9/7/07 11:36:17 AM9/7/07 11:36:17 AM

389

Chapter 12: Flash-Based Interfaces and TurboGears

 The handleGetResult method creates an Object from the JSON dictionary. The blogs variable is
an ArrayCollection , which is an ActionScript addition to the basic JavaScript Collection class.
 ArrayCollection is an associative array structured just like a Python dictionary. “blogs” is declared
as an ArrayCollection on line 38 of Listing 12-12 , giving it global scope in the Application DOM.
Note that the id attribute gives a name to the blogs variable, thereby making it available for reference
(as on line 15).

 The doSave method constructs an object on the fly based on bits and pieces from the list and from the
detail containers, as follows:

 private function doSave():void {

 var newBlogItem:Object = new Object();

 if (currentState==’detail’){

 newBlogItem.id = l.selectedItem.id;

 }

 newBlogItem.subject = _subject.text;

 newBlogItem.entry = _entry.text;

 saveSrv.send(newBlogItem);

 currentState = “”;

 }

 Creating States
 There are three states (roughly corresponding to TurboGears views) in FBlog. You can see the declaration
of two named states, detail and newBlog , on lines 47 and 60. A third state is the basic (or default) state,
which is unnamed. Whenever the global variable currentState is modified, its value (which must be
 State) is entered. When the basic state is entered, the list of blog topics is shown. In order for the detail
state to become active, an item must be selected from the list. This action is implemented within the
 List tag at line 64 of Listing 12-12 . (This tag will be explored more fully in short order.)

 The doNew method is both succinct and elegantly expressive, as shown in the following code snippet
from Listing 12-12 (lines 28–31):

 private function doNew():void{

 currentState = ‘newBlog’ ;

 l.selectedIndex = -1;

 }

 Because the purpose of doNew is to record a new blog entry, you want to assure two things: that the
 newBlog state becomes current, and that the list is deselected. Because newBlog is derived from
the detail state, it shares detail ’s visual elements.

 The doDelete method is equally elegant code, as shown in the following code snippet from
Listing 12-12 (lines 32–35):

 private function doDelete():void{

 deleteSrv.send({id: l.selectedItem.id});

 currentState = ‘’;

 }

c12.indd 389c12.indd 389 9/7/07 11:36:18 AM9/7/07 11:36:18 AM

390

Part IV: Advanced Client-Side Topics

 This method takes the ID of the selected item and constructs an anonymous dictionary that will be
passed as a part of the HTTP request (line 44 of Listing 12-12). Remember from Listing 12-11
(controllers.py) that the delete method accepts the system-generated ID of the record to be deleted.
Right after the asynchronous call is made, currentState is assigned the default string. The detail panel
slides shut, and FBlog shifts back to the simple list view.

 You might be wondering how you assure that there’s a good selected item in the list. The doDelete
method is activated via the Delete button shown previously in Figure 12-11 . Notice that the Delete
 button is disabled in that figure. A final detail in the Delete button’s declaration takes care of assuring
that a valid item has been selected for deletion before the button is activated. This declaration is
as follows:

 <mx:Button label=”Delete” click=”doDelete()” enabled=”{l.selectedItem!=null}”/>

 In ActionScript, an attribute’s value may be set to the result of a computational expression, which
you indicate within curly braces as shown here (the same convention is used on lines 51 and 54 of
Listing 12-12). The ActionScript name for this capability is binding expression . The tag’s enabled attribute
uses the value of the binding expression to enable and disable the button. Thus, the end user can’t delete
a record unless one is selected.

 Connecting to TurboGears
 Lines 38 through 44 of Listing 12-12 are declarations of the connections to the TurboGear controller. The
following code snippet shows these declarations again for quick reference:

 <mx:ArrayCollection id=”blogs”/>

 <mx:HTTPService id=”getSrv”

 url=”http://localhost:8888/?tg_format=json”

 resultFormat=”text” result=”handleGetResult()”

 />

 <mx:HTTPService id=”saveSrv” url=”http://localhost:8888/save”

 result=”getSrv.send()” />

 <mx:HTTPService id=”deleteSrv” url=”http://localhost:8888/delete”

 result=”getSrv.send()” />

 Whenever a record is being saved (either as a new record or as an update of a current one), or when one
is deleted, the list is always completely refreshed. This is implemented again by a tag attribute. The
 result attribute can be set to a function, either within FBlog or via a URL reference. In both cases, the
trick is that you always invoke the send method of the getSrv request in HTTPService . In turn, GetSrv
always transfers flow control to the handleGetResult method (line 14 of Listing 12-12). As explained
previously, its job is simply to refresh the list.

 More FBlog Flow Control
 Lines 46 through 61 of Listing 12-12 are the declarations for the various states. The addChild DOM
 element functions just like an addChild method in ActionScript, and there’s a corresponding
 removeChild tag as well. Through the use of these add and remove tags, you can dynamically control
the inclusion and exclusion of elements from the Application DOM. The existence of such tags should
not be surprising — as mentioned earlier, MXML is turned into ActionScript prior to compilation.

c12.indd 390c12.indd 390 9/7/07 11:36:18 AM9/7/07 11:36:18 AM

391

Chapter 12: Flash-Based Interfaces and TurboGears

 Form Handling
 In the following Form construction (excerpted from Listing 12-12 , lines 49–57), the values of the Subject
and Entry fields are supplied by the List object:

 <mx:states>

 <mx:State name=”detail” basedOn=””>

 <mx:AddChild relativeTo=”{panel1}” position=”lastChild”>

 <mx:Form height=”100%”>

 <mx:FormItem label=”Subject”>

 <mx:TextInput id=”_subject” text=”{l.selectedItem.subject}” />

 </mx:FormItem>

 <mx:FormItem label=”Entry”>

 <mx:TextArea id=”_entry” text=”{l.selectedItem.entry}” />

 </mx:FormItem>

 <mx:Button label=”Save” click=”doSave()”/>

 </mx:Form>

 </mx:AddChild>

 </mx:State>

 <mx:State name=”newBlog” basedOn=”detail”/>

 </mx:states>

 Just as a reminder, even though the blog’s ArrayCollection constructed from the controller shows
only the topic in the List state, it contains the entire content of the set of records, so when program flow
is transferred to the detail state the selected item’s parts are available through simple dot notation
(such as l.selectedItem.subject) to populate the form.

 As may be discerned from Figures 12-11 and 12-12 , there is a ControlBar containing a pair of simple
buttons. These are wired to the doNew and doDelete methods (discussed previously) as follows:

 <mx:ControlBar>

 <mx:Button label=”New” click=”doNew()”/>

 <mx:Button label=”Delete” click=”doDelete()”

 enabled=”{l.selectedItem!=null}”/>

 </mx:ControlBar>

 Deploying FBlog
 There you have it. A complete and pretty useful application in fewer than 200 lines of code. In order to
access the previous applications in this chapter, you used the Flash Player included with the Flex2 SDK.
You got away with this because there are no outbound HTTPService requests being made. In the FBlog
application, however, you access the model through calls to the controller. The Flex sandbox model
won’t allow the application to operate by making HTTP requests in this way.

 This necessitates that the FBlog SWF be contained by an HTML page, and preferably one in the same
domain as the controller. Otherwise, you will be making a so-called cross-domain call, which is forbidden
in modern browsers. You may be familiar with ways around this limitation, the most common being a
 crossdomain.xml file installed at the root of the web server that serves up the page. That’s out of the
scope of this chapter, though. However, take a quick look at Listing 12-13 , which shows a typical HTML
file in the context of the FBlog.

c12.indd 391c12.indd 391 9/7/07 11:36:18 AM9/7/07 11:36:18 AM

392

Part IV: Advanced Client-Side Topics

 Listing 12-13: FBlog.html

 1 <html lang=”en”>

 2 <head>

 3 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8” />

 4 <title>FBlog</title>

 5 <style>

 6 body { margin: 0px; overflow:hidden }

 7 </style>

 8 </head>

 9

10 <body scroll=’no’>

11 <object classid=”clsid:D27CDB6E-AE6D-11cf-96B8-444553540000”

12 id=”FBlog” width=”100%” height=”100%”

13 codebase=

➦

“http://fpdownload.macromedia.com/get/flashplayer/current/swflash.cab”>

14 <param name=”movie” value=”FBlog.swf” />

15 <param name=”quality” value=”high” />

16 <param name=”bgcolor” value=”#869ca7” />

17

18 <param name=”allowScriptAccess” value=”sameDomain” />

19 <embed src=”FBlog.swf” quality=”high” bgcolor=”#869ca7”

20 width=”100%” height=”100%” name=”FBlog” align=”middle”

21 play=”true”

22 loop=”false”

23 quality=”high”

24 allowScriptAccess=”sameDomain”

25 type=”application/x-shockwave-flash”

26 pluginspage=”http://www.adobe.com/go/getflashplayer”>

27 </embed>

28 </object>

29 </body>

30 </html>

 For the purposes of illustration, much of this HTML file is boilerplate code. One thing you should note,
however, is that you must embed the name of the Flex SWF file into the HTML page, as shown on
line 19. You almost always want to make the SWF occupy all of the available browser screen real estate
as specified on line 20. Additionally, you want to allow script access to the same domain while in testing
and development, as line 18 and 24 indicate.

 Don’t forget that to test FBlog, you will need to first start your CherryPy server and then bring up
 FBlog.html .

 Summary
 This chapter presented an alternative method for developing RIAs in conjunction with a Python web
framework. A prominent feature of Flex is that it’s a domain-specific language (DSL) and thus it relies on
code generation to reduce the amount of code a developer has to write by hand. Its succinctness is some-
thing all Python programmers will appreciate.

c12.indd 392c12.indd 392 9/7/07 11:36:19 AM9/7/07 11:36:19 AM

393

Chapter 12: Flash-Based Interfaces and TurboGears

 Using the open source Flex DSL, you can create a complete user experience and be assured of cross-
browser compatibility. Flex has evolved from its roots in Flash, and it is several huge steps beyond the
original creators’ intent of developing a tool to make movie-like web pages. Now it’s become an exciting
new way to develop RIAs using a mixture of a declarative XML-based language for laying out UIs and
ActionScript for providing custom logic in the UI. ActionScript is a next-generation ECMAScript with
extra features like optional static type checking.

 Flex and ActionScript can be considered a language that works across all platforms, as a plug-in to all
popular browsers. MXML components are actually written in ActionScript, and you can write additional
components in ActionScript or add capabilities to existing ones. Flex applications compile directly into
SWFs (Flash binaries), which are then just-in-time (JIT) compilations provided by the Flash runtime for
extra speed. For example, SWF binaries are very compact compared to Java applets.

 As this book is being published, Flex is in the process of becoming open source software (OSS) licensed.
You can already develop and deploy Flex-based RIAs without cost, but OSS means more than that. Here
are some of the benefits that Flex evangelist James Ward says may result from this bold step by Adobe:

❑ There will be a formal process for contributing to Flex.

❑ You won’t be locked into a single vendor’s monetization strategy. Flex becomes part of the
Open Web .

❑ You have more rapid innovation. Although Adobe has some really smart people, when they
team up with many other really smart and passionate OSS developers, they may come up with a
Flex version that’s a tipping point in application design and development.

❑ Flex is bigger than Adobe. Watch for many big organizations to further invest in Flex.

❑ Open source Flex will further stimulate the already-booming Flex ecosystem.

c12.indd 393c12.indd 393 9/7/07 11:36:19 AM9/7/07 11:36:19 AM

c12.indd 394c12.indd 394 9/7/07 11:36:19 AM9/7/07 11:36:19 AM

 Tools Used

 This appendix includes all the information you need to know to get up and running with the tools
used in this book. All of the tools that have been used in this book are free or open source software,
so it’s not a matter of expense to buy the software, but sometimes it can be quite a chore to scour
the Internet looking for tools, and it can be equally difficult to get them to all work together after
you’ve found them. Hopefully, this appendix can help ease some of that pain.

 OS Versions Used
 There are three sections in this appendix, one for each of the three operating systems that we think
are most common: Windows XP, Mac OS X, and Linux. Each section covers the tools used in the
book. The versions of software that the authors used to develop the examples in the book are listed
in the following table. That’s not to say that you can’t use other versions, but your mileage may
vary, as they say.

Software Package Version

Microsoft Windows XP Service Pack 2

Apple Mac OS OS X 10.4

Linux Fedora Core 5

TurboGears 1.0.1

Django 0.96

Python 2.4.4

Apache HTTP Server 2.2.4

SQLite 2.3.3

Firefox 2.0.0.3

pysqlite 2.3.2

bapp01.indd 395bapp01.indd 395 9/7/07 10:28:46 AM9/7/07 10:28:46 AM

Appendix A: Tools Used

396

 Installing Tools in Windows
 Installation of the tools under Windows XP is straightforward, but it does require some big downloads.
Some of the installations are online installations that download and install packages as needed from the
Internet. Obviously, you need to be connected to the Internet to download these packages.

 Python
 Although the 2.5 version of Python has been available for some time, as of this writing many of the other
tools we use don’t support it yet. So we’ll stick with version 2.4. Download the Windows installer from
 www.python.org/download/releases/2.4.4/ . There are separate versions for x86 and Win64-
Itanium processors. We used the x86 version for this book, but you should get the version that’s appro-
priate for your setup. Python is distributed as Microsoft Installer (MSI) files, so all you have to do is
download python-2.4.4.msi and run it, and it will walk you through the rest.

 After the installation has completed, add Python to your path so you can run it from the command line.
Here are the steps:

 1. Right-click My Computer and select Properties.

 2. Click the Advanced tab, and then click Environment Variables.

3. Edit the PATH variable to include C:\Python24;C:\Python24\Scripts . You will have to
change these paths if you installed Python somewhere besides the default location.

 TurboGears
 The TurboGears easy_install tool makes installing TurboGears a snap. First, make sure you have
Python 2.4 installed, and then go to www.turbogears.org/ and click the Download Now link. Follow
the instructions to download the tgsetup.py script, and run it from a command-line prompt. You’ll see
it chug away and download a couple dozen egg files.

 After easy_install finishes, run the following tg-admin command to make sure everything is set
up correctly:

 G:\temp> tg-admin info

TurboGears Complete Version Information

TurboGears requires:

* turbogears 1.0.1

* configobj 4.3.2

* ruledispatch 0.5a0.dev-r2115

* setuptools 0.6c3

* formencode 0.6

* celementtree 1.0.5-20051216

* pastescript 1.1

* elementtree 1.2.6-20050316

* simplejson 1.5

* cherrypy 2.2.1

* turbokid 0.9.9

* turbocheetah 0.9.5

* turbojson 1.0

bapp01.indd 396bapp01.indd 396 9/7/07 10:28:47 AM9/7/07 10:28:47 AM

Appendix A: Tools Used

397

* pyprotocols 1.0a0dev-r2082

* cheetah 2.0rc7

* pastedeploy 1.1

* paste 1.1.1

* kid 0.9.5

* cheetah 2.0rc7

Identity Providers

* sqlobject (turbogears 1.0.1)

* sqlalchemy (turbogears 1.0.1)

tg-admin Commands

* info (turbogears 1.0.1)

* shell (turbogears 1.0.1)

* quickstart (turbogears 1.0.1)

* update (turbogears 1.0.1)

* sql (turbogears 1.0.1)

* i18n (turbogears 1.0.1)

* toolbox (turbogears 1.0.1)

Visit Managers

* sqlobject (turbogears 1.0.1)

* sqlalchemy (turbogears 1.0.1)

Template Engines

* kid (turbokid 0.9.9)

* cheetah (turbocheetah 0.9.5)

* json (turbojson 1.0)

Widget Packages

TurboGears Extensions

* visit (turbogears 1.0.1)

* identity (turbogears 1.0.1)

 We have never had any trouble with a Windows TurboGears installation, but there are some helpful
troubleshooting tips at www.turbogears.org/download/ should you need them.

 SQL ite
 We used SQLite for the example databases in this book because it is very simple and easy to configure.
For production systems, you’ll probably want to use something more robust like MySQL or PostreSQL
(or even proprietary databases like Microsoft SQL Server or Oracle). The official command-line client,
 sqlite.exe , is available from www.sqlite.org/download.html as a precompiled binary and is
handy to have around for quick database operations.

 For those times when a GUI database browser is useful, a simple GUI client is available on SourceForge
at http://sqlitebrowser.sourceforge.net/ . Like most SQLite tools, this tool is a single executable
file with no dependencies or installation requirements, so it’s very simple to run.

 pysqlite
 The Python bindings for SQLite are available from www.initd.org/tracker/pysqlite . Download the
Windows binary for Python 2.4 and run it. The installer will detect the location of your Python installa-
tion and install into site-packages there.

bapp01.indd 397bapp01.indd 397 9/7/07 10:28:48 AM9/7/07 10:28:48 AM

Appendix A: Tools Used

398

 If you’ve already installed TurboGears, then you can try using the easy_install tool to grab a version
that is compatible with your TurboGears install. Just type this command:

 G:\ easy_install pysqlite

 On some systems, this command fails with errors about mismatched versions of Visual Studio. The
installer from www.initd.org/tracker/pysqlite seems to work more reliably.

 Apache HTTP Server
 The Apache HTTP Server (often just called Apache) is the most common web server on the Internet. It is
very scalable and powerful, but it is not too difficult to set up for development use. To get started, down-
load version 2.2.4 from a mirror listed at http://httpd.apache.org/download.cgi . Like Python,
Apache comes as an MSI file, so installation is pretty simple. Just download and run apache_2.2.
4-win32-x86-no_ssl.msi . The installation will ask you for your network domain, server name, and
administrator e-mail address — these are not important for development use, so enter whatever you like.
You can install the Apache HTTP Server as a Windows service running on the default HTTP port 80, but
for development, we prefer to install it to run manually on port 8080. Select a Typical installation and
install to the default directory in C:\Program Files\Apache Software Foundation\Apache2.2 .

 The main Apache configuration file is in C:\Program Files\Apache Software Foundation\
Apache2.2\conf\httpd.conf . To run the CGI programs included with some of the chapters, you’ll
have to edit the httpd.conf file to tell Apache that it should execute the programs as scripts rather than
just return them as text. Find the section of httpd.conf that starts with this token:

 <IfModule alias_module>

 and add a line like this:

 ScriptAlias /ch4/cgi-bin/ “C:/Program Files/Apache Software Foundation/Apache2.2/

htdocs/ch4/cgi-bin/”

 Of course, you should substitute the correct directory if you installed the code somewhere else.

 Django
 Django is built with few dependencies, so installing it is pretty easy. First, make sure you have Python
2.4 installed and download the Django code from www.djangoproject.com/download/ . We used a
release tarball for the examples in this book, but you may choose to use the development code from
 Subversion if you like to live on the bleeding edge. The tarball comes as a gzipped tar file, so you’ll need
a tool like WinZip (www.winzip.com) or Cygwin (www.cygwin.com) to unpack it. Unpack the tarball
and run the standard Python install command as shown here:

 G:\ tar xzf Django-0.96.tar.gz

G:\ cd Django-0.96

G:\ python setup.py install

 setup.py will install the Django code in your Python site-packages directory. That’s all there is to it.

bapp01.indd 398bapp01.indd 398 9/7/07 10:28:48 AM9/7/07 10:28:48 AM

Appendix A: Tools Used

399

 Installing Tools on Mac OS X
 Although Python comes pre-installed on Mac OS X, it’s often behind the Python release cycle. You’ll
commonly find Python 2.3 is the rule rather than the exception, even on the newer Intel-based Macs. You
really need Python 2.4, especially for TurboGears (which at the time of this writing explicitly requires
Python 2.4). If you simply run the latest installer from Python.org (www.python.org/download/mac/),
you should be up and running in short order. Do this before installing either Django or TurboGears to
ensure the libraries are loaded in the right place relative to the upgraded Python installation.

 If you already have Python 2.5 installed, or want to ensure that you’re pointing to the correct Python ver-
sion, you should explicitly correct your path. By default, the stock install point for Python is /System/
Library/Frameworks/Python.framework/Versions/2.3/bin/python , and a symbolic link is cre-
ated for it to /usr/bin/python . You want to ensure that your upgraded install point is listed some-
where before /usr/bin in your PATH variable, an example of which is shown here:

 /usr/local/bin:/usr/local/sbin:/usr/local/mysql/bin:/Library/Frameworks/Python

.framework/Versions/Current/bin:/bin:/sbin:/usr/bin:/usr/sbin

 You can ensure that you always set a correct path by editing either your .bash_login or
.bash_profile file in your login folder. Typically, your .bash_profile is executed after
your .bash_login when you bring up your system, so .bash_profile is a good place to tuck
the following couple of lines:

 export

➦

PATH=”/Library/Frameworks/Python.framework/Versions/Current/bin:${PATH}”

 Beyond this, simply follow the Linux install directions listed for either Django or TurboGears.

 Installing Tools in Linux
 The following sections describe how you install Linux tools in Python, TurboGears, SQLite, pysqlite,
Apache HTTP Server, and Django.

 Python
 Although the 2.5 version of Python has been available for some time, as of this writing many of the other
tools we use don’t support it yet. So you’ll need to stick with Python 2.4. Most Linux distributions come
with Python as part of the default installation, so you probably are already set up. If, for some reason,
your distribution doesn’t include Python, first check to see if there is an add-on package that includes it
(for example, an RPM file for Red Hat’s Fedora Project or a DEB file for Debian Linux). If all else fails,
download the source code from www.python.org/download/releases/2.4.4/ . If you download the
gzipped file, unpack it with a command like this:

 tar xzvf Python-2.4.4.tgz

 If you download the bzip2-compressed file, unpack it like this:

 bunzip2 -c Python-2.5.5.tar.bz2 | tar xvf -

bapp01.indd 399bapp01.indd 399 9/7/07 10:28:49 AM9/7/07 10:28:49 AM

Appendix A: Tools Used

400

 Change directory into the new Python-2.4.4 directory and type this:

 ./configure

 This command determines your system’s configuration and sets up the compile appropriately.

 When the compile setup finishes, you can do the actual compile by typing:

 make

 After the compile finishes, install the completed products by changing to the root user and running
this command:

 make install

 This installs the new Python interpreter in /usr/local/bin . Add this directory to your system
execution path.

 TurboGears
 The TurboGears easy_install tool makes installing TurboGears a snap. Just follow these steps:

1. Make sure you have Python 2.4 installed.

2. Go to www.turbogears.org/ and click the Download Now link.

3. Follow the instructions to download the tgsetup.py script. The tgsetup.py script will install
into your Python site-packages directory, so you’ll probably have to run it as root from a
command-line prompt. You’ll see it chug away and download a couple dozen egg files.

 After easy_install finishes, change back to your non-root user and run the following tg-admin com-
mand to make sure everything is set up correctly. You may have to add /usr/local/bin to your $PATH
if it isn’t already there.

 G:\temp> tg-admin info

TurboGears Complete Version Information

TurboGears requires:

* turbogears 1.0.1

* configobj 4.3.2

* ruledispatch 0.5a0.dev-r2115

* setuptools 0.6c3

* formencode 0.6

* celementtree 1.0.5-20051216

* pastescript 1.1

* elementtree 1.2.6-20050316

* simplejson 1.5

* cherrypy 2.2.1

* turbokid 0.9.9

* turbocheetah 0.9.5

* turbojson 1.0

* pyprotocols 1.0a0dev-r2082

* cheetah 2.0rc7

bapp01.indd 400bapp01.indd 400 9/7/07 10:28:49 AM9/7/07 10:28:49 AM

Appendix A: Tools Used

401

* pastedeploy 1.1

* paste 1.1.1

* kid 0.9.5

* cheetah 2.0rc7

Identity Providers

* sqlobject (turbogears 1.0.1)

* sqlalchemy (turbogears 1.0.1)

tg-admin Commands

* info (turbogears 1.0.1)

* shell (turbogears 1.0.1)

* quickstart (turbogears 1.0.1)

* update (turbogears 1.0.1)

* sql (turbogears 1.0.1)

* i18n (turbogears 1.0.1)

* toolbox (turbogears 1.0.1)

Visit Managers

* sqlobject (turbogears 1.0.1)

* sqlalchemy (turbogears 1.0.1)

Template Engines

* kid (turbokid 0.9.9)

* cheetah (turbocheetah 0.9.5)

* json (turbojson 1.0)

Widget Packages

TurboGears Extensions

* visit (turbogears 1.0.1)

* identity (turbogears 1.0.1)

 tgsetup.py downloads the latest version of each of these tools, so your version numbers might be dif-
ferent. If you have trouble installing TurboGears, you might find some helpful troubleshooting tips at
 www.turbogears.org/download/ .

 SQL ite
 We used SQLite for the database examples in this book because it is very simple and easy to configure.
For production systems, you’ll probably want to use something more robust like MySQL or PostrgeSQL
(or even proprietary databases like Microsoft SQL Server or Oracle). The official command-line client,
 sqlite<version>.bin , is available from www.sqlite.org/download.html as a precompiled binary
and is handy to have around for quick database operations.

 For those times when a GUI database browser is useful, a simple GUI client is available on SourceForge
at http://sqlitebrowser.sourceforge.net/ . Like most SQLite tools, this tool is a single executable
file with no dependencies or installation requirements, so it’s very simple to run.

 pysqlite
 The Python bindings for SQLite are available from www.initd.org/tracker/pysqlite . Download the
Windows binary for Python 2.4 and run it. The installer will detect the location of your Python installa-
tion and install into site-packages there.

bapp01.indd 401bapp01.indd 401 9/7/07 10:28:50 AM9/7/07 10:28:50 AM

Appendix A: Tools Used

402

 If you’ve already installed TurboGears, then you can try using the easy_install tool to grab a version
that is compatible with your TurboGears installation. Just switch to the root user and type the
following command:

 # easy_install pysqlite

 easy_install downloads and installs the latest pysqlite version into your site_packages directory.

 Apache HTTP Server
 The Apache HTTP server (often just called Apache) is the most common web server on the Internet. It is
very scalable and powerful, but it is not too difficult to set up for development use. To get started, down-
load version 2.2.4 from a mirror site listed at http://httpd.apache.org/download.cgi .

 If you’re using a mainstream Linux distribution like Fedora, Red Hat, or Ubuntu, you may want to just
get the precompiled binary installer package that goes with your distribution. If you want to build and
install it from source code, download the UNIX source and un-tar it into a directory. Then type the fol-
lowing command:

 $./configure

 You’ll see a bunch of messages as the configure script determines the capabilities of your system.

 After configure finishes, you can do the compiling by just running this command:

 $ make

 After the make process finishes, switch to the root user and run the following command to install
the server:

 # make install

 This installs your server in /usr/local/apache2 .

 Start the server by running this command (also as root):

 # /usr/local/apache2/bin/apachectl start

 The main Apache configuration file is in /usr/local/apache2/conf/httpd.conf . To run the CGI
programs included with some of the chapters, you’ll have to edit the httpd.conf file to tell Apache
that it should execute the programs as scripts rather than just return them as text. Find the section of
 httpd.conf that starts with this token:

 <IfModule alias_module>

 and add a line like this:

 ScriptAlias /ch4/cgi-bin/ “/usr/local/apache2/htdocs/ch4/cgi-bin/”

 Of course, you should substitute the correct directory if you installed the code somewhere else.

bapp01.indd 402bapp01.indd 402 9/7/07 10:28:50 AM9/7/07 10:28:50 AM

Appendix A: Tools Used

403

 Django
 Django is built with few dependencies, so installing it is pretty easy. Just follow these steps:

1. Make sure you have Python 2.4 installed, and download the Django code from
www.djangoproject.com/download/ . We used a release tarball for the examples in this book,
but you may choose to use the development code from Subversion if you like to live on the
bleeding edge.

2. The tarball comes as a gzipped tar file, so you need a tool like WinZip (www.winzip.com) or
Cygwin (www.cygwin.com) to unpack it.

3. Unpack the tarball and run the standard Python install command like this:

 $ tar xzf Django-0.96.tar.gz

$ cd Django-0.96

python setup.py install

 Note that you’ll probably have to run the last command as root because setup.py installs the Django
code in your Python site-packages directory. That’s all there is to it.

bapp01.indd 403bapp01.indd 403 9/7/07 10:28:50 AM9/7/07 10:28:50 AM

bapp01.indd 404bapp01.indd 404 9/7/07 10:28:51 AM9/7/07 10:28:51 AM

In
de

x

$ (dollar sign) in Python expressions,
115

% (percent) for embedded tags, 87
@login_required decorator (Django), 293
{ } (braces)
for embedded tags, 87
in Python expressions, 115
{% extends %} directive (Django),

279–282

A
Academic Free License (AFL). See AFL

(Academic Free License)
ActionScript

binding expressions in, 390
vs. ECMAScript, 365–366
in Flex-based RIAs, 364–365
Logic Moved to (Flex Code Tester),

373–375
for user interaction (Flex), 362

addjob controller method (Cable
Company), 219–221

admin interface, Django, 251–254
administration utility (Django)

adding models to, 81–82
adding utility, 79–81
applying, 82–84
tailoring, 84–85

AFL (Academic Free License), 14
AJAX (Asynchronous JavaScript and

XML)
AJAX -ready blog_detail.html,

313–314
blog application. See application

examples (Ajax blog)

Django serialization for, 307–311
Django support for, 306
role in Web 2.0, 10

all method (Django), 79
alternate components

Django, 72
TurboGears, 52–53

Apache HTTPD server, installing,
327–329

application design, history of
desktop era, 4–5
Web 1.0, 5–6
Web 2.0, 6–10

application examples (Ajax blog)
applying AJAX effects, 311–312
blog_detail.html template, 313–314
Django view and getComments

function, 318–320
JavaScript in dblog.js, 314–318

application examples (Cable Company)
addjob controller method, 219–221
assignment model class, 215–216
complete controller, 222–223
controller error handling, 223–227
imports class, 216–217
job model class, 213–214
location class defined, 211–213
master.kid template, 228–229
model objects, 210–211
operational concept, 205
overview, 204
priority model class, 213–214
resource model class, 215
resourcelist method, 218–219
root class, 217–218
RSS feed capability, 234–237

Index

bindex.indd 405bindex.indd 405 9/7/07 10:31:00 AM9/7/07 10:31:00 AM

406

application examples (continued)
status model class, 215
view, displaying map data, 232–233
view, displaying table data, 233–234
view, getting data, 232
view, map loading, 230–231
view, setting up and debugging,

230–231
application examples (Dblog)

{% extends %} directive, 279–282
admin interface, editing model with,

251–254
authenticating users, 287–288
base template, defining, 277–279
base template, enhancing, 290–291
blog detail with inheritance, 280–281
comment model classes, creating,

249–251
comments, entering, 269–273
create_update objects generic views,

285
date-based generic views, 284
drilling down on blog object, 264–266
form processing, 266–269
index view method, 255–259
initializing application, 245
initiating with django-admin.py,

242–245
list-detail generic views, 282–284
master list template without

inheritance, 276–277
model classes, creating, 246–249
model with custom permission,

294–295
new user entry form template,

301–302
permissions on submitted data,

296–297
simple.direct_to_template generic

view, 284
simple.redirect_to generic view, 284
URL mapping, 260–264

user login and profile, 288–290
user management, installing, 285–286
user model, 286–287
user permissions, 293–297
user profile template and view, 290
users, creating, 297–302
view for adding user account, 299–301
view requiring custom permission,

295–296
view with login required, 294

application examples (Django)
administration application, 81–85
administration utility, 79–81
creating project skeleton, 73–75
database creation, 76–77
database initialization with interactive

shell, 77–79
defining model classes, 76
templates, 86–89
view, adding to URL list, 89–90
view, defining, 90–92

application examples (FBlog)
application controller, 382–384
connecting to TurboGears controller,

390
creating states, 389–390
deconstructing, 387–392
deploying, 391–392
event handlers, 388–389
Flex Eclipse plug-in, 388
form handling, 391
illustrated, 380–381
MXML implementation, 385–387
supporting model, 381–382

application examples (Flex Code Tester)
adding effects, 377–378
all logic in MXML, 366–372
attribute customization, 376–380
logic moved to ActionScript, 373–375

application examples (Hello Widget)
adding template path to controller,

186–188

application examples (continued)

bindex.indd 406bindex.indd 406 9/7/07 10:31:01 AM9/7/07 10:31:01 AM

407

In
de

x

widget, defining, 185–186
widget in template, 186–187

application examples (Pets)
architecture, 29
button handling functions

(JavaScript), 34
CGI program, 42–45
database, defining Python class,

38–39
database, initializing, 39–40
database, restoring/retrieving objects,

40–42
HTML page structure, 30–32
queryHandler function (JavaScript),

35–36
utility functions (JavaScript), 33
workings of, 25–28
XML error response (JavaScript),

37–38
XML parsing functions (JavaScript),

36–37
XML response (JavaScript), 37

application examples (RSS)
accessing RSS feed, 325–327
blog feed example, 321–322
creating RSS feed, 323
LatestEntries feed class, 323–325

application examples (Tblog)
creating database for model, 107–108
creating project with tg-admin, 105
creating users in CatWalk, 145
defining model classes, 105–107
displaying author name, 149–150
entries list, adding return link to,

157–159
identity module, 150–151
master template, 132–136
page access, restricting in controller,

151–154
password encryption, 145–148
removing BlogAuthor model and

controller, 148

restricting element display in template,
156–157

selecting author based on logged-in
user, 154–156

statistics page, adding link to,
166–168

style sheet, defining, 134–135
TGCrud, creating blog author views

with, 110–118
TGCrud, creating blog entry views with,

118–127
updating BlogEntryController,

148–149
updating model to User

SQLObject, 145
visitor tracking model object, defining,

162–163
visitor tracking plug-ins, 163–164
visitor tracking template, 164–166
welcome page, 128–136

application examples (Tblog User
Comments)

accepting User Comments, 174–177
BlogComment model object, 173–174
comment widget. See comment widget
form widget, defining, 175–177
Kid template, creating, 177–178
linking to new comments page,

182–184
save operation, defining, 180–182
template, incorporating in controller,

178–180
application examples (TurboGears)

CatWalk, adding to controller, 63–64
controller, calling view from, 66–67
controller, defining, 61–62
creating with tg-admin tool, 54–57
database creation/initialization, 58–61
extending Kid template to display

names, 68–69
model classes, defining, 57–58
model object editor, 62–63

application examples (TurboGears)

bindex.indd 407bindex.indd 407 9/7/07 10:31:01 AM9/7/07 10:31:01 AM

408

application examples (continued)
 search view, defining in controller,

69–70
tailored view, defining, 64–66

arrays, associative (Python), 350–351
assignment model class (Cable

Company), 215–216
associative arrays (Python), 350–351
Async module, MochiKit, 342–349
asynchronous external method calls, 10
Asynchronous JavaScript and XML

(AJAX). See AJAX (Asynchronous
JavaScript and XML)

asynchronous outbound calls, 8
Atom, 321
attributes

Python, 115–116
SQLObject, 106–107
widgets, 111, 186, 192

authentication, user (Dblog), 287–290
authorization, user (Dblog), 285
automated ORM, 51

B
Base module, MochiKit, 349–351
binding expressions (ActionScript), 390
blog applications. See application

examples
browser, widget, 172
button handling functions (Pets), 34

C
call restrictions, 345–349
Canvas container (Flex), 364
Cascading Style Sheets (CSS). See CSS

(Cascading Style Sheets)
CatWalk utility (TurboGears)

accessing, 108
adding to controllers, 63–64
creating users in (Tblog), 145

embedding in applications, 62–63
encrypted passwords and, 147
fundamentals, 209–210
initializing database with, 60–61

CGI (Common Gateway Interface)
basic use of, 25
program (Pets application), 42–45

CherryPy framework (TurboGears)
defined, 53
documentation for, 102

cleanupResponseString() function, 33
clearResults() function, 33
code listings

addComment template (Dblog),
270–271

AJAX -ready blog_detail.html,
313–314

Base template, 278–279
Base template with login/logout

functions, 291–293
blog and comment model objects,

308–309
blog detail template (Dblog),

262–263
Blog detail view, 282
Blog detail with inheritance, 280–281
blog entry template (Dblog), 267–268
blog entry view method (Dblog), 267
blog model specification, 105–106
Blog model with custom permission,

294–295
blog submission view (Dblog), 269
BlogEntryController edit template,

125–127
BlogEntryController list template,

123–124
BlogEntryFields class defined,

119–122
button handling functions (Pets), 34
CGI program (Pets), 42–45
Checking permissions on submitted

data, 296–297

application examples (continued)

bindex.indd 408bindex.indd 408 9/7/07 10:31:02 AM9/7/07 10:31:02 AM

409

In
de

x

comment entry view method (Dblog),
269–270

comment list view method (Dblog),
264–265

comment template (Dblog), 265–266
comment widget directory structure,

190–191
comment widget template file, 193
CommentFields and CommentForm

classes defined, 175–176
comment.js JavaScript file, 194–195
comments Kid template, 177–178
controller for BlogAuthors, defining,

111–113
controllers.py application controller

(Cable Company), 222–223
database, defining Python class,

38–39
database, initializing (Pets), 39–40
database, restoring/retrieving objects

(Pets), 40–42
Dblog model classes, 247–249
dblog.js, 315–317
Django database creation with syncdb

command, 77
Django HTML template, defining,

88–89
Django models.py file, 76
Django shell interaction, 77–79
Django views.py, 91
ECMAScript vs. ActionScript, 365–366
encryption of user passwords,

147–148
FBlog controllers.py, 382–384
FBlog HTML file, 392
FBlog model, 381–382
FBlog MXML implementation,

386–387
Feed.py class (Cable Company),

235–237
Flex code tester-All Logic in MXML,

366–372

Flex code tester-Attribute
Customization, 376–380

Flex code tester-Logic Moved to
ActionScript, 373–375

HelloWidget specification, 185–186
helloWorld.kid template, 187
index template (Dblog), 255–256
index view method (Dblog), 255
JSON blog object, 310
JSON comment data, 318
Kid template and MochiKit Library,

68–69
Kid template, defining, 128–129
Kid template initial version, 64–66
list template for BlogAuthorController,

114–116
Master list template with

inheritance, 280
Master list template without

inheritance, 276–277
master template for TBlog, 132–133
mod_python apache configuration, 328
New user entry form template,

301–302
postComment view method (Dblog),

272–273
Python HTML page generator, 6
queryHandler function (Pets),

35–36
readBlog view method (Dblog),

261–262
Refactored index method (Cable

Company), 226–227
root controller, defining paths in, 67
root controller extended for beView,

129–131
RSS feed, 322
RSS feed class, 323–325
Show and hide effects method

(controlpanel.kid), 234
show template for

BlogAuthorController, 117–118

code listings

bindex.indd 409bindex.indd 409 9/7/07 10:31:02 AM9/7/07 10:31:02 AM

410

code listings (continued)
 showJobs/showTrucks methods

(controlpanel.kid), 232–233
style sheet for TBlog, 134–135
Truck method (Cable Company),

223–226
Truck.kid template (Cable

Company), 224
TurboGears JSON, 218–219
TurboGears model, 57–58
TurboGears model.py (Cable Company),

210–211
TurboGears Python shell

interaction, 59
User login template, 288–289
User profile template, 290
User profile view, 290
utility functions (Pets), 33
View requiring custom permission,

295–296
View that adds user account, 299–301
View with login required, 294
visitor statistics view, 165–166
VisitorCountPlugin class defined,

163–164
widget stylesheet, 196
XHTML page (Pets), 31–32
XML blog object, 310
XML error response (Pets), 37–38
XML parsing functions (Pets), 36–37
XML response (Pets), 37
XMLQueryExample.html, 339–340
YAML blog object, 311

code tester examples (Flex). See
application examples (Flex Code
Tester)

CogBin (widgets), 104, 171
comment widget

appearance, 196
creating class, 191–192
getComments path, defining, 197
packaging, 190–191

template, defining, 192–193
using in views, 197–201
writing JavaScript for, 193–196

comments
CommentFields object, 176
CommentForm object, 176
comments, entering blog (Dblog),

269–273
comments contrib add-on (Django), 320
linking to new page, 182–184

Common Gateway Interface (CGI). See
CGI (Common Gateway Interface)

community tools, 52
compatibility mode (MochiKit), 357
components

defined by MVC pattern, 48–49
Django framework, 71–72
Identity framework, 144
TurboGears, 52–53, 101–104

configuration options
Identity framework, 143
Visit Tracking framework, 161

containers, user interface (Flex), 364
contrib add-ons, Django, 320–321
contrib.syndication.feeds, Django,

321–323
controllers

adding CatWalk to (TurboGears),
63–64

adding template path to, 186–188
Cable Company application, 222–227
calling views from (TurboGears), 66–67
CherryPy in TurboGears, 102
connecting to TurboGears (FBlog), 390
controller.py file invocation, 14–17
creating/using new (TurboGears), 103
defining (Tblog), 111–113
defining (TurboGears), 61–62
defining search view in (TurboGears),

69–70
FBlog application controller, 382–384
fundamentals of, 48–51

code listings (continued)

bindex.indd 410bindex.indd 410 9/7/07 10:31:03 AM9/7/07 10:31:03 AM

411

In
de

x

Identity framework components
and, 144

in MVC pattern, 205
restricting page access in, 151–152
root controller (TurboGears), 102
updating BlogEntryController,

148–149
controls, user interface (Flex), 363
cookies, 138–140
count function, 130
create_update objects generic

views, 285
cross-domain calls, 391
CSS (Cascading Style Sheets)

added to Flex tester example,
371–372

css attribute (widgets), 186, 192
custom add-ons, Django, 321

D
Dangoor, Kevin

interview, 93–97
and TurboGears creation, 52

data validation framework, 50
databases

abstracting interactions, 51
creating (Django), 76–77
creating for model (Tblog), 107–108
creating tables (TurboGears), 58
databasetemplateloader add-on

(Django), 321
defining Python class (Pets), 38–39
framework capabilities for

developing, 51
initialization with CatWalk (TurboGears),

60–61
initialization with interactive shell

(Django), 77–79
initialization with interactive shell

(TurboGears), 58–59
initializing (Pets), 39–40

restoring/retrieving objects (Pets),
40–42

databrowse contrib add-on
(Django), 320

date-based generic views, 284
Dblog application. See application

examples (Dblog)
debugging view (Cable Company),

230–231
decorator function

defined, 11, 102
in Python 2.4, 217–218

Defferred objects, method signatures
on, 344–345

design patterns, for Web 2.0
applications, 15–17

desktop application model, 4–5
desktop publishing (DTP), 5
display method arguments, 178
Django framework

components of, 71–72
custom add-ons, 321
Dblog application example. See

application examples (Dblog)
deploying with Apache HTTPD,

327–329
design philosophy, 241–242
Django application. See application

examples (Django)
django-admin.py command, 73–74,

242–245
django.contrib add-ons, 320–321
django.db.models package, 249–251
DRY (Don’t Repeat Yourself) principle,

276–277
forms library, 285
history of, 71
licensing of, 14
MVC architecture in, 72–73
overview of, 13–14
serialization for AJAX, 307–311
tags available in, 88

Django framework

bindex.indd 411bindex.indd 411 9/7/07 10:31:03 AM9/7/07 10:31:03 AM

412

Django framework (continued)
template filters, 257–258
template inheritance, 276–282
template tags, 256–257
vs. TurboGears, 11–12
user authentication/authorization.

See user authentication (Dblog)
Document Object Model (DOM). See

DOM (Document Object Model)
Dojo Toolkit, 53, 341
DOM (Document Object Model)

MochiKit DOM API, 195
MochiKit.DOM module, 351–352

Domain-specific languages (DSLs). See
DSLs (Domain-specific languages)

doQuery() functions, 34
doStore() functions, 34
DRY (Don’t Repeat Yourself) principle,

276–277
DSLs (Domain-specific languages). See

also Flex, 10–11

E
Eclipse, Flex plug-in for, 388
ECMAScript vs. ActionScript,

365–366
edit template, BlogEntryController,

125–127
edit view, defining, 124–127
element style manipulation

(MochiKit), 357
enable_visit_plugin method, 162
encryption, password (Tblog),

145–148
entries list, adding return link to

(Tblog), 157–159
error handling

controller, 223–227
error_handler decorator, 180–181

event handlers (FBlog), 388–389
exclude method (Django), 79

expose decorator, 181
eXtensible Markup Language (XML).

See XML (eXtensible Markup
Language)

F
FastData extension (TurboGears), 63
FBlog application. See application

examples (FBlog)
FeedController class (TurboGears),

234–235
field classes (Django models package),

249–251
filters

Django template, 257–258
method (Django), 79

Firebug extension, 230–231
Firefox browser, 230
Flash, 360–361
Flash Player plug-in, 363
Flash-based containers, 364
Flash-based interfaces. See Flex
flatpages contrib add-on

(Django), 320
Flex (Adobe)

background, 359–361
code tester examples. See application

examples (Flex Code Tester)
creating basic applications with, 362
features of, 362
Flex Builder, 388
Flex2-based blog example. See

application examples (FBlog)
front-end, 384–385
IDE for Eclipse, 384
installing Flex SDK, 362
user interface containers, 364
user interface control logic, 364–366
user interface controls, 363

forms
handling (FBlog), 391

Django framework (continued)

bindex.indd 412bindex.indd 412 9/7/07 10:31:03 AM9/7/07 10:31:03 AM

413

In
de

x

library (Django), 285
processing (Dblog), 266–269
widget, defining, 175–177

G
generic views (Django), 284–285
GET method

Django, 79
HTTP, 24

getComments
function (Ajax blog), 318–320
path, defining, 197

GMail vs. Mozilla Thunderbird, 8
Google Maps API, 212, 231
Graphic Interchange Format

(GIF), 361
Group object (Identity

framework), 142

H
handleCallback function, 69
handleChange function, 69
Hansson, David Heinemeier,

93, 206
HBoxes, 364
Hello widget. See application

examples (Hello Widget)
History button (Django), 84
Holovaty, Adrian, 71
HTML (HyperText Markup Language)

basics, 21–24
FBlog HTML file, 392
HtmlPy template engine, 53
page generator (Python), 6
page structure (Pets), 30–32

HTTP (HyperText Transfer Protocol)
defined, 23
methods, 24
requests and responses, 6–8
XMLHttpRequest (XHR), 7, 338 –340

I
Identity framework

additional components, 144
application example. See application

examples (Tblog)
configuration options, 143
model objects, 140–143
validation predicates, 152–153

identity.require decorator, 144
imports class (Cable Company),

216–217
index view method (Dblog), 255–259
inheritance, template (Django),

276–282
__init__.py file, 243
installing

Apache HTTPD server, 327–329
Flex SDK, 362
TGCrud extension, 109
user management (Dblog), 285–286

interfaces
Flash-based. See Flex
user container (Flex), 364
user control (Flex), 363

internal method calls, 10
Ippolito, Bob, 338, 341

J
Java Hibernate, 211
JavaScript

associative arrays in, 350–351
function of, 25
interactive interpreter demo, 343–344,

352
javascript attribute (widgets), 186, 192
library, 50
and MochiKit, 338–339
object comparisons in, 349–350
Object Notation (JSON). See JSON

(JavaScript Object Notation)

JavaScript

bindex.indd 413bindex.indd 413 9/7/07 10:31:04 AM9/7/07 10:31:04 AM

414

JavaScript (continued)
writing for comment widget, 193–196
writing in dblog.js, 314–318

job model class (Cable Company),
213–214

JSON (JavaScript Object Notation)
blog object, 318
comment data, 318
Django serialization into, 310

K
Kaplan-Moss, Jacob, 71
Kid templates

application (Cable Company),
228–229

creating (Tblog User Comments),
177–178

defined, 52–53
defining (Tblog), 128–129
for embedding Python in XHTML

documents, 64
extending for asynchronous calls, 68
extending to display names, 68–69
fundamentals, 103
Kid templating language, 11
master.kid template (Cable Company),

227–229
visitor statistics view (Tblog), 165–166

L
LatestEntries feed class (FBlog),

323–325
Lesser General Public License

(LGPL), 14
licensing, open source, 14
list templates

for BlogAuthorController, 114–116
BlogEntryController, 123–124

list views, defining (Tblog), 113–116,
122–124

list-detail generic views (Dblog),
282–284

listings, code. See code listings
location class (Cable Company),

211–213
Logging module, MochiKit, 352
login, user (Dblog), 288–290

M
Macromedia XML (MXML). See MXML

(Macromedia XML)
manage.py command, 73–75
manage.py file, 243–244
manual ORM, 51
mashups, 15
master templates

applying, (Tblog), 135–136
defined, 109
defining (Tblog), 132–133
master.kid template (Cable Company),

227–229
metacharacters for URL pattern

matching, 260–261
metaprogramming, 11
methods, HTTP, 24
Miner, Wilson, 71
MIT License, 14
MochiKit

capabilities of, 306, 357
defined, 52, 341
defining XMLHttpRequest with, 68
DOM API, 195
fundamentals, 103
integrating with Django, 306–307
interactive interpreter, 349
licensing of, 14
MochiKit.Async module, 342–349
MochiKit.Base module, 349–351
MochiKit.DOM module, 351–352
MochiKit.Logging module, 352
MochiKit.Logging package, 230

JavaScript (continued)

bindex.indd 414bindex.indd 414 9/7/07 10:31:04 AM9/7/07 10:31:04 AM

415

In
de

x

MochiKit.Signal module, 352–355
MochiKit.Visual module, 355–356
modules, functions of, 341–342
reasons for, 338–339
in TurboGears, 14

mod_python apache configuration, 328
mod_python extension, 327–328
model classes

defining (Tblog), 105–107
defining in Django, 76
defining in TurboGears, 57–58
supporting (FBlog), 381–382
user (Dblog), 286–287
writing (Dblog), 246–251

model component (MVC) pattern. See
MVC (model-view-controller)
pattern

model objects
application (Cable Company), 210–211
editors, 62–63
Identity framework, 140–143
updating to User SQLObject (Tblog), 145
visitor tracking (Tblog), 160–163

ModelDesigner tool (TurboGears),
207–209

model.py module (TurboGears), 205
model-view-controller (MVC) pattern.

See MVC (model-view-controller)
pattern

Mozilla Thunderbird vs. GMail, 8
MVC (model-view-controller) pattern

architecture in Django, 72–73
architecture in TurboGears, 53–54,

101
basics, 48–49
capabilities of, 51
components of, 48–49, 205

MXML (Macromedia XML)
basics, 362
components of, 363
implementation (FBlog), 385–387

Myghty template engine, 53

N
namespace support (MochiKit), 357
number/currency formatting (MochiKit),

357

O
object comparisons in Python, 349–350
object_detail generic view, 283–284
object_list generic view, 282–284
object-relational mapping (ORM). See

ORM (object-relational mapping)
onLoad() function, 33
ORM (object-relational mapping)

automated and manual, 51
defined, 24

P
page access, restricting in controller

(Tblog), 151–154
paginate decorator, 129
parameters attribute (widgets),

186, 192
parseQueryResult() function, 36
parseSearchResult() function, 36
password encryption (Tblog), 145–148
permissions

object (Identity framework), 142–143
user (Dblog), 293–297

Pets application. See application
examples (Pets)

plug-ins
Flex, for Eclipse, 388
visit tracking (Tblog), 162–164

priority model class (Cable Company),
213–214

Professional Rich Internet Applications:
AJAX and Beyond (Wiley), 339, 349

profile view and template, user
(Dblog), 290

profi le view and template, user (Dblog)

bindex.indd 415bindex.indd 415 9/7/07 10:31:05 AM9/7/07 10:31:05 AM

416

PUT method (HTTP), 24
Python language

$ in expressions, 115
{ } in expressions, 115
advantages of, 12–13
associative arrays, 350–351
attributes, 115–116
framework diagrammed, 360
HTML page generator, 6
object comparisons in, 349–350
overview and history, 4–8
regular expressions, 261

Q
queryHandler function (Pets), 34–36
quickstart controller (TurboGears), 62

R
RCP (Rich Client Platform) model

overview of, 4–5
vs. RIAs, 377–378

Really Simple Syndication (RSS). See
RSS (Really SImple Syndication)

record_request method, 162
redirects contrib add-on

(Django), 320
registration add-on (Django), 321
regular expressions, Python, 261
render_to_response function, 92
require property (Identity

framework), 144
resource model class (Cable Company),

215
resourcelist method (Cable Company),

218–219
RIA (Rich Internet Application) mode).

See also Web 2.0 applications
application example. See application

examples (Cable Company)
Flex-based. See Flex

overview of, 7–8
vs. RCPs, 377–378

Rich Client Platform (RCP) model.
See RCP (Rich Client Platform)
model

Rich Internet Application (RIA) model.
See RIA (Rich Internet Application)
model)

Rich Internet Applications: AJAX and
Beyond (Wiley), 15

Rich Internet Applications (Wiley), 93
root class (Cable Company), 217–218
root controller (TurboGears)

basics, 102
defined, 62
extended for beView (Tblog), 129–131

RSS (Really Simple Syndication)
adding to blog application. See

application examples (RSS)
feed capability in TurboGears,

234–237
runserver command (Django), 251

S
save method (Django), 79
save operation, defining, 180–182
saveComment function, 181
script.aculo.us, 53
search view, defining in controller,

69–70
serialization for Ajax, Django, 307–311
service-oriented architecture (SOA), 15
settings.py file, 243, 245
show templates for

BlogAuthorController, 117–118
show views (Tblog), 117–118
Signal module, MochiKit, 352–355
simple.direct_to_template generic

view, 284
simple.redirect_to generic view, 284
sitemap contrib add-on (Django), 321

PUT method (HTTP)

bindex.indd 416bindex.indd 416 9/7/07 10:31:05 AM9/7/07 10:31:05 AM

417

In
de

x

sites contrib add-on (Django), 321
SQL (Structured Query Language)

basics, 24
overview of, 24
sql subcommand (TurboGears), 58

SQLAlchemy, 53, 94
SQLite database file, 244
SQLObject

attributes, 106–107
in blog application, 144
defined, 53–54
documentation for, 101
licensing of, 14

startapp command (Django), 245
states, creating (FBlog), 389–390
statistics

page, adding link to (Tblog), 166–168
and Visit framework, 157–159
visitor statistics view (Tblog), 165–166

status model class (Cable
Company), 215

Stephenson, Neal, 4
Structured Query Language (SQL). See

SQL (Structured Query Language)
style sheets, defining (Tblog), 134–135
syncdb command (Django), 77, 80,

244, 249
syndication contrib add-on (Django), 321
syndication feeds, 321

T
tables

data view, displaying, 233–234
defining related (Pets), 39–40

tagging add-on (Django), 321
Tblog application. See application

examples (Tblog)
templates

adding path to controller, 186–188
application, defining (Django), 87–89
applying master (Tblog), 135–136

attribute (widgets), 186, 192
configuring application for (Django),

86–87
default for data manipulation, 50
defined in Django, 72–73
defining for comment widget, 192–193
defining master (Tblog), 132–133
edit (Tblog), 125–127
engine, 50
incorporating in controller, 178–180
inheritance (Django), 276–282
list (Tblog), 114–116, 123–124
master, defined, 109
restricting element display in (Tblog),

156–157
show (Tblog), 117–118
tags, Django, 256–257
using widgets in, 186–187
visitor tracking (Tblog), 164–166

testing, framework support of, 51
TextField widget, 111
tg_flash parameter, 181
tg-admin command (TurboGears)

creating database with, 58
creating project with, 54–57, 105
toolbox command, 104

TGCrud extension (TurboGears)
code generated by, 108–109, 119
creating author views with (Tblog),

110–118
creating entry views with (Tblog),

118–127
defined, 63
installing, 109
overview of, 108

TurboGears framework
advanced application of, 203–204
application examples. See application

examples
CatWalk tool, 209–210
components of, 52–53, 101–104
vs. Django framework, 11–12

TurboGears framework

bindex.indd 417bindex.indd 417 9/7/07 10:31:06 AM9/7/07 10:31:06 AM

418

TurboGears framework (continued)
extensions, 63
features of, 11–12
history of, 52
interview with developer, 93–97
licensing of, 14
model component in, 101
ModelDesigner tool, 207–209
MVC architecture in, 53–54
overview of, 13–14
Toolbox, 104, 206
views, 103

U
updateCommentsDiv function, 194–195
URL mappings

in Dblog application, 260–264
defined in Django, 72–73

urlpatterns
regular expression processing, 264
URL pattern matching, 260–261
variable, 88–89, 260

urls.py file, 243
users

authenticating (Dblog), 287–290
comments, accepting, 174–177
creating (Dblog), 297–302
identity framework. See Identity

framework
interface containers (Flex), 364
interface controls (Flex), 363–366
login and profile (Dblog), 288–290
management, installing (Dblog),

285–286
model (Dblog), 286–287
object (Identity framework), 141–142
permissions (Dblog), 293–297
User Comments application, TBlog.

See application examples (Tblog
User Comments)

utility functions (Pets), 33

V
validate decorator, 181
validation predicates (Identity

framework), 152–153
Valverde, Albert, 96
variables

braces surrounding, 87
urlpattern, 260

VBoxes, 364
view component (MVC)

basics, 48–49, 205
in Cable Company application,

230–234
capabilities of, 50
displaying map data, 232–233
displaying table data, 233–234
getting data, 232
map loading, 230–231
setting up and debugging,

230–231
views

adding to URL list (Django), 89–90
calling from controller (TurboGears),

66–67
composition, 50
defined in Django, 72–73
defining tailored, 64–66
Django application, defining, 90–92
generic (Django), 284–285
TurboGears, 103, 205

Visit model object, 160
Visit Tracking framework

application example. See application
examples (Tblog)

basics, 159–160
configuration options, 161
cookies, 138–140
model objects, basics, 160–161
plug-ins, 162
VisitIdentity table, 160–161

Visual module, MochiKit, 355–356

TurboGears framework (continued)

bindex.indd 418bindex.indd 418 9/7/07 10:31:06 AM9/7/07 10:31:06 AM

419

In
de

x

W
Web 2.0 applications

capabilities of, 8–10
defined, 4
design patterns for, 15–17
history of, 6–10

web application frameworks
common capabilities of, 50–52
MVC in, 48–49

web application path
modifying for author views (blog

application), 110
modifying for entry views (blog

application), 119
modifying for Kid template (blog

application), 129–131
Web publishing (WP), 5
web sites, for downloading

CherryPy framework, 53
Django add-ons, 321
Django deployment options, 327
Dojo Toolkit, 53
Firebug extension, 230
Flex SDK, 362
Google Maps API Key, 231
HtmlPy template engine, 53
Kid template, 52
map-handling code, 227
MochiKit, 52
mod_python extension, 327
script.aculo.us, 53
SQLAlchemy, 53
SQLObject, 53
TGCrud, 109
widgets, 104
YAML serializer, 311

web sites, for further information
CherryPy documentation, 102
decorator function, 102
Django design philosophy,

71, 241

Django documentation,
249–250

Django forms library, 285
Django generic views, 285
Django template filters, 257
Django template tags, 256–257
JavaScript reference, 24
MochiKit documentation, 103
Python regular expressions, 261
SQLObject documentation, 101
TurboGears design philosophy, 71
W3C standard, 21

Web technologies
application example. See application

examples (Pets)
CGI, 25
HTML, 21–23
HTTP, 23–24
JavaScript, 25
SQL, 24
XML, 19–21

widgets (TurboGears)
attributes, 111
available types, 121–122
BlogComment model object, defining,

173–174
comment widget. See comment

widget
creating Kid template, 177–178
defining in blog application,

111–113, 119–122, 185–186
defining template, 192–193
elements of, 190
form widget, defining, 175–177
fundamentals, 104, 169–170
Hello Widget application. See

application examples (Hello
Widget)

user comments, accepting,
174–177

widget browser, 172
Willison, Simon, 71

Willison, Simon

bindex.indd 419bindex.indd 419 9/7/07 10:31:06 AM9/7/07 10:31:06 AM

420

X
XML (eXtensible Markup Language)

basics, 19–21
blog object, 310
Django serialization into, 310
error response (Pets), 37–38
parsing functions (Pets), 36–37
response example (Pets), 37

XMLHttpRequest (XHR), 7, 338-340
xmlrpc add-on (Django), 321

Y
Yahoo! UI Library (YUI), 341
YAML (YAML Ain’t Markup Language)

blog object, 311
Django serialization into, 311

XML (eXtensible Markup Language)

bindex.indd 420bindex.indd 420 9/7/07 10:31:07 AM9/7/07 10:31:07 AM

badvert.indd 421badvert.indd 421 9/7/07 12:32:28 PM9/7/07 12:32:28 PM

badvert.indd 422badvert.indd 422 9/7/07 12:32:29 PM9/7/07 12:32:29 PM

badvert.indd 423badvert.indd 423 9/7/07 12:32:29 PM9/7/07 12:32:29 PM

badvert.indd 424badvert.indd 424 9/7/07 12:32:29 PM9/7/07 12:32:29 PM

badvert.indd 425badvert.indd 425 9/7/07 12:32:30 PM9/7/07 12:32:30 PM

Now you can access more than 200 complete Wrox books
online, wherever you happen to be! Every diagram, description,
screen capture, and code sample is available with your
subscription to the Wrox Reference Library. For answers when
and where you need them, go to wrox.books24x7.com and
subscribe today!

badvert.indd 426badvert.indd 426 9/7/07 12:32:30 PM9/7/07 12:32:30 PM

	Professional Python Frameworks Web 2.0 Programming with Django and TurboGears
	About the Authors
	Credits
	Acknowledgments
	Contents
	Introduction
	Conventions
	Source Code
	Errata
	p2p.wrox.com
	Let Us Know What You Think

	Part I Introduction to Python Frameworks
	Chapter 1 Web 2.0, Python, and Frameworks
	The Starting Line
	The Role of AJAX in Web 2.0
	Leveraging the Power of DSL s
	Leveraging the Power of TurboGears
	Leveraging the Power of Django
	Leveraging the Power of Python
	Comparing the Frameworks
	Summary

	Chapter 2 Web 2.0 with Traditional Python
	Old-School Web Technologies
	A Simple Example
	Summary

	Chapter 3 Introducing the Frameworks
	Web Application Frameworks
	Introduction to TurboGears
	Introduction to Django
	Summary

	Part II TurboGears
	Chapter 4 Introduction to TurboGears
	TurboGears Components
	An Example: A Simple Blog Site
	Summary

	Chapter 5 User Identity and Visitor Tracking
	Tracking Visits through Cookies
	Managing User Identity
	Visitor Tracking
	Summary

	Chapter 6 Widgets
	TurboGears Widgets
	Using the Widget Browser
	Using Existing Widgets
	Creating New Widgets
	Summary

	Chapter 7 Advanced TurboGears Topics
	Your Assignment
	The Operational Concept
	Designing the Model
	The View
	Adding RSS Feed Capability
	Summary

	Part III Django
	Chapter 8 Dblog: A Blog Implementedin Django
	Django Design Philosophies
	An Example: A Simple Blog Site
	Summary

	Chapter 9 Django Views and Users
	Template Inheritance
	Generic Views
	User Authentication and Authorization
	Summary

	Chapter 10 Advanced Django Topics: AJAX, RSS, and More
	AJAX and Django
	Django Add-Ons
	Deploying Django with Apache HTTPD
	Summary

	Part IV Advanced Client-Side Topics
	Chapter 11 MochiKit — Pythonic Java Scripting
	Why MochiKit?
	What Is MochiKit?
	Summary

	Chapter 12 Flash-Based Interfaces and TurboGears
	The Flex Difference
	A Flex2-Based Blog
	Summary

	Appendix A Tools Used
	OS Versions Used
	Installing Tools in Windows
	Installing Tools on Mac OS X
	Installing Tools in Linux

	Index

