
Sileika
Python System

 Adm
inistration

Companion
eBook

Available

7.5 x 9.25 spine = 0.78125" 416 page count

THE EXPERT’S VOICE® IN OPEN SOURCE

Pro
Python
System Administration

Rytis Sileika

Learn to manage and monitor your network,
web servers, and databases with Python

this print for content only—size & color not accurate

 CYAN
 MAGENTA

 YELLOW
 BLACK
 PANTONE 123 C

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Pro Python System Administration
Dear Reader,

Pro Python System Administration takes you beyond standard management
tools and quick-and-dirty shell scripts. You’ll discover real-world examples of
customized tools built using Python and the Django and Jinja2 frameworks –
tools that you can put to work in your own environment right away.

Each chapter explains how to determine your requirements, how to create
your tools, and how to use them effectively. I chose the Python programming
language because it's relatively simple to use, easy to learn, and elegant. It also
comes with a large base of additional modules.

These are some of the practical solutions you’ll learn to create:
• How to manage network devices with SOAP and SNMP
• How to monitor web servers and databases using Django and Jinja2
• How to perform statistical computation with NumPy
• How to offload processing tasks to Amazon Web Services

Administering network systems, a complex task in itself, requires a variety of
specialized skills. This book will help you build the customized solutions you
need to create an efficient, productive environment.

Rytis Sileika, RHCE

Rytis Sileika

Shelve in:
Python

User level:
Intermediate–Advanced

THE APRESS ROADMAP

Pro Python

Pro
Python System
Administration

Beginning
Python Visualization

Foundations
of Agile Python
Development

Python 3 for
Absolute Beginners

Dive into
Python 3

Beginning Python,
Second Edition

www.apress.com
SOURCE CODE ONLINE

Companion eBook

See last page for details

on $10 eBook version

ISBN 978-1-4302-2605-5

9 781430 226055

54999

Pro

Pro Python System

Administration

■ ■ ■

Rytis Sileika

Pro Python System Administration

Copyright © 2010 by Rytis Sileika

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-2605-5

ISBN-13 (electronic): 978-1-4302-2606-2

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of
the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

President and Publisher: Paul Manning
Lead Editors: Duncan Parkes and Michelle Lowman
Technical Reviewer: Patrick Engebretson
Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell,

Jonathan Gennick, Jonathan Hassell, Michelle Lowman, Matthew Moodie, Duncan Parkes,
Jeffrey Pepper, Frank Pohlmann, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft,
Matt Wade, Tom Welsh

Coordinating Editors: Mary Tobin and Jennifer L. Blackwell
Copy Editors: Jim Compton, Heather Lang and Marilyn Smith
Compositor: Lynn L’Heureux
Indexer: Julie Grady
Artist: April Milne
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media, LLC.,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our
Special Bulk Sales–eBook Licensing web page at www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall have
any liability to any person or entity with respect to any loss or damage caused or alleged to be caused
directly or indirectly by the information contained in this work.

The source code for this book is available to readers at www.apress.com.

mailto:ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/info/bulksales
http://www.apress.com

I want to dedicate this book to my family—my wife Evelina and daughters Gabija and Milda

■CONTENTS

v

Contents at a Glance

■About the Author... xvi
■About the Technical Reviewer... xvii
■Acknowledgements .. xviii
■Introduction...xix

■Chapter 1: Reading and Collecting Performance Data Using SNMP....................................1

■Chapter 2: Managing Devices Using the SOAP API...41

■Chapter 3: Creating a Web Application for IP Address Accountancy75

■Chapter 4: Integrating the IP Address Application with DHCP...107

■Chapter 5: Maintaining a List of Virtual Hosts in an Apache Configuration File137

■Chapter 6: Gathering and Presenting Statistical Data from Apache Log Files159

■Chapter 7: Performing Complex Searches and Reporting on Application Log Files181

■Chapter 8: A Web Site Availability Check Script for Nagios...211

■Chapter 9: Management and Monitoring Subsystem ...231

■Chapter 10: Remote Monitoring Agents..269

■Chapter 11: Statistics Gathering and Reporting...297

■Chapter 12: Automatic MySQL Database Performance Tuning..329

■Chapter 13: Using Amazon EC2/S3 as a Data Warehouse Solution349

■Index...373

■CONTENTS

vii

Contents

■About the Author... xvi
■About the Technical Reviewer... xvii
■Acknowledgements .. xviii
■Introduction...xix

■Chapter 1: Reading and Collecting Performance Data Using SNMP....................................1
Application Requirements and Design ..1

Specifying the Requirements ...1
High-Level Design Specification...2

Introduction to SNMP ...2
The System SNMP Variables Node ...4
The Interfaces SNMP Variables Node ...5
Authentication in SNMP ...7
Querying SNMP from the Command Line ...7

Querying SNMP Devices from Python ...11
Configuring the Application ..11
Using the PySNMP Library ...13
Implementing the SNMP Read Functionality ...18

Storing Data with RRDTool ...18
Introduction to RRDTool ...18
Using RRDTool from a Python Program ..20
Creating a RoundRobin Database...20
Writing and Reading Data from the RoundRobin Database ...22
Plotting Graphs with RRDTool ..25
Integrating RRDTool with the Monitoring Solution...28

Creating Web Pages with the Jinja2 Templating System...31
Loading Template Files with Jinja2 ..32
The Jinja2 Template Language ..33
Generating Web Site Pages..35

Summary ...39

■CONTENTS

viii

■Chapter 2: Managing Devices Using the SOAP API...41
What Is the SOAP API?..41

The Structure of a SOAP Message..42
Requesting Services with SOAP ...42
Finding Information about Available Services with WSDL..44

SOAP Support in Python ...45
Converting WSDL Schema to Python Helper Module ...46
Defining Requirements for Our Load Balancer Tool ...47

Basic Requirements...48
Code Structure...48
Configuration ...49

Accessing Citrix Netscaler Load Balancer with the SOAP API ..50
Fixing Issues with Citrix Netscaler WSDL..50
Creating a Connection Object...51
Logging In: Our First SOAP Call ..54

Gathering Performance Statistics Data ...59
SOAP Methods for Reading Statistical Data and Their Return Values59
Reading System Health Data..60
Reading Service Status Data ..62

Automating Administration Tasks ...65
Device Configuration SOAP Methods ..66
Setting a Service State...66

A Word About Logging and Error Handling ..68
Using the Python logging Module..68
Handling Exceptions ..72

Summary ...73

■Chapter 3: Creating a Web Application for IP Address Accountancy75
Designing the Application ...75

Setting Out the Requirements ..75
Making Design Decisions...76
Defining the Database Schema ..77
Creating the Application Workflow ...79

■CONTENTS

ix

The Basic Concepts of the Django Framework..80
What Is Django?...81
The Model/View/Controller Pattern ...81
Installing the Django Framework..82
The Structure of a Django Application ..83
Using Django with Apache Web Server...85

Implementing Basic Functionality ...88
Defining the Database Model ...88
URL Configuration..91
Using the Management Interface ...93
Viewing Records ..96
Using Templates ..99
Deleting Records ...102
Adding New Records..103
Modifying Existing Records ..105

Summary ...106

■Chapter 4: Integrating the IP Address Application with DHCP...107
Extending the Design and Requirements ..107

Extending the Database Schema..109
Additions to the Workflow ..110

Adding DHCP Network Data..110
Defining Data Models...110
Additional Workflows ...111
The Add Function...111
The Modify Function ..113
The Delete Function...113

Extending DHCP Configuration with Address Pools ...113
The Address Pool Data Model ..114
Displaying DHCP Network Details...114
The Add and Delete Functions..116

Reworking the URL Structure ...116
Generating URLs in the Model Class...117
Reverse Resolution of URLs ...117
Assigning Names to URL Patterns ..118
Using URL References in the Templates...118

■CONTENTS

x

Adding Client Classification ..120
Additions to the Data Model . ..120
Using Template Inheritance. ...121
Class Rules Management. ..122

Generating the DHCP Configuration File..127
Other Modifications ..131

Resolving IPs to Hostnames . ..131
Checking Whether the Address Is In Use132

Summary ...135

■Chapter 5: Maintaining a List of Virtual Hosts in an Apache Configuration File137
Specifying the Design and Requirements for the Application...137

Functional Requirements . ..138
High-Level Design . ..138

Setting Up the Environment ..138
Apache Configuration. ..139
Creating a Django Project and Application. ...139
Configuring the Application140
Defining the URL Structure. ..141

The Data Model..142
The Basic Model Structure . ..143

Modifying the Administration Interface . ..147
Improving the Class and Object Lists . ..147
Adding Custom Object Actions ...152

Generating the Configuration File..154
Summary ...157

■Chapter 6: Gathering and Presenting Statistical Data from Apache Log Files159
Application Structure and Functionality...159

Application Requirements160
Application Design . ..160

Plug-in Framework Implementation in Python ..160
The Mechanics of a Plug-in Framework . ..161
Creating the Plug-in Framework163

■CONTENTS

xi

Log-Parsing Application ...167
Format of Apache Log Files..167
Log File Reader..169
Calling the Plug-in Methods ...173

Plug-in Modules ...177
Installing the Required Libraries...177
Writing the Plug-in Code ..179

Summary ...180

■Chapter 7: Performing Complex Searches and Reporting on Application Log Files181
Defining the Problem..181

Why We Use Exceptions...184
Are Exceptions Always a Bad Sign?..184
Why We Should Analyze Exceptions ...184

Parsing Complex Log Files ...186
What Can We Find in a Typical Log File? ..186
The Structure of an Exception Stack Trace Log ..187

Handling Multiple Files ...189
Handling Multiple Files...189
Using the Built In Bzip2 Library ..193
Traversing Through Large Data Files..193
What Are Generators, And How Do We Use Them?...193

Detecting Exceptions..195
Detecting Potential Candidates ..195
Filtering Legitimate Exception Traces...196

Storing Data in Data Structures ..197
The Structure of Exception Stack Trace Data ...198
Generating an Exception Fingerprint for Unknown Exceptions ..198
Detecting Known Exceptions..201

Producing Reports..206
Grouping Exceptions ..207
Producing Differently Formatted Output for the Same Dataset..208
Calculating Group Statistics ...208

Summary ...210

■CONTENTS

xii

■Chapter 8: A Web Site Availability Check Script for Nagios...211
Requirements for the Check System...211
The Nagios Monitoring System ...212

Nagios Plug-In Architecture ...212
The Site Navigation Check..213

Installing the Beautiful Soup HTML Parsing Library ..214
Retrieving a Web Page...214
Parsing the HTML Pages with Beautiful Soup ...216
Adding the New Check to the Nagios System...222
Emulating the User Login Process..224

Summary ...229

■Chapter 9: Management and Monitoring Subsystem ...231
Design ...231

The Components..231
The Data Objects ...233

The Data Structures ...234
Introduction to Data Normalization ...235
Configuration Data ...237
Performance Data..240
Scheduling ..241
Site Configuration ..242

Communication Flows ..243
XML-RPC for Information Exchange ...244
CherryPy..246

The Server Process ..247
Storing Data in a SQLite3 Database ...247
Actions ..252

The Scheduler ..255
Actions ..255
Running Multiple Processes ...255
Running Methods at Equal Intervals ...260
A Cron-Like Scheduler ...263
Ticket Dispatcher...264

Summary ...267

■CONTENTS

xiii

■Chapter 10: Remote Monitoring Agents..269
Design ...269

The Passive Component...269
Architecture ...269
Actions ..269

The Security Model ..271
Configuration..271

The ConfigParser Library..271
The Configuration Class Wrapper ...277

The Sensor Design ...281
Running External Processes ...282

Using the subprocess Library ...282
Controlling the Running Processes...286
Communicating with External Processes..289

Automatically Updating Sensor Code ..292
Sending and Receiving Binary Data with XML-RPC...292
Working with Files and Archives (TAR and BZip2)...293

Summary ...296

■Chapter 11: Statistics Gathering and Reporting...297
Application Requirements and Design ..297
Using the NumPy Library ..297

Installing NumPy..298
NumPy Examples...298

Representing Data with matplotlib ..309
Installing matplotlib ...309
Understanding the Library Structure...310
Plotting Graphs ..311
Saving Plots to a File..316

Graphing Statistical Data ..317
Collating Data from the Database...317
Drawing Timescale Graphs ..318

Summary ...328

■CONTENTS

xiv

■Chapter 12: Automatic MySQL Database Performance Tuning..329
Requirements Specification and Design..329

Basic Application Requirements...330
System Design...330

Modifying the Plug-in Framework...332
Changes to the Host Application...332
Modifying the Plug-in Manager ..333

Writing the Producer Plug-ins...334
Accessing the MySQL Database from Python Applications..334
Querying the Configuration Variables ...339
Querying the Server Status Variables ...341
Collecting the Host Configuration Data ...342

Writing the Consumer Plug-ins ...343
Checking the MySQL Version ...344
Checking the Key Buffer Size Setting ...346
Checking the Slow Queries Counter ...347

Summary ...348

■Chapter 13: Using Amazon EC2/S3 as a Data Warehouse Solution349
Specifying the Problem and the Solution...349

The Problem ..349
Our Solution...350
Design Specifications...350

The Amazon EC2 and S3 Crash Course...351
Authentication and Security ...351
The Simple Storage System Concepts..352
The Elastic Computing Cloud Concepts ..354
User Interfaces ..358

Creating a Custom EC2 Image ..359
Reusing Existing Images ..359
Making Modifications...360
Bundling the New AMI ...362

■CONTENTS

xv

Controlling the EC2 Using the Boto Python Module ...364
Setting Up the Configuration Variables ...364
Initializing the EC2 Instance Programmatically ...365
Transferring the Data ...369
Destroying the EC2 Instance Programmatically ..369

Summary ...372

■Index...373

■CONTENTS

xvi

About the Author

■Ry tis S ileika has over twelve years of experience in the system
administration field. Since obtaining his bachelor of science degree in
computer science from Kaunas University of Technology, he’s been
specializing in system integration and deployment automation. His areas of
interest and expertise are UNIX-based operating system management and
automation tool development. Rytis is also a RedHat Certified Engineer. He
lives with his wife and two daughters in London, United Kingdom. His
nonprofessional interests are traveling, hiking, and photography.

■CONTENTS

xvii

About the Technical Reviewer

■Dr. P atr ic k Engebres ton obtained his doctor of science degree with a
specialization in information assurance from Dakota State University.
He currently serves as an assistant professor of computer and network
security and works as a senior penetration tester for security firm in the
Midwest. His research interests include penetration testing, intrusion
detection, exploitation, malware, and programming. He teaches
courses in security, C programming, and Python. When not hacking or
teaching, Dr. Engebretson spends every waking minute with his wife
Lori and his two beautiful girls Maggie and Molly.

■CONTENTS

xviii

Acknowledgments

I’d like to express my gratitude to everyone at Apress involved in the development and production of this
book. First, I want to thank Duncan Parkes, who helped a lot with the initial proposal, set the general
shape and structure of the book, and got the whole project moving forward.

Many thanks go to Michelle Lowman and Dr. Patrick Engebretson for correcting all technical and
logical mistakes as well as providing valuable tips.

I would also like to thank Jennifer Blackwell and Mary Tobin for keeping the project and my writing
on schedule and gently reminding me about the approaching deadlines.

Last but not least, I’d like to thank the Python development community and Guido van Rossum for
creating such a nice and elegant programming language.

■CONTENTS

xix

Introduction

The scope of the system administrator role has changed dramatically over the years. The number of
systems supported by a single engineer has also increased. As such, it is impractical to handcraft each
installation, and there is a need to automate as many tasks as possible. The structure of systems varies
from organization to organization, therefore system administrators must be able to create their own
management tools. Historically, the most popular programming languages for these tasks were UNIX
shell and Perl. They served their purpose well, and I doubt they will ever cease to exist. However, the
complexity of current systems requires new tools, and the Python programming language is one of them.

Python is an object oriented programming language suitable for developing large-scale
applications. Its syntax and structure make is very easy to read, so much so that the language is
sometimes referred to as “executable pseudocode.” The Python interpreter allows for interactive
execution, so in some situations, you can use it instead of a standard UNIX shell. Although Python is
primarily an object-oriented language, you can easily adopt it for procedural and functional styles of
programming. Given all that, Python makes a perfect fit as a new language for implementing system
administration applications. There are a large number of Linux system utilities already written in
Python, such as the Yum package manager and Anaconda, the Linux installation program.

Prerequisites for This Book
This book is about using the Python programming language to solve specific system administration
tasks. We will look at the four distinctive system administration areas: network management, web server
and web application management, database system management, and system monitoring. Although I
will explain most of the technologies used in this book in detail, bear in mind that the main goal of this
book is to show you the practical application of the Python libraries to solve rather specific issues.
Therefore, I’m assuming that you are a seasoned system administrator.

As we go along with the examples, you will be asked to install additional packages and libraries. In
most cases, I provide the commands and instructions to perform these tasks on a Fedora system, but
you should be ready to adopt these instructions to the Linux distribution that you are going to use. Most
of the examples work without many modifications on a recent OS X release (10.6.X) too.

I also assume that you have a background in the Python programming language. I will be focusing
on introducing the specific libraries that are used in system administration tasks as well as some lesser
known or less-often-discussed language functionality, such as the generator functions or the class
internal methods, but the basic language syntax is not explained. If you want to refresh your Python
skills I would recommend Beginning Python: From Novice to Professional, Second Edition by Magnus
Lie Hetland (Apress, 2008).

All examples presented in this book assume the Python version 2.6 and will not work correctly with
the latest Python 3 without additional modifications. Most of the examples rely on additional modules
that have not yet been ported to this version of Python.

■INTRODUCTION

xx

■Note Because of the line length limitations of the printed page, some lines of the code had to be split into two
lines. This is indicated by the backslash character (\) at the end of the split line. When you use the code examples,
you can either leave the structure as it is (i.e., with the wrapped lines), or you can join the two lines together, in
which case you’ll have to remove the backslash character from the code.

Structure of This Book
This book contains 13 chapters, and each chapter solves a distinctive problem. Some examples span
multiple chapters, but even then, each chapter deals with a specific aspect of the particular problem.

In addition to the chapters, several other organizational layers span this book. First, I grouped the
chapters by the problem type. Chapters 1 to 4 deal with network management issues; Chapters 5 to 7 talk
about the Apache web server and web application management; Chapters 8 to 11 are dedicated to
monitoring and statistical calculations; and finally, Chapters 12 and 13 focus on database management
issues.

Second, I am maintaining a common pattern in all chapters. I start with the problem statement and
then move on to gather requirements and through the design phase before going into the
implementation section.

Third, each chapter focuses on one or more technologies and the Python libraries that provide the
language interface to the particular technology. Examples of such technologies could be the SOAP
protocol, application plug-in architecture, or cloud computing concepts.

Chapter 1: Reading and Collecting Performance Data Using SNMP

Most network attached devices expose the internal counters via the Simple Network Management
Protocol (SNMP). This chapter explains basic SNMP principles and the data structure. We then look at
the Python libraries that provide the interface to SNMP–enabled devices. We also investigate the Round
Robin database, which is the de facto standard for storing the statistical data. Finally, we’ll look at the
Jinja2 template framework, which allows us to generate simple web pages.

Chapter 2: Managing Devices Using the SOAP API

Complicated tasks, such as managing the device configuration, cannot be easily done by using SNMP,
because the protocol is too simplistic. Therefore, advanced devices, such as the Citrix Netscaler load
balanacers, provide the SOAP API interface to the device management system. In this chapter, we’ll
investigate the SOAP API structure and the libraries that enable the SOAP–based communication from
the Python programming language. We’ll also look at the basic logging functionality using the built-in
libraries.

Chapter 3: Creating a Web Application for IP Address Accountancy

In this chapter, we will build a web application that maintains the list of the assigned IP addresses and
the address ranges. We will learn how to create web application using the Django framework. I’ll show
you the way Django application should be structured, how to create and configure the application
settings and the URL structure. We’ll also investigate how to deploy the Django application using the
Apache web server.

■INTRODUCTION

xxi

Chapter 4: Integrating the IP Address Application with DHCP

This chapter expands on the previous chapter, and we will implement the DHCP address range support.
We will also look at some advanced Django programming techniques such as customizing the response
MIME type as well as serving AJAX calls.

Chapter 5: Maintaining a List of Virtual Hosts in an Apache Configuration File

This is another Django application that we are going to develop, but this time, our focus will be the
Django administration interface. While building the Apache configuration management application,
you’ll learn how to customize the default Django administration interface with your own views and
functions.

Chapter 6: Gathering and Presenting Statistical Data from Apache Log Files

In this chapter, our goal is to build an application that parses and analyses the Apache web server log
files. Instead of taking the straightforward but inflexible approach of building a monolithic application,
we’ll look at the design principles of building plug-in based applications. You will learn how to use the
object and class type discovery functions and how to perform a dynamic module loading.

Chapter 7: Performing Complex Searches and Reporting on Application Log Files

This chapter also deals with the log file parsing, but this time I’ll show you how to parse complex,
multiline log file entries. We are going to investigate the functionality of the open source log file parser
tool called Exctractor, which you can download from http://exctractor.sourceforge.net/.

Chapter 8: A Web Site Availability Check Script for Nagios

Nagios is one of the most popular open source monitoring systems, because its modular structure allows
users to implement their own check scripts and thus customize the monitoring tool to their needs. In
this chapter, we are going to create two scripts that check the functionality of a web site. We’re going to
investigate how to use the Beautiful Soup HTML parsing library to extract the information from the
HTML web pages.

Chapter 9: Management and Monitoring Subsystem

This chapter starts a three chapter series in which we’ll build a complete monitoring system. The goal of
this chapter is not to replace mature monitoring systems such as Nagios or Zenoss but to show you the
basic principles of the distributed application programming. We’ll look at database design principles
such as data normalization. We’re also going to investigate how to implement the communication
mechanisms between network services using the RPC calls.

Chapter 10: Remote Monitoring Agents

This is the second chapter in the series where we’ll implement the remote monitoring agent
components. In this chapter, I also describe how to decouple the application from its configuration
using the ConfigParser module.

http://exctractor.sourceforge.net

■INTRODUCTION

xxii

Chapter 11: Statistics Gathering and Reporting

This is the last part of the monitoring series, where I’ll show you how to perform basic statistical analysis
on the collected performance data. We’re going to use scientific libraries—NumPy to perform the
calculations and matplotlib to create the graphs. You’ll learn how to find which performance readings
fall into the comfort zone and how to calculate the boundaries of that zone. We’ll also do the basic trend
detection, which provides a good insight for the capacity planning.

Chapter 12: Automatic MySQL Database Performance Tuning

In this chapter, I’ll show you how to obtain the MySQL database configuration variables and the internal
status indicators. We’ll build an application that makes a suggestion on how to improve the database
engine performance based on the obtained data.

Chapter 13: Amazon EC2/S3 as a Data Warehouse Solution

This chapter shows you how to utilize the Amazon Elastic Compute Cloud (EC2) and offload the
infrequent computation tasks to it. We’re going to build an application that automatically creates a
database server where you can transfer data for further analysis. You can use this example as a basis to
build an on-demand data warehouse solution.

The Example Source Code
The source code of all the examples in this book, along with any applicable sample data, can be
downloaded from the Apress web site at http://apress.com/book/view/1430226056. The source
code stored at this location contains the same code that is described in the book.

Most of the prototypes described in this book are also available as open source projects. You can
find these projects at the author’s web site http://www.sysadminpy.com/.

http://apress.com/book/view/1430226056
http://www.sysadminpy.com

C H A P T E R 1

■ ■ ■

1

Reading and Collecting

Performance Data Using SNMP

Most devices that are connected to a network report their status using SNMP (the Simple Network
Management Protocol). This protocol was designed primarily for managing and monitoring network-
attached hardware devices, but some applications also expose their statistical data using this protocol.
In this chapter we will look at how to access this information from your Python applications. We are
going to store the obtained data in an RRD (round robin database), using RRDTool—a widely known
and popular application and library, which is used to store and plot the performance data. Finally we’ll
investigate the Jinja2 template system, which we’ll use to generate simple web pages for our
application.

Application Requirements and Design
The topic of system monitoring is very broad and usually encompasses many different areas. A
complete monitoring system is a rather complex system and often is made up of multiple components
working together. We are not going to develop a complete, self sufficient system here, but we’ll look
into two important areas of a typical monitoring system: information gathering and representation.
In this chapter we’ll implement a system that queries devices using an SNMP protocol and then stores
the data using the RRDTool library, which is also used to generate the graphs for visual data
representation. All this is tied together into simple web pages using the Jinja2 templating library.
We’ll look at each of these components in more detail as we go along through the chapter.

Specifying the Requirements
Before we start designing our application we need to come up with some requirements for our system.
First of all we need to understand the functionality we expect our system to provide. This will help us to
create an effective (and we hope easy-to-implement) system design. In this chapter we are going to
create a system that monitors network-attached devices, such as network switches and routers, using
the SNMP protocol. So the first requirement is that the system needs to be able to query any device
using SNMP.

The information gathered from the devices needs to be stored for future reference and analysis.
Let’s make some assumptions about the use of this information. First, we don’t need to store it
indefinitely. (I’ll talk more about permanent information storage in Chapters 9–11). This means that
the information is stored only for a predefined period of time, and once it becomes obsolete it will be
erased. This defines our second requirement: the information needs to be deleted after it’s “expired.”

CHAPTER 1 ■ READING AND COLLECTING PERFORMANCE DATA USING SNMP

2

Second, the information needs to be stored so that graphs can be produced. We are not going to use
it for anything else, and therefore the data store should be optimized for the data representation tasks.

Finally, we need to generate the graphs and represent this information on easily accessible web
pages. The information needs to be structured by the device names only. For example, if we are
monitoring several devices for CPU and network interface utilization, this information needs to be
presented on a single page. We don’t need to present this information on multiple time scales; by
default the graphs should show the performance indicators for the last 24 hours.

High-Level Design Specification
Now that we have some ideas about the functionality of our system, let’s create a simple design, which
we’ll use as a guide in the development phase. The basic approach is that each of the requirements we
specified earlier should be covered by one or more design decisions.

The first requirement is that we need to monitor the network-attached devices, and we need to do
so using the SNMP protocol. This means that we have to use appropriate Python library that deals with
the SNMP objects. The SNMP module is not included in the default Python installation, so we’ll have to
use one of the external modules. I recommend using the PySNMP library (available at
http://pysnmp.sourceforge.net/), which is readily available on most of the popular Linux
distributions.

The perfect candidate for the data store engine is RRDTool (available at http://oss.oetiker.ch/
rrdtool/index.en.html). The Round Robin Database means that the database is structured in such a
way that each “table” has a limited length, and once the limit is reached, the oldest entries are dropped. In
fact they are not dropped; the new ones are simply written into their position.

The RRDTool library provides two distinct functionalities: the database service and the graph-
generation toolkit. There is no native support for RRD databases in Python, but there is an external
library available that provides an interface to the RRDTool library.

Finally, to generate the web page we will use the Jinja2 templating library (available at http://
jinja.pocoo.org/2/), which lets us create sophisticated templates and decouple the design and
development tasks.

We are going to use a simple Windows INI-style configuration file to store the information about
the devices we will be monitoring. This information will include details such as the device address,
SNMP object reference, and access control details.

The application will be split into two parts: the first part is the information-gathering tool that
queries all configured devices and stores the data in the RRDTool database, and the second part is the
report generator, which generates the web site structure along with all required images. Both
components will be instantiated from the standard UNIX scheduler application—cron. These two
scripts will be named snmp-manager.py and snmp-pages.py respectively.

Introduction to SNMP
SNMP (Simple Network Management Protocol) is a UDP-based protocol used mostly for managing
network-attached devices, such as routers, switches, computers, printers, video cameras, and so on.
Some applications also allow access to internal counters via the SNMP protocol.

SNMP not only allows you to read performance statistics from the devices, it can also send control
messages to instruct a device to perform some action—for example, you can restart a router remotely
by using SNMP commands.

http://pysnmp.sourceforge.net
http://oss.oetiker.ch
http://jinja.pocoo.org/2
http://jinja.pocoo.org/2

CHAPTER 1 ■ READING AND COLLECTING PERFORMANCE DATA USING SNMP

3

There are three main components in a system managed by SNMP:

• The management system, which is responsible for managing all devices

• The managed devices, which are all devices managed by the management system

• The SNMP agent, which is an application that runs on each of the managed devices and
interacts with the management system

This relationship is illustrated in Figure 1-1.

Figure 1-1. The SNMP network components

This approach is rather generic. The protocol defines seven basic commands, of which the most
interesting to us are get, get bulk, and response. As you may have guessed, the former two are the
commands that the management system issues to the agent, and the latter is a response from the agent
software.

How does the management system know what to look for? The protocol does not define a way of
exchanging this information, and therefore the management system has no way to interrogate the
agents to obtain the list of available variables.

The issue is resolved by using a Management Information Base (or MIB). Each device usually has
an associated MIB, which describes the structure of the management data on that system. Such a MIB
would list in hierarchical order all object identifiers (OIDs) that are available on the managed device.
The OID effectively represents a node in the object tree. It contains numerical identifiers of all nodes
leading to the current OID starting from the node at the top of the tree. The node IDs are assigned and
regulated by the IANA (Internet Assigned Numbers Authority). An organization can apply for an OID
node and when assigned is responsible for managing the OID structure below the allocated node.

Figure 1-2 illustrates a portion of the OID tree.

CHAPTER 1 ■ READING AND COLLECTING PERFORMANCE DATA USING SNMP

4

Figure 1-2. The SNMP OID tree

Let’s look at some example OIDs. The OID tree node that is assigned to the Cisco organization has
a value of 1.3.6.1.4.1.9, which means that all proprietary OIDs that are associated with the Cisco
manufactured devices will start with these numbers. Similarly, the Novell devices will have their OIDs
starting with 1.3.6.1.4.1.23.

I deliberately emphasized proprietary OIDs because some properties are expected to be present (if
and where available) on all devices. These are under the 1.3.6.1.2.1.1 (System SNMP Variables) node,
which is defined by RFC1213. For more details on the OID tree and its elements, please visit
http://www.alvestrand.no/objectid/top.html. This web site allows you to browse the OID tree
and contains quite a large collection of the various OIDs.

The System SNMP Variables Node
In most cases the basic information about a device will be available under the System SNMP Variables
OID node subtree. Therefore let’s have a close look at what you can find there.

This OID node contains several additional OID nodes. Table 1-1 provides a description for most of
the sub nodes.

http://www.alvestrand.no/objectid/top.html

CHAPTER 1 ■ READING AND COLLECTING PERFORMANCE DATA USING SNMP

5

Table 1-1. System SNMP OIDs

OID String OID Name Description

1.3.6.1.2.1.1.1 sysDescr A string containing a short description of the system or device. Usually
contains the hardware type and operating system details.

1.3.6.1.2.1.1.2 sysObjectID A string containing the vendor-specific device OID node. For example, if
the organization has been assigned an OID node 1.3.6.1.4.1.8888 and this
specific device has been assigned a .1.1 OID space under the
organization’s space, this field would contain a value of 1.3.6.1.4.1.8888.1.1.

1.3.6.1.2.1.1.3 sysUpTime A number representing the time in hundreds of a second from the time
when the system was initialized.

1.3.6.1.2.1.1.4 sysContact An arbitrary string containing information about the contact person
who is responsible for this system.

1.3.6.1.2.1.1.5 sysName A name that has been assigned to the system. Usually this field
contains a fully qualified domain name.

1.3.6.1.2.1.1.6 sysLocation A string describing the physical location of the system.

1.3.6.1.2.1.1.7 sysServices A number that indicates which services are offered by this system. The
number is a bitmap representation of all OSI protocols, with the lowest
bit representing the first OSI layer. For example, a switching device
(operating on layer 2) would have this number set to 22 = 4. This field is
rarely used now.

1.3.6.1.2.1.1.8 sysLastChange A number containing the value of sysUpTime at the time of a change to
any of the system SNMP objects.

1.3.6.1.2.1.1.9 sysTable A node containing multiple sysEntry elements. Each element
represents a distinct capability and the corresponding OID node value.

The Interfaces SNMP Variables Node
Similarly, the basic interface statistics can be obtained from the Interfaces SNMP Variables OID node
subtree. The OID for the interfaces variables is 1.3.6.1.2.1.2 and contains two subnodes:

• An OID containing the total number of network interfaces. The OID value for this entry is
1.3.6.1.2.1.2.1; and it is usually referenced as ifNumber. There are no subnodes available
under this OID.

• An OID node that contains all interface entries. Its OID is 1.3.6.1.2.1.2.2 and it is usually
referenced as ifTable. This node contains one or more entry nodes. An entry node
(1.3.6.1.2.1.2.2.1, also known as ifEntry) contains the detailed information about that
particular interface. The number of entries in the list is defined by the ifNumber node value.

CHAPTER 1 ■ READING AND COLLECTING PERFORMANCE DATA USING SNMP

6

You can find detailed information about all ifEntry subnodes in Table 1-2.

Table 1-2. Interface entry SNMP OIDs

OID String OID Name Description

1.3.6.1.2.1.2.2.1.1 ifIndex A unique sequence number assigned to the interface.

1.3.6.1.2.1.2.2.1.2 ifDescr A string containing the interface name and other available
information, such as the hardware manufacturer’s name.

1.3.6.1.2.1.2.2.1.3 ifType A number representing the interface type, depending on the
interface’s physical link and protocol.

1.3.6.1.2.1.2.2.1.4 ifMtu The largest network datagram that this interface can
transmit.

1.3.6.1.2.1.2.2.1.5 ifSpeed The estimated current bandwidth of the interface. If the
current bandwidth cannot be calculated, this number should
contain the maximum possible bandwidth for the interface.

1.3.6.1.2.1.2.2.1.6 ifPhysAddress The physical address of the interface, usually a MAC address
on Ethernet interfaces.

1.3.6.1.2.1.2.2.1.7 ifAdminStatus This OID allows setting the new state of the interface. Usually
limited to the following values: 1 (Up), 2 (Down), 3 (Testing).

1.3.6.1.2.1.2.2.1.8 ifOperStatus The current state of the interface. Usually limited to the
following values: 1 (Up), 2 (Down), 3 (Testing).

1.3.6.1.2.1.2.2.1.9 ifLastChange The value containing the system uptime (sysUpTime)
reading when this interface entered its current state. May
be set to zero if the interface entered this state before the
last system reinitialization.

1.3.6.1.2.1.2.2.1.10 ifInOctets The total number of bytes (octets) received on the interface.

1.3.6.1.2.1.2.2.1.11 ifInUcastPkts The number of unicast packets forwarded to the device’s
network stack.

1.3.6.1.2.1.2.2.1.12 ifInNUcastPkts The number of non-unicast packets delivered to the device’s
network stack. Non-unicast packets are usually either
broadcast or multicast packets.

1.3.6.1.2.1.2.2.1.13 ifInDiscards The number of dropped packets. This does not indicate a
packet error, but may indicate that the receive buffer was too
small to accept the packets.

CHAPTER 1 ■ READING AND COLLECTING PERFORMANCE DATA USING SNMP

7

OID String OID Name Description

1.3.6.1.2.1.2.2.1.14 ifInErrors The number of received invalid packets.

1.3.6.1.2.1.2.2.1.15 ifInUnknownProtos The number of packets that were dropped because the
protocol is not supported on the device interface.

1.3.6.1.2.1.2.2.1.16 ifOutOctets The number of bytes (octets) transmitted out of the
interface.

1.3.6.1.2.1.2.2.1.17 ifOutUcastPkts The number of unicast packets received from the device’s
network stack. This number also includes the packets that
were discarded or not sent.

1.3.6.1.2.1.2.2.1.18 ifNUcastPkts The number of non-unicast - packets received from the
device’s network stack. This number also includes the
packets that were discarded or not sent.

1.3.6.1.2.1.2.2.1.19 ifOutDiscards The number of valid packets that were discarded. It’s not an
error but may indicate that the send buffer is too small to
accept all packets.

1.3.6.1.2.1.2.2.1.20 ifOutErrors The number of outgoing packets that couldn’t be
transmitted because of the errors.

1.3.6.1.2.1.2.2.1.21 ifOutQLen The length of the outbound packet queue.

1.3.6.1.2.1.2.2.1.22 ifSpecific Usually contains a reference to the vendor-specific OID
describing this interface. If such information is not available
the value is set to an OID 0.0, which is syntactically valid,
but is not pointing to anything.

Authentication in SNMP
Authentication in earlier SNMP implementations is somewhat primitive and is prone to attacks. An
SNMP agent defines two community strings—one for read-only access and the other for read/write
access. When the management system connects to the agent, it must authenticate with one of those two
strings. The agent accepts commands only from a management system that has authenticated with valid
community strings.

Querying SNMP from the Command Line
Before we start writing our application, let’s quickly look at how to query SNMP from the command line.
This is particularly useful if you want to check whether the information returned by the SNMP agent is
correctly accepted by your application.

The command-line tools are provided by the Net-SNMP-Utils package, which is available for most
Linux distributions. This package includes the tools to query and set SNMP objects. Consult your Linux
distribution documentation for the details on installing this package.

CHAPTER 1 ■ READING AND COLLECTING PERFORMANCE DATA USING SNMP

8

The command-line tools are provided by the Net-SNMP-Utils package, which is available for most
Linux distributions. This package includes the tools to query and set SNMP objects. Consult your Linux
distribution documentation for the details on installing this package.

The most useful command from this package is snmpwalk, which takes an OID node as an
argument and tries to discover all subnode OIDs. This command uses the SNMP operation getnext,
which returns the next node in the tree and effectively allows you to traverse the whole subtree from
the indicated node. If no OID has been specified, snmpwalk will use the default SNMP system OID
(1.3.6.1.2.1) as the starting point. Listing 1-1 demonstrates the snmpwalk command issued against a
laptop running Fedora Linux.

Listing 1-1. An example of the snmpwalk command

$ snmpwalk -c public -On 192.168.1.68
.1.3.6.1.2.1.1.1.0 = STRING: Linux fedolin.example.com 2.6.32.11-99.fc12.i686 #1
SMP Mon Apr 5 16:32:08 EDT 2010 i686
.1.3.6.1.2.1.1.2.0 = OID: .1.3.6.1.4.1.8072.3.2.10
.1.3.6.1.2.1.1.3.0 = Timeticks: (110723) 0:18:27.23
.1.3.6.1.2.1.1.4.0 = STRING: Administrator (admin@example.com)
.1.3.6.1.2.1.1.5.0 = STRING: fedolin.example.com
.1.3.6.1.2.1.1.6.0 = STRING: MyLocation, MyOrganization, MyStreet, MyCity, MyCountry
.1.3.6.1.2.1.1.8.0 = Timeticks: (3) 0:00:00.03
.1.3.6.1.2.1.1.9.1.2.1 = OID: .1.3.6.1.6.3.10.3.1.1
.1.3.6.1.2.1.1.9.1.2.2 = OID: .1.3.6.1.6.3.11.3.1.1
.1.3.6.1.2.1.1.9.1.2.3 = OID: .1.3.6.1.6.3.15.2.1.1
.1.3.6.1.2.1.1.9.1.2.4 = OID: .1.3.6.1.6.3.1
.1.3.6.1.2.1.1.9.1.2.5 = OID: .1.3.6.1.2.1.49
.1.3.6.1.2.1.1.9.1.2.6 = OID: .1.3.6.1.2.1.4
.1.3.6.1.2.1.1.9.1.2.7 = OID: .1.3.6.1.2.1.50
.1.3.6.1.2.1.1.9.1.2.8 = OID: .1.3.6.1.6.3.16.2.2.1
.1.3.6.1.2.1.1.9.1.3.1 = STRING: The SNMP Management Architecture MIB.
.1.3.6.1.2.1.1.9.1.3.2 = STRING: The MIB for Message Processing and Dispatching.
.1.3.6.1.2.1.1.9.1.3.3 = STRING: The management information definitions for the
SNMP User-based Security Model.
.1.3.6.1.2.1.1.9.1.3.4 = STRING: The MIB module for SNMPv2 entities
.1.3.6.1.2.1.1.9.1.3.5 = STRING: The MIB module for managing TCP implementations
.1.3.6.1.2.1.1.9.1.3.6 = STRING: The MIB module for managing IP and ICMP
implementations
.1.3.6.1.2.1.1.9.1.3.7 = STRING: The MIB module for managing UDP implementations
.1.3.6.1.2.1.1.9.1.3.8 = STRING: View-based Access Control Model for SNMP.
.1.3.6.1.2.1.1.9.1.4.1 = Timeticks: (3) 0:00:00.03
.1.3.6.1.2.1.1.9.1.4.2 = Timeticks: (3) 0:00:00.03
.1.3.6.1.2.1.1.9.1.4.3 = Timeticks: (3) 0:00:00.03
.1.3.6.1.2.1.1.9.1.4.4 = Timeticks: (3) 0:00:00.03
.1.3.6.1.2.1.1.9.1.4.5 = Timeticks: (3) 0:00:00.03
.1.3.6.1.2.1.1.9.1.4.6 = Timeticks: (3) 0:00:00.03
.1.3.6.1.2.1.1.9.1.4.7 = Timeticks: (3) 0:00:00.03
.1.3.6.1.2.1.1.9.1.4.8 = Timeticks: (3) 0:00:00.03
.1.3.6.1.2.1.2.1.0 = INTEGER: 5

mailto:admin@example.com

CHAPTER 1 ■ READING AND COLLECTING PERFORMANCE DATA USING SNMP

9

.1.3.6.1.2.1.2.2.1.1.1 = INTEGER: 1

.1.3.6.1.2.1.2.2.1.1.2 = INTEGER: 2

.1.3.6.1.2.1.2.2.1.1.3 = INTEGER: 3

.1.3.6.1.2.1.2.2.1.1.4 = INTEGER: 4

.1.3.6.1.2.1.2.2.1.1.5 = INTEGER: 5

.1.3.6.1.2.1.2.2.1.2.1 = STRING: lo

.1.3.6.1.2.1.2.2.1.2.2 = STRING: eth0

.1.3.6.1.2.1.2.2.1.2.3 = STRING: wlan1

.1.3.6.1.2.1.2.2.1.2.4 = STRING: pan0

.1.3.6.1.2.1.2.2.1.2.5 = STRING: virbr0

.1.3.6.1.2.1.2.2.1.3.1 = INTEGER: softwareLoopback(24)

.1.3.6.1.2.1.2.2.1.3.2 = INTEGER: ethernetCsmacd(6)

.1.3.6.1.2.1.2.2.1.3.3 = INTEGER: ethernetCsmacd(6)

.1.3.6.1.2.1.2.2.1.3.4 = INTEGER: ethernetCsmacd(6)

.1.3.6.1.2.1.2.2.1.3.5 = INTEGER: ethernetCsmacd(6)

.1.3.6.1.2.1.2.2.1.4.1 = INTEGER: 16436

.1.3.6.1.2.1.2.2.1.4.2 = INTEGER: 1500

.1.3.6.1.2.1.2.2.1.4.3 = INTEGER: 1500

.1.3.6.1.2.1.2.2.1.4.4 = INTEGER: 1500

.1.3.6.1.2.1.2.2.1.4.5 = INTEGER: 1500

.1.3.6.1.2.1.2.2.1.5.1 = Gauge32: 10000000

.1.3.6.1.2.1.2.2.1.5.2 = Gauge32: 0

.1.3.6.1.2.1.2.2.1.5.3 = Gauge32: 10000000

.1.3.6.1.2.1.2.2.1.5.4 = Gauge32: 10000000

.1.3.6.1.2.1.2.2.1.5.5 = Gauge32: 10000000

.1.3.6.1.2.1.2.2.1.6.1 = STRING:

.1.3.6.1.2.1.2.2.1.6.2 = STRING: 0:d:56:7d:68:b0

.1.3.6.1.2.1.2.2.1.6.3 = STRING: 0:90:4b:64:7b:4d

.1.3.6.1.2.1.2.2.1.6.4 = STRING: 4e:e:b8:9:81:3b

.1.3.6.1.2.1.2.2.1.6.5 = STRING: d6:f9:7c:2c:17:28

.1.3.6.1.2.1.2.2.1.7.1 = INTEGER: up(1)

.1.3.6.1.2.1.2.2.1.7.2 = INTEGER: up(1)

.1.3.6.1.2.1.2.2.1.7.3 = INTEGER: up(1)

.1.3.6.1.2.1.2.2.1.7.4 = INTEGER: down(2)

.1.3.6.1.2.1.2.2.1.7.5 = INTEGER: up(1)

.1.3.6.1.2.1.2.2.1.8.1 = INTEGER: up(1)

.1.3.6.1.2.1.2.2.1.8.2 = INTEGER: down(2)

.1.3.6.1.2.1.2.2.1.8.3 = INTEGER: up(1)

.1.3.6.1.2.1.2.2.1.8.4 = INTEGER: down(2)

.1.3.6.1.2.1.2.2.1.8.5 = INTEGER: up(1)

.1.3.6.1.2.1.2.2.1.9.1 = Timeticks: (0) 0:00:00.00

.1.3.6.1.2.1.2.2.1.9.2 = Timeticks: (0) 0:00:00.00

.1.3.6.1.2.1.2.2.1.9.3 = Timeticks: (0) 0:00:00.00

.1.3.6.1.2.1.2.2.1.9.4 = Timeticks: (0) 0:00:00.00

.1.3.6.1.2.1.2.2.1.9.5 = Timeticks: (0) 0:00:00.00

.1.3.6.1.2.1.2.2.1.10.1 = Counter32: 89275

.1.3.6.1.2.1.2.2.1.10.2 = Counter32: 0

3

CHAPTER 1 ■ READING AND COLLECTING PERFORMANCE DATA USING SNMP

10

.1.3.6.1.2.1.2.2.1.10.3 = Counter32: 11649462

.1.3.6.1.2.1.2.2.1.10.4 = Counter32: 0

.1.3.6.1.2.1.2.2.1.10.5 = Counter32: 0

.1.3.6.1.2.1.2.2.1.11.1 = Counter32: 1092

.1.3.6.1.2.1.2.2.1.11.2 = Counter32: 0

.1.3.6.1.2.1.2.2.1.11.3 = Counter32: 49636

.1.3.6.1.2.1.2.2.1.11.4 = Counter32: 0

.1.3.6.1.2.1.2.2.1.11.5 = Counter32: 0

.1.3.6.1.2.1.2.2.1.12.1 = Counter32: 0

.1.3.6.1.2.1.2.2.1.12.2 = Counter32: 0

.1.3.6.1.2.1.2.2.1.12.3 = Counter32: 0

.1.3.6.1.2.1.2.2.1.12.4 = Counter32: 0

.1.3.6.1.2.1.2.2.1.12.5 = Counter32: 0

.1.3.6.1.2.1.2.2.1.13.1 = Counter32: 0

.1.3.6.1.2.1.2.2.1.13.2 = Counter32: 0

.1.3.6.1.2.1.2.2.1.13.3 = Counter32: 0

.1.3.6.1.2.1.2.2.1.13.4 = Counter32: 0

.1.3.6.1.2.1.2.2.1.13.5 = Counter32: 0

.1.3.6.1.2.1.2.2.1.14.1 = Counter32: 0

.1.3.6.1.2.1.2.2.1.14.2 = Counter32: 0

.1.3.6.1.2.1.2.2.1.14.3 = Counter32: 0

.1.3.6.1.2.1.2.2.1.14.4 = Counter32: 0

.1.3.6.1.2.1.2.2.1.14.5 = Counter32: 0

.1.3.6.1.2.1.2.2.1.15.1 = Counter32: 0

.1.3.6.1.2.1.2.2.1.15.2 = Counter32: 0

.1.3.6.1.2.1.2.2.1.15.3 = Counter32: 0

.1.3.6.1.2.1.2.2.1.15.4 = Counter32: 0

.1.3.6.1.2.1.2.2.1.15.5 = Counter32: 0

.1.3.6.1.2.1.2.2.1.16.1 = Counter32: 89275

.1.3.6.1.2.1.2.2.1.16.2 = Counter32: 0

.1.3.6.1.2.1.2.2.1.16.3 = Counter32: 922277

.1.3.6.1.2.1.2.2.1.16.4 = Counter32: 0

.1.3.6.1.2.1.2.2.1.16.5 = Counter32: 3648

.1.3.6.1.2.1.2.2.1.17.1 = Counter32: 1092

.1.3.6.1.2.1.2.2.1.17.2 = Counter32: 0

.1.3.6.1.2.1.2.2.1.17.3 = Counter32: 7540

.1.3.6.1.2.1.2.2.1.17.4 = Counter32: 0

.1.3.6.1.2.1.2.2.1.17.5 = Counter32: 17

.1.3.6.1.2.1.2.2.1.18.1 = Counter32: 0

.1.3.6.1.2.1.2.2.1.18.2 = Counter32: 0

.1.3.6.1.2.1.2.2.1.18.3 = Counter32: 0

.1.3.6.1.2.1.2.2.1.18.4 = Counter32: 0

.1.3.6.1.2.1.2.2.1.18.5 = Counter32: 0

.1.3.6.1.2.1.2.2.1.19.1 = Counter32: 0

.1.3.6.1.2.1.2.2.1.19.2 = Counter32: 0

.1.3.6.1.2.1.2.2.1.19.3 = Counter32: 0

.1.3.6.1.2.1.2.2.1.19.4 = Counter32: 0

CHAPTER 1 ■ READING AND COLLECTING PERFORMANCE DATA USING SNMP

11

.1.3.6.1.2.1.2.2.1.19.5 = Counter32: 0

.1.3.6.1.2.1.2.2.1.20.1 = Counter32: 0

.1.3.6.1.2.1.2.2.1.20.2 = Counter32: 0

.1.3.6.1.2.1.2.2.1.20.3 = Counter32: 0

.1.3.6.1.2.1.2.2.1.20.4 = Counter32: 0

.1.3.6.1.2.1.2.2.1.20.5 = Counter32: 0

.1.3.6.1.2.1.2.2.1.21.1 = Gauge32: 0

.1.3.6.1.2.1.2.2.1.21.2 = Gauge32: 0

.1.3.6.1.2.1.2.2.1.21.3 = Gauge32: 0

.1.3.6.1.2.1.2.2.1.21.4 = Gauge32: 0

.1.3.6.1.2.1.2.2.1.21.5 = Gauge32: 0

.1.3.6.1.2.1.2.2.1.22.1 = OID: .0.0

.1.3.6.1.2.1.2.2.1.22.2 = OID: .0.0

.1.3.6.1.2.1.2.2.1.22.3 = OID: .0.0

.1.3.6.1.2.1.2.2.1.22.4 = OID: .0.0

.1.3.6.1.2.1.2.2.1.22.5 = OID: .0.0

.1.3.6.1.2.1.25.1.1.0 = Timeticks: (8232423) 22:52:04.23

.1.3.6.1.2.1.25.1.1.0 = No more variables left in this MIB View (It is past the end
of the MIB tree)

As an exercise, try to identify some of the listed OIDs using Tables 1-1 and 1-2 and find out what

they mean.

Querying SNMP Devices from Python
Now we know enough about SNMP to start working on our own management system, which will be
querying the configured systems on regular intervals. First let’s specify the configuration that we will
be using in the application.

Configuring the Application
As we already know, we need the following information available for every check:

• An IP address or resolvable domain name of the system that runs the SNMP agent
software

• The read-only community string that will be used to authenticate with the agent software

• The OID node’s numerical representation

We are going to use the Windows INI-style configuration file, because of its simplicity. Python

includes a configuration parsing module by default, so it is also convenient to use. Chapter 9 discusses the
ConfigParser module in great detail; please refer to that chapter for more information about the module.

Let’s go back to the configuration file for our application. There is no need to repeat the system
information for every SNMP object that we’re going to query, so we can define each system parameter
once in a separate section and then refer to the system ID in each check section. The check section
defines the OID node identifier string and a short description, as shown in Listing 1-2.

CHAPTER 1 ■ READING AND COLLECTING PERFORMANCE DATA USING SNMP

12

Listing 1-2. The management system configuration file

[system_1]
description=My Laptop
address=192.168.1.68
port=161
communityro=public

[check_1]
description=WLAN incoming traffic
oid=1.3.6.1.2.1.2.2.1.10.3
system=system_1

[check_2]
description=WLAN incoming traffic
oid=1.3.6.1.2.1.2.2.1.16.3
system=system_1

Make sure that the system and check section IDs are unique, or you may get unpredictable results.
We’re going to create an SnmpManager class with two methods, one to add a system and the other

to add a check. As the check contains the system ID string, it will automatically be assigned to that
particular system. In Listing 1-3 you can see the class definition and also the initialization part that
reads in the configuration and iterates through the sections and updates the class object accordingly.

Listing 1-3. Reading and storing the configuration

import sys
from ConfigParser import SafeConfigParser

class SnmpManager:
 def __init__(self):
 self.systems = {}

 def add_system(self, id, descr, addr, port, comm_ro):
 self.systems[id] = {'description' : descr,
 'address' : addr,
 'port' : int(port),
 'communityro' : comm_ro,
 'checks' : {}
 }

 def add_check(self, id, oid, descr, system):
 oid_tuple = tuple([int(i) for i in oid.split('.')])
 self.systems[system]['checks'][id] = {'description': descr,
 'oid' : oid_tuple,
 }

CHAPTER 1 ■ READING AND COLLECTING PERFORMANCE DATA USING SNMP

13

def main(conf_file=""):
 if not conf_file:
 sys.exit(-1)
 config = SafeConfigParser()
 config.read(conf_file)
 snmp_manager = SnmpManager()
 for system in [s for s in config.sections() if s.startswith('system')]:
 snmp_manager.add_system(system,
 config.get(system, 'description'),
 config.get(system, 'address'),
 config.get(system, 'port'),
 config.get(system, 'communityro'))
 for check in [c for c in config.sections() if c.startswith('check')]:
 snmp_manager.add_check(check,
 config.get(check, 'oid'),
 config.get(check, 'description'),
 config.get(check, 'system'))

As you see in the example, we first have to iterate through the system sections and update the

object before proceeding with the check sections.

■Note This order is important, because if we try to add a check for a system that hasn’t been inserted yet, we’ll
get a dictionary index error.

Also note that we are converting the OID string to a tuple of integers. You’ll see why we have to do
this later in this section. The configuration file is loaded and we’re ready to run SNMP queries against
the configured devices.

Using the PySNMP Library
In this project we are going to use the PySNMP library, which is implemented in pure Python and
doesn’t depend on any precompiled libraries. The pysnmp package is available for most Linux
distributions and can be installed using the standard distribution package manager. In addition to
pysnmp you will also need the ASN.1 library, which is used by pysnmp and is also available as part of the
Linux distribution package selection. For example, on a Fedora system you can install the pysnmp
module with the following commands:

$ sudo yum install pysnmp
$ sudo yum install python-pyasn1

Alternatively, you can use the Python Package manager (PiP) to install this library for you:

$ sudo pip install pysnmp
$ sudo pip install pyasn1

CHAPTER 1 ■ READING AND COLLECTING PERFORMANCE DATA USING SNMP

14

If you don’t have the pip command available, you can download and install this tool from http://
pypi.python.org/pypi/pip. We will use it in later chapters as well.

The PySNMP library hides all the complexity of SNMP processing behind a single class with a
simple API. All you have to do is create an instance of the CommandGenerator class. This class is
available from the pysnmp.entity.rfc3413.oneliner.cmdgen module and implements most of the
standard SNMP protocol commands: getCmd(), setCmd() and nextCmd(). Let’s look at each of those in
more detail.

The SNMP GET Command
All the commands we are going to discuss follow the same invocation pattern: import the module,
create an instance of the CommandGenerator class, create three required parameters (an
authentication object, a transport target object, and a list of arguments), and finally invoke the
appropriate method. The method returns a tuple containing the error indicators (if there was an error)
and the result object.

In Listing 1-4, we query a remote Linux machine using the standard SNMP OID (1.3.6.1.2.1.1.1.0).

Listing 1-4. An example of the SNMP GET command

>>> from pysnmp.entity.rfc3413.oneliner import cmdgen
>>> cg = cmdgen.CommandGenerator()
>>> comm_data = cmdgen.CommunityData('my-manager', 'public')
>>> transport = cmdgen.UdpTransportTarget(('192.168.1.68', 161))
>>> variables = (1, 3, 6, 1, 2, 1, 1, 1, 0)
>>> errIndication, errStatus, errIndex, result = cg.getCmd(comm_data, transport,
variables)
>>> print errIndication
None
>>> print errStatus
0
>>> print errIndex
0
>>> print result
[(ObjectName('1.3.6.1.2.1.1.1.0'), OctetString('Linux fedolin.example.com
 2.6.32.11-99.fc12.i686 #1 SMP Mon Apr 5 16:32:08 EDT 2010 i686'))]
>>>

Let’s look at some steps more closely. When we initiate the community data object, we have
provided two strings—the community string (the second argument) and the agent or manager security
name string; in most cases this can be any string. An optional parameter specifies the SNMP version to
be used (it defaults to SNMP v2c). If you must query version 1 devices, use the following command:

>>> comm_data = cmdgen.CommunityData('my-manager', 'public', mpModel=0)

The transport object is initiated with the tuple containing either the fully qualified domain name

or the IP address string and the integer port number.
The last argument is the OID expressed as a tuple of all node IDs that make up the OID we are

querying. Therefore, we had to convert the dot-separated string into a tuple earlier when we were
reading the configuration items.

http://pypi.python.org/pypi/pip
http://pypi.python.org/pypi/pip

CHAPTER 1 ■ READING AND COLLECTING PERFORMANCE DATA USING SNMP

15

Finally, we call the API command getCmd(), which implements the SNMP GET command, and pass
these three objects as its arguments. The command returns a tuple, each element of which is described
in Table 1-3.

Table 1-3. CommandGenerator Return Objects

Tuple Element Description

errIndication If this string is not empty, it indicates the SNMP engine error.

errStatus If this element evaluates to True, it indicates an error in the SNMP communication;
the object that generated the error is indicated by the errIndex element.

errIndex If the errStatus indicates that an error has occurred, this field can be used to find the
SNMP object that caused the error. The object position in the result array is
errIndex-1.

result This element contains a list of all returned SNMP object elements. Each element is a
tuple that contains the name of the object and the object value.

The SNMP SET Command
The SNMP SET command is mapped in PySNMP to the setCmd() method call. All parameters are the
same; the only difference is that the variables section now contains a tuple: the OID and the new value.
Let’s try to use this command to change a read-only object; Listing 1-5 shows the command-line
sequence.

Listing 1-5. An example of the SNMP SET command

>>> from pysnmp.entity.rfc3413.oneliner import cmdgen
>>> from pysnmp.proto import rfc1902
>>> cg = cmdgen.CommandGenerator()
>>> comm_data = cmdgen.CommunityData('my-manager', 'public')
>>> transport = cmdgen.UdpTransportTarget(('192.168.1.68', 161))
>>> variables = ((1, 3, 6, 1, 2, 1, 1, 1, 0), rfc1902.OctetString('new system
description'))
>>> errIndication, errStatus, errIndex, result = cg.setCmd(comm_data, transport,

variables)
>>> print errIndication
None
>>> print errStatus
6
>>> print errIndex

CHAPTER 1 ■ READING AND COLLECTING PERFORMANCE DATA USING SNMP

16

1
>>> print errStatus.prettyPrint()
noAccess(6)
>>> print result
[(ObjectName('1.3.6.1.2.1.1.1.0'), OctetString('new system description'))]
>>>

What happened here is that we tried to write to a read-only object, and that resulted in an error.

What’s interesting in this example is how we format the parameters. You have to convert strings to
SNMP object types; otherwise; they won’t pass as valid arguments. Therefore the string had to be
encapsulated in an instance of the OctetString class. You can use other methods of the rfc1902
module if you need to convert to other SNMP types; the methods include Bits(), Counter32(),
Counter64(), Gauge32(), Integer(), Integer32(), IpAddress(), OctetString(), Opaque(),
TimeTicks(), and Unsigned32(). These are all class names that you can use if you need to convert a
string to an object of a specific type.

The SNMP GETNEXT Command
The SNMP GETNEXT command is implemented as the nextCmd() method. The syntax and usage are
identical to getCmd(); the only difference is that the result is a list of objects that are immediate child
nodes of the specified OID node.

Let’s use this command to query all objects that are immediate child nodes of the SNMP system
OID (1.3.6.1.2.1.1); Listing 1-6 shows the nextCmd() method in action.

Listing 1-6. An example of the SNMP GETNEXT command

>>> from pysnmp.entity.rfc3413.oneliner import cmdgen
>>> cg = cmdgen.CommandGenerator()
>>> comm_data = cmdgen.CommunityData('my-manager', 'public')
>>> transport = cmdgen.UdpTransportTarget(('192.168.1.68', 161))
>>> variables = (1, 3, 6, 1, 2, 1, 1)
>>> errIndication, errStatus, errIndex, result = cg.nextCmd(comm_data, transport,
variables)
>>> print errIndication
requestTimedOut
>>> errIndication, errStatus, errIndex, result = cg.nextCmd(comm_data, transport,
variables)
>>> print errIndication
None
>>> print errStatus
0
>>> print errIndex
0
>>> for object in result:
... print object
...

CHAPTER 1 ■ READING AND COLLECTING PERFORMANCE DATA USING SNMP

17

[(ObjectName('1.3.6.1.2.1.1.1.0'), OctetString('Linux fedolin.example.com
 2.6.32.11-99.fc12.i686 #1 SMP Mon Apr 5 16:32:08 EDT 2010 i686'))]
[(ObjectName('1.3.6.1.2.1.1.2.0'), ObjectIdentifier('1.3.6.1.4.1.8072.3.2.10'))]
[(ObjectName('1.3.6.1.2.1.1.3.0'), TimeTicks('340496'))]
[(ObjectName('1.3.6.1.2.1.1.4.0'), OctetString('Administrator
(admin@example.com)'))]
[(ObjectName('1.3.6.1.2.1.1.5.0'), OctetString('fedolin.example.com'))]
[(ObjectName('1.3.6.1.2.1.1.6.0'), OctetString('MyLocation, MyOrganization,
MyStreet, MyCity, MyCountry'))]
[(ObjectName('1.3.6.1.2.1.1.8.0'), TimeTicks('3'))]
[(ObjectName('1.3.6.1.2.1.1.9.1.2.1'), ObjectIdentifier('1.3.6.1.6.3.10.3.1.1'))]
[(ObjectName('1.3.6.1.2.1.1.9.1.2.2'), ObjectIdentifier('1.3.6.1.6.3.11.3.1.1'))]
[(ObjectName('1.3.6.1.2.1.1.9.1.2.3'), ObjectIdentifier('1.3.6.1.6.3.15.2.1.1'))]
[(ObjectName('1.3.6.1.2.1.1.9.1.2.4'), ObjectIdentifier('1.3.6.1.6.3.1'))]
[(ObjectName('1.3.6.1.2.1.1.9.1.2.5'), ObjectIdentifier('1.3.6.1.2.1.49'))]
[(ObjectName('1.3.6.1.2.1.1.9.1.2.6'), ObjectIdentifier('1.3.6.1.2.1.4'))]
[(ObjectName('1.3.6.1.2.1.1.9.1.2.7'), ObjectIdentifier('1.3.6.1.2.1.50'))]
[(ObjectName('1.3.6.1.2.1.1.9.1.2.8'), ObjectIdentifier('1.3.6.1.6.3.16.2.2.1'))]
[(ObjectName('1.3.6.1.2.1.1.9.1.3.1'), OctetString('The SNMP Management
Architecture MIB.'))]
[(ObjectName('1.3.6.1.2.1.1.9.1.3.2'), OctetString('The MIB for Message Processing
and Dispatching.'))]
[(ObjectName('1.3.6.1.2.1.1.9.1.3.3'), OctetString('The management information
 definitions for the SNMP User-based Security Model.'))]
[(ObjectName('1.3.6.1.2.1.1.9.1.3.4'), OctetString('The MIB module for SNMPv2
entities'))]
[(ObjectName('1.3.6.1.2.1.1.9.1.3.5'), OctetString('The MIB module for managing TCP
 implementations'))]
[(ObjectName('1.3.6.1.2.1.1.9.1.3.6'), OctetString('The MIB module for managing IP
 and ICMP implementations'))]
[(ObjectName('1.3.6.1.2.1.1.9.1.3.7'), OctetString('The MIB module for managing UDP
 implementations'))]
[(ObjectName('1.3.6.1.2.1.1.9.1.3.8'), OctetString('View-based Access Control Model
for SNMP.'))]
[(ObjectName('1.3.6.1.2.1.1.9.1.4.1'), TimeTicks('3'))]
[(ObjectName('1.3.6.1.2.1.1.9.1.4.2'), TimeTicks('3'))]
[(ObjectName('1.3.6.1.2.1.1.9.1.4.3'), TimeTicks('3'))]
[(ObjectName('1.3.6.1.2.1.1.9.1.4.4'), TimeTicks('3'))]
[(ObjectName('1.3.6.1.2.1.1.9.1.4.5'), TimeTicks('3'))]
[(ObjectName('1.3.6.1.2.1.1.9.1.4.6'), TimeTicks('3'))]
[(ObjectName('1.3.6.1.2.1.1.9.1.4.7'), TimeTicks('3'))]
[(ObjectName('1.3.6.1.2.1.1.9.1.4.8'), TimeTicks('3'))]
>>>

As you can see, the result is identical to that produced by the command-line tool snmpwalk, which

uses the same technique to retrieve the SNMP OID subtree.

mailto:admin@example.com

CHAPTER 1 ■ READING AND COLLECTING PERFORMANCE DATA USING SNMP

18

Implementing the SNMP Read Functionality
Let’s implement the read functionality in our application. The workflow will be as follows: we need to
iterate through all systems in the list, and for each system we iterate through all defined checks. For
each check we are going to perform the SNMP GET command and store the result in the same data
structure.

For debugging and testing purposes we will add some print statements to verify that the
application is working as expected. Later we’ll replace those print statements with the RRDTool
database store commands. I’m going to call this method query_all_systems(). Listing 1-7 shows the
code.

Listing 1-7. Querying all defined SNMP objects

def query_all_systems(self):
 cg = cmdgen.CommandGenerator()
 for system in self.systems.values():
 comm_data = cmdgen.CommunityData('my-manager', system['communityro'])
 transport = cmdgen.UdpTransportTarget((system['address'], system['port']))
 for check in system['checks'].values():
 oid = check['oid']
 errInd, errStatus, errIdx, result = cg.getCmd(comm_data, transport, oid)
 if not errInd and not errStatus:
 print "%s/%s -> %s" % (system['description'],
 check['description'],
 str(result[0][1]))

If you run the tool you’ll get results similar to these (assuming you correctly pointed your
configuration to the working devices that respond to the SNMP queries):

$./snmp-manager.py
My Laptop/WLAN outgoing traffic -> 1060698
My Laptop/WLAN incoming traffic -> 14305766

Now we’re ready to write all this data to the RRDTool database.

Storing Data with RRDTool
RRDTool is an application developed by Tobias Oetiker, which has become a de-facto standard for
graphing monitoring data. The graphs produced by RRDTool are used in many different monitoring
tools, such as Nagios, Cacti, and so on. In this section we’ll look at the structure of the RRTool database
and the application itself. We’ll discuss the specifics of the round-robin database, how to add new data
to it, and how to retrieve it later on. We will also look at the data-plotting commands and techniques.
And finally we’ll integrate the RRDTool database with our application.

Introduction to RRDTool
As I have noted, RRDTool provides three distinct functions. First, it serves as a database management
system, by allowing you to store and retrieve data from its own database format. It also performs

CHAPTER 1 ■ READING AND COLLECTING PERFORMANCE DATA USING SNMP

19

complex data-manipulation tasks, such as data-resampling and rate calculations. And finally, it allows
you to create sophisticated graphs incorporating data from various source databases.

Let’s start by looking at the round robin database structure. I must apologize for the number of
acronyms that you’ll come across in this section, but it is important to mention them here, as they all
are used in the configuration of RRDTool, so it is vital to become familiar with them.

The first property that makes an RRD different from conventional databases is that the database
has a limited size. This means that the database size is known at the time it is initialized, and the size
never changes. New records overwrite old data, and that process is repeated over and over again.
Figure 1-3 shows a simplified version of the RRD, to help you to visualize the structure.

Figure 1-3. The RRD structure

Let’s assume that we have initialized a database that is capable of holding 12 records, each in its
own cell. When the database is empty, we start by writing data to cell number 1. We also update the
pointer with the ID of the last cell we’ve written the data to. Figure 1-3 shows that 6 records have
already been written to the database (as represented by the grayed-out boxes). The pointer is on cell 6,
and so when the next write instruction is received, the database will write it to the next cell (cell 7) and
update the pointer accordingly. Once the last cell (cell 12) is reached, the process starts again, from cell
number 1.

The RRD data store’s only purpose is to store performance data, and therefore it does not require
maintaining complex relations between different data tables. In fact, there are no tables in the RRD,
only the individual data sources (DSs).

The last important property of the RRD is that the database engine is designed to store the time
series data, and therefore each record needs to be marked with a timestamp. Furthermore, when you
create a new database you are required to specify the sampling rate, the rate at which entries are
being written to the database. The default value is 300 seconds, or 5 minutes, but this can be
overridden if required.

CHAPTER 1 ■ READING AND COLLECTING PERFORMANCE DATA USING SNMP

20

The data that is stored in the RDD is called a RoundRobin Archive (RRA). The RRA is what makes
the RRD so useful. It allows you to consolidate the data gathered from the DS by applying an available
consolidation function (CF). You can specify one of the four CFs (average, min, max and last) that will
be applied to a number of the actual data records. The result is stored in a round-robin “table”. You can
store multiple RRAs in your database with different granularity. For example, one RRA stores average
values of the last 10 records, and the other one stores an average of the last 100.

This will all come together when we look at the usage scenarios in the next sections.

Using RRDTool from a Python Program
Before we start creating the RRDTool databases, let’s look at the Python module that provides the API
to RRDTool. The module we are going to use in this chapter is called the Python RRDTool and is
available to download at http://sourceforge.net/projects/py-rrdtool/.

However, most Linux distributions have this already prepackaged and available to install using
the standard package management tool. For example, on a Fedora system you would run the following
command to install the Python RRDTool module:

$ sudo yum install rrdtool-python

Once the package is installed, you can validate that the installation was successful:

$ python
Python 2.6.2 (r262:71600, Jan 25 2010, 18:46:45)
[GCC 4.4.2 20091222 (Red Hat 4.4.2-20)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import rrdtool
>>> rrdtool.__version__
'$Revision: 1.14 $'
>>>

Creating a RoundRobin Database
Let’s start by creating a simple database. The database we are going to create will have one data
source, which is a simple increasing counter. The counter value increases over time. A classical
example of such a counter is bytes transmitted over the interface. The readings are performed every 5
minutes.

We also are going to define two RRAs. One is to average over a single reading, which effectively
instructs RRDTool to store the actual values, and the other will average over 6 measurements.
Following is an example of the command-line tool syntax for creating this database:

$ rrdtool create interface.rrd \
> DS:packets:COUNTER:600:U:U \
> RRA:AVERAGE:0.5:1:288 \
> RRA:AVERAGE:0.5:6:336

Similarly, you can use the Python module to create the same database:

http://sourceforge.net/projects/py-rrdtool

CHAPTER 1 ■ READING AND COLLECTING PERFORMANCE DATA USING SNMP

21

>>> import rrdtool
>>> rrdtool.create('interface.rrd',
... 'DS:packets:COUNTER:600:U:U',
... 'RRA:AVERAGE:0.5:1:288',
... 'RRA:AVERAGE:0.5:6:336')
>>>

The structure of the DS (data source) definition line is

DS:<name>:<DS type>:<heartbeat>:<lower limit>:<upper limit>

The name field is what you name this particular data source. Since RRD allows you to store the data

from multiple data sources you must provide a unique name to each so that you can access them later. If
you need to define more than one data source, simply add another DS line.

The DS type (or data source type) field indicates what type of data will be supplied to this data
source. There are four types available: COUNTER, GAUGE, DERIVE and ABSOLUTE:

• The COUNTER type means that the measurement value is increasing over time. To
calculate a rate, RRDTool subtracts the last value from the current and divides by the
measurement step (or sampling rate) to obtain the rate figure. If the result is a negative
number, it needs to compensate for the counter rollover. A typical use is monitoring
ever-increasing counters, such as total number of bytes transmitted through the
interface.

• The DERIVE type is similar to COUNTER, but it also allows for a negative rate. You can use
this type to check the rate of incoming HTTP requests to your site. If the graph is above the
zero line, this means you are getting more and more requests. If it drops below the zero
line, it means your web site is becoming less popular.

• The ABSOLUTE type indicates that the counter is reset every time you read the
measurement. Whereas with the COUNTER and DERIVE types, RRDTool subtracted the last
measurement from the current one before dividing by the time period, ABSOLUTE tells it
not to perform the subtraction operation. Use this on counters that are reset at the same
rate that you do the measurements. For example, you could measure the system average
load (over the last 15 minutes) reading every 15 minutes. This would represent the rate of
change of the average system load.

• The GAUGE type means that the measurement is the rate value, and no calculations need
to be performed. For example, current CPU usage and temperature sensor readings are
good candidates for the GAUGE type.

The heartbeat value indicates how much time to allow for the reading to come in before resetting

it to the unknown state. RRDTool allows for data misses, but it does not make any assumptions and uses
the special value unknown if the data is not received. In our example we have the heartbeat set to 600,
which means that the database waits for two readings (remember, the step is 300) before it declares the
next measurement to be unknown.

The last two fields indicate the minimum and maximum values that can be received from the data
source. If you specify those, anything falling outside that range will be automatically marked as
unknown.

CHAPTER 1 ■ READING AND COLLECTING PERFORMANCE DATA USING SNMP

22

The RRA definition structure is

RRA:<consolidation function>:<XFiles factor>:<dataset>:<samples>

The consolidation function defines what mathematical function will be applied to the dataset

values. The dataset is the last dataset measurements received from the data source. In our example
we have two RRAs, one with just a single reading in the dataset and the other with six measurements
in the dataset. The available consolidation functions are AVERAGE, MIN, MAX and LAST:

• AVERAGE instructs RRDTool to calculate the average value of the dataset and store it.

• MIN and MAX selects either the minimum or maximum value from the dataset and stores it.

• LAST indicates to use the last entry from the dataset.

The XFiles factor value shows what percentage of the dataset can have unknown values and still

the consolidation function calculation will be performed. For example, if the setting is 0.5 (50%), then
three out of six measurements can be unknown and still the average value for the dataset will be
calculated. If four readings are missed, the calculation is not performed and the unknown value is
stored in the RRA. Set this to 0 (0% miss allowance) and the calculation will be performed only if all
data points in the data set are available. It seems to be a common practice to keep this setting at 0.5.

As already discussed, the dataset parameter indicates how many records are going to participate
in the consolidation function calculation.

And finally, samples tells RRDTool how many CF results should be kept. So, going back to our
example, the number 288 tells RRDTool to keep 288 records. Because we’re measuring every 5
minutes, this is 24 hours of data (288/(60/5)). Similarly, the number 336 means that we are storing 7
days worth of data (336/(60/30)/24) at the 30 minute sampling rate. As you can see, the data in the
second RRA is resampled; we’ve changed the sampling rate from 5 minutes to 30 minutes by
consolidating data of every six (5 minute) samples.

Writing and Reading Data from the RoundRobin Database
Writing data to the RRD data file is very simple. You just call the update command and, assuming you
have defined multiple data sources, supply it a list of data source readings in the same order that you
specified when you created the database file.. Each entry must be preceded by the current (or desired)
timestamp, expressed in seconds since the epoch (1970-01-01). Alternatively, instead of using the
actual number to express the timestamp, you can use the character N, which means the current time. It
is possible to supply multiple readings in one command:

$ date +"%s"
1273008486
$ rrdtool update interface.rrd 1273008486:10
$ rrdtool update interface.rrd 1273008786:15
$ rrdtool update interface.rrd 1273009086:25
$ rrdtool update interface.rrd 1273009386:40 1273009686:60 1273009986:66
$ rrdtool update interface.rrd 1273010286:100 1273010586:160 1273010886:166

CHAPTER 1 ■ READING AND COLLECTING PERFORMANCE DATA USING SNMP

23

The Python alternative looks very similar. In the following code, we will insert another 20
records, specifying regular intervals (of 300 seconds) and supplying generated measurements:

>>> import rrdtool
>>> for i in range(20):
... rrdtool.update('interface.rrd',
... '%d:%d' % (1273010886 + (1+i)*300, i*10+200))
...
>>>

Now let’s fetch the data back from the RRDTool database:

$ rrdtool fetch interface.rrd AVERAGE
 packets

1272983100: -nan
[...]
1273008600: -nan
1273008900: 2.3000000000e-02
1273009200: 3.9666666667e-02
1273009500: 5.6333333333e-02
1273009800: 4.8933333333e-02
1273010100: 5.5466666667e-02
1273010400: 1.4626666667e-01
1273010700: 1.3160000000e-01
1273011000: 5.5466666667e-02
1273011300: 8.2933333333e-02
1273011600: 3.3333333333e-02
1273011900: 3.3333333333e-02
1273012200: 3.3333333333e-02
1273012500: 3.3333333333e-02
1273012800: 3.3333333333e-02
1273013100: 3.3333333333e-02
1273013400: 3.3333333333e-02
1273013700: 3.3333333333e-02
1273014000: 3.3333333333e-02
1273014300: 3.3333333333e-02
1273014600: 3.3333333333e-02
1273014900: 3.3333333333e-02
1273015200: 3.3333333333e-02
1273015500: 3.3333333333e-02
1273015800: 3.3333333333e-02
1273016100: 3.3333333333e-02
1273016400: 3.3333333333e-02
1273016700: 3.3333333333e-02
1273017000: -nan
[...]
1273069500: -nan

CHAPTER 1 ■ READING AND COLLECTING PERFORMANCE DATA USING SNMP

24

If you count the number of entries, you’ll see that it matches the number of updates we’ve

performed on the database. This means that we are seeing results at the maximum resolution, in our
case a sample per record. Showing results at the maximum resolution is the default behavior, but you
can select another resolution (provided that it has a matching RRA) by specifying the resolution flag.
Bear in mind that the resolution must be expressed in the number of seconds and not the number of
samples in the RRA definition. Therefore in our example the next available resolution is 6 (samples) *
300 (seconds/sample) = 1800 (seconds):

$ rrdtool fetch interface.rrd AVERAGE -r 1800
 packets

[...]
1273010400: 6.1611111111e-02
1273012200: 6.1666666667e-02
1273014000: 3.3333333333e-02
1273015800: 3.3333333333e-02
1273017600: 3.3333333333e-02
[...]

Now, you may have noticed that the records inserted by our Python application result in the same

number stored in the database. Why is that? Is the counter definitely increasing? Remember, RRDTool
always stores the rate and not the actual values. So the figures you see in the result dataset show how
fast the values are changing. And because the Python application generates new measurements at a
steady rate (the difference between values is always the same), the rate figure is always the same.

What does this number exactly mean? We know that generated values are increasing by 10 every
time we insert a new record, but the value printed by the fetch command is 3.3333333333e-02. (For
many people this may look slightly confusing, but it’s just another notation for the value 0.0333(3).)
Where did that come from? In discussing the different data source types, I mentioned that RRDTool
takes the difference between two data point values and divides that by the number of seconds in the
sampling interval. The default sampling interval is 300 seconds, so the rate has been calculated as
10/300 = 0.0333(3), which is what is written to the RRDTool database. In other words, this means that
our counter on average increases by 0.0333(3) every second. Remember that all rate measurements
are stored as a change per second. We’ll look at converting this value to something more readable
later in the section.

Here’s is how you retrieve the data using the Python module method call:

>>> for i in rrdtool.fetch('interface.rrd', 'AVERAGE'): print i
...
(1272984300, 1273071000, 300)
('packets',)
[(None,), [...], (None,), (0.023,), (0.03966666666666667,),
(0.056333333333333339,),
 (0.048933333333333336,), (0.055466666666666671,), (0.14626666666666666,),
 (0.13160000000000002,), (0.055466666666666671,), (0.082933333333333331,),
 (0.033333333333333333,), (0.033333333333333333,), (0.033333333333333333,),
 (0.033333333333333333,), (0.033333333333333333,), (0.033333333333333333,),
 (0.033333333333333333,), (0.033333333333333333,), (0.033333333333333333,),
 (0.033333333333333333,), (0.033333333333333333,), (0.033333333333333333,),

CHAPTER 1 ■ READING AND COLLECTING PERFORMANCE DATA USING SNMP

25

 (0.033333333333333333,), (0.033333333333333333,), (0.033333333333333333,),
 (0.033333333333333333,), (0.033333333333333333,), (0.033333333333333333,),
 (None,), [...] (None,)]
>>>

The result is a tuple of three elements: dataset information, list of datasources, and result

array:

• Dataset information is another tuple that has three values: start and end timestamps
and the sampling rate.

• List of datasources simply lists all variables that were stored in the RRDTool
database and that were returned by your query.

• Result array contains the actual values that are stored in the RRD. Each entry is a tuple,
containing values for every variable that was queried. In our example database we had
only one variable; therefore the tuple contains only one element. If the value could not
be calculated (is unknown), Python’s None object is returned.

You can also change the sampling rate if you need to:

>>> rrdtool.fetch('interface.rrd', 'AVERAGE', '-r', '1800')
((1272983400, 1273071600, 1800), ('packets',), [(None,), [...] (None,),
 (0.06161111111111111,), (0.061666666666666668,), (0.033333333333333333,),
 (0.033333333333333333,), (0.033333333333333333,), (None,), [...] (None,)])

■Note By now you should have an idea of how the command-line tool syntax is mapped to the Python module
calls. You always call the module method, which is always named after the RRDTool function name, such as
fetch, update, and so on. The argument to the function is an arbitrary list of values. A value in this case is
whatever string is separated by spaces on the command line. Basically, you can take the command line and copy
it to the function as an argument list. Obviously, you need to enclose each individual string with quote symbols and
separate them with a comma symbol. To save space and avoid confusion, in further examples I’m only going to
provide the command-line syntax, which you should be able to map to the Python syntax quite easily.

Plotting Graphs with RRDTool
Plotting graphs with RRDTool is really easy, and graphing is one reason this tool has become so
popular. In its simplest form, the graph generating command is quite similar to the data-fetching
command:

$ rrdtool graph packets.png --start 1273008600 --end 1273016400 --step 300\
> DEF:packetrate=interface.rrd:packets:AVERAGE \
> LINE2:packetrate#c0c0c0

Even without any additional modification, the result is a quite professional-looking performance

graph, as you can see in Figure 1-4.

CHAPTER 1 ■ READING AND COLLECTING PERFORMANCE DATA USING SNMP

26

Figure 1-4. A simple graph generated by RRDTool

First of all, let’s look at the command parameters. All the plotting commands start with a file name
for the resulting image and optionally the time scale values. You can also provide a resolution setting,
which will default to the most detailed resolution if not specified. This is similar to the -r option in the
fetch command. The resolution is expressed in seconds.

The next line (although you can type the whole graph command in one line) is the selector line,
which selects the dataset from an RRDTool database. The format of the selector statement is

DEF:<selector name>=<rrd file>:<data source>:<consolidation function>

The selector name argument is an arbitrary string, which you use to name the resulting dataset.

Look at it as an array variable that stores the result from the RRDTool database. You can use as many
selector statements as you need, but you need to have at least one to produce any output.

The combination of the rrd file, data source, and consolidation function variables defines
exactly what data needs to be selected. As you can see, this syntax completely decouples the data
storage and data representation functions. You can include results from different RRDTool databases
on the same graph and combine them in any way you like. The data for the graphs can be collected on
different monitoring servers and yet combined and presented on a single image.

This selector statement can be extended with optional parameters that specify the start, stop, and
resolution values for each data source. The format would be as follows, and this string should be
appended at the end of the selector statement. Each element is optional, and you can use any
combination of them.

:step=<step value>:start=<start time value>:end=<end time value>

So we can rewrite the previous plotting command as

$ rrdtool graph packets.png \
> DEF:packetrate=interface.rrd:packets:AVERAGE:step=300:
start=1273008600:end=1273016400 \
> LINE2:packetrate#c0c0c0

The last element on the command line is the statement that tells RRDTool how to plot the data.

The basic syntax for the data plotting command is

CHAPTER 1 ■ READING AND COLLECTING PERFORMANCE DATA USING SNMP

27

<PLOT TYPE>:<selector name><#color>:<legend>

The most widely used plot types are LINE and AREA. The LINE keyword can be followed by a

floating-point number to indicate the width of the line. The AREA keyword instructs RRDTool to draw
the line and also fill in the area between the x-axis and the graph line.

Both commands are followed by the selector name, which provides the data for the plotting
function. The color value is written as an HTML color format string. You can also specify an optional
argument legend, which tells RRDTool that a small rectangle of a matching color needs to be
displayed at the bottom of the graph, followed by the legend string.

As you could with the data selector statement, you can have as many of the graphing statements as
you need, but you need to define at least one to produce a graph.

Let’s take a second look at the graph we produced. RRDTool conveniently printed the time stamps
on the x-axis, but what is displayed on the y-axis? It may look like measurements in meters, but in fact
the m stands for milli, or one thousandth of the value. So the values printed there are exactly what has
been stored in the RRDTool database. This is, however, not really intuitive. We don’t really see the
packet size, and the data transfer rate can be either really low or high, depending on the transmitted
packet size. Let’s assume that we’re working with 4KB packets. In this case the logical solution would
be to represent the information as bits per second. What do we have to do to convert the packets per
second into bits per second? Because the rate interval doesn’t change (in both cases we measure the
amount per second), only the packets value needs to be multiplied, first by 4096 (the number of bytes
in a packet) and then by 8 (the number of bits in a byte).

The RRDTool graph command allows defining the data conversion function that will be applied to
any data selector variable. In our example we would use the following statement to convert packets
per second into bytes per second:

$ rrdtool graph kbps.png --step 300 --start 1273105800 --end 1273114200 \
DEF:packetrate=interface.rrd:packets:AVERAGE \
CDEF:kbps=packetrate,4096,*,8,* \
LINE2:kbps#c0c0c0

If you look at the image produced by this command, you’ll see that its shape is identical to Figure 1-

4, but the y-axis labels have changed. They are not indicating a “milli” value anymore—all numbers
are labeled as k. This makes more sense, as most people feel more comfortable seeing 3kbps rather
than 100 milli packets per second.

■Note You may be wondering why the calculation string looks rather odd. First of all, I had to escape the *
characters so they are passed to the rrdtool application without being processed by the shell. And the formula
itself has to be written in Reverse Polish Notation, in which you specify the first argument, then the second
argument, and then the function that you want to perform. The result can then be used as a first argument. In my
example I effectively tell the application to “take the packetrate and 4096 and multiply them, take the result and 8
and multiply them”. It takes some time to adjust, but once you get a handle on it, expressing formulas in RPN is
really pretty easy.

Finally, we need to make the graph even more presentable by adding a label to the y-axis, a
legend for the value that we are plotting, and the title for the graph itself. This example also
demonstrates how to change the size of the generated image:

CHAPTER 1 ■ READING AND COLLECTING PERFORMANCE DATA USING SNMP

28

$ rrdtool graph packets.png --step 300 --start 1273105800 --end 1273114200 \
--width 500 --height 200 \
--title "Primary Interface" --vertical-label "Kbp/s" \
DEF:packetrate=interface.rrd:packets:AVERAGE \
CDEF:kbps=packetrate,4096,*,8,* \
AREA:kbps#c0c0c0:"Data transfer rate"

The result is shown in Figure 1-5.

Figure 1-5. Formatting the RRDTool- generated graph

This introduction to RRDTool has covered only its basic uses. The application, however, comes with a
really extensive API, which allows you to change pretty much every aspect of a graph. I recommend
reading the RRDTool documentation, which is available at http://oss.oetiker.ch/rrdtool/doc/.

Integrating RRDTool with the Monitoring Solution
We’re now ready to integrate RRDTool calls into our monitoring application, so that the information
we gather from the SNMP-enabled devices is recorded and readily available for reporting. Although it
is possible to maintain multiple data sources in one RRDTool database, it is advisable to do so only for
measurements that are closely related. For example, if you’re monitoring a multiprocessor system and
want to store interrupt counts of every single CPU, it would make perfect sense to store them all in one
data file. Mixing memory utilization and temperature sensor readings, by contrast, probably is not a
very good idea, because you may decide that you need a greater sampling rate for one measurement,
and you can’t easily change that without affecting other data sources.

In our system the SNMP OIDs are provided in the configuration file and the application has
absolutely no idea whether they are related or not. Therefore we will store every reading in a
separate data file. Each data file will get the same name as the check section name (for example,
check_1.rrd), so make sure to keep them unique.

We will also have to extend the configuration file, so that each check defines the desired sampling
rate. And finally, every time the application is invoked, it will check for the presence of the data store

http://oss.oetiker.ch/rrdtool/doc

CHAPTER 1 ■ READING AND COLLECTING PERFORMANCE DATA USING SNMP

29

files and create any that are missing. This removes the burden from application users to create the
files manually for every new check. You can see the updated script in Listing 1-8.

Listing 1-8. Updating the RRDs with the SNMP data

#!/usr/bin/env python

import sys, os.path, time
from ConfigParser import SafeConfigParser
from pysnmp.entity.rfc3413.oneliner import cmdgen
import rrdtool

class SnmpManager:
 def __init__(self):
 self.systems = {}
 self.databases_initialised = False

 def add_system(self, id, descr, addr, port, comm_ro):
 self.systems[id] = {'description' : descr,
 'address' : addr,
 'port' : int(port),
 'communityro' : comm_ro,
 'checks' : {}
 }

 def add_check(self, id, oid, descr, system, sampling_rate):
 oid_tuple = tuple([int(i) for i in oid.split('.')])
 self.systems[system]['checks'][id] = {'description': descr,
 'oid' : oid_tuple,
 'result' : None,
 'sampling_rate' : sampling_rate
 }

 def query_all_systems(self):
 if not self.databases_initialised:
 self.initialise_databases()
 self.databases_initialised = True
 cg = cmdgen.CommandGenerator()
 for system in self.systems.values():
 comm_data = cmdgen.CommunityData('my-manager', system['communityro'])
 transport = cmdgen.UdpTransportTarget((system['address'],
 system['port']))
 for key, check in system['checks'].iteritems():
 oid = check['oid']
 errInd, errStatus, errIdx, result = cg.getCmd(comm_data, transport,
 oid)

CHAPTER 1 ■ READING AND COLLECTING PERFORMANCE DATA USING SNMP

30

if not errInd and not errStatus:
 file_name = "%s.rrd" % key
 rrdtool.update(file_name,
 "%d:%d" % (int(time.time(),),
 float(result[0][1]),)
)

 def initialise_databases(self):
 for system in self.systems.values():
 for check in system['checks']:
 data_file = "%s.rrd" % check
 if not os.path.isfile(data_file):
 print data_file, 'does not exist'
 rrdtool.create(data_file,
 "DS:%s:COUNTER:%s:U:U" % (check,
 system['checks'][check]['sampling_rate']),
 "RRA:AVERAGE:0.5:1:288",)

def main(conf_file=""):
 if not conf_file:
 sys.exit(-1)
 config = SafeConfigParser()
 config.read(conf_file)
 snmp_manager = SnmpManager()
 for system in [s for s in config.sections() if s.startswith('system')]:
 snmp_manager.add_system(system,
 config.get(system, 'description'),
 config.get(system, 'address'),
 config.get(system, 'port'),
 config.get(system, 'communityro'))
 for check in [c for c in config.sections() if c.startswith('check')]:
 snmp_manager.add_check(check,
 config.get(check, 'oid'),
 config.get(check, 'description'),
 config.get(check, 'system'),
 config.get(check, 'sampling_rate'))
 snmp_manager.query_all_systems()

if __name__ == '__main__':
 main(conf_file='snmp-manager.cfg')

The script is now ready for monitoring. You can add it to the Linux cron scheduler and have it

executed every 5 minutes. Don’t worry if you configure some checks with a sampling rate greater than
5 minutes; RRDTool is clever enough to store the measurements at the sampling rate that has been
specified at the database creation time. Here’s a sample cronjob entry that I used to produce sample
results, which we’ll be using in the next section:

CHAPTER 1 ■ READING AND COLLECTING PERFORMANCE DATA USING SNMP

31

$ crontab -l
*/5 * * * * (cd /home/rytis/snmp-monitor/; ./snmp-manager.py > log.txt)

Creating Web Pages with the Jinja2 Templating System
In the last section of this chapter we are going to create another script, this one generating a simple
structure of web pages containing the graphs. The main entry page lists all available checks grouped
by the system and links to the check details page. When a user navigates to that page, she will see the
graph generated by RRDTool and some details about the check itself (such as the check description and
OID). Now, this looks relatively easy to implement, and most people would simply start writing a
Python script that would use print statements to produce the HTML pages. Although this approach may
seem to work, in most cases it soon becomes unmanageable. The functional code often becomes
intermingled with the content-producing code, and adding new functionality usually breaks
everything, which in turn leads to hours spent debugging the application.

The solution to this problem is to use one of the templating frameworks, which allow decoupling
the application logic from the presentation. The basic principle of a templating system is simple: you
write code that performs calculations and other tasks that are not content-specific, such as retrieving
data from the databases or other sources. Then you pass this information to the templating framework,
along with the name of the template that uses this information. In the template code you put all HTML
formatting text together with the dynamic data (which was generated earlier). The framework then
parses the template for simple processing statements (like iteration loops and logical test statements)
and generates the result. You can see the basic flow of this processing in Figure 1-6.

Figure 1-6. Data flow in the templating framework

CHAPTER 1 ■ READING AND COLLECTING PERFORMANCE DATA USING SNMP

32

This way, your application code is clean from all content-generation statements and is much
easier to maintain. The template can access all variables presented to it, but it looks more like an
HTML page, and loading it in a web browser usually produces acceptable results. So you can even ask a
dedicated web developer to create the templates for you, as there is no need to know any Python to
modify them.

I’m going to use a templating framework called Jinja, which has syntax very similar to that used by
the Django web framework. We’re also going to talk about the Django framework in this book, so it
makes sense to use a similar templating language. The Jinja framework is also widely used, and most
Linux distributions include the Jinja package. On a Fedora system you can install it with the following
command:

$ sudo yum install python-jinja2

Alternatively, you can use the PiP application to install it:

$ sudo pip install Jinja2

You can also get the latest development version of the Jinja2 framework from the official web site:

http://jinja.pocoo.org/2/.

■Tip Make sure to install Jinja2 and not the earlier release—Jinja. Jinja2 provides an extended templating
language and is actively developed for and supported.

Loading Template Files with Jinja2
Jinja2 is designed to be used in the web framework and therefore has a very extensive API. Most of its
functionality is not used in simple applications that only generate a few pages, so I’m going to skip
those functions, as they could be a topic for a book of their own. In this section I’ll show you how to load
a template, pass some variables to it, and save the result. These three functions are what you will use
most of the time in your applications. For more extensive documentation on the Jinja2 API, please
refer to http://jinja.pocoo.org/2/documentation/api.

The Jinja2 framework uses so called loader classes to load the template files. These can be loaded
from various sources, but most likely they are stored on a file system. The loader class, which is
responsible for loading the templates stored on a file system, is called jinja2.FileSystemLoader. It
accepts one string or a list of strings that are the pathnames on a file system where the template files
can be found:

from jinja2 import FileSystemLoader

loader1 = FileSystemLoader('/path/to/your/templates')
loader2 = FileSystemLoader(['/templates1/', '/teamplates2/']

Once you initialized the loader class, you create an instance of the jinja2.Environment class.

This class is the central part of the framework and is used to store the configuration variables, access
the templates (via the loader instance), and pass the variables to the template objects. When
initializing the environment, you must pass the loader object if you want to access externally stored
templates:

http://jinja.pocoo.org/2
http://jinja.pocoo.org/2/documentation/api

CHAPTER 1 ■ READING AND COLLECTING PERFORMANCE DATA USING SNMP

33

from jinja2 import Environment, FileSystemLoader

loader = FileSystemLoader('/path/to/your/templates')
env = Environment(loader=loader)

When the environment has been created, you can then load the templates and render the output.

First you call the get_template method, which returns a template object associated with the template
file. Next you call the template object’s method render, which processes the template contents (loaded
by the previously initialized loader class). The result is the processed template code, which can be
written to a file. You have to pass all variables to the template as a dictionary. The dictionary keys are
the names of the variables available from within the template. The dictionary values can be any
Python objects that you want to pass to the template.

from jinja2 import Environment, FileSystemLoader

loader = FileSystemLoader('/path/to/your/templates')
env = Environment(loader=loader)
template = env.get_template('template.tpl')
r_file = open('index.html', 'w')
name = 'John'
age = 30
result = template.render({'name': name, 'age': age})
r_file.write(result)
r_file.close()

The Jinja2 Template Language
The Jinja2 templating language is quite extensive and feature-rich. The basic concepts, however, are
quite simple and the language closely resembles Python. For a full language description, please check
the official Jinja2 template language definition at
http://jinja.pocoo.org/2/documentation/templates.

The template statements have to be escaped; anything that is not escaped is not processed and will
be returned verbatim after the rendering process.

There are two types of language delimiters:

• The variable access delimiter, which indicates a reference to a variable: {{ ... }}

• The statement execution delimiter, which tells the framework that the statement inside
the delimiter is a functional instruction: {% ... %}

Accessing Variables
As you already know, the template knows the variables by the names they were given as dictionary
keys. So if the dictionary passed to the render function was this:

{'name': name, 'age': age}

http://jinja.pocoo.org/2/documentation/templates

CHAPTER 1 ■ READING AND COLLECTING PERFORMANCE DATA USING SNMP

34

The following statements in the template can access these variables as shown here:
{{ name }} / {{ age }}

The object passed to the template can be any Python object, and the template can access it using

the same Python syntax. For example, you can access the dictionary or array elements. Assume the
following render call:

person = {'name': 'John', 'age': 30}
r = t.render({'person': person})

Then you can use the following syntax to access the dictionary elements in the template:

{{ person.name }} / {{ person.age }}

Flow Control Statements
The flow control statements allow you to perform check on the variables and select different parts of
the template that will be rendered accordingly. You can also use these statements to repeat a piece of
the template when generating structures such as tables or lists.

The for ...in loop statement can iterate through these iterable Python objects, returning one
element at a time:

<h1>Available products</h1>

{% for item in products %}
 {{ item }}
{% endfor %}

Once in the loop, the following special variables are defined. You can use them to check exactly

where you are in the loop.

Table 1-4. The loop property variables

Variable Description

loop.index The current iteration of the loop. The index starts with 1; use loop.index0 for a
count indexed from 0 .

loop.revindex Similar to loop.index, but counts iterations from the end of the loop.

loop.first Set to True if the first iteration.

loop.last Set to True if the last iteration.

loop.length The total number of elements in the sequence.

CHAPTER 1 ■ READING AND COLLECTING PERFORMANCE DATA USING SNMP

35

The logical test function if is used as a Boolean check, similar to the use of the Python if
statement:

{% if items %}

 {% for item in items %}
 {% if item.for_sale %}
 {{ item.description }}
 {% endif %}
 {% endfor %}

{% else %}
 There are no items
{% endif %}

The Jinja2 framework also allows for template inheritance. That is, you can define a base

template and then inherit from it. Each child template then redefines the blocks from the main
template file with appropriate content. For example, the parent template (parent.tpl) may look like
this:

<head>
 <title> MyCompany – {% block title %}Default title{% endblock %}</title>
</head>
<html>
{% block content %}
There is no content
{% endblock %}
</html>

The child template then inherits from the base template and extends the blocks with its own

content:

{% extends 'parent.tpl' %}
{% block title %}My Title{%endblock %}
{% block content %}
My content %}
{% endblock %}

Generating Web Site Pages
The script that generates the pages and the images uses the same configuration file used by the check
script. It iterates through all system and check sections and builds a dictionary tree. The whole tree is
passed to the index generation function, which in turn passes it to the index template.

The detailed information for each check is generated by a separate function. The same function
also calls the rrdtool method to plot the graph. All files are saved in the web site root directory, which
is defined in the global variable but can be overruled in the function call. You can see the whole script
in Listing 1-9.

CHAPTER 1 ■ READING AND COLLECTING PERFORMANCE DATA USING SNMP

36

Listing 1-9. Generating the web site pages

#!/usr/bin/env python

from jinja2 import Environment, FileSystemLoader
from ConfigParser import SafeConfigParser
import rrdtool
import sys

WEBSITE_ROOT = '/home/rytis/public_html/snmp-monitor/'

def generate_index(systems, env, website_root):
 template = env.get_template('index.tpl')
 f = open("%s/index.html" % website_root, 'w')
 f.write(template.render({'systems': systems}))
 f.close()

def generate_details(system, env, website_root):
 template = env.get_template('details.tpl')
 for check_name, check_obj in system['checks'].iteritems():
 rrdtool.graph ("%s/%s.png" % (website_root, check_name),
 '--title', "%s" % check_obj['description'],
 "DEF:data=%(name)s.rrd:%(name)s:AVERAGE" % {'name':
 check_name},
 'AREA:data#0c0c0c')
 f = open("%s/%s.html" % (website_root, str(check_name)), 'w')
 f.write(template.render({'check': check_obj, 'name': check_name}))
 f.close()

def generate_website(conf_file="", website_root=WEBSITE_ROOT):
 if not conf_file:
 sys.exit(-1)
 config = SafeConfigParser()
 config.read(conf_file)
 loader = FileSystemLoader('.')
 env = Environment(loader=loader)
 systems = {}
 for system in [s for s in config.sections() if s.startswith('system')]:
 systems[system] = {'description': config.get(system, 'description'),
 'address' : config.get(system, 'address'),
 'port' : config.get(system, 'port'),
 'checks' : {}
 }

CHAPTER 1 ■ READING AND COLLECTING PERFORMANCE DATA USING SNMP

37

 for check in [c for c in config.sections() if c.startswith('check')]:
 systems[config.get(check, 'system')]['checks'][check] = {
 'oid' : config.get(check, 'oid'),
 'description': config.get(check,
 'description'),
 }

 generate_index(systems, env, website_root)
 for system in systems.values():
 generate_details(system, env, website_root)

if __name__ == '__main__':
 generate_website(conf_file='snmp-manager.cfg')

Most of the presentation logic, such as checking whether a variable is defined and iterating

through the list items, is implemented in the templates. In Listing 1-10, we first define the index
template, which is responsible for generating the contents of the index.html page. As you know, in
this page we’re going to list all defined systems with a complete list of checks available for each
system.

Listing 1-10. The index template

<h1>System checks</h1>
{% if systems %}
 {% for system in systems %}
 <h2>{{ systems[system].description }}</h2>
 <p>{{ systems[system].address }}:{{ systems[system].port }}</p>
 {% if systems[system].checks %}
 The following checks are available:

 {% for check in systems[system].checks %}

 {{ systems[system].checks[check].description }}
 {% endfor %}

 {% else %}
 There are no checks defined for this system
 {% endif %}
 {% endfor %}
{% else %}
 No system configuration available
{% endif %}

The web page generated by this template is rendered as shown in Figure 1-7.

CHAPTER 1 ■ READING AND COLLECTING PERFORMANCE DATA USING SNMP

38

Figure 1-7. The index web page in the browser window

The link for each list item points to an individual check details web page. Each such web page has a
check section name, such as check_1.html. These pages are generated from the details.tpl
template:

<h1>{{ check.description }}</h1>
<p>OID: {{ check.oid }}</p>

This template links to a graph image, which has been generated by the RRDTool graph method.
Figure 1-8 shows the resulting page.

CHAPTER 1 ■ READING AND COLLECTING PERFORMANCE DATA USING SNMP

39

Figure 1-8. SNMP detail information with graph

Summary
In this chapter we’ve built a simple device monitoring system. In doing so you learned about the SNMP
protocol, as well as the data collecting and plotting libraries used with Python—RRDTool and the
Jinja2 templating system. Important points to keep in mind:

• The majority of network-attached devices expose their internal counters using the SNMP
protocol.

• Each such counter has a dedicated object ID assigned to it.

• The object IDs are organized in a tree-like structure, where tree branches are allocated to
various organizations.

• RRDTool is a library that allows you to store, retrieve, and plot network statistical data.

• The RRD database is a round-robin database, which means it has a constant size, and new
records push old records out when inserted.

• If you generate web pages, make use of the Jinja2 templating system, which allows you to
decouple the functional code from the representation.

C H A P T E R 2

■ ■ ■

41

Managing Devices

Using the SOAP API

In this chapter we are going to build a command line tool to query and manage the Citrix Netscaler
load balancer devices. These devices expose the management services via the SOAP API, which is one
of the standard ways of communicating between the web services.

What Is the SOAP API?
SOAP stands for Simple Object Access Protocol. This protocol has been developed and created to be
used as a mechanism for exchanging structured information between various web services. Many
well-known companies expose their services via the SOAP API interface; for example, Amazon allows
controlling their Elastic Compute Cloud (EC2) and Simple Storage System (S3) services using the SOAP
API calls.

Using SOAP queries, users can create virtual machines, start and stop services, manipulate data
on a remote distributed file system, or perform product searches. SOAP-enabled applications exchange
information by sending SOAP “messages.” Each message is an XML-formatted document. The SOAP
protocol sits on top of other transmission protocols, such as HTTP, HTTPS, SMTP, and so on. In theory
you can send a SOAP request encapsulated in an email message (SMTP), but most widely used
transport mechanisms for SOAP are either plain HTTP or HTTPS (SSL encrypted HTTP).

SOAP is not the most efficient way of communicating, because of the XML verbosity, so even the
smallest and the simplest messages become quite large and cryptic.

SOAP defines a set of rules for structuring messages of the application-level protocols. One of the
most commonly used protocols is RPC (Remote Procedure Call). Therefore, what is normally
referenced as the SOAP API in fact is a SOAP-encoded RPC API.

RPC defines how web services communicate and interact with each other. When used with RPC,
SOAP is used to perform request-response dialogues.

The greatest strength of SOAP is that it is not language- or platform-specific, so applications that
are written in different languages and are running on different platforms can easily communicate
with each other. It is also an open-standard protocol, which means there are numerous libraries that
provide support for developing SOAP-enabled applications and services.

CHAPTER 2 ■ MANAGING DEVICES USING THE SOAP API

42

The Structure of a SOAP Message
Each SOAP message contains the following elements:

• Envelope. This element identifies the XML document as a SOAP message. It also defines
namespaces that are used within the SOAP message.

• Message Header. This element resides within the Envelope element and contains
application-specific information. For example, authentication details are usually stored
in the Header element. This element may also contain data that is not intended for the
recipient of the message, but addresses the intermediate devices that retransmit SOAP
communication.

• Message Body. This element resides within the SOAP Envelope element and contains
request and response information. The Message Body element is a required field and
cannot be omitted. This element contains the actual data that is intended for the recipient
of the message.

• Fault Element. This optional element resides within Message Body. If present, it contains
an error code, a human-readable error description, the reason the error occurred, and
any application-specific details.

Listing 2-1 is an example of a skeleton SOAP message.

Listing 2-1. The skeleton of a simple SOAP message

<?xml version="1.0"?>
<soap:Envelope
 xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
 soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

 <soap:Header>
 [...]
 </soap:Header>

 <soap:Body>
 [...]
 <soap:Fault>
 [...]
 </soap:Fault>
 </soap:Body>

</soap:Envelope>

Requesting Services with SOAP
Let’s assume we have two web services: Web Service A and Web Service B. Each web service is an
application running on a dedicated server. Let’s also assume that Service B implements a simple
customer lookup service, which accepts an integer number that represents the customer identifier and

http://www.w3.org/2001/12/soap-envelope
http://www.w3.org/2001/12/soap-encoding

CHAPTER 2 ■ MANAGING DEVICES USING THE SOAP API

43

returns two fields in an array: the name of the customer and the contact telephone number. Service A
is an application that acts as a client and requests details from Service B.

When Service A (wants to find out details about the customer. it constructs the SOAP message
shown in Listing 2-2 and sends it to Service B as an HTTP POST request.

Listing 2-2. A SOAP request message

<?xml version="1.0" encoding="UTF-8" ?>
 <SOAP-ENV:Envelope
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/1999/XMLSchema">
 <SOAP-ENV:Body>
 <ns1:getCustomerDetails
 xmlns:ns1="urn:CustomerSoapServices">
 <param1 xsi:type="xsd:int">213307</param1>
 </ns1:getCustomerDetails>
 </SOAP-ENV:Body>
 </SOAP-ENV:Envelope>

Next, Service B (server) would perform the lookup, encapsulate the result in an SOAP message and

send it back. The response message (Listing 2-3) would be served as an HTTP response to the original
POST request.

Listing 2-3. A SOAP response message

<?xml version="1.0" encoding="UTF-8" ?>
 <SOAP-ENV:Envelope
 xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/1999/XMLSchema"
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Body>
 <ns1: getCustomerDetailsResponse
 xmlns:ns1="urn:CustomerSoapServices"
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <return
 xmlns:ns2="http://schemas.xmlsoap.org/soap/encoding/"
 xsi:type="ns2:Array"
 ns2:arrayType="xsd:string[2]">
 <item xsi:type="xsd:string">John Palmer</item>
 <item xsi:type="xsd:string">+44-(0)306-999-0033</item>
 </return>
 </ns1:getCustomerDetailsResponse>
 </SOAP-ENV:Body>
 </SOAP-ENV:Envelope>

http://schemas.xmlsoap.org/soap/encoding
http://schemas.xmlsoap.org/soap/envelope
http://schemas.xmlsoap.org/soap/encoding
http://www.w3.org/1999/XMLSchema-instance
http://www.w3.org/1999/XMLSchema
http://www.w3.org/1999/XMLSchema-instance
http://www.w3.org/1999/XMLSchema
http://schemas.xmlsoap.org/soap/envelope
http://schemas.xmlsoap.org/soap/encoding
http://schemas.xmlsoap.org/soap/encoding

CHAPTER 2 ■ MANAGING DEVICES USING THE SOAP API

44

As you can see from the example, SOAP conversation is very chatty. All that extra information
(including namespace definitions and field data types) is required so that both client and server know
how to parse and validate data.

Finding Information about Available Services with WSDL
If you look carefully at the previous example, you will notice that the client requested the following
method: getCustomerDetails. How do we know what methods or services are available to use?
Furthermore, how do we find out what arguments the method requires and what the method will return
in its response message?

The easiest way to find this information is from the web service’s WSDL (Web Services
Description Language) document. This XML-formatted document describes various details related to
the web service we are interested in, such as

• Communication protocols used by the service (the <bindings> section)

• Messages that the service accepts and sends (the <messages> section)

• Methods exposed by the web service (the <portType> section)

• Data types used by the service (the <types> section)

Each of those sections may contain multiple entries, depending on what the web service is doing.

For example, Listing 2-4 is a simplified WSDL definition for a translation service. In this example, our
imaginary automated translator accepts a text string as input parameter, and returns a translated
string as result. We have two remote methods that are called translateEnglishToFrench and
translateFrenchToEnglish. They both use the same request and response data types.

Listing 2-4. An example WSDL definition

<message name="translateRequest">
 <part name="term" type="xs:string"/>
</message>

<message name="translateResponse">
 <part name="value" type="xs:string"/>
</message>

<portType name="languageTranslations">
 <operation name="translateEnglishToFrench">
 <input message="translateRequest"/>
 <output message="translateRequest"/>
 </operation>
 <operation name="translateFrenchToEnglish">
 <input message="translateRequest"/>
 <output message="translateRequest"/>
 </operation>
</portType>

CHAPTER 2 ■ MANAGING DEVICES USING THE SOAP API

45

<binding type="languageTranslations" name="bn">
 <soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation>
 <soap:operation soapAction="http://example.com/translateEnglishToFrench"
 name="trEn2Fr"/>
 <input><soap:body use="literal"/></input>
 <output><soap:body use="literal"/></output>
 </operation>
 <operation>

 <soap:operation soapAction="http://example.com/translateFrenchToEnglish"
 name="trFr2En"/>
 <input><soap:body use="literal"/></input>
 <output><soap:body use="literal"/></output>
 </operation>
</binding>

The binding section defines access URLs for accessing each method that is exposed. Each operation

also has a name that is used to reference it.

SOAP Support in Python
Python is not as fortunate as other languages when it comes to supporting the SOAP protocol. In the
past, there were a few initiatives and projects that attempted to implement SOAP libraries into Python,
but most were abandoned. Currently the most active and mature project is the Zolera SOAP
Infrastructure (ZSI).

In most Linux distributions, this package is named python-ZSI and is available to install from the
distribution’s default package manager. If you choose to install the ZSI package from source, it can be
found at http://pywebsvcs.sourceforge.net/.

There are two ways to access SOAP services from Python using ZSI:

• Service methods can be accessed through the ServiceProxy class, which is part of the ZSI
library. When you create an object of this class all remote functions are available as
methods of this object instance. This is a convenient way of accessing all services, but it
requires you to generate type codes and define namespaces manually, which is a lot of
work.

• Another way of accessing the SOAP interface is to use the wsdl2py tool. This tool reads the
WSDL definition of the service and generates two modules: one with typecode
information and another containing service methods.

I prefer using the second method, because it relieves me from having to define type codes and

memorize namespaces. When using the ServiceProxy class , the user must explicitly define the
namespace of the procedure. Furthermore, the type code of the request object must be compatible with
the type defined in the WSDL, and this type code has to be crafted manually, which can become a real
pain with services that use complicated data structures.

http://schemas.xmlsoap.org/soap/http
http://example.com/translateEnglishToFrench
http://example.com/translateFrenchToEnglish
http://pywebsvcs.sourceforge.net

CHAPTER 2 ■ MANAGING DEVICES USING THE SOAP API

46

Converting WSDL Schema to Python Helper Module
So far you have learned about the SOAP protocol (an XML-based protocol that defines how messages
are encapsulated), RPC’s way of communication (the client sends a message that tells what function it
wants the server to execute, and the server responds with a message that contains the data generated
by the remote function) and WSDL (the language that defines what methods are available and what
data types are used in requests/responses).

We also decided that we are going to generate two helper modules: one that contains remote
methods and another that defines data structures, and that we are going to use wsdl2py tool that is
available from ZSI library.

I am going to write a tool to manage Citrix Netscaler load balancer devices. These devices provide
two web service interfaces:

• The Statistics Web Service. This service provides methods to query statistical information
about all functional aspects of the loadbalancer, such as virtual servers, services, VLAN
configuration and so on. In version 8.1 of Netscaler OS there are 44 objects that you can
gather performance information from.

• The Configuration Web Service. This service allows you to change device configuration
and perform maintenance tasks, such as enable/disable servers and services. In the same
8.1 NS OS there are 2364 configurable parameters that are accessible via SOAP interface.

Links to WSDL locations and other useful information, such as API documentation and SNMP

object definitions, can be found by visiting http://192.168.1.1/ws/download.pl, where
192.168.1.1 needs to be replaced with the IP address of the Netscaler load balancer that you are
using. In this chapter I will assume and use 192.168.1.1 as the IP of my Netscaler device. A link to the
downloads page is also available from the main management screen.

I have provided the following WSDL URLs, as it is unlikely they will change:

• WSDL for the statistics SOAP interface: http://192.168.1.1/api/NSStat.wsdl

• WSDL for the configuration SOAP interface: http://192.168.1.1/api/NSConfig.wsdl

Using the wsdl2py script is very simple; if no special configuration is required, all you need to do

is provide the location of a WSDL document and it will generate both method and data type modules
automatically. No additional user input is required. Either the wsdl2py tool can fetch the WSDL
document from the web location, or you can provide a filename and it will parse the file.

In the example shown in Listing 2-5, we will point the wsdl2py script directly at the WSDL URL on
the Netscaler load balancer.

Listing 2-5. A Command to convert Python modules from a WSDL file

$ wsdl2py --url http://192.168.1.1/api/NSStat.wsdl

If the script can contact the destination server and the XML document it receives contains no

errors, it will not produce any messages and will silently create two Python packages.

■Note If you have retrieved a WSDL file and stored it locally, you can use the --file flag and supply the
filename of the WSDL document. This will instruct wsdl2py to parse the locally stored file.

http://192.168.1.1/ws/download.pl
http://192.168.1.1/api/NSStat.wsdl
http://192.168.1.1/api/NSConfig.wsdl
http://192.168.1.1/api/NSStat.wsdl

CHAPTER 2 ■ MANAGING DEVICES USING THE SOAP API

47

At this point we’ve run the script and wsdl2py has produced the following two modules:

NSStat_services.py: This module contains the Locator class, which is used to connect
to the service and classes for each remotely available method.

NSStat_services_types.py: This file is rarely used directly. It is imported from the
previous module and contains class definitions for every data type used by our web
service. It does contain useful information that you will need later when creating
requests and inspecting responses from the web service.

There are other options for the wsdl2py tool, which could be used to produce server helper

modules. With these modules you can then implement your own version of the web service that
exposes the same interface and understands same protocols as defined by our WSDL file, but this goes
beyond the scope of our project.

Defining Requirements for Our Load Balancer Tool
So far we have only been investigating the SOAP protocol and Python libraries that provide SOAP
support, which created helper modules that we will use to access the Netscaler web services.

We have yet to write the actual code that performs SOAP calls and does something useful with the
information it receives, but before we dive into the interesting stuff (that is, writing the code), let’s step
back and decide a few important things:

• What do we want our tool to do?

• How are we going to structure our code?

Because these questions sound simple and appear obvious they are often overlooked. This usually

leads to poorly written and unmanageable code.
If we do not know precisely what we want our code to do, we risk either oversimplifying or over-

complicating our code. In other words, we might write a few simple lines of code, where in fact we
wanted it to be something more generic and reusable for others or in other projects. So we’ll keep on
adding new functions and creating various workarounds, and so the code grows into an
unmaintainable monster. Overcomplicating is also dangerous, because we might find ourselves
spending days and weeks (and, if we’re really creative, months) coding complicated data structures,
when a few lines of throw-away prototyped code would be more efficient.

So give careful thought to what you want to do before you start, but do not spend too much time on
it either, as in most cases system administrators are not expected to develop full scale applications,
and so things are easier for them.

Before starting, I find that considering the following points and writing a simple few paragraphs
for each is sufficient to perform well as a rough guideline and requirements specification document:

• Define the basic requirements

• Define the code structure

• Decide on configurable and changeable items

• Define error handling and logging

CHAPTER 2 ■ MANAGING DEVICES USING THE SOAP API

48

Basic Requirements
Make a bullet point list of what you want this tool to do, simple statements like “I want ... to do ...” are
very effective as we’re not after formal requirement specifications. The following example illustrates
this point:

• I want my application to gather statistical information about:

• CPU and memory utilization

• System overview: requests rate, data rate, established connections

• Overview of all virtual servers: up/down and what services are down within each

• I want my application to be able to:

• Disable/enable all services for any of the available virtual servers

• Disable/enable any individual service

• Disable/enable any set of services (may span across multiple virtual servers)

• I want to reuse defined functions in other scripts.

• The code should be easy to modify and add new functionality.

Code Structure
Now that we have defined our requirements for the tool, we can clearly see how to organize our script:

• All functions that make SOAP calls need to be defined in a separate module. This module
can be imported by various scripts, which could make use of the same functions.

• It would be good to define one class containing methods for accessing web services, so
that anyone could simply inherit from this class and extend with additional functionality.

• The tool will consist of two distinct parts—one to read statistical data and the other to
control services..

Mapping this to source code, we are going to have the following files and modules:

1. Our own library NSLib.py, which is going to contain definitions for the following:

• The NSLibError exception class. Whenever we encounter any unrecoverable issues,
we will raise this exception.

• The NSSoapApi class. This is the root class and implements methods common to all
Netscaler SOAP API objects: initialization and login.

• The NSStatApi class, which inherits the NSSoapApi class. This class implements all
methods that deal with statistics gathering and monitoring. It only performs calls
defined by Statistics WSDL.

• The NSConfigApi class which inherits NSSoapApi class. This class implements all
methods that deal with loadbalancer configuration and calls methods defined by
Configuration WSDL.

CHAPTER 2 ■ MANAGING DEVICES USING THE SOAP API

49

2. ns_stat.py. This file uses NSStatApi from NSLib and in the actual script that
implements our statistic gathering tasks. This is the script we will be calling from the
command line.

3. ns_conf.py. This file uses NSConfigApi from NSLib and is the actual script that
implements our load balancer configuration tasks. This is the script we will be calling
from the command line.

4. ns_config.py. This is our configuration script that contains all definitions we need to
establish communication with the load balancer. See detailed description below.

Configuration
We might have more than one load balancer that we would like to manage and monitor. Therefore
we’ll create a simple configuration file that identifies every one of them and would also contain login
details and service groups.

Since it’s going to be used by people who are reasonably comfortable with scripting and is not a
script targeting simple users, we can create a Python file with statically defined variables and import
it.

Listing 2-6 is the example I will be using throughout this chapter.

Listing 2-6. A configuration file with load balancer details

#!/usr/bin/env python

netscalers = {
 'default': 'primary',

 'primary': {
 'USERNAME': 'nstest',
 'PASSWORD': 'nstest',
 'NS_ADDR' : '192.168.1.1',
 'groups': {},
 },

 'secondary': {
 'USERNAME': 'nstest',
 'PASSWORD': 'nstest',
 'NS_ADDR' : '192.168.1.2',
 'groups': {},
 },
 }

As you can see, we have two netscalers here, primary and secondary, with different IP addresses

(you can have different users and passwords as well). No service groups are defined yet; we can add
those later when we need to.

Within our tools, if we need to access this configuration data we would retrieve it as shown in
Listing 2-7.

CHAPTER 2 ■ MANAGING DEVICES USING THE SOAP API

50

Listing 2-7. Accessing configuration data

import ns_config as config

to access configuration of the 'primary' loadbalancer
username_pri = config.netscalers['primary']['USERNAME']

to access configuration of the default loadbalancer
default_lb = config.netscalers['default']
username_def = config.netscalers[default_lb]['USERNAME']

Accessing Citrix Netscaler Load Balancer with the SOAP API
First we need to find the service location. With web services it is almost always a URL. However, we do
not really need to know the URL, as we have the special Locator class, which once initiated creates a
binding object we use to access the SOAP service.

Before we continue, we need to resolve one minor issue with Netscaler’s WSDL.

Fixing Issues with Citrix Netscaler WSDL
The locator class in our generated service access helper module (NSStat_services.py) is defined as
shown in Listing 2-8.

Listing 2-8. The Locator class definition

Locator
class NSStatServiceLocator:
 NSStatPort_address = "http://netscaler_ip/soap/"
 def getNSStatPortAddress(self):
 return NSStatServiceLocator.NSStatPort_address
 def getNSStatPort(self, url=None, **kw):
 return NSStatBindingSOAP(url or NSStatServiceLocator.NSStatPort_address,
**kw)

This is obviously wrong, because the service host name netscaler_ip is not a valid IP address (it

should have been 192.168.1.1), nor is a valid domain name. Citrix Netscaler has always been
exposing its endpoint this way, so we can only assume this is done by design.

One possible reason it is done this way is that you may want to use the same WSDL information
along with your software to manage multiple load-balancing devices, and therefore it would be
impractical to retrieve and compile WSDL from every single device you are going to manage.
Therefore it is left to the API user/developer to replace this address with the correct one. All examples
from Netscaler SOAP API manual behave the same way, and ignore this variable instead of passing
their own settings.

Therefore you have to modify the NSStatPort_address variable by replacing netscaler_ip with
the IP address of your device. Fortunately this has to be done only once; WSDL is not going to change
very often (usually only during the major OS upgrades). Listing 2-9 shows the modification.

http://netscaler_ip/soap

CHAPTER 2 ■ MANAGING DEVICES USING THE SOAP API

51

Listing 2-9. Manually modifying the Locator class

 # Locator
class NSStatServiceLocator:
 NSStatPort_address = "http://192.168.1.1/soap/"
 def getNSStatPortAddress(self):
 return NSStatServiceLocator.NSStatPort_address
 def getNSStatPort(self, url=None, **kw):
 return NSStatBindingSOAP(url or NSStatServiceLocator.NSStatPort_address,
**kw)

If you do not wish to modify the module, you will see another way of fixing the issue later in the

chapter, where you can specify the service end point during the initialization of the Locator object.

Creating a Connection Object
We have the helper modules ready and fixed, so finally we are going to actually communicate with our
load balancer via SOAP API.

Before we can continue, we need to import all our methods that we generated with wsdl2py:

import NSStat_services

Initializing the locator and service access objects is very simple and can be achieved with only two

lines of code. First we’re creating the actual Locator object, which contains information about the web
service location:

locator = NSStat_services.NSStatServiceLocator()

Then we call the method that will return us the binding object, already initialized with service

URL:

soap = locator.getNSStatPort()

The locator object has only two methods, one to read the URL from WSDL and another to

initialize and return a binding object.
The binding object (in our example initialized as the variable soap) contains all methods that are

available on our web service (in this instance Citrix Netscaler Statistics API). It acts like a proxy,
mapping object methods to API functions.

Before we continue let’s see how we can fix the Netscaler invalid URL issue. As you already know,
you can interrogate the Locator object and request an endpoint URL. You can also force
getNSStatPort to use a custom URL instead of the generated one. So what we are going to do is to get
the URL, replace the bogus string with the IP of our load balancer, and then generate a binding object
with the correct URL. Listing 2-10 shows the code.

Listing 2-10. Substituting the load balancer address

MY_NS_IP = '192.168.1.1'
locator = NSStat_services.NSStatServiceLocator()
bad_url = locator.getNSStatPortAddress()

http://192.168.1.1/soap

CHAPTER 2 ■ MANAGING DEVICES USING THE SOAP API

52

good_url = re.sub('netscaler_ip', MY_NS_IP, bad_url)
soap = locator.getNSStatPort(url=good_url)

As you can see, here I used the getNSStatPortAddress Locator method to retrieve the URL string,

which I then modified using a regular expression and replaced the netscaler_ip string with the load
balancer’s IP. Finally I asked the Locator to create my SOAP binding object with my new (correct)
URL.

This approach is more flexible than changing automatically generated module. If for whatever
reason (an NS OS upgrade would be one example) you decide to generate a new module, you will lose
the changes that you have made. That other approach also requires you to remember that you have to
change the code. Overriding the IP in the code that makes a request is more obvious, and will not
interfere with other tools that might reuse the same helper modules.

So this was a quick way of creating our connection object, but how are we going to fit this into our
required structure that we have defined earlier? Remember, we decided to have one generic class with
initialization and logging facilities, and then derive two different classes from it: one for statistics and
monitoring module and one for management and configuration module. You can see the class
inheritance in the Figure 2-1 below.

Figure 2-1. Class inheritance diagram.

This poses an immediate problem, because we will need to use different Locator objects for each
service, so we cannot initialize them in the NSSoapApi class, because we do not know what type of
Locator object, Stat or Config, we will need to use.

The generic class needs to be able to identify which module it is supposed to use as a service
locator, so I will pass a module object from NSStatApi or NSConfigApi as a parameter to NSSoapApi,
which will then use this parameter to initialize the appropriate Locator and perform the login call
using the specific module call. It may sound complicated, but it really isn’t at all. Listing 2-11 shows the
code that implements this.

Listing 2-11. Defining a generic class

class NSSoapApi(object):

 def __init__(self, module=None,
 hostname=None,
 username=None,
 password=None):
 [...]

CHAPTER 2 ■ MANAGING DEVICES USING THE SOAP API

53

 self.username = username
 self.password = password
 self.hostname = hostname
 self.module = module

 if self.module.__name__ == 'NSStat_services':
 [...]
 self.locator = self.module.NSStatServiceLocator()
 bad_url = self.locator.getNSStatPortAddress()
 good_url = re.sub('netscaler_ip', self.hostname, bad_url)
 self.soap = self.locator.getNSStatPort(url=good_url)
 elif self.module.__name__ == 'NSConfig_services':
 [...]
 self.locator = self.module.NSConfigServiceLocator()
 bad_url = self.locator.getNSConfigPortAddress()
 good_url = re.sub('netscaler_ip', self.hostname, bad_url)
 self.soap = self.locator.getNSConfigPort(url=good_url)
 else:
 [...]
 self.login()

 def login(self):
 [...]
 req = self.module.login()
 req._username = self.username
 req._password = self.password
 [...]
 res = self.soap.login(req)._return
 [...]

This generic class expects a module object to be passed into it, so it can

• Call generic methods such as login directly from whichever module is passed

• Depending on the module, call specific methods or refer to module-specific classes, such
as NSStatServiceLocator vs NSConfigServiceLocator

Our subclasses will pass the module object on to the superclass, as shown in Listing 2-12.

Listing 2-12. Passing a module object to a generic class

class NSStatApi(NSSoapApi):

 def __init__(self, hostname=None, username=None, password=None):
 super(NSStatApi, self).__init__(hostname=hostname,
 username=username,
 password=password,
 module=NSStat_services)

CHAPTER 2 ■ MANAGING DEVICES USING THE SOAP API

54

class NSConfigApi(NSSoapApi):

 def __init__(self, hostname=None, username=None, password=None):
 super(NSConfigApi, self).__init__(hostname=hostname,
 username=username,
 password=password,
 module=NSConfig_services)

Logging In: Our First SOAP Call
At this point, no actual API calls have been made yet; what we’ve done was just preparation and
initialization work. The first thing we need to do before we can start requesting performance data or
making configuration changes is to authenticate with the load balancer. So our first API call is going to
be the login method.

Performing SOAP requests with a generated helper library always follows the same pattern:

1. Create a request object.

2. Initialize the request object with parameters; this is your argument list to the SOAP
function.

3. Call the binder method representing the appropriate SOAP method and pass the request
object to it.

4. The binder method returns an API response (or raises an exception if it fails to contact the
web service).

As we have already seen, the binding object returned by the Locator is of NSStatBindingSOAP

class. Methods of this class represent all functions available on the web service. One of them is the
login function, shown in Listing 2-13, which we are going to use to identify ourselves to the load
balancer.

Listing 2-13. The definition of a login method

 # op: login
 def login(self, request):
 if isinstance(request, login) is False:
 raise TypeError, "%s incorrect request type" % (request.__class__)
 kw = {}
 # no input wsaction
 self.binding.Send(None, None, request, soapaction="urn:NSConfigAction",
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/",
 **kw)
 # no output wsaction
 typecode = Struct(pname=None, ofwhat=loginResponse.typecode.ofwhat,
 pyclass=loginResponse.typecode.pyclass)
 response = self.binding.Receive(typecode)
 return response

http://schemas.xmlsoap.org/soap/encoding

CHAPTER 2 ■ MANAGING DEVICES USING THE SOAP API

55

like other methods of the NSStatBindingSOAP class, the login method accepts only one
parameter, the request object.

A request object must be constructed from the login class, which is available from the same helper
module. The easiest way to find out what the request object must contain is to look at its definition;
Listing 2-14 shows what we have in our instance.

Listing 2-14. The login request class

class login:
 def __init__(self):
 self._username = None
 self._password = None
 return

So when initializing the new request object, we must set both _username and _password before we

pass it to our binding object.
Now let’s create these objects and make a login SOAP call. Listing 2-15 shows the code.

Listing 2-15. A wrapper around the default login method

class NSSoapApi(object):
 [...]
 def login(self):
 # create request object and assign default values
 req = self.module.login()
 req._username = self.username
 req._password = self.password
 [...]
 res = self.soap.login(req)._return
 if res._rc != 0:
 # an error has occurred

Just as with all other requests, making the SOAP login call is a two-step process:

1. Create and initialize the request object; this object contains data we are going to send to
the web service. In the following example, req is our login request object, which we are
initializing by setting a username and password for the login call:

req = self.module.login()
req._username = self.username
req._password = self.password

2. Call the appropriate proxy function from the Binding object and pass the request object to
it. The following steps are condensed into a single line of code:

1. Call the login method of our Binding object.

2. Pass the request object constructed in the previous step.

3. Read the response.

CHAPTER 2 ■ MANAGING DEVICES USING THE SOAP API

56

When all steps are complete, res will contain the return object, with variables as defined in the
NSStat_services_types.py module (or the WSDL datatype section):

res = self.soap.login(req)._return

Finding What Is Being Returned in the Response from a Web Service
We already know that to find out what we’re expected to send in a request to a web service, we need to
look in the service’s helper module, which contains classes for all request objects, but how do we know
what we are receiving as a response?

If we look again at the login method in the Binding class, we will find that it returns an object of
the loginResponse type, as shown in Listing 2-16.

Listing 2-16. The return value from the Binding class

 def login(self, request):
 [...]
 typecode = Struct(pname=None, ofwhat=loginResponse.typecode.ofwhat,
 pyclass=loginResponse.typecode.pyclass)
 response = self.binding.Receive(typecode)
 return response

From the loginResponse class (Listing 2-17), we find that it contains only one variable, _return.

Listing 2-17. The contents of the loginResponse class

class loginResponse:
 def __init__(self):
 self._return = None
 returnloginResponse.typecode =

Struct(pname=("urn:NSConfig","loginResponse"),
 ofwhat=[ns0.simpleResult_Def(pname="return", aname="_return", typed=False,
encoded=None,
 minOccurs=1, maxOccurs=1, nillable=True)], pyclass=loginResponse,
encoded="urn:NSConfig")

Yet this is not enough, as _return is the object that contains the information we require, and we

need to find out how to reference it. Since loginResponse is very simple (only two fields returned), it
uses a generic response object, and we find that from the typecode setting for the loginResponse class,
by looking at the ofwhat setting in the class’ typecode definition. In the following example it is the
highlighted string:

class loginResponse:
 def __init__(self):
 self._return = None
 return

CHAPTER 2 ■ MANAGING DEVICES USING THE SOAP API

57

loginResponse.typecode = Struct(pname=("urn:NSConfig","loginResponse"),
 ofwhat=[ns0.simpleResult_Def(pname="return",
 aname="_return",
 typed=False,
 encoded=None,
 minOccurs=1,
 maxOccurs=1,
 nillable=True)],
 pyclass=loginResponse, encoded="urn:NSConfig")

More complex structures have Result objects named after them, so it is easier to find them, but

with login we need to look for the simpleResult class in the types definition module
(NSStat_services_types.py). This class definition, shown in Listing 2-18, may look a bit cryptic, but
we do not really need to know the details of its functioning; just look for the Holder class definition.

Listing 2-18. The class definition for simpleResult

 class simpleResult_Def(ZSI.TCcompound.ComplexType, TypeDefinition):
 [...]
 class Holder:
 typecode = self
 def __init__(self):
 # pyclass
 self._rc = None
 self._message = None
 return
 [...]

I will explain in more detail how to find references and definitions of the objects for complex data

types later in this chapter in the “Reading System Health Data” section.

How Is the Session Maintained After We Have Logged In?
You might be wondering what happens next after we successfully log on to our web service. How does
the load balancer know that we are authorized to make other calls, when other calls do not require a
username and password to be sent along with other parameters?

Some web services send back a special token, which is generated on the server and is associated
with the account that is using the API. If that was the case, we would have to incorporate this token with
every request that we send to the web service.

Things are much simpler with the Netscaler load balancer. After we send our login request, and if
our authentication details are correct, the load balancer will respond with a simple “OK” message. It
will also respond with a special cookie in the HTTP header, which acts as our token. Instead of
incorporating token details into every SOAP request, we simply need to make sure that we have this
cookie set in our HTTP header when we’re sending subsequent requests to our web service. Listing 2-
19 shows the output from the tcpdump command, which clearly demonstrates this in action (I have
omitted other TCP packets and removed irrelevant binary data, so only HTTP and SOAP protocols are
shown).

CHAPTER 2 ■ MANAGING DEVICES USING THE SOAP API

58

Listing 2-19. HTTP encapsulated SOAP login request and login response messages

11:11:35.283170 IP 192.168.1.10.40494 > 192.168.1.1.http: P 1:166(165) ack 1 win
5488
[...]
POST /soap/ HTTP/1.1
Host: 192.168.1.1
Accept-Encoding: identity
Content-Length: 540
Content-Type: text/xml; charset=utf-8
SOAPAction: "urn:NSConfigAction"
[...]
<SOAP-ENV:Envelope xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:
SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:ZSI="http://www.zolera.com/schemas/ZSI/" xmlns:xsd=
"http://www.w3.org/2001/XMLSchema" xmlns:xsi=
"http://www.w3.org/2001/XMLSchema-instance" SOAP-ENV:encodingStyle=
"http://schemas.xmlsoap.org/soap/encoding/"><SOAP-ENV:Header></SOAP-ENV:
Header><SOAP-ENV:Body
xmlns:ns1="urn:NSConfig"><ns1:login><username>nstest</username>
<password>nstest</password></ns1:login></SOAP-ENV:Body></SOAP-ENV:Envelope>

11:11:35.567226 IP 192.168.1.1.http > 192.168.1.10.40494: P 1:949(948) ack 706 win
57620
[...]
HTTP/1.1 200 OK
Date: Mon, 29 Jun 2009 11:13:08 GMT
Server: Apache
Last-Modified: Mon, 29 Jun 2009 11:13:08 GMT
Status: 200 OK
Content-Length: 622
Connection: closeSet-Cookie:
NSAPI=##F0F402A6574084DB4956184C6443FEE54DD5FC1E1953E3730A5A307BBEC3;Domain=
192.168.1.1; Path=/soapContent-Type: text/xml; charset=utf-8
<?xml version="1.0" encoding="UTF-8"?><SOAP-ENV:Envelope xmlns:SOAP-ENV=
"http://schemas.xmlsoap.org/soap/envelope/" xmlns:SOAP-ENC=
"http://schemas.xmlsoap.org/soap/encoding/" xmlns:xsi=
"http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd=
"http://www.w3.org/2001/XMLSchema" xmlns:ns=
"urn:NSConfig"><SOAP-ENV:Header></SOAP-ENV:Header><SOAP-ENV:Body SOAP-ENV:
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" id=
"_0"><ns:loginResponse><return xsi:type=
"ns:simpleResult"><rc xsi:type="xsd:unsignedInt">0</rc><message xsi:type=
"xsd:string">Done</message></return></ns:loginResponse></SOAP-ENV:Body></SOAP-
ENV:Envelope>

http://schemas.xmlsoap.org/soap/encoding
http://schemas.xmlsoap.org/soap/envelope
http://www.zolera.com/schemas/ZSI
http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema-instance
http://schemas.xmlsoap.org/soap/encoding
http://schemas.xmlsoap.org/soap/envelope
http://schemas.xmlsoap.org/soap/encoding
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema
http://schemas.xmlsoap.org/soap/encoding

CHAPTER 2 ■ MANAGING DEVICES USING THE SOAP API

59

We can see that with our initial request for login action we send a SOAP message with our
credentials encapsulated as HTTP POST request.

The response is also a SOAP message, encapsulated into an HTTP response. The SOAP response
does not carry much useful information; it contains only two pieces of data: a numeric return code (rc)
and an alphanumeric string (message). When everything is OK, rc is set to 0 and message is set to
Done.

The HTTP header carries more important information—it sets a cookie that we need to use with
other requests:

Set-Cookie: NSAPI=##F0F402A6574084DB4956184C6443FEE54DD5FC1E1953E3730A5A307BBEC3;
Domain=192.168.1.1;Path=/soap

This cookie value is associated with our account on NS, and so the web service knows that whoever

sends this cookie has already been authenticated.

Gathering Performance Statistics Data
We have already established the following requirements for the statistic gathering and monitoring
tool:

• I want my tool to gather statistical information about:

• CPU and memory utilization

• System overview: requests rate, data rate, established connections

• Overview of all virtual servers: up/down and what services are down within each

• These can be split into two groups:

• System status (CPU, memory and request rate readings)

• Virtual server status (virtual server states)

We can now split our implementation into two parts, which is easier to code and test.

SOAP Methods for Reading Statistical Data and Their Return
Values
Table 2-1 lists the methods that are used in our statistics gathering tool, along with the name and a
brief description of each one’s return object. We are going to use some of them in our code. You should
be able to modify the code quite easily and add more items for the tool to query. If you find yourself
needing more details about more specific items, such as AAA, GSLB or Compression, please refer to
Netscaler API documentation, which is available to download from the Netscaler management web
page.

CHAPTER 2 ■ MANAGING DEVICES USING THE SOAP API

60

Table 2-1. Statistic Web Service Methods and Their Return Values Used in Our Example

Method Return Variable Description

statsystem _internaltemp The internal system temperature in C.

 _rescpuusage The combined CPU usage expressed as a percentage.

 _memusagepcnt The memory usage expressed as a percentage.

statprotocolhttp _httprequestsrate The total HTTP(S) request rate (per second).

statlbvserver _primaryipaddress The IP address of the virtual server.

 _primaryport The port number of the virtual server

 _state The state of the virtual server:
UP: The Virtual server is running.
DOWN: All services failed in the virtual server.
OUT OF SERVICE: The virtual server is disabled.

 _vslbhealth The health of the virtual server. Expressed as the
percentage of services that are in the UP state.

 _requestsrate The rate of requests per second the virtual server is
receiving.

statservice _primaryipaddress The IP address of the virtual server.

 _primaryport The port number of the virtual server.

 _state The state of the virtual server:
UP: The service is running.
DOWN: The service is not running on the physical server.
OUT OF SERVICE: The service is disabled.

 _requestsrate The rate of requests per second the service is receiving.

Reading System Health Data
Reading system status data is pretty straightforward; all we need to do is call two methods: one to
retrieve readings about hardware and memory status, and another to check the total HTTP and HTTPS
requests served by our load balancer.

CHAPTER 2 ■ MANAGING DEVICES USING THE SOAP API

61

So as we can see from Table 2-1, we will be calling the statsystem and statprotocolhttp
methods. Neither of these methods requires any input parameters. Listing 2-20 shows a simplified
version of the statistics gathering method in our NSStatApi class.

Listing 2-20. Obtaining system health data

def system_health_check(self):
 results = {}
 [...]
 req = self.module.statsystem()
 res = self.soap.statsystem(req)._return
 results['temp'] = res._List[0]._internaltemp
 results['cpu'] = res._List[0]._rescpuusage
 results['mem'] = res._List[0]._memusagepcnt
 [...]
 req = self.module.statprotocolhttp()
 res = self.soap.statprotocolhttp(req)._return
 results['http_req_rate'] = res._List[0]._httprequestsrate
 [...]
 return results

This looks very similar to the login request we performed earlier; however, there is one important

thing to notice. This time we need to use the _List variable to access the details we are interested in.
The reason for this is that all response _return objects contain two required and one optional
variable: _rc, _message, and _List. We already know that _rc and _message contain a request return
code and a message that provides more details about the request status.

_List is optional and is an array that may contain one or more instances of the return object(s).
Even if the method will always return a single instance, it is still contained in the array. This is one of
the options to provide a standard way of communication: every request is always going to return the
same set of variables, so if we needed to, we could write a standard SOAP request dispatcher/response
handler.

How do we find out what structure objects are returned in the list? This is very simple. First you
need to look for the methodname response class in the NSStat_services_types.py module that
contains all datatypes used in SOAP communication. So in our case we would be searching for
statsystemResult_Def class.

Once we have found it, we need to look for the type definition, similar to the following:

TClist = [ZSI.TCnumbers.IunsignedInt(pname="rc", aname="_rc", minOccurs=1,
maxOccurs=1, nillable=False, typed=False, encoded=kw.get("encoded")),
ZSI.TC.String(pname="message", aname="_message", minOccurs=1, maxOccurs=1,
nillable=False, typed=False, encoded=kw.get("encoded")),
GTD("urn:NSConfig","systemstatsList",lazy=False)(pname="List",
aname="_List", minOccurs=0, maxOccurs=1, nillable=False, typed=False,
encoded=kw.get("encoded"))]

Now we will look for the systemstatsList class definition, shown in Listing 2-21.

CHAPTER 2 ■ MANAGING DEVICES USING THE SOAP API

62

Listing 2-21. The systemstatsList class definition

class systemstatsList_Def(ZSI.TC.Array, TypeDefinition):
 #complexType/complexContent base="SOAP-ENC:Array"
 schema = "urn:NSConfig"
 type = (schema, "systemstatsList")
 def __init__(self, pname, ofwhat=(), extend=False, restrict=False,
 attributes=None, **kw):
 ofwhat = ns0.systemstats_Def(None, typed=False)
 atype = (u'urn:NSConfig', u'systemstats[]')
 ZSI.TCcompound.Array.__init__(self, atype, ofwhat, pname=pname,
 childnames='item', **kw)

In this class definition we are going to find a reference to the actual class, which is going to

contain all the variables we will receive in the response from SOAP.
So finally, in Listing 2-22, we search for systemstats_Def class, where the subclass Holder

contains all available variables.

Listing 2-22. The definition of the systemstats return type

class systemstats_Def(ZSI.TCcompound.ComplexType, TypeDefinition):
 [...]
 class Holder:
 typecode = self
 def __init__(self):
 # pyclass
 self._rescpuusage = None
 self._memusagepcnt = None
 self._internaltemp = None
 [...]

This may look really complicated, but for automated systems it is always the same pattern in

accessing the information, which helps to simplify the process.

Reading Service Status Data
Retrieving information about services is very similar; it just involves more steps:

1. First we need to retrieve a list of all virtual servers on the Netscaler. This can be achieved
with the statlbvserver method, which accepts an optional name parameter. If that is
specified, only information about that virtual server will be returned. If name is not
specified or is set to blank, information about all virtual servers will be returned.

2. For each virtual server on the list, we create a list of services attached to it. This actually
requires using a different SOAP service—the Netscaler configuration SOAP. The Statistics
API does not provide functionality to query dependencies between configuration entities,
so we are going to use the getlbvserver method from the Configuration API.

CHAPTER 2 ■ MANAGING DEVICES USING THE SOAP API

63

3. Finally we check whether the virtual server health score is not 100%. If the server is not
on the ignore list, we will list unhealthy services that are attached to it. We will use the
statservice method to retrieve statistics about each service, and if the service is not in
the UP state we will indicate that.

■Note In the Citrix load balancer, the virtual server has a number of services attached to it that serve user
requests. The health score for a virtual server is calculated as a percentage of active services in the virtual server
pool. So if a virtual server contained ten services in its pool and two of them were not responding to the health
checks, the score for that virtual server would be 80%.

In the following code listings I will show classes and methods that implement health and service
statistic gathering. In order to keep the code simple, these examples will not have any error handling.
The full source code, which is available to download from the book’s page at www.apress.com, contains
additional error handling and reporting functionality.

First, in Listing 2-23, we define a new Statistics API wrapper class, which implements two methods:
get_vservers_list and get_service_details. The class inherits all functions from the base
NSSoapApi class, which we defined earlier.

The get_vservers_list method calls the statlbvserver SOAP method and passes an optional
name parameter. If the name string is empty, a list of all virtual servers will be returned. When the list is
returned we create our own dictionary with just few items from the complete list.

The get_service_details method calls the statservice SOAP method and passes a service
name as an argument. The SOAP response consists of detailed information about the service. We will
extract only the information that is interesting for us and return it as a Python dictionary.

Listing 2-23. The Statistics API wrapper class

class NSStatApi(NSSoapApi):
 [...]
 def get_vservers_list(self, name=''):
 result = {}
 req = self.module.statlbvserver()
 req._name = name
 res = self.soap.statlbvserver(req)._return
 for e in res._List:
 result[e._name.strip('"')] = { 'ip': e._primaryipaddress,
 'port': e._primaryport,
 'status': e._state,
 'health': e._vslbhealth,
 'requestsrate': e._requestsrate, }
 return result

 def get_service_details(self, service):
 result = {}
 req = self.module.statservice()
 req._name = service

http://www.apress.com

CHAPTER 2 ■ MANAGING DEVICES USING THE SOAP API

64

 res = self.soap.statservice(req)._return
 result = { 'ip': res._List[0]._primaryipaddress,
 'port': res._List[0]._primaryport,
 'status': res._List[0]._state,
 'requestsrate': res._List[0]._requestsrate, }
 return result

The second class we are going to define, in Listing 2-24, is a Configuration API wrapper class. This

class should mainly be used for functions that deal with load balancer configuration, but we need to
call one function from this service: getlbvserver, which returns (among other details about the virtual
server) a list of all services that are bound to a particular virtual server. Our method is called
get_services_list and simply returns the result as a Python list with service names as elements.

Listing 2-24. A configuration API wrapper class

class NSConfigApi(NSSoapApi):
 def get_services_list(self, vserver):
 req = self.module.getlbvserver()
 req._name = vserver
 res = self.soap.getlbvserver(req)._return
 result = [e.strip('"') for e in res._List[0]._servicename]
 return result

Finally, in Listing 2-25, we are going to implement our query function, which performs the

following steps:

• Initiates instances of both classes.

• Retrieves a list of all virtual servers.

• If the virtual server health is not 100%, gets a list of services bound to it.

• Prints out all unhealthy services.

Listing 2-25. Retrieving service status data

ns = NSStatApi([...])
ns_c = NSConfigApi([...])

for (vs, data) in ns.get_vservers_list(name=OPTS.vserver_query).iteritems():
 if (data['status'] != 'UP' or data['health'] != 100) and
 vs not in config.netscalers['primary']['vserver_ignore_list'] or
 OPTS.verbose:
 print " SERVICE: %s (%s:%s)" % (vs, data['ip'], data['port'])
 print " LOAD: %s req/s" % data['requestsrate']
 print " HEALTH: %s%%" % data['health']

CHAPTER 2 ■ MANAGING DEVICES USING THE SOAP API

65

 for srv in sorted(ns_c.get_services_list(vs)):
 service = ns.get_service_details(srv)
 if service['status'] != 'UP' or OPTS.vserver_query or OPTS.verbose:
 print ' * %s (%s:%s) - %s (%s req/sec)' % (srv, service['ip'],
 service['port'],
 service['status'],
 service['requestsrate'])

Following is the sample output from the tool. Depending on your load balancer configuration and

the operational status of the virtual servers and services, you obviously will get different results.
In this example, the first section displays basic health information about the load balancers:

memory usage, CPU usage, temperature, and total HTTP requests. The second section displays
information about a service that is not completely healthy. This service is supposed to have 30 services
running, but two of them are marked as DOWN

$./ns_stat.py
**
Health check for loadbalancer: 192.168.1.1
 Memory usage: 6.434952%
 CPU usage: 15%
 Temperature: 47C
 Requests: 4926/sec

SERVICE: main_web_server (192.168.0.5:80)
 LOAD: 1140 req/s
 HEALTH: 92%
 * web_farm_service-13 (192.168.2.13:80) - DOWN (0 req/sec)
 * web_farm_service-14 (192.168.2.14:80) - DOWN (0 req/sec)

$

Automating Administration Tasks
The second part of our exercise is to create a management tool for our load balancer. Going back to our
original requirements, we know that we want the configuration tool to perform the following tasks:

1. Disable/enable all services for any of the available virtual servers.

2. Disable/enable any individual service.

3. Disable/enable any set of services (may span across multiple virtual servers).

CHAPTER 2 ■ MANAGING DEVICES USING THE SOAP API

66

Device Configuration SOAP Methods
The Configuration API provides over 2500 different methods to alter load balancer configuration.
Configuring a load balancer is usually a complicated task and goes far beyond the scope of this book. In
this section I am going to show how to get a list of services, and then you will learn how to enable and
disable them. Other functions behave in a very similar fashion, so if you need to create a new virtual
server you would just call appropriate functions.

Table 2-2 lists the methods we will be using in the configuration tool, along with each one’s return
variable and a description.

Table 2-2. Methods Used to Enable and Disable Servers

Method Return Variable Description

disableservice _rc The return code of the operation (simpleResult type); 0 if
successful.

_message A detailed explanation of the result (simpleResult type). Done”
if successful; otherwise a meaningful explanation is provided.

enableservice _rc The return code of the operation (simpleResult type); 0 if
successful.

_message A detailed explanation of the result (simpleResult type).
“Done” if successful; otherwise a meaningful explanation is
provided.

getlbvserver _servicename A list of all services bound to a particular virtual server.

As you can see, the first two methods for enabling and disabling services are really simple in their

responses; they either succeed or fail. Just like the login method, they return a datastructure
simpleResponse, which contains only a return code and a detailed description of the error in case of
failure.

The last method is getlbvserver, which we used in previous section to retrieve a list of all
services that are bound to a virtual server. The same method wrapper will be reused here as well.

Setting a Service State
Setting the state of a service is as simple as calling either enableservice or disableservice with a
service name as a parameter to the method call. Citrix Netscaler load balancer service and virtual
server names are not case-sensitive, so when calling either method you do not need to care about
setting a correct case for the name parameter.

We are going to define another function in our NSConfigApi class that will implement switching
between the states and wrap two SOAP functions into one convenient, easy-to-use class method. We
will call this method set_service_state, and it will accept two required arguments: a new state and a

CHAPTER 2 ■ MANAGING DEVICES USING THE SOAP API

67

Python array that contains the names of all the services whose state we want to change. Listing 2-26
shows the code.

Listing 2-26. The wrapper for the SOAP enableservice and disableservice functions

 def set_service_state(self, state, service_list, verbose=False):
 [...]
 for service in service_list:
 if verbose:
 print 'Changing state of %s to %sd... ' % (service, state)
 req = getattr(self.module, '%sservice' % state)()
 req._name = service
 res = getattr(self.soap, '%sservice' % state)(req)._return
 [...]
 return

As you can see, it is a very simple function; however, it contains one thing that’s worth a bit more

attention: we do not explicitly specify the name of the method we are calling—it is automatically
constructed during runtime from the argument value that we receive in the state variable.

To achieve this, we use the Python getattr function, which allows us to get a reference to an
object’s property at runtime without knowing the property name in advance. When we call getattr,
we provide two arguments: a reference to an object and the name of the property we are addressing.
Therefore, our explicit call to a method looks like this:

result = some_object.some_function()

would be equivalent to:

result = getattr(some_object, "some_function")()

It is important to note the () after the getattr call. The getattr return value is a reference to an

object, and as such does not execute a function. If we are accessing an object variable, it will return the
value of the variable, but if we are accessing a function we would only get a reference to it:

>>> class C():
... var = 'test'
... def func(self):
... print 'hello'
...
>>> o = C()
>>> getattr(o, 'var')
'test'
>>> getattr(o, 'func')
<bound method C.func of <__main__.C instance at 0xb7fe038c>>
>>> getattr(o, 'func')()
hello
>>>

CHAPTER 2 ■ MANAGING DEVICES USING THE SOAP API

68

This method is often used to implement dispatcher functionality, which we use in our code as well,
instead of explicitly testing for the state parameter, as shown here:

if state == 'enable':
 req = self.module.enableservice()
 req._name = service
 res = self.soap.enableservice(req)._return
elif state == 'disable':
 req = self.module.disableservice()
 req._name = service
 res = self.soap.disableservice(req)._return

At this point we construct the name of our function and call it automatically:

 req = getattr(self.module, '%sservice' % state)()
 req._name = service
 res = getattr(self.soap, '%sservice' % state)(req)._return

This is a very powerful technique that makes your code much more readable and easier to
maintain. In the previous example we reduced the number of lines from eight to only three. There are
some caveats to watch for; the biggest problem is that we might reference a property that does not exist.
In our example we must make sure that state is set to either 'enable' or 'disable'; otherwise,
getattr will return None as a result.

A Word About Logging and Error Handling
Although they do not affect the functionality of our tools or API access library, it is very important to
implement basic logging, error reporting, and error handling. At every stage of writing code we need
to anticipate all possible outcomes, especially if we are using external libraries and/or external
services, such as the SOAP API.

Using the Python logging Module
Regardless of the size of our project, it is a good practice to report as many details as possible of what is
happening in the code. Python comes with a built-in logging module, which is very flexible and
configurable yet is easy and simple to use.

Logging Levels and Scope
The Python logging module provides five levels of detail. Table 2-3 provides details on when to use
each level.

CHAPTER 2 ■ MANAGING DEVICES USING THE SOAP API

69

Table 2-3. Logging Levels and When You Should Use Each

Level When to Use

DEBUG As the name suggests, this logging level is for debugging purpose. Use DEBUG to log as
much information as possible; messages at this level should contain enough detail for
you to identify possible problems with the code.

INFO This is a less detailed level, and it’s usually used to log key events in the system’s life
cycle, such as contacting an external service or calling a rather complicated
subsystem.

WARNING Report all unexpected events with this logging level. Everything that is not harmful but
is out of the ordinary should be reported here. For example, if a configuration file is
not found, but we have default settings, we should raise a warning.

ERROR Use this level to log any event that prevents us from completing a given task, but still
allows us to proceed with the remaining tasks. For example, if we need to check the
status of five virtual servers, but one of them cannot be found, report this as an error,
and proceed with checking other servers.

CRITICAL If you cannot proceed any further, log the error with this logging level and exit. There
is no need to provide detailed information at this point; when it comes to
troubleshooting, you will switch to lower level, such as DEBUG.

It is very important to think about the scope and purpose of your logging. You must differentiate

between regular output from the tool and logging. Regular output and reporting are the primary
functions of the tool and thus must not mix with the logging message from the application. You might
choose to use the logging module to write application output messages as well, but they need to go to a
different stream. Application logging is purely for reporting the status of the application.

For example, if we are not able to connect to the load balancer, we must log that as a critical event
and quit. In other words, something happened to our tool that prevented it from finishing its operation.
However, if we get the temperature reading and decided that it is too far from normal, we must not log
this as critical in our log stream, because high system temperature has nothing to do with our
application. Regardless of the load balancer health, our tool behaves and functions correctly.
Continuing with this example, we might decide either to simply print the warning message or to log it
in some other stream, possibly called loadbalancers_health.log.

CHAPTER 2 ■ MANAGING DEVICES USING THE SOAP API

70

Configuring and Using the Logger
Depending on what you want to achieve, the logger configuration can be very simple or very complex.
I tend not to overcomplicate it and keep it as simple as possible. At the end of the day, there are only a
handful of things you need in your logger configuration:

• The logging level. How much output do I want my logger to produce? If the tool is mature,
well tested and stable, realistically I would set the log level to ERROR, but if I’m
developing, I’d probably stick to DEBUG.

• The log destination. Do I want log messages on screen or in the file? It is best to write it to
a file, especially if you are using multiple loggers, one for application status messages
and another for systems that you are managing or monitoring.

• The logging message format. The default logger message format is not very informative,
so you might want to add additional fields to it, which is very simple to achieve.

Fortunately, the logging module provides a basicConfig method, which allows you to set all of

these with one function call:

import logging
logging.basicConfig(level=logging.DEBUG, filename='NSLib.log',
format="%(asctime)s [%(levelname)s] (%(funcName)s() (%(filename)s:%(lineno)d))
%(message)s")

As you might have already guessed, setting the logging level is trivial; you just need to use one of

the defined internal variables, whose names match the log level names we used previously: DEBUG,
INFO, WARNING, ERROR or CRITICAL. The log output destination is just a filename. If you do not specify
any filename, the logging module will use standard output (stdout) to write all messages.

The logging format is a bit more complicated. The format must be defined following Python string
formatting rules, assuming that right argument is a dictionary. The standard convention of formatting
a string in Python with parameters in a hash array is as follows:

>>> string = "%(var1)s %(var2)d %(var3)s" % {'var1': 'I bought', 'var2': 3, 'var3':
 'sausages'}
>>> print string
I bought 3 sausages
>>>

Just as in our example, the logging module expects a formatted string on the left of the % operator

and provides a standard prepopulated dictionary as the right argument. Table 2-4 lists the most useful
parameters that you might want to use in the logging format string.

CHAPTER 2 ■ MANAGING DEVICES USING THE SOAP API

71

Table 2-4. Predefined Dictionary Fields That Can Be Used in a logging Format String

Level Description

%(asctime)s The time when the log message was presented, in human-readable form, such as
2009-07-07 14:04:39,462. The number after the comma is the time portion in
milliseconds.

%(levelname)s A string representing the log level. Possible default values: DEBUG, INFO, WARNING,
ERROR or CRITICAL.

%(funcName)s The name of the function where the logging message was generated.

%(filename)s The name of the file where the logging call was made. This does not contain the full
path to the file, just the filename portion.

%(module)s The name of the module that generated the logging call. This is same as the filename
with extension stripped out.

%(lineno)d The line number in the file that issued the logging call. Not always available.

%(message)s The actual logging message processed as msg % args in the following format:
logging.debug(msg, args)

Once you have configured the logging module, using it is extremely simple—all you have to do is

initialize a new instance of the logger and call its methods to write appropriate log messages:

Listing 2-27. Initialising a new logger instance

logging.basicConfig(level=logging.DEBUG, filename='NSLib.log',
format="%(asctime)s [%(levelname)s] (%(funcName)s() (%(filename)s:%(lineno)d))
%(message)s")

logger = logging.getLogger()

logger.critical('Simple message...')
logger.error('Message with one argument: %s', str1)
logger.warning('Message with two arguments. String %s and digit: %d', (msg, val))
try:
 not_possible = 1 / 0
except:
 logger.critical('An exception has occurred! Stack trace below:', exc_info=True)

As you can see, the logging module is very flexible, yet easy to configure. Use it as much as

possible and try to avoid old-style logging using print statements.

CHAPTER 2 ■ MANAGING DEVICES USING THE SOAP API

72

Handling Exceptions
Exceptions are errors that prevent your code (or the code of modules that your code is calling) from
executing properly and cause execution to terminate. In our previous example in the Listing 2-27, the
code fails because we included a statement that instructs Python to execute division by zero, which is
not possible. This raised a ZeroDivisionError exception and execution of the code is terminated
there. Unless we used the try: ... except: ... statement, our program would terminate at this
point. Python allows us to act on the exceptions, so we can decide how]to handle them appropriately.
For example, if we try to establish communication with a remote web service, but the service is not
responding, we will get a “connection timed out” exception. If we have more than one service to query,
we might just report this as an error and proceed with other services.

Catching exceptions is easy:

try:
 call_to_some_function()
except:
 do_something_about_it()

As you saw in the previous section, you can log a full exception stack trace just by indicating that

you want to log exception details to the logger function call. In my code example I use the following
construction to detect an exception, log it and pass it on. If you are writing a module, and you cannot
really decide what to do with exceptions that occur, this is one of the ways to deal with them:

try:
 module.function()
except:
 logger.error('An exception has occurred while executing module.function()',
 exc_info=True)
 raise

It is also possible to catch specific exceptions and perform different actions for each:

try:
 result = divide_two_numbers(arg1, arg2)
except ZeroDivisionError:
 # if this happens, we will return 0
 logger.error('We attempted to divide by zero, setting result to 0')
 result = 0
except:
 # something else has happened, so we reraise it
 logger.critical('An exception has occurred while executing module.function()',
 exc_info=True)
 raise

If you’re writing your own module, you might decide to introduce exceptions specific to this

module, so they can be caught and dealt with accordingly. I use this technique in the NSLib.py module.
Custom exceptions must be derived from the generic Exception class. If you do not require any specific
functionality, you could define new exception as the following class:

CHAPTER 2 ■ MANAGING DEVICES USING THE SOAP API

73

class NSLibError(Exception):
 def __init__(self, error_message):
 self.error_message = error_message

 def __str__(self):
 return repr(self.error_message)

Once the exception class is defined, you would raise it by calling the raise operator and passing

an object instance of this exception class:

class NSSoapApi(object):
 def __init__(self, module=None, hostname=None, username=None, password=None):
 [...]
 if not (hostname and username and password):
 self.logger.critical('One or more from the following: hostname, username
and password, are undefined')
 raise NSLibError('hostname, username and password must be defined')

Although it is not required, it is a good practice to follow the exception class convention, which

states that all exception class names should end with Error. Unless the module is huge and implements
distinctively different functionality, you might just define one exception per module or group of
omodules.

Summary
In this chapter you have learned how to use Python for accessing the SOAP API to monitor and manage
Citrix Netscaler load balancers. You also learned how to organize your own project, how to structure
your code, and how to handle errors and report the functional status of your module.

• The SOAP API is a method to call procedures on a remote server, also called a web service.

• The SOAP protocol defines a message structure for information exchange between
service provider and consumer.

• SOAP messages use the XML language to structure data.

• The underlying or carrier protocol is HTTP.

• WSDL is used to describe all services available on a web service and the data structures
used in call/response messages.

• The WSDL definition can be converted to Python helper modules with the wsdl2py tool.

• It is important to define requirements before you start coding.

• Handle errors and exceptions appropriately.

• Use the logging module to log messages and group them by severity.

C H A P T E R 3

■ ■ ■

75

Creating a Web Application

for IP Address Accountancy

In this chapter, we are going to build a simple application that will keep track of all IP addresses
allocated on the internal network. The chapter covers all phases of developing this application—
starting with gathering and setting the requirements to design the application and going through the
implementation phase.

Designing the Application
Ideally, application design should not be based on the technology that is going to be used to implement
it. Having said that, this kind of independence is rarely achievable and in most cases is not practical,
as each technology implies its own implementation patterns and best practices.

In this chapter, we will define requirements and application design before explaining what
technology is going to be used. This way it will be easier for you to understand how to reuse the design
phase even if in your own work you will be using different technologies.

Setting Out the Requirements
The most important thing in developing any application is to understand exactly what we want from it.
Step away from the images of user interfaces you have seen somewhere else, or the functionality of
some other (possible similar) application that you may have used in the past. Take a piece of paper and
write down in short sentences what you want your application to do.

Our imaginary organization is a rather large enterprise with reasonably complicated network
infrastructure, so it is very important to assign and use IP address space effectively. In the past.
addresses were recorded in a simple spreadsheet and different teams used different structures to
represent the same information. There is no authority that would be assigning IP address ranges, and
so effective and clear communication between teams is important. New systems are being introduced
as well as old ones being decommissioned. Group policy prevents servers from using dynamic IP
allocation; only user machines can obtain address information from DHCP.

Based on that brief description, let’s write down the following list of requirements:

• This system must be centralized, but accessible by many different users.

• The application must be able to store IP ranges as well as individual IP addresses.

• The application must provide a means to create a hierarchical organization of ranges and
individual IP addresses.

CHAPTER 3 ■ CREATING A WEB APPLICATION FOR IP ADDRESS ACCOUNTANCY

76

• Users must be able to add, remove, and modify entries.

• Users must be able to search for information.

• The system must be able to check whether the machines that use IP addresses are
responsive.

• For all IP addresses, the system should attempt to obtain name records.

• Users must be required to enter a description for any IP reservation they make.

• It should be easy to extend the system to use DHCP.

Now that we have defined all our requirements, we can go back to them at any time during the

development phase and verify that our application does exactly what it is expected to do. We will not be
implementing unnecessary functionality; and by comparing the actual implementation against the set
of requirements, we will always know how much progress we have made and how much work is still
left to do. Going forward, we can even delegate individual tasks to other people if there is a need to do
so. If at some point we discover that we have left out some important functionality, we can always go
back to our list and modify it accordingly, but that will always be a conscious decision and will prevent
us from implementing new functionality “as we go along” with our development.

Making Design Decisions
Once we have the requirements written down we can proceed to make some design decisions about
how to implement them. Each design decision must attempt to solve some problem stated in the
requirements list.

Because this is not a massive project, there is no need to create a formal design document; the
same informal list of statements should suffice here.

So based on the requirements we can make the following decisions about the application
development and structure:

• The application is going to be web based.

• It will run on a dedicated web server and will be accessible by anyone in the organization
from their web browser.

• The application will be written in Python and will use the Django framework.

• Implementation is split into two phases: basic IP allocation and reservation functionality,
and integration with DHCP. We’ll tackle the first phase in this chapter and move on to DHCP
integration in Chapter 4.

This is it; even as short as this list is, it ensures that we’re not going to deviate from the decisions

we made initially, and if we really need to make some variation, that will be recorded. The list here
mainly represents the nonfunctional aspects of design; we’ll get to more specific details in the
following sections. Formally this should constitute a detailed design document, but I am only going to
describe two things: what data our application is going to operate on, and what the application will do
with that data.

CHAPTER 3 ■ CREATING A WEB APPLICATION FOR IP ADDRESS ACCOUNTANCY

77

Defining the Database Schema
From the requirements just stated, we know that we need to record the following data:

• The IP range and/or individual IP addresses

• The parent range that the current range belongs to

• For each record, whether it is allowed to be empty

HOW IP ADDRESSES WORK

Before proceeding, I need to explain how IP addressing works, so you will better understand some specific
database layout and structure decisions we’re going to make. The description provided here is somewhat
simplified; if you want to learn more about IP networks and specifically IP addressing, I recommend the
Wikipedia entry on CIDR:: http://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing.

Briefly, each IP address has two parts: the network address part, which identifies the network this
particular address belongs to, and the host address within that network. A full IP address in IPV4 is always
32 bits long. Before CIDR was introduced, there were only three available network blocks or classes: class
A (8 bits to define the network address, allowing over 16 million unique host addresses), class B (16 bits
for the network address, and over 65,000 unique host addresses) and class C (24 bits for the network
address with 256 unique host addresses). This was very inefficient as it did not allow for fine-grained
address and range allocation, so CIDR or Classless Inter-Domain Routing scheme was introduced, which
allows us to use a network address of any length. In CIDR notation, each IP address is followed by the
number that defines how many bits the network part comprises. So the address 192.168.1.1/24 tells us
that this is an IP from a class C network whose first 24 first bits are a network address.

This image illustrates various configurations of an IP address, which I’ll explain following it. The example
uses a network address range that is much smaller than a default class C, so you can see how that works.

http://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing

CHAPTER 3 ■ CREATING A WEB APPLICATION FOR IP ADDRESS ACCOUNTANCY

78

• A shows an IP number 192.168.1.52 and how it is split into two parts—network
and host addresses.

• In B the host address is set to 0, thus effectively defining a network. So if you want
to refer to a network range that 192.168.1.52 address belongs to, you would write
it as 192.168.1.32/27.

• If we set the host address to all 1s, we will get the last possible IP address in that
range, which is also called the broadcast IP. In the example in C it is the address
192.168.1.63.

• Finally, in D you can see how 192.168.1.93/27 falls out of the range and thus is on
a different IP network range than 192.168.1.52/27; its network part is different. In
fact, it is in an adjacent network range, 192.168.1.64/27

This should have shed some light on the IP numbering scheme, and you can see how understanding this
helps us to define our database schema more efficiently.

When you look at how IP addresses are constructed, you might notice that larger network ranges
encompass smaller ones, so a 24 bit network may contain two 25 bit networks, or four 26 bit networks
and so on; this purely depends on the network infrastructure. This structure lets us easily check
parent-child relationships between them.

Now we need to decide how we are going to store this information. Storing it as four separate
decimal numbers (four octets) and a number of bits is an obvious choice, but as you might have guessed,
that not going to help any database system. Searches such as “give me all IPs that fall into this range”
would be very computation-heavy on the client side. Therefore we will convert all IP numbers to 32-
bit integers and store them as such. We will also separately store the network size in bits, so
calculating first and last addresses in the range will be very simple.

Let me explain this by example. If we take the previously used IP address 192.168.1.52/27 and
express it in bitwise notation, we will get the following binary number:
11000000101010000000000100110100. This number can be represented as a 32-bit integer (in
decimal notation): 3232235828. Now we can find its network address. We know that the network range
is defined by the first 27 bits, so all we need to do is apply a binary AND operation to this number and a
number that consists of 27 1s and five 0s (11111111111111111111111111100000B = 4294967264D):

3232235828D AND 4294967264D = 3232235808D

Or in binary representation:

11000000101010000000000100100000B

Compare this result with the example in the “How IP Addresses Work” sidebar and you’ll see that
the results match.

Finding the upper boundary is equally easy; we need to add the maximum number of available
addresses to the result from our previous calculation. Because 27-bit network space leaves 5 bits to
define the host address, the largest (or broadcast) address is 2^5=32.

Therefore the network for our given address is represented as 3232235808D and the last address
in it is 3232235808D + 32D = 3232235840D. From here we can easily find all addresses that are in the
same network range.

CHAPTER 3 ■ CREATING A WEB APPLICATION FOR IP ADDRESS ACCOUNTANCY

79

Based on that information above we are ready to define our database schema, which is very
simple and consists of only one table. Table 3-1 describes each column in the schema.

Table 3-1. Fields in the Network’s Definition Schema

Column Datatype Comments

Record ID Integer The primary key, it is unique and automatically increments with each new
record.

Address Integer A key, it must be defined and is an integer that represents a 32-bit
network address.

Network size Integer A key, it must be defined and determines the number of bits in the
network part of the address.

Description Text Must be defined, a description of what this IP is for.

Creating the Application Workflow
Because of the relative simplicity of this application, we don’t need to use formal specification
languages, such as UML (Unified Modeling Language) to define application behavior and workflow.
The main goal at this stage is to write down the ideas and lay out the structure, so we can always refer
to the document while implementing and confirm that the implementation is not different from what
was initially designed. I find it useful to write only few statements that describe briefly what is going
to happen and how information will be presented to the end user for every functional requirement in
our list of requirements. Functional requirements are those functions our application is expected to
perform. Do not confuse them with nonfunctional requirements, such as for performance or
availability, which do not influence application workflow.

The Search and Display Functions
One of the common functions that we need is search functionality. Even if we do not intend to search
and merely want to see all addresses and network ranges listed, this is a broad search request that
asks the system to display all available information.

Since we have already decided to create a hierarchical structure for the information, the search
function is going to look for either IP addresses or substrings in the description and return a list of
matching entries.

The display function will display information about the current selected address (the address,
number of network bits, and beginning and end addresses of the range) and also list all child entries,
that is, all addresses or networks that are part of the selected entry. Clicking any of them would result
in a search and display call, which would go down the tree. The display function should also provide a
link to the parent entry, so users can move in both directions. If the search query is empty or matches
the topmost node in the tree, there should be no option to move one level up. The topmost node in the
network tree (or super network) is always 0.0.0.0/0. For every child entry, the view function should call
a health check function to see if the address is responding. Also, a name-resolution procedure is called
to obtain a DNS name. This information should be displayed accordingly.

CHAPTER 3 ■ CREATING A WEB APPLICATION FOR IP ADDRESS ACCOUNTANCY

80

If the currently selected tree node is a network address, users should be presented with a link to
an Add New Entry form.

The Add Function
The Add function allows users to add new child entries. The form asks for details for the new entry,
such as IP address and description, and creates a corresponding database entry. If completed
successfully it should return to the previous view.

When adding a new entry, this function must confirm that the entry is valid and the provided IP
address exists. We also need to check whether the address is a subset of any current parent network.

The Delete Function
The Delete option should be presented in the address list next to each entry. Clicking on it should yield
a simple JavaScript confirm dialog, and if deletion is confirmed, the corresponding entry must be
removed from the database.

If the entry is a network address, all child entries should be removed recursively. For example, if I
have a Network A that contains Network B, which in turn contains Address C, when I delete Network A,
the Network B and Address C entries should also be removed.

The Modify Function
A Modify option should be available for all entries in the current address listing. Clicking Modify
should display a form similar to adding a new entry, with all fields populated with the current
information.

If the entry is a network address, only the description should be changeable. If the entry is a host IP
address, sanity checks (such as whether the address is not duplicated or is within the valid network
range) should be performed before the database row is updated with the new settings.

The System Health Check Function
When listing all child entries, the view function should call a system health check for every address
that is not a network address. The health check function performs a simple ICMP check (ping) and
returns True if it has received the response or False if not.

The Name Resolution Function
As we did with the health check function, we will create another procedure, which will call name
resolution for all addresses outside the network. Name resolution will perform a reverse DNS lookup
and return the DNS name if available. If no DNS records are present, an empty string will be returned.

The Basic Concepts of the Django Framework
As I mentioned earlier, we are going to use the Django web framework to develop the application. I
chose Django because it is a very versatile tool that greatly simplifies web application development.

CHAPTER 3 ■ CREATING A WEB APPLICATION FOR IP ADDRESS ACCOUNTANCY

81

What Is Django?
Briefly, Django is a high-level web development framework. Django provides tools for rapid web
application development. It is designed in a way that encourages developers to write cleaner and
more consistent code; at the same time it also allows them to write less code. Developers are provided
with a wide variety of high-level functions that are commonly used in web development, so they do not
need to rewrite something that has been already developed by someone else. Django also enforces
modularity, enabling us to write a module that can be used in many different projects without or with
little change.

Following are some highlights of the Django framework.

The Object-to-Relation Database Mapper
You use Python classes to define your data models, and Django automatically converts them to
database tables and relations. In addition to that, Django provides a database access API directly from
Python, so you rarely will need to write any SQL code yourself. Furthermore, you can switch between
various database systems (MySQL, SQLite, and others) without any changes to your code.

The Administration Interface
When you define your data scheme, Django not only automatically creates the database and all
required tables, it, also generates a fully functional administration interface to manage your data.

A Flexible Template System
All displayable components or views are separated into templates, so you will never find yourself
generating HTML code in your program. Instead, the code and HTML design are separated. The
template language is very simple to learn yet flexible and designer-friendly, so you can offload the
design work to someone else.

Open Source Community Support
Last but not least on my list is the fact that Django is open source and receives support from a very
active community of developers. Django is evolving quite rapidly, with several major upgrades a year,
and has been on the scene for quite some time now to prove itself as mature and reliable product.

The Model/View/Controller Pattern
Before diving into its implementation details, I need to explain the most important design pattern that
Django is based on: MVC or Model-View-Controller. Any web application that follows this pattern is
divided into three distinctive parts: the data model, the view, and the controller.

CHAPTER 3 ■ CREATING A WEB APPLICATION FOR IP ADDRESS ACCOUNTANCY

82

The Data Model Component
The data model (or just model) part defines the data that the application is using or operating on. This
is usually a database data structure, but it also can be data access methods and functions. In Django all
data structures are defined as Python classes, and the framework automatically creates a
corresponding data schema on the database.

The View Component
The view component in most web frameworks is responsible for displaying the data to the end user. It
is a set of functions that generate HTML code, which is sent back to the web browser. Django goes a
step further and separates what conventionally is called the view component into two distinct entities:
view and template. The view in Django terms is the code that decides which data is going to be
displayed, and the template is the component that defines how data is displayed.

The Controller Component
Conventionally, the controller component is responsible for retrieving data from the database (or
accessing the model), operating on the data, and passing it to the view component. In Django the
controller component is not so obvious or separated from the other components—the whole
framework acts as a controller component. Because in Django the data model is defined as a set of
Python classes, it is more intelligent and knows how to perform basic operation on the data. Views (but
not templates!) also incorporate some application logic, and all that is controlled by the framework.

Installing the Django Framework
I recommend that you download and use the latest Django code release from www.djangoproject.com.
As of this writing, the latest version is 1.2, and all examples and code you’ll find here are based upon this
version of Django. The framework already went through a major upgrade from version 0.9x to 1.x, and I
do not expect too many further changes, but if you are going to use a version other than 1.2, please read
the release notes for any changes that might affect the functionality. Usually there are clear instructions
provided on how to adapt your code to the newer version of Django. From my experience this task is
usually pretty straightforward and does not require major work from the developer.

I am going to assume that you already have Python 2.5+ installed on your system. The database
engine this chapter’s example will use is SQLite, so the corresponding packages and Python bindings
must be installed as well. In most modern Linux distributions this comes as standard set and most
likely will be present on your system. If in doubt, you can check it with the following commands:

$ python
Python 2.6 (r26:66714, Jun 8 2009, 16:07:26)
[GCC 4.4.0 20090506 (Red Hat 4.4.0-4)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import sqlite3
>>> sqlite3.version
'2.4.1'
>>>

http://www.djangoproject.com

CHAPTER 3 ■ CREATING A WEB APPLICATION FOR IP ADDRESS ACCOUNTANCY

83

If you are using one of the non-mainstream Linux distributions, or if the packages are not

installed during the initial installation, please refer to the documentation of your Linux distribution
for information on installing the latest Python 2.6.x release and SQLite packages.

■Note As of this writing, Django 1.2 does not support the latest Python 3 version. So you will have to use either
Python 2.5 or 2.6.

If your packages are already installed, download the latest Django SVN trunk to the location of
your choice. We’ll use /opt/local/ in this example:

svn co http://code.djangoproject.com/svn/django/trunk/ /opt/local/django-trunk

Then you need to add this location to the site-packages directory, where Python stores all its

libraries, typically found at /usr/lib/python2.x/site-packages/:

SITE_PKG_DIR=`python -c "from distutils.sysconfig import get_python_lib; \
 print get_python_lib()"`
ln –s /opt/local/django-trunk/django ${SITE_PKG_DIR}/django

Test the Django installation by importing its module from the Python command-line interface:

$ python
Python 2.5.1 (r251:54863, Jul 31 2008, 23:17:43)
[GCC 4.1.3 20070929 (prerelease) (Ubuntu 4.1.2-16ubuntu2)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import django
>>> django.get_version()
u'1.2 pre-alpha SVN-11468'
>>>

It is also useful to add the Django administration tool to your system path, so you will not need to

use absolute paths every time you use this application:

ln -s /opt/local/django-trunk/django/bin/django-admin.py /usr/local/bin

The Structure of a Django Application
Django treats any web site as a project. In Django terms a project is a set of web applications and
project- (or site-) specific configuration. You can reuse the same applications in different sites just by
deploying them in new projects, and they will automatically use new settings, such as database
credentials. A project may contain any number of applications. The term project may sound a bit
confusing; I find site or web site more appropriate.

Creating a new project is simple. Assuming you have installed Django correctly, you just need to
run the command django-admin.py in the directory where you want the new project directory to be

http://code.djangoproject.com/svn/django/trunk

CHAPTER 3 ■ CREATING A WEB APPLICATION FOR IP ADDRESS ACCOUNTANCY

84

created. Django’s administration tool will create a simple project skeleton with basic configuration
files. We will use /var/app/vhosts/www_example_com/ as the base directory for the project that will
hold all Django applications:

$ mkdir -p /var/app/virtual/
$ cd /var/app/virtual
$ django-admin.py startproject www_example_com
$ ls –l www_example_com
total 12
-rw-r--r-- 1 root root 0 2009-08-24 14:36 __init__.py
-rwxr-xr-x 1 root root 546 2009-08-24 14:36 manage.py
-rw-r--r-- 1 root root 2809 2009-08-24 14:36 settings.py
-rw-r--r-- 1 root root 578 2009-08-24 14:36 urls.py

In the project directory you’ll find the following files:

manage.py: An automatically generated script that you will use to manage you project.
Creating new database tables, validating modes or dumping SQL script all is done using
this tool. This tool also allows you to invoke a command prompt interface for accessing
data models.

settings.py: A configuration file that holds database information as well as
application-specific settings.

urls.py: A configuration file that acts as a URL dispatcher. Here you define which views
should respond to which URLs.

■Note The configuration file location is specific to your project. In this chapter our project is created in
/var/app/virtual/www_example_com/, so assume this location when you see references to the
manage.py, settings.py and urls.py files.

Once you have created a new project, you need to specify the database engine that Django should
use. As mentioned earlier, we are going to use SQLite. To enable this, we need to make two changes in
the settings.py configuration file (referenced as the settings file later in the chapter): specify the
database engine and the absolute filename for the database file:

DATABASE_ENGINE = 'sqlite3'
DATABASE_NAME = '/var/app/virtual/www_example_com/database.db'

When project and database configuration are finished, you can create your application by issuing

the following command in your project directory:

$ python manage.py startapp ip_addresses
$ ls –l ip_addresses/
total 12
-rw-r--r-- 1 root root 0 2009-08-24 14:55 __init__.py
-rw-r--r-- 1 root root 57 2009-08-24 14:55 models.py

CHAPTER 3 ■ CREATING A WEB APPLICATION FOR IP ADDRESS ACCOUNTANCY

85

-rw-r--r-- 1 root root 514 2009-08-24 14:55 tests.py
-rw-r--r-- 1 root root 26 2009-08-24 14:55 views.py

Just like the Django administration tool, the project management script creates a skeleton for

your new application. Now that you have your project (or web site) set up and one application
configured, what you need to do is define the data model, write view methods, create the URL structure,
and finally design the templates. All that I will describe in more detail in the following sections, but
first I still need to show you how to make your new site available for others to see.

The application will not be available for immediate use; you need to provision it in the settings
file by appending it to the INSTALLED_APPS list:

INSTALLED_APPS = (
 'django.contrib.auth',
 'django.contrib.contenttypes',
 'django.contrib.sessions',
 'django.contrib.sites',
 'www_example_com.ip_addresses',
)

Using Django with Apache Web Server
Django comes with its own lightweight web server, which is written in Python. This is a great tool for
quick testing or during development, but I would strongly advise against using it in a production
environment. I have never encountered any problems while using it, but as the developers behind
Django say, they are in the web frameworks business and are not here to develop robust web servers.

One of the most obvious choices for a web server is the Apache web service. It is widespread and
used on the vast majority of web sites on the Internet. Apache installation packages are included by
default on many Linux distributions. It is easy to set up Apache in such a way that it serves both static
CSS stylesheets and images and dynamically generated pages (as in a Django application).

Our example will assume the following information:

• Name of the web site: www.example.com

• IP address of the server: 192.168.0.1

• Directory where Django code is stored: /var/app/vhosts/www.example.com/

• Directory where static contents are stored: /var/www/vhosts/www_example_com/

■Note You may wonder why the code and contents directories are separate. The reason for separation is that it’s
an additional security measure. As you will see later in the chapter, we will instruct the web server to call the
mod_python module for all requests made to the virtual server. The exception will be all URIs starting with
/static/, which will be our static content. Now, if for some reason we make a mistake in the configuration file
so that mod_python is not called and the code directory is part of the DocumentRoot directive, all our Python files
will become downloadable. So, always keep your code files separate and outside DocumentRoot!

http://www.example.com
http://www.example.com

CHAPTER 3 ■ CREATING A WEB APPLICATION FOR IP ADDRESS ACCOUNTANCY

86

Listing 3-1 shows the VirtualServer definition in the Apache web server configuration file.
Depending on your Linux distribution, this section may be included directly in httpd.conf or as a
separate configuration file alongside other VirtualServer definitions.

Listing 3-1. The VirtualServer definition for the Django web application

<VirtualHost 192.168.0.1:80>
 ServerName www.example.com
 DocumentRoot /var/www/virtual/www.example.com
 ErrorLog /var/log/apache2/www.example.com-error.log
 CustomLog /var/log/apache2/www.example.com-access.log combined
 SetHandler mod_python
 PythonHandler django.core.handlers.modpython
 PythonPath sys.path+['/var/app/virtual/']
 SetEnv DJANGO_SETTINGS_MODULE www_example_com.settings
 SetEnv PYTHON_EGG_CACHE /tmp
 <Location "/static/">
 SetHandler None
 </Location>
</VirtualHost>

The first section of the configuration deals with basic configuration, such as setting server name,

base directory for all static contents and log file locations.
This is followed by mod_python configuration, where the first line tells Apache to pass execution of

each web server phase to the mod_python module:

 SetHandler mod_python

This directive is followed by the module configuration settings.

WHAT ARE APACHE HANDLERS?

Every request that is received by an Apache web server is processed in phases. For example, a request to
a simple index.html file may involve three phases: translate the URI to the absolute location of the file;
read the file and send it in an HTTP response; and finally log the event. The phases involved in each
request depend on the server configuration. Each phase is processed by a handler. Apache server has only
basic handlers; more complicated functions are implemented by handlers that are part of loadable
modules, one of them being mod_python. The Python module has handlers for all possible Apache
phases, but by default no handlers are called. Each phase needs to be associated specifically with the
appropriate handler in the configuration file.

Django requires only one handler, the generic PythonHandler, which is invoked during the phase

when actual content is provided and served to the requestor. The Django framework comes with its
own handler and does not require the default mod_python.publisher handler. The following
statement tells Apache to call Django’s handler:

http://www.example.com
http://www.example.com
http://www.example.com-error.log
http://www.example.com-access.log

CHAPTER 3 ■ CREATING A WEB APPLICATION FOR IP ADDRESS ACCOUNTANCY

87

 PythonHandler django.core.handlers.modpython

As you already know, every web site in Django is actually a Python module, with its configuration

file. The Django handler requires that information so it can load the configuration and find
appropriate functions. This information is provided in the next two lines. The first directive adds our
base directory to the default Python path, and the second sets an environment variable identifying
which framework will be used to get name of the module for loading.

 PythonPath sys.path+['/var/app/virtual/']
 SetEnv DJANGO_SETTINGS_MODULE ip_accounting.settings

You also need to identify where the temporary Python files will be stored. Make sure this directory

is writable by the user, which you use to run Apache web server:

 SetEnv PYTHON_EGG_CACHE /tmp

And finally let’s define the exception, so that the static contents (everything that starts with

/static/) will not be handed to mod_python for processing. Instead the default Apache handler will be
called; it will simply serve any requested file:

 <Location "/static/">
 SetHandler None
 </Location>

If you were following these instructions to configure Django and have created your first

application and instructed Apache to serve it accordingly, you now should be able to fire up your web
browser and navigate to the Django web application. At this moment the data models are not created,
and even the URL dispatcher is not configured, so Django will only serve the generic “It worked!”
page, shown in Figure 3-1.

Figure 3-1. The Standard Django application greeting page

CHAPTER 3 ■ CREATING A WEB APPLICATION FOR IP ADDRESS ACCOUNTANCY

88

■Tip If you are seeing a “Server Error” message instead of the standard page, please check the Apache error log
file that contains Python exceptions or Apache error messages, which can help you identify the cause of the error.

Implementing Basic Functionality
Once the preparation work that included Django installation and setting up the Apache web server is
finished, we can proceed with the development of the web application. This process can be split into
the following parts:

• Create models

• Define the URL schema

• Create views

In my experience this process is very iterative—I continue modifying my models, adding new
URLs, and creating new views as I go along with the development. This approach allows us to get
something working very quickly and test some functionality even if the whole application is not
finished yet. Do not assume that this approach is chaotic. Quite the contrary; you only work on the
elements that you identified and wrote down in the design phase. Thus, this process merely breaks
down a huge piece of work into smaller and more manageable chunks that can be developed and
tested separately and in stages.

Defining the Database Model
Before proceeding, please look back at Table 3-1 to review the fields we are going to use in the data
model. Because Django maps objects to a relational database and does so automatically, we need to
create a class definition for every concept that we are using in the application, which will be mapped to
the tables in the database.

We only have one table, so let’s define the class for it as shown in Listing 3-2. Add this code to your
models.py file just below the default contents.

Listing 3-2. The data class defining the application’s network address model

class NetworkAddress(models.Model):
 address = models.IPAddressField()
 network_size = models.PositiveIntegerField()
 description = models.CharField(max_length=400)
 parent = models.ForeignKey('self')

The code is really self-explanatory and straightforward. We start by defining a new class
NetworkAddress, which inherits from Django’s model.Model class, defined in the django.db module.
So the class becomes a custom model, which Django will use to create database tables. This model class
will also be used to create the database API dynamically. I will show later how this API can be used.

Within the class we define three fields by initiating class variables with appropriate objects from
the models class. Django provides many different types of fields, and Table 3-2 lists the most-used
types.

CHAPTER 3 ■ CREATING A WEB APPLICATION FOR IP ADDRESS ACCOUNTANCY

89

Table 3-2. Commonly Used Django Field Types

Field Class Name Description

BooleanField This field accepts only True or False values, except when it’s used with a
MySQL database, in which case the field stores values 1 or 0 accordingly.
Keep that in mind when testing for the field value.

CharField Use this field to store strings. It requires a max_length argument to set
the maximum length of the string it can store. Do not use this field to store
large amounts of text; use TextField instead.

DateField Stores the date as an instance of the Python datetime.date class. This
field class accepts two optional parameters: auto_now, which if set to True
sets the field value to the current date every time the object is saved; and
auto_now_add, which if set to True sets the field value to the current date
only when created for the first time. Both parameters forces Django to
use the current date, and this cannot be overridden.

DateTimeField Stores the date and time as a Python datetime.datetime instance. Uses
same optional parameters as DateField.

DecimalField Used to store fixed-precision decimal numbers. Requires two arguments:
max_digits, which sets the maximum number of digits in the number,
and decimal_places, which sets the number of decimal places.

EmailField Similar to CharField but also performs a check for a valid email address.

FileField Used to store uploaded files. Note that files are stored not in the database
but locally on a file system. This field requires an argument path_to,
which points to a relative to MEDIA_ROOT directory. You can use strftime
variables to construct pathnames and filenames depending on the
current date and time. MEDIA_ROOT must be set in the settings file for the
current project.

FloatField Stores floating-point numbers.

ImageField Very similar to FileField, but additionally performs a check that the file
is a valid image. Also has two optional arguments: height_field and
width_field, which store names of model class variables and will be
automatically populated depending on the uploaded image dimensions.
Using this field type requires the Python Imaging Library (PIL).

IntegerField Stores integer values.

PositiveIntegerField Stores integer values but allows only positive integers.

NullBooleanField Stores True and False just like BooleanField, but also accepts None.
Useful where a combination of Yes/No/Undefined choices is required.

CHAPTER 3 ■ CREATING A WEB APPLICATION FOR IP ADDRESS ACCOUNTANCY

90

Field Class Name Description

SlugField Stores text like CharField, but allows only alphanumeric characters,
underscores, and hyphens. Useful for storing URLs (without the domain
part!). The max_length argument defaults to 50 but can be overridden.

TextField Used to store large blocks of text.

TimeField Stores the time as a Python datetime.time instance. Accepts the same
optional arguments as DateField.

URLField Used to store URLs including the domain name. Has an optional
parameter verify_exists, which checks that the URL is valid, actually
loads, and does not return 404 or any other error.

XMLField A TextField, which additionally checks whether the text is valid XML and
corresponds to the XML schema as defined by RELAX NG
(www.relaxng.org). Requires the argument schema_path, which must
point to a valid schema definition file.

To create a database table you simply use the manage.py utility with the option syncdb. When you

run it for the first time, it will also create tables for other applications listed in the settings file
(authentication, Django content type, and session and site management). The built-in authentication
application requires an administrator account, so it will ask you few more questions:

$ python manage.py syncdb
Creating table auth_permission
Creating table auth_group
Creating table auth_user
Creating table auth_message
Creating table django_content_type
Creating table django_session
Creating table django_site
Creating table ip_addresses_networkaddress

You just installed Django's auth system, which means you don't have any superusers
defined.
Would you like to create one now? (yes/no): yes
Username (Leave blank to use 'rytis'):
E-mail address: rytis@example.com
Password:
Password (again):
Superuser created successfully.
Installing index for auth.Permission model
Installing index for auth.Message model
$

http://www.relaxng.org
mailto:rytis@example.com

CHAPTER 3 ■ CREATING A WEB APPLICATION FOR IP ADDRESS ACCOUNTANCY

91

This command-line dialog has successfully created all necessary tables in the database. To see
exactly how your table has been structured in the database, use the following command:

$ python manage.py sql ip_addresses
BEGIN;
CREATE TABLE "ip_addresses_networkaddress" (
 "id" integer NOT NULL PRIMARY KEY,
 "address" char(15) NOT NULL,
 "network_size" integer unsigned NOT NULL,
 "description" varchar(400) NOT NULL
)
;
COMMIT;
$

As you can see, Django uses variable names as the names for the fields in the table, and the table

name is constructed from application and model class names. This is handy, because it does provide
some degree of namespacing, so you don’t need to worry that your class name clashes with a class
name of another application.

URL Configuration
You will find yourself changing URL configuration quite often in the Django development [AU:
OK?]process, as you will be adding new views and functions. In order not to leave the process
uncontrolled, you need to set out some basic rules for how you will define new URLs. Although Django
gives you full control over the process, be nice to others and especially to yourself by choosing a
sensible URL structure and naming convention.

There are no defined rules or guidelines for how to create URLs. And as a system administrator
you will probably not be developing web systems available to large audiences, so you can be more
relaxed in the way you organize them. However, I would suggest some guidelines that I find quite
useful to follow:

• Always start with the name of the application. In the IP address example, all URLs
(including the domain name) will be http://www.example.com/ip_address/[...]. If
we ever want to use another application in our web site, we will not have to worry about
the URL names overlapping. For example, a view function is quite common. If we had not
put the application name in front, and we had two applications A and B, we would have an
issue if they both wanted to use the URL /view/.

• Put the model name after the application name. If you need a more specific subset of
objects of the same type, add the selection criteria after the model name. When possible,
avoid using object IDs! So continuing with the example, we would have ip_addresses/
networkaddress/, which lists all top-level networks. If we navigated to
/ip_addresses/networkaddress/109.168.0.0/, it would return us either a list of
addresses in that particular network, or the details of a specific IP address if that was a
host address.

• If you need to operate on any of the objects, add the operation verb after the specific
object name. So if we wanted to have a link to the delete function for a network address,
we would use /ip_addresses/networkaddress/192.168.0.1/delete.

http://www.example.com/ip_address

CHAPTER 3 ■ CREATING A WEB APPLICATION FOR IP ADDRESS ACCOUNTANCY

92

These guidelines can be summarized by the following example URL:

http://www.example.com/<application>/<model>/<object>/<action>/

The URL mapping is defined in the urls.py module, which has default settings as shown in

Listing 3-3.

Listing 3-3. Default contents of the site-wide urls.py file

from django.conf.urls.defaults import *

Uncomment the next two lines to enable the admin:
from django.contrib import admin
admin.autodiscover()

urlpatterns = patterns('',
 # Example:
 # (r'^www_example_com/', include('www_example_com.foo.urls')),

 # Uncomment the admin/doc line below and add 'django.contrib.admindocs'
 # to INSTALLED_APPS to enable admin documentation:
 # (r'^admin/doc/', include('django.contrib.admindocs.urls')),

 # Uncomment the next line to enable the admin:
 # (r'^admin/', include(admin.site.urls)),
)

The structure of this file is very simple and straightforward. The most important part is the

urlpatterns variable, which is a list of URL tuples. Each entry (tuple) has three parts:

(<regular expression>, <callback function>, <dictionary (optional)>)

Here’s what happens when the user requests a page from a Django web application: the request is

sent to an Apache web server, which in turn will invoke its Django handler. The Django framework
will go through all entries in the urlpatterns and attempt to match each regular expression against
the URL that has been requested. When the match is found, Django will then call a callback function
that is coupled with the regular expression. It will pass an HttpRequest object (I will discuss this in the
views section) and optionally a list of captured parameters from the URL.

I strongly recommend that you do not define any application-specific URL rules in the main
urls.py file; use configuration local to the application you are developing. This way you decouple
application URLs from the web site, which allows you to reuse the same application in different
projects. Let me explain how this works. Decoupling is fairly simple; all you need to do is define your
application-specific URLs in the application module and reference this file in all requests that start
with the name of your application.

So in our example, we would have the following entries in the main project urls.py:

http://www.example.com

CHAPTER 3 ■ CREATING A WEB APPLICATION FOR IP ADDRESS ACCOUNTANCY

93

urlpatterns = ('',
 [...]
 (r'^ip_addresses/', include('www_example_com.ip_addresses.urls')),
 [...]
)

whereas application specific configuration file, ip_addresses/urls.py, contains:

urlpatterns = patterns('',
 [...]
)

As you can see, the main urls.py will capture all URLs that begin with ip_addresses/, and the

remainder of the URL is sent to ip_addresses/urls.py for further processing.

Using the Management Interface
We could now go ahead and create some views and forms to display the records, add and remove them,
but before we do that, I’d like to show you how to enable the Django administration interface. This is a
really handy tool that provides immediate access to your data, with full and rich functionality that
allows you to add, remove, modify, search, and filter records stored in the database.

It is also very useful during the development phase, letting you add new records and create
display views before you create forms to add new records.

Enabling the Management Interface
There is very little you need to do to enable the administration interface: add it to the applications list
in the site configuration, enable URL rules, and finally configure Apache to serve static content for the
interface (mostly CSS and JS scripts).

Modify the INSTALLED_APPS list in the settings.py module so that it contains the administration
package:

INSTALLED_APPS = (
 'django.contrib.auth',
 'django.contrib.contenttypes',
 'django.contrib.sessions',
 'django.contrib.sites',
 'django.contrib.admin',
 'www_example_com.ip_addresses',
)

Once you’ve done that, you need to rerun the syncdb command so that new tables for the

administration application are created in the database:

$ python manage.py syncdb
Creating table django_admin_log
Installing index for admin.LogEntry model
$

CHAPTER 3 ■ CREATING A WEB APPLICATION FOR IP ADDRESS ACCOUNTANCY

94

Uncomment all lines in the urls.py module that are related to the administration plug-in. Make

sure your urls.py looks like Listing 3-4.

Listing 3-4. Enabling the administration interface in the urls.py module

from django.conf.urls.defaults import *

Uncomment the next two lines to enable the admin:
from django.contrib import admin
admin.autodiscover()

urlpatterns = patterns('',
 # Uncomment the next line to enable the admin:
 (r'^admin/', include(admin.site.urls)),
 # ip_addresses application
 (r'^ip_addresses/', include('www_example_com.ip_addresses.urls')),
)

Create a link in the DocumentRoot directory, so that the contents of /opt/local/django-

trunk/django/contrib/admin/media are served by Apache from the URL
www.example.com/static/admin:

$ ln –s /usr/share/django/django/contrib/admin/media \
/var/www/virtual/www.example.com/static/admin

Once you have done all this preparation work, you should be able to navigate to

www.example.com/admin and see the administration interface login page, shown in Figure 3-2.

Figure 3-2. Django administration login page

http://www.example.com/static/admin:
http://www.example.com/static/admin
http://www.example.com/admin

CHAPTER 3 ■ CREATING A WEB APPLICATION FOR IP ADDRESS ACCOUNTANCY

95

You can log in with the administrator’s account you created earlier, when you first ran syncdb.
Once you are logged on, you will be presented with the basic user and site management options shown
in Figure 3-3.

Figure 3-3. The default view of the Django administration interface

Allowing the Administration Plug-in to Manage New Models
As you may have noticed, the Django administration interface does not present any options to
manage the NetworkAddress model yet. This is because it has not found any instructions to do so.
Adding any data model class to the administration interface is very easy; all you need to do is create a
new Python module in your application directory, admin.py, containing the code shown in Listing 3-5.

Listing 3-5. Adding NetworkAddress class to the administration interface

from www_example_com.ip_addresses.models import NetworkAddress
from django.contrib import admin

class NetworkAddressAdmin(admin.ModelAdmin):
 pass

admin.site.register(NetworkAddress, NetworkAddressAdmin)

In this example, we first import the NetworkAddress class and the admin module from the standard

Django package. Then we define an administration class for every model that we want to put under
administration module control. The naming convention for the administration classes is <Model
class name>Admin. This class must inherit from the admin.ModelAdmin class, which defines default
behavior for the model management interface.

For our simple model there is no need to tweak the default behavior. It does allow for basic
functionality such as view/add/delete/modify, and because we are going to create our own interface

CHAPTER 3 ■ CREATING A WEB APPLICATION FOR IP ADDRESS ACCOUNTANCY

96

with additional functionality (such as displaying information in hierarchical order), we do not require
anything extra from the Django admin module.

Play around a bit with the automatically generated interface; try adding new entries and
modifying existing ones. Also try entering invalid information, such as a malformed IP address, and
check how the Django admin interface reacts to the error. You will notice that invalid IP addresses are
not accepted; however, there is no logic that would check whether the network size is within the
applicable range: 1 – 32. As of this writing, only some of the basic field types have an option to define
validation rules. With the 1.2 release of Django, it is expected that validation will be implemented at
the model level. So far we will have to use validation at the Form level, which I will describe later.

Viewing Records
Let’s start with the simplest view, whose purpose is to represent information about all networks that
are defined in the database. For now you will have to use the administration interface, which you
created earlier, to add new networks and define relations.

First of all we need to define the URL mapping rules, so the requests are redirected to the
appropriate view function:

urlpatterns = patterns('www_example_com.ip_addresses.views',
 (r'^networkaddress/$', 'display'),
 (r'^networkaddress/(?P<address>\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}\/\d{1,2})/$',
 'display'),
)

The first rule matches the URL /ip_address/networkaddress/ and calls the display function

from the views module. The second rule searches for URLs that look like
/ip_address/networkaddress/a.b.c.d/x/. It also calls the display function, but this time it passes
the keyword argument address, which is initialized with the string a.b.c.d/x.

Let’s quickly test whether this works by defining a simplified version of the view. All we want to
know at this stage is whether our two rules work as expected. Listing 3-6 is an example of a simple
views.py file that will test our URLs.

Listing 3-6. A simple view to test the URL dispatcher rules

from www_example_com.ip_addresses.models import *
from django.http import HttpResponse

def display(request, address=None):
 if not address:
 msg = "Top of the address tree"
 else:
 msg = "Top level address: %s" % address
 return HttpResponse(msg)

What happens here is pretty straightforward. We import the model class and also the

HttpResponse class. The Django framework expects either an instance of HttpResponse or an
exception raised as a result from any view function that it calls. Obviously, the view function doesn’t
do much at this point; it will only display the IP address from the URL or tell you that it’s at the top of the
address tree if no IP is found in the URL. This is a good technique to sort out your URL mapping regular

CHAPTER 3 ■ CREATING A WEB APPLICATION FOR IP ADDRESS ACCOUNTANCY

97

expressions before you start creating more complex views. When debugging the view functionality,
you need to know that your mappings are functioning as expected.

■Note The reason for including both the IP address and the network size is that only the pair creates a unique
object. If we used only the IP address, in most cases it might be ambiguous. For example, 192.168.0.0 (/24) and
192.168.0.0 (/25) are not the same network, although their IP addresses are the same.

Now, before proceeding let’s create some entries in the database. You will have to use the Django
administration interface as there are no custom forms for entering the data. Table 3-3 contains
sample data you can use to create similar entries and compare the results in this book with what you
get as you go along with the implementation.

Table 3-3. A Sample IP Network and Address Dataset

Address Network size Parent (network) Description

192.168.0.0 24 none First top-level network

192.168.1.0 24 none Second top-level network

192.168.0.0 25 192.168.0.0/25 Subnet 1-1

192.168.0.128 25 192.168.0.0/25 Subnet 1-2

192.168.1.0 26 192.168.1.0/26 Subnet 2-1

192.168.1.64 26 192.168.1.0/26 Subnet 2-2

192.168.1.128 26 192.168.1.0/26 Subnet 2-3

192.168.1.192 26 192.168.1.0/26 Subnet 2-4

192.168.0.1 32 192.168.0.0/25 IP 1 in Subnet 1-1

192.168.0.2 32 192.168.0.0/25 IP 2 in Subnet 1-1

192.168.0.129 32 192.168.0.128/25 IP 1 in Subnet 1-2

192.168.0.130 32 192.168.0.128/25 IP 2 in Subnet 1-2

192.168.1.1 32 192.168.1.0/26 IP 1 in Subnet 2-1

192.168.1.2 32 192.168.1.0/26 IP 2 in Subnet 2-1

192.168.1.65 32 192.168.1.64/26 IP 1 in Subnet 2-2

192.168.1.66 32 192.168.1.64/26 IP 2 in Subnet 2-2

CHAPTER 3 ■ CREATING A WEB APPLICATION FOR IP ADDRESS ACCOUNTANCY

98

Address Network size Parent (network) Description

192.168.1.129 32 192.168.1.128/26 IP 1 in Subnet 2-3

192.168.1.130 32 192.168.1.128/26 IP 2 in Subnet 2-3

192.168.1.193 32 192.168.1.192/26 IP 1 in Subnet 2-4

192.168.1.194 32 192.168.1.192/26 IP 2 in Subnet 2-4

This might seem to be a lot to add manually. If you feel like creating all records manually, that’s fine,
but Django has another feature: you can provide initial data as a fixture file. Version 1.1 of Django
understands three formats: XML, YAML, and JSON. This is very useful during the development and test
phases; you create initial data once, and then re-create your database whenever you need to with the
exact set of data. Listing 3-7 shows part of the sample fixtures file we will use to initialize the database.
I’ve chosen to use JSON here, mostly because of its simplicity, readability, and supportability.

Listing 3-7. An excerpt from the sample_data.json file used to load initial data

[
...
 {
 "model": "ip_addresses.networkaddress",
 "pk": 1,
 "fields": {
 "address": "192.168.0.0",
 "network_size": 24,
 "description": "First top level network"
 }
 },
...
 {
 "model": "ip_addresses.networkaddress",
 "pk": 3,
 "fields": {
 "address": "192.168.0.0",
 "network_size": 25,
 "description": "Subnet 1-1",
 "parent": 1

 },
...
]

The structure of the file is pretty self-explanatory. Each record starts by defining the model class and
is followed by the primary key, which is an integer unless you have explicitly redefined it. Finally, all class
fields are listed in "key":"value" pairs in the “fields” section. If there are any relationships between
records, they are defined by using primary key values, just as in this example, Subnet 1-1 has a parent

CHAPTER 3 ■ CREATING A WEB APPLICATION FOR IP ADDRESS ACCOUNTANCY

99

a parent and references it by setting “parent” to value of 1 (the primary key of the parent record). If
the field is optional, you can just skip it. Once you have created the file, load the data with the following
command:

$ python manage.py loaddata sample_data.json
Installing json fixture 'sample_data' from absolute path.
Installed 20 object(s) from 1 fixture(s)
$

Using Templates
Templates play a very important role in the Django framework model. It is the templates that allow
developers to separate application logic from presentation. Again, models define data structures, view
functions are responsible for data queries and filtering, and finally templates define how data is
represented to the end user.

Django comes with a very flexible and sophisticated template language. Let’s look at how to use
templates with the data obtained by the view functions. First we need to define a view that will query
the database and get the information we will then present to the users. Listing 3-8 shows the new
display function.

Listing 3-8. A view function that uses a template to present data

def display(request, address=None):
 if not address:
 parent = None
 else:
 ip, net_size = address.split('/')
 parent = NetworkAddress.objects.get(address=ip, network_size=int(net_size))
 addr_list = NetworkAddress.objects.filter(parent=parent)
 return render_to_response('display.html',
 {'parent': parent, 'addresses_list': addr_list})

As you already know, Django’s URL dispatcher calls the display function with either no initial IP

address (when users request top-of-the-tree listing) or the initial IP address (a request to display the
contents of a subnet). If the address field is empty we will display all tree nodes that have no parents. If
the address field is not empty, we need to get the list of tree nodes that have a parent set to the given
address. The results are stored in addr_list and are passed to the template.

There are two entities that need to be displayed: information about the current tree node and a
list of its children. So we have to pass both as variables to the template rendering procedure. In the
example we use a shortcut function called render_to_response, which accepts two parameters: the
name of the template file and a dictionary of variables the template will use to render HTML output.

You can import the render_to_response shortcut with the following import statement:

from django.shortcuts import render_to_response

As you can see, we specify the template name without any preceding directory paths, so how does

Django know where to look for the template? By default the following template loaders are enabled in
the settings.py configuration file:

CHAPTER 3 ■ CREATING A WEB APPLICATION FOR IP ADDRESS ACCOUNTANCY

100

TEMPLATE_LOADERS = (
 'django.template.loaders.filesystem.load_template_source',
 'django.template.loaders.app_directories.load_template_source',
)

We are using the functionality provided by the app_directories loader. This loader looks for

templates stored in the application directory under templates/ subdirectory. Storing templates with
the application is extremely useful, because this allows developers to distribute a set of default
templates with each application. So going back to our example, we need to create a subdirectory called
templates in the application directory ip_addresses. We then create the template shown in Listing 3-
9, which takes care of displaying information passed to it by the display view function.

Listing 3-9. A template for the display view

{% if parent %}
<h1>Current address: {{ parent.address }}/{{ parent.network_size }}</h1>
<h2><a href="../../{% if parent.parent %}{{ parent.parent.address }}/{{
 parent.parent.network_size }}/{% endif %}">Go back</h2>
{% else %}
<h1>At the top of the networks tree</h1>
{% endif %}

{% if addresses_list %}

 {% for address in addresses_list %}
 <a href="{% if parent %}../../{% endif %}{{ address.address }}/{{
 address.network_size }}{% ifequal address.network_size 32 %}/modify/{% endifequal
%}">{{
 address.address }}/{{ address.network_size }}

 {% ifequal address.network_size 32 %}(host){% else %}(network){%
endifequal %}
 {{ address.description }}
 (<a href="{% if parent %}../../{% endif %}
 {{ address.address }}/{{ address.network_size
}}/delete/">delete |
 <a href="{% if parent %}../../{% endif %}
 {{ address.address }}/{{ address.network_size
}}/modify/">modify)

 {% endfor %}

{% else %}
{% ifequal parent.network_size 32 %}
This is a node IP

CHAPTER 3 ■ CREATING A WEB APPLICATION FOR IP ADDRESS ACCOUNTANCY

101

{% else %}
No addresses or subnets in this range
{% endifequal %}
{% endif %}
<h2>Add new subnet or node IP</h2>

You might have already guessed that template language tokens are surrounded by {% ... %} or

{{ ... }}. The difference between these two is that the former is used to surround command and
process control statements, such as comparison and validation operators, while the latter is used to
indicate that the contents of a variable need to be displayed at the specified location. All variables
follow the same Python convention when referencing object properties. For example, in the template
parent is an instance of the NetworkAddress model class, and as such parent has the property
address. To display that variable in the template, we need to reference it as parent.address.

Table 3-4 lists the basic command structures that you are going to find yourself using quite often.

Table 3-4. The Most Common Elements of the Django Templating Language

Structure Description

{% if <variable> %}

{% else %}

{% endif %}

Most commonly used to test whether the variable is
defined and the contents are not empty. Depending
on the result, you can either display the value of the
variable or provide an informational message
advising that the value is not found.

{% for <variable> in <list> %}

{% endfor %}

Loops through all items in <list> and assigns
individual list items to <variable>, which you can use
in a for construct.

{% ifequal <variable1> <variable2> %}

{% else %}

{% endifequal %}

Compares two variables <variable1> and
<variable2> and processes one of the two template
blocks depending on the result.

{% comment %}

{% endcomment %}

Everything between these two operators is ignored.

As you can see from the template, I’ve already added URL links to delete, modify and add records.

All that is possible even at this stage, simply because we initially set the requirements and at any stage
of the development process we precisely know what needs to be done. In this instance, the application
is not ready yet to perform these actions, but we need to do the layout design and implement that
within the template. This is especially useful if you need to hand over the template to somebody else,
as they wouldn’t have to guess what actions and what links you might require and create them even if
the functionality has yet to be implemented.

Figure 3-4 shows how the application web page looks when you have navigated to one of the
precreated network addresses.

CHAPTER 3 ■ CREATING A WEB APPLICATION FOR IP ADDRESS ACCOUNTANCY

102

Figure 3-4. A listing of the network addresses

Deleting Records
We already have a link to the delete function listed with every IP address, and as you know its base
URL is the same as for the listing function, but it also has /delete/ appended to it. So for example here
is the delete URL for 192.168.0.0/25 network:

http://www.example.com/ip_addresses/networkaddress/192.168.0.0/25/delete/

First we need to “teach” Django so it recognizes this URL and call the delete function (or view).

Let’s do this by adding the following URL rule to the urls.py file:

(r'^networkaddress/(?P<address>\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}\/\d{1,2})/

delete/$',

'delete'),

Listing 3-10 shows the delete function the Django framework will call whenever it encounters a

URL that matches this rule.

Listing 3-10. The Delete view

def delete(request, address=None):
 ip, net_size = address.split('/')
 parent = NetworkAddress.objects.get(address=ip,
 network_size=int(net_size)).parent
 NetworkAddress.objects.get(address=ip, network_size=int(net_size)).delete()
 redirect_to = '../../../'
 if parent:
 redirect_to += '%s/%s/' % (parent.address, int(parent.network_size))
 return HttpResponseRedirect(redirect_to)

http://www.example.com/ip_addresses/networkaddress/192.168.0.0/25/delete

CHAPTER 3 ■ CREATING A WEB APPLICATION FOR IP ADDRESS ACCOUNTANCY

103

In this example the address variable is always going to contain an IP address in the format
x.x.x.x/y, where x.x.x.x is the IP address and y is the number of network bits. We don’t store
address information in this format, so we have to split it into two parts before we can use it to find the
required record.

Before we delete the object, let’s figure out its parent object by running the following object get
method:

parent = NetworkAddress.objects.get(address=ip, network_size=int(net_size)).parent

Once we have the object[Au: OK? CE], let’s simply call the delete() method, which is available for

any Django model object. You may wonder what happens to objects that are children of the tree node
that we just deleted. The Django framework is intelligent enough to run a recursive SQL query that
will follow the foreign keys and delete all relevant objects down the tree.

After object deletion is finished, we redirect to the current view by returning the
HttpResponseRedirect object with the path as its initialization parameter.

■Tip Notice how we use relative paths in the redirect URL? We do this because we don’t know what the project
or even the application is going to be called if someone reuses the code. What we do know is the URL structure,
and so we can work out where we need to redirect and use relative paths. Try to avoid using absolute paths and
embedding application names in the generated URLs.

Adding New Records
This is the functionality that requires user input. Since our model is fairly simple, there are only a few
fields to fill in, specifically the IP address, network size, and description. A parent tree node will be
automatically assigned depending on where the user is when clicking the Add link. For example, if the
user navigates to http://www.example.com/ip_addresses/networkaddress/192.168.1.0/24/ and
clicks an Add New IP link, the new record will automatically get 192.168.0.1/24 as a parent.

There are two ways of handling data input in Django: the hard way and the Django way. If we
were to choose the hard way, we would need to define the form in the template, process request HTTP
POST variables manually, perform validation and do data type conversion. Or we can choose to use
Django form objects and widgets, which will do all that for us automatically.

So, first we need to define a form model class that will be used to generate HTML form widget. We
do this by defining in models.py the class shown in Listing 3-11.

Listing 3-11. The address add form class

from django.forms import ModelForm

[...]

class NetworkAddressAddForm(ModelForm):
 class Meta:
 model = NetworkAddress
 exclude = ('parent',)

http://www.example.com/ip_addresses/networkaddress/192.168.1.0/24

CHAPTER 3 ■ CREATING A WEB APPLICATION FOR IP ADDRESS ACCOUNTANCY

104

What happens here is that we define a form class which uses a data model class as a prototype. In
other words, this tells Django to generate a form to accept data that is defined in the data model. We do
have a choice of defining any arbitrary form class, with any set of fields, but in this example all we
need is the three fields from our data model. Hold on, we have four fields: one is the parent object. But
we don’t want users to be able to choose the parent object, simply because it’s already known at the
time of creation. Another reason is that with large databases, the parent list might become too large to
handle. Therefore we have to use the exclude list that indicates what fields do not need to show up in
the form.

The second step is to define the form handling the view. This view is slightly different from the
normal view function that simply displays data, because it can be called in two different ways: as an
HTTP GET, which means the user just navigated to the form page, or as an HTTP POST, which means the
user submitted form data.

In the case of HTTP GET, we simply display the empty form. If we receive an HTTP POST, we will
have to check whether the form is valid. If the form data is valid, we have to call the form’s save()
function, which will create a new object in the database. If the form is not valid, it will be displayed
again, with the field entries from the request already filled in and the error message explaining what
was wrong. How do we validate the form? Very simply—by calling another form method: is_valid(),
shown in Listing 3-12. And we don’t even need to think about the error messages; these are also
automatically created depending on the data type of the model.

Listing 3-12. The view method for the add function

def add(request, address=None):
 if request.method == 'POST':
 parent = None
 if address:
 ip, net_size = address.split('/')
 parent = NetworkAddress.objects.get(address=ip,
 network_size=int(net_size))
 new_address = NetworkAddress(parent=parent)
 form = NetworkAddressAddForm(request.POST, instance=new_address)
 if form.is_valid():
 form.save()
 return HttpResponseRedirect("..")
 else:
 form = NetworkAddressAddForm()
 return render_to_response('add.html', {'form': form,})

In this view we also perform the additional step of creating a new object. Usually creating a new

form from POST data looks like this:

form = NetworkAddressAddForm(request.POST)

But remember, in our form there is no parent field, and we need to derive it from the address part

in the URL. So we need to find the parent object myself and assign it to the new object:

new_address = NetworkAddress(parent=parent)
form = NetworkAddressAddForm(request.POST, instance=new_address)

CHAPTER 3 ■ CREATING A WEB APPLICATION FOR IP ADDRESS ACCOUNTANCY

105

Calling the form initialization function with an instance argument forces Django to use the object
assigned to it instead of creating a new one.

You can see that we use template add.html and pass the form object to it. Listing 3-13 shows what
the template looks like.

Listing 3-13. The add form template

<form action="." method="POST">
{{ form.as_p }}
<input type="submit" value="Add" />
</form>

Yes, it is that short, but it does a lot. First, it will render an HTML form, with appropriate fields and

a submit button. If submitted form data was not valid, it will also display error messages. The
presentation (shown in Figure 3-5) is fully customizable, but for the sake of simplicity we just use
.as_p tag, so the fields will be displayed within <p> tags for better alignment.

Figure 3-5. Form widget on HTML page

Modifying Existing Records
The form and view for object modification are very similar to the add form and view. The only
difference is that there will be even fewer fields that users are allowed to edit. Realistically, if the user
decides to change an IP, he or she needs to delete the record and recreate it within another network. So
we will only allow users to change the description of a record.

Therefore the only field in our form object is the description, as shown in Listing 3-14.

Listing 3-14. The Modify form class

class NetworkAddressModifyForm(ModelForm):
 class Meta:
 model = NetworkAddress
 fields = ('description',)

CHAPTER 3 ■ CREATING A WEB APPLICATION FOR IP ADDRESS ACCOUNTANCY

106

As you can see, instead of excluding fields we use the fields list, which tells Django which fields to
include; all other fields are ignored.

The view method is very similar to the one that is used to add new records. In fact everything is the
same, with one exception: upon first view the form is prepopulated with the data from the database,
because users are changing the existing data instead of creating new records. Saving changes is the
same, because Django works out that the record is already present and updates it, instead of adding a
new one. As you can see from Listing 3-15, even the template is reused without any changes.

Listing 3-15. The Modify view method

def modify(request, address=None):
 if request.method == 'POST':
 # submitting changes
 ip, net_size = address.split('/')
 address_obj = NetworkAddress.objects.get(address=ip,
 network_size=int(net_size))
 form = NetworkAddressModifyForm(request.POST, instance=address_obj)
 if form.is_valid():
 form.save()
 return HttpResponseRedirect("..")
 else:
 # first time display
 ip, net_size = address.split('/')
 address_obj = NetworkAddress.objects.get(address=ip,
 network_size=int(net_size))
 form = NetworkAddressModifyForm(initial={ 'description':
 address_obj.description, })
 return render_to_response('add.html', {'form': form,})

Summary
In this chapter, you have learned how to design your application and go from the requirement
gathering and specification through design to the actual implementation. You learned how to use the
Django framework for rapid web application development.

• Always start with the requirements specification. This will act as a reference point and
simplify testing. It also helps managing user expectations.

• Design the data model first and make sure the design is in line with requirements.

• Decouple the application from the project (or web site), so it can be reused multiple times.

C H A P T E R 4

■ ■ ■

107

Integrating the IP Address

Application with DHCP

In the previous chapter, we implemented a simple IP accounting application that allows users to keep
track of their IP address estate. I described the full lifecycle of the application, from requirements
gathering through the design phase and finally the implementation. The emphasis was on the
importance of the requirements and design phases as these allow you as a developer to validate your
implementation.

You may have noticed that, although we implemented most of the initial requirements, we did not
get all of them! I deliberately left out a few, such as the search function, DNS resolution, and active
check. I did that primarily to demonstrate how easy is to validate your implementation and show
what’s missing in it, but also simply to keep the chapter to a manageable size and not to overwhelm
you with information.

So, in this chapter we are going to implement the missing components and extend the original
design with new functionality by adding support for DHCP service.

Extending the Design and Requirements
I mentioned “support for DHCP” as a requirement in the previous chapter, but what do we really want
from it? Let’s take a look at how DHCP is used in a typical organization. I will assume the ISC DHCP
service, which is widely available with most Linux distributions.

When assigning addresses on a subnet, we have the following options:

• Assign the IP addresses statically, in which case we configure each device with its own IP
address.

• Assign the IP addresses dynamically, depending on a set of rules using the DHCP service.

■Tip Before proceeding with this chapter, you may want to install the ISC DHCP server package. You can do that
by using the package manager available with your Linux distribution (on Red Hat Linux it can be done with the
command yum install dhcp). Alternatively, you can download it from the official ISC DHCP website at
http://www.isc.org/software/dhcp.

Let’s quickly recap what the DHCP can do and how it is configured. The ISC DHCP allows us to
define very complicated sets of rules. The simplest set would contain no rule at all, in which case any

http://www.isc.org/software/dhcp

CHAPTER 4 ■ INTEGRATING THE IP ADDRESS APPLICATION WITH DHCP

108

request for an IP would be granted and a unique address from available pool would be assigned,
assuming there are free IPs available in the address pool.

One rule commonly used is to assign IP addresses depending on a hardware MAC address. This
method allows you to assign the same IP address always to the same machine, but does not require it to
be configured locally on the server. We can use the DHCP group directive to configure such a host:

group {
 ...
 host host001 {
 hardware ethernet 00:11:22:33:44:55;
 fixed-address 192.168.0.1;
 }
 ...
}

A more advanced use of client grouping is DHCP client class separation, where clients are
grouped into classes that satisfy some criteria. The ISC DHCP server provides many options for such
separation. For example, you can use various DHCP request fields (or even parts of them) to group the
nodes—such as using part of the DHCP hostname to identify what is sending the request. You can see
what DHCP options are available by reading the UNIX manual page for dhcp-options. The following
example uses the DHCP option vendor-class-identifier to group all Sun Ultra 5 machines into one
class:

class "sun-ultra-5" {
 match if option vendor-class-identifier "SUNW.Ultra-5_10";
}

For a second example, this code matches the beginning of a DHCP hostname and puts into a
separate class if it starts with "server":

class "server" {
 match if substring (option hostname, 0, 6) = "server";
}

For the sake of simplicity, let’s assume that all subnets are on the same physical network on the
DHCP server, which means we will be using the shared-network directive when defining new
subnets.

As you can see, the simple process of investigation is gradually evolving into making certain
design decisions. This blurring of tasks should be avoided whenever possible, and I’ve demonstrated it
here just to show how easy is to get carried away and amend your design to accommodate limitations
(or features) of any particular product.

So first of all, let‘s ignore everything we know about the particular DHCP server product and list
all the things we want it to do. Our imaginary organization has multiple networks that are subdivided
into smaller subnets, which in turn can contain even smaller subnets. Usually, if a subnet is
subdivided into smaller networks, it rarely contains IP addresses for physical (or virtual) hosts. The
only IPs that will be present in such a network are IP addresses of the networking devices, such as
routers, switches, and load balancers—none of which get their IPs from DHCP. Therefore, we will only
create DHCP-managed subnets that are right at the bottom of the subnet tree and are not subdivided
into smaller networks.

Within the DHCP-managed network, we want to have the following:

CHAPTER 4 ■ INTEGRATING THE IP ADDRESS APPLICATION WITH DHCP

109

• Statically assigned addresses that are completely out of DHCP server control. In other
words, the DHCP server should have no knowledge about that range and should not be
configured to offer any address from that range. Each IP address is configured manually
on the device that uses it.

• Static addresses assigned by the DHCP server. For example, we want IP addresses to be
offered depending on the requestor’s MAC address.

• IP addresses assigned depending on properties of the client, such as hardware vendor,
DHCP parameter values, and so on. Since we do know how many of these IPs we will need,
we have to be able to assign a predefined range of addresses. We also don’t want to be
limited to just a set of DHCP options; we should have full control over all available options.

• IP addresses assigned to all other clients. As in the previous requirement, we need to be
able to specify a range of IPs to use here.

As you can see, the listed requirements are very similar to the ones set out earlier, but they do not

contain any references to any particular implementation. This approach has two major advantages:
you are free to choose any product you think is the best fit for the purpose, and you can outsource
implementation to other teams. As long as the result satisfies the requirements, we don’t really care
about technical implementation details. Also, having this list in hand helps you quickly identify and
select the appropriate product.

In addition to the network management and IP allocation requirements, we have some
operational ones:

• We need the configuration to be generated, but not immediately applied, so it can be
reviewed and changes applied manually.

• We do not require manual changes made to the configuration file to be propagated back
to the application database. For example, if we manually add a few hosts into the DHCP
configuration, we do not need the application to update the database entries accordingly.

• At this stage we do not want the application to control the DHCP service; this will be done
manually using standard OS commands.

Now that we have identified what is required, we can start making basic design decisions:

• We will use ISC DHCP, because it allows us to implement all listed requirements.

• We will use the same web application framework and language, because this project is an
extension of another project.

• The configuration file will be generated by the same web application (that is, there are no
external tools that read from the database and generate a configuration file).

Just as in the previous example, we now need to do two things: define the extended data model and

create an application workflow.

Extending the Database Schema
This time the data model is a lot more complicated than it was when we just had to collect
information about the networks and IP addresses. Now we need to store the DHCP server’s view of
the network topology, consisting of all classification rules and address ranges within each DHCP
subnet. Therefore, we are going to break this down into several iterations of defining the DB model

CHAPTER 4 ■ INTEGRATING THE IP ADDRESS APPLICATION WITH DHCP

110

class, writing the view functions, and testing. This gradual approach is easier to tackle and we can
catch errors more easily.

At this time we have only identified that we are going to have the following data model classes:

• The DHCP Network, which points to its “sponsor” network class. This can only be created
for a network that does not have any subnetworks.

• The Address pool model, which defines address ranges within a DHCP network and must
have an associated rule.

• The Rules model, which defines rules for classifying DHCP requests. Each rule can be
assigned to one or more Address pools.

• The “Static” DHCP address rule model, which allows assigning IPs depending on the
requestor’s hardware MAC address.

Additions to the Workflow
There are some additions to the workflow as well. First, we need to add a link to create (or delete) a
DHCP network for every network that has no subnets. We also need to allow users to add and delete
information about the DHCP network pools, rules, and static IP addresses. Each of these options will be
available within DHCP network listing.

Adding DHCP Network Data
In the first iteration we are going to add support for the DHCP network definitions. We will use an
approach similar to what would do with a larger project: define the data models, define the workflows,
and go to the implementation phase.

Defining Data Models
Let’s start by adding a new data class that is going to store information about the DHCP network. This
class is going to point to its “sponsor” physical network class and contains several DHCP options that
are required by the clients, such as router address, DNS server, and domain name. Listing 4-1 shows
what we’re going to add to the models.py file.

Listing 4-1. The data model class for the DHCP subnet

class DHCPNetwork(models.Model):
 physical_net = models.OneToOneField(NetworkAddress)
 router = models.IPAddressField()
 dns_server = models.ForeignKey(DNSServer)
 domain_name = models.ForeignKey(DomainName)

 def __unicode__(self):
 return "DHCP subnet for %s" % physical_net

In this example we also refer to two new entities: DNSServer and DomainName. Classes for them

are also defined in models.py and they only contain information about the IP of the DNS server(s) and
domain names with brief comments. The reason for separating them from the DHCPNetwork class is

CHAPTER 4 ■ INTEGRATING THE IP ADDRESS APPLICATION WITH DHCP

111

that if we ever want to change the IP address of our DNS server, we won’t need to go through each
DHCP network entry and change it.

Additional Workflows
What extra workflows does generic DHCP network support require? Obviously we want to add or
remove a DHCP network to or from a subnet, assuming the subnet can have a corresponding DHCP
network. When a DHCP network is defined, we also want to modify its settings. As in the previous
chapter, each workflow action is going to have its own view function, and Add and Modify will have
their own data entry forms. As you already know, views don’t work unless they are defined in a URL
configuration file, so that the Django framework knows what view function to call when it receives a
request from a user.

The Add Function
First of all, we need to know if we can provide “Add DHCP network” functionality for a subnet. The
easiest and most logical way to do this is to check in the network display view whether there are any
address entries that do not have the subnet size set to 32 bits. If so, then this subnet cannot have DHCP
enabled; otherwise, provide a link to the DHCP add function. So the network view is going to perform
the check and pass a Boolean variable that we will query in the template and will either display a
message or provide a link. Here’s the quick check in the view code:

 for address in addr_list:
 if address.network_size != 32:
 has_subnets = True

And the additions to the template:

<h3>Add new subnet or node IP</h3>
<h3>{% if has_subnets %}
DHCP support cannot be enabled for networks with subnets
{% else %}
Enable DHCP support
{% endif %}
</h3>

Can you see what the resulting URL is going to be yet? The structure is following the same

convention for the URL that we defined earlier:

http://www.example.com/<application>/<model>/<object>/<action>/

So far the objects have been a pair of IP address and their network sizes, which uniquely identified

each object in the database. The object now is a DHCP network within a physical network. The DHCP
network as such has nothing that uniquely identifies it. So let’s add /dhcp/ to the IP/network size pair,
which tells us that this is a DHCP object for this particular network. Assuming the new view for adding
DHCP network is called add_dhcp, this is what needs to be added to the URL mapping file:

(r'^networkaddress/(?P<address>\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}\/\d{1,2})/

dhcp/add/$', 'add_dhcp'),

http://www.example.com

CHAPTER 4 ■ INTEGRATING THE IP ADDRESS APPLICATION WITH DHCP

112

This view will follow the same form processing pattern, and it looks very similar to the one we used to

add new networks. It also requires the form class to generate a form model for the template automatically:

class DHCPNetworkAddForm(ModelForm):
 class Meta:
 model = DHCPNetwork
 exclude = ('physical_net',)

We exclude the physical network field, because it is already known at the time of creation; it is

supplied as a URL argument. Listing 4-2 shows our dhcp_add function, in which we even reuse the
same template that was used previously.

Listing 4-2. A view to handle the add function for DHCP networks

def add_dhcp(request, address=None):
 if request.method == 'POST':
 network_addr = None
 if address:
 ip, net_size = address.split('/')
 network_addr = NetworkAddress.objects.get(address=ip,
 network_size=int(net_size))
 dhcp_net = DHCPNetwork(physical_net=network_addr)
 form = DHCPNetworkAddForm(request.POST, instance=dhcp_net)
 if form.is_valid():
 form.save()
 return HttpResponseRedirect("../..")
 else:
 form = DHCPNetworkAddForm()
 return render_to_response('add.html', {'form': form,})

You may wonder what happens to the DNS and Domain Name fields; they are foreign keys in the

model definition, so what are users supposed to enter here? In Figure 4-1 you can see what Django is
going to display.

Figure 4-1. The rendered DHCP add form

CHAPTER 4 ■ INTEGRATING THE IP ADDRESS APPLICATION WITH DHCP

113

The Django engine was smart enough to figure out that you want to provide users with a selection
of the objects from the related table, so it generated a drop-down list of all objects! That is really clever
and saved you lots of coding. So all you need to do is enter router details, select the DNS server and
domain name from the list, and click the Add button. You can verify that the record has been
successfully created by going to the administration interface and selecting the DHCP Networks view.

Try navigating around and enabling DHCP support for other networks as well. Notice that when
you navigate up the address tree, you will not be provided with the option to enable DHCP.

At this point we also need to modify the network’s display template, so it shows details about the
DHCP settings for the network and also provides links to modify and delete the settings.

The Modify Function
The Modify view function is very similar to that of the Add function, except that instead of creating an
empty form for the initial view, it retrieves existing data and displays it in the form. So in Listing 4-3
we first search for an existing DHCP network object and pass it to the form class.

Listing 4-3. The view to handle the Modify function for DHCP networks

def modify_dhcp(request, address=None):
 ip, net_size = address.split('/')
 network_addr = NetworkAddress.objects.get(address=ip,
network_size=int(net_size))
 dhcp_net = DHCPNetwork.objects.get(physical_net=network_addr)
 if request.method == 'POST':
 # submiting changes
 form = DHCPNetworkAddForm(request.POST, instance=dhcp_net)
 if form.is_valid():
 form.save()
 return HttpResponseRedirect("../..")
 else:
 # first time display
 form = DHCPNetworkAddForm(instance=dhcp_net)
 return render_to_response('add.html', {'form': form,})

The Delete Function
This is a very simple function that searches for the DHCPNetwork object and deletes it. At this time we
have not yet defined any related data structures, such as the DHCP pools or rules, but it’s worth
mentioning that all related objects would be removed automatically as well.

Extending DHCP Configuration with Address Pools
By now we have decent working code to handle generic DHCP subnet information, such as router,
DNS, and Domain server addresses. Should you need any additional fields, you can easily add them by
modifying the DHCPNetwork data model class by adding new field instances to it. You may have noticed
that none of the view functions have references to the model fields directly. Adding new items would

CHAPTER 4 ■ INTEGRATING THE IP ADDRESS APPLICATION WITH DHCP

114

automatically be handled by the Django framework. The template parser will pick them up and
generate input fields accordingly.

Now we are going to proceed with the second iteration, where we will add support for the address
pool data. As you already know, the address pool is a range of addresses within a subnet that can be
allocated to certain set of clients, depending on their class. For example, a class C subnet has 254
available addresses that can be assigned to nodes. We then can instruct the DHCP server to hand out
the first 10 addresses to hosts that have a hostname that starts with server, another 10 will go to
requests that are Sun Microsystems machines, and so on.

The Address Pool Data Model
A typical address pool allows defining additional DHCP options, specific to the pool. For example, you
might want to increase the DHCP lease time on certain pools. All servers do not need short-lived
DHCP addresses, so you would increase lease time in the pool for those servers. Or you might want all
workstations to use different DNS servers. In this example we’re not going to allow any additional
options. Therefore the model class looks relatively simple and contains only three fields: the pointer
to its parent DHCPNetwork object and the two boundary addresses. Listing 4-4 shows the code.

Listing 4-4. The DHCP pool data model class

class DHCPAddressPool(models.Model):
 DHCPNetwork = models.ForeignKey(DHCPNetwork)
 range_start = models.IPAddressField()
 range_finish = models.IPAddressField()

Once you add this to models.py, where you also need to define the form model class, create an

appropriate record in the admins.py file and run the syncdb command, so Django will create a table
in the database. Please review the “Defining a Database Model” section in Chapter 3 for the detailed
instructions.

Displaying DHCP Network Details
As a first workflow, and therefore a view function, we are going to define the DHCP network view
function. We already have some generic information displayed on the physical network listing page,
but now we’re going to have more items related to DHCP configuration, so it is a good idea to have
them displayed on a separate page. This page will contain information about the address pools and the
static IP allocation rules as well as classification rules. By now you should be pretty comfortable with
adding new views, and you should know that this involves three steps: adding a function rule for
mapping URLs to views to the urls.py file; defining the view function, and creating a template for the
view.

Here’s the URL mapping rule we’ll be using to call the DHCP display view:

(r'^networkaddress/(?P<address>\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}\/\d{1,2})/dhcp/$',
 'display_dhcp'),

For the DHCP display view we are introducing two new functions: one to get the address object

from the URL-encoded IP/network_size pair and the other to get the DHCP network object from the
same data. As most of the functions require these operations to be performed, it is the time to separate
them now, as shown in Listing 4-5.

CHAPTER 4 ■ INTEGRATING THE IP ADDRESS APPLICATION WITH DHCP

115

Listing 4-5. The DHCP pool display view and helper functions

def display_dhcp(request, address=None):
 dhcp_net = get_dhcp_object_from_address(address)
 dhcp_pools = DHCPAddressPool.objects.filter(dhcp_network=dhcp_net)
 return render_to_response('display_dhcp.html', {'dhcp_net': dhcp_net,
 'dhcp_pools': dhcp_pools,})

def get_network_object_from_address(address):
 ip, net_size = address.split('/')
 return NetworkAddress.objects.get(address=ip, network_size=int(net_size))

def get_dhcp_object_from_address(address):
 return DHCPNetwork.objects.get(physical_net=
get_network_object_from_address(address))

The DHCP details page (Listing 4-6) displays basic information about the DHCP network and also

lists all available pools if they are defined.

Listing 4-6. The DHCP details display page

<h1>DHCP details for {{ dhcp_net.physical_net.address }}/{{
dhcp_net.physical_net.network_size }} network</h1>
<h2>Go back to network details</h2>

Router: {{ dhcp_net.router }}
DNS: {{ dhcp_net.dns_server }}
Domain: {{ dhcp_net.domain_name }}

<p>(modify | delete)</p>
{% if dhcp_pools %}
<p>
<h3>Following DHCP pools are available:</h3>

{% for pool in dhcp_pools %}
{{ pool.range_start }} - {{ pool.range_finish }}
(<a href="../dhcp_pool/{{ pool.range_start }}/{{ pool.range_finish
}}/delete/">delete)

{% endfor %}

</p>
{% else %}
<h3>There are no DHCP pools defined</h3>

CHAPTER 4 ■ INTEGRATING THE IP ADDRESS APPLICATION WITH DHCP

116

{% endif %}
<p>
(add new pool)
</p>

Again, another pretty standard view template; there are, however, a few things worth mentioning.

The first is that the template parser is quite smart and allows you to reference related objects from the
ones that are passed as arguments to the template. As you can see, we do not pass a physical network
object directly, only the DHCP network; but because the DHCP network has a foreign key that
references its “parent” object, we can simply say dhcp_net.physical_net.address and the Django
template engine will find the right piece of information to display.

Another thing you might have noticed is the link to the delete function. The object part of the
URL became rather lengthy and is defined as

<network_address>/<network_size>/dhcp_pool/<range_start>/<range_finish>

Strictly from a data modeling perspective, this key has redundant information in it, because a

DHCP pool with given range addresses can belong to only one physical network; therefore there is no
need to specify the network address in the URL. However, because we are using relative URLs all over
the templates, it is a lot easier to just include it here as well. This is a good example of how strict rules
sometimes need compromising to achieve greater effectiveness and simplicity in other areas of the
code.

The Add and Delete Functions
Add and Delete in their structure and functionality are almost identical to the equivalent functions in
the physical network and DHCP network views. The Add function reuses the same add.html template,
whereas the Delete function references DHCPAddressPool instead.

Reworking the URL Structure
I like to learn by mistakes, as I think that is the most efficient way. Obviously, learning from the
mistakes of other people is even better. So I deliberately introduced something that is not really a
mistake but could be called a flaw in the design, and left it up to this point in the chapter.

If you’ve been carefully following all the code examples, you must have noticed one thing: that,
although functionally our code is perfect, it just does not feel right. Guessed it yet? Go on, take a second
look at all the examples of templates and view functions. What is quite common that you notice there?

Yes! We’ve been using relative URLs in both the templates and the view functions. It was quite a
simple trick to do, and it works perfectly well most of the time, especially in small projects. It even
works with decoupled applications, because when you use relative paths address resolution works from
the other end, so effectively it doesn’t matter at what depth your application URLs start.

The trouble is, with so many class models and functions, it becomes quite difficult to memories the
structure of your URLs for each model. We’ve set very strict rules about formatting the URLs
(remember, it’s always <model>/<object>/<method>), and with a limited number of methods (so far
it’s only add, delete, modify, and implicit display'), we were coping quite easily. However, with a
growing number of models and URLs it becomes more difficult to manage and maintain all URLs. Why
would you ever need to change the URL structure? There are many reasons—restructuring the site,
adding new applications into the hierarchy, or simply fixing a mistake in the development process.

CHAPTER 4 ■ INTEGRATING THE IP ADDRESS APPLICATION WITH DHCP

117

While we’re talking about changing URL structure, I need to mention now that I let another “bug”
creep in. Remember talking about the <model>/<object>/<method> URL structure? Again, I violated it
a bit by always using networkaddress/ at the beginning when referencing DHCP network and DHCP
Pool models. What I should have done is used dhcpnetwork and dhcpaddresspool prefixes,
respectively.

Now that we have a really valid reason for reworking or fixing the code, how should we approach
it? It would be ideal if there were a facility or functionality that allowed you to obtain a URL for any
object you want to link to.

Generating URLs in the Model Class
The Django framework allows you to define an extra method for each model that returns the absolute
URL for an object. So, for example, this is how we could define this method for the NetworkAddress
class:

def get_absolute_url(self):
 return '/networkaddress/%s/%s/' % (self.address, self.network_size)

With this defined, we then can use this function in all templates to get the URL of the object:

{{ address }}

This allows us to reference object URLs without thinking about the URL structure. All we need is a

reference to a URL, and we get that value by referencing the get_absolute_url property of the object.
If for whatever reason we decide to change the URL structure, we will not need to alter any of the
template code, because references are generated outside it.

Reverse Resolution of URLs
There is still a problem with this approach, because if you remember, URLs are now going to be
defined in two locations: the URL configuration file and also in the model definition. So even though
we do not need to revisit the whole set of templates and view functions, we still need to ensure that
whatever get_absolute_url returns is also defined in the URLConfig file.

Django has a solution to this problem as well—you can further decouple your models from the
URLConfig file with the permalink decorator (a decorator is a class that modifies the behavior of the
function it decorates). You need to pass a view method name and the view method parameters (either
as a list or a dictionary) to the decorator, and it then works out the matching URL for you. Let’s look at
the example:

@models.permalink
def get_absolute_url(self):
 return ('views.networkaddress_display', (),
 {'address': '%s/%s' % (self.address, self.network_size)})

Here we’re not using a parameter list, but because it is required, we just pass an empty list. My

preference is to use a dictionary to pass all arguments that are used in the URL, so we don’t need to
memorize the number and position of each variable.

mailto:@models.permalink

CHAPTER 4 ■ INTEGRATING THE IP ADDRESS APPLICATION WITH DHCP

118

Let me remind you what the URL configuration looks like for this view:

(r'^networkaddress/(?P<address>\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}\/\d{1,2})/$',
views.networkaddress_display),

Given this combination (the view function and the parameter(s)), the permalink is going to find
the matching URL and return it.

There is a catch, though; there are situations where the decorator cannot uniquely identify the
matching URL:

(r'^networkaddress/$', views.networkaddress_display),
(r'^networkaddress/(?P<address>\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}\/\d{1,2})/$',
 views.networkaddress_display),

Assigning Names to URL Patterns
In this case there are two URLs that call the same view function, so the reverse URL matcher (which
tries to find a matching URL from a view name) gets confused, because more than one URL points to
the same view.

If that is the case, you can assign names to your URL patterns, so that they all are uniquely
identified:

url(r'^networkaddress/$', views.networkaddress_display,
name='networkaddress-displaytop'),
url(r'^networkaddress/(?P<address>\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}\/\d{1,2})/$',
 views.networkaddress_display, name='networkaddress-display'),

Now, even though both URL pattern are calling the same function, they can be referenced
individually using their unique names.

Finally, here’s how the model class is going to resolve its objects’ URLs:

@models.permalink
def get_absolute_url(self):
 return ('networkaddress-display', (),
 {'address': '%s/%s' % (self.address, self.network_size)})

Using URL References in the Templates
Obviously the model code can only return one URL for each object. The model class as such has no
visibility on the functionality of the application; it is only designed to represent the data upon which
the application operates. So usually a model instance returns the URL that is used to display the object,
in other words a representation URL.

In our application we have multiple functions associated with the data entities, such as add,
delete, and modify. Since we have a well-defined URL structure and all action “keywords” are
appended at the end, we could use get_absolute_url on the object to get its base URL and then
append the action word in the template, but this approach isn’t proper, as the URL information would
be contained in the URLConfig and each of the templates that uses it.

mailto:@models.permalink

CHAPTER 4 ■ INTEGRATING THE IP ADDRESS APPLICATION WITH DHCP

119

In the previous example we used the {{ object.get_absolute_url }} structure in the templates
to refer to the URL. Django also has a URL resolver template tag, which is able to reference URLs by
their names. You then need to pass an argument to it so it can match and generate the required URL:

{% url networkaddress-display address %}

Listing 4-7 shows a more verbose example of how to use the url tag.

Listing 4-7. An example of a URL resolver template tag

{% if addresses_list %}

 {% for address in addresses_list %}

 {{ address.address }}/{{ address.network_size }}
 {% ifequal address.network_size 32 %}(host){% else %}(network){%
endifequal %}
 {{ address.description }}
 (delete |
 modify)

 {% endfor %}

{% else %}
 {% ifequal parent.network_size 32 %}
 This is a node IP

 Description: {{ parent.description }}
 (modify)

 {% else %}
 No addresses or subnets in this range
 {% endifequal %}
{% endif %}

All URL pattern names are defined in the URLConfig file, as shown in Listing 4-8.

Listing 4-8. Networkaddress URL patterns

urlpatterns = patterns('',
 url(r'^networkaddress/$', views.networkaddress_display,
 name='networkaddress-displaytop'),
 url(r'^networkaddress/add/$', views.networkaddress_add,
 name='networkaddress-addtop'),

url(r'^networkaddress/(?P<address>\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}\/\d{1,2})/$',
 views.networkaddress_display, name='networkaddress-display'),

CHAPTER 4 ■ INTEGRATING THE IP ADDRESS APPLICATION WITH DHCP

120

url(r'^networkaddress/(?P<address>\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}\/\d{1,2})/

 delete/$', views.networkaddress_delete, name='networkaddress-delete'),

url(r'^networkaddress/(?P<address>\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}\/\d{1,2})/

 add/$', views.networkaddress_add, name='networkaddress-add'),

url(r'^networkaddress/(?P<address>\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}\/\d{1,2})/

 modify/$', views.networkaddress_modify, name='networkaddress-modify'),

Finally, all URLs are decoupled and defined in one location—the URLConfig file. Whenever you

choose to change them, you only need to do that in one place, and neither models, views, nor templates
have to be modified.

Adding Client Classification
To make good use of the address pools, we need to have client classification functionality in place. In
other words, we have to define some rules that identify what is sending the requests and then assign IP
addresses from the appropriate address pool. Since we’re not implementing a “wizard” type of
application, all rules need to be plain text in the format that ISC DHCP understands. This would not
help people with little knowledge of the configuration file syntax, but it will come in really handy for
those who have to manage reasonably large DHCP configurations.

Additions to the Data Model
The class definition for the new data model is fairly simple and contains only two fields: the rule text
and the description. We also need to extend the Pool class so that it references the appropriate
ClassRule object, as shown in Listing 4-9.

Listing 4-9. Extending the DHCP pool model and introducing the Rules model

class DHCPAddressPool(models.Model):
 dhcp_network = models.ForeignKey(DHCPNetwork)
 class_rule = models.ForeignKey(ClassRule)
 range_start = models.IPAddressField()
 range_finish = models.IPAddressField()

 def __unicode__(self):
 return "(%s - %s)" % (self.range_start, self.range_finish)

class ClassRule(models.Model):
 rule = models.TextField()
 description = models.CharField(max_length=400)

 def __unicode__(self):
 return self.id

CHAPTER 4 ■ INTEGRATING THE IP ADDRESS APPLICATION WITH DHCP

121

Using Template Inheritance
Since the rules management is going to be generic, we want to make the link to the display and
management page available from all our pages, so that the user can jump directly to it. So far we have
two display pages to display the physical networks and also DHCP networks, but in the future we may
have more. So how do we add a link to all pages? Obviously editing every single page is not an ideal
solution.

The Django template management system allows for template inheritance, so you can define a
container template and then base the other templates on it. The base template contains placeholders,
and each template that inherits from it will provide elements to be placed in those placeholders.

Here is an example. First of all let’s define the base template of which all others will inherit;
Listing 4-10 shows the code.

Listing 4-10. The base template

{% block menu %}

 Network address
management
 Class rule management

{% endblock %}
<hr/>
{% block contents %}
{% endblock %}

Here we define two blocks: a menu block and a block for contents. Since our primary goal is to

separate menu template code and reuse it, we do not need to place it in a separate block, but it is a
good practice to do so as that allows other templates to replace this menu with something else if there
is a need to. Anything that is outside of the {% block %} tag is not accessible from other templates and
thus is not changeable. Anything that is contained within the tag is a default value and will be
displayed if the inheriting template does not override the block.

The second block is designed to hold the contents of other display pages, so it is left empty. The
inheriting templates will substitute their contents for it; optionally they can also override the menu
part. Listing 4-11 shows the new display.html template, which now inherits from base.html.

Listing 4-11. Making display.html inherit from base.html

{% extends "base.html" %}
{% block contents %}
<contents of the original display.html>
{% endblock %}

Similarly, we need to change display_dhcp.html as well. Once we’ve done that, both pages will

contain generic menu, allowing application users to switch between the network configuration and
class rules configuration.

CHAPTER 4 ■ INTEGRATING THE IP ADDRESS APPLICATION WITH DHCP

122

Class Rules Management
We’re going to make the same set of rules available to all DHCP pools in our system. So before we assign
a specific rule to any of our DHCP pools, we first need to define this rule. We do this so that the users will
be able to reuse existing rules. This approach is good if you have same rules reused in many different
subnets. If your rules are very specific and unlikely to be reused, however, this is not the best approach as
you will end up with a large number of one-off entries, and the list soon becomes unmanageable.

If that is the case, you might want to think about defining categories for rules and subnets, so that
they can be grouped automatically. Then when you create a new DHCP network, you’ll pick which
categories you want to see.

Previously we created Add, Modify, Delete, and Display views for all models we had in our system.
It seems to be a repetitive process, don’t you think? It would be nice if there was a way to automatically
perform tasks like basic creation, modification, and deletion of the objects. And the Django framework
provides this functionality—it is called generic views.

Generic Views
The generic views are the views that perform basic and common tasks on any object passed to them.
There are four types of generic views shipped with Django:

• Views that redirect to other pages or render any given template, usually static content.

• A view that generates a list of objects or displays details of any specific object.

• Views that list objects based on their creation date. These are more useful if you’re
creating a blog or news site.

• Views to add, delete, and modify objects.

Generic views can be imported from the django.views.generic library. And you normally need

them in the URLConfig file, because this is where you are mapping URLs to a view.
Because of the simplicity of the Class Rules model, we’re going to use generic views to manage the

model’s objects. The reason we do not using generic views to manage other models is that we want to
leave more flexibility in what the views are doing. At some later stage we might want to extend view
functions to perform additional checks and tasks, which we cannot easily do with the generic views.

Displaying a List of Objects
First things first—let’s call a generic view to display a list of all available class rule objects. Display
views require a queryset object passed to them. This object is a dictionary and must contain one entry,
which is a list of objects we want to display. Additionally you can specify which template it needs to use
and other settings. You may also pass additional lists of related objects. For example we could pass a
list of DHCP pools that reference any specific class rule, as shown in Listing 4-12, so that users can
have this information displayed along with the class rules listing.

Listing 4-12. Class rule queryset

classrule_info = {
 'queryset': ClassRule.objects.all(),
 'template_name': 'display_classrule.html',
}

CHAPTER 4 ■ INTEGRATING THE IP ADDRESS APPLICATION WITH DHCP

123

The queryset entry here contains all the objects we want to display, and template_name is the
name of the template file. If we had chosen not to define the name of a template, Django would have
attempted to generate the file name for it automatically and would try to load a file called
<application_name>/<model_name>_detail.html. We chose to specify template names, so that’s just
one thing less to worry about if something doesn’t work as it should.

You also need to add URL-to-view mapping just as you did with all the other views in previous
sections. This time, however, we’re going to use a generic view list_detail.object_list and pass it
the queryset object that contains all the information the generic view requires:

url(r'^classrule/$', list_detail.object_list, classrule_info,
name='classrule-displaytop'),

And finally you need to create a template that displays all the objects nicely. We have already

added links to the Details’ Modify, and Delete functions, which we’re going to define in the next
sections, so the code looks like Listing 4-13.

Listing 4-13. The class rule list template

{% extends "base.html" %}
{% block contents %}
<h1>List of all Class Rules</h1>
{% if object_list %}

 {% for rule in object_list %}
 {{ rule.description }}
 (details |
 modify |
 delete)
 {% endfor %}

{% else %}
No class rules defined yet.
{% endif %}
<h3>Add new rule</h3>
{% endblock %}

This is a much simpler way of quickly displaying a list of any set of objects and doesn’t require you

to write a single line of view code.

A Detailed View of the Object
Similarly, we’re going to use generic views to display details about any specific class rule object. The
only difference here is that we need to pass a specific object ID to the generic view, so that the view
code can select the appropriate object from the list.

The object’s queryset instance is not changing and will be reused. The new URL rule is going to
look as shown here; it contains a reference to object_id, which tells the generic view which object it
needs to pass to the template:

CHAPTER 4 ■ INTEGRATING THE IP ADDRESS APPLICATION WITH DHCP

124

url(r'^classrule/(?P<object_id>\d+)/$', list_detail.object_detail, classrule_info,
 name='classrule-display'),

And finally let’s update the version of the template as shown in Listing 4-14. It now checks

whether the object contains anything, in which case it displays detailed information about it; otherwise
it will be displaying a list of class rules.

Listing 4-14. The updated view to display both lists and object details

{% extends "base.html" %}
{% block contents %}
{% if object %}
 <h1>Class Rules details</h1>

 ID: {{ object.id }}
 Description: {{ object.description }}
 Rule text:
 <pre>
 {{ object.rule }}
 </pre>

 (modify |
 delete)
{% else %}
 <h1>List of all Class Rules</h1>
 {% if object_list %}

 {% for rule in object_list %}
 {{ rule.description }}
 (details |
 modify |
 delete)
 {% endfor %}

 {% else %}
 No class rules defined yet.
 {% endif %}
 <h3>Add new rule</h3>
{% endif %}
{% endblock %}

7

CHAPTER 4 ■ INTEGRATING THE IP ADDRESS APPLICATION WITH DHCP

125

■Note By default the template object name is object. The generic list view appends _list to this name. So in
a detailed view you would receive object as an instance of an individual object or object_list as a list of
objects. You can always change the template name by setting template_object_name to any name you like in
the queryset dictionary. Remember, though, that _list will still be appended to the name when you use the
generic list view.

Adding and Modifying New Objects
Using the generic views to add objects is similarly simple. You need to provide basic information to the
view and define URL patterns for those actions. The generic views require the following information:

• The Model Class name, so the view knows what sort of objects it’s dealing with.

• The Model Form Class, so the form generation framework knows how to generate form
representation.

• The post-action redirect URL, which tells the views where to redirect the user after the
data has been submitted. This should be a string representing a URL. If it is not specified,
Django will attempt to apply get_absolute_url to the object, so make sure the
get_absolute_url method of the object is defined. The advantage of using
get_absolute_url , however, is that you don’t need to change URL in two places if you
modify it.

In Listing 4-15 we define two classes; one is the Model class and the other is the ModelForm class.
Strictly speaking, the ModelForm class is not required here as we have a really simple model with only
two fields, but I prefer to define them explicitly; this makes it easier should I wish to extend and modify
the models later. Note that get_absolute_url returns the reverse-resolved URL.

Listing 4-15. The ClassRule model and form classes

class ClassRule(models.Model):
 rule = models.TextField()
 description = models.CharField(max_length=400)

 def __unicode__(self):
 return self.description[:20]

 @models.permalink
 def get_absolute_url(self):
 return ('classrule-display', (), {'object_id': self.id})

class ClassRuleForm(ModelForm):
 class Meta:
 model = ClassRule

Back in the URLConfig file, we define a configuration dictionary with a model name and a form

filename:

s

mailto:@models.permalink

CHAPTER 4 ■ INTEGRATING THE IP ADDRESS APPLICATION WITH DHCP

126

classrule_form = {
 'form_class': ClassRuleForm,
 'template_name': 'add.html',
}

We can even reuse the same form we’ve been using to add or modify other objects. Because we

kept the form generic and let the template handler generate all the required fieldsets, it does not
require any changes.

Finally, let’s add two URL patterns for the Add and Modify functions and make sure the same URL
pattern names are used as referenced from the templates:

url(r'^classrule/(?P<object_id>\d+)/modify/$', create_update.update_object,
classrule_form,
 name='classrule-modify'),
url(r'^classrule/add/$', create_update.create_object, classrule_form,
 name='classrule-add'),

As you can see, the syntax is same as with generic display views—the first argument is a view

function and the second argument is the dictionary that contains the view configuration items, such as
the form class name and the template file name.

Deleting Objects
Deleting an object involves one intermediate step: the user is required to confirm the action. This is
implemented in the generic delete view by using simple logic—if the HTTP request is GET, it means
the user clicked the Delete link and thus needs the confirmation page displayed (which points back to
the same URL). If the HTTP request is POST, it means the user clicked the Confirm button and the form
has been submitted with an HTTP POST call, in which case the view will proceed with deletion of the
object.

There is one caveat with the generic Delete view. It requires a post-delete URL; in other words it
needs to know where to take the user after the object has been deleted. The obvious solution would be
to reverse-lookup the URL and use it, but since that URL is defined in the very same file (URLConfig)
where it will be called from, it will not be evaluated at the moment of the function call. So until this is
resolved, we need to use a relative URL, as shown in Listing 4-16.

Listing 4-16. The configuration dictionary for the Delete generic view

classrule_delete = {
 'model': ClassRule,
 'post_delete_redirect': '../..',
 'template_name': 'delete_confirm_classrule.html',
}

The confirmation template simply asks for confirmation and resubmits the data to the same URL,

but now with the HTTP POST method:

CHAPTER 4 ■ INTEGRATING THE IP ADDRESS APPLICATION WITH DHCP

127

<form method="post" action=".">
<p>Are you sure?</p>
<input type="submit" />
</form>

And finally, we make another addition to the URL patterns list:

url(r'^classrule/(?P<object_id>\d+)/delete/$', create_update.delete_object,
 classrule_delete, name='classrule-delete'),

■Note As you might have already guessed, both the Modify and Delete views not only require knowledge about
the type of objects they are operating on, but must also uniquely identify the object they are modifying or deleting.
The object ID is passed to them from the URL pattern as the object_id variable.

Generating the DHCP Configuration File
We have all the information we require, but it’s not much use in its current form. All data is in the
database tables, and although it spells out how the DHCP server should be configured, it cannot be used
in this form. We need to write a view that will generate a configuration file, which the DHCP server
will be able to understand.

Let’s go back and revisit what the DHCP configuration file should look like. Since we’re using the
ISC DHCP server, the configuration file (including only those elements that we’re interested in) has
the following structure:

<dhcpd configuration items or generic DHCP options>

<class definitions>

<network definition>
 <subnet definition>
 <subnet options>
 <pool definitions>

Let’s make this configuration file available as a web resource. So we need to approach it very

similarly to the way we generated the user interface pages—we need to define a view that supplies
data and the template that lays out this data on a page, in this instance a plain text document.

We start with the view, shown in Listing 4-17.

Listing 4-17. The view that collects data for the DHCP configuration file

def dhcpd_conf_generate(request):
 class_rules = ClassRule.objects.all()
 networks = []

CHAPTER 4 ■ INTEGRATING THE IP ADDRESS APPLICATION WITH DHCP

128

 for net in DHCPNetwork.objects.all():
 networks.append({ 'dhcp_net': net,
 'pools': DHCPAddressPool.objects.filter(dhcp_network=net),
 })

 return render_to_response('dhcpd.conf.txt',
 {'class_rules': class_rules,
 'networks': networks,
 },
 mimetype='text/plain')

We don’t keep the DHCP server configuration items in the database; therefore, we’ll put them
straight into the template. Class rules are simply listed outside any other structure, so we generate a
list of all class rules on the system and pass it as a list.

Each DHCP subnet may have several distinct DHCP pools defined within its range, so those pools
need to appear only within the specific DHCP pool definition. We therefore loop through all available
DHCP networks and generate a list that contains

• The DHCP address object

• A list of all DHCP pools that are related to given DHCP network

Finally we’re telling Django to change the MIME type of the document to 'text/plain'. This
doesn’t matter much if we’re only going to download it. If you tried to open this file in a web browser,
you would get the whole document presented on one line, because the web browser would think that it
is a valid HTML document. So to preserve the formatting when viewing in a browser we need to
format the response to indicate that the document is a flat text file.

Finally, in Listing 4-18 we have a template that puts all the data in a structure that can be used by
the DHCP server.

Listing 4-18. A template for the DHCP configuration file

 1 {% autoescape off %}
 2 ignore client-updates;
 3 ddns-update-style interim;
 4
 5 {% if class_rules %}
 6 {% for cr in class_rules %}
 7 # {{cr.description }}
 8 class "class_rule_{{ cr.id }}" {
 9 {{ cr.rule }};
10 }
11 {% endfor %}
12 {% endif %}
13
14 {% if networks %}
15 {% for net in networks %}
16 shared-network network_{{ net.dhcp_net.id }} {
17 subnet {{ net.dhcp_net.physical_net.address }} netmask {{
net.dhcp_net.physical_net.get_netmask }} {

CHAPTER 4 ■ INTEGRATING THE IP ADDRESS APPLICATION WITH DHCP

129

18 option routers {{ net.dhcp_net.router }};
19 option domain-name-servers {{ net.dhcp_net.dns_server.address }};
20 option domain-name {{ net.dhcp_net.domain_name.name }};
21
22 {% if net.pools %}
23 {% for pool in net.pools %}
24 pool {
25 allow members of "class_rule_{{ pool.class_rule.id
}}";
26 range {{ pool.range_start }} {{ pool.range_finish }};
27 }
28 {% endfor %}
29 {% endif %}
30 }
31 }
32 {% endfor %}
33 {% endif %}
34
35 {% endautoescape %}

Now let’s look in more detail at some of the lines.

Line 1: The Django template engine has a built-in text escaping capability that
changes all characters that are not HTML-compliant to their HTML code
presentation. For example, the “ character would be replaced by the "
string. Because we’re serving a flat text document, we need to present all
characters in their original notation and not HTML encoded. So we turn off
autoescape functionality, which is on by default.

Lines 2–3: These are just standard DHCP server configuration items, which you
may want to replace with those suitable for your environment.

Lines 5–12: A simple check to see if the class_rules list is not empty, followed
by a loop that goes through all elements and displays them.

Lines 14–15: Again, a pre-check to see if the networks list is not empty
followed by the loop statement.

Line 17: Here you can see how we refer to related objects. We’re not passing
any information about the physical network directly to the template, but we
can still access it through the DHCP Network object, which has a foreign key to
the related Physical Network object. As long as the relation is unambiguous (a
DHCP network can only belong to one physical network) you can use this
syntax to access relevant information.

Lines 19–20: Similarly we’re accessing related Router and DNS objects.

CHAPTER 4 ■ INTEGRATING THE IP ADDRESS APPLICATION WITH DHCP

130

Lines 22–23: Check to see if there are any pools available for the DHCP
network and loop through them if there are any.

Lines 25–26: Note that we’re generating class and network names based on
their object IDs. This is the easiest way to ensure that the names are unique
and can also be used to make cross-references within the configuration file.

You might have noticed that we’re using the get_netmask property of the Physical Network object.

This field does not exist, so what is it? Well, the DHCP server expects subnets defined as pairs
consisting of a base network address and a netmask. We do not have a netmask field in the model, but
it is very simple to derive from the network size, which is expressed in number of bits; Listing 4-19
shows the code.

Listing 4-19. Calculating the netmask from the network size

def get_netmask(self):
 bit_netmask = 0;
 bit_netmask = pow(2, self.network_size) - 1
 bit_netmask = bit_netmask << (32 - self.network_size)
 nmask_array = []
 for c in range(4):
 dec = bit_netmask & 255
 bit_netmask = bit_netmask >> 8
 nmask_array.insert(0, str(dec))
 return ".".join(nmask_array)

The logic of this function is very simple:

• Set the number of bits in an integer variable on (that is, set them to 1). This can be
expressed as 2^<number of bits> -1

• Shift the result to the left, filling in the remaining number of bits with 0. The total number
of bits in a netmask is always 32.

• For every 8 bits (4 sets in total), convert them to a decimal number string.

• Join all numbers, using the dot symbol to separate individual numbers.
Finally we need to add an additional URL pattern that calls this view:

url(r'^dhcpd.conf/$', views.dhcpd_conf_generate, name='dhcp-conf-generate')

Following is an example of the DHCP configuration file that was generated from some sample

data I entered into my database:

CHAPTER 4 ■ INTEGRATING THE IP ADDRESS APPLICATION WITH DHCP

131

ignore client-updates;
ddns-update-style interim;
 # class rule 1
 class "class_rule_1" {
 match if substring (option host-name, 0, 6) = "server";;
 }
 # test rule (gen form)
 class "class_rule_2" {
 test rule - gen form;
 }

 shared-network network_4 {
 subnet 192.168.0.128 netmask 255.255.255.128 {
 option routers 192.168.0.130;
 option domain-name-servers 208.67.222.222;
 option domain-name domain1.example.com;
 }
 }
 shared-network network_5 {
 subnet 192.168.0.0 netmask 255.255.255.128 {
 option routers 192.168.0.113;
 option domain-name-servers 208.67.220.220;
 option domain-name domain2.example.com;
 pool {
 allow members of "class_rule_1";
 range 192.168.0.1 192.168.0.20;
 }
 }
 }

Other Modifications
The majority of the work has already been done, but we still need to add a couple of things to fulfill the
initial set of requirements: hostname resolution for node IPs and a status check.

Resolving IPs to Hostnames
To get further information about the IP addresses, let’s do a reverse name resolution and print a fully
qualified domain name next to each address entry. There are two places where we could implement
this lookup: we can either modify the display view and do a host lookup there and pass the information
to the template. Or we can extend the Model class with an additional function that returns a hostname
for the IP address or an empty string if the hostname cannot be resolved.

CHAPTER 4 ■ INTEGRATING THE IP ADDRESS APPLICATION WITH DHCP

132

Let’s go with the second option as it is more elegant and does not require changing the interface
between the view and the template. Here’s an additional method for the Model class, which uses the
gethostbyaddr function from Python’s socket library to perform a reverse lookup. The result is a
tuple: (<hostname>, <zone>, <address>) and we’re using the first entry (hostname) as a result.

import socket

...
class NetworkAddress(models.Model):
...
 def get_hostname(self):
 try:
 fqdn = socket.gethostbyaddr(str(self.address))[0]
 except:
 fqdn = ''
 return fqdn

And a minor change in the template to display additional property (if available):

{% for address in addresses_list %}
 {{ address.address }}/
 {{ address.network_size
}}
 {% ifequal address.network_size 32 %}(host){% else %}(network){% endifequal %}
 {{ address.description }}
 {% if address.get_hostname %} ({{ address.get_hostname }}) {% endif %}
 (delete |
 modify)

{% endfor %}

Checking Whether the Address Is In Use
Let’s implement a simple function that checks whether the IP address is in use. To do so, we need to
send an ICMP ECHO message to the IP address and wait for the response. Strictly speaking, this is not a
valid test to check if address is in use, because there might be few scenarios when the IP address is used
but does not respond to a ping request. Firewalls might be preventing ICMP traffic, or that traffic might
be blocked at the server level. In most cases, however, this simple test is very effective; just bear in
mind that failure indicated by this test may not necessarily mean actual failure of the server or that the
address is not used.

The implementation follows the usual pattern of defining a view and adding a new URL pattern to
the URLConfig file. Because of a relative complexity of implementing ICMP using the Python socket
library (it requires using sockets in raw mode, which in turn requires application to run as root user) we
will call the system ping utility and make a decision based on the return code, shown in Listing 4-20.

CHAPTER 4 ■ INTEGRATING THE IP ADDRESS APPLICATION WITH DHCP

133

Listing 4-20. A view that does an ICMP check for an IP address

def networkaddress_ping(request, address=None):
 if responding_to_ping(address):
 msg = "Ping OK"
 else:
 msg = "No response"
 return HttpResponse(msg)

def responding_to_ping(address, timeout=1):
 import subprocess
 rc = subprocess.call("ping -c 1 -W %d %s" % (timeout, address),
 shell=True, stdout=open('/dev/null', 'w'),
 stderr=subprocess.STDOUT)
 if rc == 0:
 return True
 else:
 return False

Here we force ping to send only one packet and the timeout is set to 1 second. Although this may

reduce accuracy, the response will be much quicker. Most local networks should operate within these
constraints, but if you need to have more accuracy you can increase the default timeout and instruct
ping to send more than one probe packet.

You also need to add two additional URL patterns:

url(r'^networkaddress/(?P<address>\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3})/ping/$',
 views.networkaddress_ping, name='networkaddress-ping'),
url(r'^networkaddress/$', views.networkaddress_ping,
name='networkaddress-ping-url'),

The first pattern catches an IP address and also the method (/ping/) that it needs to perform on

the given address. The second line is simply for housekeeping—you will find out later why it is
required.

Why did we implement this check as a separate call to the web server? Wouldn’t it be easier to
generate the list of IP addresses to be displayed, ping each one individually, and then pass the ping
results along with the IP addresses to the template? Yes, we could have done that, but there is one major
issue with that approach—the application response time. In a real-life situation you may have really
large networks and may need to perform ping checks on hundreds of servers. Even if you implement
this check in a multithreaded manner—in other words attempt to call the ping function
simultaneously—you’re still going to spend 1, 2 or even more seconds to complete the request. From a
usability point of view this is not acceptable; if the system is slow to respond, users are not going to like
it.

So what we are going to do here is display the list of all addresses in a subnet and then
asynchronously call the ping URL using JavaScript. Users will not get the status report immediately,
but at least the page with other information and links to actions will be displayed immediately.

Another good side effect of this approach is that you don’t need to make any changes to the display
view at all—just some minor modification to the display template (add a placeholder to hold the status
information). JavaScript will be placed in the base template, so all pages automatically get this
functionality.

CHAPTER 4 ■ INTEGRATING THE IP ADDRESS APPLICATION WITH DHCP

134

Since this book isn’t about the JavaScript I’ll limit myself to a brief explanation and an example of
how it is used. Listing 4-21 uses the jQuery library to perform asynchronous AJAX calls to obtain the
results and update the web page accordingly.

Listing 4-21. Modified address list loop code

{% for address in addresses_list %}
 {{ address.address
}}/
 {{ address.network_size }}
 {% ifequal address.network_size 32 %}(host){% else %}(network){%
endifequal %}
 {{ address.description }}
 {% if address.get_hostname %} ({{ address.get_hostname }}) {% endif %}
 (delete |
 modify)
 {% ifequal address.network_size 32 %}
 [Status: <span class="address"
 id="ip_{{ address.get_formated_address }}">Unknown]
 {% endifequal %}

 {% endfor %}

The additional line checks whether the address is likely to be a node IP and then inserts an HTML

 tag, which will be used to update information at this location in the document. This tag has two
properties: class and id. We will use the class property to identify what tags contain the IP addresses
and need checking, and the id property to hold the value of the IP address.

You may wonder what this get_formated_address method is and why we’re not using the address
directly. The reason is that jQuery expects HTML tag IDs not to have dots in the name, and the ID name
also needs to start with a letter; therefore we have to add the ip_ prefix to it. This method simply
replaces all occurrences of ‘.’ with ‘_’ in the address field.

Lastly we add some JavaScript that traverses all tags that belong to the same address class and
performs an AJAX asynchronous call to the web server. The result will then be used as the HTML
content of the tag. The code in Listing 4-22 has been added to the base template, from which all other
templates inherit.

Listing 4-22. JavaScript that performs asynchronous calls and updates the status page

<html>
<head>
<script type="text/javascript" src="/static/js/jquery-1.3.2.min.js"></script>
<script type="text/javascript">
 $(document).ready(function(){
 $(".address").each(function () {
 var curId = $(this).attr('id');
 updateStatus(curId);
 });
 });

CHAPTER 4 ■ INTEGRATING THE IP ADDRESS APPLICATION WITH DHCP

135

 function updateStatus(attrId) {
 address = attrId.replace('ip_', '');
 address = address.replace(/_/g, '.');
 $.ajax({
 url: '{% url networkaddress-ping-url %}' + address + '/ping/',
 success: function(response) {
 $('#' + attrId).html(response);
 }
 });
 }

</script>
</head>

Now you see why we needed to have the placeholder URL pattern. JavaScript is also partially

generated by Django—we insert the network address URL using the reverse URL lookup. Because we
cannot generate a full URL (with the address part in it), this is a generic URL that will be modified by
the JavaScript. WE only use the first part of it, therefore we needed this defined in the URLConfig.

So the logic of this JavaScript code is as follows:

• Remove the ip_ prefix.

• Replace underscores with dots.

• Perform an AJAX asynchronous call

• Update the web page when the results come back.

Now when the user navigates to the listing page it will be displayed immediately and then

gradually updated with the status reports for each IP address as the results become available.

Summary
In this chapter we have expanded the functionality of the network address management application by
adding support for DHCP and also performing some checks, such as DNS lookups and ICMP pings, to
make sure the address is in use.

• Generic views help to reduce the amount of code you need to write; use them to perform
generic tasks such as displaying object information and to perform basic manipulations
such as delete, modify and add.

• You can modify the response MIME type, allowing Django to be used to generate wide
variety of content—HTML, XML, text, and even binary documents.

• Think about the user experience and whether your application will perform various tasks
as quickly when the amount of data grows. If you need to, use JavaScript to postpone
content loading.

• You don’t need to have libraries available or write your own functionality to perform
certain tasks. If you need to—you can use system utilities such as ping, to perform these
tasks.

C H A P T E R 5

■ ■ ■

137

Maintaining a List of Virtual Hosts

in an Apache Configuration File

We examined the Django web framework in great detail in Chapters 3 and 4. In this chapter we’ll
continue exploring the Django framework and in particular the administration application. Instead of
writing the views and the forms ourselves, we are going to use the built-in object management
application, but we’ll customize it to our needs and requirements. The application we will create in
this chapter is a web-based application to generate the virtual host configuration for the Apache web
server.

Specifying the Design and Requirements for the Application
Why would you want to have an application that generates the Apache configuration files for you?
There are pros and cons to this approach. Let me start with the advantages of generating
configurations files automatically.

First, although you cannot eliminate it completely, you greatly reduce the error factor. When you
automatically generate configuration files, the settings are either available as a selection, so you
cannot make any typos, or can be validated. So you have a system that does the basic error checking,
and silly mistakes such as “ServreName” are eliminated. Second, this approach to some degree
enforces the backup policy. If you accidentally destroy the application configuration, you can always
re-create it. Third—and this is the most important aspect in my opinion—you can have a central place
to configure multiple clients. For example, let’s assume that you have a web farm of ten identical web
servers all sitting behind a web load balancer. All servers are running the Apache web server and all
should be configured identically. By using an automated configuration system, you generate the
configuration file once (or even better, you can create the configuration on demand) and then upload
to all servers.

There are some drawbacks as well. Any configuration utility, unless it is natively written for the
system that you are configuring, adds another layer between you and the application. Any changes to
the configuration structure will immediately have an effect on the configuration tool. New
configuration items need to be provisioned in the configuration system. Even the slightest change in
the syntax needs to be accounted for. If you want to make the best of your configuration tool, you have
to revalidate it against every new software release, to make sure that your tool still produces a valid
configuration file.

The choice is obviously yours. For standard configuration, I suggest automating as much as
possible, and if you are creating your own tools, you can always account for the extra configuration
that is specific to your environment.

CHAPTER 5 ■ MAINTAINING A LIST OF VIRTUAL HOSTS IN AN APACHE CONFIGURATION FILE

138

Functional Requirements
Let’s go back to the Apache web server configuration tool. First of all, this tool should generate only the
name-based virtual host configuration. We don’t expect this tool to generate the server-specific
configuration, only the blocks that are responsible for defining virtual hosts.

In the virtual host definition section you can use the configuration directives from various
installed modules. Typically the Apache core module is always available; therefore the tool should
provide you with the list of all configuration directives from the core module. It should be possible to
add new configuration directives.

Some configuration directives may be nested inside each other, as in the following example,
where the SetHandler directive is encapsulated in the Location directive section. The tool should
allow you to define the relationships between the configuration directives where one is encapsulated
by the other:

<Location /status>
 SetHandler server-status
</Location>

There might be situations where multiple virtual host definition sections have very similar
configurations. The application that we’re going to build should allow you to clone any existing Virtual
Host definition together with all its configuration directives. In addition to the clone operation, the
application should allow you to mark any Virtual Host section as a template. The template Virtual Host
block should not become a functional part of the configuration file, although it can be included in the
form of a comment block.

The most important part of any Virtual Host definition is the server domain name and its aliases.
The list of all domain names that the Virtual Host is responding to should be made easily available,
and the links to the appropriate web location should be provided.

The configuration file should be made available as a web resource and the server as a plain-text
file document.

High-Level Design
As discussed, we will be using the Django web framework to build our application. However, instead of
writing all forms manually, we will reuse Django’s provided data administration application, which
we’ll configure to our needs.

It is unlikely that the application will be maintaining the configuration for a great number of
Virtual Hosts, so we are going to use the SQLite3 database as the data store for our configuration.

We are going to store two types of data in the database: the virtual host objects and the
configuration directives. This allows for expansion and further modification of the application—for
example, we could extend the configuration directives model and add an “allowed values” field.

Setting Up the Environment
We’ve already discussed the Django application structure in great detail in Chapters 3 and 4, so you
should be comfortable creating the environment settings for the new application. I’ll briefly mention
here the key configuration items, so it will be easier for you to follow the examples and code snippets
later in the chapter.

CHAPTER 5 ■ MAINTAINING A LIST OF VIRTUAL HOSTS IN AN APACHE CONFIGURATION FILE

139

Apache Configuration
First we need to instruct the Apache web server how to handle the requests sent to our application. This
is a fairly standard configuration that assumes our working directory to be in /srv/app/, and the
Django project name is www_example_com. The document root is set to /srv/www/www.example.com,
and it’s used only to contain a link to the administration web site static files. We’ll come to creating
the link a bit later. Listing 5-1 shows the code.

Listing 5-1. The Apache web server configuration

<VirtualHost *:80>
 ServerName www.example.com
 DocumentRoot /srv/www/www.example.com
 ErrorLog /var/log/httpd/www.example.com-error.log
 CustomLog /var/log/httpd/www.example.com-access.log combined
 SetHandler mod_python
 PythonHandler django.core.handlers.modpython
 PythonPath sys.path+['/srv/app/']
 SetEnv DJANGO_SETTINGS_MODULE www_example_com.settings
 SetEnv PYTHON_EGG_CACHE /tmp
 <Location "/static/">
 SetHandler None
 </Location>
</VirtualHost>

After creating the configuration, make sure that all directories mentioned in the configuration file

(/srv/www/www.example.com/ and /srv/app/) exist. Also make sure that these directories are owned
by the user running the Apache daemon. Typically it is the user named apache or httpd. When you have
finished, restart the Apache web server, so it reads the new configuration in.

Creating a Django Project and Application
We’ll start off by creating a new Django project called www_example_com. As you already know from
Chapters 3 and 4, the project in fact becomes a Python module with its init methods and possibly
submodules (the applications within the project). Therefore, the project name has to follow the Python
variable naming conventions and cannot contain dots or start with a number. Start a new project first:

$ cd /srv/app/
$ django-admin startproject www_example_com

At this point you should be able to navigate to the web site URL that you defined earlier (in our

example it’s http://www.example.com) and you should see the standard Django welcome page.
The next step is to create a new application within the project. You must follow the same naming

rules as with the project name when you choose a name for your application. I’ll simply call it
httpconfig:

$ django-admin startapp httpconfig

http://www.example.com
http://www.example.com
http://www.example.com
http://www.example.com-error.log
http://www.example.com-access.log
http://www.example.com
http://www.example.com

CHAPTER 5 ■ MAINTAINING A LIST OF VIRTUAL HOSTS IN AN APACHE CONFIGURATION FILE

140

Configuring the Application
Now we need to specify some details about the project, such as the database engine type, and also tell
the project about the new application. Even though we have created its skeleton files, the application is
not automatically included in the project configuration.

First, change the database configuration in the settings.py file in the project directory. Don’t
worry about the database file, as it will be created automatically:

DATABASE_ENGINE = 'sqlite3'
DATABASE_NAME = '/srv/app/www_example_com/database.db'

Second, change the default admin media location; we’re going to link to it within the existing

media directory. In the same settings.py file, make sure to have this setting:

ADMIN_MEDIA_PREFIX = '/static/admin/'

Third, add two new applications to the enabled applications list. We’re going to enable the

administration application that is part of the standard Django installation, and we’ll also add our
application to the list:

INSTALLED_APPS = (
 'django.contrib.auth',
 'django.contrib.contenttypes',
 'django.contrib.sessions',
 'django.contrib.sites',
 'django.contrib.admin',
 'www_example_com.httpconfig',
)

Finally, we have to run a database synchronization script, which will create the database file for us

and also create all required database tables as defined in the application model files. To be sure, we
don’t have any yet in the httpconfig application, but we need to do this step so that the
administration and other applications have their database tables created. Run the following command
to create the database:

$./manage.py syncdb
Creating table auth_permission
Creating table auth_group
Creating table auth_user
Creating table auth_message
Creating table django_content_type
Creating table django_session
Creating table django_site
Creating table django_admin_log

CHAPTER 5 ■ MAINTAINING A LIST OF VIRTUAL HOSTS IN AN APACHE CONFIGURATION FILE

141

You just installed Django's auth system, which means you don't have any superusers
defined.
Would you like to create one now? (yes/no): yes
Username (Leave blank to use 'rytis'):
E-mail address: rytis@example.com
Password: ***
Password (again): ***
Superuser created successfully.
Installing index for auth.Permission model
Installing index for auth.Message model
Installing index for admin.LogEntry model

Defining the URL Structure
We’ve got the application and the database set up, but we still cannot navigate to any of the pages,
even the administration interface. This is because the project does not know how to respond to the
request URLs and how to map them to appropriate application views.

We need to do two things in the urls.py configuration file: enable the URL routing to the
administration interface objects and point to the application-specific urls.py configuration. The
project-specific urls.py file is located in the project directory at /srv/app/www_example_com/. Its
contents after enabling both settings will be the code shown in Listing 5-2.

Listing 5-2. Project- (or site-) specific URL mapping

from django.conf.urls.defaults import *

this is required by the administration appplication
from django.contrib import admin
admin.autodiscover()

urlpatterns = patterns('',
 # route requests to the administration application
 (r'^admin/', include(admin.site.urls)),
 # delegate all other requests to the application specific
 # URL dispatcher
 (r'', include('www_example_com.httpconfig.urls')),
)

We have not created any views in our application, but we can already define the URL mapping in

the application-specific urls.py, which needs to be created in the application directory httpconfig.
The majority of the work is going to be done in the administration interface, so the application’s
interaction with the outside world is fairly limited. It’ll respond to two requests only: if nothing is
specified on the URL path, the view should return all virtual hosts in a plain-text format. If an integer is
specified, it’ll return only the section of the configuration file for that particular Virtual Host. This will
be used in the administration interface. In the httpadmin directory, create the urls.py file shown in
Listing 5-3.

mailto:rytis@example.com

CHAPTER 5 ■ MAINTAINING A LIST OF VIRTUAL HOSTS IN AN APACHE CONFIGURATION FILE

142

Listing 5-3. The application-specific URL mapping

from django.conf.urls.defaults import *

urlpatterns = patterns('www_example_com.httpconfig.views',
 (r'^$', 'full_config'),
 (r'^(?P<object_id>\d+)/$', 'full_config'),
)

This configuration means that there is no application-specific part in the URL—all requests to the

root location will be forwarded to our application. If you need to “hide” this application behind a
certain path in the URL, please refer back to Chapters 3 and 4 for details on how to do that.

In addition to this configuration, you also have to define the view method; otherwise, the Django
URL parser may complain about the undefined view. Create the following method in the views.py file
in the application directory:

def full_config(request):
 return

■Tip If you get any errors when you navigate to the newly created web site, make sure that all files and
directories in the project directory and the project directory itself are owned by the apache or httpd user. Also note
that if you make any changes to the Python files in your project directory, you will need to restart the Apache
daemon, so that the requests will be served by the new code rather than the old, which may still be cached in
memory.

The Data Model
As we discussed in the requirements and design section, the database model for our application is
fairly simple and contains only two entities: the virtual host definition and the configuration directive
definition. For the implementation, however, we also need to add a third element into the schema that
ties the virtual host and the configuration directive elements. The reason for adding yet another table
is that each configuration directive can be part of one or more virtual hosts. Also, there might be one or
more directives in each virtual host. Therefore, we have a many-to-many relationship between the
objects, and in order to resolve that we need to insert an intermediate table that has a one-to-many
relationship with the other tables.

We can represent this relationship model in the entity relationship (ER) diagram shown in Figure
5-1, where you can see the properties of each entity and the relationships between them. ER diagrams
are really helpful when coding and sometimes save you from writing complex code just to find
information that can be easily obtained with a simple SQL statement if you know the relations
between different tables. We’ll use this technique again in later chapters.

CHAPTER 5 ■ MAINTAINING A LIST OF VIRTUAL HOSTS IN AN APACHE CONFIGURATION FILE

143

Figure 5-1. An entity relationship diagram

■Note The diagram in Figure 5-1 was produced using the MySQL Work Bench tool. It follows the convention and
structure used to represent the data tables and also the relationships between them (one-to-many links, and so on).
The description of those details is beyond the scope of this book, but if you want to learn more about the subject, I
recommend Beginning Database Design: From Novice to Professional, by Clare Churcher (Apress, 2007), which is a
good introduction to database design. A much shorter description of some of the symbols used in the diagram can be
found on the Wikipedia page http://en.wikipedia.org/wiki/Entity-relationship_model.

You can see that the ConfigDirective and the VirtualHost tables have a one-to-many
relationship with the VHostDirective table. This table also holds the value for the configuration
directive, which is specific to the particular virtual host. You may also have noticed that the
VHostDirective has a loop-back relationship to itself. This is to implement the directive
encapsulation, where some directives can be the “parent” directives for others.

The Basic Model Structure
We’ll go through several iterations while creating the data model. We’ll start with the basic model that
contains only the object properties and then gradually add functionality as we go along with the
administration interface improvements. Listing 5-4 shows the initial code.

http://en.wikipedia.org/wiki/Entity-relationship_model

CHAPTER 5 ■ MAINTAINING A LIST OF VIRTUAL HOSTS IN AN APACHE CONFIGURATION FILE

144

Listing 5-4. The basic model structure

from django.db import models

Create your models here.

class ConfigDirective(models.Model):
 name = models.CharField(max_length=200)
 is_container = models.BooleanField(default=False)
 documentation = models.URLField(
 default='http://httpd.apache.org/docs/2.0/mod/core.html')

 def __unicode__(self):
 return self.name

class VirtualHost(models.Model):
 is_default = models.BooleanField(default=False)
 is_template = models.BooleanField(default=False,
 help_text="""Template virtual hosts are
 commented out in the configuration
 and can be reused as templates""")
 description = models.CharField(max_length=200)
 bind_address = models.CharField(max_length=200)
 directives = models.ManyToManyField(ConfigDirective, through='VHostDirective')

 def __unicode__(self):
 default_mark = ' (*)' if self.is_default else ''
 return self.description + default_mark

class VHostDirective(models.Model):
 directive = models.ForeignKey(ConfigDirective)
 vhost = models.ForeignKey(VirtualHost)
 parent = models.ForeignKey('self', blank=True, null=True,
 limit_choices_to={'directive__is_container': True})
 value = models.CharField(max_length=200)

 def __unicode__(self):
 fmt_str = "<%s %s>" if self.directive.is_container else "%s %s"
 directive_name = self.directive.name.strip('<>')
 return fmt_str % (directive_name, self.value)

If you followed the examples and explanation in Chapters 3 and 4, this model should be reasonably

familiar to you. We define the basic properties of each element along with the ForeignKey objects that
define the relationship between the classes.

There is one thing, though, that may not look familiar to you—the many-to-many relationship
declaration in the VirtualHost class:

directives = models.ManyToManyField(ConfigDirective, through='VHostDirective')

http://httpd.apache.org/docs/2.0/mod/core.html

CHAPTER 5 ■ MAINTAINING A LIST OF VIRTUAL HOSTS IN AN APACHE CONFIGURATION FILE

145

Why do we have to define this relationship explicitly, if we already defined the VHostDirective

class that joins the two entities together? The reason is that this allows us to find the corresponding
ConfigDirectives directly from the VirtualHost, without having to get to the VHostDirective
objects first.

We could create the database structure from this model, but it’ll be empty at this time and therefore
not very useful without at least the list of the core Apache module directives. I have created an initial
data JSON file that contains the entries for all core module directives. Here’s an example of a few
entries; you can get the full set from the book’s web page at http://apress.com:

[
 <...>
 {
 "model": "httpconfig.configdirective",
 "pk": 1,
 "fields": {
 "name": "AcceptPathInfo",
 "documentation":
 "http://httpd.apache.org/docs/2.0/mod/core.html#AcceptPathInfo",
 "is_container": "False"
 }
 },

 {
 "model": "httpconfig.configdirective",
 "pk": 2,
 "fields": {
 "name": "AccessFileName",
 "documentation":
 "http://httpd.apache.org/docs/2.0/mod/core.html#AccessFileName",
 "is_container": "False"
 }
 },
 <...>
]

If you copy this file to the project directory and name it initial_data.json, the data from it will

be loaded every time you run the syncdb command. Let’s now delete all application-related tables if
you have created any in the database and re-create it again with the new model and the initial dataset:

$ sqlite3 database.db
SQLite version 3.6.20
Enter ".help" for instructions
Enter SQL statements terminated with a ";"
sqlite> .tables
auth_group django_admin_log
auth_group_permissions django_content_type
auth_message django_session

http://apress.com:
http://httpd.apache.org/docs/2.0/mod/core.html#AcceptPathInfo
http://httpd.apache.org/docs/2.0/mod/core.html#AccessFileName

CHAPTER 5 ■ MAINTAINING A LIST OF VIRTUAL HOSTS IN AN APACHE CONFIGURATION FILE

146

auth_permission django_site
auth_user httpconfig_configdirective
auth_user_groups httpconfig_vhostdirective
auth_user_user_permissions httpconfig_virtualhost
sqlite> drop table httpconfig_configdirective;
sqlite> drop table httpconfig_vhostdirective;
sqlite> drop table httpconfig_virtualhost;
sqlite> .exit
$./manage.py syncdb
Creating table httpconfig_configdirective
Creating table httpconfig_virtualhost
Creating table httpconfig_vhostdirective
Installing index for httpconfig.VHostDirective model
Installing json fixture 'initial_data' from absolute path.
Installed 62 object(s) from 1 fixture(s)

You’re nearly ready to start managing the object in the administration application; just register

all the model classes with the administration interface and restart the Apache web server. As you
already know, you have to create the admin.py file in the application directory with contents similar to
Listing 5-5.

Listing 5-5. Basic administration hooks

from django.contrib import admin
from www_example_com.httpconfig.models import *

class VirtualHostAdmin(admin.ModelAdmin):
 pass

class VHostDirectiveAdmin(admin.ModelAdmin):
 pass

class ConfigDirectiveAdmin(admin.ModelAdmin):
 pass

admin.site.register(VirtualHost, VirtualHostAdmin)
admin.site.register(ConfigDirective, ConfigDirectiveAdmin)
admin.site.register(VHostDirective, VHostDirectiveAdmin)

If you navigate to the administration console, which you can find at

http://www.example.com/admin/, you will be provided with the login screen. You can log in with the
user account that you created during the first syncdb call. Once logged in, you’ll be presented with the
standard administration interface, which lists all model classes and allows you to create the individual
entries. Now, you must appreciate how much work this has already spared you from—you don’t need to
deal with user management, model object discovery, or any other housekeeping tasks. However, the
admin interface is generic and has absolutely no knowledge about the purpose behind your data
models and what fields are important to you.

http://www.example.com/admin

CHAPTER 5 ■ MAINTAINING A LIST OF VIRTUAL HOSTS IN AN APACHE CONFIGURATION FILE

147

Let’s take our model as an example. The main entity for you is the Virtual Host. However, if you
navigate to it in the administration interface, you’ll only see one column in the listing view. If you
have added any entries you’ll see that it’s the description field that is displayed. Click the Add button to
add a new Virtual Host. All property fields are displayed, but what about the configuration directives?
These need to be created separately on a different screen, and then you have to link each directive to
the appropriate Virtual Host. That’s not very useful, is it?

Luckily, the Django administration module is very flexible and can be customized to accommodate
most of the requirements that you can think of. We’ll improve the look and feel of the administration
interface and add more functionality to it in the next sections.

Modifying the Administration Interface
Most of the administration interface tuning is done in the models.py and admin.py files. The Python
community is attempting to separate the model definition files completely from the administration
customization files, and a lot of work has already been done to achieve this separation. However, as of
this writing, some items affecting the administration interface can still be found in the models.py file.
In either case, I will always indicate which file you need to make changes in, but unless instructed
otherwise always assume the application directory: /srv/app/www_example_com/httpconfig/.

Improving the Class and Object Lists
There’s only so much that the administration application can guess about your data model, its
properties, and the information you’d like to be presented with. Therefore, if you don’t make any
modifications or adjustments, you’ll just get the standard object representation string displays, just as
the strings are returned by the __unicode__() method of the class. In the following sections, I’ll show
you how to change the default layout.

Customizing the Class Names
By default, Django attempts to guess the name of the class. Usually the administration framework gets
reasonably close results, but sometimes you may end up with strange names. For example, our three
classes will be listed as:

• Config directives

• V host directives

• Virtual hosts

The “V host directives” name may look a bit cryptic in this situation. Another issue is the plural

form of the class name. The examples we have resolved quite nicely, but should we have a class called
“HostEntry,” for example, we’d end up with the automatically generated plural form “Host Entrys,”
which obviously isn’t correct.

In situations like this, you may want to set the class name and the plural form of the name
yourself. You don’t need to set both, just the one that you want to modify. This setting is done in the
model definition file, models.py. Listing 5-6 shows the additions to the class definition we created
earlier.

CHAPTER 5 ■ MAINTAINING A LIST OF VIRTUAL HOSTS IN AN APACHE CONFIGURATION FILE

148

Listing 5-6. Changing the class names

class ConfigDirective(models.Model):
 class Meta:
 verbose_name = 'Configuration Directive'
 verbose_name_plural = 'Configuration Directives'
 [...]

class VirtualHost(models.Model):
 class Meta:
 verbose_name = 'Virtual Host'
 verbose_name_plural = 'Virtual Hosts'
 [...]

class VHostDirective(models.Model):
 class Meta:
 verbose_name = 'Virtual Host Directive'
 verbose_name_plural = 'Virtual Host Directives'
 [...]

Make the modifications and reload the Apache web server. Now you will be presented with more
readable options:

• Configuration Directives

• Virtual Host Directives

• Virtual Hosts

Adding New Fields to the Object List
Let’s start by modifying the virtual hosts listing. If you haven’t created any virtual hosts yet, you can do
that now. It doesn’t really matter what properties you’re going to use in the configuration; at this stage
we’re only interested in getting the layout right. Also assign some configuration directives to the
Virtual Hosts that you’ve created.

One of the most important attributes of any Virtual Host is ServerName, which defines the
hostname this particular Virtual Host is responding to. As you know, the Apache web server identifies
the Virtual Host by the HOST HTTP header value. It takes that value from the HTTP request and tries to
match it against all ServerName or ServerAlias fields in the configuration file. When it finds a match,
it knows which Virtual Host is supposed to serve that particular request. So these two directives are the
ones you would probably want to see in the Virtual Host listing.

How do you include them in the list where only the string representation of the object is
displayed? You can use the ModelAdmin class property list_display to specify the properties you want
to have displayed, but there is no such property as a list of server names in the Virtual Host class.
Therefore we’ll have to write our own method that returns every associated ServerName and
ServerAlias. Extend your VirtualHost class with the method shown in Listing 5-7.

CHAPTER 5 ■ MAINTAINING A LIST OF VIRTUAL HOSTS IN AN APACHE CONFIGURATION FILE

149

Listing 5-7. Listing the associated ServerNames and ServerAliases

def domain_names(self):
 result = ''
 primary_domains = self.vhostdirective_set.filter(directive__name='ServerName')
 if primary_domains:
 result = "%(d)s" %
 {'d': primary_domains[0].value}
 else:
 result = 'No primary domain defined!'
 secondary_domains =
self.vhostdirective_set.filter(directive__name='ServerAlias')
 if secondary_domains:
 result += ' ('
 for domain in secondary_domains:
 result += "%(d)s, " %
 {'d': domain.value}
 result = result[:-2] + ')'
 return result
domain_names.allow_tags = True

This code fetches all VHostDirective objects that point to the ConfigDirective object whose

name is either 'ServerName' or 'ServerAlias'. The value of such a VHostDirective object is then
appended to the result string. In fact, this value is used to construct an HTML link, which should open in
a new browser window when clicked. The intention here is that all the links of the Virtual Host are
presented in the listing and are clickable, so you can immediately test them.

Let’s take a closer look at the instruction that retrieves the VHostDirective objects (the
highlighted lines in Listing 5-7). As you know from the model definition, the VirtualHost class, which
we’re modifying now, does not link to the VHostDirective class. The link is reversed; the
VHostDirective class has a foreign key that points back to the VirtuaHost class. Django allows you to
create reverse lookups as well by using the special attribute name <lowercase_class_name>_set. In
our case the name is virtualhostdirective_set. This attribute implements standard object selection
methods, such as filter() and all(). Now, using this virtualhostdirective_set attribute, we’re
actually accessing the instances of the VHostDirective class, and therefore we can specify a forward
filter that matches the corresponding Directive object name against our search string:
directive__name='ServerName'.

Let’s add another method that returns a link to the object representation URL. We are also going
to display this in the listing, so that users can click on it and the code snippet just for this VirtualHost
will appear in a new browser window. This VirtualHost class method is defined in the models.py file:

def code_snippet(self):
 return "View code snippet" % self.id
code_snippet.allow_tags = True

Have you noticed that in both cases we modify the method’s allow_tags property by setting it to

True? This prevents Django from parsing the HTML codes and replacing them with “safe” characters.
With the tags enabled, we can place any HTML code in the object listing; for example, we can include
links to external URLs, or include images.

CHAPTER 5 ■ MAINTAINING A LIST OF VIRTUAL HOSTS IN AN APACHE CONFIGURATION FILE

150

Finally, let’s list all the properties that we want to see in the object list. This includes the class
attributes as well as the names of the two functions that we’ve just created. Add the following property
to the ModelAdmin class definition in the admin.py file:

class VirtualHostAdmin(admin.ModelAdmin):
 list_display = ('description', 'is_default', 'is_template',
 'bind_address', 'domain_names', 'code_snippet')

Now when you navigate to the Virtual Host object list, you should see something similar to Figure

5-2. It may not be obvious, but the listed domain names and the code snippet text are clickable and
should open the URL in a new browser window.

Figure 5-2. The modified object list view

Reorganizing the Form Fields
If you tried adding the Virtual Host instances using the current administration interface, you probably
noticed how unfriendly and confusing the process is. First you have to create a new VirtualHost
object; then you have to navigate away from it and create one or more VHostDirective objects by
picking the newly created Virtual Host object. Wouldn’t it be nicer if you could create all that from one
form? Luckily this is very easy thing to do. In Django terms this is called an inline formset and allows
you to edit models on the same page as the parent model.

In our case, the parent model is the VirtualHost and we want to edit the instances of the
VHostDirective inline. This can be accomplished in only two steps. First you create a new
administration class that inherits from the admin.TabularInline class. Add the following code to the
admin.py file. The properties of this class indicate which child model we want to include and how
many extra empty lines we want to have in the formset:

CHAPTER 5 ■ MAINTAINING A LIST OF VIRTUAL HOSTS IN AN APACHE CONFIGURATION FILE

151

class VHostDirectiveInLine(admin.TabularInline):
 model = VHostDirective
 extra = 1

The second step is to instruct the administration class that you want to have this inline form

included in the main model edit form:

class VirtualHostAdmin(admin.ModelAdmin):
 inlines = (VHostDirectiveInLine,)
 [...]

This simple manipulation results in a rather nice looking formset that includes the entry fields for

both the parent and the child models, as shown in Figure 5-3.

Figure 5-3. Including the child model editing form

CHAPTER 5 ■ MAINTAINING A LIST OF VIRTUAL HOSTS IN AN APACHE CONFIGURATION FILE

152

If you don’t like the way the fields are organized in the form, you can change their order and also
group them into logical groups. You group the fields by defining the fieldsets. Each fieldset is a tuple of
two elements: a fieldset name and a dictionary of fieldset properties. One dictionary key is required,
the list of fields. The other two keys, classes and description, are optional. Following is an example
of the ConfigDirective model administration form, which has two fieldset groups defined:

class ConfigDirectiveAdmin(admin.ModelAdmin):
 fieldsets = [
 (None, {'fields': ['name']}),
 ('Details', {'fields': ['is_container', 'documentation'],
 'classes': ['collapse'],
 'description': 'Specify the config directive details'})
]

The first group contains only one field and has no name. The second group is labeled 'Details'.

It has a short description below the label, contains two fields, and has a show/hide capability.
The 'classes' property defines the CSS class name and depends on the class definitions. The

standard Django administration CSS defines two useful classes: the 'collapse' class allows you to
show/hide the whole group and, the 'wide' class adds some extra space for the form fields.

Adding Custom Object Actions
We’re nearly ready with the application, but there are two more functions that we need to implement.
In the Virtual Host model we have a Boolean flag that indicates whether the host is the default. This
information is also conveniently displayed in the listing. However, if we want to change it, we have to
navigate to the object’s edit page and change the setting there.

It would be nice if this could be done from the object-list screen, by just selecting the appropriate
object and using an action from the drop-down menu in the top-left corner of the list. However, the
only action that is currently available there is Delete selected Virtual Hosts. Django allows you to
define your own action functions and add them to the administration screen menu. There are two
steps to get a new function in the actions list. Firs you define a method in the administration class and
second you must identify the administration class in whose actions list this method should be listed as
an action.

The custom action method is passed three parameters when called. The first is the instance of the
ModelAdmin class that called the method. You can define the custom methods outside of the ModelAdmin
class, in which case multiple ModelAdmin classes can reuse them. If you define the method within a
particular ModelAdmin class, the first parameter will always be the instance of that class; in other
words, this is a typical class method 'self' property.

The second parameter is the HTTP request object. It can be used to pass the message back to the
user once the action is complete.

The third argument is the query set that contains all objects that have been selected by the user.
This is the list of objects you will be operating on. Because there can be only one default Virtual Host,
we have to check whether multiple objects have been selected and if so, return an error indicating that.
Listing 5-8 shows the modifications to the model administration class that create a new custom object
action.

CHAPTER 5 ■ MAINTAINING A LIST OF VIRTUAL HOSTS IN AN APACHE CONFIGURATION FILE

153

Listing 5-8. A custom action to set the default Virtual Host flag

class VirtualHostAdmin(admin.ModelAdmin):
 [...]
 actions = ('make_default',)

 def make_default(self, request, queryset):
 if len(queryset) == 1:
 VirtualHost.objects.all().update(is_default=False)
 queryset.update(is_default=True)
 self.message_user(request,
 "Virtual host '%s' has been made the default virtual host" %
queryset[0])
 else:
 self.message_user(request, 'ERROR: Only one host can be set as the
default!')
 make_default.short_description = 'Make selected Virtual Host default'

The second custom action that we’re going to define is object duplication. This action takes the

selected objects and “clones” them. The clones are going to have the same settings and the same set of
the configuration directives with the same values, but the following exceptions will apply:

• The virtual host description will get the “(Copy)” string appended to its description.

• The new virtual host will not be the default.

• The new virtual host will not be a template.

The challenge here is to resolve all parent-child dependencies of the VHostDirective objects

correctly. In the Apache Virtual Host definition, you can have only one level of encapsulation, so we
don’t need to do any recursive discovery of the related objects. The duplication method can be split
into the following logical steps:

• Create a new instance of the VirtualHost class and clone all properties.

• Clone all directives that do not have any parents.

• Clone all directives that are containers and therefore may potentially contain child
directives.

• For each container directive, find all its child directives and clone them.

Listing 5-9 shows the duplication function code.

Listing 5-9. The action to duplicate the Virtual Host objects

def duplicate(self, request, queryset):
 msg = ''
 for vhost in queryset:
 new_vhost = VirtualHost()
 new_vhost.description = "%s (Copy)" % vhost.description
 new_vhost.bind_address = vhost.bind_address

CHAPTER 5 ■ MAINTAINING A LIST OF VIRTUAL HOSTS IN AN APACHE CONFIGURATION FILE

154

 new_vhost.is_template = False
 new_vhost.is_default = False
 new_vhost.save()
 # recreate all 'orphan' directives that aren't parents
 o=vhost.vhostdirective_set.filter(parent=None).
filter(directive__is_container=False)
 for vhd in o:
 new_vhd = VHostDirective()
 new_vhd.directive = vhd.directive
 new_vhd.value = vhd.value
 new_vhd.vhost = new_vhost
 new_vhd.save()
 # recreate all parent directives
 for vhd in vhost.vhostdirective_set.filter(directive__is_container=True):
 new_vhd = VHostDirective()
 new_vhd.directive = vhd.directive
 new_vhd.value = vhd.value
 new_vhd.vhost = new_vhost
 new_vhd.save()
 # and all their children
 for child_vhd in vhost.vhostdirective_set.filter(parent=vhd):
 msg += str(child_vhd)
 new_child_vhd = VHostDirective()
 new_child_vhd.directive = child_vhd.directive
 new_child_vhd.value = child_vhd.value
 new_child_vhd.vhost = new_vhost
 new_child_vhd.parent = new_vhd
 new_child_vhd.save()
 self.message_user(request, msg)
duplicate.short_description = 'Duplicate selected Virtual Hosts'

Generating the Configuration File
We’ve finished adjusting the administration interface, so it is now ready for adding new Virtual Hosts
and managing the existing database entries. Now we need to finish writing the view method that will
display the information. There is one issue though—the “parent” directives mimic the XML syntax.
That is, they have opening and closing elements. The default string representation that we’ve written
for the VHostDirective model class takes care of the opening element, but we also need to write a
function that generates an XML-like closing tag. These two tags will be used to enclose the “child”
configuration directives.

Add the following method to the VHostDirective class in the models.py file. This function
converts the <tag> to </tag> if the directive is marked as a container directive:

def close_tag(self):
 return "</%s>" % self.directive.name.strip('<>') if self.directive.is_container
else ""

CHAPTER 5 ■ MAINTAINING A LIST OF VIRTUAL HOSTS IN AN APACHE CONFIGURATION FILE

155

Once you’ve done that, extend the previously created empty view method with the code from
Listing 5-10. This code iterates through all available objects if no arguments were supplied. If an
integer is supplied as an argument, it will select only the object with the matching ID. For all objects in
the list, a dictionary structure is created. This structure contains the virtual host object and the
corresponding directive objects. The orphan and the containers are stored separately, so it’s easier to
distinguish between them in the template. The return object sets the MIME type of the response to
“text/plain”, which allows you to download the URL directly to the configuration file.

Listing 5-10. The view method

from www_example_com.httpconfig.models import *
from django.http import HttpResponse, HttpResponseRedirect
from django.shortcuts import render_to_response, get_object_or_404

Create your views here.

def full_config(request, object_id=None):
 if not object_id:
 vhosts = VirtualHost.objects.all()
 else:
 vhosts = VirtualHost.objects.filter(id=object_id)
 vhosts_list = []
 for vhost in vhosts:
 vhost_struct = {}
 vhost_struct['vhost_data'] = vhost
 vhost_struct['orphan_directives'] = \

vhost.vhostdirective_set.filter(directive__is_container=False).filter(parent=None)
 vhost_struct['containers'] = []
 for container_directive in \
 vhost.vhostdirective_set.filter(directive__is_container=True):
 vhost_struct['containers'].append({'parent': container_directive,
 'children': \
 vhost.vhostdirective_set.filter(parent=container_directive),
 })
 vhosts_list.append(vhost_struct)
 return render_to_response('full_config.txt',
 {'vhosts': vhosts_list},
 mimetype='text/plain')

■Note Please note that the backslash character in the examples is used to wrap the long lines of code. This is a
valid Python language syntax that allows you to format your code for a greater readability. If you are re-typing
these examples, please maintain the same code structure and layout. Do not confuse the backslash characters
with the line wrapping symbol (), which indicates that the line was too long to fit on a page and has been
wrapped. You must join the lines split by this symbol when reusing the examples.

CHAPTER 5 ■ MAINTAINING A LIST OF VIRTUAL HOSTS IN AN APACHE CONFIGURATION FILE

156

As you know from Chapters 3 and 4, the templates are stored in the templates subdirectory in the
application folder. Listing 5-11 shows the full_config.txt template.

Listing 5-11. The Virtual Host view template

Virtual host configuration section
automatically generated - do not edit

{% for vhost in vhosts %}

{{ vhost.vhost_data.description }}

{% if vhost.vhost_data.is_template %}#{% endif %} <VirtualHost {{
vhost.vhost_data.bind_address }}>
{% if vhost.vhost_data.is_template %}#{% endif %} {% for orphan_directive in
vhost.orphan_directives %}
{% if vhost.vhost_data.is_template %}#{% endif %} {{ orphan_directive }}
{% if vhost.vhost_data.is_template %}#{% endif %} {% endfor %}
{% if vhost.vhost_data.is_template %}#{% endif %} {% for container in
vhost.containers %}
{% if vhost.vhost_data.is_template %}#{% endif %} {{ container.parent|safe }}
{% if vhost.vhost_data.is_template %}#{% endif %} {% for child_dir in
container.children %}
{% if vhost.vhost_data.is_template %}#{% endif %} {{ child_dir }}
{% if vhost.vhost_data.is_template %}#{% endif %} {% endfor %}
{% if vhost.vhost_data.is_template %}#{% endif %} {{
container.parent.close_tag|safe }}
{% if vhost.vhost_data.is_template %}#{% endif %} {% endfor %}
{% if vhost.vhost_data.is_template %}#{% endif %} </VirtualHost>

After you’ve made all the modifications you should be able to navigate to the web site URL (in our

example this would be http://www.example.com/), and the result should be a section of the
automatically generated Apache configuration file that contains the Virtual Host definitions, as shown
in Listing 5-12. Note that the templates are also included, but are commented out and thus will be
ignored by the web server.

Listing 5-12. A sample configuration file

Virtual host configuration section
automatically generated - do not edit

http://www.example.com

CHAPTER 5 ■ MAINTAINING A LIST OF VIRTUAL HOSTS IN AN APACHE CONFIGURATION FILE

157

My test server 1

 <VirtualHost *>
 ServerName www.apress.com
 <Directory />
 AcceptPathInfo Off
 AddDefaultCharset Off
 </Directory>
 </VirtualHost>

Another test server

<VirtualHost *:8080>

ServerName www.google.com

ServerAlias www.1e100.net

</VirtualHost>

Summary
In this chapter we discussed how to modify the default Django administration application to make it
more user-friendly and suit your object models. Key points to remember:

• The object listing can include any model properties as well as custom-defined functions.

• The custom-defined functions in the object list can also generate HTML output.

• You can add custom actions to the object list administration page.

• If your model has many fields, they can be rearranged into logical groups.

• You can include the child model in the parent edit page as an inline fieldset.

http://www.apress.com
http://www.google.com
http://www.1e100.net

C H A P T E R 6

■ ■ ■

159

Gathering and Presenting Statistical

Data from Apache Log Files

This chapter covers the architecture and implementation of plug-in based applications. As an example,
we’re going to build a framework for analyzing Apache log files. Rather than creating a monolithic
application, we’ll use the modular approach. Once we have a base framework, we’ll create a plug-in
for it that performs the analysis based on the geographical location of the requestor.

Application Structure and Functionality
In the data mining and statistics gathering area, it is difficult to come up with a single application that
suits the requirements of multiple users. Let’s take the analysis of Apache web server logs as an
example. Each request that is received by the web server is written to a log file. There are several
different data fields written in each log line, along with the timestamp when the request came in.

Let’s imagine you’ve been asked to write an application that analyzes the log files and produces a
report. This is the extent of a typical request that comes from the users who are interested in the
statistical information. Obviously, there is not much you can do with this request, so you ask for more
information, such as what exactly the users want to see on their report. Now the hypothetical users are
getting more involved in the design phase, and they tell you that they want to see the total amount of
downloads for a particular file. Well, that’s easy to do. But then you get another request that asks for
per-hour statistics of the site hits. You script that in. Then there’s a request to correlate the time of the
day with the browser type. And the list goes on and on. Even if you’re writing the tools for one
particular organization, the requirements are too diverse and impossible to capture at the
requirement-gathering phase. So what should you do in this situation?

Wouldn’t it be nice to have a generic application that could be extended with modules that
specialize in extracting and processing the information? Each module would be responsible for
performing the specific calculations and producing the reports. These modules could be added and
removed as and when required, without affecting the functionality of other modules, and more
important, without requiring any changes to the main application. This type of modular structure is
often referred to as the plug-in architecture.

A plug-in is a small piece of software that extends the functionality of the main application. This
technique is very popular and used in many different applications. A good example is the web browser.
Most of the popular web browsers on the market support plug-ins. A web page may contain an
embedded Adobe Flash movie, but the browser itself doesn’t know (and doesn’t need to know) how to
handle this type of file. So it looks for a plug-in that has the capability to process and display the Adobe
Flash file. If it finds such a plug-in, it passes the file object to it for processing. If it can’t find a plug-in,
the object is simply not displayed to the end user. The absence of the appropriate plug-in does not
prevent the web page from being displayed.

CHAPTER 6 ■ GATHERING AND PRESENTING STATISTICAL DATA FROM APACHE LOG FILES

160

We’ll use this approach to build the application for analyzing Apache logs. Let’s begin with the
requirements for the particular statistical analysis tasks for the application.

Application Requirements
We need to implement two main requirements in our application:

• The main application will be responsible for parsing the Apache log files and extracting
the fields from each log line. The log line format may differ between web server
installations, so the application should be configurable to match the log file format.

• The application should be able to discover the installed plug-in modules and pass the
extracted fields to the appropriate plug-in module for the further processing. Adding new
plug-in modules should not have any effect on the functionality of the existing modules
and the functionality of the main application.

Application Design
The requirements imply that the application should be split into two parts:

Main application: The application will parse the log files from the list of directories
supplied as a command-line argument to it. Each log file will be processed one line at
a time. The application does not guarantee that the files are processed in
chronological order. Each log line is split in word boundaries, and the field separator
is the space character. It is possible that some fields are will have space characters in
their contents; such fields must be enclosed in double quotes. For ease of use, the
fields will be identified by the corresponding log format field codes, as described in
the Apache documentation.

Plug-in manager component: The plug-in manager is responsible for discovering and
registering the available plug-in modules. Only the special Python classes will be
treated as plug-in modules. Each plug-in exposes the log fields it’s interested in.
When the main application parses the log files, it will check the subscribed plug-in
table and pass the required information to the relevant plug-ins.

Next, let’s look at how we can implement the plug-in framework in Python.

Plug-in Framework Implementation in Python
There’s good and bad news when it comes to the plug-in framework implementation in Python. The
bad news is that there is no standard approach in implementing the plug-in architecture. There are
several different techniques, as well as commercial and open source products to use, but they each
approach the problem differently. Some are better in one area, but may fall short in other areas. The
way you choose to implement this architecture largely depends on what you want to achieve.

The good news is that there is no de facto standard for implementing the plug-in framework, so
we get to write our own! As we write the implementation, you’ll learn several new things about the
Python language and programming techniques, such as class type inspection, duck typing, and
dynamic module loading.

Before we dive into the technical details, let’s establish exactly what a plug-in is and how it is
related to the main, or host, application.

CHAPTER 6 ■ GATHERING AND PRESENTING STATISTICAL DATA FROM APACHE LOG FILES

161

The Mechanics of a Plug-in Framework
The host application processes the data it receives—whether it’s a log file for the log-parsing engine,
an HTML file for a web browser, or another type of file. Its work is completely unaffected by the
presence of the plug-ins or their functionality. However, the host application provides a service to the
plug-in modules.

In the case of the log-processing application, its sole responsibility is reading the data from the
files, recognizing the log format, and converting that data into the appropriate data structures. This is
the service that it provides to the plug-in modules. The main application does not care whether the
data it has produced is used by any of the modules or how it is used.

The plug-in modules largely depend on the host application. Let’s take the plug-in that counts the
number of requests as an example. This plug-in cannot perform any counting unless it receives the
data. So the plug-in is rarely useful without the main application.

You may wonder why you should bother with this separation at all. Why can’t the plug-in modules
read the data files and do whatever they need to do with the data? As we discussed, there might be
many different applications performing different calculations with the same data. Having each of
those modules implement the same data reading and parsing functionality would be inefficient from
the development perspective—it takes time to redevelop the same process again and again.

Obviously, this is a rather simplistic example. Quite often, the end user does not notice this
separation between the main application and the plug-in modules. The user experiences the
application as the combined result of the application and the plug-in.

Let’s consider the web browser example again. The HTML page is rendered by the browser engine
and presented to the user. The plug-in modules render the various components within the page. For
example, the Adobe Flash movie is rendered by the Flash plug-in, and the Windows Media files are
rendered by the Windows Media plug-in module. The user sees only the end result: the rendered web
page. Adding new plug-ins to the system simply extends the functionality of the application. After
deploying a new plug-in, users can start visiting web sites that did not display correctly (or at all)
before the plug-in was installed.

Another great example of the plug-in based application is the Eclipse project (http://
eclipse.org/). It started as a Java development environment, but has grown into a platform that
supports multiple languages, integrates with various version control systems, and provides for
modeling and reporting—all thanks to its plug-in architecture. The basic application doesn’t do a lot,
but you can extend it and tailor it to your needs by installing the appropriate plug-ins. So the same
“application” might do completely different things. To me, it’s a Python development platform; to
someone else, it’s a UML modeling tool.

Interface Model
As you might have already guessed, the host application and the plug-in modules are typically very
loosely coupled entities. Therefore, a protocol must be defined for the interaction between those two
entities. Usually, the host application exposes the well-documented service interfaces, such as function
names. The plug-in methods call them whenever they need anything from the host application.

Similarly, the plug-ins also expose their interface, so that the host application can send the data to
them or notify them about some occurring events. This is where matters get slightly more complicated.
The plug-in modules usually implement functionality that the host application may not be aware of.
Therefore, the plug-ins may announce their capabilities, such as a capability to display a Flash movie
file. The capability type is usually associated with the module function name, so that the main
application knows which method implements the capability.

As an example, let’s consider a simplistic browser model. We have a basic host application that
receives the HTML page and also downloads all linked in resources. Each resource has a MIME type
associated with it. The Flash objects have the application/x-shockwave-flash type. When the

http://eclipse.org
http://eclipse.org

CHAPTER 6 ■ GATHERING AND PRESENTING STATISTICAL DATA FROM APACHE LOG FILES

162

browser comes across such an object, it will look in its plug-in registry and search for a plug-in that
claims to have a capability to process this type of file. Once the plug-in and the method name are
found, the host application calls that method and passes the file object to it.

Plug-in Registration and Discovery
So what exactly is this plug-in registry that the host application checks? In simple terms, it’s a list of all
the plug-in modules that have been found and loaded together with the main application. This list
usually contains the object instances, their capabilities, and the functions that implement these
capabilities. The registry is a central location to store all plug-in instances, so that the host application
can find them during runtime.

The plug-in registry is created during the plug-in discovery process. The discovery process varies
between the different implementations, but usually involves finding the appropriate application files
and loading them into memory. Typically, there is a separate process within the host application that
deals with the plug-in management tasks, such as the discovery, registration, and control. Figure 6-1
shows an overview of all the components and their relationships.

Figure 6-1. Typical plug-in architecture

CHAPTER 6 ■ GATHERING AND PRESENTING STATISTICAL DATA FROM APACHE LOG FILES

163

Creating the Plug-in Framework
As I’ve mentioned, there are several ways of implementing the plug-in based architecture in Python.
Here, I’m going to discuss one of the simplest methods, which is flexible enough to suit the needs of
most small applications.

■Note Dr André Roberge has made a very descriptive presentation at PyCon 2009 comparing several different
plug-in mechanisms. You can find his presentation, titled “Plugins and monkeypatching: increasing flexibility,
dealing with inflexibility,” at http://blip.tv/file/1949302/. If you decide that you need a more
sophisticated implementation, take a look at the implementations provided by the Zope (http://zope.org/),
Grok (http://grok.zope.org/), and Envisage (http://code.enthought.com/projects/envisage/)
frameworks. These products are enterprise-grade plug-in frameworks that will allow you to build extensible
applications. The downside of using them is that they are usually too big and complicated for simple applications.

Discovery and Registration
The discovery process is based on the fact that the base class can find all its child classes. Here’s a
simple example:

>>> class Plugin(object):
... pass
...
>>> class MyPlugin1(Plugin):
... def __init__(self):
... print 'plugin 1'
...
>>> class MyPlugin2(Plugin):
... def __init__(self):
... print 'plugin 2'
...
>>> Plugin.__subclasses__()
[<class '__main__.MyPlugin1'>, <class '__main__.MyPlugin2'>]
>>>

This code creates a base class and then defines two more classes that inherit from the base class.

We now can find all classes that have inherited from the main class by calling the base class built-in
method __subclasses__(). This is a very powerful mechanism for finding classes without knowing
their names, or even the names of the module from which they have been loaded.

Once the classes have been discovered, we can create the instances of each class and add them to a
list. This is the registration process. After all the objects have been registered, the main program can
start calling their methods:

>>> plugins = []
>>> for cls in Plugin.__subclasses__():
... obj = cls()
... plugins.append(obj)

http://blip.tv/file/1949302
http://zope.org
http://grok.zope.org
http://code.enthought.com/projects/envisage

CHAPTER 6 ■ GATHERING AND PRESENTING STATISTICAL DATA FROM APACHE LOG FILES

164

...
plugin 1
plugin 2
>>> plugins
[<__main__.MyPlugin1 object at 0x10048c8d0>, <__main__.MyPlugin2 object at
0x10048c910>]
>>>

So the discovery and registration process flow is as follows:

• All plug-in classes inherit from one base class that is known to the plug-in manager.

• The plug-in manager imports one or more modules that contain the plug-in class
definitions.

• The plug-in manager calls the base class method __subclasses__() and discovers all
loaded plug-in classes.

• The plug-in manager creates instances.

We now have several problems to resolve. First, the plug-in classes need to be stored in a separate

location, preferably in separate files. This allows for deploying new plug-ins and removing obsolete
ones without worrying that you might accidentally overwrite the application files. So we need a
mechanism to import arbitrary Python modules that contain the plug-in class definitions. You can use
the Python built-in method __import__ to load any module by its name at runtime, but the module file
needs to be in the system search path.

For the sample application. we’ll use the following directory and file structure:

http_log_parser.py <-- host application
manager.py <-- plug-in manager module
plugins/ <-- directory containing all plug-in modules
 plugin_<name>.py <-- module containing one or more plug-in
classes
logs/ <-- directory containing the log files
 <any name> <-- any file is assumed to be a log file

This directory structure is assumed to be the default, but we’ll allow the paths to be modified, so

you can change them to better suit your requirements. The plug-in modules follow this particular
naming convention, so that it is easier to distinguish them from the normal Python scripts. Each
module must import the Plugin class from the manager.py module.

Let’s start with the manager class initialization method. We’re going to allow the host application
to pass any optional initialization parameters to the plug-in objects, so that they can perform any
runtime initialization they need. There is one issue, however. We don’t know what those parameters
can be, and if there are any at all. So instead of defining the exact argument list structure, we’ll pass
only the keyword arguments. The manager’s __init__() method takes a dictionary as an argument,
and passes this on to the plug-in method initialization function.

We also need to discover the location of the plug-in files. It can be passed as an argument to the
manager’s constructor, in which case, it should be an absolute path; otherwise, we’ll assume a
subdirectory called /plugins/ relative to the location of the script:

CHAPTER 6 ■ GATHERING AND PRESENTING STATISTICAL DATA FROM APACHE LOG FILES

165

class PluginManager():
 def __init__(self, path=None, plugin_init_args={}):
 if path:
 self.plugin_dir = path
 else:
 self.plugin_dir = os.path.dirname(__file__) + '/plugins/'
 self.plugins = []
 self._load_plugins()
 self._register_plugins(**plugin_init_args)

The next step is to load all plug-in files as modules. Each Python application can be loaded as a

module, so all its functions and classes become available to the main application. We cannot use the
conventional import statement to import the files, because their names become known to us only
during runtime. So we’ll use the built-in method __import__, which allows us to use a variable
containing the module name. Otherwise, this method is identical to the import method, which means
that the module it’s trying to load should be located in a search path. Obviously, this is not the case.
Therefore, we need to add the directory containing the plug-in modules to the system path. We can do
this by appending the directory to the sys.path array:

def _load_plugins(self):
 sys.path.append(self.plugin_dir)
 plugin_files = [fn for fn in os.listdir(self.plugin_dir) if
fn.startswith('plugin_') and fn.endswith('.py')]
 plugin_modules = [m.split('.')[0] for m in plugin_files]
 for module in plugin_modules:
 m = __import__(module)

Finally, we discover the classes that inherit from the base class using the __subclasses__ method

and append the initialized objects to the plug-in list. Note how we pass the keyword arguments to the
plug-ins:

def _register_plugins(self, **kwargs):
 for plugin in Plugin.__subclasses__():
 obj = plugin(**kwargs)
 self.plugins.append(obj)

We’re using the keyword argument list here because we don’t know yet what, if any, parameters

will be required or used by the plug-in classes. Furthermore, the modules may use or recognize
different arguments. By using the keyword arguments, we allow the modules to respond to only those
arguments that interest them. Listing 6-1 shows the full listing of the plug-in manager.

Listing 6-1. Plug-in Discovery and Registration

#!/usr/bin/env python

import sys
import os

CHAPTER 6 ■ GATHERING AND PRESENTING STATISTICAL DATA FROM APACHE LOG FILES

166

class Plugin(object):
 pass

class PluginManager():
 def __init__(self, path=None, plugin_init_args={}):
 if path:
 self.plugin_dir = path
 else:
 self.plugin_dir = os.path.dirname(__file__) + '/plugins/'
 self.plugins = []
 self._load_plugins()
 self._register_plugins(**plugin_init_args)

 def _load_plugins(self):
 sys.path.append(self.plugin_dir)
 plugin_files = [fn for fn in os.listdir(self.plugin_dir) if \
 fn.startswith('plugin_') and fn.endswith('.py')]
 plugin_modules = [m.split('.')[0] for m in plugin_files]
 for module in plugin_modules:
 m = __import__(module)

 def _register_plugins(self, **kwargs):
 for plugin in Plugin.__subclasses__():
 obj = plugin(**kwargs)
 self.plugins.append(obj)

This is all we need to initialize all plug-in modules. As soon as we create an instance of the

PluginManager class, it will automatically discover the available modules, load them, initialize all
plug-in classes, and put the initialized objects in the list:

plugin_manager = PluginManager()

Defining the Plug-in Modules
So far, we have only two requirements that the plug-in classes must satisfy: each class must inherit
from the base Plugin class, and their __init__ method must accept the keyword arguments. The class
may choose to completely ignore what has been passed to it during the initialization, but it still must
accept the arguments; otherwise, we’ll get the invalid argument list exception when the main
application passes the arguments we don’t expect to receive.

The plug-in module skeleton looks like this:

#!/usr/bin/env python

from manager import Plugin

class CountHTTP200(Plugin):

CHAPTER 6 ■ GATHERING AND PRESENTING STATISTICAL DATA FROM APACHE LOG FILES

167

 def __init__(self, **kwargs):
 pass

This plug-in obviously doesn’t do much yet. We now need to define the interfaces between the

main application and the plug-in. In our log-parsing application example, the communication is going
to be only one way: the application sends the messages (log information) to the plug-ins for further
processing. In addition, the application may send other commands or signals that inform the plug-in
objects about the current state of the application. So now we need to create the host application.

Log-Parsing Application
As we’ve discussed, the host application does not and should not depend on the functionality and the
presence of the accompanying plug-ins. It provides a set of services that can be consumed by the plug-
ins. In our example, the main application is responsible for handling the Apache access log files. In
order to understand the best way to handle the log information, let’s first look at the way Apache logs
the request data.

Format of Apache Log Files
The format of a log file is defined by the LogFormat directive in the Apache configuration file, which is
typically either /etc/apache2/apache2.conf or /etc/httpd/conf/httpd.conf, depending on your
Linux distribution. Here is an example:

LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-Agent}i\"" combined

This configuration line is split into three parts. First is the directive name. The second part is the

format string that defines the structure of the log line. We’ll come back to the format string definitions
shortly. The last part is the name of the logging format.

You can define as many different logging line formats as you like, and then assign them to the
logging file definitions as necessary. For example, you can add the following directive to a virtual host
definition section, which instructs the Apache web server to write the log lines in the format described
by the combined log format directive, into a log file called logs/access.log:

CustomLog logs/access.log combined

You can have multiple CustomLog directives, each with a different file name and the format

directive.

■Note Refer to the official Apache documentation for more information about the log files. You can find it at
http://httpd.apache.org/docs/2.2/logs.html.

The format string that is used with the LogFormat configuration statement contains one or more
directives that start with the % character. When a log line is written to the log file, the directives are
replaced with the corresponding values. Table 6-1 lists some of the most commonly used directives.

http://httpd.apache.org/docs/2.2/logs.html

CHAPTER 6 ■ GATHERING AND PRESENTING STATISTICAL DATA FROM APACHE LOG FILES

168

Table 6-1. Commonly Used Log Format Directives

Directive Description

%a IP address of the remote host.

%A IP address of the local host.

%B The response size in bytes. HTTP header size is not included.

%b Same as %B, but the - sign is used instead of 0 if the response is empty.

%{cookie_name}C The value of the cookie_name cookie.

%D The request processing time in microseconds.

%h The remote host.

%H The request protocol (HTTP 1.0, 1.1, etc.).

%{header_field}i The contents of the HTTP request field. These are commonly used HTTP
request headers:

Referer: If present, identifies the referring URL
User-Agent: The string identifying the user client software
Via: List of the proxies through which the request was sent
Accept-Language: List of language codes accepted by the client
Content-Type: Request MIME content type

%l Remote logname from the remote identd process, if running. This is usually -,
unless the mod_ident module is installed. a

%m The request method (POST, GET, etc.).

%{header_field}o The contents of the HTTP header variable in the response. See the %{}I
definition for more details.

%P The process ID of the Apache web server child that served the request.

%q The query string (only for GET requests), if it exists. The string is prepended
with the ? character.

%r The first line of the request. This usually includes the request method, the
request URL, and the protocol definition.

%s The status of the response, such as 404 or 200. This is the status of the original (!)
request. If there are any internal redirects configured, this will be different
from the final status that is sent back to the requestor.

CHAPTER 6 ■ GATHERING AND PRESENTING STATISTICAL DATA FROM APACHE LOG FILES

169

Directive Description

%>s The last status of the request. In other words, this is what the client receives.

%t The timestamp of when the request was received. This is a standard English
format, which looks like [20/May/2010:07:26:23 +0100]. You can modify the
format. See the %{format}t directive definition for details.

%{format}t The timestamp as defined by the format string. The format is defined using the
strftime directives.

%T The request serving time, in seconds.

%u The remote user if authenticating using the auth module.

%U The URL part of the request. The query string is not included.

aEven if both the remote process and the Apache module are present, I would not recommend relying on
this information, as the identd protocol is considered insecure.

Log File Reader
As you can see, the log format can vary depending on the log format definition in the Apache
configuration. We need to accommodate the differences in the formats. To make it easier to
communicate with the plug-in modules, we will map the values extracted from the log lines into a data
structure that can be passed on to the plug-in code.

First, we need to map the Apache log format directives to the more descriptive strings that can be
used as the dictionary keys. Here is the mapping table that we will use:

DIRECTIVE_MAP = {
 '%h': 'remote_host',
 '%l': 'remote_logname',
 '%u': 'remote_user',
 '%t': 'time_stamp',
 '%r': 'request_line',
 '%>s': 'status',
 '%b': 'response_size',
 '%{Referer}i': 'referer_url',
 '%{User-Agent}i': 'user_agent',
 }

When we initialize the log reader object, we give it two optional arguments. The first argument

sets the log format line as it is defined in the Apache configuration. The default will be assumed if no
argument string is supplied. The other argument indicates the location of the log files. Once we have
identified the log line format, we will create a list of the alternative directive names as defined in our
mapping table. The keywords in the list will be in exactly the same order as the directives appear in
the log format string.

CHAPTER 6 ■ GATHERING AND PRESENTING STATISTICAL DATA FROM APACHE LOG FILES

170

The following initialization function performs all the steps described:

class LogLineGenerator:
 def __init__(self, log_format=None, log_dir='logs'):
 # LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-Agent}i\""
combined
 if not log_format:
 self.format_string = '%h %l %u %t %r %>s %b %{Referer}i %{User-Agent}i'
 else:
 self.format_string = log_format
 self.log_dir = log_dir
 self.re_tsquote = re.compile(r'(\[|\])')
 self.field_list = []
 for directive in self.format_string.split(' '):
 self.field_list.append(DIRECTIVE_MAP[directive])

The log strings usually follow a simple pattern, with fields separated by space characters. If a field

value contains space characters, it will be surrounded by the quote characters. Examples are the %r and
%t fields, as you can see from the following sample log lines:

220.181.7.76 - - [20/May/2010:07:26:23 +0100] "GET / HTTP/1.1" 200 29460 "-"
"Baiduspider+(+http://www.baidu.com/search/spider.htm)"
220.181.7.116 - - [20/May/2010:07:26:43 +0100] "GET / HTTP/1.1" 200 29460 "-"
"Baiduspider+(+http://www.baidu.com/search/spider.htm)"
209.85.228.85 - - [20/May/2010:07:26:49 +0100] "GET /feeds/latest/ HTTP/1.1" 200
45088 "-"\
 "FeedBurner/1.0 (http://www.FeedBurner.com)"
209.85.228.84 - - [20/May/2010:07:26:57 +0100] "GET /feeds/latest/ HTTP/1.1" 200
45088 "-"\
 "FeedBurner/1.0 (http://www.FeedBurner.com)"

■Note Remember that the \ symbol indicates that the contents of the line have been wrapped. In the real log file,
the contents are on a single line.

We are going to use the built-in Python module for parsing comma-separated values (CSV) format
files. Although the file format implies that the values are separated by commas, the library is flexible
enough to allow you to specify any character as a separator. In addition to the separator, you can
specify the quote character. In our case, the separator is the space character, and the quote character
(used to wrap the request and user agent strings) is the double quote character.

I’m guessing that you’ve already noticed a problem here. The time field contains a space, but it is
not surrounded by double quotes. Instead, it is surrounded by square brackets. Unfortunately, the CSV
library does not allow specifying a selection for multiple quote characters, so we’ll need to use a
regular expression to replace all occurrences of the square brackets with double quotes. The regular
expression that matches the square brackets has been defined in the class constructor method. We’ll
use the precompiled regular expression later in the code:

http://www.baidu.com/search/spider.htm
http://www.baidu.com/search/spider.htm
http://www.FeedBurner.com
http://www.FeedBurner.com

CHAPTER 6 ■ GATHERING AND PRESENTING STATISTICAL DATA FROM APACHE LOG FILES

171

self.re_tsquote = re.compile(r'(\[|\])')

Now let’s write a simple file reader that does on-the-fly character translation, replacing the

square brackets with the double quotes. This is a generator function that you can iterate through. We’ll
talk about the generator function in more detail in the next chapter.

def _quote_translator(self, file_name):
 for line in open(file_name):
 yield self.re_tsquote.sub('"', line)

We also need to have a function that lists all the files it finds in the specified log directory. The

following function lists all the files and returns each file name that it finds along with the directory
name. This function lists only the file objects, ignoring any directories.

def _file_list(self):
 for file in os.listdir(self.log_dir):
 file_name = "%s/%s" % (self.log_dir, file)
 if os.path.isfile(file_name):
 yield file_name

Finally, we need to extract all fields from the log lines that we read in and create a dictionary

object. The dictionary keys are the directive names from the mapping table we created earlier, and the
values are the fields extracted from the log line. This may sound like a complicated task, but it actually
isn’t, because the CSV library provides this functionality for us. The initialized csv.DictReader class
returns an iterator object that iterates through all lines returned by the first argument object. In our
case, this object is the file reader method (_quote_translator) that we wrote earlier.

The next argument to the DictReader class is the list of the dictionary keys. The extracted fields
will be mapped to those names. The two additional parameters specify the separator and the quote
symbols.

reader = csv.DictReader(self._quote_translator(file),
 fieldnames=self.field_list,
 delimiter=' ',
 quotechar='"')

Now we can iterate through the resulting object, which will return a new dictionary of the mapped

values. Listing 6-2 shows the full listing of the log reader class, along with the required modules.

Listing 6-2. The Log File Reader Class

class LogLineGenerator:
 def __init__(self, log_format=None, log_dir='logs'):
 # LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-Agent}i\""
combined
 if not log_format:
 self.format_string = '%h %l %u %t %r %>s %b %{Referer}i %{User-Agent}i'

CHAPTER 6 ■ GATHERING AND PRESENTING STATISTICAL DATA FROM APACHE LOG FILES

172

 else:
 self.format_string = log_format
 self.log_dir = log_dir
 self.re_tsquote = re.compile(r'(\[|\])')
 self.field_list = []
 for directive in self.format_string.split(' '):
 self.field_list.append(DIRECTIVE_MAP[directive])

 def _quote_translator(self, file_name):
 for line in open(file_name):
 yield self.re_tsquote.sub('"', line)

 def _file_list(self):
 for file in os.listdir(self.log_dir):
 file_name = "%s/%s" % (self.log_dir, file)
 if os.path.isfile(file_name):
 yield file_name

 def get_loglines(self):
 for file in self._file_list():
 reader = csv.DictReader(self._quote_translator(file),
 fieldnames=self.field_list,
 delimiter=' ', quotechar='"')
 for line in reader:
 yield line

We now can create an instance of the generator class and iterate through all log lines from all the

files in the specified directory:

log_generator = LogLineGenerator()
for log_line in log_generator.get_loglines():
 print "-" * 20
 for k, v in log_line.iteritems():
 print "%20s: %s" % (k, v)

This will produce a result similar to the following:

 status: 200
 remote_user: -
 request_line: GET /posts/7802/ HTTP/1.1
 remote_logname: -
 referer_url: -
 user_agent: Mozilla/5.0 (compatible; Googlebot/2.1;
+http://www.google.com/bot.html)
 response_size: 26507
 time_stamp: 20/May/2010:11:57:55 +0100
 remote_host: 66.249.65.40

http://www.google.com/bot.html

CHAPTER 6 ■ GATHERING AND PRESENTING STATISTICAL DATA FROM APACHE LOG FILES

173

 status: 200
 remote_user: -
 request_line: GET / HTTP/1.1
 remote_logname: -
 referer_url: -
 user_agent: Sogou web
spider/4.0(+http://www.sogou.com/docs/help/webmasters.htm#07)
 response_size: 26130
 time_stamp: 20/May/2010:11:58:47 +0100
 remote_host: 220.181.94.216

 status: 200
 remote_user: -
 request_line: GET /posts/7803/ HTTP/1.1
 remote_logname: -
 referer_url: -
 user_agent: Mozilla/5.0 (compatible; Googlebot/2.1;
+http://www.google.com/bot.html)
 response_size: 29040
 time_stamp: 20/May/2010:11:59:00 +0100
 remote_host: 66.249.65.40

Calling the Plug-in Methods
We now need to define a way to pass this information to the plug-in modules. We have two problems to
resolve:

• We need to know which methods of the plug-in object we can call.

• We need to know when to call them. For example, some plug-ins may not implement the
methods.

We need to be able to identify the type of a plug-in, because the type defines what a plug-in is

capable of doing. Knowing the plug-in capabilities, we will know when to call the appropriate plug-in
methods. Going back to the web browser example, some plug-ins are able to handle the image files;
others can handle the video content. It would be pointless to send the video content to the image-
processing plug-ins, because they wouldn’t know what to do with it. In other words, they are not
capable of handling that request.

We’ll begin by tackling the second problem. In the log-processing application, we’ll allow the
plug-ins to expose the keyword list to the plug-in manager. These keywords identify what type of
requests the plug-in is interested in receiving. This does not mean that it can handle those requests,
but at least the plug-in expresses its interest in them. Each request that is made from the host
application is also marked with a list of keywords. If the keyword sets overlap, then the request is
forwarded to the plug-in object. Otherwise, we don’t bother calling the plug-in, because it clearly is not
interested in receiving any requests of that type.

http://www.sogou.com/docs/help/webmasters.htm#07
http://www.google.com/bot.html

CHAPTER 6 ■ GATHERING AND PRESENTING STATISTICAL DATA FROM APACHE LOG FILES

174

Tagging the Plug-in Classes
The tagging on the plug-in class is simple. We’ll just add a property to the class definition, which is a
list of the tags. We may leave this list empty, in which case the plug-in will receive only the untagged
calls:

class CountHTTP200(Plugin):
 def __init__(self, **kwargs):
 self.keywords = ['counter']

We also need to modify the manager class, so that the keywords are registered along with each

plug-in object. So we’ll replace the plug-in registry list with the dictionary object, where the keys are
the plug-in objects and the values are their tag lists. If the plug-in does not define the keyword list,
we’ll assume the list is empty:

class PluginManager():
 def __init__(self, path=None, plugin_init_args={}):
 [...]
 self.plugins = {}

 [...]

 def _register_plugins(self, **kwargs):
 for plugin in Plugin.__subclasses__():
 obj = plugin(**kwargs)
 self.plugins[obj] = obj.keywords if hasattr(obj, 'keywords') else []

Plug-in Methods and the Call Mechanism
We now have all the plug-ins tagged, and, in theory, we should know which methods are available on
which plug-in objects. However, this approach is not very flexible. We’ve added the tags so the
functions are optimized and the plug-ins are not called unnecessarily. There still might be situations
when the plug-in announces its interest in some type of call, but does not implement the functions that
the host application associates with that set of keywords.

Since the host application and plug-in software are very loosely coupled and quite often
developed by completely different organizations, it is practically impossible to synchronize the
development progress of the two. For example, suppose that a host application is designed to call the
function_A() method on all plug-ins that announce their interest in the keyword foobar. Then the
host application is modified so that it calls the two methods function_A and function_B on all plug-
ins marked with the same keyword. However, some of the plug-ins may not be maintained, or they
simply may not be interested in implementing the new function—it’s sufficient to implement just the
single function for their purposes.

This may seem to be a problem, but it actually isn’t. The host application is going to call the
method without checking whether it’s available. If the plug-in implements that method, it will execute
it. If the method is not implemented and not defined, that’s fine—we simply ignore the exception. This
technique is called duck typing.

We’ll give the manager class the following new method, which will be responsible for calling the
plug-in methods. The main application will call this method with the name of the function that it wants
the plug-ins to run. Optionally, it can also pass the list of arguments and keywords. If the keywords are

CHAPTER 6 ■ GATHERING AND PRESENTING STATISTICAL DATA FROM APACHE LOG FILES

175

defined, the call will be dispatched only to the plug-ins that are marked with one or more keywords
from that list:

def call_method(self, method, args={}, keywords=[]):
 for plugin in self.plugins:
 if not keywords or (set(keywords) & set(self.plugins[plugin])):
 try:
 getattr(plugin, method)(**args)
 except:
 pass

Now we can finish writing our host application. Let’s replace the print statement that prints the

log line structure with the actual call to the plug-in manager call dispatcher method. We’ll call the
process() method in the main loop and pass in the log line structure as an argument. All plug-ins that
implement this method will receive the function call along with the keyword arguments. At the end of
the loop, we’ll call the report() function. The plug-ins that have anything to report now have an
opportunity to do so. If the plug-in is not designed to produce any reports, it will simply ignore the call.

def main():
 plugin_manager = PluginManager()
 log_generator = LogLineGenerator()
 for log_line in log_generator.get_loglines():
 plugin_manager.call_method('process', args=log_line)
 plugin_manager.call_method('report')

WHAT IS DUCK TYPING?

The term duck typing comes from James Whitcomb Riley’s quote, “When I see a bird that walks like a
duck and swims like a duck and quacks like a duck, I call that bird a duck.”

In object-oriented programming languages, duck typing means that the behavior of an object is
determined by the set of its available methods and properties, not its inheritance. In other words, we’re not
worried about the type of the object class, as long as the methods and properties we’re interested in are
present and available. Therefore, duck typing does not rely on object type tests.

When you need something from the object, you simply ask for it. If the object doesn’t know what you want
from it, an exception will be raised. This means that the object doesn’t know how to “quack” and therefore
it is not a “duck.” This method of “test and see what happens” is sometimes referred to as the Easier to
Ask for Forgiveness Than Permission (EAFP) principle. It’s best illustrated in the following sample code:

>>> class Cow():

... def moo(self):

... print 'moo..'

...

CHAPTER 6 ■ GATHERING AND PRESENTING STATISTICAL DATA FROM APACHE LOG FILES

176

>>> class Duck():

... def quack(self):

... print 'quack!'

...

>>> animal1 = Cow()

>>> animal2 = Duck()

>>>

>>> for animal in [animal1, animal2]:

... if hasattr(animal, 'quack'):

... animal.quack()

... else:

... print animal, 'cannot quack'

...

<__main__.Cow instance at 0x100491a28> cannot quack

quack!

>>>

>>> for animal in [animal1, animal2]:

... try:

... animal.quack()

... except AttributeError:

... print animal, 'cannot quack'

...

<__main__.Cow instance at 0x100491a28> cannot quack

quack!

>>>

In the first iteration, we explicitly check for the availability of the method (we ask for permission) before we
call the method. In the second iteration, we call the method without checking if it’s available. We then
catch the possible exception (we ask for forgiveness) and handle the absence of the method accordingly, if
at all.

CHAPTER 6 ■ GATHERING AND PRESENTING STATISTICAL DATA FROM APACHE LOG FILES

177

Plug-in Modules
We’re now in the position to start writing the plug-in modules and using the scripts to analyze the
Apache web server log files. In this section, we’ll create a script that counts all requests and sorts them
by the country from which they originated. We will use the GeoIP Python library to perform the IP-to-
country-name mappings.

■Note The GeoIP data is produced by the MaxMind company, which provides the databases for individual (free)
and commercial (paid for) use. You can find more information about MaxMind’s products and services at
http://maxmind.com/app/ip-location.

The GeoIP database attempts to provide the geographical information (such as country, city, and
coordinates) of the location where the IP address is located. This is useful for various purposes. For
example, it allows you to provide localized ad service, where you can display advertisements to users
depending on their location.

Installing the Required Libraries
The GeoIP database libraries are written in C, but there are Python bindings available as well. The
packages are available on most Linux platforms. For example, on a Fedora system, run the following
command to install these libraries:

$ sudo yum install GeoIP GeoIP-python

This will install the C libraries along with the helper tools and the Python bindings. The package

may include the initial database that contains the IP-to-country mapping data, but most likely, this
data will be out of date, as the database is normally updated every three to four weeks. There are two
databases that are free for personal use: the Countries database and the Cities database. I suggest
updating those two databases regularly if you want to have up-to-date information. The tools that can
fetch the latest version of the database are provided in the base package. Here’s how you fetch the
databases after you install the packages:

$ sudo touch /usr/share/GeoIP/GeoIP.dat
$ sudo touch /usr/share/GeoIP/GeoLiteCity.dat
$ sudo perl /usr/share/doc/GeoIP-1.4.7/fetch-geoipdata.pl
Fetching GeoIP.dat from
http://geolite.maxmind.com/download/geoip/database/GeoLiteCountry/GeoIP.dat.gz
GeoIP database updated. Old copy is at GeoIP.dat.20100521
$ sudo perl /usr/share/doc/GeoIP-1.4.7/fetch-geoipdata-city.pl
Fetching GeoLiteCity.dat from
http://geolite.maxmind.com/download/geoip/database/GeoLiteCity.dat.gz
GeoIP database updated. Old copy is at GeoLiteCity.dat.20100521

http://maxmind.com/app/ip-location
http://geolite.maxmind.com/download/geoip/database/GeoLiteCountry/GeoIP.dat.gz
http://geolite.maxmind.com/download/geoip/database/GeoLiteCity.dat.gz

CHAPTER 6 ■ GATHERING AND PRESENTING STATISTICAL DATA FROM APACHE LOG FILES

178

The reason for the touch command at the beginning is that if the .dat files are not present, the
tools will fail to download the new version, so you must create those files first.

Using the GeoIP Python Bindings
When the libraries are installed, they will look for the data files in the standard location (typically in
/usr/share/GeoIP/), so you don’t need to specify the location. You need to specify only the access
method:

import GeoIP

the data is read from the disk every time it’s accessed
this is the slowest access method
gi = GeoIP.new(GeoIP.GEOIP_STANDARD)
the data is cached in memory
gi = GeoIP.new(GeoIP.GEOIP_MEMORY_CACHE)

Once you initialize the data access object, you can start looking up the information:

>>> import GeoIP
>>> gi = GeoIP.new(GeoIP.GEOIP_MEMORY_CACHE)
>>> gi.country_name_by_name('www.apress.com')
'United States'
>>> gi.country_code_by_name('www.apress.com')
'US'
>>> gi.country_name_by_addr('4.4.4.4')
'United States'
>>> gi.country_code_by_addr('4.4.4.4')
'US'
>>>

If you want to retrieve the city information, you need to open the specific data file. You then can
perform the city data lookups as well:

>>> import GeoIP
>>> gi = GeoIP.open('/usr/share/GeoIP/GeoLiteCity.dat', GeoIP.GEOIP_MEMORY_CACHE)
>>> gir = gi.record_by_name('www.apress.com')
>>> for k, v in gir.iteritems():
... print "%20s: %s" % (k, v)
...
 city: Emeryville
 region_name: California
 region: CA
 area_code: 510
 time_zone: America/Los_Angeles
 longitude: -122.289703369
 metro_code: 807
 country_code3: USA

http://www.apress.com
http://www.apress.com
http://www.apress.com

CHAPTER 6 ■ GATHERING AND PRESENTING STATISTICAL DATA FROM APACHE LOG FILES

179

 latitude: 37.8342018127
 postal_code: 94608
 dma_code: 807
 country_code: US
 country_name: United States
>>>

Writing the Plug-in Code
We need to decide which methods we’re going to implement. We need to receive the information about
each log line that is being processed. Therefore, the plug-in must implement the process() method,
which will perform the country lookup and increase the appropriate counters. At the end of the loop, we
need to print a simple report that lists all the countries and sorts the list by the number of requests.

As you can see in Listing 6-3, we use only one field from the data structure and just ignore the rest
of the data.

Listing 6-3. The GeoIP Lookup Plug-in

#!/usr/bin/env python

from manager import Plugin
from operator import itemgetter
import GeoIP

class GeoIPStats(Plugin):

 def __init__(self, **kwargs):
 self.gi = GeoIP.new(GeoIP.GEOIP_MEMORY_CACHE)
 self.countries = {}

 def process(self, **kwargs):
 if 'remote_host' in kwargs:
 country = self.gi.country_name_by_addr(kwargs['remote_host'])
 if country in self.countries:
 self.countries[country] += 1
 else:
 self.countries[country] = 1

 def report(self, **kwargs):
 print "== Requests by country =="
 for (country, count) in sorted(self.countries.iteritems(),
 key=itemgetter(1), reverse=True):
 print " %10d: %s" % (count, country)

Save this file as plugin_geoiplookup.py in the plugins/ directory. (Actually, any name with the

plugin_ prefix and .py suffix will be recognized as a valid plug-in module.) Now if you run the main
application, you’ll get the result similar to the one in the following example, provided that you have a
sample log file in the logs/ directory.

CHAPTER 6 ■ GATHERING AND PRESENTING STATISTICAL DATA FROM APACHE LOG FILES

180

$./http_log_parser.py
== Requests by country ==
 382: United States
 258: Sweden
 103: France
 42: China
 31: Russian Federation
 9: India
 8: Italy
 7: United Kingdom
 7: Anonymous Proxy
 6: Philippines
 6: Switzerland
 2: Tunisia
 2: Japan
 1: Croatia

Summary
In this chapter, we wrote a simple yet extensible and powerful plug-in framework in Python. We also
implemented a simple Apache web server log parser and wrote a plug-in to count the number of
requests and group them by the country from which they originated.

Key points to remember:

• The plug-ins allow decoupling the main application from its extensions—plug-in
modules.

• The plug-in architecture typically consists of three components: the host application, the
plug-in framework, and the plug-in modules.

• The plug-in framework is responsible for finding and registering the plug-in modules.

• Any Python class can find the other classes that inherited from it, and this mechanism can
be used to find and group the classes. This property of the class can be used to find all
plug-in classes.

• You can use the MaxMind GeoIP database to find the physical location of an IP address.

C H A P T E R 7

■ ■ ■

181

Performing Complex Searches and

Reporting on Application Log Files

System administration duties often include installing and supporting various applications. These may be
either produced by open-source communities or developed in-house. There are also a wide variety of
languages used when developing those applications; common languages found these days would be
Java, PHP, Python, Ruby and (yes, some still are using it) Perl. In this chapter I am going to talk about
applications developed in Java as this seems to be the most common language selected by large
enterprises for their web applications. Java applications commonly run within the application server
container, such as Tomcat, Jetty, Websphere, or JBoss. You as a system administrator need to know
whether the application is running correctly. Every well-organized and structured application is
supposed to write its status to one or more log files; in the Java world, this is usually done via the log4j
adapter. By observing the log file, a system administrator can detect any faults and failures within the
application, which are commonly logged as exception stack traces. The logging of a full exception stack
trace usually indicates an unrecoverable error—an error that the application was not able to handle
itself. If you do not happen to have many requests, and the application is merely doing anything,
catching these exceptions and analyzing them can be done by hand. However, if you need to manage
hundreds of servers and there are tens of GBs of information produced, you surely need some
automated tools to gather and analyze the data for you. In this chapter I am going to explain how I
developed the open-source tool called Exctractor (no, this is not a typo, the name is constructed by
joining two words: exception and extractor) and how it functions.

Defining the Problem
Before proceeding let’s review the problem that this application will be trying to resolve. Every program
writes its running status to a log file. What exactly is being logged is up to developer who created the
application. There are no enforced standards on what to log, and even the format of the logging is
somewhat undefined. Although it’s not required, most log entries have time stamps and include a
severity level to indicate the importance of the message along with the actual text of the status message.
This is not enforced, and you may find that the log files you are dealing with have more attributes or
maybe even less. For example, some applications that I have come across don’t even bother logging a
time stamp.

Generally, well-developed Java applications follow more or less the same standard when logging
their status messages. Normally the messages are status reports written by the application that indicate
what the application is doing at the moment. In situations when the application runs into an undefined
state it will generate an exception, which will normally be logged with full execution status
information— the call stack.

CHAPTER 7 ■ PERFORMING COMPLEX SEARCHES AND REPORTING ON APPLICATION LOG FILES

182

I have created a simple web application that I’m going to use throughout this chapter to illustrate
various aspects of exception raising and analyzing different types of exceptions. Listing 7-1 is the source
code of this application. You can compile it with the javac tool and run it from within the Tomcat
application container. Beware that this application is to be used only as an example, as it potentially
allows any user to access any file on your system; the only limitation is your file system’s access rights
mechanism.

Listing 7-1. A Java program to illustrate application behavior

import java.io.*;
import java.util.*;
import java.text.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class FileServer extends HttpServlet {

 public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws IOException, ServletException
 {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();

 String fileName = request.getParameter("fn");
 if (fileName != null) {
 out.println(readFile(fileName));
 } else {
 out.println("No file specified");
 }

 }

 private String readFile(String file) throws IOException {
 StringBuilder stringBuilder = new StringBuilder();
 Scanner scanner = new Scanner(new BufferedReader(new FileReader(file)));

 try {
 while(scanner.hasNextLine()) {
 stringBuilder.append(scanner.nextLine() + "\n");
 }
 } finally {
 scanner.close();
 }
 return stringBuilder.toString();
 }
}

CHAPTER 7 ■ PERFORMING COMPLEX SEARCHES AND REPORTING ON APPLICATION LOG FILES

183

Listing 7-2 is an example of a Java stack trace, which has been generated by the web application
running in the Tomcat application container.

Listing 7-2. An example of a Java stack trace

Jan 18, 2010 8:08:49 AM org.apache.catalina.core.StandardWrapperValve invoke
SEVERE: Servlet.service() for servlet FileServer threw exception
java.io.FileNotFoundException: /etc/this_does_not_exist_1061 (No such file or
directory)
 at java.io.FileInputStream.open(Native Method)
 at java.io.FileInputStream.<init>(FileInputStream.java:137)
 at java.io.FileInputStream.<init>(FileInputStream.java:96)
 at java.io.FileReader.<init>(FileReader.java:58)
 at FileServer.readFile(FileServer.java:30)
 at FileServer.doGet(FileServer.java:21)
 at javax.servlet.http.HttpServlet.service(HttpServlet.java:690)
 at javax.servlet.http.HttpServlet.service(HttpServlet.java:803)
 at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter
(ApplicationFilterChain.java:269)
 at org.apache.catalina.core.ApplicationFilterChain.doFilter
(ApplicationFilterChain.java:188)
 at
org.apache.catalina.core.StandardWrapperValve.invoke(StandardWrapperValve.java:210)
 at
org.apache.catalina.core.StandardContextValve.invoke(StandardContextValve.java:172)
 at org.apache.catalina.core.StandardHostValve.invoke(StandardHostValve.java:127)
 at org.apache.catalina.valves.ErrorReportValve.invoke(ErrorReportValve.java:117)
 at
org.apache.catalina.core.StandardEngineValve.invoke(StandardEngineValve.java:108)
 at org.apache.catalina.connector.CoyoteAdapter.service(CoyoteAdapter.java:151)
 at org.apache.coyote.http11.Http11Processor.process(Http11Processor.java:870)
 at org.apache.coyote.http11.Http11BaseProtocol$Http11ConnectionHandler.
processConnection(Http11BaseProtocol.java:665)
 at
org.apache.tomcat.util.net.PoolTcpEndpoint.processSocket(PoolTcpEndpoint.java:528)
 at org.apache.tomcat.util.net.LeaderFollowerWorkerThread.runIt
(LeaderFollowerWorkerThread.java:81)
 at
org.apache.tomcat.util.threads.ThreadPool$ControlRunnable.run(ThreadPool.java:685)
 at java.lang.Thread.run(Thread.java:636)

If you take a closer look at the exception, you may notice that the application code tried to open a

file, but the file did not exist. Obviously, a well-written application should handle a simple case like a
missing file more gracefully than throwing an exception, but sometimes it is not feasible to build a check
for every possible scenario into the application logic. In the case of more complex applications, this may
not be possible at all.

CHAPTER 7 ■ PERFORMING COMPLEX SEARCHES AND REPORTING ON APPLICATION LOG FILES

184

Why We Use Exceptions
Language constructs such as events and signals are part of a normal program flow. Exceptions, by
contrast, indicate that something has gone wrong while executing the program, such as a function called
with wrong parameters so that the result cannot be calculated. For example, suppose we have a function
that divides two numbers and accepts them as parameters. Naturally, division by zero is not possible,
and should such a function receive an instruction to divide by zero it would have no idea what to do. So
a seemingly simple function becomes rather complicated; it has to check whether it can divide the two
numbers it is given and also return two values instead of one. One value is to indicate whether the
operation completed successfully, and the other holds the actual result. Alternatively, it could return
either a number if the operation was successful or a null object otherwise. In either case, the code that
called this function now has to be able handle both numbers and null objects as a result, rendering
simple arithmetic constructs into more complicated if ... else logic flows.

This is where exceptions come in. Instead of returning a special code that indicates the error,
functions that cannot complete their normal operation will simply raise an exception. At the moment
when an exception is raised, the program execution stops and the Java environment proceeds with the
exception-handling procedure. Exceptions can be “caught” by the application. Going back to the
division example, the whole calculation code can be wrapped in Java’s try ... catch construct. Then,
regardless of the point at which the code failed, and the specific function (such as division), the code
would catch any arithmetical exceptions and would know than the calculation couldn’t have been
completed.

Are Exceptions Always a Bad Sign?
The short answer is “no” and the slightly longer answer is “it depends.” The reason for an exception to
be raised is that something unexpected happened. Let’s say we have a web application that serves files
from our server. All files are linked from external pages, and the general assumption is that whoever
creates the listing would only list files that do exist. But, being human, we all make mistakes, and the
operator of the listing may have made a typo, so the resulting link would point to a file that does not
exist. Now if a user clicks on the link, the application tries to do exactly what it is told to—retrieve the file.
But the file does not exist and so the code that is responsible for reading in the file would fail and throw
an exception saying that the file does not exist.

Should the application check for the missing files and react appropriately? In this example probably
the answer is yes, but in more complicated situations it is not always possible to predict and write code
for every possible outcome. Even with simple applications like my file retriever service, it’s not always
possible to think about every possibility of what can wrong. As an example, let’s run the application as a
Tomcat user and assume that all files being written to the file system have permissions set such that
Tomcat users have read access to them. It’s been like that for a long time, and the application works
flawlessly. One day a new system administrator joins the crew and without knowing deploys a file with
different user permissions, and suddenly there’s a file access error. The file is not missing, but the
process that runs with Tomcat user permissions cannot read it. The developer has not thought of this
situation and so there’s no code to handle it. This is where exception handling is really helpful; the
application would encounter a situation that is different from a normal program flow and cannot handle
it, so the code raises an exception and either the system administrator or the developer can examine why
things have gone wrong.

Why We Should Analyze Exceptions
Now that we know exceptions in the logs aren’t always a bad sign, does that mean we should leave them
unhandled? Generally my point of view is that the logs files should contain as few exceptions as possible.
An occasional exception means that something exceptional has happened and we should investigate,

CHAPTER 7 ■ PERFORMING COMPLEX SEARCHES AND REPORTING ON APPLICATION LOG FILES

185

but if there are similar exceptions over a period of time that means that the event is not exceptional
anymore and is something commonplace. Therefore the application needs to be changed so that
handling such events becomes part of the normal program flow rather than an exceptional event.

Going back to my file reader example, the developer initially thought that there might be one
possible error that he needs to check for and that was a missing parameter. So he built the check into the
application logic:

if (fileName != null) {
 out.println(readFile(fileName));
} else {
 out.println("No file specified");
}

That’s a good strategy, as it may sometimes happen that the external references do not specify any

file name, but the application happily handles the situation.
Now let’s pretend for a moment that this has been running for a long time and no one has reported

any issues. But one day you decided to have a look at the application log file and noticed some unusual
exception stack traces that have never been logged before:

Jan 18, 2010 8:08:35 AM org.apache.catalina.core.StandardWrapperValve invoke
SEVERE: Servlet.service() for servlet FileServer threw exception
java.io.FileNotFoundException: /etc/this_does_not_exist_2 (No such file or
directory)
 at java.io.FileInputStream.open(Native Method)
...

This indicates that users are trying to reach a file that does not exist. You know that the only link to

your web service is from another page, so you go and fix it. How do you prevent this from happening
again? There’s nothing wrong with your application, but you might want to check and improve the
process of adding the new links to the external page so that it only points to the files that do exist.
Whether to build in a case for handling files that do not exist is entirely up to you, as there are no hard
rules defined about when and what should be handled in the application logic. My view is that if the
exception is highly unlikely to happen, it’s best to keep the application logic as simple as possible.

Now some time later you encounter yet another exception:

Jan 18, 2010 8:07:59 AM org.apache.catalina.core.StandardWrapperValve invoke
SEVERE: Servlet.service() for servlet FileServer threw exception
java.io.FileNotFoundException: /etc/shadow (Permission denied)
 at java.io.FileInputStream.open(Native Method)
...

This time it’s indicating that the file is present but with the wrong permissions. Again it’s time to

investigate why this is happening and fix the root cause of the issue, which isn’t always the application
but might well be something external to it. In this situation a new system administrator changed the file
permissions, and that broke the application.

As you can see from this simple real-life scenario, exceptions in the application log files do not
necessarily mean issues with the application that is generating them. To find the root cause of the issues
that are either directly or indirectly indicated by the exception logs you as a system administrator need
to know as much as possible about the various indicators. Having exception stack tracing is very useful,
but you also want to know when the exception first started to appear in the log files. What is the extent of
the problem—how many of the exceptions are you getting? If you are receiving a large number of them it

CHAPTER 7 ■ PERFORMING COMPLEX SEARCHES AND REPORTING ON APPLICATION LOG FILES

186

is probably not really an exceptional situation, and the application needs to be modified to handle it as
part of the application logic.

Parsing Complex Log Files
Parsing log files (or any other unstructured set of data) is a rather challenging task. Unlike structured
data files like XML or JSON, plain log text files do not follow any strict rules and may change without any
warning. It is completely up to the person who has developed the application to decide what gets logged
and in what format. The format of the log entries might even change between different releases of the
software. As a system administrator you may need to negotiate some sort of approval procedure so that
if you automate log parsing you will not get caught by surprise when the format of the file changes. It is
best to engage developers as well, so they use the same tools as you are. If they are using the same tools
as you are, they are less likely to break them.

In this chapter I’m going to use the catalina.out file generated by the Tomcat application server.
As you can see, the application itself is not writing any log messages at all, so the only log entries you will
find there are from the JVM and Tomcat. Obviously if you are using different application containers,
such as Jetty or JBoss your log entries may look different. Even if you are using Tomcat, you can override
default behavior and the way messages are formatted, so look at the log files that you are dealing with
and adjust the examples in this chapter accordingly, so that they match your environment.

What Can We Find in a Typical Log File?
Before proceeding with writing the analyzer code or changing any configuration for it, take a look and
identify the types of messages you have in the log files and how you can unambiguously identify them.
Look for common attributes that make them distinguishable. Typically you will see standard messages
generated by either the application itself or the application container.

These messages are meant to inform you about the state of the application. Because these messages
are generated by the application they most likely indicate expected behavior and each state they inform
you about is part of the normal application flow. As I’m going to investigate exceptions I’m not really
interested in that type of message. Listing 7-3 is a snippet from Tomcat’s log file that shows what
“normal” log messages look like.

Listing 7-3. Standard logging messages in catalina.out

Jan 17, 2010 8:18:24 AM org.apache.catalina.core.AprLifecycleListener lifecycleEvent
INFO: The Apache Tomcat Native library which allows optimal performance in
production
 environments was not found on the java.l
ibrary.path: /usr/lib/jvm/java-1.6.0-openjdk-
1.6.0.0/jre/lib/i386/client:/usr/lib/jvm/
java-1.6.0-openjdk-1.6.0.0/jre/lib/i386:
/usr/lib/jvm/java-1.6.0-openjdk-
1.6.0.0/jre/../lib/i386:/usr/java/packages/lib/i386:/lib:/
usr/libJan 17, 2010 8:18:24 AM org.apache.coyote.http11.Http11BaseProtocol
initINFO:Initializing Coyote HTTP/1.1 on http-8081Jan 17, 2010 8:18:24 AM
org.apache.catalina.startup.Catalina load
INFO: Initialization processed in 673 ms
Jan 17, 2010 8:18:24 AM org.apache.catalina.core.StandardService start
INFO: Starting service Catalina

CHAPTER 7 ■ PERFORMING COMPLEX SEARCHES AND REPORTING ON APPLICATION LOG FILES

187

Jan 17, 2010 8:18:24 AM org.apache.catalina.core.StandardEngine start
INFO: Starting Servlet Engine: Apache Tomcat/5.5.23
Jan 17, 2010 8:18:24 AM org.apache.catalina.core.StandardHost start
INFO: XML validation disabled
Jan 17, 2010 8:18:25 AM org.apache.catalina.core.ApplicationContext log
INFO: ContextListener: contextInitialized()
Jan 17, 2010 8:18:25 AM org.apache.catalina.core.ApplicationContext log
INFO: SessionListener: contextInitialized()
Jan 17, 2010 8:18:25 AM org.apache.catalina.core.ApplicationContext log
INFO: ContextListener: contextInitialized()
Jan 17, 2010 8:18:25 AM org.apache.catalina.core.ApplicationContext log
INFO: SessionListener: contextInitialized()
Jan 17, 2010 8:18:25 AM org.apache.catalina.core.ApplicationContext log
INFO: org.apache.webapp.balancer.BalancerFilter: init(): ruleChain:
 [org.apache.webapp.balancer.RuleChain: [org.apache.webapp.
balancer.rules.URLStringMatchRule: Target string: News / Redirect URL:
 http://www.cnn.com], [org.apache.webapp.balancer.rules.
RequestParameterRule: Target param name: paramName / Target param value:
 paramValue / Redirect URL: http://www.yahoo.com], [or
g.apache.webapp.balancer.rules.AcceptEverythingRule: Redirect URL:
 http://jakarta.apache.org]]

You can see that all log entries start with a date stamp. This is one of the attributes I will use to

detect the log entry. Also notice that log entries may span multiple lines. So each long entry starts with a
line that begins with has a time stamp and finishes when another line with a time stamp is detected.
Write this down, as this is going to become one of the design decisions for your application.

The Structure of an Exception Stack Trace Log
Listing 7-4 is an example of a stack trace that has been generated by the JVM. This stack trace is from the
Tomcat application that failed to load my web application due to a malformed web.xml. As you can see,
such things cannot be predicted; hence they are exceptions to normal operation.

Listing 7-4. An example of an exception stack trace

Jan 17, 2010 10:07:04 AM org.apache.catalina.startup.ContextConfig
applicationWebConfig
SEVERE: Parse error in application web.xml file at jndi:/localhost/test/WEB-
INF/web.xml
org.xml.sax.SAXParseException: The element type "servlet-class" must be terminated
 by the matching end-tag "</servlet-class>".
 at org.apache.xerces.parsers.AbstractSAXParser.parse(Unknown Source)
 at org.apache.xerces.jaxp.SAXParserImpl$JAXPSAXParser.parse(Unknown Source)
 at org.apache.tomcat.util.digester.Digester.parse(Digester.java:1562)

http://www.cnn.com
http://www.yahoo.com
http://jakarta.apache.org

CHAPTER 7 ■ PERFORMING COMPLEX SEARCHES AND REPORTING ON APPLICATION LOG FILES

188

 at org.apache.catalina.startup.ContextConfig.applicationWebConfig
(ContextConfig.java:348)
 at org.apache.catalina.startup.ContextConfig.start(ContextConfig.java:1043)
 at
org.apache.catalina.startup.ContextConfig.lifecycleEvent(ContextConfig.java:261)
 at org.apache.catalina.util.LifecycleSupport.fireLifecycleEvent
(LifecycleSupport.java:120)
 at org.apache.catalina.core.StandardContext.start(StandardContext.java:4144)
 at org.apache.catalina.startup.HostConfig.checkResources(HostConfig.java:1105)
 at org.apache.catalina.startup.HostConfig.check(HostConfig.java:1203)
 at org.apache.catalina.startup.HostConfig.lifecycleEvent(HostConfig.java:293)
 at org.apache.catalina.util.LifecycleSupport.fireLifecycleEvent
(LifecycleSupport.java:120)
 at
org.apache.catalina.core.ContainerBase.backgroundProcess(ContainerBase.java:1306)
 at org.apache.catalina.core.ContainerBase$ContainerBackgroundProcessor.
processChildren(ContainerBase.java:1570)
 at org.apache.catalina.core.ContainerBase$ContainerBackgroundProcessor.
processChildren(ContainerBase.java:1579)
 at org.apache.catalina.core.ContainerBase$ContainerBackgroundProcessor.run
(ContainerBase.java:1559)
 at java.lang.Thread.run(Thread.java:636)

Like “normal” log entries, this starts with a time stamp showing when the entry was created. It also
spans a few lines; in fact, most stack traces are rather lengthy and may contain over a hundred lines,
depending on the application structure. A stack trace effectively is a call stack and prints out the entire
function hierarchy down to the one that has encountered the exceptional situation.

The structure of a Java exception stack trace log is not formal in any way; I’m just splitting it for my
own convenience, as this will help me to organize these log entries later in the parser code. You should
be able to apply the same structure without much trouble.

The first line of the log entry I’m going to call the logline. This line contains a timestamp of when the
log entry was created and also the module name and the function where the exception occurred:

Jan 17, 2010 10:07:04 AM org.apache.catalina.startup.ContextConfig
applicationWebConfig

The following line I’m going to call the headline. This line is not really part of the actual stack trace,
but is printed out by the application code that “caught” the exception:

SEVERE: Parse error in application web.xml file at jndi:/localhost/test/WEB-
INF/web.xml

And finally, the third section contains the “body” of the exception. This includes all the following
lines and is the last part of the log entry. Usually the last line is a Java thread run method.

org.xml.sax.SAXParseException: The element type "servlet-class" must be terminated
by the matching end-tag "</servlet-class>".
 at org.apache.xerces.parsers.AbstractSAXParser.parse(Unknown Source)
 at org.apache.xerces.jaxp.SAXParserImpl$JAXPSAXParser.parse(Unknown Source)

CHAPTER 7 ■ PERFORMING COMPLEX SEARCHES AND REPORTING ON APPLICATION LOG FILES

189

 at org.apache.tomcat.util.digester.Digester.parse(Digester.java:1562)
...
at java.lang.Thread.run(Thread.java:636)

I’ve defined the structure of an exception log entry, but how do I know that this is an exception and

not a normal log entry? So far they both look the same: they both have timestamp, and they both span
across one or more lines. To a human it’s a rather obvious difference, and you immediately spot the
exception, but are there any other fingerprints in the exception stack trace that I could use to identify it
as a genuine exception and not the lengthy log entry?

If you look and compare different exception stack traces you’ll notice one commonality: each
exception stack trace mentions the exception class name. Some examples include
org.xml.sax.SAXParseException and java.io.FileNotFoundException. This occurs because each
exception is effectively an instance of the exception class. Again, class name could be anything, but it is
an accepted practice to append the word “Exception to the class name. So I’m going to use this as one
of my classifiers. Another classifier is the word java. Because I’m dealing with Java programs in most
cases I will have one or more methods from native Java libraries. So I’m going to work on the assumption
that if my exception candidate contains these two words, it is likely to be an actual exception. But I don’t
want to be limiting myself, so I have to make sure that my application structure allows me to change or
plug in another validation method.

Now I have something to operate on—I know how my log entries should look. I also know what the
exception looks like, as well as what makes it different from the normal log entry. That should be enough
to implement the log parser.

Handling Multiple Files
Before diving into the actual parsing, I need to read the data in first. This may sound trivial, but if you
want to do this efficiently, there are some tricks you might want to know about.

First you need to decide where you will get the data from. While this may seem obvious, remember
that log files come in different shapes and sizes. I want to have the tool flexible enough so it can be
applied to different situations. To make things simple and remove guesswork at the implementation
phase, I’ll start with listing some requirements and assumption that I’m going to rely on:

• Log files can be either plain text or compressed with bzip2.

• Log files have the extension .log for a plain text file or .log.bz2 for a bzip2 file.

• I need to be able to process just a subset of log files based on their name. For example, I need
to be able to use the file pattern webserver; all files that match this will be processed, but not
other files.

• The results from all files processed should be combined into one report.

• The tool should operate on all files found in a specified directory or list of different directories.
Log files from all subdirectories should also be included.

Handling Multiple Files
Given the requirements just stated, I define two variables that represent the patterns for file search calls:

LOG_PATTERN = ".log"
BZLOG_PATTERN = ".log.bz2"

CHAPTER 7 ■ PERFORMING COMPLEX SEARCHES AND REPORTING ON APPLICATION LOG FILES

190

The filename pattern is stored in the global variable OPTIONS.file_pattern. By default this is set to

an empty string and so it will match all file names. This variable is controlled by the command-line
parsing class, which I’m going to talk about later in the chapter. For the time being, just note that it can
be set to any value by using the -p or --pattern option.

I need to create a list of directories and all subdirectories recursively so that I can search for the log
files in them. Users are going to supply me with a list of top-level directories, which I need to explode
into a full tree of all sub- and sub-sub directories.

The list of arguments is going to be stored in the ARGS variable by the OptionParser class. There is a
really handy function in Python’s os library called walk. It recursively builds a list of files in each
directory and all subdirectories.

Let’s set up a simple directory structure and see how the os.walk function works:

$ mkdir -p top_dir_{1,2}/sub_dir_{1,2}/sub_sub_dir

This will produce a three-level directory structure:

$ ls -1R
top_dir_1
top_dir_2

./top_dir_1:
sub_dir_1
sub_dir_2

./top_dir_1/sub_dir_1:
sub_sub_dir

./top_dir_1/sub_dir_1/sub_sub_dir:

./top_dir_1/sub_dir_2:
sub_sub_dir

./top_dir_1/sub_dir_2/sub_sub_dir:

./top_dir_2:
sub_dir_1
sub_dir_2

./top_dir_2/sub_dir_1:
sub_sub_dir

./top_dir_2/sub_dir_1/sub_sub_dir:

./top_dir_2/sub_dir_2:
sub_sub_dir

./top_dir_2/sub_dir_2/sub_sub_dir:

CHAPTER 7 ■ PERFORMING COMPLEX SEARCHES AND REPORTING ON APPLICATION LOG FILES

191

Now we can use os.walk to generate the same output], as shown in Listing 7-5.

Listing 7-5. Recursively retrieving a list of directories with os.walk

$ python
Python 2.6.1 (r261:67515, Jul 7 2009, 23:51:51)
[GCC 4.2.1 (Apple Inc. build 5646)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import os
>>> for d in os.walk('.'):
... print d
...
('.', ['top_dir_1', 'top_dir_2'], [])
('./top_dir_1', ['sub_dir_1', 'sub_dir_2'], [])
('./top_dir_1/sub_dir_1', ['sub_sub_dir'], [])
('./top_dir_1/sub_dir_1/sub_sub_dir', [], [])
('./top_dir_1/sub_dir_2', ['sub_sub_dir'], [])
('./top_dir_1/sub_dir_2/sub_sub_dir', [], [])
('./top_dir_2', ['sub_dir_1', 'sub_dir_2'], [])
('./top_dir_2/sub_dir_1', ['sub_sub_dir'], [])
('./top_dir_2/sub_dir_1/sub_sub_dir', [], [])
('./top_dir_2/sub_dir_2', ['sub_sub_dir'], [])
('./top_dir_2/sub_dir_2/sub_sub_dir', [], [])
>>> os.walk('.')
<generator object walk at 0x1004920a0>
>>>

As you can see, a call to os.walk returns a generator object. I will talk about generators in more

detail later in this chapter, but for now, note that they are objects that you can iterate through just like
any normal Python list or tuple object.

The return result is a three-tuple with the following entries:

The directory path: The current directory whose contents are exposed in the
next two variables.

Directory names: A list of directory names in the directory path. This list
excludes ‘.’ And ‘..’ directories.

File names: A list of the file names in the directory path.

By default os.walk will not follow symbolic links that point to directories. To follow symbolic links,

you can set the followlinks parameter to True, which will instruct os.walk to follow all symbolic links
that it comes across while scanning the directory tree.

I’m only interested in the directory listing, as I’m going to use a different function to filter out the
files that will be processed and analyzed. Collecting only the first element of the three-tuple result, I can
build the list of directories. So to build a recursive list of all directories from the list of top-level
directories that are supplied as an argument list, I would write the following:

CHAPTER 7 ■ PERFORMING COMPLEX SEARCHES AND REPORTING ON APPLICATION LOG FILES

192

DIRS = []
for dir in ARGS:
 for root, dirs, files in os.walk(dir):
 DIRS.append(root)

Now the DIRS list contains all directories that I will need to search for log files. I need to go through

this list and search for all files that have a name satisfying two search patterns: either LOG_PATTERN or
BZLOG_PATTERN and OPTIONS.file_pattern.

I’m going to use one of the simplest ways of obtaining the list, which is to traverse through the list of
directories, create a simple listing of contents, and then match the result against search patterns and use
only files that satisfy both. The following code does just that and opens matched files for reading:

for DIR in DIRS:

 for file in (DIR + "/" + f for f in os.listdir(DIR) if
 f.find(LOG_PATTERN) != -1 and f.find(OPTIONS.file_pattern)
!= -1):
 if file.find(BZLOG_PATTERN) != -1:
 fd = bz2.BZ2File(file, 'r')
 else:
 fd = open(file, 'r')

Take a closer look at the list construct, which is called list comprehension. This is a very powerful

mechanism for creating lists of objects that you want to iterate through. With list comprehension you
can quickly and elegantly apply some validation or transformation to an existing list and get the new list
immediately.

For example, here’s what you’d do to quickly generate a list of all even numbers squared from
1 to 10:

>>> [x**2 for x in range(10) if x % 2 == 0]
[0, 4, 16, 36, 64]

The basic structure for list comprehension is

[<operand> /operation/ for <operand> in <list> /if <check condition>/]

where <operand> is a variable used to generate a list, /operation/ is an optional operation that you

might need to perform on each element of the resulting list, <list> is the list of items you’re iterating
through, and /<check condition>/ is the validation filter that filters out unwanted elements from the
resulting list.

With this in mind, if I dissect my file list construct, here’s what I have:

• Each element of the resulting array will be constructed as DIR + "/" + f, where DIR is the
directory name and f is gathered from the os.listdir().

• The variable f is assigned in sequence to all elements of a list returned by calling
os.listdir().

CHAPTER 7 ■ PERFORMING COMPLEX SEARCHES AND REPORTING ON APPLICATION LOG FILES

193

• Only those values are accepted that satisfy the condition (f.find(LOG_PATTERN) != -1
and f.find(OPTIONS.file_pattern) != -1), which requires them to match both
LOG_PATTERN and OPTIONS.file_pattern.

Also note that you can use list comprehension to generate either a list object or a generator. If you

create a generator, the next element value will be derived only when requested, for example in a for
loop. Depending on the use, this may be much quicker and more memory-efficient than generating and
holding the whole list in memory.

Using the Built In Bzip2 Library
You may have noticed that there are two statements that create a file descriptor object. One is for flat text
log files and the other one is for files compressed with bzip2. The differentiator is the log file extension,
which in case of bzip2 compression is .bz2.

Python includes a bzip2-handling module as part of a standard set of packages. The most useful class
in the module is BZ2File, which implements a full interface for handling compressed files. You can use it
just as you would use the standard Open function. The returned object is a file descriptor object that
implements standard file-handling operations: read, readline, write, writeline, seek and close.

Since the only difference is in how the file descriptor object is created, even though I’m using a
different function to get the object, the result is assigned to the same fd variable that will be used later in
the code.

Traversing Through Large Data Files
If I have to read and process large amounts of data, I cannot use the simplistic approach of loading
everything into memory and then processing it. And I will most definitely be dealing with large volumes
of data here. Depending on your situation this might be different, but busy systems are likely to have
gigabytes of log data generated on an hourly basis. Obviously all this data cannot be loaded into memory
at once.

The solution to this problem is to use generators. The generator function allows you to produce
output (reading the lines from a file) without actually loading the whole file into memory. If you just
simply need to read the file line by line, you don’t really need to encapsulate the readline() function,
as you can simply write:

f = open('file.txt', 'r')
for line in f:
 print line

However, if you need to manipulate the file data and use the result, it might be a good idea to write

your own generator function that performs required calculations and produces the results. For example,
you might want to write a generator that searches for a particular string in the file and prints the string plus
few lines before that string and few lines after it. This is where generators come in handy.

What Are Generators, And How Do We Use Them?
Simply put, a Python generator is a function that potentially can return many values, and it is also able to
maintain its own state between the returns. This means that you can call the function multiple times and

CHAPTER 7 ■ PERFORMING COMPLEX SEARCHES AND REPORTING ON APPLICATION LOG FILES

194

it will return a new result every time. Each time you call it subsequently, it knows its last location and will
continue from that point.

The following example function generates Fibonacci numbers:

def f():
 x, y = 0, 1
 while 1:
 yield y
 x, y = y, y+x

When this function is called for the first time, it will initiate x and y and enter the infinite loop. The

first statement in the loop is to return the value of y (note that in generators you must use the yield
statement). The next time you call this function it’ll start from the point where it stopped execution and
returned a value—the yield statement. The next statement is to reassign x and y with new values, where
x becomes the old y and the new y is a sum of old y and x. It is important to note that calling the
generator function does not return the values the function is meant to calculate—it returns the actual
generator object. You can then either iterate through it as you would normally do with a list or call
next() method, which will get you the next value:

>>> g = f()
>>> for i in range(10):
... g.next()
...
1
1
2
3
5
8
13
21
34
55
>>>

As you can see, generators are actually functions and not lists, but they can be used as lists.

Sometimes, as in the Fibonacci example, the virtual lists can be infinite. When the generator has a
limited set of results, such as lines in a file or rows in a database query, it must raise a StopIteration
exception, which will signal the caller that there are no more results available.

You can use generators to go through all lines in the file. This will effectively return the next line
whenever you call the next() function without actually loading the whole file into memory. Once it is
defined as a generator, you can just iterate through it.

In my code I have a get_suspect() function, which is effectively a generator that returns excerpts
of text from the log file that potentially might be an exception stack trace. This function accepts a
generator as its argument and iterates through it, therefore retrieving all the lines.

First of all I create a generator that returns all lines in the file:

g = (line for line in fd)

CHAPTER 7 ■ PERFORMING COMPLEX SEARCHES AND REPORTING ON APPLICATION LOG FILES

195

And then I use this generator to retrieve the lines in my function:

def get_suspect(g):
 line = g.next()
 next_line = g.next()
 while 1:
 <do something with line and next_line>
 yield result
 try:
 line, next_line = next_line, g.next()
 except:
 raise StopIteration

I enclose the call to next() in the try: ... except: clause because when the last line of the file

has been reached, the generator will raise an exception. Therefore, when the file cannot be read
anymore, I simply raise the StopIteration exception, which acts as a signal to the iterator that the
generator has exhausted all its values.

Detecting Exceptions
The majority of the log entries contain only one line. So my approach in detecting exception log entries
is this:

• Ignore all one-line entries. These are most likely to be from the application and will not
have a stack trace because it is simply not possible to put a full stack trace into one line.

• All log entries that have multiple lines are considered to contain an exception stack trace.

• An exception stack trace log entry must contain the words java and exception in the log
text body.

The reason for having this two-phase detection is that a simple check like “does it have more than

one line?” is very inexpensive and can eliminate a significant number of log entries.

Detecting Potential Candidates
In abstract language the algorithm for this function would look like the following:

• Read in two lines from a file.

• If the second line does not match the date stamp pattern, add it to the result string.

• Keep reading lines in and appending until the date stamp pattern is matched.

• Return the result.

• Repeat until there is no more data in the file.

As you can see in Listing 7-6, using a generator function here is an obvious choice, because I need to

preserve the internal function state after the function returns the resulting string that contains a
potential exception stack trace. The function itself accepts another generator function, which it uses to
retrieve the lines of text. Using this approach it is possible to replace a file-reading generator with any

CHAPTER 7 ■ PERFORMING COMPLEX SEARCHES AND REPORTING ON APPLICATION LOG FILES

196

other generator that is capable of generating log lines. For example, this might be a database-reading
function, or even a function that listens and accepts syslog service messages.

Listing 7-6. A generator function to detect potential exceptions

def get_suspect(g):
 line = g.next()
 next_line = g.next()
 while 1:
 if not (TS_RE_1.search(next_line) or TS_RE_2.search(next_line)):
 suspect_body = line
 while not (TS_RE_1.search(next_line) or TS_RE_2.search(next_line)):
 suspect_body += next_line
 next_line = g.next()
 yield suspect_body
 else:
 try:
 line, next_line = next_line, g.next()
 except:
 raise StopIteration

Obviously this can be replaced with a function that has more advanced logic and a better hit-to-

miss ratio, but it is equally effective and lightweight.
Here are a couple of ideas you might want to experiment with:

• Instead of using two predefined patterns for time stamp detection, try defining a list with
precompiled patterns that would match the majority of popular formats. Then, as the
function runs, it would count successful matches and rearrange the list on the fly so that
most popular match gets match first.

• If you have a large number of multiple-line log entries, this simple approach will fail. Try
generating hashes of the first line in the log body and store them in a separate data
structure. The real exception validator function would update this table with True/False
values depending on whether the guess was correct. This function can then check hashes
against this table, so it will know which repeating log entries are not really exceptions
although they may look like ones.

Filtering Legitimate Exception Traces
Up until now all the code is in standard functions. This is mostly because the code was dealing with
selecting the files and doing some initial validation. Neither of those tasks have anything to do with the
actual exception-handling code. Now, for the exception parsing and analyzing tasks, I am going to define
a class with appropriate methods. This way I can distribute and use it as a completely independent
module. For example, let’s say I wanted to implement a web-based application where my users could
submit their exception logs and get some statistics, and I want to be able to reuse this code. Functions
that open files and deal with file patterns become obsolete, because there are simply no files to deal
with—all data comes from a web server. Similarly, you may also want to analyze data stored in a
database, in which case you would have to write an interface to retrieve this data. However, you still can
reuse the code that deals with exception stack trace text. So always try to keep your code logically
separated.

CHAPTER 7 ■ PERFORMING COMPLEX SEARCHES AND REPORTING ON APPLICATION LOG FILES

197

As I have mentioned, my exception detection mechanism (Listing 7-7) is somewhat naïve—I check
for the words exception and java in the stack trace body.

Listing 7-7. Validating exceptions

def is_exception(self, strace):
 if strace.lower().find('exception') != -1 and \
 strace.lower().find('java') != -1:
 return True
 else:
 return False

This is easy to change, and should you need anything more sophisticated than this simple test, you

can rewrite this function to use a more appropriate algorithm for your situation.
Listing 7-8 shows how this detection mechanism fits together with other parts of the class.

Listing 7-8. The basic structure of the exception container class

class ExceptionContainer:
 def __init__(self):
 <initialise the object>

 def insert(self, suspect_body, f_name=""):
 lines = suspect_body.strip().split("\n", 1)
 log_l = lines[0]
 if self.is_exception(lines[1]):
 <update exceptions statistics and couners>

For every suspect log line detected, the insert method will be called. That method will then call the

validation function, which checks whether the text supplied is actually a stack trace and should be
counted.

Storing Data in Data Structures
The main goal of my application is to gather statistics about the exceptions that occur in the log file.
Therefore I need to think about how to store this data as well as where to store it. There are two
alternatives—I can either hold this data in memory or dump it into a database. When choosing between
those two options I need to ask whether I need to do either of the following:

• Maintain this data in the same structure after the program has terminated

• Hold lots of records for a long period of time and access them from any other tools

If the answer to either of those questions were positive, I probably would need to use an external

database to hold the statistical data. However I do not anticipate that the log files are going to have a
large number of different types of exceptions. There might be hundreds of thousands of exceptions, but
most likely there will be just a few hundred types of them. It is really hard to think of an application that
would generate the whole range of exceptions.

CHAPTER 7 ■ PERFORMING COMPLEX SEARCHES AND REPORTING ON APPLICATION LOG FILES

198

Additionally, storing statistical data is not part of the lifecycle of this application. It is up to an
external process to gather and analyze this data, so for the purposes of this application, this data needs
to be “live” only during the calculation phase.

Therefore I am going to use Python’s list data structure to keep the data and later for reporting, but
it will all be lost when the application finishes its execution.

The Structure of Exception Stack Trace Data
There is no need to hold every single exception that I come across, only a counter of all occurrences of
any particular type of exception along with details for that type. As previously discussed, an exception
stack trace can be dissected into these parts:

• The log line (the line with the time stamp).

• The exception head line (the first line of the exception stack trace).

• The exception body (the stack trace).

In addition to this information, I also need to have the following:

• A counter to count the number of occurrences of each particular type.

• A description for a quick reference.

• A group that can be used to organize different types of exceptions. For example, you might
want to have a group that counts all exception related to missing files; but because they
might be generated by different parts of the application, or even different libraries, you
may need to use different rules altogether to match them. Grouping here is the only
convenient way to maintain the same counter for all those exceptions.

• A filename so that users know in which file the exception has been found. This is useful if
you are analyzing numerous files that are stored in a single directory.

So every time I insert a new exception, the following dictionary will be appended to a list:

{ 'count' : # counter
 'log_line' : # log line
 'header' : # header line
 'body' : # body text with stack trace
 'f_name' : # file name
 'desc' : # description
 'group' : # group
}

Generating an Exception Fingerprint for Unknown Exceptions
Assuming that I haven’t provided any classification rules yet, the application needs to be able to
recognize similar exceptions and group them accordingly. One possibility would be to store an
exception body text and compare others against it. If the next exception matches the stored one,
increase the counter; otherwise, store that one as well and use it for future comparisons. Figure 7-1 is a
flowchart of this process.

CHAPTER 7 ■ PERFORMING COMPLEX SEARCHES AND REPORTING ON APPLICATION LOG FILES

199

Figure 7-1. Counting the exceptions

This would work, but it would be very slow as the string compare operations are really slow and
expensive in terms of computing power. So when possible, try to avoid them, especially if you need to
compare long strings such as long fragments of text.

A much more efficient way to perform quick text blob comparison is to generate some unique
attribute for each text fragment and then compare those attributes. (By unique, I mean unique within
that particular piece of text.)

Such an attribute can be an MD5 hash function of the data stream. As you may already know, a
cryptographic hash function (of which MD5 is a widely used example)is a procedure that accepts any
block of data and returns a bit string of a predefined size. This string is generated in a way that if the
original data is modified it will change. By definition the output string may be much smaller than the
input string, so obviously the information is lost and cannot be restored; but the algorithm guarantees
that if the hash values of two strings are the same there is a very high probability that the original stings
are the same, too.

Python has a built in MD5 library that can be used to generate MD5 sums for any input data. So I’m
going to use this function to generate MD5 hashes for all exceptions that I encounter and compare those
strings instead of comparing the full stack traces. Listing 7-9 is an excerpt from the insert method. The
following variables are defined at the beginning of the function:

CHAPTER 7 ■ PERFORMING COMPLEX SEARCHES AND REPORTING ON APPLICATION LOG FILES

200

log_l: The exception log line

hd_l: The exception header line

bd_l: The exception body text

f_name: The filename where the exception has been found

self.exception: The dictionary where the key is theMD5 sum of the exception
body text and the value is another dictionary that holds the details about the
exception stack trace.

Listing 7-9. Generating MD5 and comparing it against stored values

01: m = md5.new()
02: m.update(log_l.split(" ", 3)[2])
03: m.update(hd_l)
04: for ml in bd_l.strip().split("\n"):
05: if ml:
06: ml = re.sub("\(.*\)", "", ml)
07: ml = re.sub("\$Proxy", "", ml)
08: m.update(ml)
09: if m.hexdigest() in self.exceptions:
10: self.exceptions[m.hexdigest()]['count'] += 1
11: else:
12: self.exceptions[m.hexdigest()] = { 'count' : 1,
13: 'log_line': log_l,
14: 'header' : hd_l,
15: 'body' : bd_l,
16: 'f_name': f_name,
17: 'desc' : 'NOT IDENTIFIED',
18: 'group' : 'unrecognised_'+m.hexdigest(), }

Here is a detailed explanation of what’s actually happening in this function:

Lines 1–3: Initialize the md5 object and assign it the third field of the exception
log line and the whole exception header line. The reason I’m picking only the
last field of the exception log line is that the first two fields are going to contain
date and time strings, which are constantly changing, so I don’t want them to
change the MD5 hash I’m going to generate.

Lines 4–5: Iterate over all lines of the exception body, one at a time.

Lines 6–8: Strip all text between brackets and remove all references to
automatically generated Java Proxy objects. If the line numbers are different but
otherwise the exception stack traces look identical, there is a high chance that
in fact they are the same. Proxy objects are assigned sequential numbers, so
they will never have the same name; therefore I need to remove them as well, so
that MD5 hash doesn’t change.

Line 9: Call the hexdigest method, which will generate an MD5 hash for the
text that has been stored using the update function and compare the result
against all stored keys.

CHAPTER 7 ■ PERFORMING COMPLEX SEARCHES AND REPORTING ON APPLICATION LOG FILES

201

Line 10: If there is a match, increase its counter.

Lines 11–18: Otherwise, insert a new record.

Detecting Known Exceptions
So far my application can detect unique exceptions and categorize them appropriately. This is quite
useful, but there are some issues:

• As with any heuristic algorithm, the current implementation is really naïve in its way of
detecting and comparing exceptions. It does a decent job but may struggle even with really
simple cases such as a File Not Found exception. If the exception is raised in different parts
of your Java application it will produce completely different output, and essentially same
type of exception will be logged multiple times. One might argue that this is expected
behavior and you really need to know where the exception has been raised, and that would
be a valid comment. In other situations you don’t really care about these details and would
like to combine all File Not Found error messages into one group. At present this is not
possible.

• The naming convention is really confusing; all your exception groups are going to have
unreadable names such as unrecognised_6c2dc65d7c0bfb0768ddff8cabaccf68.

• If the exception details contain time- or request-specific information, this algorithm is
going to see those exceptions as different, because there is no way of knowing that “File
Not Found: file1.txt” and “File Not Found: file2.txt” are effectively the same exception. To
verify this behavior, I generated over a thousand exceptions in which the requested file
name is the same and a similar number of error messages with unique filenames. The
result of running the application against this sample log file was one group with over a
thousand instances and over a thousand different groups with one or two instances in
them. The reality is that all exceptions are of the same type.

• Although I am not comparing large pieces of text, calculating an MD5 hash and then
comparing has strings is still relatively slow.

In light of those issues, I am going to modify the application so that it allows me to define how I

want my exceptions detected and categorized.
As you already know, each exception is split into three parts: log line, header and stack trace body. I

am going to allow to users define a regular expression for any of those fields and then use that regular
expression to detect exceptions. If any of the defined regular expressions is a match, then the exception
will be categorized accordingly; otherwise, it’ll go for further processing by the heuristic algorithm I
implemented earlier. I am also going to allow users define any grouping name that they like, so it will be
more meaningful than the unrecognised_6c2dc65d7c0bfb0768ddff8cabaccf68 strings.

CHAPTER 7 ■ PERFORMING COMPLEX SEARCHES AND REPORTING ON APPLICATION LOG FILES

202

The Configuration File
There are many ways of storing configuration data for your applications. I prefer to use XML documents
for the following reasons:

• Python has built-in libraries for parsing XML and as such, accessing configuration data is
simple.

• Syntax validation happens automatically when the configuration file is fed to the XML
parser, so I need not worry about checking the syntax of the configuration file.

• XML documents have a clearly defined unambiguous structure that allows me to
implement hierarchical structures should I need to.

There is also a practical downside of using XML—it’s not really human-friendly. However, by using

appropriate editors that can do syntax highlighting we can mitigate this. Nowadays most editors support
this functionality. The ViM editor, which is available on nearly all Linux distributions, is also able to
highlight XML syntax.

Listing 7-10 is a simple configuration file to catch majority of the File Not Found exceptions.

Listing 7-10. A configuration file with two rules

<?xml version="1.0"?>
<config>
 <exception_types>
 <exception logline=""
 headline=""
 body="java\.io\.FileNotFoundException: .+ \(No such file or
directory\)"
 group="File not found exception"
 desc="File not found exception"
 />
 <exception logline=""
 headline=""
 body="java\.io\.FileNotFoundException: .+ \(Permission denied\)"
 group="Permission denied exception"
 desc="Permission denied exception"
 />
 </exception_types>
</config>

The configuration file starts with a document identification string that tells the parsers it is an XML

version 1.0 document. For basic processing this information isn’t strictly required and can be omitted,
but for completeness it’s best to adhere to the specification.

The root element of the XML configuration files is the <config> tag, which encompasses all other
configuration items. Now I have the option of putting exception declarations directly within the <config>
tags, and since I have not planned to have anything else in my configuration file it would just be fine.
However if I later added any new type of configuration items, for example something that affects reporting,
it would not logically fit. So it is always a good idea to create a branch tag and place all elements of a given

CHAPTER 7 ■ PERFORMING COMPLEX SEARCHES AND REPORTING ON APPLICATION LOG FILES

203

type within it. Therefore I define a new domain element, which I’m going to call <exception_types>. All
declarations for each individual exception type are going to be defined here.

As you can see the actual exception declaration is pretty straightforward. I have three placeholders
for regular expressions followed by a description and group name fields.

Parsing XML Files with Python
There are two ways of parsing an XML document. One method is called SAX, or Simple API for XML.
Before you process XML with SAX you need to define a callback function for each tag that you are
interested in. You then call a SAX method to parse the XML. The parser will then read the XML file one
line at a time and call a registered method for each recognized element.

Another method, which I’m going to use in my example, is called the DOM or Document Object
Model. Unlike SAX, the DOM parser reads the whole XML document into memory, parses it, and builds an
internal representation of that document. By nature, XML documents represent a tree-like structure, with
node elements that contain child or branch elements, and so on. So the DOM parser builds a tree-like
linked data structure and provides you with methods of traversing through this tree structure.

There are three basic steps in finding the information in an XML document: parse the XML
document, find a tree node that contains the elements that interest you, and finally read their values or
contents.

Parsing an XML document is really simple and only takes one line of code (two if you count the
include statement). The following code reads in the whole configuration file and creates an XML parser
object that later can be used to find information.

from xml.dom import minidom
config = minidom.parse(CONFIG_FILE)

The next step is to find all <exception> elements. I know that their “parent” node is the

<exception_types> element, so I need to get a list of those first. This can be done with the
getElementsByTagName method, which is available for any XML object. This method accepts one
argument, the name of the element you’re trying to find. The result is a list of Element objects that have
the name you searched for. The search performed by method is recursive, so if I start at the top level
(which in my instance is the document object) it will return all elements that have this particular name.
In that case I may as well search for the <exception> tag. With this simplistic configuration file that
method would work as well, but the name exception is much too generic, and therefore may be used
outside exception_types sections. Another important thing to note is that each Element object is also
searchable and has the same method available to use. So I can go through the list of
<exception_types> elements and drill down further, searching for an <exception> tag in each:

for et in config.getElementsByTagName('exception_types'):
 for e in et.getElementsByTagName('exception'):

■Note The following text might seem slightly confusing, because there is an overlap of terminology. XML
elements can have attributes, as in this example: <element attribute="attribute value">element
value</element>. Similarly, Python objects or classes also have attributes that you access like this:
python_object.attribute. When XML is parsed and the representing Python object is built for your
document, you would use Python class attributes to access XML document attributes.

CHAPTER 7 ■ PERFORMING COMPLEX SEARCHES AND REPORTING ON APPLICATION LOG FILES

204

Now I’ve reached the elements that I am interested in and need to extract their values. As you can
see from the configuration file example, I chose to store data as element attributes. Attributes in each
Element object can be accessed using an attribute called attributes. This attribute is an object that
acts as a dictionary. Each element of the dictionary has two values: name contains name of the XML
element attribute, and value holds the actual text value of the attribute.

It may sound confusing, but it should become clear if you look at the example in Listing 7-11.

Listing 7-11. Accessing configuration data in the XML document

for et in config.getElementsByTagName('exception_types'):
 for e in et.getElementsByTagName('exception'):
 print e.attributes['logline'].value
 print e.attributes['headline'].value
 print e.attributes['body'].value
 print e.attributes['group'].value
 print e.attributes['desc'].value

As you can see from this example, searching for and accessing attributes of XML document

elements is really a trivial task.

Storing and Applying Filters
All exception detection and classification rules are going to be stored in an array. Each array element is a
dictionary that contains precompiled regular expressions, both group and description fields ,and finally
an ID string, which is just an MD5 hash of regular expression strings. This ID can be used later in
referencing particular exception groups and will remain unique as long as the rules are not changed.

Using precompiled regular expressions increases search speed significantly, because they are
already validated and converted to bytecode ready for execution.

Configuration parsing and importing are done during the class initialization, as you can see from
the example in Listing 7-12.

Listing 7-12. Class initialisation and configuration import

class ExceptionContainer:
 def __init__(self):
 self.filters = []
 config = minidom.parse(CONFIG_FILE)
 for et in config.getElementsByTagName('exception_types'):
 for e in et.getElementsByTagName('exception'):
 m = md5.new()
 m.update(e.attributes['logline'].value)
 m.update(e.attributes['headline'].value)
 m.update(e.attributes['body'].value)
 self.filters.append({ 'id' : m.hexdigest(),
 'll_re':
 re.compile(e.attributes['logline'].value),

i

CHAPTER 7 ■ PERFORMING COMPLEX SEARCHES AND REPORTING ON APPLICATION LOG FILES

205

 'hl_re':
 re.compile(e.attributes['headline'].value),
 'bl_re':
 re.compile(e.attributes['body'].value),
 'group': e.attributes['group'].value,
 'desc' : e.attributes['desc'].value, })

When the insert method (described in detail earlier) is called, it will loop through the list of filters

and attempt to search for matching strings. When such a string is found, the exception details are either
stored or the running counter for the group is increased, depending on whether this exception has
already been encountered in the log file. If no matches were found, the heuristic categorization method
will be executed as shown in Listing 7-13.

Listing 7-13. Code to match custom categorisation rules

def insert(self, suspect_body, f_name=""):
 ...

 if self.is_exception(lines[1]):
 self.count += 1
 ...

 logged = False

 for f in self.filters:
 if f['ll_re'].search(log_l) and
 f['hl_re'].search(hd_l) and
 f['bl_re'].search(bd_l):
 logged = True
 if f['id'] in self.exceptions:
 self.exceptions[f['id']]['count'] += 1
 else:
 self.exceptions[f['id']] = { 'count' : 1,
 'log_line' : log_l,
 'header' : hd_l,
 'body' : bd_l,
 'f_name' : f_name,
 'desc' : f['desc'],
 'group' : f['group'], }
 break

 if not logged:
 # ... unknown exception, try to automatically categorise

CHAPTER 7 ■ PERFORMING COMPLEX SEARCHES AND REPORTING ON APPLICATION LOG FILES

206

The Benefits of a Precompiled Search Over a Plain-Text Search
I’ve mentioned that MD5 hash calculation and then string comparison can be slow comparing to a
precompiled regular expression search, but is that really true? Let me do some experiments and test the
theory.

First I am going to run the application against the log file with over 4000 different exceptions and
measure execution time. There are four types of exception in the file: several exceptions generated by the
Tomcat engine, a few hundred Permission Denied exceptions, over a thousand File Not Found with the
same file name, and over a thousand File Not Found with different filenames. The first number in the
result indicates the total number of exceptions and the second is the total number of identified groups:

$ time ./exctractor.py .
4098, 1070

real 0m1.759s
user 0m1.699s
sys 0m0.047s

As you can see, it took nearly two seconds to crawl through the file and count all exceptions. Now

let’s try with two simple rules that detect both types of File Not Found and Permission Denied
exceptions:

$ time ./exctractor.py .
4098, 6

real 0m0.789s
user 0m0.746s
sys 0m0.037s

So the execution time has been improved significantly and the application finishes its job over twice

as fast. Provided that the dataset is relatively small and some of the execution time is spent loading
libraries and reading in configuration files, the actual savings can be even greater if applied to larger log
files.

Also notice that what had been over a thousand exception groups became just 6. This is much more
manageable and informative.

Producing Reports
I now have a fully functioning application that reads in log files, parses them, searches for exceptions,
and finally counts similar exceptions, based on either on automatic groups or categories defined by the
user. All that is very well and good, but unless someone can read and analyze this data it’s still pretty
useless.

Let’s write a simple reporting function, so that people who are going to use this application can
benefit from it.

CHAPTER 7 ■ PERFORMING COMPLEX SEARCHES AND REPORTING ON APPLICATION LOG FILES

207

Grouping Exceptions
If you paid close attention to the previous sections discussing exception grouping, you may have noticed
that exceptions are not grouped based on a group field.

If the exception is not categorized in the configuration file, it would have been grouped based on its
MD5 hash value; however in that case the group name and exception ID would have one-to-one
mapping anyway, because the group name is generated from the hash value:

if m.hexdigest() in self.exceptions:
 self.exceptions[m.hexdigest()]['count'] += 1
else:
 self.exceptions[m.hexdigest()] = { 'count' : 1,
 'log_line' : log_l,
 'header' : hd_l,
 'body' : bd_l,
 'f_name' : f_name,
 'desc' : 'NOT IDENTIFIED',
 'group' : 'unrecognised_'+m.hexdigest(), }

However, if the exception has been “caught” using one of the filters from the configuration file, it

would have been categorized based on the filter MD5 hash value and not the 'group' string:

if f['ll_re'].search(log_l) and f['hl_re'].search(hd_l) and f['bl_re'].search(bd_l):
 if f['id'] in self.exceptions:
 self.exceptions[f['id']]['count'] += 1
 else:
 self.exceptions[f['id']] = { 'count' : 1,
 'log_line' : log_l,
 'header' : hd_l,
 'body' : bd_l,
 'f_name' : f_name,
 'desc' : f['desc'],
 'group' : f['group'], }

This approach allows you to find out how many times each individual filter has been hit and also

group the counters based on the 'group' field. So first of all I need to go through the list of all logged
exceptions and create distinct categories. The categories dictionary is only going to store the group
name and the total count of exceptions in that group. I also use the option key –v (for verbose) to tell
whether or not to print the exception details. Listing 7-14 shows the code.

Listing 7-14. Grouping exception IDs into categories

def print_status(self):
 categories = {}
 for e in self.exceptions:
 if self.exceptions[e]['group'] in categories:
 categories[self.exceptions[e]['group']] += self.exceptions[e]['count']
 else:
 categories[self.exceptions[e]['group']] = self.exceptions[e]['count']

CHAPTER 7 ■ PERFORMING COMPLEX SEARCHES AND REPORTING ON APPLICATION LOG FILES

208

 if OPTIONS.verbose:
 print '-' * 80
 print "Filter ID :", e
 print "Exception description :", self.exceptions[e]['desc']
 print "Exception group :", self.exceptions[e]['group']
 print "Exception count :", self.exceptions[e]['count']
 print "First file :", self.exceptions[e]['f_name']
 print "First occurrence log line :", self.exceptions[e]['log_line']
 print "Stack trace headline :", self.exceptions[e]['header']
 print "Stack trace :"
 print self.exceptions[e]['body']

Producing Differently Formatted Output for the Same Dataset
If there are no options supplied for detailed reporting, the application only prints two numbers, which
indicate the total number of exceptions found and the total number of different groups. You can use this
information to quickly check the current status and also accumulate the records over a period of time
and import that data into Excel or other tools to draw pretty graphs.

If you’re planning to import report data to some other application it needs to comply with a format
accepted by that application. If you’re using Excel to create graphs, the most convenient file type for
import would be CSV or Comma Separated Values, but if you just want to display this information on the
screen you most likely want it to be more informative than just a pair of numbers separated by comma.

So I introduced an option that allows users to set a format they want to get the result in: either CSV
or plain text. I then created two template strings that reference the same variables but provide different
formatting:

TPL_SUMMARY['csv'] = "%(total)s, %(groups)s"
TPL_SUMMARY['text'] = "="*80 + "\nTotal exceptions: %(total)s\nDifferent groups:
%(groups)s"

Then, depending on the format key supplied by the user, the print statement will select the
appropriate formatting string and pass variables to it:

print TPL_SUMMARY[OPTIONS.format.lower()] % {'total': self.count, 'groups':
len(categories)}

Note how you can pass variables to a formatted sting referencing them by name. This technique is
really useful when you need to produce differently formatted output using the same set of variables.

Calculating Group Statistics
Finally, I wanted to produce a more detailed report on how many different groups were found and the
number of exceptions in each, both relative (as a percentage) and absolute (the total number of
occurrences).

I already have all the details in the dictionary, including the group name and total number of
exceptions in the group. But the dictionaries are not sorted, and it would be nice to have a list presented
in descending order, where the worst “offenders” are at the top.

Python has a very useful built-in function for sorting any iterable objects: sorted(). This function
accepts any iterable object such as list or dictionary and returns a new sorted list. The tricky part is that

CHAPTER 7 ■ PERFORMING COMPLEX SEARCHES AND REPORTING ON APPLICATION LOG FILES

209

when iterating through a dictionary, you are only iterating though its keys, so calling sorted() with a
dictionary as its parameter, you’d only get a list of sorted keys!

>>> d = {'a': 10, 'b': 5, 'c': 20, 'd': 15}
>>> for i in d:
... print i
...
a
c
b
d
>>> sorted(d)
['a', 'b', 'c', 'd']
>>>

Obviously this isn’t really what you want—you need both values in your result. Dictionaries have a

built-in method that returns key/value pairs as iterable objects—iteritems(). If you use this instead,
you’ll get a slightly better result, showing both the key and value of each pair, but still sorted on the key
value, which isn’t what you want either:

>>> for i in d.iteritems():
... print i
...
('a', 10)
('c', 20)
('b', 5)
('d', 15)
>>> sorted(d.iteritems())
[('a', 10), ('b', 5), ('c', 20), ('d', 15)]
>>>

The sorted() function accepts an argument that allows you specify a function that will be used to

extract a comparison key from the list elements when the elements are composite, such as value pairs. In
other words, this function should return a second value from each pair. You need a special function from
the operator library: itemgetter(). I will use this function to extract the second value from each pair,
and this value will be used by the sorted() function to sort the list:

>>> from operator import itemgetter
>>> t = ('a', 20)
>>> itemgetter(1)(t)
20
>>> sorted(d.iteritems(), key=itemgetter(1))
[('b', 5), ('a', 10), ('d', 15), ('c', 20)]
>>>

CHAPTER 7 ■ PERFORMING COMPLEX SEARCHES AND REPORTING ON APPLICATION LOG FILES

210

And the final touch is telling sorted() to sort the list in reverse order, so that the list starts with the
item that has the largest value:

>>> sorted(d.iteritems(), key=itemgetter(1), reverse=True)
[('c', 20), ('d', 15), ('a', 10), ('b', 5)]
>>>

Similarly I am generating and printing the list of exception groups. I also add a statistical

calculation, just to show the relative size of each group:

for i in sorted(categories.iteritems(), key=operator.itemgetter(1), reverse=True):
 print "%8s (%6.2f%%) : %s" % (i[1], 100 * float(i[1]) / float(self.count), i[0]
)

Summary
In this chapter I explained in detail how the open-source tool Exctractor was written and what each
functional part is doing. This chapter shows how to apply your Python knowledge to build a relatively
complex command line tool to analyze large text files. Although Python is not a text-processing language
as such, it still can be successfully used for this purpose. Important points to keep in mind:

• Start by defining a problem and what you want your application to achieve.

• Analyze the data structures you will be working with and make design decisions based on
that information.

• If you’re dealing with large datasets try to minimize the amount of memory required, by
using generators, Python functions that generate values on-the-fly.

• If you need to read and search information in large data files, use generator constructs to
read them one line at a time.

• Python has built-in support for reading and writing compressed files such as bzip2
archives.

• Keep configuration in a structured format such as XML, especially if it tends to contain
many items.

C H A P T E R 8

■ ■ ■

211

A Web Site Availability

Check Script for Nagios

In this chapter we are going to build a custom check script for one of the standard NMS (network
monitoring systems) available today—Nagios. We will be monitoring a simple web site by using an
HTML parsing library, which allows us to check the operational side of the site. The check script
attempts to navigate through unsecured pages and then reach some protected pages, too, by simulating
a user login action. All action will be recorded and fed back into the Nagios system, which can be
configured to do reporting and alerting if required.

Requirements for the Check System
The main requirement for the system we are going to implement is the ability to monitor a remote web
site. However, the check should go beyond a simple HTTP GET or POST request, and it must allow the
user to specify a navigation path. For example, it should be able to perform some action that simulates
the standard user behavior—get to the main web site page and then browse to the products list or
navigate to the news web site and select the top story.

As a variation of that scenario, the system also needs to be able to simulate a login process whereby
the check submits the user details to the remote web site. These details are then validated by the system
and the security token is returned (usually in the form of a browser cookie value).

Unlike a simple HTTP check, which is readily available with the default Nagios distribution, this
mechanism actually triggers the web application logic and acts as a more sophisticated check.
Combined with the timing parameters, you may implement sophisticated checks that monitor the user
logon time and alert if the login process is successful but is taking too long.

We are going to use Python’s standard urllib and urllib2 libraries for accessing the web sites. As
a web page parser we are going to use the Beautiful Soup HTML parsing library.

Every web site is unique, or at least is trying to stand out from the crowd. Therefore making a
universal check system may be a complicated task, so for the sake of simplicity I am going to set some
constraints on the system that we’ll build in this chapter:

• The navigation (or user journey) path will be coded in the script and not available as a
configuration.

• The login check works only on sites that use cookie-based authentication mechanisms.

CHAPTER 8 ■ A WEB SITE AVAILABILITY CHECK SCRIPT FOR NAGIOS

212

The Nagios Monitoring System
Nagios is one of the most popular network monitoring systems. It is used to monitor a wide variety of
network-attached components using different access protocols such as HTTP, SNMP, FTP, SSH, and so
on. The capabilities are endless because Nagios has a plug-in based architecture, which allows you to
extend the base functionality to meet your monitoring needs. You can also run the checks remotely by
using the Nagios Remote Plugin Executor (NRPE) utility.

In addition to the monitoring tasks, Nagios is also capable of graphing the collected data, such as
the system response times or CPU utilization. When problems occur, Nagios has the ability to alert via
email or SMS notifications.

Nagios packages (the base application and plug-ins) are available on most Linux platforms, so check
your Linux distribution documentation for the installation details. Alternatively, you can download the
source code from the Nagios web site at http://www.nagios.org/download. On a typical Fedora
system you can install the Nagios base system along with the basic set of plug-ins (or checks) using the
following command:

$ sudo yum install nagios nagios-plugins-all

To proceed with this chapter, you should have some experience in managing Nagios. If you need

more information, please refer to the official documentation that you can find online at
http://www.nagios.org/documentation/.

Nagios Plug-In Architecture
The power of Nagios NMS is in its plug-in architecture. All check commands are external utilities that
can be written in any language—C, Python, Ruby, Perl and so on. The plug-ins communicate with the
Nagios system by means of OS return codes and the standard input/output mechanism. In other words,
Nagios has a predefined set of return codes that the check scripts must return. The return code dictates
what the new service state should be set to. All return codes and the corresponding service states are
listed in Table 8-1.

Table 8-1. Nagios Plug-In Return Codes

Return Code Service State

0 OK. The service is in a perfectly healthy condition.

1 WARNING. The service is available but is dangerously close to the critical condition.

2 CRITICAL. The service is not available.

3 UNKNOWN. It’s not possible to determine the state of the service.

In addition to the return code, a plug-in should also print at least one line to the standard output.

This printed string should contain a mandatory status text followed by the optional performance data
string. So a simple one-line report example can be:

WebSite OK

http://www.nagios.org/download
http://www.nagios.org/documentation

CHAPTER 8 ■ A WEB SITE AVAILABILITY CHECK SCRIPT FOR NAGIOS

213

This text will be appended to the status report message in the Nagios GUI. Similarly, with the
performance data appended, it would look like this:

WebSite OK | response_time=1.2

The performance data part then is available through the built-in Nagios macros and can be used to

plot the graphs. More information about using the performance data parameter is available at
http://nagios.sourceforge.net/docs/3_0/perfdata.html.

When you write a new plug-in, you must provision it first in the configuration files, so that Nagios
knows where to find it. Conventionally, all plug-ins are stored in /usr/lib/nagios/plug-ins.

Once you’ve written a check script you must define it in the command.cfg configuration file, which
can be found in /etc/nagios/objects/. The actual location may be different depending on how you
installed Nagios. Here is an example of a check definition:

define command {
 command_name check_local_disk
 command_line $USER1$/check_disk -w $ARG1$ -c $ARG2$ -p $ARG3$
}

When you define a service or a host, you now can refer to this check with the check_local_disk

name. The actual executable is $USER1$/check_disk and accepts three arguments. Following is an
example of the service definition that uses this check and passes all three parameters to it:

define service {
 use local-service
 host_name localhost
 service_description Root Partition
 check_command check_local_disk!10%!5%!/
}

The $USER1$ macro that you’ve seen earlier in the command-line definition simply refers to the

plug-ins directory and is defined in /etc/nagios/private/resource.cfg as
$USER1$=/usr/lib/nagios/plugins.

If you want, you can define a new macro and use it with your check scripts. This way, you’ll separate
the packaged scripts from your own, and it becomes easier to maintain. I recommend doing this for
check scripts that have a complicated structure with external configuration files or other dependencies.

The Site Navigation Check
As you know, each site is unique and although usually the same navigation and implementation
principles apply, you still have to do a lot of manual work to reverse-engineer it, so that you can
successfully simulate the user actions. Matters get much simpler if you know how the site is built and
don’t have to guess. In this example check we’re going to build a script that navigates to the BBC UK web
site at http://news.bbc.co.uk/, selects the top front-page story, and follows that link.

This check is a good example of a monitor that simulates one of the user behavior patterns and also
tests the internal web site logic for at least two functions: the ability to generate the front page and the
ability to generate the top story content. We’ll also monitor the execution time, and if it exceeds the
preconfigured threshold, we’ll alert on that as well.

http://nagios.sourceforge.net/docs/3_0/perfdata.html
http://news.bbc.co.uk

CHAPTER 8 ■ A WEB SITE AVAILABILITY CHECK SCRIPT FOR NAGIOS

214

Installing the Beautiful Soup HTML Parsing Library
Before proceeding, you need to install the Beautiful Soup library. Beautiful Soup is a Python module
designed to parse HTML and XML documents and extract information from them. This library is ideal
for processing the real-world HTML pages, as it ignores the malformed HTML syntax with missing end
tags and other errors that a web page may potentially contain.

Because Beautiful Soup is a really popular library, its packages are available for the majority of Linux
distributions. For example, on a Fedora system you can install this library with the following command:

$ sudo yum install python-BeautifulSoup

You can also install it from the Python Package Index (PyPI):

$ sudo pip install BeautifulSoup

Alternatively, the source code is also available for downloading from the application web site at

http://www.crummy.com/software/BeautifulSoup/.

Retrieving a Web Page
In its simplest form, the page-retrieving function can be implemented with only two function calls, and
in most cases where you’re not submitting any information and just retrieving, this is sufficient. The
following example uses the urlopen() function, which performs an HTTP GET request if no additional
form data is supplied. We’ll look at different methods of submitting data to the web applications later in
the chapter.

>>> import urllib2
>>> r = urllib2.urlopen('http://news.bbc.co.uk')
>>> html = r.read()
>>> len(html)
90881
>>>

The result of the read() call is a string containing the web page as it is served by the server. This

string, however, is not a full response and does not include extra information such as HTTP protocol
headers. The result object returned by the urlopen() call has the info() method, which you can use to
retrieve the HTTP headers as they are returned by the server. You need to remember that the object
returned by the info() call is an instance of the httplib.HTTPMessage class, which implements the
same protocol as the dictionary class, but in fact is not a dictionary itself:

>>> r.info()
<httplib.HTTPMessage instance at 0x1005c7ef0>
>>> print r.info()
Expires: Fri, 14 May 2010 07:20:15 GMT
Accept-Ranges: bytes
Set-Cookie: BBC-
UID=444b6e3cefd9cadf2d0a1f38c1d37453cbc43c1fd0a0b13a641bca65f221d5240Python%2durllib
%2f2%2e6; expires=Sat, 14-May-11 07:20:15 GMT; path=/; domain=bbc.co.uk;

http://www.crummy.com/software/BeautifulSoup
http://news.bbc.co.uk

CHAPTER 8 ■ A WEB SITE AVAILABILITY CHECK SCRIPT FOR NAGIOS

215

Set-Cookie: BBC-
UID=444b6e3cefd9cadf2d0a1f38c1d37453cbc43c1fd0a0b13a641bca65f221d5240Python%2durllib
%2f2%2e6; expires=Sat, 14-May-11 07:20:15 GMT; path=/; domain=bbc.co.uk;
Cache-Control: max-age=0
Date: Fri, 14 May 2010 07:20:15 GMT
Transfer-Encoding: chunked
Connection: close
Server: Apache
Content-Type: text/html
Keep-Alive: timeout=10, max=788

>>> r.info()['Server']
'Apache'
>>>

■Tip You can find out more about the HTTP headers, including a short description and a link to the appropriate
RFC specification document, at http://www.cs.tut.fi/~jkorpela/http.html.

Another useful method of the response object is geturl(). This method returns the actual URL of
the retrieved document. It is possible that the initial URL will respond with an HTTP redirect, and you’ll
actually end up retrieving a page from a completely different URL. In that case you may want to check
the origin of the page. One possible cause of a redirect is that you are trying to access restricted content
without prior authentication. In this case you will most likely be redirected to the login page of the web
site.

>>> res = urllib2.urlopen('http://www.hsbc.co.uk/')
>>> res.geturl()
'http://www.hsbc.co.uk/1/2/'
>>>

The resulting contents can then be passed to Beautiful Soup for the HTML interpretation and

parsing. The result is an HTML document object that implements various methods for searching and
extracting data from the document. The argument supplied to the BeautifulSoup constructor is just a
string, which means you can use any string as an argument, not only the one that you’ve just retrieved
from the web site.

>>> from BeautifulSoup import BeautifulSoup
>>> soup = BeautifulSoup(html)
>>> type(soup)
<class 'BeautifulSoup.BeautifulSoup'>
>>>

http://www.cs.tut.fi/~jkorpela/http.html
http://www.hsbc.co.uk
http://www.hsbc.co.uk/1/2

CHAPTER 8 ■ A WEB SITE AVAILABILITY CHECK SCRIPT FOR NAGIOS

216

Parsing the HTML Pages with Beautiful Soup
Once the contents are loaded into the BeautifulSoup object, we can start dissecting the BBC front web
page. To give you an idea of what we need to find on the page, Figure 8-1 illustrates a sample screenshot
of the front page, where you can clearly see the position of the top story. The top story on the BBC News
UK when I captured the screen was titled “Cameron and Clegg: We are united.” The title obviously
changes from article to article, but the layout of the web site rarely changes, and the top story is always
displayed in the same location on the web page.

Figure 8-1. The BBC News UK front page

We now need to find the corresponding HTML code in the web page. Let’s look at the web page
source, shown in Listing 8-1. (I did a bit of formatting, so you will probably see a slightly different layout
of the code if you view the code from your web browser.)

CHAPTER 8 ■ A WEB SITE AVAILABILITY CHECK SCRIPT FOR NAGIOS

217

Listing 8-1. HTML source code for the BBC News UK front page

[...]

<table cellspacing="0" border="0" cellpadding="0" width="786">
 <tr>
 <td valign="top" width="466">
 <div class="wgreylinebottom">
 <div class="splashformat wrapa">
 <div class="mvb">

Cameron and Clegg: We are united
 </div>

<img src="http://newsimg.bbc.co.uk/media/images/47836000/jpg/_47836386_009274560-
1.jpg" align="" width="466" height="260" alt="Nick Clegg and David Cameron"
border="0" vspace="0" hspace="0">
 <div class="widesummary">
New Prime Minister David Cameron says the UK's first coalition in decades marks a
"historic and seismic shift" in British politics.
 </div>

 <div class="sabull">
Analysis: Dave and
Nick Show
 </div>
 <div class="sabull">
Live
coverage: Text and video
 </div>
 <div class="sabull">
At-a-glance:
Coalition policies
 </div>
 <div class="sabull">
Who's who:
Cameron's cabinet
 </div>

[...]

We can immediately spot two distinct marks that potentially may lead us to the top story URL link.

The first one is the <div> tag that belongs to the mvb class. The second mark could be the <a> tag that
belongs to the tshsplash class.

There are several ways to access the tags in a Beautiful Soup document. If you know exactly what
you are looking for and the exact structure of the web site, you can simply use the tag names as
properties of the soup object:

http://newsimg.bbc.co.uk/media/images/47836000/jpg/_47836386_009274560-1.jpg
http://newsimg.bbc.co.uk/media/images/47836000/jpg/_47836386_009274560-1.jpg
http://news.bbc.co.uk/1/shared/election2010/liveevent

CHAPTER 8 ■ A WEB SITE AVAILABILITY CHECK SCRIPT FOR NAGIOS

218

>>> import urllib2
>>> from BeautifulSoup import BeautifulSoup

>>> WEBSITE='http://news.bbc.co.uk/'

>>> result = urllib2.urlopen(WEBSITE)
>>> html = result.read()
>>> soup = BeautifulSoup(html)
>>> print soup.html.head.title

This code will print the title HTML string:

<title>BBC NEWS | News Front Page</title>

This is a convenient and quick method of accessing individual tags, but it does not work very well if
the tag encapsulation structure is complicated. For example, the <div> tag we’re trying to get to is
already five levels deeper than the <table> tag that encapsulates it, and we don’t even know where that
particular <table> tag is in relation to the document‘s root element. Also, confusion arises if there are
multiple tags at the same level. For example, soup.html.body may contain multiple <table> tags, in
which case, Beautiful Soup would not know which one of those tags you are trying to access.

For situations like that, Beautiful Soup provides find methods, which allow you to search for the
elements regardless of where they are in the document tree. In other words, the search is recursive.
There are two find methods: findAll, which returns a list of all tags that match the search string, and
find, which returns the first occurrence of the matching tag.

Also bear in mind that each document element implements the same search methods that are
available for the main soup object. So if you want to get every <div> that is enclosed in a particular
<table>, you’d first search for a <table> tag, and then run another search query starting only from that
object, as illustrated here:

>>> tables = soup.findAll('table')
>>> len(tables)
24
>>> divs = tables[0].findAll('div')
>>> len(divs)
1
>>> divs[0]
<div class="wideav">

<img src="http://newsimg.bbc.co.uk/nol/shared/img/v4/icons/video_live.gif"
align="left" width="50" height="13" alt="" border="0" vspace="2" hspace="0" />
 BBC NEWS CHANNEL

<br clear="all" />
</div>
>>>

http://news.bbc.co.uk
http://news.bbc.co.uk/1/hi/uk/7459669.stm
http://newsimg.bbc.co.uk/nol/shared/img/v4/icons/video_live.gif

CHAPTER 8 ■ A WEB SITE AVAILABILITY CHECK SCRIPT FOR NAGIOS

219

Clearly this is not what we wanted. First, there are 24 (!) tables in this document. Second, the first
table contained only one <div> tag, which is not what we were searching for. So how do we find that
particular tag in this “soup”? To help us, Beautiful Soup allows specifying the tag attributes, such as
class, id, or any other attribute that might be included in the tag definition. Each attribute must be
accompanied with its value (or a regular expression, if you are searching for a set of values). All attributes
with their corresponding values should be passed on as a dictionary argument, attrs.

For example, let’s search for all <div> tags that belong to the mvb class:

>>> divs = soup.findAll('div', attrs={'class': 'mvb'})
>>> len(divs)
9
>>>

This is obviously a much better result, as we’re now limited to only nine elements, but it’s still not

good enough, as we don’t know which of them represents the top story. Let’s try searching for the <a>
tag that belongs to the "tshsplash" class. This time we’ll use the shortcut syntax to specify the tag’s
class, which you can do just by passing a second string instead of a list of attributes:

>>> a_tags = soup.findAll('a', 'tshsplash')
>>> len(a_tags)
1
>>> a_tags[0]
Cameron and
Clegg: We are united
>>>

Bingo! We’ve found the URL we were looking for. If you want to access the particular attribute in a

tag object, just try accessing it as a dictionary element. It’s always a good idea to check whether the
dictionary key actually exists; otherwise, you will get the KeyError exception. However, because you’re
not accessing the “real” Python dictionary object, you cannot use the IS IN construct, as it will give you
an incorrect result:

>>> 'href' in a_tags[0]
False
>>> a_tags[0].has_key('href')
True
>>> a_tags[0]['href']
u'/1/hi/uk_politics/election_2010/8676607.stm'
>>>

The next step is to load this page. Just loading this page successfully is enough to confirm that the

web site is working, so we will not do any HTML parsing of this page. The check script also needs to
measure the time spent in retrieving both web pages. If the time exceeds defined thresholds, the script
will return an error code stating that. Listing 8-2 shows the complete check code.

CHAPTER 8 ■ A WEB SITE AVAILABILITY CHECK SCRIPT FOR NAGIOS

220

Listing 8-2. The site navigation script

#!/usr/bin/env python

import sys
import urllib2
import time
from BeautifulSoup import BeautifulSoup
from optparse import OptionParser

NAGIOS_OK = 0
NAGIOS_WARNING = 1
NAGIOS_CRITICAL = 2
WEBSITE_ROOT = 'http://news.bbc.co.uk/'

def fetch_top_story():
 status = []
 try:
 result = urllib2.urlopen(WEBSITE_ROOT)
 html = result.read()
 soup = BeautifulSoup(html)
 a_tag = soup.find('a', 'tshsplash')
 story_heading = a_tag.string
 topstory_url = ''
 if a_tag.has_key('href'):
 topstory_url = "%s/%s" % (WEBSITE_ROOT, a_tag['href'])
 else:
 status = [NAGIOS_CRITICAL, 'ERROR: Top story anchor tag has no link']
 result = urllib2.urlopen(topstory_url)
 html = result.read()
 status = [NAGIOS_OK, story_heading]
 except:
 status = [NAGIOS_CRITICAL, 'ERROR: Failed to retrieve the top story']
 return status

def main():
 parser = OptionParser()
 parser.add_option('-w', dest='time_warn', default=1.8,
 help="Warning threshold in seconds, default: %default")
 parser.add_option('-c', dest='time_crit', default=3.8,
 help="Critical threshold in seconds, default: %default")
 (options, args) = parser.parse_args()

http://news.bbc.co.uk

CHAPTER 8 ■ A WEB SITE AVAILABILITY CHECK SCRIPT FOR NAGIOS

221

 if options.time_crit < options.time_warn:
 options.time_warn = options.time_crit

 start = time.time()
 code, message = fetch_top_story()
 elapsed = time.time() - start
 if code != 0:
 print message
 sys.exit(code)
 else:
 if elapsed < float(options.time_warn):
 print "OK: Top story '%s' retrieved in %f seconds" % (message, elapsed)
 sys.exit(NAGIOS_OK)
 elif elapsed < float(options.time_crit):
 print "WARNING: Top story '%s' retrieved in %f seconds" % (message,
elapsed)
 sys.exit(NAGIOS_WARNING)
 else:
 print "CRITICAL: Top story '%s' retrieved in %f seconds" % (message,
elapsed)
 sys.exit(NAGIOS_CRITICAL)

if __name__ == '__main__':
 main()

As you can see, the script accepts two optional arguments that allow you setting the thresholds for

both the warning and critical conditions. Let’s test the check script with various settings, just to trigger
all possible conditions, before deploying it as a Nagios check:

$./check_website_navigation.py -w 1.2
OK: Top story 'Cameron and Clegg: We are united' retrieved in 0.923599 seconds
$ echo $?
0
$./check_website_navigation.py -w 0.6
WARNING: Top story 'Cameron and Clegg: We are united' retrieved in 0.867163 seconds
$ echo $?
1
$./check_website_navigation.py -c 0.6
CRITICAL: Top story 'Cameron and Clegg: We are united' retrieved in 0.871813 seconds
$ echo $?
2
$

CHAPTER 8 ■ A WEB SITE AVAILABILITY CHECK SCRIPT FOR NAGIOS

222

Adding the New Check to the Nagios System
Now it’s time to provision this check in Nagios and start monitoring the BBC News web site. First we will
add the new section in the command-list file, which is commands.cfg in the /etc/nagios/objects/
directory. The following code makes the check available to use under the name
check_website_navigation and instructs that two parameters need to be supplied with the command:

define command {
 command_name check_website_navigation
 command_line $USER2$/check_website_navigation -w $ARG1$ -c $ARG2$
}

You then need to create a configuration file that contains at least a host and a service definition.

Listing 8-3 shows how to create a simple configuration file that defines a host template, from which the
host then inherits the basic settings. This host is then put into a separate host group. Similarly, a service
with the new check command is defined and grouped into a separate service group. We will expand this
configuration when we add another check later in the chapter. Once you create the configuration file,
you will have to add a cfg_file statement to the nagios.cfg file that points to this configuration file.

Listing 8-3. Nagios host and service definitions

define host {
 name template-website-host
 use generic-host
 register 0
 max_check_attempts 5
 contacts nagiosadmin
 parents localhost
 check_command check-host-alive
}

define host {
 use template-website-host
 host_name news.bbc.co.uk
 address news.bbc.co.uk
 notes BBC News UK
}

define hostgroup {
 hostgroup_name InternetWebsites
 alias Internet Websites
 members news.bbc.co.uk
}

CHAPTER 8 ■ A WEB SITE AVAILABILITY CHECK SCRIPT FOR NAGIOS

223

define service {
 use generic-service
 hostgroup_name InternetWebsites
 service_description SiteNavigation
 check_command check_website_navigation!1.5!2.5
}

define servicegroup {
 servicegroup_name InternetWeb
 alias Internet Websites
 members news.bbc.co.uk,SiteNavigation
}

If you allow some time for Nagios to recheck all defined services, and then navigate to the service

check screen, you should see a result similar to Figure 8-2.

Figure 8-2. Checking script status in Nagios

CHAPTER 8 ■ A WEB SITE AVAILABILITY CHECK SCRIPT FOR NAGIOS

224

Emulating the User Login Process
The next check we are going to implement is the user login action. As an example web site I’m going to
use http://www.telegraph.co.uk/. This site allows users to participate in different promotions and
subscribe to mailing lists and email notifications. Obviously, these options need to allow users to
identify themselves to the web site.

When the user clicks the Log In link, which is available on the top-right corner of the web page, he or
she will be redirected to a log in landing page. This page contains a web page form with two fields: one
for the user email address and one for the password. Listing 8-4 shows the form definition in the web
page source code.

Listing 8-4. The telegraph.co.uk login form

<form id="user" class="basicForm" action="./login.htm" method="post">
 <label for="email" >Email address</label>

 <input id="email" name="email" type="text" value=""/>

 <label for="password" >Password</label>

 <input id="password" name="password" type="password" value=""
autocomplete="off"/>

 <div class="cl"></div>
 Forgotten password?

 <a href="http://www.telegraph.co.uk/topics/about-us/3489870/Contact-us.html"
class="noLabel">Need help?
 <div class="bottomButtons">

 <input type="submit" value="Log in" />

 </div>
 <div class="cl"></div>
 <p class="noLabel">Orregister now
 if you do not have a Telegraph.co.uk profile
 </p>
</form>

When you fill in the values and hit the Submit button, the web browser encodes the values by

combining all fields (including the field names and their new values) into one string and sends that
information as an HTTP POST request. The HTTP method is usually specified in the form definition, and
as you can see from our example is currently set to POST.

If we want to achieve the same result, we first need to encapsulate the data we are going to submit.
Unfortunately, urllib2 does not provide this functionality and we have to use the urllib method to
encode the form data. The formatted string containing the form data should be supplied as an optional
argument to the urlopen() method. If the additional data is supplied, the method will automatically
send the POST request instead of the default GET request.

http://www.telegraph.co.uk
http://www.telegraph.co.uk/topics/about-us/3489870/Contact-us.html

CHAPTER 8 ■ A WEB SITE AVAILABILITY CHECK SCRIPT FOR NAGIOS

225

■Note What is the difference between the POST and GET requests? The main difference is in the way these two
requests submit additional data to the web services. If you are sending a GET request, the data is contained within
the URL string. The URL would then have the syntax similar to this: http://example.com/some_page?
key=value&key2=value2. Whereas if you send the POST request, the URL will be http://
example.com/some_page, and the data will be encapsulated in the HTTP request headers.

Web sites usually manage user sessions with HTTP cookies. An HTTP cookie is a protocol message
field, which is included in the communication messages sent from the web browser application to the
web server. The HTTP protocol by nature is stateless. The HTTP requests do not carry any information
that could help identifying the request sender. Keeping track of user activities is essential for the web
shopping services or any other service that needs to provide personalized results. This activity is referred
to as “maintaining a web session.” One of the ways to maintain this session is by using HTTP cookies.
Here’s an example of an HTTP cookie:

Set-Cookie: BBC-
UID=444b6e3cefd9cadf2d0a1f38c1d37453cbc43c1fd0a0b13a641bca65f221d5240Python%2durllib
%2f2%2e6; expires=Sat, 14-May-11 07:20:15 GMT; path=/; domain=bbc.co.uk;

There can be multiple cookies set in the HTTP header message. Each cookie has a name and a value

along with some extra properties such as the domain that is supposed to receive it, the expiration time,
and the URL portion. So how do cookies help to maintain sessions? When the web server receives a
request, it sends the initial response back to the web browser. Along with the other HTTP header fields, it
inserts the cookie field. The web client in turn saves the cookie in its internal database. When it makes
another request it scans the database for cookies that both belong to the same domain it is currently
sending the request to and have the matching path property. The web client then includes all matching
cookies in its subsequent requests. Now the web server receives requests that are “marked” with the
cookies and therefore knows that these requests are part of the same “conversation,” or in other words
belong to the same web session.

I’ve described the behavior of a typical web browser that handles the cookie storing and
management activities automatically. The default URL processor (or the opener in urllib2 terms) does
not process cookies. Luckily, all classes for handling cookies are included in the urllib2 module and
you just need to replace the default opener with the custom opener object. The HTTPCookieProcessor
class that we are going to use in constructing the new opener object is responsible for storing the HTTP
cookies received from the server and then injecting them into all HTTP requests going to the same web
site:

>>> import urllib, urllib2
>>> url = 'https://auth.telegraph.co.uk/sam-ui/login.htm'
>>> data = urllib.urlencode({'email': 'user@example.com', 'password': 'secret'})
>>> opener = urllib2.build_opener(urllib2.HTTPCookieProcessor())
>>> urllib2.install_opener(opener)
>>> result = opener.open(url, data)
>>> html = result.read()
>>> print html

http://example.com/some_page?
http://example.com/some_page
http://example.com/some_page
https://auth.telegraph.co.uk/sam-ui/login.htm
mailto:user@example.com

CHAPTER 8 ■ A WEB SITE AVAILABILITY CHECK SCRIPT FOR NAGIOS

226

[...]
 <h2>
 Welcome, Rytis

 You are able to update your Telegraph.co.uk profile from this page

 </h2>
[...]

The HTML page that has been retrieved shows that I have successfully logged on to the system, and

the web page that has been returned to me is the user-profile/account-management page. Now let’s try
visiting the log-off page, which is supposed to log us out from the site, effectively invalidating the session
cookie that we retrieved earlier:

>>> url_logon = 'https://auth.telegraph.co.uk/sam-ui/login.htm'
>>> url_logoff = 'https://auth.telegraph.co.uk/sam-ui/logoff.htm'
>>> import urllib, urllib2
>>> data = urllib.urlencode({'email': 'user@example.com', 'password': 'secret'})
>>> opener = urllib2.build_opener(urllib2.HTTPCookieProcessor())
>>> urllib2.install_opener(opener)
>>> res = opener.open(url_logon, data)
>>> html_logon = res.read()
>>> res.close()
>>> res = opener.open(url_logoff)
>>> html_logoff = res.read()
>>> res.close()

Now let’s see if the tag of the class subText is a mark that can be used to distinguish

between the registration page (meaning that we have logged on successfully) and the main landing page
(meaning we logged off successfully):

>>> from BeautifulSoup import BeautifulSoup
>>> soup_logon = BeautifulSoup(html_logon)
>>> soup_logoff = BeautifulSoup(html_logoff)
>>> len(soup_logon.findAll('span', 'subText'))
1
>>> len(soup_logoff.findAll('span', 'subText'))
0
>>>

And indeed, this proves to be a reasonably valid test. So we have a way to authenticate ourselves to

the web site by submitting the required information in the POST data request. You can use the same
method to submit large forms as well. For example, you may want to build an automated check to test
the registration functionality of your web site or the comment system.

The check script for Nagios system is quite similar to the one that we wrote for the navigation test.
Listing 8-5 shows the complete script.

https://auth.telegraph.co.uk/sam-ui/login.htm
https://auth.telegraph.co.uk/sam-ui/logoff.htm
mailto:user@example.com

CHAPTER 8 ■ A WEB SITE AVAILABILITY CHECK SCRIPT FOR NAGIOS

227

Listing 8-5. The site logon/logoff check script

#!/usr/bin/env python

import sys
import urllib2, urllib
import time
from BeautifulSoup import BeautifulSoup
from optparse import OptionParser

NAGIOS_OK = 0
NAGIOS_WARNING = 1
NAGIOS_CRITICAL = 2
WEBSITE_LOGON = 'https://auth.telegraph.co.uk/sam-ui/login.htm'
WEBSITE_LOGOFF = 'https://auth.telegraph.co.uk/sam-ui/logoff.htm'
WEBSITE_USER = 'user@example.com'
WEBSITE_PASS = 'secret'

def test_logon_logoff():
 opener = urllib2.build_opener(urllib2.HTTPCookieProcessor())
 urllib2.install_opener(opener)
 data = urllib.urlencode({'email': WEBSITE_USER, 'password': WEBSITE_PASS})
 status = []
 try:
 result = opener.open(WEBSITE_LOGON, data)
 html_logon = result.read()
 result.close()
 result = opener.open(WEBSITE_LOGOFF)
 html_logoff = result.read()
 result.close()
 soup_logon = BeautifulSoup(html_logon)
 soup_logoff = BeautifulSoup(html_logoff)
 if len(soup_logon.findAll('span', 'subText')) == 1 and \
 len(soup_logoff.findAll('span', 'subText')) == 0:
 status = [NAGIOS_OK, 'Logon/logoff operation']
 else:
 status = [NAGIOS_CRITICAL,
 'ERROR: Failed to logon and then logoff to the web site']
 except:
 status = [NAGIOS_CRITICAL, 'ERROR: Failure in the logon/logoff test']
 return status

https://auth.telegraph.co.uk/sam-ui/login.htm
https://auth.telegraph.co.uk/sam-ui/logoff.htm
mailto:user@example.com

CHAPTER 8 ■ A WEB SITE AVAILABILITY CHECK SCRIPT FOR NAGIOS

228

def main():
 parser = OptionParser()
 parser.add_option('-w', dest='time_warn', default=3.8,
 help="Warning threshold in seconds, defaul: %default")
 parser.add_option('-c', dest='time_crit', default=5.8,
 help="Critical threshold in seconds, default: %default")
 (options, args) = parser.parse_args()
 if float(options.time_crit) < float(options.time_warn):
 options.time_warn = options.time_crit
 start = time.time()
 code, message = test_logon_logoff()
 elapsed = time.time() - start
 if code != 0:
 print message
 sys.exit(code)
 else:
 if elapsed < float(options.time_warn):
 print "OK: Performed %s sucessfully in %f seconds" % (message, elapsed)
 sys.exit(NAGIOS_OK)
 elif elapsed < float(options.time_crit):
 print "WARNING: Performed %s sucessfully in %f seconds" % (message,
 elapsed)
 sys.exit(NAGIOS_WARNING)
 else:
 print "CRITICAL: Performed %s sucessfully in %f seconds" % (message,
 elapsed)
 sys.exit(NAGIOS_CRITICAL)

if __name__ == '__main__':
 main()

You need to add this script to the commands.cfg file and create the appropriate host, hostgroup,
service, and service group definitions in the Nagios configuration files, just as we did with the site
navigation script. Once you have added this configuration, restart the Nagios process and after a short
time you should see the check status appearing in the Nagios console.

CHAPTER 8 ■ A WEB SITE AVAILABILITY CHECK SCRIPT FOR NAGIOS

229

Summary
In this chapter we’ve looked at web site monitoring scripts that go beyond the simple HTTP process
check. These tests emulate standard user behavior and actually test the web application logic. Key points
to remember:

• You can access web content by using the standard Python urllib2 module.

• The urllib2 library provides additional handlers that manage cookies seamlessly.

• You can parse HTML documents with the Beautiful Soup library.

• It is easy to integrate applications with the Nagios monitoring system through the API,
which is based on the standard UNIX process communication mechanisms.

• You can find detailed information about the Nagios API in the official documentation,
which is available at http://www.nagios.org/documentation/.

http://www.nagios.org/documentation

C H A P T E R 9

■ ■ ■

231

Management and

Monitoring Subsystem

This is the first of three chapters in which I am going to show you how to build a simple distributed
monitoring system. In the first part, I demonstrate building a monitoring server component. This
component is responsible for sending the queries to all monitoring agents, scheduling the requests, and
storing the collected data in the local database. This chapter will discuss three topics: data modeling,
interprocess communication, and multithreaded programming. In the data modeling section we will
looks at some database design and modeling methods. Later we’ll investigate the XML-RPC protocol and
the Python libraries that support it. Finally we are going to look at multithreaded programming with
Python.

Design
It is important to come up with some sort of design before starting the implementation, especially when
coding distributed systems. There are two main areas that I need to establish: the components the
monitoring system is going to be made of and the data objects it will operate with.

The Components
From the requirements-gathering exercise I know that the system is going to be centralized—that is,
there will be multiple agents reporting to the master monitoring server. Therefore at least two distinct
components are needed: a monitoring server and a monitoring agent. The server process is going to
communicate with the clients and retrieve the performance and status data from them.

Now there is a question of how smart the agent needs to be. Does it need to know how to perform all
checks by itself? Or should it have a pluggable architecture whereby the agent itself only acts as a
controller component? I am going to choose the architecture in which the agent relies on plug-ins to
perform all checks. The agent process itself will only proxy the server requests to the plug-in code and
pass the results back. I’ll call these plug-ins the “sensors,” because that is effectively what they are
doing—measuring the system’s parameters.

Figure 9-1 represents a high-level component interaction diagram. The following sections provide a
more detailed design description of each component.

CHAPTER 9 ■ MANAGEMENT AND MONITORING SUBSYSTEM

232

Figure 9-1. System components

The Monitoring Server
The monitoring server is responsible for sending out the requests to the client systems and receiving the
sensor readings from all clients. There are two options for obtaining the data from the clients: the first is
to have the server initiate the connection, and the second is to have the client do so. Each approach has
its benefits. When the client initiates the connection there’s less overhead on the server side, because it
does not need to do any scheduling work. It is also safer, because it is impossible to request the data, and
therefore the data will only be received by the system, which is registered on the client—the monitoring
server.

However, the biggest disadvantage with the client-initiated connections is that the server has
absolutely no control over the incoming information flow, and this can lead to the server being
overloaded. Ideally it would be up to the server to decide what information it requires and at what point
in time. For example, a really intelligent system disables certain checks if making them doesn’t make
sense. A good example would be to stop volume usage checks after receiving a hard disk failure alert,
because it is obvious that the disk failure will cause all volume checks to fail, so there is no point in
reporting symptoms of the underlying issue.

In my simple monitoring system I’m going to use what is effectively a server-initiated control
mechanism, but without sacrificing the security model. The server process will be sending out
notifications to the client to submit the sensor data. When the client receives such notification it will

CHAPTER 9 ■ MANAGEMENT AND MONITORING SUBSYSTEM

233

perform the check and submit the readings back to the server it is registered with. So there is no way of
obtaining the data from the client; it’s only a one-way communication channel. Only the “trusted” server
can receive the results.

Client configuration is done in a similar fashion: the client receives an external signal to update its
configuration (either the “trusted” server address or the sensor code) and then it initiates the connection
back to the server to get the required details.

The Monitoring Agent
The monitoring agent process is completely passive and acts only when it receives instructions from the
server. As described earlier, such instructions can be to submit the sensor readings, update the server
address, and retrieve a new sensor code from the server.

When the agent is notified to submit the readings, it will call the external tools to perform the actual
reading. It will then read the output from the process and send it back to the monitoring server, along
with the process return code.

The server address update command instructs the monitoring agent to connect to the currently
registered server and request the new address. The agent will then attempt to connect to the new
address. If the operation is successful, the current server address will be replaced with the new address;
otherwise the address will not change.

Finally, when the agent receives a command to update the code of one of the sensors, it will connect
back to the server and ask for the sensor code archive. The server is going to send the archived copy back
to the requesting client. When the archive is received and stored in the temporary location, it is
unpacked and a basic sanity check is performed. If the check is successful, the old code is archived and
the new code is deployed in to the appropriate location.

The Sensors
Unlike other monitoring systems, where sensors or checks contain some logic (for example, Nagios
checks for return OK, WARNING or CRITICAL status messages), I am not going to embed any validation
logic into my sensors. After all, the sensor is there to report the status and cannot and should not know
whether the situation it’s reporting is posing any danger. It’s up to the master monitoring server to
decide whether the readings are indicating any issues with the systems.

This approach allows further extension of the check logic to perform more advanced and adaptive
reporting. For example, instead of simple threshold checks, the system may be expanded with trend
checks. Even if the load on the observed system goes beyond the set threshold, it might still be all right
because that’s how the load pattern goes. Similarly, if the system reports a load much lower than is
normal for the given period of time it may indicate issues, which a simple threshold check would fail to
detect.

The Data Objects
Naturally, all processes involved are going to consume or produce (or both) some data. The most
obvious data is the sensor readings, but there will also be configuration, scheduling settings defined, and
so on. So I need to come up with a sound definition and design of what data the monitoring system is
going to deal with before writing any code.

There will be four distinctive types of data:

• Configuration data, which describes all monitoring agents, sensors and their parameters

• Site configuration data, which defines what checks need to be performed on each server
and where to find the client servers

CHAPTER 9 ■ MANAGEMENT AND MONITORING SUBSYSTEM

234

• Scheduling data, which defines the intervals for the checks

• Performance reading data, which is the data received from the sensors on the client servers

Configuration
The configuration data contains data about sensors, sensor parameters, and monitoring agents. All
available agents, along with their names and addresses, are part of the monitoring system configuration.
In addition to a simple listing of all hosts and sensors, the configuration also contains information about
which sensors are available on what monitoring servers.

The agent servers may be different in their available hardware resources and configuration, so it
must be possible to define individual thresholds for each monitoring agent.

Performance Readings
Obviously this is the key data component in the monitoring system. Each performance reading needs to
hold the time it was recorded, so that it can be correctly represented on the time line. The numeric value
and sensor application return code also need to be recorded, along with the node and the sensor
identification information.

Site Configuration
At the moment, site information will hold only the monitoring server address, but the placeholder needs
to be put in place so that it allows for future functional expansion. It is important to note that the site
information is maintained centrally on the monitoring server, and the agent servers would retrieve this
information and update local configuration accordingly.

The reason for storing this information centrally is that it is much easier to control the configuration
if it is stored in one location. When the agents need updating, a separate process will issue update
commands for the configuration to be automatically updated.

Scheduling
The scheduling configuration defines what sensor commands need to be executed on what monitoring
agents and at what intervals. There will be information held for each agent-check combination with
appropriate interval setting.

This data is similar to the information defined in UNIX cron files, but it does not have to be as
flexible in terms of defining execution time patterns. All time intervals will be of an equal length.

The Data Structures
In the previous section I briefly described the high-level design of the data structures that I’m going to
use in the monitoring system. In this section I’m going to create the database layout and relationships
between different database tables. Finally, this information will be mapped to the SQL statements that
will be used to initialize the database.

The modeling tool I’ve used to create the diagrams and data model is MySQL Workbench, which is
an open-source application you can download from http://wb.mysql.com. MySQL Workbench is a
powerful database and entity relationship (ER) visual design tool. You can create new visual designs and
generate SQL scripts from the design.

http://wb.mysql.com

CHAPTER 9 ■ MANAGEMENT AND MONITORING SUBSYSTEM

235

Introduction to Data Normalization
Data normalization is a way of ensuring that data is maintained in a way that prevents loss of data
integrity. If the database structures are not normalized, erroneous code actions, user data-entry
mistakes, or system or application failure during the update operation can lead to data corruption. The
data corruption I am referring to here is the logical one, whereby the database files are correct but the
information stored may be logically incorrect. To continue with the data layout section I need to explain
few concepts of data normalization, so that you can understand why I’m organizing the data in a
particular way.

Let’s assume I want to implement one of the configuration section requirements; namely, to store
the following information items:

• information about a sensor

• sensor options

• monitoring agent information

So I create a table with the following fields: hostname, address, sensor name, and sensor options. I

then enter a few checks I want to perform on two monitoring agents:

hostname address sensor options
--------------- --------------- --------------- ---------------
my laptop 127.0.0.1 disk_check free_space
my laptop 127.0.0.1 memory_check total
remote server 192.168.0.1 disk_check free_space
remote server 192.168.0.1 memory_check total

Now let’s say I want to update the address field of the remote server. Because the information is

stored in two different rows, I need to make sure that all rows are going to be updated. If for some reason
the application that attempts to update the database fails to identify all rows and update accordingly, I
may end up with the following data in my table:

hostname address sensor options
--------------- --------------- --------------- ---------------
my laptop 127.0.0.1 disk_check free_space
my laptop 127.0.0.1 memory_check total
remote server 192.168.0.1 disk_check free_space
remote server 192.168.0.2 memory_check total

This data is correct from the database perspective, but it is inconsistent: the remote server now has

two addresses, and it is not clear which one is correct.
This is where data normalization comes in handy. Following a few simple rules, you can split the

information into different tables and thus eliminate the possibility of data corruption or irregularities.
There are three basic data normalization forms, each defining the rules for structuring the data. In
addition to these forms, there are a number of higher-degree normalization forms developed, but in
most cases they pose only an academic interest.

I’m going to start with the First Normal Form, which defines two important properties for the table
structure: rows must be unique, and there should be no repeating groups within columns.

The first rule is pretty obvious and means that there must be a way of uniquely identifying each row.
The unique key can be either one column or a combination of columns.

CHAPTER 9 ■ MANAGEMENT AND MONITORING SUBSYSTEM

236

The second rule means that I cannot define multiple columns that carry what is logically the same
information. For example, if I wanted to have multiple checks for each server and added these checks as
additional columns to store that information, it would violate the second rule, as in this example:

hostname address sensor1 options1 sensor2 options2
---------- ---------- ----------- ----------- ------------- -----------
my laptop 127.0.0.1 disk_check free_space memory_check total

It is also not allowed to have grouped data in the single column; for example, listing options as a

string like free_space,swap_space would also violate this rule.
The data is considered to be in the Second Normal Form when it satisfies all the rules of the First

Normal Form and also satisfies the requirement that all fields that are not part of the primary key
depend on all fields of the key. Consider the following example:

address sensor default option
--------------- --------------- ---------------
127.0.0.1 disk_check free_space
127.0.0.1 memory_check total
192.168.0.1 disk_check free_space
192.168.0.2 memory_check total

Neither address nor sensor fields alone can be unique keys for each row, but the combination

address-sensor can be considered a unique key for each row. So the table conforms to the first normal
form. The default option field, however, only depends on the sensor and has no relation to the
address column, therefore this table is not in the Second Normal Form.

I need to split the data into two tables so that each table satisfies the Second Normal Form rules.
The first table lists default options for each sensor, and the unique key is the sensor field.

sensor default option
--------------- ---------------
disk_check free_space
memory_check total

The second table lists all checks on each node, where unique key is the combination of both

columns.

address sensor
--------------- ---------------
127.0.0.1 disk_check
127.0.0.1 memory_check
192.168.0.1 disk_check
192.168.0.2 memory_check

■Note It’s worth noting that if the First Normal Form table has no composite keys, it is automatically in the
Second Normal Form.

CHAPTER 9 ■ MANAGEMENT AND MONITORING SUBSYSTEM

237

Finally, the Third Normal Form requires that all nonkey fields depend on the primary key only. In
the following example, I record what checks have been performed on each agent. Assume for the
purpose of this example that only one check could be performed each minute, so the address"-"check
time is a unique key.

address check time sensor sensor location
---------- ------------ ------------- -----------------
127.0.0.1 10:20 disk_check /checks/disk
127.0.0.1 10:21 disk_check /checks/disk
127.0.0.1 10:22 memory_check /checks/memory
127.0.0.1 10:23 memory_check /checks/memory

This table complies with the rules of the Second Normal Form, but is still not in the Third Normal

Form. That’s because although all fields depend on a full primary key, some of them also depend on the
non-key fields. In particular, the sensor location depends on the sensor field. In a faulty application
it is possible to have a situation where sensor location is different for the same sensor. Therefore I
need to split sensor"-"sensor location into a separate table to comply with the Third Normal Form.

In general, data normalization prevents your data from losing its integrity, so it is usually considered
to be a good practice. Sometimes, however, normalizing data can impose serious penalties on the
application’s performance and code complexity. If you are absolutely sure that no serious issues will
occur should the data become irregular, and more importantly, if you have a means to recover from that
situation, you can sacrifice the completeness of the data normalization in favor of speed and code
simplicity. So always apply your own judgment when designing your data structures.

In the following examples I am going to show a situation in which it is not feasible to follow the
normalization rules strictly, and you can make some compromises.

Configuration Data
Let’s start with the configuration data, which contains information about all monitoring agents and the
sensor checks assigned to them. There are multiple approaches to organizing and designing database
tables. One of the formal methods is to write down all columns as one record and start from there
applying all rules from the First Normal Form. When you’re done and have one or more tables in the
First Normal Form, you proceed by applying the Second Normal Form rules until you get the desired
result—ideally database tables in the Third Normal Form.

Although this method works perfectly every time, I find it bit tedious, because with some practice
you already know how to organize the tables and going through all the formal steps just creates
unnecessary work. I find the following method a lot more effective.

Think about the objects in your model that are static and self-contained. Going back to the
configuration data I see two objects there: host and sensor. Now create tables for each such object. I’ll
start with the table for the host entries, Table 9-1.

CHAPTER 9 ■ MANAGEMENT AND MONITORING SUBSYSTEM

238

Table 9-1. The Host Entries

Field Data Type Description

id integer The unique identifier.

name text The name of the host.

address text The IP address or full domain name of the host.

port text The port number on which the client process is running.

As you can see, this table is already in the Third Normal Form and there’s absolutely no need to
improve anything in it. Each entry is unique, there are no repetition groups in the columns, there’s only
one primary key field (name), and other fields depend only on that field.

■ NNote I need to point out that the ID in this table and other tables is not to be treated as a unique field. When
normalizing data, fields must carry sensible information, and arbitrary fields such as hidden IDs or timestamps
cannot be treated as informational fields, because they do not constitute the dataset. They are used mostly for
reference purposes, because it is faster and more efficient to operate on integer values rather than text or keys of
other data types.

Now let’s proceed to the sensor definition. This is going to be slightly more complicated, because
from the sensor design I already know that each sensor can perform several checks. For example, the
disk volume sensor can perform multiple checks, such as total space, used space, used inodes, and so
on. You might want to add all fields into one table, so that the sensor-check combination becomes a
unique key field. This may be fine for small datasets, but if you want to expand and add more fields, this
structure becomes inflexible and you’ll need to redesign the tables. As a rule of thumb I recommend
splitting any data that has the ‘contains multiple ...’ attribute. Going back to my example I can declare
that each sensor contains multiple checks. Therefore, if you split this information across two tables, in
most cases you’ll be spot on. Table 9-2 is the table for the sensor entries.

Table 9-2. The Sensor Entries

Field Data Type Description

id integer The unique identifier

name text The name of the sensor

CHAPTER 9 ■ MANAGEMENT AND MONITORING SUBSYSTEM

239

The table for the checks (or the probes as I’m going to call them in this book) is shown in Table 9-3;
it contains more information and also references the sensor entries.

Table 9-3. The Probe Entries

Field Data Type Description

id integer The unique identifier.

name text The name of the probe.

parameter text The string to be passed to the sensor check command.

warning float The default threshold for this particular probe, at the warning level.

error float The default threshold for this particular probe, at the error level.

sensor_id integer The ID of the sensor record. As I mentioned, in formal notation this
should have been the name of the sensor, but for simplicity and flexibility
we use unique row IDs.

Now look really carefully at Tables 9-2 and 9-3 and see if you can spot any violations of the

normalization form rules. The sensor table is so simple that no doubt it is in the Third Normal Form, but
what about the probe table? At first glance it looks fine, but on closer inspection you’ll realize that I have
repetitive groups, so this table is not even in the First Normal Form! There are two fields that effectively
define similar types of information: the threshold fields, warning and error. I must create a new table to
hold threshold definitions, including warning, error, and possibly others such as informational and
critical if I ever want to add them. That, however, brings another complication—I cannot put any values
in that table, because threshold values are specific to each probe. So I will need to define yet another
table that ties the probe and the threshold records together and adds the value column. I now have two
choices—restructure the table, introduce two new ones, and also face much more complicated code to
deal with this, or accept the limitation of the two threshold levels. Because the monitoring system I’m
building here is really simple, and I don’t require much granularity in thresholds, I go with the second
option.

When you’re finished defining static components, proceed to the relations. My monitoring system is
going to perform probe readings on all monitored hosts, so I need to define this relation. Obviously not
all probes apply to all hosts, so I have to create another table that defines probe-to-host mapping. I’m
also going to allow threshold overrides on a per-host basis. It is only going to be a placeholder in the
table, and the logic of threshold precedence must be implemented at the code level. See Table 9-4.

CHAPTER 9 ■ MANAGEMENT AND MONITORING SUBSYSTEM

240

Table 9-4. Probe-to-Host Mapping

Field Data Type Description

id integer The unique identifier.

probe_id integer The ID of the probe record.

host_id integer The ID of the host record on which the probe must be executed.

warning float The placeholder for the warning threshold override entry. Must not be a
required field, because if left empty the default will be assumed.

error float The placeholder for the error threshold override entry. Must not be a
required field, because if left empty the default will be assumed.

Performance Data
The only additional information in the performance data table is the reading returned by the monitoring
agent and the time stamp when the measurement has been performed. The remaining information can
be found from the host-to-probe mapping table (Table 9-4). The probe readings table (Table 9-5)
contains details about the host where the measurement has been made, the type of the sensor, and the
exact check parameters.

Table 9-5. Probe Readings

Field Data Type Description

id Integer The unique identifier

hostprobe_id Integer The ID of the record in the host-to-probe mapping table

timestamp Text The timestamp indicating the time when the measurement was made

probe_value Float The value returned by the probe code

ret_code Integer The return code of the sensor code

CHAPTER 9 ■ MANAGEMENT AND MONITORING SUBSYSTEM

241

Scheduling
The scheduling data consists of two distinct components that are not related to each other: the
scheduling data that defines what probes need to be executed at specific intervals and the ticket queue,
which is used to hold instructions for the ticket scheduler process. Let’s take a closer look at each of
them.

The probing schedule table (Table 9-6) holds static data that references individual records in the
probe-to -host map table. This is needed to find the information about the sensor name and specific
probe parameters that need to be executed. It also indicates which monitoring agent (or host) needs to
be contacted. In addition to this information, the scheduling table contains the interval parameter,
which indicates the time period between probe readings.

Table 9-6. Probe Scheduling

Field Data Type Description

id Integer The unique identifier

hostprobe_id Integer The ID of the record in the host to probe mapping table

probeinterval Integer The interval between probe checks expressed in minutes

The ticket queue table (Table 9-7) contains dynamic data about the probes to be executed. This

table is populated either by the scheduler process or by any other process that needs to obtain
performance data from the agents. The dispatcher process reads all entries from the table and sends
requests to the monitoring agents. Once the request is sent, the record is updated as dispatched. This is
done to prevent duplicate requests. Finally, when the monitoring server process receives the sensor data
along with the ticket number it removes the record from the table.

Table 9-7. The Probe Tickets Queue

Field Data Type Description

id Integer The unique identifier.

hostprobe_id Integer The ID of the record in the host-to-probe mapping table. This record
contains all information needed to perform the sensor query call.

timestamp Text The timestamp record indicates when the ticket has been placed in
the queue. Useful to detect situations when the request has been
dispatched, but the result never came back.

dispatched Integer A flag indicating whether the ticket has been dispatched to the
corresponding monitoring agent.

CHAPTER 9 ■ MANAGEMENT AND MONITORING SUBSYSTEM

242

Site Configuration
The site configuration information is organized into two tables: system-wide parameters and host-
specific parameters. I wanted to have the flexibility of defining new custom parameters as I develop the
application, so instead of fixing settings to table columns, therefore each setting is defined as a key-value
pair in the table. The key column uniquely identifies the parameter name and the value is the default
value, which can be overridden in the second table that maps parameters to specific hosts. This
approach allows me to have a two-level inheritance system, just as I have with the sensor threshold
entries.

So the first table contains the key-value records as shown in Table 9-8.

Table 9-8. System Parameters

Field Data type Description

id Integer The unique identifier.

name Text The unique name of the system parameter setting.

value Text The default value for the key, which can either be used as a system-wide
setting or be overridden if required for each specific host entry. All values
are stored as text and must be type converted to appropriate types at the
run time.

The second table (Table 9-9) references the system parameters table and allows overriding the

settings.

Table 9-9. Host-Specific Parameters

Field Data type Description

id integer The unique identifier.

param_id integer The ID of the record in the parameters table.

host_id integer The ID of the host table record. This allows applying specific settings for
every particular host.

dispatched text The host specific parameter value.

Representing the Information in an ER Diagram
I now have defined all the tables that I will be using on the monitoring server. Each field is defined, along
with the relations between the tables. Even though I have only a few tables, it is still sometimes
confusing to find and visualize the relation between different tables. To make things easier, especially
when writing SQL queries, it is a good idea to draw an entity relationship (ER) diagram, a concept
introduced in Chapter 5.

Figure 9-2 is the ER diagram I drew for the tables defined earlier.

CHAPTER 9 ■ MANAGEMENT AND MONITORING SUBSYSTEM

243

Figure 9-2. ER diagram of the server data structure

Communication Flows
The monitoring that I am building here is effectively a distributed computational system. It has most of
the distributed system attributes—the controller process (the scheduler component) is responsible for
sending job requests to the processing nodes (monitoring agents), and finally the information is
supplied back to the data processing component (the monitoring server).

As with any distributed system it is crucial to define communication flows and the methods of
exchanging the information. There are many methods to implement process communication—SOAP

CHAPTER 9 ■ MANAGEMENT AND MONITORING SUBSYSTEM

244

(discussed in detail in Chapter 2), REST (REpresentational State Transfer), XML-RPC, and so on. I am
going to use the XML-RPC method of exchanging information and calling remote methods, because it is
relatively simple to use and Python comes with built-in XML-RPC client and server libraries.

XML-RPC for Information Exchange
XML-RPC is a method of performing remote procedure calls, whereby one process sends a message to a
remote system and causes it to execute a particular function. The XML-RPC protocol is similar to the
SOAP protocol but has a much simpler structure. In fact, the original XML-RPC was a predecessor of the
SOAP protocol. The XML-RPC messages are encoded using XML and uses HTTP as a transport
mechanism.

Structure
The XML-RPC call messages have a relatively simple structure and allow only one method of data
serialization. Following is an example of an XML-RPC procedure call message:

<methodCall>
<methodName>cmd_get_sensor_code</methodName>
<params>
<param>
<value><string>disk</string></value>
</param>
</params>
</methodCall>

Although in this example only one parameter is passed on to the remote procedure, the XML-RPC

allows multiple parameters nested into arrays or lists, which means it allows transporting complex
objects and structures as request or response parameters. The XML-RPC protocol supports major data
types such as arrays, base64 encoded data streams, Booleans, datetime objects, double-precision
floating point numbers, integers, strings, structures and null objects.

Following is an example of a response to the sensor update request, and the response object is a
binary data object encoded in base64 so that it can be encapsulated in an XML message:

<methodResponse>
<params>
<param>
<value><base64>
QlpoOTFBWSZTWbXv/NUAAad/hP6YQIB+9v/vOw5fCv/v3+4AAQAIQAIdVWSrWEoknonqmYpo0wmT
TEANBoPUGI0NB6nqMmnqCVNBMSaGp6Jp6I9IAAGgAZNABoADhppghkNNMjJhANNAGE0aZMACBoJJ
Knp6JPJNlD0T1PU0bUADQAaGQABoDT1Mfhn03axWSSsQghGnU545FVU08YoQcAwgFBiiK7+M3lmm
9b2lcEqqqb5TUIVrK2vGUFTK6AEqDJIMQwCK7At2EVF6xHAj3e5I33xZm8d8+FQEApNQvgxJEflD
nwilZzqaPMelGNtGl27o7Ss51Fl0ebZuhJZOQ5aVjg6gZIyrzq6MNttwJpbNuJHGMzNiJQ4RMSkQ
23GVRwYVCyti8yqZ1ppjGGBr6lG4QY328gCTLALIZNlYNq01p8U48MsCHPFLznOVKisKYsE7nubL
K1tdUnEQ4XKbibYRsVQSsDnwYtshI+I1gkr2DWoihkgeB4fejEhqPRLzISHihEn0F5Ge4sqCpMgt
8IAyfCEqEyEetRVc/QnBQOrV6dA18m9GHtJOGkikwdjGTpgGdAMTw5FqKHHMHT1ucTvZcRWOurze
q2ndOEjXSliyjqWyXlD5/aWSwKy5UhjUKjbGhyRbVUHIEZQSekThXKgZNUq1Mi7eXZddjBdKRigi
F+RgMBo1LwT5iqJoUSZtCokLR/T5dLx2ySEQZA+ZaARBHaPwlDRNtiF25NTtoLgTsWpDJQRoKwSI

CHAPTER 9 ■ MANAGEMENT AND MONITORING SUBSYSTEM

245

UKYILTRv2giFmqLzY1K0awTkMRrztnSqDbUNsKeNQ8UpddfLkXFdEA/xdyRThQkLXv/NUA==
</base64></value>
</param>
</params>
</methodResponse>

Python Support
Python has built-in support for the XML-RPC protocol and allows you to write simple client and server
applications without needing to install any additional packages.

The client library is called xmlrpclib and provides basic functions for accessing the services and
creating the XML-RPC call messages. In order to access the server, you first need to create a proxy object
and then use it to call the remote procedures. In most cases you must know the names of the procedures
you will be using, because XML-RPC does not use a formal service definition language such as WSDL.
Some servers may provide a list of available procedures if you call the reserved method
systems.listMethods(), so it’s worth trying, but do not rely on this method. When initializing the
remote connection, you also need to specify an endpoint URL, such as /xmlrpc/ used in the example
below:

>>> import xmlrpclib
>>> proxy = xmlrpclib.ServerProxy('http://192.168.1.65:8081/xmlrpc/')
>>> url = proxy.cmd_get_new_monitor_url('myhost')
>>> print url
http://localhost:8081/xmlrpc/
>>>

Python also has a basic XML-RPC server, which allows you to write functions and make them

available to remote clients. The workflow of creating an XML-RPC server is extremely straightforward—
you need to import the server class, create a server object, initialize it with the server address and port
number you wish it listen to, register your function with the server, and finally run the server:

>>> from SimpleXMLRPCServer import SimpleXMLRPCServer as s
>>> def hello(name):
... return "Hello, %s!" % name
...
>>> server = s(('localhost', 8080))
>>> server.register_function(hello, 'hello')
>>> server.serve_forever()

Then you can connect and use the exposed functions using the client library:

>>> import xmlrpclib
>>> proxy = xmlrpclib.ServerProxy('http://localhost:8080/')
>>> print proxy.hello('John')
Hello, John!
>>>

http://192.168.1.65:8081/xmlrpc
http://localhost:8081/xmlrpc
http://localhost:8080

CHAPTER 9 ■ MANAGEMENT AND MONITORING SUBSYSTEM

246

CherryPy
Although the built-in XML-RPC server is really simple to use, I needed a solution that was more scalable
in case I had to support widely distributed systems with hundreds of monitoring agents submitting their
results. The SimpleXMLRPCServer library by default starts only a single process and therefore is not
multithreaded, which means only one connection can be established to it and all other clients will have
to wait. This is where CherryPy comes in.

In a nutshell CherryPy is a web application framework that allows rapid development and
deployment of web applications. It is written in Python, and not surprisingly the web development
language that it supports is also Python.

In addition to being the web application framework, CherryPy is also a web server that complies
with RFC2616, which defines the HTTP 1.1 protocol. CherryPy can be used as highly configurable and
customizable web server on its own, or in combination with any web server that supports the WSGI
interface.

The reason I chose CherryPy to use as an HTTP server and a simple framework for exposing my
XML-RPC functions is that it supports multiple socket connections and multithreading out of the box, so
I don’t have to write any additional code. In addition to that, the framework provides an easy way of
configuring it.

It is very simple to use CherryPy. Here is a simple example of a web application that just prints out a
static message:

import cherrypy
from datetime import datetime

class CurrentTime(object):
def index(self):
return str(datetime.now())
index.exposed = True

cherrypy.quickstart(CurrentTime())

This is all you need for a web service that displays the current time. Things are not very different if

you want to serve XML-RPC procedures. You just have to inherit your main class from the
_cptools.XMLRPCController class and use the @cherrypy.expose decorator function, which
effectively registers each function with the framework and also makes it available as a remote procedure.

Let’s rewrite the hello RPC service using CherryPy:

import cherrypy
from cherrypy import _cptools

class Root(_cptools.XMLRPCController):
@cherrypy.expose
def hello(self, name):
return "Hello, %s" % name

cherrypy.quickstart(Root(), '/')

As you can see, the framework adds a very little overhead to the default built-in implementation, but

in exchange it provides a multithreaded fully configurable web server and the ability to use it behind
enterprise-grade web servers such as Apache.

mailto:@cherrypy.expose
mailto:@cherrypy.expose

CHAPTER 9 ■ MANAGEMENT AND MONITORING SUBSYSTEM

247

You can install the latest CherryPy package using Python installer pip with the following command:

pip install cherrypy

The Server Process
The server process does not initiate any connection; it only accepts incoming requests. The
communication in fact is initiated by the scheduler process or other tools that instruct the clients that
they need to perform some actions and then report back to the server or request additional details from
it. Because the server process is manipulating large datasets—it stores probe readings, and maintains
client configuration data—it is going to make use of a lightweight database engine: SQLite3.

Storing Data in a SQLite3 Database
SQLite3 is a lightweight database management system. It is fully self contained and in fact is merely a set
of libraries that together allow the applications to use SQL syntax to store and manipulate data, which
means that you don’t need to set up and configure any database server. SQLite3 does not need to be
configured—you “connect” directly to the database file. Python has built-in support for SQLite3; you just
need to import the library and start using it.

Initializing the Database File
You can either create a database from a Python application or write a file with SQL instructions and
initialize the database from the command line. Alternatively, SQLite3 provides a command-line tool to
interact with the database.

Listing 9-1 shows the complete sequence of initialization SQL statements; this will make further
reading easier, as the server code is going to contain lots of SQL statements and you really need to have
the table schema and initial data at hand.

Listing 9-1. Initialisation SQL commands for the server database

-- **
-- Table: SENSOR
-- Description: List of all available sensors

DROP TABLE IF EXISTS sensor;

CREATE TABLE sensor (
 id INTEGER PRIMARY KEY,
 name TEXT
);

INSERT INTO sensor VALUES (1, 'cpu_load');
INSERT INTO sensor VALUES (2, 'memory');
INSERT INTO sensor VALUES (3, 'processes');

CHAPTER 9 ■ MANAGEMENT AND MONITORING SUBSYSTEM

248

-- **
-- Table: PROBE
-- Description: Adds parameter list to sensor command
-- and defines default thresholds

DROP TABLE IF EXISTS probe;

CREATE TABLE probe (
 id INTEGER PRIMARY KEY,
 sensor_id INTEGER,
 name TEXT,
 parameter TEXT,
 warning FLOAT,
 error FLOAT,
 FOREIGN KEY (sensor_id) REFERENCES sensor(id)
);

INSERT INTO probe VALUES (1, 1, 'Idle CPU %', 'idle', NULL, NULL);
INSERT INTO probe VALUES (2, 1, 'Used CPU %', 'used', NULL, NULL);
INSERT INTO probe VALUES (3, 1, 'User CPU %', 'user', NULL, NULL);
INSERT INTO probe VALUES (4, 1, 'System CPU %', 'system', NULL, NULL);
INSERT INTO probe VALUES (5, 1, 'IO Wait CPU %', 'iowait', NULL, NULL);
INSERT INTO probe VALUES (6, 2, 'Free memory, %', 'free_pct', NULL, NULL);
INSERT INTO probe VALUES (7, 2, 'Free memory, in bytes', 'free', NULL, NULL);
INSERT INTO probe VALUES (8, 2, 'Used memory, %', 'used_pct', NULL, NULL);
INSERT INTO probe VALUES (9, 2, 'Used memory, in bytes', 'used', NULL, NULL);
INSERT INTO probe VALUES (10, 2, 'Used swap, %', 'swap_used_pct', NULL, NULL);
INSERT INTO probe VALUES (11, 3, '1 min load average', 'load1', NULL, NULL);
INSERT INTO probe VALUES (12, 3, '5 min load average', 'load5', NULL, NULL);
INSERT INTO probe VALUES (13, 3, '15 min load average', 'load15', NULL, NULL);
INSERT INTO probe VALUES (14, 3, 'Running processes', 'running', NULL, NULL);
INSERT INTO probe VALUES (15, 3, 'Total processes', 'total', NULL, NULL);

-- **
-- Table: HOST
-- Description: List of all monitoring agents

DROP TABLE IF EXISTS host;

CREATE TABLE host (
 id INTEGER PRIMARY KEY,
 name TEXT,
 address TEXT,
 port TEXT
);

CHAPTER 9 ■ MANAGEMENT AND MONITORING SUBSYSTEM

249

INSERT INTO host VALUES (1, 'My laptop', 'localhost', '8080');

-- **
-- Table: HOSTPROBE
-- Description: Maps available probes to the hosts
-- overrides thresholds if required

DROP TABLE IF EXISTS hostprobe;

CREATE TABLE hostprobe (
 id INTEGER PRIMARY KEY,
 probe_id INTEGER,
 host_id INTEGER,
 warning FLOAT,
 error FLOAT,
 FOREIGN KEY (probe_id) REFERENCES probe(id),
 FOREIGN KEY (host_id) REFERENCES host(id)
);

INSERT INTO hostprobe VALUES (1, 1, 1, NULL, NULL);
INSERT INTO hostprobe VALUES (2, 2, 1, NULL, NULL);
INSERT INTO hostprobe VALUES (3, 3, 1, NULL, NULL);
INSERT INTO hostprobe VALUES (4, 4, 1, NULL, NULL);
INSERT INTO hostprobe VALUES (5, 5, 1, NULL, NULL);
INSERT INTO hostprobe VALUES (6, 6, 1, NULL, NULL);
INSERT INTO hostprobe VALUES (7, 7, 1, NULL, NULL);
INSERT INTO hostprobe VALUES (8, 8, 1, NULL, NULL);
INSERT INTO hostprobe VALUES (9, 9, 1, NULL, NULL);
INSERT INTO hostprobe VALUES (10, 10, 1, NULL, NULL);
INSERT INTO hostprobe VALUES (11, 11, 1, NULL, NULL);
INSERT INTO hostprobe VALUES (12, 12, 1, NULL, NULL);
INSERT INTO hostprobe VALUES (13, 13, 1, NULL, NULL);
INSERT INTO hostprobe VALUES (14, 14, 1, NULL, NULL);
INSERT INTO hostprobe VALUES (15, 15, 1, NULL, NULL);

-- **
-- Table: TICKETQUEUE
-- Description: Holds all pendiing and sent tickets
-- tickets are removed when the sensor reading arrive

CHAPTER 9 ■ MANAGEMENT AND MONITORING SUBSYSTEM

250

DROP TABLE IF EXISTS ticketqueue;

CREATE TABLE ticketqueue (
 id INTEGER PRIMARY KEY,
 hostprobe_id INTEGER,
 timestamp TEXT,
 dispatched INTEGER,
 FOREIGN KEY (hostprobe_id) REFERENCES hostprobe(id)
);

-- **
-- Table: PROBEREADING
-- Description: Stores all readings obtained from the monitoring agents

DROP TABLE IF EXISTS probereading;

CREATE TABLE probereading (
 id INTEGER PRIMARY KEY,
 hostprobe_id INTEGER,
 timestamp TEXT,
 probe_value FLOAT,
 ret_code INTEGER,
 FOREIGN KEY (hostprobe_id) REFERENCES hostprobe(id)
);

-- **
-- Table: PROBINGSCHEDULE
-- Description: Defines execution intervals for the probes

DROP TABLE IF EXISTS probingschedule;

CREATE TABLE probingschedule (
 id INTEGER PRIMARY KEY,
 hostprobe_id INTEGER,
 probeinterval INTEGER,
 FOREIGN KEY (hostprobe_id) REFERENCES hostprobe(id)
);

INSERT INTO probingschedule VALUES (1, 11, 1);
INSERT INTO probingschedule VALUES (2, 15, 1);
INSERT INTO probingschedule VALUES (3, 8, 5);
INSERT INTO probingschedule VALUES (4, 10, 5);

CHAPTER 9 ■ MANAGEMENT AND MONITORING SUBSYSTEM

251

-- **
-- Table: SYSTEMPARAMS
-- Description: Defines system configuration parameters

DROP TABLE IF EXISTS systemparams;

CREATE TABLE systemparams (
 id INTEGER PRIMARY KEY,
 name TEXT,
 value TEXT
);

INSERT INTO systemparams VALUES (1, 'monitor_url', 'http://localhost:8081/xmlrpc/');

-- **
-- Table: HOSTPARAMS
-- Description: Assigns system parameters to the hosts
-- allows to override the default values

DROP TABLE IF EXISTS hostparams;

CREATE TABLE hostparams (
 id INTEGER PRIMARY KEY,
 host_id INTEGER,
 param_id INTEGER,
 value TEXT,
 FOREIGN KEY (host_id) REFERENCES host(id),
 FOREIGN KEY (param_id) REFERENCES systemparams(id)
);

INSERT INTO hostparams VALUES (1, 1, 1, 'http://localhost:8081/xmlrpc/');

Save these commands into a text file, or download the code from the book’s source-code repository

on http:Apress.com and run the following command to create the initial database file:

sqlite3 –init monitor_db_init.sql monitor.db

This will create a new database file, or open the existing file if it exists, and run the SQL commands

from the file.

■Caution I’m using the DROP TABLE command, so effectively running this command wipes out any data that
you might have collected in your database file. Use it with caution.

http://localhost:8081/xmlrpc
http://localhost:8081/xmlrpc

CHAPTER 9 ■ MANAGEMENT AND MONITORING SUBSYSTEM

252

Accessing the data in SQLite3 database is really simple from the Python application:

>>> import sqlite3
>>> con = sqlite3.connect('monitor.db')
>>> for e in con.execute('select * from hostprobe'):
... print e
...
(1, 1, 1, None, None)
(2, 2, 1, None, None)
(3, 3, 1, None, None)
(4, 4, 1, None, None)
(5, 5, 1, None, None)
(6, 6, 1, None, None)
(7, 7, 1, None, None)
(8, 8, 1, None, None)
(9, 9, 1, None, None)
(10, 10, 1, None, None)
(11, 11, 1, None, None)
(12, 12, 1, None, None)
(13, 13, 1, None, None)
(14, 14, 1, None, None)
(15, 15, 1, None, None)
>>>

You need to note, however, that if you run the update or insert statements, you must call the

commit() function after you’ve run the execute() statement to finish the transaction; otherwise, the
transaction will be rolled back and all changes will be lost.

Actions
The main purpose of the server process is to accept the data submitted by the monitoring agents.
However, in addition to that, it also provides automatic configuration and sensor code upgrade services.
The server also implements a dummy service that always returns a string containing the text “OK”. The
main purpose of this service is so that clients can test the health of the server before changing their
configuration.

Accepting Sensor Readings
The function that implements sensor data storage requires three arguments to be supplied: the ticket
number, the probe reading along with the sensor application return code, and the timestamp when the
reading was made.

When the call is received it is important to validate the ticket against the ticket queue. If the ticket
number is not in the queue, that means the supplied reading is not valid and might indicate an attempt
to forge the data by some malicious application. It is also possible that the client took a really long time
to respond and the ticket has aged in the queue, so that we’re not interested in this data anymore.

Because we need to record the sensor reading time accurately, it is best to record this at the client
side and submit it along with the reading data instead of time-stamping the data at the server side.

CHAPTER 9 ■ MANAGEMENT AND MONITORING SUBSYSTEM

253

Also note that the code removes the ticket from the ticket queue, and this effectively finishes the
probe-reading request cycle. Listing 9-2 shows the code.

Listing 9-2. The sensor data store function

@cherrypy.expose
def cmd_store_probe_data(self, ticket, probe, tstamp):
 # probe - [ret_code, data_string]
 self.store_reading(ticket, probe, tstamp)
 return 'OK'

def store_reading(ticket, probe, tstamp):
 con = sqlite3.connect('monitor.db')
 res = [r[0] for r in con.execute('SELECT hostprobe_id FROM ticketqueue WHERE
id=?',
 (ticket,))][0]
 if res:
 con.execute('DELETE FROM ticketqueue WHERE id=?', (ticket,))
 con.execute('INSERT INTO probereading VALUES (NULL, ?, ?, ?, ?)',
 (res, str(tstamp), float(probe[1].strip()), int(probe[0])))
 con.commit()
 else:
 print 'Ticket does not exist: %s' % str(ticket)

Supplying a New Configuration
As you know from the database section, the server database has two tables that contain system
configuration properties. Although I have created a data structure that allows for future expansion and is
capable of holding a virtually unlimited number of configuration parameters, at this time it is going to
serve only one purpose: to define the monitoring server address. The entry that is responsible for this
parameter has the key value of 'monitor_url'. It is possible to override this setting for each individual
node, and this is basically a way of distributing the load between multiple monitoring servers.

When the client gets an instruction to retrieve new data, it will connect back to the server and
supply its hostname. The server code (Listing 9-3) first tries to look up its own address and port number
from the CherryPy configuration class. To read the CherryPy configuration, you call the following
function and provide the configuration item key as a parameter:

cherrypy.config.get('server.socket_port')

Bear in mind that you will get the result back only if it is defined in the configuration; therefore I

have fallback statements that assume the default values.
The next step is to find the host specific settings and if they are not found, use the system-wide or

default values. It is also possible that they are not defined; if so, we will send either the CherryPy
configuration or, failing that, the assumed defaults.

mailto:@cherrypy.expose

CHAPTER 9 ■ MANAGEMENT AND MONITORING SUBSYSTEM

254

Listing 9-3. Supplying a new server address

@cherrypy.expose
def cmd_get_new_monitor_url(self, host):
 port = cherrypy.config.get('server.socket_port') if
 cherrypy.config.get('server.socket_port') else 8080
 host = cherrypy.config.get('server.socket_host') if
 cherrypy.config.get('server.socket_host') else '127.0.0.1'
 server_url = "http://%s:%s/xmlrpc/" % (host, str(port))
 con = sqlite3.connect('monitor.db')
 res = con.execute("""SELECT hostparams.value
 FROM hostparams, host, systemparams
 WHERE host.id = hostparams.host_id
 AND systemparams.name = 'monitor_url'
 AND hostparams.param_id = systemparams.id
 AND host.address = ?""", (host,)).fetchone()
 if not res:
 res = con.execute("""SELECT value FROM systemparams WHERE name =

'monitor_url'""").fetchone()
 if res:
 server_url = res[0]
 return server_url

Providing New Sensor Code
When instructed to do so, the clients may request an update of the sensor check application. Chapter 10
talks in detail about the structure and logic of sensor applications; for now, just note that the code is
stored as a compressed TAR archive in a preconfigured directory. You will notice that the configuration
of the sensor code directory is not stored in the database. This is done to make it easier for users to
change it to any other location. Chapter 10 also discusses how to access configuration data stored in the
plain text files.

When sending binary data via an XML-RPC link, you must use a special function of the Python
xmlrpclib library: Binary(), which encapsulates the binary data and converts it to a format
conforming to HTTP and XML requirements. The binary data is converted to the base64 character set so
it can be accepted by the client, which expects to receive only a certain range of available characters.
Listing 9-4 shows the code.

Listing 9-4. Sending binary data via an XML-RPC link

@cherrypy.expose
def cmd_get_sensor_code(self, sensor):
 with open("%s/%s.tar.bz2" % (self.cm.sensor.source_dir, sensor), 'rb') as f:
 return xmlrpclib.Binary(f.read())

mailto:@cherrypy.expose
mailto:@cherrypy.expose

CHAPTER 9 ■ MANAGEMENT AND MONITORING SUBSYSTEM

255

The Server Health Check
The final action in the server process is the system health check call, which at the moment simply
returns a predefined string. You can extend it to perform more a elaborate self health check, for example
testing that the database is present and can be read and written to.

@cherrypy.expose
def healthcheck(self):
 return 'OK'

The Scheduler
Since the monitoring clients are completely passive and will not perform any actions unless told to. I
need some sort of scheduling mechanism that sends instructions to the clients to perform monitoring
checks.

There are several approaches to implementing this scheduling mechanism. The simplest way is to
write a script that sends request for sensor check to all nodes at regular intervals and run this script as a
UNIX cron job. This would be easy to implement, but it lacks flexibility—I would probably end up
needing to add a new cron entry for each polling interval, and therefore changing the polling schedule
would mean changing all cron entries.

Another solution is to write a standalone daemon process that would run in the background and
send check requests at defined periods. Because the polling schedule is defined in the database, it could
easily adapt to it without needing to change cron configuration. An additional benefit is that it can also
run where the cron daemon is not available.

Actions
The request scheduler should implement several actions, which I’ll describe in this section.

The primary function of the scheduler daemon is to send sensor reading requests. This process will
look at the pending tickets queue in the database and send requests for the tickets that have not been
sent out yet. I am going to call this process Ticket Dispatcher.

Obviously the tickets must be somehow generated and injected into the pending-ticket queue. So I
need another process that does exactly that. This process will look at the scheduling table to see what
checks need to be run and at what intervals. When it finds ones that are meant to be executed at the
present time, it will insert a corresponding ticket into the pending-ticket table. I will name this process
Ticket Scheduler. You may notice that I’ve already implied scheduling logic—generate tickets at the
given intervals of time. However, this modular structure allows me to use any scheduling algorithm; for
example, I can increase time periods for less important checks if the load on the system increases. Also,
because all tickets are in the database queue, they can be injected by external processes as well, such as
command-line tools.

Running Multiple Processes
It is clear that I need to run two or even more separate processes for my scheduler implementation. I can
either write separate scripts and run them in parallel or write a multithreaded application that spawns
several processes. The first approach is easier to implement, because I don’t have to deal with process
management in my scripts, but it lacks maintainability—I could easily end up running and maintaining
lots of scripts.

mailto:@cherrypy.expose

CHAPTER 9 ■ MANAGEMENT AND MONITORING SUBSYSTEM

256

Another approach is to spawn multiple threads or processes from within my application. This is a
bit more complicated, as I have to take care of starting and stopping processes from my application, but
it also gives more flexibility and results in better code, because all functions are maintained within the
same script and can share common object and class definitions.

Multithreading, Multiprocessing, and GIL
Python has supported multiple threads for long time now. In fact, there are two libraries that implement
multithreading. First is the thread library, which provides low-level primitives; I would advise avoiding
this module unless you really have a specific requirement to control threading activities at a low level.
The other is the threading library, which provides high-level classes to deal with multiple threads and
also helper classes, such as Lock, Queue, Semaphore, Event, and so on.

Thread implementations vary from system to system, but in general they can be seen as lightweight
processes. Usually threads are started from within a process and share the same memory address space.
Because they share the memory it is very easy for them to communicate—they can easily access the
same variables. Therefore, developers must take extra care when using multiple threads—shared
variables must be locked before updating, so that other threads do not get inconsistent results. This is
not necessarily a bad thing, but you need to keep it in mind when using threads.

A bigger issue when using threads is the Python interpreter implementation. Because Python
memory management is not thread-safe, it is not possible to (safely) run multiple native threads that
interpret Python bytecode. The mechanism to stop multiple threads executing at once, called Global
Interpreter Lock (GIL), ensures that only one Python interpreter thread is running at any given point in
time. So although each Python thread maps to a dedicated native system thread, only one is running at a
time; therefore, effectively your multithreaded application becomes single-threaded, with additional
overhead imposed by GIL and thread-scheduling and context-switching mechanisms.

You may wonder why the threading library provides various locking primitives if there’s only one
thread running at a time. Well, the main goal for GIL is to prevent multiple threads from accessing the
same Python object structures. So it protects the internal memory structures of the interpreter, but not
your application data, which you have to take care of by yourself.

This situation with the locking threads is quite specific to the original Python implementation and is
unlikely to change. The current Python interpreter—CPython—is heavily optimized, and rewriting it
without GIL would impact the performance of those single-threaded Python applications. There are
other Python implementations, such as IronPython, that do not have GIL and therefore are more
efficient in using multiple CPU cores.

An alternative to the threads is to use processes in the application. The major difference between a
thread and a process is that the process has its own completely isolated memory segment and stack.
Therefore multiple processes cannot share the same objects, which eliminates all the issues with object
data being updated by multiple threads at the same time. This comes at a price, though—there is a lot
more additional overhead involved when creating a new process, because the main process needs to be
copied and a new memory segment allocated. Another issue is that developers cannot reference the
same object from two different processes. So processes need different methods of communication, such
as queues and pipes.

Support for multiprocessing has been implemented in Python starting with version 2.6. Python has
a library called multiprocessing, whose API very closely matches the threading library calls, so porting
existing multithreaded applications is a relatively simple task.

So as you can see, “true” multiprocessing in Python can be achieved by running your code within
the processes rather than the threads. In some cases this approach is more advantageous, because the
processes do not share anything and are completely independent from each other, which allows
decoupling of the processes even further and running them on different servers. Processes share data
using the queue and pipe primitives, which can use TCP/IP to send data from one process to another.

CHAPTER 9 ■ MANAGEMENT AND MONITORING SUBSYSTEM

257

Basic Usage Patterns and Examples
As mentioned earlier, the multiprocessing library API is very similar to the threading library. The listings
and code snippets in this section provide several examples of how to create multiple processes and
exchange data between them.

You can define the code you want to run in a separate process either as a function or a class that
inherits from the multiprocessing.Process class. There are no hard rules about which approach to
use and when; it largely depends on the task size and complexity of the code. I prefer to use classes
instead of functions because it allows me to extend the code base more easily; also, the new classes can
be extended, so the application code can be used as a base library for the new applications that extend
functionality.

Listing 9-5 demonstrates creating processes with the multiprocessing library.

Listing 9-5. Creating processes with the multiprocessing library

import multiprocessing
import time

def sleeper(timeout):
 print "function: I am a sleeper function and going to sleep for %s seconds" %
timeout
 time.sleep(timeout)
 print "function: I'm done!"

class SleeperClass(multiprocessing.Process):
 def __init__(self, timeout):
 self.timeout = timeout
 print "Class: I am a class and can do initialisation tasks before starting"
 super(SleeperClass, self).__init__()

 def run(self):
 print "Class: I have been told to run now"
 print "Class: So I'm going to sleep for %s seconds" % self.timeout
 time.sleep(self.timeout)
 print "Class: I'm done."

p1 = multiprocessing.Process(target=sleeper, args=(5,))
p2 = SleeperClass(10)
p1.start()
p2.start()
p1.join()
p2.join()

As you can see, if you’re using classes you have the advantage of running some initialization tasks

before the process is started. Running the example code will produce the following results:

Class: I am a class and can do initialisation tasks before starting
function: I am a sleeper function and going to sleep for 5 seconds
Class: I have been told to run now

CHAPTER 9 ■ MANAGEMENT AND MONITORING SUBSYSTEM

258

Class: So I'm going to sleep for 10 seconds
function: I'm done!
Class: I'm done.

When you develop applications that spawn multiple processes, and especially if they are going to be
long-running processes, such as services, you have to handle interrupts, so that all processes are
terminated gracefully. Now let’s do a quick experiment and see what happens if you hit Ctrl-C when the
program is running:

Class: I am a class and can do initialisation tasks before starting
function: I am a sleeper function and going to sleep for 5 seconds
Class: I have been told to run now
Class: So I'm going to sleep for 10 seconds
^CTraceback (most recent call last):
 File "./example_processes.py", line 26, in <module>
 p1.join()
 File "/System/Library/Frameworks/Python.framework/Versions/2.6/lib/python2.6/
multiprocessing/process.py", line 119, in join
Process Process-1:
Traceback (most recent call last):
Process SleeperClass-2:
 File "/System/Library/Frameworks/Python.framework/Versions/2.6/lib/python2.6/
multiprocessing/process.py", line 231, in _bootstrap
Traceback (most recent call last):
 File "/System/Library/Frameworks/Python.framework/Versions/2.6/lib/python2.6/
multiprocessing/process.py", line 231, in _bootstrap
 res = self._popen.wait(timeout)
 File "/System/Library/Frameworks/Python.framework/Versions/2.6/lib/python2.6/
multiprocessing/forking.py", line 117, in wait
 self.run()
 File "./example_processes.py", line 19, in run
 self.run()
 File "/System/Library/Frameworks/Python.framework/Versions/2.6/lib/python2.6/
multiprocessing/process.py", line 88, in run
 self._target(*self._args, **self._kwargs)
 File "./example_processes.py", line 7, in sleeper
 time.sleep(timeout)
 return self.poll(0)
 time.sleep(self.timeout)
 File "/System/Library/Frameworks/Python.framework/Versions/2.6/lib/python2.6/
multiprocessing/forking.py", line 106, in poll
 pid, sts = os.waitpid(self.pid, flag)
KeyboardInterrupt
KeyboardInterrupt
KeyboardInterrupt

As you can see, this is pretty poor behavior—both of the processes have received the
KeyboardInterrupt exception and terminated abnormally. Also, if you try this experiment multiple

CHAPTER 9 ■ MANAGEMENT AND MONITORING SUBSYSTEM

259

times, you may get different results each time. The actual result depends on where the processes were in
the CPU execution queue at the time they received the keyboard interrupt signal.

To resolve this issue, I need to catch and handle the interrupts in each of my processes, so that when
the interrupt arrives, the process finishes what it was doing and exits gracefully. I am going to wrap both
functions into try: ... except KeyboardInterrupt: ... clauses, which allows me to catch all
interrupts received by the processes. It is also important to know that the main process also receives the
interrupt signal and therefore needs to handle it as well. But what is the main process doing while the
child processes are running? It is just waiting for them to finish, so basically it is “stuck” at the
p1.join() statement. If there is nothing else for the main process to do, it is best to make it check for
the number of running child processes and join them back once all have finished their work. You can see
this in Listing 9-6.

Listing 9-6. Multiple processes handling interrupts

import multiprocessing
import time

def sleeper(timeout):
 try:
 print "function: I am a sleeper function and going to sleep for %s
seconds" %
 timeout
 time.sleep(timeout)
 print "function: I'm done!"
 except KeyboardInterrupt:
 print "function: I have received a signal to stop, exiting..."

class SleeperClass(multiprocessing.Process):
 def __init__(self, timeout):
 self.timeout = timeout
 print "Class: I am a class and can do initialisation tasks before starting"
 super(SleeperClass, self).__init__()

 def run(self):
 try:
 print "Class: I have been told to run now"
 print "Class: So I'm going to sleep for %s seconds" % self.timeout
 time.sleep(self.timeout)
 print "Class: I'm done."
 except KeyboardInterrupt:
 print "Class: I must stop now, exiting..."

p1 = multiprocessing.Process(target=sleeper, args=(5,))
p2 = SleeperClass(10)
p1.start()
p2.start()

CHAPTER 9 ■ MANAGEMENT AND MONITORING SUBSYSTEM

260

try:
 while len(multiprocessing.active_children()) != 0:
 time.sleep(1)
except KeyboardInterrupt:
 p1.terminate()
 p2.terminate()
p1.join()
p2.join()

In this example I am calling the multithreading.active_children()function, which returns a list

of active processes running. If the list is not empty, the main process just sleeps for one second before
checking the list again. When the keyboard interrupt is received, the main process will attempt to
terminate the child processes. When you press Ctrl-C, all processes are going to receive this interrupt
and will therefore stop their execution. However if you send a SIGINT signal to the main process, it will
terminate because the SIGINT will actually raise the KeyboardInterrupt, but unlike with the Ctrl-C
combination this signal is not cascaded to the child processes. Therefore, you must either send a signal
to the child processes or simply terminate them.

Running Methods at Equal Intervals
As you know, one of the processes in my application is the Ticket Scheduler process. This process will
look at the scheduling configuration and inject request tickets into the ticket queue; they will then be
dispatched by the Ticket Dispatcher process. What I want to do here is basically implement a process
that behaves like the UNIX cron daemon, processing tickets at predefined intervals of time.

So, for example, I may have a sensor check that I want to probe every 5 minutes. I then need this
process to inject the appropriate ticket into the queue every 5 minutes. The algorithm that I am going to
implement has the following steps:

• Wake up at predefined intervals of time. In our example the shortest interval is 1 minute.

• Find all rules that are supposed to be triggered at the minute.

• Insert appropriate records into the tickets queue.
I therefore need a mechanism to “wake-up” at a given interval of time. I could use the

time.sleep() function, which allows me to pause execution for any number of seconds, but that would
sacrifice accuracy, because the other code (finding rules and inserting tickets) also takes some time, so if
I set my thread to sleep for 60 seconds, and the execution time is 1 second, the total time period will be
61 seconds. I might measure the execution time and then call the sleep function only for 60 seconds
minus the execution-time interval, but measuring and subtraction calls are also going to consume time,
so that will not be as accurate, either.

What I need is a mechanism that sends a signal to my process, and the process waits for the signal.
When the signal is received, the process performs whatever is needed and then waits for the signal again.

A Simple Clock Implementation
First I need an oscillator process, whose main purpose is to generate events at predefined intervals of
time. Any other processes that require timed execution can listen for the events and react accordingly.

The oscillator process uses the time.sleep() function to measure intervals between the events.
Because there is not much else to do apart from setting and resetting the event, the timer is pretty
accurate. Listing 9-7 shows the code that implements the oscillator class.

CHAPTER 9 ■ MANAGEMENT AND MONITORING SUBSYSTEM

261

Listing 9-7. The oscillator class generates events at defined intervals.

class Oscillator(multiprocessing.Process):

 def __init__(self, event, period):
 self.period = period
 self.event = event
 super(Oscillator, self).__init__()

 def run(self):
 try:
 while True:
 self.event.clear()
 time.sleep(self.period)
 self.event.set()
 except KeyboardInterrupt:
 pass

The oscillator class accepts a proxy object, which is referenced in the example as the event variable.

This proxy object is an instance returned by the multiprocessing.Manager class. The Manager class is
a mechanism of sharing state and data between different processes and supports other data types as
well, such as: list, dict, NameSpace, Lock, RLock, Semaphore, Condition, Event, Queue, Value, and
Array. Apart from the list, dict, and NameSpace, all other types are clones of the corresponding
primitives in the threading library.

Let’s define a simple class that will listen to the events and perform some actions when they are
received. The code in Listing 9-8 simply prints the current time.

Listing 9-8. The Scheduler class listens to periodic events.

class Scheduler(multiprocessing.Process):

 def __init__(self, event):
 self.event = event
 super(Scheduler, self).__init__()

 def run(self):
 try:
 while True:
 self.event.wait()
 print datetime.now()
 except KeyboardInterrupt:
 pass

CHAPTER 9 ■ MANAGEMENT AND MONITORING SUBSYSTEM

262

Now let’s see how it all comes together. In the main process code in Listing 9-9 I am creating an
instance of the Manager class. I will then use it to return a proxy to the Event instance. The same object
will be passed to both the Oscillator and the Scheduler processes. The Oscillator will set and clear the
event state, and the Scheduler will wait for the event to clear before it prints the time and goes back to
the wait state again.

Listing 9-9. Passing a shared event object to the two processes

mgr = multiprocessing.Manager()
e = mgr.Event()
o = Oscillator(e, 60)
s = Scheduler(e)
o.start()
s.start()
try:
 while len(multiprocessing.active_children()) != 0:
 time.sleep(1)
except KeyboardInterrupt:
 o.terminate()
 s.terminate()
o.join()
s.join()

If you run this code, you’ll get the output generated every minute. You can use as many “subscriber”

objects as you need here, all waiting for the event generated by the Oscillator instance.

2010-02-28 18:35:09.243200
2010-02-28 18:36:09.244793
2010-02-28 18:37:09.246509
2010-02-28 18:38:09.248229
2010-02-28 18:39:09.249935
2010-02-28 18:40:09.251436
2010-02-28 18:41:09.253154

It is important to note that this implementation, although quite accurate, is not ideal and the

interval is actually slightly longer than the predefined 60 seconds. This is because some time is spent
resetting the event object. However, given the interval size (60 seconds), this error is really negligible
(approximately 2000 milliseconds) and is only approximately 0.003% of the total oscillation period. For a
simple scheduling system this is acceptable.

CHAPTER 9 ■ MANAGEMENT AND MONITORING SUBSYSTEM

263

A Cron-Like Scheduler
Let’s go back to the ticket scheduler implementation. As you remember, the scheduling information is
stored in the probingschedule table, which has the following fields:

Table 9-10. The probing schedule table fields

Field Data Type Description

id Integer The unique identifier.

hostprobe_id Integer Points to the corresponding host probe entry. This
field contains the ID of the host probe row.

probeinterval Integer The probing interval in minutes.

My implementation of the scheduler is slightly different from the logic that the cron application is

using. The cron configuration allows you to specify exactly when something should happen, such as “5
minutes past the hour, every Tuesday” or “every 10 minutes, between 9 and 17 every day”, whereas my
scheduler understands only the time periods such as “every X minutes.”

The algorithm I’m going to use to calculate whether something needs to happen is this:

• Take the number of seconds since the epoch, or arbitrary starting point (1970-01-01).

• Divide it by 60, so it is expressed in minutes.

• The recording is scheduled to happen at this time if the current time expressed in minutes
is divisible by the probing interval value; in other words, current time modulus probe
interval should equal zero.

This may sound rather complicated, but the SQLite3 SQL language allows me to perform all those

checks within one SQL statement. I am using strftime('%s', 'now') built-in function to get the
number of seconds since the epoch, which is converted into minutes and the modulus of the probing
interval checked in the same statement. Listing 9-10 shows the full code of the Ticket Scheduler class.

Listing 9-10. The TicketScheduler class inserts probing tickets into the ticket queue.

class TicketScheduler(multiprocessing.Process):

 def __init__(self, event):
 self.event = event
 self.con = sqlite3.connect('monitor.db')
 super(TicketScheduler, self).__init__()

CHAPTER 9 ■ MANAGEMENT AND MONITORING SUBSYSTEM

264

def run(self):
 try:
 from datetime import datetime
 while True:
 self.event.wait()
 res = [r[0] for r in self.con.execute("""SELECT hostprobe_id
 FROM probingschedule
 WHERE (strftime('%s', 'now')/60) %
 probingschedule.probeinterval = 0;""")]
 for probe_id in res:
 self.con.execute("INSERT INTO ticketqueue VALUES
 (NULL, ?, datetime('now'), 0)", (probe_id,))
 self.con.commit()
 except KeyboardInterrupt:
 pass

Therefore the result stored in the res array is going to contain the ID numbers of all host probes that

need to be executed that minute. The next for loop inserts corresponding records into the ticket queue.
Each record contains the probe ID and the timestamp, and the dispatched flag is set to zero, which
means the ticket hasn’t been sent to the target host yet.

Ticket Dispatcher
Once the tickets are placed in the pending tickets queue, there is another process called the ticket
dispatcher that searches for pending tickets and sends requests to the client hosts. Each client
implements the cmd_submit_reading XMLRPC call that expects to find the following information in the
request:

• Ticket number

• Sensor name

• Sensor parameters

Additionally, I also need to know the hostname and port number of the XML-RPC server.
All this information is scattered across multiple tables and needs to be pulled together. Figure 9-3 is

an ER diagram of the tables that contain this information and how they are related to each other. This
will help define the SQL query.

CHAPTER 9 ■ MANAGEMENT AND MONITORING SUBSYSTEM

265

Figure 9-3. ER diagram of the tables and relations for the ticket dispatcher component

As you already know, the ticket queue contains ticket IDs and the hostprobe row IDs, so I have to
start by requesting all entries that have not been dispatched yet:

pending_tickets = [r for r in self.con.execute("""SELECT id, hostprobe_id
 FROM ticketqueue
 WHERE dispatched = 0""")]

Once I have a list of the hostprobe row IDs, I need to find out the sensor name from the sensor table.

This entry is referenced from the probe table, which contains parameters specific to this particular
sensor. The probe is directly referenced from the host probe entry. XML-RPC server information is in the
host table, which is also referenced directly from the host probe table. I now need to combine all that
data into a single SQL statement. The simplest way is to use implicit join notation, which lists all fields
that need to match. Because I’m using primary key fields when referencing the rows, it is a matter of
comparing them in the select statement.

CHAPTER 9 ■ MANAGEMENT AND MONITORING SUBSYSTEM

266

In Listing 9-11 you see the part of the ticket dispatcher code that uses the previously generated list of
pending tickets. The for loop will iterate through all ticket ID – hostprobe ID pairs and get the
information required to make a sensor check call. Once the call is made, the corresponding ticket is
marked as dispatched, so it will not show up in the subsequent queries.

Listing 9-11. Retrieving information from multiple tables

for (ticket_id, hostprobe_id) in pending_tickets:
 res = [r for r in self.con.execute("""SELECT host.address,
 host.port,
 sensor.name,
 probe.parameter
 FROM hostprobe, host, probe, sensor
 WHERE hostprobe.id=?
 AND hostprobe.host_id = host.id
 AND hostprobe.probe_id = probe.id
 AND probe.sensor_id = sensor.id""",
 (hostprobe_id,))][0]
 self._send_request(ticket_id, res[0], res[1], res[2], res[3])
 self.con.execute("UPDATE ticketqueue SET dispatched=1 WHERE id=?", (ticket_id,))
 self.con.commit()

The comparison operations in the WHERE clause effectively performs a join on the table data, so that

only matching records are returned as a result. Obviously, the starting point is the host probe row ID.
You may also notice that I call another function, self._send_request, which performs the XML-RPC
call to the remote system. The code (Listing 9-12) is pretty self-explanatory; there is just one thing to
note: the parameter string is a comma-separated list when stored in the database, and it needs to be
converted into an array before it is sent tothe remote client.

Listing 9-12. The function that sends an XML-RPC call to the client nodes

def _send_request(self, ticket, address, port, sensor, parameter_string=None):
 url = "http://%s:%s/xmlrpc/" % (address, port)
 proxy = xmlrpclib.ServerProxy(url, allow_none=True)
 if parameter_string:
 parameter = parameter_string.split(',')
 else:
 parameter = None
 print ticket
 print sensor
 print parameter
 res = proxy.cmd_submit_reading(ticket, sensor, parameter)
 return

CHAPTER 9 ■ MANAGEMENT AND MONITORING SUBSYSTEM

267

Summary
This was the first of three chapters in which I show how to implement a simple distributed monitoring
system. This chapter was dedicated to the data structures and the monitoring server component; the
subsequent chapters will analyze in detail the structure of the monitoring agents and the statistical
analyzer. Important points to keep in mind:

• Always start your projects with a sound design.

• Define all the components that your system is made of and the actions they are going to
perform.

• Define the data structures that your components are going to use.

• When designing the database tables, try to get as close as possible to the Third Normal
Form, but don’t forget that simplicity and practicality also have some influence in the
decisions you make.

• Although XML-RPC is a rather old protocol, thanks to its simplicity it’s still quite useful for
small to medium-scale projects.

• Python has built-in support for XML-RPC: xmlrpclib for the client implementation and
SimpleXMLRPCServer for the server implementation.

• CherryPy is useful in automating web framework tasks, and it also has support for the XML-
RPC function wrapping.

• Multithreading in Python is not “true” multithreading—even though you run separate
threads, only one is active because of the Global Interpreter Lock (GIL) implementation.

• If you need to take full advantage of multiple processors and avoid complex object-locking
situations, decouple your components into separate processes that don’t have shared data
and use the multiprocessing library, which uses processes instead of threads.

C H A P T E R 1 0

■ ■ ■

269

Remote Monitoring Agents

This is the second of a series of three chapters that discuss the implementation details of a simple
distributed monitoring system. In the previous chapter I laid out the high-level system design and
described in detail the server implementation. This chapter is dedicated to the monitoring agent
implementation, interaction with the sensor application, and the security model.

Design
I’m going to expand on the client or monitoring agent design that I briefly touched in the previous
chapter. As you already know, the monitoring agent is responsible for accepting the sensor read
commands and sending the results back. It relies on external utilities to perform the measurements.

The Passive Component
The monitoring agent component will be a passive component, which means that it only reacts to
incoming commands to perform actions. This architecture allows us to have fine-grained control over
the whole system operation and communication flow. The monitoring server can decide when and what
to query, and this behavior may change depending on the previous responses from the agents.

Architecture
The architecture of the monitoring agent is such that it is divided into two distinct components: the
agent code, which runs as a daemon process and accepts commands from the monitoring server, and
the sensors, which are responsible for checking the system status.

The sensor code can be any application and is invoked by the agent when it receives a command to
perform a check. Because the sensors can be written in any programming or scripting language, this
provides greater flexibility in the tools that can be used to monitor the system.

Actions
Again, the main purpose of the monitoring agent is to call the sensor code, read in the results, and
submit them to the monitoring server. In addition to that it also performs self-configuration and self-
update tasks.

CHAPTER 10 ■ REMOTE MONITORING AGENTS

270

Accepting a New Configuration
The security model implies that each monitoring agent must know its monitoring server address and use
it for communication. In other words the agent, when queried, does not answer the requestor but
initiates the connection to the known server and submits the requested data.

This approach requires the server URL (for the XML-RPC communication) to be stored locally on
each agent. Although the server address is unlikely to change, we still need to handle the situations when
it does change. One way of changing the configuration is to use some sort of configuration management
system, such as Puppet, Chef, or CFEngine to maintain the configuration, but we are going to implement
a mechanism whereby the client accepts a request to update its configuration. If you remember, in the
previous chapter we created site and node configuration parameters on the server database. So now
we’re going to use those to update the client configuration.

When the client receives a command to update the configuration, it will initiate the connection back
to the currently registered server and request a new URL. Once the new URL is retrieved, it will attempt
to connect to the new server. If the connection fails, the configuration will not be updated; otherwise,
the new data will overwrite the existing settings, and going forward the new URL will be used for the
communication.

Upgrading the Sensors
The sensor code can change when new functionality is introduced, such as adding new parameters or
improving existing checks. Therefore, the agents must be able to update their sensors’ base with the new
code.

This functionality is similar to the configuration update—the agent upon receiving the command to
update its sensor application initiates the connection back to the server requesting the new code. The
server sends the archive containing the new code from its repository.

When the code transfer is complete, the agent unpacks the code into a temporary location, runs a
simple check command to ensure that the executable is not corrupted, and, if this operation is
successful, replaces the existing code with the new application.

The same mechanism can be used to deploy brand-new sensors as well; there simply won’t be
existing code to replace, so it’s just the new code being deployed.

Submitting Sensor Readings
This is the primary function of the monitoring agent: submit the readings to the main server. Each
sensor produces two values—the application return code and a single floating-point value that
represents this particular reading. If there are multiple values to be returned, they must be split into two
separate checks and each check must be called separately.

The agent receives an instruction to run the check, and each instruction contains two parameters:
the sensor name and the options string. The sensor name is used to find the sensor code; the directory
containing the sensor application must have the same name as the sensor. In addition to this
convention, the sensor application name must match the name defined in the client configuration file.
When the agent receives the instruction, it starts the sensor application and passes the option string to it
as additional parameters.

CHAPTER 10 ■ REMOTE MONITORING AGENTS

271

The Security Model
This approach may pose some security concerns, because theoretically anyone could send a query to the
agent process and obtain the readings. There are several possible solutions to this problem. One would
be to use some sort of authentication mechanism whereby the requestor identifies itself and the agent
responds only to the authorized parties. Another approach, much simpler to implement, is to decouple
the request-response dialog into two distinct parts: the request or command phase and the response,
which in fact is the action initiated by the agent component.

Therefore, we’re not going to enforce any restrictions on who can connect and send requests for
actions to the agents. That would add another layer of security, but it would bring some complications as
well. If you’re interested in improving the security model, you may want to consider adding a two-way
SSL certificate, so only the applications that possess the SSL key and have their key deployed on the
agent can connect.

When the command is transmitted, the agent will respond with the default confirmation message,
saying that the command is accepted and terminate the session. It will then go and perform all the
actions that are associated with the received command.

If the action implies that a connection has to be made to a central server, the agent will use server
details that are stored locally in the configuration file. This ensures that only the registered and trusted
parties will receive the data.

To keep track of all commands, the server stamps each command with a ticket number and sends it
along with the command request. When the agent finishes processing the command and sends the
results back, it will include the same ticket number in the response. This mechanism serves two
purposes. First, the server knows what has been requested and from whom, so it minimizes the data that
needs to be transferred. It also acts as an additional security mechanism, whereby only the responses
with valid tickets are accepted, so no one will be able to inject wrong data into the master server without
knowing the ticket numbers.

Configuration
In the previous chapter I briefly mentioned the use of the Python library for managing and parsing
configuration files—the ConfigParser module. In this chapter I’m going to show you in more detail
how to read and write configuration files using this module. As part of this exercise, we’re also going to
build a simple wrapper class to hide all the read and write methods—you’ll access all configuration file
attributes as if you were accessing the attributes of a regular Python object.

This approach simplifies the coding process and also leaves you an opportunity to replace the
ConfigParser module with other means of reading and writing the configuration; for example, you
might want to store it in XML or JSON format files.

The ConfigParser Library
The ConfigParser library defines several classes that you can use to parse the Windows INI style
configuration files. I’ll describe the format in more detail later in this section. The basic configuration
class in the library is called RawConfigParser, which implements a basic configuration file syntax parser
with methods to read and write the configuration files. It is possible to use this class directly, but it is
more convenient to use two other classes that extends its functionality and provides some convenience
methods for accessing the data.

These descendant classes are called ConfigParser and SafeConfigParser; the former extends the
.get() and .items() methods and the later extends the .set() method.

CHAPTER 10 ■ REMOTE MONITORING AGENTS

272

The File Format
Before we proceed with the description of how to use the class methods for accessing the configuration
data, let’s look at the file format supported by the ConfigParser library. You have probably come across
Windows INI-style configuration files. Although they are known as the “Windows configuration files,” a
similar (or the same) format is used by many Linux applications as well, thanks to its simplicity.

The configuration file is divided into sections, each containing any number of key-and- value pairs.
Each key can be assigned a value using one of the two available assignment formats: key: value or
key=value. Comments are also allowed and must start with either the ; or the # symbol. When one or
the other is found, everything to the end of the line is ignored. Consider the following example:

[user]
define a user
name=John
location=London
[computer]
name=Jons-PC ; network name
operatingsystem=OS X

The ConfigParser library also allows specifying the references to other configuration items. For

example, you can set a variable to some value and then, when setting another variable, you can re-use
the value of the first one. This allows us to define common entries in one place. In Listing 10-1 we define
the database table names and have a custom table name prefix controllable by the end user.

Listing 10-1. An example configuration file

[database]
ip=192.168.1.1
name=my_database
user=myuser
password=mypassword

[tables]
use_prefix=no
prefix=mytables
user_table=%(prefix)s_users
mailbox_table=%(prefix)s_mailboxes

You may have noticed that the reference syntax is the standard Python string format using the

dictionary names: %(dictionary_key)s. Although we have defined the item we’re referencing before
other items that use it, the position has no meaning and the item can appear anywhere within the
section.

Using the ConfigParser Class Methods
Now that we know what the configuration files look like, let’s see how to access the information in them.
In the following examples we will use the configuration file with the contents from Listing 10-1; the file
name is example.cfg.

Let’s start with opening and reading in the configuration file:

CHAPTER 10 ■ REMOTE MONITORING AGENTS

273

>>> import ConfigParser
>>> c = ConfigParser.RawConfigParser()
>>> c.read('example.cfg')

■Tip You can also use the feadfp() method if you need to use a file pointer rather than a file name. This can be
useful in situations where you’ve just written to a file object and now need to parse it as a configuration file.

Once the file has been read and parsed, you can access the values directly with the get() method,
which requires you to specify the section and key names as the required arguments. The following code
also demonstrates one of the convenience methods, getboolean(), which converts the value of the
specified key to the Boolean representation. The accepted values that represent the True value are 1,
yes, on and true, whereas the representation of False can be one of the following: 0, no, off and false.
Two other convenience functions are getint() and getfloat(), which convert the values to the integer
and floating-point representations accordingly. The get() method always returns a string value:

>>> c.get('database', 'name')
'my_database'
>>> c.get('tables', 'use_prefix')
'no'
>>> c.getboolean('tables', 'use_prefix')
False
>>>

Those methods are good if you know the names of the sections and keys beforehand, but what should

you do if the sections are dynamic and you cannot know the exact names and number of them? In this case
you can use the sections() method, which returns the names of all sections in the configuration file as a
list. Similarly, you can find out all keys within each section by using the options() method:

>>> for s in c.sections():
... print "Section: %s" % s
... for o in c.options(s):
... print " Option: %s" % o
...
Section: tables
 Option: mailbox_table
 Option: use_prefix
 Option: prefix
 Option: user_table
Section: database
 Option: ip
 Option: password
 Option: user
 Option: name
>>>

CHAPTER 10 ■ REMOTE MONITORING AGENTS

274

The previous example also illustrates one important property of the ConfigParser classes—the

results are not returned in the same order as they appear in the configuration file. Keep that in mind,
especially if it is important for your script to maintain this order. A simple real-world case might be when
the keys within a section represent steps that the application needs to perform and they need to happen
in a specific order.

Let’s assume the following example of a configuration file where users can add any number of
arithmetical operations that are applied to an internal variable in the application:

[tasks]
step_1="+10"
step_2="*5"
step_3="-12"
step_4="/3"
step_5="+45"

All these operations are going to be evaluated and applied to a variable called x. Effectively, the

intention of this configuration is to calculate a value of the following expression:

((x + 10) * 5 – 12) / 3 + 45

If the initial value of x is 11, then the expected result should be 76. Let’s parse the configuration file,

evaluate all operations, and see what we get:

>>> import ConfigParser
>>> c.read('example2.cfg')
['example2.cfg']
>>> x = 11.0
>>> for o in c.options('tasks'):
... print "Operation: %s" % c.get('tasks', o)
... x = eval("x %s" % c.get('tasks', o).strip('"'))
...
Operation: "+10"
Operation: "-12"
Operation: "*5"
Operation: "+45"
Operation: "/3"
>>> x
30.0
>>>

This is clearly wrong, and the reason is that the operations were applied in the wrong order. This can

lead to unexpected results, and it might be difficult to identify where the problem lies. Just by applying
the operations in the wrong order we ended up evaluating the following formula:

((x + 10 - 12) * 5 + 45) / 3

So if you require the sections and/or keys to appear in a specific order, make sure to name them so

that it allows for a simple string sort and then sort the list before using it:

CHAPTER 10 ■ REMOTE MONITORING AGENTS

275

>>> x = 11.0
>>> for o in sorted(c.options('tasks')):
... print "Operation: %s" % c.get('tasks', o)
... x = eval("x %s" % c.get('tasks', o).strip('"'))
...
Operation: "+10"
Operation: "*5"
Operation: "-12"
Operation: "/3"
Operation: "+45"
>>> x
76.0
>>>

■Caution In my example I’m using a string with an appended integer. This is the easiest way; just don’t forget to
extend the index numbers with zeroes if you go beyond 9. So make sure that you use key (or section) names
similar to: step_01, step_02, ..., step_83, and so on. Apply a similar strategy for indexes of three or more digits.
The reason for this approach is that the strings are what will be sorted, not the integer values of the appended
numbers, in which case 'step_9' is actually greater than 'step_11'.

The ConfigParser classes also provide two convenience methods that allow you to quickly check
the presence of either a section or a key within a section: has_section() and has_option(),
respectively. These methods are really useful as they allow you to have optional parameters, which if not
defined would assume some default setting (if required, obviously) or can be overridden in the
configuration file.

>>> import ConfigParser
>>> c = ConfigParser.RawConfigParser()
>>> c.read('example.cfg')
['example.cfg']
>>> c.has_section('tables')
True
>>> c.has_section('doesnotexist')
False
>>> c.has_option('tables', 'prefix')
True
>>> c.has_option('tables', 'optional')
False
>>>

So far all we have done are the read-only operations with the configuration data. We’ve examined

the available sections and their contents, and we also know how to check whether the section or the key
exists. The ConfigParser module also provides a means to change the contents of the configuration file.
This can be achieved with one of the available methods that allow you to add or remove a section and

CHAPTER 10 ■ REMOTE MONITORING AGENTS

276

also update the value of any given key. To add a section you should use the add_section() method.
Changing a key value is done with the set() method, which if the key does not exist will also create a
new one:

>>> c.add_section('server')
>>> c.set('server', 'address', '192.168.1.2')
>>> c.set('server', 'description', 'test server')
>>> c.sections()
['tables', 'server', 'database']
>>> c.options('server')
['description', 'address']
>>>

You can also remove either a key from the section or the section as a whole (in which case all the

keys contained within that section will also be removed) with the remove_option()and
remove_section()methods, respectively:

>>> c.options('server')
['description', 'address']
>>> c.remove_option('server', 'description')
True
>>> c.options('server')
['address']
>>> c.remove_section('server')
True
>>> c.sections()
['tables', 'database']
>>>

Finally, once you’ve made all the modifications to the configuration file, you can save it to a file

object by using the write() function. Once saved, the file can be read in again with the read() method
that you’re already familiar with:

>>> import ConfigParser
>>> c = ConfigParser.RawConfigParser()
>>> c.add_section('section')
>>> c.set('section', 'key1', '1')
>>> c.set('section', 'key2', 'hello')
>>> c.write(open('example3.cfg', 'w'))
>>> ^D
$ cat example3.cfg
[section]
key2 = hello
key1 = 1
$

CHAPTER 10 ■ REMOTE MONITORING AGENTS

277

The Configuration Class Wrapper
We now know enough about the ConfigParser library to start using it, but before proceeding I’d like to
show you how to hide all library methods and represent them as class methods. If you look at the
configuration file, it is simply a set of parameters. So why not hide the complexity of the get and set
methods and represent all of the data contained in the configuration file as class variables? There are a
few reasons for doing this. First, it simplifies access to the variables; for example instead of writing var =
c.get('section', 'key'), we could simply use the var = c.section.key construct (similarly for the
set() operation). The second reason is that because the implementation is hidden from the rest of the
code, we can easily replace the ConfigParser library with other methods of storing and retrieving
configuration data.

So before going ahead, let’s understand what we need from the wrapper class. The basic
requirements are listed below:

• When the class is initiated, the configuration file must be read and all items must be
mapped into the corresponding attributes of the class instance.

• When the attribute is set to a value but does not yet exist, it must be created dynamically
and the new value assigned to it.

• The class instance must provide a means of saving the configuration back to the file if it has
been modified.

We will use the built-in methods getattr() and setattr() to create and access the attributes of
the instance. These methods allow access to the attributes by the attribute name stored in the variable.
Listing 10-2 shows the complete wrapper class, individual parts of which I’ll discuss in more detail
further in the section.

Listing 10-2. The configuration wrapper class

01 class ConfigManager(object):
02
03 class Section:
04 def __init__(self, name, parser):
05 self.__dict__['name'] = name
06 self.__dict__['parser'] = parser
07
08 def __setattr__(self, option, value):
09 self.__dict__[option] = str(value)
10 self.parser.set(self.name, option, str(value))
11
12 def __init__(self, file_name):
13 self.parser = SafeConfigParser()
14 self.parser.read(file_name)
15 self.file_name = file_name
16 for section in self.parser.sections():
17 setattr(self, section, self.Section(section, self.parser))
18 for option in self.parser.options(section):
19 setattr(getattr(self, section),
 option, self.parser.get(section, option))
20

CHAPTER 10 ■ REMOTE MONITORING AGENTS

278

21 def __getattr__(self, section):
22 self.parser.add_section(section)
23 setattr(self, section, Section(section, self.parser))
24 return getattr(self, section)
25
26 def save_config(self):
27 f = open(self.file_name, 'w')
28 self.parser.write(f)
29 f.close()

Let’s start with the constructor method, which is defined in lines 12–19. In the first three lines of
code (13–15), we create a new instance of the ConfigParser class and read in the configuration file, the
filename of which is passed to us in the constructor parameter.

In line 16 we iterate through all available section names; each name is stored in the variable named
section. The attribute name was not known until we read in the configuration file, and thus couldn’t be
defined in the class definition. To create an attribute in any object by using its name we use the built-in
function setattr(). This method accepts three parameters: a reference to the object, the name of the
attribute we are either accessing or creating, and the value we want to assign to the attribute. If
translated to a code representation, the statement object.attribute = value has the same meaning
as setattr(object, 'attribute', value). If the attribute does not exist, it will be created and the
value assigned to it:

>>> class C:
... pass
...
>>> o = C()
>>> dir(o)
['__doc__', '__module__']
>>> setattr(o, 'newattr', 10)
>>> dir(o)
['__doc__', '__module__', 'newattr']
>>> o.newattr
10
>>>

Thus, we’re creating a new attribute with the name of the section from the configuration file. The
value we are assigning is a new instance of another class—the Section class, which is defined in lines 3–
10. We’ll come back to this class a bit later; for now, just note that you can assign values to any attribute
names in that class as instances.

Once the attribute with the section name is created, we go through all options (or the keys, as I have
been referring to them) in that section and create attributes with the same names as the keys. We also
assign values from the configuration file to those attributes. All this is happening in the rather lengthy
line 19, where we use the setattr() function. The first argument to the function, as we already know, is
the reference to an object, but how do we get that reference if the variable name is not known at the time
when we wrote the application? Well, we’ve just created the attribute by using a name, and the name is
still stored in another variable as a string, so similarly we can use that string name to access it. The
function to access an object’s attributes by their names is called getattr(), which accepts two
parameters—a reference to an object and the name of the attribute we’re accessing. Therefore, the

CHAPTER 10 ■ REMOTE MONITORING AGENTS

279

statement val = object.attribute is functionally equal to val = getattr(object, 'attribute'),
as we can see from the following example:

>>> dir(o)
['__doc__', '__module__', 'newattr']
>>> o.newattr
10
>>> getattr(o, 'newattr')
10
>>>

We now have functionality that covers our first requirement—when an instance of the configuration

manager class is created, the constructor method opens the configuration file, reads all the data, and
creates corresponding object attributes. This allows us to read values of all attributes in the
configuration file and also modify them. The second part of this exercise is to make the model accept
new attributes and assign values to them. We already know how to create object attributes during
initialization, but that is a controlled process, whereby when the class is initiated the constructor
method __init__() is called. What happens if we try to access an attribute that does not exist? Well,
normally we would get an AttributeError exception raised by the Python interpreter if we do that:

>>> class C:
... attribute = 'value'
...
>>> o = C()
>>> o.attribute
'value'
>>> o.does_not_exist
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: C instance has no attribute 'does_not_exist'
>>>

But we can override this behavior, or to be more accurate, intercept the processing and do

something in cases where the attribute does not exist. For example, instead of raising an exception we
could always return some default value:

>>> class C:
... attribute = 'value'
... def __getattr__(self, attr):
... return 'default value for %s' % attr
...
>>> o = C()
>>> o.attribute
'value'
>>> o.does_not_exist
'default value for does_not_exist'
>>>

CHAPTER 10 ■ REMOTE MONITORING AGENTS

280

We do this by overriding the built-in object method __getattr__(). When you request an attribute
of an object, the interpreter checks whether it exists and if so, returns its value. If the attribute does not
exist, the interpreter checks whether the __getattr__() method is defined and if so, calls it. This
method should either return the attribute value or raise an AttributeError exception.

So when is our __getattr__() method going to be called? It will be called when we try to access a
section object that hasn’t been defined yet, for example when we try to assign a value to a nonexistent
section, like this:

config_manager.new_section.option = value

In this situation the __getattr__() method will be called and the attribute parameter will be set to

the string new_section. We then need to create a new section in the parser instance and a new attribute
in the object instance, just as we did when we initiated the object. All this happens in lines 22–23. Finally,
in line 24, we return a reference to our section object. But wait, we’ve created a section object, but not
the attributes within it! In other words, we’ve created the config_manager.new_section attribute, but
not the config_manager.new_section.option.

Finally we’ve reached the Section class. To begin, let’s see what we need to define for each section
object. First we define the section name, and then we need to have a reference to the parser object, so
whenever we write to the section object attributes (which effectively are the configuration file section
keys) we need to call the parser set() method to set the key’s value. The remaining attributes are just
the keys from the configuration file.

I also need to mention that each Python object has a built-in dictionary of all attributes that belong
to that object, and the dictionary is called __dict__. You can use this dictionary to access and modify
the object attributes:

>>> class C:
... def __init__(self):
... self.a = 1
...
>>> o.a
1
>>> o.__dict__['a']
1
>>> o.b
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: C instance has no attribute 'b'
>>> o.__dict__['b'] = 2
>>> o.b
2
>>>

Just as each class instance has the built-in class method __getattr__(), it also has the

__setattr__() function. This function, if defined, is called by the Python interpreter before it attempts
to modify the object attribute directly. This allows you to override default behavior and intercept all
assignment calls, even the initialization ones:

>>> class C:
... def __init__(self):

CHAPTER 10 ■ REMOTE MONITORING AGENTS

281

... self.attr = 'default'

... def __setattr__(self, attr, value):

... self.__dict__[attr] = 'you cannot change it'

...
>>> o = C()
>>> o.attr
'you cannot change it'
>>>

So we define (in lines 8–10) our custom __setattr__() method, which does two things—it creates

a new attribute in the Section class instance and also calls the parser method to create a configuration
entry. But why do we have to use the dictionary in the initialization method? Could we not initialize the
class instance as in the following example?

def __init__(self, name, parser):
 self.name = name
 self.parser = parser

Well, if we did that, the new __setattr__() method would get called. And it would reference the

name attribute (line 10, self.name), which we are trying to create! So to bypass the call to the
__setattr__() method we need to modify the __dict__ dictionary directly in our constructor method.

■Note Keep in mind that the __getattr__() and __setattr__() calls are asymmetrical. The
__getattr__() function is called after the lookup for the attribute has been performed (and failed). So if the
attribute exists, this method will never be called. The __setattr__() function is called before the lookup in the
internal dictionary is performed.

And finally, in lines 26–29, we define a helper function that saves all our changes to the same
configuration file. There is no automatic change detection, so we need to make sure to call this function
when the changes have been made to the configuration object.

The Sensor Design
We must agree on some structure in the sensor application, so that the agent knows how to control it.
Therefore we need to make sure that each sensor application conforms to the following criteria: the
sensor name must be the same across all installed sensors. The default application name is check, which
can be changed in the configuration.

Each application must also report its options if called with the options command-line parameter
The output is free-form text but must contain clear and concise information about the accepted
parameters. Here’s an example:

$ disk/check options
percent <vol> - free space %
used <vol> - used in KB
free <vol> - free in KB

CHAPTER 10 ■ REMOTE MONITORING AGENTS

282

The result must always be a single floating-point number or an integer. No extra spaces or

characters are allowed, as the result will be assumed to be a number and treated as such. If the
application is not capable of producing results in the required format, you can write a wrapper shell
script to remove extra characters. The output of an example check command looks like this:

$ disk/check used /
432477328

Finally, the return code after the application finishes is recorded. The following assumptions are

made about the return code: if the code is 0,it means that the application did not encounter any errors. If
the return code is not equal 0, it means that the application could not perform its check properly and the
result produced by it should not be trusted.

All sensors must be stored in a preconfigured directory; by default it is in sensors/'. The backup
copies of the updated sensors must be placed in a separate directory, the default name for which is
sensors_backup/'.

You can set all these options in the configuration file, which must be present and shall be named
client.cfg. Following is a sample of the configuration file containing the default values:

[sensor]
executable = check
help = options
path = sensors/
backup = sensors_backup/
[monitor]
url = http://localhost:8081/xmlrpc/

Running External Processes
One of the most important functions of the monitoring agent is to run external processes and read the
data they produce. Calling external utilities and commands is very useful, and you may find yourself
doing that a lot in your applications. Therefore it is essential to understand and explore all options
provided by the Python libraries.

Up until Python version 2.4 there were a number of different libraries that provided means of
invoking external processes, such as os.system, os.spawn, os.popen, popen2, and commands. With
version 2.4 a new library has been introduced, and it aims to replace the functionality of the older
libraries. The new library is called subprocess and provides functionality to spawn new processes, send
and receive information from their input, output, and error pipes, and also obtain the process return
codes.

Using the subprocess Library
The subprocess module defines one class, which is used to spawn new processes—the Popen class. The
name of an external program is passed as the first argument to the Popen class constructor. You have
two options when passing the command name: use a string or use an array. These are treated differently
depending on whether you use the shell to execute the command or not.

The default setting is not to use the shell. In that case, the Popen class expects the first argument to
be the name of the executable. If it finds a list passed to it, the first element in the list will be treated as a

http://localhost:8081/xmlrpc

CHAPTER 10 ■ REMOTE MONITORING AGENTS

283

command name and the remaining elements of the list will be passed as command-line arguments to
the process:

>>> import subprocess
>>> subprocess.Popen('date')
<subprocess.Popen object at 0x10048ca90>
Wed 17 Mar 2010 22:29:24 GMT
>>> subprocess.Popen(('echo', 'this is a test'))
<subprocess.Popen object at 0x10048ca10>
this is a test
>>>

Therefore, if you attempt to specify a command to execute along with its arguments in the same

string it will fail, because the Popen class looks for the executable name as it is specified in the string, and
that obviously fails:

>>> subprocess.Popen('echo "this is a test"')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "/System/Library/Frameworks/Python.framework/Versions/2.6/lib/python2.6/
subprocess.py", line 595, in __init__
 errread, errwrite)
 File "/System/Library/Frameworks/Python.framework/Versions/2.6/lib/python2.6/
subprocess.py", line 1106, in _execute_child
 raise child_exception
OSError: [Errno 2] No such file or directory
>>>

Another alternative is to run commands using the shell. You have to instruct Popen to use the shell

by setting the shell variable to True:

>>> subprocess.Popen('echo "this is a test"', shell=True)
<subprocess.Popen object at 0x10048cb10>
this is a test
>>>

As you can see, this time the example works as expected. If you’re using the shell and the command

is a string, it will be passed to the shell in the exact form, so make sure that you format the string exactly
as you would if you were typing the command at the shell prompt directly; that includes adding
backslashes to escape space characters in the filenames.

Executing a command with the shell is effectively equivalent to spawning the shell executable and
passing the command and its arguments, as in this example:

>>> import subprocess
>>> subprocess.Popen(('/bin/sh', '-c', 'echo "this is a test"'))
<subprocess.Popen object at 0x10048cc10>
this is a test
>>>

CHAPTER 10 ■ REMOTE MONITORING AGENTS

284

The default shell used to run commands is /usr/sh on Unix/Linux systems. The Python
documentation says that you can specify any other shell of your choice by setting the executable
argument to a different binary; however, that does not work properly and in fact only uses the other shell
to spawn the default shell. Following is an excerpt from the subprocess library that is responsible for
setting an alternative executable:

if shell:
 args = ["/bin/sh", "-c"] + args

if executable is None:
 executable = args[0]

[...]

os.execvp(executable, args)

As you can see from this code snippet, if the shell variable is set, the argument list is extended with

the default shell binary location and the argument -c, which instructs the shell to treat anything after it
as a command string. The next check is to verify whether the executable argument is not empty. If it is,
then it will be set to the first item in the argument list, which will be either the default shell or /bin/sh.
And finally, the os.execvp function is called with two arguments: executable, which is the filename of
the program to load, and the arguments list.

Let’s say we only specified shell=True, so the default shell should be used because args[0]
(containing /bin/sh) gets assigned to the executable variable. However, if we tried to use both the
shell and executable arguments at the same time, we would end up calling the same default shell from
within another executable, contrary to what the manual is saying! We can confirm this by performing a
simple experiment:

>>> import subprocess
>>> subprocess.Popen('echo $0', shell=True)
<subprocess.Popen object at 0x10048ca50>
/bin/sh
>>> subprocess.Popen('echo $0', shell=True, executable='/bin/csh')
<subprocess.Popen object at 0x10048ca90>
/bin/sh
>>>

In both cases the result is the same, which means the effective shell that runs our commands is the

same /bin/sh. The easiest and most concise way to overrule the default shell is to use the “shell-less”
Popen call and specify the shell executable as the command name:

>>> subprocess.Popen(('/bin/csh', '-c', 'echo $0'))
<subprocess.Popen object at 0x10048cad0>
/bin/csh
>>>

If you use the Popen command with shell=None (which is the default setting) but don’t want to

construct the array every time you call the external utility, you might want to consider the following

CHAPTER 10 ■ REMOTE MONITORING AGENTS

285

pattern: create a string that looks like a command you’d use on a shell prompt, and then use the string
split() method to create an array that contains the name of the program and its arguments:

>>> import subprocess
>>> cmd = "echo argument1 argument2 argument3"
>>> subprocess.Popen(cmd.split())
argument1 argument2 argument3
<subprocess.Popen object at 0x10048cad0>
>>>

One of the useful parameters to the Popen command is the preexec_fn argument, which allows you

to run any function before the new process is started. It is important to note that this code is called after
the system fork() call but before the exec() call, which means the new process is already created and
in memory but hasn’t started yet. A typical situation where you might want to use this functionality is to
change the effective user ID of the new process, as shown in Listing 10-3.

Listing 10-3. Changing the user ID when running an external process

#!/usr/bin/env python

import subprocess
import os

print "I am running with the following user id: ", os.getuid()
subprocess.Popen(('/bin/sh', '-c',
 'echo "I am an external shell process with effective user id:";
 id'),
 preexec_fn=os.setuid(501))

Running this code as the root user will produce results similar to the following, which shows that the

new process got a new user ID assigned to it:

$ sudo ./setsid_example.py
Password:
I am running with the following user id: 0
I am an external shell process with effective user id:
uid=501(rytis) gid=20(staff)

You can also change the current directory of the running process by setting the cwd argument to the

new path:

>>> import subprocess
>>> import os
>>> print os.getcwd()
/home/rytis/
>>> subprocess.Popen('pwd', cwd='/etc')
<subprocess.Popen object at 0x10048cb50>
/etc
>>>

CHAPTER 10 ■ REMOTE MONITORING AGENTS

286

It is also possible to override the default shell environment variables. These are inherited from the

current process, but should you wish to create a new set of variables, you can do so by assigning a
mapping to the env argument:

>>> import subprocess, os
>>> os.environ['PATH']
'/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games'
>>> subprocess.Popen('echo $PATH', shell=True, env={'PATH': '/bin/'})
<subprocess.Popen object at 0x2b461ac0dd90>
/bin/
>>>

If you only want to change one variable and leave the others intact, make a copy of the os.environ

dictionary and then modify the entry that you want to change. It’s best to use the dict function when
you define a new dictionary, which makes a copy of the existing one instead of just creating a reference
to it:

>>> import os
>>> new = dict(os.environ)
>>> new['PATH'] = '/bin/'
>>> os.environ['PATH']
'/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games'
>>> new['PATH']
'/bin/'

Controlling the Running Processes
You have to keep in mind that the processes may not terminate instantaneously. Therefore, you need to
be able to check whether the process is still running, what its process ID is, and what the return code was
when it finished running, and you even need to terminate the process explicitly.

Listing 10-4 demonstrates how to start a new process and then wait for it to finish. The Popen class
also has a pid attribute, which contains the process ID of the started process.

Listing 10-4. Waiting for the process to terminate

import subprocess
import time
from datetime import datetime

p = subprocess.Popen('sleep 60', shell=True)

while True:
 rc = p.poll()
 if rc is None:
 print "[%s] Process with PID: %d is still running..." % (datetime.now(), p.pid)
 time.sleep(10)

CHAPTER 10 ■ REMOTE MONITORING AGENTS

287

 else:
 print "[%s] Process with PID: %d has terminated. Exit code: %d" %
 (datetime.now(), p.pid, rc)
 break

If you run this example you’ll get results similar to the following:

[2010-03-18 20:56:33.844824] Process with PID: 81203 is still running...
[2010-03-18 20:56:43.845769] Process with PID: 81203 is still running...
[2010-03-18 20:56:53.846158] Process with PID: 81203 is still running...
[2010-03-18 20:57:03.846568] Process with PID: 81203 is still running...
[2010-03-18 20:57:13.846975] Process with PID: 81203 is still running...
[2010-03-18 20:57:23.847360] Process with PID: 81203 is still running...
[2010-03-18 20:57:33.847819] Process with PID: 81203 has terminated. Exit code: 0

Alternatively, you can use the Popen class method wait(), which blocks and waits for the process to

finish before returning control to your application. In most situations it is very useful and frees you from
writing your own wait loop, but beware of the fact that wait() may go into a deadlock if the process that
you run generates a lot of output:

>>> import subprocess
>>> from datetime import datetime
>>> def now():
... print datetime.now()
...
>>> p = subprocess.Popen('sleep 60', shell=True, preexec_fn=now)
2010-03-18 21:06:14.767768
>>> p.wait()
0
>>> now()
2010-03-18 21:07:20.119642
>>>

Let’s modify the previous example and insert a kill() command, which forcefully terminates the

running process. Listing 10-5 shows the code.

Listing 10-5. Terminating the running process

import subprocess
import time
from datetime import datetime

p = subprocess.Popen('sleep 60', shell=True)

CHAPTER 10 ■ REMOTE MONITORING AGENTS

288

while True:
 rc = p.poll()
 if rc is None:
 print "[%s] Process with PID: %d is still running..." % (datetime.now(), p.pid)
 time.sleep(10)
 p.kill()
 else:
 print "[%s] Process with PID: %d has terminated. Exit code: %d" %
 (datetime.now(), p.pid, rc)
 break

Now if you run this script you’ll see the following results:

[2010-03-18 21:11:45.146796] Process with PID: 81242 is still running...
[2010-03-18 21:11:55.147579] Process with PID: 81242 is still running...
[2010-03-18 21:12:05.148198] Process with PID: 81242 has terminated. Exit code: -9

Notice that the return code changes to a negative value. The negative return value indicates that the
process has been terminated and did not finish the execution by itself. The numeric value will indicate
the signal number that terminated the process. Table 10-1 lists the most popular signals and their
numerical representations.

Table 10-1. Signal Numeric Values

Signal Name Numeric Value Description

SIGHUP 1 Hangup

SIGINT 2 Terminal interrupt, usually from keyboard

SIGQUIT 3 Terminal quit, usually from keyboard

SIGABRT 4 Abort signal

SIGKILL 9 Kill signal, cannot be caught

SIGUSR1 10 User-defined signal 1

SIGUSR2 12 User-defined signal 2

SIGTERM 15 Termination signal

SIGSTOP 19 Stop execution, cannot be caught

CHAPTER 10 ■ REMOTE MONITORING AGENTS

289

Communicating with External Processes
It is good to know how to call external processes, but if you can’t communicate with them they are of
little use. Most shell processes have three communication channels: standard input, standard output,
and standard error, usually referenced as stdin, stdout and stderr. When you create a new instance of
the Popen class, you can define any of those channels and set them to one of the following:

• An existing file descriptor

• An existing file object

• A special value of subprocess.PIPE, which indicates that a pipe to a standard stream
should be created

• A special value of subprocess.STDOUT, which can be used to redirect error messages to
standard output stream

Using File Descriptors
Before we continue, let me remind you what file descriptors are. File descriptors are the integer numbers
corresponding to the files opened by the running process. In Linux there are usually three file
descriptors assigned for every process that is running: 0 for standard input, 1 for standard output, and 2
for standard error. Any other file, socket, or pipe opened during runtime will get subsequent numbers
assigned, starting with 3.

In Python you would use file descriptors for low-level I/O operations, so they are not frequently
used. This is because Python provides an additional abstraction level and most of the file operations can
be performed using the Python file objects, which provide multiple file manipulation operations. File
descriptors are returned by either the os.open() or the os.pipe() method. Consider the following
example, in which a new file is created and then the output of the command is redirected to it. If you run
this example, you will not see any output displayed on the terminal, but the date string will be written to
the out.txt file instead.

import subprocess
import os

f = os.open('out.txt', os.O_CREAT|os.O_WRONLY)
subprocess.Popen('date', stdout=f)

Using File Objects
The previous example used low-level file I/O operators that work with file descriptors. The built-in
Python function open() is easier to use and provides a higher-level API to the file operations, such as
read() and write(). The object is also an iterator in itself, so you can use convenient Python language
constructs, such as for ... in ...: to iterate through the contents of the file.

There is absolutely no difference in passing the file objects to the Popen constructor, and the result
is effectively the same as when using the file descriptors:

CHAPTER 10 ■ REMOTE MONITORING AGENTS

290

import subprocess
import os

f = open('out.txt', 'w')
subprocess.Popen('date', stdout=f)

Using the Pipe Objects
The methods described earlier allow you to redirect a program’s input/output to a file, but how do you
access that data from within the Python application? One option would be to wait until the program
finishes and then read the file, but that would be inefficient and also requires you to have read/write
access to the current directory where the application is executed. Alternatively, you can create a pipe
and assign read and write file descriptors to different communication channels in the Popen call, but this
option appears too complicated and convoluted.

The subprocess library provides an easier way to achieve this—by assigning stdin, stdout and/or
stderr arguments a special variable: subprocess.PIPE. You then have two options: either use the
object’s communicate() method or read and write directly from the file objects that will be associated
with the I/O channels.

The communicate() method returns a tuple of two strings containing the data returned from the
process:

>>> import subprocess
>>> p = subprocess.Popen(('echo', 'test'), stdout=subprocess.PIPE)
>>> out_data, err_data = p.communicate()
>>> print out_data
test
>>> print err_data
None
>>>

You can also use the optional argument input to pass any data you need to the process:

>>> import subprocess
>>> p = subprocess.Popen(('wc', '-c'), stdout=subprocess.PIPE,
stdin=subprocess.PIPE)
>>> out_data, err_data = p.communicate(input='test string')
>>> print out_data
 11
>>>

■Caution This function buffers all data in memory and as such is not suitable to be used with large datasets. For
example, if your application is expected to produce huge amounts of data, it may cause unexpected results. The
size of “safe” data is undefined and largely depends on the exact Python version, the Linux version, and the
amount of memory you have available in your system.

CHAPTER 10 ■ REMOTE MONITORING AGENTS

291

An alternative to using communicate() is to read and write directly from the file objects that are
available through the Popen class instance:

>>> import subprocess
>>> p = subprocess.Popen('cat /usr/share/dict/words', shell=True,
stdout=subprocess.PIPE)
>>> i = 0
>>> for l in p.stdout:
... i += 1
...
>>> print i
234936
>>>

Similarly you can write to the process, using the stdin variable that is associated with the standard

input file object. The advantage of this approach is that the data can be accessed as and when needed
and is not loaded into memory all at once.

An added benefit is that you can monitor the process activity over a long time and process the
output as it becomes available. The following example shows how to read lines from the tail command.
After I started the Python application, I generated a few log lines and they appeared in the Python
output. If you want to replicate this exercise, use the Linux logger "message" command to get some
logging messages written to the system log file:

>>> import subprocess
>>> p = subprocess.Popen('tail -f /var/log/messages', shell=True,
stdout=subprocess.PIPE)
>>> while True:
... print p.stdout.readline()
...
Mar 8 21:43:14 linux -- MARK --
Mar 8 22:03:15 linux -- MARK --
Mar 8 22:16:54 linux rytis: this is a test
Mar 8 22:17:01 linux rytis: this is a test 2

In more complex scenarios, you might want to have a separate thread running; this would watch the

output from the command being generated and pass that data on to other processes or threads for
further processing.

Redirecting Standard Error
Applications usually differentiate between error messages and normal output by writing error messages
to the standard error file descriptor. Sometimes all you really need is all output generated by the
application in one piece, regardless of whether it’s the normal output from the application or the error
messages.

To handle such situations, the subprocess library provides the special variable
subprocess.STDOUT, which you can assign to the stderr argument. This redirects all output from the
error file descriptor to standard output:

CHAPTER 10 ■ REMOTE MONITORING AGENTS

292

>>> import subprocess
>>> p = subprocess.Popen('/bin/sh -c "no_such_command"', shell=True,
 stdout=subprocess.PIPE, stderr=subprocess.PIPE)
>>> out_data, err_data = p.communicate()
>>> print out_data

>>> print err_data
/bin/sh: no_such_command: command not found

>>> p = subprocess.Popen('/bin/sh -c "no_such_command"', shell=True,
 stdout=subprocess.PIPE, stderr=subprocess.STDOUT)
>>> out_data, err_data = p.communicate()
>>> print out_data
/bin/sh: no_such_command: command not found

>>> print err_data
None
>>>

Automatically Updating Sensor Code
Finally, we have to implement a mechanism in the agent application that allows us to update any of the
sensors from a central location. When you’re in charge of thousands of servers, the last thing you want to
do is manually copy, unpack, replace, and validate the package you’re updating on each of those servers.
So one of the functions that we are going to add to our agent code is to retrieve a package automatically
(in this example it will be just a compressed TAR archive) and deploy it on top of the existing one. So
when needed we can replace the package with the newer one on the master server and then instruct all
agents to retrieve it and update accordingly.

Sending and Receiving Binary Data with XML-RPC
All the communication flows so far have been happening over the XML-RPC protocol, and it has coped
rather well with the simple data structures, such as strings, integers, arrays and so on, but with binary
data the data transfer is not trivial anymore. As you already know, XML-RPC is a text-based protocol, so
encapsulating raw binary data into an XML-RPC message is not an option.

What we need to do is to represent the binary data using only the characters that are considered to
be text and are allowed by the XML-RPC protocol. There is a special encoding scheme developed just for
that purpose, known as Base64. The number 64 represents the number of characters that are used in
encoding. In the most popular variation of the Base64 encoding scheme, the following characters are
used: lowercase and uppercase letters a-z and A-Z, numbers 0–9, and two extra characters: + and /.
Because there are 64 characters, they can be represented by 6-bit numbers. So when the encoding of the
binary data is performed, all 8-bit bytes in the binary data are represented in a continuous stream of bits,
which is then divided into the 6-bit chunks. Each 6-bit number is mapped to one of the 64 characters
from the Base64 table, and we end up with data constructed from the 64 characters that are valid to
include as a string in the XML-RPC message. Because each character is still represented by the 8-bit byte,
we have a roughly 33 percent increase in the data volume (8/6 = 1.3(3)) after the encoding.

CHAPTER 10 ■ REMOTE MONITORING AGENTS

293

When we receive the data, we need to convert it back to its binary representation. The process is the
opposite of the first conversion: we first get the 6-bit numbers from the encoding/decoding table and
put all 6-bit chunks into one continuous bit stream, which is then divided into 8-bit bytes.

Luckily for us we don’t need to worry about any of that, because the XML-RPC library provides a
class for encoding and decoding binary data. So on the monitoring server side, which will be
transmitting the binary files, we have the following XML-RPC method exposed:

@cherrypy.expose
def cmd_get_sensor_code(self, sensor):
 with open("%s/%s.tar.bz2" % (self.cm.sensor.source_dir, sensor), 'rb') as f:
 return xmlrpclib.Binary(f.read())

As you can see, this code returns an instance of the xmlrpclib.Binary class, which accepts one

argument—a bit stream that need to be encoded. When the client receives such an object it can directly
write it to a file handle, and the decoding is automatically performed and stored in the object’s attribute
called data. So on the client side, the request for data and its writing to a file are achieved by the
following code:

proxy = xmlrpclib.ServerProxy(self.cm.monitor.url)
tmp_dir = tempfile.mkdtemp(dir='.')
dst_file = "%s/%s.tar.bz2" % (tmp_dir, sensor)
with open(dst_file, 'wb') as f:
 f.write(proxy.cmd_get_sensor_code(sensor).data)
 f.close()

Working with Files and Archives (TAR and BZip2)
I briefly touched on file operations when we read and wrote to a file in the data transmission functions.
Let’s examine more closely the common file operations that you might need to perform and the tools
provided by the Python libraries that can make your life easier.

Listing 10-6 shows the function from the monitoring agent code that is responsible for retrieving a
new sensor package, unpacking it, testing it, and finally replacing the original package with it.

Listing 10-6. The automatic package update function

01 @cherrypy.expose
02 def cmd_update_sensor_code(self, sensor):
03 # get the new file
04 proxy = xmlrpclib.ServerProxy(self.cm.monitor.url)
05 tmp_dir = tempfile.mkdtemp(dir='.')
06 dst_file = "%s/%s.tar.bz2" % (tmp_dir, sensor)
07 with open(dst_file, 'wb') as f:
08 f.write(proxy.cmd_get_sensor_code(sensor).data)
09 f.close()
10 # unpack it
11 arch = tarfile.open(dst_file)
12 arch.extractall(path=tmp_dir)
13 arch.close()
14 # check it

mailto:@cherrypy.expose
mailto:@cherrypy.expose

CHAPTER 10 ■ REMOTE MONITORING AGENTS

294

15 cmd = ["%s/%s/%s" % (tmp_dir, sensor, self.cm.sensor.executable), "options"]
16 p = subprocess.Popen(cmd, stdout=subprocess.PIPE)
17 p.communicate()
18 if p.returncode != 0:
19 # remove if fails
20 shutil.rmtree(tmp_dir)
21 else:
22 # back up the existing package
23 sens_dir = "%s/%s" % (self.cm.sensor.path, sensor)
24 bck_dir = "%s/%s_%s" % (self.cm.sensor.backup, sensor,
 datetime.strftime(datetime.now(),
'%Y-%m-%dT%H:%M:%S'))
25 try:
26 shutil.move(sens_dir, bck_dir)
27 except:
28 pass
29 os.remove(dst_file)
30 # replace with new
31 shutil.move("%s/%s" % (tmp_dir, sensor), sens_dir)
32 os.rmdir(tmp_dir)
33 return 'OK'

You are probably already familiar with basic file operations such as open(), read(), write() and

close() from the previous examples, so I’ll just quickly remind you what they do and then concentrate
on the functions that are not as widely known but are very useful if you do not want to rely on the
external utilities and tools provided by the operating system.

Any file operation starts with the open() command, which accepts two arguments: the name of the
file you’re accessing and the access mode. The access mode argument can be either r (the default if
omitted) for a read operation, w for a write operation, or a for an append operation. Bear in mind that w
mode truncates the file if it already exists. You can also append an optional b parameter to the mode
argument, which indicates whether the file contains binary data. It is good practice to indicate whether
the file contains any binary data, because that dictates how the newline characters are treated. The
default is to use text mode, which in some cases may convert the newline characters to the platform-
specific representation (for example \n may be converted to the sequence \n\r). Specifying the binary
mode where appropriate will both improve the readability of the code and also make it more portable
between different platforms. The open() function returns a file object if the operation was successful.

Once the file is open, you can read and write data to it using the read() and write() methods of
the file object. If you’re dealing with a text file, you can also use the readline() function, which reads in
the next line from the file, or readlines() to read all lines into an array. When you’re done with the file
operations, don’t forget to call the close() method to finish all the operations that may have been
buffered and actually release the file handle.

Sometimes you need to create either a temporary file or a directory. In the example above we want
to deploy the sensor code into a temporary location before we test it. If we replaced the existing code
immediately and the new code was faulty, we’d be in trouble. Not only is there no backup to restore
from, but the code would be immediately become available for execution. To deal with the temporary
file and directory creation, Python provides a module called tempfile. Line 5 uses the mkdtemp()
function, which creates a temporary directory. You can also pass an optional argument dir, which
specifies where the directory should be created. If this argument is omitted, the directory location is

CHAPTER 10 ■ REMOTE MONITORING AGENTS

295

determined from one of the following environment variables: TMPDIR, TEMP, or TMP, which are operating-
system specific. The result is a directory name:

>>> import tempfile
>>> d = tempfile.mkdtemp()
>>> d
'/var/folders/7X/7XBjCSfXGbOoJog2bNb3uk+++TI/-Tmp-/tmpPBCHIc'

Similarly, you can create a temporary file by calling the mkstemp() method. This method also

accepts the same dir parameter to indicate the location where the file should be created. When opening
a temporary file, you should also indicate whether the file is a binary (the default) or text file by setting
another optional argument, text, to either False (the default) or True. The function returns a tuple: a
file descriptor number and a file name. Do not mix the file descriptor (which is just an integer) with the
file object, though. If you want to use higher-level read() and write() operations, you’ll have to create
a corresponding file object first:

>>> import tempfile
>>> f = tempfile.mkstemp()
>>> f
(3, '/var/folders/7X/7XBjCSfXGbOoJog2bNb3uk+++TI/-Tmp-/tmpFsBEXt')
>>> import os
>>> fo = os.fdopen(f[0], 'w')
>>> fo.write('test')

Both the temporary directory and the file will be created in the most secure manner and will only be

readable and writable by the user that created them.

■Note It is also important to mention that the deletion of the temporary files and directories are the responsibility
of the process, and the library will not take care of that matter for you.

Use the os.remove() function (line 29) to remove a file and os.rmdir() to remove a directory:

>>> os.remove(f[1])
>>> os.rmdir(d)

You have to bear in mind that os.rmdir() only removes empty directories. Luckily, Python has

another useful built-in module, shutil, which provides a number of high-level operations for managing
files and directories. One useful function is rmtree() (line 20), which removes the directory tree
recursively with all its contents. You can also move the whole tree structure with the move() function
(lines 26 and 31).

Finally, I’m going to introduce you to yet another built-in Python library—tarfile, which is used
to work with TAR, BZip2, and GZip archives. As you can see in lines 11–13, it is extremely simple to use
this library for unpacking the archives. When opening an archive with the open() function, you don’t
need to specify the format, as it will be automatically detected. You could specify it by providing an
optional mode parameter, which has the same syntax as the built-in function open() mode argument;
however, in this case it is extended with one of the following compression arguments: :bz2 for BZip2

CHAPTER 10 ■ REMOTE MONITORING AGENTS

296

compression or :gz for GZip compression. By default the archive is opened in read mode. If you need to
write to an archive (add new files) you have to specify write mode:

$ ls -l
total 8
-rw-r--r-- 1 rytis rytis 26 1 Apr 14:35 test.txt
$ python
Python 2.6.1 (r261:67515, Feb 11 2010, 00:51:29)
[GCC 4.2.1 (Apple Inc. build 5646)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import tarfile
>>> t = tarfile.open('archive.tar.bz2', 'w:bz2')
>>> t.add('test.txt')
>>> t.close()
>>> ^D
$ ls -l
total 16
-rw-r--r-- 1 rytis rytis 147 1 Apr 14:36 archive.tar.bz2
-rw-r--r-- 1 rytis rytis 26 1 Apr 14:35 test.txt
$ tar jtvf archive.tar.bz2
-rw-r--r-- 0 rytis rytis 26 1 Apr 14:35 test.txt
$

Summary
In this chapter we looked at the architecture of the monitoring agent component and how it is
interacting with the operating system. We also investigated various technologies provided by the
different Python libraries that abstracted some of the file and process operations, and we reviewed basic
file operations such as open(), read(), write(), and close. We will continue working on the
monitoring system in the next chapter, where we’ll add the statistics calculation and graphing functions.

Important points to note:

• The ConfigParser library allows you to use the INI type of configuration files.

• Python provides high-level libraries for operations on files and archives: shutil and
tarfile.

• Use the subprocess library to run external commands and communicate with external
processes.

C H A P T E R 1 1

■ ■ ■

297

Statistics Gathering and Reporting

This is the third and final chapter in the series dedicated to the development of a monitoring system. In
the previous chapters, we created two components: a monitoring server and a monitoring agent
component that can collect and store the statistical data from various sources. To make this data really
useful, we need to analyze it, derive some conclusions, and present the results to the end users. In this
chapter, we’ll create a simple web-based application that performs statistical analysis on the data and
also generates some reports.

Application Requirements and Design
The statistical representation system should be fairly simple and easy to use. The following is the basic
functionality it needs to provide:

• The system should provide a list of all available hosts that are being monitored.

• For each available host, there should be a list of all probes (a probe is a simple check script
running on the remote server) available for that host.

• The probes should be grouped into two criteria: probe name and data timescale.

• The data should be presented on different timescales, such as readings obtained in the last
24 hours, last 7 days, and last 30 days.

• The system should report on the number of times the set thresholds have been reached.
This information can be expressed as a percentage from the number of all requests that
have been made in a timescale period.

• The system should provide basic statistical analysis of the data, such as the average values,
data trending, and so on.

The system will be a script that reads the data from the monitoring database, and then generates the

static HTML pages along with the required data graph images. This script can be run on a regular basis
using system scheduling tools such as cron.

The graphing and statistical analysis will be performed by using the NumPy and matplotlib
libraries.

Using the NumPy Library
Statistical analysis is something scientists have been doing for a long time. Therefore, a plethora of
scientific libraries are available for nearly every computer language. Perhaps the most popular libraries
for the Python programming language are NumPy (formerly known as Numeric), which provides high-

CHAPTER 11 ■ STATISTICS GATHERING AND REPORTING

298

level mathematical functions, and SciPy, which provides more than 15 different scientific modules (with
various scientific algorithms for optimizations, linear algebra, signal processing and analysis, and
statistical analysis).

Most of that functionality may be overkill for what we’re going to do here. However, the
convenience of calling just a single function and knowing that the result can be trusted outweighs the
burden of installing a few additional packages on your system. I recommend spending some time getting
acquainted with these two libraries (and also the graphic plotting library, matplotlib, which we’ll
discuss later in the chapter), as they provide useful tools for analysis and reporting.

Installing NumPy
Availability of the NumPy package largely depends on which Linux distribution you’re using. Some
distributions, such as Fedora and Ubuntu, which try to keep up to date with the latest versions of
applications, will provide the binary package. In that case, you can use the operating system package
manager (like yum or aptitude) to install the package for you. For example, here is how to install NumPy
on a Fedora system:

$ yum install numpy

Some distributions, especially the enterprise-grade ones like Red Hat Enterprise Linux and CentOS,
are more conservative in the package selection, and may not provide the precompiled packages. For
these distributions, it’s best to download the source packages and build the library from the source code.
You can find the NumPy source code at http://sourceforge.net/projects/numpy/.

NumPy Examples
Most NumPy functions are optimized to work efficiently with arrays. These arrays can have one or more
dimensions. In most of our examples, we’ll be operating on single-dimension arrays, where the data in
the array is the scalar readings of the sensors over a time period.

Working with Arrays
The NumPy array is not the same as the regular Python array datatype. The array structure is specifically
crafted to be efficient when used by the NumPy functions. The type implementation is specific to the
NumPy C code. It provides some compatibility in terms of the access methods, but not all functions are
duplicated, as you can see from this example:

>>> import numpy
>>> array_py = [1, 4, 5, 7, 9]
>>> array_np = numpy.array([1, 4, 5, 7, 9])
>>> type(array_py)
<type 'list'>
>>> type(array_np)
<type 'numpy.ndarray'>
>>> array_np.append(2)

http://sourceforge.net/projects/numpy

CHAPTER 11 ■ STATISTICS GATHERING AND REPORTING

299

Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: 'numpy.ndarray' object has no attribute 'append'
>>>

Since we’re going to use NumPy arrays extensively, let’s take a closer look at their basic functionality.

As you already noticed, the arrays are created by calling NumPy’s array constructor. The scientific nature
of this datatype is obvious when you look at the exposed methods of the array object. It lacks a rather
simplistic method of appending new values, but provides some of the most common statistical
functions:

>>> a1 = numpy.array([1, 4, 5, 7, 9])
>>> a1.mean() # calculate a mean value of the array
5.2000000000000002
>>> a1.std() # calculate the standard deviation
2.7129319932501073
>>> a1.var() # calculate the variance
7.3599999999999994
>>>

Let’s first find out how to append another element to a list. As you’ve seen, the standard list method

append() doesn’t work here. However, the NumPy library has its own version of the append function that
you can use to append elements:

>>> a1 = numpy.array([1, 2, 3])
>>> numpy.append(a1, [4])
array([1, 2, 3, 4])
>>>

Another difference from the normal Python lists is how you access multidimensional arrays:

>>> a1 = numpy.array([[1, 2, 3], [4, 5, 6]])
>>> a1[1, 1] # second element of the second row
5
>>>

Multidimensional arrays must have the same number of entries in each row, because effectively,

they are the matrix elements. You can always change the shape of the array, as long as you have enough
elements in the array:

>>> a = np.arange(16)
>>> a
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15])
>>> a.reshape(2, 8)
array([[0, 1, 2, 3, 4, 5, 6, 7],
 [8, 9, 10, 11, 12, 13, 14, 15]])

CHAPTER 11 ■ STATISTICS GATHERING AND REPORTING

300

>>> a.reshape(4, 4)
array([[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11],
 [12, 13, 14, 15]])
>>> a.reshape(4, 5)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: total size of new array must be unchanged
>>>

So you’ve seen how to append an element to a list and also how to construct and use

multidimensional arrays. Let’s try to append another row to a two-dimensional array:

>>> numpy.append(a1, [7, 8, 9])
array([1, 2, 3, 4, 5, 6, 7, 8, 9])
>>>

This is clearly wrong. We wanted a third row to appear, but instead, we got a single-dimension list

with the additional entries appended to it. What’s happened is that NumPy flattened the list and
appended the new values to it, because that’s what the append() operation does—appends new
elements, and not sublists.

Fortunately, NumPy has two other functions that allow appending not only new rows, but also new
columns to the lists. The vstack() function appends a new row, and the hstack() function appends a
new column:

>>> numpy.vstack((a1, [7, 8, 9]))
array([[1, 2, 3],
 [4, 5, 6],
 [7, 8, 9]])
>>> numpy.hstack((a1, [[7], [8]]))
array([[1, 2, 3, 7],
 [4, 5, 6, 8]])
>>>

Additional convenience functions allow you to iterate through the array:

>>> a = numpy.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
>>> # simple iterator returns subarrays
>>> for i in a: print i
...
[1 2 3]
[4 5 6]
[7 8 9]
>>> # the following flattens the array
>>> for i in a.flat: print i,
...
1 2 3 4 5 6 7 8 9

CHAPTER 11 ■ STATISTICS GATHERING AND REPORTING

301

>>> # returns a tuple with the element "coordinates" and the element itself
>>> for i in numpy.ndenumerate(a): print i
...
((0, 0), 1)
((0, 1), 2)
((0, 2), 3)
((1, 0), 4)
((1, 1), 5)
((1, 2), 6)
((2, 0), 7)
((2, 1), 8)
((2, 2), 9)
>>>

Obviously, you can do the usual slicing and dicing, as you would with “normal” Python arrays:

>>> a = numpy.array([[1, 2, 3, 4, 5], [6, 7, 8, 9, 0]])
>>> # get the middle 3 digits from the first row
... a[0, 1:4]
array([2, 3, 4])
>>> # same but from the second row this time
... a[1, 1:4]
array([7, 8, 9])
>>> # what about making a vertical cut at the third column?
... a[:,2]
array([3, 8])
>>>

Finally, let’s look at some of the advanced array indexing techniques, which we’ll use later in the

chapter. You’re familiar with the standard Python array indexes, where you either indicate the specific
item you want to look at or a range of values. The NumPy array objects can also accept other arrays as
indexes:

>>> a = np.arange(-10, 1)
>>> a
array([-10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0])
>>> i = np.arange(0, 9, 2)
>>> i
array([0, 2, 4, 6, 8])
>>> a[i]
array([-10, -8, -6, -4, -2])
>>>

These examples demonstrate the basics of array manipulation. We’ll cover other topics, like sorting,

searching, and array reshaping, as they are needed for our sample program.

CHAPTER 11 ■ STATISTICS GATHERING AND REPORTING

302

Basic Mathematical and Statistical Operations
So far, you may have gotten the impression that the NumPy library is all about advanced array
manipulation. Although it is true that the array datatype is at the core of NumPy, this library is not only
about array manipulation. NumPy comes with an extensive set of scientific routines, such as linear
algebra, statistics, and financial functions. Here, I will show you some basic examples of the module
functions that I find most useful.

The NumPy library provides a wide range of mathematical primitives, such as the sum of all
elements, add, multiply, divide, and power functions. Most of them are self-explanatory, as you can see
from the following example:

>>> import numpy as np
>>> a = np.linspace(1, 11, 8)
>>> a
array([1. , 2.42857143, 3.85714286, 5.28571429,
 6.71428571, 8.14285714, 9.57142857, 11.])
>>> # sum of all elements
... np.sum(a)
48.0
>>> # round all elements to the nearest integer
... np.rint(a)
array([1., 2., 4., 5., 7., 8., 10., 11.])
>>> # add two elements
... np.add(a, 100)
array([101. , 102.42857143, 103.85714286, 105.28571429,
 106.71428571, 108.14285714, 109.57142857, 111.])
>>> # the second element can also be an array, but the shapes must match
... np.add(np.array([1, 2, 3]), np.array([10, 20, 30]))
array([11, 22, 33])
>>> # similarly you can subtract the elements
... np.subtract(a, 10)
array([-9. , -7.57142857, -6.14285714, -4.71428571, -3.28571429,
 -1.85714286, -0.42857143, 1.])
>>> # multiply
... np.multiply(a, 10)
array([10. , 24.28571429, 38.57142857, 52.85714286,
 67.14285714, 81.42857143, 95.71428571, 110.])
>>> # ... or divide
... np.divide(a, 10)
array([0.1 , 0.24285714, 0.38571429, 0.52857143, 0.67142857,
 0.81428571, 0.95714286, 1.1])
>>> # ... raise each element to power from the second array
... np.power(a, 2)
array([1. , 5.89795918, 14.87755102, 27.93877551,
 45.08163265, 66.30612245, 91.6122449 , 121.])
>>>

CHAPTER 11 ■ STATISTICS GATHERING AND REPORTING

303

The following are two functions that you can use to find the maximum and minimum values in an
array:

>>> a
array([0, 7, 7, 2, 6, 3, 2, 8, 4, 3])
>>> np.amin(a)
0
>>> np.amax(a)
8
>>>

Calculating the Mean and Standard Deviation
Since we are going to build a reporting system that produces statistical reports about the behavior of our
system, let’s look at some of the statistical functions that we will be using.

Quite possibly, the most commonly used function is for calculating the average value of a series of
elements. The NumPy library provides two functions to calculate the average of all numbers in an array:
mean() and average().

The mean() function calculates a simple mathematical mean of any given set of numbers.

>>> a = np.arange(10.)
>>> a
array([0., 1., 2., 3., 4., 5., 6., 7., 8., 9.])
>>> np.mean(a)
4.5
>>>

The average() function accepts an extra parameter, which allows you to provide weights that will

be used to calculate the average value of an array. Keep in mind that the array of weights must be the
same length as the primary array.

>>> a = np.array([5., 5., 5., 6., 6.])
>>> np.mean(a)
5.4000000000000004
>>> np.average(a, weights=np.array([1, 1, 1, 5, 10]))
5.833333333333333
>>>

You may wonder why you would use a weighted average. One of the most popular use cases is when

you want to make some elements more significant than the others, especially if the elements are listed in
a time sequence. Using the preceding example, let’s assume that the numbers we used initially (5, 5, 5, 6,
6) represent the system load readings, and the readings were obtained every minute. Now we can
calculate the average (or the arithmetic mean) by simply adding all the numbers together and then
dividing them by the total number of elements in the array (this is what the mean() function does). In
our example, that result is 5.4. However, the last readings—the most recent—are usually of greater
interest and importance. Therefore, we use weights in the calculation that effectively tell the average()
function which numbers are more important to us. As you can see from the result, the last two values of
6 more heavily influenced the end result once we indicated their importance.

CHAPTER 11 ■ STATISTICS GATHERING AND REPORTING

304

The less known and used statistical functions are variance and standard deviation. Both of these
indicators are closely related to each other and are measures of how spread out a distribution is. Simply
stated, these are the functions that measure variability of a dataset. The variance is calculated as an
average of the square of the distance of each data point from the mean. In mathematical terms, the
variance shows the statistical dispersion of data. As an example, let’s assume we have a set of random
data in an array: [1, 4, 3, 5, 6, 2]. The mean value of this array is 3.5. Now we need to calculate a squared
distance from the mean for each element in the array. The squared distance is calculated as (value –
mean)2. So, for example, the first value is (1 – 3.5)2 = (-2.5)2 = 6.25. The rest of the values are as follows:
[6.25, 0.25, 0.25, 2.25, 6.25, 2.25]. All we need to do now to get the variance of the original array is
calculate the mean of these numbers, which has a value of 2.9 (rounded) in our case. Here’s how to
perform all those calculations with a single NumPy function call:

>>> a
array([1., 4., 3., 5., 6., 2.])
>>> np.var(a)
2.9166666666666665
>>>

We established that this figure indicates the average squared distance from the mean, but because

the value is squared, it is a bit misleading. This is because it is not the actual distance, but rather an
emphasized value of it. We now need to get the square root of this value to get it back in line with the rest
of the values. The resulting value represents the standard deviation of a dataset. The square root of 2.9 is
roughly equal to 1.7. This means that most elements in the array are not further than 1.7 from the mean,
which is 3.5 in our case. Any element outside this range is an exception to the normal expected value.
Figure 11-1 illustrates this concept. In the diagram, four out of the six elements are within the standard
deviation, and two readings are outside the range. Keep in mind that due to the way the standard
deviation is calculated, there are always going to be some values in a dataset that are at a distance from
the mean that is greater than the standard deviation of the set.

Figure 11-1. Mean and standard deviation of a dataset

CHAPTER 11 ■ STATISTICS GATHERING AND REPORTING

305

The NumPy library provides a convenience function to calculate the standard deviation value for any
array:

>>> a = np.array([1., 4., 3., 5., 6.,2.])
>>> a
array([1., 4., 3., 5., 6., 2.])
>>> np.std(a)
1.707825127659933
>>>

The dataset in our examples so far is reasonably random and has far too few data points. Most real-

world data, although seemingly random, follows a distribution known as the normal distribution. For
example, the average height of people in a nation might be, let’s say, 5 feet 11 inches (which is roughly
1.80 meters). The majority of the population would have a height close to this value, but as we go further
away, we’ll observe that fewer and fewer individuals fall in that range. The distribution peaks at the
mean value and gradually diminishes, going to each side from the mean value. The distribution pattern
has a bell shape and is defined by two parameters: the mean value of the dataset (the midpoint of the
distribution) and the standard deviation (which defines the “sloppiness” of the graph). The bigger the
standard deviation, the more “flat” the graph is going to be, and that means that the distribution is
scattered more across the range of possible values. Because the distribution is described by the standard
deviation value, some interesting observations can be made:

• Approximately 68% of the data fall within one standard deviation distance from the mean.

• Approximately 95% of the data fall within two standard deviation distances from the mean.

• Nearly all (99.7%) of the data falls within three standard deviation distances from the mean.

To bring this into perspective, let’s look at the analysis of a much larger dataset. I generated a set of

random data that is normally distributed. The mean (in mathematical texts, usually annotated as μ or
mu) is 4, and the standard deviation (also known as or sigma) is 0.9. The dataset consists of 10,000
random numbers that follow the normal distribution pattern. I then put all these numbers into the
appropriate buckets depending on their value, 28 buckets in total. The bucket (or the bar on the graph)
value is a sum of all the numbers that fall into the bucket’s range. To make it more meaningful, I then
normalized the bucket values, so the sum of all buckets is equal to 1. As such, the bucket value now
represents the chance or the percentage of the numbers appearing in the dataset.

You can see the resulting histogram of the number distribution in Figure 11-2. The bars are enclosed
by the approximation function line, which just helps you to visualize the form of the normal distribution.
The vertical line on the horizontal axis at the 4 mark indicates the mean value of all the numbers in the
dataset. From that line, we have three standard deviation bands: one sigma value distance, two sigma
value distances, and three sigma value distances. As you can see, this visually proves that nearly all data
is contained within three standard deviation distances from the mean.

There are few things to bear in mind. First, the graph shape nearly perfectly resembles the
theoretical shape of the normal distribution pattern. This is because I’ve chosen a large dataset. With
smaller datasets, the values are more random, and the data does not precisely follow the theoretical
shape of the distribution. Therefore, it is important to operate on large datasets if you want to get
meaningful results. Second, the normal distribution is designed to model processes that can have any
values from –infinity to +infinity. Therefore, it may not be well suited for processes that have only
positive results.

Let’s say that you want to measure the average car speed on a highway. Obviously, the speed cannot
be negative, but the normal distribution allows for that. That is to say that the theoretical model allows,
albeit with extremely low probability, a negative speed. However, in practice, if the mean is further than

CHAPTER 11 ■ STATISTICS GATHERING AND REPORTING

306

four or five standard deviation distances from the 0 value, it is quite safe to use the normal distribution
model.

Figure 11-2. Normal distribution and the standard deviation bands

We’ve spent a lot of time discussing and analyzing one scientific phenomenon, but how does that
relate to system administration, the subject of this book? As I’ve mentioned, most of the natural
processes are random events, but they all usually cluster around some values. Take the average speed of
the cars on a highway. There is a speed limit, but that does not mean that all cars are going to travel at
that speed—some will go faster, and some will go slower. But there is a good chance that the average
speed will be at or below the speed limit. Also, most cars will be traveling at speeds close to the average.
The further you go to each side of this average, the fewer cars will be traveling at those speeds. If you
measure the speed of a reasonably big set of cars, you will get the speed distribution shape, which
should resemble the ideal pattern of the normal distribution graph.

This model also applies to system usage. Your server or servers are going to perform work only when
users request them to do something. Similar to the car speeds on a highway, the system load will average
around some value.

I’ve chosen the distribution function parameters (the mean and standard deviation) so that they
model a load pattern on an imaginary four-CPU server. As you can see in Figure 11-2, the load average
peaks at 4, which is fairly normal for a busy, but not overloaded, system. Let’s assume that the server is
constantly busy and does not follow any day/night load-variation patterns. Although the load is pretty
much constant, there will always be some variation, but the further you go from the mean, the less
chance you have of hitting that reading. For example, it’s rather unlikely (32% chance to be precise) that
the next reading will be either less than (roughly) 3 or greater than (roughly) 5. Similarly, this rule applies
to readings below and above 2 and 6, respectively—actually, the chances of hitting those readings are
less than 5%.

What does this tell us? Well, knowing the distribution probabilities, we can dynamically set the alert
thresholds. Obviously, we’re not too concerned about the values going too low, as this wouldn’t do any
harm to the system (although indirectly, it might indicate some issues). Most interesting are the upper
values in the set. We know that two out of every three readings will fall in the first band (one standard
deviation distance from the mean to each side). A much higher percentage falls into the second band; in
fact, it will be the majority of the readings—more than 95%. You may make a decision that all those
readings are normal, and the system is behaving normally. However, if you encounter a reading that
theoretically happens only 5% of the time, you may want to get a warning message. Readings that occur

CHAPTER 11 ■ STATISTICS GATHERING AND REPORTING

307

only 0.3% of the time are of concern, as they are far from normal system behavior, so you should start
investigating immediately.

In other words, we just learned how to define what is “normal” system behavior and how to
measure the “abnormalities.” This is a really powerful tool to determine the warning and error
thresholds for any monitoring system (such as Nagios) that you may be using in your day-to-day job. We
will use this mechanism in our application, which will update thresholds automatically.

The complementary function to the standard deviation and variance functions is the histogram
calculation function. It is used to sort the numbers into buckets according to their value. I used this
function to calculate the size of the bars in the normal distribution pattern in Figure 11-2. This function
accepts the an array of the values that it needs to sort, and optionally, the number of bins (the default is
10) and whether the values should be normalized (the default is not to normalize). The result is a tuple of
two arrays: one containing the bin size and the other the bin boundaries. Here is an example:

>>> a = np.random.randn(1000)
>>> h, b = np.histogram(a, bins=8, normed=True, new=True)
>>> h
array([0.00238784, 0.02268444, 0.12416748, 0.30444912, 0.37966596,
 0.26146807, 0.08834994, 0.01074526])
>>> b
array([-3.63950476, -2.80192639, -1.96434802, -1.12676964, -0.28919127,
 0.5483871 , 1.38596547, 2.22354385, 3.06112222])
>>>

The function numpy.random.randn(<count>) is used to generate a normal distribution set with the

mean of 0 and the standard deviation of 1.

Finding the Trend Line of a Dataset
The sample application we’ll build in this chapter should report on and help us visualize the trends of
various readings. For example, let’s say that we’re collecting data about the CPU load. How can we find
out if the load is gradually increasing over time? An obvious way is to look at the graph of the readings,
and the really pronounced trends will be visible immediately. But we don’t want to need to look at all the
possible graphs ourselves and try to spot a trend. If the increase in load is not very obvious, it may be
impossible to tell whether the values generally tend to go up or down on the graph, because they will be
randomly scattered around some mean value.

Fortunately, a well-developed process known as regression or curve fitting allows us to find a
function that best fits any given dataset. The resulting curve is an approximation of the supplied values
that usually are some generic function or trend heavily influenced by random noise. One of the most
popular and computationally efficient methods for curve fitting is called the method of least squares.
This method assumes that the best-fit curve is the one that has a minimal sum of the deviations squared
from a given set of data. In other words, the curve should be as close as possible to all data points.

The most common way of defining such curves is using polynomials. A polynomial is a function that
can be expressed with a fixed-length function using only addition and multiplication operations. As a
way of expressing multiplication operations, exponents are also allowed, as long as they are not negative
and use whole numbers.

An example of a polynomial function is y = 2 * x2 + x + 4. The largest exponent defines the degree of a
polynomial function. In this example, the largest exponential is 2; therefore, this is a second-degree
polynomial. So, by using the method of least squares, we can find a polynomial that is the best fit for a
given dataset. To keep things simple, we’ll be calculating only the first-degree polynomials, which define
a straight-line function. The slope of this function shows whether the trend is going up, going down, or
not changing significantly over time. The slope degree is defined by the constant multiplier. For

CHAPTER 11 ■ STATISTICS GATHERING AND REPORTING

308

example, for y = a * x + b, the slope of the line is defined by the value of a. If this value is positive, the line
goes upward; if it is negative, the line goes downward. The second constant, b, defines the position of the
line on a vertical axis.

As you can see, the first-degree polynomial is defined by two constants: the slope and position. In
our function, these are the constants a and b, respectively. Now the question is how to find those
constants from any given array of seemingly random data. The actual calculation procedure is
somewhat lengthy, and I’m not going to describe it here. Fortunately, NumPy provides a function that
accepts two arrays of coordinates (x and y) for the data points and returns the polynomial constants as a
result. You can also specify the degree of the desired polynomial function, but we’ll stick with the first-
degree polynomial calculation. The following example generates some random data, then artificially
introduces a slope in the sequence, and then calculates the resulting first-degree polynomial constants:

>>> x = np.arange(100)
>>> y = np.random.normal(4., 0.9, 100)
>>> for i in range(100):
... y[i] = y[i] + i/40
>>> a, b = np.polyfit(x, y, 1)

■Note You can find more details about polynomial functions and how the constants are derived on the Wikipedia
page at http://en.wikipedia.org/wiki/Polynomial.

In Figure 11-3, you can see the raw data (shown as dots) along with the best-fit, or trend, line.
Although there are some values that are much larger than the rest of the dataset, the actual trend isn’t as
steep as you may have expected. The trend function constants also give us a good indication of what’s
going to happen in the future. For example, after observing 100 values, we established that the
polynomial function for this dataset is y = 0.024 * x + 3.7. Therefore, with a certain degree of confidence,
we can make an assumption that the average value after another 100 measurements will be 0.024 * 200 +
3.7 = 8.5. If we assume that this is the load average reading of our system, we’ll have a clear idea of what
the average load is going to be in the near future. This is a powerful methodology that you can employ
for capacity planning.

Figure 11-3. Best-fit trend line for random data

http://en.wikipedia.org/wiki/Polynomial

CHAPTER 11 ■ STATISTICS GATHERING AND REPORTING

309

Reading and Writing Data to Files
In some situations, you may need to write data to a file and then later read it in for further processing.
NumPy provides several input/output procedures you can use for this purpose. In the following example,
the data is stored to a text file, and the comma character is used as a delimiter.

>>> a = np.arange(16).reshape(4,4)
>>> a
array([[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11],
 [12, 13, 14, 15]])
>>> np.savetxt('data.txt', a, fmt="%G", delimiter=',')
>>> b = np.loadtxt('data.txt', delimiter=',')
>>> b
array([[0., 1., 2., 3.],
 [4., 5., 6., 7.],
 [8., 9., 10., 11.],
 [12., 13., 14., 15.]])
>>>

Many popular tools, such as Excel, understand this format, so you can use this method to export

your data and exchange files with others who may be using different tools.

Representing Data with matplotlib
You may be were wondering what program I used to generate the graphs shown in figures you’ve seen in
this chapter. I used a tool available as another Python library, called matplotlib. The primary use for
this library is to create and plot various scientific diagrams. It allows you to generate and save image
files, but also comes with a graphical interface with zooming and panning options. The library provides
functions for producing both 2D and 3D plots.

matplotlib is a sophisticated piece of software, which offers functionality similar to commercial
products such as MATLAB. Here, we’ll just look at generating simple 2D graphs and adding annotations
to them.

■Note For more detailed information about using matplotlib, see Beginning Python Visualization: Crafting
Visual Transformation Scripts, by Shai Vaingast (Apress, 2009).

Installing matplotlib
Generally, you have two options for installing matplotlib: use the Python Package Index (PyPI) installer
(pip) tool or build the package from the source code. Here’s a command to install the library from PyPI:

$ sudo pip install matplotlib

CHAPTER 11 ■ STATISTICS GATHERING AND REPORTING

310

■Caution If you use the pip tool, make sure to check which version is installed. I’ve come across situations
where the matplotlib release on PyPI was much older than the latest release.

I recommend the other option: building the library from the latest source code package. This way,
you’ll be sure that you’re getting the latest release. The process isn’t complicated. First, download the
source code from the SourceForge repository at
http://sourceforge.net/projects/matplotlib/files/matplotlib/. Then unpack it and run the
following commands to build and install the matplotlib module:

$ python setup.py build
$ sudo python setup.py install

Depending on your Linux installation, you may also need to install some additional packages that

matplotlib depends on and that are not included in the default installation. For example, you may
need to install the FreeType development libraries and header files (the freetype-devel package for
Red Hat Linux) and development tools for programs to manipulate PNG image format files (the libpng-
devel package for Red Hat Linux). Consult your Linux distribution documentation for the specific
details, such as the installation procedure and package names.

When you are finished installing the library, you can check that it is functioning correctly by issuing
the following commands:

$ python
Python 2.6.2 (r262:71600, Jan 25 2010, 18:46:45)
[GCC 4.4.2 20091222 (Red Hat 4.4.2-20)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import matplotlib
>>> matplotlib.__version__
'0.99.1.1'
>>>

Understanding the Library Structure
The matplotlib API is organized into three layers of responsibility:

• The first layer is the matplotlib.backend_bases.FigureCanvas object, which represents
the area onto which the figure is drawn.

• The second layer is the matplotlib.backend_bases.Renderer object, which knows how
to draw on the FigureCanvas object.

• The third layer is the matplotlib.artist.Artist object, which knows how to use the
Rendered object.

Generally, the first two layers are responsible for talking to the system graphic libraries, such as the

wxPython and PostScript engines, and the Artist is used to handle the higher-level primitives, such as
lines and text. Most of the time, you will be using just the Artist object.

http://sourceforge.net/projects/matplotlib/files/matplotlib

CHAPTER 11 ■ STATISTICS GATHERING AND REPORTING

311

The Artist is split into two different types: drawing primitives and containers. The primitives are
the objects that represent the objects you want to plot, such as lines, text, rectangles, and so on. The
containers are the objects that contain primitives. The standard pattern of creating a graph using
matplotlib is to create a main contained object (instance of the Figure class), add one or more Axes or
Subplot instances, and then use the helper methods of those instances to draw the primitives. For my
graphs, I usually use Subplot, as it is a subclass of Axes and provides higher-level access control.

Plotting Graphs
One of the mostly widely used methods of the Subplot class is the plot() function. It is used to draw
lines or markers on the Subplot (or Axes). Listing 11-1 demonstrates how to draw a sine function graph.

Listing 11-1. Drawing a Simple Graph

import matplotlib.pyplot as plt
import numpy as np

fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
x = np.arange(100)
y = np.sin(2 * np.pi * x / 100)
ax.plot(y)
plt.show()

If you run this script on a system with an X window manager running, you will see a graph plotted in

a separate window, as shown in Figure 11-4. You’ll be able to use the window functions such as panning
and zooming, as well as save and print the file.

Figure 11-4. An example of matplotlib window instance

CHAPTER 11 ■ STATISTICS GATHERING AND REPORTING

312

Changing the Appearance of the Plot Primitives
The more complete syntax for the plot() function is to include two arrays of coordinates, x and y, and
specify the plot formatting, such as the plot color and style. The following code plots the same graph as
Listing 11-1, but using a red dotted line instead, which is specified by the r shortcut for the color and the
: shortcut for the line type.

x = np.arange(100)
y = np.sin(2 * np.pi * x / 100)
ax.plot(x, y, 'r:')

You can also use the keyword arguments to specify the formatting of the graph and the drawing

color.

ax.plot(x, y, linestyle='dashed', color='blue')

Table 11-1 lists the most commonly used formatting string characters and their keyword argument

alternatives.

Table 11-1. Graph Style Formatting Characters and Keyword Arguments

Style Shortcut Keyword Argument Description

- linestyle='solid' Solid line

-- linestyle='dashed' Dashed line

: linestyle='dotted' Dotted line

-. linestyle='dash_dot' Dashed and dotted line

o marker='circle' Circle marker (not connected with a line)

. marker='dot' Dot marker (not connected with a line)

* marker='star' Star marker (not connected with a line)

+ marker='plus' Plus marker (not connected with a line)

x marker='x' X marker (not connected with a line)

When you use a shortcut style string, a limited set of colors is available, as shown in Table 11-2.

When you use a keyword argument to specify the color, you have a lot more choices.

CHAPTER 11 ■ STATISTICS GATHERING AND REPORTING

313

Table 11-2. Graph Color Shortcuts

Style Shortcut Color

k Black

w White

b Blue

g Green

r Red

c Cyan

m Magenta

y Yellow

If you are using only shades of gray, you can set the color keyword argument to a string that

represents a floating-point number in the range of 0 to 1, where 0 indicates black and 1 indicates white.
Make sure it is set to a string; do not assign the float directly.

ax.plot(x, y, linestyle='dashed', color='0.5') # good
ax.plot(x, y, linestyle='dashed', color=0.5) # bad

You can also use HTML hex strings, such as #aa11bb. Yet another way to specify colors is to pass a

tuple of three floating-point numbers in the range of 0 to 1 that represent the red, green, and blue
components, as in this example:

ax.plot(x, y, linestyle='dashed', color=(0.2, 0.7, 0.3))

Drawing Bars and Using Multiple Axes
Another commonly used plotting method uses bar primitives, created with the bar() method.
Listing 11-2 demonstrates creating a plot with two graphs. The first graph is also placed on a polar
coordinate system. Both plots use bar primitives to display the data.

Listing 11-2. Plotting Bars Using Cartesian and Polar Coordinates

import matplotlib.pyplot as plt
import numpy as np

fig = plt.figure()

ax = fig.add_subplot(2, 1, 1, polar=True)
x = np.arange(25)

CHAPTER 11 ■ STATISTICS GATHERING AND REPORTING

314

y = np.sin(2 * np.pi * x / 25)
ax.bar(x * np.pi * 2/ 25, abs(y), width=0.3, alpha=0.3)

ax2 = fig.add_subplot(2, 1, 2)
x2 = np.arange(25)
y2 = np.sin(2 * np.pi * x2 / 25)
ax2.bar(x2, y2)

plt.show()

Notice that we now have two Axes objects. They are automatically arranged, but you must specify

where on the grid each one goes. So when you initialize each of the Axes objects. you need to specify
how many rows and columns there will be on the canvas—two rows and one column in the example in
Listing 11-2. Then for the each Axes object, you need to give the sequence number, which will be used to
place them accordingly on the canvas grid. The example uses 1 and 2, respectively:

ax = fig.add_subplot(2, 1, 1, polar=True) # rows, columns, id
...
ax2 = fig.add_subplot(2, 1, 2) # rows, columns, id

The polar keyword argument indicates whether the axis will have the Cartesian coordinate system

or polar coordinates. If you set the coordinate system to polar, keep in mind that the full circle range is
from 0 to 2* .

The bar() method uses two optional keyword arguments: width, which sets the bar width, and
alpha, which controls the transparency of the primitive. You can see the resulting plot in Figure 11-5.

Figure 11-5. Plotting the bars on Cartesian and polar coordinates

CHAPTER 11 ■ STATISTICS GATHERING AND REPORTING

315

Working with Text Strings
You’ve probably noticed that there has been very little text on the graphs shown so far. matplotlib
conveniently adds values to both of axes, but that is as far as it can guess. Adding text like axis
annotations, figure titles, and various labels is our responsibility. Fortunately, Axes objects have
multiple helper functions that can assist us in adding the text to our plots. You can place text as follows:

• Add text to the x and y axes.

• Add a plot title.

• Arbitrarily place text anywhere on the plot surface.

• Annotate specific points on the graph.

The title and annotations for both axes are set during the axis (or the subplot) initialization by using

the appropriate keyword arguments. The arbitrary text string can be placed using the text() method
and specifying the coordinates and the text string. Similarly, an annotation can be created with the
annotate() function. The annotate() function accepts the keyword arguments that indicate where the
text should be placed (the xytext argument) and where the arrow should point to (the xy argument). An
optional arrowprops dictionary allows you to extensively configure the look and feel of the annotation
arrows, but the simplest configuration is the arrowstyle dictionary item, which you can use to set the
direction of the arrow.

Listing 11-3 demonstrates adding all four types of text.

Listing 11-3. Adding Text to a Graph

import matplotlib.pyplot as plt
import numpy as np

fig = plt.figure()
ax = fig.add_subplot(1, 1, 1,
 title="Fourth degree polynomial",
 xlabel='X Axis',
 ylabel='Y Axis')
x = np.linspace(-5., 3)
y = 0.2 * x**4 + 0.5 * x**3 - 2.5 * x**2 - 1.2 * x - 0.6
ax.plot(x, y)
ax.grid(True)

ax.text(-4.5, 6, r'$y = 0.2 x^4 + 0.4 x^3 - 2.5 x^2 - 1.2 x - 0.6$', fontsize=14)
ax.annotate('Turning point',
 xy=(1.8, -7),
 xytext=(-0.8, -12.6),
 arrowprops=dict(arrowstyle="->",)
)

plt.show()

Notice how the text string has been formatted. Listing 11-3 uses the Python raw string notation (just

a reminder that it is defined as r'anystring') and encloses the whole expression within $ characters.

CHAPTER 11 ■ STATISTICS GATHERING AND REPORTING

316

This instructs the matplotlib text-rendering engine that the text will contain the subset of TeX markup
instructions.

Figure 11-6 shows the plot generated by Listing 11-3.

Figure 11-6. Adding text to a graph

Saving Plots to a File
So far, we’ve looked at the various aspects of plot generation. You’ve seen that the plots that you
generate are displayed in an interactive window within your GUI. This is perfectly acceptable if you just
need to quickly check the results, but it also means that you need to perform the full calculation every
time you want to see the graph. You have an option of saving the graph from the plot display window,
but this is manual process and not suitable for automated reporting systems.

matplotlib uses imaging back-end processes that generate the images. For the majority of us who
just want to use the most popular formats—such as PNG, PDF, SVG, PS, and EPS—matplotlib offers the
Anti-Grain Geometry (Agg) back end, which uses the C++ anti-grain image-rendering engine behind the
scenes. By default, matplotlib uses one of the GUI engines (for example, wxPython) when you import
the pyplot module. To change this behavior, you must first instruct it to use the Agg back end, and then
import pyplot.

Listing 11-4 shows an example of how to initialize matplotlib with the Agg back end and generate
two files in different formats.

Listing 11-4. Saving Images to Files

#!/usr/bin/env python

import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import numpy as np

fig = plt.figure()

CHAPTER 11 ■ STATISTICS GATHERING AND REPORTING

317

ax = fig.add_subplot(1, 1, 1)
x = np.arange(100)
y = np.sin(2 * np.pi * x / 100)
ax.plot(y)
plt.savefig('sin-wave.png')
plt.savefig('sin-wave.pdf')

Notice that you don’t need to specifically tell the Agg engine the file type. It is smart enough to figure

that out from the file name extension. If you must use a nonstandard extension, or no extension at all,
you can use an optional keyword argument to force the file type:

plt.savefig('sin-wave', format='png')

Graphing Statistical Data
We have spent a great deal of time discussing various statistical methods of data analysis. You know how
to check if there are any trends in the dataset and whether the trend is positive or negative. You also
know how to calculate the average value of the dataset and the likelihood of the data fitting within the
predefined boundaries (standard deviation). Now let’s see how to apply this knowledge in practice. We’ll
build a simple application that runs periodically and generates status pages. These pages are static pages
that will be served by the Apache web server.

Collating Data from the Database
Chapter 9 provided the details of the various database tables we’re using for our monitoring system and
how they are related to each other. Because we’re interested in reporting on the probe readings for this
chapter’s example, of most interest to us here is the probereading table, which contains the raw data
obtained from the sensors. The values for this table need to be filtered before processing, so we need to
know to which sensor—or to be more precise, which probe—this reading belongs. We also need to group
the probe readings by the host from which they have been read. In other words, we need to iterate
through all entries in the host table, then for each host we find, we need to check which probes are
running on it. Once we establish the entire host-to-probe combinations, we need to obtain the sensor
readings over the time.

In the test database that I am using for this example, I have two hosts (called My laptop and My
server) in the host table and two probes (called Used CPU % and HTTP requests). Both hosts are
reporting their CPU usage figures, but only the server is serving the web pages and therefore is
monitoring the number of incoming HTTP requests. You can download the database file with the data
along with the rest of the source code for this book. The database is preloaded with sample performance
data that has been randomly generated, but attempts to follow real-world usage patterns.

Before we proceed with the implementation, let’s quickly outline the basic structure of the site
generator script.

Displaying Available Hosts
First, we need to find all the hosts that are present in the database. Once we have that list, we’ll use the
host ID to search for all probes associated with this host. We need to gather the probe name, the warning
and error threshold values, and the host probe ID, which we’ll use to search for the probe readings.
Listing 11-5 shows the code used to gather this information.

CHAPTER 11 ■ STATISTICS GATHERING AND REPORTING

318

Listing 11-5. Retrieving All Hosts and the Associated Probes

class SiteGenerator:
 def __init__(self, db_name):
 self.db_name = db_name
 self.conn = sqlite3.connect(self.db_name)
 self.hosts = []
 self._get_all_hosts()

 def _get_all_hosts(self):
 for h in self.conn.execute("SELECT * FROM host"):
 host_entry = list(h)
 query_str = """ SELECT hostprobe.id,
 probe.name,
 COALESCE(hostprobe.warning, probe.warning),
 COALESCE(hostprobe.error, probe.error)
 FROM probe,
 hostprobe
 WHERE probe.id = hostprobe.probe_id AND
 hostprobe.host_id = ?
 """
 probes = self.conn.execute(query_str, (h[0],)).fetchall()
 host_entry.append(probes)
 self.hosts.append(host_entry)

In this code, notice the COALESCE() function, which returns the first non-null result from the list.
Remember that we can define the site-wide threshold in the probe table, but we also allow overruling
this setting in the hostprobe table. This allows us to set thresholds on a per-host basis. So the logic is to
check whether the host-specific threshold setting is not set to NULL and fall back to the default if it is.
Here is a simplified example to illustrate the behavior of this function:

sqlite> select coalesce(1, 2);
1
sqlite> select coalesce(NULL, 2);
2
sqlite> select coalesce(NULL, NULL);

sqlite>

Drawing Timescale Graphs
Now we have all the information required for further data processing: the hosts and the associated host
probes. There are many different ways to represent the statistical information that we’ve gathered. In
this example, we’ll sort the information by one of the two parameters: the probe names and the
timescale. To simplify the implementation, we’ll use the predefined list of available timescales: 1 day, 7
days, and 30 days.

CHAPTER 11 ■ STATISTICS GATHERING AND REPORTING

319

I find it easier to develop the templates and the corresponding code if I visualize the web site
structure that I’m developing. Figure 11-7 represents the structure of our web site, along with the sample
HTML file names (IDs to be replaced with the actual values) and the corresponding Jinja2 templates.

Figure 11-7. The web site structure

The Index Page
The index page is the simplest page on our web site. It requires a minimum amount of code to generate,
because we don’t need to do any calculations. We just pass in the list of hosts, which we’ve already
generated in the class initialization method.

The private class method loads the template and passes the host list to it:

def _generate_hosts_view(self):
 t = self.tpl_env.get_template('index.template')
 f = open("%s/index.html" % self.location, 'w')
 f.write(t.render({'hosts': self.hosts}))
 f.close()

CHAPTER 11 ■ STATISTICS GATHERING AND REPORTING

320

The template iterates through the list of hosts and generates links to the host details page:

<h1>Hosts</h1>

{% for host in hosts %}
 {{ host[1] }}
 ({{ host[2] }}:{{ host[3] }})
{% endfor %}

We’ll use the host list and the host probe list quite a lot in this example. Table 11-3 shows the details

of each field, so you don’t need to memorize what each field contains.

Table 11-3. The Host and Probe List Fields

Element Element Field Description

self.hosts 0 Host ID

self.hosts 1 Name of the host

self.hosts 2 Address of the host

self.hosts 3 Port number of the monitoring agent

self.hosts 4 List of the probe elements (following fields)

host[4] 0 Host probe ID

host[4] 1 Name of the probe

host[4] 2 Warning threshold (or None if not defined)

host[4] 3 Error threshold (or None if not defined)

Host Details Page
For the host details page, we need to calculate the service availability figures and display them on a web
page for each host. Each page will have two sections: one to display the service availability statistics and
the other to list the links to the pages containing graphs for each timescale/host probe combination.

Listing 11-6 shows the two private methods that perform the calculations and also generate the web
site pages.

CHAPTER 11 ■ STATISTICS GATHERING AND REPORTING

321

Listing 11-6. Generating the Host Details Web Page

def _generate_host_toc(self, host):
 probe_sa = {}
 for probe in host[4]:
 probe_sa[probe[1]] = {}
 for scale in TIMESCALES:
 probe_sa[probe[1]][scale] =
 self._calculate_service_availability(probe, scale)
 t = self.tpl_env.get_template('host.template')
 f = open("%s/host_%s_details.html" % (self.location, host[0]), 'w')
 f.write(t.render({ 'host': host,
 'timescales': TIMESCALES,
 'probe_sa': probe_sa,
 }))
 f.close()

def _calculate_service_availability(self, probe, scale):
 sa_warn = None
 sa_err = None
 sampling_rate = self.conn.execute("""SELECT probeinterval
 FROM probingschedule
 WHERE hostprobe_id=?""",
 (probe[0],)).fetchone()[0]
 records_to_read = int(24 * 60 * scale / sampling_rate)
 query_str = """SELECT count(*)
 FROM (SELECT probe_value
 FROM probereading
 WHERE hostprobe_id=?
 LIMIT ?)
 WHERE probe_value > ?"""
 if probe[2]:
 warning_hits = self.conn.execute(query_str,
 (probe[0], records_to_read, probe[2],)
).fetchone()[0]
 sa_warn = float(warning_hits) / records_to_read
 if probe[3]:
 error_hits = self.conn.execute(query_str,
 (probe[0], records_to_read, probe[3],)
).fetchone()[0]
 sa_err = float(error_hits) / records_to_read
 return (sa_warn, sa_err)

The first function, _generate_host_toc(), will be called for every host found in the list. As a

parameter, the _generate_host_toc() function receives a host structure, which also contains the list

CHAPTER 11 ■ STATISTICS GATHERING AND REPORTING

322

of all probes associated with it (see Table 11-3). The function then iterates through all host entries and all
timescale values, calling the second function, _calculate_service_availability().

The _calculate_service_availability() function calculates the number of times each
threshold has been breached for each host probe in a given timescale. To do that, it needs to figure out
how many records to analyze. This depends on the sampling rate. For example, if we’re reading a probe
every minute, we’ll have 24 * 60 = 1440 records made every day. However, if we are performing a check
every 5 minutes, that will be 24 * (60/5) = 288 records. The sampling rate is stored in the database, so
we’ll just need to fetch that value and calculate the number of records to analyze.

The next step is to count the number of records whose value is above the threshold settings. The
database query we are going to use is the same for both value checks. So we construct it once and then
use it when needed in the connection.execute() calls, with the appropriate threshold setting. Let’s
look at the SQL query:

SELECT count(*)
 FROM (SELECT probe_value
 FROM probereading
 WHERE hostprobe_id=?
 LIMIT ?)
 WHERE probe_value > ?

This is actually two nested queries. The first query that will be executed by the SQLite3 engine is the

inner SELECT statement, which selects the last x records from the list for a specified host probe. The
outer SELECT statement counts the number of records from the list that have a probe_value above the
specified threshold value. You may notice that we don’t order the list in any way in the inner SELECT
statement. So how sure are we that we’re actually going to get the last records, and not a random or semi
random selection of records from the database? In SQLite, each row has an associated ROWID value, and
all rows are sorted by their row IDs. If we don’t specify the order in our SELECT statement, it will be
sorted by the row IDs automatically. Since we’re only adding rows into the database, all our row IDs will
be in the sequence. Therefore, a simple LIMIT SQL statement guarantees that we’ll get the last rows
selected.

■Note You can find more information about the row ID field in the official SQLite3 documentation, located at
http://sqlite.org/lang_createtable.html#rowid. Note that other database engines, such as
PostgreSQL and MySQL, may behave differently.

The SQL query will be executed only if the threshold value is available; otherwise, the function
returns None as a result. Once the calculations have been performed, we load the template and pass the
variables to it. The template is responsible for displaying the availability statistics and also generating
links to the pages containing the graphs. Listing 11-7 shows the host details template.

http://sqlite.org/lang_createtable.html#rowid

CHAPTER 11 ■ STATISTICS GATHERING AND REPORTING

323

Listing 11-7. Host Details Template

<h1>Host details: {{ host[1] }}</h1>
 <h2>Views grouped by the timescales</h2>
 <p>Here you'll find all available probes for this host on the same
timescale.</p>

 {% for scale in timescales %}
 {{ scale }} day(s)
view
 {% endfor %}

 <h2>Views grouped by the probes</h2>
 <p>Here you'll find all available time scale views of the same probe</p>

 {% for probe in host[4] %}
 {{ probe[1] }}
 {% endfor %}

 <h2>Host statistics</h2>
 <h3>Service availability details</h3>
 {% for probe in probe_sa %}
 <h4>Availability of the "{{ probe }}" check</h4>

 {% for scale in probe_sa[probe] %}
 On a {{ scale }} day(s) scale:

 Warning: {{ probe_sa[probe][scale][0]|round(3) }}%
 Error: {{ probe_sa[probe][scale][1]|round(3) }}%

 {% endfor %}

 {% endfor %}

Graph Collection Pages
The graph collection pages are linked from the detailed host information pages. As you can see from the
diagram in Figure 11-7, we’ll have two types of graph collection pages: ones that contain the graphs with
the same timescale but plotting data from different probes, and those that plot all available timescale
graphs for a single host probe.

Although these functions are quite similar, I have separated them into two function calls, mostly to
keep the modular structure of the code. Listing 11-8 shows both functions.

CHAPTER 11 ■ STATISTICS GATHERING AND REPORTING

324

Listing 11-8. Generating the Graph Collection Pages

def _generate_host_probe_details(self, host_struct, probe_struct):
 t = self.tpl_env.get_template('host_probe_details.template')
 f = open("%s/hpd_%s.html" % (self.location, probe_struct[0]), 'w')
 images = []
 for scale in TIMESCALES:
 images.append([scale,
 "plot_%s_%s.png" % (probe_struct[0], scale),
])
 f.write(t.render({'host': host_struct,
 'probe': probe_struct,
 'images': images,
 }))
 f.close()

def _generate_host_scale_details(self, host_struct, scale):
 t = self.tpl_env.get_template('host_scale_details.template')
 f = open("%s/hsd_%s_%s.html" % (self.location, host_struct[0], scale), 'w')
 images = []
 for probe in host_struct[4]:
 images.append([probe[1],
 "plot_%s_%s.png" % (probe[0], scale),
])
 f.write(t.render({'host': host_struct,
 'scale': scale,
 'images': images,
 }))
 f.close()

The _generate_host_probe_details() function is responsible for linking to all host probe images

for all available timescales. The following is the template code for this function:

<h1>Host: {{ host[1] }}</h1>
 <h2>Probe: {{ probe[1] }}</h2>
 {% for image in images %}
 <h3>Time scale: {{ image[0] }} day(s)</h3>

 {% endfor %}

The template simply iterates through the dataset generated by the function. The dataset includes

the image file names.
The _generate_host_scale_details() function links to all host probes from a specified

timescale. Similar to the first function, this function generates the image file names, and this list is used
from within the template. The following is the template code for this function:

CHAPTER 11 ■ STATISTICS GATHERING AND REPORTING

325

<h1>Host: {{ host[1] }}</h1>
 <h2>Scale: {{ scale }} day(s)</h2>
 {% for image in images %}
 <h3>{{ image[0] }}</h3>

 {% endfor %}

Plotting Performance Graphs
We’ve been referencing the images, but we haven’t created any graphs yet. In this section, we’ll look at
the function that reads the data from our database and generates individual images for every possible
host probe/timescale combination. As you’ve seen, these images can be combined by multiple criteria.
In this example, we group them by their timescale value and probe name.

In addition to the simple data plotting, our function will also calculate some statistical parameters
for the dataset: the trend function for the given data and the standard deviation value, which will give us
the suggestion for the new warning and error threshold values. This can be especially useful when you
are just starting to monitor a new entity and have no idea what these values should be.

Listing 11-9 shows the function for plotting the performance data. You should recognize the
numerical and plotting functions from the earlier discussions of the NumPy and matplotlib modules.

Listing 11-9. Plotting the Performance Data

def _plot_time_graph(self, hostprobe_id, time_window, sampling_rate, plot_title,
 plot_file_name, warn=None, err=None):
 records_to_read = int(time_window / sampling_rate)
 records = self.conn.execute("""SELECT timestamp, probe_value
 FROM probereading
 WHERE hostprobe_id=?
 LIMIT ?""",
 (hostprobe_id, records_to_read)).fetchall()
 time_array, val_array = zip(*records)

 mean = np.mean(val_array)
 std = np.std(val_array)
 warning_val = mean + 3 * std
 error_val = mean + 4 * std

 data_y = np.array(val_array)
 data_x = np.arange(len(data_y))
 data_time = [dateutil.parser.parse(s) for s in time_array]
 data_xtime = matplotlib.dates.date2num(data_time)
 a, b = np.polyfit(data_x, data_y, 1)
 matplotlib.rcParams['font.size'] = 10
 fig = plt.figure(figsize=(8,4))
 ax = fig.add_subplot(1, 1, 1)

CHAPTER 11 ■ STATISTICS GATHERING AND REPORTING

326

 ax.set_title(plot_title + "\nMean: %.2f, Std Dev: %.2f, Warn Lvl: %.2f, Err Lvl:
 %.2f" %
 (mean, std, warning_val, error_val))
 ax.plot_date(data_xtime, data_y, 'b')

ax.plot_date(data_xtime,
 data_x * a + b,
 color='black', linewidth=3, marker='None', linestyle='-', alpha=0.5)
 fig.autofmt_xdate()
 if warn:
 ax.axhline(warn, color='orange', linestyle='--', linewidth=2, alpha=0.7)
 if err:
 ax.axhline(err, color='red', linestyle='--', linewidth=2, alpha=0.7)
 ax.grid(True)
 plt.savefig("%s/%s" % (self.location, plot_file_name))

The _plot_time_graph() function starts with a SQL query that selects the timestamp and

probe_value fields that belong to an appropriate host probe. Once again, here we are using the LIMIT
statement to retrieve the latest results from the table.

Bear in mind that this is guaranteed to work only if you’re using the SQLite3 database, as the records
are automatically ordered by their ROWID value. The other databases may behave differently. Also, this
assumption relies on the fact that we never delete any records from the database; therefore the row IDs
are guaranteed to be sequential.

If you’re using a different database engine, or if you’re updating any of the records in this table and
you suspect that the row ID may change and the ordering may be altered, you can force the ordering by
the timestamp field. This ensures that all records will be sorted by their timestamp before the LIMIT
instruction chops off the last section from the results list. However, this may have a significant impact on
the performance, which can be improved by adding an index on the required field:

sqlite> .timer ON
sqlite> SELECT timestamp, probe_value FROM probereading WHERE hostprobe_id=1 LIMIT
5;
2009-12-16T21:30:20|0.0
2009-12-16T21:31:20|0.000431470294632392
2009-12-16T21:32:20|0.000311748085651205
2009-12-16T21:33:20|0.000777994331440024
2009-12-16T21:34:20|0.00475251893721452
CPU Time: user 0.000139 sys 0.000072
sqlite> SELECT timestamp, probe_value FROM probereading WHERE hostprobe_id=
1 ORDER BY timestamp LIMIT 5;
2009-12-16T21:30:20|0.0
2009-12-16T21:31:20|0.000431470294632392
2009-12-16T21:32:20|0.000311748085651205
2009-12-16T21:33:20|0.000777994331440024
2009-12-16T21:34:20|0.00475251893721452

CHAPTER 11 ■ STATISTICS GATHERING AND REPORTING

327

CPU Time: user 0.192693 sys 0.018909
sqlite> CREATE INDEX idx_ts ON probereading (timestamp);
CPU Time: user 0.849272 sys 0.105697
sqlite> SELECT timestamp, probe_value FROM probereading WHERE hostprobe_id=
1 ORDER BY timestamp LIMIT 5;
2009-12-16T21:30:20|0.0
2009-12-16T21:31:20|0.000431470294632392
2009-12-16T21:32:20|0.000311748085651205
2009-12-16T21:33:20|0.000777994331440024
2009-12-16T21:34:20|0.00475251893721452
CPU Time: user 0.000169 sys 0.000136
sqlite>

The data we are plotting is time-sensitive, so it would make more sense to have it plotted against

the corresponding timestamp values on the x axis. matplotlib has a function to plot timed data
called time_plot(). Its syntax is identical to that of the plot() function, but the data argument (either
only X or both, X and Y data) must be floating-point numbers representing the number of days since
0001-01-01, with the fraction part defining hours, minutes, and seconds. To achieve this, we need to
perform two operations: convert the text strings to the Python datetime type and then convert that into
the floating-point numbers. This is done by the following piece of code:

 import dateutil
...
 data_time = [dateutil.parser.parse(s) for s in time_array]
 data_xtime = matplotlib.dates.date2num(data_time)

If available, we also plot the warning and error threshold lines. Each plot title includes the

statistical parameters of the dataset along with the suggested values for the warning and error
thresholds. Figure 11-8 shows a sample plot.

Figure 11-8. A plot of performance data

CHAPTER 11 ■ STATISTICS GATHERING AND REPORTING

328

Summary
In this chapter, we looked at basic statistical analysis using the NumPy library. The statistical functions in
this library can provide you with better insight into the systems you are monitoring especially if you
remember these key points:

• Most real-life data, although seemingly random, follows the normal distribution pattern.

• The standard deviation tells you how far on average each value is from the mean value of
the dataset.

• You can use standard deviation to determine the optimum values for the warning and error
thresholds.

• The first-degree polynomial function parameters can be used to identify the general trend
of a dataset.

• Using the data trend function, you can predict the future behavior of the system.

C H A P T E R 1 2

■ ■ ■

329

Automatic MySQL Database

Performance Tuning

In this chapter, we are going to extend the plug-in framework that we built in Chapter 6. As you may
remember, the plug-in framework allows us to extend an application’s functionality by implementing
new methods outside the main application code. The new framework will allow for the plug-ins to
generate data and submit it back to the application, so the other plug-ins are able to reuse it. Based on
the new framework, we will build an application that inspects the MySQL database configuration and
live statistics and makes performance-tuning suggestions. We’ll look at some of the tuning parameters
and write a few plug-ins.

Requirements Specification and Design
As a system administrator, you probably have been asked to improve the performance of a MySQL
database server. This is a creative and challenging task, but at the same time, it can be quite daunting.
The database software in itself is a complex piece of software, and you also must account for external
factors such as the running environment—the number of CPU cores and the amount of memory. On top
of that, the actual table layout and the SQL statement structure play very important roles.

You may have already developed your own strategy for how to approach this problem. The reason I
mention “your own strategy” is that, unfortunately, there is no universal solution to tuning the MySQL
database. Each installation is unique and requires an individual approach. Various solutions are
available to help you identify the most common issues within the database, including commercial
options such as MySQL Enterprise Monitor (http://mysql.com/products/enterprise/
monitor.html) and open source tools such as MySQLTuner (http://blog.mysqltuner.com/). The
main purpose of such tools is to automate the tuning process by providing insight into the system
configuration and behavior.

Assuming that SQL statement tuning is a job for the software developers, you, as a system
administrator, are effectively juggling with two parameters: the database configuration and the
operating environment configuration. The feedback is provided to you in the form of internal database
counters, such as the number of slow queries or the number of connections.

http://mysql.com/products/enterprise/monitor.html
http://mysql.com/products/enterprise/monitor.html
http://blog.mysqltuner.com

CHAPTER 12 ■ AUTOMATIC MYSQL DATABASE PERFORMANCE TUNING

330

To put all this into perspective, MySQL Community Server 5.1.46 has 291 status variables and 287
configuration variables. I’m not even considering listing the operating environment variables, because
that would be nearly impossible. So, it is humanly impossible to correlate all the variables and make
meaningful observations at the larger scale.

The available tools attempt to inspect the configuration and, based on the observed status variables,
make some suggestions for how to improve the configuration. This works well for basic tuning, but as
you dig deeper, you probably will find that you need to modify the tool so that it is tuned to your needs,
rather than is based on some generic observations. This is where you need a tool that is extensible and
easy to adjust.

Basic Application Requirements
In Chapter 6, we discussed the advantages of the plug-in based architecture. In this architecture, the
main (host) application provides some generic service to the plug-ins, which either extend the
functionality of the main application or actually provide the services. From the user perspective, the
system acts as one entity.

This brings us to the basic requirements list for the application that we’re going to build in this
chapter:

• The application should be easy to extend, modify, and enhance with new functionality.

• The application should focus on collecting and processing the performance observations
from the MySQL database.

• The performance-tuning rules should be easy to transfer and exchange between different
instances of the application.

System Design
As a basis for the application, we’ll take the plug-in framework we created in Chapter 6. We could take it
as is, replace the log-line-reading part with the MySQL data collection function, and start writing the
plug-in modules that consume the data. This approach would serve us well in the short term, but may
not be the most extensible solution in the long run. The problem is that although we could immediately
identify the MySQL configuration parameters and status variables, we would struggle with the operating
system status parameters. This is because there is no definite source for this information. Each system is
different and may require different tools to report the status.

The solution to this problem is to move the task of producing the information from the host
application to the plug-in modules. In other words, some plug-ins will produce the data, which the other
plug-ins will rely on for their calculations and, ultimately, their suggestions for performance
improvements. In this scenario, the host application acts merely as a dispatcher, and the only service it
provides is the connectivity to the database server. The rest of the functionality is provided by the plug-
ins. Figure 12-1 shows a schematic diagram of the producer/consumer plug-in architecture.

CHAPTER 12 ■ AUTOMATIC MYSQL DATABASE PERFORMANCE TUNING

331

Figure 12-1. The producer/consumer plug-in framework

As you can see, the host application still issues the commands via the plug-in manager object. The
result is also passed back through the plug-in manager, but for clarity, the figure shows a direct link back
to the host application. Once the data is collected from the producer plug-in modules, it is then passed
back to the consumer modules. So the host application is responsible for providing the connectivity
details to the plug-ins and also maintaining the correct order of producer-first, consumer-last calls.

In addition to these changes to the plug-in framework, we’re going to provide three basic producer
plug-ins:

• A plug-in to provide the MySQL system variables

• A plug-in to provide the configuration details

• A plug-in to provide the details of the physical and virtual memory available on the system,
as well as the number of CPU cores

This will be the basic set of information, upon which we’ll build our advisor plug-ins. The advisor

plug-ins will perform some calculations based on the results received and provide suggestions on how to
improve the server performance.

CHAPTER 12 ■ AUTOMATIC MYSQL DATABASE PERFORMANCE TUNING

332

■Note MySQL tuning is a very broad topic. If you would like to learn more, I recommend starting with the MySQL
Performance Blog (http://mysqlperformanceblog.com/), which includes a wealth of performance-tuning
tips and articles.

Modifying the Plug-in Framework
The information sharing between different components can quickly become complicated. The following
are some potential problems you may need to resolve:

• Which plug-ins have access to which information? You may want to hide some information
from a certain set of plug-ins.

• What if the producer plug-ins are also consumers? Some plug-ins may require information
produced by other plug-ins to finish their tasks.

• How do you share large amounts of data between the plug-ins? For example, when the
amount of data produced does not fit into physical memory and needs to be stored on disk.

For the sake of simplicity, we are going to have a flat-access model, where the consumer modules

can access all the information generated by the producer plug-ins. We will not implement the
hierarchical producer layout, and we will assume that the producers are self-sufficient.

Changes to the Host Application
The responsibilities of the host application are limited to the following three tasks:

• Reading the MySQL database credentials from a configuration file

• Establishing the initial connection to the server

• Running the plug-in modules in three stages: run the producers and collect the data, run
the producers’ process methods, and then run the producers’ report module

We will use the Python’s ConfigParser library to access the configuration from the Windows INI-

style configuration file, which has the following contents (obviously, you will need to adjust the settings
to match your database details):

[main]
user=root
passwd=password
host=localhost

Listing 12-1 shows the full listing of the host application. As you can see, the code is straightforward.

It is logically divided into the three main phases as well as the three plug-in processing stages. Notice
that we use keywords to distinguish between the producer and consumer modules.

http://mysqlperformanceblog.com

CHAPTER 12 ■ AUTOMATIC MYSQL DATABASE PERFORMANCE TUNING

333

Listing 12-1. The Host Application

#!/usr/bin/env python

import re
import os, sys
from ConfigParser import SafeConfigParser
import MySQLdb
from plugin_manager import PluginManager

def main():
 cfg = SafeConfigParser()
 cfg.read('mysql_db.cfg')

 plugin_manager = PluginManager()
 connection = MySQLdb.connect(user=cfg.get('main', 'user'),
 passwd=cfg.get('main', 'passwd'),
 host=cfg.get('main', 'host'))

 env_vars = plugin_manager.call_method('generate', keywords=['provider'],
 args={'connection': connection})
 plugin_manager.call_method('process', keywords=['consumer'],
 args={'connection': connection, 'env_vars': env_vars})
 plugin_manager.call_method('report')

if __name__ == '__main__':
 main()

If you compare this listing to the examples in the Chapter 6, you’ll notice that this time, we actually

expect something back from the call_method function. This function returns the results generated by
the producer plug-in modules and stores them in a single variable. This variable is then passed to the
consumer plug-ins as a keyword argument called env_vars. The consumer plug-ins expect this
argument to be present. We’ll look into the structure of this variable in the next section.

Modifying the Plug-in Manager
The host application just handles a single call to the call_method function, because it doesn’t know—
and doesn’t need to know—the exact number and names of the plug-ins. It is the plug-in manager’s
responsibility to route the request to the appropriate plug-in modules. However, this approach brings
up a problem. If a single call to a function actually yields multiple answers from multiple functions, how
do we store the result?

CHAPTER 12 ■ AUTOMATIC MYSQL DATABASE PERFORMANCE TUNING

334

To complicate matters even more, we don’t know exactly what the plug-in is going to return. It may
be a dictionary, a list, or even a custom object. And we shouldn’t need to know this. It’s up to the
consumer to decrypt this information. The people who write the producer plug-ins are expected to
provide extensive documentation about the data structures produced by their modules.

In our case, the plug-in manager component will handle the results in a very simple manner. It’s
going to store them as separate entries in a dictionary. The dictionary keys will be the plug-in class
names, and the key values will be whatever objects are returned by the plug-in module calls. This
dictionary is then passed as an argument to the consumer plug-in call. This will result in a flat
information store, where all information is accessible by all plug-ins. This may bring some security
concerns, but for a simple application like the one we’re building here, the simplicity plays an important
role.

The only modification to the plug-in manager code is the call_method() function, as shown in
Listing 12-2.

Listing 12-2. The Plug-in Manager Method Dispatcher Function

def call_method(self, method, args={}, keywords=[]):
 result = {}
 for plugin in self.plugins:
 if not keywords or (set(keywords) & set(self.plugins[plugin])):
 try:
 name_space = plugin.__class__.__name__
 result[name_space] = getattr(plugin, method)(**args)
 except AttributeError:
 pass
 return result

We now have a plug-in framework that is capable of passing the information between the modules.
If you really need to have the multistage producer architecture, just for few levels, you could use

keywords to implement it. For example, you may have the keywords producer1, producer2, and
producer3. You then can call the generate() method three times, passing a different keyword each
time and supplying the intermediate results to the producer2 and producer3 instances.

Writing the Producer Plug-ins
We need to produce some data for the advisor plug-ins. We’ll start by querying the MySQL internal
status and configuration tables. First, let’s look at how to access the MySQL database from Python
applications.

Accessing the MySQL Database from Python Applications
The support for MySQL databases is provided by the MySQLdb Python module, which is available as a
prebuilt package on most Linux distributions. For example, on a Fedora system, you can install this
module with the following command:

$ sudo yum install MySQL-python

CHAPTER 12 ■ AUTOMATIC MYSQL DATABASE PERFORMANCE TUNING

335

Alternatively, you can download the latest source package from the project’s home page at
http://sourceforge.net/projects/mysql-python/ and build the library from the source code.

Once you have installed the library, check that it is loading correctly:

$ python
Python 2.6.2 (r262:71600, Jan 25 2010, 18:46:45)
[GCC 4.4.2 20091222 (Red Hat 4.4.2-20)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import MySQLdb
>>> MySQLdb.__version__
'1.2.3c1'
>>>

The MySQLdb library is compatible with the Python DB-API Specification version 2. This

specification defines the interface, objects, variables, and error-handling rules that the compliant library
must implement. This is an attempt to unify the interface of all database access modules. The advantage
of this unification is that, as a developer, you don’t need to worry much about the specifics of the
database module calls, because they are very similar. The code that you wrote to connect to SQLite 3
should work with the MySQL database without major modifications. The main difference between the
libraries is perhaps the connect() method, which is used to connect to the database, and therefore very
specific to the database software that you’re using.

Regardless of which database module you are using, the first method you’ll invoke is usually
connect(). This method returns an instance of the connect object, which you will use to access the
database. The parameters are database-specific. Since we’re discussing the MySQL database in this
chapter, here’s how you establish a connection to the database server:

>>> connection = MySQLdb.connect(host='localhost',
... user='root',
... passwd='password',
... db='test')
>>>

These four parameters—the hostname, username, password, and database name—are the ones

you’ll find yourself using most of the time. However, the MySQL server also supports multiple
connection options, which you may need to modify. Table 12-1 lists the most important ones. For a full
list of parameters, refer to the MySQLdb documentation (http://mysql-
python.sourceforge.net/MySQLdb.html).

Table 12-1. Commonly Used MySQL Connect Options

Parameter Description

host Name of the host to connect to—either a fully qualified domain name or an IP
address of the host.

user Username you use to authenticate to the database server.

passwd Password you use for the authentication.

http://sourceforge.net/projects/mysql-python
http://mysql-python.sourceforge.net/MySQLdb.html
http://mysql-python.sourceforge.net/MySQLdb.html
http://mysql-python.sourceforge.net/MySQLdb.html

CHAPTER 12 ■ AUTOMATIC MYSQL DATABASE PERFORMANCE TUNING

336

Parameter Description

db Name of the database you’re connecting to. If omitted, no default database will be
selected, and you will need to use the USE DATABASE SQL command to connect to a
database.

port Port number on which the MySQL server is running. The default value is 3306.

unix_socket Location of the UNIX socket of the MySQL server instance. The default location
varies between the distributions, but typically is /var/lib/mysql/mysql.sock.

compress Flag indicating whether the protocol compression should be enabled or disabled. It
is disabled by default.

connect_timeout Number of seconds to wait for the connect operation to complete. If it is not finished
within the specified timeframe, the operation raises an error.

init_command Initialization command that the server must execute immediately after the
connection has been established.

use_unicode If this flag is set to true, the CHAR, VARCHAR, and TEXT fields are returned as Unicode
strings. Otherwise, the return results are just the normal strings. Regardless of this
setting, you can always write as Unicode to the database.

charset Connection character set will be set to the character set specified as the value for this
argument.

The returned connect object implements four basic methods for managing the connection status.

These methods are listed in Table 12-2.

Table 12-2. The Connect Object Methods

Method name Description

.close() Closes the established connection, which will not be usable from the moment this
method is called. All cursor objects derived from this connection will be unusable,
too. Bear in mind that all transactions or changes will be rolled back if you close the
connection without committing the changes first.

.commit() Forces the database engine to commit all outstanding transactions.

.rollback() Rolls back the last noncommitted transaction, if you’re using a MySQL database
engine that does support transactions (such as InnoDB).

.cursor() Returns a cursor object, which you will use to execute the SQL commands and read
the results. The MySQL database does not support the cursors, but the MySQLdb library
provides this wrapper object, which emulates the cursor functionality.

CHAPTER 12 ■ AUTOMATIC MYSQL DATABASE PERFORMANCE TUNING

337

The real work in the database is done using the cursor objects. A cursor object acts as a context for

the query execution and, more important, the data-fetching operations. You can have multiple cursors
created by a single connection object. The changes made by any cursor will be seen immediately by the
other cursors as long as they belong to the same connection. Table 12-3 lists the most commonly used
cursor methods. The connection context used in the examples in the table is created as follows:

>>> connection = MySQLdb.connect(host='localhost',
... user='root',
... passwd='password',
... db='zm')
>>>
>>> cursor = connection.cursor()

Table 12-3. Commonly Used Database Cursor Methods

Method Description Example

.execute() Prepares and executes the SQL
query. It accepts two parameters:
the SQL statement that needs to be
executed (required) and an optional
list of parameters. The variables in
the SQL string are specified using
the %s string only. The second
optional argument must be a tuple,
even if it is just a single value.

The following two queries are functionally
identical:

>>> cursor.execute("SELECT type
 FROM ZonePresets WHERE id=1")
1L
>>> cursor.execute("SELECT type
 FROM ZonePresets WHERE id=%s", (1,))
1L
>>>

.executemany() Similar to the .execute() method;
accepts a list of options and iterates
through them. The results are
combined and accessible using the
cursor data-fetching methods. The
list elements must be tuples, even if
they contain just a single value.

The following example runs two SELECT queries
in one command:

>>> cursor.executemany("""SELECT type

 FROM ZonePresets WHERE

 id=%s AND type=%s""",
[(1, 'Active'), (2, 'Active')])
2L
>>>

.rowcount A read-only attribute (not a method)
that indicates the number of rows
the last .execute() statement
generated.

CHAPTER 12 ■ AUTOMATIC MYSQL DATABASE PERFORMANCE TUNING

338

Method Description Example

.fetchone() Returns the next row from the result
set. If no more data is available. it
will return the None object. The
result is always a tuple. Elements are
in the same order as specified by the
query set.

>>> cursor.execute("SELECT id,
 type FROM ZonePresets")
6L
>>> cursor.fetchone()
(1L, 'Active')
[...]
>>> cursor.fetchone()
(6L, 'Active')
>>> cursor.fetchone()
>>>

.fetchall() Returns all rows returned by the
query in the form of a tuple of
tuples.

>>> cursor.execute("SELECT id,
 type FROM ZonePresets")
6L
>>> cursor.fetchall()
((1L, 'Active'), (2L, 'Active'),
 (3L, 'Active'), (4L, 'Active'),
 (5L, 'Active'), (6L, 'Active'))
>>>

.fetchmany() Returns the number of rows
specified by its argument. If no
argument is supplied, the number of
rows read depends on the
.arraysize setting.

>>> cursor.execute("SELECT id, type
 FROM ZonePresets")
6L
>>> cursor.fetchmany(2)
((1L, 'Active'), (2L, 'Active'))
>>>

.arraysize A read/write attribute that controls
the number of rows the
.fetchmany() method must return.

>>> cursor.execute("SELECT id, type
 FROM ZonePresets")
6L
>>> cursor.arraysize
1
>>> cursor.arraysize=3
>>> cursor.fetchmany()
((1L, 'Active'), (2L, 'Active'),
 (3L, 'Active'))
>>>

CHAPTER 12 ■ AUTOMATIC MYSQL DATABASE PERFORMANCE TUNING

339

Querying the Configuration Variables
You don’t really need to connect to any of the databases if you want to retrieve the server configuration
or the system status variables. It’s enough to establish a connection to the database server.

To get the MySQL variables, we will need to use the MySQL SHOW statement. Its syntax is similar to
the SELECT statement, where you are allowed to use the LIKE and WHERE modifiers to limit the query set.
(Remember that there are 287 configuration settings and 291 status variables!)

We’ll start with the configuration variables. These variables indicate how the server is configured.
There are three ways to alter these variables:

• Set them at the server start time using the command-line parameters.

• Set them at the server start time using the options file (usually my.cnf).

• Set them while the server is running using the MySQL SET statement.

■Note You can find detailed descriptions of all MySQL variables and how they affect the functionality of the
server in the official MySQL documentation at http://dev.mysql.com/doc/refman/5.1/en/server-
system-variables.html.

The basic syntax of the command is SHOW VARIABLES. The default behavior of this command is to
show the settings that are applied to the current session and is equivalent to the extended syntax of the
same command: SHOW LOCAL VARIABLES. If you want to find out which settings will be applied to the
new connections, you need to use the SHOW GLOBAL VARIABLES command. The result set can be further
modified with the LIKE and WHERE clauses, as shown in the following example:

>>> connection = MySQLdb.connect(host='localhost',
... user='root',
... passwd='password')
>>> cursor = connection.cursor()
>>> cursor.execute("SHOW GLOBAL VARIABLES LIKE '%innodb%'")
37L
>>> for r in cursor.fetchmany(10): print r
...
('have_innodb', 'YES')
('ignore_builtin_innodb', 'OFF')
('innodb_adaptive_hash_index', 'ON')
('innodb_additional_mem_pool_size', '1048576')
('innodb_autoextend_increment', '8')
('innodb_autoinc_lock_mode', '1')
('innodb_buffer_pool_size', '8388608')
('innodb_checksums', 'ON')
('innodb_commit_concurrency', '0')
('innodb_concurrency_tickets', '500')

http://dev.mysql.com/doc/refman/5.1/en/server-system-variables.html
http://dev.mysql.com/doc/refman/5.1/en/server-system-variables.html
http://dev.mysql.com/doc/refman/5.1/en/server-system-variables.html

CHAPTER 12 ■ AUTOMATIC MYSQL DATABASE PERFORMANCE TUNING

340

>>>
>>> cursor.execute("SHOW GLOBAL VARIABLES WHERE variable_name LIKE '%innodb%'
 AND value > 0")
18L
>>> for r in cursor.fetchmany(10): print r
...
('innodb_additional_mem_pool_size', '1048576')
('innodb_autoextend_increment', '8')
('innodb_autoinc_lock_mode', '1')
('innodb_buffer_pool_size', '8388608')
('innodb_concurrency_tickets', '500')
('innodb_fast_shutdown', '1')
('innodb_file_io_threads', '4')
('innodb_flush_log_at_trx_commit', '1')
('innodb_lock_wait_timeout', '50')
('innodb_log_buffer_size', '1048576')
>>>

■Tip The columns of the system configuration table are named variable_name and value. You can use these
names in the SHOW command along with the LIKE and WHERE statements.

Let’s write a plug-in class that retrieves all the variables from the database and returns the data to
the plug-in manager. As you know, by default, the result is a tuple of tuples. To make it more useful, we’ll
convert it to the dictionary object, where the variable names are the dictionary keys and the variable
values are dictionary values, as shown in Listing 12-3.

Listing 12-3. Plug-in to Retrieve the MySQL Server Variables

class ServerSystemVariables(Plugin):

 def __init__(self, **kwargs):
 self.keywords = ['provider']
 print self.__class__.__name__, 'initialising...'

 def generate(self, **kwargs):
 cursor = kwargs['connection'].cursor()
 cursor.execute('SHOW GLOBAL VARIABLES')
 result = {}
 for k, v in cursor.fetchall():
 result[k] = v
 cursor.close()
 return result

CHAPTER 12 ■ AUTOMATIC MYSQL DATABASE PERFORMANCE TUNING

341

Querying the Server Status Variables
The server status variables provide an insight into the server operation by presenting the internal
counters. All variables are read-only and cannot be modified.

■Note You can find detailed information about each of the 291 MySQL server status variables in the MySQL
documentation, which is available at http://dev.mysql.com/doc/refman/5.1/en/server-status-
variables.html.

The SHOW command syntax is SHOW STATUS. Similar to the SHOW VARIABLES command without the
modifier, this command returns the status applicable to the current session and is equivalent to the SHOW
LOCAL STATUS command. If you want to retrieve the server-wide status, use the SHOW GLOBAL STATUS
command.

This behavior applies only to version 5.0 and later of the MySQL server. The versions prior to this
release had an opposite behavior, where SHOW STATUS assumed the global status, and you needed to
explicitly run the SHOW LOCAL STATUS if you wanted to retrieve the session-specific counters. This might
present a problem if you’re developing a plug-in that may be executed on various versions of the MySQL
server. There is a simple solution to this problem: specify the version selector in your SHOW statement.
The following query correctly uses an appropriate command modifier and can be used across all
versions of MySQL server:

SHOW /*!50000 GLOBAL */ STATUS

You can use the LIKE and WHERE dataset modifiers with this command, too, as in the following

example:

>>> cursor.execute("SHOW GLOBAL STATUS WHERE variable_name LIKE '%innodb%' AND value
> 0")
16L
>>> for r in cursor.fetchmany(10): print r
...
('Innodb_buffer_pool_pages_data', '19')
('Innodb_buffer_pool_pages_free', '493')
('Innodb_buffer_pool_pages_total', '512')
('Innodb_buffer_pool_read_ahead_rnd', '1')
('Innodb_buffer_pool_read_requests', '77')
('Innodb_buffer_pool_reads', '12')
('Innodb_data_fsyncs', '3')
('Innodb_data_read', '2494464')
('Innodb_data_reads', '25')
('Innodb_data_writes', '3')
>>>

Listing 12-4 shows the plug-in to retrieve the system status variables. This plug-in class is similar to

the one that queries the system configuration settings.

http://dev.mysql.com/doc/refman/5.1/en/server-status-variables.html
http://dev.mysql.com/doc/refman/5.1/en/server-status-variables.html
http://dev.mysql.com/doc/refman/5.1/en/server-status-variables.html

CHAPTER 12 ■ AUTOMATIC MYSQL DATABASE PERFORMANCE TUNING

342

Listing 12-4. The Plug-in to Retrieve the System Status Variables

class ServerStatusVariables(Plugin):

 def __init__(self, **kwargs):
 self.keywords = ['provider']
 print self.__class__.__name__, 'initialising...'

 def generate(self, **kwargs):
 cursor = kwargs['connection'].cursor()
 cursor.execute('SHOW /*!50000 GLOBAL */ STATUS')
 result = {}
 for k, v in cursor.fetchall():
 result[k] = v
 cursor.close()
 return result

Collecting the Host Configuration Data
It’s all very well and good that we were able to retrieve the MySQL configuration and status data, but we
still need to put that data into the context of the operating environment to actually make any use of it.

Let’s take the key_buffer_size variable from the system configuration list as an example. This
variable sets the amount of memory dedicated to the MyISAM table indexes. This setting can have a
significant impact on the performance of the MySQL server. If you set it too small, the indexes will not be
cached in memory, and for every lookup, the server will be performing the disk-read operation, which is
significantly slower than the read-from-memory operation.

If you allocate too much memory to this buffer, you’ll limit the memory available for other
operations, such as the file system cache. If the file system cache is too small, all read and write
operations will not be cached, and thus the disk I/O will be negatively impacted.

The standard recommendation for this buffer variable is to use 30% to 40% of the total memory
available on the server. So, to make this deduction, you actually need to know the amount of physical
memory on the system!

There are many different aspects you must consider, but the most significant ones are the amount
of physical memory, the amount of virtual memory (or the swap size on Linux systems), and the number
of CPU cores.

We’re going to use the psutil library, which provides the API to query the system memory readings.
This library is designed to get the information about the running processes and perform some basic
process manipulations. It is not included in the basic Python module set, but is widely available on most
Linux distributions. For example, on a Fedora system, you can install this library with the following
command:

$ sudo yum install python-psutil

The source code along with the complete documentation is available on the project web site at

http://code.google.com/p/psutil/.
Unfortunately, this library does not provide the information about the number of available CPU

cores. We’ll need to query the Linux /proc/ file system to get the report about the available CPUs. This is
quite easy to do. We just need to count the lines in the /proc/cpuinfo file that start with the keyword
processor.

http://code.google.com/p/psutil

CHAPTER 12 ■ AUTOMATIC MYSQL DATABASE PERFORMANCE TUNING

343

Listing 12-5 shows the plug-in code that collects the system memory readings as well as the CPU
information.

Listing 12-5. The Plug-in to Retrieve the System Information

import psutil

[...]

class HostProperties(Plugin):

 def __init__(self, **kwargs):
 self.keywords = ['provider']
 print self.__class__.__name__, 'initialising...'

 def _get_total_cores(self):
 f = open('/proc/cpuinfo', 'r')
 c_cpus = 0
 for line in f.readlines():
 if line.startswith('processor'):
 c_cpus += 1
 f.close()
 return c_cpus

 def generate(self, **kwargs):
 result = { 'mem_phys_total': psutil.TOTAL_PHYMEM,
 'mem_phys_avail': psutil.avail_phymem(),
 'mem_phys_used' : psutil.used_phymem(),
 'mem_virt_total': psutil.total_virtmem(),
 'mem_virt_avail': psutil.avail_virtmem(),
 'mem_virt_used' : psutil.used_virtmem(),
 'cpu_cores' : self._get_total_cores(),
 }
 return result

Writing the Consumer Plug-ins
Now we are ready to start writing the advisor plug-ins. These plug-ins will make suggestions based on
the information they receive from the information producer modules. So far, we have collected the base
information about the database settings and status, as well as some information about the physical
hardware and the operating system. Although the information set is not exhaustive, it includes the
crucial details needed to make some educated conclusions. Here, we’ll look at three examples that
should be sufficient to get you up to speed so you can start developing your own advisor plug-ins.

CHAPTER 12 ■ AUTOMATIC MYSQL DATABASE PERFORMANCE TUNING

344

Checking the MySQL Version
The very first check you may need to perform is the MySQL version number. It’s quite important to keep
your server installation up to date. Every new release fixes server software bugs and potentially
introduces performance improvements.

The plug-in that checks the current MySQL version bases its decision on the latest generally
available (GA) release version number, which is available on the MySQL download page at
http://mysql.com/downloads/mysql/. To extract this information from the web page, we’ll use the
Beautiful Soup HTML parsing library. The page structure is relatively simple, and the data we require is
included in the last occurrence of the <h1> tag:

[...]
<div id="page" class="sidebar" >
 <h1 class="page_header">Download MySQL Community Server</h1>
[...]
<div dojoType="dijit.layout.ContentPane" title="Generally Available (GA) Releases"
 id="current_pane" selected="true">

<h1>MySQL Community Server 5.1.47</h1>

<div id="current_os_selection">
[...]

The plug-in code will extract this information and compare it against the information reported by

the ServerSystemVariables module. Four states can be reported:

• If the major version numbers don’t match, it might be a serious issue, and therefore is
marked as critical.

• If the current major version matches the latest, but the current minor version number is
lower than the latest, we’ll mark the issue as a warning.

• If the major and minor versions are up to date, it’s just a note that the patch might be
beneficial.

• Otherwise, we’ll conclude that the current installation is up to date.

■Note Another possible check is for versions newer than the current GA release, which may potentially cause
problems, because the development versions cannot be thoroughly tested. For the sake of code simplicity, we’ll
exclude this case in our example. Such an additional check should be relatively easy to include in the module.

The full listing of the plug-in that checks the current MySQL version is shown in Listing 12-6.

http://mysql.com/downloads/mysql

CHAPTER 12 ■ AUTOMATIC MYSQL DATABASE PERFORMANCE TUNING

345

Listing 12-6. The Module to Check the Current Version Against the Latest GA Release

class MySQLVersionAdvisor(Plugin):

 def __init__(self, **kwargs):
 self.keywords = ['consumer']
 self.advices = []
 self.installed_release = None
 self.latest_release = None

 def _check_latest_ga_release(self):
 html = urllib2.urlopen('http://www.mysql.com/downloads/mysql/')
 soup = BeautifulSoup(html)
 tags = soup.findAll('h1')
 version_str = tags[1].string.split()[-1]
 (major, minor, release) = [int(i) for i in version_str.split('.')]
 return (major, minor, release)

 def process(self, **kwargs):
 version = kwargs['env_vars']['ServerSystemVariables']['version'].split('-
')[0]
 (major, minor, release) = [int(i) for i in version.split('.')]
 latest_major, latest_minor, latest_rel = self._check_latest_ga_release()
 self.installed_release = (major, minor, release)
 self.latest_release = (latest_major, latest_minor, latest_rel)
 if major < latest_major:
 self.advices.append(('CRITICAL',
 'There is a newer major release available, you should upgrade'))
 elif major == latest_major and minor < latest_minor:
 self.advices.append(('WARNING',
 'There is a newer minor release available, consider an upgrade'))
 elif major == latest_major and minor == latest_minor and release <
latest_rel:
 self.advices.append(('NOTE',
 'There is a newer update release available, consider a patch'))
 else:
 self.advices.append(('OK', 'Your installation is up to date'))

 def report(self, **kwargs):
 print self.__class__.__name__, 'reporting...'
 print "The running server version is: %d.%d.%d" % self.installed_release
 print "The latest available GA release is: %d.%d.%d" % self.latest_release
 for rec in self.advices:
 print "%10s: %s" % (rec[0], rec[1])

http://www.mysql.com/downloads/mysql

CHAPTER 12 ■ AUTOMATIC MYSQL DATABASE PERFORMANCE TUNING

346

The following is the output of the report function performed on a system that is running a slightly
older version of the server than is currently available:

MySQLVersionAdvisor reporting...
The running server version is: 5.1.46
The latest available GA release is: 5.1.47
 NOTE: There is a newer update release available, consider a patch

Checking the Key Buffer Size Setting
We’ve already discussed the meaning of the key_buffer_size configuration parameter and the impact
that this setting can have on the MySQL database server performance. The plug-in module, shown in
Listing 12-7, assumes that the optimal setting is 40% of the total available amount of physical memory.

Listing 12-7. Checking the Optimal Setting of the Key Buffer Size

class KeyBufferSizeAdvisor(Plugin):

 def __init__(self, **kwargs):
 self.keywords = ['consumer']
 self.physical_mem = 0
 self.key_buffer = 0
 self.ratio = 0.0
 self.recommended_buffer = 0
 self.recommended_ratio = 0.4

 def process(self, **kwargs):
 self.key_buffer = \

int(kwargs['env_vars']['ServerSystemVariables']['key_buffer_size'])
 self.physical_mem =
int(kwargs['env_vars']['HostProperties']['mem_phys_total'])
 self.ratio = float(self.key_buffer) / self.physical_mem
 self.recommended_buffer = int(self.physical_mem * self.recommended_ratio)

 def report(self, **kwargs):
 print self.__class__.__name__, 'reporting...'
 print "The key buffer size currently is %d" % self.key_buffer
 if self.ratio < self.recommended_ratio:
 print "This setting seems to be too small for the amount of memory \
 installed: %d" % self.physical_mem
 else:
 print "You may have allocated too much memory for the key buffer"
 print "You currently have %d, you must free up some memory"
 print "Consider setting key_buffer_size to %d, if the difference is \
 too high" % self.recommended_buffer

CHAPTER 12 ■ AUTOMATIC MYSQL DATABASE PERFORMANCE TUNING

347

The following is sample output of the report:

KeyBufferSizeAdvisor reporting...
The key buffer size currently is 8384512
This setting seems to be too small for the amount of memory installed: 1051463680
Consider setting key_buffer_size to 420585472, if the difference is too high

Checking the Slow Queries Counter
Some SQL queries may take a long time to execute, for various reasons. If you have a large dataset, it may
be perfectly normal that most of the queries take a considerably long time to finish. In that case, you may
need to increase the long_query_time setting. Another possibility is that your tables are not correctly
indexed. In that case, you should revisit the table structure and settings.

Our last plug-in module reads two status variables: the total number of requests your database
server has received and the total number of queries that took a longer time to execute than specified by
long_query_time. If the ratio is larger than 0.0001% (more than one query in a million is a slow query),
the report will indicate it as an issue. Obviously, you may need to adjust this value to fit your specific
database environment.

Slow query tracking is not enabled by default on the MySQL server, so you need to set the
log_slow_queries variable in the MySQL properties file /etc/my.cnf to ON before executing the plug-
in code. The full module code is shown in Listing 12-8.

Listing 12-8. The Plug-in to Check the Slow Query Ratio

class SlowQueriesAdvisor(Plugin):

 def __init__(self, **kwargs):
 self.keywords = ['consumer']
 self.log_slow = False
 self.long_query_time = 0
 self.total_slow_queries = 0
 self.total_requests = 0
 self.long_qry_ratio = 0.0 # in %
 self.threshold = 0.0001 # in %
 self.advise = ''

 def process(self, **kwargs):
 if kwargs['env_vars']['ServerSystemVariables']['log_slow_queries'] == 'ON':
 self.log_slow = True
 self.long_query_time = \

CHAPTER 12 ■ AUTOMATIC MYSQL DATABASE PERFORMANCE TUNING

348

float(kwargs['env_vars']['ServerSystemVariables']['long_query_time'])
 self.total_slow_queries = \
 int(kwargs['env_vars']['ServerStatusVariables']['Slow_queries'])
 self.total_requests = \
 int(kwargs['env_vars']['ServerStatusVariables']['Questions'])
 self.long_qry_ratio = (100. * self.total_slow_queries) / self.total_requests

 def report(self, **kwargs):
 print self.__class__.__name__, 'reporting...'
 if self.log_slow:
 print "There are %d slow requests out of total %d, which is %f%%" % \
 (self.total_slow_queries,
 self.total_requests,
 self.long_qry_ratio)
 print "Currently all queries taking longer than %f are considered \
 slow" % self.long_query_time
 if self.long_qry_ratio < self.threshold:
 print 'The current slow queries ratio seems to be reasonable'
 else:
 print 'You seem to have lots of slow queries, investigate them and \
 possibly increase long_query_time'
 else:
 print 'The slow queries are not logged, set log_slow_queries to ON for
tracking'

The following is sample output of this module:

SlowQueriesAdvisor reporting...
There are 0 slow requests out of total 15, which is 0.000000%
Currently all queries taking longer than 10.000000 are considered slow
The current slow queries ratio seems to be reasonable

Summary
In this chapter, we’ve discussed how to inspect the MySQL database settings and the current running
status. We also modified the plug-in framework we created in Chapter 6 so that it allows exchanging
information between various plug-in modules.

• The MySQL server configuration items can be queried with the SHOW GLOBAL VARIABLES
query.

• The database status variables can be checked with the SHOW GLOBAL STATUS command.

• You can use the psutil module to get information about the available system memory.

C H A P T E R 1 3

■ ■ ■

349

Using Amazon EC2/S3

as a Data Warehouse Solution

Virtual computing, or cloud computing, is becoming increasingly popular. There are various reasons for
that, but mainly it is the cost saving. Many large vendors provide cloud computing services, such as
Amazon, IBM, Google, Microsoft and VMWare. Most of these services provide an API interface that
allows controlling the virtual machine instances and the virtual storage devices. In this chapter, we will
investigate how to control Amazon Elastic Compute Cloud (EC2) and Amazon Simple Storage System
(S3) from your Python applications.

Specifying the Problem and the Solution
First of all, we need to understand in what circumstances this solution is applicable. Although
computing on demand is very convenient method and can lead to the great savings in cost, it may not be
applicable in all situations. In this section, we’ll briefly discuss the situation in which computing on
demand can be successfully used.

The Problem
To help you better understand the problem, let’s imagine a typical small web startup company. The
company provides some services on the Internet. The user base is relatively small but steadily growing
and is evenly spread geographically, which means that the system is busy all 24 hours a day.

The system is of a typical two-tier design and consists of two application nodes and two database
nodes. The application servers are running an in-house–built Java application deployed on an Apache
Tomcat application server and uses the MySQL database to store the data. The web application and the
database servers are reasonably busy and therefore not deemed suitable to run on a virtualized platform.
All four servers are rented from a server hosting company and hosted in the remote data center.

Now, this setup satisfies most of the present needs, and considering the slow user base growth,
should remain unchanged for a considerable amount of time. The expansion strategy for the company is
to add more of the application and the database nodes as needed. The application design allows for
nearly linear horizontal scalability.

As the company grows, the owners decided to invest more into market research. To better
understand the user behavior and do more targeted sales, the company needs to analyze the data stored
in the database. However, as we already know, the database servers are already quite busy, and running
additional queries will definitely slow the whole application down. Adding the new database servers just
for the data analysis task is not cost effective, because it requires the considerable initial investment and

CHAPTER 13 ■ USING AMAZON EC2/S3 AS A DATA WAREHOUSE SOLUTION

350

adds to the constant monthly maintenance costs. Furthermore, the analysis will be performed very
infrequently, and the new systems would spend most of the time idle.

The second problem our company is facing is the lack of back up strategy. At the moment, all data is
stored on the database servers, and although the servers are redundant, they are still located in the same
premises. This data definitely should be backed up at a remote location.

Our Solution
One of the solutions to these problems is to use a computing on demand solution such as Amazon EC2.
Since the company needs the processing power only occasionally, it can create the virtual servers as and
when necessary to perform the calculations. When the calculations are finished, the company can safely
destroy the virtual server. In this case, it only pays for the time when the server is active. At the time of
this writing, the costs of the virtual instances vary from $0.085 to $2.40 per hour depending on the used
memory and the number of allocated virtual CPUs.

If the data analysis is performed once every week and takes eight hours, the total monthly cost will
not exceed $18 (assuming an extra-large high-memory instance currently priced at $0.50 per hour). This
is a lot less than what a typical server would cost the company should it decide to rent one.

The second part of the initial problem is the lack of remote back up. Amazon provides a highly
available and scalable storage solution—Simple Storage System. Similarly to the EC2, you only pay for
what you use, and there’s no limit of how much you can store on the S3. At the time of this writing, the
basic S3 pricing is $0.15 per gigabyte per month for the storage and $0.10 per gigabyte for the data
transfer.

This is where you have to be careful, because the total price can add up to a considerable amount. A
one terabyte worth of information would set you back by $150 every month. This may sound like a lot of
money considering the current storage prices, but bear in mind that you not only get the storage device
but also the data protection. Currently, the standard Amazon S3 provides “99.999999999% durability and
99.99% availability of objects over a given year” (http://aws.amazon.com/s3/).

Design Specifications
To accommodate all the requirements and constrains that we set out earlier, we are going to build an
application that will create a new instance of the virtual machine in the EC2. The virtual machine will
have an instance of the MySQL database server running and available to accept external connections.
The database files are going to be stored on a separate highly available volume – an Elastic Block Store
volume.

The application will operate in three stages: the initialization, processing and de-initialization.
During the initialization stage, the application creates a virtual machine, attaches the volume device to it
and starts up the MySQL server. The processing phase depends on your processing requirements,
typically contains the data transfer and data processing tasks. We are not going to discuss this phase in
great detail, because it really depends on your own requirements. And finally, in the de-initialization
phase, we’ll shut down the remote MySQL instance, detach the volume, create a snapshot, and destroy
the virtual machine.

The reason for creating a snapshot is to create a reference point to which you can revert, should you
need to check the state of the data at that particular point in time. You can see this as a version control
system. Obviously, each snapshot increases the data usage and therefore your costs, so you’ll have to
manually control the number of snapshot images that you want to maintain.

http://aws.amazon.com/s3

CHAPTER 13 ■ USING AMAZON EC2/S3 AS A DATA WAREHOUSE SOLUTION

351

The Amazon EC2 and S3 Crash Course
At the time of this writing, there aren’t many books about Amazon EC2 and S3. The reason is that both
technologies (especially EC2) are rapidly evolving, which makes them fast-moving targets that are hard
to aim at. There are some good books, but unfortunately, they are already slightly out-dated.

One of the good manuals about the Amazon web services is Programming Amazon Web Services: S3,
EC2, SQS, FPS, and SimpleDB by James Murty (O’Reilly Media, 2008). This book has a good overview of
the technologies along with the detailed API specification. Another text that focuses more on operational
aspects is Cloud Application Architectures: Building Applications and Infrastructure in the Cloud by
George Reese (O’Reilly Media, 2009).

You can also find a lot of information on the documentations pages for each web service:

• Amazon EC2: http://aws.amazon.com/documentation/ec2/

• Amazon S3: http://aws.amazon.com/documentation/s3/

It would be hard to try to fit all information about these web services in one chapter, so I’m going to

describe the basic concepts. Having said that, this chapter will give you enough information to start
using the Amazon EC2 and S3 web services, and you can explore more as you get comfortable with the
basic principles.

It is important to understand that both systems, the EC2 and S3, are primarily web services and are
designed to be controlled using the standard web service protocols, such as the SOAP and REST. Many
tools provide a user-friendly interface to these services, but they all use the abovementioned protocols to
interact with the AWS (Amazon Web Services).

If you want to use any of those services, you must sign up to them. You can sign up at
http://aws.amazon.com/. You don’t have to create an account for each service; in fact, you can use
your existing Amazon store account, but you have to sign up to each service individually.

Authentication and Security
When you use the EC2 and S3 services, you have to authenticate yourself to the AWS system. There are
different methods of doing so, and different services require you to provide slightly different
information. Sometimes, this may cause confusion as to which method has to be used where, and more
importantly where to obtain this information. So before exploring each individual service, I’ll provide
basic information about the security and authentication mechanisms used in AWS.

Account Identifier
Each account has a unique AWS account ID number, which consists of 12 digits and looks like: 1234-
5678-9012. Each account also has an assigned canonical user ID, which is a string containing 64
alphanumeric characters.

The AWS account number is used to share the objects between different accounts. For example if
you want to grant access to your virtual machine image to someone else, you’ll have to know that
person’s AWS account ID. This ID is used across all AWS services except the S3.

The canonical user ID is used only in the S3 service. Similar to the AWS account ID, its primary
purpose is access control.

You can access this information by going to http://aws.amazon.com/account/, clicking “Security
credentials”, and scrolling right to the bottom of the web page. The section containing the required
information is called Account Identifiers.

http://aws.amazon.com/documentation/ec2
http://aws.amazon.com/documentation/s3
http://aws.amazon.com
http://aws.amazon.com/account

CHAPTER 13 ■ USING AMAZON EC2/S3 AS A DATA WAREHOUSE SOLUTION

352

Access Credentials
The access credentials are used in every REST API call. These keys are also used in the Amazon S3 SOAP
calls.

The access credentials are split into two parts. The first part is the Access Key ID and is used to
identify the requestor identity.

The second part is the secret access key. This key is used to create a signature, which is sent with
every API request. When the AWS receives the request, it’ll validate the signature by using the
corresponding secret access key (which is only known to AWS). Only the valid secret access key can
create a signature that could be validated by the AWS secret key counterpart. This ensures that the
request is sent from the valid requestor.

Both keys are long alphanumeric strings and can be found under the Access Credentials section
under “Access keys” tab. It is advisable to rotate the keys regularly. Also make sure not to disclose the
secret key to anyone.

X.509 Certificates
The X.509 certificates are used primarily with the SOAP API requests. The certificate consists of two files.
The first file is the X.509 certificate and contains your public key and the related metadata. The public
key is sent along with the request body and is used to decrypt the signature information contained in the
request.

The second part of the certificate is the private key file. This file is used to create the digital
signature, which is included with every SOAP request. You must keep this key secret.

When you generate the X.509 certificate, you’ll be provided with both files. However, the secret key
is not stored on the Amazon systems; therefore if you’ve lost your private key, you must regenerate the
X.509 certificate again. Similarly to the access credential key, it is a good practice to rotate the certificates
regularly.

You can generate news certificates or upload your own in the “Access credentials” sections under
the X.509 Certificates tab.

EC2 Key Pair
The EC2 key pair allows you to log on to a new virtual machine instance. Each key pair consists of three
parts.

The first part is the key pair name. When you create a new instance, you will select the key pair that
you want to use on this instance by selecting an appropriate key pair name.

The second part is the private key file. "This file is used to establish an SSH (Secure Shell) session to
the new virtual machine instance. It is very important that this key is kept secret and safe at all times.
Anyone possessing this key will be able to access any of your virtual machines.

The last part is the public key, which is kept on the AWS system. You cannot download this key.
When the virtual machine instance is started, the AWS will copy this key to the running system, which
allows you to connect to it using your private key file.

You can generate as many key pairs as you like. Unlike the other credentials, the EC2 keys are
accessible only from the EC2 management console, which is available at https://console.aws.
amazon.com/ec2/home.

The Simple Storage System Concepts
From the user perspective there are only two entities in the S3 architecture—the data objects and the
buckets.

https://console.aws

CHAPTER 13 ■ USING AMAZON EC2/S3 AS A DATA WAREHOUSE SOLUTION

353

The most important entity is the data object. The data object is what is actually stored on the S3
infrastructure. Technically, each data object consists of two parts—the metadata and the data payload.
The metadata part describes the object and consists of the key- value pairs. As a developer, you can
define any number of the key-value pairs. This metadata is sent in the HTTP header of the request. The
second part is the data payload, and it is what you actually want to store on the S3. The data payload size
can be anything from 1 byte to 5 gigabytes. You can assign any name to the objects as long as it conforms
to the URI naming standards. Basically, if you limit the name to alphanumeric characters, dots, forward
slashes, and hyphens you should be OK.

The second entity is the bucket object. The bucket is the entity that contains the data objects. The
buckets cannot contain other buckets. The object name space is within each bucket, however the bucket
name is in the global name space. This means that your objects within a bucket must have unique
names, but you can have two objects with the same name in different buckets. The buckets must have
unique name on the S3 system, so there is a chance that you may try to use a bucket name that is already
used by someone else.

There is a limit of 100 buckets per account, but there is no limit on the size of objects stored in each
bucket.

Figure 13-1 illustrates the relationship between the buckets and the objects along with some
example names for each.

Figure 13-1. The Amazon S3 buckets and objects

These names can be mapped to the Amazon S3 resource URLs using the following naming scheme:

http://<bucket name>.s3.amazonaws.com/<object name>

Therefore, the objects from Figure 13-1 above can be accessed via the following URLs (assuming the

public access rights are enabled):

• http://bucket1.s3.amazonaws.com/objectA

• http://bucket1.s3.amazonaws.com/objectB

• http://example.com.s3.amazonaws.com/index.html

• http://example.com.s3.amazonaws.com/data/file.dat

http://bucket1.s3.amazonaws.com/objectA
http://bucket1.s3.amazonaws.com/objectB
http://example.com.s3.amazonaws.com/index.html
http://example.com.s3.amazonaws.com/data/file.dat

CHAPTER 13 ■ USING AMAZON EC2/S3 AS A DATA WAREHOUSE SOLUTION

354

I intentionally showed the real web URLs in the second bucket. When you navigate to any website
your browser uses the HTTP GET requests to fetch the pages. These are the same as the REST requests
used to access the S3 system objects, so you can host complete web sites (or the static parts of the
dynamic sites) on the S3.

The Elastic Computing Cloud Concepts
The Amazon EC2 WS is a sophisticated system that interacts with the other services such as Amazon S3
to provide you with the complete computing on demand solution. If you’re familiar with any of the
virtualization platforms such as Xen, KVM, or VMWare, you will find most of the concepts described here
to be quite similar.

Amazon Machine Images and Instances
The Amazon Machine Image (AMI) is the image of the operating system that can be started. The image
contains all the packages that are required to run your system. You can have as many AMIs as you need.
For example, if you wanted to replicate the two-tier web system that we described earlier, you would
create two types of AMIs—a web server AMI and a database AMI. The web server AMI would have the
Apache web server and the Apache Tomcat application server packages installed. The database AMI
would have a MySQL instance installed.

There are many different AMIs available publically. There are several provided by Amazon as well as
other companies. Some of the AMIs are available to use for free, but there are also commercially
available AMIs where you have to pay if you want to use them. The easiest way of creating your own AMI
is to clone an existing AMI and make your own modification. Make sure that you use an AMI from a
trusted source!

■Note Try not to base your operations on the publically available AMIs. When the creator of such AMI decides to
destroy the AMI, you will not be able to use it again. If you find an AMI that you think is suitable for you, make a
copy of it and create a private AMI. Do this even if you don’t plan to make any modifications to it. This ensures that
you will always be able to find the same AMI every time you need to use it. The typical Linux AMI size on S3 is
under 1GB. Assuming the standard $0.15/month fee for a gigabyte of data, maintaining your own AMI would set
you back only $1.80 every year.

You cannot run the AMI itself. You must create an instance of the AMI you want to run. The instance
is the actual virtual machine that runs the software installed in AMI. An analogue can be a Python class
and the class instance (or an object). The class defines the methods and properties (or software packages
in Operating System terms). When you want to run the defined methods, you would create an object of
that particular class. Similarly an AMI is the contents of the virtual machine and the instance is the
actual running virtual machine.

You have two options where you can store the AMIs: you can store them on the Amazon S3 storage,
or you can store them on the Amazon Elastic Block Store snapshot (we’ll discuss it in the next section).
The method of storing an AMI determines how it is created and affects its behavior.

Table 13-1 summarizes the differences between these two methods of storing the AMIs.

CHAPTER 13 ■ USING AMAZON EC2/S3 AS A DATA WAREHOUSE SOLUTION

355

Table 13-1. Comparing S3– and EBS–Backed AMIs

Aspect EBS–Backed AMI S3–Backed AMI

Size limit An EBS volume is limited to 1TB. This can
be convenient for large installations

The S3 backed root partition can be up
to 10GB in size. If your root partition
needs to be larger than that, you cannot
use this method.

Stopping the
running instance

You can stop the instance, which means
that the virtual machine is not running and
you’re not charged, but the root partition is
not released and still persist as an EBS
volume. You can then restart the instance
from the same instance volume.

You cannot stop the instance. If you
stop the instance it will be terminated
and the root partition is destroyed too;
therefore, all information stored on that
partition would be lost.

Data persistence The local data storage is attached and can
be used to store temporary data. When you
stop the instance, the root partition will not
be detached, but the local storage will be
lost.

You can attach any number of EBS volumes
to store the data permanently.

The local data storage is attached and
can be used to store temporary data.
When you terminate the instance, the
data from both the root partition and
the local storage is lost.

You can attach any number of EBS
volumes to store the data permanently.

Boot time The boot time is faster, because the data on
root partition is immediately available on
the EBS volume. However, the virtual
machine will perform slower at the
beginning, because the data is gradually
fetched form the snapshot.

The boot time is slower, because all data
needs to be retrieved from the S3 before
it is deployed to the root partition.

Creating a new
image

A single API call clones the existing running
AMI to a new volume.

You have to create an operating system
image with all required packages and
then create an image bundle and upload
it to the S3. You then register the AMI
with the bundled image

Charging The following charges will apply:

• Charge for the volume snapshot
(full volume size)

• Charge for the volume space used while
the instances are in the stopped state
(full volume size)

• Charge for the running instance

The following charges will apply:

• S3 charge for storing the AMI image
(compressed)

• Charge for the running instance

CHAPTER 13 ■ USING AMAZON EC2/S3 AS A DATA WAREHOUSE SOLUTION

356

The following figures represent the lifecycles of the S3 backed and EBS backed instances.
Figure 13-2 shows the life cycle of a typical S3–backed instance. The instance is created from the AMI
image stored on the S3. When the instance is terminated, the volumes are destroyed and all data is lost.
You only pay for the S3 store and the running costs of the virtual machine.

Figure 13-2. An S3–backed instance life cycle

Figure 13-3 displays the typical life cycle of an EBS—backed instance. On initial start, the root
volume is created from the EBS snapshot. The instance then can have two different states: running and
stopped. When the instance is running, you pay the charges for the processing power and the EBS
volume charges. When the instance is stopped, you pay for only the EBS volume. If you resume the
instance, it’ll maintain all data in its root volume; therefore, you pay for it. Finally, if you choose to
destroy the instance, the volumes are destroyed too, and you do not pay for the volumes anymore.

CHAPTER 13 ■ USING AMAZON EC2/S3 AS A DATA WAREHOUSE SOLUTION

357

Figure 13-3. An EBS–backed instance life cycle

As you can see from the figures, regardless of the instance type, they all get a local storage attached
to them. This storage is called an ephemeral storage, and its lifetime is limited by the time the instance
spends in the running state. It can also survive the operating system restarts (intentional or
unintentional), but as soon as you stop the instance, all data on the ephemeral device is lost.

Elastic Block Store
The Elastic Block Store (EBS) is a block-level device that is available to use with the EC2 instances. The
volumes are completely independent form the instances and the data is not lost when the instance is
terminated and destroyed. The EBS volumes are highly available and reliable storage devices.

Each EBS volume can vary in size from 1GB to 1TB. You can attach multiple volumes to a single
running EC2 instance. If you need volumes larger than 1TB, you can use the operating system tools such
as LVM (Logical Volume Manager) to combine multiple EBS volumes into a single larger volume.

As I have mentioned, the EBS volumes are block devices, so you have to create a file system before
on them before you can use them. Alternatively you can use these as raw devices in the applications that
support raw device access.

The Amazon WS also provide functionality to take the volume snapshots. A volume snapshot is a
point-in-time copy of the volume contents. The copy is backed up to the S3 storage. You can create as
many snapshots as you need. The first snapshot is a full copy of the volume, but the sequential
snapshots are only recording the differences between the last snapshot and the current volume state.

CHAPTER 13 ■ USING AMAZON EC2/S3 AS A DATA WAREHOUSE SOLUTION

358

The operation of taking the snapshot of a volume can be reversed, and you can create a volume
from an existing snapshot. This is useful if you have to provide the same data to multiple EC2 instances.
You can also share the snapshots between the Amazon WS accounts.

Security Groups
The network access to your instances is controlled using the security groups. The security group is a set
of network access rules, like an IPTables rule set. You define the destination network address, the port
number and the communication protocol, such as TCP or UDP.

When you start a new instance, you can assign one or more security groups to it. For example, you
can have a database security group that allows the TCP access to the port 3306 (MySQL service port).
When you create a new database instance, you would select this security group, which will allow the
external access to your MySQL server.

Make sure you allow the administration SSH access to your instances; otherwise, you will not be
able to connect and manage them.

Elastic IPs and Load Balancers
By default, each instance receives a dynamically allocated public IP address. Obviously, this is not
suitable for the servers serving the web content or providing other publically available services. Every
time you restart an instance, you may potentially get a different IP address.

You can request an elastic IP address, which is always attached to one EC2 instance. This allows you
to create one DNS entry for your server, and that entry will not need to change over time. The additional
benefit of the elastic IP is that you can assign a failover instance to it. This means that should the primary
instance fail, the IP will be relocated to another instance that is capable of serving requests. This method
allows you to implement a simple active-standby system configuration.

You can also use the Amazon EC2 load balancing capabilities where the incoming requests are
distributed between two or more instances. The virtual load balancer acts similarly to the conventional
hardware load balancer such as Alteon or Citrix Netscaler.

Creating a new load balancer instance is relatively simple. You have to select the externally available
service port, for example, port 80 for the HTTP traffic. Then, you select the service port on your
instances. For example, let’s say you are running a Tomcat instance on port 8080 on the EC2 instances,
but you want to make this service available via the standard HTTP port 80. In this case, the external
service port 80 will be mapped to the internal service port 8080. Last, you assign the EC2 instances to the
load balancer.

User Interfaces
As I mentioned, the Amazon WS are designed to be used programmatically. There is no user interface for
the S3 system from the Amazon. The EC2 can be controlled from the AWS management console
provided by the Amazon, which is available at https://console.aws.amazon.com/ec2/home.

There are multiple third-party companies that provide various tools for accessing these services. A
simple but powerful S3 management tool is the S3Fox add-on to the Firefox browser. You can find it at
http://www.s3fox.net/. This is not a commercial product and is free to use.

Similarly, there is another Firefox add-on to control the EC2 services. It is called the ElasticFox and is
available to download at http://sourceforge.net/projects/elasticfox/.

https://console.aws.amazon.com/ec2/home
http://www.s3fox.net
http://sourceforge.net/projects/elasticfox

CHAPTER 13 ■ USING AMAZON EC2/S3 AS A DATA WAREHOUSE SOLUTION

359

Creating a Custom EC2 Image
Now that you have a basic understanding of the EC2 and S3 services, let’s put that knowledge to the
practical use. As you already know, we need to create an AMI, which we’ll use to start our instances. I am
going to show you how to create a custom AMI based on already existing image. We’ll create a S3–
backed AMI image, because in our instance, it will be more cost effective, and we do not require the
instance stopping functionality. When the data is transferred and processed, we can destroy the
instance.

Reusing Existing Images
Let’s start by selecting an existing image from the list of available images. In this exercise I am going to
use the standard Amazon AWS management console.

In the Navigation panel on the left-hand–side menu, select the AMIs option. This will display all
your own AMIs. You have to switch from “Viewing: Owned by me” to “Viewing: All images” in the drop-
down menu. When the view is changed, you’ll be presented with the list of all publically available AMIs. I
am going to use a CentOS 5.4 AMI made by the company called RightScale. This is a well-known
company, which specializes in deploying the mission-critical systems in the cloud environment;
therefore, the images produced by them can be trusted. The AMIs ID we are looking for is ami-f8b35e91.
You can find this image by entering the IP in the search field.

Figure 13-4 is a screenshot of the AWS management console with the AMI selected.

Figure 13-4. Selecting the AMI to clone

CHAPTER 13 ■ USING AMAZON EC2/S3 AS A DATA WAREHOUSE SOLUTION

360

When you found the AMI, right-click it and select Launch Instance to initiate the instance launch
process.

■Note Make sure that you have created the security group with the ports 3306 (MySQL) and 22 (SSH) enabled for
access from all IPs. You will also need a key pair to be generated and the private key downloaded to your local
machine. Save the private key safely, and note its name. We’ll refer in this text to this file as <key-pair
name>.pem.

You can monitor the state of the EC2 instance by clicking the Instances link in the Navigation menu.
Once the instance is in the running state, you can use SSH to connect to it. Click the instance name, and
the details will be displayed on a separate window. Note the instance’s public DNS name.

Connect to the instance with the following command:

$ ssh -i <key-pair name>.pem root@<instance public DNS>

Making Modifications
We’re now ready to make modifications to the image. As you remember, our goal is to make this image a
MySQL database instance that stores all the files on a dedicated persistent EBS volume.

Install the Additional Packages
First, we need to install the additional packages, the MySQL server in particular. The reason we do this
step first is that while mounting the new file system we’ll require the MySQL user account to be present,
which is created by the package we are going to install now.

Use the Yum installer to install the additional packages:

yum install mysql mysql-server

Create and Setup an Elastic Block Store Volume
Second, we are going to setup a new EBS volume. Go back to the AWS management console and select
the Volumes menu item from the Navigation menu. The pop-up window appears, where you can select
the volume size and it’s availability zone.

Make sure that you allocate enough space for your data. The availability zone must match the
availability zone of your running instance. You can find out the instance’s availability zone by clicking
the instance name in the Instances section.

Depending on the volume size, it can take some time for the volume to become available. When the
volume becomes available (as indicated by the volume status column), you can attach it to the running
EC2 instance. Right-click the volume name, and select Attach Volume menu item. You will then be
presented with the list of available running EC2 instances. Select the instance you created earlier. You
will also be asked to specify the local device name for the new volume. When selecting a device name
(such as /dev/sdf), ensure that the name is not in use by any other device.

When the device becomes available (the device file /dev/sdf is created on the instance’s file
system), you can create the file system on it with the following commands:

CHAPTER 13 ■ USING AMAZON EC2/S3 AS A DATA WAREHOUSE SOLUTION

361

mke2fs -F -j /dev/sdf
...
e2label /dev/sdf mysqlvol

Now, create a new directory, which will be used to mount the newly created file system and change

the ownership so that the MySQL process is able to write to the volume:

mkdir /mysql-db
chown mysql.mysql /mysql-db
mount LABEL=mysqlvol /mysql-db

Configure the MySQL Instance
Next, we will configure the MySQL instance. You have to change the contents of the MySQL
configuration file (located in /etc/my.cnf), so that the socket file and all data files are stored on the EBS
volume. This ensures that the data is not lost during the system restarts. The new contents of the MySQL
configuration file are presented in Listing 13-1.

Listing 13-1. Pointing the MySQL Database to the New Location

[mysqld]
datadir=/mysql-db
socket=/mysql-db/mysql.sock
user=mysql
old_passwords=1

[mysqld_safe]
log-error=/var/log/mysqld.log
pid-file=/var/run/mysqld/mysqld.pid

Now, let’s start the MySQL daemon and set the default password.

■Caution Obviously, you’ll have to use something more secure and unpredictable than what I’m using in the
example below.

chkconfig mysqld on
service mysqld start
mysqladmin -u root -S /mysql-db/mysql.sock password 'password'
mysql -p -S /mysql-db/mysql.sock
[...]
mysql> grant all privileges on *.* to 'root'@'%' identified by 'password' with grant
option;
Query OK, 0 rows affected (0.00 sec)

CHAPTER 13 ■ USING AMAZON EC2/S3 AS A DATA WAREHOUSE SOLUTION

362

mysql> flush privileges;
Query OK, 0 rows affected (0.00 sec)

Finally, shut down the MySQL daemon and unmount the volume:

service mysqld stop
umount /mysql-db

Bundling the New AMI
Once you’ve made all the modifications and are happy with the running instance, you can create a new
AMI from it by bundling it.

First of all, you have to prepare your X.509 certificate files and set some environment variables with
the access credentials. These will be used in the bundling commands, so make sure you prepare them
beforehand to avoid any issues when running the commands. From the account management console,
create a new X.509 certificate files (the certificate file and the private key). Save the downloaded files as
pk.pem (private key) and cert.pem (certificate) locally. When you have the both files, copy them across
to the running instance into the /mnt/ directory.

Go back to the shell prompt on the running EC2 instance, and set the following environment
variables to the appropriate values, which you can obtain from the account management web page:

export AWS_USER=<12 digit account ID>
export AWS_ACCESS_KEY=<REST access key>
export AWS_SECRET_KEY=<REST secret access key>

We’re now ready to bundle the running instance. Issue the following command, and wait until it

finishes. This is a rather lengthy process and might take up to 10 minutes:

ec2-bundle-vol -u $AWS_USER \
 -k /mnt/pk.pem \
 -c /mnt/cert.pem -s 4096 \
 -p CentOS-5.4-i386-mysql-v2 \
 -r i386
Copying / into the image file /tmp/CentOS-5.4-i386-mysql-v2...
Excluding:
 /sys
 /proc
 /dev/pts
 /proc/sys/fs/binfmt_misc
 /dev
 /media
 /mnt
 /proc
 /sys
 /tmp/CentOS-5.4-i386-mysql-v2
 /mnt/img-mnt
1+0 records in

CHAPTER 13 ■ USING AMAZON EC2/S3 AS A DATA WAREHOUSE SOLUTION

363

1+0 records out
1048576 bytes (1.0 MB) copied, 0.001929 seconds, 544 MB/s
mke2fs 1.39 (29-May-2006)
Bundling image file...
Splitting /tmp/CentOS-5.4-i386-mysql-v2.tar.gz.enc...
Created CentOS-5.4-i386-mysql-v2.part.00
Created CentOS-5.4-i386-mysql-v2.part.01
[...]
Created CentOS-5.4-i386-mysql-v2.part.62
Created CentOS-5.4-i386-mysql-v2.part.63
Generating digests for each part...
Digests generated.
Unable to read instance meta-data for product-codes
Creating bundle manifest...
ec2-bundle-vol complete.

Once the image bundling is complete, you have to upload to the S3 storage. The –b option in the

following command indicates the bucket name. As you know, the bucket name must be unique on the
whole S3 system, so choose it carefully. You don’t need to create the bucket beforehand; if the bucket
does not exist, it will be created for you. The upload process is a little bit faster than the bundling
process, but expect it to take a considerable amount of time too:

ec2-upload-bundle -b pro-python-system-administration \
 -m /tmp/CentOS-5.4-i386-mysql-v2.manifest.xml \
 -a $AWS_ACCESS_KEY \
 -s $AWS_SECRET_KEY
Uploading bundled image parts to the S3 bucket pro-python-system-administration ...
Uploaded CentOS-5.4-i386-mysql-v2.part.00
Uploaded CentOS-5.4-i386-mysql-v2.part.01
[...]
Uploaded CentOS-5.4-i386-mysql-v2.part.62
Uploaded CentOS-5.4-i386-mysql-v2.part.63
Uploading manifest ...
Uploaded manifest.
Bundle upload completed.

And finally, you have to register the newly created AMI. Once the command is finished executing

you’ll be prompted with the AMI ID string. You’ll also see the new AMI in your private AMI selection
screen:

ec2-register --name 'pro-python-system-administration/CentOS-5.4-i386-mysql-v2' \
 pro-python-system-administration/CentOS-5.4-i386-mysql-
v2.manifest.xml \
 -K /mnt/pk.pem \
 -C /mnt/cert.pem
IMAGE ami-2f4fa646

CHAPTER 13 ■ USING AMAZON EC2/S3 AS A DATA WAREHOUSE SOLUTION

364

Controlling the EC2 Using the Boto Python Module
We finally come to the stage of creating the code to automatically manage the EC2 instances. You can
access these services using the SOAP or REST API, but you don’t have to do all the heavy lifting yourself,
as there are lots of different libraries available. Despite the lack of printed documentation, the subject is
well documented on the Internet, and the libraries are available for most of the popular programming
languages like Java, Ruby, C#, Perl, and obviously Python.

One of the most popular Python libraries for accessing the Amazon web services is the Boto library.
This library provides interfaces to the following AWS:

• Simple Storage Service (S3)

• Simple Queue Service (SQS)

• Elastic Compute Cloud (EC2)

• Mechanical Turk

• SimpleDB (SDB)

• CloudFront

• Virtual Private Cloud (VPC)

The library is available on most of the Linux distributions. For example on a Fedora system, you can

install the library with the following command:

$ sudo yum install python-boto

You can also download the source code from the projects home page at http://code.google.com/

p/boto/.

Setting Up the Configuration Variables
There will be two types of configuration data.. The account-specific configuration (the REST API access
keys) are not specific to our application and can be store in the Boto configuration file called .boto in
the user directory.

This configuration file contains the access ID key and the secret access key:

[Credentials]
aws_access_key_id = <Access key>
aws_secret_access_key = <Secret access key>

The application-specific configuration we’re going to store in the backup.cfg file and access it by

using the ConfigParser library. The contents of the file are described in the following code:

[main]
volume_id=vol-e120af88 # the EBS volume ID which we mount to the EC2 DB
instances
vol_device=/dev/sdf # the name of the device of the attached volume
mount_dir=/mysql-db # the name of the mount directory
image_id=ami-2f4fa646 # the name of the custom created AMI image

http://code.google.com

CHAPTER 13 ■ USING AMAZON EC2/S3 AS A DATA WAREHOUSE SOLUTION

365

key_name=<private key> # the name of the key pair (and the pem file)
key_location=/home/rytis/EC2/ # the location of the key pair file
security_grp=database # the name of the security group (with SSH and
MySQL ports)

Initializing the EC2 Instance Programmatically
First of all, let’s create the skeleton application structure. In Listing 13-2, we start by creating the
BackupManager class. This class will implement the methods of managing our custom EC2 instance. We
also set up a logger object, which we’ll use to log the application status.

Listing 13-2. The Structure of the Application

#!/usr/bin/env python

import sys
import logging
import time
import subprocess
import boto
import boto.ec2
from ConfigParser import SafeConfigParser
import MySQLdb
from datetime import datetime

CFG_FILE = 'backup.cfg'

class BackupManager:

 def __init__(self, cfg_file=CFG_FILE, logger=None):
 self.logger = logger
 self.config = SafeConfigParser()
 self.config.read(cfg_file)
 self.aws_access_key = boto.config.get('Credentials', 'aws_access_key_id')
 self.aws_secret_key = boto.config.get('Credentials',
 'aws_secret_access_key')
 self.ec2conn = boto.ec2.connection.EC2Connection(self.aws_access_key,
 self.aws_secret_key)
 self.image = self.ec2conn.get_image(self.config.get('main', 'image_id'))
 self.volume = self.ec2conn.get_all_volumes([self.config.get('main',
 'volume_id')])[0]
 self.reservation = None
 self.ssh_cmd = []
[...]
def main():
 console = logging.StreamHandler()
 logger = logging.getLogger('DB_Backup')

CHAPTER 13 ■ USING AMAZON EC2/S3 AS A DATA WAREHOUSE SOLUTION

366

 logger.addHandler(console)
 logger.setLevel(logging.DEBUG)
 bck = BackupManager(logger=logger)

if __name__ == '__main__':
 main()

As you can see, in the initialization process we’re already making the connection to the AWS. The

result returned by the EC2Connection() call is the connection object, which we’ll use to access the AWS
system.

self.ec2conn = boto.ec2.connection.EC2Connection(self.aws_access_key,
 self.aws_secret_key)

For example, the following two calls return the AMI image and the volume objects:

self.image = self.ec2conn.get_image(self.config.get('main', 'image_id'))
self.volume = self.ec2conn.get_all_volumes([self.config.get('main',
'volume_id')])[0]

Each of those objects exposes the methods that can be used to control them. For example, the

volume object implement the attach method, which can be used to attached the specific volume to an
EC2 instance. We’ll discover the most frequently used method in the following sections.

Launching the EC2 Instance
Our very first task is to start the instance. This can be accomplished with the run() method, which is
available in the image object we created earlier.

The result of this call is a reservation object, which lists all instances started with this call. At the
moment, we’re starting just one instance, but you can start multiple instances of from the same AMI
image.

The run() method requires two parameters to be set: the key pair name and the security group. I’m
also specifying the optional placement zone parameter, which indicates in which EC2 zone the instance
needs to be started. We don’t really care what the zone will be as long as it is the same zone where the
volume is created. You cannot attach the volumes from a different zone, so the instance must run in the
same zone. You can discover the volume’s zone by inspecting the zone attribute of the volume object.

As you know, the instance will not be available immediately; therefore, we have to implement a
simple loop that periodically checks the status of the instance and waits until it changes the state to
'running' (see Listing 13-3).

Listing 13-3. Starting the EC2 Instance

def _start_instance(self):
 self.logger.debug('Starting new instance...')
 self.reservation = self.image.run(key_name=self.config.get('main', 'key_name'),
 security_groups=[self.config.get('main', 'security_grp')],
 placement=self.volume.zone)
 instance = self.reservation.instances[0]

CHAPTER 13 ■ USING AMAZON EC2/S3 AS A DATA WAREHOUSE SOLUTION

367

 while instance.state != u'running':
 time.sleep(60)
 instance.update()
 self.logger.debug("instance state: %s" % instance.state)
 self.logger.debug("Instance %s is running and available at %s" % (instance.id,
instance.public_dns_name))

Attaching the EBS Volume
Once the instance is running, we can attach the volume to it. As Listing 13-4 shows, the volume can be
attached with just a single method call. However, there’s a caveat. Even if you wait for the volume to
change its state to indicate that it has been successfully 'attached', you still may find out that the
device is not ready. I found that an extra 5 seconds wait is usually enough, but just to be on a safe side,
we’ll wait another 10 seconds.

Listing 13-4. Attaching the EBS volume

def _attach_volume(self, volume=None):
 if not volume:
 volume_to_attach = self.volume
 else:
 volume_to_attach = volume
 instance_id = self.reservation.instances[0].id
 self.logger.debug("Attaching volume %s to instance %s as %s" %
 (volume_to_attach.id,
 instance_id,
 self.config.get('main', 'vol_device')))
 volume_to_attach.attach(instance_id, self.config.get('main', 'vol_device'))
 while volume_to_attach.attachment_state() != u'attached':
 time.sleep(20)
 volume_to_attach.update()
 self.logger.debug("volume status: %s", volume_to_attach.attachment_state())
 time.sleep(10) # give it some extra time
 # aws sometimes is mis-reporting the volume state
 self.logger.debug("Finished attaching volume")

Mounting the EBS Device
The volume is attached, but the file system is not visible to the operating system yet. Unfortunately,
there is no API call to mount the file system, because this is the operating system function, and the
Amazon WS cannot do anything about it.

So we have to issue the mount command remotely using the ssh command. The ssh command that
establishes a remote communication link is always the same, so we construct it one using the method in
Listing 13-5, and we’ll reuse it every time we need to issue an operating system command on the remote
system.

CHAPTER 13 ■ USING AMAZON EC2/S3 AS A DATA WAREHOUSE SOLUTION

368

Listing 13-5. Constructing the ssh Command Paramenters

def _init_remote_cmd_args(self):
 key_file = "%s/%s.pem" % (self.config.get('main', 'key_location'),
 self.config.get('main', 'key_name'))
 remote_user = 'root'
 remote_host = self.reservation.instances[0].public_dns_name
 remote_resource = "%s@%s" % (remote_user, remote_host)
 self.ssh_cmd = ['ssh',
 '-o', 'StrictHostKeyChecking=no',
 '-i', key_file,
 remote_resource]

We have to use the OpenSSH option StrictHostKeyChecking=no, because we will be making the
connection to the new host, and by default OpenSSH will warn you that the host key it receives has never
been seen before. It will also ask for a confirmation to accept the remote key—behavior you don’t want
to see in an automated system.

Once the default ssh argument string is constructed, we can issue the remote volume mount
command to the running instance, as shown in Listing 13-6.

Listing 13-6. Mounting the File System on the Remote Host

def _mount_volume(self):
 self.logger.debug("Mounting %s on %s" % (self.config.get('main', 'vol_device'),
 self.config.get('main', 'mount_dir')))
 remote_command = "mount %(dev)s %(mp)s && df -h %(mp)s" % \
 {'dev': self.config.get('main', 'vol_device'),
 'mp': self.config.get('main', 'mount_dir')}
 rc = subprocess.call(self.ssh_cmd + [remote_command])
 self.logger.debug('done')

Starting the MySQL Instance
Like we did for the mount command, we’ll use the same mechanism to start and stop the MySQL
daemon on the remote server. We’ll be using the standard RedHat distribution /sbin/service
command to run the initialization scripts, as shown in Listing 13-7.

Listing 13-7. Starting and Stopping MySQL Daemon Remotelly

def _control_mysql(self, command):
 self.logger.debug("Sending MySQL DB daemon command to: %s" % command)
 remote_command = "/sbin/service mysqld %s; pgrep mysqld" % command
 rc = subprocess.call(self.ssh_cmd + [remote_command])
 self.logger.debug('done')

CHAPTER 13 ■ USING AMAZON EC2/S3 AS A DATA WAREHOUSE SOLUTION

369

Transferring the Data
At this point, we have the remote system ready to accept the MySQL database connections. As we’ve
discussed before, the actual data transfer and processing is very specific task, and there are no generic
recipes for them. Typically, the steps involved are as follows:

1. Establish a connection to the local database.

2. Establish a connection to the remote database running on an EC2 instance.

3. Find out what local data does not exist on the remote database yet.

4. Read the record set in from the local database and update the remote database accordingly.

5. Delete the old data from the local database if not required.

6. Perform any statistical calculations by using the complex SQL queries or functions on the
remote EC2 instance.

But then again, the process largely depends on your requirements, so I will leave the

implementation of this task to you. In our example application, we’ll use a dummy function that just
waits for a brief period of time:

def _copy_db(self):
 self.logger.debug('Backing up the DB...')
 time.sleep(60)

Destroying the EC2 Instance Programmatically
When we finish updating the remote database and all the data processing tasks are complete, we can
start destroying the EC2 instance. The instance will be destroyed, but the database volume will remain
along with the data files on it. As a secondary safety measure, we’ll also create a snapshot of the volume.

Shutting Down the MySQL Instance
We’ll start by shutting down the MySQL database server. You’re already familiar with the code, which is
shown in Listing 13-7. The only difference is that this time we’ll pass the 'stop' argument to the method call.

Unmounting the File System
When the MySQL server is not running, we can safely unmount the file system. Again, we’ll do this by
issuing the OS command using the ssh connection mechanism, as shown in Listing 13-8.

Listing 13-8. Unmounting the File System

def _unmount_volume(self):
 self.logger.debug("Unmounting %s" % self.config.get('main', 'mount_dir'))
 remote_command = "sync; sync; umount %(mp)s; df -h %(mp)s" % \
 {'mp':self.config.get('main', 'mount_dir')}
 rc = subprocess.call(self.ssh_cmd + [remote_command])
 self.logger.debug('done')

CHAPTER 13 ■ USING AMAZON EC2/S3 AS A DATA WAREHOUSE SOLUTION

370

Detaching the EBS Volume
Technically, you don’t need to detach the volume at this point; it’ll be detached automatically once the
EC2 instance is terminated. However, I would advise you to detach the volume first (as shown in Listing
13-9), because if the EC2 WS behavior changes, assuming the default behavior may cause unnecessary
problems in the future.

Listing 13-9. Detaching the Volume

def _detach_volume(self, volume=None):
 if not volume:
 volume_to_detach = self.volume
 else:
 volume_to_detach = volume
 self.logger.debug("Detaching volume %s" % volume_to_detach.id)
 volume_to_detach.detach()
 while volume_to_detach.attachment_state() == u'attached':
 time.sleep(20)
 volume_to_detach.update()
 self.logger.debug("volume status: %s", volume_to_detach.attachment_state())
 self.logger.debug('done')

Taking a Snapshot of the Volume
Once the volume is detached, we will take a snapshot of the current state. Once again, it is just a single
method call. We’ll also populate the description field with the current timestamp when the snapshot was
taken; see Listing 13-10.

Listing 13-10. Taking a Volume Snapshot

def _create_snapshot(self, volume=None):
 if not volume:
 volume_to_snapshot = self.volume
 else:
 volume_to_snapshot = volume
 self.logger.debug("Taking a snapshot of %s" % volume_to_snapshot.id)
 volume_to_snapshot.create_snapshot(description="Snapshot created on %s" % \

datetime.isoformat(datetime.now()))
 self.logger.debug('done')

Shutting Down the Instance
And last, we are going to terminate the EC2 instance. Although unnecessary, we’ll wait for the instance to
be fully terminated before we continue, as shown in Listing 13-11.

CHAPTER 13 ■ USING AMAZON EC2/S3 AS A DATA WAREHOUSE SOLUTION

371

Listing 13-11. Terminating the Running Instance

def _terminate_instance(self):
 instance = self.reservation.instances[0]
 self.logger.debug("Terminating instance %s" % instance.id)
 instance.stop()
 while instance.state != u'terminated':
 time.sleep(60)
 instance.update()
 self.logger.debug("instance state: %s" % instance.state)
 self.logger.debug('done')

The Control Sequence
Although I described the methods in the same order as they should be called, for your convenience, here
is the sequence of the method calls that are performed in from the main application function:

def main():
 console = logging.StreamHandler()
 logger = logging.getLogger('DB_Backup')
 logger.addHandler(console)
 logger.setLevel(logging.DEBUG)
 bck = BackupManager(logger=logger)
 bck._start_instance()
 bck._init_remote_cmd_args()
 bck._attach_volume()
 bck._mount_volume()
 bck._control_mysql('start')
 bck._copy_db()
 bck._control_mysql('stop')
 bck._unmount_volume()
 bck._detach_volume()
 bck._create_snapshot()
 bck._terminate_instance()

The sample output from the running application follows. Please note that the output from the

second df command shows the different mount point and the different device because the file system
on the EBS volume has been successfully unmounted.

$./db_backup.py
Starting new instance...
instance state: pending
instance state: running
Instance i-2380bd48 is running and available at ec2-184-73-116-217.compute-
1.amazonaws.com
Attaching volume vol-e120af88 to instance i-2380bd48 as /dev/sdf
volume status: attached
Finished attaching volume

x

CHAPTER 13 ■ USING AMAZON EC2/S3 AS A DATA WAREHOUSE SOLUTION

372

Mounting /dev/sdf on /mysql-db
Filesystem Size Used Avail Use% Mounted on
/dev/sdf 1008M 55M 903M 6% /mysql-db
done
Sending MySQL DB daemon command to: start
Starting MySQL: [OK]
1221
1268
done
Backing up the DB...
Sending MySQL DB daemon command to: stop
Stopping MySQL: [OK]
done
Unmounting /mysql-db
Filesystem Size Used Avail Use% Mounted on
/dev/sda1 4.0G 2.2G 1.6G 58% /
done
Detaching volume vol-e120af88
volume status: None
done
Taking a snapshot of vol-e120af88
done
Terminating instance i-2380bd48
instance state: terminated
done

Summary
In this chapter, we looked at the Amazon Web Services (AWS) and how Simple Storage System (S3) and
the Elastic Computing Cloud (EC2) can be used to perform temporary computational tasks. In addition
to the computing on demand task, you discovered how to perform a remote backup of the important
data. The simple application we’ve built in this chapter can serve as a foundation for building your own
data warehouse on the virtual computing cloud. Remember these key points from this chapter:

• The EC2 and S3 are primarily the web services designed to be controlled programmatically.

• The main S3 components are the data objects and the buckets containing them.

• The Amazon Machine Images (AMIs) are used as the templates to start the EC2 instances.

• The EC2 instances are the actual running virtual machines

• You can control most of the AWS services using the Python Boto library.

I n d e x

■ ■ ■

373

■A
ABSOLUTE type, 21
access credentials, EC2/S3, 352
Access Key ID, 352
access mode, 294
account identifier, EC2/S3, 351
Add function, 80, 103–104, 111–113, 116, 126
add_section() method, 276
address pool data model, 110, 114
address pools, extending DHCP

configuration with, 113–116
admin.py file, 146–147, 150
administration interface, 81, 93–96, 146

adding functions to, 152
modifying, 147–153

adding custom object actions,
152–153

adding new field to object list,
148–150

class names, 147–148
reorganizing form fields, 150–152

reconfiguring, 138
administration tasks, automating, 65–68
AJAX asynchronous call, 134
allow_tags property, 149
Amazon EC2/S3

using as data warehouse solution,
349–372

controlling EC2 using Boto Python
module, 364–372

creating custom EC2 image, 359–363
design specifications, 350
problem specification and solution,

349–350
Amazon Elastic Block Store snapshot, 354
Amazon Elastic Compute Cloud (EC2). See

Elastic Compute Cloud (EC2)

Amazon Machine Image (AMI), 354–357
Amazon Simple Storage System (S3). See

Simple Storage System (S3)
AMI image

bundling new, 362–363
modifying, 360–362
registering new, 363
reusing existing, 359–360

annotate() function, 315
Anti-Grain Geometry (Agg) back end, 316
Apache configuration files

advantages of automatically
generating, 137

application to generate, 137–157
data model, 142–147
generating configuration file,

154–157
modifying administration interface,

147–153
setting up environment, 138–142
specifying design and requirements

for, 137–138
disadvanatges of automatically

generating, 137
Apache core module, 138
Apache handlers, 86–87
Apache log files

format of, 167–169
log file reader, 169–172
log-parsing application, 167–180
statistical data from, 159–180

application structure and
functionality, 159–160

plug-in framework, 160–167
Apache web server

configuration, 138–139
using with Django, 85–88

app_directories loader, 100

■ INDEX

374

append() method, 299–300
application log files. See log files
application-specific URL mapping, 142
archives, working with, 293–296
AREA keyword, 27
ARGS variable, 190
array indexing techniques, 301
arrays

multidimensional, 299
two-dimensional, 300
working with, 298–301

.arraysize attribute, 338
as_option() method, 275
ASN.1 library, 13
asynchronous AJAX calls, 134
AttributeError exception, 279
authentication

EC2/S3, 351–352
in SNMP, 7

automatic package update function, 293
availability zone, 360
average() function, 303
AWS account ID number, 351
Axes objects, 314

■B
backslash (\) symbol, 155
BackupManager class, 365
bar primitives, 313–314
bar() method, 313–314
base template, 121
basicConfig method, of logging module, 70
Beautiful Soup HTML parsing library, 211,

344
installing, 214
parsing HTML pages with, 216–221

binary data
sending and receiving, with XML-RPC,

292–293
sending via XML-RPC, 254

Binary() function, 254
BooleanField, 89
Boto Python library, 364–372
bucket objects, 353–354
BZ2File class, 193
BZip2 files, 295
Bzip2 library, 193

BZLOG_PATTERN, 192
_calculate_service_availability() function,

322

■C
call_method() function, 333–334
cannical user ID, 351
Cartesian coordinate system, 314
CentOS 5.4 AMI, 359
CharField, 89
check script

site navigation, 213–228
user login, 224–228
web site availability, 211–229

Nagios, 212–213
requirements, 211
retreiving web page, 214–215

CherryPy, 246–247, 253
CIDR (Classless Inter-Domain Routing), 77
Citrix Netscaler load balancer, 46

accessing with SOAP API, 50–59
code structure, 48–49
communicating with, 51–53
configuration, 49, 66
devices, 46
fixing issues with, 50–51
logging and error handling, 68–73
logging in to, 54–56
maintaining session after login, 57–59
management tool for, 65–68
requirements for, 47–48
return values, 56–57
substituting address, 51
virtual server, 63

class methods, representing library methods
as, 277–281

class names, customizing, 147–148
class rule list template, 123
class rule objects

adding and modifying, 125–126
deleting, 126–127
detailed view of, 123–125
displaying, 122–123

class rule queryset, 122–123
class rules, management of, 122–127
client class separation, 108
client classification, adding, 120–127

■ INDEX

375

close() method, 294, 336
Cloud Application Architectures (Reese), 351
cloud computing services, 349
cmd_submit_reading XMLRPC call, 264
COALESCE() function, 318
colors, graph, 312
command line, querying SNMP from, 7–11
CommandGenerator class, 13, 15
command-line tool syntax, 25
comma-separated values (CSV) format files,

170
commit() function, 252, 336
communicate() method, 290–291
communication flows, in monitoring

system, 243–247
computing on demand solutions, 350
ConfigDirective table, 143
ConfigDirectives, 145, 149
ConfigParser class, 271
ConfigParser library, 11, 271, 364

class methods, 272–276
configuration class wrapper, 277–281
file format, 272

<config> tags, 202
configuration

Apache, 138–139
application, 140
CherryPy, 253
monitoring agent, 271–281
URL, 141–142

Configuration API, 66
configuration API wrapper class, 64
configuration class wrapper, 277–281
configuration data, 202–203, 234, 237–240
configuration directive definition, 142
configuration file, 202–203

generating, 154–157
load balancer, 49
MySQL, 361–362
setting sensor options in, 282

configuration variables
Boto library, 364
querying, 339–340

Configuration Web Service, 46
connect object methods, 336
connect() method, 335

connection objects, 51–53
connection.execute() calls, 322
consolidation function (CF), 20, 22
constructor method, 278
consumer plug-ins, 343–348

checking key buffer size setting,
346–347

checking MySQL version, 344–346
checking slow queries counter, 347–348

controller component, 82
convenience methods, 273–275, 300
cookies, 225–226
COUNTER type, 21
CPython, 256
CRITICAL level, of logging module, 69
Cron-like scheduler, 263–264
cryptographic hash function, 199
CSV files, 170
CSV library, 171
cursor methods, 336–337
cursor objects, 337
curve fitting, 307
CustomLog directives, 167
cwd argument, 285

■D
data

collating from database, 317–318
configuration, 202–203, 234, 237–240
producing differently formatted, 208
reading and writing to files, 309
representing using matplotlib, 309–317
storing in data structures, 197–206
timed, plotting, 327
See also performance data; statistical

data
data files, large, 193
data model, 82, 142–147

address pool, 114
basic structure, 143–146
class definitions for, 120
classes, 110
defining, 110–111
defining, for IP address application,

88–91
data normalization, 235–239

■ INDEX

376

data objects, 233–234
configuration data, 234
performance readings, 234
scheduling, 234
site configuration, 234

data payload, 353
data storage, with RRDTool, 18–30
data structures

configuration data, 237–240
data normalization and, 235–237
for monitornig system, 234–243
performance data, 240
representing in ER diagrams, 242–243
scheduling data, 241
site configuration data, 242
storing data in, 198

data warehouse solution
using Amazon EC2/S3 as, 349–372

controlling EC2 using Boto Python
module, 364–372

creating custom EC2 image, 359–363
design specifications, 350
problem specification and solution,

349–350
database

collating data from, 317–318
displaying available hosts, 317–318
file initialization, 247–252
schema, extending, 109

database mapper, in Django, 81
database synchronization script, 140
database tables

ER diagram for, 242–243
normalization of, 235–239
organizing and designing, 237–239

data-fetching command, 25
dataset

finding trend line of, 307–308
information, 25
parameter, 22

datasources, list of, 25
DateField, 89
DateTimeField, 89
DEBUG level, of logging module, 69
DecimalField, 89
decorators, 117
default shell, 284

default shell environment variables,
overriding, 286

delete function, 102–103, 113, 116
Delete view, 126–127
DERIVE type, 21
detail views, of class rule objects, 123–125
device management, using SOAP API, 41–73
df command, 371
DHCP (Dynamic Host Configuration

Protocol)
client class separation, 108
configuation, 107–109, 113–116
display view, 114–115
extending database schema, 109
extending with address pools, 113–116
functions of, 107–109
group directive, 108
integrating IP address application with,

107–135
typical use of, 107

DHCP configuration file, generating,
127–130

DHCP Network, 110
Add function, 111–113, 116
Delete function, 113, 116
displaying details, 114–116
Modify function, 113
view function, 114

DHCP network data, adding, 110–113
DHCP pool data model class, 114, 120
DHCP pools, class rules management,

122–127
DHCP-managed subnets, 108
DHCPNetwork data model class, 113
dict function, 286
__dict__ method, 280
DictReader class, 171
dir parameter, 295
directories, removing, 295
disableservice method, 66
Display function, 79
display views, 122–123
distributed monitoring system. See

monitoring system
Django administration interface. See

administration interface

■ INDEX

377

Django application
configuring, 140
creating, 139
structure of, 83–85

Django Field Types, 89
Django framework

administration interface, 81, 93–96,
146–153

basic concepts of, 80–88
handling data input in, 103–104
HttpResponse class, 96
installing, 82–83
Model-View-Controller pattern, 81–82
object-to-relation database mapper, 81
open source community support for, 81
structure of Django application, 83–85
templates and, 81, 99–101
URL configuration and, 91–93
using with Apache web server, 85–88

Django template engine, 121, 129
Django templating language, 101
django.views.generic library, 122
django-admin.py command, 83
DNSServer, 110
DOM (Document Object Model), 203
DomainName, 110
DROP TABLE command, 251
DS (data source), 21
DS type (or data source type) field, 21
duck typing, 175
Dynamic Host Configuration Protocol. See

DHCP

■E
Easier to Ask for Forgiveness Than

Permission (EAFP) principle, 175
EBS. See Elastic Block Storage (EBS)
EBS volume

attaching to EC2 instance, 367
detaching, 370
mounting, 367–368
taking snapshot of, 370

EBS-backed AMI, 355–357
EC2 instances

attaching EBS volume, 367
destroying, 369–372
detaching EBS volume, 370

initializing programmatically, 365–366
launching, 366
managing, 364–372
mounting EBS device, 367–368
terminating, 370

EC2 key pair, 352
EC2Connection() call, 366
Eclipse project, 161
Elastic Block Store (EBS), 357–358, 360–361
Elastic Computing Cloud (EC2), 349–350

about, 351–358
Amazon Machine Image, 354–357
authetication and security, 351–352

access credentials, 352
account identifier, 351
EC2 key pair, 352
X.509 certificates, 352

concepts, 354–358
controlling, using Boto Python module,

364–372
creating custom EC2 image, 359–363
Elastic Block Store, 357–358
elastic IPs, 358
load balancers, 358
security groups, 358
SOAP APO and, 41
transferring data, 369
user interface, 358

elastic IPs, 358
EmailField, 89
enableservice method, 66
entity relationship (ER) diagrams, 142–143,

242–243, 265
env_vars, 333
Envelope element, of SOAP message, 42
Envisage, 163
ephemeral storage, 357
ERROR level, of logging module, 69
error messages, 291
exception class names, 189
exception handling, 72–73
exception raising and analyzing application,

182–210
exception stack traces, 181, 187, 198
<exception> tags, 203
<exception_types> element, 203

■ INDEX

378

exceptions
analyzing, 184–185
as helpful, 184
counting, 199
detecting, 195–197
detecting known, 201–206
generating exception fingerprint for

unknown, 198–200
group statistics for, 208–210
grouping, 207
producing reports of, 206–210
reasons to use, 184
storing data of, 197–206
validating, 197

Exctractor, 181–210
exec() call, 285
executable argument, 284
.execute() method, 337
.executemany() method, 337
execute() statement, 252
external processes

communicating with, 289–291
running, by monitoring agent, 282–291

■F
Fault element, of SOAP message, 42
feadfp() method, 273
.fetchall() method, 338
.fetchmany() method, 338
.fetchone() method, 338
fieldsets, 152
file descriptors, 193, 290– 291
File Not Found exception, 201
file objects, 289
file operations, 293–296
file system

mounting, 367–368
unmounting, 369

FileField, 89
files

reading and writing data to, 309
removing, 295

filters, storing and applying, 204–205
find method, 218
findAll method, 218
First Normal Form, 235– 239
first-degree polynomials, 308

FloatField, 89
flow control statements, 34–35
fork() call, 285
form fields, reorganizing, 150–152
formatting output, 208
functional requirements, 79

■G
GAUGE type, 21
_generate_host_probe_details() function,

324
_generate_host_scale_details() function, 324
_generate_host_toc() function, 321
generator function, 171, 195– 196
generators, 191, 193–196
generic class

defining, 52
passing module object to, 53

generic views, 122–125
adding and modifying new objects,

125–126
deleting objects, 126–127
detailed views of objects, 123–125
displaying list of objects, 122–123

GeoIP database libraries, 177
GeoIP Lookup Plug-in, 179
GeoIP Python bindings, 178
GeoIP Python library, 177
GET request, 14–15, 104, 214, 225
get() method, 271, 273
get_absolute_url method, 117–118, 125
__getattr__() method, 280–281
get_formated_address method, 134
get_netmask property, 130
get_service_details method, 63
get_services_list method, 64
get_suspect() method, 194
get_template method, 33
get_vservers_list method, 63
getattr() method, 67, 277–278
getboolean() method, 273
getCmd() method, 14
getfloat() method, 273
getNSStatPortAddress Locator method, 52
getint() method, 273
getlbvserver method, 62, 64, 66
GETNEXT command, 8, 16–17

■ INDEX

379

geturl() method, 215
Global Interpreter Lock (GIL), 256
graph collection pages, 323–324
graphs

colors, 312
creating plot with multiple, 313–314
formatting, 312–313
performance, plotting, 325–327
plotting, 311–316
plotting, with RRDTol, 25–28
saving to file, 316–317
of statistical data, 317–327
timescale, 318–324
working with text strings, 315–316

Grok, 163
group statistics, 208–210
GZip archives, 295

■H
has_section() method, 275
headline, 188
heartbeat value, 21
histogram calculation function, 307
host application, making changes to,

332–333
host configuration data, collecting, 342–343
host details page, 320, 322
HOST HTTP header value, 148
host list, 320
host probe list, 320
hostnames, resolving IP addresses to,

131–132
hosts, displaying available, 317–318
host-specific parameters, 242
hstack() function, 300
HTML pages

parsing with Beautiful Soup, 216–221
HTML parsing library, 211
HTTP cookies, 225–226
HTTP headers, 214–215, 225
HTTP protocol, 225
HTTP request object, 152
HTTP requests, 225
HTTPCookieProcessor class, 225
httplib.HTTPMessage class, 214
_httprequestsrate variable, 60
HttpResponse class, 96

■ I
IANA (Internet Assigned Numbers

Authority), 3
ICMP ECHO message, 132
ifAdminStatus, 6
ifDescr, 6
ifEntry, 5
ifIndex, 6
ifInDiscards, 6
ifInErrors, 7
ifInNUcastPkts, 6
ifInOctets, 6
ifInUcastPkts, 6
ifInUnknownProtos, 7
ifLastChange, 6
ifMtu, 6
ifNUcastPkts, 7
ifNumber, 5
ifOperStatus, 6
ifOutDiscards, 7
ifOutErrors, 7
ifOutOctets, 7
ifOutQLen, 7
ifOutUcastPkts, 7
ifPhysAddress, 6
ifSpecific, 7
ifSpeed, 6
ifTable, 5
ifType, 6
ImageField, 89
images, saving to files, 316
__import__ method, 164–165
index page, 319–320
INFO level, of logging module, 69
info() method, 214
information exchange, XML-RPC for,

244–245
information storage, 1
__init__() method, 164, 279
inline formset, 150–152
insert method, 197, 199, 205
IntegerField, 89
interface module, for plug-in framework,

161–162
interface statistics, 5
Interfaces SNMP Variables OID node, 5, 7
_internaltemp variable, 60

■ INDEX

380

interrupts, handling, 259, 260
IP address accountancy application, 75–135

adding client classification, 120–127
adding DHCP network data, 110–113
adding records, 103–105
checking whether address is in use,

132–135
creating application workflow, 79–80
defining database model, 88–91
defining database schema, 77–78
deleting records, 102–103
designing application, 75–80
extending database schema, 109
extending DHCP configuration with

address pools, 113–116
extending with DHCP, 107–110
generating DHCP configuration file,

127–130
implementing basic functionality,

88–106
modifying existing records, 105–106
requirements for, 75–76
resolving IPs to hostnames, 131–132
reworking URL structure, 116–120
URL configuration, 91–93
using management interface, 93–96
using templates, 99–101
viewing records, 96–99

IP addresses
assigning predefined range of, 109
assigning, depending on MAC address,

108
checking whether address is in use,

132–135
elastic, 358
resolving to hostnames, 131–132
static, 109
statically assigned, 109
workings of, 77–78

IronPython, 256
is_valid() method, 104
ISC DHCP server

configuration file, 127–130
defining rules with, 107
installing, 107

itemgetter() function, 209
items() function, 271
iteritems() function, 209

■J
Java applications, 181

log files, 181–210
status messages, 181
storing configuration data, 202–203

Java stack trace, 183, 187–189
Jinja2 framework, 1–2

creating web pages with, 31–39
generating web site pages, 35–38
installing, 32
loading template files, 32–33

Jinja2 templating language, 33–35
jinja2.Environment class, 32
jinja2.FileSystemLoader, 32
jQuery library, 134

■K
key buffer size setting, checking, 346–347
key pair, 360
key_buffer_size configuration parameter,

346
key_buffer_size variable, 342
KeyboardInterrupt, 258, 260
kill() command, 287

■L
library methods, representing as class

methods, 277–281
LIMIT statement, 326
LINE keyword, 27
list comprehension, 192–193
list_display property, 148
_List variable, 61
load balancer, 358

accessing with SOAP API, 50–59
code structure, 48–49
communicating with, 51–53
configuration, 49, 66
devices, 46
fixing issues with, 50–51
logging and error handling, 68–73
logging in to, 54–56
maintaining session after login, 57–59
management tool for, 65–68
requirements for, 47–48
return values, 56–57

■ INDEX

381

substituting address, 51
virtual server, 63

loader classes, 32
Locator class, 50–51
Locator objects, 51–52
locking threads, 256
log file reader, 169–172
log files

Apache, 159–180
application, 181–210
detecting exceptions, 195–197
exception raising and analyzing

application, 182–210
exception stack traces, 181, 187–189
handling multiple, 189–195
locating, 186–187
parsing complex, 186–189
producing reports from, 206–210
standard, 186
storing data from, 197–206
time stamps, 181

LOG_PATTERN, 192
log4j adapter, 181
LogFormat directive, 167, 169
logger “message” command, 291
logging, 68–71

exceptions, 72
levels and scope, 68–69

logging module, 68–69
configuration, 70
format, 70
using, 71

logical test function, 35
login method, 54–55
login request class, 55
loginResponse class, 56
loginResponse type, 56
logline, 188
log-parsing application, 167–180

calling plug-in methods, 173–176
log file reader, 169–172
plug-in modules, 177

installing required libraries, 177–178
writing code, 179

log-processing application
creating plug-in framework, 163–167

defining plug-in modules, 166–167
discovery and registration, 163–166

mechanics of plug-in framework, 161
interface module, 161–162
plug-in registration and discovery,

162
structure and functionality, 159–160

loop variables, 34

■M
MAC address, assigning IP address

depending on, 108
manage.py utility, 84, 90
managed devices, 3
management and monitoring system. See

monitoring system
Management Information Base (MIB), 3
management system, 3, 11
Manager class, 261
many-to-many relationships, 142, 144
mathematical operations, 302–303
mathematical primitives, 302
matplotlib, 297, 309–317

installing, 309–310
plotting graphs, 311–316
plotting time data, 327
saving plots to a file, 316–317
understanding library structure, 310–

311
working with text strings, 315–316

matplotlib.artist.Artist object, 310
matplotlib.backend_bases.FigureCanvas

object, 310
matplotlib.backend_bases.Renderer object,

310
MaxMind company, 177
MD5 hashes, 199–201, 204–207
MD5 library, 199
mean, calculating, 303–307
mean() function, 303
_memusagepcnt variable, 60
Message Body element, of SOAP message, 42
Message Header element, of SOAP message,

42
metadata, 353
method of least squares, 307
methodname response class, 61
methods, running at equal intervals, 260–262
MIME type, 128

■ INDEX

382

mkdtemp() function, 294
mkstemp() function, 295
mod_python module, 85–86
mode parameter, 295
Model class, 125

extending, 131
generating URLs in, 117

Model Class name, 125
<model>/<object>/<method> URL

structure, 116
ModelAdmin class, 148–152
ModelForm class, 125
models.py file, 147–149, 154
Model-View-Controller (MVS) pattern, 81–82
Modify form class, 105
Modify function, 80, 113, 126
Modify view method, 106
monitoring agent, 233, 269–296

automatically updating sensor code,
292–296

configuration, 271–281
design, 269

accepting new configuration, 270
actions, 269
architecture, 269
passive component, 269
submitting sensor readings, 270
upgrading the sensors, 270

running external processes, 282
communicating with external

processes, 289–291
controlling running processes,

286–288
subprocess library, 282–286

security model, 271
sensor design, 281–282

monitoring server, 232–233, 247–255
monitoring system

application requirements and design,
1–2

communication flows, 243–247
configuring application, 11–13
creating web pages, 31–39
data structures, 234–243

configuration data, 237–240
performance data, 240
scheduling data, 241
site configuration data, 242

design, 231–234
components, 231–233
data objects, 233–234

ER diagram for, 242–243
implementing read functionality, 18
integrating RRDTool with, 28–30
monitoring agents, 269–296
monitoring server, 232–233, 247–255
scheduler, 255–266
sensor design, 281–282
server process, 247–255
statistical representation system,

297–328
application requirements and

design, 297
matplotlib, 309–317
graphing statistical data, 317–327
using NumPy library, 297–309

storing data with RRDTool, 18–30
using PySNMP library, 13–17

move() function, 295
multidimensional arrays, 299
multiple processes, running, 255–260
multiprocessing, 256
multiprocessing library API, 257–260
multiprocessing.Manager class, 261
multithreading, 256
MyISAM table indexes, memory dedicated

to, 342
MySQL Community Server 5.1.46, 330
MySQL daemon, starting and stopping, 368
MySQL database

accessing from Python applications,
334–337

checking version of, 344–346
connect object methods, 336
connect options, 335
cursor methods, 337
establishing connection to server, 335
querying configuration variables,

339–340
querying sesrver status variables, 341

MySQL database performance tuning
application, 329–348

modifying plug-in framework for,
332–334

requirements specification and design,
329–331

■ INDEX

383

system design, 330–331
writing consumer plug-ins, 343–348
writing producer plug-ins, 334–343

collecting host configuration data,
342–343

MySQL Enterprise Monitor, 329
MySQL instance, configuring, 361–362
MySQL Performance Blog, 332
MySQL server

installing, 360
shutting down, 369

MySQL SHOW statement, 339
MySQL variables, 339–340
MySQL Work Bench tool, 143, 234
MySQLdb Python module, 334
MySQLTuner, 329

■N
Nagios

checking script status in, 223
configuration file, 222
host definition, 222–223
overview, 212–213
plug-in architecture, 212–213
service definition, 222–223
site navigation check, 213–228
user login check, 224–228
web site availability check script for,

211–229
name resolution function, 80
names

assigning to URL patterns, 118
Python, 139
template, 123
URL pattern, 119

netmask, 130
Netscaler configuration SOAP, 62
Netscaler load balancer. See load balancer
netscaler_ip string, 52
Net-SNMP-Utils package, 7
network address, 130
network monitoring system (NMS), 211–213.

See also monitoring system; Nagios
network size, 130
NetworkAddress class, adding to Django

administration interface, 95
networkaddress URL patterns, 119

next() method, 194
nextCmd() method, 16
nonfunctional requirements, 79
normal distribution, 305
ns_conf.py, 49
ns_config.py, 49
ns_stat.py, 49
NSConfigApi class, 48, 52, 66
NSLib.py module, 48
NSLibError exception class, 48
NSSoapApi class, 48, 52
NSStat_services.py module, 47
NSStat_services_types.py module, 47, 56
NSStatApi class, 48, 52, 61
NSStatBindingSOAP class, 54–55
NSStatPort_address variable, 50
NullBooleanField, 89
NumPy library, 297–309

examples
finding trend line of dataset,

307–308
mathematical and statistical

operations, 302–303
mean and standard deviation,

303–307
reading and writin data to files, 309
working with arrays, 298–301

installing, 298
numpy.random.randn(<count>) function,

307

■O
object actions, adding custom, 152–153
object identifiers (OIDs), 3–7, 28
object list, adding new fields to, 148–150
one-to-many relationships, 142
open() function, 289, 294–295
OpenSSH, 368
operating system status parameters, 330
OptionParser class, 190
options command-line parameter, 281
options() method, 273
OPTIONS.file_pattern variable, 190, 192
or ...in loop statement c, 34
OS command, 369
os.environ dictionary, 286
os.execvp() method, 284

■ INDEX

384

os.open() method, 289
os.pipe() method, 289
os.remove() method, 295
os.rmdir() method, 295
os.walk() method, 190–191
oscillator class, 261
oscillator process, 260
output data, producing differently

formatted, 208

■P
PC (Remote Procedure Call), 41
pending tickets queue, 255
performance data, 240

gathering, 59–65
reading and collecting, using SNMP,

1–39
application requirements and

design, 1–2
configuring application, 11–13
implementing read functionality, 18
PySNMP library, 13–17
storing data with RRDTool, 18–30

performance graphs, plotting, 325–327
performance readings, 234
permalink decorator, 117
Physical Network object, 130
pid attribute, 286
ping utility, 132–133
pip tool, 13, 310
pipe objects, 290
plain-text searches, 206
plot primitives, changing appearance of,

312–313
_plot_time_graph() function, 326
plot() function, 311–312
plots, saving to file, 316–317
plug-in based applications, 159–180

architecture, 162, 212–213, 330
calling plug-in methods, 173–176
creating framework, 163–167

defining plug-in modules, 166–167
discovery and registration, 163–166

framework mechanics, 161
interface module, 161–162
plug-in registration and discovery,

162

implementation in Python, 160–167
log-parsing application, 167–180
structure and functionality, 159–160

plug-in classes, tagging, 174
plug-in framework, 177, 329

as basis for MySQL tuning application,
330–331

code for, 179
consumer plug-ins, 343–348
installing required libraries, 177–178
interface module, 161–162
modifying, 332–334

host application changes, 332–333
plug-in manager, 333–334

plug-in registration and discovery, 162
producer plug-ins, 334–343

plug-in manager, 164–166, 174, 333–334
plug-in methods, call mechanism and,

174–175
plug-in registry, 162
polar coordinates, 313–314
polynomial functions, 307–308
polynomials, 307
Popen class, 282–287, 291
Popen command, 284–285
PositiveIntegerField, 89
POST request, 59, 224–225
post-action redirect URL, 125
post-delete URL, 126
precompiled regular expressions, 204
precompiled searches, 206
_primaryipaddress variable, 60
_primaryport variable, 60
private key, 360
private key file, 352
probe-to-host mapping, 239–240
process() method, 175, 179
processes

terminating running, 287
waiting for termination of, 286

producer plug-ins, 334–343
accessing MySQL database from

Python applications, 334–337
collecting host configruation data,

342–343
querying configuration variables,

339–340
querying server status variables, 341

■ INDEX

385

producer/consumer plug-in framework, 331
Programming Amazon Web Services: S3,

EC2, SQS, FPS, and SimpleDB
(Murty), 351

projects, in Django, 83
psutil library, 342
public key, 352
PySNMP library, 2, 13–17
pysnmp package, 13
Python

class attributes, 203
creating RoundRobin database in, 20
logging module, 68–71
MD5 library, 199
multiprocessing in, 256
multithreading and, 256
parsing XML files, 203–204
plug-in framework implementation in,

160–167
querying SNMP devices from, 11–18
SOAP support in, 45
using RRDTool from, 20
XML-RPC support, 245

Python applications, accessing MySQL
database from, 334–339

Python DB-API Specification version 2, 335
Python generators, 193
Python Helper module, converting WSDL

schema to, 46–47
Python module calls, 25
Python Package Index (PyPI), 309
Python Package manager (PiP), 13
Python RRDTool module, 20
Python variable naming conventions, 139
python_object.attribute, 203
PythonHandler, 86
python-ZSI, 45

■Q
queryset objects, 122–123

■R
RawConfigParser library, 271
read() method, 214, 276, 294–295
readline() function, 193, 294

records
adding, 103–105
deleting, 102–103
modifying existing, 105–106
viewing, 96–99

regression, 307
regular expressions, 204
relative paths, 103
relative URLs, 116
remote back up, 350
remote monitoring agents. See monitoring

agents
remote web site, monitoring, 211–229
remove_option() method, 276
remove_section() method, 276
report() method, 175
reports, producing, 206–210
representation URLs, 118
_requestsrate variable, 60
_rescpuusage variable, 60
REST (REpresentational State Transfer), 244
result array, 25
Result objects, 57
_return objects, 61
return values, statistical data, 59–60
reverse lookups, 149
Reverse Polish Notation, 27
reverse URL matcher, 118
reverse-resolved URL, 125
RFC2616, 246
RightScale, 359
rmtree() function, 295
.rollback() method, 336
.rowcount attribute, 337
RoundRobin Archive (RRA), 20
RoundRobin database (RRD), 1–2

creating, 20–22
structure, 19–20
writing and reading data from, 22–25

row IDs, 322, 326
ROWID value, 322, 326
RRA definition structure, 22
RRDTool, 1–2, 18–30

creating RoundRobin database, 20–22
integrating, with monitoring

application, 28–30

■ INDEX

386

introduction to, 18–20
plotting graphs with, 25–28
using from Python, 20
writing and reading data from

RoundRobin database, 22–25
Rules model, 110, 120
run() method, 366

■S
S3. See Simple Storage System (S3)
S3-backed AMI, 355–357, 359
S3Fox add-on, 358
SafeConfigParser class, 271
samples, 22
SAX, (Simple API for XML), 203
scheduling configuration, 234
scheduling data, 241
scheduling mechanism

actions, 255
Cron-like, 263–264
for monitoring system, 255–266
running methods at equal intervals,

260–262
running multiple processes, 255–260
ticket dispatcher, 264–266

SciPy library, 298
Search function, 79
Second Normal Form, 236–237
secret access key, 352
Section class, 278–280
sections() method, 273
security, EC2/S3, 351–352
security groups, 358
security model, for monitoring agents, 271
SELECT statement, 322
sensor data store function, 253
sensor definition, 238
sensor design, 281–282
sensor reading requests, 255
sensor readings, submission of by

monitoring agent, 270
sensors, 233

automatically updating, 292–296
updating, 270

server address
supplying new, 254
update command, 233

server process
actions, 252

accepting sensor readings, 252–253
providing new sensor code, 254
server health check, 255
supplying new configuration, 253

for monitoring system, 247–255
SQLite3, 247–252

server status variables, querying, 341
ServerAliases. listing, 148–149
ServerName attribute, 148
ServerNames, listing associated, 148–149
servers, methods to enable/disable, 66
service status data, reading, 62–65
ServiceProxy class, 45
services

enabling/disabling, 66
setting state of, 66–68

SET command, 15–16
set() method, 271, 276, 280
set_service_state method, 66
setattr() function, 277–278, 280–281
settings.py configuration file, 84, 140
shared event object, passing to two

processes, 262
shared-network directive, 108
shell variable, 284
SHOW command, 340–341
SHOW GLOBAL STATUS command, 341
SHOW GLOBAL VARIABLES command, 339
SHOW LOCAL STATUS command, 341
SHOW LOCAL VARIABLES command, 339
SHOW statement, 339
SHOW STATUS command, 341
SHOW VARIABLES command, 339
shutil module, 295
signal numeric values, 288
Simple Object Access Protocol. See SOAP
Simple Storage System (S3), 349–350

about, 351–358
Amazon Machine Image, 354–357

■ INDEX

387

authetication and security, 351–352
access credentials, 352
account identifier, 351
EC2 key pair, 352
X.509 certificates, 352

storage concepts, 352–354
uploading new AMI to, 363
user interface, 358
SOAP API and, 41

simpleResult class, 57
SimpleXMLRPCServer library, 246
site configuration, 234
site configuration data, 242
site generator script, 317
site logon/logoff check script, 227–228
site navigation script, 220–221
slope, 307
slow queries counter, 347–348
SlugField, 90
SNMP (Simple Network Management

Protocol), 1
authentication in, 7
components in system managed by, 3
GET command, 14–15
GETNEXT command, 16–17
Interfaces SNMP Variables node, 5, 7
introduction to, 2–4
network components, 3
querying, from command line, 7–11
read functionality, 18
reading and collecting performance

data using, 1–39
application requirements and

design, 1–2
configuring application, 11–13
implementing read functionality, 18
PySNMP library, 13–17
storing data with RRDTool, 18–30

SET command, 15–16
System SNMP Variables node, 4–5

SNMP agent, 3
SNMP devices, querying from Python, 11–18
SNMP OIDs, 3, 28
SnmpManager class, 12
snmpwalk command, 8–11
SOAP (Simple Object Access Protocol) API,

41–73, 243
about, 41–45

accessing load balancer with, 50–59
automating administration tasks, 65–68
calls, 54–56
device configuration SOAP methods, 66
load balancer tool

code structure, 48–49
configuration, 49
requirements for, 47–48

login request and response messages,
58–59

logging and error handling, 68–73
managing devices using, 41–73
Python support for, 45
requesting services with, 42–44
return values, 56–57
service status data, reading, 62–65
statistical data, reading, 59–60
systems health data, reading, 60–62

SOAP messages, 41
request message, 43, 54
response message, 43

SOAP requests, 54
SOAP-encoded RPC API, 41
sorted() function, 208–209
split() method, 285
SQL queries, slow queries counter, 347–348
SQLite, 84, 322
SQLite3, 138, 247, 252, 263, 326

accessing data in, 252
initializing database file, 247–252

square root, 304
ssh command, 367–368
standard deviation, calculating, 303–307
standard error, redirecting, 291
standard error file descriptor, 291
state variable, 60, 67–68
Static DHCP address rule model, 110
statistical analysis, using NumPy library,

297–309
statistical data

collating from database, 317–318
from Apache log files, 159–180
gathering, 59–65
graphing, 317–327
service status data, 62–65
SOAP methods for reading, 59–60
system health data, 60–62

statistical operations, 302–303

■ INDEX

388

statistical representation system, 297– 328
application requirements and design,

297
graphing statistical data, 317–327
matplotlib, 309–317
using NumPy library, 297–309

Statistics API wrapper class, 63
Statistics Web Service, 46
statlbvserver method, 60–63
statprotocolhttp method, 60–61
statservice method, 60, 63
statsystem method, 60–61
statsystemResult_Def class, 61
status messages, Java applications, 181
stderr argument, 290–291
stdin argument, 290–291
stdout argument, 290
StopIteration exception, 194
storage

Elastic Block Store, 357–358
S3, 352–354

strftime('%s', 'now') built-in function, 263
__subclasses__() method, 163, 165
subnets, 108

checking for DHCP network
functionality, 111–113

DHCP-managed, 108
Subplot class, 311
subprocess library, 282–286, 290– 291
subprocess.PIPE, 290
subprocess.STDOUT variable, 291
sv.DictReader class, 171
syncdb command, 93, 145
sysContact OID, 5
sysDescr OID, 5
sysLastChange OID, 5
sysLocation OID, 5
sysName OID, 5
sysObjectID OID, 5
sysServices OID, 5
sysTable OID, 5
system health check, 255
System Health Check function, 80
system parameters, 242
System SNMP Variables OID node, 4–5
system status data, reading, 60– 62
systems.listMethods() method, 245
systemstats_Def class, 62

systemstatsList class definition, 61
sysUpTime OID, 5

■T
tail command, 291
TAR files, 295
tarfile library, 295
tcpdump command, 57
TEMP variable, 295
tempfile module, 294
template files, loading, with Jinja2, 32– 33
template inheritance, 35, 121
template names, 123
templates

class rule list template, 123
subdirectory, 156
using, in Django framework, 99–101

templating framework, 31. See also Jinja2
templating system

temporary directory, 294– 295
temporary file, 294, 295
text strings, 315–316
text() method, 315
TextField, 90
Third Normal Form, 237– 239
thread library, 256
threading library, 256
Ticket Dispatcher, 255, 260, 264– 266
Ticket Scheduler, 255, 260, 263
time stamps, 181
time.sleep() function, 260
time_plot() function, 327
timed data, plotting, 327
TimeField, 90
timescale graphs, 318–324
TMP variable, 295
TMPDIR variable, 295
trend line, of dataset, 307–308
try ... except ... statement, 72
two-dimensional arrays, 300

■U
URL configuration, 91–93
URL mapping

application-specific, 142
project- or site-specific, 141

URL pattern names, 119

■ INDEX

389

URL references, using in templates, 118–120
URL resolver template tag, 119
URL structure

defining, 141–142
reworking, 116–120

URLConfig file, 117, 120, 122
URLField, 90
urllib library, 211
urllib2 library, 211, 224
urlopen() method, 214, 224
URLs

assigning names to URL patterns, 118
generating in Model class, 117
post-delete, 126
redirect, 125
relative, 116
representation, 118
reverse resolution of, 117–118, 125

urls.py module, 84, 92, 94, 141
URL-to-view mapping, 123
$USER1$ macro, 213
$USER1$/check_disk, 213
user ID, changing, when running external

process, 285
user interface, EC2/S3, 358
user login check, 224–228
/usr/sh shell, 284

■V
variables

accessing, in Jinja2, 33
loop, 34

variance, 304, 307
vendor-class-identifier option, 108
VHostDirective class, 145, 149, 154
VHostDirective objects, 149, 153
VHostDirective table, 143
view component, 82
view function, 114
ViM editor, 202
virtual host

adding, 147
adding instances of, 150–152
definition, 138, 142

identifying, 148
indicating default, 152
listing associated ServerNames and

ServerAliases, 148, 149
objects, action to duplicate, 153
ServerName attribute, 148
view template, 156

virtual host configuration
application to generate, 137–157

data model, 142–147
generating configuration file,

154–157
modifying administration interface,

147–153
setting up environment, 138–142
specifiying design and requirements

for, 137–138
virtual hosts listing, modifying, 148–150
virtual servers, reading service status data,

62–65
VirtualHost class, 144, 149
VirtualHost table, 143
virtualhostdirective_set attribute, 149
volume snapshots, 357
_vslbhealth variable, 60
vstack() function, 300

■W
wait() method, 287
WARNING level, of logging module, 69
web applications

for IP address accountancy, 75–135
for virtual host configuration, 137–157

web browsers, 159–161
web pages

creating, with Jinja2 templating system,
31–39

retrieving, 214–215
web service protocols, 351
web services, 351

finding information about, using
WSDL, 44–45

maintaining session after login, 57, 59
requesting, with SOAP API, 42–44
setting state of, 66–68

■ INDEX

390

web site
graph collection pages, 323–324
host details page, 320–322
index page, 319–320
structure, 319

web site availability check script, 211–229
Nagios and, 212–213
requirements for, 211
retreiving web page, 214–215
site navigation check, 213–228
user login check, 224,–228

weighted average, 303
Windows INI-style configuration files, 11,

272
workflow, additions to, 110
write() function, 276, 294–295
WSDL (Web Services Description

Language)
Citrix Netscaler, 50–51
document, 44–45
schema, converting to Python Helper

module, 46–47
wsdl2py tool, 46–47

■X
X.509 certificates, 352, 362
XFiles factor, 22
XML configuration files, 202
XML documents, 202

accessing configuration data, 204
attributes, 203
parsing, with Python, 203–204

XML syntax, 154
XMLField, 90
XML-RPC, 244

call, sending to client nodes, 266
Python support for, 245
sending and receiving binary data with,

254, 292–293
structure, 244

xmlrpclib library, 245, 254
xmlrpclib.Binary class, 293

■Z
ZeroDivisionError exception, 72
Zolera SOAP Infrastructure (ZSI), 45
Zope, 163

	Prelim
	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Prerequisites for This Book
	Structure of This Book
	The Example Source Code

	Reading and Collecting Performance Data Using SNMP
	Application Requirements and Design
	Specifying the Requirements
	High-Level Design Specification

	Introduction to SNMP
	The System SNMP Variables Node
	The Interfaces SNMP Variables Node
	Authentication in SNMP
	Querying SNMP from the Command Line

	Querying SNMP Devices from Python
	Configuring the Application
	Using the PySNMP Library
	The SNMP GET Command
	The SNMP SET Command
	The SNMP GETNEXT Command
	Implementing the SNMP Read Functionality

	Storing Data with RRDTool
	Introduction to RRDTool
	Using RRDTool from a Python Program
	Creating a RoundRobin Database
	Writing and Reading Data from the RoundRobin Database
	Plotting Graphs with RRDTool
	Integrating RRDTool with the Monitoring Solution

	Creating Web Pages with the Jinja2 Templating System
	Loading Template Files with Jinja2
	The Jinja2 Template Language
	Accessing Variables
	Flow Control Statements
	Generating Web Site Pages

	Summary

	Managing Devices Using the SOAP API
	What Is the SOAP API?
	The Structure of a SOAP Message
	Requesting Services with SOAP
	Finding Information about Available Services with WSDL

	SOAP Support in Python
	Converting WSDL Schema to Python Helper Module
	Defining Requirements for Our Load Balancer Tool
	Basic Requirements
	Code Structure
	Configuration

	Accessing Citrix Netscaler Load Balancer with the SOAP API
	Fixing Issues with Citrix Netscaler WSDL
	Creating a Connection Object
	Logging In: Our First SOAP Call
	Finding What Is Being Returned in the Response from a Web Service
	How Is the Session Maintained After We Have Logged In?

	Gathering Performance Statistics Data
	SOAP Methods for Reading Statistical Data and Their Return Values
	Reading System Health Data
	Reading Service Status Data

	Automating Administration Tasks
	Device Configuration SOAP Methods
	Setting a Service State

	A Word About Logging and Error Handling
	Module
	Using the Python
	Logging Levels and Scope
	Configuring and Using the Logger
	Handling Exceptions

	Summary

	Creating a Web Application for IP Address Accountancy
	Designing the Application
	Setting Out the Requirements
	Making Design Decisions
	Defining the Database Schema
	Creating the Application Workflow
	The Search and Display Functions
	The Add Function
	The Delete Function
	The Modify Function
	The System Health Check Function
	The Name Resolution Function

	The Basic Concepts of the Django Framework
	What Is Django?
	The Object-to-Relation Database Mapper
	The Administration Interface
	A Flexible Template System
	Open Source Community Support
	The Model/View/Controller Pattern
	The Data Model Component
	The View Component
	The Controller Component
	Installing the Django Framework
	The Structure of a Django Application
	Using Django with Apache Web Server

	Implementing Basic Functionality
	Defining the Database Model
	URL Configuration
	Using the Management Interface
	Enabling the Management Interface
	Allowing the Administration Plug-in to Manage New Models
	Viewing Records
	Using Templates
	Deleting Records
	Adding New Records
	Modifying Existing Records

	Summary

	Integrating the IP Address Application with DHCP
	Extending the Design and Requirements
	Extending the Database Schema
	Additions to the Workflow

	Adding DHCP Network Data
	Defining Data Models
	Additional Workflows
	The Add Function
	The Modify Function
	The Delete Function

	Extending DHCP Configuration with Address Pools
	The Address Pool Data Model
	Displaying DHCP Network Details
	The Add and Delete Functions

	Reworking the URL Structure
	Generating URLs in the Model Class
	Reverse Resolution of URLs
	Assigning Names to URL Patterns
	Using URL References in the Templates

	Adding Client Classification
	Additions to the Data Model
	Using Template Inheritance
	Class Rules Management
	Generic Views
	Displaying a List of Objects
	A Detailed View of the Object
	Adding and Modifying New Objects
	Deleting Objects

	Generating the DHCP Configuration File
	Other Modifications
	Resolving IPs to Hostnames
	Checking Whether the Address Is In Use

	Summary

	Maintaining a List of Virtual Hosts in an Apache Configuration File
	Specifying the Design and Requirements for the Application
	Functional Requirements
	High-Level Design

	Setting Up the Environment
	Apache Configuration
	Creating a Django Project and Application
	Configuring the Application
	Defining the URL Structure

	The Data Model
	The Basic Model Structure

	Modifying the Administration Interface
	Improving the Class and Object Lists
	Customizing the Class Names
	Adding New Fields to the Object List
	Reorganizing the Form Fields
	Adding Custom Object Actions

	Generating the Configuration File
	Summary

	Gathering and Presenting Statistical Data from Apache Log Files
	Application Structure and Functionality
	Application Requirements
	Application Design

	Plug-in Framework Implementation in Python
	The Mechanics of a Plug-in Framework
	Interface Model
	Plug-in Registration and Discovery
	Creating the Plug-in Framework
	Discovery and Registration
	Defining the Plug-in Modules

	Log-Parsing Application
	Format of Apache Log Files
	Log File Reader
	Calling the Plug-in Methods
	Tagging the Plug-in Classes
	Plug-in Methods and the Call Mechanism

	Plug-in Modules
	Installing the Required Libraries
	Using the GeoIP Python Bindings
	Writing the Plug-in Code

	Summary

	Performing Complex Searches and Reporting on Application Log Files
	Defining the Problem
	Why We Use Exceptions
	Are Exceptions Always a Bad Sign?
	Why We Should Analyze Exceptions

	Parsing Complex Log Files
	What Can We Find in a Typical Log File?
	The Structure of an Exception Stack Trace Log

	Handling Multiple Files
	Handling Multiple Files
	Using the Built In Bzip2 Library
	Traversing Through Large Data Files
	What Are Generators, And How Do We Use Them?

	Detecting Exceptions
	Detecting Potential Candidates
	Filtering Legitimate Exception Traces

	Storing Data in Data Structures
	The Structure of Exception Stack Trace Data
	Generating an Exception Fingerprint for Unknown Exceptions
	Detecting Known Exceptions
	The Configuration File
	Parsing XML Files with Python
	Storing and Applying Filters
	The Benefits of a Precompiled Search Over a Plain-Text Search

	Producing Reports
	Grouping Exceptions
	Producing Differently Formatted Output for the Same Dataset
	Calculating Group Statistics

	Summary

	A Web Site Availability Check Script for Nagios
	Requirements for the Check System
	The Nagios Monitoring System
	Nagios Plug-In Architecture

	The Site Navigation Check
	Installing the Beautiful Soup HTML Parsing Library
	Retrieving a Web Page
	Parsing the HTML Pages with Beautiful Soup
	Adding the New Check to the Nagios System
	Emulating the User Login Process

	Summary

	Management and Monitoring Subsystem
	Design
	The Components
	The Monitoring Server
	The Monitoring Agent
	The Sensors
	The Data Objects
	Configuration
	Performance Readings
	Site Configuration
	Scheduling

	The Data Structures
	Introduction to Data Normalization
	Configuration Data
	Performance Data
	Scheduling
	Site Configuration
	Representing the Information in an ER Diagram

	Communication Flows
	XML-RPC for Information Exchange
	Structure
	Python Support
	CherryPy

	The Server Process
	Storing Data in a SQLite3 Database
	Initializing the Database File
	Actions
	Accepting Sensor Readings
	Supplying a New Configuration
	Providing New Sensor Code
	The Server Health Check

	The Scheduler
	Actions
	Running Multiple Processes
	Multithreading, Multiprocessing, and GIL
	Basic Usage Patterns and Examples
	Running Methods at Equal Intervals
	A Simple Clock Implementation
	A Cron-Like Scheduler
	Ticket Dispatcher

	Summary

	Remote Monitoring Agents
	Design
	The Passive Component
	Architecture
	Actions
	Accepting a New Configuration
	Upgrading the Sensors
	Submitting Sensor Readings

	The Security Model
	Configuration
	The ConfigParser Library
	The File Format
	Using the ConfigParser Class Methods
	The Configuration Class Wrapper

	The Sensor Design
	Running External Processes
	Using the subprocess Library
	Controlling the Running Processes
	Communicating with External Processes
	Using File Descriptors
	Using File Objects
	Using the Pipe Objects
	Redirecting Standard Error

	Automatically Updating Sensor Code
	Sending and Receiving Binary Data with XML-RPC
	Working with Files and Archives (TAR and BZip2)

	Summary

	Statistics Gathering and Reporting
	Application Requirements and Design
	Using the NumPy Library
	Installing NumPy
	NumPy Examples
	Working with Arrays
	Basic Mathematical and Statistical Operations
	Calculating the Mean and Standard Deviation
	Finding the Trend Line of a Dataset
	Reading and Writing Data to Files

	Representing Data with matplotlib
	Installing matplotlib
	Understanding the Library Structure
	Plotting Graphs
	Changing the Appearance of the Plot Primitives
	Drawing Bars and Using Multiple Axes
	Working with Text Strings
	Saving Plots to a File

	Graphing Statistical Data
	Collating Data from the Database
	Displaying Available Hosts
	Drawing Timescale Graphs
	The Index Page
	Host Details Page
	Graph Collection Pages
	Plotting Performance Graphs

	Summary

	Automatic MySQL Database Performance Tuning
	Requirements Specification and Design
	Basic Application Requirements
	System Design

	Modifying the Plug-in Framework
	Changes to the Host Application
	Modifying the Plug-in Manager

	Writing the Producer Plug-ins
	Accessing the MySQL Database from Python Applications
	Querying the Configuration Variables
	Querying the Server Status Variables
	Collecting the Host Configuration Data

	Writing the Consumer Plug-ins
	Checking the MySQL Version
	Checking the Key Buffer Size Setting
	Checking the Slow Queries Counter

	Summary

	Using Amazon EC2/S3 as a Data Warehouse Solution
	Specifying the Problem and the Solution
	The Problem
	Our Solution
	Design Specifications

	The Amazon EC2 and S3 Crash Course
	Authentication and Security
	Account Identifier
	Access Credentials
	X.509 Certificates
	EC2 Key Pair
	The Simple Storage System Concepts
	The Elastic Computing Cloud Concepts
	Amazon Machine Images and Instances
	Elastic Block Store
	Security Groups
	Elastic IPs and Load Balancers
	User Interfaces

	Creating a Custom EC2 Image
	Reusing Existing Images
	Making Modifications
	Install the Additional Packages
	Create and Setup an Elastic Block Store Volume
	Configure the MySQL Instance
	Bundling the New AMI

	Controlling the EC2 Using the Boto Python Module
	Setting Up the Configuration Variables
	Initializing the EC2 Instance Programmatically
	Launching the EC2 Instance
	Attaching the EBS Volume
	Mounting the EBS Device
	Starting the MySQL Instance
	Transferring the Data
	Destroying the EC2 Instance Programmatically
	Shutting Down the MySQL Instance
	Unmounting the File System
	Detaching the EBS Volume
	Taking a Snapshot of the Volume
	Shutting Down the Instance
	The Control Sequence

	Summary

	Index
	¦ ¦ ¦ ¦A
	¦C
	¦
	B
	¦D
	¦E
	¦G
	¦
	F
	¦I
	¦H
	¦J
	¦K
	¦ L
	¦ M
	¦N
	¦O
	¦P
	¦Q
	¦R
	¦S
	¦ T
	¦U
	¦W ¦V
	¦X
	¦ Z

