

MySQL for Python

Integrate the flexibility of Python and the power of
MySQL to boost the productivity of your applications

Albert Lukaszewski, PhD

 BIRMINGHAM - MUMBAI

MySQL for Python

Copyright © 2010 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2010

Production Reference: 1160910

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-849510-18-9

www.packtpub.com

Cover Image by Vinayak Chittar (vinayak.chittar@gmail.com)

Credits

Author
Albert Lukaszewski

Reviewers
Swaroop C H

Andy Dustman

Geert JM Vanderkelen

Acquisition Editor
Steven Wilding

Development Editor
Wilson D'souza

Technical Editors
Prashant Macha

Charumati Shankaran

Indexer
Hemangini Bari

Editorial Team Leader
Aanchal Kumar

Project Team Leader
Priya Mukherji

Project Coordinator
Prasad Rai

Proofreader
Aaron Nash

Production Coordinator
Shantanu Zagade

Cover Work
Shantanu Zagade

About the Author

Albert Lukaszewski is principal consultant for Lukaszewski Consulting Services
in southeast Scotland. He has programmed computers for 30 years. Much of his
experience has related to text processing, database systems, and Natural Language
processing (NLP). Currently he consults on database applications for companies in
the financial and publishing industries.

In addition to MySQL for Python, Albert Lukaszewski has also written "About
Python", a column for the New York Times subsidiary, About.com.

Many people had a hand in this work beyond my typing at
the keyboard. Some contributed by their effort and others by
their sacrifice. Thanks to the team at Packt for their consistent
understanding and support. I am particularly thankful to Steven
Wilding for help and support above and beyond the call of duty.

Thanks also to Andy Dustman, Geert Vanderkelen, and Swaroop for
their helpful review of this book and for making so many significant
and helpful recommendations. This book would be much the poorer
were it not for their suggestions.

To Richard Goodrich, who first introduced me to Python, thank you
for liberating me from bondage to that other P-language. Funny
what a little problem can lead to.

My heartfelt thanks and appreciation go to my wife, Michelle, and
my sons, Cyrus and Jacob. The latter was born during the writing
of this book and consistently brightens even the darkest Scottish
weather with his smile. I appreciate your sacrifice. I could not have
written this book without your support.

Finally, my thanks to my brother, Larry, who first introduced me to
the world of computing. I would probably not know anything about
computer programming if you had not left me your TRS-80. So this
is all your fault, and I am glad you did it.

About the Reviewers

Swaroop C H has previously worked at Yahoo! and Adobe, has co-founded a
startup, has written two technical books (one of which is used as a text book in
more than ten universities worldwide), writes a popular blog that has been
consistently rated one of the top ten blogs in India, and is a marathoner.
More details at http://www.swaroopch.com/about/.

He has written two technical books—A Byte of Python and A Byte of Vim—beginner
books to Python and Vim respectively. They are freely available under the Creative
Commons license on his website www.swaroopch.com.

Andy Dustman (http://profiles.google.com/farcepest) is the primary
author of MySQLdb, the MySQL interface for Python.

The MySQL-Python project is supported and funded purely by volunteers and
donations by the user community at (http://sourceforge.net/projects/mysql-
python/).

Andy has been using Python since 1997, and currently works on Django applications
(using MySQL, of course) when not doing system and network administration. In his
spare time, he rides motorcycles.

I would like to thank Kyle VanderBeek, who has recently become a
co-developer on MySQLdb, and has helped to push me a bit to get
some things done. 12 years is a long time to be working on a project,
and motivation is sometimes hard to come by.

Ed Landa, for taking a chance on a grad school dropout, and for
giving me the opportunity to release MySQLdb under an open
source license.

Laura Michaletz, who encourages me and somehow manages to
make me feel like a superstar.

And my wife, Wendy, for being there for me for three decades.

Geert JM Vanderkelen is a member of the MySQL Support Team at Sun, a
wholly-owned subsidiary of Oracle. He is based in Germany and has worked for
MySQL AB since April, 2005. Before joining MySQL he worked as developer, DBA
and SysAdmin for various companies in Belgium and Germany. Today Geert
specializes in MySQL Cluster and works together with colleagues around the world
to ensure continued support for both customers and community. Geert is also the
maintainer of MySQL Connector/Python.

Table of Contents
Preface 1
Chapter 1: Getting Up and Running with MySQL for Python 7

Getting MySQL for Python 7
Using a package manager (only on Linux) 8

Using RPMs and yum 9
Using RPMs and urpm 9
Using apt tools on Debian-like systems 9
Using an installer for Windows 10
Using an egg file 10
Using a tarball (tar.gz file) 14

Importing MySQL for Python 17
Accessing online help when you need it 18
MySQLdb 18
_mysql 19

Connecting with a database 20
Creating a connection object 20
Creating a cursor object 22
Interacting with the database 22
Closing the connection 23

Multiple database connections 23
Summary 24

Chapter 2: Simple Querying 25
A brief introduction to CRUD 25
Forming a query in MySQL 26

SELECT 27
* (asterisk) 27
FROM 28
staff 28
; (semicolon) 29

Table of Contents

[ii]

Other helpful quantifiers 29
WHERE 30
GROUP BY 30
HAVING 32
ORDER BY 33
LIMIT 35
INTO OUTFILE 37

Passing a query to MySQL 37
A simple SELECT statement 38
Modifying the results 39

Using user-defined variables 40
Determining characteristics of a database and its tables 41

Determining what tables exist 42
Assigning each table a number 43
Offering the options to the user 43
Allowing the user to detail a search query 44

Changing queries dynamically 45
Pattern matching in MySQL queries 45
Putting it into practice 46

Project: A command-line search utility 48
Preparing a database for searching 49
Planning your work, then working your plan 50

Develop a well-abstracted search functionality 50
Specifying the search term from the command-line 52
Implementing and incorporating the other functions: -t, -f, and -o 55
Including an option for an output file 57

Room to grow 57
Summary 58

Chapter 3: Simple Insertion 59
Forming a MySQL insertion statement 60

INSERT 60
INTO 61
Table name 61
Column names 61
VALUES 63
<some values> 64
; (semicolon) 66

Helpful ways to nuance an INSERT statement 66
INSERT...SELECT... 66
INSERT DELAYED… 70
INSERT...ON DUPLICATE KEY UPDATE... 71

Table of Contents

[iii]

Passing an insertion through MySQL for Python 72
Setting up the preliminaries 72
A simple INSERT statement 73
More complex INSERT commands 75

Using user-defined variables 75
Using metadata 77

Querying the database for its structure 78
Retrieving the table structure 80

Changing insertion values dynamically 82
Validating the value of name 83
Validating the value of price 83
Querying the user for a correction 84
Passing fish and price for validation 84

Essentials: close and commit 85
In need of some closure 85
What happened to commit? 85
Why are these essentials non-essential? 85

Project: A command-line insertion utility 86
The necessary modules 86
The main() thing 87

Coding the flag system 88
Testing the values passed by the user 88
Try to establish a database connection 89
Showing the tables 90
Showing the table structure, if desired 90
Accepting user input for the INSERT statement 91
Building the INSERT statement from the user input and executing it 92
Committing changes and closing the connection 93

Coding the other functions 93
valid_digit() and valid_string() 93
valid_table() 94
query() 94

Calling main() 95
Room to grow 99

Summary 100
Chapter 4: Exception Handling 101

Why errors and warnings are good for you 101
Errors versus warnings: There's a big difference 104
The two main errors in MySQLdb 104

DatabaseError 105
InterfaceError 105

Warnings in MySQL for Python 105

Table of Contents

[iv]

Handling exceptions passed from MySQL 105
Python exception-handling 105
Catching an exception from MySQLdb 106
Raising an error or a warning 107
Making exceptions less intimidating 108

Catching different types of exceptions 109
Types of errors 109

DataError 110
IntegrityError 110
InternalError 111
NotSupportedError 111
OperationalError 111
ProgrammingError 112

Customizing for catching 113
Catching one type of exception 113
Catching different exceptions 114
Combined catching of exceptions 115
Raising different exceptions 115

Creating a feedback loop 116
Project: Bad apples 117

The preamble 118
Making the connection 119
Sending error messages 119

The statement class 121
The main() thing 125

Try, try again 126
If all else fails 126

Room to grow 127
Summary 128

Chapter 5: Results Record-by-Record 129
The problem 129
Why? 131

Computing resources 131
Local resources 132
Web applications 133

Network latency 134
Server-client communications 134
Apparent responsiveness 134

Pareto's Principle 134
How? 135

The fetchone() method 135
The fetchmany() method 136
Iteration: What is it? 137
Generating loops 138

Table of Contents

[v]

while...if loops 138
The for loop 139

Iterators 140
Illustrative iteration 141

Iteration and MySQL for Python 141
Generators 142

Using fetchone() in a generator 142
Using fetchmany() in a generator 143

Project: A movie database 144
Getting Sakila 145
Creating the Sakila database 145
The structure of Sakila 146
Planning it out 148
The SQL statements to be used 148

Returning the films of an actor 148
Returning the actors of a film 149

Accepting user data 150
A MySQL query with class 150

The __init__ method: The consciousness of the class 151
Setting the query's type 151
Creating the cursor 152
Forming the query 153
Executing the query 154

Formatting the results 155
Formatting a sample 155
Formatting a larger set of results 156

The main() thing 157
Calling main() 158
Running it 159
Room to grow 159

Summary 160
Chapter 6: Inserting Multiple Entries 161

The problem 161
Why not a MySQL script? 162

Lack of automation 162
Debugging the process 162

Why not iterate? 163
A test sample: Generating primes 163
Comparing execution speeds 166

Introducing the executemany() method 166
executemany(): Basic syntax 167

executemany(): Multiple INSERT statements 168
executemany(): Multiple SELECT statements 170

Table of Contents

[vi]

executemany(): Behind the scenes 170
MySQL server has gone away 173

Command-line option configuration 173
Using a configuration file 174
More than 16 MB is often unnecessary 174

Project: Converting a CSV file to a MySQL table 175
The preamble 175
The options 176
Defining the connection 177
Creating convert 177
The main() function 178
Calling main() 181
Room to grow 181

Summary 182
Chapter 7: Creating and Dropping 183

Creating databases 183
Test first, create second 184
CREATE specifications 185

Specifying the default character set 185
Specifying the collation for a database 186

Declaring collation 186
Finding available character sets and collations 187

Removing or deleting databases 187
Avoiding errors 188
Preventing (illegal) access after a DROP 188

Creating tables 189
Covering our bases 190
Avoiding errors 191
Creating temporary tables 191

Dropping tables 192
Playing it safe 192
Avoiding errors 193
Removing user privileges 193

Doing it in Python 193
Creating databases with MySQLdb 194

Testing the output 194
Dynamically configuring the CREATE statement 195

Dropping databases with MySQLdb 195
Creating tables in Python 195
Verifying the creation of a table 196
Another way to verify table creation 197

Dropping tables with MySQLdb 198

Table of Contents

[vii]

Project: Web-based administration of MySQL 198
CGI vs PHP: What is the difference? 199
Basic CGI 200
Using PHP as a substitute for CGI 202

CGI versus PHP: When to use which? 203
Some general considerations for this program 203
Program flow 203
The basic menu 204

Authorization details 206
Three operational sections of the dialogue 206
The variables 206

Planning the functions 207
Code of each function 207

Connecting without a database 207
Connecting with a database 208
Database action 208
Table action 209
Query action 210
execute() 211

The HTML output 212
Basic definition 212
The message attribute 213
Defining header() 213
Defining footer() 213
Defining body() 214
Defining page() 214

Getting the data 214
Using CGI 214
Using PHP 215

Defining main() 217
Room to grow 218

Summary 218
Chapter 8: Creating Users and Granting Access 219

A word on security 219
Creating users in MySQL 220

Forcing the use of a password 221
Restricting the client's host 221

Creating users from Python 223
Removing users in MySQL 224
DROPping users in Python 225
GRANT access in MySQL 225

Important dynamics of GRANTing access 226
The GRANT statement in MySQL 226
Using REQUIREments of access 229

Table of Contents

[viii]

Using a WITH clause 230
Granting access in Python 231
Removing privileges in MySQL 233

Basic syntax 233
After using REVOKE, the user still has access!? 233

Using REVOKE in Python 235
Project: Web-based user administration 236

New options in the code 236
Adding the functions: CREATE and DROP 239
Adding CREATE and DROP to main() 240
Adding the functions: GRANT and REVOKE 241
Adding GRANT and REVOKE to main() 241
Test the program 243
New options on the page 244
Room to grow 244

Summary 245
Chapter 9: Date and Time Values 247

Date and time data types in MySQL 247
DATETIME 248

Output format 248
Input formats 248
Input range 249
Using DATETIME in a CREATE statement 249

DATE 249
Output and Input formats 249
Input range 250

TIMESTAMP 250
Input of values 250
Range 251
Defaults, initialization, and updating 251

YEAR 252
Two-digit YEAR values 252
Four-digit YEAR values 252
Valid input 253

TIME 253
Format 254
Invalid values 255

Date and time types in Python 256
Date and time functions 257

NOW() 260
CURDATE() 260
CURTIME() 261
DATE() 261

Table of Contents

[ix]

DATE_SUB() and DATE_ADD() 262
DATEDIFF() 266
DATE_FORMAT() 267
EXTRACT() 269
TIME() 270

Project: Logging user activity 270
The log framework 272
The logger() function 273

Creating the database 273
Using the database 274
Creating the table 274
Forming the INSERT statement 274

Ensure logging occurs 275
Room to grow 276

Summary 277
Chapter 10: Aggregate Functions and Clauses 279

Calculations in MySQL 280
COUNT() 281
SUM() 282
MAX() 283
MIN() 284
AVG() 284

The different kinds of average 285
Trimming results 287

DISTINCT 287
GROUP_CONCAT() 289

Specifying the delimiter 290
Customizing the maximum length 290
Using GROUP_CONCAT() with DISTINCT 291

Server-side sorting in MySQL 292
GROUP BY 293
ORDER BY 294

Using a universal quantifier 294
Sorting alphabetically or from low-to-high 295
Reversing the alphabet or sorting high-to-low 296
Sorting with multiple keys 298

Putting it in Python 298
Project: Incorporating aggregate functions 300

Adding to qaction() 300
New variables 301
New statement formation 302

Revising main() 305
Setting up the options 308

Table of Contents

[x]

Changing the HTML form 309
Summary 310

Chapter 11: SELECT Alternatives 311
HAVING clause 312

WHERE versus HAVING: Syntax 312
WHERE versus HAVING: Aggregate functions 312
WHERE versus HAVING: Application 314

Subqueries 317
Unions 319
Joins 321

LEFT and RIGHT joins 321
OUTER joins 323
INNER joins 324
NATURAL joins 326
CROSS joins 327

Doing it in Python 327
Subqueries 328
Unions 329
Joins 329

Project: Implement HAVING 330
Revising the Python backend 331

Revising qaction() 331
Revising main() 333
Revising the options 336

Revising the HTML interface 337
Room to grow 338

Summary 339
Chapter 12: String Functions 341

Preparing results before their return 341
CONCAT() function 342
SUBSTRING() or MID() 343
TRIM() 344

Basic syntax 344
Options 345
Alternatives 346

REPLACE() 347
INSERT() 348
REGEXP 350

Accessing and using index data 354
LENGTH() 354
INSTR() or LOCATE() 355

Table of Contents

[xi]

INSTR() 356
LOCATE() 356

Nuancing data 357
ROUND() 357
FORMAT() 359
UPPER() 360
LOWER() 360

Project: Creating your own functions 360
Hello() 361
Capitalise() 362

DELIMITER 362
The function definition 362
Calling the function 364
Defining the function in Python 365
Defining the function as a Python value 365
Sourcing the MySQL function as a Python module 366
Sourcing the function as MySQL code 366
Room to grow 367

Summary 367
Chapter 13: Showing MySQL Metadata 369

MySQL's system environment 370
ENGINE 371

The most popular engines 372
Transactions 372
Specifying the engine 373
ENGINE status 373

SHOW ENGINES 374
Profiling 375

SHOW PROFILE 375
SHOW PROFILES 376

SHOW system variables 376
Accessing database metadata 377

DATABASES 377
Using the USE command 378

Accessing metadata about tables 378
SHOW TABLES 378
SHOW TABLE STATUS 379
Showing columns from a table 379
FUNCTION STATUS 380

Accessing user metadata 383
SHOW GRANTS 383
PRIVILEGES 384

Project: Building a database class 384
Writing the class 384

Table of Contents

[xii]

Defining fetchquery() and some core methods 385
Retrieving table status and structure 386
Retrieving the CREATE statements 386

Define main()—part 1 387
Writing resproc() 388
Define main()—part 2 389
The preamble 389

Modules and variables 390
Login and USE 390

Closing out the program 390
Room to grow 391

Summary 391
Chapter 14: Disaster Recovery 393

Every database needs a backup plan 394
Offline backups 394
Live backups 395

Choosing a backup method 395
Copying the table files 396

Locking and flushing 397
Unlocking the tables 398
Restoring the data 398

Delimited backups within MySQL 398
Using SELECT INTO OUTFILE to export data 398
Using LOAD DATA INFILE to import data 399

Archiving from the command line 400
mysqldump 400
mysqlhotcopy 403

Backing up a database with Python 405
Summary 406

Index 407

Preface
Python is a dynamic programming language, which is completely enterprise ready,
owing largely to the variety of support modules that are available to extend its
capabilities. In order to build productive and feature-rich Python applications, we
need to use MySQL for Python, a module that provides database support to
our applications.

This book demonstrates how to boost the productivity of your Python applications
by integrating them with the MySQL database server, the world's most powerful
open source database. It will teach you to access the data on your MySQL database
server easily with Python's library for MySQL using a practical, hands-on approach.
Leaving theory to the classroom, this book uses real-world code to solve real-world
problems with real-world solutions.

The book starts by exploring the various means of installing MySQL for Python
on different platforms and how to use simple database querying techniques to
improve your programs. It then takes you through data insertion, data retrieval,
and error-handling techniques to create robust programs. The book also covers
automation of both database and user creation, and administration of access
controls. As the book progresses, you will learn to use many more advanced
features of Python for MySQL that facilitate effective administration of your
database through Python. Every chapter is illustrated with a project that you
can deploy in your own situation.

By the end of this book, you will know several techniques for interfacing
your Python applications with MySQL effectively so that powerful database
management through Python becomes easy to achieve and easy to maintain.

Preface

[2]

What this book covers
Chapter 1, Getting Up and Running with MySQL for Python, helps you to install MySQL
for Python specific software, how to import modules into your programs, connecting
to a database, accessing online help, and creating a MySQL cursor proxy within your
Python program. It also covers how to close the database connection from Python
and how to access multiple databases within one program.

Chapter 2, Simple Querying, helps you to form and pass a query to MySQL, to look at
user-defined variables, how to determine characteristics of a database and its tables,
and program a command-line search utility. It also looks at how to change queries
dynamically, without user input.

Chapter 3, Simple Insertion, shows forming and passing an insertion to MySQL, to
look at the user-defined variables in a MySQL insertion, passing metadata between
databases, and changing insertion statements dynamically without user input.

Chapter 4, Exception Handling, discusses ways to handle errors and warnings thatdiscusses ways to handle errors and warnings thatto handle errors and warnings that
are passed from MySQL for Python and the differences between them. It also
covers several types of errors supported by MySQL for Python, and how to
handle them effectively.

Chapter 5, Results Record-by-Record, shows situations in which record-by-record
retrieval is desirable, to use iteration to retrieve sets of records in smaller blocks
and how to create iterators and generators in Python. It also helps you in using
fetchone() and fetchmany().

Chapter 6, Inserting Multiple Entries, discusses how iteration can help us execute
several individual INSERT statements rapidly, when to use or avoid executemany(),
and throttling how much data is inserted at a time.

Chapter 7, Creating and Dropping, shows to create and delete both databases and tables
in MySQL, to manage database instances with MySQL for Python, and to automate
database and table creation.

Chapter 8, Creating Users and Granting Access, focuses on creating and removing users
in MySQL, managing database privileges with MySQL for Python, automating user
creation and removal, to GRANT and REVOKE privileges, and the conditions under
which that can be done.

Chapter 9, Date and Time Values, discusses what data types MySQL supports for date
and time, when to use which data type and in what format and range, and frequently
used functions for handling matters of date and time.

Preface

[3]

Chapter 10, Aggregate Functions and Clauses, shows how MySQL saves us time and
effort by pre-processing data, how to perform several calculations using MySQL's
optimized algorithms, and to group and order returned data by column.

Chapter 11, SELECT Alternatives, discusses how to use HAVING clauses, how to
create temporary subtables, subqueries and joins in Python, and the various ways
to join tables.

Chapter 12, String Functions, shows how MySQL allows us to combine strings and
return the single, resulting value, how to extract part of a string or the location of a
part, thus saving on processing, and how to convert cases of results.

Chapter 13, Showing MySQL Metadata, discusses the several pieces of metadata about
a given table that we can access, which system variables we can retrieve, and how to
retrieve user privileges and the grants used to give them.

Chapter 14, Disaster Recovery, focuses on when to implement one of several kinds
of database backup plans, what methods of backup and disaster recovery MySQL
supports, and how to use Python to back up databases

What you need for this book
The content of this book is written against MySQL 5.5, Python 2.5.2, and MySQL
for Python 1.2.2. Development of the examples was done with MySQL 5.0, but
everything was confirmed against the 5.5 documentation. As for operating systems,
any of the main three will do: Microsoft Windows, Linux, or Mac. Any additional
requirements of modules are discussed in the book as they come up.

Who this book is for
This book is meant for intermediate users of Python who want hassle-free access to
their MySQL database through Python. If you are a Python programmer who wants
database-support in your Python applications, then this book is for you. This book
is a must-read for every focused user of the MySQL for Python library who wants
real-world applications using this powerful combination of Python and MySQL.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Preface

[4]

Code words in text are shown as follows: "We can include other contexts through the
use of the include directive."

A block of code is set as follows:

import MySQLdb
mydb = MySQLdb.connect(host = 'localhost',
 user = 'skipper',
 passwd = 'mysecret',
 db = 'fish')

Any command-line input or output is written as follows:

>>> print results

((1L, 'tuna', Decimal('7.50')), (2L, 'bass', Decimal('6.75')), (3L,
'salmon', Decimal('9.50')), (4L, 'catfish', Decimal('5.00')),

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "clicking
the Next button moves you to the next screen".

Reference to a particular section or chapter are shown in italics.

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please
send us a note in the SUGGEST A TITLE form on www.packtpub.com or
e-mail suggest@packtpub.com.

Preface

[5]

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book on, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code for this book
You can download the example code files for all Packt books you have
purchased from your account at http://www.PacktPub.com. If you
purchased this book elsewhere, you can visit http://www.PacktPub.
com/support and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any
list of existing errata. Any existing errata can be viewed by selecting your title from
http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

Preface

[6]

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Getting Up and Running with
MySQL for Python

It may seem rather unnecessary to start a book on MySQL for Python with a chapter
on setting it up. There are, in fact, several ways to get MySQL for Python in a place
such that your local Python installation can use it. Which one you use will depend
as much on your familiarity with your operating system and with Python itself, as it
will on which operating system and version of Python you are running.

In this chapter we will cover the following:

Where you can get MySQL for Python
Installing MySQL for Python
Importing the module into your programs
Accessing online help about the MySQL for Python API and its
accompanying modules
How to connect to a database
How to create a MySQL cursor proxy within your Python program
How to close the database connection from Python
How to access multiple databases within one program

Getting MySQL for Python
How you get MySQL for Python depends on your operating system and the level
of authorization you have on it. In the following subsections, we walk through the
common operating systems and see how to get MySQL for Python on each.

•

•

•

•

•

•

•

•

Getting Up and Running with MySQL for Python

[8]

Using a package manager (only on Linux)
Package managers are used regularly on Linux, but none come by default with
Macintosh and Windows installations. So users of those systems can skip this section.

A package manager takes care of downloading, unpacking, installing, and
configuring new software for you. In order to use one to install software on your
Linux installation, you will need administrative privileges.

Administrative privileges on a Linux system can be obtained legitimately in one of
the following three ways:

Log into the system as the root user (not recommended)
Switch user to the root user using su
Use sudo to execute a single command as the root user

The first two require knowledge of the root user's password. Logging into a
system directly as the root user is not recommended due to the fact that there is no
indication in the system logs as to who used the root account. Logging in as a normal
user and then switching to root using su is better because it keeps an account of who
did what on the machine and when. Either way, if you access the root account, you
must be very careful because small mistakes can have major consequences. Unlike
other operating systems, Linux assumes that you know what you are doing if you
access the root account and will not stop you from going so far as deleting every file
on the hard drive.

Unless you are familiar with Linux system administration, it is far better, safer,
and more secure to prefix the sudo command to the package manager call. This
will give you the benefit of restricting use of administrator-level authority to a
single command. The chances of catastrophic mistakes are therefore mitigated to a
great degree.

More information on any of these commands is available by prefacing
either man or info before any of the preceding commands (su, sudo).

Which package manager you use depends on which of the two mainstream package
management systems your distribution uses. Users of RedHat or Fedora, SUSE,
or Mandriva will use the RPM Package Manager (RPM) system. Users of Debian,
Ubuntu, and other Debian-derivatives will use the apt suite of tools available for
Debian installations. Each package is discussed in the following:

•

•

•

Chapter 1

[9]

Using RPMs and yum
If you use SUSE, RedHat, or Fedora, the operating system comes with the yum
package manager. You can see if MySQLdb is known to the system by running a
search (here using sudo):

sudo yum search mysqldb

If yum returns a hit, you can then install MySQL for Python with the
following command:

sudo yum install mysqldb

Using RPMs and urpm
If you use Mandriva, you will need to use the urpm package manager in a similar
fashion. To search use urpmq:

sudo urpmq mysqldb

And to install use urpmi:

sudo urpmi mysqldb

Using apt tools on Debian-like systems
Whether you run a version of Ubuntu, Xandros, or Debian, you will have access
to aptitude, the default Debian package manager. Using sudo we can search for
MySQLdb in the apt sources using the following command:

sudo aptitude search mysqldb

On most Debian-based distributions, MySQL for Python is listed as
python-mysqldb.

Once you have found how apt references MySQL for Python, you can install it using
the following code:

sudo aptitude install python-mysqldb

Using a package manager automates the entire process so you can move to the
section Importing MySQL for Python.

Getting Up and Running with MySQL for Python

[10]

Using an installer for Windows
Windows users will need to use the older 1.2.2 version of MySQL for Python. Using
a web browser, go to the following link:

http://sourceforge.net/projects/mysql-python/files/

This page offers a listing of all available files for all platforms. At the end of the file
listing, find mysql-python and click on it. The listing will unfold to show folders
containing versions of MySQL for Python back to 0.9.1. The version we want is 1.2.2.

Windows binaries do not currently exist for the 1.2.3 version of MySQL
for Python. To get them, you would need to install a C compiler on your
Windows installation and compile the binary from source.

This is outside the purpose of the present book, but tips for how to do this are
contained in the README file that accompanies the 1.2.3 version.

Click on 1.2.2 and unfold the file listing. As you will see, the Windows binaries
are differentiated by Python version—both 2.4 and 2.5 are supported. Choose the
one that matches your Python installation and download it. Note that all available
binaries are for 32-bit Windows installations, not 64-bit.

After downloading the binary, installation is a simple matter of double-clicking the
installation EXE file and following the dialogue. Once the installation is complete,
the module is ready for use. So go to the section Importing MySQL for Python.

Using an egg file
One of the easiest ways to obtain MySQL for Python is as an egg file, and it is best
to use one of those files if you can. Several advantages can be gained from working
with egg files such as:

They can include metadata about the package, including its dependencies
They allow for the use of egg-aware software, a helpful level of abstraction
Eggs can, technically, be placed on the Python executable path and used
without unpacking
They save the user from installing packages for which they do not have the
appropriate version of software
They are so portable that they can be used to extend the functionality of
third-party applications

•

•

•

•

•

Chapter 1

[11]

Installing egg handling software
One of the best known egg utilities—Easy Install, is available from the PEAK
Developers' Center at http://peak.telecommunity.com/DevCenter/EasyInstall.
How you install it depends on your operating system and whether you have package
management software available. In the following section, we look at several ways to
install Easy Install on the most common systems.

Using a package manager (Linux)
On Ubuntu you can try the following to install the easy_install tool (if not
available already):

shell> sudo aptitude install python-setuptools

On RedHat or CentOS you can try using the yum package manager:

shell> sudo yum install python-setuptools

On Mandriva use urpmi:

shell> sudo urpmi python-setuptools

You must have administrator privileges to do the installations just mentioned.

Without a package manager (Mac, Linux)
If you do not have access to a Linux package manager, but nonetheless have a Unix
variant as your operating system (for example, Mac OS X), you can install Python's
setuptools manually. Go to:

http://pypi.python.org/pypi/setuptools#files

Download the relevant egg file for your Python version.

When the file is downloaded, open a terminal and change to the download directory.
From there you can run the egg file as a shell script. For Python 2.5, the command
would look like this:

sh setuptools-0.6c11-py2.5.egg

This will install several files, but the most important one for our purposes is
easy_install, usually located in /usr/bin.

On Microsoft Windows
On Windows, one can download the setuptools suite from the following URL:

http://pypi.python.org/pypi/setuptools#files

Getting Up and Running with MySQL for Python

[12]

From the list located there, select the most appropriate Windows executable file.

Once the download is completed, double-click the installation file and proceed
through the dialogue. The installation process will set up several programs, but the
one important for our purposes is easy_install.exe. Where this is located will
differ by installation and may require using the search function from the Start Menu.

On 64-bit Windows, for example, it may be in the Program Files (x86) directory. If
in doubt, do a search. On Windows XP with Python 2.5, it is located here:

C:\Python25\Scripts\easy_install.exe

Note that you may need administrator privileges to perform this installation.
Otherwise, you will need to install the software for your own use. Depending
on the setup of your system, this may not always work.

Installing software on Windows for your own use requires the following steps:

1 Copy the setuptools installation file to your Desktop.
2 Right-click on it and choose the runas option.
3 Enter the name of the user who has enough rights to install it

(presumably yourself).

After the software has been installed, ensure that you know the location of the
easy_install.exe file. You will need it to install MySQL for Python.

Installing MySQL for Python from an egg file
After installing EasyInstall, you still need to install the MySQL for Python egg.
The egg files for MySQL for Python can be downloaded from the following URL:

http://sourceforge.net/projects/mysql-python/files/

There you will see a list of all available files relevant to MySQL for Python.

Which one you use depends on your operating system and your installed Python
version. Currently, the only egg files available for MySQL for Python version 1.2.3c1
are for Linux running either Python 2.5 or 2.6. Mac users should use a tarball (tar.
gz) file as discussed in the next section.

To get an egg file for Windows, click on the MySQL-python directory and select the
1.2.2 version. This is the same directory used for the Windows binaries discussed
earlier in this chapter. This time, however, you need to select an egg for Windows
that fits either Python 2.4 or 2.5. There is no 2.6 version.

Chapter 1

[13]

Once you have the egg file for MySQL for Python, you simply need to invoke
EasyInstall over the newly-downloaded egg file. How you do that will depend
on the permissions you have for your operating system.

With administrator permissions, you can simply call the EasyInstall binary. For
Linux, it will look like this:

shell> easy_install <name of egg file>

For Windows, you will use a command similar to this one:
C:\Python25\Scripts\easy_install.exe <name of egg file>

Note that you must have administrator privileges to do this. Otherwise, Windows
users will have to install the software locally. Linux users can use sudo.

EasyInstall will then unpack the archive, install it in your default Python
installation folders, and configure it for immediate use.

For Windows users, if you had to install setuptools locally, you may also require a
local installation of Python itself in order to install MySQL for Python. See the section
On Microsoft Windows under Installing egg-handling software, for help with this. If you
need to go through this process, all of your configurations will be local, so you are
best to use full path command-line calls.

If your system has MySQL, Python, and setuptools, but you still don't have
administrative access, it is advisable to unpack the egg file manually and call
it as a local module. To do this, use an archiving program to unzip the file.

The content listing for the Windows egg will look like this:

Egg-info

MySQLdb

_mysql_exceptions.py

_mysql_exceptions.pyc

_mysql.py

_mysql.pyc

_mysql.pyd

•

•

•

•

•

•

•

Getting Up and Running with MySQL for Python

[14]

And the Linux egg unpacks to the following files:

Egg-info

MySQLdb

_mysql_exceptions.py

_mysql_exceptions.pyc

_mysql.py

_mysql.pyc

_mysql.so

With the exception of the egg-info directory, the contents are the basic ingredients
of a Python module and can be imported locally if one's program resides in the same
directory as the files are located.

Using a tarball (tar.gz file)
Due to the need for certain programming libraries, this method of installation
applies only to users of Unix-derived operating systems. This method involves
installing from the source files and so requires the necessary C libraries to compile
a binary version. Windows users should therefore use one of the other methods
discussed previously.

If you cannot use egg files or if you use an earlier version of Python, you should use
the tar.gz file, a tar and gzip archive. The tar.gz archive follows the Linux egg
files in the file listing. The current version of MySQL for Python is 1.2.3c1, so the file
we want is as following:

MySQL-python-1.2.3c1.tar.gz

This method is by far more complicated than the others. If at all possible, use your
operating system's installation method or an egg file.

This version of MySQL for Python is compatible up to Python 2.6. It is worth noting
that MySQL for Python has not yet been released for Python 3.0 or later versions. In
your deployment of the library, therefore, ensure that you are running Python 2.6 or
earlier. As noted, Python 2.5 and 2.6 have version-specific releases. Prior to Python
2.4, you will need to use either a tar.gz version of the latest release or use an older
version of MySQL for Python. The latter option is not recommended.

•

•

•

•

•

•

•

Chapter 1

[15]

Most Unix-derived operating systems (Linux, Mac) come with the tar and gzip
utilities pre-installed. For users of these systems, unpacking the archive is as simple
as the following command:

shell> tar xvzf MySQL-python-1.2.3c1.tar.gz

The archive will then unpack into a directory called MySQL-python-1.2.3c1.

Windows users can use any of the following archive programs to unpack
the tarball:

PowerArchiver 6.1
7-Zip
WinZip

Once the file is unpacked, you need to ensure that you have the program
mysql_config in your path. For Mac users, this usually comes with the
MySQL installation itself. For Linux, if you are using bash or another shell with
command-line completion, you can check this by typing the following in a terminal:

shell> mysql_conf

Then press the tab key. If the command is completed to mysql_config, there are no
issues, otherwise your operating system does not know of any such command, and
you need to either find it or install it.

An alternative way of checking is to use the whereis command. Type the following
from the command-line:

shell> whereis mysql_config

If it is installed, the system will return its location. Then echo your current PATH
value by typing:

shell> echo $PATH

and compare the results. If the location of mysql_config is one of the values in your
path, there are no issues otherwise, we need to either find it or install it.

The mysql_config program comes with the MySQL client development libraries.
If you have these installed, check the directory that holds the MySQL client binary
(use whereis mysql if necessary). If you are unsure, you can check with a package
manager using the following commands:

shell> aptitude search mysql | grep client | grep dev

•

•

•

Getting Up and Running with MySQL for Python

[16]

This will work for Debian-based systems. Users of RPM-based systems should
substitute either yum search or urpmq for aptitude search. This query will return
results for the development files and for the MySQL client, and you can then see if
the appropriate package is installed. If it is not, you can install it with the install
argument (for either aptitude or yum) or by using urpmi.

If the mysql_config program is installed, but is outside your path, you need to
indicate its location to the MySQL for Python setup configuration. Navigate to the
MySQL-python-1.2.3c1 directory and open the file site.cfg in your favorite text
editor. The file is not large, and the following section is easily seen as the second part
of the file:

#The path to mysql_config
#Only use this if mysql_config is not on your PATH,
 or you have some weird setup that requires it
#mysql_config = /usr/local/bin/mysql_config

If mysql_config is outside of your path, uncomment the last line of the part cited
here and enter the correct path. So, if mysql_config is installed to:

/usr/local/bin/mysql/bin/mysql_config

The last line should read:

mysql_config = /usr/local/bin/mysql/bin/mysql_config

Then save the file and close it.

Next, we should build the package using the instructions that came with it in
setup.py. Use the following command to attempt a build without installing it:

shell> python setup.py build

If the process goes through without error, which it usually does, the build is
successful. If there is an error, it usually involves the lack of a module or software
package. In which case, confirm that you have all the prerequisites needed for the
task by checking the list in the readme file that comes with the archive.

Be sure to read the readme file that comes with the source code. It
contains a lot of help on the installation process.

Once the build is successful, installation can be done with the following command:

shell> python setup.py install

Chapter 1

[17]

Note that you will need super user access for this. If you do not
have administrative access to your system, you need to use one of
the other methods.

Importing MySQL for Python
The name of the project MySQL for Python is the current version of a project that
began under the rubric MySQLdb. Consequently, unlike most Python modules, the
MySQL for Python module is not called by its name, but by its historic handle. To
import the module, insert the following into a Python program or simply type it in a
following Python shell:

import MySQLdb

To make working with the module easier, you can also import it with an alias:

import MySQLdb as mysql

This allows us to use mysql instead of MySQLdb when we access parts of the module.

When you do this, several things will occur. You need not be concerned about most
of them, but you should be aware that MySQLdb depends upon a module called
_mysql. The _mysql module is largely a Python adaptation of the MySQL C API.

This is important to note because it is this API that you will access
through MySQL for Python.

MySQL for Python is a wrapper for accessing the _mysql API. A wrapper is
essentially a system of macros, or trusted code, that allows you to do common tasks
quickly. It allows you to program without having to repeat commonly used or
accessed variables and functions. The _mysql module is a powerful and proven way
of accessing a MySQL database. However, controlling it within a Python program
can pose a challenge for some, like driving a Formula 1 car for the first time. So
consider MySQL for Python as a system that allows you to harness the power
of a Formula 1 racing car even if you're merely driving a Hyundai.

Unlike some systems of macros, MySQL for Python still allows you to access
the classes and functions of _mysql. This is due to the nature of Python's
import functionality.

Getting Up and Running with MySQL for Python

[18]

Accessing online help when you need it
As with other modules, Python is able to provide online help about MySQL for
Python. In the following sections, we look at the MySQLdb and _mysql modules in
greater depth using Python's built-in help() function.

MySQLdb
After importing MySQLdb, you can read over the documentation that accompanies the
module. In a Python shell, type:

help(MySQLdb)

You will then see a manual page detailing all of the functions and classes of MySQL
for Python. It is well worth giving this a cursory read to familiarize yourself with the
module. In the course of this book, we will cover most of these items from various
angles.

As the help page indicates, MySQLdb includes the following modules:

connections: Initiating, maintaining, and closing a connection to MySQL
cursors: Managing the execution of queries
converters: For converting between MySQL data types as well as between
data types in MySQL and Python
times: Converting date and time values between MySQL and Python

Each of these is abstracted to the point of its own module in the source tree. Without
a doubt, the most important part of the module is connections.py, without which
we could not interface with MySQL. Where the others are static, the conversion
module, convertors.py, allows you to define your own convertor on-the-fly.

The MySQLdb module itself has only one operating class that does not pertain to
errors—DBAPISet. This is MySQLdb's internal object class for processing data. To
interface with MySQL, however, we use functions. Of the several listed at the end
of the MySQLdb help page, one uses connect() in every MySQLdb program.

At first glance, it may here be confusing to see that MySQLdb seems to have three
ways of connecting with a database. In the list of functions, these are as follows:

connect()

Connection

Connect

•

•

•

•

•

•

•

Chapter 1

[19]

Knowing the ins and outs of these functions is not necessary. It is, however,
important to know that they exist and to recognize that the latter two are simply
different ways of transferring data to the first. Connect() then passes the arguments
to the connections. Connection() class, MySQLdb's MySQL database connection
class, in the connections.py module.

_mysql
In looking over the module, you may also note that reference is made to the _mysql
module, but it is not explicitly detailed. This is because it is a dependency and not
part of the module itself. However, you can access the documentation for _mysql
without importing it directly by using the MySQLdb namespace:

help(MySQLdb._mysql)

In the previous discussion about connections.Connection(), we stopped
following the trail of the connection and any ensuing data transmission where
MySQLdb stopped. In reality, however, the data does not stop there. When a
connection or operational request is received by connections.Connection(),
it is processed and passed to _mysql and subsequently to the MySQL API in C
to perform it.

To handle this interface, _mysql uses two classes:

connection
result

The first is used to establish communication with MySQL and thus returns a
connection object. The second, as the name implies, returns a set containing the
results from a MySQL command that a program sends. These results can be either
the query results or an error. _mysql naturally passes the error to the calling process.
In the case of MySQLdb, we then have a comprehensive toolbox to handle the errors
that may arise.

•

•

Getting Up and Running with MySQL for Python

[20]

Connecting with a database
In making a phone call, one picks up the handset, dials a number, talks and listens,
and then hangs up. Making a database connection through MySQL for Python
is nearly as simple. The four stages of database communication in Python are
as follows:

Creating a connection object
Creating a cursor object
Interacting with the database
Closing the connection

Creating a connection object
As mentioned previously, we use connect() to create an object for the program's
connection to the database. This process automates logging into the database and
selecting a database to be used.

The syntax for calling the connect() function and assigning the results to a
variable is as follows:

[variable] = MySQLdb.connect([hostname], [username], [password],
 [database name])

Naming these variables as you assign the values is not required, but it is
good practice until you get used to the format of the function call. So for the
first few chapters of this book, we will use the following format to call the
connect() function:

[variable] = MySQLdb.connect(host="[hostname]",
 user="[username]",
 passwd="[password]",
 db="[database name]")

Let's say we have a database-driven application that creates the menu for a seafood
restaurant. We need to query all of the fish from the menu database in order to input
them into a new menu. The database is named menu.

•

•

•

•

Chapter 1

[21]

If you do not have a database called menu, you will obviously not be
able to connect to it with these examples. To create the database that we
are using in this example, put the following code into a text file with the
name menu.sql:

CREATE DATABASE `menu`;
USE menu;

DROP TABLE IF EXISTS `fish`;
SET @saved_cs_client = @@character_set_client;
SET character_set_client = utf8;
CREATE TABLE `fish` (
 `ID` int(11) NOT NULL auto_increment,
 `NAME` varchar(30) NOT NULL default ‘’,
 `PRICE` decimal(5,2) NOT NULL default ‘0.00’,
 PRIMARY KEY (`ID`)
) ENGINE=MyISAM AUTO_INCREMENT=27 DEFAULT
CHARSET=latin1;
SET character_set_client = @saved_cs_client;

LOCK TABLES `fish` WRITE;
INSERT INTO `fish` VALUES (1,’catfish’,’8.50’),(2,’catf
ish’,’8.50’),(3,’tuna’,’8.00’),(4,’catfish’,’5.00’),(5
,’bass’,’6.75’),(6,’haddock’,’6.50’),(7,’salmon’,’9.50
’),(8,’trout’,’6.00’),(9,’tuna’,’7.50’),(10,’yellowfin
tuna’,’12.00’),(11,’yellowfin tuna’,’13.00’),(12,’tuna’
,’7.50’);
UNLOCK TABLES;

Then log into your MySQL session from the directory in which the file
menu.sql is located and type the following:
source menu.sql

This will cause MySQL to create and populate our example database.

For this example, the database and program reside on the same host, so we can
use localhost. The user for the database is skipper with password mysecret. After
importing the MySQL for Python module, we would call the connect() function
as follows:

mydb = MySQLdb.connect(host="localhost",
 user="skipper",
 passwd="mysecret",
 db="menu")

Getting Up and Running with MySQL for Python

[22]

The connect() function acts as a foil for the connection class in connections.py
and returns an object to the calling process. So in this example, assigning the value of
MySQLdb.connect() to mydb renders mydb as a connection object. To illustrate this,
you can create the necessary database in MySQL, connect to it as shown previously,
then type help(mydb) at the Python shell prompt. You will then be presented with
large amounts of information pertinent to MySQLdb.connections objects.

Creating a cursor object
After the connection object is created, you cannot interact with the database until
you create a cursor object. The name cursor belies the purpose of this object. Cursors
exist in any productivity application and have been a part of computing since the
beginning. The point of a cursor is to mark your place and to allow you to issue
commands to the computer. A cursor in MySQL for Python serves as a Python-based
proxy for the cursor in a MySQL shell session, where MySQL would create the
real cursor for us if we logged into a MySQL database. We must here create the
proxy ourselves.

To create the cursor, we use the cursor() method of the MySQLdb.connections
object we created for the connection. The syntax is as follows:

[cursor name] = [connection object name].cursor()

Using our example of the menu database above, we can use a generic name cursor
for the database cursor and create it in this way:

cursor = mydb.cursor()

Now, we are ready to issue commands.

Interacting with the database
Many SQL commands can be issued using a single function as:

cursor.execute()

There are other ways to issue commands to MySQL depending on the results one
wants back, but this is one of the most common. Its use will be addressed in greater
detail in future chapters.

Chapter 1

[23]

Closing the connection
In MySQL, you are expected to close the databases and end the session by issuing
either quit or exit.

To do this in Python, we use the close() method of the database object. Whether
you close a database outright depends on what actions you have performed and
whether MySQL's auto-commit feature is turned on. By default, MySQL has
autocommit switched on. Your database administrator will be able to confirm
whether auto-commit is switched on. If it is not, you will need to commit any
changes you have made. We do this by calling the commit method of the database
object. For mydb, it would look like this:

mydb.commit()

After all changes have been committed, we can then close the database:
mydb.close()

Multiple database connections
In MySQL for Python, all database objects are discrete. All you need do is to connect
with each under a different name. Consider the following:

mydb1 = MySQLdb.connect(host="localhost",
 user="skipper",
 passwd="mysecret",
 db="fish")
mydb2 = MySQLdb.connect(host="localhost",
 user="skipper",
 passwd="mysecret",
 db="fruit")
cursor1 = mydb1.cursor()
cursor2 = mydb2.cursor()

The objects then function like any other variable or object. By calling their methods
and attributes separately, you can interact with either or even copy from one to
the other.

Getting Up and Running with MySQL for Python

[24]

Summary
In this chapter we have looked at where to find MySQL for Python, as it is not part
of Python by default. We have also seen how to install it on both Windows and
non-Windows systems—UNIX-like and Linux distributions. The authors of MySQL
for Python have taken the pain out of this by providing a very easy way to install
through an egg utility like EasyInstall.

Like most modules, MySQL for Python must be imported before you can use it in
Python. So we then looked at how to import it. Unlike most modules, we saw that
MySQL for Python needs to be imported by its earlier moniker, MySQLdb.

After that, we took a peek at what is waiting for us under the MySQL for Python
covers using help(). We saw that MySQL for Python is not an interface to MySQL
itself but to a MySQL Database API that is built into Python. It has a large number
of classes for handling errors, but only one for processing data (There are different
kinds of cursors). Further, it does not even use classes to access MySQL, but uses
functions to process and pass information to _mysql, which then passes it to the
C MySQL database interface.

Following this trail, we also saw that _mysql does not have a robust facility for
handling errors, but only passes them to the calling process. That is why MySQL
for Python has such a robust error handling facility.

Next, we saw how to connect to a MySQL database. As with most parts of Python,
this is easy for beginners. But the function used is also sufficiently robust to handle
the more complex needs of advanced solutions.

After connecting, we created a MySQLdb cursor and prepared to interact with the
database. This showed that, while there are many things that MySQLdb will take care
of for us (like connection closure), there are some things we need to do manually. In
this instance, it is creating the cursor object that represents the MySQL cursor.

Finally, we saw that one can connect to multiple databases by simply using different
object names for each connection. This has the consequence of necessitating different
namespaces as we refer to the methods and attributes of each object. But it also
allows one to bridge between databases across multiple hosts seamlessly and to
present a unified interface for a user.

In the next chapter, we will see how to form a MySQL query and pass it from Python
using variables from the system, MySQL, and the user.

Simple Querying
Record retrieval is without doubt the most common activity employed with regard
to MySQL and other relational databases. Like most computer programs, MySQL
functions on the basis of being invoked with parameters and returning results in
accordance with them. As we seen, Python acts as an intermediary to that process.
We can use it to access MySQL, login, and connect to a database of our choice.

In this chapter, we will look at the following:

Forming a MySQL query directly
Passing a query to MySQL
User-defined variables in a MySQL query
Determining characteristics of a database and its tables
Changing queries dynamically, without user input

Working through each of these points will help you at the end of the chapter, when
we get to the project: a command-line search tool.

A brief introduction to CRUD
The four basic functions of any persistent storage system like MySQL spell CRUD:

Create
Read
Update
Delete

These are key concepts, which each of the basic MySQL commands reflect.

•

•

•

•

•

•

•

•

•

Simple Querying

[26]

There is nothing technical about the words themselves, but the concepts are very
important. They represent the four activities that you can expect to be able to do
in every relational database system you use. There are several alternatives to this
acronym and keyword series (for example, SCUD for "select, create, update, and
delete" or SIDU for "select, insert, delete, and update"). The point of each of these
is that database functionality boils down to two sets of opposing activities:

Creating and deleting database objects (for example, databases,
tables, records)
Inserting and reading data (that is writing and reading)

Each of these will be addressed in the coming chapters. In this one, we start with
reading data using SELECT.

Forming a query in MySQL
In order to best understand how to submit a query through MySQL for Python,
it is important to ensure you understand how to submit a query in MySQL itself.
The similarities between the two outnumber the differences, but the first may seem
confusing if you don't properly understand the second.

MySQL statements have a basic structure. In following a set structure, they
are formed like natural language statements. Being a computer program, it
understandably responds very poorly to informational statements and only
moderately well to questions. Almost all MySQL statements have an imperatival
tone, expressing your command. This is reflective of the client-server relationship.
The computer is the servant who exists to do the bidding of yourself as the client or,
if you prefer, master.

The syntactic structure of a simple MySQL statement is not that different from the
language you use every day. Where English would have:

Give me everything from the staff table!

MySQL would need to hear:

SELECT * FROM staff;

Let's look at the MySQL statement, comparing it to the English in detail.

•

•

•

•

Chapter 2

[27]

SELECT
MySQL does not support natural language searching like Give me. Rather, like other
programming languages including Python, MySQL has a set of reserved key words.
These are largely single synonyms for common, core actions. For data retrieval, the
key word is SELECT. It could have been GIMME or any of a score of similar ways of
saying the same thing, but MySQL is consonant with the Zen of Python:

There should be one—and preferably only one—obvious way to do it

Therefore, the MySQL developers settled on a single keyword—one that just
happens to be compliant with the SQL standard.

* (asterisk)
Being read up on your regular expressions, I am sure you recognize this universal
quantifier. While it is one of the most commonly used, MySQL supports several
metacharacters that you can use to nuance your searches.

MySQL supports different kinds of metacharacters in different contexts.
The following is a full list of metacharacters. (Note that not all of them
may be supported in a given situation.)

.: To match any single character
?: To match zero or one character
*: To match zero or more characters
+: To match one or more characters
{n}: To match an expression n times
{m,n}: To match an expression a minimum of m and a maximum
of n times
{n,}: To match an expression n or more times
^: Indicates the bit-level indicator at the beginning of a line
$: Indicates the bit-level indicator at the end of a line
[[:<:]]: To match the beginning of words
[[:>:]]: To match the ending of words
[:class:]: To match a character class
[:alpha:]: For letters
[:space:]: For whitespace
[:punct:]: For punctuation
[:upper:]: For upper case letters
[abc]: To match one of the enclosed characters
[^xyz]: To match any character other than those enclosed
|: Separates alternatives within an expression

•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•
•
•

Simple Querying

[28]

In the case of the SELECT command, the asterisk is the only metacharacter supported.
In addition to the asterisk, however, SELECT also supports several arguments used to
quantify results:

ALL: All matching rows (synonymous to using an asterisk (*)
DISTINCT: Sort the results set into unique values
DISTINCTROW: Where the entire record is unique

Each of these can be prefaced before the field to be quantified as illustrated here
using the database structure from the last chapter:

SELECT DISTINCT id FROM menu;

This would return the values of the id column from the menu table and remove any
duplicates from the results.

FROM
As with the English equivalent, MySQL needs some context in order to retrieve
anything. In English, if one simply said Give me! without non-verbal cues for the
intended context, the listener would rightly be confused. So here we tell MySQL
from which table in the current database we want it to extract information.

Note that this is technically optional. Leaving it off, however, typically means that
you are using MySQL's built-in datasets. For example, here is a statement using the
built-in functions for the current date, user, and version (the \G is the same command
as \g, but it tells MySQL to display the results vertically):

mysql> SELECT NOW(), USER(), VERSION()\G

*************************** 1. row ***************************

 NOW(): 2009-08-29 12:29:23

 USER(): skipper@localhost

VERSION(): 5.1.31-1ubuntu2

1 row in set (0.00 sec)

staff
This is merely the name of the table to be searched. In English, there are many
locations from which one may desire something. That is why we would need to
clarify that we want the items from the far table. MySQL, on the other hand, only
understands things in terms of databases and tables and so understands as the
name of a table whatever immediately follows the FROM keyword.

•

•

•

Chapter 2

[29]

; (semicolon)
The semicolon is the default statement delimiter in MySQL. When creating a
MySQL script or interacting with MySQL dynamically through its shell, leaving off
a semicolon at the end of a statement will result in either a second prompt or, if you
press the matter, an error being thrown. As we will see shortly, the syntax of MySQL
for Python and Python itself mandates a different way of showing the end of the
line. Therefore when passing MySQL queries in Python, we do not need to end any
statements with the semicolon.

You may wonder why certain portions of the MySQL query are capitalized. It
is a standard presentation format for MySQL statements to present the static
or standard elements of a MySQL statement in capitals. Variable parts of the
statement, however, are case sensitive and must be called with the same case in
which they were created (otherwise, MySQL will throw an error). This matter of
capitalization is not significant if you interact with MySQL directly, from a MySQL
prompt. There, MySQL will understand your statements whether they be in all caps
or lowercase. However, in your code, proper capitalization is critical to making
your SQL statements readable to the next developer—both in Python and in
MySQL scripts.

Where the semicolon is the statement delimiter in the MySQL shell, the backslash (\)
is used to delimit lines within a statement. So, if you want to break up a statement
but not have it executed when you press return, simply use a backslash at the end of
each line of the statement. For example:

mysql> SELECT \

 -> * \

 -> FROM \

 -> menu;

Other helpful quantifiers
The previous discussion offers an overview of the SELECT command and its most
common arguments. There are many other ways to nuance the data. In addition to
FROM, you can also employ SELECT with the following optional arguments.

Simple Querying

[30]

WHERE
WHERE is used to declare a condition under which MySQL is to narrow the results of
the search. The basic syntax of the clause is:

[WHERE where_condition]

For example:

mysql> SELECT * FROM menu WHERE id='5';

+----+-------+-------+

| id | name | price |

+----+-------+-------+

| 5 | trout | 6.00 |

+----+-------+-------+

1 row in set (0.00 sec)

GROUP BY
GROUP BY allows you to group results according to one of the following
three parameters:

col_name: Is the name of one of the table's columns
expr: Is a regular expression
position: Is a position in the table

Once grouped, you can then tell MySQL to list the results in either ASCending or
DESCending order through ASC and DESC, respectively. The former is the default.
Additionally, MySQL provides for a summative line at the end of the results through
the use of WITH ROLLUP.

The syntax of a GROUP BY clause is:

GROUP BY {col_name | expr | position} [ASC | DESC], [WITH ROLLUP]

•

•

•

Chapter 2

[31]

To appreciate the effect of GROUP BY, you can retrieve all of the values from a table.

mysql> SELECT * FROM menu;

+----+---------------+-------+

| ID | NAME | PRICE |

+----+---------------+-------+

| 4 | catfish | 5.00 |

| 2 | bass | 6.75 |

| 6 | haddock | 6.50 |

| 3 | salmon | 9.50 |

| 5 | trout | 6.00 |

| 1 | tuna | 7.50 |

| 7 | yellowfin tuna | 12.00 |

+----+---------------+-------+

7 rows in set (0.00 sec)

Using GROUP BY on just one column can give us the same list in alphabetical order:

mysql> SELECT * FROM menu GROUP BY name;

+----+----------------+-------+

| id | name | price |

+----+----------------+-------+

| 2 | bass | 6.75 |

| 4 | catfish | 5.00 |

| 6 | haddock | 6.50 |

| 3 | salmon | 9.50 |

| 5 | trout | 6.00 |

| 1 | tuna | 7.50 |

| 7 | yellowfin tuna | 12.00 |

+----+----------------+-------+

7 rows in set (0.00 sec)

Simple Querying

[32]

If we had multiple entries for some of the fish (for example, tuna and yellowfin
tuna), it could also be used to give a count by field value.

mysql> SELECT name, count(*) FROM menu GROUP BY name;

+----------------+----------+

| name | count(*) |

+----------------+----------+

| bass | 1 |

| catfish | 1 |

| haddock | 1 |

| salmon | 1 |

| trout | 1 |

| tuna | 2 |

| yellowfin tuna | 2 |

+----------------+----------+

7 rows in set (0.00 sec)

More on how to use the modifiers of GROUP BY can be found in Section 11.12 of the
MySQL manual.

HAVING
As the WHERE clause has already been discussed, one might wonder rightly—what
is the point of the HAVING clause? The WHERE clause is used for simple facts and
does not support aggregate evaluations. The HAVING clause is used for aggregate
functions. It can be used to replace WHERE, but to do so is generally viewed as poor
coding because it violates the SQL standard.

The HAVING clause is used to quantify results according to aggregate functions. For
this reason, it is usually used in conjunction with the GROUP BY clause.

The basic syntax of the HAVING clause is:

HAVING where_condition

Chapter 2

[33]

Carrying on with the previous menu example, a basic example of this is:

mysql> SELECT * FROM menu GROUP BY name HAVING id>'3';

+----+----------------+-------+

| id | name | price |

+----+----------------+-------+

| 4 | catfish | 5.00 |

| 6 | haddock | 6.50 |

| 5 | trout | 6.00 |

| 7 | yellowfin tuna | 12.00 |

+----+----------------+-------+

4 rows in set (0.00 sec)

For an example closer to real life a video rental store that wants to know which
customers rent the most videos might use a query like this one:

mysql> SELECT customer_id,count(*) AS cnt FROM rental GROUP BY customer_
id HAVING cnt> 40;

+-------------+-----+

| customer_id | cnt |

+-------------+-----+

| 75 | 41 |

| 144 | 42 |

| 148 | 46 |

| 236 | 42 |

| 526 | 45 |

+-------------+-----+

5 rows in set (0.05 sec)

This shows the customer number followed by the number of total rentals in the
record of rentals for each customer whose aggregate custom exceeds 40 videos.

ORDER BY
As the name implies, the ORDER BY clause is used to tell MySQL how to order the
results of a query. The basic syntactical structure of this clause is as follows:

[ORDER BY {col_name | expr | position} [ASC | DESC], ...]

Simple Querying

[34]

While the ORDER BY clause can be used in conjunction with the GROUP BY modifiers,
this is typically not necessary. The following two examples illustrate why:

mysql> SELECT * FROM menu GROUP BY name ORDER BY id DESC;

+----+----------------+-------+

| id | name | price |

+----+----------------+-------+

| 7 | yellowfin tuna | 12.00 |

| 6 | haddock | 6.50 |

| 5 | trout | 6.00 |

| 4 | catfish | 5.00 |

| 3 | salmon | 9.50 |

| 2 | bass | 6.75 |

| 1 | tuna | 7.50 |

+----+----------------+-------+

7 rows in set (0.00 sec)

mysql> SELECT * FROM menu ORDER BY id DESC;

+----+----------------+-------+

| id | name | price |

+----+----------------+-------+

| 7 | yellowfin tuna | 12.00 |

| 6 | haddock | 6.50 |

| 5 | trout | 6.00 |

| 4 | catfish | 5.00 |

| 3 | salmon | 9.50 |

| 2 | bass | 6.75 |

| 1 | tuna | 7.50 |

+----+----------------+-------+

7 rows in set (0.00 sec)

Because the ORDER BY is applied after the GROUP BY, it largely abrogates the need for
the grouping.

Chapter 2

[35]

LIMIT
The LIMIT clause is used to restrict the number of rows that are returned in the result
set. It takes two positive integers as arguments. The first number indicates the point
at which to start counting and counts from zero for that process. The second number
indicates how many times to increment the first number by one in order to determine
the desired limit.

The syntax of the LIMIT clause is as follows:

LIMIT {[offset,] row_count | row_count OFFSET offset}

The following four examples show how LIMIT may be used to reduce the returned
results neatly. Used in an iterative fashion, incrementing the parameters of a LIMIT
clause allows you to step through results.

In this first example, LIMIT is applied to an alphabetic listing of fish names. The
table in question is the same one we used previously for GROUP BY. Note that the id
numbers are out of sequence.

mysql> SELECT * FROM menu GROUP BY name LIMIT 3,4;

+----+----------------+-------+

| id | name | price |

+----+----------------+-------+

| 3 | salmon | 9.50 |

| 5 | trout | 6.00 |

| 1 | tuna | 7.50 |

| 7 | yellowfin tuna | 12.00 |

+----+----------------+-------+

4 rows in set (0.00 sec)

In order to get the id numbers sequenced correctly, we employ an ORDER BY clause to
prep the data before applying the terms of the LIMIT clause to it.

mysql> SELECT * FROM menu ORDER BY id LIMIT 3,4;

+----+----------------+-------+

| id | name | price |

+----+----------------+-------+

| 4 | catfish | 5.00 |

| 5 | trout | 6.00 |

| 6 | haddock | 6.50 |

| 7 | yellowfin tuna | 12.00 |

+----+----------------+-------+

4 rows in set (0.00 sec)

Simple Querying

[36]

These final two examples illustrate how to apply LIMIT to searches that could easily
return scores, if not hundreds or thousands, of hits.

mysql> SELECT * FROM menu ORDER BY id LIMIT 2,3;

+----+---------+-------+

| id | name | price |

+----+---------+-------+

| 3 | salmon | 9.50 |

| 4 | catfish | 5.00 |

| 5 | trout | 6.00 |

+----+---------+-------+

3 rows in set (0.00 sec)

mysql> SELECT * FROM menu LIMIT 2,4;

+----+---------+-------+

| id | name | price |

+----+---------+-------+

| 3 | salmon | 9.50 |

| 4 | catfish | 5.00 |

| 5 | trout | 6.00 |

| 6 | haddock | 6.50 |

+----+---------+-------+

4 rows in set (0.00 sec)

LIMIT and HAVING may seem very similar as they both work to narrow
the aggregate. The difference between them lies in the timing of their
application by MySQL. HAVING is applied as a parameter of the search
before MySQL actions the query. The LIMIT clause, on the other hand, is
applied after the search results have been returned.
If you are programming for a web application and your database and web
server are located on a single machine, you need to conserve your server
resources. Therefore, you almost certainly want to use HAVING instead of
LIMIT. If you are trying to reduce your search time, again, use HAVING.
However, if your desired hits will comprise a sizable portion of the
results otherwise, or your database server, application server, and web
server are each discrete systems from each other, then you might consider
using LIMIT. In the main, however, LIMIT allows MySQL to use more
resources than HAVING because the former is applied after the query is
already processed.

Chapter 2

[37]

INTO OUTFILE
INTO OUTFILE allows for the rapid output of tabular results to a text file on the local
host. Its basic syntax is as follows:

INTO OUTFILE 'file_name'

For example, one could use:

mysql> SELECT * FROM menu ORDER BY id LIMIT 3,4 INTO OUTFILE '/tmp/
results.txt';

Query OK, 4 rows affected (0.00 sec)

This would output the results of the query to a file results.txt in the /tmp
directory of the server.

More information can be found in the MySQL manual, Section 12.2.8
(URL: http://dev.mysql.com/doc/refman/5.1/en/select.html). It is
understood that MySQL for Python allows a program to process the data and
output the results using Python's own I/O calls.

Passing a query to MySQL
We have just seen how to form a query for a generic MySQL session. While that
was not particularly difficult, using MySQL for Python is even easier. For this next
section, we will be working against a database fish with a table menu that has the
following contents:

+----+----------------+-------+

| id | name | price |

+----+----------------+-------+

| 1 | tuna | 7.50 |

| 2 | bass | 6.75 |

| 3 | salmon | 9.50 |

| 4 | catfish | 5.00 |

| 5 | trout | 6.00 |

| 6 | haddock | 6.50 |

| 7 | yellowfin tuna | 12.00 |

+----+----------------+-------+

Simple Querying

[38]

As discussed in Chapter 1, Python's interface with MySQL requires a cursor. It is
through the cursor object that we pass commands to MySQL. So, we import MySQL
for Python, log into our database fish and create the cursor as follows:

import MySQLdb
mydb = MySQLdb.connect(host = 'localhost',
 user = 'skipper',
 passwd = 'mysecret',
 db = 'fish')
cur = mydb.cursor()

A simple SELECT statement
To pass a command to MySQL, we use the execute() method that we briefly
covered in the last chapter. The execute() method, as the name implies, expects an
argument of what is to be executed by Python. In other words, it takes the MySQL
sentence or statement as its argument. Its basic syntax is as follows:

results_variable = cursor_handle.execute('MySQL statement')

In practice, it looks like this:

command = cur.execute('SELECT * FROM menu')

As you might surmise from the previous discussion on SELECT, this returns all rows
of the table menu.

You will notice that we did not have to specify the database in the execute()
call. This is because it was already specified in the MySQLdb.connect() call. Each
connection represents one database being accessed in the name of one user on one
host. If any of those dynamics need to change, a new connection object becomes
necessary. It is possible to create a connection without declaring a database at
the outset, but a database must be specified before a cursor can be created or a
query made.

Unlike in the MySQL shell, the execute() call here does not immediately return
the results. They are held in system memory (RAM) until you tell MySQL for
Python what you want to do with them. This is another reason why it is
important to mind your use of system resources in the use of HAVING and
LIMIT, as mentioned previously.

For the purposes of illustration, we can pull down all of the results in one go. To do
this, we use the fetchall() method of the cursor object.

results = command.fetchall()

Chapter 2

[39]

At this point, the results have now passed from MySQL for Python into the calling
program's resource matrix. The fetchall() method returns its results as a series of
tuples. Printing the value of results shows the following:

>>> print results

((1L, 'tuna', Decimal('7.50')), (2L, 'bass', Decimal('6.75')), (3L,
'salmon', Decimal('9.50')), (4L, 'catfish', Decimal('5.00')), (5L,
'trout', Decimal('6.00')), (6L, 'haddock', Decimal('6.50')), (7L,
'yellowfin tuna', Decimal('12.00')))

This is obviously far from human-friendly. However, we can now use Python's own
data-handling resources to parse it. In programming terms, we now have greater
control over our data and can present it as we want. So let's create a loop to iterate
through the results and print the results in a formatted way.

>>> for record in results:

... print record[0] , “-->”, record[1] , “ @”, record[2], “each”

...

1 --> tuna @ 7.50 each

2 --> bass @ 6.75 each

3 --> salmon @ 9.50 each

4 --> catfish @ 5.00 each

5 --> trout @ 6.00 each

6 --> haddock @ 6.50 each

7 --> yellowfin tuna @ 12.00 each

Modifying the results
The last query could easily have returned more results than we could use.
As mentioned previously, this is why the SELECT command comes with a
comprehensive suite of modifiers to nuance one's query and, hopefully, use a
minimal amount of system resources.

To use GROUP BY, ORDER BY, or any of the other clauses that one can add to a SELECT
statement, one simply adds them to the MySQL statement that is passed to the
execute() method.

Simple Querying

[40]

If you wanted to retrieve information only on fish whose price is greater than $7, you
would need to sort through the data again and find the record with the matching
name. Better to let MySQL do the dirty work. Using the preceding simple query
(see Where under Other helpful quantifiers), we can do the following:

command = cur.execute("""SELECT * FROM menu WHERE price > 7""")
results = command.fetchall()
for record in results:
 print record[0], ". ", record[1], "(%s)" %record[2]

The results would be:

1 . tuna (7.50)

3 . salmon (9.50)

7 . yellowfin tuna (12.00)

Similar statements can be passed for each of the SELECT clauses discussed above.

Using user-defined variables
What if you want to specify a different price floor every time you run the search?
What if you didn't want to use a floor but specify the price exactly? What if you
wanted to reuse part of the statement and automate queries by fish name instead
of retrieving all of them at once? Under such circumstances, you need to be able to
handle variables in your SELECT statements.

MySQL for Python passes variables to MySQL in the same way that Python formats
other kinds of output. If we wanted to specify just the floor of the search, we would
assign the variable as any other and pass it to the execute() method as a string.
Consider the following snippet from a Python terminal session:

>>> value = "7.50"

>>> command = cur.execute("""SELECT * FROM menu WHERE price = %s"""
%(value))

>>> results = cur.fetchall()

>>> for record in results:

... print record[0], ". ", record[1], "(%s)" %record[2]

...

1 . tuna (7.50)

Chapter 2

[41]

If we wanted the user to have the option of specifying the price precisely or using
comparative expressions, we can add in that option along with making the previous
variable user-defined.

>>> operation = input("operation: ")

operation: '='

>>> value = input("value: ")

value: 7.50

>>> command = cur.execute("""SELECT * FROM menu WHERE price %s %s"""
%(operation, value))

>>> results = cur.fetchall()

>>> for record in results:

... print record[0], ". ", record[1], "(%s)" %record[2]

...

1 . tuna (7.50)

As you may have surmised by now, the execute() method is simply passing the
MySQL statement as a string to _mysql, which in turn passes it to the C database
API, which in turn passes it to MySQL. This being the case, we can define the
statement separately and pass it to execute() as a variable. Consider the following
replacement for the latter half of the preceding code.

>>> statement = """SELECT * FROM menu WHERE price %s %s""" %(operation,
value)

>>> command = cur.execute(statement)

>>> results = cur.fetchall()

>>> for record in results:

... print record[0], ". ", record[1], "(%s)" %record[2]

...

1 . tuna (7.50)

Determining characteristics of a database
and its tables
For reasons of security, one simply must not rely on the user to know the database
structure in order to make a query. Even if the user does, one should never write
code that assumes this. You never know who the user is and what nefarious results
will be sought by the user. Given that there are more people than you know who
want to break your code and exploit your data, it is best practice to restrict the user's
knowledge of the database and to verify the integrity of any data the end user inputs
into the program.

Simple Querying

[42]

Without doubt, the best way to restrict the user's knowledge of the database is to
provide set options for the user in a way that the user cannot edit. In graphical user
interfaces (GUIs), this is done most often by drop-down menus and radio buttons.
In terminal-based programs, one lists the options. The former keeps the programmer
in control of the environment and so funnels the user to the point of either choosing
the set options or not using the application. In the case of a terminal-based program
or in the case of the text boxes of a GUI, one still has to evaluate the data input
by the user. Otherwise, a mishandled error opens the system up for technological
vandalism or even burglary.

To evaluate data input from the user, one typically identifies parameters for the
variable installed and then validates the input through a series of conditionals.
Such parameters can include criteria such as string length, variable type, alphabet
characters only, alphanumeric characters, or others. If the data fails anywhere along
the way, the program prints a customized error message to the user. The error
message is not the message thrown by Python or other, ancillary process. Rather, it is
the message given when that error message is detected. The user is then directed to
do a given action—contacting their administrator, changing their input, and so on.

The scenario works well for most cases. There are, however, instances in
database-driven applications where one must implement more advanced measures.
For example, if you had several tables that could be searched, you would not
necessarily want to have a different program for each one. Instead, it makes better
sense to abstract the problem of search to where the same search function can be
applied to any of the tables at the user's discretion. The problem breaks down
as follows:

1. Determine what tables exist
2. Assign a number to each one for a terminal-based program
3. Offer the options to the user
4. Allow the user to detail a search query
5. Ensure that the data input for the table is one of the options
6. Run the query
7. Print the results

Determining what tables exist
In a MySQL session, the tables of a database are available through the
following command:

SHOW TABLES in <database name>;

Chapter 2

[43]

This allows you to specify a different database from that which you are using at
the time.

If you specify the database to be used in the argument to MySQLdb.connect(), then
you do not need to specify the database name.

In Python, we pass the SHOW TABLES statement to execute() and process the
returned data.

>>> statement = """SHOW TABLES"""

>>> command = cur.execute(statement)

>>> results = cur.fetchall()

Previously, here we would iterate over the results and output the parts we want.
Instead, we will initiate a list and append the table names to it.

>>> table_list = []

>>> for record in results:

... table_list.append(record[0])

Assigning each table a number
While we detailed a necessary part of the pseudocode in the last section, it is
not wholly necessary for us in this process. Using a list, we can access each item
discretely without having to give it a number. However, in order to ensure that the
process is plain to see, we could process the list into a dictionary, using the item's
ordinal place plus one as the key value.

>>> item_dict = {}

>>> for item in xrange(1,len(table_list)):

... item_dict[item-1] = table_list[item-1]

The effect is that the first item of the list, which normally is accessed with subscript 0,
is assigned the key value 1. All other tables are handled similarly, and we are set to
scale to any number of tables in the database.

Offering the options to the user
Offering the options to the user, we simply print out the key value as the indicator
for the table name.

>>> for key in item_dict:

... print "%s => %s" %(key, item_dict[key])

>>> choice = input("Please enter your choice of table to be queried. ")

Simple Querying

[44]

To verify the input, we would then check that the value is an integer within the same
range as those offered. As shown below, however, we can also code the program
to be self-validating. Note, however, that this should be complementary to proper
security checks. One never knows with what haste the next person who edits the
code will approach the task.

Allowing the user to detail a search query
Now, the user can be allowed to input a value for which he or she would like to
search. As shown previously, this can be any value in the database. However,
realistically speaking, we need to give structure to the choice-making process.
We can do this at the same time that we validate the user's choice of database by
requesting of MySQL the names of the columns for the given table.

>>> try: table_choice = item_dict[choice]

... except: print 'Invalid input. Please try again.'

If the user's choice reconciles with item_dict, then we get the name of the table
to search. We can then ask MySQL for Python to return the column headings of
that table.

>>> statement = """DESCRIBE %s""" %item_dict[choice]

>>> command = cur.execute(statement)

>>> results = cur.fetchall()

>>> column_list = []

>>> for record in results:

... column_list.append(record[0])

With the column names in a list, we can offer them to the user in the same way as the
table names.

>>> for i in xrange(0, len(column_list)):

... print "%s. %s" %(i+1, column_list[i])

...

1. id

2. name

3. price

>>> table_choice = input("Please input the number of the table you wish
to query. ")

Chapter 2

[45]

Once again, we would check that the value entered is an integer within the range
offered. This can be affected with a try-except-else statement:

while True:
 try:
 if column_choice > 0:
 if column_choice < len(column_list):
 continue
 else:
 break
 else:
 break
 except:
 print "Invalid input. Please try again."
 else:
 break

From here one would then solicit the search query from the user and submit it
to MySQL.

Changing queries dynamically
But what if the user does not want to submit a precise query but needs a list of the
possibilities? There are a couple of ways to clarify the search. We could first keep
a list of the common search queries. This is something done often by the likes of
Google and Yahoo!. This works very well with large datasets served through web
servers because it uses a static list of terms and simply culls them out. For more
dedicated applications, one can use MySQL's pattern matching ability to present
known options on-the-fly.

Pattern matching in MySQL queries
Where Python's regular expression engine is very robust, MySQL supports the two
following metacharacters for forming regular expressions:

%: Zero or more characters matched in aggregate
_: Any single character matched individually

Pattern matching is always a matter of comparison. Therefore, with either of these,
never use operators of equality.

SELECT * FROM menu WHERE name = 's%'; WRONG
SELECT * FROM menu WHERE name <> 's%'; WRONG

•

•

Simple Querying

[46]

Instead, use the keywords LIKE and NOT LIKE.

SELECT * FROM menu WHERE name LIKE 's%'; RIGHT
SELECT * FROM menu WHERE name NOT LIKE 's%'; RIGHT

Using metacharacters, one can match records using very irregular terms. Some of the
possible combinations follow below:

s%: A value that begins with the letter s
%s: A value that ends with the letter s
%s%: A value that contains the letter s
s%l: A value that begins with s and ends with l
s%l%: A value that begins with s and contains at least one instance of
the letter l
s_l%: A value that begins with s and whose third letter is l
_____: A five letter value (that is five underscore characters in succession)
__%: A value with at least two characters

Putting it into practice
For a smaller dataset or even larger datasets served over low-contest or no-contest
connections (for example local servers or dedicated LAN connections), there is
the option of running a live query to present the user with the possible options.
If the user has specified the database and table to be used, as in the example seen
previously, then it is a small matter to match patterns in a column using LIKE and a
regular expression.

The MySQL sentence for what we are doing, along with its results, is as follows:

mysql> SELECT name FROM menu WHERE name LIKE 's%';

+--------+

| name |

+--------+

| salmon |

| sole |

+--------+

2 rows in set (0.00 sec)

•

•

•

•

•

•

•

•

Chapter 2

[47]

It is important to phrase the query in such a way as to narrow the
returned values as much as possible.
Here, instead of returning whole records, we tell MySQL to
return only the namecolumn. This natural reduction in the data
reduces processing time for both MySQL and Python. This saving
is then passed on to your server in the form of more sessions able
to be run at one time.

In Python, the preceding statement would look like this:

column = 'name'
term = 's%'
statement = """select %s from menu where name like '%s'""" %(column,
term)

Using the conversion specifier (%s), this code can easily be adapted for more
dynamic uses.

Having restricted the parameters of the search, we are in greater control of the results
and can therefore anticipate the number of fields in each record returned. We then
have to execute the query and tell the cursor to fetch all of the records. To process the
records, we iterate over them using a pattern similar to what we used previously:

command = cur.execute(statement)
results = cur.fetchall()

column_list = []
for record in results:
 column_list.append(record[0])

print "Did you mean:"
for i in xrange(0, len(column_list)):
 print "%s. %s" %(i+1, column_list[i])
option = raw_input ('Number:')
intoption = int(option)

The results for this code are:

Did you mean:

1. salmon

2. sole

Number:

Simple Querying

[48]

Naturally, we must then test the user input. After that, we can process the query and
return the results.

This example is shown using terminal options so we do not use any JavaScript to
transfer the options. However, in modern day reality, any application that relies on
a web browser—either for background processing or for a primary interface, can use
this code with minor modifications.

Project: A command-line search utility
This chapter has been about querying MySQL from Python. As a project to finish
it out, we will build a command-line search utility. Rather than ask the user for
the search term, we will expect the user to state the term as an argument for the
command-line invocation.

With a bit more code for this project, we could create a GUI for this
program. GUI programming increases the complexity of the code. How
much more complex it gets depends on the library being used, but it is
nonetheless unnecessary for what we need to illustrate in this project.
Until we are certain that we have a database and can connect to it, it is
best to keep it simple.

Now, it is true that we could simply take input and feed it through MySQL for
Python as a generic SELECT * statement. The logic for this bare bones implementation
has been illustrated previously to a great extent. We can create something a bit more
sophisticated.

The following characteristics should apply to our search utility:

The user calls it from the command line (that is, shell prompt)
The search term is defined at the time of calling
If the -t flag is issued, the following term is the table to be used; default is to
search all tables
If the -f flag is issued, the output is formatted by table
If the -o flag is issued, the output is written to the given file

To illustrate, calling the application searchme.py, one should be able to call the
application as follows:

./searchme.py -t menu -f -o output.txt query

•

•

•

•

•

Chapter 2

[49]

This should search the table menu from the database fish for the term query,
format the output, and write it to a file called output.txt. You may need to nuance
this statement depending on your operating system's requirements. For example,
Windows users should not include ./ before the program call. For more help with
calling Python on Windows, see the Python Windows FAQ at the following URL:
http://www.python.org/doc/faq/windows/.

Preparing a database for searching
For this project, however, we will leave behind the fish database for the moment
and use the world sample database available from MySQL. For users of Linux, Unix,
and Mac OS X, download the database from the following URL:

http://downloads.mysql.com/docs/world.sql.gz

To unpack this archive, simply issue the appropriate unpacking command:

gunzip world.sql.gz

Windows users, or users without the utility gunzip, should use the ZIP file:

http://downloads.mysql.com/docs/world.sql.zip

Then use an archive manager to unpack the ZIP file.

Regardless of your platform, you should then be left with a file world.sql. From
the directory in which that file resides, log into MySQL. You first need to create a
database world and then import the file.

1 To create the database, type the following at the prompt:
CREATE world;

2 Then tell MySQL to use that database:
USE world;

3 Import the file with the following MySQL command:
SOURCE world.sql;

MySQL will then populate the database world with three tables of data: City,
Country, and CountryLanguage.

Simple Querying

[50]

Planning your work, then working your plan
All of the flags mentioned as characteristics previously are nothing more than added
functionality to the core function of searching. Our first order of business should
therefore be to create well-abstracted search functionality. Then we can build on it
to allow for the functionality of each of the given flags. So our plan of development
may be summarized as follows:

Develop a well-abstracted search functionality.
Implement specification of the search term from the command-line.
Implement and incorporate the functionality of each flag in turn:
-t, -f, and –o.

Develop a well-abstracted search functionality
Abstraction is the secret of all computer programming. It is what enables computer
programs to be run for more than one single task. In the early days of computing,
programs were written with very narrow applications. This was usually due to limits
in the technology involved. In the modern day, the obtuseness of some languages
still keeps them from being applied beyond certain domains (for example, BIOS
systems). Even then, languages such as Forth are so difficult to follow that they
are largely viewed as write-once-and-forget-about-it. Fortunately, Python offers us
significant flexibility, and this flexibility is carried through in MySQL for Python.
This allows us to create the infrastructure of a search while allowing us to specify
select parts of it.

In this project, we will specify the host, database, and user information for the
database connection. The rest of the query information, however, will be open
to the user. First, however, we begin our program with a shebang (line):

#!/usr/bin/env python

This is a Linux shebang line that calls whichever Python interpreter is set for general
use in the environmental variables of the shell. If we want a specific interpreter, we
can naturally edit this and call the other interpreter directly. This format will also
work on newer versions of Mac OS. If you are on Windows, you will naturally have
to modify this line according to the directory structure of your Windows installation.
A common Windows shebang line is:

#!c:/Python/python.exe -u

Ensure that you do not forget the trailing -u flag. This puts Python into an
unbuffered mode on Windows systems.

•

•

•

Chapter 2

[51]

Next, we import MySQL for Python. Until we are ready to add more functionality
beyond a hard-coded search query, we should hold off on importing more modules.

import MySQLdb

Now we are ready to create a database connection. You will recall from the first
chapter that the format for creating a database connection is:

[variable] = MySQLdb.connect(host="[hostname]",
 user="[username]",
 passwd="[password]",
 db="[database name]")

For the world database, using user user and password p4ssw0rd on the localhost,
the invocation for the connection is:

mydb = MySQLdb.connect(host = 'localhost',
 user = 'user',
 passwd = 'p4ssw0rd',
 db = 'world')

We then must create the cursor:

cur = mydb.cursor()

We are then ready to construct a query infrastructure. To ensure as much flexibility
as possible, we simply pull all of the variables out of the MySQL SELECT syntax and
define them separately.

table = 'City'

column = 'Name'

term = 's%'

statement = """select * from %s where %s like '%s'""" %(table, column,
term

This hardwiring of the search query allows us to test the connection before coding
the rest of the function. By defining the variables discretely, we make it easier to
change them to user-determined variables later.

There may be a tendency here to insert user-determined variables
immediately. With experience, it is possible to do this. However, if there
are any doubts about the availability of the database, your best fallback
position is to keep it simple and hardwired. This reduces the number of
variables in making a connection and helps one to blackbox the situation,
making troubleshooting much easier.

Simple Querying

[52]

With the query constructed, we can execute it and get the results:

command = cur.execute(statement)

results = cur.fetchall()

You can then test the connection with the following code:

record_list = []

for record in results:

 record_list.append(record[0])

for i in xrange(0, len(record_list)):

 print "%s. %s" %(i+1, record_list[i])

The logic of this code is discussed previously in this chapter so we will pass over it
here as understood.

If you execute the program, the output should scroll off the screen and you should
get a list of 431 cities. The last entry should read as follows:

431. Santa Monica

Knowing that we can interact with the database, we can now go to the next step,
specifying the search term from the command-line.

Specifying the search term from the
command-line
Python allows you to receive a command-line argument using the sys module. If the
only argument expected on the command-line is the name of the query, we could get
by with code like this:

import sys
...
query = sys.argv[1]

Alas, life is seldom so simple. If we were to follow this route of development, all the
flags mentioned previously for this program would be mandatory and have to be
submitted every time the program ran. So, for the sample call on page 24, we would
have to program for six fixed arguments everytime the program is called. Recall that
the command read:

./searchme.py -t menu -f -o output.txt query

Chapter 2

[53]

The arguments for sys.argv that would be required are:

0 the command itself, naturally
1 the flag -t
2 the table name
3 the -f flag
4 the flag -o
5 the output file name
6 the search string for the query

If we pulled all the flags and left only the arguments in a set order, we would still
have three arguments. This makes the program cumbersome and makes calls to it
error-prone.

By far, the better way forward is to use the module optparse. Importing optparse
incorporates high-level support for processing arguments at runtime. Another
alternative is the getopt module, but this is not as robust or as easy to use.

For consistency's sake, let's edit the preamble of our Python program to import
the module.

import optparse

The optparse module provides an OptionParser class that handles both
option processing and error handling. It also provides a standardized interface
similar to other programs (for example, -h for help). All for the meager cost of a
module import.

To access all this option parsing goodness, we need to instantiate an object of the
OptionParser class.

opt = optparse.OptionParser()

Adding arguments then is simply a matter of adding options using the
add_option() method of the object. For our purposes, we need to follow a
straightforward syntactic formula:

object.add_option("-[short flag option]", "--[long flag option]",
action="store", type="string", dest = "[variable name under which to
store the option]"

•

•

•

•

•

•

•

Simple Querying

[54]

We will keep to this formula for the sake of simplicity even when other
options might seem more logical.
The optparse module is a very robust kit for option parsing, and the full
syntax of it is beyond the scope of this book. A fuller discussion can be
found in the online help() function or the Python documentation.

So to add an option for the query, we include this:

opt.add_option("-q", "--query", action="store", type="string",
dest="term")

After all the options are assigned in the code, we then have to compile them.

opt, args = opt.parse_args()

The parse_args() method returns a tuple. The first of the two values, opt, is an
object containing the values of all the options passed to the program. The second
value, args, is a list of any remaining arguments.

These last three lines should precede the MySQLdb call to connect to the database. You
may then change the assignment of the variable term.

term = opt.term

Whatever value is given in the dest argument of the add_option() method becomes
an attribute of the OptionParser object. Therefore, you could also delete the term
assignment line and edit the statement value to reflect opt.term. However, this
makes the code more difficult to read by someone else or even by yourself six
months down the line. Remember the second line of the Zen of Python:

Explicit is better than implicit

With that code written, you should be able to call the program with a -q flag and set
the query from the command-line. If the program is called searchme.py, a sample
query would be:

./searchme.py -q 'dubai'

The results should be singular:

1. Dubai

Knowing that it is a MySQL database, you could also pass MySQL metacharacters.

./project-ch2.py -q 'm%i'

Chapter 2

[55]

and get multiple hits in return:

1. Mallawi

2. Makati

3. Marawi

4. Malasiqui

5. Mati

6. Madurai

7. Malkajgiri

8. Morvi

9. Miyazaki

10. Maebashi

11. Moriguchi

12. Manzhouli

13. Moroni

14. Mbuji-Mayi

15. Matadi

16. Mexicali

17. Maradi

18. Maiduguri

19. Makurdi

20. Miaoli

21. Moshi

22. Mytiti

23. Miami

Note that your search will complete and return the same regardless of whether you
use -q or --query.

Implementing and incorporating the other
functions: -t, -f, and -o
Now we can add the other options to the program. Like the -q flag for preceding
query, we can use -t to assign values for the table.

opt.add_option("-t", "--table", action="store", type="string",
dest="table")

Simple Querying

[56]

Unless you want to support multiple formats for the output, the format flag should
be a Boolean value.

opt.add_option("-f", "--format", action="store_true", dest="format")

In order to store a Boolean variable, we set the default action as either store_true or
store_false. The former is for setting the value to True when the flag is present; the
converse is true for the latter. Because of the type of action applied to the option, the
Boolean type of the variable is understood by Python.

We then assign the value of opt.table to table and opt.format to the
variable format.

For formatting, we then set up a conditional clause that runs if the format flag is
present. Given that we are formatting the output on one level, we can also revise the
code so that the default is raw. The following code snippet should follow from where
the value of record[0] is appended to column_list, taking the place of that loop
as well as the for loop discussed in the section Planning your work, then working
your plan (earlier in this chapter).

column_list = []
for record in results:
 column_list.append(record[0:])

if form is True:
 columns_query = """DESCRIBE %s""" %(table)
 columns_command = cur.execute(columns_query)
 headers = cur.fetchall()
 column_list = []
 for record in headers:
 column_list.append(record[0])

 output=""
 for record in results:
 output = output + "========================\n\n"
 for field_no in xrange(0, len(column_list)):
 output = output + column_list[field_no]+ ": " +
str(record[field_no]) + "\n"
 output = output + "\n"

else:
 output=[]
 for record in xrange(0, len(results)):

 output.append(results[record])
 output = ''.join(output)

Note that the subscript for record in the third line has been broadened to include the
rest of the record.

Chapter 2

[57]

At this stage, you can append an output statement at the end of the program to see
its results.

print output

We are not yet at the end for this program as we also need to include facility for
writing the output to a file of the user's choice.

Including an option for an output file
At this point, including an option for an output file is simply a matter of inserting
the option into the list at the beginning of the program and then testing for it once
output is finally saved. To add the option to the list managed by optparse, we
simply insert this line after the last option:

opt.add_option("-o", "--output", action="store", type="string",
dest="outfile")

Note that the output variable is not a requirement in our program. Therefore, one
cannot assign it as automatically as the other variables were assigned. Instead,
one must test for it, prefixing the object handle to its attribute. If a value has been
assigned, then write the file. Otherwise, default output is STDOUT.

if opt.outfile:
 outfile = opt.outfile
 out = open(outfile, w)
 out.write(output)

else:
 print output

Room to grow
While the projection specification that we set for ourselves is fulfilled, there is
more that can be done on this program to make it more serviceable in a production
environment. Some areas that you might look at for further practice are:

Set the host, database, username, and password from command-line options.
You will naturally need to error-check each of them. You will probably
want to use the getpass module to accept the password in production
environments.
Set an option for the column variable and testing whether that column exists
in the chosen database.
Set up error-checking for the results itself.

•

•

•

Simple Querying

[58]

The world database has a few other tables besides City. Can you aggregate their
records in Python without using a JOIN statement?

Summary
It almost goes without saying that querying and data retrieval is the bread and
butter of database programming. In this chapter, we have covered the formation of a
MySQL query and how to pass it from Python. We also saw how to use user-defined
variables to allow dynamic formation of statements rather than pre-configured
queries. In order to adjust our program flow, we also saw how to determine
the characteristics of a database and its tables from within Python. Finally, we
programmed a command-line search utility that returns data of the user's choice
in two different formats.

In the next chapter, we will look at the flipside of the SELECT command, INSERT.

Simple Insertion
The obvious complement to record retrieval is the insertion of data into a MySQL
database. Data insertion is a matter of learning the syntax of the MySQL keyword
for the task and applying it through MySQL for Python.

As with retrieval, MySQL functions on the basis of parameter-based invocation and
the returning of results in accordance with those parameters. All of this is again
based on using MySQL for Python as an intermediary to that process to invoke
MySQL, to log in, and to connect to our chosen database.

You will recall that, in Chapter 2, Simple Querying, we needed to validate user input
consistently. Malformed input would have caused our program to throw an error
without it. That caution goes doubly for insertion. Unqualified user input can corrupt
a database and even give the malicious user access to all traffic on the server by
granting him or her unwarranted administrative privileges.

In this chapter, we will look at the following:

Forming an insertion statement in MySQL
Passing an insertion to MySQL
User-defined variables in a MySQL insertion
Passing metadata between databases
Changing insertion statements dynamically, without user input

Each of these sections will be built into the project at the end of this chapter: Inserting
user input into MySQL from the command-line without using the MySQL shell.

•

•

•

•

•

Simple Insertion

[60]

Forming a MySQL insertion statement
As with record retrieval in the previous chapter, inserting data into MySQL
through Python relies on understanding data insertion in MySQL itself. You will
recall that the requirements of a computing language necessitate the use of as few
words as possible to do anything. Ideally, there should be only one word as the
Zen of Python reads:

There should be one—and preferably only one—obvious way to do it.

For retrieval, we used the SELECT command. For putting data into the database,
we use INSERT. So instead of saying "Put everything on the far table!" or "Stick
everything over there!", MySQL needs specification such as:

INSERT INTO far VALUES("everything");

This is perhaps the most basic insertion statement that one can make for MySQL.
You can tell from it that the basic syntax of MySQL's INSERT statement is as follows:

INSERT INTO <some table> (<some column names>) VALUES("<some
values>");

Now let's take this skeleton of a statement apart and see how MySQL compares to
what we might use in English.

INSERT
It should be clear by now that the use of INSERT is for our benefit as humans. There
is nothing special about the word other than the fact that the MySQL programmer
used it. It is easier to remember, closer to being standard throughout English,
and better reflects the action being called than, say, STICK. As you may know,
put is currently used in other programming languages for much the same kind of
functionality (for example, fputs in PHP, C, C++). The keyword consequently could
have been PAPAYA if the MySQL programmers coded the database system to use that
word instead of INSERT (of course, the usability of the system would have taken a
sharp drop at that point). All that matters is that we use the word that the system
requires in order to do the action that we desire.

It is worth noting that there is one other keyword that can be used for placing data
into a MySQL database. REPLACE uses much the same syntax as INSERT.

REPLACE INTO <some table> SET("<some column name>" = "<some value>");

Chapter 3

[61]

As it is formed on analogy with SELECT, we will not discuss REPLACE
much. However, you can read more about it on the MySQL manual page at:
http://dev.mysql.com/doc/refman/5.1/en/replace.html

INTO
In a lot of ways, the MySQL database handles insertion like a postmaster. It will put
mail anywhere you tell it as long as the box exists. So if we are going to tell MySQL
to INSERT something, we must tell it where that something must go. To do that
we use the complementary keyword INTO. This is the natural complement to the
commands INSERT and REPLACE.

If you are new to computer programming, it may still seem reasonable to ask
a computer to just do something. But computers are ultimately just machines,
exceedingly fast and dumb. They will not reason unless they are explicitly,
painstakingly, told how to reason by the programmer. They cannot guess unless told
how. In the early days of modern computing, the 1970s and early 1980s, programmers
would describe this dynamic of computing with the acronym GIGO—garbage in,
garbage out. If you as the programmer don't tell it what to do, it won't know how
to do it.

Table name
Python helps with this process by offering high-level handles for a lot of common
functionality, but there are still limits to that automation and elements of
programming for which one must assume responsibility. Where MySQL sticks your
data is one of them. The table value is yours to define. If you tell MySQL the correct
place to put information, all is well. If it puts it in the wrong place, chances are you
are to blame (unless someone is holding a strong magnet next to the CPU at the
time). If MySQL does not know what to do with your data, it will throw an
error—as we will see in the next chapter.

Column names
In this part of the statement, you indicate to MySQL the order in which you will pass
the values later in the statement. These are dealt with like variable names and so are
not set in quotes, single or double.

Simple Insertion

[62]

The column names that you must address here and in the value section of the
statement are determined by the nature of the database. If we use the fish database
from the previous chapter, we have the following dataset:

mysql> select * from menu;

+----+----------------+-------+

| id | name | price |

+----+----------------+-------+

| 1 | tuna | 7.50 |

| 2 | bass | 6.75 |

| 3 | salmon | 9.50 |

| 4 | catfish | 5.00 |

| 5 | trout | 6.00 |

| 6 | haddock | 6.50 |

| 7 | yellowfin tuna | 12.00 |

| 8 | sole | 7.75 |

+----+----------------+-------+

8 rows in set (0.00 sec)

The definitions for this dataset are purposely poor for illustrative reasons.

mysql> describe menu;

+-------+--------------+------+-----+---------+----------------+

| Field | Type | Null | Key | Default | Extra |

+-------+--------------+------+-----+---------+----------------+

| id | int(11) | NO | PRI | NULL | auto_increment |

| name | varchar(30) | YES | | NULL | |

| price | decimal(6,2) | YES | | NULL | |

+-------+--------------+------+-----+---------+----------------+

3 rows in set (0.00 sec)

As such, the only value that is required, 'that cannot be left blank', is the value for
id, the primary key. This is already set by the system because it is automatically
incremented. Therefore, we can get away with the following statement:

mysql> insert into menu(name) values("shark");

Chapter 3

[63]

You will notice that we have left off the value for the price column. The effect is that
it is now set to a NULL value:

mysql> select * from menu;

+----+----------------+-------+

| id | name | price |

+----+----------------+-------+

| 1 | tuna | 7.50 |

| 2 | bass | 6.75 |

| 3 | salmon | 9.50 |

| 4 | catfish | 5.00 |

| 5 | trout | 6.00 |

| 6 | haddock | 6.50 |

| 7 | yellowfin tuna | 12.00 |

| 8 | sole | 7.75 |

| 9 | shark | NULL |

+----+----------------+-------+

9 rows in set (0.00 sec)

NULL values in themselves are not bad. All computing is data and code, but both code
and data must be controlled by the programmer to affect a desired, controlled result.
Otherwise, errors are sure to creep in along with aberrations, and compromises in
security and effectiveness will be the result.

Any data on which a program depends for its execution should be required. If
this were an enterprise database, you would probably want this hole closed and
so would define the table differently. You would want to require a non-NULL value
for as many columns as are necessary to ensure the security and serviceability of
your database.

VALUES
There are two keywords that you can use to introduce the data to be inserted at this
point in the INSERT statement: VALUE or VALUES. Either one is correct; both can be
used with either a single value or multiple values. There needs to be no consonance
between the number of values being inserted and the number aspect of the keyword.

VALUES("<some values>", "<some more values>", "<some other values>");

is to MySQL the same as:

VALUE("<some values>", "<some more values>", "<some other values>");

Simple Insertion

[64]

just like the following two phrases of an INSERT statement are the same:

VALUE("<some values>");
VALUES("<some values>");

All this keyword slot does is introduces the values in parentheses.

<some values>
The values that follow the VALUES keyword must appear in the same order as the
column names. Otherwise, MySQL will try to place the data in the wrong location. If
you do not verify the integrity of the data passed to MySQL, the data can quickly get
out of hand. Consider the effect of this statement on the table menu.

mysql> INSERT INTO menu(name, price) VALUES("13.00", "shark");

Because of the discord between the order of column names and the order of
values, this statement tells MySQL to insert the fields name and price with the
following values:

name = 13.00

price = shark

The problem is that these values are not allowed by the definition of the table:

mysql> describe menu;

+-------+--------------+------+-----+---------+----------------+

| Field | Type | Null | Key | Default | Extra |

+-------+--------------+------+-----+---------+----------------+

| id | int(11) | NO | PRI | NULL | auto_increment |

| name | varchar(30) | YES | | NULL | |

| price | decimal(6,2) | YES | | NULL | |

+-------+--------------+------+-----+---------+----------------+

3 rows in set (0.00 sec)

•

•

Chapter 3

[65]

The field name is supposed to be a thirty character string. The field price is supposed
to be a decimal value with up to six numbers to the left of the decimal point and up
to two to the right. So what happens when the two are mixed up to the point of utter
confusion? Disaster.

mysql> select * from menu;

+----+----------------+-------+

| id | name | price |

+----+----------------+-------+

| 1 | tuna | 7.50 |

| 2 | bass | 6.75 |

| 3 | salmon | 9.50 |

| 4 | catfish | 5.00 |

| 5 | trout | 6.00 |

| 6 | haddock | 6.50 |

| 7 | yellowfin tuna | 12.00 |

| 8 | sole | 7.75 |

| 9 | shark | NULL |

| 10 | 13.00 | 0.00 |

+----+----------------+-------+

10 rows in set (0.00 sec)

We get a fish called 13.00 that costs nothing! The value 13.00 can be a varchar
string and is so interpreted by MySQL. However, shark cannot be interpreted as a
decimal value in this context.

It is worth noting that the reason shark cannot be a decimal value is because it is not
defined as such. By passing it in double quotes, we indicate that it is a value, not a
variable name. If, however, we had previously defined a variable shark as a decimal
value, then we could use it accordingly.

Such a definition could be done in either MySQL or Python. In Python, we would
use a simple variable assignment statement:

shark = 13.00

Simple Insertion

[66]

This would be truncated by Python to 13.00, but it would nonetheless preserve the
integrity of the datatype (to insert 13.00, we would need to use a DECIMAL type for
the column when we create the table). The second zero could later be reclaimed with
a formatting convention.

In MySQL, we would use the SET command. See the MySQL manual Section 8.4,
for more:

http://dev.mysql.com/doc/refman/5.1/en/user-variables.html

; (semicolon)
As noted in the previous chapter, the semicolon is the line delimiter in MySQL.
While necessary to indicate the end of any MySQL statement, it is not used when
passing commands through MySQL for Python.

Helpful ways to nuance an INSERT
statement
Like SELECT has other helpful quantifiers to weed through the data being returned,
INSERT has ways of nuancing the origin of the data to be inserted as well as the
timing and conditions of the insertion. The three most common ways of altering
the way MySQL processes an INSERT statement are:

INSERT...SELECT...

INSERT DELAYED...

INSERT...ON DUPLICATE KEY UPDATE...

In the following section, we take each one in turn.

INSERT...SELECT...
Using INSERT...SELECT... we can tell MySQL to draw from different tables
without having to draw them into Python or to set a variable in MySQL. It functions
on the following syntactic template:

INSERT INTO <target table>(target column name) SELECT <source column
name> FROM <source table>;

•

•

•

Chapter 3

[67]

By default, the SELECT phrase of the sentence is greedy and will return as many
hits as it can. As with a generic SELECT statement, however, we can restrict the hits
returned using WHERE. See the Other helpful quantifiers section in the previous chapter
for more on this critical argument to SELECT.

To understand how to use this technique well, let us switch to the world database
from MySQL that was mentioned in the previous chapter.

USE world;

The database has three tables. If you forget what they are, simply type:

SHOW TABLES;

You will then be rewarded with the following output:

mysql> show tables;

+-----------------+

| Tables_in_world |

+-----------------+

| City |

| Country |

| CountryLanguage |

+-----------------+

3 rows in set (0.00 sec)

In order to affect a statement using INSERT...SELECT..., it is necessary to
understand the make-up of each database. Use DESCRIBE to get the definitions
on each.

mysql> describe City;

+-------------+----------+------+-----+---------+----------------+

| Field | Type | Null | Key | Default | Extra |

+-------------+----------+------+-----+---------+----------------+

| ID | int(11) | NO | PRI | NULL | auto_increment |

| Name | char(35) | NO | | | |

| CountryCode | char(3) | NO | | | |

| District | char(20) | NO | | | |

| Population | int(11) | NO | | 0 | |

+-------------+----------+------+-----+---------+----------------+

5 rows in set (0.00 sec)

Simple Insertion

[68]

mysql> describe Country;

+----------------+---
--------------------------------+------+-----+---------+-------+

| Field | Type
 | Null | Key | Default | Extra |

+----------------+---
--------------------------------+------+-----+---------+-------+

| Code | char(3)
 | NO | PRI | | |

| Name | char(52)
 | NO | | | |

| Continent | enum('Asia','Europe','North America','Africa','Oceania
','Antarctica','South America') | NO | | Asia | |

| Region | char(26)
 | NO | | | |

| SurfaceArea | float(10,2)
 | NO | | 0.00 | |

| IndepYear | smallint(6)
| YES | | NULL | |

| Population | int(11)
 | NO | | 0 | |

| LifeExpectancy | float(3,1)
 | YES | | NULL | |

| GNP | float(10,2)
 | YES | | NULL | |

| GNPOld | float(10,2)
 | YES | | NULL | |

| LocalName | char(45)
 | NO | | | |

| GovernmentForm | char(45)
 | NO | | | |

| HeadOfState | char(60)
 | YES | | NULL | |

| Capital | int(11)
 | YES | | NULL | |

| Code2 | char(2)
 | NO | | | |

+----------------+---
--------------------------------+------+-----+---------+-------+

15 rows in set (0.01 sec)

Chapter 3

[69]

mysql> describe CountryLanguage;

+-------------+---------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+-------------+---------------+------+-----+---------+-------+

| CountryCode | char(3) | NO | PRI | | |

| Language | char(30) | NO | PRI | | |

| IsOfficial | enum('T','F') | NO | | F | |

| Percentage | float(4,1) | NO | | 0.0 | |

+-------------+---------------+------+-----+---------+-------+

4 rows in set (0.01 sec)

INSERT...SELECT... allows us to draw from each of the tables to form a new one.
Let's say we wanted a table Combo that operated off the same identifier as City and
incorporated the names for the first 999 countries listed in that database. We would
begin by creating a MySQL table for the task. Creating a MySQL table is addressed
in a later chapter, so here we assume the existence of a table Combo with the
following definition:

+-------------+----------+------+-----+---------+----------------+

| Field | Type | Null | Key | Default | Extra |

+-------------+----------+------+-----+---------+----------------+

| ID | int(11) | NO | PRI | NULL | auto_increment |

| Name | char(35) | NO | | NULL | |

| CountryCode | char(3) | NO | | NULL | |

+-------------+----------+------+-----+---------+----------------+

Having done that we can insert the desired data from City into Combo using the
following INSERT command:

INSERT INTO Combo(ID, Name, CountryCode) SELECT ID, Name, CountryCode
FROM City WHERE ID < 1000;

Simple Insertion

[70]

A SELECT command to the database then shows the effect. For the sake of space, let's
restrict ID to 10.

mysql> SELECT * FROM Combo WHERE ID<=10;

+----+----------------+-------------+

| ID | Name | CountryCode |

+----+----------------+-------------+

| 1 | Kabul | AFG |

| 2 | Qandahar | AFG |

| 3 | Herat | AFG |

| 4 | Mazar-e-Sharif | AFG |

| 5 | Amsterdam | NLD |

| 6 | Rotterdam | NLD |

| 7 | Haag | NLD |

| 8 | Utrecht | NLD |

| 9 | Eindhoven | NLD |

| 10 | Tilburg | NLD |

+----+----------------+-------------+

10 rows in set (0.00 sec)

This significantly cuts down on I/O and therefore dramatically reduces processing
time—whether perceived or real. It lightens the load on the network and makes it
appear more responsive and able to handle more requests (all other dynamics
being equal).

Note that even if your program is run on the same system as the
database being queried, you will still have the dynamics of a network
and therefore suffer lag if your program passes too many requests to
MySQL too quickly.
Sluggishness on many systems is due to excessive data transfer
between processes, not because of the speed at which those processes
are executed.

More information on the INSERT...SELECT... functionality can be found in the
MySQL manual at:

http://dev.mysql.com/doc/refman/5.1/en/insert-select.html

INSERT DELAYED…
The DELAYED argument to INSERT causes MySQL to handle the insertion in deference
to other MySQL processes. When the server is sufficiently quiet, the INSERT
command is executed. Until then, MySQL keeps it on hold.

Chapter 3

[71]

The DELAYED argument simply follows the INSERT command. Otherwise, the syntax
is the same:

INSERT DELAYED INTO <some table> (<some column names>) VALUES("<some
values>");

For finer details on the DELAYED argument to INSERT, see the MySQL manual at
http://dev.mysql.com/doc/refman/5.1/en/insert-delayed.html

INSERT...ON DUPLICATE KEY UPDATE...
Whenever you insert a record into a large table, there is a chance of creating an
identical record. If your INSERT statement would result in two identical records,
MySQL will throw an error and refuse to create the record. The error you get will
look something like this:

ERROR 1062 (23000): Duplicate entry '1' for key 'PRIMARY'

To mitigate against this error and the chance of submitted data not being inserted
properly, MySQL offers this further argument to the INSERT command. The syntax is
as follows:

INSERT INTO <some table>(<some column names>) VALUES ("<some values>")
ON DUPLICATE KEY UPDATE <change to make the data unique>

After UPDATE, simply include what you have MySQL do to the record that you
would insert in order to ensure that it is no longer a duplicate. In practice, this
means incrementing the Primary key identifier. So where we get an error with one
statement, we can adapt the statement. In the following statement, we get an error
due to a duplicate ID number:

mysql> INSERT INTO Combo(ID, Name, CountryCode) VALUES ("27",
"Singapore", "SGP");

ERROR 1062 (23000): Duplicate entry '27' for key 'PRIMARY'

Using the ON DUPLICATE KEY UPDATE... argument, we can insert the value and
ensure that the record is unique:

mysql> INSERT INTO Combo(ID, Name, CountryCode) VALUES ("4078",
"Singapore", "SGP") ON DUPLICATE KEY UPDATE ID=ID+1;

Query OK, 1 row affected (0.00 sec)

Note that if there is no conflict in values, MySQL will process the statement as if you
did not include the ON DUPLICATE KEY UPDATE... clause.

Simple Insertion

[72]

If we then run a quantified SELECT statement against the table, we see that we now
have two unique records for Singapore:

mysql> select * from Combo WHERE Name="Singapore";

+------+-----------+-------------+

| ID | Name | CountryCode |

+------+-----------+-------------+

| 3208 | Singapore | SGP |

| 4078 | Singapore | SGP |

+------+-----------+-------------+

2 rows in set (0.00 sec)

Passing an insertion through MySQL for
Python
As you can see, inserting data into MySQL is a straightforward process that is largely
based around ensuring that the database daemon knows where you want your data
placed. Inserting data into MySQL may seem a bit more complicated than retrieving
it but the previous discussion shows it is still logical, but just requires a few more
keywords in order to be useful.

Setting up the preliminaries
Using INSERT with MySQL for Python is just as easy as using SELECT. As we saw in
the previous chapter, we pass the command to MySQL using the execute() method
of the database cursor object.

We will again use the fish database and the menu table as follows:

+----+----------------+-------+

| id | name | price |

+----+----------------+-------+

| 1 | tuna | 7.50 |

| 2 | bass | 6.75 |

| 3 | salmon | 9.50 |

| 4 | catfish | 5.00 |

| 5 | trout | 6.00 |

| 6 | haddock | 6.50 |

| 7 | yellowfin tuna | 12.00 |

+----+----------------+-------+

Chapter 3

[73]

Once again, we need to set up the database objects in our Python session. If you are
using the same Python terminal session as you did for the previous chapter, you
may want to go through this process anyway to ensure that all names are set for the
examples to come. Alternatively, close the session by pressing Ctrl+D and initiate a
new one. Then import MySQL for Python, tend to the database login and create the
cursor object as follows:

import MySQLdb
mydb = MySQLdb.connect(host = 'localhost',
 user = 'skipper',
 passwd = 'mysecret',
 db = 'fish')
 cur = mydb.cursor()

Now we are ready to insert data using Python.

A simple INSERT statement
Inserting data through MySQL for Python uses the same method as retrieving
it using execute(). You will recall that data retrieval using MySQL for Python
follows this formula:

results_variable = cursor_handle.execute('MySQL SELECT statement')

And so one gets a Python statement that looks like the following:

command = cur.execute('SELECT * FROM menu')

The main difference in data insertion is that no values are being returned.
Therefore, because we are not retrieving any data, we do not need to assign
the value of returning data to a variable. Instead, we pass the insertion command
as a stand-alone command.

The basic system call for the insertion command would follow this template:

cursor_handle.execute('MySQL INSERT statement')

Using this template, we can pass the following MySQL INSERT statement:

INSERT INTO menu(name, price) VALUES("shark", "13.00");

Without worrying about validating the integrity of the data for the moment, we
insert this statement through MySQL for Python as follows (using the cursor object
cur as defined previously):

cur.execute("""INSERT INTO menu(name, price) VALUES("shark",
"13.00")""")

Simple Insertion

[74]

Of course, as with the SELECT statement in the previous chapter, this statement can
become difficult to control rather quickly because of the number of quotation marks
and parentheses. If this proves difficult to follow for you, simply break the statement
down by defining the argument for execute(), the actual MySQL statement, in a
separate line. As with elsewhere in Python, you can use triple quotes to assign a
value verbatim. The preceding call could then be rewritten as follows:

statement = """INSERT INTO menu(name, price) VALUES("shark",
"13.00")"""
cur.execute(statement)

Using triple quotes is also helpful for handling more complex statements as they can
bridge multiple lines. This makes it easier to format statements in a way that humans
can read more easily. Therefore, to use the ON DUPLICATE KEY UPDATE... example
from earlier in this chapter, we can define the statement:

INSERT INTO Combo(ID, Name, CountryCode) VALUES ("4078", "Singapore",
"SGP") ON DUPLICATE KEY UPDATE ID=ID+1;

As follows for better readability:

statement = """INSERT INTO Combo(ID, Name, CountryCode)
 VALUES ("4078", "Singapore", "SGP")
 ON DUPLICATE KEY UPDATE ID=ID+1;"""

As the Zen of Python reads:
Readability counts

The virtue of readability in programming is often couched in terms of
being kind to the next developer who works on your code. There is more
at stake, however. With readability comes not only maintainability but
control.. If it takes you too much effort to understand the code you have
written, you will have a harder time controlling the program's flow
and this will result in unintended behavior. The natural consequence of
unintended program behavior is the compromising of process stability
and system security.

If this is still too complex for you to follow with ease, it may be advisable to rework
the value of statement by employing string formatting techniques as shown later in
the chapter under the heading Using user-defined variables.

Chapter 3

[75]

More complex INSERT commands
To pass the INSERT command with any of its optional arguments, simply include
them in the statement. For example, where we had the following INSERT...
SELECT... command:

INSERT INTO Combo(ID, Name, CountryCode) SELECT ID, Name, CountryCode
FROM City WHERE ID < 1000;

One can simply pack all of that into the value of statement:

statement = """INSERT INTO Combo(ID, Name, CountryCode) SELECT ID,
Name, CountryCode FROM City WHERE ID < 1000;"""

The DELAYED argument can be passed similarly. The previous statement passed
through execute() would look like this:

cur.execute("""INSERT DELAYED INTO Combo(ID, Name, CountryCode) SELECT
ID, Name, CountryCode FROM City WHERE ID < 1000;""")

Likewise, we could include the INSERT...ON DUPLICATE KEY UPDATE... argument
as follows:

cur.execute("""INSERT INTO Combo(ID, Name, CountryCode) VALUES
("4078", "Singapore", "SGP") ON DUPLICATE KEY UPDATE ID=ID+1""")

It is not necessary to use triple quote marks when assigning the MySQL
sentence to statement or when passing it to execute(). However, if
you used only a single pair of either double or single quotes, it would
be necessary to escape every similar quote mark. As a stylistic rule, it is
typically best to switch to verbatim mode with the triple quote marks in
order to ensure the readability of your code.

Using user-defined variables
Just as in data retrieval, it is inevitable that you will want to utilize user input when
inserting data into MySQL. MySQL for Python provides a consistent, Pythonic
interface for this.

Simple Insertion

[76]

We use the same string conversion specifier as we did when incorporating user input
into our SELECT statements in the previous chapter. Using the fish database, if we
assume that the user gives us the name of the fish and the cost, we can code a
user-defined INSERT statement as follows:

import MySQLdb, sys

mydb = MySQLdb.connect(host = 'localhost',
 user = 'skipper',
 passwd = 'secret',
 db = 'fish')
cur = mydb.cursor()

fish = sys.argv[1]
price = sys.argv[2]

statement = """INSERT INTO menu(name, price) VALUES(%s, %s)""" %(fish,
price)
cur.execute(statement)

An alternative way of rendering the last two lines is to leave the value insertion to
the execute() function. Instead of using %(fish, price) at the end of the first of
the two lines, we can include the fish and price values as a second argument to
execute():

statement = "INSERT INTO menu(name, price) VALUES (%s, %s)"

cur.execute(statement, (fish, price))

To make this program executable, you can preface this code with a shebang line,
make the file executable (by changing the permissions on the file), and then call
it as you would any other local executable that is not in your execution path.
Alternatively, you can call it from the command-line by prefacing it with a call to
your local Python interpreter. In either case, don't forget to supply the arguments
for sys.argv[]. Here I have run it using the latter method:

 python ./user-defined-data.py angel 7.00

Chapter 3

[77]

This then appends the data to the database in real time.

mysql> SELECT * FROM menu;

+----+----------------+-------+

| id | name | price |

+----+----------------+-------+

| 1 | tuna | 7.50 |

| 2 | bass | 6.75 |

| 3 | salmon | 9.50 |

| 4 | catfish | 5.00 |

| 5 | trout | 6.00 |

| 6 | haddock | 6.50 |

| 7 | yellowfin tuna | 12.00 |

| 8 | sole | 7.75 |

| 9 | angel | 7.00 |

+----+----------------+-------+

9 rows in set (0.01 sec)

As this is all within the Python API, you are not limited merely to %s, but can use the
same string formatting techniques as you would anywhere else in Python.

Using metadata
On February 23, 2006, an American B-2 bomber crashed shortly after take-off in
Guam due to bad data being fed to the airplane's flight control computers. A lack of
data checking resulted in the loss of a $2.1 billion plane. As with any user interaction
in programming, it is foolish to trust data without validating its integrity first.

One of the main ways of validating user input is to verify the data definition for
the database. More often than not, the database definition will be known at the
time of application development. You can then verify user input against a known
specification. However, if you do not have this luxury, you will need to query the
database for its definition and ensure the user's data does not run afoul of it.

Simple Insertion

[78]

Querying the database for its structure
If we are completely ignorant of a database's structure, we need to first retrieve a
table listing. To affect that, we use SHOW TABLES.

statement = """SHOW TABLES"""
command = cur.execute(statement)

Be sure to follow the execute() call with fetchall() assigned to a variable to hold
the tuple that is returned.

results = cur.fetchall()

The tuple results can then be accessed to give the user a choice.

print "Which table would you like to use?"
for i in xrange(0, len(results)): print i+1, results[i][0]
choice = input("Input number:")

As fish only has one table, the output of the for loop would simply be:

1 menu

But if we do the same for the world database, we get a more realistic selection:

1 City

2 Combo

3 Country

4 CountryLanguage

The user can then choose from the list. If we want to verify the user's data, we need
to verify three things:

1. The value input by the user is only a number.
2. The numeric value is not outside the offered range.
3. The value is a whole number.

To validate the input as a number, we need to import the string module and use the
isdigit() method of string objects.

import string

We would then use an if statement along the following lines:

if choice.isdigit() is True:
 print "We have a number!" ## or do further checking

Chapter 3

[79]

We then need to confirm that the input is within the given range. To verify that the
value of results is greater than 0 but not greater than the number of given options:

if (choice<0) or (choice>len(results)):
 print "We need a new number!" ## or do further checking

Within the previous range, however, we still run into problems with decimals. We
currently have no protection against choice being equal to 3.5, for example. There
are a couple of ways that we can protect against this at the validation stage:

By checking the length of the input and telling the user that we need a single
digit within the given range
By stripping out all but the first digit and returning the results to the user
for confirmation

To check the length of the input, we simply use Python's built-in len() function in a
conditional loop:

 if len(choicea) != 1:
 print "We need a single digit within the given range, please."

This, however, is not the most user-friendly way to handle the data. In cases where
there are a lot of choices, it can even leave the user confused. Better is to offer an
alternative by way of confirmation. To do this, we convert the input to a string using
Python's built-in str() function and then present the first element of the indexed
string to the user for confirmation.

choice_string = str(choice)
confirm = input("Did you mean %s?" %(choice_string[0]))

If confirm is assigned a positive value by the user—whether it is yes, true, or just
1, we should then convert the value of choice_string[0] to an integer. We do this
with Python's built-in int() function.

real_choice = int(choice_string[0])

This has the benefit of handling input from users who either have poor typing skills
or who may otherwise input gobbledygook after their initial, valid selection.

•

•

Simple Insertion

[80]

Retrieving the table structure
After validating the user's input, we have the choice of database to be used. We
now need to give the user details on the fields being used by that table. Again,
we use DESCRIBE.

table_statement = """DESCRIBE %s""" %(results[real_choice-1][0])
cur.execute(table_statement)
table_desc = cur.fetchall()

It is worth noting here that indices start at 0 but our choices to the user started at
1. Therefore, whatever choice the user makes must be reduced by one in order to
synchronize it with the index of results.

Also, we do not want to pass the value of the entire tuple in the statement. We just
want the value of the table to be queried. Therefore, we must subscript the results
record with a 0.

In MySQL, the DESCRIBE statement returns a table. In MySQL for Python, we get
another tuple. Each element in that tuple is a row in the table returned by MySQL.
So where MySQL would return the following.

mysql> DESCRIBE CountryLanguage;

+-------------+---------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+-------------+---------------+------+-----+---------+-------+

| CountryCode | char(3) | NO | PRI | | |

| Language | char(30) | NO | PRI | | |

| IsOfficial | enum('T','F') | NO | | F | |

| Percentage | float(4,1) | NO | | 0.0 | |

+-------------+---------------+------+-----+---------+-------+

4 rows in set (0.00 sec)

A prettified version of what Python returns is the following:

>>> for i in xrange(0, len(table_desc)): print table_desc[i]

...

('CountryCode', 'char(3)', 'NO', 'PRI', '', '')

('Language', 'char(30)', 'NO', 'PRI', '', '')

('IsOfficial', "enum('T','F')", 'NO', '', 'F', '')

('Percentage', 'float(4,1)', 'NO', '', '0.0', '')

Chapter 3

[81]

The differences between xrange() and range() are often overlooked
or even ignored. Both count through the same values, but they do it
differently. Where range() calculates a list the first time it is called and
then stores it in memory, xrange() creates an immutable sequence that
returns the next in the series each time it is called. As a consequence,
xrange() is much more memory efficient than range(), especially when
dealing with large groups of integers. As a consequence of its memory
efficiency, however, it does not support functionality such as slicing,
which range() does, because the series is not yet fully determined.

Each element of each row is then available by a further subscript for the column that
you want to access:

>>> print table_desc[0][0]

CountryCode

>>> print table_desc[0][1]

char(3)

>>> print table_desc[1][3]

PRI

So to offer the user the format of the table columns, we could use the following code:

print "The records of table %s follow this format:" %(results[choice-
1][0])
for i in xrange(0, len(table_desc)):
 print table_desc[i][0]

The output is as follows:

The records of table CountryLanguage follow this format:

CountryCode

Language

IsOfficial

Percentage

Simple Insertion

[82]

We can also walk through this data to give the user the format of each field for
each record in the table. The fields of information for each field in any MySQL
table remains constant and follow this order:

Field: The name of the column
Type: The data type allowed in that column, along with its length
Null: Whether a null value is allowed
Key: Whether this value is a primary key for the table
Default: What the default value is, if no value is entered as input for
this column
Extra: Any additional information about this column

To access a particular column, one simply appends the appropriate column number
as a subscript, as shown previously.

Knowing this, one can code in helps options for each field in turn. This can be a
JavaScript pop-up or a manual page for each column. For the sake of space,
however, this is left here as an exercise for yourself.

Changing insertion values dynamically
Just because user input is not valid, it does not mean we should scrap it and ask the
user for a new input. Rather, we can accept an entire statement, assign what values
will fit and come back to the user to correct data that will not.

To do this, we need to import the string module and define three functions to do
the following:

1. Validate the name column.
2. Validate the price column.
3. Query the user for a correction.

After defining the functions, we pass the user values to the first two functions, we
then pass the user values in turn to the first two functions which then calls the third
function only if the data does not check out.

Simply append string to the import line for the program or add the following line
below it:

import string

•

•

•

•

•

•

Chapter 3

[83]

Now, let's define the three functions.

Validating the value of name
This function needs to do the following:

1. Receive the value of the name column.
2. Check whether it is all letters—for example, no fish has numbers in its

market name.
3. Call query() if necessary.
4. Return the name value to the main program, corrected if necessary.

The first is accomplished with the definition line:

def valid_name(name):

We then accomplish the rest of the specified functionality with an if...else
statement:

 if name.isalpha() is False:
 fish = query("name", name, "alpha")
 else:
 fish = name

Finally, we return the value of fish to the main program:

 return(fish)

Validating the value of price
Validating the value of price requires similar functionality. Here is the function that
we need for the task:

def valid_price(price):
 if price.isdigit() is False:
 price = query("price", price, "digit")
 else:
 price = price
 return(price)

Simple Insertion

[84]

Querying the user for a correction
As you can tell from the calls in the preceding functions, this function will take three
arguments and query the user for a correction according to them. Our definition
thus begins:

def query(column, value, kind):

For kind, we will use two different possible values: alpha and digit. Depending on
which one is used, this function will behave differently. For validating the alpha
character of name value, we use the following if... clause:

 if kind == "alpha":
 print "For %s, you input %s. This is not a valid value for
column %s. Please enter the name of the fish in the appropriate
format." %(column, value, column)
 new_value = raw_input("New name: ")
 new_value = valid_name(new_value)
 return (new_value)

If type is not alpha but digit, we use an elif clause to continue with the user query:

 elif kind == "digit":
 print "For %s, you input %s. This is not a valid price.
Please enter the price in the appropriate format." %(column, value)
 new_price = raw_input("New price: ")
 new_price = valid_price(new_price)
 return (new_price)

Finally, because this function interacts with the user, we want to ensure that it
cannot be called from another program or with any other values for type other
than alpha or digital. To affect this in the shortest amount of code possible, we
use a simple else statement.

 else:
 return -1

We return the value -1 here, in an effort to ensure that the erroneous call does not
go unnoticed.

Passing fish and price for validation
Having defined the three functions, we now need to call them and to pass to them
the values for fish and price. We therefore put this code just after assigning the
values of sys.argv[1] and sys.argv[2] to fish and price, respectively.

fish = valid_name(fish)
price = valid_price(price)

Chapter 3

[85]

Essentials: close and commit
In programs that interface with multiple databases or otherwise persist beyond the
database connection that you have initiated, you will find a need to use a couple of
MySQL commands that we have not yet discussed: close and commit.

In need of some closure
When one is finished with a database, it is good practice to close the cursor proxy.
This ensures the cursor is not used again to refer to that database connection and also
frees up resources. To close a cursor connection in MySQL for Python, simply issue
the method call to your cursor object:

cur.close()

What happened to commit?
If you are experienced with using the MySQL shell or perhaps programming
interfaces with MySQL using different APIs, you may wonder what has happened
to the commit call that one normally would make at the end of every transaction to
render changes permanent.

MySQL for Python ships with an autocommit feature. Therefore, when the
connection is closed, the changes are committed. However, if you are programming
to several databases and want to ensure one is closed before another is opened,
MySQL for Python still supports a commit() function. You simply call it with the
handle of the database.

mydb.commit()

After committing the changes to the database, one typically closes the database
connection. To do this, use the database object's close() method:

mydb.close()

Why are these essentials non-essential?
Unless you are running several database threads at a time or have to deal with
similar complexity, MySQL for Python does not require you to use either commit()
or close(). Generally speaking, MySQL for Python installs with an autocommit
feature switched on. It thus takes care of committing the changes for you when the
cursor object is destroyed.

Similarly, when the program terminates, Python tends to close the cursor and
database connection as it destroys both objects.

Simple Insertion

[86]

Project: A command-line insertion utility
We can now put together the elements of database programming that we have
covered in this chapter to form a robust command-line insertion utility. For this
project we want to create a program with the following functionality:

Runs from the command-line
Uses a flag system allowing for the -h flag for help
Allows the user to define the database being used
Allows the user to designate which user and password combination to use
Allows the user to ask for the tables available in a given database
Provides the user with the column structure of the table on demand
Validates user input for the given table of the selected database
Builds the database INSERT statement on-the-fly
Inserts the user input into the chosen table of the selected database

The necessary modules
Before we jump into coding, let us first assess which modules we need to import. The
modules we need are listed next to our required functionality as follows. The need
for MySQLdb is understood.

Flag system: optparse
Login details: getpass
Build the INSERT statement: string

Our import statement thus looks like this:

import getpass, MySQLdb, optparse, string

In addition to these, we will also use the PrettyTable module to provide the user
with the column structure of the table in a neat format. This module is not part of
the standard library, but is easily installed using the following invocation from the
command-line:

easy_install prettytable

If this does not work for you or you prefer to install the module manually, you will
benefit from the instructions at the PrettyTable site: http://code.google.com/p/
prettytable/wiki/Installation

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 3

[87]

If you prefer not to install PrettyTable, you will obviously want to modify the code
according to your preferences when we get to printing out the database definition
table to the user.

The main() thing
In this project, we will have several functions. In order to ensure that we can call
those functions from other programs, we will code this project using a main function.
The other functions will be inserted before the main() function in the program, but
starting with the main() function and coding the others as needed
helps us to keep from losing the plot of the program. So let's define main():

def main():

In any size of program, using a main() function is good practice and
results in a high degree of readability. Ideally, main() should be among
the smallest of the functions in a program. The point is that main()
should be the brains of the program that coordinates the activity of the
classes and functions.

From here, the flow of the main() function will follow this logic:

1. Set up the flag system.
2. Test the values passed by the user.
3. Try to establish a database connection.
4. If successful, show the user the tables of the designated database.
5. Offer to show the table structure, and then do so.
6. Accept user input for the INSERT statement, column-by-column.
7. Build the INSERT statement from the user input and execute it.
8. Print the INSERT statement to the user for feedback.
9. Commit changes and close all connections.

Simple Insertion

[88]

Coding the flag system
As we did in the previous chapter, we need to tell Python which flags should be
supported and to which variables the values should be assigned. The code
looks like this:

 opt = optparse.OptionParser()
 opt.add_option("-d", "--database", action="store", type="string",
dest="database")
 opt.add_option("-p", "--passwd", action="store", type="string",
dest="passwd")
 opt.add_option("-u", "--user", action="store", type="string",
dest="user")
 opt, args = opt.parse_args()

If you don't understand this, see the relevant section under the project listing
from the previous chapter. For simplicity's sake, we then pass the values to
simpler variable names:

 database = opt.database
 passwd = opt.passwd
 user = opt.user

If you have trouble with the program after you code it, here is a point for
blackboxing. Simply insert the following loop to show what the computer
is thinking at this point:

 for i in (database, passwd, user): print "'%s'" %(i)

Blackboxing is jargon in the IT industry and simply means to isolate
the parts of a problem so that each piece can be tested separately of the
others. With this for loop, we can ensure that Python has properly
assimilated the flagged input from the user.

Testing the values passed by the user
Next, we need to ensure that the user has not passed us empty or no data. If the user
has, we need to ask for a new value.

 while (user == "") or (user == None):
 print "This system is secured against anonymous logins."
 user = getpass.getuser()

 while (passwd == "") or (passwd == None):
 print "You must have a valid password to log into the
database."

Chapter 3

[89]

 passwd = getpass.getpass()

 while (database == "") or (database == None):
 database = raw_input("We need the name of an existing database
to proceed. Please enter it here: ")

Note that we are not using if. If we had, we would have needed to set up a loop to
consistently check the value of the data. Using while saves us the trouble.

Try to establish a database connection
Having checked the login data, we can now attempt a connection. Just because the
user data has checked out does not mean that the data is valid. It merely means
that it fits with our expectations. The data is not valid until the database connection
is made. Until then, there is a chance of failure. We therefore should use a try...
except... structure.

 try:
 mydb = MySQLdb.connect(host = 'localhost',
 user = user,
 passwd = passwd,
 db = database)
 cur = mydb.cursor()
 quit = 1
 except:
 print "The login credentials you entered are not valid for
the database you indicated. Please check your login details and try
again."
 quit = 0

Here we use quit as a token to indicate the success of the connection. One could
just as easily use connected or is_connected. A successful connection is not made
until a cursor object is created.

Within the except clause, it is important to tell the user why the program is going
to terminate. Otherwise, he or she is left in the dark, and the program can effectively
become useless to them.

Simple Insertion

[90]

Showing the tables
Next, we cull out the tables from the database and show them to the user. We only
do this if a successful connection has been made.

 if quit == 1:
 get_tables_statement = """SHOW TABLES"""
 cur.execute(get_tables_statement)
 tables = cur.fetchall()

 print "The tables available for database %s follow below:"
%(database)
 for i in xrange(0, len(tables)):
 print "%s. %s" %(i+1, tables[i])
 table_choice = raw_input("Please enter the number of the table
into which you would like to insert data. ")

For the sake of formatting, we increment the number of the table by one in order to
use the natural number system when presenting the options to the user.

Upon receiving the number of table_choice from the user, we must validate it. To
do so, we stringify the number and pass it to a function valid_table(), which we
will create later in the development process. For now, it is enough to know that the
function needs the user's choice and the number of tables in the designated database.
For simplicity, we pass the list of tables.

 table_choice = str(table_choice)
 table_no = valid_table(table_choice, tables)

Once the number chosen is validated, we must decrement the number to synchronise
it with the whole number system used by Python.

 table = tables[table_no-1][0]

Showing the table structure, if desired
The next step is to show the user the data structure of the table, if desired. We affect
this with a raw_input statement and an if... clause:

 show_def = raw_input("Would you like to see the database
structure of the table '%s'? (y/n) " %(table))

Chapter 3

[91]

Before launching into the if... statement, , we can economize on our code.
Regardless of whether the user wants to see the table format, we will need the
column headers later to affect the insertion. We can take care of retrieving them now
so that the information is available in the if... statement as well as out, both for the
price of one MySQL statement.

 def_statement = """DESCRIBE %s""" %(table)
 cur.execute(def_statement)
 definition = cur.fetchall()

If the user chooses y to the input at show_def, then we run the following if loop:

 if show_def == "y":
 from prettytable import PrettyTable
 tabledef = PrettyTable()
 tabledef.set_field_names(["Field", "Type", "Null", "Key",
"Default", "Extra"])
 for j in xrange(0, len(definition)):
 tabledef.add_row([definition[j][0], definition[j][1],
definition[j][2], definition[j][3], definition[j][4],
definition[j][5]])
 tabledef.printt()

As mentioned when discussing the modules for this project, here we import
PrettyTable from the module prettytable. This merely allows us to output a
nicely formatted table similar to MySQL's own. It is not required for the program to
work as long as you convey the value of the six tabular fields for each row. While
this example is quite serviceable, you can find more information on how to use the
PrettyTable module at: http://code.google.com/p/prettytable/

Note that, if show_def equals anything other than a simple y, the if loop will
not execute.

Accepting user input for the INSERT statement
We next need to ask the user for the values to be inserted. To guide the user, we will
prompt them for the value of each column in turn:

 print "Please enter the data you would like to insert into
table %s" %(table)

 columns = []
 values = []
 for j in xrange(0, len(definition)):
 column = definition[j][0]

Simple Insertion

[92]

 value = raw_input("Value to insert for column '%s'?"
%(definition[j][0]))
 columns.append(str(column))
 values.append('"' + str(value) + '"')
 columns = ','.join(columns)
 values = ','.join(values)
 print columns
 print values

The lists columns and values obviously correspond to the respective parts of
the MySQL INSERT statement. It is important to remember that the column
headers in a MySQL statement are not set in quotes, but that the values are.
Therefore, we must format the two lists differently. In either case, however,
the items need to be separated by commas. This will make it easier when
building the next INSERT statement.

If you encounter difficulty in coding this project, this is another good point for
blackboxing. Simply print the value of each list after the close of the for loop
to see the value of each at this point.

Building the INSERT statement from the user input
and executing it
Having the user's values for insertion, we are now at a point where we can build the
MySQL statement. We do this with string formatting characters.

 statement = """INSERT INTO %s(%s) VALUES(%s)""" %(table,
columns, values)

We then execute the statement. For extra security against malformed data, you could
couch this in a try...except... structure.

 cur.execute(statement)

If the execute statement was processed without a problem, it is a good idea to give
the user some feedback. An appropriate output here would be the statement that
was processed.

 print "Data has been inserted using the following statement:
\n", statement

Chapter 3

[93]

Committing changes and closing the connection
Finally, we can commit the changes and close the connection. This is not typically
necessary for a single run database program such as this, but it is not a bad habit
to maintain.

 cur.close()
 mydb.commit()
 mydb.close()

It is worth noting that committing before closing is not wholly necessary. The
one implies the other. However, commit() allows us to commit changes to the
database without closing the database connection, so we can commit changes at
regular intervals.

Coding the other functions
We are not done yet. With main() finished, we now have to fill out the program with
the auxiliary functions that were called in the course of main().

valid_digit()

valid_string()

valid_table()

query()

The other functions must be inserted before the main() function is called,
otherwise Python will throw a NameError.

valid_digit() and valid_string()
The first three functions should validate input as: digital, alpha character string, or as
a valid number on the table menu presented to the user. If the input does not check
out, then each should call query() to ask the user for new input, providing the type
of valid input required as an argument with the value input by the user. The first two
require only the value to be validated. They therefore look like this:

def valid_digit(value):
 if value.isdigit() is not True:
 value = query(value, "digit")
 else:
 value = value
 return value

•

•

•

•

Simple Insertion

[94]

def valid_string(value):
 if value.isalpha() is not True:
 value = query(name, "alpha")
 else:
 value = value
 return value

valid_table()
To validate the table selection, you will remember that we passed the number of
the user's selection and the table names to valid_table(). This function compares
the user's selection to the number of tables available and calls query() if there is a
problem. The function is therefore coded as follows:

def valid_table(choice, tables):
 valid_choice = valid_digit(choice) # Check whether the choice is a
valid number
 valid_choice = int(valid_choice)
 while 0 <= valid_choice <= len(tables) : # Ensure the choice is
among the valid options
 print "Your selection is outside the bounds of possible
choices."
 valid_choice = query(valid_choice, "digit")
 return valid_choice

query()
The function query() uses an if...elif...else structure to alert the user
to the malformed data, asks for new input, and validates it. It therefore calls
valid_digit() and valid_string() as necessary for the last task. Querying
and testing is of two kinds: digit and alpha. Within the present program, only
these two are called, but there is a chance that this function could be called wrongly
from another Python program. Therefore, we try to fail softly by returning 1 if the
wrong argument is passed for type.

def query(value, type):
 if type == "alpha":
 print "The value you entered ('%s') is not correct. Please
enter a valid value." %(value)
 new_value = raw_input("New value: ")
 valid_string(new_value)
 return new_value

 elif type == "digit":

Chapter 3

[95]

 print "The value you entered ('%s') is not correct. Please
enter a valid value." %(value)
 new_value = raw_input("New value: ")
 valid_digit(new_value)
 return new_value

 else:
if type is neither "alpha" nor "digit"
 return 1

Calling main()
As the program stands now, it does nothing. It is simply a bunch of functions. While
they call each other, there is nothing that instigates the execution process if the file is
fed to the Python interpreter. We need to call main().

As every Python program can also function as a module, it is necessary for us to
ensure that main() is only executed if the program is called directly. Now that all
the functions are defined, we can use an if statement to verify how the program is
called and to launch main() accordingly.

if __name__ == '__main__':
 main()

Calling main() as a result of this if statement at the very end of the
program is like not connecting the power to an electric circuit until you
are ready to test it. It helps us to avoid lots of possible problems.

Now the program can be called at the command-line. You can either give it a
shebang line at the top and ensure the file is set for execution, or call it as an
argument to the Python interpreter:

python ./project-ch3.py -d world -u skipper -p secret

For reference, the full code of the program to follow is here. First, the shebang line
and the imported modules:

#!/usr/bin/env python

import getpass, MySQLdb, optparse, string

Simple Insertion

[96]

Next, we define all supporting functions:

def valid_digit(value):
 if value.isdigit() is not True:
 value = query(value, "digit")
 else:
 value = value
 return value

def valid_string(value):
 if value.isalpha() is not True:
 value = query(name, "alpha")
 else:
 value = value
 return value

def query(value, type):
 if type == "alpha":
 print "The value you entered ('%s') is not correct. Please
enter a valid value." %(value)
 new_value = raw_input("New value: ")
 valid_string(new_value)
 return new_value

 elif type == "digit":
 print "The value you entered ('%s') is not correct. Please
enter a valid value." %(value)
 new_value = raw_input("New value: ")
 valid_digit(new_value)
 return new_value

 else:
 ## if type != "alpha" and type != "digit":
 return 1

def valid_table(choice, tables):
 valid_choice = valid_digit(choice) # Check whether the choice is a
valid number
 valid_choice = int(valid_choice)
 while (valid_choice <= 0) or (valid_choice > len(tables)): #
Ensure the choice is among the valid options
 print "Your selection is outside the bounds of possible
choices."
 valid_choice = query(valid_choice, "digit")
 return valid_choice

Chapter 3

[97]

We then need to define main(), the master function. First we parse the options and
assign their values:

def main():
 opt = optparse.OptionParser()
 opt.add_option("-d", "--database", action="store", type="string",
dest="database")
 opt.add_option("-p", "--passwd", action="store", type="string",
dest="passwd")
 opt.add_option("-u", "--user", action="store", type="string",
dest="user")
 opt, args = opt.parse_args()

 database = opt.database
 passwd = opt.passwd
 user = opt.user

Next, we validate the input, asking the user for clarification as necessary:

 while (user == "") or (user == None):
 print "This system is secured against anonymous logins."
 user = getpass.getuser()

 while (passwd == "") or (passwd == None):
 print "You must have a valid password to log into the
database."
 passwd = getpass.getpass()

 while (database == "") or (database == None):
 database = raw_input("We need the name of an existing database
to proceed. Please enter it here: ")

Then we try to connect to the database with the credentials that the user passed to
the program. If we fail, we print a simple error message:

 try:
 mydb = MySQLdb.connect(host = 'localhost',
 user = user,
 passwd = passwd,
 db = database)
 cur = mydb.cursor()
 quit = 1

 except:
 print "The login credentials you entered are not valid for
the database you indicated. Please check your login details and try
again."
 quit = 0

Simple Insertion

[98]

If we successfully make a connection, we carry on showing the tables of the database
and further interacting with the user to form the INSERT statement:

 if quit == 1:
 get_tables_statement = """SHOW TABLES"""
 cur.execute(get_tables_statement)
 tables = cur.fetchall()

 print "The tables available for database %s follow below:"
%(database)
 for i in xrange(0, len(tables)):
 print "%s. %s" %(i+1, tables[i])
 table_choice = input("Please enter the number of the table
into which you would like to insert data. ")
 table_choice = str(table_choice)
 table_no = valid_table(table_choice, tables)
 table = tables[table_no-1][0]

 show_def = raw_input("Would you like to see the database
structure of the table '%s'? (y/n) " %(table))

 def_statement = """DESCRIBE %s""" %(table)
 cur.execute(def_statement)
 definition = cur.fetchall()
 if show_def == "y":
 from prettytable import PrettyTable
 tabledef = PrettyTable()
 tabledef.set_field_names(["Field", "Type", "Null", "Key",
"Default", "Extra"])
 for j in xrange(0, len(definition)):
 tabledef.add_row([definition[j][0], definition[j][1],
definition[j][2], definition[j][3], definition[j][4],
definition[j][5]])
 tabledef.printt()

 print "Please enter the data you would like to insert into
table %s" %(table)
 columns = ''
 values = '"'
 for j in xrange(0, len(definition)):
 column = definition[j][0]
 value = raw_input("Value to insert for column '%s'?"
%(definition[j][0]))
 columns = columns + str(column)
 values = values + str(value)

Chapter 3

[99]

 if j < len(definition)-1:
 columns = columns + ", "
 values = values + '", "'
 else:
 values = values + '"'

We then form the INSERT statement and execute it. It is always a good idea to give
the user feedback about what data has just been processed:

 statement = """INSERT INTO %s(%s) VALUES(%s)""" %(table,
columns, values)
 cur.execute(statement)
 print "Data has been inserted using the following statement:
\n", statement

The next bit of code is necessary only if you have switched off auto-commit in
MySQL for Python. Otherwise, you can skip this part.

 cur.close()
 mydb.commit()
 mydb.close()

Finally, we need to check whether the program has been called directly. If the
program is imported as a module into another Python program, main() is never run.

if __name__ == '__main__':
 main()

Room to grow
We have fulfilled the specification we set out for this project. However, there are
several points that you might consider for further development:

Set the host name dynamically while validating the data. This will require
you either to create a whitelist of hosts or to do some network programming
in order to validate the existence not just of the host, but of a running MySQL
server on it.
Validate the success of the INSERT statement by running a SELECT statement
afterward. Ideally, you will need to close one connection and open another
one to be sure that the data is there.
Validate the user's data more fully than we have here.
Abstract the database connection and/or the table selection to a function. See
how small you can make main().

•

•

•

•

Simple Insertion

[100]

Summary
In this chapter, we have covered the MySQL INSERT command and how to
implement it in Python. In particular, we have seen how to form INSERT statements
and pass them to MySQL through MySQLdb. Using Python, we also looked at how
to use user-defined variables in MySQL statements, changing the INSERT statement
dynamically. In the next chapter, we will look at how to handle MySQL errors.

Exception Handling
Any application that is used by multiple users in a production environment should
have some level of exception handling implemented.

In this chapter, we will look at the following:

Why errors and warnings are a programmer's friend
The difference between errors and warnings
The two main kinds of errors passed by MySQL for Python
The six kinds of DatabaseError
How to handle errors passed to Python from MySQL
Creating a feedback loop for the user, based on the errors passed

At the end of this chapter, we will use this information along with the knowledge
from the preceding chapters to build a command-line program to insert, update,
and retrieve information from MySQL and to handle any exceptions that arise while
doing so.

Why errors and warnings are good
for you
The value of rigorous error checking is exemplified in any of the several catastrophes
arising from poor software engineering. Examples abound, but a few are particularly
illustrative of what happens when bad data and design go unchallenged.

•

•

•

•

•

•

Exception Handling

[102]

On 4 June 1996, the first test flight of the Ariane 5 rocket self-destructed 37 seconds
after its launch. The navigation code from Ariane 4 was reused in Ariane 5. The
faster processing speed on the newer rocket caused an operand error. The conversion
of a 64-bit floating-point value resulted in a larger-than-expected and unsupported
16-bit signed integer. The result was an overflow that scrambled the flight's
computer, causing too much thrust to be passed by the rocket itself, resulting in the
crash of US$370 million worth of technology. Widely considered to be one of the
most expensive computer bugs in history, the crash arose due to mistakes in design
and in subsequent error checking.

On 15 January 1990, the American telecommunications company AT&T installed a
new system on the switches that controlled their long-distance service. A bug in the
software caused the computers to crash every time they received a message from one
of their neighboring switches. The message in question just happened to be the same
one that the switches send out when they recover from a system crash. The result:
Within a short time, 114 switches across New York City were rebooting every six
seconds, leaving around 60,000 people without long distance service for nine hours.
The system ultimately had to be fixed by reinstalling the old software.

On the Internet, a lack of proper error-checking still makes it possible for a
malformed ping request to crash a server anywhere in the world. The Computer
Emergency Response Team (CERT) Advisory on this bug, CA-1996-26, was
released in 1996, but the bug persists. The original denial-of-service attack has thus
evolved into the distributed denial-of-service attack employing botnets of zombie
machines worldwide.

More than any other part of a computing system, errors cost significantly more to fix
later than if they were resolved earlier in the development process. It is specifically
for this reason that Python outputs error messages to the screen, unless such errors
are explicitly handled otherwise.

A basic dynamic of computing is that the computer does not let anyone know what
is happening inside itself. A simple illustration of this dynamic is as follows:

x = 2
if x == 2:
 x = x + x

Knowing Python and reading the code, we understand that the value of x is now 4.
But the computer has provided us no indication of the value of x. What's more, it will
not tell us anything unless we explicitly tell it to do so. Generally speaking, there are
two ways you can ask Python to tell you what it's thinking:

By outputting values to the screen
By writing them to a file

•

•

Chapter 4

[103]

Here, a simple print statement would tell us the value of x.

Output displayed on the screen or saved to a file are the most common
ways for programs to report their status to users. However, the
similar effect is done by indicator lights and other non-verbal forms
of communication. The type of output is necessarily dependent on the
hardware being used.

By default, Python outputs all errors and warnings to the screen. As MySQL
for Python is interpreted by Python, errors passed by MySQLdb are no different.
This naturally gives the debugging programmer information for ironing out the
performance of the program—whether determining why a program is not executing
as planned or how to make it execute faster or more reliably. However, it also means
that any information needed for tracing the error, along with parts of the code, is
passed to the user, whoever they may be.

This is great for debugging, but makes for terrible security. That is why the Zen of
Python reads:

Errors should never pass silently.

Unless explicitly silenced.

One needs the error messages to know why the program fails, but it is a security
hazard to pass raw error messages to the user. If one wants the user to handle an
error message, it should be sanitized of information that may compromise the
security of the system.

Handling exceptions correctly takes a lot of code. At the risk of sounding
like a hypocrite, it should be noted that the exigencies of a printed book
do not allow for the reproduction of constant, rigorous error-handling
in the code examples such as this chapter espouses. Therefore, while I
state this principle, the programming examples included in this book
do not always illustrate it as they should. If they did, the book would be
significantly thicker and heavier (and probably cost more too!).

Further, the more complicated an application, the more robust the error-handling
should be. Ultimately, every kind of error is covered by one of the several types that
can be thrown by MySQL for Python. Each one of them allows for customized error
messages to be passed to the user.

Exception Handling

[104]

With a bit of further coding, one can check the authentication level of the user and
pass error messages according to their level of authorization. This can be done
through a flag system or by using modules from the Python library. If the former
is used, one must ensure that knowledge of the flag(s) used is guarded from
unauthorized users. Alternatively, one can employ both systems by checking the
authentication level of users or programs that pass a particular flag to the program.

Errors versus warnings: There's a big
difference
As with Python in general, the main difference between errors and warnings is
that warnings do not cause a program to terminate. Errors do. Warnings provide
notice of something we should note; errors indicate the reason the program cannot
continue. If not handled appropriately, warnings therefore pass process information
to the user without interrupting the execution of the program. This lack of
detectability makes warnings more dangerous to the security of an application, and
the system in general, than errors. Consequently, the error-handling process of an
application must account for both errors and warnings.

While Python handles warnings and exceptions differently by default, especially
with regard to program execution, both are written to stderr. Therefore, one
handles them the same way that one handles standard errors (see Handling
exceptions passed from MySQL in the later sections).

Additionally, one can set warnings to be silenced altogether or to carry the same
gravity as an error. This level of functionality was introduced in Python 2.1. We
will discuss this more later.

The two main errors in MySQLdb
Python generally supports several kinds of errors, and MySQL for Python is no
different. The obvious difference between the two is that MySQLdb's errors deal
exclusively with the database connection. Where MySQLdb passes warnings that
are not MySQL-specific, all exceptions are related to MySQL.

The MySQL-specific exceptions are then classified as either warnings or errors.
There is only one kind of warning, but MySQLdb allows two categories of errors—
DatabaseError and InterfaceError. Of the former, there are six types that we
will discuss here.

Chapter 4

[105]

DatabaseError
When there is a problem with the MySQL database itself, a DatabaseError is
thrown. This is an intermediate catch-all category of exceptions that deal with
everything from how the data is processed (for example, errors arising from division
by zero), to problems in the SQL syntax, to internal problems within MySQL itself.
Essentially, if a connection is made and a problem arises, the DatabaseError
will catch it.

Several types of exceptions are contained by the DatabaseError type. We look at
each of these in the section Handling exceptions passed from MySQL.

InterfaceError
When the database connection fails for some reason, MySQLdb will raise an
InterfaceError. This may be caused from problems in the interface anywhere
in the connection process.

Warnings in MySQL for Python
In addition to errors, MySQL for Python also supports a Warning class. This
exception is raised for warnings like data truncation when executing an INSERT
statement. It may be caught just like an error, but otherwise will not interrupt the
flow of a program.

Handling exceptions passed from MySQL
MySQL for Python takes care of the nitty-gritty of communication between your
program and MySQL. As a result, handling exceptions passed from MySQL is as
straightforward as handling exceptions passed from any other Python module.

Python exception-handling
Python error-handling uses a try...except...else code structure to handle
exceptions. It then uses raise to generate the error.

while True:
 try:
 x = int(raw_input("Please enter a number: "))
 break
 except:
 print "That is not a valid number. Please try again..."

Exception Handling

[106]

While this is the textbook example for raising an error, there are a few points to keep
in mind.

while True:

This sets up a loop with a condition that applies as long as there are no
exceptions raised.

 try...break

Python then tries to execute whatever follows. If successful, the program terminates
with break. If not, an exception is registered, but not raised.

 except

The use of except tells Python what to do in the event of an exception. In this case it
prints a message to the screen, but it does not raise an exception. Instead, the while
loop remains unbroken and another number is requested.

Catching an exception from MySQLdb
All exceptions in MySQL for Python are accessed as part of MySQLdb. Therefore, one
cannot reference them directly. Using the fish database, execute the following code:

#!/usr/bin/env python

import MySQLdb

mydb = MySQLdb.connect(host ='localhost',
 user = 'skipper',
 passwd = 'secret',
 db = 'fish'
cur = mydb.cursor()

Note the use of '7a' instead of '7'
statement = """SELECT * FROM menu WHERE id=7a"""

try:
 cur.execute(statement)
 results = cur.fetchall()
 print results
except Error:
 print "An error has been passed."

Chapter 4

[107]

The preceding code will return a NameError from Python itself. For Python to
recognize the exception from MySQLdb, change each instance of Error to read
MySQLdb.Error. The except clause then reads as follows:

except MySQLdb.Error:
 print "An error has been passed."

The resulting output will be from the print statement.

An error has been passed.

Raising an error or a warning
An exception is only explicitly registered when raise is used. Instead of the print
statement used in the except clause previously, we can raise an error and update
the print statement with the following line of code:

raise MySQLdb.Error

Instead of the friendly statement about an error passing, we get a stack trace
that ends as follows:

_mysql_exceptions.Error

Remember that MySQLdb is a macro system for interfacing with _mysql_
and, subsequently, with the C API for MySQL. Any errors that pass
from MySQL come through each of those before reaching the Python
interpreter and your program.

Instead of raising an actual error, we can raise our own error message. After the
MySQLdb.Error in the raise line, simply place your error message in parentheses
and quotes.

raise MySQLdb.Error("An error has been passed. Please contact your
system administrator.")

As shown here, the exact error message is customizable. If raise is simply appended
to the preceding code as part of the except clause, the usual stack trace will be
printed to stdout whenever the except clause is run. Note also that the flow of the
program is interrupted whenever raise is executed.

The same process applies when raising a warning. Simply use MySQLdb.Warning
and, if necessary, also use a suitable warning message.

Exception Handling

[108]

Making exceptions less intimidating
For many users, program exceptions are a sign on par with Armageddon and tend
to elicit the anxiety and mystery that accompany the usual view of that occasion.
In order to be more helpful to users and to help users be more helpful to their IT
support staff, it is good practice to give error messages that are explanatory rather
than merely cryptic. Consider the following two error messages:

Exception: NameError in line 256 of someprogram.py.
The value you passed is not of the correct format. The program needs an
integer value and you passed a character of the alphabet. Please contact a
member of IT staff if you need further clarification on this error and tell them
the error message is: "Unknown column '7a' in 'where clause' on line 256 of
someprogram.py".

Admittedly, the first takes up less space and takes less time to type. But it also
is guaranteed to compromise the usefulness of your program for the user and to
increase the number of phone calls to the IT helpdesk. While the second may be a bit
longer than necessary, the user and helpdesk will benefit from a helpful message,
regardless of its verbosity, more than an overly technical and terse one.

To accomplish a user-friendly error message that nonetheless provides the technical
information necessary, catch the exception that Python passes. Using the previous
if...except loop, we can catch the error without the traceback as follows:

#!/usr/bin/env python

import MySQLdb

mydb = MySQLdb.connect(host ='localhost',
 user = 'skipper',
 passwd = 'secret',
 db = 'fish')
cur = mydb.cursor()

statement = """SELECT * FROM menu WHERE id=7a"""

try:
 cur.execute(statement)
 results = cur.fetchall()
 print results
except MySQLdb.Error, e:
 print "An error has been passed. %s" %e

•

•

Chapter 4

[109]

Now when the program is executed, we receive the following output:

An error has been passed. (1054, "Unknown column '7a' in 'where clause'")

This could easily be revised to similar wording as the second of the two error
examples seen just now.

Catching different types of exceptions
It is typically best practice to process different types of exceptions with different
policies. This applies not only to database programming, but to software
development in general. Exceptions can be caught with a generic except clause
for simpler implementations, but more complex programs should process
exceptions by type.

In Python, there are 36 built-in exceptions and 9 built-in warnings. It
is beyond the scope of this book to go into them in detail, but further
discussion on them can be found online.
For exceptions see:
http://python.about.com/od/pythonstandardlibrary/a/
lib_exceptions.htm

For warnings visit:
http://python.about.com/od/pythonstandardlibrary/a/
lib_warnings.htm

The Python documentation also covers them at:
http://docs.python.org/library/exceptions.html

Types of errors
The following are the six different error types supported by MySQL for Python.
These are all caught when raising an error of the respective type, but their
specification also allows for customized handling.

DataError

IntegrityError

InternalError

NotSupportedError

OperationalError

ProgrammingError

•

•

•

•

•
•

Exception Handling

[110]

Each of these will be caught by using DatabaseError in conjunction with an except
clause. But this leads to ambiguous error-handling and makes debugging difficult
both for the programmer(s) who work on the application as well as the network and
system administrators who will need to support the program once it is installed on
the end user's machine.

DataError
This exception is raised due to problems with the processed data (for example,
numeric value out of range, division by zero, and so on).

IntegrityError
If the relational integrity of the database is involved (for example a foreign key check
fails, duplicate key, and so on), this exception is raised. To illustrate this, save the
following code into a file for inserting data into the fish database that we have used
in previous chapters:

#!/usr/bin/env python

import MySQLdb, sys

mydb = MySQLdb.connect(host ='localhost',
 user = 'skipper',
 passwd = 'secret',
 db = 'fish')
cur = mydb.cursor()

ident = sys.argv[1]
fish = sys.argv[2]
price = sys.argv[3]

statement = """INSERT INTO menu(id, name, price) VALUES("%s", "%s",
"%s")""" %(ident, fish, price)
print "Data has been inserted using the following statement: \n",
statement

cur.execute(statement)

Change the database login information as necessary. Then call it with an existent
value for the identifier. For example:

> python temp.py 2 swordfish 23

Chapter 4

[111]

The type of error follows a multiple line traceback:

_mysql_exceptions.IntegrityError: (1062, "Duplicate entry '2' for key
'PRIMARY'")

InternalError
This exception is raised when there is an internal error in the MySQL database itself
(for example, an invalid cursor, the transaction is out of sync, and so on). This is
usually an issue of timing out or otherwise being perceived by MySQL as having lost
connectivity with a cursor.

NotSupportedError
MySQL for Python raises this exception when a method or database API that is
not supported is used (for example, requesting a transaction-oriented function
when transactions are not available. They also can arise in conjunction with setting
characters sets, SQL modes, and when using MySQL in conjunction with Secure
Socket Layer (SSL).

OperationalError
Exception raised for operational errors that are not necessarily under the control of
the programmer (for example, an unexpected disconnect, the data source name is
not found, a transaction could not be processed, a memory allocation error occurrs,
and so on.). For example, when the following code is run against the fish database,
MySQL will throw an OperationalError:

#!/usr/bin/env python

import MySQLdb, sys
mydb = MySQLdb.connect(host = 'localhost',
 user = 'skipper',
 passwd = 'secret',
 db = 'fish')
cur = mydb.cursor()

statement = """SELECT * FROM menu WHERE id=7a""""
cur.execute(statement)
results = cur.fetchall()
print results

Exception Handling

[112]

The error message reads as follows:

SELECT * FROM menu WHERE id=7a

Traceback (most recent call last):

 File "temp.py", line 54, in <module>

 cur.execute(statement)

 File "/usr/local/lib/python2.6/dist-packages/MySQL_python-1.2.3c1-
py2.6-linux-i686.egg/MySQLdb/cursors.py", line 173, in execute

 File "/usr/local/lib/python2.6/dist-packages/MySQL_python-
1.2.3c1-py2.6-linux-i686.egg/MySQLdb/connections.py", line 36, in
defaulterrorhandler

_mysql_exceptions.OperationalError: (1054, "Unknown column '7a' in 'where
clause'")

ProgrammingError
Exception raised for actual programming errors (for example, a table is not found or
already exists, there is a syntax error in the MySQL statement, a wrong number of
parameters is specified, and so on.). For instance, run the following code against the
fish database:

#!/usr/bin/env python

import MySQLdb

mydb = MySQLdb.connect(host ='localhost',
 user = 'skipper',
 passwd = 'secret',
 db = 'fish')
cur = mydb.cursor()
fish = sys.argv[1]
price = sys.argv[2]
statement = """INSERTINTO menu(name, price) VALUES("%s", "%s")"""
%(fish, price)
print "Data has been inserted using the following statement: \n",
statement
cur.execute(statement)

The values you pass as arguments do not matter. The syntactic problem in the
MySQL statement will cause a ProgrammingError to be raised:

_mysql_exceptions.ProgrammingError: (1064, 'You have an error in your
SQL syntax; check the manual that corresponds to your MySQL server
version for the right syntax to use near \'INSERTINTO menu(name, price)
VALUES("jellyfish", "27")\' at line 1')

Chapter 4

[113]

Customizing for catching
Each of the previous types can be caught with the DatabaseError type. However,
catching them separately allows you to customize responses. For example, you may
want the application to fail softly for the user when a ProgrammingError is raised
but nonetheless want the exception to be reported to the development team. You can
do that with customized exception handling.

Catching one type of exception
To catch a particular type of exception, we simply include that type of exception with
the except clause. For example, to change the code used for the OperationalError
in order to catch that exception, we would use the following:

#!/usr/bin/env python

import MySQLdb, sys
mydb = MySQLdb.connect(host = 'localhost',
 user = 'skipper',
 passwd = 'r00tp4ss',
 db = 'fish')
cur = mydb.cursor()

statement = """SELECT * FROM menu WHERE id=7a""""

try:
 cur.execute(statement)
 results = cur.fetchall()
 print results
except MySQLdb.OperationalError, e:
 raise e

After the traceback, we get the following output:

_mysql_exceptions.OperationalError: (1054, "Unknown column '7a' in 'where
clause'")

You can similarly catch any of MySQL for Python's error types or its warning. This
allows much greater flexibility in exception-handling. We will see more of this in the
project at the end of the chapter.

Exception Handling

[114]

Catching different exceptions
To customize which error is caught, we need different except clauses. The basic
structure of this strategy is as follows:

try:
 <do something>
except ErrorType1:
 <do something>
except ErrorType2:
 <do something else>

To combine the examples for the OperationalError and ProgrammingError that
we just saw, we would code as follows:

#!/usr/bin/env python

import MySQLdb, sys
mydb = MySQLdb.connect(host ='localhost',
 user = 'skipper',
 passwd = 'secret',
 db = 'fish')
cur = mydb.cursor()

identifier = sys.argv[1]

statement = """SELECT * FROM menu WHERE id=%s"""" %(identifier)

try:
 cur.execute(statement)
 results = cur.fetchall()
 print results
except MySQLdb.OperationalError, e:
 raise e
except MySQLdb.ProgrammingError, e:
 raise e

After writing this into a file, execute the program with different arguments. A
definite way to trigger the OperationalError is by passing a bad value like 7a.
For the ProgrammingError, try an equals sign.

One can do more than simply print and raise exceptions in the
except clause. One can also pass system calls as necessary. So, for
example, one could pass programming variables to a function to send all
errors to a set address by a protocol of your choosing (SMTP, HTTP, FTP,
and so on.). This is essentially how programs such as Windows Explorer,
Mozilla Firefox and Google's Chrome browsers send feedback to their
respective developers.

Chapter 4

[115]

Combined catching of exceptions
It is not uncommon to want to handle different errors in the same way. To do this,
one simply separates the errors by a comma and includes them within parentheses
after except. For example, the preceding program could be rewritten as follows:

#!/usr/bin/env python

import MySQLdb, sys
mydb = MySQLdb.connect(host ='localhost',
 user = 'skipper',
 passwd = 'secret',
 db = 'fish'))
cur = mydb.cursor()

identifier = sys.argv[1]

statement = """SELECT * FROM menu WHERE id=%s"""" %(identifier)

try:
 cur.execute(statement)
 results = cur.fetchall()
 print results
except (MySQLdb.OperationalError, MySQLdb.ProgrammingError), e:
 raise e

As with most parts of Python, enclosing the two error types in parentheses tells
Python to accept either one as the error type. However, only one will be output
when e is raised.

Raising different exceptions
Python will raise whatever valid type of error you pass to the raise statement.
It is not particularly helpful to raise the wrong exceptions. However, particularly
when debugging or auditing code that has been copied from another project, one
should be aware that it can be done (as in the story of Ariane 5, at the beginning of
this chapter).

To illustrate this using the code listing previously, change the except clause to read
as follows:

except (MySQLdb.OperationalError, MySQLdb.ProgrammingError), e:
 raise ValueError

Then pass bad arguments to the program like 7a or ?.

Exception Handling

[116]

Note that any use of raise will provide a stack trace. If you do not want
a stack trace printed, then you should simply use a print statement to
output the error message, as shown earlier in this chapter.

Creating a feedback loop
Being able to follow different courses of action based on different exceptions allows
us to tailor our programs. For a DataError or even a ProgrammingError, we may
want to handle the exception behind the scenes, hiding it from the user, but passing
critical information to the development team. For Warning or non-critical errors, we
may choose to pause execution of the program and solicit more information from the
user. To do this, we would use a raw_input statement as part of the except clause.
In order to be concise, the following program treats errors and warnings the same
way, but they could easily be separated and treated with greater granularity.

#!/usr/bin/env python

import MySQLdb, sys

mydb = MySQLdb.connect(host ='localhost',
 user = 'skipper',
 passwd = 'secret',
 db = 'world')
cur = mydb.cursor()

identifier = sys.argv[1]
statement = """SELECT * FROM City WHERE ID=%s""" %(identifier)

while True:
 try:
 print "\nTrying SQL statement: %s" %(statement)
 cur.execute(statement)
 results = cur.fetchall()
 print "The results of the query are:"
 print results
 break
 except (MySQLdb.Error, MySQLdb.Warning):
 new_id = raw_input("The city ID you entered is not valid.
Please enter a valid city ID: ")
 print "Using the new city ID value '%s'" %(new_id)
 statement = """SELECT * FROM City WHERE ID=%s""" %(new_id)

Chapter 4

[117]

Project: Bad apples
Bad apples come in all shapes and sizes. Some are users; some are staff. Either is
capable of giving the computer bad data or the wrong commands. MySQL, on the
other hand, validates all data against the database description. As mentioned earlier
in this book, all statements have to be made according to a set syntax. If there is a
mismatch along the way, an exception is thrown.

For this project, therefore, we will implement a program to do the following:

Insert and/or update a value in a MySQL database table
Retrieve data from the same table
Handle MySQL errors and warnings
Notify the appropriate staff

Exactly how these elements are implemented will naturally differ depending on your
local dynamics. Further, there are plenty of other checks beyond these that one could
include. For example, if you have a whitelist or blacklist against which you can check
input data, it would follow to include that check with what we implement here.
The point of this project is to handle any error that MySQL can throw and to do so
appropriately without resorting to generic exception-handling. Depending on how
you code it, not all errors need to be handled because not all of them will ever be
thrown. However, here we aim for comprehensiveness if merely for the exercise.

For this project, we will use the following functions:

connection(): To create the database connection
sendmail(): To send error messages to different maintainers (for example,
database administrator)

Additionally, we will have a class MySQLStatement with the following methods and
attributes (__init__ naturally being assumed):

type: Attribute of the instance to indicate what kind of statement is being
processed
form(): Method to form the MySQL statement
execute(): Sends the SQL statement to MySQL and receives any exceptions

All of these will once again be controlled by main().

•

•

•

•

•

•

•

•

•

Exception Handling

[118]

The preamble
Before coding the functionality mentioned, we need to attend to the basics of the
shebang line and import statements. We therefore start with the following code:

#!/usr/bin/env python

import MySQLdb
import optparse
import sys

After this, we need to include support for options:

Get options
opt = optparse.OptionParser()
opt.add_option("-i", "--insert", action="store_true", help="flag
request for insertion - only ONE of insert, update, or select can be
used at a time", dest="insert")
opt.add_option("-u", "--update", action="store_true", help="flag
request as an update", dest="update")
opt.add_option("-s", "--select", action="store_true", help="flag
request as a selection", dest="select")
opt.add_option("-d", "--database", action="store", type="string",
help="name of the local database", dest="database")
opt.add_option("-t", "--table", action="store", type="string",
help="table in the indicated database", dest="table")
opt.add_option("-c", "--columns", action="store", type="string",
help="column(s) of the indicated table", dest="columns")
opt.add_option("-v", "--values", action="store", type="string",
help="values to be processed", dest="values")
opt, args = opt.parse_args()

Only one kind of statement type is allowed. If more than one is
indicated, the priority of assignment is SELECT -> UPDATE -> INSERT.
if opt.select is True:
 statement_type = "select"
elif opt.update is True:
 statement_type = "update"
elif opt.insert is True:
 statement_type = "insert"

Then, as a matter of style, we assign the option values to more generic variable
names for ease of handling:

database = opt.database
table = opt.table
columns = opt.columns
values = opt.values

Chapter 4

[119]

Making the connection
The first function we define is connection(). This is called with the name of the
database as specified by the user. For security reasons, we do not allow the user
to specify the host. Also, for reasons of simplicity, we will hardwire the login
credentials into the function.

def connection(database):
 """Creates a database connection and returns the cursor. Host is
hardwired to 'localhost'."""
 try:
 mydb = MySQLdb.connect(host ='localhost',
 user = 'skipper',
 passwd = 'secret',
 db = 'database')
 cur = mydb.cursor()
 return cur
 except MySQLdb.Error:
 print "There was a problem in connecting to the database.
Please ensure that the database exists on the local host system."
 raise MySQLdb.Error
 except MySQLdb.Warning:
 pass

If the connection is made successfully, the function returns the cursor to the calling
function. All errors at this point are fatal. We print a message to guide the user and
then exit. All warnings are passed silently.

Sending error messages
Next is a very simple SMTP server that we use to send messages through localhost.
To our import statements at the beginning of the program file, we need to add:

import smtplib

Then we can call it in a function as follows:

def sendmail(message, recipient):
 """Sends mail through localhost. Takes error message and intended
recipient as arguments."""

 fromaddr = "pythonprogram@someaddress.com"
 toaddrs = recipient + "@someaddress.com"

 # Add the From: and To: headers at the start!
 msg = ("From: %s\r\nTo: %s\r\n\r\n" %(fromaddr,toaddrs)

Exception Handling

[120]

 msg = msg + str(message[0]) + message[1]

 server = smtplib.SMTP('localhost')
 server.set_debuglevel(1)
 server.sendmail(fromaddr, toaddrs, msg)
 server.quit()

Before running this code, you will naturally want to change the value of the
SMTP server to be used from localhost if you do not have a mail server on your
local system. Also note that many ISPs verify the existence of domains prior to
forwarding a message, so you should also check your values in that regard before
using this function.

By allowing the function to receive both the message and the recipient, we can
reuse this code for different exceptions. As noted in the Python documentation
on smtplib, this is a simple example and does not handle all of the dynamics of
RFC822. For more on RFC822, see: http://www.faqs.org/rfcs/rfc822.html.

This code is derived from the documentation on smtplib, which can be found at
http://www.python.org/doc/2.5.2/lib/SMTP-example.html

This example assumes that you are running an SMTP server on your local machine
and so directs smtplib's SMTP class to use localhost. However, you can easily
adapt this to any SMTP server by using the login method of the SMTP class. For
example, the function could read:

fromaddr = "me@example.com"
toaddr = "you@example.com"
msg = ("From: %s\r\nTo: %s\r\b\r\n From me to you" %(fromaddr,
toaddr))

server = smtplib.SMTP('mail.example.com')
server.login('me@example.com', 'secretpass')
server.set_debuglevel(0)
server.sendmail(fromaddr, toaddr, msg)
server.quit()

If you need to use a particular port on the server, simply append it to the server
address you use to instantiate the SMTP object:

server = smtplib.SMTP('mail.example.com:587')

An example of how to do this with Google's email service can be found at
http://www.nixtutor.com/linux/send-mail-through-gmail-with-python/.

Chapter 4

[121]

For reasons of spam and other security issues, you will want to hardwire as many
variables as is reasonably possible into this function. For example, you would
not want to allow the domain name of either the recipient or the sender to be
dynamically set. If you had to send an error message to someone who is not on the
domain, it is better to set up mail-forwarding from an address on that domain than
to allow anyone with access to the module to send messages to and from random
domains while using your server.

Finally, while you are developing the program, it is helpful to keep server.set_
debuglevel switched on and set to 1. When the program is moved into regular use,
however, you will want to change it to 0, so the user does not see the debugging
messages output by the server.

The statement class
Next we need to write the MySQLStatement class. Instances of this class will have as
an attribute what kind of class they are. Further, they will have methods to form and
execute an SQL statement that incorporates the user's input in the appropriate kind
of statement.

The __init__ method
First, we need to give the class a conscience. We do this with the __init__()
method:

class MySQLStatement:
 def __init__(self):
 """Creates an instance to form and execute a MySQL
statement."""
 self.Statement = []

You will notice that we are starting to use docstrings. As the code gets more
complex and there is an increased likelihood that we will reuse it, we will start
using docstrings with greater frequency.

If you are unclear on what docstrings are and why
you should use them, see this rationale for their use:
http://www.python.org/dev/peps/pep-0257/#rationale.

We have no need to specify otherwise, so every instance of MySQLStatement will
inherit the generic characteristics of a Python object.

Exception Handling

[122]

Storing the statement type
The statement type is the only attribute that we will have in this class. Simply put, it
stores the value that we pass to it. We could store the same value in a variable within
the main() function and pass it as an argument to the object methods, but that would
not leave us with re-usable code. Having the type as an attribute of the object ensures
that we can access this same object as a module import instead of calling the entire
program directly.

The code is as follows:

 def type(self, kind):
 """Indicates the type of statement that the instance is.
Supported types are select, insert, and update. This must be set
before using any of the object methods."""
 self.type = kind

Here we do not challenge the value of kind when this attribute is invoked.
Rather, we allow any value to be passed to the main() function. We will talk
more about verifying the type in Room to grow, later in this chapter.

Forming the statement
The first method that we will code forms the SQL statement from the user's data. The
code for this method is as follows:

 def form(self, table, column, info):
 """Forms the MySQL statement according to the type of
statement, using table as the tablename, column for the fields, and
info for values"""

 data = info.split(',')
 value = "'" + data[0]
 for i in xrange(1, len(data)):
 value = value + "', '" + data[i]
 value = value + "'"

 if self.type == "select":
 statement = """SELECT * FROM %s WHERE %s=%s""" %(table,
column, value)
 return statement
 elif self.type == "insert":
 statement = """INSERT INTO %s(%s) VALUES(%s)""" %(table,
column, value)
 return statement
 elif self.type == "update":
 statement = """UPDATE %s SET %s=%s WHERE %s=%s""" %(table,
column, data[0], column, data[1])
 return statement

Chapter 4

[123]

If the same value is given for the two columns, the update will effectively be a
replacement. If they differ, the first will be where the update is applied and the
second will indicate the condition under which it is to be affected.

As usual in MySQL for Python, we leave off the semicolon at the end of the statement.

Different MySQL statements allow for comma-delimited values to be passed.
Some don't. While comma-separated values without quotes are fine for the column
names, the values must have quotes to have meaning (otherwise, they are read as
variable names).

Even if we insisted the user pass values in quotes, we would still have the problem of
getting the optparse module to recognize all of them as such. Therefore, we create
a small routine to split the user's values on the comma and to insert quotes around
each value.

Depending on which type of statement is held in the type attribute, we either form
a SELECT, INSERT, or UPDATE statement. To process these options, we use a series of
if...elif...elif.

Up to now, we have not covered the MySQL UPDATE statement. Up to now, we have
not covered the MySQL UPDATE statement. UPDATE is similar to REPLACE in that it
changes values that are already entered into the database. Where REPLACE affects
changes in old rows and otherwise functions like INSERT, UPDATE impacts multiple
rows at a time, wherever the given condition is met. As seen here, the basic syntax of
UPDATE is:

UPDATE <table> SET <column>='<new value>' WHERE <column>='<old
value>';

Execute the MySQL statement
The final method of the class is execute(). As the name implies, this method accepts
the statement to be processed. It also includes the table of the database specified
by the user as well as the cursor returned by connection(). Here we include the
majority of our exception-handling:

 def execute(self, statement, table, cursor):
 """Attempts execution of the statement resulting from
MySQLStatement.form()."""
 while True:
 try:
 print "\nTrying SQL statement: %s\n\n" %(statement)
 cursor.execute(statement)

 if self.type == "select":
 # Run query

Exception Handling

[124]

 output = cursor.fetchall()

 results = ""
 data = ""
 for record in output:
 for entry in record:
 data = data + '\t' + str(entry)
 data = data + "\n"
 results = results + data + "\n"
 return results

 elif self.type == "insert":
 results = "Your information was inserted with the
following SQL statement: %s" %(statement)
 return results
 elif self.type == "update":
 results = "You updated information in the database
with the following SQL statement: %s" %(statement)
 return results

Handling any fallout
If there is a failure along the way in the process, we need to handle the exceptions
that are raised. To do so, we use a series of except clauses to process the different
exceptions accordingly. In the following code, where the different exceptions are
noted is indicated by comments:

 # OperationalError
 except MySQLdb.OperationalError, e :
 sendmail(e, "pythondevelopers")
 print "Some of the information you have passed is not
valid. Please check it before trying to use this program again. You
may also use '-h' to see the options available."
 print "The exact error information reads as follows:
%s" %(e)
 raise

 # DataError
 # ProgrammingError
 except (MySQLdb.DataError, MySQLdb.ProgrammingError), e:
 sendmail(e, "pythondevelopers")
 print "An irrecoverable error has occured in the way
your data was to be processed. This application must now close. An
error message describing the fault has been sent to the development
team. Apologies for any inconvenience."
 raise

Chapter 4

[125]

 # IntegrityError
 except MySQLdb.IntegrityError, e:
 sendmail(e, "dba")
 print "An irrecoverable database error has occurred
and this process must now end. An error message describing the fault
has been sent to the database administrator. Apologies for any
inconvenience."
 raise

 # InternalError
 # NotSupportedError
 except (MySQLdb.InternalError, MySQLdb.NotSupportedError),
e:
 sendmail(e, "dba")
 sendmail(e, "pythondevelopers")
 print "An irrecoverable error has occurred and this
process must now end. An error message describing the fault has been
sent to the appropriate staff. Apologies for any inconvenience."
 raise

 except MySQLdb.Warning:
 pass

Some errors can be handled more or less the same way. Instead of creating separate
except clauses for each, we group them. Similarly, different exceptions may
require addressing by more than one team. So in the last except clause, processing
internal and not supported errors, we send the error message to both the database
administrator as well as the team who maintains the program. Finally, warnings are
passed over.

The main() thing
As usual, the main() function is the brains of our program. As options are set earlier
in the program, main() is left to instantiate the MySQLStatement object and pull the
puppet strings to get the functions and methods to form the appropriate statement
and execute it. If there is a failure along the way, we want to field it accordingly.

Exception Handling

[126]

Try, try again
The main actions of main() begin as follows:

 request = MySQLStatement()
 try:
 request.type(statement_type)
 phrase = request.form(table, columns, values)
 cur = connection(database)
 results = request.execute(phrase, table, cur)
 print "Results:\n", results
 cur.close()

We first create an object request. This is the only part of main() that is definite;
the rest is performed under the caveat of try. If there is a failure along the way, the
process is scrubbed and an exception is processed.

Within the try clause, we first set the type of statement to be formed. Note that the
way we coded the type attribute, allows any value to be set. Similarly here, the value
of type is not validated.

Following on from setting type, we pass the table name, the column(s), and value(s)
to be used to the form() method. Depending on the value of type, form() will return
one of the three supported statements. This is stored in phrase.

Next, we need a cursor. For this, we call the connection() function. The cursor is
then returned and given the rubric cur.

We then pass phrase and cur, along with the name of the table in question, to the
execute method of our object. MySQLStatement.execute() returns the output of a
selection or otherwise returns a positive statement if the process has been successful.
The results are then printed to screen.

If all else fails
If there should be a failure and the try statement does not succeed, we can pick up
the pieces and move on with the following except clauses:

 except MySQLdb.Error, e:
 sendmail(e, "pythondevelopers")
 print "The values you entered are not valid. Please check the
information you are using before trying again."
 print "The SQL statement that was tried reads as follows: %s"
%(statement)
 raise MySQLdb.Error

 except MySQLdb.Warning:
 pass

Chapter 4

[127]

Room to grow
The program discussed previously will process data given in a set format and do
one of three things with it (SELECT information from the fish database, INSERT new
data, or UPDATE old data to new.). Using various forms of exception-handling, it also
process any error that MySQL throws.

Despite all this code, however, there is quite a bit that it does not do. Some points for
you to consider when further developing this code are as follows:

How would you implement handling of Python-specific exceptions (for
example, NameErrors, KeyErrors, and so on)?
Should you modify the type attribute to be self-validating? If so, how would
you do it?
Currently, warnings are passed silently; how would you handle them
more securely?
How would you change the UPDATE feature to handle more than one column
at a time (that is, change the value in column price according to the value of
column name)?
How would you implement new features such as support for REPLACE
or DELETE?
The e-mail messages can serve as a makeshift log of the different errors, but
there is currently no central listing. How would you implement a database
for logging exceptions and their given messages?
Currently, the error messages that are sent are still pretty vague. What kind
of information would you want to pass if this were a web application? What
if it were a desktop application? How would you gather that information and
send it in a feedback message?
The program currently prints the results of a SELECT query to the
screen without column headers. How would you affect them using the
PrettyTable module mentioned in the previous chapter?

•

•

•

•

•

•

•

•

Exception Handling

[128]

Summary
In this chapter, we have covered how to handle errors and warnings that are passed
from MySQL for Python and the differences between them. We have also looked
at how to pass errors silently and when, the several types of errors supported by
MySQL for Python, and how to handle errors properly.

In the next chapter, we will look at how to retrieve single and multiple records
efficiently, ensuring we do not use resources needlessly or for longer than necessary.

Results Record-by-Record
As seen earlier, MySQL's SELECT statement can be very greedy. Using fetchall()
processes all hits in one go. However, as we will see in this chapter, there are times
when you should avoid this.

In this chapter, we will look at the following:

Certain circumstances under which record-by-record processing is desirable
How iteration helps us get each record in turn
Using custom-created Python iterators for record-by-record processing
Using fetchone() to process one record at a time
Using fetchmany() to retrieve data in small chunks
How to use loops to walk through a series of records

At the end of the chapter, we will put these lessons to use for writing a program that
works with returned data record-by-record.

The problem
You have set up your database program as a daemon, so it runs persistently and
can be called by users throughout the network. Based on what we have covered in
earlier chapters, it retrieves all the records into the application process itself before
processing each one as a list. You have debugged it thoroughly and so you know it
works. Still, within a week of deployment, the service is jamming up and colleagues
are drawing comparisons between your program's processing time and the speed of
molasses in January. What happened?

•

•

•

•

•

•

Results Record-by-Record

[130]

To understand the problem, it is worth revisiting the process by which a query is
processed in MySQLdb. After making the connection, one passes an execute() call
according to the cursor object—cursor.execute() for an instance of MySQLdb.
Cursor that is named cursor. When that execute() call is passed, MySQLdb does not
return the results, but returns the number of rows affected by the query (the results
are retrieved, but not immediately returned). Consider the code for the execute()
method, part of the docstring and the exception-handling clauses have been removed
for this snippet and replaced with an ellipsis().

def execute(self, query, args=None):
 """Execute a query.
 query -- string, query to execute on server
 args -- optional sequence or mapping, parameters to use with
query.
...
 Returns long integer rows affected, if any
 """

 from types import ListType, TupleType
 from sys import exc_info
 del self.messages[:]
 db = self._get_db()
 charset = db.character_set_name()
 if isinstance(query, unicode):
 query = query.encode(charset)
 if args is not None:
 query = query % db.literal(args)
 try:
 r = self._query(query)
...

 self._executed = query
...
 return r

To get the results, we have previously used fetchall(). For most applications,
this is tantamount to cracking a nut with a sledgehammer. Whenever you use
fetchall(), MySQLdb returns all affected rows to your program in one go. This
is typically unnecessary for user interaction. Further, being used simultaneously
by multiple users, the multiple instances of the application then consume system
resources like a sinkhole, causing the server to slow or, worse, to crash.

It is worth noting that MySQL for Python supports a rowcount attribute
of cursor and this is the preferred way of accessing the total of affected
rows. One simply references the attribute as follows:
rows = cursor.rowcount

Chapter 5

[131]

The problem would be resolved by regulating the rate at which one draws down the
information to the user. This results in greater user satisfaction.

Why?
There are a number of reasons why one might opt to process records individually or
at least in smaller chunks. Three of the most compelling reasons are:

Limits of computing resources
Network latency
Pareto's principle

From the perspective of efficiency, any one of these reasons is good enough to
warrant retrieval of smaller amounts of data. We look at each in greater detail
in the following section.

Computing resources
Despite Moore's law holding true for many years now, it is coming under increasing
pressure as a trend and cannot be presumed to hold true indefinitely. While one
may have a budget with numbers so big that it looks like a phone directory, one's
resources are only faster or more powerful on a comparative scale.

Moore's law states that the number of transistors that one is able to fit on
an integrated circuit will double every two years.
This law is not much of a natural law as a business observation was made
by Gordon Moore, co-founder of Intel. He did not state in such absolute
terms, but wrote of the trend in the 19 April 1965 edition of Electronics
magazine (Volume 38, Number 8):

The complexity for minimum component costs has increased at a rate of
roughly a factor of two per year. Certainly over the short term this rate
can be expected to continue, if not to increase.

Moore has since gone on record saying that the trend cannot continue
forever, but can be expected to break within the next twenty years. His
paper is available for download on the following Intel website:
ftp://download.intel.com/museum/Moores_Law/

Click on Articles-Press_Releases and then on Gordon_Moore_
1965_Article.pdf

•

•

•

Results Record-by-Record

[132]

It therefore behooves one as the developer or project manager to continue prudent
use of one's resources. Especially, there are two conditions where this applies, which
we will look at now.

Local resources
In the largest economies of the world, the majority of businesses have a relatively
small operating budget. In the United Kingdom, for example, 97 percent of
businesses employ fewer than 20 employees. In the United States, this figure is
89 percent. Australian small businesses account for 96 percent of the corporate
economic system. The dynamics are the same across Canada, New Zealand, and
the rest of the English-speaking world and are not likely to change significantly in
other countries. Most applications, therefore, will be used by small businesses that
typically have restricted budgets for computing resources.

In such a limited computing environment, performing and returning an exhaustive
search can slow the system for other purposes. This applies to a single host or a
local area network. One must keep in mind that most small businesses will run one
MySQL server with several databases on it. Therefore, even if the application is not
using the same database, it can overload the server, resulting in lag or latency, and
loss of productivity.

It is worth noting that querying in large blocks to the point of locking up a system
is a mistake that has been made even by professionals. One is reminded of earlier
versions of Filemaker Pro—a database application for the Mac OS used widely in
small business situations. When more than one large-ish query was passed to the
server at one time, it became overloaded. It would then change the cursor to a teacup
as if to tell the user, "Come back later. It might be a while."

The problem of resource scarcity is compounded by even good service
administration. By their nature, the policies of system and network administrators
tend to be at odds with the business cycle and therefore require constant revision
and maintenance. Best practice says to design minimal resources than necessary for
a task or for a project. However, the project requirement needs of a growing business
will repeatedly push the resources toward breaking point. We thus need to make our
software sufficiently robust to handle the tension, which ensues from that pushing.
For Filemaker Pro, the system was pushed to its limit and therefore brought up
a teacup.

Chapter 5

[133]

This problem of anticipating how the user is going to push the system to its limits is
as old as software engineering. Many modern methods of software development are
designed to liaise with the end users throughout the development process; examples
include evolutionary process systems (incremental and concurrent process models),
component-based systems, and iterative models such as agile development. The
point of this is not only to ensure a good fit for the software to the user's problems
but, as part of that fit, to employ metrics in order to see how the system will be
used most heavily in the target environment, and to ensure a reasonable amount
of scalability.

Web applications
Perhaps the most common illustration of limited resources currently is the web
application. Whether your site serves up a simple web page or a full service Web 2.0
application, you cannot escape the fundamental limits of the CPU to perform a given
number of flops per second.

Combined with other system dynamics such as input and output (I/O), cache
coherence, memory management, and interprocessor communication, the
capabilities of the server are finite and measurable. This mandates a cap on the
amount throughout from disk to port and subsequently limits the number of users
that any service can support.

The common, non-technical view is that servers can process requests from multiple
users at one time. This is erroneous. Servers process requests quickly using a first-in
first-out (FIFO) queue system. Therefore, the greater the number of users requesting
a page, the longer the time between the processing of the first request and the second
for each user. If that delay becomes sufficiently long, the server and the client will
lose contact with each other. Because HTTP persistent connections do not require
the client to issue an end-of-request signal, the server will interpret this lack of
communication as an end of request and close the connection. The user will then
receive a message that the connection has timed out. Refreshing the page then opens
a new connection and starts the process again.

Examples of such events abound. Perhaps the most common form is the so-called
Slashdot effect, named after the Slashdot website, but the same dynamics are
at play whenever a site gets more traffic than it is built to withstand. Barring
a misconfiguration of either the server or the networks used along the way, a
time out arises from the server becoming overwhelmed and unable to maintain
communication with user clients. Of the variables located on the host machine, the
primary reason for the server becoming overwhelmed is inefficiency in the way
dynamic content is generated.

Results Record-by-Record

[134]

Network latency
Beyond problems on the server itself, retrieving results by individual records is also
advisable under certain network conditions. One needs to compare only the response
times of a web application at times of peak and trough, to see how network latency
impacts on the apparent responsiveness of an application. This latency is not always
on any one network. Rather it is more often than not a negative synergy arising from
small amounts of latency in networks on the route, from the browser to the server.

Server-client communications
The latency that occurs, impacts on the client-server communication and the timing
of the TCP/IP dialogue that normally occurs. As this is disrupted, client requests can
be dropped and it consequently appears to the server as if the client has closed the
connection. The result is the same as the time out mentioned previously.

Apparent responsiveness
Network latency—whether on a LAN, WAN, or external network like the Internet,
necessarily impinges upon the apparent responsiveness of the server and any
application being served to the user. Even if it does not cause a timing out of the
connection, latency slows down the entire communication process. The result is
sluggishness in the application.

With the increasing ubiquity of AJAX calls, this sluggishness will become even more
pronounced. A case in point; users of mainstream search engines or fully-featured
web suites such as 2easy Office will be used to suggestions in completing forms.
These suggestion lists are usually generated through an AJAX-like call to the server.
Such calls necessarily increase the amount of traffic between server and client. When
combined with other user traffic at a given time, the user's receipt of the system's
recommendations can be delayed increasingly.

Pareto's Principle
Pareto's Principle is a commonly applied rule of thumb: 80 percent of anything
is trivial and that 20 percent is critical. It has been further extended to say that 20
percent of any process produces 80 percent of the output. The observation has been
demonstrated in order to apply the rule from its origins in Italian land ownership to
the solving of business problems to combat trends in trench warfare in the Second
World War. It also applies, with some qualification, to user queries in an application.

Chapter 5

[135]

Vilfredo Pareto was an Italian microeconomist who did most of his
work in the 19th century. One of his most famous contributions is the
observation that 80% of the land in his native Italy was owned by 20%
of the population. This observation was later noted by Joseph Juran, an
American management consultant, who observed that 80% of a business
problem results from 20% of the apparent causes.
The Pareto Principle is alternatively known as the 80/20 rule or the law of
the vital few. The point is that the major part of any situation, process, or
thing results from and is largely controlled by a very significant minority.
The percentages involved sometimes change depending on the milieu
and can be 70/30 (search engine indexing), 90/10 (worldwide health
expenditure), or even 95/5 (fundraising for charities).

Assuming the query is formed well by the user, the majority of user queries that
are not exhaustive in nature will be resolved by a minority of the available data.
Therefore, unless the query mandates an exhaustive query, one would do well
to avoid being greedy in results to be returned. As the main overhead in most
computing processes is I/O, it is best to let MySQL and MySQLdb handle filtering.
Otherwise, you are left to return all results to your process and mill through
them. This has its place, as we shall see, but it is not usually the best route to the
desired results.

How?
As we have seen, record-by-record retrieval can save a lot of overhead. To retrieve
a data piecemeal using MySQL for Python, one can call one of two methods of the
Cursor object: fetchone() or fetchmany().

The fetchone() method
The fetchone() method of a cursor object returns exactly one row of results. If the
query affects no rows, None is returned. Consider the following code:

import MySQLdb

mydb = MySQLdb.connect(host = 'localhost',
 user = 'skipper',
 passwd = 'secret',
 db = 'fish')
cur = mydb.cursor()
statement = "SELECT * FROM menu WHERE name='shark'"
cur.execute(statement)
result = cur.fetchone()
print result

Results Record-by-Record

[136]

The outcome will be a raw form of the first record that matches the query.

(11L, 'shark', Decimal('13.00')

Note that only the first result will be printed using the preceding code. As the query
leaves us vulnerable if there is more than one result, this is undesirable. If we are
only going to process one record, we should nuance the SELECT statement, so that as
few matches as possible will be returned. The more criteria one applies to the query,
the fewer the records that will be returned.

For example, let's say we had a database of students at a university. Retrieving all
records from a database of students will necessarily return a very large set of records.
Retrieving those of a particular discipline will return fewer. Retrieving those who
studied that discipline and another, denominated one will return still fewer. Limiting
the query by year of graduation or year of birth will return even fewer. Even with
limiting the query, we are likely to get more than one result. In such circumstances,
one will find the second method of the Cursor class to be helpful.

The fetchmany() method
The fetchmany() method returns blocks of results according to a set limit. Where
fetchone() was simply a method of the cursor object, fetchmany() requires the
desired number of records to be passed as an argument. The basic syntax of the call
is as follows:

<variable name> = <cursor name>.fetchmany(<number of records to
retrieve>)

An example of its use in reducing how much data is returned is as follows.
Our SQL statement is very greedy, but the fetchmany() method keeps the
results manageable.

#!/usr/bin/env python

import MySQLdb

mydb = MySQLdb.connect(host = 'localhost',
 user = 'skipper',
 passwd = 'secret',
 db = 'world')
cur = mydb.cursor()
statement = "SELECT * FROM City"
cur.execute(statement)

results = cur.fetchmany(10)
for result in results:
 print result

Chapter 5

[137]

The output of this program is as follows. Recall that we are leaving the data raw for
the moment.

(1L, 'Kabul', 'AFG', 'Kabol', 1780000L)

(2L, 'Qandahar', 'AFG', 'Qandahar', 237500L)

(3L, 'Herat', 'AFG', 'Herat', 186800L)

(4L, 'Mazar-e-Sharif', 'AFG', 'Balkh', 127800L)

(5L, 'Amsterdam', 'NLD', 'Noord-Holland', 731200L)

(6L, 'Rotterdam', 'NLD', 'Zuid-Holland', 593321L)

(7L, 'Haag', 'NLD', 'Zuid-Holland', 440900L)

(8L, 'Utrecht', 'NLD', 'Utrecht', 234323L)

(9L, 'Eindhoven', 'NLD', 'Noord-Brabant', 201843L)

(10L, 'Tilburg', 'NLD', 'Noord-Brabant', 193238L)

This code returns only the first ten rows and then exits. We can return more with
another fetchmany() call. Assuming a cursor cur for an established database
connection and the importing of the time module, we can run:

cur.execute("SHOW TABLES")
time.sleep(20)
print cur.fetchmany(10)
time.sleep(20)
print cur.fetchmany(10)

Using time.sleep(), we suspend execution of the program for a few seconds
between retrievals. This does not shut the MySQL server down, but plays nicely with
other processes that might issue a query, thus avoiding the problem in FileMaker Pro
that was mentioned earlier.

Naturally, in the real world, you would normally want to work through all of the
data. To do that, we need some iteration.

Iteration: What is it?
Unless we know that our fetchone() call by design will return a single record or
that our fetchmany() call will return all results, it is necessary to retrieve the next
record or set of records through an iterative cycle. How we implement that, however,
depends on the conditions of our programming.

In its simplest form, iteration is the repetition of a process in order to progress
through a series. The series may be data to be processed (the returned results of a
database query) or a series of events to be performed (the calls necessary to retrieve
records individually).

Results Record-by-Record

[138]

As we shall see, Python allows for the creation of iterative loops as well as iterator
objects. Which one you use and when, naturally depends on the other dynamics of
your application.

Generating loops
Iterating through results is done with one of two control flow tools: while or for.

while...if loops
The use of while...if for generating and controlling iteration is a combination
of the two control-flow tools used elsewhere in generic Python. One initiates a
recurring retrieval cycle that continues while there is valid data to process, but is
broken if there is no data to process. If there is no data returned, fetchone() returns
a value of None. This is therefore the value for which the if statement checks.

In using while-based controls, one does not always use if to check the data. Rather,
as we have seen in previous chapters, one can simply allow an error to arise and thus
break out of the loop.

Using the previous example of fetchone(), we can use the following nested loop to
walk through the records:

import MySQLdb

mydb = MySQLdb.connect(host = 'localhost',
 user = 'skipper',
 passwd = 'secret',
 db = 'fish')
cur = mydb.cursor()
statement = "SELECT * FROM menu WHERE name='shark'"
cur.execute(statement)
 while 1:
 result = cur.fetchone()
 if result == None:
 break
 print result

Running the preceding code produced the following raw results:

(11L, 'shark', Decimal('13.00'))

As seen in earlier chapters, you can make this more useful to the user with a bit
more code.

Chapter 5

[139]

It is important to note that while creates the recurring retrieval of data that is
checked by the if statement. Without while, only attempt at retrieval is made and
the results only printed if not equal to None. Without the if statement, an infinite
loop is created.

The for loop
Recall from the beginning of the chapter that the execute() method of the Cursor
class returns the number of records affected by the query. That number is also stored
in the rowcount attribute of the cursor object. Using that attribute, we can create a
for loop to walk through the results individually:

import MySQLdb
import time

mydb = MySQLdb.connect(host = 'localhost',
 user = 'skipper',
 passwd = 'secret',
 db = 'fish')
cur = mydb.cursor()
statement = "SELECT * FROM menu WHERE name='tuna'"
cur.execute(statement)
numrows = int(cursor.rowcount)
for x in xrange(0,numrows):
 row = cursor.fetchone()
 print row

 time.sleep(5)

If one is seeking to optimize one's memory usage, use xrange() instead of range()
for large series or for series accessed infrequently. Using range() causes Python
to store the entire series at once, where xrange() creates series items on demand.
You can learn more about xrange() in the Python documentation at http://docs.
python.org/library/functions.html.

The output of this program will be the same as the previously discussed while loop.

As indicated previously, one uses a for loop to walk through the return of
fetchmany(). One could rewrite the last code from just after the execute()
call with the following:

numtakes = int(cur.rowcount)/5
for x in range(0,numtakes+1):
 result = cur.fetchmany(5)
 for row in result:
 print row

Results Record-by-Record

[140]

Unless you know that the number of rows being returned is divisible by the size you
give fetchmany(), you need to account for the remainder. To accomplish this, we
add one to the iteration count.

Iterators
Since Version 2.2, Python has supported the use of iterators. Iteration in its simplest
form can be seen whenever one works through a list one-by-one, usually with a for
loop. For example, assume a list of objects:

alist = ['chihuahua', 'boxer', 'greyhound']

We iterate through the list with a for loop:
for i in alist:
 print i

The results are the list printed in order. Wherever and whenever you use a for loop
to work through a series, you employ iteration (for example, lists by item, files by
line, and so on).

As the name implies, iterators are objects used to iterate over a set of values. By
definition, an iterator is an object that has a next method to return the next item
in a series.

More information on iterators is available in the Python documentation
by following the links at:
http://docs.python.org/glossary.html#term-iterator

One creates an iterator using the iter() function. One passes the set to iter() as
an argument.

iterator = iter(<name of set>)

This creates an iterator object that is normally named with an assignment statement.
One then simply requests items in the series one-by-one with the next() method of
the object just created.

idem = iterator.next()

This assigns the next item in the series to the variable idem.

Chapter 5

[141]

Illustrative iteration
The function of iterators can be seen in an example using the fetchall() method:

#!/usr/bin/env python

import MySQLdb

mydb = MySQLdb.connect(host = 'localhost',
 user = 'skipper',
 passwd = 'secret',
 db = 'fish')
cur = mydb.cursor()
statement = "SELECT * FROM menu WHERE name='shark'"
cur.execute(statement)
result = cur.fetchall()

series = iter(result)

for i in xrange(0, cur.rowcount):
 print series.next()

In this instance, we create an iterator out of the series of records returned by
fetchall(). We then iterate through the series according to the number of rows
returned, calling the next method of the iterator object series whenever we needed
another record.

One can use while with an iterator object. In doing so, however, one must make
allowances for either the point at which the returned data ends or the point where
the iterator object raises a StopIteration exception.

A StopIteration exception is always raised by an iterator at the end of
a series. Using a for loop usually avoids having to handle it.

Iteration and MySQL for Python
MySQL for Python's Cursor class supports two methods that are primarily used
in iteration: fetchone() and fetchmany(). As shown in the previous sections, it is
possible to use within the main flow of a program. While this gets the job done, the
better way is to abstract the iteration into a function or method.

Results Record-by-Record

[142]

Generators
Functions and methods that contain loops for controlling iteration are usually
generators. By definition, generators are functions or methods that contain the
keyword yield.

The term yield was introduced in Python 2.2 as a special keyword. Its sole purpose
was to indicate that a function is a generator. Whenever a function contains the
keyword yield, Python's byte code compiler would compile it as a result. (see PEP
255 for more on this).

The net effect is that yield causes two main results:

The function does not return a single value, but a generator object for the
iterator defined within it
The dynamics of the function are suspended after each iteration until the next
method is called

What this means for us as programmers is that we never get the full series from a
generator, but the ability to access the series in a resource-sensitive way. The data
is generated only when we ask for it. In the context of a generator, yield functions
like return. The function that includes yield returns a generator object, not a
particular value.

Using fetchone() in a generator
Creating a generator using fetchone() is simply a matter of incorporating the
method into an iterative function. MySQLdb cursors are iterators themselves, but the
following code illustrates how to include them in other iterative structures:

#!/usr/bin/env python

import MySQLdb

mydb = MySQLdb.connect(host = 'localhost',
 user = 'skipper',
 passwd = 'secret',
 db = 'world')
cur = mydb.cursor()
statement = "SELECT * FROM City"
cur.execute(statement)

def iter_results(cursor, recordnum):
 for x in xrange(0,recordnum):

•

•

Chapter 5

[143]

 result = cursor.fetchone()
 if not result:
 break
 else:
 yield result

myresults = iter_results(cur, 5)
for item in myresults:
 print item

Using the world database, we can pass a statement to select every city, but then take
only the first three. When dealing with the potential return of large amounts of data,
generators allow us to deal with the data in chunks. In this instance, the iterator that
is returned will return only the first five rows of those affected by the SQL statement.

Using fetchmany() in a generator
Similarly to fetchone(), the fetchmany() method can be incorporated into a
generator to return an iterator. As with fetchone(), MySQLdb cursors are iterators
themselves. The following code illustrates how to include fetchmany() into another
iterative structure. The following code returns all results, but in blocks set by the
program call:

#!/usr/bin/env python

import MySQLdb

mydb = MySQLdb.connect(host = 'localhost',
 user = 'skipper',
 passwd = 'secret',
 db = 'world')
cur = mydb.cursor()
statement = "SELECT * FROM City"
cur.execute(statement)

def iter_results(cursor, recordnum):
 while 1:
 result = cursor.fetchmany(recordnum)
 if result == None:

 break
 for item in result:
 yield item

myresults = iter_results(cur, 5)
for idem in myresults:
 print idem

Results Record-by-Record

[144]

Currently, the preceding code retrieves results in batches of five rows. But it does so
with such speed that it might as well be all at once. The savings here are in memory
usage—more or less the same system resources are allotted for each iteration and
then released back to the system to be allotted again. So memory usage does not
ramp up with each iteration.

If we wanted to affect the same results as we did for the function written for
fetchone(), previously, we need to limit the iteration of the generator. We do not
need to change the generator. Instead, we need to change the for loop by which we
walk through the results. Change the last loop to read as follows:

for span in xrange(0,5):
 print myresults.next()

This treats IterResults() as the generator that it is and simply calls the next
function of the generator object named myresults.

The output will be the return of the first five records of affected rows.

(1L, 'Kabul', 'AFG', 'Kabol', 1780000L)

(2L, 'Qandahar', 'AFG', 'Qandahar', 237500L)

(3L, 'Herat', 'AFG', 'Herat', 186800L)

(4L, 'Mazar-e-Sharif', 'AFG', 'Balkh', 127800L)

(5L, 'Amsterdam', 'NLD', 'Noord-Holland', 731200L)

Project: A movie database
The project for this chapter involves querying the Sakila database from MySQL.

Sakila is a database of fictitious movies and films.

For this project, we will write a program with the following features:

Accepts user input for the name of either a film or an actor
Returns the first record for confirmation by the user
If the first set of data is confirmed as being what the user wants, the entire set
is returned
All errors are fatal and result in error messages being passed to the user
All warnings are explicitly silenced

•

•

•

•

•

Chapter 5

[145]

Getting Sakila
The Sakila sample database represents the possible tables for a DVD rental store. It is
available for download from the MySQL website:

http://downloads.mysql.com/docs/sakila-db.zip

Once you have downloaded the file, unpack it into a temporary directory. Then you
are ready to create the database.

Creating the Sakila database
To create the Sakila database, one follows similar steps to what we did for the
world database. Where the world database came in a single *.sql file dump and so
required a single source command, Sakila comes in two files and requires them to be
sourced in a specific order.

In a terminal session, enter the sakila-db directory (that is, the directory created
when you unzip the sakila-db.zip file). Then log into MySQL.

Once logged into MySQL, we may need to create the database itself.

mysql> CREATE DATABASE sakila;

This is not necessary with Sakila as the file will include the CREATE statement. We
do not need to tell MySQL the names and structures for the tables explicitly. Instead,
we source the schema file:

mysql> source sakila-schema.sql

This creates the structure of the database tables. Next, fill the tables with data by
source-ing the data file:

mysql> source sakila-data.sql

Then, having created the database, its tables, and its data, we can look around in the
database by use-ing it.

mysql> use sakila;

Further information on installing the Sakila database can be found at
http://dev.mysql.com/doc/sakila/en/sakila.html#sakila-installation.

Results Record-by-Record

[146]

The structure of Sakila
The Sakila database is intended to represent the tables that would drive a DVD
rental database application. As such, it has several more tables than world:

mysql> show tables;

+----------------------------+

| Tables_in_sakila |

+----------------------------+

| actor |

| actor_info |

| address |

| category |

| city |

| country |

| customer |

| customer_list |

| film |

| film_actor |

| film_category |

| film_list |

| film_text |

| inventory |

| language |

| nicer_but_slower_film_list |

| payment |

| rental |

| sales_by_film_category |

| sales_by_store |

| staff |

| staff_list |

| store |

+----------------------------+

Chapter 5

[147]

Of all of these tables now available, we shall use two for this project: actor_info
and film_list. The first contains the names and films of the actors in the database
and has the following structure:

mysql> describe actor_info;

+------------+----------------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+------------+----------------------+------+-----+---------+-------+

| actor_id | smallint(5) unsigned | NO | | 0 | |

| first_name | varchar(45) | NO | | NULL | |

| last_name | varchar(45) | NO | | NULL | |

| film_info | varchar(341) | YES | | NULL | |

+------------+----------------------+------+-----+---------+-------+

The film_list table contains all of the films and their respective actors:

mysql> describe film_list;

+-------------+------------------------------------+------+-----+--------
-+-------+

| Field | Type | Null | Key | Default
| Extra |

+-------------+------------------------------------+------+-----+--------
-+-------+

| FID | smallint(5) unsigned | YES | | 0
| |

| title | varchar(255) | YES | | NULL
| |

| description | text | YES | | NULL
| |

| category | varchar(25) | NO | | NULL
| |

| price | decimal(4,2) | YES | | 4.99
| |

| length | smallint(5) unsigned | YES | | NULL
| |

| rating | enum('G','PG','PG-13','R','NC-17') | YES | | G
| |

| actors | varchar(341) | YES | | NULL
| |

+-------------+------------------------------------+------+-----+--------
-+-------+

Results Record-by-Record

[148]

Planning it out
Knowing a bit more about the Sakila database, we can take another look at our
planned functionality and consider what we will need to do.

Accept user input for the name of either a film or a thespian

This will entail use of the optparse module again. Depending on which is flagged,
we will need one of two possible MySQL statements.

Return the first record for confirmation by the user

We will rely on fetchone() to do this. This gives the user a preview of the data so
we don't waste resources fetching unwanted data.

If the first set of data is confirmed as being what the user wants, the entire set
is returned

This will require fetchmany() to cut down on system resources.

All errors are fatal and result in error messages being passed to the user
All warnings are explicitly silenced to the user (they are, however, logged
to stderr)

This requires explicit exception-handling as detailed in the previous chapter. Errors
and warnings will be explicitly handled in a try...except structure.

The SQL statements to be used
To create the functionality we detailed just now, we will need two MySQL
statements. One returns the films of an actor or actress. The other returns the
actors for a particular film.

Returning the films of an actor
The first query uses the actor_info table to return the movies in which an actor
has appeared. Because we ask the user only for the surname of the actor or actress,
we need to fetch the first name from the database, along with the list of film titles in
which the thespian has appeared. For simplicity's sake, we will return the last name
of the actor, as well, in order to keep all of the data in a neat bundle for processing.
The template for this MySQL query is thus:

SELECT first_name,last_name,film_info FROM actor_info WHERE last_name
= '<a value>';

•

•

•

•

•

Chapter 5

[149]

Note that we require the user to specify the surname specifically. We will see in the
following section how to allow the user to enter partial data.

Returning the actors of a film
The second query uses the film_list table and returns the actors for a given film.
To make troubleshooting easier by keeping all results in a single returned value, we
will also ask for the title field of the record. A first go at a template for this MySQL
query therefore looks like this:

SELECT title,actors FROM film_list WHERE title = '<a value>';

But this is not satisfactory for our program in terms of usability. The main problem is
that this statement requires the user to remember the name of the film in its entirety.
But most people do not do that. Usually, the title of a film gets abbreviated to the first
few words. Therefore, we need to use a special MySQL keyword: LIKE. To use LIKE
in the previous statement, we substitute it for the equals sign =:

SELECT title,actors FROM film_list WHERE title LIKE '<a value>';

LIKE allows us to use wildcard characters and regular expressions. If we simply
gave MySQL a value in the preceding template, the results would tend to be the
same as using a symbol of equality. For our purposes, we should anticipate a lack
of specificity on the part of the user and allow him or her to input the first words,
or even just the first letter of a title. We then rely on MySQL to sort out which titles
match. To do this we use the percentage symbol %.

SELECT title,actors FROM film_list WHERE title LIKE '<a value>%';

The % symbol in MySQL comparisons is similar to the use of an asterisk (*) in
Python's regular expressions.

Note that % is a universal quantifier and matches any number of any characters—
even zero occurrences of characters. Therefore, ZERO% will match ZEROS, ZERO
TOLERANCE, and ZERO alone. If you only want to match one character, use the
underscore wildcard (_) as an existential quantifier. The string ZERO_ would
then match ZEROS but not ZERO TOLERANCE or ZERO itself.

To match a value that incorporates one of the wildcards, escape from
the wildcard with the backslash (\)like you do in Python. So to match
ZERO_ we would use ZERO_.

Results Record-by-Record

[150]

Accepting user data
To accept the user data, we have two options. We can either generate a dialogue that
walks the user through a series of questions and assigns values within the program
as appropriate. Or we can use the optparse module and rely on the user to indicate
their preference at runtime. We shall leave the former as an exercise and implement
the latter. The beginning of the preamble to this program thus reads:

#!/usr/bin/env python

import MySQLdb
import optparse

We then need to parse the options:

opt = optparse.OptionParser()
opt.add_option("-a", "--actor", action="store", help="denotes the
lastname/surname of the actor for search - only ONE of actor or film
can be used at a time", dest="actor")
opt.add_option("-f", "--film", action="store", help="denotes film for
search", dest="film")
opt, args = opt.parse_args()

As our specification is only for one type of data at a time, we need to ensure that the
user does not ask for both actor and film simultaneously. We do this with a simple
while test.

badoptions = 0
while opt.film and opt.actor:
 print "Please indicate either an actor or a film for which you
would like to search. This program does not support search for both
in tandem."
 badoptions = 1
 break

The value of status will indicate the overall status of the program—whether it
should still be executed. As we shall see, by setting status to 1 we ensure the
program does not execute if the user asks for both kinds of searches.

A MySQL query with class
For the rest of the features, we will implement a class called MySQLQuery. This class
will have the following methods and attributes:

__init__: To create an instance of the class.
Type: The type of statement required—whether actor or film.

•

•

Chapter 5

[151]

Connection: To create the database connection and to return the cursor for
data retrieval.
Query: To create the appropriate type of SQL query. Passes a statement to
execute() and passes the results along.
Execute: To execute the statement formed by query(), retrieve the data
as appropriate, and then pass it along to format() for formatting. It then
receives the results back from format() and passes it up the chain to
query().
Format: To receive output from execute(), parse it and repackage it
appropriately, and pass it back to execute for further returning.

The __init__ method: The consciousness of the
class
The first method of the class is, of course, __init__. As discussed in previous
chapters, an __init__ method is customary for the proper functioning of a class. It
is not necessary; the class can function without it. However, using one allows us to
customize the nature of the object being initiated.

More on Python classes and the use of __init__ can be found in the
Python documentation:
http://docs.python.org/tutorial/classes.html#class-
objects

For this project, the __init__ method looks like this:

 def __init__(self):
 """Creates an instance to form and execute a MySQL
statement."""
 self.Statement = []

Setting the query's type
Once the object is instantiated, we need to set the type of the query. This is critical to
the smooth running of the rest of the program as follows:

 def type(self, kind):
 """Indicates the type of statement that the instance is.
Supported types are select, insert, and update. This must be set
before using any of the object methods."""
 self.type = kind

As in the project from last chapter, we simply assign the value of kind to self.type.

•

•

•

•

Results Record-by-Record

[152]

Creating the cursor
Naturally, in order to query the database, we must have a cursor by which we
execute a query and fetch results. Rather than code this into the main() function or
into the preamble, we put it here in a function on its own:

def connection(self):
 """
 Creates a database connection and returns the cursor. All login
information is hardwired.
 HOST = localhost
 USER = skipper
 DATABASE = sakila
 """
 try:
 mydb = MySQLdb.connect(host = 'localhost',
 user = 'skipper',
 passwd = 'secret',
 db = "sakila")
 cur = mydb.cursor()
 return cur

Obviously, this implementation can be called from any other Python program that
can import it. You therefore want to be careful about permissions and other security
issues. While this can be a trajectory by which a login is leaked, hardwiring the login
ensures that a rogue user cannot exceed the permissions of the given user.

It is worth noting that any Python program that can import a module
can also read that module's code by using the inspect module.
To illustrate, name the program as moviesearch.py. Then open a
Python shell in the directory that holds the file. In the shell, type the
following:
>>> import moviesearch, inspect

>>> inspect.getsource(moviesearch)

You will then be treated to a full printout of the code for this program.
Any user on a network can do the same thing if they have access to
the module.

Chapter 5

[153]

Naturally, we need to handle any fallout from a failed connection. Here we handle
exceptions in a blanket manner, but one can (and should) implement appropriate
rules for each possible exception.

 except MySQLdb.Error:
 print "There was a problem in connecting to the database.
Please ensure that the 'sakila' database exists on the local host
system."
 raise
 except MySQLdb.Warning:
 pass

Forming the query
The next step requires us to form the query. To do this, we will use the templates
discussed previously and insert them appropriately into the method. The user's
input will be received as value.

This function will be used to handle all queries. So we must be able to toggle
between the initial sample and a fuller query. To do this, we will use a sample
switch. The opening line of the definition thus reads:

 def query(self, value, sample):

We then start by testing the value of sample. If it is 1, we return a sample of the data.

 if sample == 1:
 if self.type == 'actor':
 statement = """SELECT first_name,last_name,film_info
FROM actor_info WHERE last_name = '%s'""" %(value)
 else:
 statement = """SELECT title,actors FROM film_list
WHERE title LIKE '%s'""" %("%" + value + "%"
 returnself.execute(statement, sample)

Otherwise, we retrieve all records that match.

 else:
 if self.type == 'actor':
 statement = """SELECT first_name,last_name,film_info
FROM actor_info WHERE last_name = '%s'""" %(value)
 else:
 statement = """SELECT title,actors FROM film_list
WHERE title LIKE '%s'""" %("%" + value + "%")
 results = self.execute(statement, sample)
 return results

Results Record-by-Record

[154]

In either case, we check the value of self.type, form the appropriate query, and
pass the resulting statement and the value of sample to the execute() method.
When results are received from execute() we pass them back to the calling process.

Executing the query
The execute() method calls the connection() method and uses the returned
cursor to execute the statement received from query() because its behavior still
relies on the value of sample, its structure is similar to query().

 def execute(self, statement, sample):
 """Attempts execution of the statement resulting from
MYSQLQuery.form()."""
 while True:
 try:
 cursor = self.connection()
 cursor.execute(statement)
 if cursor.rowcount == 0:
 print "No results found for your query."
 break

 elif sample == 1:
 output = cursor.fetchone()
 results = self.format(output, sample)
 return results

 else:
 output = cursor.fetchmany(1000)
 results = self.format(output, sample)
 return results

Note that the argument to fetchmany() is the total number of records in Sakila. In
real-life situations where multiple users are working against much larger databases,
you would do well to iterate through the records.

Since the statement does not have to come from query(), but can be passed by a
calling module, we again should be ready to handle any fallout from a failed query.

 except MySQLdb.Error:
 raise MySQLdb.Error

 except MySQLdb.Warning:
 pass

Chapter 5

[155]

Here as we handle exceptions in a blanket fashion, it is advisable to handle
exceptions in greater detail.

Formatting the results
As seen previously, the output of the search is passed to format() in order to
be repackaged for the user. The value of output is a tuple and must be processed
accordingly. Once again, how the data is processed is determined by whether it is a
sample or not. The definition declaration thus reads:

 def format(self, output, sample):

In the course of this method, we will use iteration often. Therefore, we create a blank
object called results onto which we can add the parsed data.

 results = ""

Formatting a sample
If a sample is needed, we then use an if...else loop to control program flow
according to whether the user is searching for a drama or a film.

 if sample == 1:
 if self.type == "actor":
 data = output[0] + " " + output[1] + ": "
 titles = output[2]
 entry = titles.split(';')
 data = data + entry[0].split(':')[1]
 results = results + data + "\n"
 return results

 else:
 data = output[0] + ": "
 actors = output[1]
 data = data + output[1]
 results = results + data + "\n"
 return results

If an actor is sought, the output will follow this template:

<first_name> <last_name>: <first few titles>

For a film, the results would be:

<title>: <list of actors in a comma-delimited series>

Results Record-by-Record

[156]

Formatting a larger set of results
If a sample is not required, it is safe to assume that the full amount of results are to
be processed. This forms the else part of the greater if...else loop of this method.
Within it, we have another if...else loop to process the data by actor or title, as we
did with the previous sample return.

 else:
 if self.type == "actor":
 for record in output:
 actor = record[0] + " " + record[1] + ": "
 for item in xrange(2,len(record)):
 names = record[item].split(';')
 for i in xrange(0, len(names)):
 if i == 0:
 titles = "\n " + names[i]
 else:
 titles = titles + '\n' + names[i]
 data = actor + titles + '\n'
 results = results + data + "\n"

 else:
 for record in output:
 title = record[0] + ": "
 for item in xrange(1, len(record)):
 names = record[item].split(',')
 for i in xrange(0, len(names)):
 if i == 0:
 actor = "\n " + names[i]
 else:
 actor = actor + '\n' + names[i]
 data = title + actor + '\n'
 results = results + data + '\n'
 return results

The results of either part of the loop will be in this format:

<full name of film or thespian>:
<list of actors in the film or films of the thespian>

If any part of a program's execution is unclear, the best way to figure out
what's going on is to use print. Use it not only to print out values at
different points of execution, but also the types of different variables. For
example, if one inserts print output on the line after assigning results,
Python will output that value. But if one inserts print type(output),
Python tells us that the variable output is a tuple.

Chapter 5

[157]

The main() thing
Having coded the MySQLQuery class, we can now write the main() function of the
program. The first thing to do in main() is to test the value of status. We do this
with a while loop that continues as long as status is equal to 0 (and break is
not called).

 while status == 0:

We then need to create an instance of MySQLQuery and try to execute the operational
part of main(). This includes first assigning the type of query to MySQLQuery.type.

 while status == 0:
 request = MySQLQuery()
 try:
 if opt.actor:
 request.type("actor")
 value = opt.actor
 elif opt.film:
 request.type("film")
 value = opt.film

Next, we query the database by calling the query() method. You will recall that
query() passes the MySQL statement to execute(), which then passes the results to
format(). The results are then returned down the chain. If you want to ensure that
resources are relinquished before the next method is called, simply return the output
of each method back to main() before calling the next one.

 results = request.query(value, 1)

Here we pass the value to query() as well as a 1 to indicate the need for a sample. If
results are returned, the sample should be output to the user for confirmation.

 if results:
 print "Sample returns for the search you requested are
as follows."
 print results
 confirm = raw_input("Are these the kind of data that
you are seeking? (Y/N) ")
 confirm = confirm.strip()

Results Record-by-Record

[158]

The confirm variable should ideally begin with either a Y or an N. To ensure that the
user has not accidentally hit the space bar before entering his or her response, we
strip the whitespace out of the input value. If the answer is yes, we expect the first
character then to be a capital Y, as indicated. If it is not, we default to a fatal break.

 if confirm[0] != 'Y': # if confirmation is not given,
then break.
 print "\n\nSuitable results were not found.
Please reconsider your selection of %s and try again.\n" %(request.
type)
 break

If confirmation is given, we then use the same object and send a second query call for
the full listing of records.

 if confirm[0] == 'Y':
 results = request.query(value, 0)
 print "\n\nResults for your query are as follows:\n\n"
 print results
 break

If there are no results, execute() tells the user so. We can therefore simply break.

 else:
 break

Finally, if trying to run the core of the main() method fails, we need to handle the
fallout. Here we implement some general exception-handling that should be more
robust in most applications of any size.

 except MySQLdb.Error:
 raise MySQL.Error

 except MySQLdb.Warning:
 pass

Calling main()
Finally, we call main() only if the program is called directly.

if __name__ == '__main__':
 main()

Chapter 5

[159]

Running it
If you save the file now as moviesearch.py, you can call it from the command-line
with either an -a or -f flag for actor or film, respectively. Of course, there is also the
helpful—h flag to explain the syntax.

Room to grow
The results of this project may appear to be marginally more complex than the
example on retrieving from earlier in this book. However, this project can easily be
extended and applied in several ways to form the basis of a fully-functional program.
Some points for extension are as follows:

Step through the results one-by-one, waiting for the user to indicate when to
proceed to the next record
Create a menu from the results returned and allow the user to select which
record to return
Allow the user to select multiple records to be either returned to the screen or
output to a file
Using the other tables in the database, develop reports of customer trends by
actor and genre
Create a web-based, point-of-sale (POS) interface that would allow users
to input the DVDs being rented and register how much was being received
from which customer
For that same POS interface, write the necessary code for the program to
recommend movies for the customer based upon the actors and genres of
their past rentals

•

•

•

•

•

•

Results Record-by-Record

[160]

Summary
In this chapter, we have covered how to retrieve different sets of data using MySQL
for Python. We have seen:

Situations in which record-by-record retrieval is desirable
How to use iteration to retrieve sets of records in smaller blocks
How to create iterators and generators in Python
When to use fetchone() and when to use fetchmany()

In the next chapter, we will look at how to handle multiple MySQL inserts.

•

•

•

•

Inserting Multiple Entries
When we deal with large amounts of data that are all going into the same database,
running single instances of individual INSERT commands can take a ridiculous
amount of time and waste a considerable amount of I/O. What we need is a way to
insert multiple items in one go.

In this chapter, we will look at the following:

How iteration can help us execute several individual INSERT statements
rapidly
Using executemany() to submit several INSERT statements in one go
When not to use executemany()
Throttling how much data is inserted at a time

At the end of the chapter, we will put these lessons to use in writing a conversion
program that inserts the contents of a comma-separated value (CSV) file into MySQL.

The problem
You need to collate and rearrange the contents of several databases into one table
whenever a given indicator is achieved (the indicator may be, among other things, a
stock price, a value in one of the databases, or the flight pattern of African swallows).
The format and length of the tables are predictable. There are 5,000 records in
each table so manually running a separate INSERT statement for each record is
not a viable option even with the programs used in earlier chapters. The problem
calls for a means of iterating through a series and changing the INSERT statement
automatically. Using what we have covered in previous chapters, we could pursue
one of the following two ways to do this:

Write a MySQL script to insert the data in batch mode
Iterate over the data to form and execute a MySQL INSERT statement
accordingly

•

•
•
•

•
•

Inserting Multiple Entries

[162]

None of these are a very good solution to the present problem.

Why not a MySQL script?
As we have seen when we created the world and Sakila databases, a MySQL script
can contain the schema of a database, the values of the database tables, or both.
To create data quickly, there is nothing better. However, following are the several
drawbacks to using a script in this scenario:

Lack of automation
Debugging the process
Inefficient I/O

Lack of automation
Barring the use of an automation daemon (for example, cron) to run a cron job or a
similar scheduled task, a DBA or their designate would have to run the script. This
unnecessarily consumes time. It is comparable to swapping tape backups when
automated backup services are available and proven.

Most modern computing systems support automatic task scheduling. On
Unix-based systems like Linux and Mac OS X, one can schedule processes
to be run at set times and on a regular rotation. One of the most widely
used programs for such scheduling is cron. A single scheduled task in
cron has thus come to be known as a cron job.

Debugging the process
Creating a MySQL script can be a very tedious task, and the slightest error or
oversight can ruin the entire process. Using the --force flag causes MySQL to
ignore errors in the source file. It is therefore not something that should be used
regularly if one values the integrity of data. If the script is malformed for any
reason, a two minute data insertion job can quickly become a two hour (at least!),
unscheduled debugging process.

Inefficient I/O
Dumping large amounts of data on MySQL can create latency across the network. If
the script were run by a DBA or similar, that person should rightly evaluate the state
of the network before running it. Regardless of experience and training, judgment
calls naturally require estimation and can result in ambiguous decision-making.
While this is unavoidable, it should be minimized where possible.

•

•

•

Chapter 6

[163]

If the server is experiencing high traffic, the DBA would need to find something
else to do and reschedule the running of the script. This randomly postpones the
time of execution and the availability of the results. Also, it runs the risk of the DBA
forgetting to execute the script.

If the script is automated with a cron job or similar, we risk dumping a lot of data
onto MySQL at a time when others are doing more time sensitive tasks. On most
servers, we can background the process, so it does not adversely impact the client
processes. This, however, only ensures that the process will be run. It does not
guarantee that the process will be finished by a particular time.

Why not iterate?
Every time a program iterates to read or insert data, it creates a certain amount of
I/O processing. Depending on how a program is written will determine how much
I/O is included in each loop.

A test sample: Generating primes
To illustrate this, consider a program that accepts a series of numbers, generates the
prime numbers that are equal to or less than each of those numbers and inserts those
numbers into a database called primes with a table of the same name. The table has
the following description:

mysql> describe primes;

+--------+--------------+------+-----+---------+----------------+

| Field | Type | Null | Key | Default | Extra |

+--------+--------------+------+-----+---------+----------------+

| ID | int(11) | NO | PRI | NULL | auto_increment |

| NUMBER | int(11) | NO | | 0 | |

| PRIMES | varchar(300) | NO | | 0 | |

+--------+--------------+------+-----+---------+----------------+

and can be created with the following statement:

CREATE TABLE `primes` (`ID` int(11) NOT NULL auto_increment, `NUMBER`
int(11) NOT NULL default '0', `PRIMES` varchar(300) NOT NULL default
'0', PRIMARY KEY (`ID`)) ENGINE=MyISAM DEFAULT CHARSET=latin1;

Inserting Multiple Entries

[164]

Using the sys module to handle user input, the string module to split the
series of entries, and MySQLdb to handle the database connection, we get the
following preamble:

#!/usr/bin/env python
import MySQLdb, string, sys

Next, we need a function that will generate the prime numbers to a certain limit
called n.

def primes(n):
 """Returns a list of prime numbers up to n using an algorithm
based on
the Sieve of Eratosthenes."""
 if n < 2: return ['A number less than two is not prime by
definition.']
 else:
 s = range(3,n+1,2)
 maxfactor = n ** 0.5
 half = (n+1)/2-1
 i = 0
 m = 3
 while m <= maxfactor:
 if s[i]:
 j = (m*m-3)/2
 s[j] = 0
 while j < half:
 s[j] = 0
 j += m
 i = i + 1
 m = 2 * i + 3
 return str([2] + [x for x in s if x])

This algorithm is based on the Sieve of Eratosthenes, one of the simplest ways of
generating prime numbers. It uses the following steps:

1. Generate a list of integers from 2 to n.
2. Discount the multiples of each number that remains and that has a square

less than or equal to n; this leaves all the prime factors of n.
3. Stop when the square of the number in the series is greater than n.

Prime numbers by definition have no other factor, but themselves and one. The
lowest prime number is therefore 2. For this reason, we check whether n is less than 2
and return a message accordingly.

Chapter 6

[165]

For this program, we want a string returned so we convert the results before we
return them.

For more on the Sieve of Eratosthenes and how it works, see the entry on
Wikipedia:
http://en.wikipedia.org/wiki/Sieve_of_Eratosthenes

The previous algorithm can be found in many forms and in many
languages on the Internet. Two of the best that informed this discussion
are as follows:
http://www.maths.abdn.ac.uk/~igc/tch/mx3015/notes/
node79.html

http://code.activestate.com/recipes/366178/

Next, we create a function to form and execute the INSERT statement.
def insert(n, p, cur):
 statement = """INSERT INTO primes(number, primes) VALUES("%s",
"%s")""" %(n\
, p)
 cur.execute(statement)
 return statement

This function takes the number, the primes, and the cursor object handle
as arguments.

Finally, our main() function looks like this:
def main():
 numbers = sys.argv[1]
 iterations = numbers.split(',')
 for n in iterations:
 mydb = MySQLdb.connect(host = 'localhost',
 user = 'skipper',
 passwd = 'secret',
 db = 'primes')
 cur = mydb.cursor()

 n = int(n)
 try:
 p = primes(n)
 if p.isalpha():
 raise ValueError
 else:
 statement = insert(n, p, cur)
 print "Data entered with the following statement:\n",
statement
 except:
 raise

Inserting Multiple Entries

[166]

We split the values passed by the user and iterate through them with a for loop.
Note that we include the database connection and cursor object creation as part of
the iteration.

We then include the usual if clause to call main():

if __name__ == '__main__':
 main()

Comparing execution speeds
We can test the speed of this program by giving it a series of simple primes to
generate—even of the same number. Here we call it with a series of sevens to process
and with the Unix command time to measure its speed.

time ./primes.py "7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7"

Given this series of sevens, we get a real execution time of 0.175 seconds for the
previously discussed implementation.

If we rearrange the program by moving the mydb and cur assignment lines to
follow immediately after the preamble (remembering to adjust the indentation), we
get an execution speed of 0.138 seconds. This difference in speed (0.037 seconds)
is not particularly significant on a local system with a single user, but it would be
magnified synergistically on a server with hundreds or thousands of users.

So, we see that, if the connection and cursor is created each time, the program will be
less efficient than if the loop contained only the execution of the statement and the
connection and cursor were persistent in the cycle of the program. However, even
just passing a series of single statements to MySQL through Cursor.execute()
will consume more in protocol than necessary. Excessive iteration consumes
resources needlessly.

Introducing the executemany() method
As seen in previous chapters, MySQLdb provides multiple ways to retrieve data such
as: fetchall(), fetchmany(), and fetchone(). These allow us to use different
strategies for processing data according to how many records we have to process
and the environment in which we are working. MySQLdb also provides more than one
way to insert information.

Chapter 6

[167]

Up to now, we have used Cursor.execute() whenever we needed to insert data. As
shown previously, however, executing single statements in iteration greatly increases
the processing requirements of the program. For this reason, MySQL for Python
provides another method for Cursor objects—executemany().

To be sure, executemany() is effectively the same as simple iteration. However, it
is typically faster. It provides an optimized means of affecting INSERT and REPLACE
across multiple rows.

executemany(): Basic syntax
The executemany() call has the following basic syntax:

<cursor object handle>.executemany(<statement>, <arguments>)

Note that neither the statement to be processed nor its arguments is optional. Both
are required; otherwise, a TypeError will be thrown by Python.

The data type of each argument to executemany() should be noted as:

statement: A string containing the query to execute
arguments: A sequence containing parameters to use within the statement

Using any other type for statements or arguments will result in Python throwing
an error.

The statement may be constructed using Python's string manipulation methods.
The sequence reflected in the arguments must be either of a sequence or mapping
type. Thus, the following data types are allowed as arguments:

strings
lists
tuples
dictionaries

If a comma-delimited list is inadvertently passed as a string, it will be evaluated
as a string and will not be separated. Consequently, if one is passing values for
multiple columns, one needs to use one of the other three types listed. As seen in the
following project, one can construct a string of one's values and then convert them
into a tuple for processing.

•

•

•

•

•

•

Inserting Multiple Entries

[168]

executemany(): Multiple INSERT statements
In Chapter 2, Simple Querying we inserted records individually using execute().
Using that same method with iteration would look like this:

#!/usr/bin/env python

import MySQLdb, string, sys

mydb = MySQLdb.connect(host = 'localhost',
 user = 'skipper',
 passwd = 'secret',
 db = 'fish')
cursor = mydb.cursor()

data = [
 ("bass", 6.75),
 ("catfish", 5),
 ("haddock", 6.50),
 ("salmon", 9.50)
]

for item in data:
 cursor.execute(
 """INSERT INTO menu(name, price) VALUES("%s", %s)"""
 %(item[0], item[1]))

print "Finished!"

This would take care of inserting four records with a single run of the program.
But it needs to pass the statements individually through Python to do so. Using
executemany(), we could easily have inserted the same data with a single call:

#!/usr/bin/env python

import MySQLdb, string, sys

mydb = MySQLdb.connect(host = 'localhost',
 user = 'skipper',
 passwd = 'secret',
 db = 'fish')
cursor = mydb.cursor()

Chapter 6

[169]

cursor.executemany(
 """INSERT INTO menu(name, price) VALUES (%s, %s)""",
 [
 ("bass", 6.75),
 ("catfish", 5),
 ("haddock", 6.50),
 ("salmon", 9.50)
])

print "Finished!"

You may notice previously that we used strings and integers in the first iterative
example, but immediately a list of tuples in the second one. The executemany()
function is more tolerant of mixed data types than the execute() method. As
a consequence, we can get away with less precise type handling in the second
where we had to explicitly handle the separate parts of item in the first. The
executemany() method can handle multiple data types in one call where execute()
does not.

Just as with Cursor.execute(), executemany() supports MySQL's
UPDATE statements, as well.

In either event, the results are the same:

mysql> select * from menu;

+----+---------+-------+

| ID | NAME | PRICE |

+----+---------+-------+

| 1 | bass | 6.75 |

| 2 | catfish | 5.00 |

| 3 | haddock | 6.50 |

| 4 | salmon | 9.50 |

+----+---------+-------+

But the more efficient way is to use executemany().

Inserting Multiple Entries

[170]

executemany(): multiple SELECT statements
The executemany() method may be used not only to insert or update data, but may
also be used to run multiple queries. As with the INSERT statement, the value here is
in having an optimized iteration that affects the same basic query. If the statements
that need to be processed are disparate in structure, then one needs to default to
Cursor.execute().

To process several SELECT queries in succession, simply format the argument to
executemany() accordingly. Consider the following code snippet that uses the
Sakila database that we used in the last chapter:

mydb = MySQLdb.connect('localhost', 'skipper', 'secret', 'sakila')
cur = mydb.cursor()
results = cur.executemany("SELECT title FROM film WHERE rating = %s",
('R', 'NC-17'))

If we then print the value of results, we get an output of 405. Like execute(),
Cursor.executemany() does not return the actual results of the query in a Python
program. It returns the number of affected records as a value that can be assigned to
a variable. Even though the search is executed and the results returned from MySQL,
MySQL for Python does not assume you want the affected records automatically.
The results are returned in aggregate. That is, the output of 405 is the sum of all
affected records. The value in this knows the total number of records to be returned
before one processes them. Given the restricted context, executemany() tends to be
used more frequently for INSERT statements than for SELECT.

It is worth noting that this example is a bit artificial. You wouldn't
normally rely on the number of affected rows returned through MySQLdb.
Rather, we would use MySQL's built-in COUNT() function. For more on
this, see Chapter 10, Aggregate Clauses and Functions.

executemany(): Behind the scenes
As seen previously, it is not necessary to have an intimate knowledge of the entire
process behind executemany() in order to use it. But to truly know what you are
doing with it, you must follow the Python motto for learning:

Use the source, Luke!

Chapter 6

[171]

In that vein, let's take a look at the underlying code of executemany(). The
definition line indicates that executemany() requires the SQL query to be processed
as well as the arguments for that statement.

def executemany(self, query, args):

As noted under executemany(): Basic syntax section, previously, both the statement
and the arguments are mandatory. executemany() expects you to feed it a template
for query and the values to be inserted for args.

 del self.messages[:]
 db = self._get_db()
 if not args: return

We will skip the docstring as you can access it through help(cursor.executemany)
in a Python shell. The method starts by deleting the contents of the messages
attribute.

More on the del statement can be found at:
http://docs.python.org/reference/simple_stmts.
html#the-del-statement

It then checks whether the cursor is still open by assigning to db the connection of
the object. As mentioned previously, args must be declared. Here, if there are no
arguments passed to the method, the method returns effectively empty-handed.

 charset = db.character_set_name()
 if isinstance(query, unicode): query = query.encode(charset)

Note that all queries must be strings and must be encoded for the
character set used by the connection.

MySQLdb here checks for the character set of the database and encodes the query
accordingly. isinstance is a built-in type checker and is here used to verify that
query is unicode.

 m = insert_values.search(query)
 if not m:
 r = 0
 for a in args:
 r = r + self.execute(query, a)

 return rThe value of insert_values is defined on line 9
of the module as a regular expression:
insert_values = re.compile(r"\svalues\s*(\(((?<!\\)'.*?\).*(?<!\\)?'|.
)+?\))", re.IGNORECASE)

Inserting Multiple Entries

[172]

So, MySQLdb checks whether any values are available in query. If there are none,
it calls execute() for every argument that is passed to it, adding the number of
affected lines to the number of would-be hits and returns the total. Otherwise,
it goes on.

 p = m.start(1)
 e = m.end(1)
 qv = m.group(1)

m is a pattern object and therefore provides for regular expression methods. Here p
is the index for the start of the elements matched. e is the end index and typically
represents the length of the match. qv is the entire group of results, if such exist.

Next, MySQL for Python appends to the value of qv, the values passed by MySQL.

 try:
 q = [qv % db.literal(a) for a in args]

qv is a string, so the percentage sign here serves as a string format operator to insert
into the value of qv whatever is returned by the db.literal() method.

The literal() method of the Connections class simply nuances the arguments
accordingly. If only one argument is passed to executemany(), Connections.
literal() returns it as a single object. If more than one argument is passed, then
they are converted into a sequence.

 except TypeError, msg:
 if msg.args[0] in ("not enough arguments for format
string",
 "not all arguments converted"):
 self.messages.append((ProgrammingError, msg.args[0]))
 self.errorhandler(self, ProgrammingError, msg.args[0])
 else:
 self.messages.append((TypeError, msg))
 self.errorhandler(self, TypeError, msg)
 except:
 from sys import exc_info
 exc, value, tb = exc_info()
 del tb
 self.errorhandler(self, exc, value)

Then several types of errors are handled accordingly. Finally, executemany()
prepares the number of affected records.

 r = self._query('\n'.join([query[:p], ',\n'.join(q),
query[e:]]))
 if not self._defer_warnings: self._warning_check()
 return r

Chapter 6

[173]

After checking for any warnings, it then returns a long integer of the number of
rows affected.

MySQL server has gone away
Using executemany() can give a speed boost to your program. However, it has its
limits. If you are inserting a large amount of data, you will need to throttle back how
much you process in each call or be faced with an error message similar to this one:

MySQL server has gone away.

You will get this if you are lucky. Before this, you are likely to get another message:

Lost Connection to MySQL server during query.

Both of these messages indicate that the MySQL server is overwhelmed with
your data. This is because MySQL's maximum default packet size is 1 MB and the
maximum data that the server will receive per packet is 1 MB.

If you encounter these error messages, you have two choices: Decrease the amount
of data you are passing to MySQL in each packet or increase MySQL's tolerance
for data. If you have system administrator access, the latter option can be affected
by changing the max_allowed_packet parameter either in the command-line
arguments with which the server is started or in a MySQL configuration file.

Command-line option configuration
To change the value of max_allowed_packet on the command-line, adapt the
following example:

$> mysqld --max_allowed_packet=16M

This will change the value to 16 megabytes until the MySQL server is halted and
restarted without the flagged value.

It is important to note that the 16 megabytes are not held in reserve.
MySQL does not use more memory than is necessary for any transaction.
The present value only serves to cap how much memory MySQL may try
to use.

If you want to make it permanent and do not want to change the configuration file
for some reason, you will need to change the initialization script of your system. On
Unix variants (Unix, Linux, and Mac OS X), this will be in the directory /etc/init.
d. On Windows systems, this file could be located in different places depending on
the configuration of the system, but the Windows System directory is common.

Inserting Multiple Entries

[174]

Using a configuration file
Adapting MySQL's configuration file is the simplest way to affect a permanent
change in the value of max_allowed_packet. The location of the configuration file
depends on your platform:

Unix/Linux: /etc/my.cnf

Windows: C:\WINDOWS\my.cnf or C:\my.cnf or C:\my.ini

Also, Windows installations may use the my.cnf or my.ini files in the installation
directory of MySQL.

After locating the configuration file for your system, copy it to an archive. For
example, on a Linux system, one would use the following:

#\etc> cp my.cnf my.cnf.original

The exact naming conventions available for the new filename will depend on your
platform. Once that is done, you are ready to open the configuration file in your
favorite text editor.

With the file opened and having system permission to write to it, locate the mysqld
section in the file:

[mysqld]

One of the first values, if not the first value, in this section should be max_allowed_
packet. If it is there, change the value appropriately and if it's not, amend the
beginning of the mysqld section to look like this:

[mysqld]
max_allowed_packet=16M

After saving the file with the affected changes, restart the MySQL server.

More than 16 MB is often unnecessary
It is worth noting that in the preceding examples for the command-line configuration
and configuration file options, we changed the value to 16 megabytes. More than
this is typically unnecessary without making further configuration changes to the
MySQL client.

The default packet size limit of the MySQL client is 16 megabytes. That is therefore
the largest packet that the MySQL client will send by default. If you try to pass a
larger packet through the client, an error message of Packet too large will be passed.
Therefore, if you want to handle particularly large files (for example, binary files),
you need to change the value of max_packet_size for both the server and the client.

Chapter 6

[175]

Project: Converting a CSV file to a
MySQL table
The CSV file is a very common way to share tabular information across several
platforms and programs. Every mature spreadsheet application supports the format.
Therefore, various sectors of enterprise rely on it daily.

As the name implies, CSV files contain comma-separated values. These values are
often enclosed in quotation marks. This tends to make CSV a predictable format for
data and makes for easy development.

But for all its uses, the CSV format is very slow for searching and for collating data.
Relational databases (RDBMS) are much more efficient. Therefore, it is useful to be
able to import data from a CSV file into MySQL. Unfortunately, MySQL does not do
this natively and not without considerable trouble.

For examples of what some MySQL users do to import CSV file content
into MySQL, see the comments on the mysqlimport client: http://dev.
mysql.com/doc/refman/5.4/en/mysqlimport.html

Further, if one tries to use mysqlimport for files larger than 1 MB in size, one
encounters errors.

Consequently, we need a program to import CSV files with the following
functionality:

The file is comma-separated (that is, not tab, space, or semi-colon)
The file is written using the Excel dialect of CSV
The user will indicate at runtime the filename as well as the database, table
and column headings for the INSERT command
The program will evaluate the file's size on disk and adapt its insertion
strategy to fit within MySQL's defaults

The preamble
Aside from the obvious requirement of MySQLdb, we will need two other modules to
be imported into the program immediately. To parse user options, we will again use
optparse. Then, to evaluate the file's size, we will use the os module.

•

•

•

•

Inserting Multiple Entries

[176]

The preamble therefore looks like this:

#!/usr/bin/env python

import MySQLdb
import optparse
import os

The options
The user options are then processed with the following code:

Get options
opt = optparse.OptionParser()
opt.add_option("-d", "--database", action="store", type="string",
help="name of the local database", dest="database")
opt.add_option("-t", "--table", action="store", type="string",
help="table in the indicated database", dest="table")
opt.add_option("-f", "--file", action="store", type="string",
help="file to be processed", dest="file")
opt.add_option("-F", "--Fields", action="store", type="string",
help="Fields of file to be processed", dest="Fields")
opt, args = opt.parse_args()

As in previous chapters, we will pass the attributes of opt to simpler variable names.

database = opt.database
table = opt.table
file = opt.file

We should not assume that the user will know to pass the field headings without
extra spaces nor can we rely on the user to avoid that mistake. Therefore, we need
to strip the extraneous spaces out of the field headings as they are passed to the list
fields. As MySQL will not allow spaces in columnar headings without the use of
backticks, we should surround the field names with backticks by default.

fields = opt.Fields.split(',')
for i in xrange(0, len(fields)):
 fields[i] = "`" + fields[i].strip() + "`"

We now have stored all of the user input.

Chapter 6

[177]

Defining the connection
To create the connection object and the cursor necessary for data insertion, we again
use a function. As mentioned in previous projects concerning this function, one
needs to be careful about the user being used in the connection.

def connection(database):
 """Creates a database connection and returns the cursor. Host is
hardwired to 'localhost'."""
 try:
 mydb = MySQLdb.connect(host = 'localhost',
 user = 'skipper',
 passwd = 'secret',
 db = database)
 cur = mydb.cursor()
 return cur
 except MySQLdb.Error:
 print "There was a problem in connecting to the database.
Please ensure that the database exists on the local host system."
 raise MySQLdb.Error
 except MySQLdb.Warning:
 pass

Of course, if the previous project programs are on the same system as this one, you
can simply import the other program and call this function from there.

Creating convert
The second function that we need for this program will take care of the actual
file conversion.

def convert(file):
 """Processes contents of file and returns a reader object, an
iterative object that returns a dictionary for each record."""

 import csv
 filehandle = open(file)
 sheet = csv.DictReader(filehandle, fields)
 return sheet

We will pass the function a filename file. It returns to us an iterative object sheet.
The object is an iterator that returns a dictionary for each record in turn.

There is an alternative way of processing this file for conversion. Here we use csv.
DictReader(), which returns a dictionary when its next() method is called. But we
could use csv.reader(), which returns a string instead. The latter requires only the
filename where the former requires both the file handle and the fields to be declared.

Inserting Multiple Entries

[178]

The basic syntax for each call is as follows:

csv.DictReader():
<variable> = csv.DictReader(<filehandle>, <field names>)
csv.reader():
<variable> = csv.reader(<filehandle>)

The main() function
Having defined functions for the database connection and for the file conversion,
we next need to call them and then process the data they return. In addition to
the two functions already mentioned, we need to get the file's size on disk using
os.path.getsize().

def main():
 """The main function creates the MySQL statement in accordance
with the user's input and using the connection(), convert(), and
os.path.getsize()."""

 cursor = connection(database)
 data = convert(file)
 filesize = os.path.getsize(file)

Next, we create two variables. The first, values, is to hold the data to be inserted into
the MySQL statement. The second, r, is a counter that is incremented every time we
process a line.

 values = []
 r = 0

We then need to walk through the data by record using a for loop.

 for a in data:
 if r == 0:
 columns = ','.join(fields)

Within the for loop, we use the value of r to gauge our location in the file. If r is 0,
we are at the first record, the column headers. Here we have opted to use the user's
field names. However, you could easily adapt this to use the table's field names.

Chapter 6

[179]

If r is not 0, we have a record with actual data and need to process it.

 else:
 value = ""
 for column_no in xrange(0, len(fields)):
 if column_no == 0:
 value = "'" + a[fields[column_no]]
 else:
 value = value + "', '" + a[fields[column_no]]
 value = value + "'"

Here we use the length of fields to determine how long the nested for loop will
run. For each iteration, we use the ordinal value of the column to walk through the
names of the fields as submitted by the user. We then use those values as the key by
which the dictionary values of a are accessed. These are then appended to the value
of value. If the field is the first one, column_no is 0 and the field contents are added
without a comma being included. At the end, value needs a quote to be added.

If r is greater than 0, we are processing actual data, not column headings. The way
we process the data depends on the size of the file. If the file is over 1 Mb in size, we
do not want to use executemany() and risk getting an error. Instead, for this project
we will process each line with a single INSERT statement.

 if r > 0:
 if filesize <= 1000000:
 value = eval(value)
 values.append(value)
 else:
 query = """INSERT INTO %s (%s) VALUES""" %(table,
columns)
 statement = query + "(" + value +")"
 cursor.execute(statement)

While a few different definitions of 1 Mb abound, we here use the definition for 1 Mb
on disk, which also happens to be the most conservative definition.

The actual size of 1 megabyte depends on context. Here we use the
International System of Units definition which is also used by most
manufacturers of hard drives and flash drives. For computer RAM, 1 Mb
is 1048576 bytes (220 or 10242). More on the size of a megabyte may be
found at http://en.wikipedia.org/wiki/Megabyte#Definition

Inserting Multiple Entries

[180]

If filesize is under 1 Mb, we process value as a string and convert it into a tuple
using Python's built-in eval() function. We then append the tuple as a single
item of the list values.

It is worth noting that eval() comes with several security drawbacks in
the real world. Frequently, it is best not to use it because Python evaluates
the value in the context in about the same terms as if you entered it into
the Python shell. Therefore, if you used it, you would need to protect
against someone passing commands to the operating system through
your Python program.
The following is an example of bad data that could be passed to eval that
would destroy a Linux system: """import_('os').system('rm -rf
/')""". This would result in a recursive deletion of the entire file tree.
For the purposes of this program, we need to convert the strings to tuples.
The eval() function is used here for the sake of simplicity.

If filesize is greater than 1 Mb, we form a simple INSERT statement from the data.
We then use a common Cursor.execute() statement to process it.

 r += 1

Finally, the last part of the for loop is to increment the counter r by 1. Without this,
the evaluations in the rest of the loop will not give us the results we want.

Next, if the file size is less than 1 Mb, we need to form the INSERT statement template
for executemany() and, with the data values, pass it to executemany() for
execution. When we are done, we should give the user feedback about how many
records have been affected.

 if filesize <= 1000000:
 query = "INSERT INTO " + table + "(" + columns + ") VALUES(%s"
 for i in xrange(0, len(fields)-1):
 query = query + ", %s"
 query = query + ")"
 query = str(query)
 affected = cursor.executemany(query, values)
 print affected, "rows affected."

 else:
 print r, "rows affected."

Chapter 6

[181]

Within the if loop, we create a string query that contains the basic template of the
INSERT statement. We append to this value a string formatting %s for every field
beyond the first one that the data includes. Finally, we finish the formation of query
with a closing parenthesis.

At this point, values is a list of tuples and query is a string. We then pass the two to
cursor.executemany() and capture the returned value in affected.

Regardless of file size, the user should always get a statement of the number of rows
affected. So, we close the if loop with a statement to that affect. As r is the number
of times that the simple INSERT statement would have been executed in the last if
loop of the preceding for loop, we can use it to indicate the rows affected as part of
the else clause.

This last statement is more reflective of the number of iterations we have had
of the for loop than of the number of times that cursor.execute() has been
successfully called. If one wanted to be more precise, one could instead introduce
a counter to which the value returned by cursor.execute() is added on each
successful iteration.

Calling main()
Finally, we need to call main(). Once again, we use the usual if loop:

if __name__ == '__main__':
 main()

Room to grow
The project is now finished and can take a basic CSV file and insert it into MySQL.
As you use it, you will, without any doubt, see ways in which it could be better
tailored to your needs. Some of these that are left as an exercise are:

Handling tab-delimited files and files that don't speak the Excel dialect of
CSV (for example, files that don't put cell contents in quotation marks)
Dynamically evaluating the data format of the file and adjusting its
processing accordingly
Processing Excel (*.xls) binary files (for this use the xlrd module from
http://pypi.python.org/pypi/xlrd)
Creating a table in the given database with columns that fit the data in the
CSV file (for help with this, see Chapter 7, Creating and Dropping)

•

•

•

•

Inserting Multiple Entries

[182]

Summary
In this chapter, we have covered how to retrieve different sets of data using MySQL for
Python. We have seen:

How to use iteration to execute several individual INSERT statements rapidly
Cursor.executemany() is optimized for such iteration
When one should avoid using executemany()
Why certain errors will arise when using executemany()
How to throttle the amount of data we INSERT and why

In the next chapter, we will look at creating and dropping tables from within Python.

•

•

•

•

•

Creating and Dropping
The secret to all effective programming lies in abstracting problems so we can
leverage the power of the computer to our benefit. The more we can abstract
a problem and still get the same results, the more we leverage the power of
the computer, and the less work the end user has to do. Abstraction provides
opportunity for automation.

In addition to allowing dynamic insertion and retrieval of information, MySQL
for Python allows us to automate database and table creation and removal. In this
chapter, we will see:

How to create and delete both databases and tables in MySQL
How to manage database instances with MySQL for Python
Ways to automate database and table creation

At the end of the chapter, we will put these dynamics together into a web application
that will allow us to perform this kind of administration on MySQL remotely.

Creating databases
Creating a database in MySQL is as simple as declaring the name of the database that
you want to create. The syntax reads:

CREATE DATABASE <database name>;

An example of this is:

CREATE DATABASE csv;

•

•

•

Creating and Dropping

[184]

As with all SQL statements, blank space is the token by which the command is
divided. We first need to tell MySQL that we want to create something by using that
keyword. Then we need to tell it what we want to create, a database. Finally, we
give it the name of the database followed by the requisite semi-colon (when in
MySQL itself).

Note that, in order to create databases in MySQL, the account you use
must have the CREATE privilege on the database.
CREATE statements are also sensitive to user privileges. If a user is only
granted CREATE privileges on a single database (for example, csv.*),
then that user cannot create databases, but can create tables on that
specific database.

Unlike some commands in MySQL, database creation is case-sensitive. So the
following CREATE statements each create a different database:

CREATE DATABASE csv;
CREATE DATABASE Csv;
CREATE DATABASE CSV;
CREATE DATABASE C_S_V;;

Whether the CREATE DATABASE statement is case-sensitive ultimately
depends on the filesystem and configuration of your server. Unix-based
systems are usually case-sensitive by default. However, Windows and
Mac servers may not be.
While Mac OS X is derived from Unix, it uses the HFS+ filesystem.
So database names are not case-sensitive by default. To add the case
sensitivity feature for Mac OS X, one would need to use the UFS
filesystem.
To configure MySQL for case-sensitivity when it is not the default, you
need to set the variable lower_case_table_names. More information
on that variable can be found at:
http://dev.mysql.com/doc/refman/5.5/en/server-system-
variables.html#sysvar_lower_case_table_names

Test first, create second
If a database already exists and you try to create one by the same name, an error will
be thrown.

mysql> CREATE DATABASE csv;

ERROR 1007 (HY000): Can't create database 'csv'; database exists

Chapter 7

[185]

To avoid this error and any ensuing fallout, we can use the IF NOT EXISTS condition
in our CREATE statement. This clause immediately precedes the name of the database
to be created.

mysql> CREATE DATABASE IF NOT EXISTS csv;

Query OK, 0 rows affected, 1 warning (0.00 sec))

Note that the output you get may differ slightly from version to version. MySQL
5.1.42, for example, gives this output:

mysql> CREATE DATABASE IF NOT EXISTS csv;

Query OK, 1 row affected, 1 warning (0.00 sec)

It depends on the version and configuration of your database server.

CREATE specifications
While the preceding example illustrates the most basic database creation statement,
one can also add further specifications for the database immediately after declaring
the name of the database. MySQL supports two ways to further define the database:

By character set
By collation used

Specifying the default character set
A character set is a set of symbols and encodings used to represent and store the
information held in a database. If we wanted to declare the csv database to use 8-bit
Unicode by default, we would define it as follows:

CREATE DATABASE csv CHARSET=utf8;

Or better:

CREATE DATABASE csv CHARACTER SET = utf8;

If we then use that database and ask for its status, we will see how that setting
takes hold:

mysql> use csv;

Database changed

mysql> status;;

mysql Ver 14.12 Distrib 5.0.51a, for debian-linux-gnu (i486) using
readline 5.2

•

•

Creating and Dropping

[186]

Connection id: 10

Current database: tgv

Current user: skipper@localhost

SSL: Not in use

Current pager: stdout

Using outfile: ''

Using delimiter: ;

Server version: 5.0.51a-3ubuntu5.4 (Ubuntu)

Protocol version: 10

Connection: Localhost via UNIX socket

Server characterset: latin1

Db characterset: utf8

Client characterset: latin1

Conn. characterset: latin1

UNIX socket: /var/run/mysqld/mysqld.sock

Uptime: 4 hours 36 min 47 sec

Threads: 2 Questions: 112 Slow queries: 0 Opens: 49 Flush tables: 1
Open tables: 43 Queries per second avg: 0.007

Specifying the collation for a database
The second specification that can be made in a database creation statement is
collation. Where a character set is a set of symbols and encodings. A collation
is a system of rules that MySQL uses to work with the database for purposes of
comparison and matching.

Declaring collation
To express the collation rules for the csv database defined previously as Unicode, we
would use the following definition statement:

CREATE DATABASE csv CHARSET=utf8 COLLATE=utf8_general_ci;

Or you can use:

CREATE DATABASE csv CHARACTER SET = utf8 COLLATE = utf8_general_ci;

Note that the latter CREATE statement is technically more correct. Either one works,
however, and both may be seen in real-life.

Chapter 7

[187]

In this statement, however, the collation definition is not necessary as every character
set has its own set of collations available to it. For the Unicode character set, the
default collation is Unicode. What this statement does do, however, is overtly define
the Unicode collation to be used.

Finding available character sets and collations
To see the character sets and default collations available on your system, use the
following from a MySQL shell:

mysql> show character set;

+----------+-----------------------------+---------------------+--------+

| Charset | Description | Default collation | Maxlen |

+----------+-----------------------------+---------------------+--------+

| big5 | Big5 Traditional Chinese | big5_chinese_ci | 2 |

| dec8 | DEC West European | dec8_swedish_ci | 1 |

| cp850 | DOS West European | cp850_general_ci | 1 |

| hp8 | HP West European | hp8_english_ci | 1 |

| koi8r | KOI8-R Relcom Russian | koi8r_general_ci | 1 |

| latin1 | cp1252 West European | latin1_swedish_ci | 1

Not all collations can be used with every character set. Rather every character set has
a group of collations with which it works. If one tries to use a collation that is not
available for a given character set, MySQL will raise an error like this one:

mysql> CREATE DATABASE csv CHARSET=utf8 COLLATE=latin2_bin;

ERROR 1253 (42000): COLLATION 'latin2_bin' is not valid

for CHARACTER SET 'utf8'

Removing or deleting databases
To remove or delete a database in MySQL, we use a DROP statement. This statement
is functionally the opposite of the basic CREATE statement used previously:

DROP DATABASE <database name>;

So, for csv, a DROP statement would look like this:

DROP DATABASE csv;

Note that the DROP statement not only deletes the structure of the database setup by
CREATE but also irrevocably drops all of the database data, as well.

Creating and Dropping

[188]

Avoiding errors
As with the CREATE statement, MySQL's DROP statement also supports a test for
existence. If the database you wish to drop does not exist, MySQL will throw an
error. Therefore, it is good practice to use the IF EXISTS conditional as follows:

DROP DATABASE IF EXISTS <database name>;

For a database called foo, this statement would read:

DROP DATABASE IF EXISTS foo;

Preventing (illegal) access after a DROP
By dropping a database, one simply removes it from the list of available databases
that MySQL knows about.

Using DROP does not remove user privileges to that database.

Therefore, if one drops the database csv to scrub all of its data and then creates
another database of the same name, the same users who had access to the original
database will have the same access to the new one. This will occur regardless of
whether the table definitions are different between the two databases.

For a detailed discussion of the REVOKE statement, see:
http://dev.mysql.com/doc/refman/5.5/en/revoke.html

To avoid this, you must revoke user privileges on the database in question. The basic
syntax for REVOKE is:

REVOKE <privileges> ON <database.table> FROM <user>;

To revoke privileges, the user account that you use must have GRANT privileges as
well as any access that you are trying to revoke. With those privileges, one must then
state both the user and table from which you want privileges revoked.

So to revoke all access for user skipper to table filenames from the database csv, we
would use this statement:

REVOKE ALL ON csv.filenames FROM 'skipper' @' localhost';

Note that this does not remove the user and does not impact on the user's access to
other tables within the same database.

Chapter 7

[189]

The easiest way to drop one database and create another is obviously to give
the second a slightly different name than the first and configure network calls
appropriately. However, this is not a commendable practice as it can lead to
confusion in myriad ways. As we will see later in this chapter, however, Python
and MySQLdb can be used to keep database connections in order.

Creating tables
In its basic structure, the MySQL statement for creating tables is very similar to
that for databases. Recall that database creation is involved in simply naming
the database:

CREATE DATABASE foo;;

Creating a table requires the definition of at least one column. The basic syntax looks
like this (note that the backticks are optional):

CREATE TABLE <table name> (`<column name>` <column specifications>);

In practice, definition of a table bar in database foo would be as follows:

CREATE TABLE bar (snafu varchar(30));

While this is basically the statement, it is also a very flawed way of defining the table
when using the MySQLdb module. Before we go into what is wrong, however, let's
cover what is right.

A comprehensive discussion of the options available when creating a
table can be found in the MySQL manual: http://dev.mysql.com/
doc/refman/5.4/en/create-table.html

Obviously, we declare a table named bar. MySQL requires at least one column to be
defined. A column definition at its most basic is the name of the column, the type of
data it will hold, and how long it will be. Here, snafu is defined as varchar (that is,
variable length of characters) and of 30 characters in length. If we go over that limit
on an INSERT statement, the data will almost always be truncated to 30 characters.
Consider the following:

mysql> INSERT INTO bar(snafu) VALUES('pi');

Query OK, 1 row affected (0.08 sec)

mysql> INSERT INTO bar(snafu) VALUES('supercalifragilisticexpialidocious
');

Query OK, 1 row affected, 1 warning (0.00 sec)

Creating and Dropping

[190]

mysql> SELECT * FROM bar;

+--------------------------------+

| snafu |

+--------------------------------+

| pi |

| supercalifragilisticexpialidoc |

+--------------------------------+

2 rows in set (0.00 sec)

Covering our bases
Among the significant issues in this statement, however, is the fact that no default is
mentioned. We could therefore add blank values. Further, as there is no primary key,
we can add redundant values ad nauseam.

mysql> INSERT INTO bar(snafu) VALUES('pi');

Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO bar(snafu) VALUES('');

Query OK, 1 row affected (0.00 sec)

mysql> SELECT * FROM bar;

+--------------------------------+

| snafu |

+--------------------------------+

| pi |

| supercalifragilisticexpialidoc |

| pi |

| |

+--------------------------------+

4 rows in set (0.00 sec)

To mitigate against these problems, we should refine our table definition. To define a
column value as mandatory, we use NOT NULL in the table definition:

CREATE TABLE bar (snafu varchar(30) NOT NULL);

Chapter 7

[191]

This only ensures that the column has a value and, by default, forces the user to
input that value. If we want to ensure that the column has a value even if the user
does not define it, we need to set a default:

CREATE TABLE bar (snafu varchar(30) NOT NULL DEFAULT '');

Avoiding errors
Note, however, that we have no conditionality built into this statement. If the table
already exists, we will get an error. To be sure that we do not have this problem, we can
use the IF NOT EXISTS clause again:

CREATE TABLE IF NOT EXISTS bar (snafu varchar(30) NOT NULL DEFAULT
'');

Creating temporary tables
Finally, if we only need the table for some temporary work and want to scrap it after
we are done, we can use the TEMPORARY keyword in our definition. This creates the
database for as long as the current connection is maintained.

mysql> CREATE TEMPORARY TABLE IF NOT EXISTS bar (`snafu` varchar(30) NOT
NULL default '');

Note that temporary tables are only visible to the user session that created it. So
there can be no confusion on the part of other sessions on the same server. This is
helpful for creating temporary datasets for debugging.

It is worth noting that the dropping of temporary tables is logged
differently when the session ends rather than when they are overtly
dropped. Therefore, the best practice is to drop every temporary table
you create when you are done using it, even at the end of a session.

When the database is created, MySQL will report that nothing has been affected.
Since it is a temporary table, it does not show up in the list of tables. However, a
query against it will return results:

mysql> CREATE TEMPORARY TABLE foo (`snafu` varchar(30) NOT NULL default
'');

Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO foo(snafu) VALUES('cucumber');

Query OK, 1 row affected (0.00 sec)

Creating and Dropping

[192]

mysql> show tables;

+---------------+

| Tables_in_csv |

+---------------+

| foo |

+---------------+

1 row in set (0.00 sec)

mysql> select * from foo;

+----------+

| snafu |

+----------+

| cucumber |

+----------+

1 row in set (0.00 sec)

Dropping tables
Dropping tables in MySQL follows the same pattern as dropping databases.

DROP TABLE <table name>;

We use the keyword DROP so MySQL knows what we want to do. We then indicate
that we want to drop a table and follow that with the name of the table to be deleted.

When the DROP command is executed, the table and its definition are
deleted unrecoverably from the database. You should therefore exercise
caution when using it.

It is worth noting that the user who passes the DROP statement to MySQL must have
the DROP privilege. Otherwise, MySQL will not execute the statement.

Playing it safe
If you create a temporary table and want to ensure that only that table is dropped,
use the TEMPORARY keyword:

DROP TEMPORARY TABLE <table name>;

Chapter 7

[193]

So to drop the araba table defined previously, we would issue this command:

DROP TEMPORARY TABLE araba;

Of course, if we issue that command twice, MySQL will get confused. More on this is
mentioned in the following section Avoiding errors.

Avoiding errors
As with deleting databases, we should ask MySQL to ensure that the table exists
before trying to remove it. Otherwise, we can receive an error. To avoid this we use
the IF EXISTS conditional again:

DROP TABLE IF EXISTS <table name>;

So for the table bar created with this CREATE statement (from previous command):

CREATE TABLE IF NOT EXISTS bar (snafu varchar(30) NOT NULL DEFAULT
'');

The corresponding DROP command would be:

DROP TABLE IF EXISTS bar;

For the temporary table, we would change the DROP command accordingly:

DROP TEMPORARY TABLE IF EXISTS foo;

Removing user privileges
As with dropping databases (from previous secion), dropping a table does not
remove access to that table from a user's profile. Therefore, dropping it and
subsequently creating another table of the same name will automatically allow
the users of the first table to access the second. This will be done with the same
privileges, as well. To avoid this, use the REVOKE command as outlined under
Preventing (illegal) access after a DROP.

Doing it in Python
As you might expect, affecting the creation and deletion of databases and tables in
Python is very similar to MySQL when using MySQL for Python. There are some
differences as we shall see in this section.

Creating and Dropping

[194]

For the following examples, we will work with the following code being assumed:

import MySQLdb
mydb = MySQLdb.connect('localhost', 'skipper', 'secret', 'csv')
cur = mydb.cursor()

Creating databases with MySQLdb
Where Cursor.execute() shows the number of affected rows in previous
commands, whether INSERT or SELECT, it always returns a 0 value for the CREATE
command of a database:

>>> cur.execute("""CREATE DATABASE foo""")

0L

Testing the output
Consequently, passing the output of the method to a variable will result in that
variable equating to 0:

>>> res = cur.execute("CREATE DATABASE foo")

>>> print res

0

The only time that this does not occur is if an error is thrown (that is, if you do not
include the conditional IF NOT EXISTS).

This is helpful when working with code that you did not write. By testing the
returned value, you can have greater control over what happens in your program.
This testing can be negative as follows:

>>> if res != 0: <do something>

Or can be positive:

>>> if res == 0: <do something>>

Naturally, if the statement does not execute as expected, you will want to catch the
exception as shown in Chapter 4, Exception Handling.

Chapter 7

[195]

Dynamically configuring the CREATE statement
The CREATE statement can be dynamically constructed in Python. To do this, we use
a string formatting convention:

cur.execute("CREATE DATABASE IF NOT EXISTS %s" %('foo'))

Dropping databases with MySQLdb
Similarly to creating a database, dropping a database returns a 0 value.

>>> res = cur.execute("DROP DATABASE IF EXISTS foo")")

>>> print res

0

By leaving off the IF EXISTS clause, we can create a feedback mechanism:

try:
 res = cur.execute("DROP DATABASE foo")
except:
 print "Drop operation failed."

If the DROP is executed, program execution continues without comment. If the table
has already been dropped, we get output:

Drop operation failed.

and the program then continues to execute.

Creating tables in Python
As discussed earlier in this chapter, the MySQL syntax for creating a table is similar
to creating a database. The example of table bar from above reads:

CREATE TABLE IF NOT EXISTS bar (snafu varchar(30) NOT NULL DEFAULT
'');

To put this into Python, we pass the statement as an argument to Cursor.execute():

cursor.execute("""CREATE TABLE IF NOT EXISTS bar (snafu varchar(30)
NOT NULL DEFAULT '')""")

Creating and Dropping

[196]

Once again, however, we are able to use Python's string formatting facilities to create
dynamic statements:

cursor.execute("""CREATE TABLE IF NOT EXISTS %s (%s varchar(30) NOT
NULL DEFAULT '')""" %('bar', 'snafu'))

As before this statement creates a table bar with a column snafu.

Verifying the creation of a table
Depending on the nature of your program, it is frequently good practice to
validate the creation of a table. To do so, we need to retrieve a listing of the
tables in the database.

cursor.execute("""SHOW TABLES""")
tables = cursor.fetchall()

The result here is to always get the tables. Of course, there is no need for the second
line if the table creation statement has failed and no tables are available. Therefore,
the better way to affect this is:

table_no = cursor.execute("""SHOW TABLES""")
if table_no != 0:
 tables = cursor.fetchall()

Cursor.fetchall() returns a tuple of the tables available. To confirm the existence
of the table in the database, we need to search through the list of tables.

created_table = 'bar'
for item in tables:
 if item[0].count(created_table) != 0:
 print item[0]

This will print the table name if it matches the value of created_table, bar.

All of this presumes a knowledge of the total number of tables in the database prior
to your creating the last one. To ascertain whether a table has been created without
counting tables, you can ask MySQL for the creation statement of the table:

 try:
 cursor.execute("""SHOW CREATE TABLE %s""" %('bar'))
 except:
 print "The table has not yet been created."
 raise
 else:
 print "The table has been created."

The SHOW CREATE statement is addressed in more detail in Chapter 13, Showing
MySQL metadata.

Chapter 7

[197]

Another way to verify table creation
As with creating a database, creating a table returns a 0 value if successful. Therefore,
we can again test for that. If we use the IF NOT EXISTS conditional, the statement will
always return 0. Therefore, we need to leave this off in order to use this method.

Note that many MySQL installations will issue a warning if you use
IF NOT EXISTS when attempting to create a table that already exists.
However, it is not good practice to rely on these warnings.

Consider the following:

>>> cursor.execute("""CREATE TABLE %s (%s varchar(30) NOT NULL DEFAULT
'')""" %('barge', 'snafu'))

0L

>>> cursor.execute("""CREATE TABLE IF NOT EXISTS %s (%s varchar(30) NOT
NULL DEFAULT '')""" %('barge', 'snafu'))

0L

>>> cursor.execute("""CREATE TABLE %s (%s varchar(30) NOT NULL DEFAULT
'')""" %('barge', 'snafu'))

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

 File "/var/lib/python-support/python2.5/MySQLdb/cursors.py", line 166,
in execute

 self.errorhandler(self, exc, value)

 File "/var/lib/python-support/python2.5/MySQLdb/connections.py", line
35, in defaulterrorhandler

 raise errorclass, errorvalue

_mysql_exceptions.OperationalError: (1050, "Table 'barge' already
exists")")

So we want to try to create the table and test the results:

>>> try: attempt = cursor.execute("""CREATE TABLE %s (%s varchar(30) NOT
NULL DEFAULT '')""" %('barge', 'snafu'))

... except: print "Houston, we have a problem"

...

Houston, we have a problem

Creating and Dropping

[198]

Dropping tables with MySQLdb
Dropping a table through MySQLdb is very straightforward.

cursor.execute("DROP TABLE %s" %('barge'))

Of course, for the sake of feedback, it is worth sandwiching this in a try...except
structure. As with the DROP TABLE statement in MySQL, you can usually just pass
this statement with an IF EXISTS conditional and be done with it:

execution = cursor.execute("DROP TABLE IF EXISTS %s" %('barge'))

Note that, as before, the conditional element causes MySQL to always return a 0
value for successful execution. So a test for the value of execution will always test
true for 0. If you want an exception if the table does not exist, use the other DROP
statement in a try...except statement.

Project: Web-based administration of
MySQL
The project for this chapter will set the groundwork for the next several projects. We
will write a program for administering MySQL remotely through a web interface.
To be sure, more sophisticated applications like PHPMyAdmin exist. The value
of creating one of your own is that you can extend it and change it in the future
depending on your needs. Just creating the application is a good exercise as it leaves
you with code that you can import into other applications at will and gives you a
better understanding of the processes involved.

By the end of this project, we want a web application that will have the
following aspects:

Ability to create MySQL statements for the following commands: CREATE,
DROP, INSERT, UPDATE, and SELECT
Execute the created statement
Output the results of any queries and confirm the successful execution of
other commands
Be written in a modular structure that allows different functions or methods
to be used independently of the others
Use CGI to call the Python program

•

•

•

•

•

Chapter 7

[199]

It is worth noting that this implementation is fairly rudimentary due to the
exigencies of book media. Nevertheless, when we are done, you will have the basis
for a full web application that you can develop into administrative facilities for your
web-oriented MySQL database.

CGI vs PHP: What is the difference?
CGI stands for Common Gateway Interface. As such, it is not a language like
PHP but a protocol. This means that it can be implemented in just about any
programming language, and implementations of it exist in C and C++. CGI scripts
are often written in Perl but may be written in other languages.

PHP stands for Pre-Hypertext Processor and is a language developed specifically
to output HTML with speed. As such, it is optimized for web scripting and is
known as one of the lightest technologies on the Web. Where heavier technologies
become sluggish and can lose connectivity in the face of latency, PHP tends to be
more robust.

The following sections address some of the strengths and weaknesses of each option.
For this project, we will be using CGI to pass arguments to our Python program.
However, with the proper coding, one could also use PHP.

Depending on a variety of factors from language of implementation to
the configuration of the web server on which it runs, CGI is reported to
be either considerably slower or even faster than PHP. The performance
benefits of each implementation strategy are heavily dependent on
other environmental variables. Given the ubiquity of shared hosting and
the fact that web developers typically do not have control over system
variables in such circumstances, it is helpful to be conversant with both.
CGI and PHP usually come as standard with a shared hosting solution.
You can nevertheless find information on each consecutively at:
http://docs.python.org/library/cgi.html

http://www.php.net/manual/en/install.php

Note that this discussion does not address the matter of persistence. No matter which
way we implement our web application, the only way that we can preserve an object
between web pages is to pickle it. Pickling means converting the Python object to a
byte stream for writing to a space on the server's hard disk. It also introduces a layer
of complexity that we are leaving out of this project. However, if you would like
to look into it further, you can find information on Python's pickle module at
http://docs.python.org/library/pickle.html.

Creating and Dropping

[200]

Not every Python object can be pickled. For help on determining whether something
can be pickled, see What can be pickled and unpickled? in the following Python
documentation module:

http://docs.python.org/library/pickle.html#what-can-be-pickled-and-
unpickled.

Pickling preserves an object as a byte stream. Alternatively, we could save the
session data into a database.

Basic CGI
The form dialogue of HTML requires us to include the program to which the data
should be passed. For a Python program myprogram.py, a form line would look
like this:

<form action="myprogram.py" method="POST">

Whether you use POST or GET depends on your development needs.

More information on HTML's form tag and its attributes can be found at:
http://www.w3schools.com/TAGS/tag_form.asp

The difference between GET and POST is detailed in RFC 2616:
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html

Passing values to a Python program through CGI is affected by importing two
modules and instantiating an object. The modules used are cgi and cgitb. The role
of the cgi module is self-evident; importing cgitb gives us helpful error messages if
we need to debug the program.

import cgi
import cgitb

The cgi module provides a class FieldStorage that provides a method getvalue()
for accessing CGI input.

import cgi, cgitb
form = cgi.FieldStorage()
name = form.getvalue('firstname')
address = form.getvalue('surname')
phone = form.getvalue('phoneno')

Chapter 7

[201]

After receiving and processing the input from CGI, the output of one's program is
sent to the web client through the server. If the output is in plain text, no formatting
is included. Therefore, one must be certain to include HTML formatting with it.

More detailed discussions on using CGI in Python can be found at:
http://docs.python.org/library/cgi.html

http://python.about.com/od/cgiformswithpython/ss/
pycgitut1.htm

HTML tutorials abound on the Internet, but one of the best venues for
learning HTML and other web-related technologies is W3Schools.
http://www.w3schools.com

Simple HTML output would look like this:

print """
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
 <head>
 <title>Successful Input</title>
 </head>
 <body>
 <center>Information received successfully.</center>
 </body>
</html> """

One of the main downsides of using CGI is the problem of data persistence. Without
using magic URLs, passing data from one page to another becomes a challenge.

A magic URL is a Uniform Resource Locator (URL) that includes unique
identifying information, so the server-side program can associate it with
saved data. One of the most common magic URLs is the session ID used
by many news sites to track reader habits. Magic URLs are one of the
most frequent security issues for web applications as web servers are not
designed to tell two users apart if they use the same identifier. When one
user purposely appears as another user, she/he is said to spoof that user.

The alternative would be to pass information through flags. But CGI does not
support a secure way to do this. Any values that one would want to persist from one
page to another would have to be embedded in the code, which is viewable and can
therefore be spoofed by any user who knows that information.

Creating and Dropping

[202]

Using PHP as a substitute for CGI
Depending on the configuration of the server and system variables, PHP may be a
faster way to pass input to a Python program. To do this, we use the PHP command:
shell_exec():

<?php

$somevar = $_POST["somevar"];

$escapees = array("&", ";", "\")

$replacements = array("<ampersand>", "<semicolon>", "<backslash>")

$safevar = str_replace($escapees, $replacements, $somevar)

$results = shell_exec ("./myprogram.py " . $somevar) ;

print $results;

?>

This calls a Python program myprogram.py with the arguments contained in
somevar and assigns the output to $results. Before handing the value of somevar
to myprogram.py, we process out any known characters that could be used to break
out of the execution environment. Ampersands are used to background processes on
Unix-based machines. Semi-colons are used to pass multiple commands on the same
line. Backslashes are used to escape out of a formatted environment. You can (and
should) add to them according to the execution environment you use before using
this code for any projects beyond the scope of this book. Having replaced some of the
unsavory characters, we can then print $results or print the HTML formatting with
the output intermingled appropriately.

If the previous PHP script were called myprogram.php, the calling form line
would be:

<form action="myprogram.php" method="POST">

Aside from the aforementioned benefits of processing speed, using PHP has the
benefit of introducing heterogeneity into the system. Many security issues arise
because computing systems use the same technologies in the same way throughout
an organization. This makes the system easy to manage, but it also makes it
predictable. Using CGI, the program to be called is always shown in the HTML
source code. One therefore tips one's hand and shows that the system processing
the data is in Python. By using PHP to hand the data off to Python, one introduces
a hidden layer of complexity that makes cracking the system more difficult.

Finally, as shown in the previous example, PHP allows us to pass command-line
arguments discretely to our program. The form data, which the user already has, is
passed overtly. But any special settings can be reserved in the PHP script and passed
as an argument to the Python program at runtime.

Chapter 7

[203]

It should be noted that the use of PHP over CGI does not impact on the HTML FORM
syntax at all except to change the name of the file. PHP serves as an intermediate
layer between the web page and the processing of data.

CGI versus PHP: When to use which?
CGI has been used for many years and therefore is well proven. PHP offers a cleaner
and more flexible implementation than CGI for passing data between a web page
and a Python program. However, depending on the implementation, it can easily
result in security issues. Setting aside personal familiarity as a criterion, which you
use (CGI or PHP) will largely be determined by the environment in which you
are deploying.

As already mentioned, the cgitb module provides for web-based error messages.
These are very helpful in the case of shared hosting, when one frequently does not
have shell access. Unless one is relying on system variables, however, using PHP is
still cleaner in this regard as it does not require a web server to work.

Where CGI requires a web server for testing, PHP can be run from the command-line.
Therefore, one can create a local copy of one's remote directory structure and not have
to run a local server. It is best practice to have such a copy for administering a website,
anyway. One can then test the PHP-Python system in that context before posting it.
For help on using PHP from the command line, see http://php.net/manual/en/
features.commandline.php.

A simple tutorial on using PHP in lieu of CGI can be found at:
http://python.about.com/od/cgiformswithpython/ss/
phpjscgi.htm

Some general considerations for this program
As already noted in this chapter, we are not going to persist data or objects on the
server between pages. Therefore, we do not need a class like the MySQLStatement
class that we used in Chapter 4. Instead, we will use functions for all MySQL
operations. The only class will be for our HTML output.

Program flow
For our purposes, the program starts as soon as a user accesses the first page and
enters their login information. We attempt to create a connection with the user's
login credentials. If they fail, program execution breaks.

Creating and Dropping

[204]

If successful, we process the user's choice of actions. If the user does not give us all
the data we need for a chosen action, they receive an error message and program
execution terminates.

The following six template variants correspond to the types of statements that we
will program:

CREATE DATABASE <database name>
DROP DATABASE <database name>
CREATE TABLE<table name>
DROP TABLE <table name>
SELECT * FROM table WHERE <column> = <value>
INSERT INTO table (columns) VALUES (values)

These have all been covered in previous chapters. If anything looks unfamiliar, be
sure to revisit the relevant chapter before going on.

The basic menu
For this program, we will use two web pages at first. The second page will be
automatically generated by the program, but the first will be static.

The first page is a basic dialogue that asks the user to select the action that they want.
We want to give the user the choice of creating, dropping, querying, or inserting data
into a database.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN" "http://
www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xml:lang="en"
 lang="en"
 dir="ltr">
 <head>
 <title>PyMyAdmin 0.001</title>
 <meta http-equiv="Content-Type" content="text/html;
 charset=utf-8">
 </head>
 <body>
 <h1>PyMyAdmin Menu</h1>
 <form name="input" action="./pymyadmin.py" method="post">
 <div>AUTHENTICATION</div>
Login: <input type="text" name="user" value="">

Password: <input type="password" name="password" value="">

 <div>DATABASES</div>
<input type="radio" name="dbact" value="create"> CREATE

•

•

•

•

•

•

Chapter 7

[205]

<input type="radio" name="dbact" value="drop"> DROP

Database name: <input type="text" name="dbname" value="">

 <div>TABLES</div>
<input type="radio" name="tbact" value="create"> CREATE

<input type="radio" name="tbact" value="drop"> DROP

Database name: <input type="text" name="tbdbname" value="">

Table name: <input type="text" name="tbname" value="">

 <div>QUERIES</div>
<input type="radio" name="qact" value="select"> SELECT

<input type="radio" name="qact" value="insert"> INSERT

Database name: <input type="text" name="qdbname" value="">

Table name: <input type="text" name="qtbname" value="">

Columns (comma-separated): <input type="text" name="columns"
value="">

Values (comma-separated): <input type="text" name="values"
value="">

<input type="submit" value="Submit">
 </form>
 </body>
</html>

When put into a browser, the page should look like this:

Creating and Dropping

[206]

Obviously, the web design aspect of the page has been left as an exercise.

Authorization details
As you can see from this dialogue, we first ask for the authorization details. Note
that the password dialogue is of input type password, to ensure it is hidden on entry.
In the program, this data will be first used to verify the authenticity of the user's
credentials before any MySQL statement is formed.

Three operational sections of the dialogue
In the subsequent three sections of the dialogue, we offer the user facilities to affect
databases, tables, and insertion or retrieval. Depending on which radio button the
user chooses, we will expect different parts of the form to be completed.

The variables
The web page will send us several variables, only some of which we will need for
any given operation. In the order that they appear on the previous page, these are:

1. user

2. password

3. dbact

4. dbname

5. tbact

6. tbdbname

7. tbname

8. qact

9. qdbname

10. qtbname

11. columns

12. values

The first two are of obvious import. The next two, dbact and dbname, are used to
create or drop a database. dbact is designed to indicate either CREATE or DROP as no
other values are allowed. The value of dbname can be anything.

Chapter 7

[207]

For table creation and dropping, we use the next three variables along with columns
and values. To affect anything related to tables, we need tbact, whether to CREATE
or DROP, and tbdbname, the database to be used, and tbname, the name of the
table itself. Additionally, for creating a table, we need the columns and types, here
indicated by columns and values.

Finally, for INSERT and SELECT statements, we use qact, qdbname, qtbname, and
the last two variables. As you can guess from their names, qact is to indicate either
INSERT or SELECT. qdbname is the name of the database to be used, and qtbname is
the name of the table, into or out of which to process data.

Planning the functions
Some of the functions we will use will be used for multiple purposes. So we will
not have createdb() and dropdb(). Rather, we will use the variable prefixes as
a key to the function names. We will call dbaction() and pass the type of action
as an argument. Similarly, we will use tbaction() for table administration and
qaction() for queries.

We will naturally need to connect to the database. However, we will sometimes need
to connect without declaring a database. So we will have connection functions that
handle both.

Finally, we will need to execute the statement and return the appropriate values.
This role will be performed by execute().

Code of each function
The following subsections show the code for each function. Having planned them
out gives us a bird's eye view of the entire process.

Connecting without a database
The database argument on MySQLdb.connect() is optional. Therefore, we can create
a connection with it in order to validate user credentials and to administer databases
without knowing anything about which ones are available.

def connectNoDB(user, password):
 """Creates a database connection and returns the cursor. Host is
hardwired to 'localhost'."""
 try:
 host = 'localhost'
 mydb = MySQLdb.connect(host, user, password)
 cur = mydb.cursor()
 return cur

Creating and Dropping

[208]

 except MySQLdb.Error:
 print "There was a problem in connecting to the database.
Please ensure that the database exists on the local host system."
 raise MySQLdb.Error
 except MySQLdb.Warning:
 pass

Note that this function is hard-wired to work with the localhost. Without much
work at all, one could make all the values of this function to be dynamic.

Connecting with a database
Obviously, we need to declare a database to do anything with a table. We could
technically get by without declaring a database at first, but that would require a
locution of code to declare the database eventually. It is best to do it upfront.
For this, we will pull in the connection() function from previous projects.

def connection(user, password, database):
 """Creates a database connection and returns the cursor. Host is
hardwired to 'localhost'."""
 try:
 host = 'localhost'
 mydb = MySQLdb.connect(host, user, password, database)
 cur = mydb.cursor()
 return cur
 except MySQLdb.Error:
 print "There was a problem in connecting to the database.
Please ensure that the database exists on the local host system."
 raise MySQLdb.Error
 except MySQLdb.Warning:
 pass

Database action
Forming the database-related statements is done by dbaction().

def dbaction(act, name, cursor):
 if act == "create":
 statement = "CREATE DATABASE IF NOT EXISTS %s" %(name)
 output = execute(statement, cursor, 'create-db')
 elif act == "drop":
 statement = "DROP DATABASE IF EXISTS %s" %(name)
 output = execute(statement, cursor, 'drop-db')
 else:
 output = "Bad information."
 return output

Chapter 7

[209]

No matter what happens, dbaction() gives us output. Using the conditional clause
in both the CREATE and DROP statements, we should never have a problem with
execution. Nevertheless, we include an else clause to ensure that we are covered.

Table action
The function affecting tables is more complicated than the preceding database
function. This is because we need to handle column names and values as well as the
basic information used for databases. The function looks like this:

def tbaction(act, db, name, columns, types, user, password):
 cursor = connection(user, password, db)

 if act == "create":
 tname = name + "("
 columns = columns.split(',')
 types = types.split(',')
 for i in xrange(0, len(columns)):
 col = columns[i].strip()
 val = types[i].strip()
 tname = tname + col + " " + val
 if i == len(columns)-1:
 tname = tname + ")"
 else:
 tname = tname + ", "
 statement = "CREATE TABLE IF NOT EXISTS %s" %(tname)
 results = execute(statement, cursor, 'create-tb')
 elif act == "drop":
 statement = "DROP TABLE IF EXISTS %s" %(name)
 results = execute(statement, cursor, 'drop-tb')
 return results

As requested in the initial web page, we expect columns and types to come in a
comma-delimited format. Consequently, we need to split each and join them
up so they make sense to MySQL. This is done by the for loop in the middle of
the function.

Creating and Dropping

[210]

Query action
For queries, we assume that the user will provide us with the following information:

Type of action
Database name
Table name
Columns involved
Values used
Username
Password

The function then looks like this:

def qaction(qact, db, tb, columns, values, user, password):
 cursor = connection(user, password, db)

 tname = tb + "("
 columns = columns.split(',')
 values = values.split(',')
 cols = ""
 vals = ""
 for i in xrange(0, len(columns)):
 col = columns[i].strip()
 val = values[i].strip()
 cols = cols + col
 vals = vals + "'" + val + "'"
 if i != len(columns)-1:
 cols = cols + ", "
 vals = vals + ", "
 if qact == "select":
 statement = "SELECT * FROM %s WHERE %s = %s" %(tb, cols, vals)
 results = execute(statement, cursor, 'select')
 elif qact == "insert":
 statement = "INSERT INTO %s (%s) VALUES (%s)" %(tb, cols,
vals)
 results = execute(statement, cursor, 'insert')
 return results

Once again, we need to break apart columns and values in order to use them
appropriately for MySQL.

•
•
•
•
•
•
•

Chapter 7

[211]

execute()
Finally, we need a function to execute the MySQL statements that are formed by
either dbaction, tbaction, or qaction. The execute() function, as you may note in
the preceding code listings, takes the statement to be executed, the cursor to be used,
and the type of statement to be processed. The last is essential in allowing execute()
to handle the data returned by MySQL appropriately.

The function is as follows:

def execute(statement, cursor, type):
 """Attempts execution of the statement resulting from
MySQLStatement.form()."""
 while True:
 try:
 cursor.execute(statement)
 if type == "select":
 # Run query
 output = cursor.fetchall()
 results = ""
 data = ""
 for record in output:
 for entry in record:
 data = data + '\t' + str(entry)
 data = data + "\n"
 results = results + data + "\n"
 elif type == "insert":
 results = "Your information was inserted with the
following SQL statement: %s;" %(statement)
 elif type == "create-db":
 results = "The following statement has been processed
to ensure the database exists: %s;" %(statement)
 elif type == "create-tb":
 results = "The following statement has been processed
to ensure the table exists: %s;" %(statement)
 elif type == "drop-db":
 results = "The following statement has been processed
to ensure the removal of the database: %s;" %(statement)
 elif type == "drop-tb":
 results = "The following statement has been processed
to ensure the removal of the table: %s;" %(statement)
 return results

 except MySQLdb.Error, e:
 print "Some of the information you have passed is not
valid. Please check it before trying to use this program again."
 print "The exact error information reads as follows: %s"
%(e)

Creating and Dropping

[212]

 raise

 except MySQLdb.Warning:
 pass

 except Warning:
 pass

For purposes of feedback, the execute() function always returns the statement
processed. If the statement is a query, it returns the results in a basic form.

As noted in previous chapters, the error-handling used here is generic for reasons of
space. In real-life deployment, it should be more robust.

The HTML output
In addition to processing data, we need to return some feedback to the user. In order
to prettify the page, we should enclose the output in some HTML formatting.

For this purpose, we will use a class HTMLPage. This will ensure that we can
standardize the HTML output of the program, only changing what is necessary and
not having to include the header and footer code more than once.

HTMLPage has a single attribute, message, which holds the output passed from
execute(). Otherwise, it has four methods beyond __init__():

header(): Returns a standard HTML header with a generic page title
body(): Compiles a HTML body that includes the value of HTMLPage message
footer(): Returns a standard HTML closing code
page(): Coordinates the three methods to form and return the HTML output

Basic definition
The definition of HTMLPage begins as follows:

class HTMLPage:
 def __init__(self):
 """Creates an instance of a web page object."""
 self.Statement = []

Naturally, the class needs a way to reference itself. For our purposes, HTMLPage is a
regular Python object, so we do not need to declare any inheritance.

•

•

•

•

Chapter 7

[213]

The message attribute
HTMLPage.message simply receives the value and assigns it to itself.

 def message(self, message):
 self.message = message

Essentially, message is a means of holding the output from execute() as an attribute
of the class object.

Defining header()
The header() method, as discussed, simply returns a HTML header. By defining it
distinctly, we can readily reuse this code and modify it as needed.

 def header(self):
 """Prints generic HTML header with title of application."""
 output = """
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN" "http://
www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en"
dir="ltr">
 <head>
 <title>PyMyAdmin 0.001</title>
 <meta http-equiv="Content-Type" content="text/html;
 charset=utf-8" />
 </head>
<body>
"""
 return output

As this is straightforward HTML code, we could have made it an attribute. However,
by using a method, we are ready to render the code dynamically if needed. For
example, we could not change the page title dynamically if header() were an
attribute. As it is, we can render it dynamically with ease using this function.

Defining footer()
To match header(), we use footer():

 def footer(self):
 """Print generic HTML footer to ensure every page closes
neatly."""
 output = """
</body>
</html>
"""
 return output

Creating and Dropping

[214]

Normally, this would be an attribute. However, there are circumstances when this
should be rendered as a function. Some web-tracking scripts rely on JavaScript with
unique identifiers to be issued at the end of a page. To form such pages dynamically,
one would need to use a method instead of an attribute.

Defining body()
The body() method combines a title with the output of execute().

 def body(self):
 output = ""
 title = "<h1>PyMyAdmin Results</h1>"
 output = output + title + "
" + self.message
 return output

Defining page()
Finally, we define a method to coordinate the methods of HTMLPage to form a web
page for output.

 def page(self):
 """Creates webpage from output."""
 header = self.header()
 body = self.body()
 footer = self.footer()
 output = header + body + footer
 return output

Getting the data
Obviously, none of this data processing counts for anything if we cannot get the
data that the user sends to us. Depending on whether you use CGI or PHP to call
the Python program will determine how you accept the information.

Using CGI
To receive the information through CGI, we import cgi and cgitb, as discussed
previously. We then assign the variables from the cgi.FieldStorage() object
we create.

#!/usr/bin/python

import MySQLdb
import cgi, cgitb

Chapter 7

[215]

form = cgi.FieldStorage()

user = form.getvalue('user')
password = form.getvalue('password')
dbact = form.getvalue('dbact')
dbname = form.getvalue('dbname')

tbact = form.getvalue('tbact')
tbdbname = form.getvalue('tbdbname')
tbname = form.getvalue('tbname')

qact = form.getvalue('qact')
qdbname = form.getvalue('qdbname')
qtbname = form.getvalue('qtbname')
columns = form.getvalue('columns')
values = form.getvalue('values')

Note that CGI always requires absolute paths. We cannot therefore use a shebang
line of #!/usr/bin/env python.

Using PHP
For PHP, we do not use any of the CGI modules. Instead, because PHP calls the
program as from a command-line, we can use the optparse module to weed
through the options.

#!/usr/bin/env python

import MySQLdb
import optparse

opt = optparse.OptionParser()
opt.add_option("-U", "--user",
 action="store",
 type="string",
 help="user account to use for login",
 dest="user")
opt.add_option("-P", "--password",
 action="store",
 type="string",
 help="password to use for login",
 dest="password")
opt.add_option("-d", "--dbact",
 action="store",

Creating and Dropping

[216]

 type="string",
 help="kind of db action to be affected",
 dest="dbact")
opt.add_option("-D", "--dbname",
 action="store",
 type="string",
 help="name of db to be affected",
 dest="dbname")
opt.add_option("-t", "--tbact",
 action="store",
 type="string",
 help="kind of table action to be affected",
 dest="tbact")
opt.add_option("-Q", "--tbdbact",
 action="store",
 type="string",
 help="name of database containing table to be
affected",
 dest="tbdbname")
opt.add_option("-N", "--tbname",
 action="store",
 type="string",
 help="name of table to be affected",
 dest="tbname")
opt.add_option("-q", "--qact",
 action="store",
 type="string",
 help="kind of query to affect",
 dest="qact")
opt.add_option("-Z", "--qdbname",
 action="store",
 type="string",
 help="database to be used for query",
 dest="qdbname")
opt.add_option("-Y", "--qtbname",
 action="store",
 type="string",
 help="table to be used for query",
 dest="qtbname")
opt.add_option("-c", "--columns",
 action="store",
 type="string",
 help="columns to be used in query",
 dest="columns")

Chapter 7

[217]

opt.add_option("-v", "--values",
 action="store",
 type="string",
 help="values to be used in query",
 dest="values")
opt, args = opt.parse_args()

Defining main()
With the variables input into the program and the functions and class defined, we
can then code the main() function to orchestrate the program's execution.

def main():
 """The main function creates and controls the MySQLStatement
instance in accordance with the user's input."""
 output = ""

 while 1:
 try:
 cursor = connectNoDB(opt.user, opt.password)
 authenticate = 1
 except:
 output = "Bad login information. Please verify the
username and password that you are using before trying to login
again."
 authenticate = 0

 if authenticate == 1:
 errmsg = "You have not specified the information necessary
for the action you chose. Please check your information and specify
it correctly in the dialogue."

 if opt.dbact is not None:
 output = dbaction(opt.dbact, opt.dbname, cursor)
 elif opt.tbact is not None:
 output = tbaction(opt.tbact, opt.tbdbname, opt.tbname,
opt.columns, opt.values, opt.user, opt.password)
 elif opt.qact is not None:
 output = qaction(opt.qact, opt.qdbname, opt.qtbname,
opt.columns, opt.values, opt.user, opt.password)
 else:
 output = errmsg

 printout = HTMLPage()

Creating and Dropping

[218]

 printout.message(output)
 output = printout.page()

 print output
 break

First, we check whether the user's credentials are acceptable to MySQL. If they are
not, we simply issue a statement that their login information is bad. Otherwise, we
continue. Based upon what kind of action is specified, we call different functions. If
no radio button is ticked, the user receives the error message errmsg.

After all processing has been done, we form the page. The HTMLPage object is
printout. We set the value of HTMLPage.message to whatever output we generated
in the if...elif...else clause. After the page is formed by HTMLPage.page(), we
output it and break the while loop.

Room to grow
This project forms the basis for further development, some of which will be done in
the upcoming chapters. In writing this program and later extending its functionality,
be wary of trying to formulate too complicated of statements before you have good
processes in place for less complex commands.

Some places where this project could (and should) be developed further before
deploying it in real-life scenarios are:

Implementing UPDATE and DELETE statements in addition to SELECT
and INSERT
Using DESCRIBE to offer the user information about tables
Implementing fuller exception-handling

Summary
In this chapter, we have covered how to create and remove databases and tables with
MySQL for Python. We have seen:

How to use MySQLdb to create and delete both databases and tables
How we can manage database instances with MySQL for Python
Ways to automate database and table creation

In the next chapter, we will look at regulating MySQL user access within Python.

•

•

•

•

•

•

Creating Users and
Granting Access

There is arguably no part of database programming that requires greater care in
implementation than creating users and granting access. While the careless or
malicious deletion of data is catastrophic, it can only occur at the hands of a trusted
insider (whether a programmer or a database administrator) after a sufficient access
control system is properly put into place.

MySQL for Python allows us to automate user creation and to administer access
controls. In this chapter, we will see:

How to create and remove users in MySQL
Why removing a user is not as easy as DROPping (using DROP) them
The limits of MySQLdb's ability to GRANT access
Ways to automate user creation and access control

The project for this chapter will build on the web application that we began in the
last chapter.

A word on security
On October 2, 2007, a colocation data centre run by C I Host in Chicago, Illinois
(U.S.A) was robbed for the fourth time in two years. Robbers took $15,000 worth
of servers.

On December 6, 2007, thieves stole $4 million worth of servers from a Verizon data
centre in London, England.

•

•

•

•

Creating Users and Granting Access

[220]

On May 5, 2008, Peter Gabriel's official website went offline. Users of his Real World-
Peter Gabriel and WOMAD services lost all access. The reason is that thieves had
stolen the servers from a data centre run by a Carphone Warehouse subsidiary
named Rednet Ltd.

As mentioned previously, if an adequate access control system is in place, rogue
users are trusted insiders by definition. However, it is worth noting that such a
control system is not merely software. Every avenue of attack—from brute force
password cracking to using social engineering on a receptionist, is a vector of
attack against a database. By virtue of its involving human users, an adequate
access control system must provide adequate security policies and practices for that
human component. All the software access controls in the world will not prevent a
snookered staffer from disclosing their login information.

An adequate access control system involves security on every level of access—the
local host, the LAN/WAN, the wider Internet, and any physical access to any
machine located in those areas. If a user from an untrusted area gains physical access
to a machine within an area of greater trust, the chance of damage to the database
rises. Therefore, software security must always be buttressed by physical security.

At the time of writing this book, we live in a world where bootable CDs are easily
obtained, passwords can be read out of RAM, and quantum encryption is available
on an IC chip. Therefore, even full-disk encryption serves to slow and not stop
thieves from accessing data. At the present point of technology, when physical
security is breached, all IT security is increasingly worthless.

Creating users in MySQL
To create a user in MySQL, our user account must have the universal CREATE USER
privilege. In general, no user beyond the database administrator should have this as
it allows the user to create, remove, rename, and revoke the privileges of users on the
database. We will look at the granting of privileges later in this chapter.

Alternatively, if a user has universal INSERT privileges, that user can insert a new
user and relevant data into the user table of the mysql database. This method is
prone to error and can endanger the stability of the entire MySQL installation if
something goes wrong. Therefore, we do not deal with it here.

When creating a user, we need to specify both the user's name or ID and the user's
password. The basic syntax for user creation is as follows:

CREATE USER <userid>;

Chapter 8

[221]

Breaking the statement up by its token, we first tell MySQL that we want to CREATE
something. Then we clarify the object being created as a USER account. That account
should be named with the given userid. An example of this statement is:

CREATE USER exemplar;

Note that if NO_AUTO_CREATE_USER is enabled in your MySQL
configuration, this type of user creation will fail. This is particularly true
in SQL_MODE.

While this statement will create a user, it is perhaps the least secure way to do
so. MySQL offers two ways of securing user accounts at the time of account
creation—passwords and host restrictions.

Forcing the use of a password
To force the use of a password, we need to declare one at the time of creating
the user. To do this, we append an IDENTIFIED BY clause to the previous user
creation syntax.

CREATE USER <userid> IDENTIFIED BY '<password>';

To use this for our exemplary user, the statement would read as follows:

CREATE USER 'exemplar' IDENTIFIED BY 'MoreSecurity';

This forces the use of a password to log in. In the first user creation statement, if the
user did not offer a password, they would still be allowed access simply by using an
existing user ID.

To reset a password for an account that is already created, use a SET
PASSWORD statement:

SET PASSWORD FOR 'exemplar'@'localhost' = PASSWORD('dogcatcher')

Which hostname you use depends on how the account was created. See the next
section for more.

Restricting the client's host
In addition to requiring a password, MySQL also provides the ability to restrict
the host from which the login may come. This clarification comes immediately
after userid.

CREATE USER <userid>@'<host name>' IDENTIFIED BY '<password>';

Creating Users and Granting Access

[222]

If we want the user exemplar to login only from the localhost, the machine on which
MySQL is running—we would use the following command:

CREATE USER 'exemplar'@'localhost' IDENTIFIED BY 'MoreSecurity';

If we want the user to log in from http://www.sample.com/ only, we would change
the preceding statement to this:

CREATE USER 'exemplar'@'sample.com' IDENTIFIED BY 'MoreSecurity';

In doing so, however, we make it impossible for them to log in from localhost.
To ensure that the user can log in from any host, we need to issue two CREATE
statements that can effectively create one user for the local host and one for the
remote client.

To quantify the host for all hosts, we use MySQL's pattern matching in lieu of a
hostname. In order to allow the user to truly login from any host then, we need to
issue the following two commands:

CREATE USER 'exemplar'@'localhost' IDENTIFIED BY 'MoreSecurity';
CREATE USER 'exemplar'@'%' IDENTIFIED BY 'MoreSecurity';

You will recall that the first user creation statement did not specify the host to be
used by the user. If the hostname is not specified in the CREATE statement, MySQL
uses % by default.

The user's identity on a MySQL database is determined by their user ID and the
hostname from which they log in. It is possible for these two items to match more
than one row in the MySQL user tables. When that happens, MySQL uses the first
match it finds.

As MySQL uses its own user tables to validate logins, it is worth asking why we
don't simply modify MySQL's own tables instead of issuing CREATE statements. One
can do this, and there are instructions for doing so in the MySQL documentation.
However, doing so leaves one open to errors and possible data corruption.

If one corrupts the data in the user tables, it is possible to lose the ability to contact
the database altogether. This would then require manually restarting MySQL using
mysqld_safe:

mysqld_safe --skip-grant-tables &

This method works on Unix-based systems. Windows systems are more complex.
For more information, see the MySQL manual: http://dev.mysql.com/doc/
refman/5.5/en/resetting-permissions.html

Chapter 8

[223]

Creating users from Python
The ability to create users is obviously an administrative task. By default, this means
that one must log in as root, or any other user who has administrative rights, to use
them. If your Python program does not login as root, it will not be able to affect user
creation. Therefore, one's connection credentials must read accordingly:

import MySQLdb
mydb = MySQLdb.connect(host = 'localhost',
 user = 'root',
 passwd = 'rootsecret')
cursor = mydb.cursor()

From here, one can similarly form the statement to the other CREATE statements that
we have used.

statement = """CREATE USER 'exemplar'@'localhost' IDENTIFIED BY
'MoreSecurity'"""
cursor.execute(statement)

In a Python shell, passing the statement through cursor.execute() will return 0L.
If you execute this code in a Python program file, you will not get such feedback
(unless you overtly tell Python to print it). But for debugging purposes, you have
two choices: check the MySQL users table or try to use the login.

The latter is simply a matter of creating a second connection. This is best placed in a
try...except structure:

try:
 mydb2 = MySQLdb.connect(host = 'localhost',
 user = 'exemplar',
 passwd = 'MoreSecurity')
 cursor2 = mydb2.cursor()
except:
 raise

We can check the MySQL users table manually or within a program. To affect a
check manually, log into MySQL and select the mysql database for use.

use mysql;

Within mysql, read out from the user table.

SELECT * FROM users;

Creating Users and Granting Access

[224]

Depending on how many users are registered in the database, this table will
probably run off the screen. However, the last entry should be the account just
created. Alternatively, use a WHERE clause to quantify what you want.

SELECT * FROM users WHERE User = '<userid>';

So for the user exemplar, we would enter the following statement:

SELECT * FROM user WHERE User='exemplar';

Within Python, we can issue the last statement as follows:

mycheck = MySQLdb.connect(host = 'localhost',
 user = 'root',
 passwd = 'rootsecret',
 db = 'mysql')
checker = mycheck.cursor()
statement = """SELECT * FROM user WHERE User='exemplar'"""
results = checker.execute(statement)
if results == 1:
 print "Success!"
else:
 print "Failure."

Using the user ID in the statement saves us from having to match each record against
that value.

Removing users in MySQL
As with creating databases and tables, the opposite of creating a user is to DROP. As
we shall see, removing a user does not revert any changes that they have made to
the database(s) to which they had access. If a user had the ability to create users,
removing them will not remove the users they created.

Unlike databases and tables, dropping a user requires that you also specify the
hostname of the user's record. Therefore, one cannot always enter:

DROP USER exemplar;

This will only work if the user was created without specifying the hostname.

If it exists, one must include the hostname. For best practice, the basic syntax is:

DROP USER <userid>@<hostname>;

Chapter 8

[225]

Therefore to drop user exemplar, we would pass the following statement:

DROP USER 'exemplar'@@'localhost';

Note that this will not impact that user's ability to log in from another host if that
user had permission to connect from the other host.

DROP, by design, only removes the user's account and its privileges. It does not in any
way affect any database objects that the user created. Therefore, if a user has created
false database structures such as databases, tables, and records, then all of that will
persist after the user is removed from the system.

One very important aspect of DROP that is critical to remember is that DROP does not
impact on existing user sessions. If a user is logged into the server when the DROP
statement is issued, the DROP statement will not take effect until the user has logged
out. The user's subsequent attempts at logging in will then fail.

DROPping users in Python
Dropping a user in Python is as easy as passing the MySQL statement through
Cursor.execute(). So the syntax is:

DROP USER exemplar@localhost;

This previous syntax can be changed to:

mydb = MySQLdb.connect(host = 'localhost',
 user = 'root',
 passwd = 'rootsecret')
cursor = mydb.cursor()
statement = """DROP USER exemplar@localhost"""
cursor.execute(statement)

However, any part of the statement can be dynamically created through the use of
string formatting conventions.

GRANT access in MySQL
After creating a user account, one still needs to tell MySQL what kind of privileges to
assign to it. MySQL supports a wide range of privileges (see the table of privileges on
page 9). A user can only grant any privilege that they have themselves.

As with creating a user, granting access can be done by modifying the mysql tables
directly. However, this method is error-prone and dangerous to the stability of the
system and is, therefore, not recommended.

Creating Users and Granting Access

[226]

Important dynamics of GRANTing access
Where CREATE USER causes MySQL to add a user account, it does not specify that
user's privileges. In order to grant a user privileges, the account of the user granting
the privileges must meet two conditions:

Be able to exercise those privileges in their account
Have the GRANT OPTION privilege on their account

Therefore, it is not just users who have a particular privilege or only users with the
GRANT OPTION privilege who can authorize a particular privilege for a user, but only
users who meet both requirements.

Further, privileges that are granted do not take effect until the user's first login after
the command is issued. Therefore, if the user is logged into the server at the time you
grant access, the changes will not take effect immediately.

The GRANT statement in MySQL
The syntax of a GRANT statement is as follows:

GRANT <privileges> ON <database>.<table>
 TO '<userid>'@'<hostname>';

Proceeding from the end of the statement, the userid and hostname follow the same
pattern as with the CREATE USER statement. Therefore, if a user is created with a
hostname specified as localhost and you grant access to that user with a hostname
of '%', they will encounter a 1044 error stating access is denied.

The database and table values must be specified individually or collectively. This
allows us to customize access to individual tables as necessary. For example, to
specify access to the city table of the world database, we would use world.city.

In many instances, however, you are likely to grant the same access to a user for all
tables of a database. To do this, we use the universal quantifier ('*'). So to specify all
tables in the world database, we would use world.*.

We can apply the asterisk to the database field as well. To specify all databases and
all tables, we can use *.*. MySQL also recognizes the shorthand * for this.

Finally, the privileges can be singular or a series of comma-separated values. If, for
example, you want a user to only be able to read from a database, you would grant
them only the SELECT privilege. For many users and applications, reading and
writing is necessary but no ability to modify the database structure is warranted. In
such cases, we can grant the user account both SELECT and INSERT privileges with
SELECT, INSERT.

•

•

Chapter 8

[227]

To learn which privileges have been granted to the user account you are
using, use the statement SHOW GRANTS FOR <user>@hostname>;.

With this in mind, if we wanted to grant a user tempo all access to all tables in
the music database but only when accessing the server locally, we would use
this statement:

GRANT ALL PRIVILEGES ON music.* TO 'tempo'@'localhost';

Similarly, if we wanted to restrict access to reading and writing when logging in
remotely, we would change the above statement to read:

GRANT SELECT,INSERT ON music.* TO 'tempo'@'%';

If we wanted user conductor to have complete access to everything when logged in
locally, we would use:

GRANT ALL PRIVILEGES ON * TO 'conductor'@'localhost';

Building on the second example statement, we can further specify the exact
privileges we want on the columns of a table by including the column numbers
in parentheses after each privilege. Hence, if we want tempo to be able to read
from columns 3 and 4 but only write to column 4 of the sheets table in the music
database, we would use this command:

GRANT SELECT (col3,col4),INSERT (col4) ON music.sheets TO 'tempo'@'%';

Note that specifying columnar privileges is only available when specifying a single
database table—use of the asterisk as a universal quantifier is not allowed. Further,
this syntax is allowed only for three types of privileges: SELECT, INSERT, and UPDATE.

A list of privileges that are available through MySQL is reflected in the
following table:

Privilege Function Context
ALL Grants all privileges to user Databases, tables, or indexes
CREATE Creates database objects Databases, tables, or indexes
DROP Drops database objects Databases or tables

GRANT OPTION Grants privileges to other users Databases, tables, or stored
routines

REFERENCES Supported internally but
otherwise unused Databases or tables

Creating Users and Granting Access

[228]

Privilege Function Context
ALTER Allows use of ALTER TABLE Tables

DELETE Allows use of DELETE Tables

INDEX Enables creation and dropping
of indexes Tables

INSERT Allows data insertion Tables
SELECT Allows reading from a database Tables
UPDATE Allows use of UPDATE Tables

CREATE TEMPORARY TABLES Allows user to create temporary
tables Tables

LOCK TABLES
Enables the use of LOCK
TABLES for tables on which
SELECT has been granted

Tables

TRIGGER
Allows the automation of
certain events in a table under
conditions set by the user

Tables

CREATE VIEW Enables the creation and deletion
of views Views

SHOW VIEW Allows the showing of views Views

ALTER ROUTINE Allows user to alter and delete
stored routines Stored routines

CREATE ROUTINE Enables the creation of stored
routines Stored routines

EXECUTE Allows the execution of stored
routines Stored routines

FILE Enables file access on localhost File access

CREATE USER Enables the creation of users Server administration

PROCESS
Enables the user to view
all processes with SHOW
PROCESSLIST

Server administration

RELOAD Enables use of FLUSH Server administration

REPLICATION CLIENT Allows user to query about
master and slave servers Server administration

REPLICATION SLAVE
Allows slave servers to read
binary logs from the master
server

Server administration

SHOW DATABASES Allows user to view available
databases Server administration

SHUTDOWN
Enables the use of
mysqladmin shutdown Server administration

Chapter 8

[229]

Privilege Function Context

SUPER Enables the use of several
superuser privileges Server administration

ALL [PRIVILEGES] Grants all privileges to the user
that are available to the grantor Server administration

USAGE Allows access to the user Server administration

MySQL does not support the standard SQL UNDER privilege and does not support
the use of TRIGGER until MySQL 5.1.6.

More information on MySQL privileges can be found at
http://dev.mysql.com/doc/refman/5.5/en/privileges-provided.html

Using REQUIREments of access
Using GRANT with a REQUIRE clause causes MySQL to use SSL encryption.
The standard used by MySQL for SSL is the X.509 standard of the International
Telecommunication Union's (ITU) Standardization Sector (ITU-T). It is a commonly used
public-key encryption standard for single sign-on systems. Parts of the standard are
no longer in force. You can read about the parts which still apply on the ITU website
at http://www.itu.int/rec/T-REC-X.509/en

The REQUIRE clause takes the following arguments with their respective meanings
and follows the format of their respective examples:

NONE: The user account has no requirement for an SSL connection. This is
the default.
GRANT SELECT (col3,col4),INSERT (col4) ON music.sheets TO
'tempo'@'%';

SSL: The client must use an SSL-encrypted connection to log in. In most
MySQL clients, this is satisfied by using the --ssl-ca option at the time of
login. Specifying the key or certificate is optional.
GRANT SELECT (col3,col4),INSERT (col4) ON music.sheets TO
'tempo'@'%' REQUIRE SSL;

•

•

Creating Users and Granting Access

[230]

X509: The client must use SSL to login. Further, the certificate must be
verifiable with one of the CA vendors. This option further requires the client
to use the --ssl-ca option as well as specifying the key and certificate using
--ssl-key and --ssl-cert, respectively.
GRANT SELECT (col3,col4),INSERT (col4) ON music.sheets TO
'tempo'@'%' REQUIRE X509;

CIPHER: Specifies the type and order of ciphers to be used.
GRANT SELECT (col3,col4),INSERT (col4) ON music.sheets TO
'tempo'@'%' REQUIRE CIPHER 'RSA-EDH-CBC3-DES-SHA';

ISSUER: Specifies the issuer from whom the certificate used by the client
is to come. The user will not be able to login without a certificate from
that issuer.
GRANT SELECT (col3,col4),INSERT (col4) ON music.sheets TO
'tempo'@'%' REQUIRE ISSUER 'C=ZA, ST=Western Cape, L=Cape
Town, O=Thawte Consulting cc, OU=Certification Services
Division,CN=Thawte Server CA/emailAddress=server-certs@thawte.
com';

SUBJECT: Specifies the subject contained in the certificate that is valid for
that user. The use of a certificate containing any other subject is disallowed.

GRANT SELECT (col3,col4),INSERT (col4) ON music.sheets
TO 'tempo'@'%' REQUIRE SUBJECT 'C=US, ST=California,
L=Pasadena, O=Indiana Grones, OU=Raiders, CN=www.lostarks.com/
emailAddress=indy@lostarks.com';

Using a WITH clause
MySQL's WITH clause is helpful in limiting the resources assigned to a user. WITH
takes the following options:

GRANT OPTION: Allows the user to provide other users of any privilege that
they have been granted
MAX_QUERIES_PER_HOUR: Caps the number of queries that the account is
allowed to request in one hour
MAX_UPDATES_PER_HOUR: Limits how frequently the user is allowed to issue
UPDATE statements to the database
MAX_CONNECTIONS_PER_HOUR: Limits the number of logins that a user is
allowed to make in one hour
MAX_USER_CONNECTIONS: Caps the number of simultaneous connections that
the user can make at one time

•

•

•

•

•

•

•

•

•

Chapter 8

[231]

It is important to note that the GRANT OPTION argument to WITH has a timeless aspect.
It does not statically apply to the privileges that the user has just at the time of
issuance, but if left in effect, applies to any options the user has at any point in time.
So, if the user is granted the GRANT OPTION for a temporary period, but the option
is never removed, then the user grows in responsibilities and privileges, that user
can grant those privileges to any other user. Therefore, one must remove the GRANT
OPTION when it is not longer appropriate.

Note also that if a user with access to a particular MySQL database has
the ALTER privilege and is then granted the GRANT OPTION privilege,
that user can then grant ALTER privileges to a user who has access to
the mysql database, thus circumventing the administrative privileges
otherwise needed.

The WITH clause follows all other options given in a GRANT statement. So, to grant
user tempo the GRANT OPTION, we would use the following statement:

GRANT SELECT (col3,col4),INSERT (col4) ON music.sheets TO 'tempo'@'%'
WITH GRANT OPTION;

If we want to limit the number of queries that the user can have in one hour to five,
as well, we simply add to the argument of the single WITH statement. We do not need
to use WITH a second time.

GRANT SELECT,INSERT ON music.sheets TO 'tempo'@'%' WITH GRANT OPTION
MAX_QUERIES_PER_HOUR 5;

More information on the many uses of WITH can be found at
 http://dev.mysql.com/doc/refman/5.1/en/grant.html

Granting access in Python
Using MySQLdb to enable user privileges is not more difficult than doing so in
MySQL itself. As with creating and dropping users, we simply need to form the
statement and pass it to MySQL through the appropriate cursor.

As with the native interface to MySQL, we only have as much authority in
Python as our login allows. Therefore, if the credentials with which a cursor is
created has not been given the GRANT option, an error will be thrown by MySQL
and MySQLdb, subsequently.

Creating Users and Granting Access

[232]

Assuming that user skipper has the GRANT option as well as the other necessary
privileges, we can use the following code to create a new user, set that user's
password, and grant that user privileges:

#!/usr/bin/env python

import MySQLdb

host = 'localhost'
user = 'skipper'
passwd = 'secret'

mydb = MySQLdb.connect(host, user, passwd)
cursor = mydb.cursor()

try:
 mkuser = 'symphony'
 creation = "CREATE USER %s@'%s'" %(mkuser, host)
 results = cursor.execute(creation)
 print "User creation returned", results

 mkpass = 'n0n3wp4ss'
 setpass = "SET PASSWORD FOR '%s'@'%s' = PASSWORD('%s')" %(mkuser,
host, mkpass)
 results = cursor.execute(setpass)
 print "Setting of password returned", results

 granting = "GRANT ALL ON *.* TO '%s'@'%s'" %(mkuser, host)
 results = cursor.execute(granting)
 print "Granting of privileges returned", results

except MySQLdb.Error, e:
 print e

If there is an error anywhere along the way, it is printed to screen. Otherwise,
the several print statements are executed. As long as they all return 0, each step
was successful.

Chapter 8

[233]

Removing privileges in MySQL
To remove privileges that have been granted, one uses the REVOKE statement. One
uses the same information to revoke privileges as to grant them:

The kinds of privileges to be revoked
The database and table involved
The user ID
The hostname used in granting the privilege

As with dropping and creating a user, a pattern matching hostname of % does not
include localhost. That host must be revoked explicitly.

Basic syntax
The REVOKE command has the following basic syntax:

REVOKE <privileges> ON <database>.<table> FROM
'<userid>'@'<hostname>';

So to revoke all access for user tempo to the City table of the world database when
logged in locally, we would use the following statement:

REVOKE ALL PRIVILEGES ON world.City FROM 'tempo'@'localhost';

If we want to revoke only INSERT privileges for remote access, we would adapt the
preceding statement accordingly:

REVOKE INSERT ON world.City FROM 'tempo'@'%';

Again, it is important to remember that the following two lines affect different records in
the MySQL user table:

REVOKE ALL PRIVILEGES ON world.City FROM 'tempo'@'localhost';
REVOKE ALL PRIVILEGES ON world.City FROM 'tempo'@'%';

After using REVOKE, the user still has
access!?
All administrative changes in MySQL are applied to MySQL's internal databases.
Therefore, any change that is effected, only takes effect the next time MySQL needs
to read those administrative tables. Consequently, users can still have access to
databases or tables after the revocation statement has been issued.

•

•

•

•

Creating Users and Granting Access

[234]

Often, administrative changes can wait until the user logs out. However, even then,
it can take a while for the changes to take effect. Depending on how frequently
MySQL reads the administrative tables, the change may not take effect even if
you manually remove the permissions from the administrative tables that govern
privileges (columns_priv, procs_priv, and tables_priv). Within MySQL, one can
pass the following command:

FLUSH PRIVILEGES;

If one's login has RELOAD privileges.

If time is of the essence, however, and you want to force MySQL to re-read all of the
administrative tables, you may want to restart it. In Linux and other Unix variants,
execute the following with root privileges:

/etc/init.d/mysql restart

From Windows:

1. Click Start | Control Panel | Administrative Controls | Services.
2. Select mysql.
3. Right click then select Restart under Options.

Currently, there is no interface available to restart MySQL from Python
without issuing OS-specific commands (that is, using the os module).
This is not a tenable development strategy as the Python program
would need to run with administrator privileges (an obvious security
problem). However, Mats Kindahl, lead developer at MySQL, has started
MySQL Replicant, a project designed for replicating MySQL servers, but
that incidentally should include administrative tasks such as starting,
restarting, and stopping. For more, including a download link, see this
blog post from Kindahl's blog: http://mysqlmusings.blogspot.
com/2009/12/mysql-replicant-library-for-controlling.
html

Chapter 8

[235]

Using REVOKE in Python
As with GRANT, revoking privileges in Python just depends on forming the statement.
As seen in this code, a revision of the earlier example, the REVOKE statement uses
similar context to and all the same information as the GRANT statement:

#!/usr/bin/env python

import MySQLdb

host = 'localhost'
user = 'skipper'
passwd = 'secret'

mydb = MySQLdb.connect(host, user, passwd)
cursor = mydb.cursor()

try:
 mkuser = 'symphony'
 creation = "CREATE USER '%s'@'%s'" %(mkuser, host)
 results = cursor.execute(creation)
 print "User creation returned", results

 mkpass = 'n0n3wp4ss'
 setpass = "SET PASSWORD FOR '%s'@'%s' = PASSWORD('%s')" %(mkuser,
host, mkpass)
 results = cursor.execute(setpass)
 print "Setting of password returned", results

 granting = "GRANT ALL ON *.* TO '%s'@'%s'" %(mkuser, host)
 results = cursor.execute(granting)
 print "Granting of privileges returned", results

 granting = "REVOKE ALL PRIVILEGES ON *.* FROM '%s'@'%s'" %(mkuser,
host)
 results = cursor.execute(granting)
 print "Revoking of privileges returned", results

except MySQLdb.Error, e:
 print e

Creating Users and Granting Access

[236]

Project: Web-based user administration
In this chapter's project, we will add some user administration facilities to the web
administration program that we created in the last chapter. We will therefore discuss
the changes to the program and will not address those functions we have already
discussed in the previous chapter.

As mentioned in the previous chapter, we should get the same results from this
program regardless of whether we call it through CGI or with PHP. The output is
always a HTML file. Using PHP has the advantage of allowing us to test the program
from the command-line where CGI requires hard-wiring of values in the code. It is
only after the program is proven locally that one should move it to a test server.

For reasons of illustration and portability, we will proceed in this project as if we
called the program through PHP. This allows us to list the new options in a way
that should be easier to follow.

New options in the code
The purpose of this project is to add certain user administration facilities to
the program from last chapter, PyMyAdmin.py. The functionality to be added
includes creating and dropping users as well as granting and revoking access
to proscribed accounts.

In addition to login credentials, the CREATE USER and DROP USER statements require
the declaration of a user's name. Therefore, we need to add the following to the
options supported:

opt.add_option("-n", "--username",
 action="store",
 type="string",
 help="username to be affected",
 dest="username")

The account to be affected is therefore identified by opt.username.

Best practice suggests that one should set a user's password at the same time as
creating the account. Therefore, we need support for this:

opt.add_option("-w", "--passwd",
 action="store",
 type="string",
 help="password to be used in user creation",
 dest="passwd")

Chapter 8

[237]

Therefore, the affected account's password will then be contained in opt.passwd.

In granting and revoking privileges, we need three additional pieces of information:
the relevant privileges, the database, and tables to be used.

opt.add_option("-r", "--privileges",
 action="store",
 type="string",
 help="privileges to be assigned to user",
 dest="privileges")
opt.add_option("-a", "--acldb",
 action="store",
 type="string",
 help="database to be affected with access rules",
 dest="acldb")
opt.add_option("-b", "--acltb",
 action="store",
 type="string",
 help="table to be affected with access rules",
 dest="acltb")

This data will thus reconcile to the following variables in the code:

Privileges: opt.privileges
Relevant database: opt.acldb
Relevant tables: opt.acltb

Finally, we need a switch to indicate which of these the user wants to perform. For
this we use uact:

opt.add_option("-u", "--uact",
 action="store",
 type="string",
 help="act of user administration",
 dest="uact")

This will naturally reconcile to opt.uact.

•

•

•

Creating Users and Granting Access

[238]

At this point, the options listed for the program when the help menu is called looks
like this:

Usage: pymyadmin.py [options]

Options:
 -h, --help show this help message and exit
 -U USER, --user=USER user account to use for login
 -P PASSWORD, --password=PASSWORD
 password to use for login
 -d DBACT, --dbact=DBACT
 kind of db action to be affected
 -D DBNAME, --dbname=DBNAME
 name of db to be affected
 -t TBACT, --tbact=TBACT
 kind of table action to be affected
 -Q TBDBNAME, --tbdbact=TBDBNAME
 name of database containing table to be
affected
 -T TBNAME, --tbname=TBNAME
 name of table to be affected
 -q QACT, --qact=QACT kind of query to affect
 -Z QDBNAME, --qdbname=QDBNAME
 database to be used for query
 -Y QTBNAME, --qtbname=QTBNAME
 table to be used for query
 -c COLUMNS, --columns=COLUMNS
 columns to be used in query
 -v VALUES, --values=VALUES
 values to be used in query
 -u UACT, --uact=UACT act of user administration
 -n USERNAME, --username=USERNAME
 username to be affected
 -w PASSWD, --passwd=PASSWD
 password to be used in user creation
 -r PRIVILEGES, --privileges=PRIVILEGES
 privileges to be assigned to user
 -a ACLDB, --acldb=ACLDB
 database to be affected with access rules
 -b ACLTB, --acltb=ACLTB
 table to be affected with access rules

Chapter 8

[239]

Adding the functions: CREATE and DROP
As CREATE and DROP use the same basic data, it behooves us to use one function to
handle both.

def uaction(user, password, uact, username, *passwd):
 cursor = connectNoDB(user, password)
 if uact == "create-user":
 passwd = passwd[0]
 create = "CREATE USER '%s'@'localhost'" %(username)
 rescreate = execute(create, cursor, 'create-user')
 setpass = "SET PASSWORD FOR '%s'@'localhost' = PASSWORD('%s')"
%(username, passwd)
 respass = execute(setpass, cursor, 'set-pass')
 results = rescreate + respass
 else:
 drop = "DROP USER '%s'@'localhost'" %(username)
 resdrop = execute(drop, cursor, 'drop-user')
 results = resdrop
 return results

The main difference in the flow of the program is that we will expect to set a
password whenever the CREATE option is called. Therefore, we will fork the program
flow within the function according to whether we are creating or dropping a user.

When the CREATE option is used, this function expects a fifth value in *passwd.
Otherwise, it is never used. The program will thus execute fine without it.

If you get errors in relation to the execution of this function, it is best to insert a
print statement to show what Python is passing to MySQL and, if necessary,
the variable types being used. An example of how to do this is as follows:

def uaction(user, password, uact, username, *passwd):
 cursor = connectNoDB(user, password)
 if uact == "create-user":
 create = "CREATE USER '%s'@'localhost'" %(username)

 print "passwd is of type", type(passwd)
 rescreate = execute(create, cursor, 'create-user')
 setpass = "SET PASSWORD FOR '%s'@'localhost' = PASSWORD('%s')"
%(username, passwd)
 respass = execute(setpass, cursor, 'set-pass')
 results = rescreate + respass
 else:
 drop = "DROP USER '%s'@'localhost'" %(username)
 resdrop = execute(drop, cursor, 'drop-user')
 results = resdrop
 return results

Creating Users and Granting Access

[240]

If MySQL complains of problems in your statement, simply print it out before you
pass it to execute(). This will ensure that it is printed before the next program call,
where the statement is passed to MySQL and the problem arises. Alternatively, one
could edit the execute() function to print the statement it receives.

Here, we are also not handling the value of passwd correctly. While passwd is a
string in the main program, it is not passed as a whole. To find out how it is passed
and how to handle it correctly, we need to insert such statements as the second
print statement.

Adding CREATE and DROP to main()
Having created the functionality in uaction(), we can now handle the CREATE and
DROP options in main(). To do this, we simply add another elif clause to the series
that follows if authenticate equates to 1. The new if...elif series looks like this:

 if authenticate == 1:
 errmsg = "You have not specified the information necessary
for the action you chose. Please check your information and specify
it correctly in the dialogue."

 if opt.dbact is not None:
 output = dbaction(opt.dbact, opt.dbname, cursor)
 elif opt.tbact is not None:
 output = tbaction(opt.tbact, opt.tbdbname, opt.tbname,
opt.columns, opt.values, opt.user, opt.password)
 elif opt.qact is not None:
 output = qaction(opt.qact, opt.qdbname, opt.qtbname,
opt.columns, opt.values, opt.user, opt.password)
 elif opt.uact is not None:
 if opt.uact == "create":
 act = "create-user"
 output = uaction(opt.user, opt.password, act, opt.
username, opt.passwd)
 elif opt.uact == "drop":
 act = "drop-user"
 output = uaction(opt.user, opt.password, act, opt.
username)
 else:
 output = errmsg

Note that we create a new variable act to reflect the import of opt.uact holding
a value and what that value is. This saves us from unnecessarily complicated
code elsewhere.

Chapter 8

[241]

Adding the functions: GRANT and REVOKE
Next, we need to add the functionality for GRANT and REVOKE. For each of these
statements, the values involved are precisely the same. Therefore, we do not need
to use optional arguments. The function looks like this:

def uadmin(user, password, uact, username, privileges, acldb, acltb):
 cursor = connectNoDB(user, password)
 if uact == "grant":
 grant = "GRANT %s ON %s.%s TO '%s'@'localhost'" %(privileges,
acldb, acltb, username)
 results = execute(grant, cursor, 'grant')
 else:
 revoke = "REVOKE %s ON %s.%s FROM '%s'@'localhost'"
%(privileges, acldb, acltb, username)
 results = execute(revoke, cursor, 'revoke')
 return results

The syntax of each statement is straightforward. As we will remind the user on the
HTML page, the list of privileges should be comma delimited. If it is not, we will get
an error from MySQL. For real-world deployment, one would do well to check for
this or put the operational parts of the function into a try...else clause.

Adding GRANT and REVOKE to main()
Having added facilities to handle GRANT and REVOKE, we need to tell main() how to
handle those options. Once again, we are simply inserting another elif clause into
the previously mentioned series. The new main() function then looks like this:

def main():
 """The main function creates and controls the MySQLStatement
instance in accordance with the user's input."""
 output = ""

 while 1:
 try:
 cursor = connectNoDB(opt.user, opt.password)
 authenticate = 1
 except:
 output = "Bad login information. Please verify the
username and password that you are using before trying to login
again."
 authenticate = 0

Creating Users and Granting Access

[242]

 if authenticate == 1:
 errmsg = "You have not specified the information necessary
for the action you chose. Please check your information and specify
it correctly in the dialogue."

 if opt.dbact is not None:
 output = dbaction(opt.dbact, opt.dbname, cursor)
 elif opt.tbact is not None:
 output = tbaction(opt.tbact, opt.tbdbname, opt.tbname,
opt.columns, opt.values, opt.user, opt.password)
 elif opt.qact is not None:
 output = qaction(opt.qact, opt.qdbname, opt.qtbname,
opt.columns, opt.values, opt.user, opt.password)
 elif opt.uact is not None:
 if opt.uact == "create":
 act = "create-user"
 output = uaction(opt.user, opt.password, act, opt.
username, opt.passwd)
 elif opt.uact == "drop":
 act = "drop-user"
 output = uaction(opt.user, opt.password, act, opt.
username)
 elif opt.uact == "grant" or opt.uact == "revoke":
 output = uadmin(opt.user, opt.password, opt.uact,
opt.username, opt.privileges, opt.acldb, opt.acltb)
 else:
 output = errmsg

 printout = HTMLPage()
 printout.message(output)
 output = printout.page()

 print output
break

Note that, instead of using two elif options for each of GRANT and REVOKE, we
combine the two with a disjunctive or. All that is left is to add support for each
of the four options on the HTML page.

Chapter 8

[243]

Test the program
Before adding support on the HTML page, however, it is good practice to test
what you have written. If you used the CGI method, you will need to hardwire
values into the code for testing. Using PHP is the same as calling the program from
the command line. Testing the program means trying all four new options and
validating them in MySQL and from a MySQL login. If the output is expected,
a valid HTML file, then the program executes as expected.

To test the program from the command-line, you will necessarily need to
access the terminal of your operating system and call the program with
flags. If you do not know how to do this, consult your operating system's
documentation.

To test user creation and dropping, open a MySQL shell as the root user. Using
the mysql database, you can verify CREATE and DROP statements against the user
database. The easiest way to do this is to select all from it by using:

SELECT * FROM user;

Alternatively, nuance the query with a WHERE clause.

To test the granting and revocation of access in real terms, open a MySQL shell in the
name of the user to be affected. You as administrator, can then test the access granted
to that user.

SHOW GRANTS FOR <username>@<hostname>;

This will show you all available permissions for the relevant account.

If you are debugging your code and start receiving errors, remember to blackbox the
process. Don't simply try to edit the Python code and re-run it if you are getting a
MySQL error. First, use print commands to show what statement Python is handing
off to MySQL. Then ensure that those commands actually work in MySQL. Once you
are confident that you have the right MySQL command and syntax, you can look at
how your code passes information to MySQLdb. Finally, you can revisit your Python
code to ensure that it is working as planned.

Remember that optional arguments (for example, *passwd) are passed as tuples.
So, even if it is a string in the main function, it becomes a tuple when passed. You,
therefore, have to handle it appropriately. Once you are satisfied that the program
will behave as intended, it is time to implement the options in the HTML form.

Creating Users and Granting Access

[244]

New options on the page
To avail these new options to the user, we obviously need to adapt the HTML form.
Insert the following just before the closing </form> tag:

<div>USER ADMINISTRATION</div>
<input type="radio" name="uact" value="create"> CREATE

<input type="radio" name="uact" value="drop"> DROP

<input type="radio" name="uact" value="grant"> GRANT

<input type="radio" name="uact" value="revoke"> REVOKE

 User name: <input type="text" name="username" value="">

 Password: <input type="password" name="passwd" value="">

 Privileges (comma-separated): <input type="text"
 name="privileges"value="">

 Database and Table:
 <input type="text" name="acldb" value="">.
 <input type="text" name="acltb" value="">

Note that, as a matter of good practice, one should not implement options in the
form that are not yet implemented and tested in the code. To do so is a security risk.

The relevant part of the HTML page thus looks like this when rendered in a browser:

Room to grow
Where the above implementation works, several limitations exist in it. One of the
primary ways that an error can arise is if the user does not enter the privileges
separated by commas but by, say, semi-colons. Additional functionality that can be
added includes:

Allowing user administration for non-local hostnames
Validating the database and table names before passing them to execute()
Supporting SHOW GRANTS in order to provide a meaningful error message if a
GRANT or REVOKE statement fails

•

•

•

Chapter 8

[245]

We will look at other ways to augment the user-friendliness of the HTML menu in
later chapters. But can you think of ways to make it easier to use?

Summary
In this chapter, we have covered how to create and remove users and privileges with
MySQL for Python. We have seen:

How to use MySQL and MySQLdb to CREATE and DROP users
How to set user passwords
How we can manage database privileges with MySQL for Python
Ways to automate user creation and removal
How to GRANT and REVOKE privileges and the conditions under which that
can be done

In the next chapter, we will look at working with dates and time in MySQL
for Python.

•

•

•

•

•

Date and Time Values
When beginning to program database-oriented applications, it is not uncommon to
focus on processing data and to forget about matters of time and timing. If a program
is simply storing addresses or otherwise dealing with data that is not naturally
time-sensitive, it is easy to overlook matters of date and time. However, storing date
and time for data and activity on the server allows for several desiderata, some of
which are:

Rolling back documents to an earlier draft version without affecting the
current draft
Figuring out why a process or subprocess jammed up or failed
Forensic analysis of a compromised server

In this chapter, we will see:

What data types MySQL supports for date and time
When to use which data type and in what format and range
What functions MySQL supports for managing temporal values
The most frequently used functions for managing date and time

As mentioned in the previous chapter, the project for this chapter will build on the
web application we began earlier. After looking at MySQL's date and time support
and how to use it in Python, we will add similar functionality to our web-based
administration program.

Date and time data types in MySQL
MySQL supports five data types for temporal matters: DATETIME, DATE, TIMESTAMP,
TIME, and YEAR. These serve as types to be used when architecting a table like INT
and VARCHAR that were employed in earlier chapters.

•

•

•

•

•

•

•

Date and Time Values

[248]

DATETIME
The DATETIME data type is used to specify a value that includes both the date and
the time. It is important to realize that DATETIME accepts its values from the user like
any other data type. It does not automatically generate values. For that purpose, one
should use the TIMESTAMP type (seen later in this chapter).

Output format
The DATETIME type receives data in several formats, but returns it in only one.

YYYY-MM-DD HH:MM:SS

For example, the BBC's evening report of the Berlin Wall being torn down began
at nine o'clock in the evening on November 10, 1989 and ran for 37 minutes and 9
seconds. A DATETIME value depicting the moment of its conclusion would read:

1989-10-10 21:37:09

Input formats
Where MySQL always returns DATETIME values in the same format, it will accept
values in several formats:

Four- or two-digit years

Either YYYY-MM-DD HH:MM:SS or YY-MM-DD HH:MM:SS is acceptable

Any delimiter, as long as it is consistently applied

The above sample date could be input as 1989.10.10 21@37@09 or 89/10/10
21*37*09.

No delimiters

So we could just input 19891010213709, and MySQL would understand it
appropriately.

No delimiters with a two-digit year

So 891010213709 is fair game.

DATETIME values may also be passed from DATE and TIME functions like NOW(). See
the section on DATE and TIME functions, below.

•

•

•

•

Chapter 9

[249]

Input range
MySQL insists that all dates be after the turn of the first millennium CE—1000-01-
01. The turn of the millennium here is literal. The exact beginning of acceptable dates
and times is 1000-01-01 00:00:00.

On the far terminus of the range, MySQL cannot handle dates that are seen post the
end of New Year's Eve 9999, or 9999-12-31 23:59:59.

Where MySQL can handle the sundry formats mentioned above, these must always
reconcile to a date-time combination within this range. If a value does not, MySQL
will record a zero value. So a value of either 0999-13-45 25:73:62 or 10000-14-35
25:61:61 would become 0000-00-00 00:00:00.

This is something to watch out for. When MySQL renders your data with this series
of zeroes, it offers no signifier of the correction. Therefore, you will not be able to tell
a bad value from a good one as both will look like 0000-00-00 00:00:00.

Using DATETIME in a CREATE statement
As mentioned previously, DATETIME is a data type. It is therefore used in table
creation to specify the data type of a column. If, for example, we were keeping a
record of dates and times of birth, a table creation statement might read as follows:

CREATE TABLE birthtimes(birthid INT NOT NULL AUTO_INCREMENT PRIMARY
KEY, babyname VARCHAR(30) DEFAULT '', birthtime DATETIME);

We would then populate that table with INSERT statements like:

INSERT INTO birthtimes(babyname, birthtime) VALUES('Johnny', '2005-12-
02 03:15:46');

DATE
The DATE type is a shorthand means of using only the first half of the DATETIME
value format.

Output and Input formats
The format of output for such types follows that of DATETIME:

YYYY-MM-DD

For input, DATE accepts any of the following formats:

Four- or two-digit years

•

•

Date and Time Values

[250]

Either YYYY-MM-DD or YY-MM-DD

Any delimiter, as long as it is consistently applied

So YYYY/MM/DD or YY/MM/DD or YYYY*MM*DD. Again, consistency is the key.

No delimiters

So YYYYMMDD is allowed, and MySQL massages it to suit its needs.

No delimiters with a two-digit year

So we can use YYMMDD.

Input range
DATE also has a similar range to DATETIME—from 1000-01-01 through 9999-12-31.
As with the first data type that we discussed in this chapter, values outside this range
will be zeroed out to 0000-00-00 with no warning being given.

TIMESTAMP
The TIMESTAMP data type differs from the previous two in several important ways.
TIMESTAMP values follow the same format as DATETIME's long form:

YYYY-MM-DD HH:MM:SS

This is a fixed width and cannot be changed, even by setting a default (see the
following section for more on this).

Input of values
TIMESTAMP is an auto-generated data type. Therefore, it's value is not specified in
an INSERT statement but is culled from the server's local time. For the local time,
MySQL uses the clock of the hardware on which it is running by accessing the
operating system's clock.

Internally, MySQL always deals in UTC (Universal Time, Coordinated—a so-called
backronym for Coordinated Universal Time). In common use, UTC is the same as
Greenwich Mean Time (GMT), though the two may differ by up to 0.9 seconds.

If the server is not on UTC, the server's time is converted to UTC for purposes of data
storage and then converted back when that value is requested. Therefore, if a record
was saved under one time zone and retrieved after the time zone value was changed
(for example, Daylight Saving Time, British Summer Time, or similar), the value that
is returned will be different than the value that was given by the user.

•

•

•

Chapter 9

[251]

Range
The TIMESTAMP type differs from DATETIME, wherein its range is much more
restricted. MySQL uses the Unix epoch as the beginning of its range: 1970-01-01
00:00:01. The terminus for valid timestamps is 2038-01-19 03:14:07. All times
are in UTC.

Why January 19, 2038 at 3:14:07? Initially, MySQL was developed
for Unix-like systems. All Unix systems currently share a bug called
variously the year 2038 bug, the Y2K28 bug, or just the Unix Millenium
Bug. The issue results from the problem of 32-bit signed integers being
used to save dates and how those values are processed internally, in
binary. The timestamp for the MySQL terminus is as follows:
2038-01-19 03:14:07 in binary is 11111111 11111111 11111111
11111111

As all addition inside a computer occurs in binary, the computer will
simply add one to this value which will then bring the binary value of the
timestamp to the following:
00000000 00000000 00000000 00000000 or 1901-12-13 20:45:52
The one at the far left of the number drops off the display and disappears
from the system. It is not clear how many systems will be impacted
by this bug. It is known that Unix-like systems are not alone in being
impacted. For more on the year 2038 bug, including AOL's database crash
of May 2006, see http://en.wikipedia.org/wiki/Year_2038_
problem

Invalid TIMESTAMP values are converted to 0. Therefore, if a date of 1963-11-22
12:30:00 is used, it cannot be a TIMESTAMP type, but must be a DATETIME.

Defaults, initialization, and updating
MySQL allows timestamps to be set manually or automatically. If set manually, you
need to give a default value. If set automatically, MySQL will use the system time to
initialize the table. Updating can occur under either circumstance.

To affect a default TIMESTAMP value that is not coordinated with the system time, one
would use the following in a table creation statement:

TIMESTAMP DEFAULT 0

Date and Time Values

[252]

If one wanted to coordinate the timestamp to the system time only at startup, set it to
default to the current time:

TIMESTAMP DEFAULT CURRENT_TIMESTAMP

This sets the timestamp at initialization.

If the table is created with the argument for TIMESTAMP as ON UPDATE CURRENT_
TIMESTAMP, the TIMESTAMP value will automatically be updated to the current
timestamp. One can set the default to 0 and still allow updates as appropriate with
the following clause:

TIMESTAMP DEFAULT 0 ON UPDATE CURRENT_TIMESTAMP

This sets an initial timestamp of 0, but requests updating to the current timestamp.

To set the timestamp to the system time at initialization and then update it, we
combine the two statements:

TIMESTAMP DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP

YEAR
As the name implies, the YEAR data type stores only year values. Whether the year is
treated as a two-digit or four-digit value depends on how the type is set.

Two-digit YEAR values
The two-digit YEAR value is set with the following syntax:

YEAR(2)

A two-digit YEAR type is obviously only valid for up to 99 years. So YEAR(2) is used
to specify years from 1970, the start of the aforementioned epoch, through 2069.

Four-digit YEAR values
Four-digit YEAR values are specified with the following:

YEAR(4)

These values naturally have a wider range than the two-digit form. Four-digit years
may range from 1901 through 2155.

Chapter 9

[253]

Valid input
Obviously, two-digit YEAR values require two-digit input. Four-digit YEAR values
will accept two-digit input, as well. However, the consequent value may not be what
is intended. For example, let's assume we create a dummy table called yeareg using
the following statement:

CREATE TABLE yeareg(ID INT NOT NULL AUTO_INCREMENT PRIMARY KEY, year
YEAR(4));

We can populate that table with four-digit values without a problem:

INSERT INTO yeareg(year) VALUES('1923');

Query OK, 1 row affected (0.00 sec)

But if we use only two digits, the result is quite different:

mysql> INSERT INTO yeareg(year) VALUES('23');

Query OK, 1 row affected (0.00 sec)

mysql> SELECT * FROM yeareg;

+----+------+

| ID | year |

+----+------+

| 1 | 1923 |

| 2 | 2023 |

+----+------+

2 rows in set (0.00 sec)

Two-digit values are assumed to belong in the 21st century. The only exceptions are
values from 70 through 99 and the value 00. These are rendered automatically as the
years between 1970 and 1999 and, in the case of the last, the year 2000.

As with the other data types discussed in this chapter, MySQL does not guess if it is
given invalid data. Data outside the above ranges will be zeroed out as 00 or 0000,
depending on which size of YEAR value is expected.

TIME
The TIME data type is used for one of three purposes. It can represent:

A time of day
An elapsed time
An interval of time

•

•

•

Date and Time Values

[254]

Because of its multiple applications, TIME has a slightly different format and set of
constraints that might appear intuitive.

Format
The TIME type accepts input in multiple formats, but outputs data in only one. The
output format for TIME is:

HH:MM:SS

For input, however, one can input hours, minutes, and seconds in several formats:

As a string in the form HHMMSS: So '234545' is valid.
As an integer in the same form HHMMSS: So a numeric value 123456 is
also valid.
As a string using colons for delimiters: This follows the output format
HH:MM:SS

TIME also accepts shorthand for extremely large or small quantities in terms of days
as well as fractions of a second. To specify a day, simply place the day value in front
of the regular time.

D HH:MM:SS

For large values, it converts the number of days into the respective number of hours
and adds it to the hour value. So:

1 23:59:59

is the same as:

47:49:49

and that is how MySQL records it in the database. Note, however, that using the
day value requires the use of the colon as a delimiter. Therefore, the following is
INVALID:

1235959

•

•

•

Chapter 9

[255]

Fractions of a second, on the other hand, are dropped. The value is always, in effect,
rounded down. Therefore, the following are both equal in the eyes of MySQL:

1 12:01:01.1
1 12:01.01.9

Either way, the value that is stored is:

36:01:01

Invalid values
Invalid TIME values are zeroed out to 00:00:00. While it shows that a transaction
has occurred, zero values cannot be distinguished from midnight.

Valid values for each of the columns are as follows:

Days: A whole number from 1 to 34
Hours: A whole number between -838 and 838
Minutes: A whole number less than or equal to 59
Seconds: A number less than or equal to 59
Fractions: Positive decimal value less than 1

For reasons of storage, the limits of MySQL's TIME type range from -838:59:59 to
838:59:59. Any value that does not make sense as a time within these constraints
will result in an erroneous value being stored. Precisely which value is stored will
depend on the error. Exceeding the limits of minutes and seconds results in a zeroed
value. Examples include:

5 23:01:61
20:61:23
18:75:75

However, if the hours and minutes are valid, but the number of hours represented
by the day and hour values exceeds 838, either negatively or positively, MySQL will
reduce that number to the respective terminus of either -838:59:59 or 838:59:59.

•

•

•

•

•

Date and Time Values

[256]

If you want to ensure that MySQL handles your TIME values securely and
outputs any errors, use MySQL's STRICT_ALL_TABLES mode. STRICT_
ALL_TABLES returns an error and aborts any operation in which a
problem with the data arises. Note, however, that this can result in the
partial completion of multi-line operations and so can cause trouble.
Using STRICT_ALL_TABLES in development is a good way of checking
your codebase. Just remember to switch it off in production.
An alternative to STRICT_ALL_TABLES is STRICT_TRANS_TABLES.
This continues to process the data, but outputs a warning when it has
massaged the data to fit the column.
To use either mode, start MySQL using the executable, which is
appropriate for your platform and equate one of the above modes to the
flag --sql-mode. For example, one would use mysqld as follows:
mysqld --sql-mode="STRICT_TRANS_TABLES"
One can also specify the mode in the MySQL configuration file by setting
the value sql-mode (my.cnf for Unix-like systems and my.ini for
Windows). For more on MySQL modes, see the MySQL manual at:
http://dev.mysql.com/doc/refman/5.5/en/server-sql-
mode.html

If TIME is used to reference a time of day, possibly to receive the value of a function
like CURRENT_TIME, the value must be within the 24 hour period.

Date and time types in Python
The date and time interfaces to MySQL for Python are very robust. As a
consequence, as long as the values you pass make sense within the above parameters
for formatting, neither MySQL nor Python will throw an error about aspects such as
the Python data type. For example, if we go back to the yeareg table, we can pass
integers and strings to it through Python without issue:

import MySQLdb
mydb = MySQLdb.connect('localhost', 'skipper', 'secret', 'datetime')
cursor = mydb.cursor()
x = 2012
statement = "INSERT INTO yeareg(year) VALUES('%s')" %(x)
results = cursor.execute(statement)
x = str(x)
statement = "INSERT INTO yeareg(year) VALUES('%s')" %(x)
results = cursor.execute(statement)

Chapter 9

[257]

In the first statement, we pass a string. In the second, an integer. Yet both statements
will be executed by MySQL without issue.

mysql> SELECT * FROM yeareg;

+----+------+

| ID | year |

+----+------+

| 1 | 1923 |

| 2 | 2023 |

| 3 | 2013 |

| 3 | 2013 |

+----+------+

4 rows in set (0.00 sec)

However, passing invalid values will result in an OperationalError being thrown.
Further, while this is possible, it is not advisable. Best practice holds that your
program should submit data in a format suited to its target type, so strings
should be formatted as strings and integers as integers.

Date and time functions
MySQL's time-related functions are used to manipulate date and time data types. As
such, they are very helpful tools for accessing data with optimum speed and minimal
overhead.

The MySQL list of date and time-related functions are legion. The full list is
contained in the table below (Source: MySQL 5.5 Reference Manual):

Name Description

ADDDATE() Add time values (intervals) to a date value

ADDTIME() Add time

CONVERT_TZ() Convert from one time zone to another

CURDATE() Return the current date
CURRENT_
DATE(),CURRENT_DATE Synonyms for CURDATE()
CURRENT_
TIME(),CURRENT_TIME Synonyms for CURTIME()
CURRENT_
TIMESTAMP(),CURRENT_
TIMESTAMP

Synonyms for NOW()

CURTIME() Return the current time

Date and Time Values

[258]

Name Description

DATE_ADD() Add time values (intervals) to a date value

DATE_FORMAT() Format date as specified

DATE_SUB() Subtract two dates

DATE() Extract the date part of a date or datetime expression

DATEDIFF() Subtract two dates

DAY() Synonym for DAYOFMONTH()

DAYNAME() Return the name of the weekday

DAYOFMONTH() Return the day of the month (0-31)

DAYOFWEEK() Return the weekday index of the argument

DAYOFYEAR() Return the day of the year (1-366)

EXTRACT Extract part of a date

FROM_DAYS() Convert a day number to a date

FROM_UNIXTIME() Format Unix timestamp as a date

GET_FORMAT() Return a date format string

HOUR() Extract the hour

LAST_DAY Return the last day of the month for the argument

LOCALTIME(), LOCALTIME Synonym for NOW()
LOCALTIMESTAMP,LOCALT
IMESTAMP() Synonym for NOW()

MAKEDATE() Create a date from the year and day of year

MAKETIME MAKETIME()

MICROSECOND() Return the microseconds from argument

MINUTE() Return the minute from the argument

MONTH() Return the month from the date passed

MONTHNAME() Return the name of the month

NOW() Return the current date and time

PERIOD_ADD() Add a period to a year-month

PERIOD_DIFF() Return the number of months between periods

QUARTER() Return the quarter from a date argument

SEC_TO_TIME() Converts seconds to HH:MM:SS format

SECOND() Return the second (0-59)

Chapter 9

[259]

Name Description

STR_TO_DATE() Convert a string to a date

SUBDATE() A synonym for DATE_SUB() when invoked with three
arguments

SUBTIME() Subtract times

SYSDATE() Return the time at which the function executes

TIME_FORMAT() Format as time

TIME_TO_SEC() Return the argument converted to seconds

TIME() Extract the time portion of the expression passed

TIMEDIFF() Subtract time

TIMESTAMP()
With a single argument, this function returns the date or
datetime expression; with two arguments, the sum of the
arguments

TIMESTAMPADD() Add an interval to a datetime expression

TIMESTAMPDIFF() Subtract an interval from a datetime expression

TO_DAYS() Return the date argument converted to days

TO_SECONDS() Return the date or datetime argument converted to
seconds since Year 0

UNIX_TIMESTAMP() Return a Unix timestamp

UTC_DATE() Return the current UTC date

UTC_TIME() Return the current UTC time

UTC_TIMESTAMP() Return the current UTC date and time

WEEK() Return the week number

WEEKDAY() Return the weekday index

WEEKOFYEAR() Return the calendar week of the date (0-53)

YEAR() Return the year

YEARWEEK() Return the year and week

Obviously, it is not feasible to keep all of these in mind without constant use. This
table helps to give a primer on each, but all are discussed in great detail in the
MySQL manual. For this chapter, we will look at the most frequently used date
and time-related functions.

Date and Time Values

[260]

For more on any of of the date and time functions, see the MySQL
manual: http://dev.mysql.com/doc/refman/5.5/en/date-and-
time-functions.html

NOW()
The NOW() function returns the current date and time from the system. Which
parts of the timestamp are used is determined by the data type of the column. For
example, assume three tables as follows:

dteg with a column dati of type DATETIME

dateeg with a column date of type DATE

yeareg with a column year of type YEAR(4)

timeeg with a column time of type TIME

We can use NOW() as a value in our INSERT statements. For each of the following
examples, the data like the respective values would be stored:

INSERT INTO dteg(dati) VALUES(NOW()); → 2010-01-14 11:33:51
INSERT INTO dateeg(date) VALUES(NOW()); → 2010-01-14
INSERT INTO yeareg(year) VALUES(NOW()); → 2010
INSERT INTO timeeg(time) VALUES(NOW()); → 11:33:51

CURDATE()
The current date is returned by CURDATE(). As the name implies, this function
returns the current date. If we assume the tables from the NOW() function (seen
previously), the following examples will store the relevant part of the current date in
the given column:

INSERT INTO dateeg(date) VALUES(CURDATE()); → 2010-01-14
INSERT INTO yeareg(year) VALUES(CURDATE()); → 2010

Depending on your MySQL configuration, you can use this function in statements
relative to TIME type values, but the stored value will be zeroed out to 00:00:00.

INSERT INTO timeeg(time) VALUES(CURDATE()); → 00:00:00

Chapter 9

[261]

CURTIME()
The function CURTIME() returns the current time in the format HH:MM:SS. Usage of it
is as follows:

INSERT INTO timeeg(time) VALUES(CURTIME()); → 11:55:23

Obviously, the date is not included in the returned value, making this function
unsuitable for use where DATE, DATETIME, or YEAR values are expected. If a
CURTIME() returned value should be inserted where one of these three are expected,
the results are predictable. The returned value is never in the appropriate format for
DATE or DATETIME types, therefore MySQL stores a zeroed value.

INSERT INTO dteg(dati) VALUES(CURTIME()); → 0000-00-00 00:00:00
INSERT INTO dateeg(date) VALUES(CURTIME()); → 0000-00-00
However, in the case of YEAR, a more insidious error arises.
INSERT INTO yeareg(year) VALUES(CURTIME()); → 2011

The column is defined as YEAR(4). But MySQL will accept two digits for the value
and will convert it to four digits. Therefore, when it receives for YEAR(4) a value
that does not make sense, it accepts what data it can. In this case, the hour value of
11:33:51 is read simply as 11 and converted to 2011.

DATE()
The function DATE() strips the date out of a time-related string. The string is
expected to be in the format of DATE or DATETIME, but need not be from columns of
either of these types. One can simply feed a string to DATE() and receive the answer
back as a table:

mysql> select date('2009-12-02 12:14');

+-----------------------+

| date('2009-12-02 12') |

+-----------------------+

| 2009-12-02 |

+-----------------------+

1 row in set (0.00 sec)

Date and Time Values

[262]

For DATE(), the only part that matters is the date aspect of the string. One can
include just about anything after the date, including text.

mysql> select date('2009-12-02 Wednesday');

+------------------------------+

| date('2009-12-02 Wednesday') |

+------------------------------+

| 2009-12-02 |

+------------------------------+

1 row in set, 1 warning (0.00 sec)

If there is a time or time-like datum after the date, it does not need to be
properly formatted.

mysql> select date('2009-12-02 11am');

+-------------------------+

| date('2009-12-02 11am') |

+-------------------------+

| 2009-12-02 |

+-------------------------+

1 row in set, 1 warning (0.00 sec)

The date, however, must come first in the string passed to DATE(). Otherwise,
MySQL returns NULL results.

DATE_SUB() and DATE_ADD()
The DATE_ADD() and DATE_SUB() functions are used to modify date values
according to specific intervals of time. DATE_ADD() adds an interval of time.
DATE_SUB() subtracts an interval of time. Their syntax is essentially the same:

DATE_ADD(date, INTERVAL amount unit)
DA TE_SUB(date, INTERVAL amount unit)

In each case, date is the value to be modified. The keyword INTERVAL is required to
introduce the amount and unit of time to be used.

Chapter 9

[263]

In practice, these functions can be used as:

mysql> SELECT DATE_ADD(now(), INTERVAL 20 minute);

+-------------------------------------+

| DATE_ADD(now(), INTERVAL 20 minute) |

+-------------------------------------+

| 2010-01-14 13:04:48 |

+-------------------------------------+

1 row in set (0.00 sec)

And it can also be used as:

mysql> SELECT DATE_SUB(now(), INTERVAL 20 minute);

+-------------------------------------+

| DATE_SUB(now(), INTERVAL 20 minute) |

+-------------------------------------+

| 2010-01-14 12:25:22 |

+-------------------------------------+

1 row in set (0.00 sec)

The format and type of the returned value depends on the argument passed to
the function. If the date is a DATETIME or TIMESTAMP value or it is a DATE and the
INTERVAL value using hours, minutes, or seconds, then the returned value will be a
DATETIME value. Otherwise, these functions return a string.

An alternative to DATE_SUB() is to increment the date value by a negative number.
So instead of the last example, we could have simply modified the first one
as follows:

mysql> SELECT DATE_ADD(now(), INTERVAL -20 minute);

+--------------------------------------+

| DATE_ADD(now(), INTERVAL -20 minute) |

+--------------------------------------+

| 2010-01-14 12:24:51 |

+--------------------------------------+

1 row in set (0.00 sec)

Date and Time Values

[264]

Just as with DATE(), we can substitute a DATE or DATETIME formatted string for
the date.

mysql> SELECT '2009-12-24' + INTERVAL 1 DAY;

+-------------------------------+

| '2009-12-24' + INTERVAL 1 DAY |

+-------------------------------+

| 2009-12-25 |

+-------------------------------+

1 row in set (0.00 sec)

Additionally, both support shorthand ways of affecting the same end. Instead of
using DATE_ADD() or DATE_SUB(), we can simply use the plus sign + or the minus
sign - respectively. The syntax in these cases is:

date + INTERVAL amount unit
date - INTERVAL amount unit

For example, to add 20 days to today, we use:

mysql> SELECT NOW() + INTERVAL 20 DAY;

+-------------------------+

| NOW() + INTERVAL 20 DAY |

+-------------------------+

| 2010-02-03 12:50:13 |

+-------------------------+

1 row in set (0.00 sec)

and

mysql> SELECT INTERVAL 20 DAY + '2009-12-24';

+--------------------------------+

| INTERVAL 20 DAY + '2009-12-24' |

+--------------------------------+

| 2010-01-13 |

+--------------------------------+

1 row in set (0.01 sec)

Chapter 9

[265]

Similarly, to subtract is as follows:

mysql> SELECT NOW() - INTERVAL 20 DAY;

+-------------------------+

| NOW() - INTERVAL 20 DAY |

+-------------------------+

| 2009-12-25 12:48:47 |

+-------------------------+

1 row in set (0.00 sec)

However, basic logic applies to the syntax here. When adding, we can juggle the two
addends without impacting on the sum. With subtraction, however, the INTERVAL
clause must come second because it makes no sense to subtract a date from an
interval of time.

Both functions accept several different units of time. However, unlike with the TIME
data type, mentioned previously, all amounts must relate precisely to the unit used.
One cannot, for example, pass day values with an hour unit. A complete listing of the
options and the expected quantity type for each is as follows:

For a unit of type A valid Amount must be in
MICROSECOND Microseconds
SECOND Seconds
MINUTE Minutes
HOUR Hours
DAY Days
WEEK Weeks
MONTH Months
QUARTER Quarters
YEAR Years
SECOND_
MICROSECOND

Seconds and microseconds with format 'seconds.
microseconds'

MINUTE_
MICROSECOND

Minutes, seconds, and microseconds with format 'MINUTES:
SECONDS.MICROSECONDS'

MINUTE_SECOND Minutes and seconds with format 'MINUTES:SECONDS'

HOUR_MICROSECOND The variables of time, including microseconds, with format
'HOURS:MINUTES:SECONDS.MICROSECONDS'

HOUR_SECOND The variable of time with format 'HOURS:MINUTES:
SECONDS'

HOUR_MINUTE The basic time with format 'HOURS:MINUTES'

Date and Time Values

[266]

For a unit of type A valid Amount must be in

DAY_MICROSECOND
The basic variables of time as well as number of days and
microseconds with format 'DAYS HOURS:MINUTES:
SECONDS.MICROSECONDS'

DAY_SECOND The same as day_microsecond excluding microseconds with
format 'DAYS HOURS:MINUTES:SECONDS'

DAY_MINUTE Days, hours, and minutes with format 'DAYS HOURS:
MINUTES'

DAY_HOUR Days and hours with format 'DAYS HOURS'
YEAR_MONTH Years and months with format 'YEARS-MONTHS'

DATEDIFF()
The DATEDIFF() function is used to calculate the number of days between dates. It
requires two arguments, both in the DATE format:

DATEDIFF(first_date, second_date);

In practice, it can calculate just about any number of days.

mysql> SELECT DATEDIFF('2009-12-25', '2010-01-14');

+--------------------------------------+

| DATEDIFF('2009-12-25', '2010-01-14') |

+--------------------------------------+

| -20 |

+--------------------------------------+

1 row in set (0.00 sec)

It also does not require explicit dates, but can accept output from other time-related
functions.

mysql> SELECT DATEDIFF('2001-09-11', DATE(NOW()));

+-------------------------------------+

| DATEDIFF('2001-09-11', NOW()) |

+-------------------------------------+

| -3047 |

+-------------------------------------+

1 row in set (0.00 sec)

Chapter 9

[267]

Any results passed to DATEDIFF() must be as DATE formatted values. If it is
unclear whether a value will be in the appropriate format, you can pass it
through DATE() first.

mysql> SELECT DATEDIFF('2001-09-11', DATE(NOW()));

+-------------------------------------+

| DATEDIFF('2001-09-11', DATE(NOW())) |

+-------------------------------------+

| -3047 |

+-------------------------------------+

1 row in set (0.00 sec)

However, bad data will not be made good by DATE():

mysql> SELECT DATEDIFF('2001-09-11', DATE(CURTIME()));

+---+

| DATEDIFF('2001-09-11', DATE(CURTIME())) |

+---+

| NULL |

+---+

1 row in set, 1 warning (0.00 sec)

DATE_FORMAT()
The DATE_FORMAT() function is very helpful for creating human-friendly date and
time strings automatically. It requires two arguments—a date and the formatting
structure for the output. For example, the expression %W denotes the day of the week
for DATE_FORMAT(). We can therefore learn what day of the week a particular date is
by using:

mysql> SELECT DATE_FORMAT('2001-09-11', '%W');

+---------------------------------+

| DATE_FORMAT('2001-09-11', '%W') |

+---------------------------------+

| Tuesday |

+---------------------------------+

1 row in set (0.07 sec)

Date and Time Values

[268]

The supported formats and their abbreviations are listed below. Note that they bear
many similarities to the Unix command date, but there are many differences.

Specifier Description

%a Abbreviated weekday name (Sun, Mon,and so on)

%b Abbreviated month name (Jan, Feb, and so on)

%c Numeric month value without a leading 0 in single-digit values (0, 1, 2, and
so on)

%D Day of the month with English suffix (0th, 1st, 2nd, 3rd, …)

%d Numeric day of the month with a leading 0 for single-digit values (00-31)

%e Numeric day of the month with no leading 0 for single-digit values (0-31)

%f Microseconds (000000..999999)

%H Hour based on a 24-hour day and with a leading 0 (00 through 23)

%h Hour based on two 12-hour segments with a leading 0 (01, 02, 03, and so on.)

%I Two-digit hour based on two 12-hour segments (01, 02, 03, and so on)

%i Numeric value of minutes with leading 0 (00, 01, 02, and so on)

%j Three-digit day of the year (001, 002, through to 366)

%k Hour based on 24-hour day and with no leading 0 (0, 1, 2, and so on)

%l Hour based on two 12-hour segments and with no leading 0 (1, 2, and so on)

%M Full name of the m (January, February, and so on)

%m Numeric value of the month with leading 0 (00, 01, 02, and so on)

%p AM or PM

%r Time based on two 12-hour segments (hh:mm:ss followed by AM or PM)

%S Seconds with leading 0 (00, 01, 02, and so on)

%s Seconds with leading 0 (00, 01, 02, and so on)

%T Time based on 24-hour clock (hh:mm:ss)

%U Week (00 to 53), where Sunday is the first day of the week

%u Week (00 to 53), where Monday is the first day of the week

%V Week (01 to 53), where Sunday is the first day of the week; used with %X

%v Week (01 to 53), where Monday is the first day of the week; used with %x

%W Full name of day (Sunday through Saturday)

%w Numeric value of the day of the week (0 [Sunday] through 6 [Saturday])

%X Numeric, four-digit value of year for the week where Sunday is the first day
of the week; used with %V

Chapter 9

[269]

Specifier Description

%x Numeric, four-digit value of year for the week where Monday is the first day
of the week; used with %v

%Y Numeric, four-digit year

%y Numeric, two-digit year

%% The '%' character

%x x for any "x" not listed above

These sundry formatting specifiers can then be combined for customized date
formats. For example, a more human-friendly format of the aforementioned BBC
report on the day the Berlin Wall fell (November 10, 1989 at 9 o'clock in the evening)
might be formatted as follows:

mysql> SELECT DATE_FORMAT('1989-10-11 21:37:09:04', '%W %d %M %Y at %h:%m
%p and %s seconds');

+--
---------+

| DATE_FORMAT('1989-10-11 21:37:09:04', '%W %d %M %Y at %h:%m %p and %s
seconds') |

+--
---------+

| Wednesday 11 October 1989 at 09:10 PM and 09 seconds
|

+--
---------+

1 row in set, 1 warning (0.00 sec)

EXTRACT()
The EXTRACT() function returns a designated part from a date string. It requires only
the unit needed and the date from which to draw the data.

mysql> SELECT EXTRACT(SECOND FROM '1989-10-11 21:00:09');

+--+

| EXTRACT(SECOND FROM '1989-10-11 21:00:09') |

+--+

| 9 |

+--+

1 row in set (0.00 sec)

It works with the same units of time as DATE_ADD() and DATE_SUB().

Date and Time Values

[270]

TIME()
Like DATE(), the TIME() function is used to extract the time (as opposed to
date) value from a DATE or DATETIME string. Where DATE() expects the relevant
information to be first in the string, TIME() looks to the next set of data in the string.
It accepts one argument—the string to be evaluated.

mysql> SELECT TIME('1989-10-11 21:00:09');

+-----------------------------+

| TIME('1989-10-11 21:00:09') |

+-----------------------------+

| 21:00:09 |

+-----------------------------+

1 row in set (0.00 sec)

It is further worth noting that the format of the time value is expected to be
HH:MM:SS. If more information follows the time, even without a space delimiter,
it is ignored.

mysql> SELECT TIME('1989-10-11 21:00:09abcdef');

+-----------------------------------+

| TIME('1989-10-11 21:00:09abcdef') |

+-----------------------------------+

| 21:00:09 |

+-----------------------------------+

1 row in set, 1 warning (0.00 sec)

Project: Logging user activity
Between July 2005 and January 2007, a major international clothing retailer suffered a
data breach that amounted to the theft of 45.6 million credit card numbers. TJX is the
parent company of stores such as TJMaxx, Bob's Stores, Marshalls, HomeGoods, and
AJ Wright stores in the United States, as well as Winners and HomeSense stores in
Canada, and TKMaxx stores across Europe. The credit card information from most,
if not all, of these stores was electronically burgled over an undetermined amount
of time. After the breach was discovered, TJX spokeswoman Sherry Lang went on
record as saying: "There is a lot of information we don't know, and may never be able to know,
which is why this investigation has been so laborious" (Sources: AP, CNET).

Chapter 9

[271]

Computer forensic examinations rely extensively on computer logs. Without
sufficient logging, as seen in the case of TJX, one cannot tell where things went
wrong if catastrophe strikes. While MySQL keeps its own logs, the fact that these are
known makes them a target for cleansing or deletion by anyone who would break
into the system. In security terms, homogeneity makes breaking into a system much
easier. Therefore, it is worth it to make one's system sufficiently different from out-
of-the-box solutions, in order to render it difficult to break into.

Note that while heterogeneity goes a long way to assuring the security
of a system, a balance must be struck. One must be careful not to
make the layout so complex or wildly unique such that it is difficult to
administer either by the system administrator or by the other support
staff, including new-hires.

Aside from such extreme circumstances, logging is also very helpful for debugging
and for learning about your users' needs. Studying web logs indicates the browsing
habits of users from entry to exit. Therefore, database logging can ensure that you
know which data is being accessed most frequently and in what way.

By default, MySQL keeps its logging feature switched off. To turn it on, edit
the my.cnf file (or my.ini on Windows). Under the section entitled Logging and
Replication, you will find a number of logs that can be switched on or off at runtime.
By default, these logs record a bevy of information that can be quite useful.
Particularly detailed is the general query log. However, as the comment in the
MySQL 5 default configuration reads:

Be aware that this log type is a performance killer.

Information on each log type can be found in the MySQL manual at:
http://dev.mysql.com/doc/refman/5.5/en/server-logs.html

Suffice it to say, however, that MySQL logs can be helpful in their detail. However,
that detail can be costly in server performance. For this reason, many MySQL
installations do not use the general log, but only the error log. This records
debugging information for the performance of MySQL—when it was started, when
it stopped, and what, if any, errors caused the server to die. It is not oriented toward
security or usage patterns per se.

Date and Time Values

[272]

It is therefore helpful to maintain one's own customized log. In this project, we
will revise the project from the previous chapter to introduce such logging. The
emendations will follow this specification:

Log all MySQL activity sent through MySQLdb except its own
The log will include the username and statement submitted for processing
If the expected database and table are not available, they will be created
All logging will occur before any MySQL statement is submitted
If the logging is unsuccessful, the MySQL statement will not be processed
The log infrastructure should be created by the program, not by a MySQL
script or command-line

The log framework
For reasons of simplicity, the log for this project will be another MySQL database. In
real-world deployment, you would want to store your log files off the local server
for security reasons. Using the flexible connect() method of MySQL for Python, one
can affect such a change of host with relative ease.

The database that we use is called logdb. Obviously, you can name yours as you like,
as long as you are consistent in using that name.

Within logdb, the table for logging activity will be called entry_log. Its architecture
is as follows:

mysql> describe entry_log;

+-------------+--------------+------+-----+-------------------+----------
------+

| Field | Type | Null | Key | Default | Extra
|

+-------------+--------------+------+-----+-------------------+----------
------+

| transaction | int(11) | NO | PRI | NULL | auto_
increment |

| username | varchar(30) | NO | | NULL |
|

| query | varchar(256) | NO | | NULL |
|

| qtime | timestamp | NO | | CURRENT_TIMESTAMP |
|

+-------------+--------------+------+-----+-------------------+----------
------+

•

•

•

•

•

•

Chapter 9

[273]

As the table shows, every transaction has its own identifier. In addition to the
username and query, every entry will also be given a timestamp of when it
was performed.

To affect this table, we will use the following CREATE statement as a basis:

CREATE TABLE entry_log(transaction INT NOT NULL AUTO_INCREMENT PRIMARY
KEY, username VARCHAR(30) NOT NULL, query VARCHAR(256) NOT NULL, qtime
TIMESTAMP);

However, we will not do this from within MySQL. The specification reads that we
should not have to set up tables and databases in MySQL itself. Rather we will let
Python and MySQLdb do the dirty work for us.

The logger() function
To affect the new logging functionality, we will create a separate function called
logger(). It will accept as an argument the statement to be passed to MySQL and
will also use the username submitted with the program.

For the sake of security, we will not allow any of the login details to be changed.
They will be hardcoded into the connect() dialogue. So the first lines of the function
will look like this:

def logger(statement):
 """Logs each transaction in a MySQL database."""
 mydb = MySQLdb.connect('localhost', 'loguser', 'secretphrase')
 cursor = mydb.cursor()

Note that we do not indicate the database we will use. This is because the login could
fail if we specify a database that does not exist. Therefore, we need to ensure that the
database exists before we try to use it.

Creating the database
Having created the cursor, we now need to ensure the database is available. For this,
we will rely on the IF NOT EXISTS clause:

 createdb = "CREATE DATABASE IF NOT EXISTS logdb"

As discussed in earlier chapters, this ensures that the command will not fail. For
reasons of debugging, we then pass the results of cursor.execute() to a variable.

 resdb = cursor.execute(createdb)

Date and Time Values

[274]

This ensures that we can learn the results of this execution if we need to. If there is
any question of whether the database will be created, we can test the value of resdb
and respond accordingly.

Using the database
Before we can issue any statements pertaining to the database or table, we need to
tell MySQL that we will use the logdb database.

 usedb = "USE logdb"
 resuse = cursor.execute(usedb)

Again, by storing the results of each execute() call, we are able to test the success of
the process.

Creating the table
With the database created, we next need to ensure that the table is available. We will
use the preceding statement, but again include the IF NOT EXISTS clause:

 createtb = "CREATE TABLE IF NOT EXISTS entry_log(transaction INT
UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY, username VARCHAR(30) NOT
NULL, query VARCHAR(256) NOT NULL, qtime TIMESTAMP)"
 restb = cursor.execute(createtb)

The result is a flexible way of ensuring that the database logdb and the table
entry_log are available to us.

As this function will log all activity, we can test the values one-by-one if something
is awry. For example, if no queries are being processed and no log entries made, we
are not guaranteed that Python or MySQL will throw an error. However, we can test
each of the resdb, resuse, and restb values and print out messages upon success.
That will allow us to see how far the program goes before exiting, thus indicating the
point of error.

Forming the INSERT statement
Having the database infrastructure in place, we can then form and execute an
INSERT statement to log the activity. As previously indicated, logger() will take the
statement value and submit it. We will also use the global value of the username. In
a CGI implementation, this latter value may be user. In PHP, it will be referenced as
opt.user as part of the options parsed by optparse.

Chapter 9

[275]

An important issue when passing a MySQL statement as part of another MySQL
statement is the issue of quotation marks—whether single or double. Therefore, we
need to message the value of statement before we submit it as part of the INSERT
statement for logdb.

 statement = statement.replace("'", "\\'")
 statement = statement.replace('"', '\\"')
 statement = "'" + statement + "'"
 user = "'" + opt.user + "'"

Here we use Python's ability to handle arguments in either single or double quotes to
replace—first the single quotes and then the double in the value statement. In order
to ensure the quotes are properly escaped in the ensuing MySQL statement, we must
escape the escape character (\) by reduplicating it.

Then we sandwich each of the statement and opt.user (or user) values between
quotes and assign them to statement and user, respectively. This is in preparation
for the VALUES field in the INSERT statement.

Finally, we form the statement to be executed:

 entry = "INSERT INTO entry_log(username, query) VALUES(%s, %s)"
%(user, statement)

And later we pass it to execute()

 reslog = cursor.execute(entry)

As we will see in the next section, the results saved to reslog are important for the
successful deployment of the log functionality. For now, however, we will simply
return that value as the end product of the function.

 return reslog

Ensure logging occurs
As mentioned in the specification for this project, the log must record all activity
passed to MySQL. The natural implication of this requirement is to modify the
execute() function to call logger() and not to process any statement until
logger() records it successfully.

First we pass the statement received by execute() to logger() as the first thing to
be done in execute():

def execute(statement, cursor, type):
 """Attempts execution of the statement."""
 reslog = logger(statement)

Date and Time Values

[276]

Next, we test the value of reslog. Recall that every successful INSERT statement
returns a value of 1 if successful. So we can affect the test with a switch
called success.

 if reslog == 1:
 success = 1
 else:
 success = 0

This if...else structure determines whether to turn success on or off. As usual,
True and False can be used in lieu of 1 and 0, respectively.

For the effects of the switch to be implemented, we then need to change the while
statement on which execute() operates. Currently, it reads as:

 while True:

We then need to change it to read:

 while success == 1:

Alternatively, we could just use one of the following conditionals:

while success

Or, we can use:

while reslog > 0

From this point, execute() will only process statements after logger() has
recorded them. As we hardcoded everything in logger() that we could, this
renders it much more secure than a dynamic log function.

Room to grow
While this program works, there are more than a few ways to improve it. Obviously,
before you use it in the wild, you should change the host used by connect() in
logger(). Logs should never be in the same place as the activity they record.

Other points for improvement that you might consider trying out are:

Instead of writing to a database, write the log to a file and post it to a
remote machine
Record the user's IP address by searching the web server's logs
Keep separate logs for each user
Record whether a query successfully returned any hits or was erroneous

•

•

•

•

Chapter 9

[277]

Record unsuccessful logins, sending an email to the database administrator if
too many are received in the name of the same user within a certain amount
of time

A lot of information will be logged by the likes of the web server, MySQL itself,
and other logging applications in the stack. However, this program allows you to
customize what information you log, combining it with other information that the
others may not record.

Summary
In this chapter, we have covered how to log user activity with MySQL for Python.
We have seen:

The several data types for date and time that MySQL supports
When different data types should be used and with what format and range
The date and time functions that can be accessed through MySQL for Python
Frequently used functions for handling matters of date and time

In the next chapter, we will look at using aggregate functions in MySQL for Python.

•

•

•

•

•

Aggregate Functions
and Clauses

It is not overstating things to say that MySQL queries can return a significant
amount of data. As we have seen with the SELECT statement, using clauses such as
WHERE reduces the number of hits that MySQL returns. Similarly, one can reduce
the amount of data returned by specifying the columns to be returned. Such
features save us from having to write our own algorithms to weed through the
data. However, even after narrowing the data, we sometimes still need to perform
calculations with the data for purposes such as tallying a sum, averaging out results,
or finding the range of a dataset. MySQL saves us this trouble as well, by providing
functions that return the answers to our questions without bothering us with the
data. These summative operations are called aggregate functions.

In this chapter, we will see how:

MySQL saves us time and effort by pre-processing data
To perform several calculations using MySQL's optimized algorithms
To group and order returned data by column

The project for this chapter will once again build on the project from the earlier
chapters. After becoming more conversant with MySQL's aggregate functions and
learning how to use them in Python, we will add some aggregate functionality to the
web-based administration program.

•

•

•

Aggregate Functions and Clauses

[280]

Calculations in MySQL
Letting the database server take the burden of calculations can reduce latency across
a network. Most web servers, for example, not only serve up web pages, but also
perform the processing for any scripts used to form those pages. If the script needs
to perform calculations of large amounts of data, the processing time of the server
will increase accordingly. Similar bottlenecks can occur on LANs and even desktop
systems that are normally optimized for user-based interactions, not heavy
data processing.

Computer clusters are another matter altogether. Depending on the size
of the cluster, one can lay much heavier loads on individual machines
and the cluster will be able to bear the burden. While using a cluster for
processing data takes the load off the database server, this can still result
in latency as one part of the processing machinery (the database) may
operate much slower than the rest of the parts.

MySQL provides several optimized ways of performing calculations on data. Their
functionality spans from statistics to bitwise operations, but the most commonly
used functions are:

COUNT()

SUM()

MAX()

MIN()

AVG()

A listing of the less frequently used numeric functions can be found
at http://dev.mysql.com/doc/refman/5.5/en/group-by-
functions.html

Each of these functions is called by inserting the function's name and argument
immediately after SELECT. The function call stands in lieu of the column names to
be returned.

In the subsequent sections, we will be using the film table of the sakila database.

•

•

•

•

•

Chapter 10

[281]

COUNT()
The COUNT() function returns the number of records affected. It does not return the
data itself. Its basic syntax is:

SELECT COUNT(<column name>) FROM <table name>;

In practice, it looks like this:

SELECT COUNT(title) FROM film;

This query returns the following results:

+--------------+

| COUNT(title) |

+--------------+

| 1000 |

+--------------+

In contrast, consider a table such as follows:

+----+-------------------+------+

| ID | activity | year |

+----+-------------------+------+

| 1 | NULL | 2010 |

| 2 | learn piano | 2009 |

| 3 | climb Kilimanjaro | 2008 |

| 4 | learn Python | 2005 |

| 5 | tour outerspace | NULL |

+----+-------------------+------+

If we run a similar query against these five records, we get different results:

SELECT COUNT(activity) FROM diarytb;

The preceding statement returns the following results:

+-----------------+

| COUNT(activity) |

+-----------------+

| 4 |

+-----------------+

1 row in set (0.00 sec)

Aggregate Functions and Clauses

[282]

The COUNT() function returns a count of only non-NULL values by default. Similar
results would therefore be returned for the following:

SELECT COUNT(year) FROM diarytb;

To return both non-NULL and NULL values, we must use a universal quantifier:

SELECT COUNT(*) FROM diarytb;

+----------+

| COUNT(*) |

+----------+

| 5 |

+----------+

In the case of the film table from sakila, no record was NULL. Therefore, the number
of returned records was the same as the total number of records in the table.

As you may notice, COUNT() does not care if the data is alphabetic
or numeric, it merely counts affected records. Of all of the functions
mentioned, COUNT(), MAX(), and MIN() are the only ones that can
handle string data.

SUM()
As the name suggests, SUM() returns the total of a series of numeric values. The basic
syntax is as follows:

SELECT SUM(<column name>) FROM <table name>;

SUM() only works on numeric values. If one passes string values to it, MySQL will
throw an error.

Using sakila again, we can ascertain the length of all films in the table with the
following query:

SELECT SUM(length) FROM film;

Chapter 10

[283]

The result is the cumulative length in whatever unit is presumed for the column, in
this case, minutes:

+-------------+

| SUM(length) |

+-------------+

| 115272 |

+-------------+

MAX()
The MAX() function takes a column as its argument and returns the largest value of
the query results. The basic syntax of MAX() is as follows:

SELECT MAX(<column name>) FROM <table name>;

In practice, it looks like this:

SELECT MAX(length) FROM film;

Which returns the following results from sakila:

+-------------+

| MAX(length) |

+-------------+

| 185 |

+-------------+

Obviously, MAX() returns the highest number for numeric values. For string values,
however, it returns the highest index value of a set of strings.

mysql> SELECT MAX(title) FROM film;

+------------+

| MAX(title) |

+------------+

| ZORRO ARK |

+------------+

1 row in set (0.00 sec)

For information on how MySQL indexes strings, see the MySQL manual:
http://dev.mysql.com/doc/refman/5.5/en/mysql-indexes.
html

Aggregate Functions and Clauses

[284]

If no records are affected, MAX() returns NULL.

mysql> SELECT MAX(title) FROM film WHERE title='CARMAGEDDON';

+------------+

| MAX(title) |

+------------+

| NULL |

+------------+

MIN()
The MIN() function is the obvious complement to MAX() and performs similarly to
it. As with MAX(), MIN() follows the SELECT keyword and takes a column name as
an argument:

SELECT MIN(<column name>) FROM <table name>;

In sakila, we can get the minimum running time as follows:

mysql> SELECT MIN(length) FROM film;

+-------------+

| MIN(length) |

+-------------+

| 46 |

+-------------+

As with MAX(), MIN() also accepts strings and returns the string with the lowest
index value:

mysql> SELECT MIN(title) FROM film;

+------------------+

| MIN(title) |

+------------------+

| ACADEMY DINOSAUR |

+------------------+

AVG()
The AVG() function returns the mean of a numeric range. It follows the same format
as the other aggregate functions in its syntax:

SELECT AVG(<column name>) FROM <table name>;

Chapter 10

[285]

The results of AVG() are calculated by dividing the sum of the resulting numeric
series by the number of records affected.

mysql> SELECT AVG(length) FROM film;

+-------------+

| AVG(length) |

+-------------+

| 115.2720 |

+-------------+

The different kinds of average
It is important to note what kind of average is meant by MySQL's AVG() function.
The English word 'average' can mean any of three things: mean, median, or mode.
Only mean is implied by MySQL's AVG().

Mean
Mean is calculated by dividing the sum of a numeric series by the number of items in
that series. For the film table of sakila, this is 115272 ÷ 1000, or 115.2720.

Median
Median is the middle item of a series (for example, the sixth item of a series of eleven
items). If the number of items is odd, the middle item is the median. If the number
of items is even, the median is the average of the two numbers in the middle of the
series. A simple example of how to determine the median of an odd number of items
is the following query:

SELECT <column> FROM <table> ORDER BY <column> DESC LIMIT <half the
total number of items>, 1;

To determine the median of an even number of items we limit the results by two:

SELECT <column> FROM <table> ORDER BY <column> DESC LIMIT <half the
total number of items>, 2;

and then take the mean of the two results.

Aggregate Functions and Clauses

[286]

In the case of the film table of sakila, this query will return two instances of
the same value. Instead, one must broaden the range until a different number is
returned. Then one takes the mean of the two unique values.

mysql> select length from film order by length limit 500, 5;

+--------+

| length |

+--------+

| 114 |

| 114 |

| 114 |

| 114 |

| 115 |

+--------+

The median is then (114 + 115) ÷ 2, or 114.5.

Mode
Mode is the item that occurs most frequently in a series, of which there may be none
or more than one. If all values in the series are unique, there is no mode. If more
than one value has the highest rate of occurrence, there is more than one mode. As a
result, modes are tricky to ascertain through MySQL itself. However, the following
will work in many circumstances:

SELECT COUNT(value) AS mode FROM table GROUP BY value ORDER BY mode
DESC LIMIT 1;

If no results are to be returned, AVG() returns NULL.

SELECT AVG(release_year) FROM film WHERE title='The Osterman Weekend';

+-------------------+

| AVG(release_year) |

+-------------------+

| NULL |

+-------------------+

Chapter 10

[287]

Trimming results
MySQL allows for two different ways of trimming results when using aggregate
functions. One is a keyword that removes redundant data. The other is a function
that pools the data into a single string value.

DISTINCT
The purpose of DISTINCT is to ensure that all results are unique. The examples above
do not discriminate between duplicate values. Each value is treated as a separate
record without quantitative comparison to the others, thus allowing for redundancy
in the results.

This redundancy works well when comprehensiveness is required but can otherwise
skew the results of a query. For example, if we want to know how many unique
ratings are used in the film table of sakila, we would not want to use this query:

SELECT COUNT(rating) FROM film;

The results show every record that has a value for the rating column.

+---------------+

| COUNT(rating) |

+---------------+

| 1000 |

+---------------+

Instead of retrieving the actual values and process 1000 records in our program, we
can pass the burden onto the MySQL server by using the DISTINCT keyword:

SELECT COUNT(DISTINCT rating) FROM film;

This results in a much smaller return:

+------------------------+

| COUNT(DISTINCT rating) |

+------------------------+

| 5 |

+------------------------+

Aggregate Functions and Clauses

[288]

If we want to return the ratings themselves, we can use DISTINCT without the
COUNT() function:

SELECT DISTINCT rating FROM film;

The results will be as follows:

+--------+

| rating |

+--------+

| PG |

| G |

| NC-17 |

| PG-13 |

| R |

+--------+

By default, the results are returned in the order they appear in the table. To sort them
otherwise, use the ORDER BY function that is detailed later in this chapter.

Of the functions discussed earlier in this chapter, DISTINCT can be used with
the following:

COUNT()

MAX()

MIN()

AVG()

While the DISTINCT keyword can be used with MAX() and MIN(), the benefits are
negligible. The MAX() function finds the highest value of a dataset and MIN() the
lowest. As DISTINCT simply weeds out the duplicates, there is no significant benefit
to be had in using it. The net results are the same.

When using DISTINCT with AVG(), however, the results can be dramatically affected.
For example, the raw average (that is, mean) length of the records in film is returned
as follows:

mysql> SELECT AVG(length) FROM film;

+-------------+

| AVG(length) |

+-------------+

| 115.2720 |

+-------------+

•

•

•

•

Chapter 10

[289]

However, if we sort out the duplicate lengths, we get a different value.

mysql> SELECT AVG(DISTINCT length) FROM film;

+----------------------+

| AVG(DISTINCT length) |

+----------------------+

| 115.5000 |

+----------------------+

Consequently, it is important to know which value you are seeking and also to form
the query accordingly.

GROUP_CONCAT()
The GROUP_CONCAT() function collates all of the results into a single string value and
returns it. Its basic syntax is:

SELECT GROUP_CONCAT(<column name>) FROM <table name>;

In practice, it looks like this:

SELECT GROUP_CONCAT(length) FROM film;

The results of this query will be a lot of MySQL formatting that sandwiches a series
of values:

| 86,48,50,117,130,169,62,54,114,63,126,136,150,94,46,180,82,57,113,
79,129,85,92,181,74,86,179,91,168,82,92,119,153,62,147,127,121,68, 99,
148,137,170,170,113,83,108,153,118,162,182,75,173,87,113,65,129,90,122
,160,89,175,106,73,151,100,53,77,122,85,142,100,93,150,162,163,103,61,
85,114,148,103,71,50,102,63,121,76,179,63,63,98,72,121,176,123,169,56,
73,136,161,73,60,133,119,125,61,63,67,89,53,52,120,75,61,167,70,135,85
,176,92,151,114,85,163,61,179,112,183,179,110,152,114,117,51,70,146,66
,71,114,87,185,122,142,61,124,107,101,132,150,101,143,90,165,81,150,16
4,143,124,58,65,70,95,139,55,70,149,109,67,76, 120,59,112,65,180,122,8
7,172,115,173,184,166,185,112,92,146,64,57,136,139,172,143,50,153,104,
112,69,112,184,56,133,176,161,84,106,58,144,121,89,99,130,165,185,104,
59,57,113,120,122,51,106,100,64,76,81, 76,56,88,143,87,107,63,147,141,
94,68,100,47,57,122,120,125,68,49, 139,177,154,47,177,176,170,133,135,
61,159,175,178,110,96,116,132, 171,119,154,101,168,141,140,96,98,85,14
8,153,107,67,85,115,126,155,152,177,143,92,85,77,51,1 |

When interacting with MySQL from Python, this can be very helpful for getting all of
the results in one go. If you parse the results, it is important to note that MySQL does
not insert spaces into the results. Rather, each comma follows or precedes each
value immediately.

Aggregate Functions and Clauses

[290]

Specifying the delimiter
If commas are not your delimiter of choice, GROUP_CONCAT() allows you to specify
the delimiter by using the SEPARATOR keyword followed by the delimiter in quotes.

mysql> SELECT GROUP_CONCAT(length SEPARATOR ':') FROM film;

This command returns the same values separated by colons instead of commas.

It is important to note that the delimiter only goes between values, so we
cannot use SEPARATOR to format the results for printing. No delimiter
would go before the first value.

The GROUP_CONCAT() function further allows multi-character delimiters.
For example:

mysql> SELECT GROUP_CONCAT(length SEPARATOR ' and ') FROM film;

The command returns the following:

| 86 and 48 and 50 and 117 and 130 and 169 and 62 and 54 and 114 and
63 and 126 and 136 and 150 and 94 and 46 and 180 and 82 and 57 and 113
and 79 and 129 and 85 and 92 and 181 and 74 and 86 and 179 and 91 and
168 and 82 and 92 and 119 and 153 and 62 and 147 and 127 and 121 and
68 and 99 and 148 and 137 and 170 and 170 and 113 and 83 and 108 and
153 and 118 and 162 and 182 and 75 and 173 and 87 and 113 and 65 and
129 and 90 and 122 and 160 and 89 and 175 and 106 and 73 and 151 and
100 and 53 and 77 and 122 and 85 and 142 and 100 and 93 and 150 and
162 and 163 and 103 and 61 and 85 and 114 and 148 and 103 and 71 and
50 and 102 and 63 and 121 and 76 and 179 and 63 and 63 and 98 and 72
and 121 and 176 and 123 and 169 and 56 and 73 and 136 and 161 and 73
and 60 and 133 and 119 and 125 and 61 and 63 and 67 and 89 and 53 and
52 and 120 and 75 and 61 and 167 and 70 and 135 and 85 and 176 and 92
and 151 and 114 and 85 and 163 and 61 and 179 and 112 and 183 and 179
and 110 and 152 and 114 and 117 and 51 and 70 and 146 a |

Oops! MySQL has cut off our results in midstream. By default, GROUP_CONCAT()
returns a maximum length of 1024 characters. When the results hit that limit,
MySQL truncates the value.

Customizing the maximum length
When dealing with large amounts of results, a limit of 1024 can be very frustrating.
One way around this is to set the maximum length of GROUP_CONCAT() to a higher
value for your MySQL session. We do this by passing the following code inside of a
MySQL shell:

SET SESSION group_concat_max_len = 10240;

Chapter 10

[291]

Now, we can pass the same query as before and get the results in their entirety. Any
value can be passed here, but this sets the length to ten times the default. Whatever
value we set, the amount of data transported is still bound by the local value for
max_allowed_packet, which defaults to 1 GB. On MySQL versions prior to 5.084,
however, we can set that variable, too, with this command:

SET SESSION max_allowed_packet = 10000;

As of MySQL 5.0.84, max_allowed_packet is available on a read-only basis; changes
must therefore be affected via a configuration file (or via a command-line option,
if available).

For more on MySQL system variables, see: http://dev.mysql.com/
doc/refman/5.0/en/server-system-variables.html

If you do not know which version of MySQL you are using or are unsure of the
relevant configuration, the following command will show whether your change has
taken effect:

SHOW VARIABLES LIKE 'max_allowed_packet';

If you are uncertain what a system variable is called, you can show all of them:

SHOW VARIABLES;

To differentiate between what variables pertain to the current session
and, which pertain to the entire database environment, use the
keywords SESSION and GLOBAL, respectively:
SHOW SESSION VARIABLES;

SHOW GLOBAL VARIABLES;

Using GROUP_CONCAT() with DISTINCT
The GROUP_CONCAT() function only concatenates results, it does not sort them. As a
result, we can wind up with a lot more data than we need. To refine the data further,
we can use DISTINCT. Compare the results of these two queries:

mysql> SELECT GROUP_CONCAT(length) FROM film;

Aggregate Functions and Clauses

[292]

The preceding command returns:

| 86,48,50,117,130,169,62,54,114,63,126,136,150,94,46,180,82,57,113,
79,129,85,92,181,74,86,179,91,168,82,92,119,153,62,147,127,121,68,
99,148,137,170,170,113,83,108,153,118,162,182,75,173,87,113,65,129,90,
122,160,89,175,106,73,151,100,53,77,122,85,142,100,93,150,162,163,103,
61,85,114,148,103,71,50,102,63,121,76,179,63,63,98,72,121,176,123,169,
56,73,136,161,73,60,133,119,125,61,63,67,89,53,52,120,75,61,167,70,135
,85,176,92,151,114,85,163,61,179,112,183,179,110,152,114,117,51,70,146
,66,71,114,87,185,122,142,61,124,107,101,132,150,101,143,90,165,81,150
,164,143,124,58,65,70,95,139,55,70,149,109,67,76, 120,59,112,65,180,12
2,87,172,115,173,184,166,185,112,92,146,64,57,136,139,172,143,50,153,1
04,112,69,112,184,56,133,176,161,84,106,58,144,121,89,99,130,165,185,1
04,59,57,113,120,122,51,106,100,64,76,81,76,56,88,143,87,107,63,147,14
1,94,68,100,47,57,122,120,125,68,49,139,177,154,47,177,176,170,133,135
,61,159,175,178,110,96,116,132,171,119,154,101,168,141,140,96,98,85,14
8,153,107,67,85,115,126,155,152,177,143,92,85,77,51,1 |

but

mysql> SELECT GROUP_CONCAT(DISTINCT length) FROM film;

returns a concatenation of only the unique values, amounting to less than half
the length:

| 86,48,50,117,130,169,62,54,114,63,126,136,150,94,46,180,82,57,113,
79,129,85,92,181,74,179,91,168,119,153,147,127,121,68,99,148,137,170,8
3,108,118,162,182,75,173,87,65,90,122,160,89,175,106,73,151,100,53,77,
142,93,163,103,61,71,102,76,98,72,176,123,56,161,60,133,125,67,52,120,
167,70,135,112,183,110,152,51,146,66,185,124,107,101,132, 143,165,81,1
64,58,95,139,55,149,109,59,172,115,184,166,64,104,69,84,144,88,141,47,
49,177,154,159,178,96,116,171,140,155,158,174,138,97,131,156,80,145,11
1,128,157,78,105,134 |

To further sort the results of GROUP_CONCAT(), we need to indicate the order by
which to sort the results. For this, we turn to server-side sorting in the next section.

Server-side sorting in MySQL
When sorting results, MySQL allows for two types of ordering: by group and by
item. Below, we look at each in turn in terms of their respective clauses:

GROUP BY

ORDER BY

Despite their syntactical similarities, each has its distinct applications and limitations.

•

•

Chapter 10

[293]

GROUP BY
The GROUP BY clause is used to organize results according to the structure of the data
returned. The clause itself is appended to the end of the SELECT statement. The basic
syntax is:

SELECT <column name(s)> FROM <table name> GROUP BY <column name as
key>;

As a rule, GROUP BY cannot be used in conjunction with a universal quantifier ('*')
instead of the column name(s). Rather, the column used as the key for sorting must
be stated among the column names indicated for the query.

Using the world database, we can ascertain what the database records as the official
language of each country in the world, with the following query:

SELECT CountryCode, Language FROM CountryLanguage WHERE IsOfficial='T'
GROUP BY CountryCode;

The results are indexed alphabetically according to the first column retrieved. As one
might imagine, they run quite long. If we wanted to trim the results to the language
of German, we can use a WHERE clause:

SELECT CountryCode, Language, Percentage FROM CountryLanguage WHERE
Language LIKE 'German' AND IsOfficial='T' GROUP BY CountryCode;

The results will be:

+-------------+----------+------------+

| CountryCode | Language | Percentage |

+-------------+----------+------------+

| AUT | German | 92.0 |

| BEL | German | 1.0 |

| CHE | German | 63.6 |

| DEU | German | 91.3 |

| LIE | German | 89.0 |

| LUX | German | 2.3 |

+-------------+----------+------------+

Using the sakila database, we can use GROUP BY to ascertain how long most films
are borrowed. The rental_duration for any film is between three and seven
days. Therefore, we key the sorting to that column and count the number of
corresponding records.

SELECT rental_duration, COUNT(title) FROM film GROUP BY rental_
duration;

Aggregate Functions and Clauses

[294]

The result is:

+-----------------+--------------+

| rental_duration | COUNT(title) |

+-----------------+--------------+

| 3 | 203 |

| 4 | 203 |

| 5 | 191 |

| 6 | 212 |

| 7 | 191 |

+-----------------+--------------+

We can tell from these results that most films are returned within four days. If we
had used the AVG() function, however, we would have received different results:

mysql> SELECT AVG(rental_duration) FROM film;

+----------------------+

| AVG(rental_duration) |

+----------------------+

| 4.9850 |

+----------------------+

Therefore, we can see (again) that the mean is not always the best average to take.

ORDER BY
Unlike GROUP BY, the ORDER BY clause causes no categorization whatsoever. Rather, it
strictly sorts the records returned according to an indicated pattern. Where the 1000
titles of film will result in a single row if grouped by release_year, the ORDER BY
clause will return 1000 records.

The basic syntax for this clause is:

SELECT <column name> FROM <table name> ORDER BY <column name>;

Using a universal quantifier
The ORDER BY clause also differs from GROUP BY in that it works with universal
quantification of the columns selected. So rather than specify the columns to be
returned, one can simply use the asterisk; however, one must still use a valid column
name as a key for the sorting. So to adopt the GROUP BY example, we can use:

SELECT rental_duration, title FROM film ORDER BY rental_duration;

Chapter 10

[295]

We can get the rental duration and title from film sorted according to increased
rental periods. In addition, we can return all columns with the following:

SELECT * FROM film ORDER BY rental_duration;

Sorting alphabetically or from low-to-high
MySQL treats strings according to their index equivalents. Therefore, alphabetic
sorting is the same as sorting in ascending order. To do so, we use the ASC keyword
immediately after the column to be used as a key. The following returns the results
in alphabetical order by title:

SELECT title, rating, length FROM film WHERE title LIKE 'Y%' ORDER BY
title ASC;

To keep all the results on screen, this example uses a WHERE clause to reduce the
relevant results to film titles that begin with 'Y'. The result of this query is:

+----------------+--------+--------+
| title | rating | length |
+----------------+--------+--------+
YENTL IDAHO	R	86
YOUNG LANGUAGE	G	183
YOUTH KICK	NC-17	179
+----------------+--------+--------+

If we trade out the WHERE clause for a LIMIT clause at the end of the statement, we
can learn the top ten of a series very quickly. This query returns the ten shortest films
in the sakila database:

SELECT title, rating, length FROM film ORDER BY length ASC LIMIT 10;

The results are as follows:

+---------------------+--------+--------+
| title | rating | length |
+---------------------+--------+--------+
ALIEN CENTER	NC-17	46
IRON MOON	PG	46
KWAI HOMEWARD	PG-13	46
LABYRINTH LEAGUE	PG-13	46
RIDGEMONT SUBMARINE	PG-13	46
DIVORCE SHINING	G	47
DOWNHILL ENOUGH	G	47
HALLOWEEN NUTS	PG-13	47
HANOVER GALAXY	NC-17	47
HAWK CHILL	PG-13	47
+---------------------+--------+--------+

Aggregate Functions and Clauses

[296]

Reversing the alphabet or sorting high-to-low
Where ASC overtly indicates that sorting should be in ascending order, we can
reverse that sort with the DESC keyword. Adapting the last example, we can
ascertain the twenty longest films in the sakila database with the following query:

SELECT title, rating, length FROM film ORDER BY length DESC LIMIT 20;

The results are as follows:

+--------------------+--------+--------+

| title | rating | length |

+--------------------+--------+--------+

| CHICAGO NORTH | PG-13 | 185 |

| CONTROL ANTHEM | G | 185 |

| DARN FORRESTER | G | 185 |

| GANGS PRIDE | PG-13 | 185 |

| HOME PITY | R | 185 |

| MUSCLE BRIGHT | G | 185 |

| POND SEATTLE | PG-13 | 185 |

| SOLDIERS EVOLUTION | R | 185 |

| SWEET BROTHERHOOD | R | 185 |

| WORST BANGER | PG | 185 |

| CONSPIRACY SPIRIT | PG-13 | 184 |

| CRYSTAL BREAKING | NC-17 | 184 |

| KING EVOLUTION | NC-17 | 184 |

| MOONWALKER FOOL | G | 184 |

| SMOOCHY CONTROL | R | 184 |

| SONS INTERVIEW | NC-17 | 184 |

| SORORITY QUEEN | NC-17 | 184 |

| THEORY MERMAID | PG-13 | 184 |

| CATCH AMISTAD | G | 183 |

| FRONTIER CABIN | PG-13 | 183 |

+--------------------+--------+--------+

Chapter 10

[297]

You will notice that all of the ten longest films have the same length. To
determine the twenty longest lengths in the database, we would need to
use a GROUP BY clause in conjunction with GROUP_CONCAT:
SELECT GROUP_CONCAT(title), rating, GROUP_
CONCAT(DISTINCT length) FROM film GROUP BY length DESC
LIMIT 20;

The ORDER BY clause cannot be used in conjunction with the calculating
and concatenating functions.

Like sorting in ascending order, sorting in descending order uses index values for
strings. The index value of certain strings, however, will be determined by how the
table is created. For example, if we run this query against sakila:

SELECT title, rating, length FROM film WHERE title LIKE 'WO%' ORDER BY
rating ASC;

We get all film titles that begin with WO sorted by rating, supposedly in ascending
order. However, it is not in that order. The results are as follows:

+----------------------+--------+--------+

| title | rating | length |

+----------------------+--------+--------+

| WORST BANGER | PG | 185 |

| WON DARES | PG | 105 |

| WONDERLAND CHRISTMAS | PG | 111 |

| WORDS HUNTER | PG | 116 |

| WORLD LEATHERNECKS | PG-13 | 171 |

| WOMEN DORADO | R | 126 |

| WORKING MICROCOSMOS | R | 74 |

| WORKER TARZAN | R | 139 |

| WONKA SEA | NC-17 | 85 |

| WONDERFUL DROP | NC-17 | 126 |

| WOLVES DESIRE | NC-17 | 55 |

+----------------------+--------+--------+

The NC-17 ratings follow after, not before the others. The reason for this is that
the rating column is of type enum. This is a type of string for which the values are
enumerated at the time the table is created and the column specified. The index value
for such types follows the order in which the options were specified. In the case of
film, we can learn the sequence from the description. Using DESCRIBE FILM, the data
type for rating is revealed to be:

enum('G','PG','PG-13','R','NC-17')

Aggregate Functions and Clauses

[298]

Therefore, MySQL's sorting of the ratings column will always be according to
this order.

Sorting with multiple keys
The ORDER BY clause can be used with multiple keys to provide a multi-tiered
sorting process.

SELECT rating, title, length FROM film ORDER BY rating, length;

It returns all columns of film sorted first by rating then by title.

To use the ASC and DESC keywords, we simply place them after the relevant key. So
rating can be in ascending order and length in descending with the following query:

SELECT rating, title, length FROM film ORDER BY rating ASC, length
DESC;

Putting it in Python
As with most programming languages, the more one knows about the data and
data structure, the better one can program to handle it. This is at least doubly true
for database programming with aggregate functions and clauses such as those which
we cover in this chapter.

Putting the SELECT statement into Python is not particularly complex, but handling
the results intelligently requires a knowledge of their format. Again, setting up a
basic database session in Python would look like this:

#!/usr/bin/env python

import MySQLdb

mydb = MySQLdb.connect('localhost', 'skipper', 'secret', 'sakila')
cursor = mydb.cursor()

For the statement to be run against sakila, we can use the following:

statement = """SELECT * FROM film WHERE title LIKE 'Z%'
 ORDER BY rating ASC"""

Then we execute it:

runit = cursor.execute(statement)
fetch = cursor.fetchall()

Chapter 10

[299]

If, at this point, we just print the value of fetch, we get a lot of a database formatting:

print fetch
((999, 'ZOOLANDER FICTION', 'A Fateful Reflection of a Waitress
And a Boat who must Discover a Sumo Wrestler in Ancient China',
2006, 1, None, 5, Decimal("2.99"), 101, Decimal("28.99"), 'R',
'Trailers,Deleted Scenes', datetime.datetime(2006, 2, 15, 5, 3,
42)), (998, 'ZHIVAGO CORE', 'A Fateful Yarn of a Composer And a Man
who must Face a Boy in The Canadian Rockies', 2006, 1, None, 6,
Decimal("0.99"), 105, Decimal("10.99"), 'NC-17', 'Deleted Scenes',
datetime.datetime(2006, 2, 15, 5, 3, 42)), (1000, 'ZORRO ARK', 'A
Intrepid Panorama of a Mad Scientist And a Boy who must Redeem
a Boy in A Monastery', 2006, 1, None, 3, Decimal("4.99"), 50,
Decimal("18.99"), 'NC-17', 'Trailers,Commentaries,Behind the Scenes',
datetime.datetime(2006, 2, 15, 5, 3, 42)))

Obviously, this is less than ideal. If we did not know the format of the data, we
would be left to abstract the data handling. This would typically result in verbose
and inefficient code.

Ideally, we should modify our SELECT statement to return only the data that we
want. In this case, we are only interested in the rating, title, and length.
So we should change the SELECT statement accordingly:

statement = """SELECT rating, title, length FROM film
 WHERE title LIKE 'Z%'
 ORDER BY rating ASC"""

This gives us more managable data. Each record is now three fields long. However,
the results are still obtuse; being formatted with parentheses and commas obfuscates
the data. Better then to use a for loop to prepare the data:

for i in fetch:
 print i[0],"\t", i[2],"\t", i[1]

While we are at it, we can preface that for a loop with a print statement that reflects
the column headers:

print "Rating \tLength \tTitle"

The result is easier on the eyes and therefore more user-friendly:

Rating Length Title

R 101 ZOOLANDER FICTION

NC-17 105 ZHIVAGO CORE

NC-17 50 ZORRO ARK

Aggregate Functions and Clauses

[300]

Project: Incorporating aggregate
functions
Building support for aggregate functions into our web application requires some
revision of code that we have already written. As shown in this chapter, all aggregate
functions work with the SELECT keyword. We will thus need to change how we
support that kind of query. By the end of this section, we will build the following
functionality into the web application:

Support for all calculating functions
Support for use of DISTINCT in conjunction with calculating functions
Allowance for sorting using either ORDER BY or GROUP BY
Return results in a tabular format

The order of development when revising a project should be inside out. Revise the
relevant function and develop outward, through the main() function. After we code
the initial variable assignments, we can then move on to revise the web interface to
support the new functionality. The virtue of this process is that we do not introduce
variables without support—to do so would seed security and stability issues.

Adding to qaction()
As all of our new functionality deals with the SELECT statement, we will need to
revisit the qaction() function of the application. Currently, the code looks like this:

def qaction(qact, db, tb, columns, values, user, password):
 """Forms SELECT and INSERT statements, passes them to execute(),
and returns the affected rows."""
 cursor = connection(user, password, db)

 tname = tb + "("
 columns = columns.split(',')
 values = values.split(',')
 cols = ""
 vals = ""
 for i in xrange(0, len(columns)):
 col = columns[i].strip()
 val = values[i].strip()
 cols = cols + col
 vals = vals + "'" + val + "'"
 if i != len(columns)-1:
 cols = cols + ", "

•

•

•

•

Chapter 10

[301]

 vals = vals + ", "
 if qact == "select":
 statement = "SELECT * FROM %s WHERE %s = %s" %(tb, cols, vals)
 results = execute(statement, cursor, 'select')
 elif qact == "insert":
 statement = "INSERT INTO %s (%s) VALUES (%s)" %(tb, cols,
vals)
 results = execute(statement, cursor, 'insert')
 return results

If you find seven arguments to be too much, you can use
** args instead.

To introduce additional support in this function, we need to add new variables and
instructions for how to handle them without losing the original SELECT functionality.

New variables
For the calculating functions, we will use a new variable calc. As all calculating
functions require a columnar key on which to operate, we will also use a variable
colkey. So every calculation will have this format:

calc(colkey)

The value of calc will be allowed to be any one of the calculating functions. In the
HTML form, we can specify them to be uppercase so they are easier to read in the
resulting SQL statement. We could use str.upper(), but it is better to exploit our
control over the program input by structuring the HTML according to what we
ultimately need.

The use of DISTINCT is essentially a switch. It takes no arguments per se, but is
either used or not. Therefore, we can use a variable distinct as a boolean, in effect.
In the HTML, we can support the value as either yes or no. If distinct is yes, the
calculation function would read:

calc(DISTINCT colkey).

If no, we will pass over it (as addressed further).

Finally, support for sorting is provided by sort. Naturally, if we are going to sort,
we need to indicate the column by which sorting should take place. That value is
represented by variable key. So the sorting clause will read in the format.

sort key

Aggregate Functions and Clauses

[302]

To pass these values into the function, we could merely append them to the
function definition line (again, using **args could be used in lieu of our
arguments here):

def qaction(qact, db, tb, columns, values, user, password, calc,
colkey, distinct, sort, key):

But that gets unwieldy. Another option, and one that could easily be employed on
the other arguments to this and the other functions, is to use a convention reserved
for variable-length arguments. If we say that all variables related to aggregate
functions can be part of a tuple called aggregates, we can use the following:

def qaction(qact, db, tb, columns, values, user, password,
*aggregates):

For purposes of illustration, we will use the variable-length convention as shown
here. However, how variable you make the length of the arguments is your choice.

We can then assign those variables in the function:

 calc = aggregates[0]
 colkey = aggregates[1]
 distinct = aggregates[2]
 sort = aggregates[3]
 key = aggregates[4]

By default, we will plan on all variables equating to the string NONE. This is purely for
the sake of pattern matching and could alternatively be dealt with by testing the value
for equating to None or for setting up a test for it being True. A further alternative is to
use try...except structures defaulting to NONE or a similar string.

New statement formation
The new functionality needs to support new options in two different places.
Currently, the SELECT statement is formed according to this template:

SELECT * FROM <table> WHERE <column> = '<value>'

However, the calculating functions need to go where the asterisk is currently located,
and the sorting clause needs to follow on the end of the statement. We should
therefore be able to support both of the following options:

SELECT <calculating function> FROM <table> WHERE <column> =
 '<value>'
SELECT * FROM <table> WHERE <column> = '<value>' <sorting clause>

Chapter 10

[303]

To add these parts, we will use a series of if...else clauses.

The only time that we want to change the original statement is if we have new
variables to handle. Better is to test for a positive rather than a series of negatives.
However, our program needs do not allow for that easily. In which case, we might
set up a conditional structure as follows:

 if calc != "NONE" or distinct != "NONE" or sort != "NONE" or
key != "NONE":
 <form one of the new statements>
 else:
 statement = "SELECT * FROM %s WHERE %s = %s" %(tb, cols,
vals)

So we default to the formation of the original statement value but allow for the
creation of the alternatives if any of our new variables have been set.

We then need to build in ways of handling the variables and forming the new
statements within the if clause of the explained structure. For the specification we
have set ourselves, this will fall into two inner if...else structures.

Each will handle the value of one option in the alternative statements discussed. At
the end of the outer if clause, the results of the inner if...else structures will be
combined as building blocks to form the statement.

The first if...else structure will quantify any calculating functions and determine
whether DISTINCT should be included. For this first variable part of the SELECT
statement, we will create a new string called selection. It will hold either an
asterisk, as per the original statement, or the verbage for the calculating function.
The code reads as follows:

 if calc != "NONE":
 if distinct == "yes":
 selection = "%s(DISTINCT %s)" %(calc, colkey)
 else:
 selection = "%s(%s)" %(calc, colkey)
 else:
 selection = "*"

Recall that, by design, calc can only equate to one of the calculating functions or to
NONE. If it equates to NONE, we default to the universally-quantifying asterisk.

If calc is not NONE, it must equate to one of the calculating functions. We then test
the value of distinct. If distinct is yes, we account for that in the assignment of
selection. Otherwise, we omit it.

Aggregate Functions and Clauses

[304]

The second if...else structure determines the ordering and grouping by the value
of sort. The resulting building block is called sorting.

 if sort != "NONE":
 sorting = "%s %s" %(sort, key)
 else:
 sorting = ""

In the HTML of the page, we will hardwire sort to equate to either ORDER BY or GROUP
BY. This value is then added to the MySQL statement formed by the program.

It is worth noting that these values should not go unchallenged in real-life
deployments. We do not do it here for the sake of space. However, one
should never execute code directly from a public-facing web page because
of the inherent insecurity of such an implementation. For more on this,
see Wikipedia's articles or similar ones on SQL injection.

Once the two building blocks, and the selection and sorting are formed, we can
then combine them together with the rest of the SELECT statement template. The
assignment line reads as follows:

 statement = "SELECT %s FROM %s WHERE %s = %s %s"
%(selection, tb, cols, vals, sorting)

With that completed, the resulting statement is again passed to execute() and the
affected rows assigned to results, which is subsequently returned by the function.
After these changes, the code for qaction() reads as follows:

def qaction(qact, db, tb, columns, values, user, password,
*aggregates):
 """Forms SELECT and INSERT statements, passes them to execute(),
and returns the affected rows."""
 cursor = connection(user, password, db)

 calc = aggregates[0]
 colkey = aggregates[1]
 distinct = aggregates[2]
 sort = aggregates[3]
 key = aggregates[4]

 tname = tb + "("
 columns = columns.split(',')
 values = values.split(',')
 cols = ""
 vals = ""

Chapter 10

[305]

 for i in xrange(0, len(columns)):
 col = columns[i].strip()
 val = values[i].strip()
 cols = cols + col
 vals = vals + "'" + val + "'"
 if i != len(columns) - 1:
 cols = cols + ", "
 vals = vals + ", "
 if qact == "select":
 if calc != "NONE" or distinct != "NONE" or sort != "NONE" or
key != "NONE":
 if calc != "NONE":
 if distinct == "yes":
 selection = "%s(DISTINCT %s)" %(calc, colkey)
 else:
 selection = "%s(%s)" %(calc, colkey)
 else:
 selection = "*"

 if sort != "NONE":
 sorting = "%s %s" %(sort, key)
 else:
 sorting = ""
 statement = "SELECT %s FROM %s WHERE %s = %s %s"
%(selection, tb, cols, vals, sorting)
 else:
 statement = "SELECT * FROM %s WHERE %s = %s" %(tb, cols,
vals)
 results = execute(statement, cursor, 'select')

 elif qact == "insert":
 statement = "INSERT INTO %s (%s) VALUES (%s)" %(tb, cols,
vals)
 results = execute(statement, cursor, 'insert')
 return results

Revising main()
Now that the functionality is built into qaction(), we can ammend main()
accordingly. At present, main() reads as follows:

def main():
 """The main function creates and controls the MySQLStatement
instance in accordance with the user's input."""
 output = ""

Aggregate Functions and Clauses

[306]

 while 1:
 try:
 cursor = connectNoDB(opt.user, opt.password)
 authenticate = 1
 except:
 output = "Bad login information. Please verify the
username and password that you are using before trying to login
again."
 authenticate = 0

 if authenticate == 1:
 errmsg = "You have not specified the information necessary
for the action you chose. Please check your information and specify
it correctly in the dialogue."

 if opt.dbact is not None:
 output = dbaction(opt.dbact, opt.dbname, cursor)
 elif opt.tbact is not None:
 output = tbaction(opt.tbact, opt.tbdbname, opt.tbname,
opt.columns, opt.values, opt.user, opt.password)
 elif opt.qact is not None:
 output = qaction(opt.qact, opt.qdbname, opt.qtbname,
opt.columns, opt.values, opt.user, opt.password)
 elif opt.uact is not None:
 if opt.uact == "create":
 act = "create-user"
 output = uaction(opt.user, opt.password, act, opt.
username, opt.passwd)
 elif opt.uact == "drop":
 act = "drop-user"
 output = uaction(opt.user, opt.password, act, opt.
username)
 elif opt.uact == "grant" or opt.uact == "revoke":
 output = uadmin(opt.user, opt.password, opt.uact,
opt.username, opt.privileges, opt.acldb, opt.acltb)
 else:
 output = errmsg

 printout = HTMLPage()
 printout.message(output)
 output = printout.page()

 print output
 break

Chapter 10

[307]

The part of main() that needs changing, and the part in which the code of this
section will be placed, is the second elif clause:

 elif opt.qact is not None:
 output = qaction(opt.qact, opt.qdbname, opt.qtbname,
opt.columns, opt.values, opt.user, opt.password)

Into this clause, we will quantify each of the new variables. We will further assign
complementary values, such as colkey, based on calc also being indicated by the
user. The code reads as follows:

 elif opt.qact is not None:

 if opt.calc is not None:
 calc = opt.calc
 colkey = opt.colkey
 else:
 calc = "NONE"
 colkey = "NONE"
 if opt.distinct is not None:
 distinct = opt.distinct
 else:
 distinct = "NONE"
 if opt.sort is not None:
 sort = opt.sort
 key = opt.key
 else:
 sort = "NONE"
 key = "NONE"
 output = qaction(opt.qact, opt.qdbname, opt.qtbname,
opt.columns, opt.values, opt.user, opt.password, calc, colkey,
distinct, sort, key)

For safer computing, we could put the main block of this clause into a try...except
clause. Otherwise, we leave ourselves open to possible errors if the user omits
important data.

Finally, we pass the data to qaction() and assign the results to output. You will
notice that we pass the variables overtly. Because the aggregates argument of
qaction() is a tuple, we could also pass all of the added values (from calc
onward) as a tuple. The choice is yours, but Python can handle either.

As before, the resulting output is passed to HTMLPage.message() later. The
resulting HTML page is then printed as output.

Aggregate Functions and Clauses

[308]

Setting up the options
Having set up the new functionality, we next need to provide support for it in the
options of the program. If you coded this application as a CGI program, the values
will be available automatically as part of cgi.FieldStorage(). In PHP, however,
we need to add each option as a flag. The code is as follows:

opt.add_option("-C", "--calculate",
 action="store",
 type="string",
 help="which calculating function to employ",
 dest="calc")
opt.add_option("-K", "--colkey",
 action="store",
 type="string",
 help="column to use when calculating",
 dest="colkey")
opt.add_option("-I", "--distinct",
 action="store",
 type="string",
 help="whether to return distinct results",
 dest="distinct")
opt.add_option("-S", "--sort",
 action="store",
 type="string",
 help="how to sort results",
 dest="sort")
opt.add_option("-k", "--key",
 action="store",
 type="string",
 help="key to use when sorting",
 dest="key")

We can then call the program from the command line to test the HTML output. If
the program is called pymyadmin.py, we can call it as follows (changing the syntax
according to your operating system):

./pymyadmin.py -U 'skipper' -P 'secret' -q 'select' -Z sakila -Y film
-c length -v '114' -C 'COUNT' -K title

Here, HTML will output the following to the screen:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN" "http://
www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en"
dir="ltr">
 <head>
 <title>PyMyAdmin 0.001</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
 </head>

Chapter 10

[309]

 <body>
 <h1>PyMyAdmin Results</h1>

 10

 </body>
</html>

This is the same output that will be passed to Apache. You can test it by exporting
the output to an output file. However, if you used CGI for this application, you
would need to hard-wire the values into the code temporarily.

Changing the HTML form
As with the Python program, the HTML page will support the aggregate functions
within the section for queries. That section of the form currently reads:

<div>QUERIES</div>
<input type="radio" name="qact" value="select"> SELECT

<input type="radio" name="qact" value="insert"> INSERT

Database name: <input type="text" name="qdbname" value="">

Table name: <input type="text" name="qtbname" value="">

Columns (comma-separated): <input type="text" name="columns" value="">

Values (comma-separated): <input type="text" name="values" value="">

We need to change it to provide support for the functionality we have introduced
into the Python program.

As mentioned previously, the values of calc will be hard-wired into the HTML.
With the determination of that value, we will also include a text field in which the
user is to specify the value of colkey. The code follows the field for Values
and reads:

Calculations: <select name="calc">
 <option value="COUNT">COUNT</option>
 <option value="SUM">SUM</option>
 <option value="MAX">MAX</option>
 <option value="MIN">MIN</option>
 <option value="AVG">AVG</option>
</select>
(<input type="text" name="colkey" value="">)

Aggregate Functions and Clauses

[310]

You may note that the dialogue for colkey is sandwiched between parentheses. The
visual effect of this code is that the user will see the SQL formatting in the HTML.

Following this, we offer the user the ability to indicate the value of distinct.

DISTINCT?
<input type="radio" name="distinct" value="yes">Yes
<input type="radio" name="distinct" value="no">No

Finally, we need to provide the facilities for sorting. With the choice of whether to
order by item or by group, we also provide a text field for the key by which to sort
the values.

Sorting: <select name="sort">
 <option value="ORDER BY">ORDER BY</option>
 <option value="GROUP BY">GROUP BY</option>
</select>
<input type="text" name="key" value="">

Summary
In this chapter, we have covered how to use aggregate functions and clauses in
Python. We have seen:

How to use MySQL's optimized functions to calculate certain aspects of
data results
The ways that MySQL provides for sorting the data before it is returned
How to tell MySQL render unique values
Some of the ways that discrete values return different results than
non-discrete ones
How we can instruct MySQL to return alternative averages to the mean and
its default for the function AVG

In the next chapter, we will see how to create joins (using JOIN) in MySQL
for Python.

•

•

•

•

•

SELECT Alternatives
We have already seen how to restrict the data that MySQL returns by using a WHERE
clause. Rather than retrieve the entire table and sort through it in Python, we passed
the burden onto the server. Using WHERE restricted the number of rows that match.
This is just like when we specify columns instead of using an asterisk after
SELECT—it saves us from receiving the entire record for every match.

WHERE causes MySQL to ignore any row that does not match our selection. Specifying
the columns then indicates to MySQL, which parts of the affected rows to return. In
addition to WHERE, MySQL supports other ways of narrowing one's returns. It also
allows us to match and complement the data using other tables, including combining
tables or results from different queries.

In this chapter, we will see:

How we can restrict results using WHERE and HAVING, and what the
differences are between them
When it is best to use WHERE and when one might use HAVING
How to create temporary subtables from which to SELECT data
How to join the results of two SELECT statements with UNION
The various ways to JOIN tables
The difference between an INNER JOIN and and OUTER JOIN, whether LEFT
or RIGHT

The project for this chapter will again be built on the web-based database
administration program that we have developed in preceding chapters. After seeing
new ways to restrict and complement the data that we retrieve from a table, we will
add some of that functionality into our application.

•

•

•

•

•

•

SELECT Alternatives

[312]

HAVING clause
The HAVING clause has similar effect to the WHERE clause. The syntax is virtually
the same:

SELECT <some column(s)> FROM <table> HAVING <met a certain condition>;

Indeed, in some statements, one can be tempted to replace WHERE with HAVING
because the syntax is so similar, and sometimes one would not notice much, if
any, difference in the returned data. However, each has its purpose and is applied
differently, as discussed later in this chapter.

WHERE versus HAVING: Syntax
The HAVING clause can only be applied to columns that have been previously
indicated in the statement. For example, using the sakila database, let's say we
wanted every record from film that was updated since 2005. Trying to hack from
our knowledge of WHERE, we might try the following:

SELECT title FROM film HAVING YEAR(last_update) > '2005';

But we would be wrong and would be greeted with an error:

ERROR 1054 (42S22): Unknown column 'last_update' in 'having clause'

One way of resolving the problem is by using a universal quantifier:

SELECT * FROM film HAVING YEAR(last_update) > '2005';

The returned data will be the entire table because all of the records in the film were
updated last in 2006. This statement works because last_update is implied in the
quantifying asterisk. However, it is far from ideal and leaves it to Python to sort
through the data. It is better to use this statement:

SELECT title, last_update FROM film HAVING YEAR(last_update) > '2005';

This statement will still return every record by giving us the information we want
and proof of the match.

WHERE versus HAVING: Aggregate functions
A common situation in which WHERE and HAVING differ in syntax, is in the use
of aggregate functions. As we have seen, a WHERE clause such as the following
is allowed:

SELECT title, MAX(film_id), AVG(length), last_update FROM film WHERE
length > '100' GROUP BY YEAR(last_update);

Chapter 11

[313]

Because all records in film were last updated in the same year, this query will return
exactly one row holding—the title of the first affected record (that is, of films with
length greater than 100 minutes), the highest ID number of the affected rows, the
average length of the same, and the timestamp for the last update of the first hit.

To use HAVING in a context such as this requires a different syntax. When using
HAVING with aggregate functions, it must be placed in the GROUP BY structure. The
precise reasons for this are addressed more fully in the next section, but the concise
cause is that HAVING is applied after aggregation is performed. So for example, to
get the same information for every title that begins with X, Y, or Z, we could use
the following:

SELECT title, MAX(film_id), AVG(length), last_update FROM film GROUP
BY title HAVING title > 'X';;

The results of this are as follows:

+-------------------+--------------+-------------+---------------------+

| title | MAX(film_id) | AVG(length) | last_update |

+-------------------+--------------+-------------+---------------------+

| YENTL IDAHO | 995 | 86.0000 | 2006-02-15 05:03:42 |

| YOUNG LANGUAGE | 996 | 183.0000 | 2006-02-15 05:03:42 |

| YOUTH KICK | 997 | 179.0000 | 2006-02-15 05:03:42 |

| ZHIVAGO CORE | 998 | 105.0000 | 2006-02-15 05:03:42 |

| ZOOLANDER FICTION | 999 | 101.0000 | 2006-02-15 05:03:42 |

| ZORRO ARK | 1000 | 50.0000 | 2006-02-15 05:03:42 |

+-------------------+--------------+-------------+---------------------+

However, achieving the same results as the WHERE clause can give us further required
adaptations. As mentioned above, HAVING requires the column used in its condition
to have been mentioned previously in the SELECT statement. But the columns passed
as arguments to calculating functions do not count as having been mentioned
previously. In effect, MySQL does not see them when it evaluates a HAVING clause.
Rather, it just sees their results and finds no match. Therefore, to use those results
with a HAVING clause, we need to give them a name using AS. The last example could
be rewritten for ease of reading as follows:

SELECT title, MAX(film_id) AS max, AVG(length) AS avg, last_update
FROM film GROUP BY title HAVING title > 'X';

SELECT Alternatives

[314]

And the headings of the results would be changed accordingly as:

+-------------------+------+----------+---------------------+

| title | max | avg | last_update |

+-------------------+------+----------+---------------------+

| YENTL IDAHO | 995 | 86.0000 | 2006-02-15 05:03:42 |

| YOUNG LANGUAGE | 996 | 183.0000 | 2006-02-15 05:03:42 |

| YOUTH KICK | 997 | 179.0000 | 2006-02-15 05:03:42 |

| ZHIVAGO CORE | 998 | 105.0000 | 2006-02-15 05:03:42 |

| ZOOLANDER FICTION | 999 | 101.0000 | 2006-02-15 05:03:42 |

| ZORRO ARK | 1000 | 50.0000 | 2006-02-15 05:03:42 |

+-------------------+------+----------+---------------------+

Using AS, we can achieve results similar to the WHERE clause that started this section.
Let's say, however, that we wanted to group by title, not the year of the last update.
The WHERE version would look like this:

SELECT title, MAX(film_id), AVG(length), last_update FROM film WHERE
length > '100' GROUP BY title;

But the HAVING version cannot merely switch the order of the clauses around
because, in the view of MySQL, the column length is never referenced as a column
in the SELECT statement. Rather, it is an argument to AVG(). Therefore, we need to
name the results of AVG() as length.

SELECT title, MAX(film_id), AVG(length) AS length, last_update FROM
film GROUP BY title HAVING length > '100';;

Note that HAVING requires the column of its condition to have been used
earlier in the clause, but GROUP BY does not.

To be sure, the use of AVG here is unnecessary. As we are grouping by a unique
quality, title, the average length will be the value initially passed to AVG(). The
average of a single value is that value. Consequently, the WHERE clause would be the
best version to use in this case. In the next section, we will look at when one should
use HAVING instead of WHERE.

WHERE versus HAVING: Application
The use of HAVING differs from WHERE in more than its syntax. However, the two
clauses also differ in how they are applied.

Chapter 11

[315]

Whenever you pass a SELECT statement to MySQL, it forms a table of results which
is then optimized (that is, narrowed), based on the criteria passed to it. The condition
represented in WHERE is applied before the optimizations are carried out. But the
condition in HAVING is applied after the optimizations are performed, being affected
as a final filter for what should be reported back. The difference is subtle, but boils
down to application before the results are finalized (WHERE) and application after the
results table is created (HAVING). A further example may help to clarify the difference.

Suppose we wanted to search the Country table of the world database to find which
forms of government had the largest populations. We then quantify the population
size by those in excess of 100 million people. A basic, unquantified query might look
like this:

SELECT AVG(Population), GovernmentForm FROM Country GROUP BY
GovernmentForm ORDER BY Population DESC;;

The trouble with this query is that it gives us far more data than we need:

+-----------------+--+

| AVG(Population) | GovernmentForm |

+-----------------+--+

| 1277558000.0000 | People'sRepublic |

| 48596000.0000 | Islamic Republic |

| 133954700.0000 | Federal Republic |

| 38357333.3333 | Socialistic Republic |

| 22720000.0000 | Islamic Emirate |

...

| 1000.0000 | Independent Church State |

| 0.0000 | Co-administrated |

| 0.0000 | Dependent Territory of the US |

+-----------------+--+

Using conditions, we are able to modify the results on the server. However, how we
narrow the query, will determine the results.

Using WHERE, we can narrow the results to countries having populations over 100
million people.

SELECT AVG(Population) AS Population, GovernmentForm FROM Country
WHERE Population > '100000000' GROUP BY GovernmentForm ORDER BY
Population DESC;;

SELECT Alternatives

[316]

The resulting table is drastically smaller:

+-----------------+-------------------------+

| AVG(Population) | GovernmentForm |

+-----------------+-------------------------+

| 1277558000.0000 | People'sRepublic |

| 344114800.0000 | Federal Republic |

| 165915000.0000 | Republic |

| 126714000.0000 | Constitutional Monarchy |

+-----------------+-------------------------+

The problem is that we are not looking for countries with populations larger then 100
million. We are looking for forms of government. For this, we can use the following
statement with a HAVING clause:

SELECT AVG(Population) AS Population, GovernmentForm FROM Country
GROUP BY GovernmentForm HAVING Population > '100000000' ORDER BY
Population DESC;;

These results are even smaller:

+-----------------+------------------+

| Population | GovernmentForm |

+-----------------+------------------+

| 1277558000.0000 | People'sRepublic |

| 133954700.0000 | Federal Republic |

+-----------------+------------------+

If you want to check these results against the larger table, simply take out the
HAVING clause:

SELECT AVG(Population) AS Population, GovernmentForm FROM Country
GROUP BY GovernmentForm ORDER BY Population DESC;;

The query using WHERE limited the values submitted for averaging. The condition
was applied to the data before the average was calculated. Using HAVING, the average
for each type of government was calculated first and then the condition was applied
to the result of AVG.

Chapter 11

[317]

Subqueries
The WHERE clause reduces the amount of data through a simple filtering process and
HAVING filters the results. But MySQL also provides more robust ways of narrowing
the data from which results are culled. Normally, MySQL processes a query against a
database that is resident on disk. Subqueries, however, are nested SELECT statements
that result in a table of results against which the main query is processed. Once the
main query is processed against the results of the subquery, the latter is purged
from memory.

Up to this point, if we needed to take the results from one query and use it as input
for another query, we might feel constrained to use two SELECT statements and
manually transfer the data. Here, however, subqueries do that for us.

For example, let's say that we wanted to find the title of every movie done by actors
with the surname CHASE. The sakila database does not provide this information in
one table. Using a series of SELECT statements, we would first need to retrieve the
actor_id of every actor with a surname of CHASE:

SELECT actor_id FROM actor WHERE last_name='CHASE';

We would need to save those results and use them in a series of SELECT statements
against film_actor to get the values for film_id:

SELECT film_id FROM film_actor WHERE actor_id =<actor_id>;

We would take each of those film identifiers and query film to get the title:

SELECT title FROM film WHERE film_id = <film_id>;>;

Doing this manually in MySQL would be an enormous headache. We could do
it easily enough in Python by recycling the data into each query through loops.
But that requires writing code unnecessarily and increases our I/O, costing us in
speed and responsiveness. It is better to put the onus on the database server with a
subquery or a join (discussed later in this book).

To form a subquery, we define the condition of the WHERE clause in terms of the
results of a SELECT statement. The syntax looks like this:

SELECT <column reference> FROM <table 1> WHERE <a column from table 1>
<relational operator> (SELECT <a similar column from table 2> FROM
<table 2>);

An example that combines the last two of our earlier SELECT statements is:

SELECT title FROM film WHERE film_id = (SELECT film_id FROM film_actor
WHERE film_id='17' AND actor_id='3');

SELECT Alternatives

[318]

The result is as follows:

+------------------+

| title |

+------------------+

| ACADEMY DINOSAUR |

+------------------+

MySQL requires that subqueries result in only one row by default. For this reason,
we have had to place two conditions in the subquery—a film_id value of 17 and an
actor_id value of 3. Had we not done so, MySQL would have thrown an error that
reads:

ERROR 1242 (21000): Subquery returns more than 1 row

A comprehensive discussion on errors pertaining to subqueries and how
to resolve them can be found in the MySQL documentation: http://
dev.mysql.com/doc/refman/5.5/en/subquery-errors.html

In order to have MySQL process for each row of a series in sequence, we need to
preface the subquery with one of two keywords—ANY or IN. However, ANY is used
on the right side of any relational operator to cause MySQL to process any True
value that is returned. IN is used to process an expression list. To dispense with the
hardwired value for film_id, we can use either one:

SELECT title FROM film WHERE film_id IN (SELECT film_id FROM film_
actor WHERE actor_id='3');

SELECT title FROM film WHERE film_id = ANY (SELECT film_id FROM film_
actor WHERE actor_id='3');

The result will be a listing for every title in film that has an identifier of the same
value as those associated with actor_id 3 in film_actor. Those are 22 in number.

But that only gets us part of the way. The actor with actor_id 3 is only one of those
with the surname CHASE. Instead of repeating the process manually, we can nest
another subquery inside of the subquery. We can specify to MySQL to draw only
from those records where the last_name value is CHASE.

SELECT title FROM film WHERE film_id = ANY (SELECT film_id FROM film_
actor WHERE actor_id = ANY(SELECT actor_id FROM actor WHERE last_
name='CHASE'));));

Chapter 11

[319]

The results will be 49 rows containing all actors with the specified surname. We can
nest subqueries like Matryoshka dolls as long as we want and as long as the data
allows, and MySQL will not care. The queries simply must make sense, return one
row at a time (or use the keywords ANY or IN), and feed into the WHERE clause of the
next query.

Unions
Sometimes, you may not want to limit results but, rather, combine results from
multiple queries. Rather than execute two different SELECT statements in Python,
you can pass the task to the server with UNION. A UNION is the combination of the
results from two SELECT statements into a single result set. Unlike JOINs (discussed
in the next section), a UNION does do not combine the results side-by-side, but one
after the other. So where the results from the first query end, the results from the
second query begin.

The basic syntax of a UNION is as follows:

(<SELECT statement 1>) UNION (<SELECT statement 2>);

Each SELECT statement is discrete as they are neither related nor can they rely on
each other's data. The number of columns returned by each SELECT statement must
be the same. Otherwise, MySQL will throw an error.

The data type of each column should be the same with respect to the columns of the
other statement. If it is not, you can get strange results. Consider this UNION of two
queries against sakila:

(SELECT actor_id AS id, last_name AS name FROM actor WHERE last_
name='WRAY') UNION (SELECT actor_id AS actorid, film_id AS filmid FROM
film_actor) limit 5;

The results are as follows:

+----+------+

| id | name |

+----+------+

| 63 | WRAY |

| 1 | 1 |

| 10 | 1 |

| 20 | 1 |

| 30 | 1 |

+----+------+

SELECT Alternatives

[320]

We have limited the results to five for purposes of illustration. In the table actor,
there is only one record with a surname of WRAY. Consequently, by mixing data types
between the two SELECT statements, the surname of the actor becomes conflated
with the film_id from film_actor. Note that MySQL also does not specify where
one set of results leave off and the other take up. The aliases used in the second
SELECT statement are not applied.

Like subqueries, UNIONs can be applied for as long as system resources and datasets
allow. Simply surround each SELECT statement with parentheses and separate each
with the word UNION.

We can also specify whether to sort the results of a SELECT statement without
modifying the SELECT statement itself. This is done by following the use of UNION
with DISTINCT. This will also cause MySQL to sort out duplicates as it did with
aggregate functions. The opposite of DISTINCT is ALL. This is the default behavior
of UNION, but can nevertheless be used explicitly. For the effect of each, consider the
results of the following two queries:

(SELECT last_name AS name FROM actor WHERE last_name='WRAY') UNION
DISTINCT (SELECT film_id AS filmid FROM film_actor) LIMIT 20;

+------+

| name |

+------+

| WRAY |

| 1 |

| 2 |

| 3 |

| 4 |

+------+

and

(SELECT last_name AS name FROM actor WHERE last_name='WRAY') UNION ALL
(SELECT film_id AS filmid FROM film_actor) LIMIT 20;

+------+

| name |

+------+

| WRAY |

| 1 |

| 1 |

| 1 |

| 1 |

+------+

Chapter 11

[321]

Joins
Joins are often one of the hardest topics for MySQL newcomers to grasp.
The entire concept pivots on the understanding of mathematical sets, unions,
intersections, and their resulting Venn diagrams. Another way of looking
at joins is to use tabular information. For an example of this, see:
http://en.wikipedia.org/wiki/Sql_join.

In the preceding Venn diagram, the left circle may be seen to represent one set and
the right circle another. The overlapping area is called the intersection of the two sets.
The set of elements that encompasses the contents of both circles is called a union,
but should not be confused with the MySQL keyword UNION. With that information
in mind, we can then see how MySQL allows us to access different parts of the Venn
diagram through joins.

LEFT and RIGHT joins
In MySQL, each set is represented by a table. The first table referenced in the query
is the set on the left. The second is represented by the circle on the right. For MySQL
to know which is the primary set when forming the results, we use LEFT or RIGHT,
respectively. If neither LEFT nor RIGHT is specified in the SELECT statement, LEFT
is presumed. For reasons of portability, the MySQL manual further recommends
against using RIGHT joins if one can use a LEFT JOIN instead. LEFT and RIGHT joins
are types of OUTER joins, which are dealt with in the next section.

The basic syntax for LEFT and RIGHT JOIN is:

SELECT <columns to be returned> FROM <table 1> <LEFT or RIGHT> JOIN
<table 2> ON <key column from table 1> <relational operator> <key
column from table2>;

SELECT Alternatives

[322]

Whichever table is specified as primary is returned in full by default (subject to
selection criteria). Where there is a disparity between the lengths of the two sets, a
LEFT JOIN will result in the left set being exhausted. A RIGHT JOIN will use the right
set similarly. If the non-primary set is shorter than the primary, a NULL value will be
returned as a complement to the primary sets values. If the primary is shorter, the
non-primary set will be truncated to fit.

Using the world database, we can perform a JOIN that returns every actor for
each film by the film identifier. Alternatively, we can return every film for each
actor by actor. Whether we join to the right or to the left determines which is
returned. A LEFT JOIN of the datasets looks like this (we use LIMIT here to
keep the example manageable):

SELECT actor.actor_id AS id, actor.first_name AS first, actor.last_
name AS last, film_actor.film_id AS film FROM actor LEFT JOIN film_
actor ON actor.actor_id=film_actor.actor_id LIMIT 10;;

The results

+----+----------+---------+------+

| id | first | last | film |

+----+----------+---------+------+

| 1 | PENELOPE | GUINESS | 1 |

| 1 | PENELOPE | GUINESS | 23 |

| 1 | PENELOPE | GUINESS | 25 |

| 1 | PENELOPE | GUINESS | 106 |

| 1 | PENELOPE | GUINESS | 140 |

| 1 | PENELOPE | GUINESS | 166 |

| 1 | PENELOPE | GUINESS | 277 |

| 1 | PENELOPE | GUINESS | 361 |

| 1 | PENELOPE | GUINESS | 438 |

| 1 | PENELOPE | GUINESS | 499 |

+----+----------+---------+------+

Clearly, we get every film for each actor. To get every actor for each film, we can
change the query to a RIGHT JOIN:

SELECT actor.actor_id AS id, actor.first_name AS first, actor.last_
name AS last, film_actor.film_id AS film FROM actor RIGHT JOIN film_
actor ON actor.actor_id=film_actor.actor_id LIMIT 10;

Chapter 11

[323]

and get the following results:

+------+-----------+---------+------+

| id | first | last | film |

+------+-----------+---------+------+

| 1 | PENELOPE | GUINESS | 1 |

| 10 | CHRISTIAN | GABLE | 1 |

| 20 | LUCILLE | TRACY | 1 |

| 30 | SANDRA | PECK | 1 |

| 40 | JOHNNY | CAGE | 1 |

| 53 | MENA | TEMPLE | 1 |

| 108 | WARREN | NOLTE | 1 |

| 162 | OPRAH | KILMER | 1 |

| 188 | ROCK | DUKAKIS | 1 |

| 198 | MARY | KEITEL | 1 |

+------+-----------+---------+------+

As with every other part of MySQL, whether the results you get are valid for the
question you need to answer depends on how well you phrase your query.

OUTER joins
As the name implies, OUTER joins differ from INNER joins in what they encompass;
the latter is discussed in the next section. The OUTER JOIN is so called because it
always includes one of the tables in addition to the intersection of the two. The table
to be included is indicated by the terms LEFT and RIGHT. The resulting joins are
called LEFT [OUTER] JOIN and RIGHT [OUTER] JOIN, respectively.

SELECT Alternatives

[324]

In the preceding Venn diagram, a LEFT OUTER JOIN would include the intersection
labeled JOIN as well as Table 1. A RIGHT OUTER JOIN includes the intersection and
the contents of Table 2. Now we can see how it makes sense to call these OUTER joins
because they contain data that are outside the region where the two tables are joined.

The syntax of an OUTER JOIN is as follows:

SELECT <column reference> FROM <table 1> <LEFT or RIGHT> OUTER JOIN
<table 2> ON (<key column from table 1> = <key column from table
2>);>);>);>);

Against the sakila database, for example, we can run this JOIN:

SELECT actor.*, film_actor.* FROM film_actor LEFT OUTER JOIN actor ON
(YEAR(actor.last_update) = YEAR(film_actor.last_update)) limit 5;

The syntax of a RIGHT OUTER JOIN would be the same save for the obvious use of
RIGHT instead of LEFT. For the effective difference of each, see the previous section
on LEFT and RIGHT joins.

INNER joins
In MySQL, an INNER JOIN is simply the intersection of the two sets to the exclusion
of anything that does not overlap. A diagram of it is as follows:

As seen here, the INNER JOIN gives us the inner part of the diagram.

To affect an inner join, MySQL naturally requires you to specify which tables are to
be compared. It also requires the specific columns from each table to be specified as
well as the key values to be used for forming the intersection. The basic syntax of the
INNER JOIN is as follows:

SELECT <columns to be returned> FROM <table 1> INNER JOIN <table 2>
ON <key column from table 1> <relational operator> <key column from
table2>;

Chapter 11

[325]

So for example, if we wanted to use the world database and find every city that lies
in a country of the same name, we might try to cull out all the city names from City
and all the country names from Country. Of course, the only way to relate the two
with certainty is to cull out the CountryCode from City and match it to Code from
Country. All of this requires a lot more processing than needed. The better option
would be to use an INNER JOIN between the City and Country tables:

SELECT City.Name AS Name, Country.Name AS Country, Country.Region AS
Region FROM City INNER JOIN Country ON City.Name = Country.Name;

As different column names may carry different meanings in different tables, it is not
a bad idea to use AS again to create custom headings. The results of this query are
as follows:

+------------+------------+-----------------+

| Name | Country | Region |

+------------+------------+-----------------+

| Djibouti | Djibouti | Eastern Africa |

| Mexico | Mexico | Central America |

| Gibraltar | Gibraltar | Southern Europe |

| Armenia | Armenia | Middle East |

| Kuwait | Kuwait | Middle East |

| Macao | Macao | Eastern Asia |

| San Marino | San Marino | Southern Europe |

| Singapore | Singapore | Southeast Asia |

+------------+------------+-----------------+

We can further apply conditions to the data of the join by appending a WHERE clause
to the statement.

SELECT City.CountryCode AS Code, City.Name AS Name, Country.Name AS
Country, Country.Region AS Region FROM City INNER JOIN Country ON
City.Name = Country.Name WHERE Country.Region LIKE 'South%';

This returns only those results where the region begins with South:

+------+------------+------------+-----------------+

| Code | Name | Country | Region |

+------+------------+------------+-----------------+

| GIB | Gibraltar | Gibraltar | Southern Europe |

| SMR | San Marino | San Marino | Southern Europe |

| SGP | Singapore | Singapore | Southeast Asia |

+------+------------+------------+-----------------+

SELECT Alternatives

[326]

However, INNER joins are quite powerful. They are unsurprisingly very common in
MySQL programming.

NATURAL joins
A NATURAL JOIN combines the two tables based on their commonalities. If neither
LEFT nor RIGHT is specified, then neither is given precedence, which often results
in an empty set. However, the table which is given precedence is reproduced in the
results. For every record of the precedent table, a record is produced in the results.
Where the columns have overlapping data, only one record will be reproduced.

If the precedent table is longer or fuller than the other set, the results from the latter
will be represented with NULL values. If the precedent table is shorter, the other table
is truncated to match.

The basic syntax of NATURAL joins is as follows:

SELECT <columns> FROM <table 1> NATURAL <LEFT or RIGHT> JOIN <table
2>;

In practice, it would look like this query of the world database:

SELECT * FROM City NATURAL LEFT JOIN Country;

In the results, you will see that everywhere Country has no column whose name is
the same as that of the value in City, a NULL value is inserted. Using NATURAL RIGHT
JOIN instead gives results that defer to the second table over the first.

Another example that shows the way MySQL automatically sorts the data on a
NATURAL JOIN is seen with the sakila database:

SELECT * FROM actor NATURAL LEFT JOIN film_actor LIMIT 5;

We limit the results for sake of space, but they illustrate that actor_id, being
common to both tables, is only reproduced once.

+----------+---------------------+------------+--------------+---------+

| actor_id | last_update | first_name | last_name | film_id |

+----------+---------------------+------------+--------------+---------+

| 1 | 2006-02-15 04:34:33 | PENELOPE | GUINESS | NULL |

| 2 | 2006-02-15 04:34:33 | NICK | WAHLBERG | NULL |

| 3 | 2006-02-15 04:34:33 | ED | CHASE | NULL |

| 4 | 2006-02-15 04:34:33 | JENNIFER | DAVIS | NULL |

| 5 | 2006-02-15 04:34:33 | JOHNNY | LOLLOBRIGIDA | NULL |

+----------+---------------------+------------+--------------+---------+

Chapter 11

[327]

CROSS joins
Where INNER joins give us the intersection of the two sets and OUTER joins give us
the intersection with one of the sets, the CROSS JOIN gives us both sets. The basic
syntax is as follows:

SELECT <columns from table 1>, <columns from table 2> FROM <table 1>
CROSS JOIN <table 2>;

An example using the world database is:

SELECT City.*, Country.* FROM City CROSS JOIN Country;

Without a conditional clause, every record of table 2 will be returned for every
record of table 1. If each table has 1000 records, the table returned will be the
product of those two sets, or one million records. We can limit the results with a
WHERE clause as follows:

SELECT City.*, Country.* FROM City CROSS JOIN Country WHERE City.Name
LIKE 'C%';

This query restricts the number of results by quantifying the value of the Name
column in the City (table 1) set of data. Even so, we still get 67,159 records
returned.

Depending on which columns you specify, you can retrieve all or few of the fields for
each record. In the following example, we simply retrieve the city and country name
for each row, again quantifying the results with a WHERE clause.

SELECT City.Name, Country.Name FROM City CROSS JOIN Country WHERE
City.Name LIKE 'C%';

Greater precision in forming a query naturally leads to faster processing. Results
vary on different servers, but the unqualified query takes over 12 minutes to return
where the second query takes around 80 seconds and the third 20 seconds.

Doing it in Python
As we have seen in previous chapters, processing a SELECT query in Python is as
simple as execute() and fetchall(). However, Python also allows us to build
statements dynamically, and this applies to joins, unions, and subqueries as well.

SELECT Alternatives

[328]

Subqueries
If we want column from table1, but the column reference for the subquery is
colref, from both table1 and table2, we can write the following:

#!/usr/bin/env python

import MySQLdb

mydb = MySQLdb.connect('localhost', 'skipper', 'secret', 'sakila')
cursor = mydb.cursor()

table1 = 'film'
table2 = 'film_actor'
column = 'film_id, title'
colref = 'film_id'

statement = "SELECT %s FROM %s WHERE %s IN (SELECT %s FROM %s)"
%(column, table1, colref, colref, table2)

cursor.execute(statement)
results = cursor.fetchall()

for i in results: print i[0], '\t', i[1]

The results obviously will be the title and identifier for each title in film. We can
further nuance this for reader input to allow searches by the name of the actor.

#!/usr/bin/env python

import MySQLdb
import sys

mydb = MySQLdb.connect('localhost', 'skipper', 'secret', 'sakila')
cursor = mydb.cursor()

table1 = 'film'
column = 'film_id, title'
colref = 'film_id'

sub1ref = 'film_id'
table2 = 'film_actor'

sub2ref = 'actor_id'
table3 = 'actor'

Chapter 11

[329]

firstname = sys.argv[1]
surname = sys.argv[2]

statement = "SELECT %s FROM %s WHERE %s IN (SELECT %s FROM %s WHERE %s
= ANY (SELECT %s from %s WHERE first_name='%s' AND last_name = '%s'))"
%(column, table1, colref, colref, table2, sub2ref, sub2\
ref, table3, firstname, surname)

cursor.execute(statement)
results = cursor.fetchall()

for i in results: print i[0], '\t', i[1]

Unions
As with subqueries, we can create the two statements of a UNION and join them
dynamically. For example:

#!/usr/bin/env python

import MySQLdb

mydb = MySQLdb.connect('localhost', 'skipper', 'secret', 'sakila')
cursor = mydb.cursor()

statement1 = "SELECT actor_id FROM actor"
statement2 = "SELECT film_id FROM film"
union = "(%s) UNION (%s)" %(statement1, statement2)

cursor.execute(union)
results = cursor.fetchall()

for i in results: print i[0]

Joins
As mentioned in the earlier section on joins, which JOIN you use will depend on
the results you want. Here an INNER JOIN will be illustrated, but the same process
applies to the formation of the other kinds of joins.

#!/usr/bin/env python

import MySQLdb

SELECT Alternatives

[330]

mydb = MySQLdb.connect('localhost', 'skipper', 'secret', 'world')
cursor = mydb.cursor()

table1 = 'City'
table2 = 'Country'

col1 = "CountryCode"
col2 = "Region"

colref1 = table1 + "." + col1
colref2 = table2 + "." + col2
colref = colref1 + ", " + colref2

keyref1 = 'Name'
keyref2 = 'Name'
key1 = table1 + "." + keyref1
key2 = table2 + "." + keyref2

statement = "SELECT %s FROM %s INNER JOIN %s ON %s = %s" %(colref,
table1, table2, key1, key2)

cursor.execute(statement)
results = cursor.fetchall()

for i in results: print i[0], '\t', i[1]

After opening a connection to the database and creating a cursor, we define the
parts of the statement, concatenating strings as necessary. We then insert the sundry
values into the value of statement.

Remember that the statement remains a string until it is passed to cursor.
execute() as an argument. It can be then amended at any time. If you find it too
difficult to manage the variables that are to be inserted into the statement, simply
break the statement down into parts and combine it at the end. Should a problem
with the statement persist, you can use a print statement just before the statement is
executed to find out what is being passed to MySQL.

Project: Implement HAVING
For the project of this chapter, we will introduce support for HAVING under sorting
in our basic database administration web application. Basically, a full-fledged
web-based administration application should have support for JOIN and, to a
certain extent, subqueries. However, this functionality will be left for room to grow.

Chapter 11

[331]

The goals of this project are straightforward:

Implement support for HAVING in the Python back-end of the application
Code the HTML front-end to allow HAVING in conjunction with sorting

When we are done, we will also look at some ways that this application could
(and should) be dressed up.

Revising the Python backend
Before implementing a user interface for any functionality, one naturally needs
to code support into the program itself. In the case of HAVING, we need to do the
following in pymyadmin.py:

Revise the qaction function to insert HAVING into the MySQL statement that
it passes to execute()
Revise the qaction function call in main()
Code support for appropriate option-handling—whether as CGI or as a
command-line option passed by PHP

Revising qaction()
Currently, the qaction() function looks like this:

def qaction(qact, db, tb, columns, values, user, password,
*aggregates):
 """Forms SELECT and INSERT statements, passes them to execute(),
and returns the affected rows."""
 cursor = connection(user, password, db)

 calc = aggregates[0]
 colkey = aggregates[1]
 distinct = aggregates[2]
 sort = aggregates[3]
 key = aggregates[4]

 tname = tb + "("
 columns = columns.split(',')
 values = values.split(',')
 cols = ""
 vals = ""
 for i in xrange(0, len(columns)):
 col = columns[i].strip()
 val = values[i].strip()

•

•

•

•

•

SELECT Alternatives

[332]

 cols = cols + col
 vals = vals + "'" + val + "'"
 if i != len(columns) - 1:
 cols = cols + ", "
 vals = vals + ", ""
 if qact == "select":
 if calc != "NONE" or distinct != "NONE" or sort != "NONE" or
key != "NONE":
 if calc != "NONE":
 if distinct == "yes":
 selection = "%s(DISTINCT %s)" %(calc, colkey)
 else:
 selection = "%s(%s)" %(calc, colkey)
 else:
 selection = "*"

 if sort != "NONE":
 sorting = "%s %s" %(sort, key)
 else:
 sorting = ""
 statement = "SELECT %s FROM %s WHERE %s = %s %s"
%(selection, tb, cols, vals, sorting)
 else:
 statement = "SELECT * FROM %s WHERE %s = %s" %(tb, cols,
vals)
 results = execute(statement, cursor, 'select')

 elif qact == "insert":
 statement = "INSERT INTO %s (%s) VALUES (%s)" %(tb, cols,
vals)
 results = execute(statement, cursor, 'insert')
 return results

In order to add facility for HAVING, we need to add some internal variables to carry
the value of the column and value keys, the arguments for HAVING. We do not need
to change the variable arguments of the function definition because the HAVING
arguments will be passed as part of aggregates[].

After the assignment key = aggregates[4], seen previously, we should add:

 hcol = aggregates[5]
 hval = aggregates[6]

Chapter 11

[333]

The need for HAVING will be qualified by the presence of a value for hcol. Find the
test for sorting with the following if clause:

 if sort != "NONE":": ## or: if sort is not None:
 sorting = "%s %s" %(sort, key)
 else:
 sorting = ""

To assign a value for HAVING, we need to test whether sorting is desired and then
whether hcol has any value. If sort and hcol both have a value other than NONE,
we then prepare a value having. The if...else statement looks like this:

 if hcol != "NONE" and sort != "NONE":
 having = "HAVING %s = '%s'" %(hcol, hval)
 else:
 having = ""

With a value for having, we revise the SELECT statement to include having:

 statement = "SELECT %s FROM %s WHERE %s = %s %s %s"
%(selection, tb, cols, vals, sorting, having)

Just as with sorting, nothing is added if no value is to be appended.

Revising main()
With support for HAVING implemented in qaction(), we can build support for it in
main(). It is worth noting that we implemented HAVING in qaction in a way that
does not require its use. If we wanted, we could create separate calls for each in
main(), or another calling function.

To create support for HAVING in main(), we create another if...else clause in the
while loop. Currently, for usage with PHP, the while loop reads as follows:

 while 1:
 try:
 cursor = connectNoDB(opt.user, opt.password)
 authenticate = 1
 except:
 output = "Bad login information. Please verify the
username and password that you are using before trying to login
again."
 authenticate = 0

 if authenticate == 1:

SELECT Alternatives

[334]

 errmsg = "You have not specified the information necessary
for the action you chose. Please check your information and specify
it correctly in the dialogue."

 if opt.dbact is not None:
 output = dbaction(opt.dbact, opt.dbname, cursor)
 elif opt.tbact is not None:
 output = tbaction(opt.tbact, opt.tbdbname, opt.tbname,
opt.columns, opt.values, opt.user, opt.password)
 elif opt.qact is not None:

 if opt.calc is not None:
 calc = opt.calc
 colkey = opt.colkey
 else:
 calc = "NONE"
 colkey = "NONE"
 if opt.distinct is not None:
 distinct = opt.distinct
 else:
 distinct = "NONE"
 if opt.sort is not None:
 sort = opt.sort
 key = opt.key
 else:
 sort = "NONE"
 key = "NONE"
 output = qaction(opt.qact, opt.qdbname, opt.qtbname,
opt.columns, opt.values, opt.user, opt.password, calc, colkey,
distinct, sort, key)

 elif opt.uact is not None:
 if opt.uact == "create":
 act = "create-user"
 output = uaction(opt.user, opt.password, act, opt.
username, opt.passwd)
 elif opt.uact == "drop":
 act = "drop-user"
 output = uaction(opt.user, opt.password, act, opt.
username)
 elif opt.uact == "grant" or opt.uact == "revoke":
 output = uadmin(opt.user, opt.password, opt.uact,
opt.username, opt.privileges, opt.acldb, opt.acltb)
 else:
 output = errmsg

Chapter 11

[335]

 printout = HTMLPage()
 printout.message(output)
 output = printout.page()

 print output
 break

The variable names used here would be different if the application is run under CGI
because of the CGI modules. See Chapter 7, Creating and Dropping for more on the
differences between using CGI and PHP and how to work with each.

It is possible to create a program that will run with both CGI and PHP by
either testing how the program is called or by using a try...except
structure for the options. However, coding such as that would only come
into play if you needed to deploy the system in both environments and
wanted to conserve on code.

We need to insert our if...else structure just after the if...else structure for
the assignment of sort and key. When we are done, that code section should read
as follows:

 if opt.sort is not None:
 sort = opt.sort
 key = opt.key
 else:
 sort = "NONE"
 key = "NONE"
 if opt.hcol is not None and opt.hval is not None:
 hcol = opt.hcol
 hval = opt.hval
 else:
 hcol = "NONE"
 hval = "NONE"

In addition to testing the value of opt.hcol, we should also test for None in hval.
Otherwise, we can get an error.

After the values of hcol and hval are assigned, we need to append each to the
arguments for qaction() in appropriate order. If we conflate them, qaction()
will assign their values in the wrong order.

 output = qaction(opt.qact, opt.qdbname, opt.qtbname,
opt.columns, opt.values, opt.user, opt.password, calc, colkey,
distinct, sort, key, hcol, hval)

SELECT Alternatives

[336]

With that, HAVING is supported by the main() function. We still need to build
support into the options of the program.

Revising the options
As with previous chapters, how you code support for the options, depends on
whether you are coding for CGI or PHP. See Chapter 7 for the difference on each.
Heretofore, we have been coding for PHP due to its relative simplicity in executing,
debugging and because PHP tends to execute faster than CGI when using default
configurations.

Currently, the beginning of our options-handling for sorting looks like this
(including the introductory code for optparse):

import optparse
Get options
opt = optparse.OptionParser()
...
opt.add_option("-S", "--sort",
 action="store",
 type="string",
 help="how to sort results",
 dest="sort")
opt.add_option("-k", "--key",
 action="store",
 type="string",
 help="key to use when sorting",
 dest="key")

To add option support for HAVING, we need to support hcol and hval. Therefore, we
need to add the following:

opt.add_option("-H", "--hcol",
 action="store",
 type="string",
 help="column to use for HAVING",
 dest="hcol")
opt.add_option("-V", "--hval",
 action="store",
 type="string",
 help="value to use for HAVING",
 dest="hval")

Chapter 11

[337]

To be sure, Python does not care where in the list of options you put the assignment.
As long as it is before the assignment of opt and args, it will be assigned with all
of the other option values. However, for the sake of maintenance, it is best to add it
after the sorting options are handled:

 opt.add_option("-H", "--hcol",
 action="store",
 type="string",
 help="column to use for HAVING",
 dest="hcol")
opt.add_option("-V", "--hval",
 action="store",
 type="string",
 help="value to use for HAVING",
 dest="hval")

With that, we finish implementing support for HAVING in our administration
application. However, we still need to create support for it in the HTML interface.

Revising the HTML interface
Currently, the section for queries in the HTML code reads as follows:

<div>QUERIES</div>
<input type="radio" name="qact" value="select"> SELECT

<input type="radio" name="qact" value="insert"> INSERT

 Database name: <input type="text" name="qdbname" value="">

 Table name: <input type="text" name="qtbname" value="">

 Columns (comma-separated: <input type="text"
 name="columns" value="">

 Values (comma-separated: <input type="text"
 name="values"value="">
Calculations:
<select name="calc">
 <option value="COUNT">COUNT</option>
 <option value="SUM">SUM</option>
 <option value="MAX">MAX</option>
 <option value="MIN">MIN</option>
 <option value="AVG">AVG</option>
</select>
(<input type="text" name="colkey" value="">)

DISTINCT?
<input type="radio" name="distinct" value="yes">Yes
<input type="radio" name="distinct" value="no">No

Sorting:

SELECT Alternatives

[338]

<select name="sort">
 <option value="ORDER BY">ORDER BY</option>
 <option value="GROUP BY">GROUP BY</option>
</select>
<input type="text" name="key" value="">

To finalize our implementation of HAVING for sorting, we need to solicit values
for hcol and hval from the user. After the value of key is assigned and before the
double line-breaks, we should insert the following dialogue:

HAVING

Column: <input type="text" name="hcol" value="">

Value: <input type="text" name="hval" value="">

Then the dialogue is finished. As is illustrated in the following section Room to grow,
there are several things that we can and should add to this application before we
consider it complete.

Room to grow
With HAVING implemented for sorting in our administration application, we will
leave this project for others in subsequent chapters. As has been alluded several
times, this application could use more coding to make it more useful and usable
than it is at present. In particular, some issues that you should address are:

How would you implement the various kinds of joins and subqueries?
As HAVING is used outside of sorting, how would you allow a user to use it in
a generic SELECT statement?
Currently, the tabular information returned by SELECT is not formatted. How
would you allow for its formatting while being sensitive to the fact that not
all statements will be SELECT statements?
Aside from being monochrome, the page is now much more verbose than
when we started. How could you use CSS to create a tab-based menu system
instead of the sub-headers to simplify the interface and keep everything on
one screen?

•

•

•

•

Chapter 11

[339]

Summary
In this chapter, we have covered how to use HAVING clauses, subqueries, and joins in
Python. We have also seen:

How to restrict results using HAVING
How HAVING differs from WHERE
When it is best to use the following—WHERE or HAVING
How to narrow data even further with subqueries
Using UNION to concatenate two results sets before they are returned
The various ways to join tables, including the difference between a LEFT JOIN
and a RIGHT JOIN as well as the differences between INNER joins, OUTER joins,
NATURAL joins, and CROSS joins

In the next chapter, we will look at several more of MySQL's powerful functions and
how to use them best in Python.

•

•

•

•

•

•

String Functions
We have already seen how we can pass the burden of certain processes onto the
database server. The MySQL aggregate functions are optimized for their tasks. This
reduces the amount of I/O passed back to Python and results in less data for our
programs to process. In addition to the aggregate functions, MySQL also provides
other functions that help us process data before it is returned to Python.

In this chapter, we will see:

The way MySQL allows us to combine strings and return the single,
resulting value
How to extract part of a string or the location of a part, thus saving
on processing
How to convert cases of results

All of this can be done through MySQL for Python. After we have seen the common
ways to juggle strings in MySQL, we will then apply it in this chapter's project.

Preparing results before their return
MySQL offers a bevy of functions for preparing results before returning them. Here
we will look at the more common ones. Before we begin, it is worth noting that all
MySQL functions are limited by the size of the max_allowed_packet variable. If the
value(s) to be returned exceed the maximum allowed packet size, MySQL will return
a NULL value.

For information on fine-tuning server variables such as max_allowed_packet, see:
http://dev.mysql.com/doc/refman/5.5/en/server-parameters.html

•

•

•

String Functions

[342]

CONCAT() function
The CONCAT() function allows us to concatenate, or join, two or more values. The
basic syntax is as follows:

SELECT CONCAT(value1, value2);

The values can be either string or numeric values:
SELECT CONCAT(22, '/', 7);
+--------------------+
| CONCAT(22, '/', 7) |
+--------------------+
| 22/7 |
+--------------------+
SELECT CONCAT('pi = ', 22, '/', 7);
+---------------------------------+
| CONCAT('pi = ', 22, '/', 7) |
+---------------------------------+
| pi = 22/7 |
+---------------------------------+

However, as in Python, a string value passed without quotes causes MySQL to throw
an error:

SELECT CONCAT(pi, ' = ', 3, '.', 14156);

ERROR 1054 (42S22): Unknown column 'pi' in 'field list'

It may seem strange that MySQL should complain about a 'field list', but that is
exactly what it sees when it looks at CONCAT(). Further, one is able to use field names
in the argument of CONCAT() to affect calculations or formatting. Using the sakila
database, for example, we can return the length of each title in terms of hours
as follows:

SELECT title, CONCAT(length/60, ' hours') FROM film;

If we append WHERE title LIKE 'WAR%' after film, we get the following results:

+------------------+-----------------------------+
| title | CONCAT(length/60, ' hours') |
+------------------+-----------------------------+
WAR NOTTING	1.3333 hours
WARDROBE PHANTOM	2.9667 hours
WARLOCK WEREWOLF	1.3833 hours
WARS PLUTO	2.1333 hours
+------------------+-----------------------------+

Chapter 12

[343]

As usual, we can use AS to clean up the results if we want:
SELECT title AS Title, CONCAT(length/60, ' hours') AS
Length FROM film WHERE title LIKE 'WAR%';

+------------------+--------------+

| Title | Length |

+------------------+--------------+

| WAR NOTTING | 1.3333 hours |

...

SUBSTRING() or MID()
The function calls SUBSTRING() and MID() are synonymous. Which one you choose
is a matter of style. Their purpose is to allow you to extract a substring, or the
midsection, of a value within the bounds of certain index points. The syntax is
as follows:

SELECT SUBSTRING(value, position, length);
SELECT MID(value, position, length);

The value must adhere to the usual rules—quotes for strings. The first index point is
the beginning point within the value and is a required argument. The second index
value is optional. Its absence causes the return of the string from the initial index
point to the end of the value. For a string, "I'm afraid not", we can get everything
from the fifth position onward:

SELECT SUBSTRING("I'm afraid not", 5);
+--------------------------------+

| SUBSTRING("I'm afraid not", 5) |

+--------------------------------+

| afraid not |

+--------------------------------+

While the second index point is optional, it has a very different meaning in MySQL
from Python when it is used. Contrary to its meaning when specifying a range,
say, in xrange() and similar Python functions, the second index point is not an
absolute index in the word, but it is the number of positions forward from the
first index point.

String Functions

[344]

An example for extracting the middle word from the string, "I'm afraid not is":

select mid("I'm afraid not", 4,8);
+----------------------------------+
| mid("I'm afraid not", 4,8) |
+----------------------------------+
| afraid |
+----------------------------------+

Finally, if we don't want to specify a precise range within the value, we don't have to.
MySQL's SUBSTRING() and MID() functions allow for counting backward from the
end of the value. Just use a negative number for the number of places from the end,
from where you want MySQL to count.

SELECT SUBSTRING("I'm afraid not",-3);
+--------------------------------+
| SUBSTRING("I'm afraid not",-3) |
+--------------------------------+
| not |
+--------------------------------+

TRIM()
The TRIM() function performs the same job as Python's built-in strip() function: it
strips leading and trailing whitespaces from results. However, TRIM() is also more
flexible than strip() in that it can be customized to strip a specified value(s) from
the beginning of a value, the end of a value, or both.

Basic syntax
The basic syntax is:

SELECT TRIM(<some value>);

It looks like this in real life:

SELECT TRIM(' Barstow ') AS spot;

Chapter 12

[345]

In order to show the stripping of the string, the results column is given a smaller
title than the string itself.

+---------+

| spot |

+---------+

| Barstow |

+---------+

TRIM() can be applied to numeric values as well:

SELECT trim(1234567890) AS numbers;

This results in the following output:

+------------+

| numbers |

+------------+

| 1234567890 |

+------------+

Options
In addition to this basic syntax, TRIM() also supports the option of specifying
whether the value to be removed is at the beginning or end of the value, or both. To
do this, we specify either LEADING, TRAILING, or BOTH in the argument. We also must
specify then precisely what we want trimmed as shown in the following session:

mysql> SELECT TRIM(LEADING ' ' FROM ' Barstow ') AS spot;

+----------------+

| spot |

+----------------+

| Barstow |

+----------------+

1 row in set (0.00 sec)

mysql> SELECT TRIM(TRAILING ' ' FROM ' Barstow ') AS spot;

+----------------+

| spot |

+----------------+

| Barstow |

String Functions

[346]

+----------------+

1 row in set (0.00 sec)

mysql> SELECT TRIM(BOTH ' ' FROM ' Barstow ') AS spot;

+---------+

| spot |

+---------+

| Barstow |

+---------+

1 row in set (0.00 sec)

Obviously, the default for TRIM() is to strip whitespace from both sides. However, as
you might deduce from the previous examples, we can also specify precise values to
pull instead of whitespaces.

mysql> SELECT TRIM(LEADING 'B' FROM 'Barstow') AS spot;

+--------+

| spot |

+--------+

| arstow |

+--------+

1 row in set (0.00 sec)

Note that we removed the whitespace from the argument. If we hadn't, the stripping
would not have done what we wanted. For example, try the following statement on
your own:

SELECT TRIM(LEADING 'B' FROM ' Barstow ') as spot;

Alternatives
There are also two variants to TRIM() that offer a shorthand for the LEADING and
TRAILING options. Instead of passing those words with their necessary additional
syntax, we can strip whitespace from the left of the value with LTRIM(), and from
the right with RTRIM(), as follows:

mysql> SELECT LTRIM(' Barstow ') as spot;

+-------------+

| spot |

+-------------+

| Barstow |

Chapter 12

[347]

+-------------+

1 row in set (0.00 sec)

mysql> SELECT RTRIM(' Barstow ') as spot;

+-------------+

| spot |

+-------------+

| Barstow |

+-------------+

1 row in set (0.00 sec)

REPLACE()
The REPLACE() substitutes one value for another within a given stream of text,
whether string or numeric. For string values, the operation is case-sensitive. Unlike
Python's substitution functions, it does not work with regular expressions
(as of MySQL 5.5). The basic syntax is:

SELECT REPLACE(base value, value to be replaced, replacement value);

A string-based example is:

mysql> SELECT REPLACE("I'm afraid not", 'fraid ', ' frayed k') as spot;

+-------------------+

| spot |

+-------------------+

| I'm a frayed knot |

+-------------------+

1 row in set (0.00 sec)

But it also works with numeric values because the result is first converted
to a string:

mysql> SELECT REPLACE(22/7, 3, 2) as num;

+--------+

| num |

+--------+

| 2.1429 |

+--------+

1 row in set (0.00 sec)

String Functions

[348]

In this case, quotes are optional:

mysql> SELECT REPLACE(10/3, '3', '2') as spot;

+--------+

| spot |

+--------+

| 2.2222 |

+--------+

1 row in set (0.00 sec)

Note that the replacement is indiscriminate—all instances of the first value are
changed to the second. One must consequently be careful in how REPLACE() is
applied. REPLACE() is multibyte safe.

INSERT()
INSERT() functions similarly to REPLACE() in that it injects a substring into a value.
Whether it overwrites part or all of that value is determined by the arguments you
pass to it. The basic syntax is as follows:

SELECT INSERT(base value, position, length, string to be inserted);

An example is:

mysql> SELECT INSERT("I'm afraid", 4, 0, ' not ') as clause;

+-----------------+

| clause |

+-----------------+

| I'm not afraid |

+-----------------+

1 row in set (0.00 sec)

This inserts the word not surrounded by two blank spaces just after the "m" in
I'm. As the length of the insertion is 0 characters, no part of the original value is
overwritten. However, because of that, the resulting value has two spaces between
"not" and "afraid" instead of just one. We could either truncate the value to be
inserted by one space or we can overwrite the space before "afraid".

Chapter 12

[349]

To truncate "not", we would use TRIM:

mysql> SELECT INSERT("I'm afraid", 4, 0, RTRIM(' not ')) as clause;

+----------------+

| clause |

+----------------+

| I'm not afraid |

+----------------+

1 row in set (0.00 sec)

But a less obtuse way of affecting the same results is to increase the length by one:

mysql> SELECT INSERT("I'm afraid", 4, 1, ' not ') as clause;

+----------------+

| clause |

+----------------+

| I'm not afraid |

+----------------+

1 row in set (0.00 sec)

INSERT() works well with multi-byte characters as either the base value or the
insertion string. If the position exceeds the length of the base value, the base value
itself is returned:

mysql> SELECT INSERT("I'm afraid", 23, 1, ' not ') as clause;

+------------+

| clause |

+------------+

| I'm afraid |

+------------+

1 row in set (0.00 sec)

String Functions

[350]

If the length of the insertion exceeds the length of the original base value but the
position of insertion is valid, the rest of the base value is overwritten:

mysql> SELECT INSERT("I'm afraid", 4, 23, ' not ') as clause;

+----------+

| clause |

+----------+

| I'm not |

+----------+

1 row in set (0.00 sec)

All four of the arguments for INSERT() are required, and an error is thrown if any of
them is missing.

REGEXP
Technically speaking, REGEXP does not appear as a function. However, it is included
here because it operates on strings, such as SUBSTRING() and because it is listed
among the string functions in the MySQL documentation. The syntax for the REGEXP
phrase is:

value REGEXP pattern

REGEXP is more a keyword token to distinguish a part of the SELECT statement as
being special, as being a regular expression. MySQL evaluates regular expressions
on the fly, compiling them as needed, instead of compiling them as one usually does
in Python.

If the pattern match is a success, REGEXP causes MySQL to return 1; otherwise, it
returns 0. Here a carat (^) is used to test the beginning of the value.

mysql> SELECT 'Barstow' REGEXP '^B';

+-----------------------+

| 'Barstow' REGEXP '^B' |

+-----------------------+

| 1 |

+-----------------------+

1 row in set (0.00 sec)

mysql> SELECT 'Barstow' REGEXP '^C';

+-----------------------+

| 'Barstow' REGEXP '^C' |

Chapter 12

[351]

+-----------------------+

| 0 |

+-----------------------+

1 row in set (0.00 sec)

The nature of the value against which the pattern is checked can be either a precise
value or a representation of search results (for example, column name). Therefore,
REGEXP can appear in the column specification or in other clauses like WHERE.
Consider the following example using sakila:

mysql> SELECT title FROM film WHERE title REGEXP '^TA.{3}K';

+-----------+

| title |

+-----------+

| TAXI KICK |

+-----------+

1 row in set (0.00 sec)

The carat matches the beginning of the value to be assessed similar to the way it
matches the beginning of a line in Python. The dot after TA matches any single
character. The {3} is a complex way of rendering ...—that is, three characters in
succession. As it turns out, there is only one title in film that begins with TA and that
has three characters before K.

A complete list of MySQL's regular expression meta-characters follow:

Meta-character Meaning
. Match any character
? Match zero or one
* Match zero or more
+ Match one or more
{n} Match n times
{m,n} Match m through n times
{n,} Match n or more times
^ Beginning of line
$ End of line
[[:<:]] Match beginning of words
[[:>:]] Match ending of words

String Functions

[352]

Meta-character Meaning
[:class:] Match a character class
[abc] Match one of enclosed chars
[^xyz] Match any character not enclosed
| Separates alternatives

Most of these will be familiar from working with Python's regular expressions.
However, character classes are foreign to Python. They are part of MySQL's support
for the POSIX standard.

POSIX stands for Portable Operating System Interface for
Unix, a standard created by the IEEE as IEEE 1003 and adopted by the
International Standards Organisation as ISO/IEC 9945. It initially defined
a common Application Programming Interface (API) for use across
Unix-like operating systems. But, the platforms that are at least partially
compliant with it have since been extended to include Microsoft Windows
among others.

A character class is essentially shorthand for a large number of characters. Instead of
writing every letter of the alphabet like this:

mysql> SELECT 'Barstow' REGEXP '[abcdefghijklmnopqrstuvwxyz]';

We can use [:alpha:] to represent every alphabetic character and get the
same results:

mysql> SELECT 'Barstow' REGEXP '[:alpha:]';

+------------------------------+

| 'Barstow' REGEXP '[:alpha:]' |

+------------------------------+

| 1 |

+------------------------------+

1 row in set (0.00 sec)

Chapter 12

[353]

Character classes can include every alphanumeric character, punctuation, or several
others. A complete list of POSIX character classes are listed with their definition and
ASCII regex equivalent as follows:

POSIX Description ASCII

[:alnum:] Alphanumeric characters [a-zA-Z0-9]

[:alpha:] Alphabetic characters [a-zA-Z]

[:ascii:] ASCII characters [\x00-\x7F]

[:blank:] Space and tab [\t]

[:cntrl:] Control characters [\x00-\x1F\x7F]

[:digit:] Digits [0-9]

[:graph:] Visible characters [\x21-\x7E]

[:lower:] Lowercase letters [a-z]

[:print:] Visible characters and spaces [\x20-\x7E]

[:punct:] Punctuation and symbols [!"#$%&'()*+,\-
./:;<=>?@[\\\]^_`{|}~]

[:space:] All whitespace characters, including
line breaks [\t\r\n\v\f]

[:upper:] Uppercase letters [A-Z]

[:word:] Word characters [A-Za-z0-9_]

[:xdigit:] Hexadecimal digits [A-Fa-f0-9]

String Functions

[354]

Accessing and using index data
Here you will see how to calcualte the length of a value with LENGTH() function.

LENGTH()
Like len() in Python, the LENGTH() function of MySQL returns the bitwise length of
the value that is passed to it. Where multi-byte characters are used in the argument,
multiple byte values are tabulated. Therefore, in sakila, we can retrieve the title
and length of the title for each film. Here we use a WHERE clause to limit the results
for the sake of space.

SELECT title as title, LENGTH(title) as title_length FROM film WHERE
title LIKE 'TA%E';

+-------------------+--------------+

| title | title_length |

+-------------------+--------------+

| TALENTED HOMICIDE | 17 |

| TARZAN VIDEOTAPE | 16 |

+-------------------+--------------+

The LENGTH() function can similarly be used in the argument of other functions. For
example, if we wanted to extract the approximate middle of a value, we could divide
the length by four and cull out everything from the one fourth point, the length
divided by four, to the three fourth point, the length divided by four multiplied by 2
added to the value of the one fourth point. Remember that the second index value is
not to a point in the value, but is added to the initial index value in order to calculate
the slice. Therefore, rather than multiply by 3, we multiply it by 2 and use that value
as the second index value.

SELECT SUBSTRING("I'm afraid not", LENGTH("I'm afraid not")/4,
LENGTH("I'm afraid not")/4*2) AS length;

The length of the value is 14 characters. If we divide that by 4, we get 3.5 (4 when
rounded). This is our first index value. If we double that value, we get 7. Seven
characters from the 4 is the end of the word "afraid". Therefore, the results are
as follows:

+---------+

| length |

+---------+

| afraid |

+---------+

Chapter 12

[355]

An easier way to affect this selection is to define a user-defined variable name. It is
quite complicated to read.

By using the variable name @string, we can assign the string value and
not have to retype it.

SET @string = "I'm afraid not"; SELECT SUBSTRING(@
string, LENGTH(@string)/4, LENGTH(@string)/4*2) AS
length;

If we need to do this repeatedly, we could simply insert the value of @
string into a variable assignment for statement as follows:

statement1 = "SET @string = "%s"" %("I'm afraid
not")

We then define the SELECT statement in Python accordingly:
statement2 = "SELECT SUBSTRING(@string, LENGTH(@
string)/4, LENGTH(@string)/4*2) AS length"

We do not need to define @string if we execute both statements through
the same connection. So after creating a connection and our cursor within
a try...except structure, we can then execute the two statements in
succession:

cursor.execute(statement1)

cursor.execute(statement2)

We can then follow the execution of statement2 with a fetchall()
call and subsequent processing:

results = cursor.fetchall()

for item in results:

 print item[0]

The results:
 afraid

We can retrieve the index location of given strings using the INSTR() or
LOCATE() functions.

INSTR() or LOCATE()
Both INSTR() and LOCATE() serve to return the beginning index location of a given
string. The main difference between them is the order in which the arguments are
given. However, LOCATE() also supports more options.

String Functions

[356]

INSTR()
INSTR() accepts the base string first followed by the pattern to be found:

SELECT INSTR(base string, pattern);

It then returns the numerical index where the first instance of the pattern begins. To
illustrate, consider the following two examples:

mysql> SELECT INSTR('Can you find a bar in Barstow?', 'Bar') as results;
+-------+
| results |
+-------+
| 16 |
+-------+
1 row in set (0.00 sec)

mysql> SELECT INSTR('Can you find a bar in Barstow?', 'Bars') as results;
+-------+
| results |
+-------+
| 23 |
+-------+
1 row in set (0.00 sec)

In the first instance, we search for Bar and find it first at point 16 in the string.
However, in the second instance, we look for Bars, thus avoid the word bar,
and find the beginning of Barstow, instead.

You will notice that the match is not case-sensitive. Therefore, if you want
case-sensitive matching, you will need to pull the results into Python. MySQL
only performs case-sensitive matching when one of the strings is binary.

LOCATE()
As previously mentioned, LOCATE() supports a simpler syntax, similar to INSTR(),
and a more complex syntax. To function similarly to INSTR(), we simply reverse the
arguments and pass it to LOCATE():

mysql> SELECT LOCATE('bar', 'Can you find a bar in Barstow?') as results;
+---------+
| results |
+---------+
| 16 |
+---------+
1 row in set (0.00 sec)

Chapter 12

[357]

This simpler syntax is also echoed in a synonymous operation called
POSITION(). That function requires syntax exemplified as follows:
mysql> SELECT POSITION('bar' in 'Can you find a bar in
Barstow?') as results;

+---------+

| results |

+---------+

| 16 |

+---------+

1 row in set (0.00 sec)

As before, MySQL gives us the initial index of the first occurrence of the string.
However, what if you want the second occurrence of the string? LOCATE() allows
you to specify the beginning point of the search by stating the index point after the
base string.

mysql> SELECT LOCATE('bar', 'Can you find a bar in Barstow?', 16) as
results;

+---------+

| results |

+---------+

| 16 |

+---------+

1 row in set (0.00 sec)

As with INSTR(), LOCATE() is safe for use with multi-byte characters and is only
case-sensitive when one of the arguments is a binary string.

Nuancing data
In addition to performing indexing and substituting on data, MySQL also allows for
several ways of massaging the data to suit your needs. Some of the more common
ones are discussed in this chapter.

ROUND()
As the name suggests, the mathematical function ROUND() serves to round decimal
values to a specified number of places. The base value comes first in the syntax:

SELECT ROUND(base value, number of positions);

String Functions

[358]

So rounding an already rough approximation of Pi would look like this:

mysql> SELECT ROUND(22/7, 2) as PI;

+------+

| PI |

+------+

| 3.14 |

+------+

1 row in set (0.00 sec)

The ROUND() function will accept whatever value you give it for the number of
positions. However, if the number of places exceeds MySQL's built-in abilities to
calculate a value, the extra places will be filled with zeroes:

mysql> SELECT ROUND(22/7, 20) as PI;

+------------------------+

| PI |

+------------------------+

| 3.14285714200000000000 |

+------------------------+

1 row in set (0.00 sec)

ROUND() operates on numerical values only. In an effort to fail gracefully, it will
return all zero values and a warning if you pass it a string:

mysql> SELECT ROUND('cat', 2) as PI;

+------+

| PI |

+------+

| 0.00 |

+------+

1 row in set, 1 warning (0.00 sec)

This obviously cuts against the grain of the Zen of Python's "Errors should never
pass silently", so one must be wary of it.

Chapter 12

[359]

FORMAT()
The "format" feature functions similarly to ROUND() in that it allows you to specify
the number of decimal places for the results. It differs in that it will make the output
of the statement more human-friendly by adding punctuation for the value. For
example, division of large numbers frequently results in four or more digits to the
left of the decimal point. ROUND() treats them as follows:

mysql> SELECT ROUND(10000/3, 5) AS result;

+------------+

| result |

+------------+

| 3333.33333 |

+------------+

1 row in set (0.00 sec)

But FORMAT() makes the results much easier to read:

mysql> SELECT FORMAT(10000/3, 2) AS result;

+----------+

| result |

+----------+

| 3,333.33 |

+----------+

1 row in set (0.00 sec)

Additionally, FORMAT() supports multiple locales. If your MySQL installation
allows for more than your default locale, you can specify the format you require by
including the locale as a third argument to the function.

SELECT FORMAT(base value, number of decimal places, locale);

You can find more on FORMAT() in the MySQL documentation:

http://dev.mysql.com/doc/refman/5.5/en/string-functions.
html#function_format

More on specifying locales can be found at:

http://dev.mysql.com/doc/refman/5.5/en/locale-support.html

String Functions

[360]

UPPER()
In addition to the mathematical functions, MySQL also provides functions to
massage the format of string data. String values frequently come as normal text—
essentially a camel-backed mixture of capitals and lowercase letters. The UPPER()
function makes them all uppercase and takes only the string as an argument:

mysql> SELECT UPPER('Can you find a bar in Barstow?') as results;

+--------------------------------+

| results |

+--------------------------------+

| CAN YOU FIND A BAR IN BARSTOW? |

+--------------------------------+

1 row in set (0.00 sec)

LOWER()
The LOWER() function is similar to UPPER() in that it performs a single function and
takes only the string to be modified as an argument. As the name implies, it renders
all characters lowercase:

mysql> SELECT LOWER('Meeting at the UN HQ in NYC') as results;

+-----------------------------+

| results |

+-----------------------------+

| meeting at the un hq in nyc |

+-----------------------------+

1 row in set (0.00 sec)

Project: Creating your own functions
Comparing MySQL's string functions to Python's, you will notice that Python
supports the capitalize() and capwords() functions. These capitalize the initial
letter of the string and the first letter of each word, respectively. MySQL has no
built-in capability to do this. It either returns all uppercase, all lowercase, or the
original format of the string value. To put the onus of capitalization on the MySQL
server, we need to define our own functions.

Chapter 12

[361]

Hello()
To create a function, we necessarily have to go back to the CREATE statement. As in
a Python function definition, MySQL expects us to declare the name of the function
as well as any arguments it requires. Unlike Python, MySQL also wants the type of
data that will be received by the function. The beginning of a basic MySQL function
definition looks like this:

CREATE FUNCTION hello(s CHAR(20))

MySQL then expects to know what kind of data to return. Again, we use the MySQL
data type definitions for this.

RETURNS CHAR(50)

This just tells MySQL that the function will return a character string of 50 characters
or less.

If the function will always perform the same task, it is best for the sake of
performance to include the keyword DETERMINISTIC next. If the behavior of the
function varies, use the keyword NON-DETERMINISTIC. If no keyword is set for the
characteristic of the function, MySQL defaults to NON-DETERMINISTIC.

You can learn more about the characteristic keywords used in function
definitions at:
http://dev.mysql.com/doc/refman/5.5/en/create-
procedure.html

Finally comes the meat of the function definition. Here we can set variables and
perform any calculations that we want. For our basic definition, we will simply
return a concatenated string:

RETURN CONCAT('Hello, ', s, '!');

The function obviously concatenates the word 'Hello' with whatever argument is
passed to it and appends an exclamation point at the end. To call it we use SELECT as
with the other functions:

mysql> SELECT hello('world') as Greeting;

+---------------+

| Greeting |

+---------------+

| Hello, world! |

+---------------+

1 row in set (0.00 sec)

String Functions

[362]

Capitalise()
A function to capitalize every initial letter in a string follows the same pattern. The
main point of the function is to walk through the string, character by character, and
use UPPER() on every character that does not follow a letter.

DELIMITER
Obviously, we need a way to pass the entire function to MySQL without having any
of the lines evaluated until we call it. To do this, we use the keyword DELIMITER.
DELIMITER allows users to tell MySQL to evaluate lines that end in the character(s)
we set. So the process for complex function definitions becomes:

1. Change the delimiter.
2. Pass the function with the usual semicolons to indicate the end of the line.
3. Change the delimiter back to a semicolon.
4. Call the function.

The DELIMITER keyword allows us to specify more than one character as the line
delimiter. So in order to ensure we don't need to worry about our code inadvertently
conflicting with a line delimiter, let's make the delimiter @@:

DELIMITER @@

The function definition
From here, we are free to define a function to our specification. The definition line
will read as follows:

CREATE FUNCTION `Capitalise`(instring VARCHAR(1000))

The function will return a character string of similar length and variability:

RETURNS VARCHAR(1000)

When MySQL functions extend beyond the simplest calculations, such as hello(),
MySQL requires us to specify the beginning and ending of the function. We do that
with the keywords BEGIN and END. So let's begin the function:

BEGIN

Next, we need to declare our variables and their types using the keyword DECLARE:

DECLARE i INT DEFAULT 1;
DECLARE achar, imark CHAR(1);
DECLARE outstring VARCHAR(1000) DEFAULT LOWER(instring);

Chapter 12

[363]

The DEFAULT keyword allows us to specify what should happen if outstring should
fail for some reason.

Next, we define a WHILE loop:

WHILE i <= CHAR_LENGTH(instring) DO

The WHILE loop obviously begins with a conditional statement based on the character
length of instring. The resulting action begins with the keyword DO. From here, we
set a series of variables and express what should happen where a character follows
one of the following:

blank space & '' _ ? ; : ! , - / (.

The operational part of the function looks like this:

 SET achar = SUBSTRING(instring, i, 1);
 SET imark = CASE WHEN i = 1 THEN ' '
 ELSE SUBSTRING(instring, i - 1, 1) END CASE;
 IF imark IN (' ', '&', '''', '_', '?', ';', ':', '!', ',', '-
', '/', '(', '.') THEN SET outstring = INSERT(outstring, i, 1,
UPPER(achar));
 END IF;
 SET i = i + 1;

Much of this code is self-explanatory. It is worth noting, however, that the apodosis
of any conditional in MySQL must end with the keyword END. In the case of IF, we
use END IF.

In the second SET statement, the keyword CASE is an evaluative keyword that
functions similar to the try...except structure in Python. If the WHEN condition is
met, the empty THEN apodosis is executed. Otherwise, the ELSE exception applies
and the SUBSTRING function is run. The CASE structure ends with END CASE. MySQL
will equally recognize the use of END instead.

The subsequent IF clause evaluates whether imark, defined as the character before
achar, is one of the declared characters. If it is, then that character in instring is
replaced with its uppercase equivalent in outstring.

After the IF clause is finished, the loop is incremented by one. After the entire string
is processed, we then end the WHILE loop with:

END WHILE;

After the function's operations are completed, we return the value of outstring and
indicate the end of the function:

RETURN outstring;
END@@

String Functions

[364]

Finally, we must not forget to return the delimiter to a semicolon:

DELIMITER ;

It is worth noting that, instead of defining a function in a MySQL session
we can define it in a separate file and load it on the fly with the SOURCE
command. If we save the function to a file called capfirst.sql in a
directory temp, we can source it relatively:

SOURCE capfirst.sql;

We can also use:
SOURCE /home/skipper/temp/capfirst.sql;

Calling the function
With the function loaded into memory, we can then call it:

mysql> SELECT Capitalise('we have a meeting a.s.a.p.');

+--+

| Capitalise('we have a meeting a.s.a.p.') |

+--+

| We Have A Meeting A.S.A.P. |

+--+

1 row in set (0.00 sec)

Of course, we would not normally write like this. However, we can call the function
as part of a SELECT statement, just like any other MySQL function.

mysql> SELECT CONCAT(Capitalise('we '), 'have a meeting ', Capitalise('a.
s.a.p.')) as Message;

+----------------------------+

| Message |

+----------------------------+

| We have a meeting A.S.A.P. |

+----------------------------+

1 row in set (0.00 sec)

Chapter 12

[365]

Defining the function in Python
As you can guess by now, calling the function in Python is as simple as passing it
through cursor.execute(). If we have a cursor defined as cursor, we can pass the
last example of the previous section as follows:

statement = "SELECT CONCAT(Capitalise('we '), 'have a meeting ',
Capitalise('a.s.a.p.')) as Message"
cursor.execute(statement)

We then proceed to fetchall() the results.

Defining the function as a Python value
Defining the function is a bit different from calling it. If you try to pass the
function we previously defined through Python as a value of statement, you get a
programming error that reads something like this:

_mysql_exceptions.ProgrammingError: (1064, "You have an error in your SQL
syntax; check the manual that corresponds to your MySQL server version
for the right syntax to use near 'DELIMITER @@\n\nCREATE FUNCTION
`Capitalise`(instring varchar(1000))\n\tRETURNS VARC' at line 1")

The problem is the DELIMITER statement. If we pull those and define statement
as follows, we will have no problems (thanks to William Chiquito for the
following code):

statement = """
CREATE FUNCTION `Capitalise`(instring varchar(1000))
RETURNS VARCHAR(1000)
BEGIN

DECLARE i INT DEFAULT 1;
DECLARE achar, imark CHAR(1);
DECLARE outstring VARCHAR(1000) DEFAULT LOWER(instring);

WHILE i <= CHAR_LENGTH(instring) DO
SET achar = SUBSTRING(instring, i, 1);
SET imark = CASE WHEN i = 1 THEN ' '
ELSE SUBSTRING(instring, i - 1, 1) END;
IF imark IN (' ', '&', '''', '_', '?', ';', ':', '!', ',', '-', '/',
'(', '.') THEN SET outstring = INSERT(outstring, i, 1, UPPER(achar));
END IF;

String Functions

[366]

SET i = i + 1;
END WHILE;

RETURN outstring;

END;
"""

Putting function definitions into your code increases the amount of runtime
resources needed and can make maintenance quite onerous. Instead, we can save it
in a separate file. Note that MySQL for Python does not allow the use of MySQL's
SOURCE command. So one must use alternative means to the same effect.

Sourcing the MySQL function as a Python module
We can take the preceding code and source it as a Python module. Begin it with
the following:

#!/usr/bin/env python
This shebang is for a Linux machine. Adjust your shebang line
accordingly

def MakeStatement():

 statement = """
CREATE FUNCTION `CapMe`(instring varchar(1000))
...
and end it:
...

END;

"""
 return statement

If we save it as capfirst.py, we can reference it as follows:
import capfirst
...
statement = capfirst.MakeStatement()

Sourcing the function as MySQL code
It may seem a bit excessive to put Python's function trappings around a variable
assignment. A simpler way of affecting the same results is to read the MySQL file
into memory as the value of statement and then pass that value through execute():

statement = open("/home/skipper/temp/capfirst.sql").read()
runit = cursor.execute(statement)

Chapter 12

[367]

The effect is the same and the function is created in the end. Similar tactics can
be used whenever you need to source a MySQL file (for example, the dump of
a database).

Room to grow
This function does essentially what we want it to do: capitalizes the first letter of
every word in the string. However, it still has a few drawbacks that should
be addressed:

What happens when you evaluate the string "we have a meeting a.s.a.p. in
Brussels"? How would you rectify it?
How would you handle a string such as "we were 'discussing' just that"?
How do you write a function to load the function when you need it and get
rid of it when you don't?
The current function emulates the capwords() function of Python. How
would you simulate Python's capitalize() function?

Summary
In this chapter, we have covered several of MySQL's string functions and ways to
use them in Python. We have seen:

How to concatenate two or more strings
Ways to return only part of a string, leaving the larger string behind
How to trim whitespaces from around a value
Mysql's functions for replacing and inserting values into others
How to form regular expressions for MySQL
Ways to locate strings within other strings
How to calculate the length of a value
Ways to work with both numbers and character values to nuance raw data
How to write functions for MySQL and use them in Python

In the next chapter, we will look at how to access the MySQL's metadata from
within Python.

•

•

•

•

•

•

•

•

•

•

•

•

•

Showing MySQL Metadata
In previous chapters, we have moved from the basics of selecting, inserting, creating,
and dropping in MySQL through Python. In this chapter, we will look at accessing
MySQL's metadata through Python. We have seen a lot of this incidentally in
preceding chapters. However, in this chapter, we will look at them in greater depth.
By the end of this chapter, we will see the following:

What MySQL metadata is available to us and how to access it
How to get a list of databases and tables
Ways to switch databases on-the-fly
How to get columnar information

This information is very useful for creating intermediate levels of database
management. At the end of the chapter, we will look at how to create a class
representation of a database.

Within a MySQL session, the easiest way to access metadata is by using the
INFORMATION_SCHEMA pseudo-table. By switching to it with:

USE INFORMATION_SCHEMA;

you can access a plethora of information. Doing this from within a Python program
increases your program's overhead. So in this chapter, we will look at how to access
metadata without switching databases.

•

•

•

•

Showing MySQL Metadata

[370]

The primary way to get MySQL to tell you anything is the SHOW command. What
you get in return naturally depends on what you ask for. There are many different
arguments that you can pass to SHOW, some of which appear as follows:

Arguments
EVENTS

BINARY LOGS FUNCTION CODE PROFILES

BINLOG EVENTS FUNCTION STATUS RELAYLOG EVENTS

CHARACTER SET GRANTS SLAVE HOSTS

COLLATION INDEX SLAVE STATUS

COLUMNS MASTER STATUS STATUS

CONTRIBUTORS OPEN TABLES TABLE STATUS

CREATE PLUGINS TABLES

DATABASES PRIVILEGES TRIGGERS

ENGINE PROCEDURE CODE VARIABLES

ENGINES PROCEDURE STATUS WARNINGS

ERRORS PROCESSLIST

These are basic options, most of which can be further nuanced with the use of LIKE
or other keywords to nuance or restrict the results. Some of these require different
privileges than the average user. While many of these will be invaluable in accessing
information about MySQL and the databases you access, many others are used
infrequently, if at all. In the following discussion, we will look at key information
about databases, tables, and MySQL system information that is most relevant to
Python programming.

MySQL's system environment
MySQL offers access to a wide array of information about the environment in
which your database is stored and the variables that impact your access to it. Of
particular import for programming is understanding MySQL's engines, profiles,
and system variables.

Chapter 13

[371]

ENGINE
To understand the use of MySQL's ENGINE command, it is important to first
understand what MySQL means by a database storage engine. When you create a
database, MySQL defaults to storing data with the MyISAM database engine. It is a
transactionless database storage engine that uses the following three files:

1 A format file (.frm).
2 An index file (.MYI for MYIndex).
3 Data file (.MYD for MYData).

MyISAM is sufficiently robust for most purposes, but there are following eight others
that are worth noting:

1 InnoDB: A high-performance database engine for processing large volumes of
data with efficient CPU usage and the use of transactions.

2 IBMDBI: A transaction-capable database engine designed for IBM's DB2 table
format on IBM i servers.

3 MERGE: A merger of two or more MyISAM tables to function as one.
4 MEMORY (HEAP): An engine that stores all tables in memory; this is very fast

but resource-intensive.
5 FEDERATED: Allows access to a remote database through a local MySQL

instance.
6 ARCHIVE: An index-less storage engine that allows for efficient data storage.
7 CSV: Stores data in comma-delimited files.
8 BLACKHOLE: Receives data, but does not store it.

Oracle, the parent company of MySQL, has discussed changing the default to InnoDB
in MySQL 5.5, so the default engine may change before MySQL 5.5 makes it out of
beta. For other versions, the default engine remains MyISAM.

Showing MySQL Metadata

[372]

The most popular engines
While MySQL supports each of these engines, practice sees the following storage
engines are used most often: MyISAM, InnoDB, and MEMORY. MySQL's comparison of
these looks like the following:

 MyISM InnoB MEMORY

Multi-statement transactions,
ROLLBACK - X -
Foreign key constraints - X -
Locking level table row table
BTREE indexes X X -
FULLTEXT indexes X - -
HASH lookups - X X
Other in-memory tree-based index - - X
GIS, RTREE indexes X - -
Unicode X X -
Merge (union views) X - -
Compress read-only storage X - -
Relative disk use low high -
Relative memory use low high low

Additionally, many MySQL installations use networked databases referred to as Network
Database (NDB), which combines several standard MySQL databases with the cluster-
oriented storage engine for which it is named. You can find more about clustering MySQL
databases at http://dev.mysql.com/doc/refman/5.0/en/mysql-cluster-
overview.html

Transactions
While many of these points of comparison are self-explanatory, the use of
transactions is worth further explanation because we have not used it much in this
book. For the purposes of database management, a transaction is treated as a unit of
work that can be compared against other units of work performed within a database
management system. Put plainly, a transaction is effectively a collection of queries
passed to MySQL in a particular order for a particular purpose.

Obviously, if you are retrieving data or inserting completely new information, the
order in which the statements are executed frequently does not matter. However,
if you use UPDATE or other statements that change the substance or structure of a
dataset, the order matters a great deal.

Chapter 13

[373]

Using transactions allows one to change the state of the database back to what it
was before the commands were issued, and usually requires the use of the COMMIT
keyword to commit the changes once they are affected. In MySQL for Python, we
use the commit() method of the connection object after we have entered the data. Of
the engines shown in the previous table, only InnoDB supports multiple-statement
transactions and the ability to roll the state of the database back using ROLLBACK.

For more on using transactions in InnoDB, see the MySQL manual at
http://dev.mysql.com/doc/refman/5.5/en/commit.html

Specifying the engine
To specify which engine to use, simply append the option to the CREATE statement
for the table as follows:

CREATE TABLE mydb(myfield INT) ENGINE = <engine name>;

MySQL does allow each table of a database to use a different engine. For example:

mysql> CREATE TABLE t1(i1 INT) ENGINE=MyISAM;

Query OK, 0 rows affected (0.00 sec)

mysql> CREATE TABLE t2(i2 INT) ENGINE=INNODB;

Query OK, 0 rows affected (0.10 sec)

mysql> CREATE TABLE t3(i3 INT) ENGINE=MEMORY;

Query OK, 0 rows affected (0.00 sec)

This results in three tables each using a different engine.

For information on using table spaces with InnoDB tables, see:
http://dev.mysql.com/doc/refman/5.5/en/multiple-
tablespaces.html

Whichever engine is used for a given table will naturally have an impact over how
that data is stored and indexed. This can further have an impact on the choice
of what backup method you use with which table (for more on MySQL disaster
recovery, see the discussion in the next chapter).

ENGINE status
Each engine in MySQL is treated separately of the others. If you use InnoDB, MySQL
allows you to access the log and the status information from within MySQL. To do
so, we use the ENGINES keyword with SHOW.

mysql> SHOW ENGINE InnoDB STATUS;

Showing MySQL Metadata

[374]

The output will likely run off your screen. If you are on Windows or a similar
graphic client to MySQL, this is usually not a problem. However, if you are using a
traditional terminal on a Unix or Linux server, you would normally need a mouse
to scroll through the data. A better way is to affix a \G at the end of the query. Or
you can set the MySQL pager to whatever text viewing application is installed on
the server that will receive piped input. On Unix machines, the text viewer more is
generally available; on Linux, less is available. To pass output to the latter, use the
PAGER command as follows:

mysql> PAGER less;

Now, less will be used to display output from MySQL, and the results of SHOW
ENGINE can be browsed easily. Note that, because we set the PAGER value within the
MySQL session, the assignment is only temporary and will refresh to the default
when you next log in. Making the change persistent can be affected with the—PAGER
flag, if you log in from a shell prompt (for more on this see: http://dev.mysql.
com/doc/refman/5.5/en/mysql-commands.html).

SHOW ENGINES
Sometimes when working on a system that you did not set up, it is necessary to
confirm, which database engines are supported by the local installation. To do that,
use SHOW ENGINES. The output will be a table of all storage engines known to the
current installation and their support status. For example:

mysql> SHOW ENGINES;

+------------+----------+--
----------------+

| Engine | Support | Comment
|+------------+----------+---
-----------------+

| MyISAM | DEFAULT | Default engine as of MySQL 3.23 with great
performance |

| MEMORY | YES | Hash based, stored in memory, useful for
temporary tables |

| InnoDB | YES | Supports transactions, row-level locking, and
foreign keys |

| BerkeleyDB | NO | Supports transactions and page-level locking
|

| BLACKHOLE | YES | /dev/null storage engine (anything you write to
it disappears) |

| EXAMPLE | NO | Example storage engine
|

| ARCHIVE | YES | Archive storage engine
|

Chapter 13

[375]

| CSV | YES | CSV storage engine
|

| ndbcluster | DISABLED | Clustered, fault-tolerant, memory-based tables
|

| FEDERATED | YES | Federated MySQL storage engine
|

| MRG_MYISAM | YES | Collection of identical MyISAM tables
|

| ISAM | NO | Obsolete storage engine
|

+------------+----------+--
----------------+

Note that this example was run against an earlier 5.x version of MySQL. MySQL 5.5,
for example, does not support the BerkeleyDB.

Profiling
Profiling is MySQL's form of user monitoring. When used, it tracks several aspects
of system performance and the resources used in a given session. By default, it is
switched off. To turn it on, key:

mysql> SET PROFILING = 1;

When profiling is switched on, you can view your session data using one of two
keywords.

SHOW PROFILE
To show your profile, simply enter:

mysql> SHOW PROFILE;

MySQL will then return several statistics that will look similar to the following:

+--------------------+----------+

| Status | Duration |

+--------------------+----------+

| (initialization) | 0.000064 |

| Opening tables | 0.000025 |

| query end | 0.000008 |

| freeing items | 0.00001 |

| logging slow query | 0.000005 |

+--------------------+----------+

Showing MySQL Metadata

[376]

SHOW PROFILES
However, if you want to view performance by query, you need to use the PROFILES
keyword. This will trace your history as you switched on profiling and recount the
execution times for each query you passed:

mysql> SHOW PROFILES;

+----------+------------+---------------------------+

| Query_ID | Duration | Query |

+----------+------------+---------------------------+

| 1 | 0.00017000 | SHOW ENGINES |

| 2 | 0.00100500 | SHOW ENGINE innodb STATUS |

| 3 | 0.00011200 | SET PROFILING = 1 |

+----------+------------+---------------------------+

SHOW system variables
MySQL also provides access to a plethora of database system variables when you
issue the query such as:

mysql> SHOW VARIABLES;

If you are using MySQL's default pager, the results table will usually scroll off the
screen. One does not normally browse the system variables. On the contrary, one
uses matching to cull out a particular value. For example, if we wanted to know
which version of MySQL is in use, we would match against the value version:

mysql> SHOW VARIABLES LIKE 'version';

+---------------+--------------------+

| Variable_name | Value |

+---------------+--------------------+

| version | 5.0.51a-3ubuntu5.4 |

+---------------+--------------------+

Chapter 13

[377]

If, however, we did not know the variable that we needed, we can use the following
wildcard matching just as easily:

mysql> SHOW VARIABLES LIKE '%version%';

+-------------------------+--------------------+

| Variable_name | Value |

+-------------------------+--------------------+

| protocol_version | 10 |

| version | 5.0.51a-3ubuntu5.4 |

| version_comment | (Ubuntu) |

| version_compile_machine | i486 |

| version_compile_os | debian-linux-gnu |

+-------------------------+--------------------+

Exactly which variables are available will differ by installation and server version.
For a comprehensive list of variables with links to the import of each, see:

http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html

Be sure to adjust the 5.5 (version) to read according to your server version.

Accessing database metadata
MySQL provides access to several aspects of databases, tables, or extensions thereof.
Combining the various options creates the potential for interactive programs, as
we will see later in this chapter. As with the MySQL environmental commands, all
statements discussed here presume the use of SHOW.

DATABASES
If you are creating a wholly interactive system for database administration,
you will need to access the list of databases. To do this in MySQL, we use the
following command:

mysql> SHOW DATABASES;

The result is a single column table showing all known databases on the system to
which the user has access. Note that the appearance of a database on the list does not
indicate permission to access it. Rather, you would also need to query the privileges
of the user, as we will see when accessing user information in the next main section.

Showing MySQL Metadata

[378]

Using the USE command
When you have a list of the available databases, you can access a database within the
current session using USE:
mysql> USE sakila;

Reading table information for completion of table and column names

You can turn off this feature to get a quicker startup with -A

Database changed

When creating a database connection object in MySQL for Python, it is not necessary
to indicate the database to be used in order to log in. Rather, one can leave that blank
as follows:

mydb = MySQLdb.connect('localhost', 'skipper', 'secret')

If we want to be more overt and show that we purposely are not declaring the
database, we can simply use a blank string:

mydb = MySQLdb.connect('localhost', 'skipper', 'secret', '')

or, even better:
mydb = MySQLdb.connect(host='localhost',
 user='skipper',
 password='secret',
 db='')

However, in order to do anything that uses a database table, one must issue a USE
statement through the execute() method of a cursor object:

statement = "USE sakila"
runit = cursor.execute(statement)

If in doubt over privileges, be sure to couch this part of your code in a
try...except structure.

Accessing metadata about tables
Once you indicate to MySQL about the database you are going to use, there are
several table-oriented operations that you can perform. You can also ascertain
several dynamics about any given table.

SHOW TABLES
Like DATABASES, the TABLES keyword will cause MySQL to return a list of all tables
in a database to which you have access. The syntax is simply:
mysql> SHOW TABLES;

Chapter 13

[379]

SHOW TABLE STATUS
In addition to seeing the table names, we can also access several pieces of
metainformation for each table using TABLE STATUS.

mysql> SHOW TABLE STATUS;

Depending on how many of the tables in the database we are allowed to access, the
results can be quite long. Therefore, it is usually advisable to restrict the matches
with a WHERE clause (or LIKE clause) and a parameter of equality as appropriate.

Showing columns from a table
For any given table, we can access the name, type, and default value for every field in
a table. We can also see whether a NULL value is allowed, whether the field holds the
primary key for the table, and any extra options that apply to the table. For example,
using sakila, we can get the format of the city table as follows:

mysql> SHOW COLUMNS FROM city;

+-------------+----------------------+------+-----+-------------------+--
--------------+

| Field | Type | Null | Key | Default |
Extra |

+-------------+----------------------+------+-----+-------------------+--
--------------+

| city_id | smallint(5) unsigned | NO | PRI | NULL |
auto_increment |

| city | varchar(50) | NO | | NULL |
|

| country_id | smallint(5) unsigned | NO | MUL | NULL |
|

| last_update | timestamp | NO | | CURRENT_TIMESTAMP
| |

+-------------+----------------------+------+-----+-------------------+--
--------------+

A synonym for COLUMNS FROM is DESCRIBE. Therefore, we could get the same data
with the following:

mysql> DESCRIBE city;

Showing MySQL Metadata

[380]

FUNCTION STATUS
Using FUNCTION STATUS by itself will return a list of all available stored functions
known to the system. For each function, MySQL will return the following:

The name of the database to which the function pertains
The name of the database, its type
The user who defined the function
Its last modification date
When it was created
The role of the users who are associated with the function
Any comments that are used to describe it

Depending on how your system is set up, this list could get quite long. So as with
other operations, we can nuance what is returned by using a parameter of equality
and, if necessary, a wildcard.

To return information about the function Capitalise(), defined in the previous
chapter, we would use the following query:

mysql> SHOW FUNCTION STATUS LIKE 'Capitalise';

+-------+------------+----------+----------------+---------------------+-
--------------------+---------------+---------+

| Db | Name | Type | Definer | Modified |
Created | Security_type | Comment |

+-------+------------+----------+----------------+---------------------+-
--------------------+---------------+---------+

| javab | Capitalise | FUNCTION | skipper@localhost | 2010-03-24 11:29:13
| 2010-03-24 11:29:13 | DEFINER | |

+-------+------------+----------+----------------+---------------------+-
--------------------+---------------+---------+

CREATE (DATABASE/FUNCTION/PROCEDURE/TABLE/VIEW)
Sometimes, it can be difficult to know the reason an aspect of a MySQL database
functions as it does. While SHOW COLUMNS and SHOW TABLE STATUS offer a very good
picture, it is not unheard of for a developer to think the database was formed with
one definition when it was created with another. Therefore, MySQL allows us to see
how it understands things to be and does so by giving us the defining statements of
the object involved.

•

•

•

•

•

•

•

Chapter 13

[381]

To view the code for the sakila database, for example, we would issue the following
query (using a postpended \G if needed):

mysql> SHOW CREATE DATABASE sakila;

and get these results:

+----------+--+

| Database | Create Database
|

+----------+--+

| sakila | CREATE DATABASE `sakila` /*!40100 DEFAULT CHARACTER SET
latin1 */ |

+----------+--+

The same goes for a table. If we are using sakila, we can see the following creation
statement for the film table. Using \G will spare you a lot of the formatting, which
can become noise on a smaller screen.

mysql> SHOW CREATE TABLE film;

+-------+--
-------------------------------------...(ellipses for MySQL's formatting
dashes)...

------------------------+

| Table | Create Table

 |

+-------+--
-------------------------------------...(ellipses for MySQL's formatting
dashes)...

----------------------+

| film | CREATE TABLE `film` (

 `film_id` smallint(5) unsigned NOT NULL auto_increment,

 `title` varchar(255) NOT NULL,

 `description` text,

 `release_year` year(4) default NULL,

 `language_id` tinyint(3) unsigned NOT NULL,

 `original_language_id` tinyint(3) unsigned default NULL,

 `rental_duration` tinyint(3) unsigned NOT NULL default '3',

 `rental_rate` decimal(4,2) NOT NULL default '4.99',

Showing MySQL Metadata

[382]

 `length` smallint(5) unsigned default NULL,

 `replacement_cost` decimal(5,2) NOT NULL default '19.99',

 `rating` enum('G','PG','PG-13','R','NC-17') default 'G',

 `special_features` set('Trailers','Commentaries','Deleted
Scenes','Behind the Scenes') default NULL,

 `last_update` timestamp NOT NULL default CURRENT_TIMESTAMP on update
CURRENT_TIMESTAMP,

 PRIMARY KEY (`film_id`),

 KEY `idx_title` (`title`),

 KEY `idx_fk_language_id` (`language_id`),

 KEY `idx_fk_original_language_id` (`original_language_id`),

 CONSTRAINT `fk_film_language` FOREIGN KEY (`language_id`) REFERENCES
`language` (`language_id`) ON UPDATE CASCADE,

 CONSTRAINT `fk_film_language_original` FOREIGN KEY (`original_language_
id`) REFERENCES `language` (`language_id`) ON UPDATE CASCADE

) ENGINE=InnoDB AUTO_INCREMENT=1001 DEFAULT CHARSET=utf8 |

+-------+--
-------------------------------------...(ellipses for MySQL's formatting
dashes)...

---------------------+

1 row in set (0.09 sec)

If we wanted to see the code for the Capitalise() function, we would issue:

mysql> SHOW CREATE FUNCTION Capitalise;

However, we must be in the appropriate database for that function. In sakila, we
get this message back:

ERROR 1305 (42000): FUNCTION Capitalise does not exist

If we switch to the database for which we defined Capitalise(), however, we will
get the function definition returned.

Similar operations can be performed for procedures and views.

Chapter 13

[383]

Accessing user metadata
If you write a program that interacts with MySQL dynamically, it will need to adopt
its behavior based on the server setup and the characteristic of a user's account.
You will then need to be able to access what privileges have been granted to a user
from within a MySQL session; you obviously cannot count on having administrator
access. For this reason, MySQL provides access to user information from within
a session.

SHOW GRANTS
In using SHOW GRANTS, we ask MySQL to return the GRANT statements used to grant
privileges to the user. The results will show the precise tables for which permission
has been granted. However, any passwords that were part of the original GRANT
statement are returned as a hash.

As a user mammamia, we can see the GRANT statements that pertain to that account as
shown below:

mysql> SHOW GRANTS;

+--
---+

| Grants for mammamia@localhost|

+--
---+

| GRANT USAGE ON *.* TO 'mammamia'@'localhost' IDENTIFIED BY PASSWORD
'*41BAD3DEEB08D03DA99724882859C3188BAEC952' |

| GRANT SELECT ON `fish`.`menu` TO 'mammamia'@'localhost'|

+--
---+

These results can be parsed in Python and acted upon or just cataloged.

Depending on the user's level of access, you can show grants for other users by using
FOR clause added to SHOW GRANTS syntax as follows:

SHOW GRANTS FOR mammamia;

Showing MySQL Metadata

[384]

PRIVILEGES
Of course, if the user is granted all privileges as indicated by the universal wildcard
(*), simply parsing the results will still keep you guessing as to what those privileges
actually are. The privileges available to any user are naturally a subset of the
privileges supported by the server, which are themselves configurable and vary
from installation to installation. For this reason, MySQL also provides a way to learn
all of the privileges supported by the server and what they do. Simply use SHOW
PRIVILEGES.

What output you get for this statement depends on your server version and
how the server was configured.

Project: Building a database class
When you are new to a project or just unfamiliar with a database, getting up to speed
on the oral tradition of your team and (all too frequently) sparse documentation can
be quite frustrating. In such instances, being able to access the technical information
for a database can be quite helpful. The project for this chapter is therefore to build
a database class that gives you easy access to metainformation for a database of
your choosing.

As we have seen, MySQL results are not always easy to read in the aggregate.
Therefore, we will also need code that will digest the results and output them in
human-friendly format. The specification points for this project are thus:

Develop a class to access MySQL metadata
Return metainformation on a specified database using the class instance
Reformat tabular information to be more friendly to human readers
Print out a report of the information

We will save the boiler-plate code of creating the connection and checking the value
of __name__ until the very end. First, let's look at creating the class.

Writing the class
In principle, all that is necessary is to fulfill the first item and code the several
queries as methods of a class. Each method defines a statement that is then executed,
returning the results. The class definition begins as follows:

class Database:
 def __init__(self):
 "A class representation for MySQL database metadata"
 self.database = []

•
•
•
•

Chapter 13

[385]

Defining fetchquery() and some core methods
We could then write every method to execute each query within its own method like
the following:

 def tables(self, cursor):
 "Returns a list of the database tables"
 statement = "SHOW TABLES"
 header = ("Tables")
 try:
 runit = cursor.execute(statement)
 results = cursor.fetchall()
 except MySQLdb.Error, e:
 results = "The query you attempted failed. Please verify
the information you have submitted and try again. The error message
that was received reads: %s" %(e)
 return header, results

However, unnecessary repetition is the midwife of many code errors. Further, the
excess code created by such repetition serves to enlarge the resources needed for the
program. This may seem small, but the more the code is used the greater the drain
on resources it becomes. The best way to ensure the same operation is performed the
same way every time is to write it once and pass arguments to it.

It is therefore better to write an internal function and pass all statements to it. We can
write a method fetchquery() to serve this purpose. The revised code would look
like this:

 # Execute straightforward queries
 def fetchquery(self, cursor, statement):
 "Internal method that takes a statement and executes the
query, returning the results"
 try:
 runit = cursor.execute(statement)
 results = cursor.fetchall()
 except MySQLdb.Error, e:
 results = "The query you attempted failed. Please verify
the information you have submitted and try again. The error message
that was received reads: %s" %(e)
 return results

 def tables(self, cursor):
 "Returns a list of the database tables"
 statement = "SHOW TABLES"
 header = ("Tables")
 results = self.fetchquery(cursor, statement)
 return header, results

Showing MySQL Metadata

[386]

When retrieving data based on user information, there is always a chance of an
error. Therefore, we couch the execution lines of fetchquery() in a try...except
structure, returning the error message if it arises.

Retrieving table status and structure
We can similarly write functions to retrieve the table statuses and structure. These
we call tbstats() and describe().

 def tbstats(self):
 "Returns the results of TABLE STATUS for the current db"
 header = ("Name", "Engine", "Version", "Row_format", "Rows",
"Avg_row_length", "Data_length", "Max_data_length", "Index_length",
"Data_free", "Auto_increment", "Create_time", "Update_time", "Check_
time", "Collation", "Checksum", "Create_options", "Comment")
 statement = "SHOW TABLE STATUS"
 results = self.fetchquery(statement)
 return header, results

 def describe(self, tablename):
 "Returns the column structure of a specified table"
 header = ("Field", "Type", "Null", " Key", "Default", "Extra")
 statement = "SHOW COLUMNS FROM %s" %(tablename)
 results = self.fetchquery(statement)
 return header, results

While we name the method describe(), we use the MySQL call SHOW COLUMNS. This
is purely stylistic, and you could just as easily use the call DESCRIBE.

Retrieving the CREATE statements
Next, we can retrieve the CREATE statements for each of the database and tables. Just
like executing the query, we here need to use the same code repeatedly. Therefore,
we write a function to assemble the statement based on the information it receives
from the calling function. Let's call it getcreate():

 # Retrieve CREATE statements
 def getcreate(self, type, name):
 "Internal method that returns the CREATE statement of an
object when given the object type and name"
 statement = "SHOW CREATE %s %s" %(type, name)
 results = self.fetchquery(statement)
 return results

Chapter 13

[387]

This method takes the type and name of the object and forms the SHOW CREATE
statement for it. That statement is then passed to fetchquery(), and the results of
that method are passed back as the results of this one.

For the creation statement of the database and the table, the method is:

 def dbcreate(self):
 "Returns the CREATE statement for the current db"
 type = "DATABASE"
 name = db
 header = ("Database", "Create Database")
 results = self.getcreate(type, name)
 return header, results

 def tbcreate(self, tbname):
 "Returns the CREATE statement for a specified table"
 type = "TABLE"
 header = ("Table, Create Table")
 results = self.getcreate(type, tbname)
 return header, results

There are other metadata that we could retrieve, but these serve as illustrations.
Next, we'll look at calling these methods and handling the results.

Define main()—part 1
We need to define the main() function that will serve as the brains of the program.
For the moment, we will use main() simply to instantiate the class and run through
the methods, printing out their results. The beginning of the function thus reads:

def main():
 mydb = Database()

To get an idea of what the output from these methods looks like, we can then write a
series of print commands as follows:

 print mydb.tables()
 print mydb.tbstats()
 print mydb.dbcreate()
 for i in mydb.tables()[1]:
 print mydb.describe(i)

As you may note in looking at the methods, each returns a tuple in the same format
as: header and results. However, the describe() method requires a table as its
argument. So we pass the for loop the second part of the results from tables().

Showing MySQL Metadata

[388]

A single run of this program will illustrate how unreadable the results are. MySQL
for Python serves us well by turning MySQL's tables into sequences, but these are
then unreadable by human users. We need to massage the data format a bit. For
this we have two options—either write a custom routine or abstract the handling
of results to a function. The first is illustrated, as follows, with regard to the results
of tables():

 tables = mydb.tables()
 print "Tables of %s" %(db)
 for c in xrange(0, len(tables[1])):
 print tables[1][c][0]
 print '\n\n'

We simply use the length of the results to form a for loop that prints the results in
sequence. When it comes to other methods, however, it is not a bad idea to write a
separate function.

Writing resproc()
What we want in resproc() is a method that parses the output from the Database
methods and returns a formatted output. The first thing we need to do upon defining
the function is to assign the two parts of the tuple input to different variables for ease
of processing.

def resproc(finput):
 "Compiles the headers and results into a report"
 header = finput[0]
 results = finput[1]

Now we are in a position to split both parts of the input and compile them into
something more meaningful to the human eye. First, we split the results and
create a new dictionary out of the two called output.

 output = {}
 c = 0
 for r in xrange(0, len(results)):
 record = results[r]
 outrecord = {}

 for column in xrange(0, len(header)):
 outrecord[header[column]] = record[column]
 output[str(c)] = outrecord
 c += 1

Chapter 13

[389]

Next, we create a string for the results of the function. We then walk through our
new dictionary and add the results to the string for a nicely formatted report.

 orecord = ""
 for record in xrange(0, len(results)):
 record = str(record)
 item = output[record]
 for k in header:
 outline = "%s : %s\n" %(k, item[k])
 orecord = orecord + outline
 orecord = orecord + '\n\n'
 return orecord

It should be noted that the formatting used here is just for a text file. We could just
as easily make it suitable for HTML or any other document format by including the
necessary formatting code.

Define main()—part 2
With resproc() defined, we can continue with the handling of other results. For
example, we can now handle the results of tbstats()as follows:

 tablestats = mydb.tbstats()
 print "Table Statuses"
 print resproc(tablestats)
 print '\n\n'

just as easily as we handle the results of dbcreate():

 dbcreation = mydb.dbcreate()
 print "Database CREATE Statement"
 print resproc(dbcreation)
 print '\n\n'

There are, of course, other methods in the class we defined earlier. But these are done
as an introduction.

The preamble
Now that we have the class and functions written, we need to include some
introductory code to the head of the program. Beside the modules we use, we
also need to assign a few variables and incorporate some administrative code.

Showing MySQL Metadata

[390]

Modules and variables
We obviously will need MySQLdb. However, the specification that we set ourselves
previously says the user should be able to designate the database. We therefore need
the sys module as well. The beginning of the program thus reads:

#!/usr/bin/env python

import sys
import MySQLdb

host = 'localhost'
user = 'skipper'
passwd = 'secret'

The database can then be set with sys.argv[] as:

db = sys.argv[1]

Login and USE
Next, we include the login and USE statements as part of a try...except structure.
If we cannot login or use the specified database, we want to fail softly.

try:
 mydb = MySQLdb.connect(host, user, passwd)
 cursor = mydb.cursor()
 statement = "USE %s" %(db)
 cursor.execute(statement)
except MySQLdb.Error, e:
 print "There was a problem in accessing the database %s with the
credentials you provided. Please check the privileges of the user
account and retry. The error and other debugging information follow
below.\n\n%s" %(db, e)

Closing out the program
Finally, we need to check whether the program has been called directly. As usual, we
do this with the following if clause:

if __name__ == '__main__':
 main()

Running the program will then produce a long report which can be ported to a file
using a pipe or similar shell convention.

Chapter 13

[391]

Room to grow
In this project, we have seen how to create a class that returns metainformation about
a database. While it does what we set out to do, it does not fulfill the intent of that
specification. As an exercise, the following have been left to be done:

Create the option of an output file
Implement the availability of options using the optparse module, allowing
the user to specify which part of the metainformation should be returned
Code support for handling the results from the methods that are not called in
main()

Build facility for retrieving the same metainformation from a remote server
as from a local one
Implement the ability to get server variables and user information

Summary
In this chapter, we have covered how to build a Python class for retrieving MySQL
metainformation. We have seen:

How to retrieve information on the engines used by MySQL
Which system variables we can retrieve
The several pieces of metadata about a given table that we can access
How to retrieve user privileges and the grants used to give them

In the next chapter, we will look at one of the most important aspects of database
administration—disaster recovery.

•

•

•

•

•

•

•

•

•

Disaster Recovery
In late September 2009, users of T-Mobile's Sidekick smartphone began noticing
outages in the service. The Sidekick was designed to push the envelope of technology
by storing most of its data remotely and requiring network connectivity for almost
every function it had. Come October, the company that ran the data servers for the
service, Danger, had still not restored the information. Danger had been taken over
by Microsoft in February 2007, and most of the employees that started the service
had left the company, leaving Microsoft's own employees to field any problems.
T-Mobile consequently informed their customers on 10th October that data recovery
was not forthcoming, and that they believed the data on all 800,000 customers was
irrecoverably lost.

The saga was further hampered by what Reuters, citing an email from Microsoft,
called "a confluence of errors from a server failure that hurt its main and backup
databases supporting Sidekick users." The commercial damage was significant:
T-Mobile pulled the Sidekick device off the shelves and could not sell them. By 15th
October, Microsoft had found and was replacing "most, if not all, customer data", but
the damage was done. Microsoft's reputation for data management was seriously
damaged, and T-Mobile had sustained substantial losses in the world's largest
national economy.

One thing that is certain in computing is that hardware will fail even if the software
is written soundly. For this reason, a disaster recovery plan should be implemented
for every database server. Even if you are not the administrator of the server, this
chapter will show you how to back up the data you use. By the end of this chapter,
we will have covered:

When to implement one of several kinds of database backup plans
What methods of backup and disaster recovery MySQL supports
How to use Python to back up databases

•

•

•

Disaster Recovery

[394]

The purpose of the archiving methods covered in this chapter is to allow you, as
the developer, to back up databases that you use for your work without having
to rely on the database administrator. As noted later in the chapter, there are
more sophisticated methods for backups than we cover here, but they involve
system-administrative tasks that are beyond the remit of any development post
and are thus beyond the scope of this book.

Every database needs a backup plan
When archiving a database, one of the critical questions that must be answered is
how to take a snapshot backup of the database without having users change the data
in the process. If data changes in the midst of the backup, it results in an inconsistent
backup and compromises the integrity of the archive. There are two strategic
determinants for backing up a database system:

Offline backups
Live backups

Which you use depends on the dynamics of the system in question and the import
of the data being stored. In this chapter, we will look at each in turn and the way to
implement them.

Offline backups
Offline backups are done by shutting down the server so the records can be archived
without the fear of them being changed by the user. It also helps to ensure the server
shut down gracefully and that errors were avoided. The problem with using this
method on most production systems is that it necessitates a temporary loss of access
to the service. For most service providers, such a consequence is anathema to the
business model.

The value of this method is that one can be certain that the database has not changed
at all while the backup is run. Further, in many cases, the backup is performed
faster because the processor is not simultaneously serving data. For this reason,
offline backups are usually performed in controlled environments or in situations
where disruption is not critical to the user. These include internal databases, where
administrators can inform all users about the disruption ahead of time, and small
business websites that do not receive a lot of traffic.

Offline backups also have the benefit that the backup is usually held in a single file.
This can then be used to copy a database across hosts with relative ease.

•

•

Chapter 14

[395]

Shutting down a server obviously requires system administrator-like authority. So
creating an offline backup relies on the system administrator shutting down the
server. If your responsibilities include database administration, you will also have
sufficient permission to shut down the server.

Live backups
Live backups occur while the server continues to accept queries from users, while it's
still online. It functions by locking down the tables so no new data may be written to
them. Users usually do not lose access to the data and the integrity of the archive, for
a particular point in time is assured.

Live backups are used by large, data-intensive sites such as Nokia's Ovi
services and Google's web services. However, because they do not always
require administrator access of the server itself, these tend to suit the backup
needs of a development project.

Choosing a backup method
After having determined whether a database can be stopped for the backup, a
developer can choose from three methods of archiving:

Copying the data files (including administrative files such as logs and
tablespaces)
Exporting delimited text files
Backing up with command-line programs

Which you choose depends on what permissions you have on the server and how
you are accessing the data.

MySQL also allows for two other forms of backup: using the binary log
and by setting up replication (using the master and slave servers).
To be sure, these are the best ways to back up a MySQL database. But,
both of these are administrative tasks and require system-administrator
authority; they are not typically available to a developer. However, you
can read more about them in the MySQL documentation. Use of the
binary log for incremental backups is documented at:
http://dev.mysql.com/doc/refman/5.5/en/point-in-time-
recovery.html

Setting up replication is further dealt with at:
http://dev.mysql.com/doc/refman/5.5/en/replication-
solutions-backups.html

•

•

•

Disaster Recovery

[396]

Copying the table files
The most direct way to back up database files is to copy from where MySQL stores
the database itself. This will naturally vary based on platform. If you are unsure
about which directory holds the MySQL database files, you can query MySQL
itself to check:

mysql> SHOW VARIABLES LIKE 'datadir';

+---------------+-----------------+

| Variable_name | Value |

+---------------+-----------------+

| datadir | /var/lib/mysql/ |

+---------------+-----------------+

Alternatively, the following shell command sequence will give you the
same information:

$ mysqladmin variables | grep datadir

| datadir | /var/lib/mysql/ |

Note that the location of administrative files, such as binary logs
and InnoDB tablespaces are customizable and may not be in the
data directory.

If you do not have direct access to the MySQL server, you can also write a simple
Python program to get the information:

#!/usr/bin/env python
import MySQLdb
mydb = MySQLdb.connect('<hostname>',
 '<user>',
 '<password>')
cursor = mydb.cursor()
runit = cursor.execute("SHOW VARIABLES LIKE 'datadir'")
results = cursor.fetchall()
print "%s: %s" %(cursor.fetchone())

Slight alteration of this program will also allow you to query several servers
automatically. Simply change the login details and adapt the output to clarify
which data is associated with which results.

Chapter 14

[397]

Locking and flushing
If you are backing up an offline MyISAM system, you can copy any of the files
once the server has been stopped. Before backing up a live system, however, you
must lock the tables and flush the log files in order to get a consistent backup at a
specific point. These tasks are handled by the LOCK TABLES and FLUSH commands
respectively. When you use MySQL and its ancillary programs (such as mysqldump)
to perform a backup, these tasks are performed automatically. When copying files
directly, you must ensure both are done. How you apply them depends on whether
you are backing up an entire database or a single table.

LOCK TABLES
The LOCK TABLES command secures a specified table in a designated way. Tables
can be referenced with aliases using AS and can be locked for reading or writing.
For our purposes, we need only a read lock to create a backup. The syntax looks
like this:

LOCK TABLES <tablename> READ;

This command requires two privileges: LOCK TABLES and SELECT.

It must be noted that LOCK TABLES does not lock all tables in a database but
only one. This is useful for performing smaller backups that will not interrupt
services or put too severe a strain on the server. However, unless you automate
the process, manually locking and unlocking tables as you back up data can be
ridiculously inefficient.

FLUSH
The FLUSH command is used to reset MySQL's caches. By re-initiating the cache at
the point of backup, we get a clear point of demarcation for the database backup
both in the database itself and in the logs. The basic syntax is straightforward,
as follows:

FLUSH <the object to be reset>;

Use of FLUSH presupposes the RELOAD privilege for all relevant databases. What we
reload depends on the process we are performing. For the purpose of backing up, we
will always be flushing tables:

FLUSH TABLES;

How we "flush" the tables will depend on whether we have already used the LOCK
TABLES command to lock the table. If we have already locked a given table, we can
call FLUSH for that specific table:

FLUSH TABLES <tablename>;

Disaster Recovery

[398]

However, if we want to copy an entire database, we can bypass the LOCK TABLES
command by incorporating the same call into FLUSH:

FLUSH TABLES WITH READ LOCK;

This use of FLUSH applies across the database, and all tables will be subject to the
read lock. If the account accessing the database does not have sufficient privileges
for all databases, an error will be thrown.

Unlocking the tables
Once you have copied the files for a backup, you need to remove the read lock you
imposed earlier. This is done by releasing all locks for the current session:

UNLOCK TABLES;

Restoring the data
Restoring copies of the actual storage files is as simple as copying them back
into place. This is best done when MySQL has stopped, lest you risk corruption.
Similarly, if you have a separate MySQL server and want to transfer a database,
you simply need to copy the directory structure from the one server to another.
On restarting, MySQL will see the new database and treat it as if it had been
created natively. When restoring the original data files, it is critical to ensure the
permissions on the files and directories are appropriate and match those of the
other MySQL databases.

Delimited backups within MySQL
MySQL allows for exporting of data from the MySQL command line. To do so, we
simply direct the output from a SELECT statement to an output file.

Using SELECT INTO OUTFILE to export data
Using sakila, we can save the data from film to a file called film.data as follows:

SELECT * INTO OUTFILE 'film.data' FROM film;

Chapter 14

[399]

This results in the data being written in a tab-delimited format. The file will be
written to the directory in which MySQL stores the sakila data. Therefore, the
account under which the SELECT statement is executed must have the FILE privilege
for writing the file as well as login access on the server to view it or retrieve it. The
OUTFILE option on SELECT can be used to write to any place on the server that
MySQL has write permission to use. One simply needs to prepend that directory
location to the file name. For example, to write the same file to the /tmp directory
on a Unix system, use:

SELECT * INTO OUTFILE '/tmp/film.data' FROM film;

Windows simply requires adjustment of the directory structure accordingly.

Using LOAD DATA INFILE to import data
If you have an output file or similar tab-delimited file and want to load it into
MySQL, use the LOAD DATA INFILE command. The basic syntax is:

LOAD DATA INFILE '<filename>' INTO TABLE <tablename>;

For example, to import the film.data file from the /tmp directory into another table
called film2, we would issue this command:

LOAD DATA INFILE '/tmp/film.data' INTO TABLE film2;

Note that LOAD DATA INFILE presupposes the creation of the table into which the
data is being loaded. In the preceding example, if film2 had not been created, we
would receive an error. If you are trying to mirror a table, remember to use the SHOW
CREATE TABLE query to save yourself time in formulating the CREATE statement.

This discussion only touches on how to use LOAD DATA INFILE for inputting data
created with the OUTFILE option of SELECT. But, the command handles text files with
just about any set of delimiters. To read more on how to use it for other file formats,
see the MySQL documentation at:

http://dev.mysql.com/doc/refman/5.5/en/load-data.html

Disaster Recovery

[400]

Archiving from the command line
If you use a MySQL client with a graphical user interface, how you back up will
depend on that client. Depending on your platform, MySQL ships with one or both
of the following command-line programs used for archiving:

mysqldump
On every MySQL server, you will find the program mysqldump. On Windows, it
is usually located in the same directory as the MySQL server executable. On Unix
variants, it will be in /usr/bin/.

This program functions like an automated MySQL client. It accepts login credentials
from the command line and, based on the options you give it, it will output the script
necessary to recreate the database you specify. The basic syntax is:

mysqldump -u <username> -p --database <dbname>

After providing the username and database name, you are prompted for the
password. This is because you have not specified it even though you have indicated
with the -p flag that you will use a password to log in. This is the more secure way
of running mysqldump. Optionally, you can state the password explicitly after the
-p flag, but this is not advisable as it then enters into your shell command history
as plain text.

Viewing the backup file
Running this command and providing the appropriate password will cause a dump
of the specified database. This will almost certainly run off your screen. To save it to
a file, use either a greater than sign (>) or the option --result-file= followed by
the filename. A dump of the sakila database would read as follows:

mysqldump -u skipper -p --result-file=sql.dump --database sakila

After that process is finished, you could open sql.dump in your favorite text editor to
see the following:

-- MySQL dump 10.11
--
-- Host: localhost Database: sakila
-- --
-- Server version 5.0.51a-3ubuntu5.4

/*!40101 SET @OLD_CHARACTER_SET_CLIENT=@@CHARACTER_SET_CLIENT */;
...
/*!40111 SET @OLD_SQL_NOTES=@@SQL_NOTES, SQL_NOTES=0 */;

Chapter 14

[401]

--
-- Current Database: `sakila`
--

CREATE DATABASE /*!32312 IF NOT EXISTS*/ `sakila` /*!40100 DEFAULT
CHARACTER SET latin1 */;

USE `sakila`;

--
-- Table structure for table `actor`
--

DROP TABLE IF EXISTS `actor`;
SET @saved_cs_client = @@character_set_client;
SET character_set_client = utf8;
CREATE TABLE `actor` (
 `actor_id` smallint(5) unsigned NOT NULL auto_increment,
...
 KEY `idx_actor_last_name` (`last_name`)
) ENGINE=InnoDB AUTO_INCREMENT=201 DEFAULT CHARSET=utf8;

So, the dump file contains all of the MySQL commands necessary to create the
infrastructure of the database. If you read on, you will soon encounter the following:

--
-- Dumping data for table `actor`
--

LOCK TABLES `actor` WRITE;
/*!40000 ALTER TABLE `actor` DISABLE KEYS */;
INSERT INTO `actor` VALUES (1,'PENELOPE','GUINESS','2006-02-15 04:34:3
3'),(2,'NICK','WAHLBERG','2006-02-15 04:34:33'),(3,'ED','CHASE','2006-
02-15 04:34:33'),(4,'JENNIFER','DAVIS','2006-02-15 04:34:33'),(5,'JOHN
NY','LOLLOBRIGIDA','2006-02-15 04:34:33')...

The necessary INSERT commands are also included. The dump file is a single file
backup of the database.

Disaster Recovery

[402]

Other options
In addition to the options discussed previously, mysqldump supports several other
flags. The most commonly used include:

	--all-databases: Dump all tables in all databases
	--compact: Produce more compact output
	--databases: Dump several databases
	--dump-date: Include dump date with the "Dump completed on" comment if
--comments is given
	--flush-logs: Flush the MySQL server log files before starting the dump
	--flush-privileges: Emit a FLUSH PRIVILEGES statement after dumping
the MySQL database
	--help: Display help message and exit
	--host: Host to connect to (IP address or hostname)
	--ignore-table=db_name.tbl_name: Do not dump the given table
	--lock-all-tables: Lock all tables across all databases
	--lock-tables: Lock all tables before dumping them
	--log-error=file_name: Append warnings and errors to the named file
	--opt: Shorthand for --add-drop-table --add-locks --create-options
--disable-keys --extended-insert --lock-tables --quick --set-
charset.
	--quick: Retrieve rows for a table from the server a row at a time
	--result-file=file: Direct output to a given file
	--single-transaction: Includes a BEGIN SQL statement before the data
from the server
	--skip-triggers: Do not dump triggers
	--tab=path: Produce tab-separated data files
	--tables: Override the --databases or -B option
	--triggers: Dump triggers for each dumped table
	--verbose: Verbose mode
	--version: Display version information and exit
	--where='where_condition': Dump only rows selected by the given
WHERE condition
	--xml: Produce XML output

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 14

[403]

Complete documentation on mysqldump can be found at http://dev.mysql.
com/doc/refman/5.5/en/mysqldump.html

Restoring the data
If you use mysqldump to create a standard MySQL backup as discussed above,
you can restore the data using the SOURCE command we used in Chapter 12. For
example, backing up sakila would use the following command:

mysqldump -u skipper -p --opt sakila > sakila.sql

After the password is entered and the database backed up to sakila.sql, we can
login and restore the data:

SOURCE sakila.sql;

It is worth noting that the file created by mysqldump does not always create the
database. If you want to specify the database in question, use either of the flags --
database or --databases. If you are transferring the backup to another server, you
will need to create a database for it first. Note, however, that the database used for
the backup need not have the same name as the original. It is possible to import a
backup of sakila into a database named alikas. Within the database system, the
only time database names become critical is in the use of cross-database references
such as triggers. Naturally, if you change the name of the database, you will need to
change the references used in all of your calling applications, as well.

Triggers are MySQL procedures that initiate an action based on an event
in a table. They allow information in one table to be updated, inserted, or
deleted based upon data being inserted, updated, or deleted in another
table. For the MySQL documentation on triggers, see: http://dev.
mysql.com/doc/refman/5.5/en/triggers.html

Then you will need to ensure the greater server environment is mirrored for a
functioning (as opposed to simply stored) backup.

mysqlhotcopy
In addition to mysqldump, Unix, Linux, and NetWare servers also support
mysqlhotcopy. This program is a Perl script that backs up live databases. Where
mysqldump functions like a MySQL client, mysqlhotcopy is a server administration
program. It must be run on the same host as the one that runs the database; it cannot
be run remotely.

Disaster Recovery

[404]

It is worth noting that mysqlhotcopy only works on MyISAM and
Archive tables. Therefore, you cannot use it to back up other types
such as InnoDB.

mysqlhotcopy works by copying the salient files for a database to the directory of
your choice. Consequently, it will only work if the user who invokes it has read
access to those files. This will always be the root administrator of the system but,
depending on your setup, it may include others. In the following examples, it is
assumed that the one has appropriate permissions to access the files.

The most basic syntax of mysqlhotcopy is:

mysqlhotcopy <database name> <path for backup>

While that is the most basic call of the program, it will almost never work. You must
know the username and password of a user that has access to the database you are
archiving. Therefore, it is more commonly called like this:

mysqlhotcopy -u skipper -p secret sakila /path/to/a/directory/

Assuming the credentials and access permissions are valid, mysqlhotcopy will
then create a directory in which it stores copies of the files used for the database
you specified.

In addition to the syntax shown above, the following options are available with
mysqlhotcopy:

–addtodest: Do not rename target directory (if it exists); merely add files to it
–allowold: Do not abort if a target exists; rename it by adding an _old suffix
–checkpoint=db_name.tbl_name: Insert checkpoint entries
–chroot=path: Base directory of the chroot jail in which mysqld operates
–debug: Write a debugging log
–dryrun: Report actions without performing them
–flushlogs: Flush logs after all tables are locked
–help: Display help message and exit
–host=host_name: Connect to the MySQL server on the given host
–keepold: Do not delete previous (renamed) target when done
–noindices: Do not include full index files in the backup
–password[=password]: The password to use when connecting to the server
–port=port_num: The TCP/IP port number to use for the connection

•

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 14

[405]

–quiet: Be silent except for errors
–regexp: Copy all databases with names that match the given regular
expression
–resetmaster: Reset the binary log after locking all the tables
–resetslave: Reset the master.info file after locking all the tables
–socket=path: For connections to localhost
–tmpdir=path: The temporary directory
–user=user_name: The MySQL username to use when connecting to
the server
–version: Display version information and exit

It should be noted that mysqlhotcopy is still in beta. Therefore, new functionality
will be added, and this list is therefore not exhaustive. A convenient way of accessing
the options available through your copy of mysqlhotcopy is to use either man or
perldoc from a command-line:

man mysqlhotcopy

Otherwise, you can use:

perldoc mysqlhotcopy

Either of these commands will give you the manual page for your local version.

Restoring from mysqlhotcopy is a matter of copying the directory that holds the file
archive to its appropriate location on your server. This is usually /var/lib/mysql
followed by the database name. If in doubt, see how to access this information for
your installation of MySQL in the section Copying the Table Files above.

Backing up a database with Python
As we have seen, there are three methods of archiving a MySQL database that a
developer can use:

Copying the MySQL table files directly
Exporting data to a delimited text file
Creating a dumpfile

The first and last of these require special permissions on the server. To use Python
to manage the backup merely automates the process but still requires you to have
access beyond SELECT.

•

•

•

•

•

•

•

•

•

•

•

Disaster Recovery

[406]

Using MySQLdb, however, we can export the data with only basic privileges. Simply
store the results of the SELECT statement into a variable, format it appropriately, and
write it to a file.

Summary
It has been a long road from the beginning of this book. We have gone from merely
installing MySQL for Python to doing some pretty sophisticated things with it. We
have moved beyond merely using the database to using Python to do programmatic
administration.

In this chapter, we have seen several ways to back up and restore a MySQL database.
We have looked at:

When it is advisable to backup a running system instead of shutting it down
The procedure for taking a snapshot of a running MySQL server
What backup methods are available to a python database developer
Which privileges are required when using certain archiving methods

From here, the sky is the limit for you. You have the Python and MySQL foundation
necessary to design and develop even large, database-driven applications.

Naturally, there is more to learn about MySQL. That is for the coming chapters of
the book.

•

•

•

•

Index
Symbols
* (asterisk), MySQL statements 27
; (semicolon), MySQL statements 29
__init__ method 151
_mysql module

about 19
connection class 19
result class 19

A
access, granting in MySQL

about 225
GRANT, using with REQUIRE clause 229
GRANT statement 226
WITH clause, using 230, 231

add_option() method 54
ADDDATE() function 257
ADDTIME() function 257
aggregate functions 279
ARCHIVE 371
AVG() function

about 284, 285
mean 285
median 285
mode 286

B
backup method

archiving from command line 400
delimited backups 398
selecting 395
table files, copying 396

bad apples project
about 117

connection() function 117
connection, making 119
error messages, sending 119-121
main() function 125
preamble 118
sendmail() function 117

basic menu, web-based administration
project

authorization details 206
operational sections 206
variables 206

BLACKHOLE 371

C
calculations, in MySQL

about 280
AVG() function 284
COUNT() function 281
functions, used 280
MAX() function 283
MIN() function 284
SUM() function 282

capitalise() function
about 362, 382
calling 364
defining, as Python value 365
defining, in Python 365
DELIMITER 362
function definition 362, 363
MySQL function, sourcing as Python

module 366
sourcing, as MySQL code 366

close command 85
collation 186

[408]

command-line insertion utility
about 86
main(), calling 95
main() function 87
modules, required 86
other functions, coding 93

command-line programs
mysqldump 400
mysqlhotcopy 403

command-line search utility
-f funtion, implementing 55-57
-o funtion, implementing 55-57
-t funtion, implementing 55-57
about 48, 49
database, preparing for search 49
output file option, including 57
search term, specifying 52-54
work, planning 50
work plan, implementing 50, 51

commit command 85
commit method 23
Computer Emergency Response Team

(CERT) 102
computing resources

about 131
local resources 132
web applications 133

CONCAT() function 342
connect() function 18, 20
connect() method 272
Connection() function 18
connection() function, web-based

administration project
code 208

CONVERT_TZ() function 257
COUNT() function 281, 282
creating custom functions project

about 360
capitalise() function, creating 362
Hello() function, creating 361

CROSS joins 327
CRUD 25
CSV 371
CSV file 175
CSV file to MySQL table conversion project

about 175
connection object, creating 177

convert, creating 177
main() function 178-180
main() function, calling 181
options 176
preamble 175

CURDATE() function 257, 260
CURRENT_DATE() function 257
CURRENT_TIME() function 257
CURRENT_TIMESTAMP() function 257
cursor() method 22
Cursor.executemany() method 170
CURTIME() function 257, 261
customized exception handling

about 113
combined catching 115
different exceptions, catching 114
different exceptions, handling 115
one type of exception, catching 113

D
data, inserting through MySQL

about 72
complex INSERT commands 75
preliminaries, setting up 72
simple INSERT statement 73, 74

database characteristics
detail search query, allowing 44
determining 41, 42
options, offering to user 43
table number, assigning 43
tables, determining 42, 43

database class
building 384
CREATE statements, retrieving 386, 387
fetchquery() method, defining 385
login and USE statements 390
main() function, defining 387, 388
modules 390
resproc() method, writing 388
table status, retrieving 386
table structure, retrieving 386
variables 390
writing 384

database connection, through MySQL for
Python

connection, closing 23

[409]

connection object, creating 20, 22
creating 20
cursor object, creating 22
database, interacting with 22

DatabaseError 105
database metadata

accessing 377
DATABASES 377
FUNCTION STATUS, using 380
table-oriented operations 378
USE command, using 378

databases, creating in MySQL
about 183, 184
character sets, finding 187
collation, declaring 186
collation, specifying 186
default character set, specifying 185, 186
default collations, finding 187
specifications, creating 185

databases, creating with MySQLdb
about 194
CREATE statement, configuring 195
output, testing 194

databases, deleting in MySQL
about 187
database, dropping 188
errors, avoiding 188

DataError 110
data piecemeal retrieval

fetchmany() method 136
fetchone() method 135
MySQL used 135

data receiving, web-based administration
project

CGI, used 214
PHP, used 215, 217

data types, MySQL
DATE 247, 249
DATETIME 247, 248
TIME 247, 253
TIMESTAMP 247, 250
YEAR 247, 252

DATE() function 258, 261
DATE_ADD() function 258, 262
DATE_FORMAT() function 258, 267
DATE_SUB() function 258, 262

date and time-related functions, MySQL
about 257
ADDDATE() 257
ADDTIME() 257
CONVERT_TZ() 257
CURDATE() 257, 260
CURRENT_DATE() 257
CURRENT_TIME() 257
CURRENT_TIMESTAMP() 257
CURTIME() 257, 261
DATE() 258, 261
DATE_ADD() 258
DATE_FORMAT() 258
DATE_SUB() 258
DATEDIFF() 258, 266
DAY() 258
DAYNAME() 258
DAYOFMONTH() 258
DAYOFWEEK() 258
DAYOFYEAR() 258
EXTRACT 258
EXTRACT() 269
FROM_DAYS() 258
FROM_UNIXTIME() 258
GET_FORMAT() 258
HOUR() 258
LAST_DAY 258
LOCALTIME() 258
LOCALTIMESTAMP() 258
MAKEDATE() 258
MAKETIME() 258
MICROSECOND() 258
MINUTE() 258
MONTH() 258
MONTHNAME() 258
NOW() 258
NOW() function 260
PERIOD_ADD() 258
PERIOD_DIFF() 258
QUARTER() 258
SEC_TO_TIME() 258
SECOND() 258
STR_TO_DATE() 259
SUBDATE() 259
SUBTIME() 259
SYSDATE() 259

[410]

TIME() 259, 270
TIME_FORMAT() 259
TIME_TO_SEC() 259
TIMEDIFF() 259
TIMESTAMP() 259
TIMESTAMPADD() 259
TIMESTAMPDIFF() 259
TO_DAYS() 259
TO_SECONDS() 259
UNIX_TIMESTAMP() 259
UTC_DATE() 259
UTC_TIME() 259
UTC_TIMESTAMP() 259
WEEK() 259
WEEKDAY() 259
WEEKOFYEAR() 259
YEAR() 259
YEARWEEK() 259

DATE data type, MySQL
about 249
input range 250
output formats 249

DATEDIFF() function 258, 266
DATETIME data type, MySQL

about 248
input formats 248
input range 249
output format 248
using, in CREATE statement 249

DAY() function 258
DAYNAME() function 258
DAYOFMONTH() function 258
DAYOFWEEK() function 258
DAYOFYEAR() function 258
dbaction() function 207
dbaction() function, web-based

administration project
code 208

DBAPISet 18
Debian package manager 9
delimited backups

about 398
LOAD DATA INFILE, using to import data

399
SELECT INTO OUTFILE, using to export

data 398

DISTINCT function 287, 289
dropdb() function 207

E
easy_install tool 11
Easy Install 11
egg-info directory 14
egg file 10
egg handling software

installing 11
end-of-request signal 133
engine

specifying 373
ENGINE command 371
ENGINE status 373
errors

benefits 101-103
versus, warnings 104

error types
DataError 110
IntegrityError 110
InternalError 111
NotSupportedError 111
OperationalError 111
ProgrammingError 112

exceptions handling
about 105
error or warning, raising 107
exception, catching from MySQLdb 106
exceptions, making less intimidating 108,

109
Python exception-handling 105

execute() function 207, 275
execute() function, web-based

administration project
code 211, 212

execute() method 38, 117
executemany() method

16 MB required 174
about 166
basic syntax 167
command-line option configuration 173
configuration file, using 174
multiple INSERT statements 168
multiple SELECT statements 170

[411]

process 170, 172
underlying code 171

EXTRACT function 258, 269

F
FEDERATED 371
feedback loop

creating 116
fetchall() 78
fetchall() method 38
fetchmany() method 136, 137
fetchone() method 135
Filemaker Pro 132
files, copying from MySQL

about 396
data, restoring 398
FLUSH command 397
locking 397
LOCK TABLES command 397
tables, unlocking 398

first-in first-out (FIFO) queue system 133
for loop 139
form() method 117
FORMAT() function 359
FROM, MySQL statements 28
FROM_DAYS() function 258
FROM_UNIXTIME() function 258
function codes, web-based administration

project
connecting with a database 208
connecting without a database 207
database action 208
execute() 211
query action 210
table action 209

G
generators

about 142
creating, fetchone() used 142
fetchmany(), using 143, 144

GET_FORMAT() function 258
getopt module 53
GROUP_CONCAT() function

about 289
delimiter, specifying 290

maximum length, customizing 290
using, with DISTINCT 291, 292
working 289

GROUP BY, MySQL statements 30, 31
GROUP BY clause 293, 294

H
HAVING, MySQL statements 32, 33
HAVING clause

about 312
joins 321
subqueries 317
unions 319, 320

HAVING implementation
about 330, 331
HTML interface, revising 337
main() function, revising 333-335
options, revising 336
Python backend, revising 331
qaction() function, revising 331-333

Hello() function
creating 361

help() function 18, 54
HOUR() function 258
HTML output, web-based administration

project
about 212
body() method, defining 214
definition 212
footer() method, defining 213
header() method, defining 213
message attribute 213
page() method, defining 214

HTTP persistent connections 133

I
IBMDBI 371
incorporating aggregate functions project

about 300
HTML form, changing 309
main() function, revising 305-307
options, setting up 308
qaction() function, adding 300

INNER joins 324
InnoDB 371
INSERT() function 348, 349

[412]

insertion values, changing
about 82
fish and price, passing for validation 84
name value, validating 83
price value, validating 83
user, querying 84

INSERT statement, processing ways
about 66
INSERT...ON DUPLICATE KEY UPDATE...

71
INSERT...SELECT... 66, 69, 70
INSERT DELAYED… 70

INSTR() function 356
int() function 79
IntegrityError 110
InterfaceError 105
InternalError 111
INTO OUTFILE, MySQL statements 37
isdigit() method 78
iterate

drawbacks 163
iteration 137
iterative loops

for loop 139
generating 138
while...if loops 138

iterators
about 140
function 141

J
joins, HAVING clause

about 321
CROSS joins 327
INNER joins 324, 325
LEFT joins 321, 322
NATURAL joins 326
OUTER joins 323, 324
RIGHT joins 321, 322

L
LAST_DAY function 258
LEFT joins 321
len() function 79
LENGTH() function 354
LIMIT, MySQL statements 35, 36

limitations, iterate
execution speeds, comparing 166
prime numbers generation, test sample 163
test sample 163, 164

limitations, MySQL script
inefficient I/O 162, 163
lack of automation 162
unscheduled debugging process 162

live backups 395
LOCALTIME() function 258
LOCALTIMESTAMP() function 258
LOCATE() function 356, 357
logdb 272
logging user activity project

about 270-273
database, creating 273
INSERT statement, forming 274, 275
table, creating 274

LOWER() function 360

M
main() function, bad apples project

about 125
actions 126

main() function, command-line insertion
utility

about 87
calling 95-99
changes, committing 93
connection, closing 93
database connection, establishing 89
flag system, coding 88
INSERT statement, building 92
tables, displaying 90
tables structure, displaying 90, 91
user input, accepting 91
values, testing 88, 89

main function, movie database project
about 157
calling 158

MAKEDATE() function 258
MAKETIME() function 258
MAX() function 283
MEMORY 371
MERGE 371
metacharacters, MySQL

[413]

$ 27
* 27
+ 27
. 27
? 27
[:alpha:] 27
[:class:] 27
[:punct:] 27
[:space:] 27
[:upper:] 27
[[:<:]] 27
[[:>:]] 27
[^xyz] 27
[abc] 27
^ 27
{m,n} 27
{n,} 27
{n} 27
| 27

metadata, MySQL insertion statement
database, querying 78, 79
table structure, retrieving 80-82

MICROSECOND() function 258
MID() function 343
MIN() function 284
MINUTE() function 258
MONTH() function 258
MONTHNAME() function 258
movie database project

about 144
main() function 157
main() function, calling 158
MySQLQuery class, implementing 150
results, formatting 155
result sets, formatting 156
running 159
Sakila, downloading 145
Sakila database, creating 145
Sakila database, planning 148
Sakila database structure 146, 147
sample, formatting 155
SQL statements used 148
user data, accepting 150

multiple database connection, through
MySQL for Python 23

multiple items, inserting
issues 161

MyISAM database engine 371
MySQL

access, granting 225
calculations 280
databases, creating 183
databases, removing/deleting 187
data types 247
date and time-related functions 257
insertion, passing 72
privileges, removing 233
query, forming 26
query, passing to 37, 38
results, trimming 287
server-side sorting 292
system environment 370
tables, creating 189
tables, dropping 192
users, creating 220, 221

MySQL, for Python
_mysql module 19
database, connecting 20
error types 109
exceptions handling 105
getting 7
getting, apt tools using on Debian-like

systems 9
getting, egg file used 10
getting, installer used for windows 10
getting, package manager used 8
getting, RPMs and urpm used 9
getting, RPMs and yum used 9
getting, tarball used 14, 15
importing 17
multiple database connections 23
MySQLdb, importing 18
online help, accessing 18
warning class 105

MySQL C API 17
MySQL database

backing up, with Python 405, 406
backup plan 394
live backups 395
offline backups 394

MySQLdb
connection module 18
converters module 18
cursors module 18

[414]

DatabaseError 105
errors 104
importing 18
InterfaceError 105
times module 18

MySQLdb.connect() 38
mysqldump

about 400
backup file, viewing 400, 401
data, restoring 403
options 402, 403

mysqlhotcopy
about 403
options 404, 405

MySQL insertion statement
; (semicolon) 66
<some values> 64, 65
column names 61, 62
forming 60
INSERT 60
insertion values, changing 82
INTO 61
metadata, using 77
table name 61
user-defined variables, using 75
VALUES 63

MySQL queries
changes, implementing 46, 48
changing 45
pattern, matching 45

MySQLQuery class, movie database project
__init__ method 150, 151
about 150
connection 151
cursor, creating 152
execute() 151
format 151
query 151
query's type, setting 151
query, executing 154
query, forming 153
type 150

MySQL script
drawbacks 162

MySQLStatement class, bad apples project
__init__ method 121

statement, executing 123
statement, forming 122, 123
statement type, storing 122
writing 121

MySQL statements
* (asterisk) 27, 28
; (semicolon) 29
FROM 28
GROUP BY 30
HAVING 32
INTO OUTFILE 37
LIMIT 35, 36
ORDER BY 33
SELECT 27
Staff 28
syntactical structure 26
WHERE 30

MySQL statements, movie database project
actors, returning 149
films, returning 148
required 148

N
NATURAL joins 326
network latency

about 134
apparent responsiveness 134
server-client communications 134

NotSupportedError 111
NOW() function 258, 260

O
offline backups 394
OperationalError 111
OptionParser class 53
optparse module 53
ORDER BY, MySQL statements 33, 34
ORDER BY clause

about 294
alphabetic sorting 295
alphabetic sorting, reversing 296, 297
multiple keys, sorting with 298
universal quantifier, using 294

OUTER joins 323

[415]

P
package manager 8
Pareto's Principle 134
parse_args() method 54
PERIOD_ADD() function 258
PERIOD_DIFF() function 258
POSIX 352
POSIX character classes 353
privileges, removing in MySQL

about 233
basic syntax, REVOKE command 233

profiling, MySQL
about 375
SHOW PROFILE 375
SHOW PROFILES 376

ProgrammingError 112
Python

access, granting 231, 232
aggregate functions, programming with

298, 299
clauses, programming with 298, 299
databases, creating with MySQLdb 194
generators 142
installing, on Windows 11, 12
iterators 140
joins 329, 330
loops, generating 138
REVOKE command, using 235
subqueries 328, 329
unions 329

Python exception-handling 105
Pythons

errors 101-103
warnings 101-103

Q
qaction() function 207

about 300, 301
new statement formation 302-305
new variables, adding 301

QUARTER() function 258
query

forming, in MySQL 26
passing, to MySQL 37, 38

query() function 94

query, passing to MySQL
about 37, 38
results, modifying 39, 40
simple SELECT statement 38

R
record-by-record retrieval

issue 129, 130
reasons 131

record-by-record retrieval, reasons
computing resources 131
network latency 134
Pareto's Principle 134

REGEXP function 350
regular expression meta-characters 351, 352
REPLACE() function 347, 348
results trimming, in MySQL

DISTINCT function, used 287
GROUP_CONCAT() function, used 289

REVOKE command
using, in Python 235

RIGHT joins 321
ROUND() function 357, 358

S
Sakila

downloading 145
Sakila database

creating 145
structure 146, 147

SCUD 26
SEC_TO_TIME() function 258
SECOND() function 258
SELECT, MySQL statements 27
server-side sorting, MySQL

about 292
GROUP BY clause, using 293
ORDER BY clause, using 294

setuptools
installing 11

SHOW command
arguements 370

Slashdot effect 133
sorting 304
str() function 79

[416]

STR_TO_DATE() function 259
string functions, MySQL

about 341
CONCAT() function 342
FORMAT() function 359
INSERT() functions 348, 350
INSTR() function 356
LENGTH() function 354
LOCATE() function 356
LOWER() function 360
MID() function 343
REGEXP 350
REPLACE() function 347
ROUND() function 358
SUBSTRING() function 343
TRIM() function 344
UPPER() function 360

SUBDATE() function 259
subqueries, HAVING clause 317
SUBSTRING() function 343
SUBTIME() function 259
SUM() function 282
SYSDATE() function 259
system environment, MySQL

ENGINE command 371
profiling 375
SHOW ENGINES command 374, 375
system variables 376, 377

T
table-oriented operations, database

metadata
about 378
columns, displaying 379
tables, displaying 378
table status, displaying 379

tables, creating in MySQL 189
about 189
bases, covering 190
errors, avoiding 191
temporary tables, creating 191

tables, dropping in MySQL
about 192
errors, avoiding 193
user privileges, removing 193

tar.gz file 14

tbaction() function 207
teacup 132
TIME() function 259, 270
TIME_FORMAT() function 259
TIME_TO_SEC() function 259
TIME data type, MySQL

about 253
format 254, 255, 257

TIMEDIFF() function 259
TIMESTAMP() function 259
TIMESTAMPADD() function 259
TIMESTAMP data type, MySQL

about 250
default value 251
initialization 252
input values 250
range 251
updating 252

TIMESTAMPDIFF() function 259
TO_DAYS() function 259
TO_SECONDS() function 259
transaction 372
TRIM() function

about 344
alternatives 346
basic syntax 344
options 345

type method 117

U
unions, HAVING clause 319, 320
UNIX_TIMESTAMP() function 259
UPPER() function 360
urpm package manager 9
user-defined variables

using 40, 41
user metadata

accessing 383
SHOW GRANTS, using 383
SHOW PRIVILEGES, using 384

users
creating, from Python 223, 224
creating, in MySQL 220
dropping, in Python 225
removing, in MySQL 224

users, creating in MySQL

[417]

about 220
client host, restricting 221, 222
password use, forcing 221

UTC_DATE() function 259
UTC_TIME() function 259
UTC_TIMESTAMP() function 259

V
valid_digit() function 93
valid_string() function 93
valid_table() function 94

W
warnings

benefits 101-103
web-based administration project

data, receiving 214
function code 207
functions, planning 207
HTML output 212
main() function, defining 217, 218

web-based user administration project
about 236
CREATE function, adding 239
CREATE function, adding to main() 240
DROP function, adding 239
DROP function, adding to main() 240

GRANT function, adding 241
GRANT function, adding to main() 241, 242
new options, in code 236-238
REVOKE function, adding 241
REVOKE function, adding to main()

241, 242
testing 243

WEEK() function 259
WEEKDAY() function 259
WEEKOFYEAR() function 259
WHERE, MySQL statements 30
WHERE versus HAVING

about 312
aggregate functions 312-314
application 314, 315
syntax 312

while...if loops 138

Y
YEAR() function 259
YEAR data type, MySQL

about 251
four-digit YEAR value 252
two-digit YEAR value 252
valid input 253

YEARWEEK() function 259
yum package manager 9

Thank you for buying
MySQL for Python

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Python Testing: Beginner’s Guide
ISBN: 978-1-847198-84-6 Paperback: 256 pages

An easy and convenient approach to testing your
powerful Python projects

1. Covers everything you need to test your code
in Python

2. Easiest and enjoyable approach to learn Python
testing

3. Write, execute, and understand the result of
tests in the unit test framework

Expert Python Programming
ISBN: 978-1-847194-94-7 Paperback: 372 pages

Best practices for designing, coding, and distributing
your Python software

1. Learn Python development best practices from
an expert, with detailed coverage of naming
and coding conventions

2. Apply object-oriented principles, design
patterns, and advanced syntax tricks

3. Manage your code with distributed
version control

4. Profile and optimize your code

Please check www.PacktPub.com for information on our titles

MySQL Admin Cookbook
ISBN: 978-1-847197-96-2 Paperback: 376 pages

99 great recipes for mastering MySQL configuration
and administration

1. Set up MySQL to perform administrative tasks
such as efficiently managing data and database
schema, improving the performance of MySQL
servers, and managing user credentials

2. Deal with typical performance bottlenecks and
lock-contention problems

3. Restrict access sensibly and regain access to
your database in case of loss of administrative
user credentials

Mastering phpMyAdmin 3.1 for
Effective MySQL Management
ISBN: 978-1-847197-86-3 Paperback: 352 pages

Increase your MySQL productivity and control by
discovering the real power of phpMyAdmin 3.1

1. Covers version 3.1, the latest version of
phpMyAdmin

2. Administer your MySQL databases with
phpMyAdmin

3. Manage users and privileges with MySQL
Server Administration tools

4. Get to grips with the hidden features and
capabilities of phpMyAdmin

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	Table of Contents
	Preface
	Chapter 1: Getting Up and Running with MySQL for Python
	Getting MySQL for Python
	Using a package manager (only on Linux)
	Using RPMs and yum
	Using RPMs and urpm
	Using apt tools on Debian-like systems
	Using an installer for Windows
	Using an egg file
	Using a tarball (tar.gz file)

	Importing MySQL for Python
	Accessing online help when you need it
	MySQLdb
	_mysql

	Connecting with a database
	Creating a connection object
	Creating a cursor object
	Interacting with the database
	Closing the connection

	Multiple database connections
	Summary

	Chapter 2: Simple Querying
	A brief introduction to CRUD
	Forming a query in MySQL
	SELECT
	* (asterisk)
	FROM
	staff
	; (semicolon)
	Other helpful quantifiers
	WHERE
	GROUP BY
	HAVING
	ORDER BY
	LIMIT
	INTO OUTFILE

	Passing a query to MySQL
	A simple SELECT statement
	Modifying the results

	Using user-defined variables
	Determining characteristics of a database and its tables
	Determining what tables exist
	Assigning each table a number
	Offering the options to the user
	Allowing the user to detail a search query

	Changing queries dynamically
	Pattern matching in MySQL queries
	Putting it into practice

	Project: a command-line search utility
	Preparing a database for searching
	Planning your work, then working your plan
	Develop a well-abstracted search functionality.

	Specifying the search term from the command-line
	Implementing and incorporating the other functions: -t, -f, and -o
	Including an option for an output file

	Room to grow
	Summary

	Chapter 3: Simple Insertion
	Forming a MySQL insertion statement
	INSERT
	INTO
	Table name
	Column names
	VALUES
	<some values>
	; (semicolon)

	Helpful ways to nuance an INSERT statement
	INSERT...SELECT...
	INSERT DELAYED…
	INSERT...ON DUPLICATE KEY UPDATE...

	Passing an insertion through MySQL for Python
	Setting up the preliminaries
	A simple INSERT statement
	More complex INSERT commands

	Using user-defined variables
	Using metadata
	Querying the database for its structure
	Retrieving the table structure

	Changing insertion values dynamically
	Validating the value of name
	Validating the value of price
	Querying the user for a correction
	Passing fish and price for validation

	Essentials: close and commit
	In need of some closure
	What happened to commit?
	Why are these essentials non-essential?

	Project: a command-line insertion utility
	The necessary modules
	The main() thing
	Coding the flag system
	Testing the values passed by the user
	Try to establish a database connection
	Showing the tables
	Showing the table structure, if desired
	Accepting user input for the INSERT statement
	Building the INSERT statement from the user input and execute it
	Committing changes and closing the connection

	Coding the other functions
	valid_digit() and valid_string()
	valid_table()
	query()

	Calling main()
	Room to grow

	Summary

	Chapter 4: Exception Handling
	Why errors and warnings are good for you
	Errors versus warnings: there's a big difference
	The two main errors in MySQLdb
	DatabaseError
	InterfaceError

	Warnings in MySQL for Python
	Handling exceptions passed from MySQL
	Python exception-handling
	Catching an exception from MySQLdb
	Raising an error or a warning
	Making exceptions less intimidating

	Catching different types of exceptions
	Types of errors
	DataError
	IntegrityError
	InternalError
	NotSupportedError
	OperationalError
	ProgrammingError

	Customizing for catching
	Catching one type of exception
	Catching different exceptions
	Combined catching of exceptions
	Raising different exceptions

	Creating a feedback loop
	Project: Bad apples
	The preamble
	Making the connection
	Sending error messages
	The statement class

	The main() thing
	Try, try again
	If all else fails

	Room to grow

	Summary

	Chapter 5: Results Record-by-Record
	The problem
	Why?
	Computing resources
	Local resources
	Web applications

	Network latency
	Server-client communications
	Apparent responsiveness

	Pareto's Principle

	How?
	The fetchone() method
	The fetchmany() method
	Iteration: What is it?
	Generating loops
	while...if loops
	The for loop

	Iterators
	Illustrative iteration

	Iteration and MySQL for Python
	Generators
	Using fetchone() in a generator
	Using fetchmany() in a generator

	Project: A movie database
	Getting Sakila
	Creating the Sakila database
	The structure of Sakila
	Planning it out
	The SQL statements to be used
	Returning the films of an actor
	Returning the actors of a film

	Accepting user data
	A MySQL query with class
	The __init__ method: The consciousness of the class
	Setting the query's type
	Creating the cursor
	Forming the query
	Executing the query

	Formatting the results
	Formatting a sample
	Formatting a larger set of results

	The main() thing
	Calling main()
	Running it
	Room to grow

	Summary

	Chapter 6: Inserting Multiple Entries
	The problem
	Why not a MySQL script?
	Lack of automation
	Debugging the process

	Why not iterate?
	A test sample: generating primes
	Comparing execution speeds

	Introducing the executemany() method
	executemany(): Basic syntax
	executemany(): Multiple INSERT statements
	executemany(): multiple SELECT statements

	executemany(): Behind the scenes
	MySQL server has gone away
	Command-line option configuration
	Using a configuration file
	More than 16 MB is often unnecessary

	Project: Converting a CSV file to a MySQL table
	The preamble
	The options
	Defining the connection
	Creating convert
	The main() function
	Calling main()
	Room to grow

	Summary

	Chapter 7: Creating and Dropping
	Creating databases
	Test First, Create Second
	CREATE specifications
	Specifying the default character set

	Specifying the collation for a database
	Declaring collation
	Finding available character sets and collations

	Removing or deleting databases
	Avoiding errors
	Preventing (illegal) access after a DROP

	Creating tables
	Covering our bases
	Avoiding errors
	Creating temporary tables

	Dropping tables
	Playing it safe
	Avoiding errors
	Removing user privileges

	Doing it in Python
	Creating databases with MySQLdb
	Testing the output
	Dynamically configuring the CREATE statement

	Dropping databases with MySQLdb
	Creating tables in Python
	Verifying the creation of a table
	Another way to verify table creation

	Dropping tables with MySQLdb
	Project: Web-based administration of MySQL
	CGI vs PHP: what is the difference?
	Basic CGI
	Using PHP as a substitute for CGI
	CGI versus PHP: when to use which?

	Some general considerations for this program
	Program flow
	The basic menu
	Authorization details
	Three operational sections of the dialogue
	The variables

	Planning the functions
	Code of each function
	Connecting without a database
	Connecting with a database
	Database action
	Table action
	Query action
	execute()

	The HTML output
	Basic definition
	The message attribute
	Defining header()
	Defining footer()
	Defining body()
	Defining page()

	Getting the data
	Using CGI
	Using PHP

	Defining main()
	Room to grow

	Summary

	Chapter 8: Creating Users and Granting Access
	A word on security
	Creating users in MySQL
	Forcing the use of a password
	Restricting the client's host

	Creating users from Python
	Removing users in MySQL
	DROPping users in Python
	GRANT access in MySQL
	Important dynamics of GRANTing access
	The GRANT statement in MySQL
	Using REQUIREments of access
	Using a WITH clause

	Granting access in Python
	Removing privileges in MySQL
	Basic syntax
	After using REVOKE, the user still has access!?

	Using REVOKE in Python
	Project: web-based user administration
	New options in the code
	Adding the functions: CREATE and DROP
	Adding CREATE and DROP to main()
	Adding the functions: GRANT and REVOKE
	Adding GRANT and REVOKE to main()
	Test the program
	New options on the page
	Room to grow

	Summary

	Chapter 9: Date and Time Values
	Date and Time data types in MySQL
	DATETIME
	Output format
	Input formats
	Input range
	Using DATETIME in a CREATE statement

	DATE
	Output and Input formats
	Input range

	TIMESTAMP
	Input of values
	Range
	Defaults, initialization, and updating

	YEAR
	Two-digit YEAR values
	Four-digit YEAR values
	Valid input

	TIME
	Format
	Invalid values

	Date and Time types in Python
	Date and Time functions
	NOW()
	CURDATE()
	CURTIME()
	DATE()
	DATE_SUB() and DATE_ADD()
	DATEDIFF()
	DATE_FORMAT()
	EXTRACT()
	TIME()

	Project: logging user activity
	The log framework
	The logger() function
	Creating the database
	Using the database
	Creating the table
	Forming the INSERT statement

	Ensure logging occurs
	Room to grow

	Summary

	Chapter 10: Aggregate Functions and Clauses
	Calculations in MySQL
	COUNT()
	SUM()
	MAX()
	MIN()
	AVG()
	The different kinds of average

	Trimming results
	DISTINCT
	GROUP_CONCAT()
	Specifying the delimiter
	Customizing the maximum length
	Using GROUP_CONCAT() with DISTINCT

	Server-side sorting in MySQL
	GROUP BY
	ORDER BY
	Using a universal quantifier
	Sorting alphabetically or from low-to-high
	Reversing the alphabet or sorting high-to-low
	Sorting with multiple keys

	Putting it in Python
	Project: incorporating aggregate functions
	Adding to qaction()
	New variables
	New statement formation

	Revising main()
	Setting up the options
	Changing the HTML form

	Summary

	Chapter 11: SELECT Alternatives
	HAVING clause
	WHERE versus HAVING: Syntax
	WHERE versus HAVING: Aggregate functions
	WHERE versus HAVING: Application

	Subqueries
	Unions
	Joins
	LEFT and RIGHT joins
	OUTER joins
	INNER joins
	NATURAL joins
	CROSS joins

	Doing it in Python
	Subqueries
	Unions
	Joins

	Project: Implement HAVING
	Revising the Python backend
	Revising qaction()
	Revising main()
	Revising the options

	Revising the HTML interface
	Room to grow

	Summary

	Chapter 12: String Functions
	Preparing results before their return
	CONCAT() function
	SUBSTRING() or MID()
	TRIM()
	Basic syntax
	Options
	Alternatives

	REPLACE()
	INSERT()
	REGEXP

	Accessing and using index data
	LENGTH()
	INSTR() or LOCATE()
	INSTR()
	LOCATE()

	Nuancing data
	ROUND()
	FORMAT()
	UPPER()
	LOWER()

	Project: creating your own functions
	Hello()
	Capitalise()
	DELIMITER
	The function definition
	Calling the function
	Defining the function in Python
	Defining the function as a Python value
	Sourcing the MySQL function as a Python module
	Sourcing the function as MySQL code
	Room to grow

	Summary

	Chapter 13: Showing MySQL Metadata
	MySQL's system environment
	ENGINE
	The most popular engines
	Transactions
	Specifying the engine
	ENGINE status

	SHOW ENGINES
	Profiling
	SHOW PROFILE
	SHOW PROFILES

	SHOW system variables

	Accessing database metadata
	DATABASES
	Using the USE command

	Accessing metadata about tables
	SHOW TABLES
	SHOW TABLE STATUS
	Showing columns from a table
	FUNCTION STATUS

	Accessing user metadata
	SHOW GRANTS
	PRIVILEGES

	Project: building a database class
	Writing the class
	Defining fetchquery() and some core methods
	Retrieving table status and structure
	Retrieving the CREATE statements

	Define main()—part 1
	Writing resproc()
	Define main()—part 2
	The preamble
	Modules and variables
	Login and USE

	Closing out the program
	Room to grow

	Summary

	Chapter 14: Disaster Recovery
	Every database needs a backup plan
	Offline backups
	Live backups

	Choosing a backup method
	Copying the table files
	Locking and flushing
	Unlocking the tables
	Restoring the data

	Delimited backups within MySQL
	Using SELECT INTO OUTFILE to export data
	Using LOAD DATA INFILE to import data

	Archiving from the command line
	mysqldump
	mysqlhotcopy

	Backing up a database with Python
	Summary

	Index

