
Mobile Python
Rapid Prototyping of Applications
on the Mobile Platform

Jürgen Scheible and Ville Tuulos

Reviewed by

Panos Asproulis, Mal Minhas, Tim Ocock, Mark Shackman,
Ian Weston

Head of Symbian Press

Freddie Gjertsen

Managing Editor

Satu McNabb

Copyright 2007 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester,
West Sussex PO19 8SQ, England

Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk
Visit our Home Page on www.wileyeurope.com or www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or
transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or
otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of
a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP,
UK, without the permission in writing of the Publisher. Requests to the Publisher should be addressed to
the Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West
Sussex PO19 8SQ, England, or emailed to permreq@wiley.co.uk, or faxed to (+44) 1243 770620.

Designations used by companies to distinguish their products are often claimed as trademarks. All
brand names and product names used in this book are trade names, service marks, trademarks or
registered trademarks of their respective owners. The Publisher is not associated with any product or
vendor mentioned in this book.

This publication is designed to provide accurate and authoritative information in regard to the subject
matter covered. It is sold on the understanding that the Publisher is not engaged in rendering
professional services. If professional advice or other expert assistance is required, the services of a
competent professional should be sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 42 McDougall Street, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809

John Wiley & Sons Canada Ltd, 6045 Freemont Blvd, Mississauga, Ontario, L5R 4J3, Canada

Wiley also publishes its books in a variety of electronic formats. Some content that appears
in print may not be available in electronic books.

Anniversary Logo Design: Richard J. Pacifico

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN: 978-0-470-51505-1

Typeset in 10/12pt Optima by Laserwords Private Limited, Chennai, India
Printed and bound in Great Britain by Bell & Bain, Glasgow
This book is printed on acid-free paper responsibly manufactured from sustainable forestry
in which at least two trees are planted for each one used for paper production.

Contents

Contributors ix

About the Authors xi

Authors’ Acknowledgments xiii

Symbian Press Acknowledgments xvii

Forewords xix

1 Introduction and Basics 1
1.1 Why Does Python Make a Difference? 3
1.2 How to Use this Book 4
1.3 Who Is this Book For? 5
1.4 What Are Symbian OS, S60 and Python for S60? 6
1.5 Python Terminology in this Book 7
1.6 Democratizing Innovation on the Mobile Platform 8
1.7 The Process of Rapid Prototyping with Python S60 10
1.8 Summary 11

2 Getting Started 13
2.1 Installing Python for S60 on 3rd Edition Devices 14
2.2 Installing Python for S60 on 2nd Edition Devices 21
2.3 Writing a Program in Python for S60 27
2.4 White Space in Python Code 28
2.5 Troubleshooting 29
2.6 Summary 30

vi CONTENTS

3 Graphical User Interface Basics 31
3.1 Using Modules 31
3.2 Native UI Elements – Dialogs, Menus and Selection

Lists 32
3.3 Messages 45
3.4 Summary 47

4 Application Building and SMS Inbox 49
4.1 Functions 49
4.2 Application Structure 52
4.3 String Handling 60
4.4 SMS Inbox 64
4.5 SMS Game Server 70
4.6 Summary 76

5 Sound, Interactive Graphics and Camera 77
5.1 Sound 77
5.2 Keyboard Keys 84
5.3 Graphics 92
5.4 Camera 100
5.5 Mobile Game: UFO Zapper 104
5.6 Summary 110

6 Data Handling 111
6.1 File Basics 112
6.2 Reading and Writing Text 117
6.3 Local Database 121
6.4 GSM and GPS Positioning 123
6.5 Vocabulector: A Language-Learning Tool 127
6.6 Summary 131

7 Bluetooth and Telephone Functionality 133
7.1 Bluetooth Pairing 134
7.2 OBEX and RFCOMM 134
7.3 Phone-to-Phone Communication 136
7.4 Phone-to-PC Communication 141
7.5 Communication with GPS and Other Devices 148
7.6 Telephone Functionality and Contacts 151
7.7 System Information 152
7.8 Summary 154

8 Mobile Networking 155
8.1 Simple Web Tasks 156
8.2 Setting up the Development Environment 158

CONTENTS vii

8.3 Communication Protocols 166
8.4 Server Software 172
8.5 Pushing Data to a Phone 177
8.6 Peer-to-Peer Networking 183
8.7 Using a Phone as a Web Service 193
8.8 Summary 197

9 Web Services 199
9.1 Basic Principles 200
9.2 MopyMaps! Mobile Yahoo! Maps 201
9.3 EventFu: Finding Eventful Events 207
9.4 InstaFlickr: Shoot and Upload Photos to Flickr 215
9.5 Summary 224

10 Effective Python for S60 227
10.1 Powerful Language Constructs 227
10.2 Introspection 231
10.3 Custom Modules and Automatic Updating 234
10.4 Program Patterns 239
10.5 Summary 241

11 Combining Art and Engineering 245
11.1 MobiLenin 245
11.2 Manhattan Story Mashup 252
11.3 MobileArtBlog – Image-Composition Tool 256
11.4 ArduinoBT Micro-Controller Board 261
11.5 Controlling Max/MSP with a Phone 266
11.6 OpenSound Control 273
11.7 Robotics 274
11.8 Summary 277

Appendix A: Platform Security 279

Appendix B: Bluetooth Console 289

Appendix C: Debugging 295

Appendix D: How to Use the Emulator 301

References 303

Glossary 305

Examples 309

viii CONTENTS

Python Language Lessons 315

Python for S60 Modules 317

Index 321

Contributors

Head of Symbian Press

Freddie Gjertsen

Authors

Jürgen Scheible
Ville Tuulos

Symbian Press Editorial

Managing Editor

Satu McNabb

Reviewers and Additional Contributors

Panos Asproulis
Jukka Laurila
Joe McCarthy
Timo Ojala
Mark Shackman

About the Authors

Jürgen Scheible

Jürgen Scheible is a designer, media artist and musician who holds a
degree in telecommunications from Karlsruhe, Germany. After graduating,
he worked for eight years at Nokia in Finland pursuing various positions
such as programmer, product manager and competence transfer manager.
Besides his occupation, he performed and produced music as well as
media art under the pseudonym Lenin’s Godson.

In 2003, he left his engineering career to concentrate full-time on his
creative career, because he felt his heart was much more in his artistic
works than in engineering. In 2004, he became a doctoral student at
the Media Lab at the University of Art and Design, Helsinki, where he
established the Mobile Hub, a prototype development environment for
mobile client and server applications. It has a strong focus on artistic
approaches and creative design, and serves as a resource to art and
design students who use mobile technology as part of their projects. His
doctoral research focuses on designing multimodal user interfaces for
creating and sharing interactive artistic experiences.

Since 2004, he has been evangelizing Python for S60 as one of
its pioneers. He is internationally active having given talks and taught
innovation workshops in both academic and professional settings on
more than 40 occasions, in places such as Stanford University, MIT, NTU
Taiwan, Yahoo Research Berkeley, Tsinghua University Beijing, Nokia
and Nokia Siemens Networks, in more than 17 countries. His focus is
on rapid mobile application prototyping using creative approaches for
innovation.

In 2006, he spent several months as a visiting scientist at MIT, Boston
in the Computer Science and Artificial Intelligence Laboratory (CSAIL).

xii ABOUT THE AUTHORS

Jürgen was recognized as a Forum Nokia Champion in 2006 and 2007
for his driving vision of building bridges between art, engineering and
research. He was one of the winners of the ACM Computers in Entertain-
ment Scholarship Award in 2006 and of the Best Arts Paper Award at
ACM Multimedia 2005 conference.

The philosophy behind his works is to bring back the depth of human
feelings and emotional aspects to the digital world which, in his opinion,
were lost with the arrival of the fast-paced digital production technology.
By inspiring others with his works, he gets inspired himself. This leads
him to many new ideas for designing new kinds of interactive experiences
for people, especially in the area of mobile phone applications that fuse
the real and the virtual worlds. He believes this era will change the way
we live and communicate in the future and it will transform societies.
Therefore it is important, in his opinion, to design for these coming
applications.

Ville Tuulos

Ville Tuulos is currently a researcher in the Department of Computer
Science, University of Helsinki, Finland. He has more than 15 years’
experience of creative hacking, including data visualization, web search
engines, and machine-learning algorithms. He has been an enthusiastic
Pythonista since 2000 and he has been exploring and extending the limits
of Python for S60 since 2005. He has used it to implement, among others,
real-time image processing algorithms, various positioning techniques
and an urban game for 200 players in New York City.

Authors’ Acknowledgments

We’d like to express our gratitude to all the people who played a part
in developing this book. First, we’d like to thank the editors that worked
on this project: Satu McNabb at Symbian; Hannah Clement, Andrew
Kennerley and Rosie Kemp at Wiley; and Shena Deuchars at Mitcham
Editorial. We’d also like to thank Wiley and Symbian, in general, for
supporting this book project. We are glad to be part of it.

Thanks also to everyone who took part in the early review of this book:
Joe McCarthy, Panos Asproulis, Mark Shackman, Tim Ocock, Timo Ojala
and Jukka Laurila, who also contributed Appendix A.

And for creating such an enjoyable and useful thing as Python for S60,
we thank Jukka Laurila, the mastermind behind Python for S60 at Nokia,
as well as Erik Smartt and Kari Pulli who greatly supported its bringing it
to life. We owe an especially large debt to Guido van Rossum, the creator
of Python, for this beautiful and fun language, and the growing Python
for S60 community for their engagement and contributions to the mobile
space.

We are grateful also to Joe McCarthy for the fruitful discussions we
had and writing an executive book summary for us. A big thanks goes
to Tomi Silander for his experiments, source code and information on
robotics using Roombas and Python for S60.

Finally, we want to thank Harri Pennanen, for helping to spread the
knowledge about Python for S60 to universities around the globe and his
great managerial support for realizing Manhattan Story Mashup.

Jürgen’s Acknowledgments
I’d like to thank David Wood and Symbian for giving me a chance to
work on this book project, being able to share my vision of user-driven

xiv AUTHORS’ ACKNOWLEDGMENTS

innovation in the mobile space with a larger audience and to make them
aware of this great toolkit named Python for S60. This platform can bring
so much fun and inspiration to one’s own and other people’s lives. It’s
been so much fun to write this book.

I am grateful to Professor Timo Ojala for his relentless support during
my studies and research in which Python for S60 has played a crucial
role from the beginning. I also want to thank Professor Philip Dean for
helping me to set up the Mobile Hub at the Media Lab of University of
Art and Design, Helsinki.

My special thanks go to Joost Bonsen, my great mentor during my time
at MIT, who strongly encouraged and supported me to go forward with
this book and writing the initial proposal.

Also I want thank Eric von Hippel. At MIT, it was great to get to know
him and his inspiring arguments about user-driven innovation which I
have put at the heart of my evangelizing approach to Python for S60 and
this book.

I’d like to thank all the students who have participated in my workshops
and tutorials. Your feedback, needs and inspiration have played a huge
role in shaping my contributions to this book.

Finally a few personal notes of thanks: to Steffi, for being patient,
understanding and always supportive during the entire time of writing,
thinking and travelling; and to my late mom, for helping me finding my
own sources of inspiration, motivation and depth in life.

Ville’s Acknowledgments

Since 2000, I have been using Python on the server side for rapid prototyp-
ing and as a glue language to handle large-scale scientific computation.
As an enthusiastic Linux user, I have become accustomed to systems that
are open, pragmatic and ’shiny, beautiful things that you can poke at and
bend to your will’, to quote the head-honcho of Python for S60, Jukka
Laurila. Thanks to his sense of aesthetics, Python for S60 has become one
of those beautiful things – and shiny too!

Python for S60 may bring the mobile platform closer to the Internet
with respect to open innovation, mad experimentation and community-
oriented development. Jürgen is doing great work on evangelizing this
idea, so I was delighted to accept his invitation to join him in writing this
book and take the opportunity to share my knowledge about Python for
S60 with the readers.

Since 2005 I have implemented real-time image processing algorithms,
a framework for self-migrating code (with Jukka Perkiö), Bluetooth and
GSM-based positioning systems and a large-scale urban game, among
others, using Python for S60. I want to thank Henry Tirri from Nokia

AUTHORS’ ACKNOWLEDGMENTS xv

Research Center for motivating many of these intellectual challenges and
for his ’Just do it’ attitude, which fits Python for S60 so perfectly.

Also, I want to thank Professor Petri Myllymäki and all my colleagues
in the Complex Systems Computation research group at the Univer-
sity of Helsinki, for their no-nonsense, Zen-like insights into various
technologies, including Python for S60.

Last but not least, a huge hug to my wife Heli Tuulos for keeping me
updated with the latest web techniques and for tolerating my endless
stream of questions regarding details of the book.

Symbian Press Acknowledgments

Symbian Press wishes to thank the authors, Jürgen Scheible and Ville
Tuulos, for giving us the opportunity to publish this unique book and for
working so hard during the past year. Without your efforts, publishing
this book would not have been possible.

We’d also like to acknowledge reviewers Ian Weston, Mal Minhas,
Mark Shackman, Panos Asproulis and Tim Ocock for giving their time
and sharing their technical knowledge. Finally, we’d like to thank Phil
Northam who first discussed the book with Jürgen and got the ball rolling!

Forewords

Guido van Rossum

While skimming the manuscript of this book, I couldn’t help wanting
to whip out my phone and start hacking it right there and then – and it
wasn’t just because I was procrastinating on writing this foreword.

As Python’s creator, I’m proud that this book uses Python, but hardly
surprised. Python is simply one of the best languages for exploratory
programming, which is what this book is all about. Python is perfect
for the do-it-yourself experiments, prototypes and games that pop off the
pages everywhere in this book.

Python has been ported to many platforms, but the port to Nokia’s
S60 system is in many ways unique: It is by far the smallest platform
to which Python has successfully been ported, and it has potentially the
largest number of users. It is also one of the most connected platforms:
camera, phone, Bluetooth, Internet and more. All this makes for a very
exciting platform and I’m glad that Jürgen and Ville have written this book
showing everyone how easy it is to program your own phone!

As will become clear when you read through the many examples in
the book, programming a phone these days doesn’t require a degree in
wireless communication. I predict that even people who haven’t written a
single computer program in their life will be able to follow the instructions
in this book, and soon will be writing their own programs to hook up
their phone to the rest of their life in interesting ways.

While this book isn’t a tutorial for the Python programming language,
all the concepts necessary for understanding the example programs
are explained clearly, so you’ll be at least an apprentice-level Python

xx FOREWORDS

programmer by the time you’ve finished the book. At which point you
may want to further test and improve your skills by writing code for a PC
or Mac. The free online tutorials available from http://python.org will be
at your service then.

Programming can be fun, and using Python is one of the best ways to
have fun programming, for your phone or for any other computer!

Enjoy,

Guido van Rossum

Mountain View, CA

July 2007

Eric von Hippel

I am very happy to write a foreword to this wonderful book. In it, Jürgen
Scheible and Ville Tuulos teach us how to simply and quickly use a
Python-based toolkit to create custom applications for mobile device
platforms, such as mobile phones.

Jürgen and Ville have long been on a mission to open up mobile
devices to the many millions of us who really want to create our own
applications for these devices – but who do not have the specialized
technical skills that have been needed until now. Today, the situation
facing users of mobile platforms is very much like that faced by music
fans a few years ago. Many music fans wanted to create and modify
music using digital tools, but few had the programming skills needed to
do so. Then along came simple, user-friendly and very capable software,
such as Propellerhead Software music toolkits, and many more of us
were suddenly empowered to create our own music using the wonderful
possibilities opened up by powerful digital tools.

In this book, Jürgen and Ville help create a similar revolution in the
field of mobile devices. Using the simple but powerful kit of tools that they
teach us, we can quickly learn how to create and insert custom, Python-
based programs into ’open’ mobile phones and other devices. Jürgen and
Ville have themselves used this toolkit to build many useful prototypes
and applications. In addition, they have learned effective ways to teach
us to accomplish similar things. They have taught these capabilities to
many groups, small and large. As a result, this book is very user-friendly
and also very effective. There are many examples and many trial scripts
for us to create and immediately apply in order to learn by doing.

Thank you so much for all your hard work and for giving us this
intellectual gift, Jürgen and Ville!

Eric von Hippel

Cambridge, MA, USA

June 2007

1
Introduction and Basics

This practical hands-on book introduces the Python programming lan-
guage for rapid prototyping of mobile device applications. It effectively
teaches how to program easily on Nokia smartphones that are based on
Symbian OS and the S60 platform. A wide range of smartphone func-
tionalities are covered, including camera, sound, graphics, Bluetooth,
Internet, positioning, SMS messaging and many more.

Mobile Python – or, more formally, Python for S60 (see Figure 1.1) –
empowers you to do fun and engaging stuff with your mobile phone.
You can start programming shortly after getting into this book. Being able
to see results quickly on the phone guarantees to bring inspiration and
makes programming these gadgets fun!

Figure 1.1 Python for S60

2 INTRODUCTION AND BASICS

Development on the Symbian platform has been time-consuming in
the past and it has required in-depth knowledge of C++ or Java. Python
for S60 remedies this problem. It is easy to learn and takes only a few days
to get into most of its features. Novice programmers, artists and people
from creative communities can innovate and contribute applications to
the mobile space.

Python for S60 brings the increasingly popular Python programming
language to the mobile platform. You can use this book to learn the
Python programming language by way of Python for S60 or use your
previous Python knowledge to get into mobile programming in no time.
Similar to traditional Python, Python for S60 is released under an open-
source license, so you will be backed up by an enthusiastic community
of talented developers and a large library of extension modules.

Python for S60 allows you to go through a fast iterative design cycle by
providing an elegantly simple but powerful platform for your programs,
which can be rapidly adapted to real-world requirements. With com-
pletely free and open tools you are able to create useful and appealing
applications based on your own ideas.

Our message to all you creative and innovative people out there is:
use your talent, skills, ideas and energy to inspire the world! May this
book help you to do so!

Although the book is written in a style that beginners can cope with, it
hopefully also offers experienced programmers new insights and in-depth
knowledge. It is not a traditional programming text book with meticulous
coverage of every aspect of a programming language. Instead it adopts
a light and engaging tone that helps the reader to proceed through the
chapters in a practical hands-on manner, steadily increasing knowledge
through learning by doing.

The material in this book has been reformulated and refined through
dozens of workshops and tutorials offered by the authors at a wide
variety of institutions and companies across 17 countries, including
MIT, Stanford University, the University of Art and Design, Helsinki,
and Yahoo Research, Berkeley. Among the hundreds of applications
created by participants in these events are games for social interaction;
applications for interacting with large public displays, sensors or robots;
and personal organizer applications. This book is intended to broaden
the audience for these kinds of applications even further, enabling you to
create new mobile applications that may have seemed to be out of your,
or anyone’s, reach before.

We have used the book’s material to build many applications and
prototypes for companies such as Nokia. We have also helped sev-
eral universities around the globe to conduct research projects on
robotics, sensor networks, positioning and data collection using Python
for S60.

WHY DOES PYTHON MAKE A DIFFERENCE? 3

Mobile phones are carried by over two billion people – far more than
the 200 million who carry laptop computers. Despite the greater pene-
tration of mobile phone users, the number of mobile phone programmers
is far lower than the number of people who have learned to program
personal computers. This book aims to change that.

There is no doubt that the built-in features of mobile phones have
empowered a generation of people to connect with others more effectively
than ever before. However, these standard applications are just scratching
the surface with respect to unleashing the true creative potential of our
culture. We can expect to see a user-driven innovation era and user-
generated mobile applications are in the near reach. This book is inspired
by [von Hippel 2005] and lays out a practical path for how innovation
driven by lead users can become a reality on the mobile platform.

By reading this book, you will become fully equipped to be one of
the new lead users. You may gain inspiration and motivation that turns
you into an innovator and a contributor to the developer community for
mobile applications.

1.1 Why Does Python Make a Difference?

Only skilled and experienced programmers were previously able to build
mobile applications using C++ or Java. As a result, many people often
gave up early or never really started.

The emergence of Python for S60 offers a crucial turning point, as it
brings the Python programming language to the mobile space. This makes
mobile development approachable for many new developers that were
previously excluded.

Python for S60 can drastically reduce development time; it allows
development with completely free and open tools and reuse of open
source code modules. This can potentially lower costs and other barriers
to entry for first-time developers of mobile applications.

With Python running on Symbian OS, the short development cycle
gives a shortcut from the inspiration of an idea to its implementation.
It makes rapid prototyping on the mobile platform easy and efficient by
wrapping complex, low-level technical details in simple interfaces.

In recent years, the processing power and memory capacity of smart-
phones have drastically advanced which have made it possible to run an
interpreted language such as Python on such devices.

Modern smartphones offer a rich set of features, including WiFi,
camera, sound recording and networking that could easily be combined
and used for new types of applications. As this book shows, Python for
S60 makes accessing these features extremely convenient, letting you
focus on your own application idea instead of on the intricacies of the
platform.

4 INTRODUCTION AND BASICS

The mobile space and the Internet are rapidly converging. Client–server
solutions can be developed quickly in Python for S60 in combination
with a web services back end, such as Django or Ruby on Rails, or using
a custom server, which could also be implemented in Python. Being able
to use a single agile language, and even some of the same code, on both
the client and the server is a great benefit. Chapter 8 deals with advanced
topics in networking, such as peer-to-peer communication and turning
your mobile phone into a web server. Chapter 9 is dedicated to combining
web services, such as Yahoo! Maps and Flickr, with Python for S60.

1.2 How to Use this Book

With a simple text editor and a Nokia smartphone, you can instantly code
and test working applications found in this book. You will learn things
by running small yet fully working programs on the actual phone to see
what they do and then study and modify them on your computer. By
experiencing the hands-on coding style and ready-to-use programs, you
can soon feel success that keeps you inspired throughout the book.

This book includes over 100 example programs that demonstrate dif-
ferent aspects of the mobile platform. The code for all example programs
can be downloaded for free from www.mobilepythonbook.com. Some of
the programs are small scripts that show you how to automate tasks, such
as sending SMS messages; some are full-scale applications with graphical
user interfaces. The examples are designed in such a way that they often
build on each other, which makes learning easier through repetition.

Most of the examples demonstrate a specific functionality, so they are
short and easy to understand – the median length of examples is just 17
lines of code! However, many of the examples are not just for playing
around but are already usable solutions in their own right.

The examples in this book are designed to be combined, modified
and enhanced by your own ideas. Throughout the book, examples are
cross-referenced with each other, so the book can also be ‘dipped into’
and not necessarily read from cover to cover.

Besides many examples, Chapters 3 to 6 contain some Python lan-
guage lessons. These lessons, spanning at most a page, introduce you to
the basic concepts of the Python programming language. They provide
you necessary knowledge on the language, so you can follow examples
and extend them by yourself. Even though the lessons cover the basic
concepts in Python, they omit many of its interesting and useful features.
As the lessons deal with Python in general and not specifically about
Python on the mobile platform, you can easily find more information
about the topics in many books and Python tutorials on the web (see the
References section).

However, you will be surprised how far you get with 14 one-page
lessons on Python!

WHO IS THIS BOOK FOR? 5

1.3 Who Is this Book For?

Since Python is easy to learn, you do not need to master any advanced
computing concepts before touching this book. You only need an under-
standing of some basic programming principles or a scripting language,
such as PHP or JavaScript, to get started with programming in Python for
S60.

Because of the steep learning curve of most mobile platforms, the
creative community and novice programmers have been excluded from
developing their own ideas for applications for mobile phones. We
believe that Python for S60 remedies this problem. Therefore, this book
is primarily aimed at people who are new to mobile programming, who
lack the time and enthusiasm to learn C++ or Java or who cannot afford to
spend weeks or months on development. Rapid prototyping with Python
for S60 gives them a fast entry ticket. At the same time, many experienced
developers find Python a refreshingly agile alternative and may enjoy the
additional sense of elegance and freedom that it provides.

We think the following groups of people will benefit from this book:

• Lead users and ‘prototypers’
If you want to gain knowledge and practical skill for quickly program-
ming working prototypes of innovative mobile applications, you may
find Python for S60 your toolkit of choice. It is open source, so you
will not be hindered by closed, proprietary platforms which severely
restrict your freedom to experiment. If you are an enthusiastic mobile
phone user who has many ideas on new ways of using your phone,
we show you how to realize your own novel concepts in practice.

• Mobile artists and mobile interaction designers
Python for S60 will open the door for you to the world of pro-
grammable mobile phones. As a creative media artist or interaction
designer you might be less constrained by conventional thinking than
a typical software engineer – and this is your opportunity. By using
Python for S60 to combine several smartphone features, for instance,
camera, sound recording, SMS and Bluetooth, you can explore new
frontiers of art and design. If you are a designer who has worked with
ActionScript for Flash or Director’s Lingo and want to start creating
mobile applications, you will find Python for S60 already familiar to
you in many respects.

• Web developers
If you have worked with PHP or JavaScript but haven’t used Python
before, start today! Python for S60 allows you to quickly write mobile
client applications that can be part of your website or service. You
can also create novel mashups that combine information from a web
service with that from your physical surroundings.

6 INTRODUCTION AND BASICS

• Experienced mobile application developers
Converting to Python for S60 makes development feel light, happy and
productive while retaining your old powers. Whenever a colleague
complains that Python is slow or it misses feature X, sit down and
write a C++ extension for Python in a few hours. This way, you get
the best of both worlds.

• Researchers
Python for S60 is a perfect platform for doing various kinds of
research. It is the easiest way to collect rich empirical data with
mobile phones and you can prototype novel applications quickly.
Since it is open source and easily extendable in C++, you can even
perform some demanding computations on the device. Moreover, you
can get started right away, since Nokia smartphones are ubiquitous,
off-the-shelf products and Python for S60 is freely available.

• Teachers and students
If you are teaching introductory programming classes in Python, this
book might serve as a source of motivation and inspiration for your
students. The smartphone is a rich and ready-to-use platform with
many built-in functionalities such as networking, camera, graphics,
image handling, GUI design, Bluetooth, telephony and more, so a
plethora of concepts can be demonstrated and experimented on it.
Nowadays, many students are motivated by the mobile phone, which
is an integral, personal part of their lives, rather than by a PC. Being
able to easily ‘pimp up’ the mobile phone and learn programming at
the same time is a strong incentive even for younger students.

• Python community
If you are one of the hundreds of thousands of Python programmers
and want to enter the mobile space using completely free and open
tools as well as open-source code modules, Python for S60 is an ideal
path for you to take.

1.4 What Are Symbian OS, S60 and Python for S60?

Symbian OS is an operating system designed for mobile devices. It
includes associated libraries, user interface frameworks and reference
implementations of common tools. As a descendant of Psion’s EPOC,
it runs exclusively on ARM processors. Symbian OS APIs are publicly
available and anyone can develop software for Symbian OS.

S60 is a software platform for mobile phones based on Symbian OS.
It is Nokia’s user interface framework that runs on all Nokia S60 devices
on top of Symbian OS. S60 is one of the leading smartphone plat-
forms in the world. It is developed by Nokia, which licenses it to other

PYTHON TERMINOLOGY IN THIS BOOK 7

manufacturers including Lenovo, LG Electronics, Panasonic and Sam-
sung. S60 consists of a suite of libraries and standard applications based
on Symbian OS APIs.

Python is a dynamic object-oriented, open-source, computer-program-
ming language. It can be used for many kinds of software development,
for instance, to create stand-alone programs, scalable server software or
small scripts – Python’s roles are virtually unlimited. Python was created
by Guido van Rossum and is distributed under an OSI-approved, open-
source license that makes it free to use, even for commercial products.

Python is often used for prototyping and teaching introductory pro-
gramming classes. It can be learned in a few days and offers strong
support for integration with other languages and tools. Python comes
with an extensive standard library, thus its slogan is ‘Python – batteries
included’.

Python runs on most common and legacy platforms, for example,
Windows, Mac OS X, Linux/Unix, OS/2, Amiga and Palm OS. It also
runs on Nokia S60 2nd and 3rd Edition mobile phones – that is where
this book comes in. Python has also been ported to the Java and .NET
virtual machines. It is an interpreted programming language that combines
remarkable power with clear syntax; it has modules, classes, exceptions,
high-level dynamic data types and dynamic typing.

Python for S60 brings the Python programming language to the S60
platform. Python for S60 is based on Python version 2.2.2. It supports
many of the Python Standard Library modules but also includes sev-
eral modules specific to the mobile platform, for example, native GUI
elements, Bluetooth, networking, GSM location information, SMS mes-
saging, access to the camera, and more. The full range is described in
detail throughout this book. Nokia makes Python bindings for Symbian
OS APIs that are publicly provided on S60 devices. All examples in this
book were made using Python for S60 version 1.4.0.

1.5 Python Terminology in this Book

In this book, the term ‘Python’ may refer to three different concepts (see
Figure 1.2).

Figure 1.2(a) shows the Python programming language, which is the
same both on a PC and a phone, although the PC cannot access the
phone’s functionalities.

Figure 1.2(b) shows Python for S60, which runs, or interprets, the
Python language on the S60 smartphone platform and provides interfaces
to the phone’s functionalities.

Figure 1.2(c) shows a Python interpreter that is used to run Python on
a PC. In some examples of this book, you need that as well.

8 INTRODUCTION AND BASICS

(a) (b) (c)

Figure 1.2 Three meanings of ‘Python’: (a) Python code, (b) Python for S60 and (c) Python interpreter on
a PC

In practice, almost always in this book we are talking about Python
for S60 and thus we use the abbreviation ‘PyS60’ for clarity. The Python
language lessons talk about Python the programming language, so they
apply on a PC as well. On rare occasions we need to run the Python
interpreter on a PC – in these cases we state this clearly in the text.

1.6 Democratizing Innovation on the Mobile Platform

Eric von Hippel, Professor and Head of the Innovation and Entrepreneur-
ship Group at the MIT Sloan School of Management, discusses in his book
([von Hippel 2005]) the phenomenon that users can generate innovation
if a toolkit – based on a platform product – is provided, that allows them
to create user-developed modifications that suit their own needs. He calls
this ‘distributed innovation’ by ‘lead users’. Lead users have the following
characteristics:

• They are ahead of most users in their population with respect to an
important market trend and so are experiencing needs today that will
later be experienced by many other users.

• They know and understand their own needs well.

• They are close to ‘real situations’, so the products they develop will
appeal to others too.

• They may innovate if they want something that is not available on the
market.

Although his empirical data is collected from other fields, his arguments
around his lead-user theory matches well with what we practically
experience from outcomes of workshops with creative students learning

DEMOCRATIZING INNOVATION ON THE MOBILE PLATFORM 9

Python for S60. We see that they innovate instantly, creating unusual and
novel applications based on their own ideas, fulfilling their own needs
and enabling them to share their innovations.

Can Python for S60 democratize innovation on the mobile platform?
We have the vision of a big garden full of beautiful flowers, each
representing a novel mobile application created by a lead user fitting
his or her own needs. Will you help to grow these flowers? Distributed
innovation on the mobile platform is possible and perhaps this book can
be a starting point to help trigger it.

Let’s look now at some of the topics and arguments that [von Hippel
2005] states and how they map to Python for S60.

1.6.1 User-Centered Innovation Process

[von Hippel 2005] explains that users that innovate can develop exactly
what they want, rather than relying on manufacturers to act as their (often
imperfect) agents. It may be that the needs of local user communities
differ and so local lead users really may be the world’s lead users with
respect to their particular needs. Further, [von Hippel 2005] argues that
users generally have a more accurate and more detailed model of their
needs than manufacturers. The information assets of some particular
users are close to what is required to develop a particular innovation.
Users tend to develop innovations that are functionally novel, requiring a
great deal of user-need information and use-context information for their
development.

Using Python for S60, users can program applications based on their
interests and own ideas – even integrating local cultural aspects. Users
with few programming skills can innovate, iterating through new ideas
rapidly.

1.6.2 Motivation of Lead Users

[von Hippel 2005] also states that, for individual user–innovators, enjoy-
ment and learning of the innovation process can be important.

To program with Python for S60 is often described by people as fun
since it generates reward and motivation through a seamless process
of iterative development and design with instant coding, modifying and
testing on the real phone in the real mobile network. People can easily
learn how to start coding their own mobile application ideas with hardly
any learning curve.

1.6.3 Sharing of Innovations

According to [von Hippel 2005], users often achieve widespread diffu-
sion: they often ‘freely reveal’ what they have developed. Individual users

10 INTRODUCTION AND BASICS

can benefit from innovations developed and shared by others. Freely
revealing users may benefit from enhancement of their reputation from
positive network effects because of increased diffusion of their innovation.

Coding Python for S60 modules and making them public for sharing
with others is becoming a common practice. The projection is for huge
potential if many lead users come on board to contribute.

1.6.4 Development of Products by Lead Users

[von Hippel 2005] states that studies have shown that many of the inno-
vations reported by lead users are judged to be commercially attractive
or have actually been commercialized.

Python for S60 allows lead users and creative minds to prove the
concept of their own ideas, ideas that fulfill some real needs and can
potentially be shared with others. In our experience from giving mobile
phone programming workshops around the world, when we ask people
what they would like to do with their phone, almost everyone comes up
with a unusual idea.

1.6.5 Toolkit

Further, [von Hippel 2005] says that the ability of users ‘to innovate
is improving radically and rapidly through improved access to easy-
to-use tools and steadily richer innovation commons. Companies learn
to supply proprietary platform products that offer user–innovators a
framework upon which to develop and use their improvements. . . . kits
and design tools . . . can serve as platforms upon which to develop and
operate user-developed modifications.’

With Python for S60, a toolkit provides the S60 platform with many
open APIs and a rich set of features and phone functionality into which
creative users can tap. With a hands-on tutorial, such as MobiLenin, lots
of starting code and the help of this book, people can program their own
ideas quickly and in a powerful manner.

1.7 The Process of Rapid Prototyping with Python S60

Python for S60 can be seen as an ideal prototyping tool. Turning an idea
or concept into code for a working software prototype can be done in
weeks, if not days. Many fully functioning code examples, such as the
ones found in this book, can be used as a springboard to get started with
the rapid prototyping process. Rapid prototyping with Python for S60
may:

SUMMARY 11

• save much development time

• save many development costs

• allow a developer team to turn several ideas into prototypes within
budget and time limits, instead of building just one.

1.8 Summary

Python for S60 is all about having one’s head in the clouds, one’s hands
in mud and one’s feet on the ground. In other words, it allows you to
come up with ideas and implement and test them in a straightforward
and pragmatic manner. Dive in, develop, share and enjoy!

In the next chapter we take the first practical steps. We start by
installing the Python for S60 interpreter on your phone and then create
our first PyS60 program.

2
Getting Started

In this chapter we show you, step by step, how to install Python for S60
(PyS60) to your mobile phone. Once this is done, you can make your first
PyS60 script and run it on your phone.

Since PyS60 (Figure 2.1) is not pre-installed on any S60 mobile phone
by default (at least not when this book was written), you have to install it
on your device. PyS60 is available on the Internet for free download.

To use PyS60, you need:

• a Nokia mobile phone, based on S60 2nd Edition or 3rd Edition

• a memory card for the phone

Figure 2.1 Python for S60

14 GETTING STARTED

• a computer which runs Windows, Mac OS X, or Linux

• a USB cable or Bluetooth to connect the phone to your computer.

If you are not sure whether your mobile phone uses 2nd Edition, 3rd
Edition or some earlier version of the S60 platform, you can find out
in Appendix D. Table D.1 includes information about all Nokia phone
models that are based on the S60 platform at the time of writing this
book. All models released after this book will use either 3rd Edition or
some newer edition of the S60 platform. If you have a phone model that
predates this book (2007) and it is not included in the table, it is unlikely
to be compatible with PyS60.

If your phone uses S60 3rd Edition, follow the instructions in Section 2.1.
If your phone uses S60 2nd Edition, follow the instructions in Section 2.2.

The descriptions given here are subject to change as PyS60 develops.
If they do not work, you may check out the latest instructions on the
Internet from relevant websites such as http://wiki.forum.nokia.com,
www.mobilepythonbook.com and www.mobilenin.com. Python is a fast
evolving language.

2.1 Installing Python for S60 on 3rd Edition Devices

2.1.1 Download the Installation Files

The first task is common to all platforms. You need to download
two installation files from the Internet to your computer and then
to the phone. You find them at SourceForge’s PyS60 project page,
http://sourceforge.net/projects/pys60. There are many versions of files
available on that website. The two files that you need are the PyS60
interpreter and the user interface (Python Script Shell) for the PyS60
interpreter.

The file names consist of three components:

• the name

• the version number, for example, 1.4.0 (make sure you choose the
latest version, that is, the largest number)

• the edition number (in this case, 3rdEd).

Assuming that version 1.4.0 is the latest version, you will down-
load PythonForS60 1 4 0 3rdEd.SIS (the PyS60 interpreter) and
PythonScriptShell 1 4 0 3rdEd.SIS (the user interface). Both
files have undergone the signing process that is required for 3rd Edition
devices (see Appendix A for more information regarding signing).

INSTALLING PYTHON FOR S60 ON 3RD EDITION DEVICES 15

We have divided the following descriptions into separate sections for

• Windows users, see Section 2.1.2

• Mac users, see Section 2.1.3

• Linux users, see Section 2.1.4.

For each operating system, we have included a complete description
of how to install PyS60 and how to write and execute your first script.

2.1.2 Installation for Windows Users
We assume you have the Nokia PC Suite application installed on your
Windows computer. It connects your Nokia phone to your Windows PC
for fast file transfer and smooth synchronization. If you have not installed
it yet, we recommend doing so now. Most new phones come with the
Nokia PC Suite software on a CD. You should download the latest version
from Nokia’s website, for example, at www.nokia.com/A4144903. If you
do not have Nokia PC Suite available or you have no USB cable, check
Sections 2.2.and 2.5.1 for alternatives.

1. Install the downloaded .SIS files to your phone

Connect your phone to your computer using the USB cable. Open the
Nokia PC Suite and select ‘Install applications’ (see Figure 2.2). First,
install the PyS60 interpreter and then the user interface for the PyS60
interpreter. Follow the on-screen instructions on the phone – for instance,
select ‘Yes’ if a security warning appears on the phone screen. Also make
sure the date is set correctly on the phone.

After the installation is complete, your phone shows the Python icon
on the desktop or inside one of the desktop folders (Figure 2.1). Your
phone is now ready to execute Python scripts. Let’s prepare a ‘Hello
world’ script.

2. Write a Python Script

You can write a Python script on your computer with any text edi-
tor. Useful editors are, for example, ConTEXT or PythonWin which are
freely downloadable on the Internet, but Notepad also works. Sym-
bian developers can use Carbide.c++ with the PyDev plug-ins found at
http://pydev.sourceforge.net.

Write the following line in your text editor:

print "Hello world!"

16 GETTING STARTED

Figure 2.2 Nokia PC suite’s main window

After the code is typed, save the file under the name hello.py. Make
sure that the file ending is .py and not .txt.

The file is now ready to be executed on your phone! You do not have
to build or compile it any way. However, it must be copied to the phone
first.

3. Upload a Python Script to a Phone

Upload your Python script to the phone with Nokia PC Suite’s file manager
(Figure 2.2). Create a folder named Python on the phone’s memory card
(drive E: in Figure 2.3). Then copy the hello.py file from your computer
to the E:\Python folder on the phone. Now the script is ready to be
tested!

4. Test a Python Script

Start the PyS60 interpreter by clicking on the Python icon (Figure 2.1) on
the desktop or inside the appropriate folder on your phone. Once the
PyS60 interpreter has started up, select ‘Options’ (Figure 2.4(a)) and ‘Run
script’ (Figure 2.4(b)). Choose your script name, e:hello.py, from the
list and select ‘OK’. Your script should now start up and you should see
a green line stating Hello world! (Figure 2.5).

Congratulations! You have successfully written and executed your
script with PyS60! To go through all the examples in the book, repeat
steps 2–4 for each new script. Have fun with it!

INSTALLING PYTHON FOR S60 ON 3RD EDITION DEVICES 17

Figure 2.3 File manager

(a) (b)

Figure 2.4 Python running on a phone

18 GETTING STARTED

Figure 2.5 Our script running on the phone

2.1.3 Installation for Mac OS X Users

1. Install the downloaded .SIS files to your phone

Connect your phone to your computer using the USB cable, then select
‘Data transfer’ or ‘Mass storage’ mode on the phone screen. The memory
card of the phone is mounted as an external ‘hard drive’ and its content
can be accessed by the Finder application on the Mac. You must have
the memory card inserted into your phone.

Copy the downloaded installation files to any folder on the memory
card of your phone, for example, to the root. Safely remove (un-mount)
the phone’s drive from your computer in the same way as with any
external hard drive.

On the phone, open the File Manager application (usually found on
the desktop of the phone or inside a subfolder e.g. ‘Tools’) and go to
the directory of the memory card where you have stored the installation
files. Click on the installation files. First, install the PyS60 interpreter
(PythonForS60) and then the user interface for the PyS60 interpreter
(PythonScriptShell). Follow the on-screen instructions on the phone – for
instance, select ‘Yes’ if a security warning appears on the phone screen.
Also, make sure the date is set correctly on the phone.

After the installation is complete, your phone shows the Python icon
on the desktop or inside one of the desktop folders (Figure 2.1). Your
phone is now ready to execute Python scripts. Let’s prepare a ‘Hello
world’ script.

INSTALLING PYTHON FOR S60 ON 3RD EDITION DEVICES 19

2. Write a Python Script

You can write a Python script on your computer with any text editor.
Useful editors are, for example, SubEthaEdit, TextMate or BBEdit. We do
not recommend using Mac’s TextEdit application, as it might place some
invisible characters in your code which throw an error when executing
the script.

Write the following line in your text editor:

print "Hello world!"

After the code is typed, save the file under the name hello.py. Make
sure that the file ending is .py and not .txt.

The file is now ready to be executed on your phone! You do not have
to build or compile it any way. However, it must be copied to the phone
first.

3. Upload a Python Script to a Phone

Again, connect the phone to your computer as an external ‘hard drive’.
Create a folder called Python on the phone’s memory card (drive E:)
using the Mac’s Finder application. Copy the hello.py file from your
computer to the E:\Python folder on the phone.

Safely remove (un-mount) the phone as an external hard drive from
the computer. You can now test the script.

If your Mac has built-in Bluetooth, you can use it to upload the
hello.py file to your phone. Click on the Bluetooth icon at the top
of the Mac screen (see Figure 2.8), select ‘Browse device’ and choose
your phone’s nickname from the list (Bluetooth must be switched on
on the phone). Then select ‘Browse’ to open a window showing the
phone’s memory card E:\. Drag and drop hello.py from the location
in your Finder application to the E:\Python folder in the newly opened
window. This saves you having to use the USB cable and mount and
un-mount the phone as an external ‘hard drive’.

4. Test a Python Script

Start the PyS60 interpreter by clicking on the Python icon (Figure 2.1) on
the desktop or inside the appropriate subfolder on your phone. Once the
PyS60 interpreter has started up, select ‘Options’ (Figure 2.4(a)) and ‘Run
script’ (Figure 2.4(b)). Choose your script name, e:hello.py, from the
list and select ‘OK’. Your script should now start up and you should see
a green line stating Hello world! (Figure 2.5).

Congratulations! You have successfully written and executed your
script with PyS60! To go through all the examples in the book, just repeat
steps 2–4 for each new script. Have fun with it!

20 GETTING STARTED

2.1.4 Installation for Linux Users
We assume that your computer has either a built-in Bluetooth capability
or an external Bluetooth dongle. Also, we assume that Bluetooth is
detected correctly by your distribution and you have the obexftp and
hcitool programs installed. In many distributions, they can be installed
from packages obexftp and bluez-utils.

1. Install the downloaded .SIS files to your phone

First, enable Bluetooth on your phone. Then, on the command line,
execute the following command:

hcitool scan

This performs Bluetooth scanning. You should see the name of your
phone in the list, with its Bluetooth address (e.g., 00:17:ED:AC:56:FE).
Next, you can upload the SIS files to your phone with the following
commands:

obexftp -b 00:17:ED:AC:56:FE -c E: -p PythonForS60...SIS
obexftp -b 00:17:ED:AC:56:FE -c E: -p PythonScriptShell...SIS

Replace the Bluetooth address above with your phone’s actual Blue-
tooth address. Also, replace the file names with the actual names of the
files that you downloaded.

On the phone, open the File Manager application (usually found on
the desktop of the phone or inside a subfolder e.g. ‘Tools’) and go to
the root of the memory card. You should see the two files there. Click
on the installation files. First, install the PyS60 interpreter (PythonForS60)
and then the user interface for the PyS60 interpreter (PythonScriptShell).
Follow the on-screen instructions on the phone – for instance, select ‘Yes’
if a security warning appears on the phone screen. Also, make sure the
date is set correctly on the phone.

2. Write a Python Script

You can write a Python script on your computer with any text editor.
Useful editors are, for example, Vim or Emacs.

Write the following line in your text editor:

print "Hello world!"

After the code is typed, save the file under the name hello.py. Make
sure that the file ending is .py and not .txt.

The file is now ready to be executed on your phone! You do not have
to build or compile it any way. However, it must be copied to the phone
first.

INSTALLING PYTHON FOR S60 ON 2ND EDITION DEVICES 21

3. Upload a Python Script to a Phone

We use the same obexftp tool for this as in Step 1. Execute the following
command on the command line, replacing the Bluetooth address with
your phone’s actual address:

obexftp -b 00:17:ED:AC:56:FE -c E: -C Python -p hello.py

4. Test a Python Script

Start the PyS60 interpreter by clicking on the Python icon (Figure 2.1) on
the desktop or inside the appropriate subfolder on your phone. Once the
PyS60 interpreter has started up, select ‘Options’ (Figure 2.4(a)) and then
‘Run script’ (Figure 2.4(b)). Choose your script name, e:hello.py, from
the list and select ‘OK’. Your script should now start up and you should
see a green line stating Hello world! (Figure 2.5).

Congratulations! You have successfully written and executed your
script with PyS60! To go through all the examples in the book, just repeat
steps 2–4 for each new script. Have fun with it!

2.2 Installing Python for S60 on 2nd Edition Devices

We assume that your computer has either a built-in Bluetooth capability
or an external Bluetooth dongle. You should have Bluetooth working on
your computer.

2.2.1 Download the Installation Files

You need to download two installation files from the Internet to your
computer. You find them at SourceForge’s PyS60 project page, http://
sourceforge.net/projects/pys60. There are many versions of files avail-
able on that website. All you need are two files: the PyS60 interpreter and
the user interface for the PyS60 interpreter.

The file names consist of four components:

• the name

• the version number, for example, 1.4.0 (make sure you choose the
latest version, that is, the largest number)

• the edition number (in this case, 2ndEd)

• the choice of Feature Pack; depending on your phone model, you
should choose files ending with FP2 or FP3 (Table D.1 shows which
is suitable for your phone).

22 GETTING STARTED

Assuming that version 1.4.0 is the latest version and your phone uses
FeaturePack2, youdownloadPythonForS60 1 4 0 2ndEdFP2.SIS
(the PyS60 interpreter) and PythonScriptShell 1 4 0 2ndEdFP2.
SIS (the user interface).

2.2.2 Send the Installation Files to the Phone

You use Bluetooth to send the files to the phone’s message inbox. Make
sure you have switched on Bluetooth on your phone (settings can be
found in the ‘Connect’ panel).

Windows Users

In the File Explorer application, go to the location of the installation
files. Right-click on the file to send. Select ‘Send To’ and then ‘Bluetooth
device’ (see Figure 2.6). A window asks you to select where you want
to send the file. Select ‘Browse’ and wait a moment. Your computer will
search for nearby Bluetooth devices.

A list (see Figure 2.7) will show the nicknames of all Bluetooth devices
found. Select the nickname of your phone and select ‘OK’ and then
‘Next’. A popup note should be displayed on your phone asking ‘Receive
message by way of Bluetooth . . . ?’ and you should select ‘Yes’. A message

Figure 2.6 File Explorer

INSTALLING PYTHON FOR S60 ON 2ND EDITION DEVICES 23

Figure 2.7 Bluetooth devices found

should then arrive in your inbox. Repeat these steps for the second
installation file.

In different Windows versions, the menus might look slightly different,
but the process is basically the same. Also you might have to do Bluetooth
pairing between your phone and your computer before you can send the
file. You can find instructions on how to do this in Section 7.1.

Mac OS X Users

Select the Bluetooth icon on the Mac window and select ‘Send file’ (see
Figure 2.8). Then select one of the installation files and select ‘Send’.
This opens a window where you need to select ‘Search’ to make your
computer search for nearby Bluetooth devices.

A list (see Figure 2.9) will show the nicknames of all Bluetooth devices
found. Select the nickname of your phone and press ‘Send’. A popup
note should be displayed on your phone asking ‘Receive message by
way of Bluetooth . . . ?’ and you should select ‘Yes’. A message should
then arrive in your inbox. Repeat these steps for the second installation
file.

In different Mac OS versions, the menus might look slightly different,
but the process is basically the same. Also you might have to do Bluetooth
pairing between your phone and your computer before you can send the
file. You can find instructions on how to do this in Section 7.1.

24 GETTING STARTED

Figure 2.8 Initiating Bluetooth transfer on a Mac

Figure 2.9 Bluetooth devices found

Linux Users

You need the ussp-push and hcitool programs installed. In many
distributions, they can be installed from packages ussp-push and
bluez-utils.

INSTALLING PYTHON FOR S60 ON 2ND EDITION DEVICES 25

Perform Bluetooth scanning to find the Bluetooth address of your
phone:

hcitool scan

You should see the name of your phone in the list, with its Bluetooth
address (e.g., 00:17:ED:AC:56:FE). Next, you can upload the SIS files to
your phone with the following commands:

ussp-push 00:17:ED:AC:56:FE@ PythonForS60...SIS PyS60.SIS
ussp-push 00:17:ED:AC:56:FE@ PythonShellScript...SIS Shell.SIS

Replace the Bluetooth address above with your phone’s actual Blue-
tooth address. Also, replace the file names with the actual names of the
files that you downloaded.

After each file has been uploaded, a popup note should be displayed
on your phone asking ‘Receive message by way of Bluetooth . . . ?’ and
you should select ‘Yes’.

2.2.3 Install the Files to the Phone

Open the received messages by selecting them in order. First, install
the PyS60 interpreter (PythonForS60) and then the user interface for the
PyS60 interpreter (PythonScriptShell). Follow the on-screen instructions
on the phone – for instance, select ‘Yes’ if a security warning appears
on the phone screen. If you are asked to install the files on the phone
memory (Ph. Mem) or the memory card (M. card), it is up to you which
one to choose.

After the installation is complete, your phone shows the Python icon
on the desktop or inside one of the desktop folders (Figure 2.1). Your
phone is now ready to execute Python scripts. Let’s prepare a ‘Hello
world’ script.

2.2.4 Writing and Running a Python Script

1. Write a Python Script

You can write a Python script on your computer with any text editor.
Useful editors for Windows are, for example, ConTEXT or PyWin which
are freely downloadable on the Internet, but Notepad also works. Possible
editors for Mac are, for example, SubEthaEdit, TextMate or BBEdit. We do
not recommend using Mac’s TextEdit application, as it might place some
invisible characters in your code which throw an error when executing
the script. In Linux, you can use Vim or Emacs.

26 GETTING STARTED

Write the following line in your text editor:

print 'Hello world!'

After the code is typed, save the file under the name hello.py. Make
sure that the file ending is .py and not .txt.

The file is now ready to be executed on your phone! You do not have
to build or compile it any way. However, it must be copied to the phone
first.

2. Install a Python Script on a Phone

You send a Python script to the phone in the same way that you sent the
installation files in Section 2.2.3.

Open the received hello.py file in the message inbox by selecting it.
The message inbox handler will recognize it as a PyS60 file and display
a popup note. When asked to install your file as a ‘Python script’ or a
‘Python lib module’ (Figure 2.10), choose ‘Python script’. Your Python
script is automatically installed to the correct place. Now you can test the
script.

Figure 2.10 Installing a Python script

3. Test a Python Script

Start the PyS60 interpreter by clicking on the Python icon (Figure 2.1)
on the desktop or inside the appropriate subfolder on your phone. Once
the PyS60 interpreter has started up, select ‘Options’ (Figure 2.4(a)) and

WRITING A PROGRAM IN PYTHON FOR S60 27

‘Run script’ (Figure 2.4(b)). Choose your script name, hello.py, from
the list and select ‘OK’. Your script should now start up and you should
see a green line stating Hello world! (Figure 2.5).

Congratulations! You have successfully written and executed your
script with PyS60! To go through all the examples in the book, just repeat
steps 1–3 for each new script. Have fun with it!

2.3 Writing a Program in Python for S60

Example 1: First PyS60 program

We write a simple program consisting of three lines of code as our first
real example. It should do the following:

1. Display a text input field on the screen; the instruction in the text
field should say ‘Type your name’ (see Figure 2.11(a)).

2. Display a popup note stating ‘Greetings from:’ followed by whatever
the user typed into the text input field (see Figure 2.11(b)).

(a) (b)

Figure 2.11 Our first Python script example: (a) a text input field and (b) a popup note

The code to do this is as follows:

import appuifw
name = appuifw.query(u"Type your name:", "text")
appuifw.note(u"Hello world! Greetings from: " + str(name), "info")

28 GETTING STARTED

In the first line of code, we import the appuifw module, which
handles user interface elements such as text input fields and popup notes.

In the second line of code, we create a single-field dialog (Figure
2.11(a)) using the query() function of the appuifw module with
two parameters: label and type. For the first parameter, label, we put
the text u"Type your name:". The u is required because the phone
understands only text declared as Unicode and the quotation marks are
needed because the label parameter must be given as a string. As the
second parameter, type, we put "text", to declare the input field as
a text dialog. Other possible types are "number", "date", "time",
"query" and "code". The two parameters are separated by a comma.
This line of code also creates a variable called name which will receive
the result of the text input field after the user has typed something into
the dialog.

In the third line of code, we create a popup note (Figure 2.11(b))
using the note() function of the appuifw module with two parameters:
label and type. For the first parameter, label, we put the text u"Hello
world! Greetings from: "+ str(name). This is the text that will
appear inside the popup note. Again, the string must be given in quotation
marks but the popup note will also include the result that the user has
typed in, so we add the contents of the variable name to the string.
As the second parameter, type, we put "info", to declare the popup
note as information; that causes a green exclamation mark to appear
inside the popup note. Other possible types are "error", showing a
red exclamation mark, and "conf"(confirmation), showing an animated
check mark. The two parameters are separated with a comma.

Type this example into a file and upload it to your phone for testing,
by following the instructions in Sections 2.1 or 2.2.

2.4 White Space in Python Code

Python does not use curly brackets or special begin and end statements
to structure code. Instead, the indentation level of a line determines to
which code block the line belongs. A code block is a group of statements
that belongs to an if clause, a for-loop, a function or a similar structure.
Indentation starts a code block and it ends when the indentation stops.

In the following example, the first two print statements form a code
block that belongs to the if clause. The last print statement does not
belong to the code block and it is executed regardless of the if condition.

if x > 5:
print "X is greater than 5"
print "Also this line belongs to the if-clause"

print "This line does not belong to the if-clause"

TROUBLESHOOTING 29

You can use spaces or tabs for indentation but you must be consistent.
In this book, we use four spaces for indentation. You can follow the
same style in your own code. Many text editors that support Python
programming, such as Emacs or PythonWin, automatically make sure
that the indentation is consistent. Using an editor like this is highly
recommended.

In some cases you must split a long expression over several lines. As
white space is significant only at the beginning of a statement, you can
split a long expression freely over several lines. However, in some cases
the Python interpreter cannot know whether the subsequent lines belong
to one statement or several statements. To make your intention clear, you
can put a backslash character ‘\’ at the end of a line to specify that the
next line continues the same statement.

2.5 Troubleshooting

To avoid an installation error, make sure the date is set correctly on the
phone, since ‘signed’ installation files have a date that specifies from
when they work. With some phone models, you might encounter an error
such as ‘Certificate error. Contact the application supplier’. You can fix
this by selecting ‘Tools, App. mgr, Options, Settings’. Change ‘Software
installation’ from ‘Signed Only’ to ‘All’ and ‘Online certif. check’ to ‘Off’.

2.5.1 Bluetooth as an Alternative to a USB Cable

Instead of using a USB cable to connect your phone to a computer, you
can use Bluetooth, if your PC hardware has built-in Bluetooth functionality
or you have a USB Bluetooth dongle available. Check the manual of the
Nokia PC Suite for instructions, as well as your phone’s manual for how
to set up the connection.

2.5.2 Bluetooth Fails

You might need to pair your phone with your computer. See the phone
manual to find out how to do this. Typically, pairing can be performed
by way of the phone’s ‘Connectivity, Bluetooth’ settings.

2.5.3 No Nokia PC Suite Available

If you do not have Nokia PC Suite installed, you can connect your phone
to the computer as an external hard drive. Please check Section 2.1.3 for
instruction on how to get this to work (it works in a very similar way on
both Windows and Mac).

30 GETTING STARTED

2.5.4 Using an Emulator

Testing scripts with an emulator on a PC is possible. However there are
some restrictions when using an emulator, compared to using an S60
phone. For example, you cannot send and receive SMS messages or take
a photo with an emulator. Check Appendix D for instructions on how to
set up the emulator.

2.6 Summary

Jumping head first into hands-on action, we showed you in this chapter
how to write your first script with PyS60 and how to run it on your S60
mobile phone. We covered the basic steps to do this:

1. Download the installation files from the Internet.

2. Install the downloaded .SIS files to your phone.

3. Write a Python script on your computer.

4. Upload your Python script to the phone.

5. Test your script on the phone.

In Section 2.3, we programmed our first PyS60 application with three
lines of code. We hope this example got you excited to discover all
the great things you can do with PyS60. By continuing with a practical
hands-on approach, we guide you through the next chapter, helping you
to unfold your creativity and enabling you to program applications based
on your own ideas.

If you feel really bold and adventurous now, you can see an alternative
approach for updating PyS60 scripts on the phone over a network
connection in Section 10.3.3. For some developers, this might be the
most productive way to use PyS60. If you want to see even more nifty
tricks that PyS60 can do, Appendix B tells you how to use the PyS60
interpreter remotely on your PC over Bluetooth.

3
Graphical User Interface Basics

The native graphical user interface elements are some of the easiest to
learn of the features that Python for S60 offers. We cover them here at the
beginning of the book, to give you a smooth start in learning PyS60.

We explain the graphical user interface (UI) elements using small
exercises. Each exercise includes instructions, screenshots and detailed
code descriptions. These exercises should help you in understanding and
running the examples presented in the subsequent chapters. We also
cover some Python language lessons, which will help you to get to know
the Python programming language by heart, through learning by doing.

In Example 1 (see Chapter 2), we introduced two native graphical user
interface elements: the text input field (a single-field dialog) and the
popup note. Here we want to show a whole range of them:

• note – popup notes

• query – single-field input dialog

• multi-query – two-field text input dialog

• popup menu – simple menu

• selection list – simple list with find pane

• multi-selection list – list to make multiple selections

In the following paragraphs, we look at these elements in detail and
explain how you can use them in your own programs.

3.1 Using Modules

The native UI elements that PyS60 offers are accessible through a module
called appuifw (which stands for application user interface framework).

32 GRAPHICAL USER INTERFACE BASICS

It is an interface to the S60 UI application framework that takes care of
all UI functionalities on the S60 platform. But before we go on, let’s learn
what a ‘module’ is in Python, in the language lesson.

Python Language Lesson: module

A module is a file that contains a collection of related functions and data
grouped together. PyS60 comes with a rich set of modules, for example
messaging to handle SMS functionalities, camera for taking photos,
and appuifw, which provides ready-to-use UI elements. The modules’
contents are described in detail in the Python Library Reference and
Python for S60 API documentation. We also learn about many of them
in this book.

To use a module in your code, it must be imported at the beginning
of the script, for example:

import appuifw

To address a function contained in a module, we first write the
module name, a dot and then the function name:

appuifw.query(label, type)

Here, appuifw is the module name and query is the function we
want to use.

You may import many modules using a single import statement:

import appuifw, e32

This imports two modules: appuifw and e32.

As you might remember from our Example 1 (Chapter 2), we used the
functions query() and note(), which belong to the appuifw module.
These functions generate UI elements, dialogs, that are displayed on the
screen when the PyS60 interpreter executes the script. They become
visible on the phone screen as soon as the corresponding Python function
is called.

3.2 Native UI Elements – Dialogs, Menus and Selection
Lists

Let’s now look in detail at some of the native UI elements or dialogs that
PyS60 offers.

NATIVE UI ELEMENTS – DIALOGS, MENUS AND SELECTION LISTS 33

3.2.1 Single-Field Dialog: query

Syntax: query(label, type[, initial value])
Example code:

appuifw.query(u"Type a word:", "text", u"Foo")

This function shows a single-field dialog. The dialog can include some
instruction text that is passed as a string (by putting the u in front of the
string) to the parameter, label. The type of the dialog is defined by
the parameter, type. The value of type can be any of the following
strings: "text", "number", "date", "time", "code", "query" or
"float" (see Figure 3.1).

(a) (b) (c)

(d) (e) (f)

Figure 3.1 Types of single-field dialog: (a) text, (b) number, (c) date, (d) time, (e) code and (f) query

34 GRAPHICAL USER INTERFACE BASICS

An initial value can be included, so the dialog shows a default input
value when it appears on the phone screen. This is done simply by adding
the initial value as an input parameter to the function, for example:

appuifw.query(u"Type a word:", "text", u"Foo")

The return value of the appuifw.query() function depends on the
type parameter:

• For text fields (types of ‘text’ and ‘code’), the return value is a Unicode
string.

• For number fields, it is an integer.

• For date fields, it is the number of seconds since the epoch (0:00 on
1 January 1970, UTC) rounded down to the nearest local midnight.

Exercise

To see how the various single-input dialogs appear on your phone, type
the lines of code in Example 2 into your text editor and save the file with
a name ending .py. Transfer the .py file to your phone or to the emulator
as described in Chapter 2. Start the PyS60 interpreter on the phone and
select ‘Options’. Select ‘Run script’, choose your script from the list, select
‘OK’ and see what happens.

You should see all the single-input dialogs as in Figure 3.1 appear on
your phone’s screen one by one. Each dialog will wait for you to type
something in and select ‘OK’.

Example 2: Various dialogs

If you want, change the instruction text (the label parameter) of the
query function. As you can see, we need to import the appuifw module
at the beginning of the script to make this work.

import appuifw
appuifw.query(u"Type a word:", "text")
appuifw.query(u"Type a number:", "number")
appuifw.query(u"Type a date:", "date")
appuifw.query(u"Type a time:", "time")
appuifw.query(u"Type a password:", "code")
appuifw.query(u"Do you like PyS60", "query")

Since Symbian OS and the S60 platform are used all over the world,
they need to be able to show text written in various languages and writing
systems. Unicode provides a consistent way to encode text written in
any writing system. In order to be globally compatible, all text-related

NATIVE UI ELEMENTS – DIALOGS, MENUS AND SELECTION LISTS 35

functionalities in S60 and Symbian OS accept only Unicode strings. In
Python, the ‘u’ character in front of a string denotes that the text is written
in Unicode. If you see strange boxes on the screen instead of characters,
you have probably forgotten to put ‘u’ in front of the corresponding text.
We talk more about Unicode conversions in Section 6.2.

3.2.2 Note Dialog: note

Syntax: note(text[, type[, global]])
Example code:

appuifw.note(u"upload done", "conf")

This function displays a note dialog (a popup note) on your phone with
user-specified text. In the example, it displays the words ‘upload done’.
This is achieved by passing the Unicode string ‘upload done’ as the input
parameter text.

There are three possibilities for type : "info", "error" and "conf"
(see Figure 3.2). Each type shows a different symbol inside the popup note
dialog: ‘info’ shows a green exclamation mark after the text and ‘error’
shows a red exclamation mark. The default value for type is "info",
which is automatically used if type is not set.

(a) (b) (c)

Figure 3.2 Types of note dialog: (a) information, (b) error, (c) confirmation

Exercise

To see how the popup notes appear on your phone, type in the lines
of code shown in Example 3 and run your script on your phone or the
emulator to see what happens.

36 GRAPHICAL USER INTERFACE BASICS

You should see all the different popup notes appear on your phone
screen one by one.

Example 3: Various notes

Note again that we need to import the appuifw module at the beginning
of the script in order make this work.

import appuifw
appuifw.note(u"Hello")
appuifw.note(u"File not found", "error")
appuifw.note(u"Upload done", "conf")

Python Language Lesson: variable

A variable is a name that refers to a value. In Python you do not have
to declare variables, that is, you do not have to specify in advance the
type, such as integer, string, and so on. Variables are implicitly typed,
meaning that the type of a variable is the type of the value it refers to.

If your variable holds the integer 5 but you need the string ‘5’, you
have to use the str() function to convert the integer to a string. The
type of a value does not change automatically.

The first time you use a variable, assignment is done with the equals
sign ‘=’. It creates a new variable and gives the variable a value, for
example:

data = 5

mynewlist = "Symbian"

The special value None denotes a missing value. You can re-use the
same variable freely throughout a program.

In some examples, we use capital letters for variable names. This is
a common way in Python to denote variables whose values must not
change (that is, they are constants), as a convenience to developers.
The interpreter itself does not care if they are constant.

3.2.3 Multi-Query Dialog: multi query
Syntax: multi query(label1, label2)
Example code:

appuifw.multi_query(u"First name:", u"Last name:")

This function displays a two-field text input dialog. The input parame-
ters label1 and label2 can be pre-defined by inserting Unicode strings.

NATIVE UI ELEMENTS – DIALOGS, MENUS AND SELECTION LISTS 37

The multi_query() function returns the values that the user inputs.
The values of the upper and lower input fields are jointly returned as a
tuple. In Python, a tuple is a comma-separated list of values, for example
(data1, data2). We learn more about handling tuples in Chapter 4. This
function, as with other dialogs, returns the empty value None if the user
cancels the dialog.

Exercise

To see how the multi-query dialog (Figure 3.3) appears on your phone,
create a script (shown as Example 4) that displays a multi-query dialog
that asks you to type your first name into the upper field and your last
name into the lower field. After typing your names and pressing the ‘OK’
button, a popup note should appear, displaying your full name.

Figure 3.3 A multi-query dialog

Example 4: Multi-query dialog

import appuifw
names = appuifw.multi_query(u"First name:", u" Last name:")
if names:

first, last = names
appuifw.note(u"Your full name is: " + first + " " + last)

else:
appuifw.note(u"Cancel!")

First we import the module appuifw. Then we pass two Unicode strings
to the multi query() function. The function returns the user’s input
from the fields into a variable called names as a tuple.

38 GRAPHICAL USER INTERFACE BASICS

In the third line of code we use an if statement. If the variable names
holds some content, that is, the variable names is not None, then the
condition is true and we read the tuple’s entries and hand them over
to the variables first and last. The if statement is described in the
language lesson more thoroughly.

Next we create an informative popup note. The text that we pass to
the note function consists of three parts: the string u"Your full name
is: " and the stored values in the first and last variables combined
with a ‘+’ sign and with " " as a space between them.

Python Language Lesson: if statement

An if statement is needed to make decisions based on variable values:

if x > 0:

appuifw.note(u"x is positive!")

else:

appuifw.note(u"x is negative or zero.")

The Boolean expression after the word ‘ if’ is called the condition.
If the condition is true (in this case, if the value of the variable
x is bigger than 0), then the indented statement in the next line
(here, appuifw.note(u"x is positive!")) is executed. If the
condition is false, the statement in the else branch is executed (here,
appuifw.note(u"x is negative or zero.")). Note that you
can reverse the outcome of the condition, by putting the not keyword
in front of the condition.

The most important comparison operators are ==, !=, < and >, for
equality, inequality, less than and greater than. Note that if you want
to test whether a variable is not false, zero, None or an empty string or
list, you can use the following shorthand:

if x:

appuifw.note(u"x is not empty")

You can test many conditions in sequence:

if x > 0:

appuifw.note(u"x is positive!")

elif x == 0:

appuifw.note(u"x is zero.")

else:

appuifw.note(u"x is negative.")

NATIVE UI ELEMENTS – DIALOGS, MENUS AND SELECTION LISTS 39

Here, elif stands for ‘else if’. You can have multiple elif state-
ments after each other. They are evaluated in sequence until one of
the conditions evaluates to true.

The indented statements that follow a condition are called a block.
The first unindented statement marks the end of the block. You must
indent the statements in the block (see Section 2.4), otherwise the
Python interpreter does not know where the block begins and ends.
In other programming languages, for example, C++, this is solved
by starting and ending a block with brackets. Having no brackets in
Python makes the code easier and clearer to read.

Python Language Lesson: list

A list is an ordered set of values. The values that make up a list are
called its elements or items. The items can be of any type, such as
strings or integers. Items of the list do not have to be of the same type,
so you can have a list that contains both strings and integers.

There are several ways to create a new list. The simplest is to enclose
the elements in square brackets:

mylist = [u"Symbian", u"PyS60", u"MobileArt"]

Each item in the list can be accessed by its index in square brackets
after the list name: in the example, mylist[0] refers to the value
"Symbian" and mylist[2] to "MobileArt". We can also assign
values to specific items in the list:

mylist[1] = "Python"

You can access parts of the list easily with the [start:end]
notation for the index – this is called slicing the list. For instance,
mylist[1:2] returns a new list that includes the items ["Pys60",
"MobileArt"]. Optionally, you can leave out either the start index
or the end index. For instance, mylist[:1] returns a new list with
the items ["Symbian", "PyS60"].

To add another element to the end of the list, use the append()
function. For instance, the following line

mylist.append(u"Fun")

would change the list to contain the following items: ["Symbian",
"PyS60", "MobileArt", "Fun"].

40 GRAPHICAL USER INTERFACE BASICS

3.2.4 Popup Menu: popup menu
Syntax: popup menu(list[, label])
Example code:

appuifw.popup menu(choices, u"Select:")

The popup menu() function displays a list of items in a popup dialog.
You need to give a list of Unicode strings in the parameter list. You
can also define a label which is the text that appears at the top of the list.

This function returns the index of the chosen item in the list. If the user
cancels the dialog by pressing Back, None is returned.

Exercise

Create a script (see Example 5) that displays a popup menu with three
entries, such as the one in Figure 3.4. After selecting any of the choices
and pressing ‘OK’, you should see a note appear with different text
depending on which selection you made. Use the phone’s up and down
keys to make the selection from the menu.

Figure 3.4 A popup menu

Example 5: Popup menu

import appuifw
choices = [u"Symbian", u"PyS60", u"MobileArt"]
index = appuifw.popup_menu(choices, u"Select:")
if index == 0:

appuifw.note(u"Symbian, aha")
elif index == 1:

appuifw.note(u"PyS60 - yeah")
elif index == 2:

appuifw.note(u"I love MobileArt")

NATIVE UI ELEMENTS – DIALOGS, MENUS AND SELECTION LISTS 41

First we import the module appuifw. In the next line, we create a
list with three elements [u"Symbian", u"PyS60", u"MobileArt"].
Each element represents an entry in the menu. The list is assigned to the
variable choices.

In the next line, we use the popup menu() function and pass the
variable choices as the first parameter to the function. We also pass a
Unicode string u"Select:" as the second parameter to the function.

When our script is executed, the function returns an index that refers
to one of the elements of our list – depending on the user’s selection. The
returned index – a number – is stored in a variable that we have named
index.

Now, we need some code that displays a note dialog with different
content depending on the user’s selection. This is done using the if
statement, simply by checking the returned list index and comparing it
to all possible options: 0, 1, 2. If the user cancels the dialog, none of the
conditions is true and no dialog is shown.

3.2.5 Selection List: selection list

Syntax: appuifw.selection list(choices, search field)
Example code:

appuifw.selection_list(colors, 1)

The selection list() function executes a dialog that allows the
user to select a list item. It works similarly to the popup menu() function
except that it has no label on the top. Instead, it has an option to display
a built-in search field (a find pane) at the bottom (see Figure 3.5).

Compared to the popup menu, the selection list is more suitable
for presenting long lists, especially because of the search field that lets
you find items in the list character by character. Setting the parameter
search field to 1 enables the find pane. It is disabled by default. If
the find pane is enabled, it appears only after you press a letter key.

The selection list() function returns the index of the chosen
item or None if the selection is cancelled by the user.

Exercise

To see how the selection list appears on your phone, create a script
(see Example 6) that displays a selection list() dialog with four
entries – ‘red’, ‘green’ ‘blue’ and ‘brown’, as in Figure 3.5.

When running the script, type the letter ‘b’. The find pane should
appear at the bottom of the list and the entries ‘blue’ and ‘brown’ should
appear. Select ‘blue’ and press the OK button. Text should appear, saying

42 GRAPHICAL USER INTERFACE BASICS

Figure 3.5 Selection list

‘blue is correct!’. If you select something else, for instance red, a text
should appear stating ‘Bzz! red is not correct’.

Example 6: Selection list

import appuifw
colors = [u"red", u"green", u"blue", u"brown"]
index = appuifw.selection_list(colors, 1)
if index == 2:

print "blue is correct!"
elif index != None:

print "Bzz! " + colors[index] + " is not correct"

We create a list with four colors that are specified as Unicode strings.
Each element represents an entry in our selection list dialog. The list is
assigned to the variable colors.

In the next line, we use the selection list() function and pass
colors to it. We also enable the find pane by setting 1 as the second
parameter. When our script is executed – and the user makes a selec-
tion – this function returns an index that refers to an element inside our
list of colors.

Now, we need some code that determines whether the user has
selected the third item in the list or not. We compare the value of the
index variable with the correct index, 2. If the condition is true, we
print the text ‘blue is correct!’ to the screen. Otherwise, if the user did not
cancel the dialog, our script enters the elif block.

NATIVE UI ELEMENTS – DIALOGS, MENUS AND SELECTION LISTS 43

There, we combine another string to be printed out on the screen.
We pick the chosen color name from the colors list using the returned
index in the variable index and put it in the middle of the string to be
printed out.

In Python, you can print out almost any value, including lists and
tuples, and see the contents on the screen in a human-readable format.
This makes the print statement especially useful for debugging. If you
want to know more about debugging at this point, you should look
at Appendix B C where we explain the easiest ways to debug PyS60
programs.

Python Language Lesson: print statement

The print statement causes the PyS60 interpreter to display a value on
the screen:

print "hello"

There is no need to indicate that it is a Unicode string because it uses
only the resources of the Python interpreter and no native resources
from the S60 platform.

3.2.6 Multi-Selection List: multi selection list

Syntax: multi selection list(choices[, style,
search field])

Example code:

appuifw.multi_selection_list(choices, 'checkbox', 1)

The multi selection list() function shows a dialog that allows
the user to select multiple list items. The function returns a tuple of
indices of the chosen items, or an empty tuple if the user cancels the
selection.

In Example 7, the parameter choices is a list of Unicode strings and
style is an optional string with the default value "checkbox". This
dialog shows a check box to the left of each item in the list. You can
browse the list with the navigation keys on the mobile phone keyboard
and select items by pressing the Select key (see Figure 3.6).

The search field parameter is 0 (disabled) by default and it is
optional. Setting it to 1 shows a find pane that helps the user search for
items in long lists. If enabled, the find pane is always visible with the
list.

44 GRAPHICAL USER INTERFACE BASICS

Figure 3.6 Multi-selection list

Example 7: Multi-selection list

import appuifw
colors = [u"red", u"green", u"blue", u"orange"]
selections = appuifw.multi_selection_list(colors,'checkbox',1)
print selections

Python Language Lesson: for loop

The for loop goes through the items of a list. In the example below,
we define a list of foods. Then we loop through the food items one by
one, printing each of them to the screen.

foods = [u"cheese", u"sausage", u"milk", u"banana", u"bread"]

for x in foods:

print x

This almost reads like English: ‘For x (every element) in (the list of)
foods, print (the name of) x’. When executing this for loop, the resulting
screen shows ‘cheese’, ‘sausage’, ‘milk’, ‘banana’ and ‘bread’, one item
per line.

If you want to loop over a range of numbers, you can use a special
range() function. This function produces a list of integers, from 0 to
the given maximum value.

MESSAGES 45

for i in range(10):

print i

This prints out the numbers from 0 to 9.

Python Language Lesson: while loop and break

The for loop is handy if you have a list of items or you know the
maximum number of iterations beforehand. Sometimes, however, you
want to keep looping until some condition becomes true. The while
loop comes in useful in this case. This is how it looks:

i = 10

while i > 5:

print x

i = i - 1

This example prints out 10, 9, 8, 7, 6 on the screen. After the word
while, a conditional expression follows just as in an if statement.

Another typical use is as follows:

while True:

ret = appuifw.query(u"Continue?", "query")

if not ret:

break

Here, the condition is always true, so the loop goes on forever
unless we force the execution out of it using the break statement. The
break statement makes the execution jump out of the loop instantly. In
this example, we show a query dialog in each iteration. The looping
continues until the user cancels the dialog.

3.3 Messages
Let’s introduce a second PyS60 module: messaging. It handles the
sending of SMS (Short Message Service) and MMS (Multimedia Messaging
Service) messages. Here we use only one function from the module:
messaging.sms send().

import messaging
messaging.sms_send("+14874323981", u"Greetings from PyS60")

46 GRAPHICAL USER INTERFACE BASICS

To be able to send an SMS we need to import the module messaging
at the beginning of our script. We only need to pass two parameters to
the function sms send (): the telephone number of the recipient as a
string and the body of the message as a Unicode string.

In this concluding example (Example 8), we combine the UI elements
learned in this chapter and the function for sending SMS messages into a
useful little program.

Imagine you are at home, your fridge is empty and your friend is on
the way home passing a grocery store. He does not know which items to
buy. You want to send him a list of items by SMS while standing in front
of the fridge checking what is needed. Typing all the stuff into the phone
is just too much hassle and takes too much time.

This is where your PyS60 program, the Shopping List Assistant, comes
in. From a pre-defined list of items on your screen, you can select the
items needed using a selection list() dialog. A text input field lets
you type an additional greeting. After this, your shopping list is on its way
to your friend by SMS.

Example 8: Shopping list assistant

import appuifw, messaging
foods = [u"cheese", u"sausage", u"milk", u"banana", u"bread"]
choices = appuifw.multi_selection_list(foods,'checkbox',1)
shoppinglist = ""
for x in choices:

shoppinglist += foods[x] + " "
greetings = appuifw.query(u"Add some greetings?", "text", u"thanks!")
if greetings:

shoppinglist += greetings
print "Sending SMS: " + shoppinglist
messaging.sms_send("+1234567", shoppinglist)
appuifw.note(u"Shopping list sent")

First we import the modules appuifw and messaging. Next we
create the list foods, which includes every possible food item that can
be missing from the fridge. This list can be extended by you to as many
elements as you want. Remember that the elements need to be Unicode
strings, that is, they must be prefixed with the ‘u’ character.

In the next line, we generate our multi selection list() and
pass foods to it. We also enable the find pane. This displays the selection
list on the phone screen with all the goods, allowing us to select all the
items that need to be bought. The result of our selection is stored in the
variable choices. It is a tuple that holds the indices of the selected
items.

A for loop reads the selected items from the foods list, based on
the indices of the selected items in choices. We start with an empty
list, shoppinglist, to which we add the required items during each

SUMMARY 47

iteration of the for loop. The += operator is a shorthand for the following
expression:

shoppinglist = shoppinglist + foods[x] + " "

In the line following the for loop, we create a query dialog of type
‘text’, meaning that the phone screen will show a text input field saying
‘Add some greetings?’ with the initial word ‘thanks!’. If the user chooses
to add a greeting, the string is added to the shopping list.

Finally, we want to send the shopping list by SMS. For this we use
the messaging.sms send() function to which we hand the mobile
phone number of the recipient and the list shoppinglist.

Once the phone has sent the SMS, we want a confirmation that the
SMS with our shopping list has been sent. We do this by generating a
note dialog of type ‘info’.

And that is all. Let’s hope our fridge will never be totally empty again.

3.4 Summary

In this chapter, we have introduced a set of native UI dialogs that
PyS60 offers. They got you involved with working examples of PyS60
programming with relatively little code to write. The final exercise showed
how to combine several elements into a simple but useful application,
the shopping list assistant.

In Chapter 4, we introduce principles of application building and move
into more fun applications. In many examples throughout the book, you
will find these UI elements again and see how they can be part of a fully
working application. At the same time, you learn how you can integrate
them into applications of your own.

Maybe you already have an idea of a simple application in which
some of these UI elements can be used. Why not try it out right away?

4
Application Building and SMS Inbox

Python for S60 gives you easy access to the framework for building user
interfaces on the S60 platform. Thanks to PyS60’s simple way of handling
this, you learn how to build a real application that includes a title bar, a
menu and some dialogs in around 15 lines of code!

We start by describing how functions are defined in Python. We build
an application in Section 4.2, which also presents an overview of the
structure of a typical S60 application. In addition, this section introduces
one of the most important concepts in PyS60, callback functions, which
let you bind arbitrary actions to various events. This concept comes in
useful when we show you how to add menus to your application.

You may already be eager to start making real applications. In
Section 4.3, we show how to handle strings. This is put to good use
right away when we explain how to access the SMS inbox in Section 4.4.
For example, we build fully functional applications which let you search
and sort your SMS messages easily. Finally, in Section 4.5, we present
an SMS game server that lets you and your friends play the game of
Hangman using text messages.

4.1 Functions

The Python scripts that you tried in the previous chapter are executed
line by line. Each line of code performs one action and, after the action
is finished, execution moves to the next line. This is a simple and robust
way to perform tasks that straightforwardly proceed from the beginning
to the end.

However, if we want the user to decide what to do, instead of letting
the program always perform the same operations in the same order,
the code must be structured differently. Typically, this is the case when

50 APPLICATION BUILDING AND SMS INBOX

an application has a graphical user interface that lets the user perform
different actions by interacting with user interface (UI) elements.

When using the S60’s framework for building user interfaces, the
execution does not progress deterministically line after line in the code.
Instead, the user may launch specific tasks by pressing, say, specific keys
on the mobile phone keyboard. In this case, your job as an application
developer is to bind specific tasks to specific key events. When the user
chooses a menu item or to quit, your application should execute a task
that corresponds to such an event. For this purpose, you need to make
functions of your own.

In Example 1 (shown here once more as Example 9), we had three
lines of code that were executed in sequence. The second line triggered
a text input field and the third line a popup note.

Example 9: First PyS60 program

import appuifw
word = appuifw.query(u"Type your name", "text")
appuifw.note(u"Greetings from " + str(word))

We could define a function and put the two lines of code inside
the function. This is what we do in Example 10, where the name of
the function is askword(). Within a function, the execution proceeds
sequentially as usual. Functions are just a way to divide and structure
code into small chunks that are given a name.

Example 10: First function

import appuifw
def askword():

word = appuifw.query(u"Type a word", "text")
appuifw.note(u"The word was: " + str(word))

Any time we want to carry out this task, that is, to execute these two
lines of code, we just call the function askword():

askword()
askword()

In this case, it asks for a word twice.
You have been calling functions all the time in the previous chapters.

For example:

messaging.sms_send("+358...", u"Greetings from PyS60")
appuifw.note(u"I love MobileArt")

These lines from earlier examples, call the function sms send in the
messaging module and the function note in the appuifw module.

FUNCTIONS 51

Python Language Lesson: function

Functions are a way to divide your code into independent tasks. A
function has a name and a body and it may be called. Optionally, a
function may take input variables, which are called parameters, and it
may return an output value. Here is an example:

def add values(x, y):

print "Values are", x, y

return x + y

The keyword def starts the function definition. After the keyword
def comes the function name, in this case add values. In paren-
theses, follow the function parameters separated by commas. A colon
ends the function header.

The indented lines below the function header form the function
body, which is executed line by line when the function is called. In
Python, indentation makes a difference, so make sure that the lines
are aligned correctly in the function body. Function bodies follow the
same indentation rules as if clauses and loops. The function body may
contain a return statement followed by a value which is returned to
the calling line. The return statement is optional.

A function is called with the function name followed by the input
values in parentheses:

z = 3

new sum = add values(z, 5)

print "Their sum is", new sum

If no input values are given, there is nothing between the parenthe-
ses.

The return value may be assigned to a variable, for example
new sum = add values(z,5), or the function call may be included
in a more complex expression. For example, the code of the last line
in the example above could have read:

print "Their sum is", add values(z, 5)

In this case, you would not need the new sum variable in the
example above. As you might guess, the example produces this out-
put:

Values are 3 5

Their sum is 8

52 APPLICATION BUILDING AND SMS INBOX

Python’s slogan is ‘Batteries included’. This refers to the fact that
Python comes with a comprehensive library of pre-made functions which
make many complex tasks practically effortless.

4.2 Application Structure

Many S60 applications share the same user interface layout. Take a
look at Figure 4.1 or almost any application on your S60 mobile phone,
including the PyS60 interpreter and you will notice the same structure in
the user interface.

(a) (b)

Figure 4.1 A typical user interface (a) structure and (b) screenshot based on the structure

Figure 4.1(a) shows the structure of the S60 user interface. To see how
the diagram maps to reality, compare it to Figure 4.1(b), which shows
a typical user interface that is built using the S60 UI framework. In the
following description, text in parentheses refers to text in the screenshot.

At the top of the screen, you see the application title (Tabs). Below the
title, you may see a row of navigation tabs (One and Two). The large area
in the middle is the application body which may be used by a number of
different UI elements (the list: red, green, blue, brown). Various dialogs,
such as popup notes, may appear on the application body, as we saw in
Chapter 3.

At the bottom, you see two items that are activated by two dedicated
keys, the left and right softkeys, on your mobile phone keyboard. If no

APPLICATION STRUCTURE 53

dialog is active, the left softkey activates the application menu (Options)
and the right softkey quits the running application (Exit). If a dialog
is shown, the left softkey corresponds to Accept and the right one to
Cancel.

In PyS60, you can access the UI elements through a special app
object that is part of the appuifw module. We talk more about objects
in Section 4.2. Modifying the UI elements is easy: each of the elements
(title, body, menu and exit key handler) is a special variable
inside the appuifw.app object and you can assign values to them as
you can to any other variable. Just remember to use the full name, for
instance appuifw.app.title. Whenever you change any of these
variables, the corresponding UI element changes accordingly.

The first application is a minimalist application that uses the UI frame-
work provided by the appuifw module. It does not do anything useful
but it illustrates the minimum requirements for a working application. It
runs until the user chooses to quit the application, as opposed to previous
examples, which executed deterministically from the beginning to the
end. Figure 4.2 shows it in action.

Figure 4.2 First application

This section includes two language lessons that are related to applica-
tion building, about callback functions and objects. Do not worry if you
cannot grasp them at once. They will become clear with the many more
examples that follow.

54 APPLICATION BUILDING AND SMS INBOX

Example 11: First application

import appuifw, e32
def quit():

print "Exit key pressed!"
app_lock.signal()

appuifw.app.exit_key_handler = quit
appuifw.app.title = u"First App!"
appuifw.note(u"Application is now running")

app_lock = e32.Ao_lock()
app_lock.wait()
print "Application exits"

Besides importing the familiar appuifw module, we also need a
module named e32. This module offers many useful low-level utility
objects and functions related to Symbian OS functionalities. Here we
need the object e32.Ao lock().

We define a new function, quit(), that takes care of shutting down
the application when the user presses the Exit key. Since we could have
a number of functions to perform various tasks, we need to tell Python
which function is dedicated to handling the Exit events.

This is done by assigning the function name (not its value) to the
special appuifw.app.exit key handler variable. When the user
presses the Exit key, the function that this variable refers to is called by
the UI framework. In many situations, Python expects you to provide a
function name that is used to call the corresponding function when some
event has occurred. Functions of this kind are called callback functions.
The language lesson about callback functions clarifies the concept.

Python Language Lesson: callback function

A callback function is an ordinary function, defined similarly to any
other function, but it is used for a specific purpose. There is no technical
difference between ordinary functions and callback functions. The
distinction is made to clarify discussion.

Typically, a callback function is called by a function in the PyS60
library to respond to a specific event – such as when the user has
chosen a menu item or decides to quit the application. In contrast,
ordinary functions are called in your application code to handle
application-specific tasks. However, in some cases a callback function
may be called by your application explicitly.

Associating a function with an event is often called binding. Some
PyS60 objects, such as Canvas and Inbox, include a function called
bind() that is used to bind a callback function to some event related
to the object.

APPLICATION STRUCTURE 55

Whenever the PyS60 API documentation or this book asks you to
provide a callback function, do not add parentheses after the function
name since the function is only called after the event occurs. If you
are familiar with C or C++, you might notice that this is similar to how
function pointers are passed around in these languages.

In Example 11, we then assign the application name to the title variable
appuifw.app.title. This string shows at the top of the screen when
the application is running.

As we discussed at the beginning of this chapter, the PyS60 examples
we have seen so far are executed line by line and they exit when the last
line has been executed. However, Example 11 should not exit until the
user decides to do so. Therefore, our application should not drop out after
the last line has been executed, but instead should wait for user action.

This is accomplished with an object called Ao lock that is part of
module e32. The object includes a function called wait() that puts the
application into a waiting mode until the lock is explicitly released with the
signal() function. The signal() function must be called when you
want to terminate the application, so we call it inside the quit function.

To see why it’s important to have the lock at the end of the application
code, omit the line, app lock.wait(), from your code and run the
application. A dialog pops up but the application does not go into a wait
state; it finishes instantly.

When you run Example 11, you should see the ‘First App!’ title at the
top of the screen (as in Figure 4.2) and a dialog popping up. Nothing else
happens until you press the Exit key (the right softkey), which shuts down
the application. After this, you should see the text ‘Exit key pressed!’ and
‘Application exits’ messages in the PyS60 console on the phone screen.

It might be difficult to notice that the application is running at all. This
is because the PyS60 interpreter is built using exactly the same application
framework, so it looks the same as any other PyS60 application.

Python Language Lesson: object

Objects hold together variables and the functions that manipulate them.
In many cases, functions and variables are so closely related to each
other that they would be meaningless if they were handled separately.
Objects are especially useful in large, complicated applications which
would be practically incomprehensible if they were not divided into
smaller units.

Python does much of this work for you, so you can code happily
with Python’s ready-made objects. Developing large and complex
applications in an object-oriented manner is out of the scope of this

56 APPLICATION BUILDING AND SMS INBOX

book. There is a lot of information about object-oriented programming
in other books and on the web. You may be surprised to see that
example applications which are used to teach object orientation are
not complex at all with Python and they do not require you to derive
objects of your own.

For our purposes, it is enough to know that some functions create
objects. In Example 11, an Ao lock object is assigned to the variable
app lock.

app lock = e32.Ao lock()

The object itself contains variables and functions that can be
accessed with the dot notation, for example:

app lock.wait()

calls the object’s wait() function. Likewise:

appuifw.app.title = u"Hello World"

assigns a value to the title variable of the app object in the appuifw
module. In practice, you can treat objects as if they are modules inside
modules, as the dot notation suggests.

In this chapter, you can find many examples of object usage. You
have already seen the app object which handles the standard user
interface and the Ao lock object which is used to wait for user actions.
In practice, everything in Python is an object, including strings, lists and
tuples, as well as more specific constructs such as the Inbox object,
which is used to access SMS messages. Objects are so ubiquitous in
Python that you use them all the time without even noticing it.

4.2.1 Application Menu
The application menu provides an easy and familiar way to present a list
of available operations to the user. After reading this section, you can
start building useful tools with an application menu, which perform tasks
according to the user’s requests.

Python Language Lesson: tuple

A tuple is an immutable list. You can’t add, remove or modify its values
after creating it. Tuples are often used to group related values, such as

APPLICATION STRUCTURE 57

coordinates, address lines or ingredients of a recipe. Tuples are defined
in the same way as lists but, instead of square brackets, values are
enclosed in parentheses:

red = (255, 0, 0)

weekdays = ("Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun")

family = (("Mary", 38), ("John", 35), ("Josephine", 12))

The first and second lines define simple sequences. The last line
makes a tuple of tuples. The inner tuples contain different types of
value: strings and integers.

You can easily unpack values from tuples back to individual vari-
ables. Here we use the tuples red and family that were created
above:

r, g, b = red

mom, dad, child = family

In this case, the variables r, g and b are integers and mom, dad
and child are two-item tuples. Note that you have to define as
many variables in unpacking as there are items in the corresponding
tuple.

You may refer to individual items in a tuple with indices, as with
lists. In contrast to lists, assignments such as

family[1] = ("Jack", 25)

are not possible since this would modify the tuple.
In some cases you need to convert lists to tuples or tuples to lists. The

former is possible with function tuple() and the latter with function
list(). For example:

print list(red)

puts out a list to your screen:

[255, 0, 0]

Note the square brackets that denote a list.

58 APPLICATION BUILDING AND SMS INBOX

Example 12 extends Example 11 to include an application menu (see
Figure 4.3).

Figure 4.3 Application menu

Example 12: Application menu

import appuifw, e32

def photo():
appuifw.note(u"Cheese!")

def darken():
appuifw.note(u"I can't see a thing!")

def lighten():
appuifw.note(u"My eyes are burning!")

def quit():
print "WANNABE PHOTOEDITOR EXITS"
app_lock.signal()

appuifw.app.exit_key_handler = quit
appuifw.app.title = u"PhotoEditor"
appuifw.app.menu = [(u"Take Photo", photo), (u"Edit photo",

((u"Darken", darken), (u"Lighten", lighten)))]

print "WANNABE PHOTOEDITOR STARTED"
app_lock = e32.Ao_lock()
app_lock.wait()

The application menu, appuifw.app.menu, is defined as a list that
consists of tuples. Each item in the list is of the form (u"Item name",

APPLICATION STRUCTURE 59

item handler), where the first element defines the text that is shown in
the application menu and the second is a callback function that is called
when the item is selected. You can see this more easily by comparing
Figure 4.3 with the appuifw.app.menu list.

Menus may be hierarchical, that is, a menu item may open a sub-menu.
Sub-menus are defined similarly to the main menus as a list of tuples. In
Example 12, the second menu item ‘Edit photo’ opens a sub-menu of two
items, ‘Darken’ and ‘Lighten’. In Figure 4.3, ‘Take Photo’ and ‘Edit Photo’
are shown as the main menu and the items ‘Darken’ and ‘Lighten’ as a
sub-menu corresponding to the ‘Edit photo’ item.

The three new functions, photo(), darken() and lighten(), are
callback functions that bind the actions to the menu items. In this case,
each item opens a popup note that relates to the chosen item. As before,
you may close the application with the right softkey.

Now you should try to build some menus and simple applications by
yourself! Building applications is easy, in practice.

4.2.2 Application Body

There are several possible objects that can be assigned to the application
body:

• a canvas that handles graphics on screen (see Chapter 5)

• a form which is used to build complex forms that include combi-
nations of various input fields, such as text, numbers and lists (see
Chapter 9)

• a listbox that shows a list of items (see Chapter 9)

• a text object that handles free-form text input (see the PyS60 docu-
mentation for more information about this object).

You may increase the area that is reserved for the application body
using the appuifw.app.screen variable. Three different sizes are
provided (see Figure 4.4):

appuifw.app.screen = "full"
appuifw.app.screen = "large"
appuifw.app.screen = "normal"

4.2.3 Tabs

In the PyS60 documentation, you can find a description of the appuifw.
app.set tabs() function, which, unsurprisingly, is used to define tabs
for the navigation bar. Tabs are defined using a list of strings and callback
functions, in a similar way to the application menu.

60 APPLICATION BUILDING AND SMS INBOX

(a) (b) (c)

Figure 4.4 Application screen sizes: (a) full, (b) large and (c) normal

4.2.4 Content Handler
A special Content handler object, which is part of the appuifw mod-
ule, is available for opening files of various types, such as images, photos
and web pages, using the standard viewer applications of the S60 platform.
This object is also used in Chapter 9.

4.3 String Handling

There are only a few applications which do not handle textual data
at all. In some cases you are not interested in text as such, but you
need to convert textual input to a format which is easy to handle
programmatically, for instance to lists or integers. Finally, when your
application has processed the data, it is often printed out in textual form,
so the application must convert internal data structures back to text.

Luckily, all this is straightforward in Python. In this section we introduce
basic operations on strings, which are used by many examples in this
book. Section 4.4, which introduces you to the SMS inbox, requires some
power tools for string handling.

In Python, strings are objects too. In effect, this means that all
string-related functions are available automatically without any imports,
but you need to remember to use the dot notation, for example
txt.find("is"), when calling the string functions. Note that it is
not possible to modify a string after creation. All string operations return
a new string and leave the original string intact.

4.3.1 Defining a String
There are many ways to define new strings:

STRING HANDLING 61

txt = "Episode XXXIV"
txt = 'Bart said: "Eat my shorts"'
txt = """Homer's face turned red. He replied: "Why you little!""""

The first line uses double quotes to enclose a string. This is the most
usual way to define a string. The second line uses single quotes. It comes
in handy if your string contains double quotes. The last line shows the last
resort – if the string contains both single and double quotes and possibly
line breaks, you can enclose the string in three sets of double quotes.

4.3.2 Accessing Parts of a String
You can access individual characters with an index enclosed in square
brackets, in a similar way to lists. If you want to find the starting index of
a specific substring, use the function find(). For example, the following
code outputs first ‘h’ and then ‘i’:

txt = "python is great"
print txt[3]
print txt[txt.find("is")]

Above, txt.find("is") returns the value 7 and the character at
index 7 is ‘i’.

You can access substrings with the [start:end] notation:

txt = "python is great"
print txt[:6]
print txt[7:9]
print txt[10:]

The print statements output substrings ‘python ’, ‘is ’ and ‘great’.

4.3.3 Making Decisions with a String
Often you need to make a decision based on a string. You can test
whether a string is non-empty as follows:

txt = ""
if txt:

print "Many characters!"
else:

print "No characters"

This example prints out ‘No characters’. You can find out the length
of a string with the function len(). The following example outputs
‘password too short’.

passwd = "secret"

62 APPLICATION BUILDING AND SMS INBOX

if len(passwd) < 8:
print "password too short"

If you need to know whether a string contains a specific substring, use
the find() function. It returns −1 if the substring cannot be found.

url = "http://www.google.com"
if url.find(".com") == -1:

print "Access denied!"

If the substring should appear at the beginning of the string, use the
startswith() function:

if url.startswith("http://"):
print "This is a valid URL"

4.3.4 Input Sanitization

Often you need to normalize the user’s input so that all input is either in
lower or upper case. Functions upper() and lower() do the job:

a = "PyTHon"
print a.upper()
print a.lower()

The print statements output ‘PYTHON’ and then ‘python’.
If you need to be sure that a string does not contain any leading

or trailing white space, use the strip() function. The following code
outputs the string ‘fancy message’:

a = " fancy message "
print a.strip()

This is actually one of the most often needed operations for strings – in
this book it is used in 12 examples. It is especially useful when you
receive data from a file or over a network connection.

You can replace a substring in a string with the function replace().
The following example outputs ‘Python is the future’:

a = "Java is the future"
print a.replace("Java", "Python")

You can also replace individual characters in a string, which is often
useful for cleaning up input, say, from a web service. The following
example removes all spaces in a string and outputs ‘1,2,3,4,5,6’.

STRING HANDLING 63

a = " 1, 2, 3, 4, 5,6 "
print a.replace(" ", "")

If you need to cut a string into a list of substrings, use the function
split(). In default mode, split() cuts the string at every space
character. If you give a string parameter to split(), it is used as the
delimiter instead. The following example prints out the list ["one",
"two", "three", "four"].

txt = "one:two:three:four"
print txt.split(":")

4.3.5 Formatting Output
The real workhorse of Python’s string handling is the string-templating
mechanism. It is used to assemble a string based on other variables, which
can be integers, floating-point numbers or other strings. To insert given
values in the middle of a string, you need to use special placeholders that
start with the character ‘%’.

The placeholders are replaced with variable values which are given
in a tuple. The template string and the corresponding input tuple are
combined with a percent sign operator, as shown below.

The placeholders must agree with the variable types, so if your variable
contains an integer, you must use placeholder ‘%d’. If your variable is
another string, the corresponding placeholder should be ‘%s’. A compre-
hensive list of possible placeholders and their modifiers can be found in
the Python documentation.

Here is an example:

print "There are only %d lines in my code" % (5)
print "Hello %s of %d" % ("world", 2007)
ans = [45, 32, 12]
print "the correct answers are %d, %d, and %d" % tuple(ans)

You should guess the output. Note that on the last line the input is
given as a list which is converted to a tuple by the function tuple()
before it is used to fill in the placeholders.

You can use the ‘%d’ placeholder to convert an integer to a string. To
convert a string to the corresponding integer, use function int(). For
example, int("12") produces integer 12, but int("a12") fails since
the input contains an invalid value.

Exercise

To get some practice with the string operations, let’s consider the following
scenario. There is a song contest running on television and the audience
can vote for their favorite song and singer by SMS.

64 APPLICATION BUILDING AND SMS INBOX

There are four songs which you are interested in: 1, 3, 9 and 11.
The competition is such that each song can be sung by any singer. Your
favorite singers are Tori, Kate and Alanis. To maximize the probability
that any of your favorite singers will get to perform at least one of the
songs, you decide to vote for all the singer–song combinations. Since
you realize that writing 12 text messages of format ‘VOTE [song] [singer]’
manually is too much work, you quickly code the script in Example 13
to do the job.

Example 13: SMS voter

import messaging

PHONE_NUMBER = "+10987654321"
songs = (1, 3, 9, 11)
singers = "Tori, Kate, Alanis"

for song in songs:
for singer in singers.split(","):

msg = u"VOTE %d %s" % (song, singer.strip())
print "Sending SMS", msg
messaging.sms_send(PHONE_NUMBER, msg)

Here, the songs of interest are stored in the songs tuple. Your favorite
singers are given in the comma-separated string singers. Since we
want to go through every possible singer–song combination, we first
start looping through all songs and for each song we loop through all
singers.

However, we need to convert the singers string to a list for looping,
so we splice the string using the split() function. The split()
function produces the list ["Tori", " Kate", " Alanis"]. Note that
the names of Kate and Alanis are preceded by an unnecessary space.

We use the function strip() to get rid of leading white space.
Finally we construct a voting message with a template string. Since the
song identifiers are integers, they require the %d placeholder. Likewise,
the string placeholder %s is used for the names.

Be careful with the combination of loops and the sms send()
function, such as the one above. In real life, each SMS message costs
money and with loops you can easily send thousands of them! You might
want to try out this example without a SIM card in your phone, just to be
on the safe side.

4.4 SMS Inbox

Even though a large number of today’s mobile phones support various
Internet protocols, from VoIP and instant messaging to HTTP, only SMS

SMS INBOX 65

can guarantee smooth interoperability between all devices, including
old models. It is reasonable to assume that every mobile phone user
knows how to send and receive SMS messages. Because of this, SMS
messages are still widely used to interact with various services, from
buying bus tickets to television shows and online dating. Let your imag-
ination free and come up with novel ways to use these services with
Python!

You have already seen how to send SMS messages with the sms
send() function. In addition, PyS60 provides the Inbox object, part of
the inbox module, that can be used to access messages in your phone’s
SMS inbox. The latest versions of PyS60 may include access to other SMS
folders as well, such as the outbox for sent messages.

You can also define a callback function that is called when a new
message is received. This powerful feature enables you to build SMS
services of your own, or you can turn your phone into an SMS gateway
that forwards received messages to a new phone number.

4.4.1 Accessing the SMS Inbox

Let’s start with an example which shows five messages from your SMS
inbox.

Example 14: SMS inbox

import inbox, appuifw
box = inbox.Inbox()
for sms_id in box.sms_messages()[:5]:

msg = box.content(sms_id)
appuifw.note(msg)

Besides the familiar appuifw module, which is needed for showing
notes, we need to import the inbox module that encapsulates access to
the SMS inbox.

All functions related to receiving SMS messages belong to the Inbox
object which is created with the inbox.Inbox() function. To read an
individual SMS message, you need to know its message ID.

The Inbox object’s function sms messages() returns message IDs
for all messages in your phone’s SMS inbox. Since you may be a texting
maniac who keeps thousands of messages in the inbox, this example
shows up to five of them. From the list returned by the sms messages()
function, we slice off the first five items using the slicing operator [:5].

The content() function returns the content of a message given its
message ID. The content, or the actual text of the message, is then shown
in a popup note.

66 APPLICATION BUILDING AND SMS INBOX

4.4.2 SMS Search

Example 15 is a useful script: a search tool for your SMS inbox. First
the script asks for some text for which to search. Then it goes through
your SMS inbox and shows excerpts of messages which contain the given
string. You can see the full message by selecting a desired list item.

Example 15: Inbox search

import inbox, appuifw
box = inbox.Inbox()
query = appuifw.query(u"Search for:", "text").lower()
hits = []
ids = []
for sms_id in box.sms_messages():

msg = box.content(sms_id).lower()
if msg.find(query) != -1:

hits.append(msg[:25])
ids.append(sms_id)

index = appuifw.selection_list(hits, 1)
if index >= 0:

appuifw.note(box.content(ids[index]))

First, the string for which to search is stored in the variable query. As
in the previous example, we use the sms messages() function of the
Inbox object to retrieve a list of all message IDs.

The program loops through all messages, retrieves the contents of each
message with the content() function and tries to find the query string
in each message. If the find() function reports that the query string
occurs in the message, we add the message ID to the list ids so that it
can be found later. Also, we add an excerpt (the first 25 characters) of the
message contents to the list hits, so that we can present this match to
the user.

When we have processed all messages, we show the hits in a selection
list using the message excerpts as list items. When the user chooses an
item, the list dialog returns the item’s index in the list. Using this index,
we find the corresponding message ID in the ids list and the full message
content can be fetched from the phone’s SMS inbox and shown to the
user.

4.4.3 SMS Sorter

Besides the message content, it is possible to fetch the timestamp, the
sender’s phone number (address) and information on whether the message
has been read already using the Inbox object.

To show how to use these functions, we make an application that
includes an Exit key handler, an application title and a menu. This

SMS INBOX 67

application can be used to sort your SMS inbox according to vari-
ous attributes of text messages. You can choose, using the application
menu, whether the messages should be sorted by time, sender or unread
flag.

Example 16: Inbox sorter

import inbox, appuifw, e32

def show_list(msgs):
msgs.sort()
items = []
for msg in msgs:

items.append(msg[1][:15])
appuifw.selection_list(items)

def sort_time():
msgs = []
for sms_id in box.sms_messages():

msgs.append((-box.time(sms_id), box.content(sms_id)))
show_list(msgs)

def sort_sender():
msgs = []
for sms_id in box.sms_messages():

msgs.append((box.address(sms_id), box.content(sms_id)))
show_list(msgs)

def sort_unread():
msgs = []
for sms_id in box.sms_messages():

msgs.append((-box.unread(sms_id), box.content(sms_id)))
show_list(msgs)

def quit():
print "INBOX SORTER EXITS"
app_lock.signal()

box = inbox.Inbox()
appuifw.app.exit_key_handler = quit
appuifw.app.title = u"Inbox Sorter"
appuifw.app.menu = [(u"Sort by time", sort_time),

(u"Sort by sender", sort_sender),
(u"Unread first", sort_unread)]

print "INBOX SORTER STARTED"
app_lock = e32.Ao_lock()
app_lock.wait()

The code may seem long but notice that the functions sort time(),
sort sender() and sort unread() are almost identical. Each of
these functions creates a list, msgs. In each case, the list contains tuples
in which the first item is the key, according to which the messages should
be sorted, and the second item is the message content.

68 APPLICATION BUILDING AND SMS INBOX

We use the list’s sort() function to sort the list. In Python, lists
are sorted as follows: if a list contains only strings, they are sorted into
alphabetical order; if a list contains only integers, they are sorted into
ascending order; if a list contains tuples or lists, the first item of the list
or tuple is used as the sorting key; if the list contains items of different
types, items of the same type are grouped together and each type is sorted
separately.

In this case, the sorting key depends on the user’s choice:

• The sort time() function uses the Inbox object’s time() func-
tion to fetch the time when the message was received. The time
is returned in seconds since 1 January 1970, which is the standard
starting point for time measurements in many operating systems.

• The sort sender() function uses the sender’s phone number,
returned by the address() function, as the sorting key.

• The sort unread() function uses the function unread() which
returns 1 if the message is unread and 0 otherwise.

Since Python’s sort() function sorts integers into ascending order, we
have to make the timestamp and the unread flag negative,
-box.time(sms id) and -box.unread(sms id), as we prefer the
newest and the unread messages at the top of the list.

Each of these three functions prepares a list, msgs, that is ready to be
sorted in the desired way. The actual sorting and showing the resulting
list is the same in all the cases, so this task is separated into a function of
its own, show list().

After the msgs list has been sorted, we can drop off the sorting keys and
use only the second item in the tuple, the message content, to construct a
new list that includes message excerpts, as in the previous example. After
this, the sorted messages are ready to be displayed.

You could integrate Examples 15 and 16 to make a combined Inbox
searcher and sorter – a fully fledged personal messaging assistant. There is
one more related function, delete(), available in the Inbox object. It
works exactly like the functions content(), address() and time().
It is used to delete a message, so make sure you have backed up your
SMS inbox before trying it!

4.4.4 Receiving Messages

If you want to build a service which is controlled by SMS messages,
your program must be able to react to incoming messages. In theory, you
could accomplish this task by calling the sms messages() function at
constant intervals and checking whether the list has been changed since
the last call.

SMS INBOX 69

This approach is likely to perform lots of unnecessary work. Luckily,
PyS60 provides an alternative: a callback function can be called whenever
a new message is received.

Example 17: SMS receiver

import inbox, appuifw, e32

def message_received(msg_id):
box = inbox.Inbox()
appuifw.note(u"New message: %s" % box.content(msg_id))
app_lock.signal()

box = inbox.Inbox()
box.bind(message_received)

print "Waiting for new SMS messages.."
app_lock = e32.Ao_lock()
app_lock.wait()
print "Message handled!"

The Inbox object’s bind() function binds a callback function to
an event that is generated by an incoming message. In this example,
the function message received() is called when a new message
arrives.

The callback function takes one parameter, namely the ID of the
incoming message, msg id. Based on this ID, the message contents,
or any other attribute, can be retrieved from the SMS inbox, as we saw
above.

The program should not execute from start to finish at once. Instead, it
should wait for an event to occur. This time the event is not generated by
the user directly, but by an incoming SMS message. Waiting is handled
in the familiar manner, using the Ao lock object.

When a new message arrives, the function message received() is
called. It opens a popup note that shows the contents of the newly arrived
message. Then the Ao lock is released and the program finishes with
the message ‘Message handled!’. The only way to terminate this program
properly is to send an SMS message to your phone.

4.4.5 Forwarding Messages

As you know from everyday usage of your mobile phone, an arriving text
message triggers a sound notification, as well as a popup note saying that
a new message has arrived.

However, if you make a program that handles messages automatically,
the notification may not be desirable. Luckily, the sound and the dialog
can be avoided if the message is deleted immediately in the callback
function when the new message has arrived.

70 APPLICATION BUILDING AND SMS INBOX

In Example 18, we demonstrate this feature with a filtering SMS gate-
way. The gateway receives a new message, removes all nasty words in it
and forwards the censored message to another phone.

Example 18: Filtering SMS gateway

import messaging, inbox, e32

PHONE_NUMBER = "+18982111111"
nasty_words = ["Java", "C++", "Perl"]

def message_received(msg_id):
box = inbox.Inbox()
msg = box.content(msg_id)
sender = box.address(msg_id)
box.delete(msg_id)
for word in nasty_words:

msg = msg.replace(word, "XXX")
messaging.sms_send(PHONE_NUMBER, msg)
print "Message from %s forwarded to %s" %\

(sender, PHONE_NUMBER)

box = inbox.Inbox()
box.bind(message_received)
print "Gateway activated"
app_lock = e32.Ao_lock()
app_lock.wait()

This script should disable any notifications caused by arriving SMS mes-
sages. As in the previous example, the function message received()
is called when a new message arrives.

The function message received() fetches the contents of the new
message and deletes it immediately from the inbox. Nasty words are
replaced with ‘XXX’ and the cleaned message is forwarded to another
phone, specified in the PHONE NUMBER. A log message is printed out for
each forwarded SMS, which shows both the sender’s and the recipient’s
phone numbers.

Note that you should not specify your own number in the PHONE
NUMBER. This would make the program forward messages to itself,
resulting in an infinite loop!

4.5 SMS Game Server

We have already covered a number of new concepts in this chapter. We
have learnt how to use the standard user interface framework, how to
manipulate strings and how to read and receive SMS messages. In the
concluding example, all these features will be put to good use.

SMS GAME SERVER 71

The application is an SMS game server with a user interface. It imple-
ments the classic game of Hangman, which is described by Wikipedia as
follows:

One player thinks of a word and the other tries to guess it by suggesting
letters. The word to guess is represented by a row of dashes, giving the
number of letters. If the guessing player suggests a letter which occurs in
the word, the other player writes it in all its correct positions. The game is
over when the guessing player completes the word or guesses the whole
word correctly.

Note that our implementation omits the drawing part of the game.
Adding graphics to the game would be an interesting exercise after you
have read Chapter 5, which introduces the required functions.

You are the game master who runs the server. You can input the
word to be guessed by way of the user interface. Other players send
text messages to your phone, either to guess individual characters (e.g.
‘GUESS a’), or to guess the whole word (e.g. ‘WORD cat’). After each
guess, a reply message containing the current status of the word is sent
back to the guesser. There is no limit to the number of players.

This application provides a fully working example of how to build
SMS services of your own. You can easily adapt it to your own ideas. The
concept is simple. The user interface provides an option to initialize a
new game and an option to see the status of the current game. An inbox
callback handles all incoming messages, parses them, modifies the game
state and sends a reply to the guessing player.

The implementation contains some features which have not been
introduced earlier, but they are presented in the following discussion.
Since the code listing does not fit into one page nicely, we have divided it
into three parts. You should combine the parts to form the full application.

Example 19: Hangman server (1/3)

import inbox, messaging, appuifw, e32, contacts

current_word = None
guessed = None
num_guesses = 0
def new_game():

global current_word, guessed, num_guesses
word = appuifw.query(u"Word to guess", "text")
if word:

current_word = word.lower()
guessed = list("_" * len(current_word))
num_guesses = 0
print "New game started. Waiting for messages..."

def game_status():
if current_word:

72 APPLICATION BUILDING AND SMS INBOX

appuifw.note(u"Word to guess: %s\n" % current_word +\
"Current guess: %s\n" % "".join(guessed) +\
"Number of gusses: %d" % num_guesses)

else:
appuifw.note(u"Game has not been started")

def quit():
print "HANGMAN SERVER EXITS"
app_lock.signal()

The first section of the code contains the functions to handle UI events:
new game(), game status() and exit(). The state of the game is
maintained in three variables:

• the string current word, which contains the word to be guessed

• the list guessed, which contains the already guessed characters in
their correct positions

• the integer num guesses, which contains the current number of
guesses in total.

It is convenient to handle guessed as a list instead of a string, since
we cannot modify individual characters of a string without making a new
copy of it. In contrast, list items can be modified without any restrictions.

Notice how the guessed list is created in function new game():
you can use the multiplication operator to make a string of a repeating
character or substring. Once we have created a string containing as many
dashes as there are characters in current word, we can convert it to
a list of characters with function list(). For printing, the list is later
converted back to a string with the join() function.

The three game state variables are shared among all functions in the
game source code. In contrast, some variables, such as word in the
function new game(), are used locally in one function. Python makes a
distinction between global and local variables: each variable assignment
is assumed to be local to a function unless it is explicitly declared as
global. This distinction is explained in the language lesson.

Python Language Lesson: local and global variables

By default, variables that are introduced in functions have only a
limited lifetime and visibility. They are visible only in the function in
which they were created and they disappear when execution returns
from the function (see Figure 4.5).

SMS GAME SERVER 73

Figure 4.5 Scope diagram

In Figure 4.5, the variable y is local to the function first
function(). You cannot use it outside this function. In contrast,
keyword global declares that the variable x belongs to the global
scope, which covers all functions within a module. For this reason, you
can use x also in the function second function(). If a variable
is defined outside any function, it belongs automatically to the global
scope, such as the variable z.

A good rule of thumb is that if the same variable must be used in
more than one function, it must be declared as global or it must be
passed as a parameter to the functions.

Note that you have to assign a value to a variable before it can
be used. It is meaningless to refer to a variable which does not
have any content. Thus, in the example above you must call the
function first function() before calling second function()
or Python will complain NameError: global variable "x"is
not defined. This error means that no value has been assigned to
the variable yet or it was not declared as global.

Example 20: Hangman server (2/3)

def find_number(sender):
cdb = contacts.open()
matches = cdb.find(sender)
if matches:

num = matches[0].find("mobile_number")
if num:

return num[0].value
else:

74 APPLICATION BUILDING AND SMS INBOX

return None
return sender

def message_received(msg_id):
global guessed, num_guesses
box = inbox.Inbox()
msg = box.content(msg_id).lower()
sender = box.address(msg_id)
box.delete(msg_id)

print "Message from %s: %s" % (sender, msg)

if current_word == None:
return

elif msg.startswith("guess") and len(msg) >= 7:
guess = msg[6]
for i in range(len(current_word)):

if current_word[i] == guess:
guessed[i] = guess

num_guesses += 1

elif msg.startswith("word"):
if msg[5:] == current_word:

appuifw.note(u"%s guessed the word!" % sender)
guessed = list(current_word)

num = find_number(sender)
if num:

messaging.sms_send(num, u"Status after %d guesses: %s" %\
(num_guesses, "".join(guessed)))

The second section of the code contains the game logic embedded in
the callback function message received(), which handles incoming
SMS messages. In this function, we first fetch the message contents to the
string msg and convert it to lower case. If the message arrives before a
new game has been initialized, the variable current word is still in its
initial value None and the function returns immediately.

We recognize two types of message: the first follows format ‘GUESS x’
where ‘x’ is any single character. The second format is ‘WORD someword’
where ‘someword’ is the player’s guess for the full word. The function
startswith() is used to distinguish the two cases.

In the first case, we make sure that the message actually contains
some character after the word ‘GUESS’: this is true only if the message
length is at least seven characters. We reveal the guessed characters in
the list guessed by checking in which positions the guessed character
guess occurs in the original word current word. We use a simple
for loop to go through the individual characters. Nothing is changed if
the character does not occur in the word at all.

In the second case, the player tries to guess the full word, so we
check whether the word in the message msg[5:] (we omit the substring
"WORD") matches the original word current word. Note that here we

SMS GAME SERVER 75

do not need additional checks for the message length, since expression
msg[5:] returns an empty string if the length is fewer than six characters.

At the end of the function message received(), we send a reply
message to inform the guesser about the current status of the game.
However, there is a small catch: the Inbox object’s function address(),
which should return information about the sender of the message, does
not always return the sender’s phone number. If the sender exists in the
address book of your phone, the name is returned instead of the phone
number.

This might be convenient for an application that shows the sender
information to the user but, in this case, it makes replying impossible
if the sender’s number exists in the address book. Luckily, there is a
workaround: we use the contacts module of PyS60 to access the
phone’s address book, from which the sender’s actual phone number can
be found. This operation is performed in the function find number. We
do not explain it in detail here, as the contacts module is introduced
in Chapter 7.

Example 21: Hangman server (3/3)

box = inbox.Inbox()
box.bind(message_received)

appuifw.app.exit_key_handler = quit
appuifw.app.title = u"Hangman Server"
appuifw.app.menu = [(u"New Game", new_game),

(u"Game Status", game_status)]

print "HANGMAN SERVER STARTED"
print "Select 'Options -> New Game' to initialize a new game"

app_lock = e32.Ao_lock()
app_lock.wait()

The final section of the game source code is simple: it just constructs
the application user interface using the techniques introduced earlier in
this chapter. Here we also bind the message received() function to
the Inbox, so the incoming messages are captured correctly.

Now, let us assume that you initialize a new game and choose ‘code’
as the hidden word. The game proceeds as follows – here the G lines
denote replies by the game server and P the player’s messages.

P: GUESS i
G: Status after 1 guesses: _ _ _ _
P: GUESS o
G: Status after 2 guesses: _ o _ _
P: GUESS r
G: Status after 3 guesses: _ o _ _
P: GUESS e

76 APPLICATION BUILDING AND SMS INBOX

G: Status after 4 guesses: _ o _ e
P: GUESS c
G: Status after 5 guesses: c o _ e
P: WORD code
G: Status after 6 guesses: c o d e

The correct guess in the end triggers a dialog that shows the winning
player’s phone number. After this, you can either start a new game or close
the application. Now start spreading the word about your revolutionary
new SMS game!

4.6 Summary

In this chapter we showed how to build real S60 applications that include
titles, menus and dialogs. Without this skeleton, building highly functional
applications would be cumbersome. The application framework came
in useful immediately when we started to search and sort your SMS
inbox.

With the techniques in this chapter, especially in the concluding
example, you can start building various kinds of SMS services. If you
want some further exercises, see the Wikipedia article about word
games and use the Hangman example as a basis for implementing
other games.

In this chapter, you also learned a great deal about the Python language,
including functions, callback functions, objects, tuples and the scope of
variables – in other words, almost everything needed in this book. In
Chapter 6, two more lessons are presented. If you feel exhausted by these
lessons, we can promise that Chapter 5 will not increase your burden.

5
Sound, Interactive Graphics

and Camera

In this chapter you learn how to program your phone to record and play
sounds and to use its built-in text-to-speech engine. You’ll see how to
use the camera to take photos, either manually or fully automatically.
The photos can be manipulated in various ways, for example by scaling,
rotating or imprinting text on them with the image-processing features of
PyS60.

We spice up the chapter with some interactivity: we show how to
access the keyboard keys in three different ways. To enable you to
build visually appealing applications, we show how to draw text and
basic graphics, such as squares and circles, to the screen, and use them as
building blocks for more complex graphics. We also make some reference
to 3D graphics and, at the end of the chapter, we build an action-packed
mobile game.

This is useful knowledge for creating your own music players, camera
applications, games and software that can visualize data in real-time. But
even more, you may get some idea of how you could turn your mobile
phone into an artistic tool.

We hope that this chapter will unleash your creativity!

5.1 Sound

5.1.1 Text to Speech

Let’s start with a smooth introduction to sound. Most of the latest S60
phones have text-to-speech functionality built-in, meaning that the phone
can speak aloud any given string. Hopefully you can come up with some
useful and amusing application for this feature.

78 SOUND, INTERACTIVE GRAPHICS AND CAMERA

The module named audio provides access to the text-to-speech
engine. The function audio.say() takes a string as its parameter and
speaks it aloud (see Example 22).

Example 22: Text to speech

import appuifw, audio

text = appuifw.query(u"Type a word:", "text")
audio.say(text)

The word you type in the input dialog is spoken aloud by the phone.

5.1.2 Playing MP3 Files
The S60 platform supports a wide range of sound formats, such as MP3,
WAV, AMR, AAC, MIDI and Real Audio. Example 23 shows how to play
a MP3 file.

Example 23: MP3 player

import audio

sound = audio.Sound.open("E:\\Sounds\\mysound.mp3")

def playMP3():
sound.play()
print "PlayMP3 returns.."

playMP3()

You must have an MP3 file named mysound.mp3 on your phone, on
the memory card in this example. If the file is missing, the example raises
an exception. In Chapter 6, we explain the directory hierarchy in detail,
so you know where to load and save files – here we just use a standard
location for sounds.

The call to the function audio.Sound.open() opens the specified
file, in this case E:\Sounds\mysound.mp3 and creates an audio.
Sound object (which we have called sound). When we call the function
sound.play(), the MP3 file starts playing and plays from start to finish.
In Section 5.1.5, we see how to stop the sound at any time when it is
being played.

Example 23 prints out "PlayMP3 returns.." when the sound starts
playing, as the play() function does not wait until the sound has reached
the end. This is desirable if you want to leave the sound playing in the
background and continue doing other things.

In some cases, however, you would like the play() function to block
the program until the sound is played till the end. For example, this

SOUND 79

behavior might be useful in a game where short sound effects are being
played. Example 24 shows how to do that.

Example 24: Blocking MP3 player

import audio, e32

snd_lock = e32.Ao_lock()

def sound_callback(prev_state, current_state, err):
if current_state == audio.EOpen:

snd_lock.signal()

def playMP3():
sound = audio.Sound.open("E:\\Sounds\\mysound.mp3")
sound.play(callback = sound_callback)
snd_lock.wait()
sound.close()
print "PlayMP3 returns.."

playMP3()

Here we use the e32.Ao lock() object to wait for an event to
occur, in a similar way to the applications in Chapter 4. The play()
function may be given a callback function as a parameter, which
is named sound callback() here. The callback function is called
whenever the sound state changes. The function is given three param-
eters: prev state, current state and err. We can check the
current state of the sound with the variable current state. It equals
audio.EOpen, if the sound has finished, or audio.EPlaying if the
sound is playing.

In the above example, we want the play() function to wait until
the sound has finished. We use the e32.Ao lock object to wait until
the callback function receives a notification that the sound has finished,
after which it releases the lock using the signal() function. As a result,
"PlayMP3 returns.." is printed out only after the sound has been
played in full.

You could easily extend the previous examples into a fully fledged
MP3 player. For example, you can add a popup dialog that lets you pause,
stop and fast forward the playing song. The rest of this section introduces
some useful functions to do this. The next step might be to add simple
playlist functionality to the player. For this purpose, you might want to
have a look at Chapter 6, which introduces data handling.

5.1.3 Playing MIDI Files

Even though MP3 files are abundant nowadays, the MP3 format is not
suitable for every purpose. To demonstrate how to play other sound

80 SOUND, INTERACTIVE GRAPHICS AND CAMERA

formats besides MP3, Example 25 uses a Musical Instrument Digital
Interface (MIDI) file.

As the name suggests, a MIDI file contains commands that musical
instruments transmit to control various attributes of music, such as playing
notes and adjusting an instrument’s sound in various ways.

Playing MIDI files works in exactly the same way as playing MP3 files.
As in the previous example, your sound file should be placed on your
memory card.

Example 25: MIDI player

import audio

midi = audio.Sound.open("E:\\Sounds\\mysound.mid")

def playMIDI():
midi.play()
print "PlayMIDI returns.."

playMIDI()

As you can see, the audio module takes care of handling different
types of sounds automatically, so you can open any sound file that is
supported by your phone in a similar way. A blocking MIDI player would
look exactly like the blocking MP3 player in Example 24.

5.1.4 Additional Information on Playing Sounds

Besides the callback parameter that was demonstrated in Example 24,
you can specify how many times the sound should be played. For instance,
if you specify play(times = 20), the sound will play 20 times. If you
want to repeat the same sound forever, use play(audio.KMdaRepeat
Forever). If you want to leave some silence between subsequent plays,
use the interval parameter to specify the interval in microseconds.

Some phones do not support simultaneous playing of audio files. If
you try to call the play() function in such a phone while a sound is
playing, an exception is raised. You can prevent this from happening by
always calling stop() before playing a sound. Also note that you have
to call stop() explicitly before your script exits or the sound will keep
playing in the background even after your program has ended.

5.1.5 Recording Sounds

Now we turn your phone into a lo-fi music studio by showing how
to record sounds with the audio module. Although a phone supports
playing a wide range of different sound formats, it can typically record
only WAV and AMR files.

SOUND 81

Sounds are recorded using the same audio.Sound object that was
used for playback. In Example 26, we make a simple program that lets
you record and play a single sound.

Example 26: Sound recorder

import appuifw, audio, os

MENU = [u"Play sound", u"Record sound", u"Delete sound"]
SOUNDFILE = u"E:\\sound.wav"
sound = None

while True:
index = appuifw.popup_menu(MENU, u"Select operation")
if sound:

sound.stop()
sound = audio.Sound.open(SOUNDFILE)
if index == 0:

sound.play()
elif index == 1:

sound.record()
appuifw.query(u"Press OK to stop recording", "query")
sound.stop()

elif index == 2:
os.remove(SOUNDFILE)

else:
break

The program starts by displaying a popup menu, as shown in Figure 5.1,
that lets the user choose the desired operation. If you attempt to play
a sound before one has been recorded, the program crashes as the file
SOUNDFILE cannot be found. Chapter 6 gives you some ideas on how
to handle situations like this properly.

The function sound.record() starts recording. The recording con-
tinues until sound.stop() is called. Since we want the user to decide
when to stop, we present a dialog that blocks the execution until the user
selects OK.

If the sound file already exists when recording starts, the new sound
is appended to the end of the existing file. You can hear this easily by
repeating the ‘Record sound’ operation several times and then listening
to the sound. If you want to start recording from scratch, the previous file
must be deleted first. This can be done with the os.remove() function,
which deletes the file whose name is given in the parameter. This function
is called if the user chooses the ’Delete sound’ operation from the menu.
Note that you need to import the os module to use this function.

As the program operates within an infinite loop, the popup menu is
shown again once an operation finishes. Note that sound.play() only
starts the playing and does not wait for it to finish, so a new dialog may
be shown although the sound is still playing. We stop playing, however,
once the next operation has been chosen, as it is not a good idea to

82 SOUND, INTERACTIVE GRAPHICS AND CAMERA

Figure 5.1 Sound recorder

execute several record() and play() operations simultaneously on
the same sound object. The program exits when you cancel the popup
menu.

Recording Animal Sounds

Example 27 extends the previous sound recorder by recording sounds to
several sound files instead of only one. The example lets you record and
play sounds of animals, namely the sound of a dog, a cat and a cow. If
you have a toddler, this might be a good way to introduce the wonderful
world of mobile programming.

Example 27: Animal sounds

import appuifw, audio

animals = [u"dog", u"cat", u"cow"]

def record_animal_sounds():
for animal in animals:

noise = audio.Sound.open("e:\\" + animal + ".wav")
if appuifw.query(u"Record sound of a " + animal, "query"):

noise.record()
appuifw.query(u"Press OK to stop recording", "query")
noise.stop()
noise.close()

def select_sound():
global funny_noise

SOUND 83

funny_noise = None
while True:

index = appuifw.popup_menu(animals, u"Select sound:")
if funny_noise:

funny_noise.stop()
if index == None:

break
else:

play_animal_sound(u'e:\\ + animals[index] + '.wav')

def play_animal_sound(soundfile):
global funny_noise
funny_noise = audio.Sound.open(soundfile)
funny_noise.play()

record_animal_sounds()
select_sound()

This time, you have to record sounds of the three animals when the
script starts. This is handled by the function record animal sounds()
which loops over the list of animals, animals. After this, the function
select sound() presents a menu that lets you choose a sound to
play.

Note that the sounds are saved to the root of the memory card, that is,
the E: drive. If you do not have a memory card, you can change the path,
for instance, to C:\\Python.

The playing of a sound is handled by the function play animal
sound(). Note that here we declare the variable funny noise as
global. This variable contains the sound object that is now playing. If
funny noise was not global, we would not be able access it after the
function play animal sound() returns, so stopping the sound would
be impossible. As the variable is declared global, it stays alive even after
the function returns, so we can stop the sound once the user chooses
the next sound to be played. This example exits when you cancel the
playback dialog.

Recording a Phone Call

Interesting things happen when you record or play a sound during a
phone call. Calling play() plays the sound to the speech channel,
meaning that those participating in the phone call can hear it. Calling
record() starts recording the telephone call.

See Chapter 7 for more information about using the telephone.

5.1.6 Other Useful Functions of the Audio Module

A range of additional functions are provided by the audio module:

84 SOUND, INTERACTIVE GRAPHICS AND CAMERA

• state() returns the current state of the Sound object. The different
states are returned as constants:

◦ ENotReady – the Sound object has been constructed but no
audio file is open.

◦ EOpen – an audio file is open but no playing or recording opera-
tion is in progress.

◦ EPlaying – an audio file is playing.

◦ ERecording – an audio file is being recorded.

• max volume() returns the maximum volume of the device.

• set volume(volume) sets the volume of the device. If the given
volume is negative, the volume is set to zero which mutes the device.
If the volume is greater than the maximum volume, the maximum
volume is used.

• current volume() returns the current volume level.

• duration() returns the duration of the file in microseconds.

• set position(microseconds) sets the position of the playhead.

• current position() returns the current playhead position in
microseconds.

5.2 Keyboard Keys

In this section, we introduce you to the keys of the phone keyboard.
Although there is nothing particularly difficult in registering the click of a
key, there are several things worth noticing.

First, a single physical key may produce different results based on the
keyboard mode: for instance, a key might produce an upper or lower
case ‘a’ depending whether some other key is active. Second, there are
several different key events: the user can select a key, hold it down and
release it – all these events can be registered separately.

With the help of the next three examples, we show three different
approaches to programming keyboard keys. Each example takes a slightly
different approach, but basically they all do the same thing:

• If the user presses the up-arrow key (navigation key up), a note dialog
tells us that the up-arrow key was pressed, as shown in Figure 5.2.

• If the user presses keyboard key 2, a note dialog tells us that key 2
was pressed.

KEYBOARD KEYS 85

(a) (b)

Figure 5.2 Up arrow is pressed

Even though all three approaches are used here to accomplish the
same task, each of them is best suited to handle a particular use case:

• The first approach (Section 5.2.1) is handy when you need to handle
the clicks of only a few specific keys.

• The second approach (Section 5.2.2) is suitable if you need more
complicated processing of several keys.

• The third approach (Section 5.2.3) is a generalization of the second
and allows you to detect whether a key is clicked or continuously
held down.

Before we present the approaches, note one important prerequisite:
when you want to register any key event (except the left and right softkeys),
you need to assign the appuifw.Canvas object to the application body,
appuifw.app.body.

Canvas is a UI element that provides a drawable area on the screen
and provides support for handling keyboard key events. The Canvas
object can be instantiated as follows:

canvas = appuifw.Canvas()
appuifw.app.body = canvas

This creates a Canvas object named canvas which is then assigned
to the application body. As you may remember, Figure 4.1 illustrates

86 SOUND, INTERACTIVE GRAPHICS AND CAMERA

the application body with respect to the other parts of the standard S60
application UI.

The Canvas() function, which creates the corresponding object, takes
two optional parameters: redraw callback and event callback.
We can assign a callback function to both of these parameters. The
callback functions are called when the screen must be redrawn or
when a keyboard event occurs. The redraw callback() function
is described in Section 5.3 and the event callback function in
Sections 5.2.2 and 5.2.3.

Now, let’s dive into the three approaches on programming keyboard
keys.

5.2.1 Binding a Keycode to a Callback Function

In this approach, we bind a callback function to respond to a specific key
event. The key is identified by a keycode. For each key on the keyboard
there exists at least one keycode that corresponds to a particular character
or action, as shown in Figure 5.3. Note that a single physical key may
produce many different characters; thus, many different keycodes may
correspond to a single key.

The keycodes are defined as constants in the module key codes.
You can find an overview of often used keycodes in Figure 5.3. To use the
keycodes, you need to import the key codes module at the beginning
of the script.

Example 28: Binding a keycode to a callback function

import appuifw, e32, key_codes

def up():
appuifw.note(u"Up arrow was pressed")

def two():
appuifw.note(u"Key 2 was pressed")

def quit():
app_lock.signal()

canvas = appuifw.Canvas()
appuifw.app.body = canvas

canvas.bind(key_codes.EKeyUpArrow, up)
canvas.bind(key_codes.EKey2, two)

appuifw.app.exit_key_handler = quit
app_lock = e32.Ao_lock()
app_lock.wait()

KEYBOARD KEYS 87

Keycodes Scancodes

1 EKeyLeftSoftkey EScancodeLeftSoftkey

2 EKeyYes EScancodeMenu

3 EKeyStar EScancodeMenu

4 EKey5 EScancode5

5 EKeyStar EScancodeStar

6 EKeyLeftArrow EScancodeLeftArrow

7 EKeyUpArrow EScancodeUpArrow

8 EKeySelect EScancodeSelect

9 EKeyRightArrow EScancodeRightArrow

10 EkeyDownArrow EScancodeDownArrow

11 EKeyRightSoftkey EScancodeRightSoftkey

12 EKeyNo EScancodeNo

13 EKeyBackspace EScancodeBackspace

14 EKeyEdit EScancodeEdit

15 EKeyHash EScancodeHash

Figure 5.3 Overview of keycodes and scancodes

88 SOUND, INTERACTIVE GRAPHICS AND CAMERA

The canvas.bind() function binds a keycode to a callback function.
For example, canvas.bind(key codes.EKeyUpArrow, up) binds
the callback function up() to the up-arrow key. This informs the canvas
object that whenever the key corresponding to the keycode EKeyUpAr-
row (navigation key up) is pressed, the callback function up() should be
called. Similarly, we bind the keycode EKey2 to the function two().

In some cases, you may want to cancel the binding. This can be
accomplished by binding the value None to a keycode, in place of a
callback function.

5.2.2 Using the event callback() Function

In the second approach, we use a single callback function named keys()
to handle all key events. Depending on the parameter event that is given
to the function, we take a corresponding action. We use the Canvas
object’s event callback parameter to direct all events to a single
function, keys().

Example 29: Using the event callback() function

import appuifw, key_codes, e32

def keys(event):
if event['keycode'] == key_codes.EKeyUpArrow:

appuifw.note(u"Up arrow was pressed")
elif event['keycode'] == key_codes.EKey2:

appuifw.note(u"Key 2 was pressed")

def quit():
app_lock.signal()

canvas = appuifw.Canvas(event_callback = keys)
appuifw.app.body = canvas
appuifw.app.exit_key_handler = quit
app_lock = e32.Ao_lock()
app_lock.wait()

When the user presses a key, the canvas receives a key event and
generates a dictionary object which is handed to the keys() func-
tion through the parameter event. This object holds information about
the key that produced the event and whether the key was pressed or
released.

In essence, a dictionary object is a collection of key–value pairs.
This data structure might be familiar to you from other programming
languages, such as Java’s Hashtable or PHP’s or Perl’s hash arrays.
The dictionary object is introduced more thoroughly in Chapter 6 – here

KEYBOARD KEYS 89

we only peek inside the contents of one particular dictionary object,
event.

The event callback function receives a single parameter that is a
dictionary object, event. It includes the following information:

• keycode is an identifier for the keyboard key event. Some physi-
cal keys on the keyboard may correspond to several keycodes, for
instance, to upper-case and lower-case A. Thus, if your application
must recognize a specific character, keycodes are a suitable choice.
Keycode names are defined in the key codes module and they start
with the letters EKey.

• scancode is a lower-level identifier of the physical keyboard key.
Scancode names start with the letters EScancode. If your application
must recognize events related to a physical key, scancodes are a
good choice. See Figure 5.3 to see some cases where the keycode
and scancode do not map to the same key. You can use scancodes
wherever keycodes are used, for instance, you could have used them
in Example 28.

• modifiers returns modifier keys that apply to this key event, such as
Ctrl or Alt. Modifiers are seldom used on a mobile phone keyboard.

• type indicates whether the key has just been pressed down
(appuifw.EEventKeyDown), is down (appuifw.EEventKey), or
has been released (appuifw.EventKeyUp). We can use this infor-
mation to distinguish between single clicks and continuous key presses
(see Example 30).

You can fetch the above values from the dictionary object as follows:

ev_keycode = event["keycode"]
ev_scancode = event["scancode"]
ev_modifiers = event["modifiers"]
ev_type = event["type"]

To detect which key is being pressed, we simply compare the keycode
or scancode value from the event dictionary with the code that we want
to detect. When the right softkey is pressed, the appuifw.app.exit
key handler() callback is always executed.

5.2.3 Key Pressed or Held Down
The third approach shows how to distinguish whether a certain key was
clicked once or whether it is being held down. This can be useful, for

90 SOUND, INTERACTIVE GRAPHICS AND CAMERA

instance, in a game where a battleship is steered with arrow keys. In this
case, being unable to see the distinction between a click that corresponds
to a small adjustment and a continuous move to the right is likely to cause
a shipwreck.

Example 30: Key pressed or held down

import appuifw, e32, key_codes

key_down = None
clicked = None

def handle_event(event):
global clicked, key_down
if event["type"] == appuifw.EEventKey:

if key_down:
key_down = (event["keycode"], "down")

else:
key_down = (event["keycode"], "pressed")

elif event["type"] == appuifw.EEventKeyUp and key_down:
code, mode = key_down
if mode == "pressed":

clicked = code
key_down = None

def key_clicked(code):
global clicked
if code == clicked:

clicked = None
return True

return False

def key_is_down(code):
if key_down and key_down == (code, "down"):

return True
return False

def quit():
global running
running = False

canvas = appuifw.Canvas(event_callback = handle_event)
appuifw.app.body = canvas
appuifw.app.exit_key_handler = quit

running = True
while running:

e32.ao_sleep(0.1)
if key_clicked(key_codes.EKeyUpArrow):

appuifw.note(u"Up arrow was pressed")
elif key_is_down(key_codes.EKey2):

canvas.clear((0, 0, 255))
else:

canvas.clear((255, 255, 255))

This example is somewhat more complex than the previous ones. Do
not worry if you cannot understand this script instantly. You can always

KEYBOARD KEYS 91

come back to it later once you have advanced in the book and have
learned more about Python.

This example uses an event callback function that is similar to the
second approach. In contrast to the second approach, however, here we
use the event type in event["type"] to distinguish between the states
of a key.

These event-handling functions are not application-specific, but are
usable in any application. This is in contrast to both the previous
approaches, which included application-specific actions (showing the
dialogs) in the event-handling function. Because of this, you can use the
functions handle event(), key clicked() and key is down()
in your own applications.

The event callback function handle event() works as follows: if
the key is down (event type appuifw.EEventKey), we make a dis-
tinction between the first key-down event, when the variable key down
equals None and further events that happen only if the key is not released
immediately. We mark the first event with "pressed" and the follow-
ing key-down events with "down". When the key is released (event
type appuifw.EEventKeyUp) we check the mode: if the key was
"pressed", the user has only clicked the key and we save the keycode
to the variable clicked. If the mode was "down", this event means that
the key was just released and we reset the key down variable back to
None.

Given a keycode, the function key clicked() checks whether the
last clicked key in the variable clicked equals the parameter and then
resets clicked. Thus, with this function you can check whether a certain
key was clicked.

In a similar manner, we check whether the key that is now held
down (if any) equals the parameter in the function key is down().
The function returns True as long as the particular key is held down.

As with the previous approaches, a click of the up-arrow key shows a
dialog. If you hold the key down, instead of just clicking it, no dialog is
shown. On the other hand, if you hold the 2 key down, the screen turns
blue. However, if you just click the 2 key, nothing happens. We could
have shown another dialog when the 2 key is held down, but seeing
many dialogs in a row saying that the key is still down would be rather
annoying. That is why the screen is turned blue instead.

Later on, we use this approach in a drawing program (Example 33).

5.2.4 Capturing any Key Event on Your Phone
The keycapture module offers an API for global capturing of key
events. With this module, you can react to key events even if some other
S60 application is active and your PyS60 program is running only in the
background. For instance, you could have a key combination that triggers
an action regardless of the application that you are using on the phone.

92 SOUND, INTERACTIVE GRAPHICS AND CAMERA

The keycapture module provides a KeyCapturer object that is
used for listening to the events by way of a callback function. The callback
is called each time any of the specified keys is pressed.

Since capturing all key presses on your phone has security and privacy
implications, 3rd Edition phones require a special capability (SwEvent) to
use this module. See Appendix A for more information about capabilities.

5.3 Graphics

When we want to display 2D graphics or images on the screen, the
Canvas object is needed in the application body. Canvas is a UI element
that provides a drawable area on the screen but it also provides support
for handling keyboard events, as we saw in Section 5.2. We showed how
to create a canvas object and how to assign it to the application body. We
also mentioned that it has an optional parameter, redraw callback,
that defines a callback function that is called whenever a part of the
canvas must be redrawn. Typically, this happens when the user switches
away from the Python application and back again or after a popup menu
is displayed.

5.3.1 Drawing Graphics Primitives

This section shows you how to draw circles, rectangles, lines and
points – that is, all kinds of graphics primitives. A common way to
perform drawing and showing graphics on the screen is that you first cre-
ate a graphics.Image object, manipulate that object and then draw it
on the canvas (screen) in the redraw callback function.

This process is called double buffering. The name refers to the fact that
instead of drawing primitives directly on the canvas, which is possible as
well, you draw them in a separate image (buffer) first. This way you do
not have to draw everything again when the canvas must be redrawn, for
example after a popup dialog has cleared a part of the canvas. Instead,
you simply copy the image to the canvas. The Image.blit() function
that handles the copying is typically accelerated by hardware and is, thus,
fast.

To do this, we need to import the graphics module, which gives
access to functions for drawing graphics primitives and loading, saving,
resizing and transforming images. It is loosely based on the Python
Imaging Library (PIL), though it supports only a restricted set of its
functions.

Let’s have a look at the graphics module. Example 31 draws a red
point, a yellow rectangle and some white text to the screen, as shown in
Figure 5.4. We use keyboard keys to draw one of these graphics primitives
on the screen or to draw all primitives at the same time.

GRAPHICS 93

Figure 5.4 Graphics primitives drawn to the screen

Example 31: Graphics primitives

import appuifw, e32, key_codes, graphics

WHITE = (255,255,255)
RED = (255,0,0)
BLUE = (0,0,255)
YELLOW = (255,255,0)

def draw_rectangle():
img.rectangle((50,100,100,150), fill = YELLOW)

def draw_point():
img.point((90,50), outline = RED, width = 30)

def draw_text():
img.text((10,40), u"Hello", fill = WHITE)

def handle_redraw(rect):
if img:

canvas.blit(img)

def handle_event(event):
ev = event["keycode"]
if event["type"] == appuifw.EEventKeyDown:

img.clear(BLUE)
if ev == key_codes.EKeyUpArrow:

draw_point()
elif ev == key_codes.EKeyRightArrow:

draw_text()
elif ev == key_codes.EKeyDownArrow:

draw_rectangle()
elif ev == key_codes.EKeyLeftArrow:

94 SOUND, INTERACTIVE GRAPHICS AND CAMERA

draw_point()
draw_text()
draw_rectangle()

handle_redraw(None)

def quit():
app_lock.signal()

img = None
canvas = appuifw.Canvas(redraw_callback = handle_redraw,\

event_callback = handle_event)
appuifw.app.body = canvas
appuifw.app.screen = "full"
appuifw.app.exit_key_handler = quit

w, h = canvas.size
img = graphics.Image.new((w, h))
img.clear(BLUE)

app_lock = e32.Ao_lock()
app_lock.wait()

At the beginning of the script we assign various colors to constants:
WHITE, RED, BLUE and YELLOW. The color representation consists of a
three-element tuple of integers in the range from 0 to 255, representing
the red, green and blue (RGB) components of the color.

If you have written some HTML code, you may be familiar with the
hexadecimal representation of a color: in this case, the color is specified
as a value such as 0xRRGGBB, where RR is the red, GG the green and
BB the blue component of the color, each of which is a hexadecimal
value from 0x0 to 0xff (0–255). Using this notation, we could specify, for
instance, YELLOW = 0xffff00.

Next we define three functions, each of which handles the drawing of
a single primitive:

• draw rectangle(): the first tuple specifies the top-left and lower-
right corners of the rectangle, in format (x1, y1, x2, y2) and the fill
parameter defines its color.

• draw point(): the first tuple specifies the center of the point at
(x,y). The parameter width specifies the size in pixels and outline
specifies the color.

• draw text(): draws the Unicode string u"Hello" on image at the
specific location that is defined in the first tuple.

Toward the bottom of the script you can see the following lines:

w, h = canvas.size
img = graphics.Image.new((w, h))

GRAPHICS 95

They create a new Image object whose size equals to the can-
vas. Before these lines, notice that we create a Canvas object and
assign two callback functions to it, which handle redrawing of the can-
vas and key events, correspondingly. As you might guess, the function
img.clear(BLUE) clears the image to blue initially. Note that the
image should be created only after the Canvas object is assigned to
the application body. Otherwise canvas.size may return an incorrect
tuple for the screen size.

The function handle event() draws the primitives on the image,
img, depending on which key is pressed. When any key is pressed down,
the image is first cleared for drawing. Then, a point, text, a rectangle or
all of these are drawn in the respective functions, based on the actual
keycode. Finally, we request the canvas to be redrawn by calling the
function handle redraw().

The function handle redraw() is simple: it gets a single parameter,
rect, that defines the area on the screen that must be redrawn. For
simplicity, we may omit this parameter and always redraw the whole
screen. A performance-critical application, say a game, might use the
rect parameter to speed up redrawing if only a fraction of the canvas
must be refreshed.

Both the Image and Canvas objects have a blit() function that
is used to copy one image to another. In this case, we copy img to
the canvas as whole, thus no additional parameters are specified for the
function. The if clause ensures that no blitting is performed until img
has been initialized appropriately.

5.3.2 More on Graphics Primitives

Besides the primitives point, rectangle and text, there are other
primitives available, such as line, polygon, ellipse and pieslice.
You can also change the font and size of the text primitive. For more
information, see the PyS60 documentation. The graphics module also
offers several image-manipulation methods for resizing, flipping and
rotating images, which are described in the documentation.

Chapter 11 contains more advanced examples that use the graphics
module. In particular, have a look at Section 11.3, which describes an
artistic tool called MobileArtBlog in detail. The tool combines the power
of the camera and graphics modules in an innovative way: you can
pick patterns from your physical environment and use them as paint
brushes!

With the help of the graphics primitives, you can also design UI
elements of your own, instead of using the native UI elements of the S60
platform. This is demonstrated in Sections 11.2 and 11.5.

96 SOUND, INTERACTIVE GRAPHICS AND CAMERA

5.3.3 Loading and Saving Images
Instead of using graphics primitives, you can use photos and other
graphical material in the JPEG or PNG formats. The handling of these
materials is done through the Image object in a similar way to the way
graphics primitives are handled. Note that once a pre-made image has
been loaded, you can use it in the same way as any other Image object,
for example, any of the above graphic primitives can be drawn on it.

A pre-made image is loaded and saved to a new file as follows:

img = graphics.Image.open("e:\\Images\\picture.jpg")
img.save("e:\\Images\\picture_new.jpg")

5.3.4 Image Masks
When you copy one image to another using the blit() function, the
shape of the source image is rectangular by default. In some cases, this is
not desirable and you would like to mask out certain parts of the source
image.

For this purpose, you need a black and white mask image with the
visible parts painted in white. Figure 5.5 shows an example: on the left,
there is the original image and, on the right, the corresponding mask that
masks out the background of the arrow.

Figure 5.5 An image and its corresponding mask

Then, you can load and use the mask to copy only the visible parts,
defined by the mask, mask img, of the source image, src img, to the
canvas as follows:

mask_img = Image.new(size = (50, 50), mode = '1')
mask_img.load('e:\\Images\\mask_img.png')
src_img = graphics.Image.open('e:\\Images\\orig_img.png')
canvas.blit(src_img, target=(0,0), source=(0,0), mask = mask_img)

The parameter mode = "1" specifies that the new image, mask img,
has only two colors, black and white. This mode is required for masks.

Section 11.5 presents an example that uses masks extensively.

5.3.5 Taking a Screenshot
The view that is visible on the phone’s screen can be captured with the
function graphics.screenshot(). This function converts the current

GRAPHICS 97

view to a new Image object and returns it to the caller. Example 32 takes
a screenshot of itself and saves it to a file.

Example 32: Screenshot

import graphics

print "Hi there!"
img = graphics.screenshot()
img.save(u"e:\\Images\\screenshot.png")

Note that if you have a new memory card, it might not have the Images
directory. In this case, use the phone’s default camera application to
shoot and save a photo to the memory card. This will create the required
directory.

Screenshots that appear in this book were taken as follows: we used the
e32.Ao timer object to call a function after a certain time period – see
Example 50 for a similar usage of the timer. The function contained the
same lines as the example above. For each figure, we calibrated the delay
so that the screen would contain the exact arrangement we wanted to
capture.

5.3.6 Interactive Graphics
In Example 33, we learn how to move a single black point, leaving
traces, on a white background (someone might call this a pen), as shown
in Figure 5.6. This example combines earlier lessons learnt, namely
drawing graphics primitives and handling keyboard events.

Figure 5.6 Moving dot with its trace

98 SOUND, INTERACTIVE GRAPHICS AND CAMERA

Example 33: Moving graphics

import appuifw, graphics, e32, key_codes

BLACK = (0, 0, 0)
WHITE = (255, 255, 255)
key_down = None
clicked = None

def handle_event(event):
global clicked, key_down
if event['type'] == appuifw.EEventKey:

if key_down:
key_down = (event['keycode'], "down")

else:
key_down = (event['keycode'], "pressed")

elif event['type'] == appuifw.EEventKeyUp and key_down:
code, mode = key_down
if mode == "pressed":

clicked = code
key_down = None

def key_is_down(code):
if key_down and key_down == (code, "down"):

return True
return False

def quit():
global running
running = False

def handle_redraw(rect):
if img:

canvas.blit(img)

img = None
canvas = appuifw.Canvas(event_callback = handle_event,

redraw_callback = handle_redraw)
appuifw.app.screen = "full"
appuifw.app.body = canvas
appuifw.app.exit_key_handler = quit

x = y = 100
w, h = canvas.size
img = graphics.Image.new((w, h))
img.clear(WHITE)

running = True
while running:

if key_is_down(key_codes.EKeyLeftArrow): x -= 5
elif key_is_down(key_codes.EKeyRightArrow): x += 5
elif key_is_down(key_codes.EKeyDownArrow): y += 5
elif key_is_down(key_codes.EKeyUpArrow): y -= 5

#img.clear(WHITE)

GRAPHICS 99

img.point((x, y), outline = BLACK, width = 50)
handle_redraw(None)
e32.ao_yield()

The functions handle event() and key is down() are familiar
from Example 30. Again, we create a separate image, img, on which the
dot is first drawn and then the whole image is copied onto the canvas
in handle redraw().

The dot is moved with the arrow keys. Depending on which arrow is
held down, we move the dot’s location the corresponding direction in x
and y coordinates. Here the dot is moved 5 pixels at time, but you can
experiment with different values.

The e32.ao yield() at the end of the loop makes sure that the
system leaves some time to register the keyboard events, as drawing in
the tight loop consumes lots of CPU power and might make the system
unresponsive.

Actually, since we move the dot only when the user presses a key, we
could have used the approach of Example 28 to handle the key events.
In this case, we would not need the busy loop at the end, which would
mean less computing and savings in precious battery time. However, this
example should prepare you for Example 39, where the loop is actually
necessary.

One line, img.clear(WHITE), is preceded by the hash mark (#)
which means that the line is a comment and is ignored by the PyS60
interpreter. If you remove the hash mark, the line is executed and the dot
does not leave any traces. Note, however, that clearing the whole image
because the dot has moved one step forward is unnecessarily expensive.
A better, but less straightforward, approach for clearing traces would be
to draw a small white rectangle on top of the old dot before drawing the
new dot.

5.3.7 3D Graphics

Python for S60 provides support for 3D graphics by way of the modules
gles and glcanvas. The gles module contains Python bindings to the
OpenGL ES 2D and 3D graphics API. The glcanvas module provides
an object for displaying the 3D graphics, in the same way as the Canvas
object is used to display 2D graphics.

Making 3D graphics with OpenGL is somewhat complicated. Fortu-
nately, several good books and free tutorials have been written about the
subject. Thus, we do not go into details here. A good starting point is,
for instance http://pyopengl.sourceforge.net, which explains a Python
version of the OpenGL graphics. The Python for S60 version follows these
conventions closely.

100 SOUND, INTERACTIVE GRAPHICS AND CAMERA

Figure 5.7 OpenGL cube

We provide a teaser for 3D graphics on this book’s website. There you
can find an example of a 3D cube, shown in Figure 5.7, which spins on
the x, y and z axes simultaneously.

5.4 Camera

For using the built-in camera of an S60 phone, PyS60 offers a module
named camera. We think that this is one of the most fun modules in
PyS60, as it can give your programs a new view of the surrounding world.

Because of our enthusiasm for the camera module, this book includes
seven examples that are based on taking photos. Being able to use
the camera programmatically – even in the most esoteric ways – may
change your relationship with camera phones in a profound manner. For
instance, see Section 11.2 for a description of a large-scale urban photo
hunt that was implemented using the camera module! The camera
module includes three types of functions: to query features of the camera;
to open and close the viewfinder; and to take photos.

Note that the camera consumes a lot of energy. If you have an
application that uses the viewfinder or takes photos frequently, in many
cases it is necessary to recharge the battery after four or five hours.

5.4.1 Querying Features of the Camera

The following functions are available in the camera module to query
camera-related features of your phone:

CAMERA 101

• cameras available() returns the number of cameras available
in the device.

• image modes() returns the image modes supported by the device
as a list of strings, for example: [RGB12, RGB16, RGB] (the last one
corresponds to full-color images).

• image sizes() returns the image resolutions supported by the
device as a list of (w, h) tuples, for example: [(640, 480), (160, 120)].

• flash modes() returns the flash modes supported by the device as
a list of strings.

• max zoom() returns the maximum digital zoom value supported by
the device as an integer.

• exposure modes() returns the exposure settings supported by the
device as a list of strings.

• white balance modes() returns the white-balance modes sup-
ported by the device as a list of strings.

5.4.2 Using the Viewfinder

Taking a good photo is difficult if you get no visual feedback for aiming
the camera. For this purpose, the viewfinder, like the one shown in
Figure 5.8, produces a stream of Image objects that are produced by the
camera in real-time. It is up to you what to do with these images, but

Figure 5.8 Viewfinder

102 SOUND, INTERACTIVE GRAPHICS AND CAMERA

typically you want to show them on the canvas, to help the user aim the
camera properly.

Example 34: Viewfinder

import camera, appuifw, e32

def viewfinder(img):
img.point((100, 100), outline = (255, 0, 0), width = 10)
canvas.blit(img)

def quit():
camera.stop_finder()
lock.signal()

appuifw.app.body = canvas = appuifw.Canvas()
appuifw.app.exit_key_handler = quit

camera.start_finder(viewfinder)
lock = e32.Ao_lock()
lock.wait()

The function camera.start viewfinder() takes a single param-
eter, a callback function that handles the incoming images. In this case,
the job is handled by the function viewfinder. To convince you that
the viewfinder images are just normal Image objects, we draw a small
red dot on each image before showing it on the canvas.

The camera.start viewfinder() function accepts two optional
parameters besides the callback function:

• backlight defines whether the device backlight is kept on when
the camera viewfinder is in operation. backlight = 1 makes it on,
which is the default, and 0 off.

• size defines the viewfinder image size, as in size = (176, 144).

It is important to stop the viewfinder, using the camera.stop
finder() function, once you do not need it, otherwise it may keep the
camera busy in the background and drain the battery quickly.

5.4.3 Taking a Photo
The most important functionality that one expects from a camera is to
take a photo. Without further ado, here is how to do it.

Example 35: Minimalist camera

import camera
photo = camera.take_photo()
photo.save("E:\\Images\\minicam.jpg")

CAMERA 103

The function camera.take photo() returns the photo as an Image
object. With photo.save('E:\\Images\\minicam.jpg') the
photo is saved to the image gallery of the phone. If some other application
is using the camera when you start this script, the program fails and an
error is shown.

After trying Example 35, you are probably delighted to see Example 36,
which lets you use the viewfinder before taking a photo.

Example 36: Taking photos with a viewfinder

import e32, camera, appuifw, key_codes

def viewfinder(img):
canvas.blit(img)

def shoot():
camera.stop_finder()
photo = camera.take_photo(size = (640, 480))
w, h = canvas.size
canvas.blit(photo, target = (0, 0, w, 0.75 * w), scale = 1)
image.save('e:\\Images\\photo.jpg')

def quit():
app_lock.signal()

appuifw.app.body = canvas = appuifw.Canvas()
appuifw.app.title = u"Camera"
appuifw.app.exit_key_handler = quit

camera.start_finder(viewfinder)
canvas.bind(key_codes.EKeySelect, shoot)

app_lock = e32.Ao_lock()
app_lock.wait()

First we initialize the application UI and assign a canvas to the
application body in a familiar way. We bind the Select key to the function
shoot() that is used to take the actual photo – this corresponds to
the first approach to handling the keyboard keys, in Section 5.2.1. The
viewfinder functionality is based on Example 34.

Once the user clicks the Select key, the function shoot() is called.
First the viewfinder is closed, which freezes the latest image on the screen,
so that the user can see that the camera is taking the photo. Then we take
the actual photo with the camera.take photo() function. This may
take a few seconds and you should hold the camera still during this time.

Once the photo, photo, is ready, we show it on the canvas. Note that
the photo is typically taken in 3:4 picture ratio, which is not the same as
the canvas size, usually. The photo is too big to fit the canvas and we do
not want to resize it to fill the canvas in full, since this would break the
aspect ratio. Instead, we define the target area to which the photo should
be copied. The target area has the aspect ratio of 3:4, which the photo is

104 SOUND, INTERACTIVE GRAPHICS AND CAMERA

then resized to fit. These actions are handled by two optional parameters
to the blit() function, namely target and scale. you can use the
phone’s Gallery application to see the newly taken photo or you can
copy it to your PC for viewing.

You can change the exposure adjustment and the white balance
settings as well as using digital zoom and flash. All these parameters are
described in detail in the PyS60 API reference documentation.

5.5 Mobile Game: UFO Zapper

The concluding example of this chapter is a game. In contrast to the
Hangman server that was presented in Section 4.5, this is a classic single-
player action game with stunning graphics – just see Figure 5.9. Your job
is to save the world from a squadron of invading UFOs with a moving
pad that shoots laser beams (ahem).

Figure 5.9 UFO Zapper

You must shoot down as many UFOs as possible within a given time
limit. You get points for each hit: the smaller the UFO you hit the more
points you get. Try to beat our highest score of 2304 points!

5.5.1 Structure of a Game Application

The example presents several useful concepts that are often used in game
applications:

MOBILE GAME: UFO ZAPPER 105

• an event loop to control the application

• dynamic time

• double buffering

• module random.

Using an event loop to control an application

At the beginning of Chapter 4, we noted that we have to use the
e32.Ao lock object to stop the execution and start waiting for the
user input. However, in an action game something should be happening
all the time, even if the user does nothing. Thus, instead of a lock, the
game application is controlled by an event loop.

An event loop is typically a simple while loop which takes care
of advancing time step by step. Like Ao lock, the loop prevents the
application from exiting instantly.

Whereas an animation proceeds from start to end without any user
interaction, a game must react to user input. This is handled in a similar
way to any other application, using event callbacks, which may change
values of global variables and thus change the game state. Overall, the
structure of an event loop is typically as follows:

Initialize event callbacks
while <end condition>:

Update game state
Redraw screen
Pause

The last command in the event loop instructs the execution to pause
for a while. We want the event loop to iterate as fast as possible, but we
want to control its speed. We need to give the user some time to perceive
what is happening in the game, as human perception is extremely slow
compared to the 200–300 MHz CPU of a modern mobile phone. We
also want to give the application some time to react to user events.

For the above reasons, we pause the event loop for a short while after
each iteration. The e32.ao sleep() function pauses the execution for
the given time, which can be a fraction of a second. In this case, we
pause for a hundredth of a second, e32.ao sleep(0.01), after each
iteration. This means that the game is capable of showing 100 frames per
second (FPS) at best.

Dynamic time

In some cases we want to give the user more time to observe the situation.
In this game, we increase the length of the pause to a tenth of a second
when a laser beam is fired, so that the user can see how many hits she

106 SOUND, INTERACTIVE GRAPHICS AND CAMERA

scored. The ability to change the length of the pause in the event loop is
called dynamic time.

In an extreme case, we might want to pause for the minimum possible
amount of time, 0 seconds, but let the application handle any user input
anyway. For this purpose, a special function called e32.ao yield()
is provided. By calling this function, you ensure that the user interface
stays responsive although your application may perform computation in
a tight loop at full speed.

Double buffering

Double buffering is a traditional method to prevent flickering when
moving graphics are shown. This method was used to handle redrawing
of the Canvas object.

As in the previous examples, instead of drawing the game elements
to the Canvas object directly, we have a separate image object, buf,
to which all elements are drawn at first. Only when everything has been
drawn to the image buffer are the contents of the second buffer shown
on the canvas using canvas.blit(buf). This way the user does not
have to see every individual drawing operation, but only the final result
for each frame, which also reduces flickering on the screen.

Module random

Last but not least, many games need a random ingredient to stay
interesting. Python provides a standard module called random that
contains methods to generate random numbers. Here, the function
random.randint() is used to generate integer values between the
given minimum and maximum values. Another often used function,
random.random(), returns a floating point value between 0 and 1.0.

5.5.2 The Game Application Code

The actual game code is divided into three parts that should be combined
to make the final game. In the following discussion, we go through the
listings one by one.

Example 37: UFO Zapper (1/3)

import key_codes, appuifw, e32, graphics, random

MAX_UFO_SIZE = 50
MAX_UFOS = 7
UFO_TIME = 100.0

PAD_W = 40

MOBILE GAME: UFO ZAPPER 107

PAD_H = 15
PAD_COLOR = (12, 116, 204)
PAD_SPEED = 7
LASER_COLOR = (255, 0, 204)
TIME = 1000

def handle_redraw(rect):
global shoot, sleep, ufos, timer
buf.clear((0, 0, 0))
buf.rectangle((pad_x, H - PAD_H, pad_x + PAD_W, H), fill = PAD_COLOR)

if shoot:
x = pad_x + PAD_W / 2
buf.line((x, H - PAD_H, x, 0), width = 2, outline = LASER_COLOR)
shoot = False
sleep = 0.1
check_hits(x)

else:
sleep = 0.01

for x, y, s, t, hit in ufos:
f = 1.0 - (timer - t) / UFO_TIME
if hit:

c = (255, 0, 0)
else:

c = (0, f * 255, 0)
buf.ellipse((x, y, x + s, y + s), fill = c)

buf.text((10, 40), u"%d" % score, fill = LASER_COLOR, font = "title")
buf.text((W - 70, 40), u"%d" % (TIME - timer),

fill = LASER_COLOR, font = "title")

canvas.blit(buf)

The first part of the game code in Example 37 declares the constants
needed in the game:

• MAX UFO SIZE gives the maximum size of a UFO in pixels.

• MAX UFOS controls how many UFOs are shown at once on the
screen.

• UFO TIME controls for how long a UFO stays on screen.

• PAD W and PAD H determine the pad size in pixels.

• PAD COLOR determines color of the pad.

• PAD SPEED determines how many pixels the pad advances in one
frame.

• LASER COLOR is the color of the laser beam.

• TIME specifies for how many frames the game is played. This is
approximately TIME * 0.05 seconds.

108 SOUND, INTERACTIVE GRAPHICS AND CAMERA

The function handle redraw() is responsible for drawing the game
on screen based on the internal state of the game. First, the previous
frame is cleared and the pad is drawn to its current location on the X axis.
If the player has activated the laser beam with the Select key, the beam is
drawn and the function check hits() is called to determine whether
any UFOs have been hit. Then the laser beam is switched off again
with shoot = False and the length of the pause (sleep) is temporarily
increased to a tenth of a second so the beam and possible hits can be
seen easily.

After this, the UFOs are drawn based on the list ufos, which contains
the coordinates, size and lifetime of each UFO. The shade of a UFO is
determined according to its age: the closer the age is to its maximum
lifetime UFO TIME, the darker shade of green is selected. However, if the
UFO has been hit, as determined by the check hits function above,
it is painted in glowing red. Finally, the current score and time are drawn
on screen.

Example 38: UFO Zapper (2/3)

def check_hits(laser_x):
global ufos, score
i = 0
ok_ufos = []
for x, y, s, t, hit in ufos:

if laser_x > x and laser_x < x + s:
ok_ufos.append((x, y, s, t, True))
score += MAX_UFO_SIZE - (s - 1)

else:
ok_ufos.append((x, y, s, t, False))

ufos = ok_ufos

def update_ufos():
global ufos, timer
ok_ufos = []
for x, y, s, t, hit in ufos:

if not hit and timer < t + UFO_TIME:
ok_ufos.append((x, y, s, t, False))

ufos = ok_ufos

if len(ufos) < MAX_UFOS:
s = random.randint(10, MAX_UFO_SIZE)
x = random.randint(0, W - s)
y = random.randint(0, H - PAD_H * 3)
t = random.randint(0, UFO_TIME)
ufos.append((x, y, s, timer + t, False))

Example 38 lists the two functions related to the maintenance of the
armada of UFOs. The check hits() function checks which of the
UFOs, if any, have been hit by the laser beam at the X coordinate,
laser x. This is accomplished by checking whether any of the UFO

MOBILE GAME: UFO ZAPPER 109

circles intersect with the beam. If the beam touches a UFO, we mark the
hit entry in the corresponding UFO tuple as True.

The function update ufos is responsible for cleaning up any UFOs
that have been shot down (that is, hit == True) or which have become
too old. If the number of UFOs on screen is less than MAX UFOS after
this process, a new UFO of random size is created at a random location.

Example 39: UFO Zapper (3/3)

def handle_event(event):
global direction, shoot
if event['keycode'] == key_codes.EKeyLeftArrow:

direction = -PAD_SPEED
elif event['keycode'] == key_codes.EKeyRightArrow:

direction = PAD_SPEED
elif event['keycode'] == key_codes.EKeySelect:

shoot = True

def quit():
global timer
timer = TIME

ufos = []
shoot = False
direction = pad_x = score = timer = 0
appuifw.app.exit_key_handler = quit
appuifw.app.screen = "large"
canvas = appuifw.Canvas(event_callback = handle_event,\

redraw_callback = handle_redraw)
W, H = canvas.size
buf = graphics.Image.new((W, H))
appuifw.app.body = canvas

while timer < TIME:
pad_x += direction
pad_x = min(pad_x, W - PAD_W)
pad_x = max(pad_x, 0)

update_ufos()
handle_redraw((W, H))
e32.ao_sleep(sleep)
timer += 1

print "Your final score was %d!" % score

The final part of the game, listed in Example 39, includes the simple
function handle event() which registers any left or right key presses
and changes the direction of the pad accordingly. If the user clicks the
Select key, the laser beam is activated by setting the global variable
shoot = True.

The game code ends with the event loop. The pad is advanced the
amount determined by the constant PAD SPEED, however keeping it
within the screen limits. After this, status of the UFOs is updated. Then

110 SOUND, INTERACTIVE GRAPHICS AND CAMERA

the screen is re-drawn and the frame is paused on screen for a sleep
fraction of a second. The e32.ao sleep() function lets any new user
events, such as key presses, be processed during the pause. Finally, the
time counter, timer, is incremented by one and the event loop starts
again from the beginning.

This example, besides being a highly addictive game, introduced sev-
eral useful concepts that can be re-used in many game-like applications.
As a further exercise, you might want to add background music and sound
effects to make the game even more engaging. Creating a high-score list
might not be a bad idea, especially after you have read Chapter 6, which
explains how to load and save data.

5.6 Summary

In this chapter we first showed how to program applications to play and
record sounds in various formats. Then, we described three approaches
to programming keyboard keys and we outlined how to draw graphics
primitives to the screen, with other useful features of the graphics
module. We introduced the basic functionalities of the phone’s internal
camera and showed the basic principles of making simple games.

We hope you are inspired by the plethora of features that PyS60
offers regarding sound, camera and interactive graphics. In this chapter,
we introduced each of these features separately, using rather simplistic,
but hopefully illustrative examples. However, in reality, we think these
features are best served as an unprecedented, rich and smooth mixture,
preferably combined with other ingredients that are described in the
following chapters.

6
Data Handling

When building applications, sooner or later you will come to the point
where you want to store some user settings, log data, videos, music,
or image files to the phone. This chapter gives you an introduction to
handling data like this. As you will see, PyS60 is quite flexible and easy
to use in this regard.

Nowadays, data persistence is often handled on the server side. Think
of Google GMail, Flickr or the contact list in Skype – all these services
ensure that your information moves with you even though you may access
the services from various physical devices. Backups, scalability and data
aggregation are easier to handle on the server side than on a single small
device. These viewpoints should encourage you to think about storing data
in unorthodox ways when programming mobile applications with PyS60.
In many cases, sending data to a server is easier than saving it locally.

In some cases, saving data locally is the only sensible option. You
should be able to save photos, sounds or log events without a network
connection. You may need a local configuration file to specify how to
setup a network connection in the first place. And since mobile networks
may be unreliable and often have low bandwidth, caching information
locally can be vital.

This is where the lessons of this chapter prove useful. First, in
Section 6.1, we explain where files can be loaded and saved on the
S60 platform. We introduce the File object that handles reading and
writing of files. In Section 6.2, we present a slightly different approach that
is based on the phone’s built-in database engine. Then, in Section 6.3,
we present a brief overview of current positioning techniques and how to
use them in PyS60.

To show how to apply these techniques in practice, this chapter
includes two useful applications: in Section 6.3, we build an application
that tracks your location based on GSM cell IDs, which demonstrates
file access and a positioning technique. Finally, in Section 6.5, we show

112 DATA HANDLING

how you can combine the camera, a sound recorder and some text input
dialogs to create your own vocabulary-learning tool for your next holiday
in a foreign country.

This chapter also includes two important Python language lessons:
one about exception handling and the other about a data structure called
dictionary.

6.1 File Basics

Files on your Symbian device are organized in a hierarchical manner as
drives and directories, similarly to a typical Windows system. The drive
letters refer to the following resources:

• C: internal memory of your device

• D: operating memory space or RAM (read-only)

• E: memory card

• Z: fixed memory space or ROM (read-only).

You don’t need to worry about drives D: and Z: since they are used by
the operating system only. Starting with Symbian OS v9.0 (3rd Edition of
S60), the directory hierarchy within the drives is strictly defined and only
partly accessible to your program – see Appendix A for details.

Many examples in this book save their files to the memory card, that
is, to the E: drive. If you do not have a memory card, you should change
the drive letter to C:.

If your application must save anything to a file, such as private data,
photos or sounds, it is polite to place the file in a logical place and try to
avoid cluttering arbitrary directories unnecessarily.

If a file, typically a photo or a sound, should be visible to the
standard Gallery or to other applications, including the Nokia PC Suite
file manager, the standard C:\Images or C:\Sounds directories, or the
corresponding locations on the E: drive, are appropriate choices.

If a file is private to your application and does not have to be visible
to the user or any other application, you should make a private directory
either under C:\Data or E:\Data.

The standard directories E:\Images and E:\Sounds are created by
the built-in camera application and sound recorder, when you save a
photo or a sound to the memory card for the first time. Thus, these
directories are often already available for your application.

In contrast, any specific directory for your application has to be created
before any files can be saved. The module os provides the function
os.makedirs() that is used to create directories (see Example 40).

FILE BASICS 113

Example 40: Creating a directory for application data

import os, os.path
PATH = u"C:\\Data\\MyApp"
if not os.path.exists(PATH):

os.makedirs(PATH)

We need to check that the directory does not exist before call-
ing os.makedirs(), as it would throw an exception if the directory
existed.

6.1.1 Handling Error Conditions

Especially when handling files, Bluetooth and network connections in
the following chapters, exceptions are common. Often, you can design
your program so that, say, a missing file or an already existing one do not
cause a fatal error. Instead, your program could detect the situation and
act accordingly.

It is not always possible or practical to detect the situation beforehand,
as we did with the os.path.exists() function above. However,
the program could react to the situation after an exception has occurred.
Python provides a mechanism to detect and handle exceptional situations
like this, which is introduced in the language lesson.

Python Language Lesson: catching exceptions

In Python, error conditions are objects, too. Whenever something
unexpected happens, for example, you try to use a return value of a
dialog even though it is None, an Exception object is created. You
can create exceptions of your own in the following way:

raise Exception("I am exceptional")

If the exception is not handled by the program, it is shown on the
console and execution of the program may terminate.

However, some exceptions are not really exceptional. For example,
we know that trying to play a sound that does not exist will fail. It
makes sense to prepare for exceptions like this. Exceptions are handled
by enclosing suspicious actions between try and except statements,
as in the following:

114 DATA HANDLING

import appuifw

try:

d = appuifw.query(u"Type a word", "text")

appuifw.note(u"The word was: " + word)

except:

appuifw.note(u"Invalid word", "error")

If you type a word in the first dialog, everything works fine. How-
ever, if you click ‘Cancel’, an exception is raised since you cannot
concatenate None to a string. This exception is handled inside the
except block – in this case, an error dialog is shown.

To summarize, if you know that some operations are likely to
cause exceptions and you know how to recover from them, place the
suspicious operations between try and except statements and place
alternative code in the except block.

However, use these statements sparingly, since they may also catch
and hide exceptions that are caused by real errors in your program. The
best approach would be to capture only specific types of exception,
instead of all exceptions as we did above. See Python documentation
for more information about this possibility.

Note that, because of space constraints, examples in this book do not
always contain the try–except block around critical operations, even
though using one might make sense. Feel free to make the examples more
robust by adding more exception handlers that take care of possible error
conditions properly.

6.1.2 File Object

In Python, files are read and written through the File object. Creating
a File object opens a file, either for reading or writing. The object
provides various functions for accessing data in the opened file.

The File object maintains a cursor that points at a specific location in
the file, depending on what you have read or written most recently. Every
time you read or write data to the file, the cursor is moved accordingly.
As the cursor moves forward automatically, you can read through the file
only once without explicitly repositioning or re-opening the file.

Similarly, once you have written data to a file through the File object,
you cannot read the newly written data from a file unless you reposition
or re-open the object. Conceptually, the cursor in the File object works
similarly to the cursor in your text editor.

FILE BASICS 115

Here is a simple example that opens a file, writes a string to it and
reads the string from the file. After you have executed the script you
should see a new file, C:\python\test.txt, on your mobile device.

Example 41: Basic file operations

f = file(u"c:\\python\\test.txt", "w+")
print >> f, "Ip dip, sky blue"
f.seek(0)
print "File says", f.read()
f.close()

The first line opens the file. The file name must be specified as a
Unicode string. Note that the path names must be separated by double
backslashes since a single backslash marks a special character in strings.
The second parameter denotes the mode in which the file is opened.
Here are the options:

• w – the file is opened for writing. If the file already exists, it will be
emptied first. Otherwise a new file is created.

• r – the file is opened for reading in text mode. An exception is
generated if the file does not exist.

• a – the file is opened for writing. Writing continues at the end of file,
if the file already exists. Otherwise a new file is created.

If a plus sign is added to the mode specifier, the file is opened in
read–write mode, so you can both read from and write to the file using
a single file object. The difference between ‘w+’ and ‘r+’ is that, in the
former case, a new file is created if the file does not exist.

The easiest way to write anything to a file is to use the print statement.
In contrast to the ordinary print statement, you need to specify a target
for printing, which is given as a file object preceded by double-arrows,
>>:

print >> f, "Ip dip, sky blue"

Note that the print statement always adds a new line character after
the written string. If you want to avoid this, you can use the file object’s
write() function. In the example above, we could have written:

f.write("Ip dip, sky blue")

To read the newly created file, the file cursor must be repositioned
back to the beginning. The function seek() performs this job. The value
‘0’ specifies that the cursor is repositioned back to the beginning of the

116 DATA HANDLING

file, which is the most typical use of the function. For other uses, see the
Python documentation.

There are three main ways to read text data from a file:

• all at once: txt = f.read()

• one line: line = f.readline()

• a line at time: for line in f: print line

There are also some other ways to read data which are described in
the Python documentation. In Example 41, everything in the file is read
at once and then printed to the console.

The file is closed automatically when the file object is destroyed. For
instance, this happens when you return from the function in which the file
object was created, unless the variable holding the file object is defined
as global.

Note that only after closing the file can you be sure that its contents
are visible to other programs, as the file object may buffer data internally.
To be on the safe side, you should call the close() function explicitly
when you do not need the file, as we did in Example 41.

6.1.3 Logging to a File
In some cases, it is not feasible to leave the debugging output on the
console. This might be the case if you need to output many debugging
lines or you are using the standard application UI framework which hides
the console output behind the application body.

In cases like this, it is a good idea to redirect the debugging output to
a file. This is remarkably simple: just replace all print statements with
print >> logfile statements, where logfile is a variable containing
a file object that has been opened, as in Example 41.

If you are field-testing your program with, say, ten users, it makes sense
to log all debugging events in a file. After the test session has ended,
you can collect the log files and analyze the results. If you need a truly
sophisticated solution, you can send the log files automatically to your
server over a network connection. You can do this easily using techniques
that are presented in Chapter 8.

6.1.4 Finding Sound, Photo and Video Files
The phone’s built-in camera application saves photos and videos and the
sound recorder saves sounds to a convenient location in the directory
hierarchy of the phone, especially if you have set them to use the memory
card. Note that some S60 2nd Edition devices may save files to other
locations as well. Examples 42, 43 and 44 read files from the standard
locations.

READING AND WRITING TEXT 117

Videos are found in 3rd Edition phones in the directory named Videos.
The phone automatically creates a new subfolder for each month and
year when shooting a video. Example 44 reads a video that was recorded
in March 2007.

Example 42: Read a sound

f = file("E:\\Sounds\\Digital\\boo.wav", "r")
mysound = f.read()
f.close()

Example 43: Read an image

f = file("E:\\Images\\picture.jpg", "r")
img = f.read()
f.close()

Example 44: Read a video

f = file("E:\\Videos\\200703\\video.mp4","r")
myvideo = f.read()
f.close()

6.2 Reading and Writing Text

If you need to read only one string from a file, say the user’s name, calling
read() once is enough, as it reads the whole file at once. But what if
you need to read a list of strings instead?

We could save the list items one to a line and read the file one line
at time. Note that list items are not allowed to contain line breaks in this
case. Example 45 shows how to do this.

Example 45: Read and write text

def save_list(filename, lst):
f = file(filename, "w")
for item in lst:

print >> f, item
f.close()

def load_list(filename):
f = file(filename, "r")
lst = []
for line in f:

lst.append(line.strip())
f.close()
return lst

118 DATA HANDLING

test_list = ["first line", "second line", "that's all"]
save_list(u"c:\\python\\test.txt", test_list)
print load_list(u"c:\\python\\test.txt")

This script should print out the contents of the list test list when
executed. The function save list() writes each item of the given list
to a file. The function load list() loads items from the file, reading
a line at time in a loop, and appends each line to the list lst. Note
that we use the string function strip() to remove the trailing new line
characters from lines that are read from the file. The list read from the
file is identical to the original list test list. A simple format like this
might be enough for saving, say, a list of URL bookmarks.

6.2.1 Key–Value Pairs

What if a plain list of strings is not enough? For example, a configuration
file might contain several different fields, such as a user name, password,
server name and port, all of which need to be accessed separately. A plain
list would not suffice, since we cannot know which line corresponds to
which field.

In cases like this, key–value pairs come in handy. Python has a useful
data structure for accessing key–value pairs, namely the dictionary, that
was briefly mentioned in Section 5.2. The language lesson describes the
use of the dictionary.

Python Language Lesson: dictionary

The dictionary object is used to save unique key–value pairs. It is
a versatile data structure which is used in Python for many different
purposes.

You can create a new dictionary as follows:

a = {}

b = {"state": "CA", "zip": 94301}

Here a contains an empty dictionary, defined with an empty pair of
curly brackets. The variable b contains a dictionary that is initialized
with two key–value pairs: it contains the keys ‘state’ and ‘zip’ and the
corresponding values ‘CA’ and ‘94301’.

Note that values can be any type of object, even File objects or
images, but key types have some restrictions. Simple types, such as
strings and numbers, may be used as keys. Values are accessed with
keys as follows:

READING AND WRITING TEXT 119

print b["state"]

b["state"] = "NY"

print b["state"]

b["newkey"] = "new value"

print b["newkey"]

This above code prints out ‘CA’ followed by ‘NY’ and ‘new value’.
You may change values and add new key–value pairs to the dictionary
freely after it has been created. However, a key can map to only one
value, so assigning a new value to an existing key replaces the previous
value. If you want to have multiple values per key, use a list as the
value and append new items to it.

A key–value pair can be deleted as follows:

del b["state"]

You can test if a key exists in a dictionary as follows:

if "state"in b:

print "state exists in the dictionary!"

else:

print "state does not exist in the dictionary"

You can loop through all keys and values in the dictionary as
follows:

for key, value in b.items():

print "KEY", key, "VALUE", value

The number of keys in the dictionary can be found with len(b).
The dictionary supports a number of other operations as well. See the
Python documentation for more information.

6.2.2 Reading and Writing Named Values

Using dictionaries, we can develop functions for saving and loading a
configuration file that consists of keys and values. The format presented
here is easy to read and edit manually. A downside is that only strings
are accepted as keys and values. Also, the saved strings must not contain
any new line characters or colons. In Section 6.3, you learn a more
sophisticated way for saving information like this to a local database.

120 DATA HANDLING

Writing contents of a dictionary to a file is straightforward using the
concepts that we have just learnt.

Example 46: Writing a dictionary to a file

def save_dictionary(filename, dict):
f = file(filename, "w")
for key, value in dict.items():

print >> f, "%s: %s" % (key, value)
f.close()

One key–value pair is saved per line. The key and value strings are
separated by a colon character. Because of these choices, the strings
cannot contain any colons or new line characters.

A saved configuration file might look like this:

Host: www.google.com
Port: 80
Username: my_login
Password: this is a visible secret

Reading the file is a bit trickier than writing it.

Example 47: Read a dictionary from a file

def load_dictionary(filename):
f = file(filename, "r")
dict = {}
for line in f:

key, value = line.split(":")
dict[key.strip()] = value.strip()

f.close()
return dict

We go through the file line by line. We split each line into the key
part and the value part, using the colon as a separator. Then, the new
key and value are updated to the dictionary dict. As before, we use
function strip() to get rid of all leading and trailing white space that
might occur in keys and values.

6.2.3 Reading and Writing Unicode Text

Both Symbian OS and the S60 platform are designed for world-wide use.
Consequently, every part of the system that deals with text in any form,
is designed to handle text written in any language, using any character
set.

LOCAL DATABASE 121

Unicode is a standard that defines how the world’s writing systems
should be handled on computers. Unicode is natively supported by the
Symbian and S60 platforms, as well as by PyS60. As you have seen,
practically all functions in the PyS60 API that handle strings require that
the input is specified as Unicode strings. In Python, Unicode strings can
be recognized by the u prefix before the quotes, as in u"Kanji".

However, Python functions that are not part of the mobile platform
and PyS60 API, but parts of the Python standard library, often do not
handle Unicode automatically. For instance, File objects and network
connections do not require that the data must be specified in Unicode.
As a consequence, you have to handle conversions between plain strings
and Unicode strings explicitly in your code when using these functions,
as we describe below.

In the following code, the first line converts a Unicode string orig str
to the plain string plain str and the second line converts it back to
Unicode.

orig_str = u"käärmekännykkä"
plain_str = orig_str.encode("utf-8")
unicode_str = plain_str.decode("utf-8")

There are many ways to encode a Unicode string to a plain string, but
here we use an encoding called UTF-8 that is widely used nowadays.

Generally speaking, it is enough to remember the following rule
of thumb: whenever you save a string from PyS60 to a file, use
encode("utf-8") before writing. Correspondingly, when you read
the string from a file, use decode("utf-8") before using the string in
your application. The same rule applies also for the local database, as
well as for Bluetooth and network communication.

In this book, we have omitted the conversion in some examples for
brevity. All the larger application examples should perform the conversion
whenever it is needed.

6.3 Local Database

Symbian OS includes a relational database engine, to which PyS60
provides two interfaces. The first interface can be found in module
e32db and the second interface in module e32dbm.

The former interface provides low-level, versatile access to the data-
base. It supports transactions and querying the database with a subset of
Simple Query Language (SQL). This interface can be useful for applica-
tions that need to store relationally organized data and perform queries
frequently. In this case, having a local database, instead of sending data
to a ‘real’ database on a server, may be justified.

122 DATA HANDLING

In many cases, the interface provided in module e32dbm is preferred
because of its simplicity. In essence, you can treat e32dbm as a persistent
dictionary for string keys and values. It supports most of the standard
dictionary functions, such as adding, deleting and iterating through
key–value pairs.

Example 48: Local database

import e32dbm

DB_FILE = u"c:\\python\\test.db"

def write_db():
db = e32dbm.open(DB_FILE, "cf")
db[u"host"] = u"www.google.com"
db[u"port"] = u"80"
db[u"username"] = u"musli"
db[u"password"] = u"my secret"
db.close()

def read_db():
db = e32dbm.open(DB_FILE, "r")
for key, value in db.items():

print "KEY", key, "VALUE", value
db.close()

print "Writing db.."
write_db()
print "Reading db.."
read_db()

As you can see, the local database module, e32dbm, behaves like a
mixture of a file and a dictionary: it is opened like a file and accessed
like a dictionary. Note that the database has native support for Unicode
strings, so no conversions have to be performed.

You need to specify the file name where the database is to be stored.
The mode parameter works differently from that of the File object:

• r – opens the database for reading only.

• w – opens the database for reading and writing.

• c – opens the database for reading and writing (and creates a new
database if the file does not exist).

• n – opens the database for reading and writing (it creates an empty
database if the file does not exist or clears the previous database).

If you add f after the mode character, the database is not updated on
disk until you close it or force it to be written to disk by using a special
function. This makes the database access faster. You should use this mode
unless you need the additional safety of synchronized writing.

GSM AND GPS POSITIONING 123

Given the convenience of a local database, why should one ever
consider using an ad hoc solution as in Examples 45 and 46? The biggest
reason is interoperability. You can read and write text files on any
device, including your PC and a server running, for instance, FreeBSD.
On the other hand, databases created by the e32dbm interface are
strictly Symbian-specific. However, if the data is only to be accessed
privately by a PyS60 application, the local database is probably a safe
choice.

For a practical application example of the local database, see Section
9.3.

6.4 GSM and GPS Positioning

Applications based on positioning are often claimed to be the most likely
killer applications of the mobile platform. PyS60 gives you access to
practically all public positioning techniques that are available for the
current S60 mobile phones. As of 2007, the most typical positioning
techniques are the following:

• external GPS over Bluetooth, as described in Section 7.5

• internal GPS, using the position module

• GSM cell IDs, using the location module

• SMS-based positioning using the messaging module. This service is
provided by some mobile phone operators.

Besides these techniques, various positioning techniques based on
WiFi or Bluetooth have been experimented with by research groups using
PyS60 and custom extensions.

On S60 3rd Edition phones, access to both the internal GPS and GSM
cell IDs are restricted by additional capabilities, which are not available
for self-signed PyS60 – see Appendix A for more information. This means
that if you have an S60 3rd Edition phone, you cannot use Example 49
with the self-signed PyS60 interpreter that we installed in Chapter 2.
Instead, you need to obtain a personal, free, developer certificate from
Symbian and sign the interpreter with it, as described in Section A.4.3.
On S60 2nd Edition devices, no platform security is enforced and the
GSM cell IDs can be accessed without trouble.

6.4.1 GSM Cell ID Mapper

We present a simple application that can be used to record positioning
data and to retrieve your current location, based on GSM cell IDs. The
example is based on the GSM cell IDs because of the ubiquity of the

124 DATA HANDLING

technique. Only a few phones have an internal GPS receiver (as of 2007)
but every GSM phone can be used to retrieve GSM cell IDs.

This application allows you to collect cell IDs and give them names
according to your actual location. The mapping from the detected cell
IDs to their locations is saved in a text file. This file can be edited and
updated, for instance, based on publicly available information about the
locations of GSM cells. In addition, the application logs your current
location to a file with a timestamp, so you can analyze your movements
afterwards.

The core functionality of Example 49 is based on the module loca-
tion.

Example 49: Retrieve the current GSM cell ID

import location
print location.gsm_location()

You should see a tuple of four integers whose values depend on
your current location. The first two integers correspond to the Mobile
Country Code (MCC) and Mobile Network Code (MNC). A comprehensive
mapping of MCC and MNC codes to country and operator names can be
found in the Wikipedia article ‘List of GSM Network Codes’.

The last two integers correspond to the GSM area code and the current
GSM cell ID. Many different cell IDs may map to a single area code,
which, in urban environments, may cover a district.

Note that you are likely to see many different cell IDs in one physical
location, at least if you test the system on the same location at different
times. This is because of overlapping cells and other intricacies of the
GSM network.

Thus, even though you may have named a certain location earlier,
there is no guarantee that the same location will be recognized afterwards
when you arrive at it again. However, the more cells you name the more
probable it is that some mappings will eventually match.

Example 50 contains the source code for the GSM cell ID mapper.
This example uses the functions save dictionary() and load
dictionary() that are found in Examples 46 and 47. To save space,
these functions are not repeated here, but you must include them in the
actual application.

Example 50: GSM location application

import appuifw, e32, location, time, os.path

PATH = u"E:\\Data\\gsm_loca\\"
if not os.path.exists(PATH):

os.makedirs(PATH)

GSM AND GPS POSITIONING 125

INTERVAL = 5.0
CELL_FILE = PATH + "known_cells.txt"
LOG_FILE = PATH + "visited_cells.txt"
log = file(LOG_FILE, "a")
timer = e32.Ao_timer()

def current_location():
gsm_loc = location.gsm_location()
return "%d/%d/%d/%d" % gsm_loc

def show_location():
loc = current_location()
if loc in known_cells:

here = known_cells[loc]
print "You are currently at", here

else:
here = ""
print "Unknown location", loc

print >> log, time.ctime(), loc, here
timer.after(INTERVAL, show_location)

def name_location():
loc = current_location()
name = appuifw.query(u"Name this location", "text")
if name:

known_cells[loc] = name

def load_cells():
global known_cells
try:

known_cells = load_dictionary(CELL_FILE)
except:

known_cells = {}

def quit():
print "SAVING LOCATIONS TO", CELL_FILE
save_dictionary(CELL_FILE, known_cells)
print "GSM LOCATIONING APP EXITS"
timer.cancel()
log.close()
app_lock.signal()

appuifw.app.exit_key_handler = quit
appuifw.app.title = u"GSM location App"
appuifw.app.menu = [(u"Name this location", name_location)]

print "RECORDING VISITED CELLS TO", LOG_FILE
print "LOADING LOCATIONS FROM", CELL_FILE
load_cells()
print "%d KNOWN CELLS LOADED" % len(known_cells)
show_location()

print "GSM LOCATIONING APP STARTED"
app_lock = e32.Ao_lock()
app_lock.wait()

126 DATA HANDLING

When the application starts, we try to load previously saved locations
from the file CELL FILE in the function load cells(). Here we use
a try–except block: if the file does not exist, load dictionary()
throws an exception which is caught by the except statement. In this
case, we start with an empty dictionary.

The core data structure is the dictionary known cells. It contains a
mapping from the known GSM cell IDs to their names. It is initialized
by the function load cells(), as mentioned above. When the user
chooses ‘Name this location’, we update the dictionary in the function
name location(). When the application quits, the dictionary is saved
to the file CELL FILE using the function save dictionary().

As this application is used to track the user’s movements, we need
to check the current location periodically. The module e32 provides a
timer object called e32.Ao timer that can be used to call a function
after a certain number of seconds has elapsed. In this case, the expression
timer.after(INTERVAL, show location) specifies that the func-
tion show location() should be called after INTERVAL seconds. The
after() function puts the request on hold and returns immediately. For
another example of the Ao timer object, see Section 9.3.

The result of the timer operation is that the function show
location() is called after the specified interval. This function checks
and reports your current location, based on the known cells dictio-
nary, and logs your current location using the file object log, which is
opened when the application starts. Also the current time, as returned by
the function time.ctime() is added to each location logged. Before
the function show location() returns, it sets the timer to call itself
again after the interval, so the location is checked periodically.

The function current location() is responsible for fetching the
actual GSM cell ID. It works in a similar way to Example 49 above. Here,
however, we convert the result to a string, so it can easily be printed out
on the screen and saved to a file.

Note that, when the user quits the application, we have to cancel any
pending timer request using the function timer.cancel(). Otherwise,
the request could activate after the application has already quit, causing
the PyS60 interpreter to crash.

Once you have the application running, you should take a trip around
your neighborhood. First, try to find different cells. Once you have spotted
two or three cell IDs in different physical locations, give a name to each
of them. Walk the same route again and see if the names shown on the
screen correspond to the real locations.

Do not be surprised if the cells seem to overlap or disappear, or new
cells appear although you stay in one location. In reality, building a really
accurate positioning system solely based on GSM cell IDs is a major
challenge.

VOCABULECTOR: A LANGUAGE-LEARNING TOOL 127

6.4.2 GPS Positioning

The PyS60 API documentation contains more information, including
some examples, about the usage of the position module, which relies
on the internal GPS. This module should be of interest to those who own
a phone, such as Nokia N95, that includes a built-in GPS receiver. Note
that also in this case you need a signed PyS60 interpreter, as described
above.

6.5 Vocabulector: A Language-Learning Tool

The final example of this chapter is a personal language-learning tool.
Let’s assume you are traveling in the Basque country and you want to
buy some cheese. You may find in your dictionary that cheese is ‘gazta’
in Basque, but you have no idea how to pronounce it correctly. Probably
you would forget the word anyway before you get to a local cheese-shop.

Vocabulector solves the problem. In your hotel room, you type ‘cheese’
as the native word and ‘gazta’ as the foreign word into your Vocabulector
and take a photo of a half-eaten piece of cheese. After this, you find a
friendly person on the street, show her the photo and ask her to pronounce
it like a native.

The correct pronunciation is recorded by Vocabulector and saved with
the two words and the photo. Once you get to the cheese shop, you have
the correct pronunciation and a descriptive photo readily available. Not
only do you get the cheese, but you can practice pronunciation and
hearing comprehension with this handy little application afterwards in
your hotel room, while eating your gazta.

This example relies heavily on the ability to load and save data.
Words, photos and sounds are saved to an application-specific direc-
tory at E:\Data\Vocabulector. Besides loading and saving files, this
example also uses many concepts from Chapter 5, most notably the
camera and sounds.

The code is divided into three parts. Example 51 deals with adding
new entries to Vocabulector and loading any previously saved ones.
Example 52 is responsible for showing the entries and Example 53 con-
tains the standard application UI boilerplate code. You should combine
these parts together in one file to form the full application.

6.5.1 Adding New Entries to Vocabulector

Example 51: Vocabulector (1/3)

import os, os.path, audio, appuifw, camera, key_codes, graphics

128 DATA HANDLING

PATH = "E:\\Data\\Vocabulector\\"

def load_translations():
global trans, dict_file
if not os.path.exists(PATH):

os.makedirs(PATH)
dict_file = file(PATH + "trans.txt", "rw")
trans = []
for line in dict_file:

line = line.decode("utf-8")
native, foreign = line.strip().split(":")
trans.append((native, foreign))

def add_entry():
global text, photo, fname
text = photo = None
native = appuifw.query(u"Native word:", "text")
if not native:

return
foreign = appuifw.query(u"Foreign word:", "text")
if not foreign:

return
fname = PATH + native
trans.append((native, foreign))
line = "%s:%s" % (native, foreign)
print >> dict_file, line.encode("utf-8")

if appuifw.query(u"Record sound", "query"):
record_sound()

if appuifw.query(u"Take photo", "query"):
camera.start_finder(viewfinder)
canvas.bind(key_codes.EKeySelect, take_photo)

else:
appuifw.note(u"Entry added!", "info")

def record_sound():
snd = audio.Sound.open(fname + ".wav")
snd.record()
appuifw.query(u"Press OK to stop recording", "query")
snd.close()

def viewfinder(img):
canvas.blit(img)

def take_photo():
global photo
canvas.bind(key_codes.EKeySelect, None)
camera.stop_finder()
photo = camera.take_photo(size = (640,480))
handle_redraw(None)
photo.save(fname + ".jpg")

The constant PATH defines a directory for the Vocabulector’s files. If
you do not have a memory card, replace E: in the path with C: to refer
to the phone’s internal memory. The function load translations()
loads the saved word pairs from a text file when the application starts.
The file is opened in rw mode, meaning that we may read from and write

VOCABULECTOR: A LANGUAGE-LEARNING TOOL 129

to the file using the same File object dict file. A new file is created
if it does not exist already.

Each line in the trans.txt file contains a pair of words separated by
a colon, for instance, cheese:gazta. Since the application deals with
foreign words, we have to encode Unicode strings properly in UTF-8
before writing them to a file. Correspondingly, the UTF-8-encoded lines
that are read from the file must be decoded back to Unicode strings. The
core data structure is the list trans that contains the list of native–foreign
word pairs, saved in tuples.

The function add entry() is invoked from the application menu.
It asks for a new native word and the corresponding word in a foreign
language. The new pair is then appended to the file using the dict file
file object. If the user can provide a sound or a photo to accompany the
new word, these files are named according to the native word by adding
a .jpg or a .wav extension to the base file name, fname.

Recording sound is a straightforward operation, as can be seen in
the function record sound(). Taking a photo is not much more
difficult: once the camera.start finder() call has switched the
viewfinder on, the function viewfinder() starts showing frames from
the camera on the canvas. We also bind the select key to the function
take photo(). Once the key is pressed and take photo() is called,
we unbind the key so that only one photo can be taken at a time.

6.5.2 Showing Entries from Vocabulector

Example 52: Vocabulector (2/3)

def show_native():
lst = []
for native, foreign in trans:

lst.append(native)
idx = appuifw.selection_list(choices = lst, search_field = 1)
if idx != None:

foreign = trans[idx][1]
fname = PATH + lst[idx]
show(fname, foreign)

def show_foreign():
lst = []
for native, foreign in trans:

lst.append(foreign)
idx = appuifw.selection_list(choices = lst, search_field = 1)
if idx != None:

native = trans[idx][0]
fname = PATH + native
show(fname, native)

def show(fname, translation):
global photo, text, snd
photo = None

130 DATA HANDLING

text = translation
try:

photo = graphics.Image.open(fname + ".jpg")
except: pass
handle_redraw(None)
try:

snd = audio.Sound.open(fname + ".wav")
snd.play()

except: pass

The functions show native() and show foreign() are invoked
from the application menu. The functions share a similar structure: they
choose either the first or the second item, that is, either a native or a
foreign word from the list of word pairs to show a list of words in a
selection list dialog. Once the user has chosen a word from the list,
the function show() is called; it loads the photo, plays the sound and
requests the translation to be displayed on screen. Since both the photo
and the sound may be missing, we ignore any exceptions that may occur
while the files are being loaded.

In Python, statement pass means ‘no operation’. It is a syntactic
placeholder saying that we have deliberately decided to do nothing if an
exception occurs during loading photos or sounds. You could replace the
pass statements with appropriate error messages, for example.

6.5.3 Vocabulector Boilerplate Text

Example 53: Vocabulector (3/3)

def handle_redraw(rect):
canvas.clear((255, 255, 255))
w, h = canvas.size
if photo:

canvas.blit(photo, target = (0, 0, w, int(0.75 * h)), scale = 1)
if text:

canvas.text((20, h / 2), text, fill = (0, 0, 255), font = "title")

def quit():
dict_file.close()
app_lock.signal()

photo = None
text = u"<vocabulector>"
appuifw.app.title = u"Personal vocabulary trainer"
appuifw.app.exit_key_handler = quit
appuifw.app.screen = "large"

canvas = appuifw.Canvas(redraw_callback = handle_redraw)
appuifw.app.body = canvas
appuifw.app.menu = [(u"Add entry", add_entry),

(u"Show native entries", show_native),
(u"Show foreign entries", show_foreign)]

SUMMARY 131

load_translations()
app_lock = e32.Ao_lock()
app_lock.wait()

Similar to previous examples that have used the Canvas object, such as
the UFO Zapper in Section 5.5, the drawing operations are handled in the
redraw callback function handle redraw(). The function is simple: if
a photo is loaded, it is shown on the canvas. If the variable text contains
a string, it is drawn on the screen as well. The rest of the lines correspond
to standard UI boilerplate code, which should be familiar to you from
previous examples.

6.6 Summary

In this chapter, we have gone through many new concepts, including:

• the directory hierarchy on the S60 platform

• making directories

• handling error conditions

• reading and writing files

• reading sounds, photos and videos

• the dictionary object

• handling Unicode conversions

• using a local database

• positioning techniques

• using a timer object.

By no means do you have to learn all these techniques at once. Feel
free to use this chapter as a reference and come back to it whenever you
need to apply these concepts in practice. Many of these ideas, such as
reading and writing files and handling error conditions, are not specific
to PyS60 but they apply to the Python language in general. Thus, you will
find plenty of help on the web regarding these subjects.

Even though these techniques might not feel as intriguing at first sight
as graphics and sounds, they form the basic scaffolding for any non-
trivial application. Luckily, as you might have noticed, PyS60 makes this
scaffolding extremely lightweight and transparent, so you can really focus
on the things that are important to you.

7
Bluetooth and Telephone Functionality

The mobile phone is a strong candidate for becoming the interaction
device that bridges the physical and virtual worlds. Standard networking
techniques, such as TCP/IP, are great for heavy-duty communication over
long distances. However, the last five meters between the phone and its
physical surroundings are better handled with a lighter approach. In this
range, Bluetooth is the dominant means of communication.

Lots of interesting things happen within that five-meter radius. You
can use Bluetooth for social interaction by connecting to other phones
and their users near to you. You can use it to interact with physical
objects, such as public screens, GPS receivers, sensors, robotic vacuum
cleaners and even shop windows. Naturally, Bluetooth also connects you
to nearby PCs.

In this chapter, we explore most of these scenarios. We show how to
send photos to and chat with other phones in Section 7.3. Then we get
you started with phone-to-PC communication, which really becomes fun
once you can also build applications on the PC side. For example, we
show how to control your Apple Mac with your phone using AppleScript.
In Section 7.5, we connect to an external GPS receiver and later, in
Chapter 11, we connect to a sensor board. This might be of interest, for
instance, to projects dealing with art installations, sensor networks and
physical and wearable computing or smart fashion.

At the end of this chapter, we take a quick look at the telephone
functionality of PyS60. Paradoxically, the modern mobile phone is a
device of so many capabilities, that only a brief section is dedicated to
its original purpose. Finally, we introduce a small but useful module,
sysinfo, that contains lots of interesting trivia about the status of your
phone.

134 BLUETOOTH AND TELEPHONE FUNCTIONALITY

7.1 Bluetooth Pairing

Security concerns mean that it is a good habit to pair any two devices
before you connect them using Bluetooth. Pairing need be done only
once for any two devices. The manual of your mobile phone contains
instructions on how to do this. Typically, you can initiate pairing on the
phone side in the Bluetooth configuration dialog.

The basic idea is that the phone shows a dialog asking you to type
a passcode for the device – you can type any code you like. The other
device should also show a dialog asking you to type the same passcode
there as well. If your phone asks you to ‘Authorize device to make
connections automatically’, you should answer ‘yes’ unless you want to
authorize each connection individually, on a case by case basis.

7.2 OBEX and RFCOMM

There are two main ways to communicate over Bluetooth with PyS60.
OBject EXchange (OBEX) is suitable for transferring files, such as photos
or sounds, over Bluetooth. Radio Frequency COMMunication (RFCOMM)
is useful for sending and receiving streams of text and raw data, including
protocols of your own.

To send anything over Bluetooth, you have to know the recip-
ient’s Bluetooth address, which is represented in a string, such as
00:12:d2:41:35:e4. You can find Bluetooth devices and their ad-
dresses with Bluetooth scanning. Typically, you have to worry about the
raw addresses only if you want to connect to the same device again
without scanning.

The Bluetooth address identifies a device. A single device may provide
several services. For example, your phone can simultaneously receive
files and communicate with a headset and a wireless keyboard over
Bluetooth. Each of the services operates on a different channel so they do
not interfere with each other. If you want to send a file to another phone,
first you have to find out its address and then the channel that is used by
the file transfer service.

This might sound a bit complicated and, in the background, it is.
However, PyS60 wraps this functionality behind two simple functions:
socket.bt obex discover() performs service discovery for the
OBEX protocol and socket.bt discover() performs service discov-
ery for RFCOMM. Note that all Bluetooth-related functionality can be
found in the socket module, which is described in detail in Chapter 8.

Note that to use these examples, you have to switch on Bluetooth
on your phone. In many Nokia models, Bluetooth settings can be found
under the Connectivity panel.

OBEX AND RFCOMM 135

Figure 7.1 Bluetooth discovery

Example 54 performs Bluetooth scanning and shows a dialog such as
the one in Figure 7.1, which lets the user choose a device to connect
to. Once the user has made a choice, the function returns the Bluetooth
address of the chosen device. It also returns a dictionary that lists available
services on the device and the channels that correspond to them.

Example 54: OBEX discovery

import socket
address, services = socket.bt_obex_discover()
print "Chosen device:", address, services

The output of the example is something like this:

Chosen device: 00:12:d2:41:35:e4 {u"OBEX Object Push":9}

In this case, the target device, whose address is contained in the string
address, has only one OBEX service available, "OBEX Object Push"
on channel 9. This service is used to transfer files between devices. If
no services were available on the target device, the function would have
raised an exception. The service names are standardized, so if you are
interested in only the "OBEX Object Push" service, you can request
that particular key from the services dictionary.

If you know the recipient’s Bluetooth address beforehand, you can find
out the services provided by it without showing the dialog of Figure 7.1.
The discover functions accept an address string as an optional parameter:

136 BLUETOOTH AND TELEPHONE FUNCTIONALITY

MY_PC = "00:12:d2:41:35:e4"
address, services = socket.bt_obex_discover(MY_PC)

We can discover available RFCOMM services in a similar man-
ner. We just use the function socket.bt discover() instead of
bt obex discover(), as in Example 55.

Example 55: RFCOMM discovery

import socket
address, services = socket.bt_discover()
print "Chosen device:", address, services

Again, if the chosen device does not provide any RFCOMM services,
the function raises an exception.

7.3 Phone-to-Phone Communication

Now that we have seen how to find a target for Bluetooth communication,
we can start to do something useful. This section requires that you invite a
friend with a Bluetooth-capable phone to hack with you. Bluetooth really
enables social interaction.

7.3.1 Using OBEX

We build an application that lets you take photos and share them
with people around you. Example 56 is a combination of the camera
application of Example 35 and the OBEX discovery Example 54. The only

Bluetooth

Figure 7.2 Bluetooth from phone to phone

PHONE-TO-PHONE COMMUNICATION 137

new feature, sending a photo to a chosen recipient, can be performed
with a single function, socket.bt obex send file().

Example 56: Send photos to another phone using Bluetooth

import camera, e32, socket, appuifw

PHOTO = u"e:\\Images\\bt_photo_send.jpg"

def send_photo():
try:

address, services = socket.bt_obex_discover()
except:

appuifw.note(u"OBEX Push not available", "error")
return

if u'OBEX Object Push' in services:
channel = services[u'OBEX Object Push']
socket.bt_obex_send_file(address, channel, PHOTO)
appuifw.note(u"photo sent", "info")

else:
appuifw.note(u"OBEX Push not available", "error")

def take_photo():
photo = camera.take_photo()
canvas.blit(photo, scale = 1)
photo.save(PHOTO)

def quit():
app_lock.signal()

canvas = appuifw.Canvas()
appuifw.app.body = canvas
appuifw.app.exit_key_handler = quit
appuifw.app.title = u"BT photo send"
appuifw.app.menu = [(u"Take photo", take_photo),\

(u"Send photo", send_photo)]
app_lock = e32.Ao_lock()
app_lock.wait()

The application consists of two functions: take photo() and send
photo(). The application structure should be familiar to you from the
previous examples. Note that the viewfinder is not included in this
example because of space constraints. You can easily add it by yourself,
for instance based on Example 36.

To send the photo, we find the target device with socket.bt obex
discover(). If the target supports the OBEX Object Push protocol,
we find the channel that corresponds to it from the services dictionary.
Once we know the recipient’s address and the channel, we can send the
photo to the recipient with socket.bt obex send file().

When the connection is established, the target device may show
a popup asking ‘Receive message via Bluetooth from. . .’ – you should
answer ‘yes’. Since we use the standard OBEX Object Push service,

138 BLUETOOTH AND TELEPHONE FUNCTIONALITY

which is supported natively by the phone’s operating system, the recipient
does not need any special application to receive the photos. Photos
appear in the recipient’s standard inbox, in the same way as SMS or MMS
messages.

7.3.2 Using RFCOMM
Example 56 relied on a standard OBEX service to transfer files from phone
to phone, which is easy, but somewhat restricted. For instance, all data
must be sent from a file and received into a file. It is also a connectionless
protocol, which means that you cannot know whether the other side is
still within your reach.

In contrast, RFCOMM opens a pipe between two devices, which can
be used to send and receive any strings in your program – including files.
In this respect, it is similar to a TCP/IP connection, so reading Chapter 8
should deepen your understanding of RFCOMM.

In this section, we create a simple chat application that lets you send
short messages back and forth between two phones. Naturally, both
phones need to be running the chat application. One phone must act as
a server and the other as a client that initiates the connection.

After the client has established a connection to the server, the phones
may start sending messages to each other in turn. Synchronous communi-
cation such as this is easier to handle than asynchronous communication,
where the parties may send messages whenever they want. In Chapter 8,
we show how to handle asynchronous communications as well.

The application is divided into two parts. You should combine the parts
into one file to form the full application. Example 57 contains functions
for both client and server. The chat server() function waits for an
incoming connection and chat client() establishes a connection to
the chat server.

Example 57: Bluetooth chat (1/2)

import socket, appuifw

def chat_server():
server = socket.socket(socket.AF_BT, socket.SOCK_STREAM)
channel = socket.bt_rfcomm_get_available_server_channel(server)
server.bind(("", channel))
server.listen(1)
socket.bt_advertise_service(u"btchat", server, True, socket.RFCOMM)
socket.set_security(server, socket.AUTH | socket.AUTHOR)
print "Waiting for clients..."
conn, client_addr = server.accept()
print "Client connected!"
talk(conn, None)

def chat_client():
conn = socket.socket(socket.AF_BT, socket.SOCK_STREAM)

PHONE-TO-PHONE COMMUNICATION 139

address, services = socket.bt_discover()
if 'btchat' in services:

channel = services[u'btchat']
conn.connect((address, channel))
print "Connected to server!"
talk(None, conn)

else:
appuifw.note(u"Target is not running a btchat server", "error")

The function chat server() may look a bit convoluted, but actually
it just performs some housekeeping to prepare the system for clients
to arrive. In other words, to be able to accept incoming Bluetooth
connections, the server side must call the following functions:

1. socket() creates a new endpoint, or socket, for communication.

2. bt rfcomm get available server channel() allocates a
new channel for this service.

3. bind() binds the channel to the socket.

4. listen() informs the operating system that we are willing to accept
incoming connections.

5. bt advertise service() makes our service, btchat, discov-
erable.

6. set security() sets the security settings for this service.

7. accept() waits until a client establishes a connection with us.

Life is much easier for the clients, who only have to perform the
following three steps in the function chat client():

1. socket() creates the endpoint for communication.

2. bt discover() discovers the service of the other phone. The
server must be started before the client, otherwise the client cannot
find it.

3. connect() connects to the chosen server using the channel that is
reserved for our btchat service.

Do not worry if the meaning of some of these steps is still unclear to
you – the socket module is described more thoroughly in Chapter 8.

After these functions have been executed, chat server() on one
phone and chat client() on the other, a new RFCOMM connection
has been established between the phones. Both the functions end with a
call to the talk function that orchestrates the actual chatting. Depending
on whether talk is called from the server or the client side, the new

140 BLUETOOTH AND TELEPHONE FUNCTIONALITY

connection is passed to it either as a connection to the server or to the
client.

Example 58: Bluetooth chat (2/2)

def receive_msg(fd):
print "Waiting for message.."
reply = fd.readline()
print "Received: " + reply
appuifw.note(unicode(reply), "info")

def send_msg(fd):
msg = appuifw.query(u"Send a message:", "text")
print "Sending: " + msg
print >> fd, msg

def talk(client, server):
try:

if server:
fd = server.makefile("rw", 0)
receive_msg(fd)

if client:
fd = client.makefile("rw", 0)

while True:
send_msg(fd)
receive_msg(fd)

except:
appuifw.note(u"Connection lost", "info")
if client:

client.close()
if server:

server.close()
print "Bye!"

index = appuifw.popup_menu([u"New server", u"Connect to server"],
u"BTChat mode")

if index != None:
if index:

chat_client()
else:

chat_server()

When the talk() function is called from the chat client()
function, it gets a connection (socket object) to the server. In this case,
the function starts waiting for the first message from the server side. On
the server side, a dialog is shown which asks the user to type in the first
message for the client.

The functions receive msg() and send msg() are used to receive
and send messages. To use these functions, we convert the socket to a
handy file-like object using makefile("rw", 0). After this, we can
read and write to the socket as if it was a normal file, in a similar way to
what we did in Chapter 6. The second parameter, 0, tells that we do not
need any buffering for communication.

PHONE-TO-PC COMMUNICATION 141

This is the key to using RFCOMM: we can treat the Bluetooth connec-
tion as a file. However, care must be taken that we do not attempt to read
from the connection-file if there is nothing to read, that is, the sender has
not sent anything, and that we do not write too much to the connection
until the reader has read at least some of it. In either case, the read or
write function blocks and waits for the other side to act. If the other side
does not act for some reason, the function waits forever and the program
gets stuck.

Here we read and write only one line, or message, at a time. Sending
is easy: it uses the normal print command, directed to the connection
fd. Reading is performed with the file object’s readline() function.
Chapter 8 introduces other ways to transfer data over connections such
as this.

The actual chatting takes place in an infinite while loop in the function
talk(). We alternate between receiving a message and sending one.
Since the server-side is the first one to enter the loop, it may also send
the first message which lets the client into the loop as well. This alternate
communication continues until some exception occurs in the loop.

There are many ways to close the connection either deliberately
or accidentally – both of these cases are handled by the try–except
block that encloses the chatting functions. If one side cancels the message
dialog, the next print statement raises an exception that is caught by
the except clause and the connection is terminated. If the connection
breaks for any other reason, sending and receiving fails and both phones
exit from the chatting loop.

The last lines in Example 58 are executed when the example starts.
Here a dialog is shown which lets you choose whether you want to be the
server or the client. Depending on the choice, either chat client()
or chat server() is executed and the chatting may begin.

7.4 Phone-to-PC Communication

In this section, we describe how to connect your phone to your PC using
Bluetooth RFCOMM (Figure 7.3). On the PC side, you can either use a
Python script to communicate with the phone or any other application
or programming language that can access the serial port. In Example 59,
however, we rely on standard terminal emulator software, as described
in Appendix B, which provides a convenient way to test the connection.

With the PC as a gateway or middleman, it is possible to control a
wide range of applications and devices using a mobile phone, although
the applications and devices do not have any native support for Bluetooth
or mobile phones. Basically anything that can be controlled by a custom
program on a PC, can be controlled by the mobile phone using the

142 BLUETOOTH AND TELEPHONE FUNCTIONALITY

Bluetooth

Figure 7.3 Bluetooth from phone to PC

Bluetooth link. This way, it is possible to build a PC-based personal video
recorder, PowerPoint presentation or printer, which can be operated by
a mobile phone interface.

Naturally, this requires that your PC supports Bluetooth communica-
tion, either internally or with a USB Bluetooth dongle. We also expect
you to have installed Bluetooth drivers correctly; that is, Bluetooth must
be fully working on the PC side.

To use Bluetooth for RFCOMM communication, some configuration
is needed on the PC side. The process of setting up the RFCOMM serial
port on Windows, Mac OS X, or Linux, is described in Appendix B. Once
you can see the serial port service on your phone, you may proceed to
the next section.

7.4.1 Communicating with the PC
The principles of RFCOMM communication with the PC are no different
from the chat example, in which two phones were talking to each other.
On the phone end, the code could look pretty much the same. However,
here we consider only the option where the PC acts as the server and the
phone connects to it. Technically, it is possible to use the phone as the
server, but the Bluetooth configuration described in Appendix B holds
only for the former case.

First, we make a small test client (Example 59) for the phone which
can send and receive individual lines of text. This example can easily be
used as a basis for any other type of communication: For instance, once
you have learnt about JSON in Chapter 8, you can modify this client to
transfer more complex data structures, such as lists and dictionaries, over
the Bluetooth link. Also, your programs can use this method to transfer
any files between the PC and the phone.

On the PC side, you can use any terminal emulator software, such as
HyperTerminal or Screen, to communicate with the client. Appendix B

PHONE-TO-PC COMMUNICATION 143

explains how to use one. If you have already used the PyS60 interpreter’s
Bluetooth console, you are already familiar with this setting.

Example 59: Bluetooth client

import appuifw, socket, e32

ECHO = True

def choose_service(services):
names = []
channels = []
for name, channel in services.items():

names.append(name)
channels.append(channel)

index = appuifw.popup_menu(names, u"Choose service")
return channels[index]

def read_and_echo(fd):
buf = r = ""
while r != "\n" and r != "\r":

r = fd.read(1)
if ECHO: fd.write(r)
buf += r

if ECHO: fd.write("\n")
return buf

address, services = socket.bt_discover()
channel = choose_service(services)
conn = socket.socket(socket.AF_BT, socket.SOCK_STREAM)
conn.connect((address, channel))
to_peer = conn.makefile("rw", 0)

while True:
msg = appuifw.query(u"Send a message", "text")
if msg:

print >> to_peer, msg + "\r"
print "Sending: " + msg
print "Waiting for reply..."
reply = read_and_echo(to_peer).strip()
appuifw.note(unicode(reply), "info")
if reply.find("bye!") != -1:

break
else:

break
to_peer.close()
conn.close()
print "bye!"

The program starts by discovering nearby Bluetooth devices. You
should choose your PC from the presented list. Then, the function
choose service() is used to show a popup menu that lists the
services that are available on the chosen device. In this list, you should
see an entry such as ‘Serial Port’ or ‘PyBook’, if everything is set up
correctly on the PC side. The function returns a channel number that
corresponds to the chosen service.

144 BLUETOOTH AND TELEPHONE FUNCTIONALITY

The Bluetooth address of your computer and the channel corre-
sponding to its RFCOMM port are then known and we can establish a
connection to the PC. We convert the connected socket to a convenient
file object with the makefile() function. Now we have an active
Bluetooth link to the PC.

As in the chat example, we handle communication in an infinite loop.
The client is the first to send a message – if you choose to cancel the
‘Send a message’ dialog, the program exits. Otherwise, we send the line
you typed to PC with the following expression:

print >> to_peer

Note that we add an additional character, "\r" or carriage return, at
the end of the line. This is needed by the terminal emulator software on
the PC side to start a new line properly.

In the chat example we used the file object’s standard readline()
function to receive a line. That would be a working option here as well,
if we ran a program of our own on the PC side, but in this case we are
communicating with a terminal emulator and that needs some special
treatment.

The function read and echo() is a custom implementation of the
standard readline() function. Compared to the standard function,
there are two differences: the line may end in either a carriage return
character, "\r", or a new line character, "\n"; and the function may
echo each character back to the sender, if the constant ECHO is set True.
One character is read at a time, using the fd.read(1) expression. A
terminal emulator expects that the other end is responsible for showing
the characters typed, thus, unless we echo the characters back to the PC,
you can send messages to the phone but you cannot see the characters
while you type.

The received line is shown in a popup dialog. If the line contains the
string ‘‘bye!’’, the connection is shut down. Thus, you may close the
connection by typing ‘‘bye!’’ on the terminal emulator software.

You can now try this example: follow the instructions in Section B.2
on how to start a terminal emulator software PC with an RFCOMM serial
port. Instead of using the standard Bluetooth console on the phone side,
use the example above. If everything works correctly, the first message
that you typed on the phone should appear on the terminal emulator. You
can continue sending messages back and forth until you press cancel on
the phone or send ‘‘bye!’’ from the PC side.

7.4.2 Creating Bluetooth Servers with PySerial

Section 7.4.1 showed how to make a phone client that communicates
with the PC. However, we used a standard terminal emulator on the PC

PHONE-TO-PC COMMUNICATION 145

side, so the messages that were sent to the phone were typed in manually.
The most flexible approach, however, is to make servers of your own.
This way you can access all resources on your PC, process information,
send results to the phone and receive commands from it over a Bluetooth
link without any manual attendance. This section shows you how.

You can access the serial port on the PC side most easily with a
custom Python module, PySerial, which is available at http://pyserial.
sourceforge.net. Install the module as instructed on the Web page.
Naturally you need a Python interpreter installed on your PC as well. You
can find the newest one at www.python.org.

Example 60 creates a simple server program for your PC, using PySerial,
that receives messages from the phone and responds to them automati-
cally. The functionality is demonstrated by a simple ’Guess my number’
game: the server picks a random number between 1 and 10 and the
phone user has to guess it.

Example 60: PySerial script running on PC

import serial, sys, random

if sys.platform.find("win") != -1:
PORT = 0

elif sys.platform.find("linux") != -1:
PORT = "/dev/rfcomm0"

elif sys.platform.find("darwin") != -1:
PORT = "/dev/tty.pybook"

num = random.randint(1, 10)

serial = serial.Serial(PORT)
print "Waiting for message..."
while True:

msg = serial.readline().strip()
guess = int(msg)
print "Guess: %d" % guess
if guess > num:

print >> serial, "My number is smaller"
elif guess < num:

print >> serial, "My number is larger"
else:

print >> serial, "Correct! bye!"
break

You can use the client program in Example 59 to play the game.
However, one minor modification is needed: this program is not interested
in receiving back the characters it sent, so we can disable echoing in the
client. Replace the line ECHO = True with ECHO = False in the client
code.

In the beginning, we choose the port for communication based on the
platform where the server is running. If you are using Windows, the line
PORT = 0 corresponds to the COM port that you set up for Bluetooth

146 BLUETOOTH AND TELEPHONE FUNCTIONALITY

communication in Section B.1. Note that indexing starts from zero, so
PORT = 0 corresponds to COM1 and so on. For Linux and Mac, the file
name should be correct unless you modified the default name used in
the instructions, in which case you should change the file name here
accordingly.

The server is a straightforward one: once the serial port is opened and
assigned to the variable serial, we can start communicating with the
phone through it. The Serial object works like a standard file object,
so we can use the familiar readline() function to read a line at time
from the client. Each line should contain one number, which is then
compared to the correct one, num, after which an appropriate hint is sent
back to the phone. When extending the example, note that the PySerial
module contains many useful options, such as timeout values, which can
be used to tune the server. See the PySerial documentation for a full list
of features.

To use this program, follow the instructions in Section B.2 but now
instead of opening a terminal emulator, such as Screen or HyperTerminal,
you need to execute Example 60 on the PC side. On the PC, a Python
script is executed by typing the command python btserver.py into
the command shell. The file btserver.py should contain the code for
Example 60.

Even though the ’Guess my number’ game might not seem fascinating
in itself, you should notice how easily one can build software on the PC
side that communicates with the phone. There are thousands of custom
modules freely available for Python, which let you control and access
various devices and applications on the PC. With this method, you can
control any of those modules with your mobile phone over Bluetooth.

For example, you could turn your PC into a multiplayer game
console which uses mobile phones as controllers – have a look at
www.pygame.org to get started with making games in Python. If you
are an artist, you can make stunning interactive installations using
www.nodebox.net, controlled by a mobile phone.

Section 7.4.3 shows how to control any application on your Mac OS X
with your mobile phone. Even if you use Windows or Linux, you might
want to have a look at the next section, since the basic idea can be
applied with other operating systems as well.

7.4.3 Controlling Applications with AppleScript

The Mac OS X operating system includes a programming language called
AppleScript. Its main purpose is to provide a simple mechanism to
automate usage of any application. You can find more information about
it at www.apple.com/applescript.

Similar mechanisms also exist for other environments. For example, in
Linux you can easily use Example 61 to execute any command or shell

PHONE-TO-PC COMMUNICATION 147

script on the command line. Major desktop environments for Linux, KDE
and Gnome, also support some AppleScript-like mechanisms to control
applications programmatically.

Example 61 lets you, or possibly someone else, use your computer
remotely. You should understand that doing this is potentially dangerous,
especially if the program is executed in a public space. You should never
run a server that lets the phone freely choose a command to execute.
Instead, have a predefined list of commands that the phone is allowed
to use and make sure that these commands cannot do any harm to your
computer.

We need a special Python server program that runs on the Mac and
executes an AppleScript file, as requested by the phone. Basically, the
server is similar to Example 60 but, because of its specific purpose, this
one contains even fewer lines of code.

Example 61: AppleScript interface running on Mac

import serial, os

ALLOWED_SCRIPTS = ["edit"]

ser = serial.Serial('/dev/tty.pybook')

print "Waiting for message..."
while True:

msg = serial.readline().strip()
if msg == "exit":

print >> serial, "bye!"
break

elif msg in ALLOWED_SCRIPTS:
print "Running script: " + msg
os.system("osascript %s.script" % msg)
print >> serial, "Script ok!"

The idea is that the phone client is used to choose one of the scripts to
execute on the PC side. Once again, we can use Example 59 as the phone
client. Again, echoing should be disabled by setting ECHO = False in
the client.

In Python, the os.system() function is used to execute an external
command. In this case, we execute the command osascript that is
used to interpret AppleScripts on Mac OS X. However, the script name
must exist on the ALLOWED SCRIPTS list before it can be executed.
This makes sure that a malicious user cannot connect to the server and
execute any command she likes, for instance to format the hard disk. If
the phone sends the line exit, the connection is shut down. Otherwise
the user can execute as many commands as she wishes.

Naturally, we need some AppleScripts to be executed. Without going
into details, we give here a simple AppleScript example that first activates
the Finder application on the Mac and then opens a new file in the

148 BLUETOOTH AND TELEPHONE FUNCTIONALITY

TextEdit application. Make sure you have no other TextEdit file open
when you run it. Write the following code to a file called edit.script
and save it to the same folder as the above server program.

tell application "Finder"
activate
open application file "TextEdit.app" of folder\

"Applications" of startup disk
end tell

The server is executed similarly to the previous server example. Now,
however, the only sensible message to send from the phone is ‘edit’,
which corresponds to the AppleScript file name without the ending
‘.script’. Once the message is received by the PC, you should see the
TextEdit application start up.

Based on this teaser, you can start developing AppleScripts of your own
that may control various applications, such as iTunes, iPhoto, QuickTime,
DVD Player, Keynote, iSync or iCal. Just save the new AppleScript to some
file that ends with ‘.script’ and add its name to the ALLOWED SCRIPTS
list. For instance, by combining keyboard events from Chapter 5 to this
example, you could control, say a DVD player, using the arrow keys on
your phone.

7.5 Communication with GPS and Other Devices

Besides mobile phones and PCs, there are many devices that can com-
municate over Bluetooth. Many of them support RFCOMM, so you can
directly apply the code in this chapter to a large number of use cases.

7.5.1 Connecting to GPS over Bluetooth

In this section, we connect to an external Bluetooth GPS reader to acquire
GPS data (see Figure 7.4).

Some modern mobile phones, such as Nokia N95, come with an
integrated GPS receiver. You can use PyS60 to obtain information from
the internal GPS, as described in Section 6.4. Unfortunately, accessing the
internal GPS requires some capabilities that are not available for the
self-signed PyS60 interpreter (see Appendix A for more information).
In contrast, you can use an external GPS receiver without any special
capabilities just by connecting to it over Bluetooth.

Data that comes from the external GPS receiver follows a standard
specified by the National Marine Electronics Association (NMEA). You
can find a description of this format in many sources on the web, for
instance, at www.gpsinformation.org/dale/nmea.htm.

COMMUNICATION WITH GPS AND OTHER DEVICES 149

Bluetooth

Figure 7.4 Bluetooth from phone to GPS

The format is line-oriented: the GPS sends one message per line. The
line contains typically many fields, which are separated by commas. The
line begins with the dollar sign, $, which is followed by a word that
specifies the data type. The messages look like this:

$GPGGA,123519,4807.038,N,01131.000,E,1,08,0.9,545.4,M,46.9,M,,*47

This line has the data type GPGGA and it contains 15 fields. Most
importantly, the third to sixth fields contain the latitude and longitude
of the current position. On the above line, the latitude is 48.07.038’N
and the longitude is 11.31.000’E. You can find this information and the
meaning of other fields, in the NMEA specification. These coordinates
can be readily plotted to many modern applications, such as Google
Maps.

Besides the GPGGA lines, the data stream from the GPS receiver
contains many other types of lines as well, as specified by NMEA.
However, simple GPS-tracking software, such as the one presented below,
might need only the GPGGA lines that specify the current position.

Example 62: GPS reader

import socket

address, services = socket.bt_discover()
print "Discovered: %s, %s" % (address, services)
target = (address, services.values()[0])

conn = socket.socket(socket.AF_BT, socket.SOCK_STREAM)
conn.connect(target)
to_gps = conn.makefile("r", 0)

while True:
msg = to_gps.readline()

150 BLUETOOTH AND TELEPHONE FUNCTIONALITY

if msg.startswith("$GPGGA"):
gps_data = msg.split(",")
lat = gps_data[2]
lon = gps_data[4]
break

to_gps.close()
conn.close()
print "You are now at latitude %s and longitude %s" % (lat, lon)

This example is based on techniques that are already familiar to you
from the previous examples. First, you choose the GPS receiver from
the list of discovered devices. It is not necessary to choose a service,
as the GPS receiver provides only one. The socket is connected to
the receiver in the usual way. If you know the address of your GPS
receiver beforehand, or you have saved it to a file, you can skip the
time-consuming socket.bt discover() function and connect to the
specified address directly.

We receive and skip lines from the GPS until we get the one that
contains the current coordinates, that is, the one that begins with the
string "$GPGGA". After this, we exit from the loop and print out the
coordinates.

You could extend the example, for instance, by saving the coordinates
in a file so that you can plot them to Google Earth, or, you could receive
the map of this location straight away with the MopyMaps! application,
which is described in Section 9.2.

7.5.2 Connecting to Other Devices over Bluetooth
In Chapter 11, we present more real-world uses of Bluetooth. We show
how to use Bluetooth to communicate with a sensor board kit, Arduino
(see Figure 7.5), which is an extremely simple, yet powerful platform for
building custom hardware. We also describe how PyS60 and Bluetooth
were used to build an autonomous robotic vacuum cleaner and how to
control sound-generation software called Max/MSP.

Bluetooth

Figure 7.5 Bluetooth from a phone to a sensor board

TELEPHONE FUNCTIONALITY AND CONTACTS 151

As you will notice, these examples are similar to the previous examples
that use RFCOMM. After reading these sections you have already seen
everything needed to build practical, as well as artistic and esoteric,
applications using Bluetooth!

7.6 Telephone Functionality and Contacts

The telephone module provides an API to the telephone functionality
of the mobile phone, so it is possible to use a mobile phone as a phone!
Compared to many other modules in this book, the telephone module
is particularly simple.

The module includes only two functions: telephone.dial() and
telephone.hang up(). The dial() function accepts a telephone
number as a string, as it may contain special characters, such as the plus
sign. Note that if there is an call in process when the dial() function is
called, the previous call is put on hold and a new call is established.

Example 63: Telephone

import telephone, e32

telephone.dial('+1412345602')
e32.ao_sleep(10)
telephone.hang_up()

If you start recording sound when a call is active, the phone call is
recorded. See Example 26 for a simple sound recorder that can easily be
combined with the telephone module. Ethical implications are left as
an exercise for the reader.

The contacts module offers an API to the phone’s address book.
Although in the simplest form the address book could be a dictionary,
which has names as keys and phone numbers as values, the modern
mobile phone provides a sophisticated database which can handle rich
forms of contact information. Correspondingly, the contacts module
includes an extensive set of functions and objects that hook into the
underlying contacts service that is provided by the operating system.

The PyS60 API documentation contains a detailed description of the
module, so we do not repeat it here. Instead, we give an overview of the
most typical use case: finding the phone number of an individual, given
a name as a string. The following steps are needed:

1. Open the contacts database with db = contacts.open().

2. Find an entry in the database which contains the desired name using
db.find(name). The matching entries, if any, are returned in a list.
Each item of the list is a Contact object. Let’s denote one such item
with match.

152 BLUETOOTH AND TELEPHONE FUNCTIONALITY

3. The person’s name can be found with match.title. In addition,
a Contact object may have over 20 fields, such as name, job title,
state and email address. If you need to call the person, typically the
mobile number field might contain the needed information. It can
be retrieved with field = match.find("mobile number").
This returns a list of fields, as the person may have multiple mobile
phones. It is also possible that the requested field might not exist, in
which case None is returned.

4. The field variable is an object of type ContactField. Most
importantly, the actual value of the field can be found in field.
value. This is, finally, the phone number string.

The following example is a straightforward application of the steps
outlined above. It lets you search for a string, name, in the contacts
database. It shows a selection list that contains the matching items and
retrieves the mobile phone number for the chosen entry. Finally, it calls
this number using telephone.dial().

Example 64: Contacts

import contacts, appuifw, telephone
name = appuifw.query(u'Call to', 'text')
db = contacts.open()
entries = db.find(name)
names = []
for item in entries:

names.append(item.title)
if names:

index = appuifw.selection_list(names, search_field=0)
num = entries[index].find('mobile_number')
if num:

telephone.dial(num[0].value)
else:

appuifw.note(u'Missing mobile phone number', 'error')
else:

appuifw.note(u'No matches','error')

Similar functionality was used in the Hangman SMS server in Section
4.5.

7.7 System Information
The sysinfo module offers an API for checking the system information
of the mobile device. The following functions are provided:

• battery() returns the current battery level ranging from 0 to 7. If
using an emulator, value 0 is always returned.

• imei() returns the IMEI of the device as a Unicode string. If using an
emulator, the hardcoded string u"000000000000000" is returned.

SYSTEM INFORMATION 153

• active profile() returns the current active profile as a string,
which can be one of the following: ‘general’, ‘silent’, ‘meeting’,
‘outdoor’, ‘pager’, ‘offline’, ‘drive’, or ‘user <profile value>’.

• display pixels() returns the width and height of the display in
pixels.

• display twips() returns the width and height of the display in
twips (screen-independent units to ensure that the proportion of screen
elements are the same on all display systems). A twip is defined as
1/1440 of an inch, or 1/567 of a centimeter.

• free drivespace() returns the amount of free space left on the
drives in bytes.

• max ramdrive size() returns the maximum size of the RAM
drive on the device.

• total ram() returns the amount of RAM memory on the device.

• free ram() returns the amount of free RAM memory available on
the device.

• total rom() returns the amount of read-only ROM memory on the
device.

• ring type() returns the current ringing type as a string, which can
be one of the following: ‘normal’, ‘ascending’, ‘ring once’, ‘beep’, or
‘silent’.

• os version() returns the operating system version number of the
device.

• signal bars() returns the current network signal strength ranging
from 0 to 7, with 0 meaning no signal and 7 meaning a strong signal.
If using an emulator, value 0 is always returned.

• dbm() returns the current network signal strength in dBm. If using an
emulator the returned value is always 0.

• sw version() returns the software version as a Unicode string. If
using an emulator, it returns the hardcoded string u"emulator".

Example 65: Sysinfo

import sysinfo
print "Battery level: %d" % sysinfo.battery()

154 BLUETOOTH AND TELEPHONE FUNCTIONALITY

7.8 Summary

In this chapter we have covered the Bluetooth functionality of the phone.
We shared photos with a nearby phone and made a chat application for
a pair of phones. We showed how simple it is to communicate with a PC,
either with a standard terminal emulator or server software of your own.

Traditionally, people have connected their mobile phones to PCs to
synchronize contact information or calendars – considering the plethora
of possibilities, this just scratches the surface. The mobile phone can take
full control of the PC using simple methods, which was shown by the
AppleScript example.

We also demonstrated how to use the telephone programmatically
and how to find people in the address book. Even though telephone is
not the most trendy communication method nowadays, it is undoubtedly
the most ubiquitous and most compatible, which makes it still highly
relevant. In Section 7.7, we gave an overview of the sysinfo module
which is a treasure trove of information about the system state.

Now that you can fully control everything in the five meters around
you, or at least everything that understands Bluetooth, it is time to look
further. The next two chapters introduce you to networking, which gives
you the necessary tools to communicate with practically any server in the
world.

You should keep in mind that, even on the Internet, your greatest asset
may be the five meters around you: when anyone on the Internet needs
information from that area, you and your mobile phone may be the only
gateways that can provide the desired information on the spot.

8
Mobile Networking

The modern mobile phone is a personal computer whose primary purpose
is to keep its user connected with the outside world. This is where PyS60
becomes most fun: you can innovate and experiment with the most
insane, amazing and productive combinations of you and others, our
physical environment and all the digital information in the world.

After these grandiose motivational words, we can crawl back to the
technical details. Writing distributed applications, including the ones dis-
cussed in this chapter, are more difficult to get to work right than programs
that do not communicate. The reason is simple: you have to keep three
independent components synchronized instead of a single program.

The client, the server and the network between them are all running
independent, complex pieces of software that are only kept together
by the force of protocols. In addition, with mobile phones, one of the
components keeps changing all the time. Depending on your location,
the network may be non-existent or anything between a low-bandwidth
GSM connection to a broadband wireless LAN. Fortunately for us, a
dynamic programming language, such as Python, makes it possible to
adapt to changing environments with relative ease.

Even better news is that the most typical networking tasks are made
really simple in PyS60. You can download anything from the web with
one line of code and you can upload anything to your own website
almost as easily. These basic tasks are introduced first in Section 8.1.

If you are primarily interested in interacting with various web services,
you do not have to bother about the underlying techniques too much.
You can read only Section 8.1 and then proceed directly to Chapter 9,
which deals with cool web-based applications without being heavy on
technical details. Note that, in this case, you still need to install the JSON
extension module as instructed in Section 8.2.2.

We give a guide on how to set up a development environment
for mobile networking in Section 8.2. Then a toolbox of protocols is

156 MOBILE NETWORKING

introduced in Section 8.3, which forms the basis for networking. A brief
introduction to server-side code is given in Section 8.4, which helps you
to get started on that side as well.

Finally, Sections 8.5, 8.6 and 8.7 describe three patterns of advanced
networking for mobile phones. Each pattern is explained using a fully
working and non-trivial example, which can be used as a basis for further
prototyping.

Examples in this chapter are stand-alone and platform-agnostic: you
can use them as they are or you can easily adapt them to work with your
platform of choice, whether it be Django, Ruby on Rails, .NET or Erlang.

8.1 Simple Web Tasks

8.1.1 Downloading Data from the Web

You can download any HTML page, image, sound or any other file from
the web in one line of code.

Example 66: Web downloader

import urllib
page = urllib.urlopen("http://www.python.org").read()
print page

The script prints out the HTML contents of the Python home page.
The module urllib contains functions related to web communication.
Whenever you need to download something from the web, you can use
the urllib.urlopen() function, which returns the file contents to
your program so that they can be further processed.

On the other hand, if you want to download a file from the web and
save it locally, you can use the urllib.urlretrieve() function to
save the file directly to a given file name, as shown in Example 67. If
the URL contains unusual characters, such as spaces, you can use the
urllib.quote() function to encode them properly.

This example downloads the Python logo from the Python website and
shows it using the phone’s default image viewer.

Example 67: Web file viewer

import urllib, appuifw, e32

URL = "http://www.python.org/images/python-logo.gif"

dest_file = u"E:\\Images\\python-logo.gif"
urllib.urlretrieve(URL, dest_file)

SIMPLE WEB TASKS 157

lock = e32.Ao_lock()
viewer = appuifw.Content_handler(lock.signal)
viewer.open(dest_file)
lock.wait()

This example uses the function urllib.urlretrieve() to down-
load data from a URL to a local file. When the data has been saved, the
default viewer associated with the URL’s file type is used to open the file.
You can change the URL to point at JPEG images, web pages, MP3 files
or any other file type supported by your phone.

The Ao lock object is needed to keep the script alive until the
viewer is finished. You can easily extend this example into a generic web
downloader that asks the user for a URL to download and then shows the
file using the default viewer. You can implement it as an exercise.

8.1.2 Uploading Data to the Web

Sometimes you want to upload photos, sounds or other files from your
phone to your website. Example 68 presents a simple PyS60 script that
takes a photo and sends it to a website. On the server side, we show how
to receive the photo in PHP. You can easily adapt the example to the
web back end of your choice.

Example 68: Photo uploader

import camera, httplib

PHOTO = u"e:\\Images\\photo_upload.jpg"

def photo():
photo = camera.take_photo()
photo.save(PHOTO)

def upload():
image = file(PHOTO).read()
conn = httplib.HTTPConnection("www.myserver.com")
conn.request("POST", "/upload.php", image)
conn.close()

photo()
print "photo taken"
upload()
print "uploading done"

The function photo() takes a photo and saves it to a file. Then, the
function upload() reads the photo (JPEG data) from the file and uses
HTTP POST to send it to the server. Here we use the module httplib
instead of urllib. This module gives a lower-level access to HTTP and
makes fewer assumptions about the data sent.

158 MOBILE NETWORKING

On the server side, you can use whatever method you want to receive
the data. Here, we give a minimal example in PHP that receives the photo
and saves it to a file:

<?php
$chunk = file_get_contents(’php://input’);
$handle = fopen('images/photo.jpg’, 'wb’);
fputs($handle, $chunk, strlen($chunk));
fclose($handle);
?>

There are many possible ways to send files to a server, although this
might be the simplest one. In Section 8.4, we show how to build a custom
server to receive photos from the phone. In Section 9.4, we build a fully
working application, InstaFlickr, that uploads photos to Flickr using a
slightly different technique.

8.2 Setting up the Development Environment

Before you start writing any networked programs, you should make sure
that you have a working network. Since development requires lots of trial
and error, you should be able to update code on your server, as well as
on your phone, without too many steps.

In the following sections, we show how to set up a test environment
in four different settings:

• Environment A: a WiFi-enabled phone, a local WiFi network and a PC
connected to it; the PC works as a test server and no Internet access
is needed.

• Environment B: a phone with Internet access through a GSM or 3G
data plan; the PC works as a test server and you can connect to it from
the Internet, possibly through a firewall.

• Environment C: a phone with Internet access, either through a GSM
or 3G data plan or a WiFi network; you need shell (SSH) access to an
external test server.

• Environment D: a phone with Internet access, either through a GSM
or 3G data plan or a WiFi network; you need access to an external
web server which is used for testing.

If you have already developed server-side code for other purposes, you
can probably use your existing environment for mobile development as
well. If you do not have previous experience in this area, environment A
is likely to be the easiest option to start with.

SETTING UP THE DEVELOPMENT ENVIRONMENT 159

8.2.1 Preliminaries
It is useful to know what we are aiming to achieve. Here is a quick
reminder of how the Internet works. Each computer or host has an IP
address, which is of the form 123.45.54.56. Data is transferred between
hosts in packets. Since one host can run multiple networked programs at
the same time, each program is assigned a port on which it can receive
packets. Each packet contains the IP address and port of its destination,
so the packet can find its way to the correct program at the right host.

Usually, a TCP/IP connection is opened between two hosts, which
ensures that the two hosts can communicate reliably with each other.
The TCP protocol is built on top of the IP protocol. In particular, TCP
connections are established using IP addresses. You can think of the
connection as a pipe through which the packets are transferred. It is the
job of a firewall to control who can open connections to which ports on a
host. These connections are the core of Internetworking. Everything else
is built on top of this, including the web.

The TCP connection is similar to the Bluetooth connection established
by the RFCOMM protocol, which we used in Chapter 7. Here, however,
an IP address is used instead of a Bluetooth address and a port instead of
a channel.

Our goal is to get your mobile phone, which has an IP address, to
open a connection to your server, which operates behind another IP
address. This should be straightforward once you know both addresses.
Unfortunately, your server may be behind a firewall or a Network Address
Translation (NAT) device which hides your computer behind an IP address
of its own. These devices may prevent the connection being opened. It is
possible to evade these obstacles but it requires further tweaking.

8.2.2 Install JSON Module
To use the JavaScript Object Notation (JSON) protocol, which is used
in many examples in this chapter and in Chapter 9, you have to install
a JSON extension module to PyS60. This is required since JSON is not
included in the standard PyS60 library, unlike the other modules we have
used this far.

The module is installed as follows:

1. Go to the book website at www.mobilepythonbook.com.

2. There, conveniently on the first page, you will find a link to the JSON
module.

3. Download the file, json.py.

Extension modules must be installed to the E:\Python\Lib directory
in PyS60. If this directory does not exist already, create it in a similar way
to the E:\Python\ folder, as instructed in Chapter 2.

160 MOBILE NETWORKING

Upload json.py to E:\Python\Lib on your phone. You can use
your usual way to upload the file. If you use an S60 2nd Edition device,
choose ‘Install as Python lib module’.

You can test that the module is installed correctly with the following
script:

import json
print "JSON OK!"

If the ‘JSON OK!’ line is printed out, the module is installed correctly.
The JSON module, json.py, will be needed by server-side examples as
well. You need to copy this file to the folder on your PC where you run
the examples.

8.2.3 Networking Environments

Figure 8.1 summarizes the networking environment for the modern
mobile phone. Typically, your phone communicates with a GSM (or
3G) base station. The base station routes traffic, by way of your operator’s
data center, to the Internet. This way you can, for example, read web

Servers

Local network

Internet

GSM

WiFi

Figure 8.1 Networking environment of a modern mobile phone

SETTING UP THE DEVELOPMENT ENVIRONMENT 161

pages on your phone – assuming that your phone service includes a data
plan.

Depending on your data plan, your operator may either charge you
for the amount of traffic or have a flat fee. Many examples in this chapter
generate less than a kilobyte of traffic, which is almost nothing nowadays;
it is less than a typical web page. As long as you do not transfer sounds,
images or video, it is hard to generate even a megabyte of traffic, unless
your script generates data in an infinite loop.

In the following, we give details of four network environments that are
suitable for rapid development. If your phone has a WiFi capability, you
should probably use environment A, as it is flexible and does not cost
anything to use. If you plan to use GPRS or 3G instead, environment C is
a suitable choice, given that you have access to a server already – if not,
then environment B is a feasible option. Environment D is easy to set up
but you will have to adapt the examples to your particular environment.

Environment A: Local wireless network

If your phone has a WiFi capability, it can join a local wireless network,
assuming you have such a network set up. In the best case, you also have
a laptop or other computer which can join the same local network and
which you can use as a test server. In this case, you do not have to pay for
the traffic and you have full access to the server. You can probably avoid
many problems with firewalls too, when you operate in a local network.

Environment B: Phone Internet access and a PC server

If your phone is not WiFi-capable, your test server has to be visible to
the Internet as the traffic goes by your operator’s network. In this case,
you have two options: use your local PC as a server or use a rented or
co-located server.

It is not always easy to use a PC as a publicly accessible server. You
may face problems with local firewalls and NAT devices. You should
allow inbound traffic in your firewall to a selected port, say 9000. If you
use NAT, you should enable forwarding from port 9000 on your NAT
device to port 9000 on your local computer.

In Section 8.2.4, you will see how to find out your local IP address.
Your router’s or firewall’s documentation should help you here also.
However, be careful with your firewall configuration; if you leave it
disabled by accident, your computer becomes easy prey for bots and
crackers.

Environment C: Phone Internet access and an external test server

Renting a virtual server is inexpensive nowadays. For mobile develop-
ment, you need a server with a shell account, Python, a public IP address

162 MOBILE NETWORKING

and some ports open in the firewall. This is also a typical setting in a
company or university which often has several servers accessible from
the Internet.

Environment D: Phone Internet access and an external web server

If you are only interested in developing web-based services, a web hotel
which supports CGI, Ruby on Rails or a web back end of your choice is
sufficient. Note, however, that you cannot use the example servers in this
chapter without adapting them to use your web back end.

8.2.4 Testing the Connection
In this section, we test that your network environment is correctly set up
for mobile development. According to your network environment, follow
instructions in one of the sections below. Except in environment D, we
first have to find out the server’s IP address and then test the connection
using a simple test server.

Environments A, B and C require a working Python installation on your
server. You can find Python for Windows, Linux and Mac OS X at the
Python home page at www.python.org.

Environment A: Local wireless network

First you have to find out your IP address in your local network.
In Linux and Mac OS X you can use the following Python script to find

out all IP addresses that have been assigned to your computer. You may
have several of them, for instance, if you have both wired and wireless
network adapters on your laptop. Make sure that you have joined your
local wireless network before executing the following script:

import os, re
txt = os.popen("/sbin/ifconfig").read()
for t, ip in re.findall("inet (addr:)?([\d\.]+)", txt):

print ip

Save the code above to the file findip.py and execute it on the
command line using the command python findip.py. Do not worry
about the code of this script.

In Windows, you have to execute command ipconfig in your
command shell to find out the addresses.

If you see an address starting with ‘192.’, it is probably your local IP
address. Special address ‘127.0.0.1′ is used only for internal communi-
cation by your computer and it is not the one we are interested in. If you
cannot immediately recognize your local address, you can try them all.
One of the addresses is the address of your test server.

SETTING UP THE DEVELOPMENT ENVIRONMENT 163

Environment B: Phone Internet access and a PC server

You have to find out the server’s external IP address. Open a web browser
on your server (PC) and go to one of the following websites:

• http://checkip.dyndns.org

• www.ip-address.com

• http://whatismyipaddress.com

Write down the IP address that the site reports. This is the address of
your test server.

Environment C: Phone Internet access and an external test server

You have probably seen the address of your server already. If you can log
in to the server using Secure SHell (SSH), you can use the address that is
used by SSH for mobile development.

Environment D: Phone Internet access and an external web server

You probably have a domain name, such as www.mydomain.com,
assigned to your server. The service’s documentation should tell you how
to update web pages at that address. You should be able to make a simple
HTML form containing one text input box and a simple script that handles
it on the server side.

The script should return "Hello \$name" where \$name is the text
typed in the form. There are plenty of tutorials on the web showing how
to do this using the web back end of your choice. Once this works, you
have a test environment in place and you can proceed to Section 8.3.

Testing the server in environments A, B and C

Next we create a simple server script. The script waits for a new connec-
tion to be initiated. It then shows the client’s IP address and the first line in
the request. You need to execute this script on your PC (in environments
A and B) or on your external server (environment C). The script waits for
incoming connections in an infinite loop. You can interrupt the server by
pressing Ctrl-C.

Example 69: Test server

import SocketServer

class Server(SocketServer.TCPServer):
allow_reuse_address = True

164 MOBILE NETWORKING

class Handler(SocketServer.StreamRequestHandler):
def handle(self):

print "CLIENT IP %s:%d" % self.client_address
print "Message: " + self.rfile.readline()

server = Server((’’, 9000), Handler)
print "WAITING FOR NEW CONNECTIONS.."
server.serve_forever()

Save the code above to the file testserver.py and execute it on
the command line using the command python testserver.py. This
server works in the same way in Linux, Mac OS X and Windows, given
that you have Python installed on your PC.

This test server uses some Python concepts, such as custom objects,
which have not been introduced earlier in this book. You can find more
information about creating objects, for example in the Python tutorial.
However, for purposes of this book, you do not have to care about the
details. Since this book is not about making Python software for servers,
you can just skim through the following description. We use similar
examples on the server side later in this chapter, so basic understanding
of this example is useful.

The script is based on Python’s standard SocketServer object,
which takes care of waiting for new incoming TCP connections. Once
a connection has been established, SocketServer calls the given
callback function, which then handles the actual request.

We modify one parameter, allow reuse address, in the standard
server. This modification makes it possible to re-use the same server port
again if the server is restarted. In the default case, a closed port has a
quarantine period during which it cannot be re-used.

The callback function must belong to a StreamRequestHandler
object. The function is given one special parameter, self, that is used to
access the object’s internal variables. self.client address contains
the client’s IP address and port in a tuple. Data from the client is read
from self.rfile, which acts like a file object, in a similar way to the
serial object in the Bluetooth server in Example 60.

The server object is created with two parameters in a tuple, the server
port (9000) and a reference to the Handler object. The server port
should correspond to the port which you have opened in your firewall.
Examples in this chapter use port 9000, but you can use some other port.
Note that port numbers below 1024 are reserved for registered services,
so it is better to use a port number between 1025 and 65535.

If you have a local firewall, you should allow all incoming connections
to the port which you used above (for example, 9000). If you use
environment B and you have an Internet router with NAT, you have
to enable port forwarding from the router to your PC, from and to the

SETTING UP THE DEVELOPMENT ENVIRONMENT 165

port you specified above. Port forwarding may require you to specify the
local IP address of your PC. Follow the instructions for environment A to
find it.

Once your server is up and running, that is, it says ‘WAITING FOR NEW
CONNECTIONS’, you can try to connect to it. We test the connection
with a normal web browser, first on the PC and then on your mobile
phone. If it works with the browser on your phone, it will work with
PyS60, too.

First, open a web browser on your PC. Type in your server’s address,
which you found above, and specify the correct port. For example, a
local address might look like http://192.168.0.2:9000/. When
your browser tries to connect to the server, the server calls the request
handler function handle(). The request handler then prints out the
client’s IP address and the first line of the HTTP request that the browser
sent to the server.

If you see some lines printed out by your server script, the connection
works correctly. The browser shows just an empty page, or it may show
an error, as the server does not respond to the request. If the server script
does not print out anything, a firewall might be blocking the connection
or you may be trying to connect to the wrong IP address. If you found
several possible IP addresses in environment A, try each of them until a
connection is established.

After you have managed to establish a connection from your web
browser on the PC to the server, you can try the same with your phone.
Open the web browser on your phone and type in the server’s IP address
and port, exactly as on the PC.

If the connection is established correctly, you should see some lines
printed out by the server script. If the connection works on your PC but
nothing happens when you try to connect with your phone, there might
be something wrong with the phone’s network settings in general.

To find this out, try to connect to any well-known website, such as
www.google.com, with the phone’s browser. If this succeeds, you have a
working Internet connection and the culprit is probably a local firewall.
If you cannot connect to any site with your phone, you should set up the
Internet connection properly on the phone first, following the instructions
given by your operator or service provider.

If you can now connect from your phone to your server, you have a
working test environment. If you cannot, don’t feel desperate. After all,
the culprit might be a firewall or a NAT which is just working as it should.

You can find many troubleshooting guides on the web if you search
for phrases such as ‘port forwarding tutorial’ or ‘firewall tutorial’. Note
that, in environments A and B, the IP address may change when your PC
or router reboots. If your environment suddenly stops working, repeat the
steps above to find out the new address.

166 MOBILE NETWORKING

8.3 Communication Protocols

A communication protocol defines how to move data from place A
to place B. Depending on the application, one has to balance several
different factors, such as latency, addressing and data encoding, when
choosing the best protocols for the task – no single protocol is suitable for
all applications. The situation is similar to the transportation of physical
goods. You have to choose the proper packaging, routing and mode of
transportation (air, ground or sea) for your cargo.

Luckily, some common protocols are enough for almost all applica-
tions. This chapter focuses on a stack of three protocols, depicted in
Figure 8.2.

Figure 8.2 Protocol stack used in this book

It is likely that these protocols will serve all your needs for communi-
cation. Most of the Internet works on TCP and the web is built on top of
it using HTTP. For this reason, we use the terms ‘web server’ and ‘HTTP
server’ interchangeably. The topmost protocol, JSON, is a recent addition
to the stack and it is typically used by modern web applications.

The protocols are complementary to each other: TCP is responsible for
establishing connections between two IP addresses and moving packets
between the two endpoints. Nowadays, HTTP is used as a common way
to access services (including web pages) behind URL addresses. It uses
TCP to transfer data between the client and an HTTP server. JSON is used
to encode data structures, such as lists and dictionaries, in a string that
can be sent easily over HTTP.

Imagine that you want to move a list of integers, for instance the
numbers 1, 2, 3, from a PyS60 program to a web service. This is depicted
in Figure 8.3, where the dark line represents the steps for sending and
receiving the list; information on the highlighted rows is handled by the
protocol written in the corresponding position on the dark line. You start
by encoding the list to a string using JSON. You pack the string in an HTTP
request which is targeted at a specific URL. After this, the HTTP client
library uses TCP to establish a connection to the server which hosts the
URL and sends the HTTP request over the newly established connection
to the server.

COMMUNICATION PROTOCOLS 167

Figure 8.3 Sending data from a client to a server using the full JSON/HTTP/TCP protocol stack

The server unfolds the protocols one by one. First, it accepts the
TCP connection, receives the HTTP request and finally it finds the JSON
message in the request. By decoding the JSON message, the server-side
application ends up with the original list.

This process required six steps in total – three on the client side and
three on the server side. In PyS60, however, you can send a request and
receive a response using this protocol stack in two lines of code. Take a
sneak peek at Example 86 and see the function json request.

In some cases, you do not need the full protocol stack. For example,
if you only need to transfer plain strings (note that any files can be
represented as strings or sequences of bytes), HTTP without JSON is
enough. If you do not have a web server already in place, JSON-
encoded strings over TCP, without the HTTP layer, might be a simple
and working solution. A simple solution like this is often agile, flexible
and robust by definition. There is no need to use the latest buzzword-
compliant, enterprise-level, middleware framework, if all you need is
a quick prototype for your newest killer application. In the following
sections, you see how the protocols are used in practice.

8.3.1 TCP Client
We start with a plain TCP client. If you only have access to a web server,
as in environment D above, you can skip this example and proceed to
Section 8.3.2.

168 MOBILE NETWORKING

On the server side, we use the server in Example 69. It is almost the
smallest sensible TCP server implementation in Python. Start the server
script as instructed in Section 8.2.4.

The TCP client, which runs on your phone, is in Example 70.

Example 70: TCP client

import socket

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.connect(("192.168.0.2", 9000))
out = sock.makefile("rw", 0)
print >> out, "Hi! I’m the TCP client"
out.close()
print "Client ok"

The endpoints in a TCP connection are called sockets. Logically, the
module socket includes the required Python interface. First, we create
a new socket object: It is initialized with two parameters which specify
the type of the protocol. The parameters used above specify a TCP
connection. You might remember that the socket object was introduced
in Chapter 7, where it was needed for RFCOMM communication.

The next line opens a connection to the server. You have to change
the IP address to correspond to your server’s real address – it is the
same one which you used in Section 8.2 to test the connection. If you
do not run the server script in port 9000, change the port number as
well.

On the S60 platform, it is possible to define multiple networking
profiles. For instance, you can have one profile for a wireless network at
home and another for a GPRS connection. Whenever you want to open
a network connection, you have to choose the profile through which the
connection is established.

By default, a popup menu, like the one in Figure 8.4 is shown auto-
matically by the function socket.connect(). If the dialog does not
include a desired profile, it has to be configured in the phone’s connec-
tivity settings. In PyS60, it is possible to define the default access point,
which prevents this dialog from opening (see Section 8.3.4).

Once the execution returns from the connect() function, a new
connection has been established successfully. If connect() raises an
exception, this is most often because of a wrong IP address or wrong port
or a firewall blocking the connection. If this happens, you should check
that your test environment works correctly by following the instructions
in Section 8.2.

For convenience, we make the new connection look like a file object
by calling the makefile() function. The parameter ‘rw’ specifies that
we can both read from and write to the socket. The connection object

COMMUNICATION PROTOCOLS 169

Figure 8.4 Access point selection dialog

out behaves exactly like its counterparts in the RFCOMM examples in
Chapter 7. If everything works correctly, you should see ‘Hi! I’m the TCP
client’ printed out on your server.

It is important to note that you cannot know how much data the other
side has sent, or is going to send, through the TCP connection. To handle
this situation, there are three alternatives:

• Read everything with the read() function without any parameters.
Reading continues until the other side closes the connection.

• Read a fixed number of characters (bytes) at time, for instance,
read(10) would read 10 bytes at most.

• Read a character at time until a character denoting the message end,
such as the new line character, is received. The standard readline()
function and the read and echo() function in Example 59 use this
approach.

In the previous examples, we have used the readline() approach
because of its simplicity. Typically a protocol that works on top of TCP,
such as HTTP and JSON, will take care of this issue internally.

8.3.2 HTTP Client
The modern web is a diverse and complex environment. Even though it
is possible, and actually quite easy, to load one web page from some
pre-defined site using a plain TCP connection, writing a generic library
which would work with any website would be a major effort.

170 MOBILE NETWORKING

However, as we saw in Section 8.1, PyS60 makes interacting with the
web really smooth, thanks to the urllib module that implements an
HTTP client in Python. That section presented many examples based on
the urllib module and many more will follow in Chapter 9.

8.3.3 JSON Client
From Python’s perspective, the TCP protocol only transfers strings
between hosts. The HTTP protocol transfers strings as well, but it includes
a simple method to encode key–value pairs, in practice a dictionary
object, to a request string using the urllib.urlencode() function.

Technically speaking, this should suffice for all applications – assuming
that every application finds a way to encode its internal data structures to
strings and back. However, as there is only a small number of basic data
structures, namely strings, numbers, Boolean values, lists and dictionaries,
it makes sense to provide a common way to encode them. This saves
you from the error-prone task of parsing data back and forth. JSON is a
solution to this task.

JSON is mainly used as a lightweight data interchange format between
client-side JavaScript code, which runs inside a web browser, and the
web server. The protocol is textual and pleasantly human-readable. The
encoding represents closely the way simple data structures are initialized
in the JavaScript code and also in Python. The official home page for
JSON is at http://json.org.

Several factors make JSON a nice companion to PyS60:

• It is a lightweight, human-readable protocol.

• Encoding and decoding can be performed with a single function call.

• The data types it supports map well to Python.

• You can use it to communicate both with PyS60 and web clients,
which simplifies server software.

• It is widely supported by many web frameworks, including Django,
TurboGears and Ruby on Rails, and by many web services, including
Yahoo! and Flickr, as you will see in Chapter 9.

The best way to understand JSON is to open the Python interpreter
on your PC and see how different encodings look like, for instance as
follows:

>> import json
>> json.write("hello world")
'"hello world"’
>> json.write({"fruits": ["apple", "orange"]})
'{"fruits": ["apple", "orange"]}’
>> json.write((1,2,3))
'[1,2,3]’

COMMUNICATION PROTOCOLS 171

>> json.read(json.write([1,2,3]))
[1,2,3]

To try this on your PC, open the Python interpreter on the same
directory where json.py, which you downloaded earlier from the book
website, resides.

As you can see, JSON encodes the data structures to strings almost
exactly as they are written in Python. Tuples are a notable exception as
they are not recognized by JSON and they are encoded as lists instead.
The last line shows that the string encoded by json.write() is decoded
back to the original data structure by the function json.read().

You can use JSON to save data structures in a file as well. As an
exercise, you can replace our ad hoc format for saving dictionaries in
Chapter 6 with JSON.

Next, we have a look at how to use JSON with HTTP. This example
uses a web service by Yahoo! to retrieve information which is encoded
in JSON. As this example relies on the Yahoo! API, which might have
changed since the book’s publication, you should first check that this
service is still available and works correctly. The following URL should
produce some output on your web browser:

http://developer.yahooapis.com/TimeService/V1/getTime?appid=
MobilePython&output=json

If it does, you can try out Example 71 on your phone.

Example 71: Yahoo! web service test

import urllib, json, appuifw, time

URL = "http://developer.yahooapis.com/TimeService/V1/" +\
"getTime?appid=MobilePython&output=json"

output = json.read(urllib.urlopen(URL).read())
print "Yahoo response: ", output
tstamp = int(output["Result"]["Timestamp"])

appuifw.note(u"Yahoo says that time is %s" % time.ctime(tstamp))

The web service is uninteresting: it just returns the current time. Web
services, such as this one, are accessed through normal urllib functions,
in the same way as any other resource on the web. The requested URL
specifies the service and its parameters.

In this case, the result is a string that includes a JSON-encoded dictio-
nary with contents that are specified in the Yahoo! API documentation.
If the example generates an error, it may be because of API changes
on the Yahoo! side. You can check the current documentation provided
by Yahoo! and try to fix the example. Chapter 9 will cover many more
examples like this one.

172 MOBILE NETWORKING

8.3.4 Setting the Default Access Point
After trying out the previous examples, you have seen that PyS60 shows
the access point selection menu, like the one in Figure 8.4, almost always
when a new network connection is about to be opened.

On some phone models, the menu is shown only the first time when a
network connection is opened on the PyS60 interpreter and the interpreter
must be restarted to choose another access point.

PyS60 provides the necessary functions, as a part of the socket
module, to set a desired access point programmatically. Example 72
shows the access point selection dialog and sets the default access point,
so the dialog will not be shown during subsequent connection attempts.

Example 72: Set the default access point

import socket

ap_id = socket.select_access_point()
apo = socket.access_point(ap_id)
socket.set_default_access_point(apo)

The function select access point() pops up the dialog and
returns the access point ID, ap id, that is chosen by the user. The
function access point() converts the ID to an access point object. The
returned object is then given to the function set default access
point(), which sets the default access point.

In Chapter 9, the EventFu and InstaFlickr applications show how these
functions can be used in practice. The PyS60 API documentation includes
some further examples of possible uses of these functions.

8.4 Server Software

The simple TCP server that was presented in Example 69 has a major
drawback: it can serve only one client at a time. If only a few clients
use the server, it is unlikely that several clients will try to connect to it
simultaneously and each client will get a response without a noticeable
delay. However, this approach does not scale.

Writing robust, secure and scalable server software from scratch is not
easy. Fortunately, in most cases you do not have to worry about this. If
you are experimenting with new ideas or you are making a prototype
for a restricted number of people, you can freely use any approach that
works, like the simple TCP server above. However, keep security in mind
in these cases as well – a protected intranet or a correctly configured
firewall keeps you safe with only little additional effort.

Remember that everything sent by TCP, HTTP or JSON is directly
readable by anyone who can tap into the network you use. If you use an

SERVER SOFTWARE 173

open or weakly encrypted WiFi network, capturing the traffic is especially
straightforward. Do not rely on passwords sent over these protocols and
do not assume that requests always originate from a trusted client.

PyS60 supports Secure Socket Layer (SSL) and Secure HTTP (HTTPS).
These protocols are a must if you need to transfer any sensitive informa-
tion. More information about these protocols can be found in the PyS60
API documentation.

If you are building a production system or you are about to release
your code to the public, it is usually a good idea to rely on an existing
server framework, such as Twisted. An even easier approach is to make
your server available as a web service, so you can rely on any web
framework, such as Django or Ruby on Rails, for security, scalability and
other advanced features.

8.4.1 JSON Server
In this section, we extend Example 69 to do something useful. Technically,
Example 73 demonstrates how to use JSON over plain TCP. The example
consists of a client program that runs on your phone and simple server
software that runs on your server.

The phone client lets the user take named photos which are auto-
matically sent to the server. The photo is taken immediately when the
name dialog closes. You can easily add a viewfinder to this program, for
instance, based on Example 34.

Example 73: JSON photo client

import json, socket, camera, appuifw

PHOTO_FILE = u"E:\\Images\\temp.jpg"

def send_photo(name, jpeg):
msg = {"jpeg": jpeg, "name": name}
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.connect(("192.168.0.2", 9000))
out = sock.makefile("w")
out.write(json.write(msg))
out.close()

while True:
name = appuifw.query(u"Photo name", "text")
if not name:

break
print "Taking photo.."
img = camera.take_photo(size = (640, 480))
img.save(PHOTO_FILE)
jpeg = file(PHOTO_FILE).read()
print "Sending photo.."
send_photo(name, jpeg)
print "Photo sent ok"

print "Bye!"

174 MOBILE NETWORKING

The function send photo() is given the JPEG contents of the newly
taken photo and the photo’s name. These parameters are placed in a dic-
tionary called msg. The dictionary is then encoded to a string using func-
tion json.write() and the string is sent over TCP. With JSON, dictio-
naries provide a handy way to construct protocols of your own. The JSON
gateway, which is presented in Section 8.6, provides an example of this.

The server-side code for the photo repository extends Example 69.

Example 74: JSON photo server

import SocketServer, json

class Server(SocketServer.TCPServer):
allow_reuse_address = True

class Handler(SocketServer.StreamRequestHandler):
def handle(self):

msg = json.read(self.rfile.read())
fname = msg["name"] + ".jpg"
f = file(fname, "w")
f.write(msg["jpeg"])
f.close()
print "Received photo %s (%d bytes)" % (fname, len(msg["jpeg"]))

server = Server((’’, 9000), Handler)
print "WAITING FOR NEW CONNECTIONS.."
server.serve_forever()

First, the request handler function handle() receives all data from
the TCP connection until it is closed by the client. This is done with
self.rfile.read(), where self refers to the Handler object and
rfile to a file-like object inside it that represents the open TCP connec-
tion (’r’ in ‘rfile’ stands for reading).

The client has encoded the data with JSON, so we decode it here with
json.read(), which returns the dictionary created by the client. The
JPEG data is written to a file using the provided file name. You can check
that the image is transferred correctly by opening the JPEG file with your
favorite image viewer.

Note that, to be more secure, the server would have to check the file
name in msg["name"] to make sure that the client cannot overwrite any
previous files or write images to inappropriate locations on your hard disk.

8.4.2 HTTP Server
Some of the following examples require a working web server. If you
have already installed a web server and you have a working web back
end, such as PHP, Ruby On Rails or TurboGears, to handle requests, you
can use it – this applies also to environment D. You should be able to
port the server-side examples to your framework of choice without too
much effort.

SERVER SOFTWARE 175

If you do not have such a back end already in place, now is a
good time to install one! However, if you want to get into action
quickly, a simple web server with a naı̈ve request-handling mechanism
is provided. The code relies on two HTTP server modules in Python’s
standard library, BaseHTTPServer and SimpleHTTPServer, which
implement a rudimentary HTTP server.

The HTTP server example is divided into two parts. Example 75
implements a generic web server that is re-used in later examples.
Example 76 shows simple request handlers that demonstrate the server
usage. The later examples implement their own functions. You should
combine the generic web server (Example 75) and example-specific
functions to make the full server.

Example 75: HTTP server

import BaseHTTPServer, SimpleHTTPServer, cgi, traceback, json

class Server(BaseHTTPServer.HTTPServer):
allow_reuse_address = True

class Handler(SimpleHTTPServer. SimpleHTTPRequestHandler):

def do_POST(self):
try:

size = int(self.headers["Content-length"])
msg = json.read(self.rfile.read(size))
reply = process_json(msg)

except:
self.send_response(500)
self.end_headers()
print "Function process_json failed:"
traceback.print_exc()
return

self.send_response(200)
self.end_headers()
self.wfile.write(json.write(reply))

def do_GET(self):
if '?’ in self.path:

path, query_str = self.path.split("?", 1)
query = cgi.parse_qs(query_str)

else:
path = self.path
query = {}

try:
mime, reply = process_get(path, query)

except:
self.send_response(500)
self.end_headers()
print >> self.wfile, "Function process_query failed:\n"
traceback.print_exc(file=self.wfile)
return

176 MOBILE NETWORKING

self.send_response(200)
self.send_header("mime-type", mime)
self.end_headers()
self.wfile.write(reply)

When a web browser requests a URL from this server, the function
do GET is called. First, the function checks whether the URL contains
any parameters, specified after a question mark. If it does, the parameters
are parsed into the dictionary query with function cgi.parse qs().
Otherwise, query parameters are initialized with an empty dictionary.

According to the HTTP specification, GET requests must not change
the internal state of the server. All information which affects the server is
sent in POST requests and encoded in JSON. Replies to the POST requests
are also encoded in JSON.

Example 76: Simple request handlers for the HTTP server

def process_json(msg):
return msg

def process_get(path, query):
return "text/plain", "Echo: path '%s’ and query '%s’" % path, query)

def init_server():
print "Server starts"

init_server()
httpd = Server((’’, 9000), Handler)
httpd.serve_forever()

Each example may perform example-specific initialization in the func-
tion init server().

The requests are handled by the functions process get() and
process json(). The function process get() is given two param-
eters: the requested path from the URL (path) and the parsed parameters
(query). The actual task performed by the function depends on the
example. The function returns two values: the MIME type of the response,
which tells whether the response contains, for example, HTML, plain text
or an image, and the actual response in a string that is sent back to the
requester. The requester is typically a web browser.

The function process json() is given the decoded JSON request
as a sole parameter. It may return any Python data structure that is then
encoded in JSON and returned to the requester. The requester is typically
a PyS60 program.

Each of the following examples, which require a web server, provides
its own init server(), process get() and process json()
functions to handle tasks specific to that particular example. With each
example, you should replace these functions in the web server code
accordingly.

PUSHING DATA TO A PHONE 177

As with the TCP server, you can pick another port for the server instead
of the default, 9000. Once the above code is running on your server,
you can try to connect to it with a web browser on your PC and on
your phone. The address is of the form http://192.168.0.2:9000/test/,
where the IP address corresponds to that of your server. If everything goes
well, the browser shows an echo message with the requested path and
parameters.

8.4.3 Advanced Topics in Networking

So far, we have focused on using the phone as a network client. Tradition-
ally, this has been the default role for a mobile device, and the operator’s
data centers have taken care of serving information. Technically, once a
mobile device has an IP address there is no reason that it could not act as
a server as well. After all, a server is just one of the two equal endpoints
in the TCP connection.

Conceptually, reversal of the mobile device’s role from an information
consumer to a producer is a small revolution. Information produced by
your phone is qualitatively different from a typical website. In contrast
to a web page, your phone produces information that is bound to time,
location and a specific person.

In the next three sections, we see how PyS60 can be used to make the
phone a more active information consumer, as well as a producer for the
Internet.

8.5 Pushing Data to a Phone

The socket module provided by PyS60 closely resembles its sibling
on the server side. The module contains functions for listening to a
port for incoming TCP connections (functions bind(), listen() and
accept()). With these functions you can create a simple TCP server
and run it on a phone as you would do on a PC (Figure 8.5).

8.5.1 Drawbacks with using a Phone as a Server

However, three issues tend to make life difficult for phone-based servers:

• Unless the phone stays in one location all the time, its IP address is
likely to change when the phone moves from one network to another.
Clients must be kept updated on the mobile server’s most recent IP
address; fortunately, this is possible with several methods.

• Typically, operators do not allow inbound connections over the GSM
or 3G network to the phone, because of security and other reasons.

178 MOBILE NETWORKING

Figure 8.5 Pushing data to a phone

• Even though server-side sockets are supported by PyS60, there is only
limited support for handling multiple simultaneous connections on
the phone side. Thus, scaling up performance of a server-on-a-phone
is not an easy task.

Within a small, local WiFi network these issues might not be issues at
all. Thus, it is possible to perform local experimentation on phone-side
server software. However, beware that this aspect of PyS60 has received
less testing than other, more widely used modules and thus you may find
some bugs still lurking in PyS60.

In such a setting, it is important to know the phone’s IP address (see
Example 77).

Example 77: Phone’s IP address

import socket
ap_id = socket.select_access_point()
apo = socket.access_point(ap_id)
apo.start()
print "PHONE IP IS", apo.ip()

The above three points affect all PyS60 programs that rely on external
events that are delivered by the network, including multiplayer games,
email clients and real-time chat applications. In all these cases, an
external entity, such as a game server, must push some information to the

PUSHING DATA TO A PHONE 179

phone. Since listening for incoming connections on the phone is often
not feasible, because of the above issues, it is necessary to consider other
approaches.

There are two common workarounds: the phone may poll the server
at regular intervals and check whether there is new information to be
processed or the phone may open a TCP connection to the server and
keep it open so that the server can push information by way of this
persistent pipe back to the phone.

The main problem with the former approach is that if the polling
interval is too short, say less than a minute, continuous polling is likely to
drain the phone’s battery. The biggest issue with the latter approach is that
it does not work with HTTP. According to the current HTTP specification,
HTTP requests always originate from the client, so a server running on
the phone cannot initiate the connection.

8.5.2 Voting Service

In this section, the polling approach is demonstrated using HTTP. This
example implements a voting service. The server initiates a poll, which
consists of several choices. The phone client is allowed to set a vote to
one of the choices, within a certain time period that is reserved for voting.
Once the voting time has expired, a popup reports the winner on the
phone screen. Progress of voting can be followed on a web page in real
time.

You should combine the example below with the basic HTTP server
in Example 75 to make the full server. These lines should come after
the main server. If you are familiar with some web framework, such as
Ruby on Rails or Django, you can easily re-implement the server logic in
Example 78 using your favorite framework. You can use the phone client
in Example 79.

Example 78: Voting server

import time, json

def init_server():
global title, choices, already_voted, started
started = time.time()
already_voted = {}
title = u"What shall we eat?"
choices = {u"Tacos": 0,\

u"Pizza": 0,\
u"Sushi": 0}

print "Voting starts"

def vote_status():
voting_closed = time.time() - started > 60
results = []

180 MOBILE NETWORKING

for choice, count in choices.items():
results.append((count, choice))

return voting_closed, max(results)

def process_json(query):
voting_closed, winner = vote_status()
if voting_closed:

return {"closed": True, "winner": winner}

msg = ""
if "choice" in query:

if query["voter"] in already_voted:
msg = "You have voted already"

else:
choices[query["choice"]] += 1
already_voted[query["voter"]] = True
msg = "Thank you for your vote!"

return {"title": title, "winner": winner,\
"choices": choices, "msg": msg}

def process_get(path, query):
voting_closed, winner = vote_status()
msg = "<html><body><h1>Vote: %s</h1>
" % title
for choice, count in choices.items():

msg += "%s %d
" % (choice, count)

if voting_closed:
msg += "<p><h2>Voting closed.</h2></p>"
msg += "<h1>The winner is: %s</h1>" % winner[1]

else:
msg += "<h2>%d seconds until closing</h2>" %\

(60 - (time.time() - started))

return "text/html", "%s</body></html>" % msg

init_server()
httpd = Server((’’, 9000), Handler)
httpd.serve_forever()

The function init server() initiates the vote. The starting time of
the vote is saved in the variable started. The dictionary already
voted includes the IMEI from the phones which have already cast a
vote. The variable title gives the name of the vote and the dictionary
choices holds the candidates with the number of votes they have
received thus far.

The function vote status() is used to determine the status of
the vote. The variable voting closed is false as long as fewer than
60 seconds have elapsed since the vote started, after that, the variable
becomes true. Then, we loop over the choices dictionary to determine
who is now leading the vote.

We build a list of tuples, so that the number of votes is the first item in
the tuple and the candidate name is the second item. From this list, the
standard function max() returns the tuple in which the first item has the

PUSHING DATA TO A PHONE 181

largest value, hence, the second item in this tuple contains the current
leader.

The function process json() handles requests from the phone
clients. If the vote has already expired, the function returns immediately
and informs the requester about this. Otherwise, if the request query
includes the keyword ‘choice’, the client wants to cast a vote. The vote
is cast only if this voter has not cast a vote before; that is, the phone IMEI
does not exist in the dictionary already voted. The function returns
a message that contains all relevant information about the vote and its
current status.

The function process get() handles requests from the web brow-
ser. Any request produces a web page which shows the current status of
the vote. In a more sophisticated web framework, the HTML code would
probably be generated using an external template.

The client code is in Example 79. Remember to change the URL to
point at your server.

Example 79: Voting client

import sysinfo, urllib, json, appuifw, e32

URL = "http://192.168.0.2:9000"
imei = sysinfo.imei()

def json_request(req):
enc = json.write(req)
return json.read(urllib.urlopen(URL, enc).read())

def poll_server():
global voted_already
res = json_request({"voter":imei})
votes, winner = res["winner"]

if "closed" in res:
appuifw.note(u"Winner is %s with %d votes" % (winner, votes))
lock.signal()
return False

elif not voted_already and "title" in res:
appuifw.app.title = u"Vote: %s" % res["title"]
names = []
for name in res["choices"]:

names.append(unicode(name))
idx = appuifw.selection_list(names)
if idx == None:

lock.signal()
return False

else:
res = json_request({"voter":imei, "choice":names[idx]})
appuifw.note(unicode(res["msg"]))
voted_already = True
print "Waiting for final results..."

else:

182 MOBILE NETWORKING

print "%s has most votes (%d) currently" % (winner, votes)

e32.ao_sleep(5, poll_server)
return True

voted_already = False
lock = e32.Ao_lock()
print "Contacting server..."
if poll_server():

lock.wait()
print "Bye!"

The client contains two functions: json request(), which encodes
a message in JSON, sends it to the server and returns the server reply that
is decoded from a JSON message.

The function poll server() contains the program logic. It starts by
sending a request to the server that includes the phone’s IMEI to identify
the phone. The response from the server is assigned to the variable res.
From the client’s point of view, there are three modes:

• The vote is closed, in which case the server response res includes the
key ‘closed’. In this case, the program shows a popup note declaring
the winner and exits.

• The vote is ongoing and the user has already cast a vote. In this case,
the current status of the vote is printed out on the console.

• The vote is ongoing and the user has not cast a vote yet. In this case, a
selection list is shown that presents the choices and lets the user cast
a vote. The choice made by the user is then sent to the server.

The current mode is determined by the response message, res. If the
vote is still ongoing, the e32.ao sleep() function is used to call the
function poll server() again after a five-second interval. This way,
the client receives the status of the vote from the server almost in real
time.

To test this service, start the server software on your server. Once the
server is running, you can connect to it with your web browser – the
address can be found in the client’s URL constant. A web page should
open that shows the initial status of the vote. Refresh the page every now
and then to see the latest status of the vote.

Then, open the client program on your phone and cast a vote for one
of the candidates. After this, you can follow progress of voting on the
PyS60 interpreter console, until the voting time expires and a popup note
is shown that declares the winner. If you have several phones available,
any number of phones can cast a vote, but only once per phone.

PEER-TO-PEER NETWORKING 183

8.6 Peer-to-Peer Networking

The previous examples have been built on the client–server architecture:
the roles of the client and the server have been distinct. The client–server
architecture makes sense if the service requires a common ‘shared mem-
ory’ or some other common resource, which is maintained by the server
and accessed by the clients. In the voting example, the server maintained
the status of voting, which can be seen as an instance of ‘shared memory’.

However, think of an instant messaging service or a game of chess
between two players. In the former case, the service has no shared state
or memory; individual messages are passed back and forth. In the latter
case, the state of the shared chess board is easily maintained by both the
clients (players) separately. These programs could work without a central
server. The communication takes place only between individual phones
in a peer-to-peer manner (Figure 8.6).

Figure 8.6 Peer-to-peer networking

The issues related to server-side sockets on the phone also apply
to peer-to-peer networking, making universal real peer-to-peer services
difficult to implement. By real peer-to-peer networking we mean that the
phones are able to communicate directly with each other, without help

184 MOBILE NETWORKING

from any central server. The Bluetooth chat example in Section 7.3 was
a real peer-to-peer application in this sense.

Many WiFi-enabled phones support ad hoc networking. In ad hoc
mode, the phones form a WiFi-network among themselves without help
from a base station. In ad hoc networks, real peer-to-peer communication
is possible but you have to find a way to assign IP addresses to the
participating phones. You can use ad hoc networks in PyS60 by defining
an access point in ad hoc mode in the phone’s connectivity settings and
choosing this access point for networking in PyS60.

If we accept a little help from a server, peer-to-peer networking
becomes much more feasible. For instance, this approach is used by
Skype and BitTorrent protocols. In the following discussion, we present
an approach for peer-to-peer networking with mobile phones that relies
on a central server. However, this server is not application-specific.
Instead, it is designed to facilitate communication between phones.

Since the server, actually a gateway, is generic in nature, you can
use it to build various services in which phones communicate in a
peer-to-peer manner. Note that even though Examples 80 and 81 do
their jobs properly, probably better alternatives exist for real production
environments. For example, have a look at Jabber and the XMPP protocol
to see a similar and extensively field-tested, approach.

8.6.1 JSON Gateway
We implement a server (actually, a gateway) that acts as a middle man
between phones. Since the gateway runs on your PC (or on some external
server), you need to have Python installed there as well. Phones may
send any JSON messages to each other, by way of the gateway. With this
gateway, it is possible to implement peer-to-peer networking in PyS60.

In technical terms, the gateway works as follows:

• Each client maintains a persistent TCP connection to the central server.

• When a client opens a new connection to the server, it registers itself
with a unique name.

• A client sends a message to the server, which includes the recipient’s
registered name.

• The server pushes the message to the recipient’s open TCP connection.

In Section 8.5, we listed three hindrances to building a server on the
phone side. This approach neatly solves, or evades, those issues: changing
IP addresses are not an issue since addressing works by registered names,
not by IP addresses; firewalls and NAT devices are not a problem,
since the client always initiates the connection to the server and not
other way around; the phone does not have to handle multiple sockets

PEER-TO-PEER NETWORKING 185

simultaneously: Messages from all peers are received through a single
connection.

We implement a generic JSON message gateway over TCP. You can
use this gateway to implement various peer-to-peer applications. If you
want to get right into implementing enterprise-level, process-management
applications, multiplayer games and collaborative art, you can skip the
following explanation of the internals of the gateway. However, the server
is not complex and, once you get familiar with it, you can extend it for
your own purposes easily.

Conceptually, the code is simple. It works as follows:

New Connection:
Register Client.
Serve forever:

Read message, including recipient.
Client wants to close the connection? Close.
Otherwise, push the message to the recipient.

Unfortunately, the implementation looks a bit more intricate. This is
because it has to handle multiple TCP connections simultaneously, in con-
trast to the previous example servers. Moreover, as this code implements
a generic service, instead of a single, simple application, extra attention
has been paid to error handling compared to the previous examples.

The gateway uses the following protocol for messaging: each message
is a dictionary, encoded in JSON; dictionary keys are strings; keys that
have an exclamation mark as the first character are reserved for the gate-
way protocol. The application is free to use any other strings as keys for
its internal communication. The following keys are used by the gateway:

• !name – Register the client with this name.

• !close – Close the connection.

• !dst – Forward message to the named recipient.

The implementation is based on the standard TCP server, but it is spiced
up with SocketServer.ThreadingMixIn, which modifies the server
behavior so that each client is handled in a separate thread of execution.
The result is that multiple connections can be handled simultaneously,
but we must be extra careful that the threads do not mess up each other.

The gateway code is divided into two parts. You should combine them
to make the final application. The first part, Example 80, introduces some
core data structures and the client registration mechanism.

Example 80: Generic JSON gateway (1/2)

import SocketServer, threading, json

conn = {}

186 MOBILE NETWORKING

conn_lock = threading.Lock()

class ThreadingServer(SocketServer.ThreadingMixIn,
SocketServer.TCPServer):

allow_reuse_address = True

class Handler(SocketServer.StreamRequestHandler):
def handle(self):

print "A new client connected", self.client_address
msg = json.read_stream(self.rfile)
if "!name" in msg:

name = msg["!name"]
wlock = threading.Lock()
conn_lock.acquire()
conn[name] = (wlock, self.wfile)
conn_lock.release()
print "Client registered (%s)" % name
reply = {"ok": u"registered"}
self.wfile.write(json.write(reply))
self.wfile.flush()

else:
reply = {"err": u"invalid name"}
self.wfile.write(json.write(reply))
return

handle_connection(self, name)

The core of the server is the dictionary conn, which is shared by all
handler threads. It maps registered names to the corresponding connec-
tions. Any phone that wants to participate in peer-to-peer networking
must open a connection and register a name with the server.

Since multiple threads may add and remove keys from the dictionary
in parallel, its integrity must be protected with a lock (conn lock). A
thread may access the dictionary only when it has acquired the lock.
To make the access mutually exclusive, the lock can be held by only
one thread at a time. Do not worry if locking issues confuse you. It is a
notoriously difficult subject.

When a new client connects to the gateway, it first sends a message
containing the key ‘!name’ to it. This key maps to a name that identifies
this phone. Note that the gateway does not check whether another phone
with the same name has registered already. The gateway just blindly
replaces the old connection with a new one. The gateway sends a reply
containing the key ‘ok’ to the client if registration was successful.

This means that anyone can hijack an existing connection to the
gateway and pretend to be the original phone. If the gateway was to
be used in an uncontrolled setting, some other approach for handling
already registered names would need to be implemented. This protocol
is not meant for secure communication.

Example 81: Generic JSON gateway (2/2)

def handle_connection(self, name):

PEER-TO-PEER NETWORKING 187

while True:
try:

msg = json.read_stream(self.rfile)
except:

msg = {"!close": True}

if "!close" in msg:
print "Client exits (%s): %s" % name, self.client_address)
conn_lock.acquire()
if name in conn:

del conn[name]
conn_lock.release()
break

elif "!dst" in msg:
wfile = None
conn_lock.acquire()
if msg["!dst"] in conn:

wlock, wfile = conn[msg["!dst"]]
conn_lock.release()
if wfile:

wlock.acquire()
try:

wfile.write(json.write(msg))
wfile.flush()

finally:
wlock.release()

server = ThreadingServer((’’, 9000), Handler)
print "JSON gateway is running!"
print "Waiting for new clients..."
server.serve_forever()

The second part of the gateway contains the function handle con-
nection(), which is used to handle a connection between a sin-
gle phone and the gateway. Note that, because of threading, many
handle connection() functions are active simultaneously in the
gateway, each handling an individual phone.

Multiple clients may want to push a message to the same client at
the same time. Since separate messages must not be mixed up in the
connection, only one thread may write to a connection at once. This is
ensured by a connection-specific lock, wlock.

Note that messages are read with the function json.read stream
instead of json.read, which has been used in the previous examples.
This function parses a message byte by byte from the connection and
blocks until it has completely read one message. With this function,
the client can use a single permanent connection to send and receive
multiple messages.

The server is oblivious to errors in message sending. If the recipient
moves away, say, from a WiFi hotspot while a message is being sent, the
message is quietly lost. This also happens if the recipient for a message is
unknown. Thus, any application using this gateway must understand that
any message may be silently lost.

188 MOBILE NETWORKING

If an error occurs while a message is being read, the gateway deregisters
the client, assuming that it has lost its network connection and will re-
connect when a network becomes available again. However, note that if
another client registers to the gateway using the same name, subsequent
messages will be routed to this new, possibly malicious, client.

This server is run in a similar way to the previous example servers,
such as the simple TCP server (Example 69). Naturally, you need to start
the server before any phones can start to communicate with each other.

The gateway server can easily be extended with new features. For
example, it might be useful to be able to distribute a message to multiple
recipients. Broadcasting like this should not be difficult to implement:
Just add a new protocol key, say "!broad" and loop through the conn
dictionary, pushing the message to each active connection.

8.6.2 Instant Messenger

A natural application for peer-to-peer communication is instant messag-
ing. With this application, any number of phones can take and send
photos and short text messages to each other over the Internet or a
local wireless network. If all participants have WiFi-capable phones and
they use a free wireless LAN, you can use this application to share an
unlimited number of photos and text messages with your friends at no
cost!

Technically, this example shows how to build applications on top of the
JSON gateway. The example presents a generic client-side counterpart for
the JSON gateway, which can easily be used by peer-to-peer applications
of your own.

This code also exemplifies how to handle network events in an asyn-
chronous manner in PyS60 using threads. We do not explain threading in
detail in this book, but you can use the following functions in applications
of your own. As a non-trivial exercise, you could make the Bluetooth
chat application in Section 7.3 asynchronous by modifying the instant
messenger code to use Bluetooth for communication.

The example is divided into three parts. Example 82 contains the re-
usable communication infrastructure. Examples 83 and 84 are related to
the user interface of the instant messaging application. As usual, you
should combine these three parts to make the final application.

Example 82: Instant messenger (1/3)

import appuifw, e32, camera, thread, socket, json, graphics
SERVER = ("192.168.0.2", 9000)

def send_message(msg):
global to_server
try:

PEER-TO-PEER NETWORKING 189

to_server.write(json.write(msg))
to_server.flush()
thread_handle_message({"note": u"Message sent!"})

except Exception, ex:
print "Connection error", ex
to_server = None

def read_message():
global to_server
try:

msg = json.read_stream(to_server)
thread_handle_message(msg)

except Exception:
print "Broken connection"
to_server = None

def connect():
global to_server, keep_talking, conn
conn = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
conn.connect(SERVER)
to_server = conn.makefile("rw", 8192)
send_message({"!name": me})
ret = json.read_stream(to_server)
if "err" in ret:

thread_handle_message({"note": u"Login failed"})
thread_show_note(u"Login failed: %s" % ret["err"], "error")
keep_talking = False
raise "Login failed"

else:
thread_handle_message({"note": u"Login ok"})

def communicate():
global to_server, keep_talking, thread_send_message, app_lock
thread_send_message = e32.ao_callgate(send_message)
to_server = None
while keep_talking:

if to_server:
read_message()

else:
try:

connect()
thread_handle_message({"note": u"Waiting for\

messages..."})
except:

print "Could not connect to server"
to_server = None
if keep_talking:

e32.ao_sleep(10)
if conn:

conn.close()
if to_server:

to_server.close()

The combination of an interactive user interface and asynchronous,
two-way communication with a server is a tricky one. The application
must listen to both the user and the server simultaneously, as either of
them may need attention at any time.

190 MOBILE NETWORKING

To fulfill this need, the communication infrastructure is run in a
separate thread from the UI. Thus, this example uses two threads: the
main thread that handles the UI and the communication thread that
communicates with the JSON gateway. As with the gateway code, above,
extra attention is needed to keep the threads from messing each other up.

Thecoreof thecommunication thread is the functioncommunicate().
It keeps waiting for incoming messages in an infinite loop until the appli-
cation quits. Each iteration begins with a check that the connection is still
alive. If it is not, the function connect() is called which tries to regis-
ter the client to the gateway. If the registration fails, it will be tried again
after a ten-second delay. Remember to change the SERVER constant in
Example 82 to point at the actual server that is running the JSON gateway.

Once the connection has been set up, the function read message()
is used to receive a new message. When a new message arrives, it is
processed by an application-specific function, thread handle
message(). This function is actually a wrapper, produced by the
e32.ao callgate() function, for the function handle message().

A wrapper like this is needed whenever a thread must call a function
that accesses low-level resources, such as network connections (sockets)
or the user interface, which have been initialized by another thread.

In this case, handle message() is used to access some UI resources,
for instance, appuifw.note(), which have been initialized by the main
thread. Similarly, the function send message() is wrapped to the func-
tion thread send message() which lets the main thread access the
connection to the server, which is owned by the communication thread.

Sharing resources between threads is a complicated matter. Often, it
is a good idea to avoid using threads in the first place because of these
difficulties. If your application really needs them, the best idea is to re-use
designs that have been proven to work before.

To re-use this communication infrastructure, namely functions read
message(), send message(), connect() and communicate(),
in another application, you have to replace the function handle
message() with an application-specific handler.

Example 83 shows the message handler function handle message()
for the instant messenger.

Example 83: Instant messenger (2/3)

def show_photo(jpeg_data):
global img
f = file("E:\\Images\\msg.jpg", "w")
f.write(jpeg_data)
f.close()
img = graphics.Image.open("E:\\Images\\msg.jpg")

def handle_message(msg):
global text, note

PEER-TO-PEER NETWORKING 191

if "photo" in msg:
show_photo(msg["photo"])
text = {"from": msg["from"], "txt": ""}

elif "txt" in msg:
text = msg

elif "note" in msg:
note = msg["note"]

redraw(None)

def send_photo():
handle_message({"note": u"Taking photo..."})
dst = appuifw.query(u"To", "text")
img = camera.take_photo(size = (640, 480))
img = img.resize((320, 240))
img.save("E:\\Images\\temp.jpg")
jpeg = file("E:\\Images\\temp.jpg").read()
handle_message({"note": u"Sending photo..."})
thread_send_message({"!dst": dst, "photo": jpeg, "from": me})

def send_text():
resp = appuifw.multi_query(u"To", u"Message")
if resp:

dst, txt = resp
thread_send_message({"!dst": dst, "txt": txt, "from": me})

This part of the application contains many functions related to graphics
and the user interface that are already familiar to you from previous
examples. The application has to handle four tasks:

• The user may take and send a photo through the ‘Send photo’ menu
item. This task is handled by the function send photo().

• The user may send a text message through the ‘Send text’ menu item.
This task is handled by the function send text().

• The user may receive a photo from another user. The incoming
message is first handled in handle message() which calls the
function show photo() to prepare the received photo for showing.

• The user may receive a text from another user. The incoming message
is first handled in handle message(), as above, and the function
redraw() shows the received message on the canvas.

Note that both the send functions use the function thread send
message() to pass a new message to the networking thread. This
function is a wrapper for the function send message() which actually
sends the message to the gateway. As required by our JSON gateway, the
"!dst" key is used to define the recipient’s name in a message.

Example 84: Instant messenger (3/3)

def quit():
global keep_talking, to_server, conn

192 MOBILE NETWORKING

keep_talking = False
thread_send_message({"!close": True})
app_lock.signal()

def redraw(rect):
RED = (255, 0, 0)
GREEN = (0, 255, 0)
BLUE = (0, 0, 255)

canvas.clear((255, 255, 255))
if img:

canvas.blit(img, scale = 1)
if note:

canvas.text((10, canvas.size[1] - 30), note,\
fill = RED, font = "title")

if text:
canvas.text((10, 80), u"From: %s" % text["from"],\

fill = GREEN, font = "title")
canvas.text((10, 110), unicode(text["txt"]),\

fill = BLUE, font = "title")

img = text = note = None
keep_talking = True
thread_handle_message = e32.ao_callgate(handle_message)
appuifw.app.exit_key_handler = quit
appuifw.app.title = u"Instant Messenger"
appuifw.app.menu = [(u"Send Photo", send_photo),\

(u"Send Text", send_text)]

canvas = appuifw.Canvas(redraw_callback = redraw)
appuifw.app.body = canvas

me = appuifw.query(u"Login name", "text")
handle_message({"note": u"Contacting server..."})
if me:

app_lock = e32.Ao_lock()
thread.start_new_thread(communicate, ())
if keep_talking:

app_lock.wait()

In this last part of the application, there are two new functions, which
have not been used earlier in this book. The function e32.ao call-
gate() was discussed above. The function thread.start new
thread() is used to start the function communicate() in another
thread of execution.

This means that the while loop in the function communicate(),
which is responsible for receiving incoming messages, keeps on going in
the background although events related to the user interface are handled
in the main thread.

You can test this application by sending messages to yourself. Just log
in with an arbitrary name, for instance ‘Matt’, choose ‘Send Photo’ in the
application menu and as the recipient, write ‘Matt’. Almost immediately,
after the message has made a round-trip to the JSON gateway, the photo
should appear on your phone’s screen.

USING A PHONE AS A WEB SERVICE 193

8.7 Using a Phone as a Web Service

Accessing the phone’s resources by way of the web is a ‘bleeding-
edge’ approach that might be used as a springboard for many kinds of
unprecedented applications.

We have already seen some examples where a PyS60 program fetches
some information from the web. Many more examples along these lines
follow in Chapter 9. In this section, however, we consider the opposite
case: the phone could serve information to the web (see Figure 8.7).

Figure 8.7 Phone providing a web service

Think about various possibilities: for example, you could take a photo
with someone else’s camera phone from a web page, you could request
the phone’s holder in real time to take a photo for you or your mobile
website could list people around you at that moment, based on Bluetooth
scanning.

Apache, the world’s most popular web server, has been ported to the
S60 platform so one can experiment with scenarios like this. You could
use Mobile Web Server (MWS) to implement the above scenarios. You can
even use PyS60 to write extensions and request handlers for the server.
You can find the MWS home page at http://opensource.nokia.com/
projects/mobile-web-server/.

Here, however, we show you how to serve resources of your mobile
phone to the web in pure PyS60. Compared to MWS, this approach is
more flexible since you can control every part of the server. On the other

194 MOBILE NETWORKING

hand, in some settings this approach may require much more work, since
you have to control every part of the server. Anyway, it is good to know
that the basic task is not really complex, as Example 86 shows.

The ‘Phone as a web server’ scenario is not different from the
other phone-server scenarios which have been discussed in Sections 8.5
and 8.6. Generally speaking, one cannot connect to the phone directly
from the Internet. There are two options: either use a web proxy, to which
the phone pushes information or have a gateway which routes HTTP
requests to the phone, in a similar way to the JSON gateway.

We give an example of the proxy approach. A proxy server receives
HTTP requests from the web and saves them until the phone polls the
server for new requests. The proxy caches responses sent by the phone,
so the web clients get a response without any delay.

Since web clients are not directly in contact with the phone, this
approach scales well. Also, the proxy can handle a cluster of phones in
the background. Requests can be directed to a specific phone based on
the URL or the proxy can balance requests between the phones.

It is even possible to construct an on-demand web service, where only
those phones which have access to a requested resource, for instance,
those in a specific location, respond to the requests. Although this might
sound extremely sophisticated, you have already learnt enough to do it
by yourself, based on Example 85 and positioning techniques presented
in Section 6.4.

The proxy is based on the simple HTTP server that is described in
Section 8.4.2. As before, you should be able to port this example to any
web framework of your choice with relative ease, instead of using our
toy HTTP server. The web server functions are elegantly simple as all the
processing is done on the phone side.

Example 85: Phone–web proxy

def init_server():
global phone_req, cache
phone_req = {}
cache = {}

def process_json(msg):
global cache
cache = msg
return phone_req

def process_get(path, query):
phone_req[path] = True
if path in cache:

return cache[path]
return "text/plain",\

"Your request is being processed."\
"Reload the page after a while."

USING A PHONE AS A WEB SERVICE 195

init_server()
httpd = Server((’’, 9000), Handler)
httpd.serve_forever()

The phone both delivers responses to previous requests and fetches new
ones using JSON messages that are handled by the process json()
function. Requests by the web browser are handled in the process
get() function. If the requested resource is not available in the cache, a
brief message is returned that informs the user about this.

You should combine this example with the basic HTTP server in
Example 75 to make the full proxy server. These lines should come after
the main server.

On the phone side, we make some resources of the phone available to
the proxy, namely the camera, screenshots and the battery indicator. In
other words, you can use the phone’s camera and see its current screen
and the battery level on the web browser! It is really straightforward to
add more resources to be shared by the phone.

If this sounds unbelievable to you, just see Figure 8.8. The screenshot
showing on the browser is not a static image, but is generated by this
example on the fly as requested by the web browser. Amusingly, the
screenshot captured some log lines printed out on the console which
were caused by the screenshot request itself.

Figure 8.8 The phone’s screen as viewed in a web browser

196 MOBILE NETWORKING

Example 86: Phone–web server

import e32, json, camera, graphics, sysinfo, urllib

URL = "http://192.168.0.2:9000"

def json_request(req):
enc = json.write(req)
return json.read(urllib.urlopen(URL, enc).read())

def take_photo():
img = camera.take_photo(size = (640, 480))
img.save("E:\\Images\\temp.jpg")
return file("E:\\Images\\temp.jpg").read()

def screenshot():
img = graphics.screenshot()
img.save("E:\\Images\\temp.jpg")
return file("E:\\Images\\temp.jpg").read()

go_on = True
msg = {}
print "Web service starts..."
while go_on:

ret = {}
for path in json_request(msg):

print "Requesting", path
if path == "/camera.jpg":

ret[path] = ("image/jpeg", take_photo())
elif path == "/screenshot.jpg":

ret[path] = ("image/jpeg", screenshot())
elif path == "/battery":

ret[path] = ("text/plain",\
"Current battery level is %d" %

sysinfo.battery())
elif path == "/exit":

go_on = False
else:

ret[path] = ("text/plain", "known resource")
msg = ret
e32.ao_sleep(5)

print "Bye!"

Again, make sure that the constant URL refers to your actual server.
These resources are mapped to logical URLs, ‘/camera.jpg’, ‘/screen-
shot.jpg’ and ‘/battery’ – see the navigation bar in Figure 8.8 to see one
of the URLs in practice. The resulting code is surprisingly simple. It can
be made even simpler using Python’s introspection features, as we will
show in Section 10.2.

Note that when testing this example, you may need to request a URL
on the phone, for example, http://192.168.0.2:9000/camera.jpg, several
times before you see the actual result on the browser. The server exits
when the ‘exit’ resource is requested.

This example makes a great showcase of Python’s power and expres-
siveness: in fewer than 120 lines of code, we have implemented a working

SUMMARY 197

web server and a proxy, and turned a mobile phone into a web service
which features a webcam, a screen capturer and a battery-level indicator!

8.8 Summary

This chapter covered the basics of modern networking in a nutshell.
After reading this chapter, you should be prepared to build innovative
mobile-device-centric, networked programs and services.

This chapter contains a lot of information and you may feel it hard to
digest everything at once. The best approach is to start experimenting,
exploring and tinkering around with your own ideas. If you need more
information about any subject in this chapter, the web is your friend.

The chapter started with examples of TCP, HTTP and JSON clients
which requested information from the outside world for the mobile phone.
The latter part of the chapter focused on using the phone as a server.
Techniques of polling, persistent TCP connections, gateways and web
proxies were introduced to aid server development on the phone side.

This chapter presents several working example applications: a camera
which saves photos to a server, a voting server with mobile and web
interfaces, a JSON gateway for peer-to-peer communication, an instant
messenger and a web service which lets you control your phone from a
web browser. These examples may be useful after some polishing or you
may use them as the basis for your own applications.

9
Web Services

In Chapter 8, we showed how you can use PyS60 to build network clients
and servers of your own. In this chapter, we show how to tap into services
provided by others. These two approaches are becoming more and more
complementary. Often the most interesting results emerge when you
combine something of your own, such as your current location, with
some external information, such as Google Maps.

Information available in ordinary websites is primarily prepared for
human consumption. Data is embedded in elaborate visual layouts that
look pleasing to the eye but from which it is difficult to extract the data
programmatically. Technically, it would be possible to retrieve any web
page using, for example, the urllib.urlopen() function but parsing
the desired data from the midst of complex HTML code is a tedious and
error-prone task. Luckily, some Python libraries, such as Beautiful Soup,
exist to make this task easier.

However, many websites and web application providers have under-
stood that they can increase the value of their product by making it easily
accessible to other programs, as well as human users. Increasingly often,
they are starting to provide another view to their service that can be used
to retrieve the pure data easily without any decoration. This interface is
often called a web service or a web Application Programming Interface
(web API).

For example, Amazon, Google, Yahoo!, Flickr, Facebook and most of
the blog engines provide a web API through which their service, or some
parts of it, can be used programmatically. Typically, the web API is made
freely available for non-commercial use only. You should always read
the terms of use carefully before using any web API in your program.

Note that practically all services require that you apply for an applica-
tion key to use the service. The key is used by the service to identify the
origin of third-party requests and to control the number of requests made

200 WEB SERVICES

by an external application. Typically, you receive the key immediately
when you register a web API account.

9.1 Basic Principles

You can think of a web service as an ordinary Python module whose
functions are just called in a particular way using urllib. As with ordi-
nary modules, you have to see the API documentation to understand how
to use the related functions. However, whereas the API of an ordinary
Python module stays constant, even in different versions of Python, a web
service provider may change the web API any time without prior notice.
Because of this, we focus mostly on the basic principles of the Web
service usage here, instead of explaining the current web APIs in detail.

To use a web service, you typically have to go through the following
steps:

1. Go to the service provider’s website and find the web API or devel-
oper documentation. Some well-known web APIs can be found at
following addresses:

• Amazon: http://aws.amazon.com

• Flickr: www.flickr.com/services/api

• Google: http://code.google.com/apis

• Yahoo!: http://developer.yahoo.com/python

2. Find documentation for the functionality you need.

3. Find out which protocol the service uses on top of HTTP. Many ser-
vices support several different protocols. The most typical alternatives
are JSON, XML or plain HTTP. Some services even provide a custom
module for Python that hides requests to the web service behind nor-
mal Python function calls. However, some of these modules use new
features of Python which are not yet supported by Python for S60.

4. Find out what kind of input data and parameters the service expects
and how the output looks.

5. Add a function to your program that prepares data for the service and
handles the output.

6. Add calls to the web service with the urllib.urlopen() function.

7. See how it works!

Web services are built on top of the techniques that were presented
in Chapter 8. They are accessed over HTTP and responses are typically
encoded either in JSON or XML. Example 71 in Chapter 8 demonstrated
this approach.

MOPYMAPS! MOBILE YAHOO! MAPS 201

Some services follow REST principles. These services let you access
the data through simple URL addresses, not unlike ordinary web pages.
In Chapter 8, we built a RESTful web service of our own in Example 86.
It made some resources of your mobile phone accessible to the network
through simple URLs, such as http://192.168.0.2/battery/. REST is prob-
ably the simplest request format to use since it requires only familiar
urllib.urlopen() calls.

This chapter presents three fully working and useful applications that
are based on three different web services. Each of the examples makes
simple requests to the service and gets the response either in XML or
JSON. Since many modern web services support an API like this, you can
easily apply the following ideas to your own projects.

Note that the web APIs are subject to frequent changes. It may happen
that the APIs used by the following examples have been changed since
the publication of this book. In this case, you should be able to find
out the new syntax in the service’s API documentation and modify the
example accordingly.

9.2 MopyMaps! Mobile Yahoo! Maps

MopyMaps! is a mobile map explorer. It uses the Yahoo! Maps Web API
to receive map images given a desired location. MopyMaps! supports
vertical and horizontal panning of received map images, so you can
explore your surroundings smoothly on the small screen of a mobile
phone. MopyMaps! squeezes a full world atlas into a pocket – all in
fewer than 100 lines of Python!

The Map Image API provided by Yahoo! Maps is extremely sim-
ple to use. You can give a partial address of a desired location in
free-form text and the system infers the most suitable map image for
you. You can specify the desired map size, zoom level and radius for
the image. Full documentation for the Map Image API is available at
http://developer.yahoo.com/maps.

Instead of the address, you can specify the longitude and latitude
of the desired location. If you have a GPS receiver, you can combine
MopyMaps! with the GPS reader program that was presented earlier to
receive a map of your current surroundings automatically.

You need to get an Application ID from Yahoo! to use the service. Go to
http://developer.yahoo.com and choose the link ‘Get an Application ID’.
Once you have filled in the developer registration form, you are given a
long data string that is your Application ID. Save this string for future use.

The MopyMaps! source code is divided into three parts that should be
combined into one file to form the full application. The parts cover the
following functionalities:

• constants and result parsing

202 WEB SERVICES

• fetching map images from Yahoo! Maps

• user interface functions.

MopyMaps! uses the standard appuifw UI framework (Figure 9.1).
The map location can be changed by way of a menu item (new map)
that triggers a request to the map service. The application body con-
tains a Canvas object to which the received map image is plotted
(handle redraw). The image can be moved around using the arrow
keys (handle keys). Messages related to map loading and possible
error conditions are drawn on the canvas as well (show text).

(a) (b) (c)

Figure 9.1 MopyMaps! (a) Welcome screen, (b) map display and (c) address dialog

Let’s dive into the code!

9.2.1 Constants and Result Parsing

Example 87: MopyMaps! (1/3)

import urllib, appuifw, e32, graphics, key_codes, os, os.path

APP_ID = "reBqRjOdK4E3aKfuRioOj3459Kmas_ENg7!!"
MAP_URL = "http://local.yahooapis.com/MapsService/V1/mapImage?"
MAP_FILE = u"E:\\Images\\mopymap.png"

if not os.path.exists("E:\\Images"):
os.makedirs("E:\\Images")

def naive_xml_parser(key, xml):
key = key.lower()
for tag in xml.split("<"):

tokens = tag.split()
if tokens and tokens[0].lower().startswith(key):

return tag.split(">")[1].strip()
return None

MOPYMAPS! MOBILE YAHOO! MAPS 203

Three constants are used by the application: APP ID is the application
ID that you got from the Yahoo! developer site. Replace the string in the
example with your personal ID. MAP URL is the URL of the service. You
can check the current address at the API documentation page, in case
the address has changed since the book’s publication. MAP FILE is a
temporary file name for the map images.

The Yahoo! service does not return a map image directly after a request.
Instead, it returns a small XML message that contains a temporary URL
where the image can be retrieved (or an error message, if a suitable map
could not be found). The responses look like this:

<?xml version="1.0"?>
<Result xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
http://gws.maps.yahoo.com/mapimage?MAPDATA=LkE5ukmEyGeRhYl...
</Result>
<!-- ws01.search.scd.yahoo.com uncompressed -->

Officially, it should be the job of an XML parser to parse and convert a
string like this to a convenient data structure. However, if we know that
the messages are going to be really simple, as in this case, we may use a
lighter solution instead of a fully fledged XML parser.

Function naive xml parser() is such a solution. Given a simple
string of XML, xml, it returns the contents of the first tag whose name
begins with key. In MopyMaps! this function is used to extract from the
Result tag either the map URL or an error message, if the URL could not
be found.

The function works by first splitting the string using < characters as
delimiters, which correspond to the beginnings of XML tags. Then, the
beginning of each token is compared with the given key to find the
matching tag. Matching is case insensitive. The function returns None if
no matching tag was found.

You should be extremely careful when using an ad hoc solution
like this. Even a minor change in the message format may cause the
function to return incorrect results. A real XML parser is probably a more
suitable solution for any widely distributed application. The function
naive xml parser() is used here for its brevity and simplicity, not
because of its robustness.

9.2.2 Fetching Map Images from Yahoo! Maps

Example 88 contains the core of the MopyMaps! application. It fetches
map images from Yahoo! Maps. The functionality for retrieving the images
is divided between two functions: new map() asks the user for a new
address and requests the corresponding map image URL from the service;
load image() is then responsible for retrieving the actual image data,
given the new URL. It also resets the map position (variables map x and

204 WEB SERVICES

map y), clears any status messages (status) and loads the new map
image into a global Image object, mapimg, that is used to hold the
displayed map.

As mentioned above, Yahoo! Maps provides a simple interface based
on plain HTTP. This means that request parameters are provided to the
service in the URL. There is no need to construct special request messages.
This is good news for us.

Example 88: MopyMaps! (2/3)

def new_map():
addr = appuifw.query(u"Address:", "text")
if not addr:

return
params = {"location": addr,

"appid": APP_ID,
"image_type": "png",
"image_height": "600",
"image_width": "600",
"zoom": "6"}

show_text(u"Loading map...")
try:

url = MAP_URL + urllib.urlencode(params)
res = urllib.urlopen(url).read()

except:
show_text(u"Network error")
return

img_url = naive_xml_parser("result", res)
if img_url:

show_text(u"Loading map......")
load_image(img_url)
handle_redraw(canvas.size)

else:
msg = naive_xml_parser("message", res)
show_text(u"%s" % msg)

def load_image(url):
global mapimg, map_x, map_y, status
res = urllib.urlopen(url).read()
f = file(MAP_FILE, "w")
f.write(res)
f.close()
mapimg = graphics.Image.open(MAP_FILE)
map_x = mapimg.size[0] / 2 - canvas.size[0] / 2
map_y = mapimg.size[1] / 2 - canvas.size[1] / 2
status = None

Since we use the standard urllib.urlencode() function to con-
struct the request URL, parameters must be given in a dictionary. The
dictionary params specifies the new map:

• location is the address string given by the user.

• appid is the Yahoo! Application ID.

MOPYMAPS! MOBILE YAHOO! MAPS 205

• image type specifies that we want the image in PNG format.

• image height and image width give the requested map size in
pixels – you may increase these values if you want a larger area for
scrolling.

• zoom specifies the map scale in a range from 1 (street level) to 12
(country level).

You could enhance the application by letting the user modify the zoom
level. You can find the full list of supported parameters in the Yahoo!
Map Image API documentation.

After the request parameters have been encoded to the URL string url,
we send the request to the service with a familiar urllib.urlopen()
call. If any exceptions occur during the call, an error message is shown
and the function returns. Otherwise we receive a response XML message,
which contains the actual image URL inside a result tag. If our simple
XML parser does not find the result tag, we try to find an error message
inside a message tag instead, which is then shown on the screen.

If the image URL is found, that is, img url is not None, the function
load image is called to load the actual image. This function retrieves
the image data from the result URL, writes the image to a local file and
loads it to an image object mapimg. Since the service returns the maps
centered at the requested address, we initialize the map position (map x
and map y) to the middle of the canvas.

The map loading progress is shown by an increasing number of dots
after the ‘Loading map’ text. Three dots are shown when the map image
URL is first requested. Six dots are shown when we start to load the
actual image.

9.2.3 User Interface Functions
The last part of MopyMaps! is presented in Example 89. This part puts the
pieces together by constructing the application UI. The core functionality
here is formed by the two canvas callbacks, handle redraw() and
handle keys() whose roles are already familiar from Chapter 5.

Example 89: MopyMaps! (3/3)

def show_text(txt):
global status
status = txt
handle_redraw(canvas.size)

def handle_redraw(rect):
if mapimg:

canvas.blit(mapimg, target=(0, 0), source=(map_x, map_y))
else:

206 WEB SERVICES

canvas.clear((255, 255, 255))
if status:

canvas.text((10, 50), status, fill=(0, 0, 255), font="title")

def handle_keys(event):
global map_x, map_y
if event['keycode'] == key_codes.EKeyLeftArrow:

map_x -= 10
elif event['keycode'] == key_codes.EKeyRightArrow:

map_x += 10
elif event['keycode'] == key_codes.EKeyUpArrow:

map_y -= 10
elif event['keycode'] == key_codes.EKeyDownArrow:

map_y += 10
handle_redraw(canvas.size)

def quit():
app_lock.signal()

map_x = map_y = 0
mapimg = status = None

appuifw.app.exit_key_handler = quit
appuifw.app.title = u"MopyMaps!"
appuifw.app.menu = [(u"New location", new_map), (u"Quit", quit)]

canvas = appuifw.Canvas(redraw_callback = handle_redraw,
event_callback = handle_keys)

appuifw.app.body = canvas

show_text(u"Welcome to MopyMaps!")
app_lock = e32.Ao_lock()
app_lock.wait()

Arrow keys are used to move the map image on the screen. This is
not too difficult, since we can specify the source coordinates for the
canvas.blit() function, which correspond to the upper left corner of
the map image. By modifying the corner coordinates map x and map y,
we can alter the part of the map shown on the canvas. Note that no
checks are made that the map image fully fills the canvas. You can
see the results of this easily by scrolling far enough on the map. If the
result is not pleasing to your eye, you can ensure that the boundaries
are not exceeded by adding a few additional if statements in the
handle keys() function.

The function handle redraw() takes care of drawing the map and
the status message – if the corresponding variables are not empty. It’s a
good habit to handle all drawing in a centralized manner in the redraw
callback. This makes sure that the screen is redrawn correctly after,
say, a screensaver or an external dialog has been drawn on top of our
application. The status message is updated by way of the show text()
function, which is just a shorthand for the required three lines of code.

MopyMaps! could be extended easily. As mentioned above, the map
could be retrieved based on the current GPS coordinates instead of

EVENTFU: FINDING EVENTFUL EVENTS 207

an address. The map could be zoomable or alternatively the user could
specify how many miles the map should cover (see the radius parameter
in the API).

You can combine maps with some other information source. For
example, Yahoo! provides a traffic API for some parts of the world which
shows real-time traffic information that can be plotted on the map. It also
provides a search API that lists establishments in proximity to a given
location – maybe you can come up with a trendy mashup that combines
the maps with the event information that is used in Section 9.3.

9.3 EventFu: Finding Eventful Events

Have you ever been in a foreign city without anything to do? Have you
ever seen an advertisement about a concert but forgotten where it will
happen and when? EventFu is here to help: it connects to the Eventful
service at http://eventful.com/ to retrieve information and keeps you
updated about events that are interesting to you.

Eventful is an event database with an extensive web API which can be
found at http://api.eventful.com. EventFu uses only one of the provided
functions, event search, and shows a list of events that match the user’s
preferences. The list is updated at regular intervals so new events appear
on the list after a short delay once they have been listed in the service.

Requests are made to the Eventful API using a simple URL-encoded
interface similarly to the previous example. However, Eventful supports
responses in JSON, so the results can be converted directly to a convenient
data structure. To use the service, you have to request an application
key from Eventful at http://api.eventful.com/keys/new. The key is a long
random string not unlike the Yahoo! Application ID.

Note that the json module is needed in the example. It is not included
in the standard PyS60 distribution; see Section 8.2.2 for how to install
this module.

EventFu contains several features that are worth noticing:

• It presents a straightforward mapping between the UI and the web
API – for example, the event description form is constructed on the fly
based on the Eventful response fields.

• It shows how to update data from an external source continuously at
regular intervals.

• It gives a practical example of how to save user preferences to a local
database and how to use the phone’s default browser to show HTML
pages.

• It lets the user select the default access point for networking – a
crucial feature when the application must use the network without
user intervention.

208 WEB SERVICES

The EventFu source code is divided into five parts. Again, the parts
should be combined into one file to form the full application. The parts
cover the following functionalities:

• constants and preferences form

• storing preferences

• event form and event description

• updating events using the Eventful API

• access point dialog and user interface functions.

EventFu uses the standard UI extensively. The main view is based on
an appuifw.ListBox object and preferences and event descriptions
are shown using an appuifw.Form object (Figure 9.2). The core func-
tion is update list(), which, not surprisingly, updates the event
list. The list is retrieved according to the user’s preferences which
are handled by the show preferences(), save preferences()
and load preferences() functions. If the user selects an event

(a) (b)

(a) (b)

Figure 9.2 EventFu (a) menu, (b) event list, (c) event form and (d) preferences dialog

EVENTFU: FINDING EVENTFUL EVENTS 209

in the list, an event description form is opened (show event()).
In this form, the user may choose to see the full event description
(show description()) that is returned in HTML format from Eventful.

9.3.1 Constants and Preferences Form
Example 90 presents the first part of EventFu. First, you should replace the
application key constant APP KEY with the personal key you received
from Eventful. The search requests are made to the address specified
in SEARCH URL. The next three constants are related to configuration:
CONF FILE gives a file name for the local database that keeps the
user’s preferences, DESCRIPTION FILE specifies a file in which event
description text is saved temporarily for showing; UPDATE INTERVAL
specifies the interval in seconds between event list updates. Note that a
short interval may incur higher bandwidth usage and cost, depending on
your data plan and it drains the battery faster.

Constant lists WHEN and ORDER correspond to parameters when and
sort order which are part of the service request. The lists contain all
possible values for the parameters. The user may choose values in the
preferences form that presents these lists in combo fields, as we see soon.

Example 90: EventFu (1/5)

import appuifw, e32, urllib, socket, e32dbm, json, os.path, os

APP_KEY = "5IsN4V9AdLwI3Dde"
SEARCH_URL = "http://api.evdb.com/json/events/search?"

CONF_FILE = u"E:\\Data\\Eventfu\\eventfu.cfg"
DESCRIPTION_FILE = u"E:\\Data\\Eventfu\\eventfu.html"
UPDATE_INTERVAL = 600

if not os.path.exists("E:\\Data\\Eventfu"):
os.makedirs("E:\\Data\\Eventfu")

WHEN = [u"All", u"Future", u"Past", u"Today",
u"Last week", u"This Week", u"Next Week"]

ORDER = [u"relevance", u"date", u"title",
u"venue_name", u"distance"]

EVENT_FIELDS = [u"title", u"start_time", u"venue_name",
u"venue_address"]

def show_prefs():
if appuifw.app.title.find("Updating") != -1:

return
form = appuifw.Form([

(u"Location", "text", prefs.get("Location", u"")),
(u"Keywords", "text", prefs.get("Keywords", u"")),
(u"When", "combo", (WHEN, 3)),
(u"Sort_order", "combo", (ORDER, 0))],
appuifw.FFormEditModeOnly)

form.menu = []

210 WEB SERVICES

form.save_hook = save_prefs
form.execute()

EVENT FIELDS lists the event attributes that are included in the event
form. The list is a subset of all possible attributes that the Eventful service
records for an event. The full list, available at http://api.eventful.com/
docs/events/search, contains over 20 attributes, so showing all of them to
the user would be rather impractical. You may change the list to contain
the attributes that are most interesting to you.

Figure 9.2(d) shows the preferences form which is constructed by the
function show prefs. In this form, the user can specify the city or other
location where the returned events should take place. To restrict the
listing further, she may give a keyword that describes the event. She may
also specify when the event should take place, the choices being listed in
the list WHEN. The matching events are ordered according to one of the
attributes in ORDER which is specified in the last field.

First, the function show prefs() makes sure that a previous search
request is not in progress, as we do not want the requests to queue up.
After this, an editable form is constructed. When the user closes the
form or saves it explicitly with the Save option in the menu, the function
save prefs() is called, as specified in the form.save hook variable.
Finally, form.execute() makes the form visible.

9.3.2 Storing Preferences
Choices in the preference form are saved in a local database, so the user
does not have to type them in every time she starts the application. Local
databases were first introduced in Section 6.3. They look and behave like
an ordinary dictionary. However, in contrast to dictionaries, which are
destroyed when the application closes, local databases are backed up to
a file.

Example 91 shows the function save prefs() that saves the current
preferences. The function is given a dictionary new prefs that contains
the values from the preferences form. A new database is opened in file
CONF FILE. Attributes When and Sort order require special treatment
since they contain a list of values and the index of the chosen item in a
tuple. In this case, we replace the tuple with the chosen value.

Example 91: EventFu (2/5)

def save_prefs(new_prefs):
db = e32dbm.open(CONF_FILE, "nf")
for label, type, value in new_prefs:

if label == "When" or label == "Sort_order":
value = value[0][value[1]]

prefs[label] = value

EVENTFU: FINDING EVENTFUL EVENTS 211

db[label] = value.encode("utf-8")
db.close()
timer.cancel()
timer.after(0, update_list)
return True

def load_prefs():
global prefs
try:

prefs = {}
db = e32dbm.open(CONF_FILE, "r")
for k, v in db.iteritems():

prefs[k] = v.decode("utf-8")
db.close()

except Exception, x:
prefs = {}

return prefs

Once the preferences have been stored in the database, a list update
is triggered. This is done by the timer object which is introduced with
the function update list(). The function returns True to approve
the changes made to the form.

The function load prefs() performs the reverse operation: it opens
the database and copies values from it to a dictionary, prefs, that keeps
the current preferences. Strings, which are stored in the UTF-8 format
in the database, are decoded back to Unicode strings. If anything goes
wrong in loading (for example, if the database does not exist), an empty
set of preferences is returned.

9.3.3 Updating Events using the Eventful API
The Eventful Web API is used to retrieve events according to the user’s
preferences. Titles of the retrieved events are presented in a list, like the
one that is shown in Figure 9.2(b). The list is constructed by the function
update list() that is presented in Example 92.

Example 92: EventFu (3/5)

def update_list():
global alive, events
lprefs = {'app_key': APP_KEY, 'page_size': '10'}
for k, v in prefs.items():

if v:
lprefs[k.lower()] = v

listbox.set_list([u"Updating..."])
appuifw.app.title = u"Updating %s..." % prefs.get('Location', u"")
try:

url = SEARCH_URL + urllib.urlencode(lprefs)
res = urllib.urlopen(url).read()
events = json.read(res)['events']['event']
titles = []

212 WEB SERVICES

for event in events:
titles.append(unicode(event['title']))

listbox.set_list(titles)
appuifw.app.title = prefs['Location']

except:
listbox.set_list([u"Could not fetch events"])
appuifw.app.title = u"EventFu"

if alive:
timer.after(UPDATE_INTERVAL, update_list)

Fields of the preferences form map directly to parameters of the
corresponding search request. Parameters can be given in the requested
URL, so again we can use a standard urllib.urlopen() call to access
the service. The dictionary lprefs is filled with the parameters: app key
specifies your personal Eventful application key and page size specifies
the number of events returned. The other parameters are filled in by
looping over the preferences dictionary, prefs. Keys are converted to
lower case and empty values are omitted.

Before a call is made to Eventful, the application title is changed
to notify the user about the ongoing update. Since the application is
single-threaded, that is, it performs only one operation at time, a call to
Eventful makes the application unresponsive for a short period. Thus, it
is important that we inform the user that the application has not crashed.
By making the application multi-threaded, and somewhat more complex,
we could avoid the pause.

The actual call to Eventful and parsing of the results are enclosed in a
try–except block. If the network is unavailable, as often happens with
a mobile device, or the Eventful service returns unknown or erroneous
results, we want to inform the user properly. Since the application
makes the same request again after some time to receive new events, a
temporary network failure is not a fatal error and the application may
continue working without the user even noticing the glitch.

The service returns the matching event list encoded in JSON, which was
first introduced in Section 8.3. A JSON parser translates a JSON-encoded
message to the corresponding data structures automatically. The structure
of Eventful’s replies are fully documented at http://api.eventful.com. Here
we are only interested in the list of events that match the user’s prefer-
ences, which is assigned to the variable events. From this list, we extract
the event titles to the list titles which is then updated to the list box.

To receive new events to the list automatically, some mechanism must
be used to call the function update list() every once in a while. We
can employ here the same solution as in the GSM location application in
Section 6.4, namely the e32.Ao timer object. After the function has
finished with updating, we set up the timer to call the same function,
update list(), again after UPDATE INTERVAL seconds unless the
user has asked the application to quit and the variable alive is set to
False.

EVENTFU: FINDING EVENTFUL EVENTS 213

If the user has changed some values in the preferences form, the list
must be updated immediately – we cannot expect the user to wait for,
say, ten minutes to see the effect of the new settings. Because of this,
the function save prefs() cancels the current timer and sets up a
new one that calls update list() immediately. The benefit of using
the timer object to trigger the update is that save prefs() may return
immediately and it does not have to wait for update list() to finish,
as would be the case with a normal function call.

9.3.4 Event Form and Event Description
Figure 9.2(c) shows the event form which is constructed by the function
show event() (see Example 93). The form shows a subset, specified in
EVENT FIELDS, of event attributes that are returned by Eventful. Usually
we hard-code the structure of UI elements in our applications but, as
shown by this example, we can construct the elements on the fly as well
as based on some external data. First, however, we make the attribute
names more readable by converting their first characters to upper case
and their values to Unicode, as Eventful returns them in the UTF-8 format.

Example 93: EventFu (4/5)

def show_description():
global desc
f = file(DESCRIPTION_FILE, "w")
f.write(u"<html><body>%s</body></html>" % desc)
f.close()
lock = e32.Ao_lock()
viewer = appuifw.Content_handler(lock.signal)
viewer.open(DESCRIPTION_FILE)
lock.wait()

def show_event():
global desc
if not events:

return

event = events[listbox.current()]
form_elements = []
for field in EVENT_FIELDS:

if field in event and event[field]:
key = field.capitalize()
value = event[field].decode("utf-8")
form_elements.append((key, "text", value))

form = appuifw.Form(form_elements, appuifw.FFormViewModeOnly)
if 'description' in event:

desc = event['description'].decode("utf-8")
form.menu = [(u"description", show_description)]

form.execute()

214 WEB SERVICES

Besides attributes that contain only a word or two, such as the event
location and time, Eventful returns also a free-form description of the
event, which may be arbitrarily long. The description could hardly fit in
the event form. Instead, we use the phone’s default browser to show the
description. The user may choose to see the description from the form
menu which calls the function show description().

The function show description() works in a straightforward man-
ner: The description, which is embedded in an HTML page, is written
to a temporary file, DESCRIPTION FILE. The appuifw.Content
handler object is used to open the file. The content handler infers the
file type and opens an appropriate viewer. A similar pattern was used in
Example 67 that showed a downloaded image using the standard image
viewer.

9.3.5 Access Point Dialog and User Interface Functions
Example 94 presents the already familiar UI functions for EventFu. The
function access point(), which is triggered by the corresponding
menu item, is used to select the default network connection or access
point for the application. If no default access point is chosen, the peri-
odical list update may cause the access point selection dialog to pop up
again and again. A detailed description of the access point functions can
be found in Chapter 8.

Example 94: EventFu (5/5)

def access_point():
ap_id = socket.select_access_point()
apo = socket.access_point(ap_id)
socket.set_default_access_point(apo)

def quit():
global alive
alive = False
timer.cancel()
app_lock.signal()

events = None
alive = True
timer = e32.Ao_timer()
appuifw.app.exit_key_handler = quit
appuifw.app.title = u"EventFu"
appuifw.app.menu = [(u"Preferences", show_prefs),

(u"Access point", access_point),
(u"Quit", quit)]

appuifw.app.body = listbox = appuifw.Listbox([u""], show_event)

load_prefs()
update_list()
app_lock = e32.Ao_lock()
app_lock.wait()

INSTAFLICKR: SHOOT AND UPLOAD PHOTOS TO FLICKR 215

When the application starts, we load preferences (load prefs())
and update the event list (update list()). When you run the appli-
cation for the first time, the update fails because of missing preferences.
This is fixed by filling in the preferences form.

Note that we need to cancel the timer object when the application is
about to exit. A timer that is left active after the application has quit causes
the PyS60 interpreter to crash eventually. By setting alive = False, we
make sure that the timer is not activated again by the update list()
function after it has been cancelled.

The current version of Eventfu uses only one function in the Eventful
Web API. Given that the API contains over 100 functions in total, it
should not be hard to find ways to extend the application. Consider also
combining EventFu with the next application, InstaFlickr. For example,
with this combination you could automatically tag any photos taken, say,
in a pony exhibition with appropriate attributes fetched from Eventful
before sending them to Flickr!

9.4 InstaFlickr: Shoot and Upload Photos to Flickr

With InstaFlickr, it takes only about 10 seconds to shoot a photo and
upload it to your Flickr account (the actual time depends on your network
connection). No need to configure or type anything – just point, shoot
and upload! This application is made possible by the Flickr Web API
(www.flickr.com/services/api) which allows you to upload photos to
your account programmatically.

There are two tricky issues in the implementation of this application.
First, as the photos are uploaded to a personal Flickr account, we must
go through Flickr’s four-step authentication process. Second, since this
application sends a lot of data, in contrast to MopyMaps! and EventFu,

(a) (b) (c)

Figure 9.3 InstaFlickr (a) menu, (b) viewfinder and (c) upload progress bar

216 WEB SERVICES

which mostly receive it, we have to use a special method for making the
requests. Luckily, we can solve these tasks using techniques that have
been introduced already.

The InstaFlickr source code is divided into six parts. As before, the
parts should be combined into one file to form the full application. The
parts cover the following functionalities:

• constants and result parsing

• handling Flickr tokens

• making signed calls to Flickr

• data uploading

• taking photos and implementing a progress bar

• user interface functions.

You need to apply for a Flickr API key to use the application. You
can get one at www.flickr.com/services/api/keys/apply. Apart from
the uploading functionality, the application is similar to the previous
examples that use the camera, such as Example 36. The user may
start the viewfinder from a menu item (start viewfinder()) and
take a photo with the select key (take photo()). The photo is then
sent automatically (flickr signed call()) to a previously defined
(new token()) Flickr account.

9.4.1 Constants and Result Parsing

Example 95 defines the constants and the naive xml parser() func-
tion that was first introduced in MopyMaps! Example 87. In a similar way
to the Yahoo! Map API, functions in the Flickr API return a small XML
message that can be parsed using this simple approach.

Example 95: InstaFlickr (1/6)

import e32, md5, urllib, httplib, camera, key_codes, os, os.path

API_KEY = "c62dcNiOgTeVhAaLdIxDsdf17ee3afe9"
SECRET = "c932fFxAkK9E648d"
API_URL = "http://flickr.com/services/rest/"
UPLOAD_URL = "http://api.flickr.com/services/upload/"

IMG_FILE = u"E:\\Data\\Instaflickr\\instaflickr.jpg"
TOKEN_FILE = u"E:\\Data\\Instaflickr\\instaflickr.txt"
BLOCKSIZE = 8192

PROGRESS_COLOR = (0, 255, 0)
TEXT_COLOR = (255, 0, 0)

INSTAFLICKR: SHOOT AND UPLOAD PHOTOS TO FLICKR 217

if not os.path.exists("E:\\Data\\Instaflickr"):
os.makedirs("E:\\Data\\Instaflickr")

def naive_xml_parser(key, xml):
key = key.lower()
for tag in xml.split("<"):

tokens = tag.split()
if tokens and tokens[0].lower().startswith(key):

return tag.split(">")[1].strip()
return None

The Flickr API key consists of two parts: the public application key and
its secret counterpart. Once you have applied for your personal key, you
can see it and the corresponding secret key at www.flickr.com/services/
api/keys. Replace API KEY in the code with your personal key and
SECRET with the secret key that corresponds to it. The constants API URL
and UPLOAD URL contain the base address of Flickr API functions and
the photo upload function, correspondingly.

TOKEN FILE specifies a file which is used to save a token that
gives access to a chosen Flickr account. Given this token, API KEY
and SECRET, it is possible to modify the Flickr account of the person
that approved the token originally. Thus, you should keep these strings
private. IMG FILE is used to save the image in a file temporarily.

BLOCK SIZE specifies how many bytes of image data is sent at
a time to Flickr. The progress bar is updated after each block has
been sent. However, there should be no need to change this value.
PROGRESS COLOR defines the color of the progress bar in RGB and
TEXT COLOR defines the color of the text, unsurprisingly.

9.4.2 Handling Flickr Tokens

To upload photos to a Flickr account, we need permission from the
account holder. However, the account holder should not trust her user-
name and password to our application – or to any third-party application
whatsoever. Instead, she can request a token from Flickr that is specifi-
cally assigned to a certain application and which she can reject at any
time.

This is how the token is generated. The developer must perform the
following steps:

1. Request an application key from Flickr (if you have not done that
already).

2. Go to the ‘Your API keys’ page at www.flickr.com/services/api/keys.

3. Choose ‘Edit key details’.

4. For ‘Authentication Type’ choose ‘Mobile Application’.

218 WEB SERVICES

5. For ‘Mobile permissions’ choose ‘Write’.

6. Write down the newly generated ‘Your authentication URL’.

Now, the person to whose account the photos are to be uploaded must
perform the following steps:

1. Go to the authentication URL that was shown in Step 6, above.

2. Log in to your account and select the button ‘Ok, I’ll allow it’ when
you are asked about an application wanting to link to your account.

3. Write down the nine-digit code that is shown.

4. Open InstaFlickr.

5. Choose ‘New Token’ menu item.

6. Type in the nine-digit code.

If the token is accepted, InstaFlickr says ‘Token saved!’. If InstaFlickr
could not save the token, you should double-check that API KEY,
SECRET and the nine-digit code have been typed in correctly. Note that
the nine-digit code can be used only once. If you request a new code,
the previous code becomes invalid. If you want to change the account
to which the photos are uploaded, the owner of the new account must
request a new nine-digit code from the authentication URL and input it
to the ‘New Token’ dialog in InstaFlickr.

You can find detailed instructions about the authentication process at
the Flickr services website. At time of printing, the how-to for mobile
applications can be found at www.flickr.com/services/api/auth.howto.
mobile.html.

Example 96 shows how the tokens are handled internally. The func-
tion new token() is called when the user chooses the menu item
‘New Token’. The token given by the user is assigned to the variable
mini token. Since there is no guarantee that this is actually the appli-
cation for which the nine-digit code was granted by the user, we must
certify our identity to Flickr with the nine-digit code.

Example 96: InstaFlickr (2/6)

def load_token():
global flickr_token
try:

flickr_token = file(TOKEN_FILE).read()
except:

new_token()

def new_token():
global flickr_token

INSTAFLICKR: SHOOT AND UPLOAD PHOTOS TO FLICKR 219

mini_token = appuifw.query(u"Give Flickr mini-token " +
"(e.g. 123456100)", "number")

if not mini_token:
return

params = {"method": "flickr.auth.getFullToken",
"api_key": API_KEY,
"mini_token": str(mini_token)}

flickr_token = naive_xml_parser("token", flickr_signed_call(params))
if flickr_token:

try:
f = file(TOKEN_FILE, "w")
f.write(flickr_token)
f.close()
appuifw.note(u"Token saved!", "info")

except:
appuifw.note(u"Could not save token", "error")

else:
appuifw.note(u"Invalid token", "error")

This is done by sending a request to a Flickr API function called
flickr.auth.getFullToken(). As in the previous applications,
we fill in the request parameters in a dictionary params. However,
this time we do not make the call directly but by a special function
flickr signed call() that cryptographically signs the request. This
sounds fancy, but actually it is just a clever, simple trick that is described
in Section 9.4.3.

If the code is accepted, Flickr replies with the following type of XML
message:

<auth>
<token>433445-76598454353455</token>
<perms>write</perms>
<user nsid="11223344556@N01" username="Mopy" fullname="N.N"/>

</auth>

Here the tag token contains the final token that gives access to the
user’s Flickr account. We can extract this value with the naive xml
parser as described in the MopyMaps! section. We save this string to
the file TOKEN FILE. Next time the user opens InstaFlickr, the token is
read from the file by the function load token(). This way, the user
has to authenticate to the system only once; after the first time, uploading
is really instantaneous. The load token() function presents the ‘New
token’ dialog automatically if a TOKEN FILE was not found.

9.4.3 Making Signed Calls to Flickr
The function flickr signed call() in Example 97 makes a signed
call to Flickr using the given parameters params. Why does the request
have to be signed in the first place? The previous applications worked
fine without any signing.

220 WEB SERVICES

Example 97: InstaFlickr (3/6)

def flickr_signed_call(params):
keys = params.keys()
keys.sort()
msg = SECRET
for k in keys:

if k != "photo":
msg += k + params[k]

params['api_sig'] = md5.new(msg).hexdigest()
if "photo" in params:

return flickr_multipart_post(params)
else:

url = API_URL + "?" + urllib.urlencode(params)
return urllib.urlopen(url).read()

In contrast to MopyMaps! and EventFu, InstaFlickr deals with some-
one’s personal data. It has the power to delete all the photos in the user’s
Flickr account. In contrast, the previous applications made read-only
requests to public data. Especially if your phone is connected to the
Internet by an insecure wireless LAN, it is easy for anyone to eavesdrop
the requests that are sent out by the application. If the requests were not
signed, the eavesdropper could then pretend to be you and send modified
requests to Flickr with disastrous effects.

Signing makes these man-in-the-middle attacks practically impossible.
Signing is made effective by the SECRET string that is known only by your
application and the recipient, in this case Flickr. Since SECRET is never
sent anywhere, you can securely communicate with the other party who
knows the SECRET, as long as you keep the phone holding the SECRET
safe.

Signing works as follows: the parameters of the request, params,
except for any image data, are combined into a single string msg that
begins with the SECRET string. The order of the parameters is important so
that the recipient can re-construct the same message, thus, the parameters
are sorted in alphabetical order. Then we use a well-known cryptographic
hash function called MD5 to compute a long number based on the newly
formed string msg.

MD5 is designed to generate a unique result so that no other input string
produces exactly the same number or signature. For brevity, the number
is saved in hexadecimal notation. The signature is assigned to the request
key 'api sig' in addition to the other parameters, params, as specified
in the Flickr API. This process is described in the Flickr authentication
specification at www.flickr.com/services/api/auth.spec.html.

The result of this signing procedure is that anyone who knows the
SECRET string can easily reproduce msg based on the request parameters.
She can then compute the corresponding signature and check that it

INSTAFLICKR: SHOOT AND UPLOAD PHOTOS TO FLICKR 221

matches with 'api sig'. On the other hand, someone who does
not know SECRET cannot change the parameters without the recipient
noticing, as she is unable to produce the correct signature.

After the signature has been computed, flickr signed call()
chooses one of the two ways to make the actual request. If the parameters
contain the key 'photo', a special function flickr multipart
post() is chosen that is suitable for large requests – in this case the
request contains the data of a full-scale photo. Otherwise, the request
is made with the urllib.urlopen() function in a similar way to the
previous example applications.

9.4.4 Data Uploading

Example 98 contains the function flickr multipart post() that
implements a standard HTTP request method called multipart POST. This
is the standard way to upload files to the web. Unfortunately, however,
this method is not supported directly by Python’s standard web modules,
so we must provide an implementation of our own.

Example 98: InstaFlickr (4/6)

def flickr_multipart_post(params):
BOUNDARY = "----ds9io349sfdfd!%#!dskm"
body = []
for k, v in params.items():

body.append("--" + BOUNDARY)
part_head = 'Content-Disposition: form-data; name="%s"' % k
if k == "photo":

body.append(part_head + ';filename="up.jpg"')
body.append('Content-Type: image/jpeg')

else:
body.append(part_head)

body.append('')
body.append(v)

body.append("--" + BOUNDARY + "--")
body_txt = "\r\n".join(body)

proto, tmp, host, path = UPLOAD_URL.split('/', 3)

h = httplib.HTTP(host)
h.putrequest('POST', "/%s" % path)
h.putheader('content-type',

"multipart/form-data; boundary=%s" % BOUNDARY)
h.putheader('content-length', str(len(body_txt)))
h.endheaders()

try:
offs = 0
for i in range(0, len(body_txt), BLOCKSIZE):

offs += BLOCKSIZE
h.send(body_txt[i: offs])

222 WEB SERVICES

progress_bar(min(1.0, offs / float(len(body_txt))))

errcode, errmsg, headers = h.getreply()
return h.file.read()

except:
return None

The implementation, which includes the lines from the beginning of
the function to the try statement, requires some understanding of the
HTTP protocol. There is nothing particularly difficult in it and you do
not need to understand it to use PyS60 successfully. Because of this,
we omit the explanation here. Anyone interested in the protocol can
find several comprehensive explanations on the web by searching for
‘multipart post’.

However, this implementation contains one interesting detail: Once
the message has been constructed in the string body txt, it is not sent
to the destination URL in one part. Since the image data can take 50–100
kilobytes, sending the data over any wireless network will take some
time. Because of this, we send the data in parts, block by block. After
each block is sent, a progress bar is updated to depict the progress of the
transfer. Figure 9.3(c) shows a progress bar in action.

Piecewise sending is implemented by the for loop inside the try–
except block at the end of flickr multipart post(). The loop
variable i goes from 0 to the message size, increasing the variable
by BLOCKSIZE after each iteration. During each iteration, a block
of data starting at i is sent to the recipient. After that, the function
progress bar is called with a single parameter that denotes the
progress in the scale from 0 to 1.0. Implementation of progress bar()
is described in Section 9.4.5.

After all the data has been sent successfully, flickr multipart
post() reads a reply from the recipient and returns it to the caller. If any
errors occur during sending, None is returned instead.

9.4.5 Taking Photos and the Progress Bar

Example 99 implements the camera functionality, the progress bar and a
function that draws status messages on screen. Functions related to the
camera, finder cb(), start viewfinder() and take photo()
are based on Example 36 in Section 5.4.

Example 99: InstaFlickr (5/6)

def progress_bar(p):
y = canvas.size[1] / 2
max_w = canvas.size[0] - 30
canvas.rectangle((15, y, p * max_w, y + 10), fill = PROGRESS_COLOR)

INSTAFLICKR: SHOOT AND UPLOAD PHOTOS TO FLICKR 223

def show_text(txt):
s = canvas.size
canvas.text((10, s[1] / 2 - 15), txt, fill=TEXT_COLOR, font="title")

def finder_cb(im):
canvas.blit(im)

def start_viewfinder():
if flickr_token:

camera.start_finder(finder_cb)
canvas.bind(key_codes.EKeySelect, take_photo)

else:
appuifw.note(u"Give a Flickr token first", "error")

def take_photo():
canvas.bind(key_codes.EKeySelect, None)
camera.stop_finder()
show_text(u"Hold still!")
image = camera.take_photo(size = (640, 480))
s = canvas.size
canvas.blit(image,target=(0,0,s[0],(s[0]/4*3)), scale=1)
show_text(u"Uploading to Flickr...")
image.save(IMG_FILE)
jpeg = file(IMG_FILE, "r").read()
params = {'api_key': API_KEY,

'title': 'InstaFlickr',
'auth_token': flickr_token,
'photo': jpeg}

ret = flickr_signed_call(params)
canvas.clear((255, 255, 255))
if ret:

show_text(u"Photo sent ok!")
else:

show_text(u"Network error")

After a photo has been shot, the function take photo() loads the
image data from the image file IMG FILE and prepares an upload request
in params to be sent to Flickr. The request contains both the application
key API KEY that identifies this particular application and the token
flickr token that identifies the Flickr account which should receive
the photo.

At this point, the user could assign a title or tags to the photo. In this
example, the title is fixed to ‘InstaFlickr’. See the Flickr API documentation
at www.flickr.com/services/api/upload.api.html for possible attributes
that can be attached to the photo.

The function progress bar is called whenever a block of data has
been sent. The parameter p is a floating-point value between 0 and 1.0
that denotes the progress. Based on this value, we draw a rectangle in
the middle of canvas that grows from left to right as the data is sent. The
effect can be seen in Figure 9.3(c).

224 WEB SERVICES

The function show text() is used to draw status messages in the
middle of canvas. The function should be rather self-explanatory.

9.4.6 User Interface Functions

Example 100 explains the remaining functions related to the user inter-
face. The function access point() is familiar from the previous
application, EventFu. It is described with Example 94.

Example 100: InstaFlickr (6/6)

def access_point():
ap_id = socket.select_access_point()
apo = socket.access_point(ap_id)
socket.set_default_access_point(apo)

def quit():
camera.stop_finder()
app_lock.signal()

appuifw.app.exit_key_handler = quit
appuifw.app.title = u"InstaFlickr"
appuifw.app.menu = [(u"Take photo", start_viewfinder),

(u"New token", new_token),
(u"Access point", access_point),
(u"Quit", quit)]

appuifw.app.body = canvas = appuifw.Canvas()
canvas.clear((255, 255, 255))
show_text(u"Welcome to InstaFlickr")

load_token()
app_lock = e32.Ao_lock()
app_lock.wait()

Note that the Flickr token is loaded with the function load token()
when the application starts. If no token has been defined previously, the
function shows a ‘New token’ dialog.

You may find inspiration for your own extensions in the Flickr mobile
tools page at www.flickr.com/tools/mobile. For example, InstaFlickr
could be combined with the GSM location example (Example 50) so that
the photos could be tagged with the current location – see Zonetag at
http://zonetag.research.yahoo.com for a reference.

9.5 Summary

In this chapter, we have presented three working applications, Mopy-
Maps!, EventFu and InstaFlickr, which are based on three different web
services. These applications delegate most of the difficult work to an

SUMMARY 225

external service, which results in remarkably light processing on the
client side. For example, consider MopyMaps!, which implements a
working global map client in around 100 lines of code! With modern
web services and a bit of imagination you can build amazingly functional
applications with unbelievably few lines of code.

10
Effective Python for S60

In the previous chapters we have deliberately avoided some advanced
programming techniques to focus on the functionalities of the mobile
platform. Many of the examples could be made shorter and more elegant
with techniques that are in this chapter.

Section 10.1 presents some powerful constructs of the Python language
that we omitted in the earlier chapters. In Section 10.2, we describe how
you can avoid clumsy static constructs by deciding what to do with
run-time introspection.

Techniques presented in Section 10.3 really put the word rapid into
rapid development. These methods, related to modularization, extensi-
bility and updating of PyS60 programs, have proven to be immensely
useful not only during the development process, but also for deployment
and maintenance.

Section 10.4 shows another viewpoint of the examples in this book. We
summarize notable recurring patterns in the structure of PyS60 programs,
which help you to generalize the examples of this book to practically any
real-world setting. Finally, in Section 10.5, we present seven crystallized
thoughts about PyS60 programming.

All in all, be prepared for a serious productivity boost!

10.1 Powerful Language Constructs

Python is a very expressive programming language. You can perform
complex operations with just a few lines of code. In many cases, compact
expressions translate to easy readability and efficient processing, thus
these forms are often preferred over lengthier ones. Luckily, Python
invites you to write clean and simple code once you know the nuances
of the language. As a matter of fact, the following language constructs are
the bread and butter of elegant Python.

228 EFFECTIVE PYTHON FOR S60

10.1.1 List Comprehensions
As seen in the previous chapters, many tasks boil down to various
operations on lists. Python provides a compact syntax for constructing
new lists, called list comprehensions. Using list comprehensions you can
construct a new list either from scratch or based on a previous sequence
of objects.

Using a simple loop, you can construct a list of ten user names as
follows

a = []
for x in range(10):

a.append("user%d" % x)

However, you can get the same result with a list comprehension using
only one line of code (as shown in Example 101).

Example 101: List comprehension

a = ["user%d" % x for x in range(10)]

Not only is this expression shorter, but it is also more efficient since we
don’t have to call the append() function ten times. List comprehensions
have the following syntax:

[<list item expression> for <iterator variable> in <list expression>
(if <conditional>)]

In Example 101, the list item expression is "user%d"% x, the iterator
variable is x and the list expression is range(10). This example did not
have any conditional element. No other elements are allowed in the list
comprehension. The list item expression can be arbitrarily complex but it
cannot contain statements such as print, while or return. However,
it can contain another list comprehension, so you can create nested or
multi-dimensional lists.

Recall the SMS search tool, Example 15, from Chapter 4. The example
was similar to the following code:

import inbox, appuifw

box = inbox.Inbox()
query = appuifw.query(u"Type in the query", "text")

hits = []
for sms_id in box.sms_messages():

msg = box.content(sms_id)
if msg.find(query) != -1:

hits.append(sms_id)

POWERFUL LANGUAGE CONSTRUCTS 229

We can condense the example and make it more understandable using
list comprehensions.

Example 102: SMS search using list comprehensions

import inbox, appuifw

box = inbox.Inbox()
query = appuifw.query(u"Type in the query", "text")

hits = [sms_id for sms_id in box.sms_messages()\
if box.content(sms_id).find(query) != -1]

The above list comprehension becomes clear when you read it as
follows: pick sms id for each item of the list returned by box.sms
messages() where the return value of the function box.content()
contains the string query.

This sentence captures the idea of the search tool much more com-
prehensively than a corresponding explanation for the original five-line
version of the code.

You can solve many practical tasks using list comprehensions. For
example, if you need to perform any operation for each element of a
list and save the return values, you can use an expression such as the
following:

results = [f(x) for x in my_list]

Python includes a built-in function called map() that produces the
same result as the previous list comprehension as follows:

results = map(f, my_list)

Here, f is a callback function that is called for each item in the list
my list. For example, the following two lines produce an equivalent
result: they convert a list of integers between 0 and 9 to a list of Unicode
strings:

results = [unicode(x) for x in range(10)]
results = map(unicode, range(10))

Note that you do not have to use a list comprehension to construct a
list whose elements are all equal. For example, you can initialize a list of
N zero values simply as follows:

N = 10
zeros = [0] * N

230 EFFECTIVE PYTHON FOR S60

You can choose all elements that satisfy a condition as follows

results = [x for x in my_list if x > 0]

Here you can replace x > 0 with any valid if condition. For example,
you can filter out all illegal characters in a string (Example 103).

Example 103: Input sanitization using list comprehensions

input = " this is, a TEST input!"
allowed = "abcdefghijklmnopqrstuvwxyz"
print "".join([c for c in input if c in allowed])

The output is thisisainput. The trick here is that the loop can
contain any iterable object, in this case a string, that loops over all
characters in it when treated as a sequence.

10.1.2 Dictionary Constructor

Besides lists, another data type that can be found in almost every Python
program is a dictionary. The most typical use for the dictionary is to get
a value, given the corresponding key, in an efficient manner. However,
sometimes you can just use the fact that the dictionary cannot contain
duplicate keys.

For example, you can count the number of distinct items in a list as
follows:

a = [1, 2, "a", 1, "b", 2, "b"]
d = {}
for x in a:

d[x] = True
print len(d)

The output is 4 in this case. As with the lists above, it may feel
unnecessarily verbose to use four lines of code to say ‘Construct a
dictionary d whose keys are the items of a ’.

Luckily, the built-in dict() function saves us. The function takes a
list of key–value pairs as tuples and returns a new dictionary based on
the list. We can re-write the previous example as Example 104.

Example 104: Dictionary constructor

a = [1, 2, "a", 1, "b", 2, "b"]
print len(dict([(x, True) for x in a]))

INTROSPECTION 231

Here, we use a list comprehension to build a list of tuples based on the
original list a. The new list is given to the dictionary constructor dict(),
which returns a new dictionary whose size is then printed out.

In some cases you would like to retrieve a key given a value – the
opposite operation of the normal dictionary usage. Since there may be
multiple keys that have an equal value, you need to return a list of keys
given a single value:

keys = [k for k, v in d.items() if v == x]

Here d is the dictionary and x is the value of interest. On the other
hand, if only one key per value is enough and you need to perform the
operation for multiple values, it makes sense to make a new dictionary
by reversing the roles of the keys and values.

reverse_d = dict([(v, k) for k, v in d.items()])
key = reverse_d[x]

10.2 Introspection

One of the great strengths of a dynamic programming language, such as
Python, is that it is possible to examine and even manipulate the program
code at run-time. The idea of introspective programs may sound esoteric
and mind-bending, but on examination it provides a clean way to solve
some rather mundane tasks.

The core idea is simple: given that your program includes a function
or an object named xyzzy, you can use the string "xyzzy" to access
that object, rather than specifying the name in your source code. Thus,
your program can choose an appropriate action to take based on a
string originating from the network or from the user, without an if
statement.

Introspection can be implemented in a straightforward manner using
a symbol table that is maintained by the Python interpreter. The symbol
table contains a mapping from all names defined in the program code to
the corresponding objects. Actually, the symbol table can be thought of
as a special dictionary that contains everything related to the internals of
the current module. In some sense, it is like an internal address book for
finding and executing code in a module.

At any point of execution, the interpreter maintains two separate
symbol tables: one for the global scope and one for the local objects
in the current function. Actually, the global keyword, which was first
mentioned in Chapter 3, just instructs the interpreter to place an object
in the global symbol table instead of the default local one.

232 EFFECTIVE PYTHON FOR S60

In Python, functions are objects too and they can be found in the
symbol table just like any other named entity in your program. Because
of this, it is possible to retrieve and call a function by its name at run-time.
With this approach, you can use input data to decide which functions
to call on the fly, without having to hard-code all possible cases in your
program beforehand.

In practice, this is the most important direct use of the symbol table in
a normal application. Many other tricks on the symbol table are generally
considered unnecessarily ugly and unsafe.

Let’s start with a simple example that calls a function based on the
user’s input.

Example 105: Symbol table

import appuifw

def bark():
appuifw.note(u"Ruff ruff!")

def sing():
appuifw.note(u"Tralala")

func_name = appuifw.query(u"What shall I do?", "text")
func = globals()[func_name]
print globals()
func()

The program gets the string func name from the user through a query
dialog. This string is used as a key to the current global symbol table that
is returned by the function globals(). If the key cannot be found in
the symbol table, an exception is raised and the execution terminates. If
the key is found, the corresponding function is called: try to type either
‘bark’ or ‘sing’ in the example above and see what happens.

After this, the symbol table is printed out to give you some idea what
it actually contains. The exact output depends on what you typed in the
dialog but it looks roughly like this:

{'__builtins__’: <module '__builtin__’ (built-in)>,
'name__’: '__main__’,
'bark’: <function bark at 0xb7db1e64>,
'sing’: <function sing at 0xb7db2e65>,
'func’: <function bark at 0xb7db1e64>,
'func_name’: 'bark’,
'__doc__’: None}

Here, the user told the program to bark, so from the symbol table you
can see that the variable func name is assigned the string "bark". By
default, the table contains some special entries such as '
builtins ’, which refers to the module containing Python’s built-in

INTROSPECTION 233

functions, ' name ’, which is always ' main ’ for the mod-
ule that started the process and ' document ’, which contains the
documentation string for this module.

You can see that the functions bark() and sing() have entries in
the table which point at the corresponding function objects. Since the
user told us to bark, we retrieved the bark() function from the symbol
table, using func name as the key and assigned the retrieved function
object to the variable func. We could have called the function bark
directly without creating the new func variable, but it was included here
to illustrate operation of the symbol table.

On the last line of Example 105, we finally call the function func.
Depending on the input, either the bark() or sing() function is called.
The main benefit of this approach is that we do not need a long list of if
statements to decide what to do. Also, if we add a new function to the
program, for instance yodel(), we could just implement the function
without needing to change or add anything in the control logic. If a
function corresponding to the string does not exist in the symbol table,
an exception is thrown. Any real program should include a try–except
clause to handle cases like this.

Using these ideas, we can re-write the phone-as-a-server example
from Section 8.7. The original version has a separate if clause for every
resource in the server. If we increase the number of resources shared by
the server, the list of choices would soon become difficult to maintain.
In contrast, we can use the global symbol table and call each function
directly by the resource name.

Example 106: Introspective web service

import e32, json, camera, graphics, sysinfo, urllib

URL = "http://192.168.0.2:9000"
imei = sysinfo.imei()

def json_request(req):
enc = json.write(req)
return json.read(urllib.urlopen(URL, enc).read())

def RSC_screenshot_jpg():
img = graphics.screenshot()
img.save("c:\\python\\temp.jpg")
data = file("c:\\python\\temp.jpg").read()
return ("image/jpeg", data)

def RSC_battery():
txt = "Current battery level is %d" % sysinfo.battery()
return ("text/plain", txt)

def RSC_exit():
global go_on
go_on = False

234 EFFECTIVE PYTHON FOR S60

go_on = True
msg = {}
while go_on:

ret = {}
for path in json_request(msg):

rsc = "RSC_%s" % path[1:].replace(".", "_")
if rsc in globals():

ret[path] = globals()[rsc]()
else:

ret[path] = ("text/plain", "unknown resource")
msg = ret
e32.ao_sleep(5)

Here we use the same symbol table technique to call a function.
However, we do not use the input string as such to define the function
to call. Instead, we have prefixed the name of each function that defines
a valid resource with "RSC ". This is to ensure that the user cannot call
any function in the program, such as the function json request()
that is meant only for internal use.

This is an extremely important security precaution. An untrusted out-
sider should be allowed to call only a restricted set of functions. If we
used any user input to access the symbol table directly, as we did in the
first example, the user could easily crash the program by accessing an
unintended entry in the table. In the worst case, a malicious user might be
able to destroy important data by controlling the program as she wishes.
By prefixing all resource requests with "RSC ", we make sure that the
user can access only the functions that are serving valid resources.

10.3 Custom Modules and Automatic Updating

In this section, we explain how you can make modules by yourself for
PyS60. The process in itself is almost trivial. However, custom modules
are an extremely powerful feature of PyS60, with remarkably interesting
implications. Not only can you structure your code more efficiently, but
you can also make totally new kinds of programs, thanks to the dynamic
nature of PyS60.

To demonstrate this, we show how to update your PyS60 applica-
tions automatically from the web and how to create a simple plug-in
mechanism for your program.

10.3.1 Custom Modules

There is nothing really special in custom modules. You just create a source
code file, put some custom functions in it and copy it to a certain location

CUSTOM MODULES AND AUTOMATIC UPDATING 235

on your mobile phone. After this, you can import the new module into
your programs, in the same way as any standard PyS60 module.

Let’s go through this process step by step. First, let’s make a file that
contains a simple function and the import statement that imports the
modules needed by the function, as usual. Here, we use the askword()
function from Example 10:

import appuifw

def askword():
d = appuifw.query(u"Type your name", "text")
appuifw.note(u"Hi " + str(word))

Save these five lines to a file called mymodule.py on your PC. Next,
we need to upload this file to your phone. However, to be usable as a
module, the file has to be copied to a special directory, E:\Python\lib,
on your phone. If this directory does not exist, you have to create it first.
This process is exactly the same as with the custom JSON module that
we installed in Section 8.2.2.

After you have uploaded the file successfully to your phone, we
can make another file that uses the custom module. Alternatively, you
could test it using the Bluetooth console (see Appendix B). We can use
Example 107 to test the new module.

Example 107: Importing a custom module

import mymodule, appuifw

appuifw.note(u"This is the main program")
mymodule.askword()

As you can see, we import the new module mymodule just like the
standard module appuifw. As you could guess, the module’s name is
derived from the file name. After the module has been imported, you can
use its functions in the usual way – just remember to prefix any function
call with the module name, as in mymodule.askword() above.

When you execute the example, you first see a note saying ‘This is the
main program’ and then you are asked to ‘Type your name’ when the
execution proceeds to the mymodule.askword() function.

As you can see, making custom modules is really straightforward in
PyS60. However, there is one important thing to remember: the global
keyword that makes a variable accessible to many functions affects only
one module. If you think about our explanation of the global symbol table
in the previous section and how the keyword global relates to it, this
outcome should feel logical, as each module has a symbol table of its own.

236 EFFECTIVE PYTHON FOR S60

For instance, if you had declared the variable word global in mymod-
ule, it would not have been visible to Example 107 automatically.
This is beneficial, since you can treat each module as a separate unit
independently from other modules.

Whenever you feel that your application gets too complex to handle in
one file, separate it into several modules. Also, if you feel that a function
would be useful for many applications, place it into a separate module
so it can be imported to any application that needs it.

10.3.2 Extending Python for S60 in Symbian C++
It is also possible to extend PyS60 using Symbian C++. As a matter of
fact, the standard PyS60 API is mostly implemented this way. Although
this approach is much more complicated than making custom modules
in Python, it enables you to connect directly to low-level services of
Symbian OS.

For instance, if you want to use an accelerometer that may be built
into your phone and it cannot be accessed using the standard PyS60 API,
making a C++ extension is an appropriate choice.

To write a C++ extension for PyS60, you need:

• a PC with Windows

• C++ SDK for the S60 platform appropriate to your phone

• Python for S60 plug-in for the S60 C++ SDK

For details on how to write C++ extensions, see the PyS60 document-
ation and PyS60 wiki.

10.3.3 Automatic Updating
A file containing a PyS60 module, or any other source code in Python,
is just an ordinary text file. Consequently, you can handle these source
code files as any other files in Python. In particular, it is possible to
download a source code file from the web and save it to E:\Python\ or
E:\Python\Lib, which makes it visible to the PyS60 interpreter.

This means that you can update your PyS60 programs using PyS60!
Example 108 should clarify this.

Example 108: Updating PyS60 code from the web

import urllib

CODE = "mytest.py"
URL = "http://www.myownserver.com/pycode/"

CUSTOM MODULES AND AUTOMATIC UPDATING 237

code = urllib.urlopen(URL + CODE).read()
f = file(u"E:\\Python\\" + CODE, "w")
f.write(code)
f.close()
print "File %s updated successfully!" % CODE

As you can see, it uses the standard urllib.urlopen() function to
download a file from the web, like many examples in Chapters 8 and 9.
In this case, the file name CODE refers to a PyS60 source code file that
we have made available to a web server at URL. Change the URL to
point at your own web folder containing a file named mytest.py. The
script downloads the file and saves it to the E:\Python\ directory, so it
can be found in the PyS60 interpreter’s Run script menu. After running
Example 108, a new file mytest.py should appear there as a new
Python script.

It is impossible to overemphasize the usefulness of this little script. It
has proven vital in projects carried out by the authors of this book in two
respects. First, for some PyS60 developers, it can be the fastest way to
upload code to the phone during development. If you are familiar with
website development and you can edit files in the web easily, you can
place and edit your PyS60 files on the web as well. When you need to test
the code, you just execute this program and the source files are updated
on your phone instantly. This is particularly convenient if you can use
WiFi on your phone for network connection and you can run a local web
server on your PC.

Second, this method has proved to be valuable in production settings
as well. The authors of this book designed and implemented a large-scale
urban game, called Manhattan Story Mashup, in New York in September
2006. More information about the game can be found in Section 11.2.

Because of many uncertainties, we were reluctant to freeze the game
client a long time before the actual event. However, the players were
given phones to play the game a week before the event, so we needed a
method of updating the last-minute fixes to the players’ phones.

Our solution is depicted in Figure 10.1. As you can see, the figure
shows a PyS60 interpreter. However, we modified the application menu
of the interpreter slightly. This is not difficult, since the PyS60 interpreter
UI is implemented in Python (naturally!) and PyS60 is distributed as open
source, so you are free to modify it in any way.

We added an Update StoryMashup item to the menu, as shown in
the figure. This item executed a function similar to Example 108, which
updated the game client code from the web.

Finally, just before the game started, we instructed our 160 players
to update the latest version of the game client simply by selecting this
item. As a result, all the players were using an identical version of the
client, which included our last-minute changes. This method was a real
life saver.

238 EFFECTIVE PYTHON FOR S60

Figure 10.1 Automatic updating

10.3.4 Simple Plug-In Mechanism
We may take automatic updating even further. Not only can you down-
load PyS60 modules from the web using Python, but you can also decide
which modules to import at run time.

This makes your applications infinitely extensible. Depending on the
user input, the physical environment or any other parameter, you can
make your application request new functionality from the web. This leads
to opportunities that come from science fiction, but, in simple terms, it
allows you to easily make a plug-in mechanism for your applications.

Example 109: Plug-in mechanism

import urllib

URL = "http://www.myownserver.com/pycode/"

def download_plugin(plugin_name):
filename = plugin_name + ".py"
code = urllib.urlopen(URL + filename).read()
f = file(u"E:\\Python\\Lib\\" + filename, "w")
f.write(code)
f.close()
return __import__(plugin_name)

plugin_name = appuifw.query(u"Give plug-in name", "text")
print "Downloading plugin", plugin_name
plugin = download_plugin(plugin_name)
print "Plugin loaded!"
plugin.askword()

PROGRAM PATTERNS 239

Example 109 wraps the download functionality of Example 108 in
the function download plugin(). As in the previous example, it
downloads a PyS60 source code file from a specified URL on the web
and saves it to a local directory. However, in this case, the file is saved to
E:\Python\Lib, which makes the file able to be imported as a custom
module, as we saw in Example 107.

The magic happens with Python’s special import () function.
Normally, when you import a module to your program, you have to
specify the module’s name in your source code, after the import
statement. In contrast, the import () function lets you import a
module at run time, by giving the module’s name in a string. It returns
the imported module as an object that you can use in the usual way.

In this example, the user can specify the plug-in name, plugin name,
that is loaded from the web. Let’s assume that you type ‘myplugin’ in the
dialog. Then, the download plugin() function tries to download the
file http://www.myownserver.com/pycode/myplugin.py.

You should make sure that such a file is available. When the file
has been downloaded successfully, it is saved to E:\Python\Lib, after
which it can be imported as any other module.

In this case, we import the module immediately using the import
() function. The function download plugin() returns the newly

imported module in the variable plugin. We assume that the module
contains a function called askword() that is then called in the last line
of the example, which demonstrates that the new plugin module can
be used just as usual.

Note that this example does not contain any precautions for exceptions.
A real plug-in mechanism should make sure that the plug-in file is
available and that it contains the necessary functions. This is easy to
accomplish with try–except blocks, as described in Chapter 6.

10.4 Program Patterns

We have gone through over 100 code examples. The examples have
demonstrated a wide array of topics from string handling, GUIs, MP3
players and 2D graphics to GSM locationing, AppleScript, JSON gateways
and web services. From one point of view, this book could be considered
a large grab bag of interesting things that one can do with a mobile phone.

On the other hand, one could claim that many examples differ merely
on the surface level from others. You have probably noticed this phe-
nomenon as well: many new modules and examples that we have
introduced might have felt understandable to you at first sight. Even
though the module name and, of course, its functionalities were different
from what you had seen before, the new example often shared a similar
structure with earlier examples.

240 EFFECTIVE PYTHON FOR S60

This book is arranged according to subject areas, such as graphics,
Bluetooth and network programming. Given that we believe that most
of our readers are more interested in cool applications than theoretical
computer science, this grouping felt appropriate.

However, we could have grouped the examples according to the
program pattern that they follow. That is, instead of the subject area,
we might categorize the programs according to how they are structured
internally and how they interact with the outside world.

The following list presents one such categorization. For each pattern,
we give a partial list of examples that follow this pattern. Note that a single
program may be based on several interleaved patterns. For instance, the
GSM cell ID mapper (Example 49) follows both the updating and the
application patterns below.

• Script: these are small examples that execute sequentially from
the beginning to the end and do not wait for external events to
occur. Scripts are handy for automating small tasks. For instance,
Examples 43, 63 and 79 follow this pattern, as well as all the examples
in Chapter 3.

• Application: these are examples that are based on the S60 application
user interface framework. The user may interact with the application,
for example, by way of the application menu. Internally, the code
relies on event callbacks. For instance, Examples 12, 49 and 73 and
all the examples in Chapter 9 follow this pattern.

• Updating: this pattern is useful in cases where the program must
update some data periodically. Typically, this is accomplished using
the e32.Ao timer object that is set to call a function at regular
intervals. The GSM cell ID mapper in Example 49 and EventFu in
Section 9.3 follow this pattern.

• Event-driven: external events can originate from some other source
as well as the user interface. If the program must react to external
events, typically by way of callbacks, we say that the program is
event-driven. Examples include the game of Hangman in Section 4.5
that reacts to incoming SMS messages and the Instant Messenger in
Section 8.6.2 that reacts to network events.

• Game: here, the crucial feature is an event loop that keeps the
program active even without any external events. This pattern was
thoroughly described in Section 5.5 and first exemplified by the
drawing application in Example 33.

• Client–server: many examples in Chapters 7 and 8 are based on
communication between a client and a server. The idea is that two
independent programs communicate and thus affect each other’s state.

SUMMARY 241

The Bluetooth client in Example 59 and the server in Example 60 are
illustrative of this pattern.

• Concurrent: in many real-world settings, a program must perform
many things at the same time. The use of callback functions relies on
the fact that some mechanism is listening to events in the background,
although your program may simultaneously be busy doing something
else. Thus, many examples we have seen actually work concurrently
behind the scenes.

In this book, we have deliberately avoided touching this issue
too much, since it is notoriously difficult to program well-behaved
concurrent programs. Fortunately, PyS60 often provides a way to
avoid using threads and other concurrent programming techniques,
such as active objects, used by Symbian OS, explicitly. However, in
Section 8.6 we presented a message handler (Example 83) that shows
a clean pattern of concurrency using threads.

Once you start building more complex applications of your own,
seeing and using these patterns might prove useful. Before coding a single
line of code, you can decide which of these patterns your application
code should follow – often the choice is really evident. After this, you
can browse through the examples that use that particular pattern. In the
best case, you might be able to use one of the examples as a skeleton for
your application and get past the ‘empty editor’ syndrome.

10.5 Summary

Python is a great language in which to write elegant and clean code.
Writing clean code is the best way to avoid bugs in the first place and
it gives you a feeling that you know what happens in your program at
all times. Consequently finding any bugs is easier and fixes are simpler.
Naturally the sense for elegant code is something that needs lots of
hands-on practice and failures, to develop.

If you feel adventurous, you could take a look at the Python source code
and find out how API calls are implemented. This is not as intimidating
as it may first sound, since the code is typically understandable and, even
if you do not understand it fully, it can point you in the right direction.
Luckily PyS60 is open source so this is a real option!

There are often many different ways to accomplish one goal in pro-
gramming. To get to your goal, you have to make a great number of small
decisions. Often, alternatives are technically similar and the difference is
mostly a matter of aesthetics. However, style does matter in programming.
It makes sense to keep some rules of thumb in mind that may help you
write better code.

242 EFFECTIVE PYTHON FOR S60

It may be enlightening and entertaining to read the following short
articles:

• ‘Zen of Python’ at www.python.org/dev/peps/pep-0020

• ‘Python Style Guide’ at www.python.org/dev/peps/pep-0008

These articles give deeper insights into issues of coding style in Python.
Besides those articles, which discuss the Python language in general, we
would like to present some thoughts that seem to be especially appropriate
for PyS60:

• Make sure you understand it

Don’t write or use code which you do not fully understand. Debugging
alien code is no fun. By keeping this principle in mind, you will
become a master of PyS60 in no time.

• Don’t copy and paste code

Related to the previous advice, you should understand every line of
code in your program. If you type in each line manually, you force
yourself to think what you type.

• Be prepared for the real world

Many bugs are caused by unexpected input values from the outside
world. Try to keep the diversity of possible contexts in mind when
designing your code. This is particularly important with mobile code,
which is often used in many different environments. However, do not
aim at universal solutions since they rarely exist. Also, remember to
validate data before you use it and handle exceptions properly.

• Make it modular

Complex programs can be kept simple if they are modularized prop-
erly. Separate your code logic into small functions and divide your
code into modules.

• Keep it simple

Use as few lines of code as possible, no fewer, no more. In Python,
terseness is a virtue but not at the price of understandability.

• See patterns in your code and in that written by others

Follow patterns that you have seen to work in practice. This way you
can avoid debugging the same problems every time. Note, however,
that patterns are just conceptual tools. Do not try to force your program
to follow a pattern, if it doesn’t feel natural. Also, do not use patterns
as an excuse to copy and paste code.

SUMMARY 243

• Be pragmatic

As we said in Chapter 1, PyS60 is all about having your head in
the clouds, your hands in mud and your feet on the ground. That
is, come up with, implement and test working prototypes in rapid
cycles. Only dinosaurs spend years thinking about grandiose software
architectures – other reptiles have already evolved past that stage.

11
Combining Art and Engineering

This chapter brings together many of the concepts and techniques shown
in the previous chapters. We provide a series of real-world application
examples that combine art and engineering. They are all built and
deployed using PyS60. Most of them have their origins in the field
of digital art and are implemented by following the rapid prototyping
approach with PyS60.

We hope to illustrate here that by having an application idea or a
concept at the core of your actions, you can turn it into a fully working
application by adopting and combining many of the previously introduced
code examples. The applications we explain span from participatory
and collaborative games to mobile multi-user applications controlling
large displays, from interacting with a robot to physical computing using
sensor boards and applications for controlling remote sound applications.
Finally we show how you might turn your phone into a tool for creating
mobile art.

Again we want to repeat here our message to all you creative and
innovative people out there: use your talent, skills, ideas and energy to
inspire the world! May this chapter and the entire book help you to do so!

11.1 MobiLenin

The MobiLenin system allows a group of people to interact simultaneously
with a multi-track music video shown on a large public display using
their personal mobile phones, effectively empowering the group with
the joint authorship of the video. The system was implemented with a
client–server architecture that includes server-driven, real-time control
of the client UI written in PyS60 to guarantee ease of use. A lottery
mechanism was built in as an incentive for interaction.

246 COMBINING ART AND ENGINEERING

The MobiLenin system was a research project of one of the authors and
his motivation as a music and new media artist and engineer was to create
an interactive technology system that gives the audience the possibility
of engaging in a new way in his live show – simply by interacting with
the music and video on a large screen. The idea is to enhance people’s
concert experience by allowing them to interact with the artist in the
virtual domain on the display.

11.1.1 System Architecture

The MobiLenin system comprises four components:

• a PyS60 client application running on a mobile phone

• an application running on a PC connected to the Internet

• an external server

• a large public display showing the music video.

There are several reasons why personal mobile phones are suitable
user devices for this purpose. First, they are ubiquitous, as practically
everyone has one. Second, they allow anonymous, wireless and mobile
participation in a joint social and public group interaction. Third, the
mobile phone provides a reliable return channel for delivering confiden-
tial user-specific information back to the user, such as a winning lottery
coupon.

The PC application is implemented in Macromedia Director to count
votes, operate the lottery mechanism, initiate the delivery of winning
notifications and control the QuickTime player with its multi-track video
as well as handling all the graphic elements on the public display and the
sound. An external server component consisting of simple PHP scripts is
placed on the Internet to act as a mediator between the public mobile data
network and the PC running the main application. The communication
between the two is done by HTTP. The external component also hosts
the pictures for the lottery coupons to be fetched by the mobile devices
upon initiation by the main application.

The large public display serves as the main interface for the user’s
interaction. Besides showing the music video, it indicates the start and
end of a voting interval and the voting results and notifies the audience
of somebody winning the lottery.

Figure 11.1 shows the state diagram of the system. When the vot-
ing interval starts, it is indicated in the client by an S60 popup note
(Figure 11.2 (a)) and shown on the public display (‘Vote now!’). The
server opens the voting menu in each client, so that a vote is cast by
selecting one of the given menu choices (Figure 11.2 (b)). If a vote is cast,

MOBILENIN 247

Vote on!
note

Client
(Mobile Phone)

Server Public Display

Vote now! Video:
Track 1 on
Track 2 off
Track 3 off
Track 4 off
Track 5 off
Track 6 off

Vote ends
Counting votes

Show Results
Switch Video

track

Start

Menu opens

Select choice

Winning!
note

Coupon
picture opens

25 sec.

25 sec.

6 sec.

Figure 11.1 State diagram of the MobiLenin system

it is acknowledged by the client (Figure 11.2 (c)) and sent to the server. If
the user wins in the lottery, a winning coupon is pushed to the client by
the server and presented to the user (Figure 11.2 (d)).

After a 25-second voting interval is over, ‘Counting votes!’ is shown on
the public display. The server counts the votes and, after six seconds, the
result of the vote is displayed on the large display in form of six graphic
bars, one for each voting option. The length of each bar corresponds to
the proportion of votes each option received (Figure 11.3.). The results
are displayed for 25 seconds and then a new voting interval starts.

The six options in the voting menu correspond to the six tracks in
the multi-track music video. Only one track is visible at a given time,
determined by the collective vote of the previous voting interval. The
change of the video track results in a non-linear perception of the video
on the public display.

The music video employed in the MobiLenin system comprises six
tracks each showing a different performance style of the musician:

• clap: he claps hands to the rhythm of the music (no voice, only slim
music version with no guitar sound and no singing);

• resign: no voice, just gestures, still slim music version with no guitar
sound and no singing;

• guitar: he plays guitar (still no voice, reduced music version with
guitar sound, but no singing);

• sing: he sings and plays guitar (full music version with guitar sound
and singing);

248 COMBINING ART AND ENGINEERING

• crazy: ‘violent’ performance (voice and full music version are on);

• skeleton: he turns into a skeleton (still playing guitar and singing with
full music version on).

Although the performance style of the musician changes, the back-
ground footage stays the same.

(a) (b)

(c) (d)

Figure 11.2 Screenshots of the client’s UI: (a) the voting interval has started; (b) casting a vote; (c) the vote
is acknowledged; (d) a winning lottery coupon is received

MOBILENIN 249

Figure 11.3 The public display

11.1.2 MobiLenin Mobile Client Code

Although you can’t get this code to work since you are missing all
the back-end applications, we want to give a rough explanation here to
highlight how it was possible to rapidly prototype a project like MobiLenin
with PyS60 in a matter of 2–3 days. The script is divided into two parts
for better display (Examples 110 and 111). It might not contain the most
elegant code, nevertheless it worked, served its purpose and shows you
that you can program things in Python in many different ways. You
are already familiar with some lines of code, for example the function
keys() for handling keyboard keys.

The server side (external server) of the MobiLenin system consists of
a few PHP scripts and some data files; the mobile client communicates
with them over GPRS or 3G. At the startup of the application, a tem-
porary id is requested from the external server by an HTTP request,
conn.request("POST", "/fetch id.php"). The id returned by
the fetch id.php script is used for further communication with the
server. It stays valid as long as the mobile client is up and running.

The basic principle of the mobile client is that it polls the external
server every two seconds to know whether to display the voting menu to
the screen, fetch a winning coupon or simply remain waiting. The poll is
done inside the while loop at the bottom of the script by a standard HTTP
GET request, conn.request("GET","/control"+id+".txt"), to
fetch data from a file that resides on the external server. This data file
holds the letters ‘A’, ‘K’, ‘B’ or ‘P’. It is dynamically updated by the
other back-end applications that control the voting cycle and run the
video. With r1 = conn.getresponse() and data1 = r1.read(),

250 COMBINING ART AND ENGINEERING

the received content from the data file is read into the variable named
data1.

Let’s look at the actions that follow based on the received content:

• ‘A’ triggers a pop-up note to the screen saying ‘Voting is on’
(Figure 11.2 (a)), then function voting() is called to display a pop-
up menu with the voting choices (Figure 11.2 (b)) based on the
list choices=[u"Clap", u"Resign", u"Guitar", u"Sing",
u"Crazy", u"Skeleton"]. Resulting from the user’s selection, a
letter between ‘A’ and ‘F’ is sent to the external server to inform the
overall vote count. This is done by a standard HTTP POST request,
conn.request("POST", "/voting phone"+id+".php",
params, headers). Then another pop-up note is triggered to the
user saying ‘Your vote is being processed’ (Figure 11.2 (c)). Once this
is done, the script keeps polling the server every 2 seconds.

• ‘K’ keeps the mobile client polling until a different letter comes in.

• ‘B’ (for beer) or ‘P’ (for pizza) notifies the user about being the
winner of the lottery. A coupon (Figure 11.2 (d)) is fetched inside
the function winning() from the server by the standard Python
function urllib.urlretrieve(url, tempfile) and displayed
to the screen. When the user presses the left softkey, the coupon
disappears and the script keeps polling the server every 2 seconds.

Example 110: MobiLenin (1/2)

import httplib, urllib, appuifw, e32, graphics, key_codes

def keys(event):
global win_state
if event['keycode'] == key_codes.EKeyLeftSoftkey:

win_state=0

def show_picture(picture):
canvas.blit(picture)

def voting():
choices=[u"Clap", u"Resign", u"Guitar", u"Sing", u"Crazy", \

u"Skeleton"]
choice = appuifw.popup_menu(choices, u"Select + press OK:")
choice_conversion={0: 'A', 1: 'B', 2: 'C', 3: 'D', 4: 'E', 5: 'F'}
params = urllib.urlencode({'data': choice_conversion[choice], \

'eggs': 0, 'bacon': 0})
headers = {"Content-type": "application/x-www-form-urlencoded", \

"Accept": "text/plain"}
conn = httplib.HTTPConnection("www.yourdomain.com:80")
conn.request("POST", "/voting_phone"+id+".php", params, headers)
conn.close()

def winning(url):
global win_state, coupon_shown

MOBILENIN 251

if not win_state:
if not coupon_shown:

tempfile = "E:\\Python\\resources\\win.jpg"
urllib.urlretrieve(url, tempfile)
coupon_shown = 1
win_state=1
img_win=graphics.Image.open(tempfile)
appuifw.note(u"Winner", "info")
e32.ao_yield()
show_picture(img_win)

appuifw.app.screen='full'
appuifw.app.body = canvas = appuifw.Canvas(event_callback=keys, \

redraw_callback=show_picture)

img_wait=graphics.Image.open(u'E:\\Python\\resources\\wait.jpg')
keyboard_state={}
downs={}
running= 1
show_picture(img_wait)
voting_done = 0
win_state= 0
coupon_shown = 0
id = ""

Example 111: MobiLenin (part 2/2)

if id == "":
conn = httplib.HTTPConnection("www. yourdomain.com:80")
conn.request("POST", "/fetch_id.php")
response = conn.getresponse()
data = response.read()
id = str(data)

while running:
if not win_state:

show_picture(img_wait)
e32.ao_sleep(2.0)
conn = httplib.HTTPConnection("www.yourdomain.com:80")
conn.request("GET", "/ control"+id+".txt")
r1 = conn.getresponse()
data1 = r1.read()
conn.close()

if data1 == 'A':
if not voting_done:

coupon_shown = 0
appuifw.note(u"Voting on", "info")
voting()
show_picture(img_wait)
appuifw.note(u"Your vote is being processed!", "info")
voting_done=1
coupon_shown = 0
show_picture(img_wait)

elif data1 == 'K':
voting_done=0

252 COMBINING ART AND ENGINEERING

elif data1 == 'B':
winning("http://www.yourdomain.com/canvas_beer.jpg")

elif data1 == 'P':
winning("http://www.yourdomain.com/canvas_pizza.jpg")

e32.ao_yield()

Example 112 lists the PHP script, voting phone"+id+".php,
which the mobile client calls when sending the vote to the external
server. The PHP script receives the vote content in the parameter, data,
and stores it in a file called phone1.txt which is read by the other
back-end applications of the MobiLenin system. Each mobile client con-
nected to the MobiLenin system has its corresponding data files and PHP
scripts on the external server.

Example 112: MobiLenin server-side PHP script

<?php
$data = file_get_contents('php://input');
$filename = 'phone1.txt';
$handle = fopen($filename, 'a+');
fwrite($handle, $data);
fclose($handle);
?>

With this setup it is possible to run MobiLenin with many users
at the same time as a multi-user entertainment game. A test with
75 simultaneous users was successfully carried out. For those inter-
ested in reading more about this project there is a 10-page research
paper ([Scheible and Ojala 2005]), some documentation and videos at
www.leninsgodson.com/mobilenin.

11.2 Manhattan Story Mashup

Manhattan Story Mashup is an urban storytelling game, designed by
the authors of this book, that combines mobile phones, the web and a
large public display into interactive, collaborative street art. The game is
based on real-time interaction between mobile phone and web users. A
storytelling tool on the game’s website allowed anybody to write stories
that were illustrated in real-time by almost two hundred street players in
New York, taking photos with Nokia N80 camera phones. Once a story
was fully illustrated, it was presented on a large public display in Times
Square (see Figure 11.4).

The street players were given points according to how many individual
nouns – which were extracted from the web stories – they could illustrate
successfully. The success was validated by another street player who

MANHATTAN STORY MASHUP 253

Figure 11.4 Manhattan Story Mashup in Times Square

was asked to match the newly taken photo with the original noun in a
multiple-choice test. If she was able to match the correct noun with the
photo, both the guesser and the illustrator were awarded points.

The game proved to be fun and engaging. During 90 minutes of
playing, the street players took 3142 photos and made 4529 guesses to
validate each other’s photos. In total, 115 stories were written by the
web players. While illustrating these stories, the street players visited 197
distinct GSM cells in midtown Manhattan.

A major factor of the success was a smooth and fast-paced user
experience. The player had to think fast and act fast to find a suitable
target in the urban environment which somehow represented a given
noun. With one click, the user could accept a noun for illustration. After
this, a countdown timer was shown which gave the player 90 seconds to
shoot a suitable photo just by clicking the Select key once. The photo was
then automatically uploaded to the server and the game client returned
to show the list of available nouns. Thus, it was possible to play the game
just by repeating this two-click, choose-and-shoot cycle.

Both the mobile client and the game server were implemented in
Python. Starting from a vague game concept and no code at all, it took
approximately three months to implement the client, the server and a
highly dynamic website by one of the authors. The first prototype of
the game client was finished in a weekend. The prototype was then
field-tested and the second, improved prototype was implemented in two

254 COMBINING ART AND ENGINEERING

weeks based on experiences from the first version. After this, another
field-test was organized and the remaining rough edges were polished off
to produce the final game client.

Without rapid prototyping and field-tests, it would have been impossi-
ble to achieve such a smooth user experience. Given only three months’
development time, PyS60 was a perfect tool for the task. Being able
to use the same language on both the client and the server effectively
was a major benefit as well. As discussed in Section 10.3.3, the game
client included a mechanism for automatic updating which ensured that
last-minute bugs could not spoil the experience.

When implementing a system that orchestrates 200 mobile phone
clients, a public web application and a large public display in real time, it
is crucial that the implementation language does not increase complexity
by imposing arbitrary constraints or conventions. With Python, all the
pieces came together on the first try – something that anyone with tight
schedules can appreciate.

An important success factor was that the client looked and felt like
a game. Instead of using the standard user interface elements from the
appuifw module, we implemented a custom-made set of UI elements,
which were used to build the user interface for the game client (see
Figure 11.5).

(a) (b) (c)

Figure 11.5 Manhattan Story Mashup user interface

There is nothing particularly difficult in making custom UI elements
in PyS60. In our game client, the UI elements are drawn in the redraw
function of the canvas, in a similar way to many examples in Chapter 5.
The keyboard event handlers are used to modify some variables that affect
how the element is drawn on the screen, for instance, which line on the
list should be highlighted. This is similar to the UFO Zapper example in
Section 5.5.

MANHATTAN STORY MASHUP 255

In Example 113, we show how the list element in Figure 11.5(a), is
created. Although Example 113 is just an excerpt of a larger program, it
should give you an idea of how to create custom UI elements.

Example 113: Manhattan Story Mashup custom list element

def list_redraw(self):
self.img.rectangle(self.area, fill = WHITE)
x = self.area[0] + 10
y = self.area[1] + LIST_FONT[1]

if len(self.list):
sel_x = self.area[0]
sel_y = self.area[1] + self.idx * (LIST_FONT[1] + 5)
self.img.rectangle((sel_x, sel_y,\

self.area[2], sel_y + LIST_FONT[1] + 4), fill = YELLOW)

else:
self.img.text((x, y), u"[empty list]", font = LIST_FONT,\

fill = BLUE)

for item in self.list[self.first_vis: self.first_vis +
self.nof_visible]:

txt = u"%s" % self.filter(item)
self.img.text((x, y), txt, font = LIST_FONT, fill = BLUE)
y += LIST_FONT[1] + 5

if self.first_vis + self.nof_visible < len(self.list):
x = self.area[2] - 30
y = self.area[3] - 30
self.img.polygon((x, y, x + 20, y, x + 10, y + 10), fill = BLUE)

if self.first_vis > 0:
x = self.area[2] - 30
y = self.area[1] + 20
self.img.polygon((x, y, x + 20, y, x + 10, y - 10), fill = BLUE)

First, we clear the list area in white. Then, we position the coordinates
x and y at the upper left corner of the list area. Depending on which
item in the list is selected, a yellow rectangle is drawn to depict the
highlighted element. If there are no elements in the list, the text ‘[empty
list]’ is shown.

After this, we loop through the visible list elements and draw them on
the screen using the Image.text() function. During each iteration, the
y coordinate is increased, so each item is drawn on a separate line.

If the list contains more items than those which are visible, a small
triangle is drawn to notify the user that she can go up or down the list.
One such triangle is visible in Figure 11.5(c).

As you can see, there is no magic in making custom UI elements.
Although this approach requires much more work compared to using the
standard UI elements from the appuifw module, it allows you to tailor
the user interface to your particular application. If done well, this can

256 COMBINING ART AND ENGINEERING

increase usability and lead to a smoother user experience. In any case,
you are guaranteed to get a distinctive look for your program!

11.3 MobileArtBlog – Image-Composition Tool

The image-composition tool described in this section allows the user to
compose and draw images, as seen in Figure 11.6. With the camera and
navigation keys, a photo can be placed multiple times on the canvas
and its size can be changed. Alternatively the photo can leave color
traces by moving it on the canvas using the navigation keys. At any
time during the composition process, a new photo can be taken. The

Figure 11.6 A collage of MobileArtBlog images

MOBILEARTBLOG – IMAGE-COMPOSITION TOOL 257

composed image is stored in the gallery of the phone and is also uploaded
to the Internet by pressing only one button. The application was created
by one of the authors for his MobileArtBlog concept. He uses it during
his travels when he is stimulated by things he sees and experiences
in different cities, places and situations, trying to capture the moment
and turn it into a memorable ‘art piece’ (mobile art). Once the image
is composed, it is posted directly over the mobile data network to his
MobileArtBlog website with metadata such as the name of the place and
its GPS coordinates. The GPS data are read by way of Bluetooth from an
external GPS device. A large collection of created images can be seen
at www.mobileartblog.org with their originating positions on a Google
map view.

Let’s look at the code to see how the application works. We list the
mobile-client code, as well as the server-side PHP scripts that demonstrate
how Python can easily be used to upload an image file to a URL.
Finally we show how PyS60 can be used to insert data into a MySQL
database.

11.3.1 MobileArt Client Code

Most of the code is similar to the examples in Chapter 5 regarding drawing
graphics primitives and images and controlling graphic movements and
the use of the camera. The MobileArtBlog is a combination of those
applications with some additional functionality.

Example 114 presents the first part of the MobileArt client. It shows
mainly the key-handling functions and some initialization logic. Example
115 presents most of the image-composing logic.

Example 114: MobileArtBlog (1/3)

import camera, appuifw, e32, graphics, key_codes

keyboard_state={}
downs={}

def handle_event(event):
global downs,keyboard_state
if event['type'] == appuifw.EEventKeyDown:

code=event['scancode']
if not key_is_down(code):

downs[code]=downs.get(code,0)+1
keyboard_state[code]=1

elif event['type'] == appuifw.EEventKeyUp:
keyboard_state[event['scancode']]=0

def key_pressed(scancode):
global downs
if downs.get(scancode,0):

downs[scancode]-=1

258 COMBINING ART AND ENGINEERING

return True
return False

def key_is_down(scancode):
global keyboard_state
return keyboard_state.get(scancode,0)

def quit():
if appuifw.query(u"Save image","query") == True:

background.save('e:\\Images\\art_picture.jpg')
appuifw.app.set_exit()

def handle_redraw(rect):
canvas.blit(background)

appuifw.app.body=canvas=appuifw.Canvas(event_callback = handle_event,\
redraw_callback = handle_redraw)

appuifw.app.screen='full'
appuifw.app.exit_key_handler=quit
image_size = canvas.size
background = graphics.Image.new(image_size)
transfer_pic = graphics.Image.new(image_size)
transfer_pic.clear(0xffffff)
transfer_pic.save('e:\\transferpic.jpg')
picture = graphics.Image.new((50,50))
picture.clear(0x000000)
x = 100
y = 100
picture_size = 50
running = 1
drawing = 0
switch = 0
e32.ao_yield()

The basic concept of composing the art image is that a newly taken
picture is stored as an Image object named picture and is drawn on
the canvas at a certain position on top of the background image object,
named transfer pic. At any time, when the user presses the Select
key, the background image object merges with the photo, so the photo
is ‘stuck’ to the background, and is saved. The new background image
object is then drawn to the canvas and the photo (in form of the picture
image object) can be freely moved to the next position on the canvas
using the navigation keys and so on. The size of the picture object can
be changed with the 4 and 7 keys. The entire screen can be filled and the
new art image composed.

Example 115: MobileArtBlog (2/3)

while running:
if drawing == 0:

background.clear(0xffffff)
background.blit(transfer_pic,scale=1)

MOBILEARTBLOG – IMAGE-COMPOSITION TOOL 259

background.blit(picture,target=(x,y,x+picture_size,
y+picture_size),scale=1)

handle_redraw(())
e32.ao_yield()

if switch == 1:
picture = camera.take_photo(size = (640,480))

if key_is_down(key_codes.EScancodeLeftArrow): x -= 2.0
elif key_is_down(key_codes.EScancodeRightArrow): x += 2.0
elif key_is_down(key_codes.EScancodeDownArrow): y += 2.0
elif key_is_down(key_codes.EScancodeUpArrow): y -= 2.0
elif picture_size > 10:

if key_is_down(key_codes.EScancode4): picture_size -= 2
elif picture_size < 90:

if key_is_down(key_codes.EScancode7): picture_size += 2
elif key_pressed(key_codes.EScancodeLeftSoftkey): switch = 1
elif key_pressed(key_codes.EScancode6): drawing = 1
elif key_pressed(key_codes.EScancode9):

background.save('e:\\transferpic.jpg')
transfer_pic = graphics.Image.open('e:\\transferpic.jpg')
drawing = 0

elif key_pressed(key_codes.EScancodeSelect):
background.save('e:\\transferpic.jpg')
transfer_pic = graphics.Image.open('e:\\transferpic.jpg')
switch = 0

elif key_pressed(key_codes.EScancodeHash):
background.save('e:\\transferpic.jpg')
transfer_pic = graphics.Image.open('e:\\transferpic.jpg')
upload()

To implement the photo leaving traces on the canvas, the background
image object, transfer pic, is prevented from being redrawn through
setting the variable drawing to 0. When the user presses the hash button,
the art image is uploaded to the MobileArtBlog website by the upload()
function (Example 116).

Example 116 presents the third part of the MobileArt client, which
deals mainly with the uploading of the art image to the MobileArtBlog
website and its MySQL database by two HTTP POST requests:

conn1.request("POST", "/upload_to_url.php", chunk, headers)
conn2.request("POST", "/insert_artblog.php", params, headers)

In the first HTTP POST request, the art image – stored in the variable
chunk – is handed over to the PHP script named upload to url.php
(see Example 117), which saves the image to the server and returns its
dynamically created filename as a URL back to the PyS60 script to the
variable picture url.

In the second HTTP POST request, some data such as location name,
image URL and GPS data are first encoded and stored to the variable
named params and are then pushed into a MySQL database by the PHP
script named insert artblog.php (see Example 118).

260 COMBINING ART AND ENGINEERING

Example 116: MobileArtBlog (3/3)

upload():
text = u'name of location'
lat = GPS data from external device
lon = GPS data from external device
f = open(u'e:\\transferpic.jpg',"rb")
chunk = f.read()
f.close()

headers = {"Content-type": "application/octet-stream",
"Accept": "text/plain"}

conn1 = httplib.HTTPConnection("www.myserver.com")
conn1.request("POST", "/upload_to_url.php", chunk, headers)
response = conn.getresponse()
picture_url = response.read()
conn1.close()

params = urllib.urlencode({'data': text , \
'eggs': picture_url, \
'bacon': lat, 'noodle': lon})

headers = {"Content-type": \
"application/x-www-form-urlencoded",\
"Accept": "text/plain"}

conn2 = httplib.HTTPConnection("www.myserver.com")
conn2.request("POST", "/insert_artblog.php", params, headers)
conn2.close()
quit()

11.3.2 Server-side PHP Scripts

The server of the MobileArtBlog runs PHP and holds the PHP files in
Examples 117 and 118. The first POST request from the phone passes
the art image in binary form from the variable chunk to the script
in Example 117, which stores it on the server in the directory named
pictures. Its filename, which becomes part of the image’s URL, is
created dynamically using the timestamp and a random number. With
echo "".$filename; the filename of the art image is returned to the
PyS60 script.

Example 117: Server-side PHP script

<?php
// this file's name is upload_to_url.php
// read the incoming image data handed over from PyS60 phone

$chunk = file_get_contents('php://input');

// create a filename based om time and a random number
$timestamp = time();
$random_id = rand(0, 10);
$filename = 'Pic'. $timestamp .$random_id .'.jpg';

ARDUINOBT MICRO-CONTROLLER BOARD 261

// write the file to the server into the directory pictures
$filepathname = "pictures/$filename";
$handle = fopen($filepathname, 'wb');
fputs($handle, $chunk, strlen($chunk));
fclose($handle);

// return the filename
echo " ".$filename;
?>

11.3.3 Inserting Data into a MySQL Database

The structure of the MySQL database table that is used for the MobileArt-
Blog contains five fields that are named blog text,blog datetime,
blog pic url, blog lon, blog lat. The second POST request
passes the encoded contents sent by the PyS60 script to the PHP script in
Example 118, which inserts them into the fields in the table.

Example 118: PHP script for MySQL database insert

<?php
// this file's name is insert_artblog.php
// Get the incoming params sent by the PyS60 phone

$data = $_POST['data'];
$eggs = $_POST['eggs'];
$bacon = $_POST['bacon'];
$noodle = $_POST['noodle'];

include "_mysql.php";

$sql = "INSERT INTO artblog (blog_text, blog_datetime,
blog_pic_url, blog_lon, blog_lat)
VALUES ('$data', NOW(), '$eggs', '$bacon', '$noodle')";

db_query($insert, $sql);
?>

11.4 ArduinoBT Micro-Controller Board

As mentioned in Chapter 7, it is possible to connect your phone to a
micro-controller. The ‘ArduinoBT board’ (Figure 11.7) is an example of
a micro-controller board with Bluetooth extension chip that offers serial
port communication.

Arduino is an open-source physical computing platform based on a
simple I/O board and a development environment for writing Arduino
applications (www.arduino.cc). The Arduino programming language is
an implementation of Wiring (http://wiring.org.co), based on Processing
(www.processing.org). It is easy to learn and quick to program. This
makes it an ideal complement for PyS60 to do rapid prototyping of

262 COMBINING ART AND ENGINEERING

Figure 11.7 ArduinoBT board and Nokia N80

physical computing applications. It can serve as a mediating technology
between sensors, motors and other actuators, providing access to the
physical world.

The mobile phone acts as a gateway device to the Internet giving
access to the digital and virtual world. As the Arduino board is small,
light and battery-powered, it is suitable to be taken anywhere, like the
mobile phone itself.

In this section, we describe the steps to connect a phone over Bluetooth
to the ArduinoBT board. The PyS60 code is given, as well as the Arduino
code that runs on the board. The Arduino software tool has a built-in
editor for writing the Arduino code. When you press an upload button,
the code is pushed to the board and can be executed.

The example application we provide here simply lets the user switch
an LED light on and off on the Arduino board. Each time the LED changes
its status, the board sends a confirmation (on or off) message back to the
phone. This is a simple example but it shows you the basic principles
for communicating with the board using the phone. It is up to you to do
great things with it.

All you need for this example, besides the ArduinoBT board, is a
battery between 1.2 V and 5 V for powering the board and a 5 mm LED
that you stick into the board at pin 13 and pin GND.

ARDUINOBT MICRO-CONTROLLER BOARD 263

11.4.1 Setting Up the ArduinoBT Environment
To set up the various components involved in this example, such as
installing the Arduino software tool and configuring the Bluetooth settings
on your computer, you need to take the following steps (this description
was valid in June 2007 and is for a Mac, but similar steps apply for
Windows PCs, too).

1. Create a Bluetooth serial port on your computer:

1. Go to System preferences. Select ‘Bluetooth icon’.

2. Select ‘Devices Tabs’ and press ‘Set Up New Device’.

3. Press ‘Continue’.

4. For device type, select ‘Any Device’.

5. ARDUINOBT should show up in a list, select it and press ‘Continue’.

6. Type passkey ‘12345’ (this is the default key set up by the factory).

7. Press ‘Continue’ (then you are done with the set up).

8. In ‘Devices’, you should now see ARDUINOBT (this is the default
name set up by the factory, but you can change it if you wish).

9. Select the name ARDUINOBT.

10. Press ‘Edit Serial Ports’. There you can see the name of your new
port, for example, ARDUINOBT-bluetoothseri-1.

2. Set up the Arduino software

1. Download the Arbuino software from www.arduino.cc and install
it on your computer.

2. Open it and select Tools.

3. Select ‘microcontroller (mcu)’ and set it as ‘atmega168’.

4. Select Tools.

5. Select ‘Serial port’ and then the Bluetooth port that you created
earlier, for example, /dev/tty.arduinobt-bluetoothseri-1.

Now you need to write your code for the board using the Arduino
software. (There are plenty of tutorials available on how to do this, for
example, at www.arduino.cc/.)

3. Upload your Arduino code to the board

1. Press the Reset button on the Arduino board.

264 COMBINING ART AND ENGINEERING

2. Press the ‘Upload to I/O board’ button on the Arduino software tool
UI.

3. After a moment, the Arduino software tool should show ‘Upload
done’.

4. Now you can start your Python script on the phone, connect over
Bluetooth to the Arduino board and test your functionality.

11.4.2 Writing Code in the ArduinoBT Environment
In a similar way to Example 59 of Chapter 7, Example 119 first scans
for Bluetooth devices until we find ARDUINOBT, the ‘nickname’ of the
Arduino board and then selects it. This connects the phone to the Arduino
board by the serial port using RFCOMM communication. The board can
receive data from the mobile phone and send data back to the mobile
phone.

The function bt send data1() sends the ASCII character ‘1’ to the
board to switch the LED on. The function bt send data2() sends the
ASCII character 0 to the board to switch the LED off. Each time the board
receives a ‘1’ (49 in decimal format), it sends ‘1’ back to the phone which
displays a note dialog ‘LED on’; similarly, it sends back ‘0’ (48 in decimal
format) and the phone displays ‘LED off’.

Example 119: LED on/off

import socket, e32, appuifw

def choose_service(services):
names = []
channels = []
for name, channel in services.items():

names.append(name)
channels.append(channel)

index = appuifw.popup_menu(names, u"Choose service")
return channels[index]

def connect():
global sock
address, services = socket.bt_discover()
channel = choose_service(services)
sock = socket.socket(socket.AF_BT, socket.SOCK_STREAM)
sock.connect((address, channel))

def receive():
global sock
data = sock.recv(1)
if data == "1":

appuifw.note(u"LED on ", "info")
elif data == "0":

appuifw.note(u"LED off ", "info")

def bt_send_data1():

ARDUINOBT MICRO-CONTROLLER BOARD 265

global sock
sock.send("1")
receive()

def bt_send_data2():
global sock
sock.send("0")
receive()

def exit_key_handler():
print "socket closed"
sock.close()
app_lock.signal()

app_lock = e32.Ao_lock()

appuifw.app.menu = [(u"LED on", bt_send_data1),
(u"LED off", bt_send_data2),
(u"Connect", connect)]

appuifw.app.exit_key_handler = exit_key_handler
app_lock.wait()

Example 120 contains the code that runs on the Arduino board.

Example 120: Arduino code LED on/off

int LED = 13; // pin for LED
int RESET = 7; //reset pin for bluetooth
int val = 0; // initial serial port data

void ledOFF() {
digitalWrite(LED, LOW);

}

void ledON() {
digitalWrite(LED, HIGH);

}

void reset_bt(){
// Reset the bluetooth interface
digitalWrite(RESET, HIGH);
delay(10);
digitalWrite(RESET, LOW);
delay(2000);

}

void setup() {
reset_bt();
pinMode(LED,OUTPUT);
pinMode(RESET,OUTPUT);
Serial.begin(115200);

}

void loop () {
val = Serial.read();
if (val != -1) {

266 COMBINING ART AND ENGINEERING

if (val == 49) {
ledON();
Serial.print(1); // feedback to mobile phone that LED is on

} else if (val == 48) {
ledOFF();
Serial.print(0); // feedback to mobile phone that LED is off

}
}

}

11.5 Controlling Max/MSP with a Phone

A significant number of people in the art and design community use
tools such as Pure Data (www.puredata.org), vvvv (http://vvvv.org) or
Max/MSP or Jitter (www.cycling74.com) for interactive audiovisual appli-
cations and art installations. vvvv is especially good for real-time video
synthesis that allows interaction with many users simultaneously.

These tools provide a graphical programming environment for music,
audio and multimedia. All of them allow rapid programming of powerful
audiovisual applications running on the computer or a server being
controlled through multimodal interfaces. We want to show here how to
use your mobile phone as a user interface for such tools. For practical
reasons on our side, we have chosen Max/MSP to get the basic ideas
across, but you can take the same approach when using one of the others
as well.

First we describe how to use Bluetooth RFCOMM to set up the
communication between PyS60 on the phone and Max/MSP on your
computer that will allow you to switch a sound on and off and change
its frequency. On the phone, we use a graphical switch and slider to
manipulate the sound by sending relevant control data to Max/MSP.

We then describe a mobile multi-user scenario which allows multiple
people to interact over WiFi instead, meaning that several users at the
same time can control parameters of a sound generator using the same
Max/MSP application.

11.5.1 Connecting a Phone to Max/MSP using Bluetooth RFCOMM
The patch of the Max/MSP graphical programming environment is shown
in Figure 11.8.

An object with the text ‘serial a 9600’ handles the serial port commu-
nication in Max/MSP. When you start Max/MSP, this object opens one
of the free serial ports of your computer. (You might have to check some
additional parameters in your computer’s Bluetooth setting if it doesn’t
work straight away.)

We cannot explain here the full functionality of the patch in detail,
but the basic idea is that when the serial port receives the string ‘51’ over
Bluetooth from the phone, the frequency of the sound produced by the

CONTROLLING MAX/MSP WITH A PHONE 267

Figure 11.8 Max/MSP patch using Bluetooth

268 COMBINING ART AND ENGINEERING

sound generator increases. Receiving the same string again increases the
frequency. Receiving the string ‘52’ decreases the frequency. When the
patch starts up there is no sound to be heard, until the sound is switched
on. This is done by sending the string ‘53’ from the phone. To switch off
the sound, the string ‘53’ must be sent by the phone again.

In this case we are not using the built-in UI elements of PyS60, but
instead we build our own graphical user interface (Figure 11.9) made up
of JPEG images. We have a button for switching the sound on and off and
a slider to change the frequency of the generated sound on the Max/MSP
application. This interface uses six images (Figure 11.10).

Figure 11.9 Graphical slider and switch for sound control

The code is divided into two parts (Examples 121 and 122). They need
to be combined into one script to work. The first 20 lines of code are
used to turn the graphical elements into ready-to-use image objects (see
Chapter 5).

Whenever the screen must be redrawn (for example, when the position
of the slider changes), we call the function handle redraw() in which
we use the concept of double buffering by copying all the graphical
elements e.g. img.blit(slidershaft, target = (0,0,w,h)) and
img.blit(contr, target=(142,y pos contr), mask=
contrMask) to the img object. We then blit the img object to the
canvas:

canvas.blit(img, target = (0,0,w,h), scale = 1)

CONTROLLING MAX/MSP WITH A PHONE 269

(a)

(b)

(d)

(c)

(e)

(f)

Figure 11.10 The images for slider and switch: (a) background, background.jpg,
(b) slider, controller.jpg, (c) 1-bit mask for the slider, controller mask.png,
(d) switch on, button red.jpg, (e) switch off, button dark.jpg, (f) 1-bit mask for the
switch, button mask.png

To connect to Max/MSP over Bluetooth, we use the function con-
nect() (Example 122), which includes the same code as in previous
Bluetooth RFCOMM examples, basically setting up a socket and scanning
for Bluetooth devices. For programming keyboard keys, we use the code
that was described in detail in Section 5.2.2.

Example 121: Max/MSP using Bluetooth

import appuifw, e32, graphics, key_codes, socket

sound = 0
y_pos_contr = 100

slidershaft = graphics.Image.open("e:\\background.jpg")

makeMaskTemp = graphics.Image.open('e:\\controller_mask.jpg')
makeMaskTemp.save("e:\\controller_mask.png", bpp=1)
contrMask = graphics.Image.new(size = (97,149),mode = '1')
contrMask.load("e:\\controller_mask.png")
contr = graphics.Image.open("e:\\controller.jpg")

makeMaskTemp = graphics.Image.open('e:\\button_mask.jpg')
makeMaskTemp.save("e:\\button_mask.png", bpp=1)
buttnMask = graphics.Image.new(size = (111,78),mode = '1')
buttnMask.load("e:\\button_mask.png")
buttnOn = graphics.Image.open("e:\\button_red.jpg")

270 COMBINING ART AND ENGINEERING

buttnOff = graphics.Image.open("e:\\button_dark.jpg")

def keys(event):
global y_pos_contr, sound
if event['keycode'] == key_codes.EKeyDownArrow:

if y_pos_contr < 260 :
y_pos_contr = y_pos_contr + 5
sending(str(3))

if event['keycode'] == key_codes.EKeyUpArrow:
if y_pos_contr > 0 :

y_pos_contr = y_pos_contr – 5
sending(str(4))

if event['keycode'] == key_codes.EKeySelect:
if sound == 1:

sound = 0
else:

sound = 1
sending(str(5))

handle_redraw(())

The ‘Select’ key is used to switch the sound on and off. Each time
the ‘Select’ key is pressed we send the string ‘5’ in ASCII format with
sending(str(5)) to Max/MSP. ‘5’ is equal to 53 in decimal format
and ‘53’ is used in the Max/MSP patch.

The ‘ArrowUp’ key is used to increase the frequency of the sound
generated by the Max/MSP application. When that key is pressed we send
the string ‘3’ in ASCII with sending(str(3)) which is equal to ‘51’ in
decimal format used by Max/MSP. Also the y-position of the controller
image is changed by 5 pixels with y pos contr = y pos contr –5,
making it blit to the canvas slightly further up. The same logic is used
for decreasing the frequency of the generated sound at the Max/MSP
application with the ‘ArrowDown’ key instead (sending the string ‘4’ in
ASCII (‘52’ in decimal) as well as changing the y-position of the controller
image downwards on the screen).

Example 122: Max/MSP using Bluetooth (2/2)

def handle_redraw(rect):
global sound, img, w,h
img.blit(slidershaft, target = (0,0,w,h))
img.blit(contr, target=(142,y_pos_contr), mask=contrMask)
if sound == 1:

img.blit(buttnOn, target=(8,328), mask=buttnMask)
else:

img.blit(buttnOff, target=(8,328), mask=buttnMask)
canvas.blit(img, target = (0,0,w,h), scale = 1)

def choose_service(services):
names = []

CONTROLLING MAX/MSP WITH A PHONE 271

channels = []
for name, channel in services.items():

names.append(name)
channels.append(channel)

index = appuifw.popup_menu(names, u"Choose service")
return channels[index]

def connect():
global sock
address, services = socket.bt_discover()
channel = choose_service(services)
sock = socket.socket(socket.AF_BT, socket.SOCK_STREAM)
sock.connect((address, channel))

def sending(data):
global sock
sock.send(data)

def quit():
app_lock.signal()

canvas=appuifw.Canvas(event_callback=keys, redraw_callback=handle_redraw)
appuifw.app.body=canvas
appuifw.app.screen='full'
w, h = canvas.size
img = graphics.Image.new((w,h))
appuifw.app.exit_key_handler=quit
handle_redraw(())
connect()
app_lock = e32.Ao_lock()
app_lock.wait()

11.5.2 Connecting a Phone to Max/MSP using WiFi

When connecting a phone to Max/MSP using WiFi, we can use almost
the same files as described in Section 11.5.1 about using Bluetooth. A
few things are different and we explain the differences here.

We need to remove the connect() function and replace the code of
the sending() function with the code in Example 123.

Example 123: Max/MSP using TCP/IP

def sending(data):
HOST = '192.168.1.100' # The remote host
PORT = 9000 # The same port as used by the server
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect((HOST, PORT))
s.send(data)
print "data send:", data
s.close()

We create a TCP/IP socket with s = socket.socket(socket.AF
INET, socket.SOCK STREAM) and use it to connect with s.connect

272 COMBINING ART AND ENGINEERING

((HOST, PORT)) to an IP socket on our computer identified by the IP
address (HOST). We choose port 9000 for communication. Sending the
control strings ‘51’, ‘52’ and ‘53’ is done through s.send(data).

In Figure 11.11, we can see the patch for Max/MSP. There is only
one major difference between it and the Bluetooth diagram (Figure 11.8).

Figure 11.11 Max/MSP patch using TCP port

OPENSOUND CONTROL 273

The TCP version uses the mx j.net.tcp.rec@port 9000 object to
receive the control strings, instead of the serial a 9600 object. The
mx j.net.tcp.rec@port9000 object handles socket communication
over TCP in Max/MSP and is one of the simplest ways to handle HTTP
transfers.

Once the Max/MSP application is running, the computer is ready to
send and receive data over the socket. It is important that the commu-
nication is done through port 9000 using the current IP address of your
computer. This means the port must be open and firewall settings must
be set accordingly.

Environment B in Chapter 8 describes how to use your local computer
to work as a test server which is accessed from Internet. But the scenario
described here does not directly use Environment B. Instead, we want
to set up a local WiFi network using a wireless broadband router to
which we directly connect the computer running Max/MSP, as well as
connecting all the mobile devices.

This scenario has many advantages. For example, you can run mobile
multi-user applications over WiFi in any place without having to have
a connection to the Internet, simply using your computer as a server for
socket communication, to which the mobile devices connect. Further,
this setup has the advantage that the wireless broadband router can be
manually configured to assign an IP address to the computer. Therefore
we know the IP address of our computer inside the local WiFi network
and can use it to hardcode the destination address for ‘server’ socket com-
munication which we need to specify in our PyS60 code (to successfully
connect the mobile devices to the computer).

In the given scenario, each connected mobile device can switch the
sound on and off as well as changing the frequency of the sound. This
means that it can become messy when many users want to control one
sound at the same time. There are many solutions to make the application
more interesting and useful, such as having a controllable sound source
with multiple parameters available for controlling different aspects of the
one sound. Each mobile user can then control different parameters. But
we want to leave it up to the readers of this book to expand the examples;
this example just explains some basic principles.

Section 11.6 explains an important protocol for handling multi-user
issues in the field of digital music: OpenSoundControl OSC.

11.6 OpenSound Control

OpenSound Control (OSC, www.cnmat.berkeley.edu/OpenSound
Control) is a protocol for communication among computers, sound
synthesizers and other multimedia devices. It is optimized for modern
networking technology. Often it is used for multi-user applications and

274 COMBINING ART AND ENGINEERING

it is frequently deployed by the arts and design community. Interest in
using mobile phones as part of multi-modal interfaces is on the rise.

We can use OSC with PyS60 by installing an additional Python library
called OSCmobile.py to our phone into a folder named python/Lib
on our memory card (if the folder doesn’t exist, you can create it). You can
download the library from www.mobilenin.com/pys60/oscmobile.htm.
This library is based on the OpenSound Control library implementa-
tion for Python by Daniel Holth and Clinton McChesney, found at
http://wiretap.stetson.edu.

In this example, we can use the Bluetooth code from Examples 121
and 122. All we need to change is to import the module OSCmobile
and replace the code of the function sending() with the code in
Example 124.

Example 124: OSC for mobile phones

import OSCmobile

def sending(data):
global sock
message = OSCmobile.OSCMessage()
message.setAddress("/phone/user1")
message.append(data)
sock.send(message.getBinary())

This allows you to run exactly the same application setup as in
Examples 121 and 122, except that you are now using OSC to encode
messages before sending them to Max/MSP on the computer over Blue-
tooth.

In a multi-user scenario, different phones can use different names, for
example user2 and user3, inside the address string of the OSC message
to distinguish by which phone the message has been sent and to address,
for instance, individual sound parameters.

Please check Chapter 7 to see how to receive data from a computer
over Bluetooth RFCOMM. If your mobile phone receives OSC data, all
you have to do is to use string handling (described in Chapter 4) to
decode the OSC message and handle the OSC message contents further.
To use OSC over TCP sockets for a mobile multi-user scenario, you could
replace the code of function sending() in Example 123 with the code
of Example 124.

11.7 Robotics

With a little creativity, a modern mobile phone can be used as a compact
and capable robot brain. Besides having respectable computing power for
an embedded device, the phone has the basic sensory functions built-in:

ROBOTICS 275

the camera can function as eyes and the microphone as ears for the robot.
Because of its small size, the phone can easily be mounted on various
platforms for locomotion, which may be controlled, for instance, over
Bluetooth.

Nowadays, using cheap off-the-shelf parts, one can start experimenting
on robotics without any soldering. This approach was taken by a course on
Artificial Intelligence that was organized by the Department of Computer
Science at the University of Helsinki in 2007. In this course, a Nokia
N80 mobile phone, which served as an eye for the robot, was mounted
on a Roomba robotic vacuum cleaner – the resulting chimera is shown
in Figure 11.12. Since one can control Roomba remotely by sending
commands to it over a Bluetooth serial port, it is possible to build a fully
autonomous, visually guided robot based on these two widely available
components.

Figure 11.12 Nokia N80 mounted on a Roomba robotic vacuum cleaner

Students on the course were given a task to write a program that drives
the robot through two gates, around a single pole and return through the
gates back to the home base. To make the task easier for the students, the
control program for the robot ran on a PC, which got a constant stream of
photos from a PyS60 script running on the N80. Based on these visuals,
the program was supposed to control the robot so that it stayed on track.

276 COMBINING ART AND ENGINEERING

In further experiments, Roomba was controlled by the N80 and a
PyS60 program in a totally autonomous manner. The phone controlled
Roomba by Bluetooth using Roomba’s proprietary, binary protocol for
communication. The PyS60 program was able to take full control of
the robot, as the protocol includes commands for driving the robot and
collecting data from its sensors (see Examples 125 and 126).

Example 125: Roombatics (1/2)

import socket, time, struct

def bytecmd(cmd,*args): # args are bytes
urn struct.pack("B%dB" % len(args), cmd, *args)

def intcmd(cmd,*args): # args are big endian ints
return struct.pack(">B%dh" % len(args), cmd, *args)

print "OPENING BLUETOOTH SOCKET TO ROOTOOTH"
sock = socket.socket(socket.AF_BT, socket.SOCK_STREAM)
address, services = socket.bt_discover()
sock.connect((address,1))
roomba = sock.makefile("rw",0)

print "PUTTING ROOTOOTH INTO COMMAND MODE"
roomba.write("+++\r")
time.sleep(0.1)
if roomba.read(6) != "\r\nOK\r\n":

raise Exception("+++ in failed")

print "ASKING ROOTOOTH TO TALK TO ROOMBA"
roomba.write("ATMD\r")
time.sleep(0.1)
if roomba.read(6) != "\r\nOK\r\n":

raise Exception("ATMD failed")

print "SETTING ROOMBA TO SAFE MODE"
roomba.write(bytecmd(128))
time.sleep(0.1)
roomba.write(bytecmd(130))
time.sleep(0.1)

Example 126: Roombatics (2/2)

print "START DRIVING 250mm/s WITH RADIUS 2000mm LEFT"
roomba.write(intcmd(137,250,2000))
time.sleep(0.1)

print "GETTING SENSOR READING BYTES"
roomba.write(bytecmd(142,0))
time.sleep(0.1)
sensor_str = roomba.read(26)
sensor_bytes = ",".join(map(str,map(ord,sensor_str)))

time.sleep(1) # keep driving for an extra second

SUMMARY 277

print "STOPPING – DRIVING WITH VELOCITY 0"
roomba.write(intcmd(137,0,0))
time.sleep(0.1)

print "BACK TO ROOTOOTH COMMAND MODE"
roomba.write("+++\r")
time.sleep(0.1)
if roomba.read(6) != "\r\nOK\r\n":

raise Exception("+++ back failed")

print "ROOTOOTH HANGUP"
roomba.write("ATDH\r")
time.sleep(0.1)
roomba.close()
print "THE END"

Examples 125 and 126 include a simple PyS60 script that drives
Roomba forward, requests some sensor readings from it and stops. Besides
showing what the Roomba control code looks like in practice, they also
illustrate how one can use a binary protocol to communicate with a Blue-
tooth device. This is done using the module struct, which converts
Python values to byte sequences according to the given format. You can
find more information about this module in the Python Library Reference.

11.8 Summary

We hope that by going through these diverse real-world examples that are
inspired by artistic approaches, we have motivated you to enable, release
and nurture your creativity, so you can rapidly create mobile applications
based on your own ideas and get ahead of most mobile users and even
market trends.

You are experiencing technology needs today that will probably be
experienced by many other users in the coming years. You know and
understand well your own needs, local habits and traditions and they
are close to the ‘real situation’. This gives a big chance for you to come
up with innovative ideas and develop products that will be appealing to
others too. Put them out, share your innovations and see how happy you
and other developers will be using your applications or developing them
further.

PyS60 is a toolkit at your hand that can help you succeed. Surprise
yourself and others with the applications you build.

Appendix A
Platform Security

A.1 Introduction

There are several releases of the S60 platform and they have some
important differences. The most important division in the S60 platform is
the division between S60 versions older than S60 3rd Edition (also known
as S60 3.0) and versions after S60 3rd Edition.

Before S60 3rd Edition, a program written in native code was free to
access any functionality available on the phone without asking confir-
mation from the user or being certified in any way. All programs were
considered fully trusted. Once a program was running, it had the opportu-
nity to do anything it wanted, including make the phone inoperable, give
the user a large phone bill or spy on the user without their knowledge.

In S60 3rd Edition, the situation has changed with the introduction of
a security framework known as Symbian OS Platform Security that limits
what software running on the phone can do.

Platform Security is a complex topic and we cannot hope to cover
it fully in this appendix. Instead, we will try to gather together in a
unified form the parts that are most relevant to the Python for S60
programmer, with emphasis on independent prototype development
and experimentation. Readers interested in more details are recom-
mended to consult the documentation on the Symbian Signed website,
www.symbiansigned.com and the definitive guide on the topic, [Heath
2006].

The policies followed by device manufacturers and Symbian in matters
such as types of developer certificates granted and the actual security
settings on the devices can vary across manufacturers, countries and
device variants. The information on security settings in this appendix was
correct at the time of writing, but the policies and processes may change.

From the viewpoint of the PyS60 programmer, the following limitations
imposed by Platform Security are the most relevant:

• Accessing potentially sensitive features now requires capabilities.

280 PLATFORM SECURITY

• Certain files and directories are now considered protected and can be
accessed only in a limited way. This is known as data caging.

• Installing new native applications to the device is only possible
through the operating system’s own software installer from a signed
SIS file.

A.2 Capabilities

In a device that uses Platform Security, a program must have permission
to access potentially sensitive features. In Platform Security jargon, these
permissions are called capabilities. A program has to hold a certain
capability to access a certain set of sensitive features. Not all features
require capabilities – there are many things you can do without holding
any capabilities at all. Almost all the examples in this book, except GSM
locationing, do not require special capabilities.

There is a small, fixed set of capabilities and each capability grants
access to a specific set of functionality. The capabilities defined in S60
3rd Edition are listed in Table A.1.

From the viewpoint of a PyS60 programmer, the capabilities can be
roughly divided into three groups, based on the difficulty of accessing
them:

• User-grantable capabilities are capabilities that the user who is
installing a program can grant to the program at install time. A program
that needs only user-grantable capabilities can be self-signed, mean-
ing that it can be signed with a random untrusted key that anyone can
generate.

• Capabilities available with a free developer certificate (devcert) are
capabilities with which you can experiment on a single phone using a
devcert available from the Symbian Signed service for free. However,
packaging a program that needs these capabilities into a SIS file that
would install to any phone can only be done through the Symbian
Signed process.

• Manufacturer-approved capabilities are highly sensitive capabilities
that can only be obtained from the device manufacturer, even if it’s
just for experimenting on your own phone. Getting these capabilities
requires you to justify why you need them, and to have an ACS
Publisher ID from Verisign.

The good news is that most of the things that you’ve learned to do
in PyS60 so far need only user-grantable capabilities and none of them

CAPABILITIES 281

Table A.1 Capability groups

Capability Description

ReadUserData Read access to user’s confidential data such as contacts
and messages

WriteUserData Write access to user’s confidential data such as contacts
and messages

UserEnvironment Access to confidential information about the user’s
environment by way of sensors such as microphone or
camera

NetworkServices Access to communications that may cost money such as
telephone calls or SMS

LocalServices Access to local communications that don’t cost money to
use, such as Bluetooth and infrared

Location Location information, such as GPS coordinates

TrustedUi Creating trusted user interface components

ProtServ Registering server processes with a protected name

SwEvent Generating simulated key events and capturing key events
from any application

PowerMgmt Killing processes or turning off the device

ReadDeviceData Read-only access to sensitive system settings

WriteDeviceData Write access to sensitive system settings such as system
time, time zone and so on

SurroundingsDD Access to device drivers that provide information about the
surroundings of the phone

CommDD Access to communication device drivers (for example,
WLAN driver)

MultimediaDD Access to multimedia device drivers

NetworkControl Read or modify network protocol settings

DiskAdmin Low-level disk administration functions such as formatting
drives or mounting and unmounting partitions

(continued overleaf)

282 PLATFORM SECURITY

Table A.1 (continued)

Capability Description

AllFiles Full access to private directories; read-only access to \sys

DRM Access to unprotected forms of DRM-protected content

TCB Write access to \sys and \resource directories

Table A.2 Applications that need capabilities granted by a devcert

Description Function or module Required capabilities

Global key capture keycapture module SwEvent

Reading the cell ID location.gsm location() ReadUserData,
Location,
ReadDeviceData

Reading the GPS
location

position module Location

Setting the system
time

e32.set home time() WriteDeviceData

need manufacturer-approved capabilities. There are a few cases that need
devcert capabilities and they are listed in Table A.2.

If your program doesn’t need any of these functions, or any third-party
extension that would need extra capabilities, then you can avoid some of
the effort related to code signing.

A.3 File System Protection

Besides the limitations described previously, access to some files is
limited. There are three protected directories on each drive that have
special properties. The protected directories are:

• \sys: Requires AllFiles to read, TCB to write.
The most important part here is the \sys\bin directory since, under
Platform Security, the phone can only execute native code in the
\sys\bin directories. On previous S60 editions it was possible to
store C++ extension modules for PyS60 in any directory, but in S60
3rd Eition they must all be stored in \sys\bin.

• \resource: Requires TCB to write and no capabilities to read.

SIS PACKAGE SIGNING 283

This directory is used for storing shared, non-sensitive data that must
be accessible to several programs. Python for S60 comes with a set of
standard library modules written in Python and they are stored here.

• \private: Reading and writing to a program’s own directory needs
no capabilities. Reading other programs’ directories requires AllFiles
and writing to them requires TCB.

All other parts of the file system (for example, \data\images) can be
freely read and written by all code. regardless of capabilities.

If you need to store program-specific data that must be easily accessible
and writable by anyone, storing it in a program-specific subdirectory
under \data is a good choice. The Nokia PC Suite file manager is able
to access the entire contents of the memory card, but only the C:\data
directory on the C: drive. The ability to use the file manager can be
convenient especially during program development.

If you need to keep some or all of the data in your program private, you
should store it in the directory c:\private\<UID>, where <\UID> is
the UID code obtained from the function appuifw.app.uid(). Since
only your program and programs that have the AllFiles capability are
able to access this directory and AllFiles capability is granted to only
very few specialized programs, your data is relatively safe if stored in
\private.

A.4 SIS Package Signing

The only way to install native code to a normal device that uses Platform
Security is through the Symbian OS software installer, from a signed SIS
package. Before Platform Security, signing was optional but from Symbian
OS 9.1 and the 3rd Edition of the S60 platform, it is mandatory if your
program requires capabilities.

There are many different ways to obtain a signature for a SIS file and
the way to use it depends mainly on the following factors:

• How and to whom you intend to distribute the SIS file? Is the number
of target devices 1, 10, 100 or 100 000? How technically skillful are
the intended users?

• What capabilities are needed for the code in that SIS file?

• Is the code intended for temporary or permanent use?

For a PyS60 programmer, the most interesting ways to obtain a sig-
nature are self-signing, signing with a devcert and going through the
Symbian Signed process.

284 PLATFORM SECURITY

For the two former methods, you sign the SIS package yourself using a
key and a certificate. In self-signing, you generate the key and certificate
yourself and in signing with a devcert you obtain the certificate and key
files by request from a network service hosted by Symbian.

The Symbian Signed process is different, in that the signing is not done
by you. Instead, you submit your program for testing to a testing house,
which sends you back a signed SIS package, provided your program
passes the tests. See www.symbiansigned.com for more information.

A.4.1 Creating a Key and a Self-Signed Certificate

The tools for signing and creating keys and certificates are included in the
S60 3rd Edition C++ SDK. Once you have installed the SDK, creating a
self-signed certificate and the corresponding key takes just one command:

makekeys -cert -dname "CN=John Doe EM=john@doe.com" mykey.key mycert.cer

The – dname parameter can be used to identify the owner of the given
key. Replace John Doe with your name and john@doe.com with your
email address. There are also several other fields that you can add,
such as:

• CO – two-letter country code of the country where you live, for
example ‘‘GB’’

• OR – organization you are a part of, for example ‘‘Acme Ltd.’’

A.4.2 Getting a Developer Certificate

A developer certificate, devcert for short, is a key–certificate pair that can
be used to sign SIS packages with higher capabilities than is available
through self-signing, but with two important restrictions:

• The devcert expires at a specific time and after that SIS packages
signed using the devcert can’t be installed without tampering with the
phone’s clock.

• Packages signed with a devcert can only be installed into a specific,
limited set of phones identified by their IMEIs. The number of devices
that can be attached to a devcert depends on the type of devcert.

There are many different kinds of developer certificates that grant
different levels of capabilities, enable installation to different numbers of
devices and take different amounts of effort to obtain.

The capabilities granted by different devcerts and the specific proce-
dures needed to obtain them are a matter of policy that may change in the

SIS PACKAGE SIGNING 285

future. The reader is encouraged to check the Symbian Signed website
for information regarding changes.

For the beginning Python for S60 programmer, the most interesting and
practical type of developer certificate is available from a public Symbian
network service. At the time of writing, this developer certificate can be
used to install software onto one phone, with the user-grantable and free
devcert capabilities.

Higher-grade devcerts are available and they may be used to get access
to sensitive manufacturer-approved capabilities or to sign a SIS package
for installation to more than just one device. The specifics of obtaining
higher-grade devcerts is beyond the scope of this introductory appendix
and the interested reader is encouraged to study the documentation
available at the Symbian Signed website.

You can get a free devcert as follows:

1. Register into the Symbian Signed web service at www.
symbiansigned.com.

2. Download, install and run the Developer Certificate Request Tool.

3. Enter the IMEI of your phone and the capabilities you want. Typically
you would want to select all the capabilities available with a free
devcert.

4. The tool generates a private key and a certificate request file. Upload
this into the Symbian Signed web service.

5. Download the finished developer certificate from the Symbian
Signed service.

6. Proceed with signing and installation as described below.

Note: a devcert is only valid for a limited time. Remember to renew it
before it expires! Also, make sure the clock on your phone is set correctly
or the devcert will not work.

A.4.3 Signing the Python for S60 Interpreter with a devcert

In case you’d like to use free devcert capabilities with your Python inter-
preter software, all you need to do is to sign the Python ScriptShell file (e.g.
PythonScriptShell 1 4 0 3rdEd unsigned freedevcert.
SIS) with your devcert. The PythonForS60 file (e.g. PythonForS60 1
4 0 3rdEd.sis), which is the other installation file for your Python for
S60 interpreter software, is already fully signed and doesn’t require any
action by you.

If you only want to use user-grantable capabilities there is no need to
sign the installation file. You can use them as you downloaded them from
the Sourceforge website.

286 PLATFORM SECURITY

A.4.4 Creating a Standalone Python Program

The Python for S60 SDK comes with a tool called py2sis that can be
used to create SIS packages from PyS60 programs.

To use py2sis, you need:

• S60 C++ SDK, 3rd Edition, Maintenance Release

• Python for S60 SDK plugin

• Python 2.4 or greater

The tool is installed in the directory \epoc32\tools\py2sis. To
turn a simple ‘hello world’ program into a SIS package perform the
following steps:

1. Pick a UID for your program. A UID is a 32-bit number that identifies
a given Symbian program and all programs installed in a device must
have a unique UID. For use during development and testing you
may pick a UID randomly from the range 0xe0000000–0xefffffff.
If you intend to distribute your program, you should obtain a UID
from the Symbian Signed website.

2. Invoke py2sis with a command such as the following (the UID is
just for example – invent your own, don’t use this one):

python \epoc32\tools\py2sis\py2sis.py hello.py hello.sis -sdk30
-appname=HelloApp -uid=0xe0123456

3. A package called hello.sis is generated.

4. The package generated by py2sis is unsigned and must be signed
before it can be installed. Signing the package with your key and
certificate is accomplished by the following command:

signsis hello.sis hello-signed.sis mycert.cer mykey.key

where mycert.cer and mykey.key are the key and certificate to be
used (either self-signed or devcert). Note that the key and certificate are
given to the makekeys and signsis commands in the opposite order!

You are done! hello-signed.sis is now ready for installation.

A.5 Running Python for S60 Code under Platform Security

There are many different ways to run your PyS60 code in a device that
uses Platform Security and you will typically use several different ways

RUNNING PYTHON FOR S60 CODE UNDER PLATFORM SECURITY 287

during the lifetime of your program. The procedures needed are different
for development time and deployment time: they depend on the set of
capabilities needed and the type of the intended final audience.

A.5.1 Development

When developing your program, the typical procedure is to install the
appropriate version of the PyS60 runtime package and the PyS60 inter-
preter to your device and test your program using that. The version of the
PyS60 runtime needed depends on the capabilities you need:

• If your program requires only user-grantable capabilities, then this
part is easy: you can just install and use the default version of the
PyS60 runtime and script shell.

• If you need any devcert capabilities, then you will need to obtain
a developer certificate for each device with which you want to test
your code. Download the script shell package marked as ‘unsigned-
freedevcert’, sign it with your devcert and install it.

• If you need manufacturer-approved capabilities, then you will need
to obtain a manufacturer-approved devcert and recompile the PyS60
script shell (interpreter) to have these capabilities. The Python for S60
development team can provide advice in these cases.

A.5.2 Deployment

You can distribute your PyS60 programs in two main forms: as plain
Python scripts or packaged into SIS packages signed in different ways. Both
have their own advantages and disadvantages. The choice of deployment
method depends on the capabilities you need and the type and size of
your audience.

• Distributing as a plain script is simple for the developer and makes
it easy for users to edit the scripts without extra tools. However, the
users must run the program through the script shell, there is no way
for the program to have its own icon in the application menu. Also,
the capabilities available depend on the capabilities of the script shell;
if the program requires more than user-grantable capabilities, people
who wish to test it must obtain their own devcert. This method is
suitable for only for development.

• Distributing as a self-signed SIS package is easy for the users to install
and use – the program can have an application icon in the application
menu. However, only user-grantable capabilities are available and
warnings are displayed at installation time. This method also requires
the developer to install additional tools. Some rare phone variants

288 PLATFORM SECURITY

do not allow the installation of self-signed packages. This method is
convenient for both testing and deployment and can be used as long
as the program doesn’t require capabilities that aren’t user-grantable.

• Distributing as an unsigned SIS package that testers sign with their
own devcert allows the program to use user-grantable and free devcert
capabilities and have an icon in the application menu. However, the
users must obtain their own devcert and use the SDK signing tools to
install the program. This method is suitable for testing with advanced
users, but not for actual deployment.

• Distributing as a Symbian Signed SIS package means that all required
capabilities are available and the program will install on any device.
Some websites only accept Symbian Signed software for distribution.
However, testing takes time and money (unless using the freeware
signing process, which takes only time). This method is suitable for
deployment of a finished program to the mass market.

Appendix B
Bluetooth Console

Bluetooth console makes it possible to use the PyS60 interactively from
your PC. Instead of the typical cycle of ‘edit, upload, test’, you can
evaluate lines of code in real-time on the phone.

This approach is particularly useful for experimenting with the standard
modules. You can try out different functions and parameter combinations
without having to edit or upload any files. Since the lines are executed
on the actual device, you gain a realistic understanding of how long
various functions take to execute and how different UI elements look on
the screen.

It is also a rapid way to debug custom modules by you and other
third-party developers. You can upload a new module to the phone,
import it into the Bluetooth console and start testing its functions one
by one. If exceptions occur, they are much easier to parse on the large
display of your PC than on the phone.

If you are interested in some hard-core hacking, note that you can
automate testing by the Bluetooth console since, after all, the console is
just receiving lines of text from the PC. Instead of you typing the lines, they
could be generated by, say, a Python script running on your computer.
This might open up new possibilities for rapid prototyping and automated
testing.

If interacting with the PyS60 shell programmatically from your PC
sounds useful to you, have a look at the following files that are included in
the PyS60 source distribution: extras/examples/simplebtconsole
.py and core/Lib/btconsole.py. The former is a simplified imple-
mentation of the Bluetooth console and the latter the actual implementa-
tion of it. The PyS60 source distribution can be found at http://sourceforge.
net/projects/pys60/.

B.1 Setting up Serial Communication

To use the Bluetooth console, or communicate with the PC over Bluetooth
from your own PyS60 applications, an RFCOMM serial port must be set

290 BLUETOOTH CONSOLE

up on the PC side. On Mac OS X and Linux, the serial port is just a special
file under the /dev directory. On Windows, a COM port is reserved for
this purpose. In the following sections, we explain how to set up these
interfaces.

First, set up the RFCOMM port as instructed in one of the sections
B.1.1 to B.1.3. After you are finished with the setup, you can see if the
serial port is visible to your phone as follows:

1. Copy Example 55 from Chapter 7 to your phone in the usual manner.

2. Run the script. You should see the name of your computer on the list
of Bluetooth devices nearby. If you cannot see it, your PC cannot be
discovered. Check any settings on your PC’s Bluetooth configuration
that might affect how other devices see your computer. Check also
that Bluetooth is actually switched on.

3. Choose your computer from the list. The script should print out a list
of services found on the PC. The list should include an entry such
as ‘Serial Port’ (or ‘PyBook’, on OS X). If you can see a service like
that on the list, the serial port is set up correctly. If not, the service is
either not visible to this phone or it is not advertised correctly by the
PC and you should re-check the settings.

B.1.1 Windows
The following steps should work for at least Windows 2000, 2003 and
XP. Because of differences in Bluetooth drivers, in some cases the process
may not be this straightforward and might require some further tweaking.
In any case, the manual for either your computer or your Bluetooth
dongle should explain how to set up the serial port for Bluetooth.

1. Open the Control Panel. Open Bluetooth Configuration.

2. Select the Accessibility tab and select the ‘Let Other Bluetooth
Devices Discover this Computer’ option.

3. For the panel that specifies ‘Devices allowed to connect to this
computer’, you can choose ‘All devices’ for testing. Note that this
is insecure if you leave it on. Alternatively, you may select ‘Add
Device’ and add your phone to the list.

4. Select the Local Services tab and select ‘Add Serial Device’. Choose
any available COM port and keep its number in mind. You will need
it later.

B.1.2 Mac OS X
The following steps create a special file that can be used to communicate
with the phone:

SETTING UP SERIAL COMMUNICATION 291

1. Open System Preferences dialog. Select Bluetooth.

2. Select the Settings tab and enable the ‘Discoverable’ box.

3. Select the Devices tab and, unless you have done this before, pair
your Mac with your phone using the ‘Set up new device’ button.
Select the Sharing tab, select Add Serial Port Service and name it
‘PyBook’ and for type, choose RS-232.

After you have gone through the above steps, you should see a dialog
like the one in Figure B.1, which includes the new ‘PyBook’ item. As a
result, a file at /dev/tty.pybook has been created that provides an
RFCOMM interface.

Figure B.1 RFCOMM setup on Mac OS X

B.1.3 Linux

Some Linux distributions may provide a graphical control panel that lets
you configure the RFCOMM port, similarly to Mac OS X. However, here
we perform the configuration on the command line, as this works on
any distribution that has the Bluetooth tools (package bluez-utils in
many distributions) installed.

Note that you should establish a Bluetooth pairing between your
computer and the phone – see Section 7.1 for instructions. When you

292 BLUETOOTH CONSOLE

have paired the devices successfully, you can execute the following
commands as the root user:

• hciconfig hci0 piscan – sets the device discoverable

• sdptool add–channel=3 SP – advertises the available serial port on
channel 3.

• rfcomm listen/dev/rfcomm0 3 – listens for incoming connections on
channel 3. Note that this command does not return until you connect
to the PC and close the connection on the phone side.

You should open another terminal in which you can run a server
application of your own or the Bluetooth console. In this case, the active
serial port can be found in the file /dev/rfcomm0.

B.2 Using Bluetooth Console

In this section, we assume that the RFCOMM serial port is set up
correctly. You should also see the serial port service from the phone using
Example 55, as described above. After this is done, there are only few
reasons for the Bluetooth console not to work.

Bluetooth console is used in a terminal emulator application. Windows
comes with one called HyperTerminal and several others are available
for free. Linux and Mac OS X users have plenty of choices as well, but a
program called screen is most often installed by default.

You can type any Python expression on the Bluetooth console. When
the console seems to be active, you can try to type the following two
lines on your PC and see what happens on the phone:

import appuifw
appuifw.note(u"Woohoo!", "info")

B.2.1 Windows

HyperTerminal can be found at Programs, Accessories, Communications,
HyperTerminal. HyperTerminal is used as follows:

1. Open the program. First, it asks for a connection name, you can
use for example ‘btconsole’. Press OK and select the correct COM
port. The port is the one you set up in the Local Services tab in the
Bluetooth configuration panel. Select the fastest connection speed.

2. On your phone, open PyS60 interpreter and on the options menu,
choose ‘Bluetooth console’.

USING BLUETOOTH CONSOLE 293

3. Your computer’s name should show up in the list – choose it.

4. If the script executing on the phone prints ‘OK’, the console should
be up and running. Hit enter on HyperTerminal to see the command
prompt of the PyS60 interpreter.

If the above did not work, note that in some cases Nokia PC Suite may
conflict with other users of the serial port. If you have PC Suite active,
you might want to disable it for testing.

B.2.2 Mac OS X

After successful Bluetooth configuration, a serial port file should exist
at /dev/tty.pybook. You can execute the following command on
a terminal:

screen /dev/tty.pybook

Note that nothing is visible on screen until the console is running.
Now you can run the Bluetooth console on your phone, as described in
Windows steps 2 and 3. You should hit enter on the screen when the
console is active on the phone side.

When you are finished with the console session, you can terminate
the connection with Ctrl-D.

B.2.3 Linux

You should have an rfcomm process running on one terminal, saying
‘Waiting for connection on channel 3’. Now you should open another
terminal for the Bluetooth console and login as root to make sure that
you can read and write/dev/rfcomm0. Then follow these steps:

1. Open the Bluetooth console on your phone, as described in Windows
steps 2 and 3. If the connection was established successfully, rfcomm
prints out a line such as ‘Connection from 00:12:D2:DA:14:F4
to/dev/rfcomm0’.

2. Execute screen/dev/rfcomm0 on the other terminal.

3. Hit enter to see the PyS60 command prompt on screen.

When you are finished with the console session, you can terminate
the connection with Ctrl-D.

Appendix C
Debugging

Sometimes your Python program does not behave as you would expect.
This happens in virtually every project at some point during the develop-
ment process. It is a good idea to track down the cause as soon as you
notice that something goes awry. This ensures that you always know that
your program behaves as intended and it is built on a solid basis.

This appendix goes through the most typical ways of debugging a
Python program. Since bugs are seldom really mysterious in Python, in
contrast to many low-level languages such as C++, you can survive with-
out heavy-duty debugging tools. Often a few well-placed print statements
are enough to detect where the execution goes off track.

The ease of debugging in Python is based on rapid debug–evaluate
iterations. Instead of assuming or trusting the documentation on how a
PyS60 API function or a Python language construct behaves, you can try
it in practice. Thus, the first step in successful debugging is to make sure
that you can update your code on your phone with a minimal number of
steps, as described in Chapter 2 and Section 10.3.

Be prepared to make lots of small changes to your code quickly. If
modifying the code is a frustrating and time-consuming activity for you,
check if you can streamline your development process. You should be
able to update the program on your phone with two or three clicks from
your PC.

Once you are fluent in updating the code, you should become accus-
tomed to developing your code in short update–test cycles. If you make
only a few small changes at a time and test and fix them immediately, you
can be sure that your program works correctly as a whole. If it does not,
at least you have a better understanding of how your program behaves
and you can start applying methods from the debugging arsenal.

C.1 Interpreting Tracebacks

If execution of a Python program leads to an expression that is not
understood by the interpreter, an exception is generated. Chapter 6

296 DEBUGGING

describes exceptions in detail. If the exception is not handled by your
program, it is eventually shown on the Python console and the program
execution is terminated.

Seeing an exception is useful in two respects: it tells you what and
where something exceptional happened. Look at Example 127.

Example 127: See the error?

def hello():
appuifw.query(u"Hello World", "txet")

hello()

You can probably spot the error. When the code is executed, the
following output is printed on the console:

Traceback (most recent call last):
?
File "C:\python\ex_error.py", line 4, in ?
File "C:\python\ex_error.py", line 2, in hello

def hello():
ValueError: unknown query type

We omitted some of the output between the first line and the last
four lines. This output is called a traceback. It tells how the program
execution proceeded just before the exception happened. The most
recently executed lines are shown last. Almost always the last few lines
pinpoint the actual location of the problem, but often it is useful to
know how the program ended up on those lines, as shown by the full
traceback. If you execute the program in the Python shell, the first lines of
the traceback show how the program was started by the shell internally
which is not really interesting to us.

In the example above, you can see that the exception occurred in
line 2, in function hello(). The erroneous function was called by line
4 which does not belong to any function, thus it says ‘in ?’. The files
mentioned above these (which are not shown above) are not written by
us, in contrast to ex error.py, so we are not interested in them. When
debugging programs of your own, you can follow the same principle:
in the traceback, look for the lines which contain filenames familiar to
you, starting from the bottom. This helps you to understand the context
in which the exception occurred.

The last line of the traceback shows the actual exception, namely
ValueError in the example above. The name of the exception may
suggest the nature of the problem, but usually it is the error message
which reveals the actual cause. Based on the traceback, we know
that the error occurred on line 2, which contains a call to the func-
tion appuifw.query() which in turn generated the error message

C.1 INTERPRETING TRACEBACKS 297

‘unknown query type’. Summing up this information, we notice that a
typing error, "txet" instead of "text", in the second parameter for the
function call is the culprit.

Sometimes exceptions may be a bit misleading. Try out the code in
Example 128.

Example 128: Syntax error

def hello():
appuifw.query(u"Hello World", "text"

hello()

Once you run the code, you will get a traceback like this:

Traceback (most recent call last):
?
File "C:\python\ex_error.py", line 4

hello()
SyntaxError: Invalid syntax

This suggests that the culprit is on line 4, but the function call
hello() seems to be correct. In this case, the name of the exception,
SyntaxError, reveals the actual cause.

The problem does not occur during execution of the program, but
when PyS60 tries to read and interpret the code, which reveals any errors
in the code text, that is, syntax errors. Since the exception is reported
on line 4, which seems to be correct, we start to find the real culprit on
the lines which were read before that. The true cause is a missing right
parenthesis on line 2 which made the interpreter think that the function
call continues all the way to line 4. The lesson here is that if you cannot
spot the error on the reported line, start looking at previously interpreted
or executed lines.

The most frustrating bugs are usually those which do not cause any
exception but make the program behave in an unexpected manner.
Typically, this happens when your program gets erroneous input which
seems normal to the function but which makes it behave in a wrong way.
To get rid of bugs like this, you need some other methods which are
introduced in Section C.2.

In some cases, bugs may be hiding in innocent assumptions which just
happen to be correct when you first run the program. For example, in the
examples above a major bug is lurking. Both the examples are missing
the import appuifw statement in the beginning of the script, which is
needed to call appuifw.query(). The examples just happen to work
since the Python shell imports the appuifw module internally. If you
run the examples above as stand-alone programs, they would fail without
any meaningful error message.

298 DEBUGGING

C.2 Debugging Procedure

How should you proceed when a program does not work as expected?
After you notice that something is wrong, you have at least some informa-
tion, namely, at which point the program does not work as expected. You
should restart the program and repeat the steps that led to the problem
to make sure that you have correctly recognized the context in which
the bug occurs. You can repeat this many times if you like, maybe with
slightly varying input to collect more information on the nature of the
problem.

You should be able to locate the function which does not work
correctly. Add some print statements in the code and try to find out
what the erroneous values look like. Sometimes, examining the values is
enough to reveal the actual cause. If you are debugging an application
with a user interface, it might be easier to show the values in a pop-up
dialog instead of using print statements and the console.

Once you have spotted the erroneous values, you should start back-
tracking to find out how they are produced in the first place. Usually, you
do this by adding print statements along the program’s path of execution,
that is you add them to functions which were called before the function
that manifests the problem.

Print out all intermediate values to check whether they match your
assumptions as to what they should be. Once you have found the function
which gets correct input but produces incorrect output, you are closer
to identifying the actual cause of the problem. After you have found
the cause, fixing it is often straightforward. Before you remove all print
statements used for debugging, it makes sense to test the new function
and ensure that it produces correct values. This makes the debugging of
other errors easier.

If the incorrect function seems to be a PyS60 API call, that is, a function
which is used to access the device’s features, you should proceed as
follows. First, double-check the documentation to make sure that you
have understood the input and output of the API call correctly. Even
though PyS60 documentation is typically written in a clear, technical,
unambiguous way, sometimes the descriptions leave room for different
interpretations. Try to find some example code using the particular API
call in question, for instance from the web.

If you are sure that the function should work as you expect, make as
minimal a test script as possible, which you can use to test the function
in isolation. If you cannot get the function to work even in isolation, the
problem is not likely to be in your program. Either the API function has
bugs (not totally unlikely) or it is meant to be used in a different manner.
In either case, you might ask for help in the Python for S60 mailing list,
IRC channel, Forum Nokia discussion board or the PyS60 wiki.

DEBUGGING PROCEDURE 299

If you feel adventurous, you could take a look at the Python source
code and find out how the API call is implemented. This is not as
intimidating as it may first sound, since the code is typically written in a
clean and understandable style. Even if you do not understand it fully, it
can point you in the right direction. Luckily Python is open source so this
is a real option!

If the problem is not related to a device feature but to a Python language
construct or to a function in its standard library, you can experiment with
similar code on your PC. It is practical to have the standard Python
interpreter, which is available at www.python.org, installed on your
PC – note that PyS60 is based on Python 2.2 and not the newest version,
which is 2.5 as of July 2007. You can have a Python shell running on
your PC on which you can try out different expressions and functions on
the fly. This is often faster than sending the code to your phone to try out
different expressions.

Appendix D
How to Use the Emulator

You download the PyS60 Interpreter installation files from http://source
forge.net/projects/pys60. You must download the correct version (for
2nd or 3rd Edition of S60). If you are not sure which one you need, check
Table D.1 to find your phone model. You will also find a device overview
at http://forum.nokia.com.

Here are the steps to take to use the emulator:

1. Download and install the correct S60 Developer Platform Software
Development Kit (SDK) which includes the emulator. The SDK can
be found at Forum Nokia (http://forum.nokia.com).

2. Download and install the Python plug-in that comes as part of the
appropriate SDK file, which can be found on the SourceForge PyS60
project website (http://sourceforge.net/projects/pys60).

3. Load your script into the emulator by copying your .py file to the
appropriate folder (see the Python plug-in documentation).

4. Open the emulator and start the Python application using the icon
on the emulator’s desktop window or a subfolder of it.

5. Select Options, Run script. Choose your script from the list that
appears and press OK. Your script should now start up.

302 HOW TO USE THE EMULATOR

Table D.1 PyS60 installation files

S60 Edition PyS60 Install files

3rd Edition

Nokia 3250, Nokia 5500
Nokia 5700, Nokia 6110
Nokia 6120, Nokia 6121
Nokia 6290, Nokia N71
Nokia N73, Nokia N75
Nokia N76, Nokia N77
Nokia N80, Nokia N91
Nokia N92, Nokia N93
Nokia N93i, Nokia N95
Nokia E61, Nokia E61i
Nokia E65, Nokia E50
Nokia E60, Nokia E62
Nokia E70, Nokia E90

PythonForS60 1 4 0 3rdEd.SIS
PythonScriptShell 1 4 0 3rdEd
selfsigned.SIS

2nd Edition

Nokia 3230, Nokia 6600
Nokia 6260, Nokia 6620
Nokia 6670, Nokia 7610

PythonForS60 1 4 0 2ndEd.SIS
PythonScriptShell 1 4 0
2ndEd.SIS

2nd Edition Feature Pack 2

Nokia 6630, Nokia 6680
Nokia 6681, Nokia 6682

PythonForS60 1 4 0 2ndEdFP2.SIS
PythonScriptShell 1 4 0
2ndEdFP3.SIS

2nd Edition Feature Pack 3

Nokia N70, Nokia N72
Nokia N90

PythonForS60 1 4 0 2ndEdFP3.SIS
PythonScriptShell 1 4 0
2ndEdFP3.SIS

References

Below, we have highlighted the most important sources of information in
boldface.

Book References

Heath, C. (2006) Symbian OS Platform Security: Software Development
Using the Symbian OS Security Architecture. Chichester: John Wiley
& Sons

Lutz, M. (2001) Python Pocket Reference. O’Reilly
Lutz, M. and Ascher, D. (2003) Learning Python. O’Reilly
Scheible, J. and Ojala, T. (2005) ‘MobiLenin – Combining a multi-track

music video, personal mobile phones and a public display into multi-
user interactive entertainment.’ at www.leninsgodson.com/mobilenin

Von Hippel, E. (2005) Democratizing Innovation. MIT Press

Other Book-Related Information

Website for this book: www.mobilepythonbook.com
MobiLenin Python for S60 tutorials: www.mobilenin.com/pys60/menu.

htm
MobileArtBlog: www.mobileartblog.com
Official Python for S60 page: http://opensource.nokia.com/projects/

pythonfors60
Python for S60 wiki: http://wiki.opensource.nokia.com/projects/

Python for S60
This is the best source for PyS60 material.

304 REFERENCES

Forum Nokia Wiki: http://wiki.forum.nokia.com/index.php/Category:
Python

Python for S60 API documentation: http://sourceforge.net/projects/
pys60
The PyS60 documentation can be downloaded in PDF format.

Python for S60 IRC channel: #pys60 at freenode.net
Python for S60 discussion forum: http://discussion.forum.nokia.com/

forum/forumdisplay.php?forumid=102

Python Tutorials and Documentation

Peters, T. (2004) ‘Zen of Python’ at www.python.org/dev/peps/pep-0020
Pilgrim, M. (2004) Dive into Python. Apress at www.diveintopython.org

A free web book for experienced programmers
Scheible, J. (2007) ’Python for S60 tutorial’ at www.mobilenin.com/

pys60/menu.htm
van Rossum, G. (2001) ‘Python Style Guide’ at www.python.org/dev/

peps/pep-0008
A comprehensive Python language lesson: http://docs.python.org/tut
Official Python Library Reference: http://docs.python.org/lib

This reference contains information about all standard modules that are
not described in the PyS60 documentation. Note that only functions
that are available for versions of Python before version 2.3 are available
in PyS60 now.

Python Imaging Library (PIL): www.pythonware.com/products/pil
Twisted: http://twistedmatrix.com

A Python framework for building custom server software
Jabber: www.jabber.org and www.xmpp.org/rfcs for protocol documen-

tation
Beautiful Soup: www.crummy.com/software/BeautifulSoup

A Python HTML/XML parser

Glossary

Application A program including a user interface that allows
rich interaction with the user

Carrier A mobile network operator

Cell phone A mobile phone

Console User interface of the Python for S60 script
shell – either on the phone or on the PC over
Bluetooth

Event An external event, such as the user pressing a key
or an SMS message arriving, that causes the
program to react, typically by way of a callback
function

Interpreter A computer program that executes Python code;
you have to install the Python for S60 interpreter
on a phone to run Python programs

Library Equivalent to a module or a collection of modules

MMS Multimedia message service; an extension to SMS
that allows sending of images and sounds or other
rich types of data

Mobile network
operator

A company that provides services for mobile
phone subscribers

Mobile phone A personal handheld communication device;
modern mobile phones, especially smartphones,
provide many functionalities, such as web
browser, email, camera and music player, in
addition to normal telephone functions

306 GLOSSARY

Module A file that contains a collection of related
functions and data grouped together; a program
may import a module (unlike an object) only once
and cannot handle several instances of the same
module

Object A basic building block of programs that contains
both data (variables) and functions that are used to
modify the data; practically everything in Python
is an object, including strings, lists and functions

Program A generic term for executable Python for S60
code; scripts and applications are types of
program; modules are not programs, since they
cannot be executed as such

PyS60 Abbreviation for Python for S60

Python A high-level programming language which
emphasizes the importance of programmer effort
over computer effort and prioritizes readability
over speed or expressiveness; comes with a large
library of extension modules; Python programs are
executed by the Python interpreter

Python for S60 The Python programming language on the S60
smartphone platform; includes the core Python
language, many of Python’s standard modules and
a wide range of additional modules for accessing
the phone’s features, such as camera and
networking

S60 A software platform for mobile phones based on
the Symbian operating system; handles many
high-level tasks, such as building user interfaces,
on top of Symbian OS; all current high-end Nokia
mobile phone models are based on the S60
platform.

Script A small program that is typically used to automate
a single task; performs little or no interaction with
the user

Smartphone A mobile phone that uses the S60 platform; more
generally, a smartphone is a mobile phone with
PC-like functionality

SMS Short message service, often called text
messaging; a way to send 160 characters of text
from one mobile phone to another

GLOSSARY 307

Symbian OS An operating system designed by Symbian for
mobile devices; all current Nokia high-end
mobile phone models are based on Symbian OS

Thread A way to execute several tasks at the same time in
a program; for example, one thread may listen to
network events while another handles the user
interaction

UI User interface, made up of graphical elements,
such as buttons, dialogs, menus and so on, that
allow the user to affect program behavior

Unicode An industry standard allowing computers to
consistently represent and manipulate text
expressed in any of the world’s writing systems; in
Python, Unicode strings are prefixed with the
letter u, for example, u'käärmekännykkä'; in
Python for S60, interfaces to the phone’s features
expect Unicode strings instead of normal strings

Examples

1 First PyS60 program

2 Various dialogs

3 Various notes

4 Multi-query dialog

5 Popup menu

6 Selection list

7 Multi-selection list

8 Shopping list assistant

9 Two dialogs

10 First function

11 First application

12 Application menu

13 SMS voter

14 SMS inbox

15 Inbox search

16 Inbox sorter

17 SMS receiver

18 Filtering SMS gateway

19 Hangman server (1/3)

310 EXAMPLES

20 Hangman server (2/3)

21 Hangman server (3/3)

22 Text to speech

23 MP3 player

24 Blocking MP3 player

25 MIDI player

26 Sound recorder

27 Animal sounds

28 Binding a keycode to a callback function

29 Key events

30 Key pressed or held down

31 Graphics primitives

32 Screenshot

33 Moving graphics

34 Viewfinder

35 Minimalist camera

36 Taking photos with a viewfinder

37 UFO Zapper (1/3)

38 UFO Zapper (2/3)

39 UFO Zapper (3/3)

40 Creating a directory for application data

41 Basic file operations

42 Read a sound

43 Read an image

44 Read a video

45 Read and write text

46 Writing a dictionary to a file

47 Read a dictionary from a file

48 Local database

49 Retrieve the current GSM cell ID

50 GSM location application

EXAMPLES 311

51 Vocabulector (1/3)

52 Vocabulector (2/3)

53 Vocabulector (3/3)

54 OBEX discovery

55 RFCOMM discovery

56 Send photos to another phone via Bluetooth

57 Bluetooth chat (1/2)

58 Bluetooth chat (2/2)

59 Bluetooth client

60 PySerial script running on PC

61 AppleScript interface running on Mac

62 GPS reader

63 Telephone

64 Contacts

65 Sysinfo

66 Web downloader

67 Web file viewer

68 Photo uploader

69 Test server

70 TCP client

71 Yahoo! Web service test

72 Set the default access point

73 JSON photo client

74 JSON photo server

75 HTTP server (1/2)

76 HTTP server (2/2)

77 Phone’s IP address

78 Voting server

79 Voting client

80 Generic JSON gateway (1/2)

81 Generic JSON gateway (2/2)

312 EXAMPLES

82 Instant messenger (1/3)

83 Instant messenger (2/3)

84 Instant messenger (3/3)

85 Phone–web proxy

86 Phone–web server

87 MopyMaps! (1/3)

88 MopyMaps! (2/3)

89 MopyMaps! (3/3)

90 EventFu (1/5)

91 EventFu (2/5)

92 EventFu (3/5)

93 EventFu (4/5)

94 EventFu (5/5)

95 InstaFlickr (1/6)

96 InstaFlickr (2/6)

97 InstaFlickr (3/6)

98 InstaFlickr (4/6)

99 InstaFlickr (5/6)

100 InstaFlickr (6/6)

101 List comprehension

102 SMS search using list comprehensions

103 Input sanitization using list comprehensions

104 Dictionary constructor

105 Symbol table

106 Introspective web service

107 Importing a custom module

108 Updating PyS60 code from the web

109 Plugin mechanism

110 MobiLenin (1/2)

111 MobiLenin (2/2)

112 MobiLenin server-side PHP script

EXAMPLES 313

113 Manhattan Story Mashup custom list element

114 MobileArtBlog (1/3)

115 MobileArtBlog (2/3)

116 MobileArtBlog (3/3)

117 Server-side PHP script

118 PHP script for MySQL database insert

119 LED on/off

120 Arduino code LED on/off

121 Max/MSP using Bluetooth (1/2)

122 Max/MSP using Bluetooth (2/2)

123 Max/MSP using TCP/IP

124 OSC for mobile phones

125 Roombatics (1/2)

126 Roombatics (2/2)

127 See the error?

128 Syntax error

Python Language Lessons

These lessons teach basics of the Python programming language in a
nutshell.

Python Feature Section

Callback function 4.2

Catching exceptions 6.1

Dictionary 6.2

For loop 3.2

Function 4.1

If statement 3.2

List 3.2

Local and global variables 4.5

Module 3.1

Object 4.2

Print statement 3.2

Tuple 4.2

Variable 3.2

While loop and break 3.2

Python for S60 Modules

The following modules are used in this book. Custom modules and
modules used on the PC side are not included in this list. More information
about these modules can be found in the PyS60 API documentation and
in the Python Library Reference.

Module Name Description

appuifw S60 user interface application framework;
includes dialogs, notes, selection lists

audio Recording and playing of audio files and
text-to-speech engine

calendar Calendar services: reading, creating entries,
setting alarms

camera Taking of photographs and starting and closing of
the viewfinder

contacts Address book services: finding and adding contact
information

e32 Utilities related to Symbian OS that are not related
to the user interface

e32db Phone’s internal relational database with a
restricted SQL syntax

318 PYTHON FOR S60 MODULES

Module Name Description

e32dbm Phone’s internal database with simple
dictionary-like syntax

glcanvas User interface control for displaying OpenGL 3D
graphics

gles Python bindings to OpenGL ES 3D graphics

graphics 2D graphics primitives and image loading, saving,
resizing and transformation

httplib Low-level access to HTTP and web

inbox Reading of incoming SMS messages and deletion
of SMS messages

key codes Identifiers for keyboard keys

keycapture Global capturing of key events

location GSM Cell ID location

md5 MD5 cryptographic hash function

messaging Messaging services for sending SMS and MMS

os Functions related to handling files and directories

os.path Functions related to file names

position Phone’s internal GPS

random Random number generator

socket TCP/IP networking, Bluetooth, setting the default
access point

sysinfo System information of an S60 mobile device such
as battery level, IMEI, signal strength or memory
space

telephone Telephone functionalities such as dial and
hang-up

PYTHON FOR S60 MODULES 319

Module Name Description

thread Threads to handle concurrent processing of
several tasks

time Time and date functions

topwindow Creating windows that are shown on top of other
applications

urllib High-level access to HTTP and web

Index

+= operator 47
2D graphics 92–5
3D graphics 99–100
access point

selection dialog 169
setting default 172

address() function 68, 75
animal sounds, recording 82–3
APIs (Application Programming

Interfaces) 199–201
append() function 39
AppleScript, controlling

applications with 146–8
application body 59
application building

application structure 52–6
application body 59, 60
application menu 56–9
content handler 60
tabs 59

functions 49–52
SMS game server 70–6

application keys, Web API 199,
207, 217

application menu 56, 58–9
appuifw module 27–8, 31–2

app object 53–5
multi query() function

36–8

multi selection list()
function 43–4

note() function 35–6
popup menu() function

40–1
query() function 33–5
selection list() function

41–3
uid() function 283

ArduinoBT micro-controller board
261–6

asynchronous communication
188–92

audio module
functions 83–4
open() function 78–9
play() function 78–9, 81–2,

83
record() function 81, 82, 83
say() function 78
stop() function 80, 81, 82,

83
automatic updating 236–8

binding
bind() function 54, 69, 88,

139
keycodes to callback functions

86–8

blit() function 92, 95, 96, 104,
206

Bluetooth
client–server chat application

138–41
connecting to external GPS

reader 148–50
connecting to other devices

150–1
creating Bluetooth servers

144–6
Max/MSP connection using

RFCOMM 266–71
serial port, setting up 289–92
using the Bluetooth console

292–3
break statement 45
bugs, finding 298–9

callback functions 54–5, 69, 79
binding to keycodes 86–8
capturing key events 91–2
event callback() function

88–91
redraw callback() function

92–5
camera

functions 100–1
taking a photo 102–4
viewfinder 101–2

322 INDEX

Canvas object 85–6
bind() function 54, 69, 88,

139
blit() function 92, 95, 96,

104, 206
double buffering 106
event callback parameter

88–9
redraw callback parameter

92, 94, 95
size() function 94–5

capabilities, Platform Security
280–2

certificates see devcerts
(developer certificates)

C++ extensions 236
chat application 138–41
client–server applications

MobiLenin 245–52
voting service 179–82

code blocks, writing 28–9
coding styles 241–3
color

hexadecimal constants 94
specified as Unicode strings 42

communication protocols 166–7
default access point, setting

172
HTTP client 169–70
JSON client 170–1
TCP client 167–9
TCP/IP 159

concurrent programs 241
connect() function 139, 168,

190, 269
contacts module 151–2
Content handler object 60,

157, 213
content() function 65–6
continuation lines 29
conversions

plain to Unicode text 121
type 36, 60, 63, 64, 72, 140,

144, 203
custom modules 234–6

databases
contacts database 151–2

Eventfu application 207–15
local database 121–3
MySQL database 261

data encoding using JSON
166–7, 170–1, 174

data handling 111–12
basic file operations 114–16
dictionary data structure

118–20
error handling 113–14
file organization 112–13
finding sound, photo and video

files 116–17
local database 121–3
log files 116
reading and writing text

117–18
reading and writing Unicode text

120–1
debugging 295

interpreting tracebacks 295–7
logging output to file 116
procedure for 298–9

decode("utf-8") function
121

default access point, setting 172
def keyword 51
deployment of PyS60 programs

287
devcerts (developer certificates)

capabilities 280, 281–2,
283

obtaining 285–6
signing with 284, 285

dial() function 151, 152
dialog functions 27–8

multi-query dialog 36–8
note dialog 35–6
single-field dialog, query 33–5

dictionary object 118–19
constructing 230–1
event object 88–9
JSON client 170–1, 174
JSON gateway 185, 186
and local databases 121–3
reading contents from a file

120
writing contents to a file

119–20

directories 112–13
creating 113
protected 282–3

dot notation 56
double buffering 92, 106
download plugin() function

238–9
drawing functions 95
drive letters 113
dynamic time 105–6
e32dbm module 122–3
e32db module 121
e32 module 54

lock object 55, 56, 69, 79,
105

sleep() function 105–6,
110, 182

timer object 97, 125–6,
211–13, 214–15, 240

yield() function 99, 106

empty value 36
emulator, using 30, 301–2
encoding

Unicode strings 34–5, 121,
129, 211, 213

urllib.urlencode()
function 204

using JSON 166–7, 170–1,
174

errors
see also debugging
during installation 29–30
exception handling 113–14,

296–7
event callback() function

88
event dictionary 88–9
Eventfu application 207–9

access point dialog 214
constants, setting up 209–10
description of event 214
event form 208, 213
preferences form 208, 209–10
storing preferences 210–11
UI functions 214–15
updating events 211–13

event handling functions 91

INDEX 323

event loops 105
events database see Eventfu

application
exception handling 113–14,

296–7

File object 114–16
file organization 112–13
file system protection 282–3
find() function 61, 62, 66
for loop 44–5
flickering, reducing by double

buffering 106
Flickr see InstaFlickr application
functions, creating own 49–52

games
controlling with event loops

105
double buffering 106
dynamic time 105–6
guess my number 145–6
Hangman server 70–6
Manhattan Story Mashup

252–6
random number generation

106
structure of 104–6
UFO Zapper 104, 106–10

glcanvas and gles modules, 3D
graphics 99

global variables 72–3, 83, 231,
235–6

GPS positioning
external GPS over Bluetooth

148–50
using position module

127
graphical user interface

customizing, Max/MSP
connection 268–9

native elements of PyS60
31–45

graphics 92
3-dimensional 99–100
drawing graphics primitives

92–5

interactive 97–9
GSM positioning 123–6

hang up() function 151
Hangman server game 70–6
”Hello World” script, writing

2nd Edition devices 25–7
3rd Edition devices

Linux Users 20–1
MAC OS X Users 19
Windows Users 15–18

httplib module 157
HTTP server 174–7
HyperTerminal, Windows 292–3

if statement 38–9
image composition tool 256–61
image files

see also photos
reading 117
uploading to Web 223,

259–61
image masks 96
Image object 92, 106

blit() function 92, 95, 96,
104, 206

drawing graphics primitives
92–5

loading and saving images 96
map images 203–5
MobileArtBlog 257–60
taking screenshots 96–7
viewfinder images 101–2

importing modules
import () function 239

import statement 32
Inbox object 64–5

accessing messages 65
bind() function 69
forwarding messages 69–70
receiving messages 68–9
searching for messages 66
sms messages() function

65, 66, 67, 228, 229
sorting messages 66–8

indentation of code 28–9
innovation 3

democratizing 8–11
sharing of 9–10
user-centered 9

input verification 62–3
InstaFlickr application 215–16

constants 216–17
data uploading 221–2
progress bar 223–4
result parsing 217
signed calls 219–21
taking photos 222–3
token handling 217–19
UI functions 224

installation of PyS60 13–14
2nd Edition devices 21

downloading install files
21–2, 301–2

installing files to phone 25
sending files to phone 22–5
writing and running a script

25–7
3rd Edition devices

downloading install files
14–15, 301–2

Linux users 19–21
Mac OS X users 18–19
Windows Users 15–18

instant messaging 188–92
interactive graphics 97–9
Internet 159

see also web services
automatic updating 236–8
communication protocols

166–72
connecting to 158–65
downloading data from 156–7,

238–9
plug-in mechanisms 238–9
uploading data to 157–8,

221–2
interpreter for Python 7–8

downloading and installing
301–2

signing with a devcert 285
introspection 231–4
IP addresses 159

local IP address 162
phone’s IP address 178
finding server 163

324 INDEX

join() function 72
JSON (JavaScript Object Notation)

166–7
installing JSON module

159–60
JSON client 170–1
JSON gateway 184–8
JSON server 173–4

keyboard keys 84–6
binding keycodes to callback

functions 86–8
capturing key events 91–2
event callback() function

88–9
key pressed or held down

89–91
keycapture module 91–2
keycodes 86–91
key code module 86–91
key events 50, 84–5

capturing 50, 88–90, 91–2
handling 85–6, 88–9

key–value pairs 88–9, 118–20

language tool application
127–30

lead users 5
development of products 10
innovation by 8–9
motivation of 9

len() function 61
Linux users

installing PyS60 files 19–20,
24–5

IP addresses, finding 162
RFCOMM setup 291–2
writing first script 20–1

list comprehensions 228–30
lists 39

list comprehensions 228–30
multi-selection list 43–4
selection list 41–3
tuples 56–7

local database 121–3
local variables 72–3
location application 124–6

lock object 55, 56, 69, 79, 105
loops

for loop 44–5
while loop 45

lower() function 62

MAC OS X users
AppleScript, controlling

applications with 146–8
installing PyS60 files 18, 23–4
IP addresses, finding 162
RFCOMM setup 290–1
writing first script 19

makedirs() function 113
makefile() function 140, 144,

168–9
Manhattan Story Mashup 252–6
map explorer application see

MopyMaps! application
masks, image 96
Max/MSP, controlling with a phone

266
Bluetooth RFCOMM connection

266–71
WiFi connection 271–3

menus
application menu 56, 58–9
popup menus 40–1

messages
accessing 65
receiving 68–9
searching 66, 228–30
sending 45–7
sorting 66–8

messaging module 45–7, 64,
70, 71–2, 74

micro-controller board, connecting
phone to 261–6

MIDI files, playing 79–80
missing values, denoting 36
MobileArtBlog 256–7

client code 257–60
inserting data into MySQL

database 261
server-side PHP script 260–1

mobile networking 155–6
communication protocols

166–7

HTTP client 169–70
JSON client 170–1
setting default access point

172
TCP client 167–9

development environment,
setting up 158–62

downloading from the Web
156–7

networking environments
160–2

peer-to-peer networking
183–8

testing network connection
162–5

uploading to the Web 157–8
MobiLenin system 245–6

mobile client code 249–52
system architecture 246–9

Mobile Web Server (MWS) 193
modules

creating custom 234–6
importing on the fly 238–9
using built-in 31–2

MopyMaps! application 201–2
constants 202–3
fetching map images 203–5
result parsing 203
UI functions 205–7

MP3 files, playing 78–9
multi-query dialog 36–8
multi-selection list 43–4
multi-user applications 252,

273–4
music video voting application

245–52
MySQL database, inserting data

into 261

National Marine Electronics
Association (NMEA) 148–9

native UI elements 31
multi-query dialog 36–8
multi-selection list 43–4
note 35–6
popup menu 40–1
query 33–5
selection list 41–3

INDEX 325

networking environments 158,
160–1

finding local and server IP
addresses 162–3

local wireless network 161
phone Internet access

and external test server
161–2, 163

and external web server
162, 163

and PC as a server 161, 163
setting default access point 172
testing connection using a test

server 163–5
Nokia phone models 302
None, empty value 36
note dialog 27–8, 35–6

OBject EXchange (OBEX) 134–8
objects 55–6
OpenGL graphics API 99–100
OpenSound Control (OSC)

273–4
open-source 5, 6, 7
operating systems 6
OSC see OpenSound Control
OSCmobile module 273–4
os module

makedirs() function
path.exists() function

113
remove() function 81
system() function 147

output formatting 63–4

packages
creating standalone 286–7
running under Platform Security

287–8
signing 284–6

parameters, function 28, 51
pass statement 130
pausing execution see sleep()

function
PC, controlling remotely 146–8
PC to phone communication

141–8

peer-to-peer networking 183–4
instant messaging 199–91
JSON gateway 184–8

phone calls, recording 83
phone to PC communication

141–2
AppleScript, controlling

applications with 146–8
communicating with the PC

142–4
PySerial, creating Bluetooth

Servers with 144–6
phone to phone communication

136
using OBEX 136–8
using RFCOMM 138–41

phone providing a web service
193–7

phone-as-server, drawbacks of
177–9

photos
InstaFlickr application 215–24
Manhattan Story Mashup

252–6
MobileArtBlog 256–61
sending 136–8
taking 102–4

PHP script 158, 249, 252,
259–61

placeholders 63
plain text, conversion to Unicode

121
Platform Security 279–80

capabilities 280–2
file system protection 282–3
running PyS60 under 287–8
SIS package signing 284–7

play() function 78–9, 81–2,
83

plug-in mechanism, automatic
updating 238–9

popup menus 40–1
popup notes 27–8, 35–6
positioning 123

GPS positioning 127, 148–50
GSM cell ID mapper 123–6

position module 127
preferences, storing 210–11
print statement 43

for writing to a file 115, 116
private directory 116, 283
program patterns 239–41
prototyping with PyS60 1, 5, 7,

10–11
proxy server, phone as 194–5
py2sis tool 286–7
PySerial module, creating

Bluetooth servers 133–6
Python programming language 7,

8
Python for S60 (PyS60) 1–2,

7–8
see also installation of PyS60
automatic updating 236–8
coding styles 241–3
deployment of 288
distribution of 288
extending using Symbian C++

236
potential users 5–6
rapid prototyping tool 10–11
reasons for using 3–4
toolkit 10
writing first program 27–8

query() function 27–8, 33–5
quit() function 54

random number functions 106,
108, 145

range() function 44–5
read() function 116, 117
recording sounds 80–3
redraw callback() function

86, 92, 206
relational databases see

databases
remote control of PC 146–8
replace() function 62
resource directory 283
return values, functions 51
RFCOMM

phone-to-phone communication
138–41

serial port, setting up 289–92
RGB colors 94

326 INDEX

robotics 274–7
Roomba robotic vacuum cleaner

275–7

S60 software platform 6–7,
302

scancodes 86–7, 89
scope of variables 72–3
screenshots, taking 96–7
screen size 59, 60
security see Platform Security
selection list 41–2
self-signed certificates, creating

284
serial communication, setting up

289–92
Serial object 145, 146
server software 172–3

HTTP server 174–7
JSON server 173–4
running on a phone 177–9

shopping list assistant program
46–7

signal() function 55
signing see SIS package signing
single-field dialog 33–5
SIS package signing 284

developer certificates (devcerts)
285–6

keys and certificates, creating
284

signing PyS60 interpreter with a
devcert 285

standalone packages, creating
286–7

sleep() function 105–6, 110,
182

smartphones 3
sms messages() function 65,

66, 67, 228, 229
SMS game server application

70–6
SMS messages

Hangman game application
70–6

sending messages 45–7
SMS inbox 64–5

accessing 65

forwarding messages 69–70
receiving messages 68–9
searching 66
sorting 66–8

socket module 172, 177–8
SocketServer module 163–5,

174, 185–6
sort() function 66–8
sound

playing MIDI files 79–80
playing MP3 files 78–9
reading files 117
recording 80–3, 129, 151
text-to-speech functionality

77–8
source code, sharing of 9–10
split() function 63, 64
standalone programs, creating

286–7
start viewfinder() function

102
startswith() function 62
state() function, audio module

84
str() function 36
string handling

accessing parts of a string 61
cleaning up input strings 62–3
decision-making functions

61–2
defining strings 60–1
formatting output 63–4

strip() function 62
substrings 61–2
Symbian C++, extending Python

236
Symbian OS 6–7

Platform Security 279–80
SIS file signing 284–6

symbol tables 231–4
synchronous communication

138
sysinfo module 152–3
system directory 282–3
system information 152–3

tabs, defining 59
take photo() function 102–3,

128, 137, 157, 196, 222–3

TCP/IP 159, 166–7
Max/MSP 271–3
TCP client 167–9

telephone module 151–2
terminal emulator software, using

144, 301–2
terminology 7–8
text editors 15, 19, 20, 25, 29
text reading/writing

dictionary key–value pairs
118–20

list items 117–18
Unicode strings 120–1

text-to-speech functionality 77–8
threading 185–92, 212, 241
time

current time 126, 171, 213
dynamic time 105–6
time() function 68

timer object 97, 126, 211–13,
214–15, 240

toolkit for PyS60 10
tracebacks, interpreting

295–7
translation application 127–30
troubleshooting

see also debugging
installation problems 29–30

try–except block 113–14
tuples 56–9
type conversions 36, 60, 63, 64,

72, 140, 144
type parameters 33–4

UFO Zapper game 106–10
Unicode strings

encoding and decoding 34–5,
121, 129, 211, 213

reading and writing 120–1
unread() function 68
upper() function 62
urban storytelling game 252–6
urllib module 156–7, 170,

171, 200, 204
user interface (UI)

see also appuifw module
custom elements 254–6,

268–9

INDEX 327

native elements 31–45
structure of 52–3

UTF-8 encoding/decoding 121,
129, 211, 213

vacuum cleaner robot 275–7
variables 36–3, 72–3
video files, reading 117
viewfinder 101–2, 103
Vocabulector language-learning

tool 127
adding new entries 127–9
boilerplate text 130–1
displaying entries 129–30

von Hippel, Eric 8–10
voter application 63–4
voting service, client–server

179–82

wait() function 55
WAV files, recording 80–3
web server, using phone as

193–7
web services (Web APIs) 199

see also Internet
application keys 199, 207, 217
EventFu event finder 207–15
InstaFlickr photo uploader

215–24
MopyMaps! mobile map

explorer 201–7
Representational State Transfer

(REST) 200–1
using Web APIs 200

while loop 45
white space 28–9
WiFi

connecting phone to Max/MSP
271–3

instant messenger application
188–92

security risks 220
testing connection to wireless

network 162
Windows users

installing PyS60 files 15, 22–3
IP addresses, finding 162
RFCOMM serial port, setting up

290
writing first script 15–18

write() function 115

XML parsers 203, 216–17

Yahoo! Maps 201–7
yield() function 99, 106

