

Invent Your Own
Computer Games with Python

2nd Edition

Al Sweigart

Copyright © 2008, 2009, 2010 by Albert Sweigart

Some Rights Reserved. "Invent Your Own Computer Games with Python" ("Invent
with Python") is licensed under a Creative Commons Attribution-Noncommercial-
Share Alike 3.0 United States License.

You are free:

 To Share — to copy, distribute, display, and perform the work

 To Remix — to make derivative works

Under the following conditions:

 Attribution — You must attribute the work in the manner specified by the
author or licensor (but not in any way that suggests that they endorse you or your
use of the work). (Visibly include the title and author's name in any excerpts of this
work.)

 Noncommercial — You may not use this work for commercial purposes.

 Share Alike — If you alter, transform, or build upon this work, you may
distribute the resulting work only under the same or similar license to this one.

This summary is located here:
http://creativecommons.org/licenses/by-nc-sa/3.0/us/

Your fair use and other rights are in no way affected by the above. There is a
human-readable summary of the Legal Code (the full license), located here:
http://creativecommons.org/licenses/by-nc-sa/3.0/us/legalcode

Book Version 13

ISBN 978-0-9821060-1-3

2nd Edition

For Caro, with more love
than I ever knew I had.

A Note to Parents and Fellow
Programmers

Thank your for reading this book. My motivation for writing this book comes from a gap
I saw in today's literature for kids interested in learning to program. I started programming
when I was 9 years old in the BASIC language with a book similar to this one. During the
course of writing this, I've realized how a modern language like Python has made
programming far easier and versatile for a new generation of programmers. Python has a
gentle learning curve while still being a serious language that is used by programmers
professionally.

The current crop of programming books for kids that I've seen fell into two categories.
First, books that did not teach programming so much as "game creation software" or a
dumbed-down languages to make programming "easy" (to the point that it is no longer
programming). Or second, they taught programming like a mathematics textbook: all
principles and concepts with little application given to the reader. This book takes a
different approach: show the source code for games right up front and explain
programming principles from the examples.

I have also made this book available under the Creative Commons license, which allows
you to make copies and distribute this book (or excerpts) with my full permission, as long
as attribution to me is left intact and it is used for noncommercial purposes. (See the
copyright page.) I want to make this book a gift to a world that has given me so much.
Thank you again for reading this book, and feel free to email me any questions or
comments.

Al Sweigart
al@inventwithpython.com

The full text of this book is available in HTML or PDF format at:
http://inventwithpython.com

Dinosaur Comics reproduced with permission. Thanks Ryan!

Who is this book for?
Programming isn't hard. But it is hard to find learning materials that teach you to do interesting things with

programming. Other computer books go over many topics that most newbie coders don't need. This book will
teach you how to program your own computer games. You will learn a useful skill and have fun games to show for
it!

This book is for:

� Complete beginners who wants to teach themselves computer programming, even if they have no previous
experience programming.

� Kids and teenagers who want to learn computer programming by creating games. Kids as young as 9 or 10
years old should be able to follow along.

� Adults and teachers who wish to teach others programming.
� Anyone, young or old, who wants to learn how to program by learning a professional programming

language.

Table of Contents

Source Code Listing
hello.py 21
guess.py 30
jokes.py 51
dragon.py 58
buggy.py 83
coinFlips.py 87
hangman.py 103
tictactoe.py 150
truefalsefizz.py 172
bagels.py 184
sonar.py 213
cipher.py 244
reversi.py 261
aisim1.py 292
aisim2.py 294
aisim3.py 299
pygameHelloWorld.py 309
animation.py 324
collisionDetection.py 338
pygameInput.py 348
spritesAndSounds.py 360
dodger.py 371

1 Installing Python 1
Downloading and Installing Python 2

Starting Python 4

How to Use This Book 4

The Featured Programs 5

Line Numbers and Spaces 5

Summary 7

2 The Interactive Shell 8
Some Simple Math Stuff 8

Evaluating Expressions 11

Storing Values in Variables 12

Using More Than One Variable 15

Summary 16

3 Strings, and Your First Program 18
Strings 18

String Concatenation 19

Writing Programs in IDLE's File Editor 20

Hello World! 20

How the "Hello World" Program Works 23

Summary 26

4 Guess the Number 28
The "Guess the Number" Game 28

Sample Run of "Guess the Number" 29

Guess the Number's Source Code 29

The import Statement 31

The random.randint() Function 32

Passing Arguments to Functions 34

Blocks 36

The Boolean Data Type 37

Comparison Operators 37

Conditions 38

Experiment with Booleans, Comparison Operators, and Conditions38

Looping with While Statements 41

The Player Guesses 41

if Statements 44

Leaving Loops Early with the break Statement 45

Check if the Player Won 46

Summary: What Exactly is Programming? 47

A Web Page for Program Tracing 48

5 Jokes 50
Make the Most of print() 50

Sample Run of Jokes 50

Joke's Source Code 51

Escape Characters 52

Quotes and Double Quotes 53

The end Keyword Argument 54

Summary 55

6 Dragon Realm 56
Introducing Functions 56

Sample Run of Dragon Realm 57

Dragon Realm's Source Code 57

def Statements 60

Boolean Operators 61

Return Values 65

Variable Scope 65

Parameters 68

Where to Put Function Definitions 70

Displaying the Game Results 71

The Colon : 73

Where the Program Really Begins 73

Designing the Program 75

Summary 76

7 Using the Debugger 77
Bugs! 77

Starting the Debugger 78

Stepping 80

The Go and Quit Buttons 81

Stepping Over and Stepping Out 81

Find the Bug 83

Break Points 86

Summary 88

8 Flow Charts 89
How to Play "Hangman" 89

Sample Run of "Hangman" 89

ASCII Art 91

Designing a Program with a Flowchart 92

Creating the Flow Chart 93

Summary: The Importance of Planning Out the Game 100

9 Hangman 102
Hangman's Source Code 103

Multi-line Strings 107

Constant Variables 108

Lists 108

Changing the Values of List Items with Index Assignment 110

List Concatenation 110

The in Operator 111

Removing Items from Lists with del Statements 112

Lists of Lists 113

Methods 114

The reverse() and append() List Methods 115

The Difference Between Methods and Functions 116

The split() Function 116

The range() and list() Functions 120

for Loops 121

elif ("Else If") Statements 127

Review of the Functions We Defined 131

Making New Changes to the Hangman Program 132

Dictionaries 139

Sets of Words for Hangman 142

The random.choice() Function 143

Multiple Assignment 145

Summary 147

10 Tic Tac Toe 148
Sample Run of Tic Tac Toe 149

Source Code of Tic Tac Toe 150

Designing the Program 154

Game AI 156

List References 162

Short-Circuit Evaluation 170

The None Value 175

Summary: Creating Game-Playing Artificial Intelligences 182

11 Bagels 183
Sample Run 184

Bagel's Source Code 184

Designing the Program 186

The random.shuffle() Function 188

Augmented Assignment Operators 190

The sort() List Method 192

The join() String Method 192

String Interpolation 194

Summary: Getting Good at Bagels 198

12 Cartesian Coordinates 200
Grids and Cartesian Coordinates 201

Negative Numbers 202

Math Tricks 204

Absolute Values and the abs() Function 206

Coordinate System of a Computer Monitor 207

Summary: Using this Math in Games 208

13 Sonar Treasure Hunt 209
Sample Run 210

Sonar's Source Code 213

Designing the Program 218

The remove() List Method 229

Summary: Review of our Sonar Game 238

14 Caesar Cipher 239
About Cryptography 239

The Caesar Cipher 240

ASCII, and Using Numbers for Letters 241

The chr() and ord() Functions 242

Sample Run of Caesar Cipher 243

Caesar Cipher's Source Code 244

The isalpha() String Method 247

The isupper() and islower() String Methods 248

Brute Force 251

Summary: Reviewing Our Caesar Cipher Program 253

15 Reversi 256
How to Play Reversi 255

Sample Run 257

Reversi's Source Code 260

The bool() Function 276

Summary: Reviewing the Reversi Game 290

16 AI Simulation 291
"Computer vs. Computer" Games 291

AISim1.py Source Code 292

AISim2.py Source Code 294

Percentages 296

The round() Function 297

Comparing Different AI Algorithms 299

AISim3.py Source Code 299

Learning New Things by Running Simulation Experiments 305

17 Graphics and Animation 306
Installing Pygame 307

Hello World in Pygame 308

Hello World's Source Code 308

Importing the Pygame Module 311

Variables Store References to Objects 313

Colors in Pygame 313

Fonts, and the pygame.font.SysFont() Function 315

Attributes 316

Constructor Functions and the type() function. 317

The pygame.PixelArray Data Type 321

Events and the Game Loop 322

Animation 324

The Animation Program's Source Code 324

Some Small Modifications 335

Summary: Pygame Programming 335

18 Collision Detection and Input 337
The Collision Detection Program's Source Code 337

The Collision Detection Function 341

The pygame.time.Clock Object and tick() Method 344

The Keyboard Input Program's Source Code 348

The colliderect() Method 356

Summary: Collision Detection and Pygame Input 356

19 Sound and Images 358
Image and Sound Files 360

Sprites and Sounds Program 360

The Sprites and Sounds Program's Source Code 360

Setting Up the Window and the Data Structure 364

The pygame.transform.scale() Function 364

Summary: Games with Graphics and Sounds 368

20 Dodger 369
Review of the Basic Pygame Data Types 370

Dodger's Source Code 371

Implementing the Cheat Codes 392

Modifying the Dodger Game 397

Summary: Creating Your Own Games 397

Appendix A
Differences Between Python 2 and 3 399

Appendix B
Statements, Functions, and Methods Reference 403

Appendix C
Running Python Programs without Python Installed 404

Appendix D
Common Error Messages in Python 407

Glossary 411
About the Author 421

Topics Covered In This Chapter:

� Downloading and installing the Python interpreter.
� Using IDLE's interactive shell to run instructions.
� How to use this book.
� The book's website at http://inventwithpython.com

Hello! This is a book that will teach you how to program by showing you how to create
computer games. Once you learn how the games in this book work, you'll be able to create
your own games. All you'll need is a computer, some software called the Python
Interpreter, and this book. The software you'll need is free and you can download it from
the Internet.

When I was a kid, I found a book like this that taught me how to write my first programs
and games. It was fun and easy. Now as an adult, I still have fun programming computers,
and I get paid for it. But even if you don't become a computer programmer when you grow
up, programming is a useful and fun skill to have.

Computers are very useful machines. The good news is that learning to program a
computer is easy. If you can read this book, you can program a computer. A computer
program is just a bunch of instructions run by a computer, just like a storybook is just a
whole bunch of sentences read by the reader.

These instructions are like the turn-by-turn instructions you might get for walking to a
friend's house. (Turn left at the light, walk two blocks, keep walking until you find the first
blue house on the right.) The computer follows each instruction that you give it in the order
that you give it. Video games are themselves nothing but computer programs. (And very

1

fun computer programs!)

In this book, any words you need to know will look like this. For example, the word
"program" is defined in the previous paragraph.

In order to tell a computer what you want it to do, you write a program in a language that
the computer understands. The programming language this book teaches is named Python.
There are many different programming languages including BASIC, Java, Python, Pascal,
Haskell, and C++ (pronounced, "c plus plus").

When I was a kid most people learned to program in BASIC as their first language. But
new programming languages have been invented since then, including Python. Python is
even easier to learn than BASIC and it's a serious programming language used by
professional computer programmers. Many adults use Python in their work (and when
programming just for fun).

The first few games we'll create together in this book will probably seem simple
compared to the games you've played on the Xbox, Playstation, or Wii. They don't have
fancy graphics or music but that's because they're meant to teach you the basics. They're
purposely simple so that we can focus on learning to program. Games don't have to be
complicated to be fun. Hangman, Tic Tac Toe, and making secret codes are simple to
program but are also fun.

We'll also learn how to make the computer solve some math problems in the Python
shell. (Don't worry if you don't know a lot of mathematics. If you know how to add and
multiply, you know enough math to do programming. Programming is more about problem
solving in general than it is about solving math problems.)

Downloading and Installing Python

Before we can begin programming you'll need to install the Python software; specifically
the Python interpreter. (You may need to ask an adult for help here.) The interpreter is a
program that understands the instructions that you'll write in the Python language. Without
the interpreter, your computer won't understand these instructions and your programs won't
work. (We'll just refer to "the Python interpreter" as "Python" from now on.)

Because we'll be writing our games in the Python language, we need to download Python
first, from the official website of the Python programming language,
http://www.python.org

I'm going to give you instructions for installing Python on Microsoft Windows, not
because that's my favorite operating system but because chances are that's the operating
system that your computer is running. You might want the help of someone else to
download and install the Python software.

When you get to python.org, you should see a list of links on the left (About, News,
Documentation, Download, and so on.) Click on the Download link to go to the download

2

page, then look for the file called Python 3.1 Windows Installer (Windows binary --
does not include source) and click on its link to download Python for Windows.

Figure 1-1: Click the Windows installer link to download Python for Windows from http://www.python.org

Double-click on the python-3.1.msi file that you've just downloaded to start the Python
installer. (If it doesn't start, try right-clicking the file and choosing Install.) Once the
installer starts up, click the Next button and just accept the choices in the installer as you go
(no need to make any changes). When the install is finished, click Finish.

Important Note! Be sure to install Python 3, and not Python 2. The programs in this
book use Python 3, and you'll get errors if you try to run them with Python 2.

The installation for Mac OS is similar. Instead of downloading the .msi file from the
Python website, download the .dmg Mac Installer Disk Image file instead. The link to this
file will look something like "Mac Installer disk image (3.1.1)" on the "Download Python
Software" web page.

If your operating system is Ubuntu, you can install Python by opening a terminal
window (click on Applications > Accessories > Terminal) and entering sudo apt-get
install python3 then pressing Enter. You will need to enter the root password to
install Python, so ask the person who owns the computer to type in this password.

There may be a newer version of Python available than 3.1. If so, then just download the
latest version. The game programs in this book will work just the same. If you have any
problems, you can always Google for "installing Python on <your operating system's
name>". Python is a very popular language, so you should have no difficulty finding help.

A video tutorial of how to install Python is available from this book's website at
http://inventwithpython.com/videos/.

3

1 - Installing Python

Starting Python

If your operating system is Windows XP, you should be able to run Python by choosing
Start > Programs > Python 3.1 > IDLE (Python GUI). When it's running it should
looking something like Figure 1-2. (But different operating systems will look slightly
different.)

Figure 1-2: The IDLE program's interactive shell on Windows.

IDLE stands for Interactive DeveLopment Environment. The development environment
is software that makes it easy to write Python programs. We will be using IDLE to type in
our programs and run them.

The window that appears when you first run IDLE is called the interactive shell. A shell
is a program that lets you type instructions into the computer. The Python shell lets you
type Python instructions, and the shell sends these instructions to software called the
Python interpreter to perform. We can type Python instructions into the shell and, because
the shell is interactive, the computer will read our instructions and respond in some way.
(Ideally in a way that we expect but that will depend on whether we write the correct
instructions.)

How to Use This Book

There are a few things you should understand about this book before you get started.
"Invent with Python" is different from other programming books because it focuses on the
complete source code for different games. Instead of teaching you programming concepts
and leaving it up to you to figure out how to make fun games with those concepts, this book
shows you fun games and then explains how they are put together.

4

The Featured Programs

Most chapters begin with a sample run of the featured program. This sample run shows
you what the program's output looks like, with what the user types in shown as bold print.
This will give you an idea of what the complete game will look like when you have entered
the code and run it.

Some chapters also show the complete source code of the game, but remember: you don't
have to enter every line of code right now. Instead, you can read the chapter first to
understand what each line of code does and then try entering it later.

You can also download the source code file from this book's website. Go to the URL
http://inventwithpython.com/source and follow the instructions to download the source
code file.

Line Numbers and Spaces

When entering the source code yourself, do not type the line numbers that appear at the
beginning of each line. For example, if you see this in the book:

9. number = random.randint(1, 20)

You do not need to type the "9." on the left side, or the space that immediately follows it.
Just type it like this:

number = random.randint(1, 20)

Those numbers are only used so that this book can refer to specific lines in the code.
They are not a part of the actual program.

Aside from the line numbers, be sure to enter the code exactly as it appears. Notice that
some of the lines don't begin at the leftmost edge of the page, but are indented by four or
eight spaces. Be sure to put in the correct number of spaces at the start of each line. (Since
each character in IDLE is the same width, you can count the number of spaces by counting
the number of characters above or below the line you're looking at.)

For example, you can see that the second line is indented by four spaces because the four
characters ("whil") on the line above are over the indented space. The third line is
indented by another four spaces (the four characters, "if n" are above the third line's
indented space):

5

1 - Installing Python

while guesses < 10:
 if number == 42:
 print('Hello')

Text Wrapping in This Book

Some lines of code are too long to fit on one line on the page, and the text of the code
wil l wrap around to the next line. When you type these lines into the file editor, enter the
code all on one line without pressing Enter.

You can tell when a new line starts by looking at the line numbers on the left side of the
code. For example, the code below has only two lines of code, even though the first line
wraps around:

1. print('This is the first line! xxxxxxxxxxxxxxx
xxxxxxxxxxxx')

2. print('This is the second line! ')

Tracing the Program Online

You can visit http://inventwithpython.com/traces to see a trace through each of the
programs in this book. Tracing a program means to step through the code one line at a time,
in the same way that a computer would execute it. The traces web page has notes and
helpful reminders at each step of the trace to explain what the program is doing, so it can
help you better understand why these programs work the way they do.

Checking Your Code Online

Some of the games in this book are a little long. Although it is very helpful to learn
Python by typing out the source code for these games, you may accidentally make typos
that cause your game programs to crash. It may not be obvious where the typo is.

You can copy and paste the text of your source code to the online diff tool on the book's
website. The diff tool will show any differences between the source code in the book and
the source code you've typed. This is an easy way of finding any typos in your program.

Copying and pasting text is a very useful computer skill, especially for computer
programming. There is a video tutorial on copying and pasting at this book's website at
http://inventwithpython.com/videos/.

The online diff tool is at this web page: http://inventwithpython.com/diff. A video

6

tutorial of how to use the diff tool is available from this book's website at
http://inventwithpython.com/videos/.

Summary

This chapter has helped you get started with the Python software by showing you the
python.org website where you can download it for free. After installing and starting the
Python IDLE software, we will be ready to learn programming starting in the next chapter.

This book's website at http://inventwithpython.com has more information on each of the
chapters, including an online tracing website that can help you understand what exactly
each line of the programs do.

7

1 - Installing Python

Topics Covered In This Chapter:

� Integers and Floating Point Numbers
� Expressions
� Values
� Operators
� Evaluating Expressions
� Storing Values in Variables

Before we start writing computer games, we should learn some basic programming
concepts first. These concepts are values, operators, expressions, and variables. We won't
start programming in this chapter, but knowing these concepts and the names of things will
make learning to program much easier. This is because most programming is built on only
a few simple concepts combined together to make advanced programs.

Let's start by learning how to use Python's interactive shell.

Some Simple Math Stuff

To open IDLE on Windows, click on Start > Programs > Python 3.1 > IDLE (Python
GUI). With IDLE open, let's do some simple math with Python. The interactive shell can
work just like a calculator. Type 2+2 into the shell and press the Enter key on your
keyboard. (On some keyboards, this is the RETURN key.) As you can see in Figure 2-1,
the computer should respond with the number 4; the sum of 2+2.

8

Figure 2-1: Type 2+2 into the shell.

As you can see, we can use the Python shell just like a calculator. This isn't a program by
itself because we are just learning the basics right now. The + sign tells the computer to add
the numbers 2 and 2. To subtract numbers use the - sign, and to multiply numbers use an
asterisk (*), like so:

When used in this way, +, -, *, and / are called operators because they tell the
computer to perform the specified operation on the numbers surrounding them.

Integers and Floating Point Numbers

In programming (and also in mathematics), whole numbers like 4, 0, and 99 are called
integers. Numbers with fractions or decimal points (like 3.5 and 42.1 and 5.0) are not
integers. In Python, the number 5 is an integer, but if we wrote it as 5.0 it would not be an
integer. Numbers with a decimal point are called floating point numbers. In
mathematics, 5.0 is still considered an integer and the same as the number 5, but in
computer programming the computer considers any number with a decimal point as not an
integer.

Table 2-1: The various math
operators in Python.

2+2 addition

2-2 subtraction

2*2 multiplication

2/2 division

9

2 - The Interactive Shell

Expressions

Try typing some of these math problems into the shell, pressing Enter key after each one.

2+2+2+2+2
8*6
10-5+6
2 + 2

Figure 2-2 is what the interactive shell in IDLE will look like after you type in the
instructions above.

Figure 2-2: What the IDLE window looks like after entering instructions.

These math problems are called
expressions. Computers can solve
millions of these problems in seconds.
Expressions are made up of values (the
numbers) connected by operators (the
math signs). Let's learn exactly what
values and operators are.

As you can see with the last
expression in the above example, you
can put any amount of spaces in
between the integers and these operators. (But be sure to always start at the very beginning
of the line, with no spaces in front.)

Numbers are a type of value. Integers are a type of number. But, even though integers are
numbers, not all numbers are integers. (For example, fractions and numbers with decimal
points like 2.5 are numbers that are not integers.)

Figure 2-3: An expression is a made up of values and operators.

10

This is like how a cat is a type of pet, but not all pets are cats. Someone could have a pet
dog or a pet lizard. An expression is made up of values (such as integers like 8 and 6)
connected by an operator (such as the * multiplication sign). A single value by itself is also
considered an expression.

In the next chapter, we will learn about working with text in expressions. Python isn't
limited to just numbers. It's more than just a fancy calculator!

Evaluating Expressions

When a computer solves the expression 10 + 5 and gets the value 15, we say it has
evaluated the expression. Evaluating an expression reduces the expression to a single
value, just like solving a math problem reduces the problem to a single number: the answer.

The expressions 10 + 5 and 10 + 3 + 2 have the same value, because they both
evaluate to 15. Even single values are considered expressions: The expression 15 evaluates
to the value 15.

However, if you just type 5 + into the interactive shell, you will get an error message.

>>> 5 +
SyntaxError: invalid syntax

This error happened because 5 + is not an expression. Expressions have values
connected by operators, but the + operator always expects to connect two things in Python.
We have only given it one. This is why the error message appeared. A syntax error means
that the computer does not understand the instruction you gave it because you typed it
incorrectly. Python will always display an error message if you enter an instruction that it
cannot understand.

This may not seem important, but a lot of computer programming is not just telling the
computer what to do, but also knowing exactly how to tell the computer to do it.

Expressions Inside Other Expressions

Expressions can also contain other expressions. For example, in the expression 2 + 5
+ 8, the 2 + 5 part is its own expression. Python evaluates 2 + 5 to 7, so the original
expression becomes 7 + 8. Python then evaluates this expression to 15.

Think of an expression as being a stack of pancakes. If you put two stacks of pancakes
together, you still have a stack of pancakes. And a large stack of pancakes can be made up
of smaller stacks of pancakes that were put together. Expressions can be combined together
to form larger expressions in the same way. But no matter how big an expression is it also
evaluates to a single answer, just like 2 + 5 + 8 evaluates to 15.

11

2 - The Interactive Shell

Storing Values in Variables

When we program, we will often want to save the values that our expressions evaluate to
so we can use them later in the program. We can store values in variables.

Think of variables like a box that can hold values. You can store values inside variables
with the = sign (called the assignment operator). For example, to store the value 15 in a
variable named "spam", enter spam = 15 into the shell:

>>> spam = 15
>>>

You can think of the variable like a
box with the value 15 inside of it (as
shown in Figure 2-4). The variable
name "spam" is the label on the box (so
we can tell one variable from another)
and the value stored in it is like a small
note inside the box.

When you press Enter you won't see
anything in response, other than a
blank line. Unless you see an error
message, you can assume that the
instruction has been executed
successfully. The next >>> prompt will
appear so that you can type in the next instruction.

This instruction (called an assignment statement) creates the variable spam and
stores the value 15 in it. Unlike expressions, statements are instructions that do not
evaluate to any value, which is why there is no value displayed on the next line in the shell.

It might be confusing to know which instructions are expressions and which are
statements. Just remember that if the instruction evaluates to a single value, it's an
expression. If the instruction does not, then it's a statement.

An assignment statement is written as a variable, followed by the = equal sign, followed
by an expression. The value that the expression evaluates to is stored inside the variable.
The value 15 by itself is an expression. Expressions made up of a single value by itself are
easy to evaluate. These expressions just evaluate to the value itself. For example, the
expression 15 evaluates to 15!

Remember, variables store values, not expressions. For example, if we had the statement,
spam = 10 + 5, then the expression 10 + 5 would first be evaluated to 15 and then
the value 15 would be stored in the variable, spam.

Figure 2-4: Variables are like boxes that can hold values in them.

12

The first time you store a value inside a variable by using an assignment statement,
Python will create that variable. Each time after that, an assignment statement will only
replace the value stored in the variable.

Now let's see if we've created our variable properly. If we type spam into the shell by
itself, we should see what value is stored inside the variable spam.

>>> spam = 15
>>> spam
15
>>>

Now, spam evaluates to the value inside the variable, 15.

And here's an interesting twist. If we now enter spam + 5 into the shell, we get the
integer 20, like so.

>>> spam = 15
>>> spam + 5
20
>>>

That may seem odd but it makes sense when we remember that we set the value of spam
to 15. Because we've set the value of the variable spam to 15, writing spam + 5 is like
writing the expression 15 + 5.

If you try to use a variable before it has been created, Python will give you an error
because no such variable would exist yet. This also happens if you mistype the name of the
variable.

We can change the value stored in a variable by entering another assignment statement.
For example, try the following:

>>> spam = 15
>>> spam + 5
20
>>> spam = 3
>>> spam + 5
8
>>>

The first time we enter spam + 5, the expression evaluates to 20, because we stored

13

2 - The Interactive Shell

the value 15 inside the variable spam. But when we enter spam = 3 , the value 15 is
replaced, or overwritten, with the value 3. Now, when we enter spam + 5, t he expression
evaluates to 8 because the value of spam is now 3.

To find out what the current value is inside a variable, just enter the variable name into
the shell.

Now here's something interesting. Because a variable is only a name for a value, we can
write expressions with variables like this:

>>> spam = 15
>>> spam + spam
30
>>> spam - spam
0
>>>

When the variable spam has the integer value 15 stored in it, entering spam + spam
is the same as entering 15 + 15, which evaluates to 30. And spam - spam is the same
as 15 - 15, which evaluates to 0. The expressions above use the variable spam twice.
You can use variables as many times as you want in expressions. Remember that Python
will evaluate a variable name to the value that is stored inside that variable, each time the
variable is used.

We can even use the value in the spam variable to assign spam a new value:

>>> spam = 15
>>> spam = spam + 5
20
>>>

The assignment statement spam = spam + 5 is like saying, "the new value of the
spam variable will be the current value of spam plus five." Remember that the variable on
the left side of the = sign will be assigned the value that the expression on the right side
evaluates to. We can also keep increasing the value in spam by 5 several times:

>>> spam = 15
>>> spam = spam + 5
>>> spam = spam + 5
>>> spam = spam + 5
>>> spam
30

14

>>>

Overwriting Variables

Changing the value stored inside a variable is easy. Just perform another assignment
statement with the same variable. Look what happens when you enter the following code
into the interactive shell:

>>> spam = 42
>>> print(spam)
42
>>> spam = 'Hello'
>>> print(spam)
Hello

Initially, the spam variable had the integer 42 placed inside of it. This is why the first
print(spam) prints out 42. But when we execute spam = 'Hello', the 42 value is
tossed out of the variable and forgotten as the new 'Hello' string value is placed inside
the spam variable.

Replacing the value in a variable with a new value is called overwriting the value. It is
important to know that the old value is permanently forgotten. If you want to remember this
value so you can use it later in your program, store it in a different variable before
overwriting the value:

>>> spam = 42
>>> print(spam)
42
>>> oldSpam = spam
>>> spam = 'Hello'
>>> print(spam)
Hello
>>> print(oldSpam)
42

In the above example, before overwriting the value in spam, we store that value in a
variable named oldSpam.

Using More Than One Variable

When we program we won't always want to be limited to only one variable. Often we'll
need to use multiple variables.

15

2 - The Interactive Shell

For example, let's assign different values to two variables named eggs and fizz , like
so:

>>> fizz = 10
>>> eggs = 15

Now the fizz variable has 10 inside it, and eggs has 15 inside it.

Figure 2-5: The "fizz" and "eggs" variables have values stored in them.

Without changing the value in our spam variable, let's try assigning a new value to the
spam variable. Enter spam = fizz + eggs into the shell then enter spam into the
shell to see the new value of spam. Can you guess what it will be?

>>> fizz = 10
>>> eggs = 15
>>> spam = fizz + eggs
>>> spam
25
>>>

The value in spam is now 25 because when we add fizz and eggs we are adding the
values stored inside fizz and eggs.

Summary

In this chapter you learned the basics about writing Python instructions. Python needs
you to tell it exactly what to do in a strict way, because computers don't have common
sense and only understand very simple instructions. You have learned that Python can

16

evaluate expressions (that is, reduce the expression to a single value), and that
expressions are values (such as 2 or 5) combined with operators (such as + or -). You have
also learned that you can store values inside of variables in order to use them later on.

In the next chapter, we will go over some more basic concepts, and then you will be
ready to program!

17

2 - The Interactive Shell

Topics Covered In This Chapter:

� Flow of execution
� Strings
� String concatenation
� Data types (such as strings or integers)
� Using IDLE to write source code.
� Saving and running programs in IDLE.
� The print() function.
� The input() function.
� Comments
� Capitalizing variables
� Case-sensitivity
� Overwriting variables

That's enough of integers and math for now. Python is more than just a calculator. Now
let's see what Python can do with text. In this chapter, we will learn how to store text in
variables, combine text together, and display them on the screen. Many of our programs
will use text to display our games to the player, and the player will enter text into our
programs through the keyboard. We will also make our first program, which greets the user
with the text, "Hello World!" and asks for the user's name.

Strings

In Python, we work with little chunks of text called strings. We can store string values
inside variables just like we can store number values inside variables. When we type

18

strings, we put them in between two single quotes ('), like this:

>>> spam = 'hello'
>>>

The single quotes are there only to tell the computer where the string begins and ends
(and is not part of the string value).

Now, if you type spam into the shell, you should see the contents of the spam variable
(the 'hello' string.) This is because Python will evaluate a variable to the value stored
inside the variable.

>>> spam = 'hello'
>>> spam
'hello'
>>>

Strings can have almost any character or sign in them as well as spaces and numbers.
(Strings can't have single quotes inside of them without using an escape character. Escape
characters are described later.) These are all examples of strings:

'hello'
'Hi there!'
'Albert'
'KITTENS'
'7 apples, 14 oranges, 3 lemons'
'A long time ago in a galaxy far, far away...'
'O*&#wY%*&OCfsdYO*&gfC%YO*&%3yc8r2'

As we did with numerical values in the previous chapter, we can also put string values in
expressions. For example, the expression 4 * 2 + 3 is an expression with numerical
values that will evaluate to the integer 11.

String Concatenation

You can add one string to the end of another by using the + operator, which is called
string concatenation. Try entering 'Hello' + 'World!' into the shell:

>>> 'Hello' + 'World!'
'HelloWorld!'
>>>

19

3 - Strings

To keep the strings separate, put a space at the end of the 'Hello' string, before the
single quote, like this:

>>> 'Hello ' + 'World!'
'Hello World!'
>>>

Strings and integers are different data types . All values have a data type. The data type
of the value 'Hello' is a string. The data type of the value 5 is an integer. The data type
of the data that tells us (and the computer) what kind of data it is.

Writing Programs in IDLE's File Editor

Until now we have been typing instructions one at a time into the interactive shell. When
we write programs though, we type in several instructions and have them run all at once.
Let's write our first program!

The name of the program that provides the interactive shell is called IDLE, the
Interactive DeveLopement Environment. IDLE also has another part called the file editor.

Click on the File menu at the top of the Python Shell window, and select New Window.
A new blank window will appear for us to type our program in. This window is the file
editor .

Figure 3-1: The file editor window.

Hello World!

A tradition for programmers learning a new language is to make their first program
display the text "Hello world!" on the screen. We'll create our own Hello World program
now.
20

hello.py
This code can be downloaded from http://inventwithpython.com/hello.py
If you get errors after typing this code in, compare it to the book's code with the online
diff tool at http://inventwithpython.com/diff or email the author at
al@inventwithpython.com

1. # This program says hello and asks for my name.
2. print('Hello world!')
3. print('What is your name?')
4. myName = input()
5. print('It is good to meet you, ' + myName)

The IDLE program will give different types of instructions different colors. After you are
done typing this code in, the window should look like this:

Figure 3-3: The file editor window will look like this after you type in the code.

When you enter your program, don't enter the numbers
at the left side of the code. They're there so we can refer
to each line by number in our explanation. If you look at
the bottom-right corner of the file editor window, it will
tell you which line the cursor is currently on.

Enter the following text into the new file editor
window. We call this text the program's source code
because it contains the instructions that Python will
follow to determine exactly how the program should behave. (Remember, don't type in the
line numbers!)

IMPORTANT NOTE! The following program should be run by the Python 3
interpreter, not the Python 2.6 (or any other 2.x version). Be sure that you have the correct
version of Python installed. (If you already have Python 2 installed, you can have Python 3
installed at the same time.) To download Python 3, go to
http://python.org/download/releases/3.1.1/ and install this version.

Figure 3-2: The bottom right of the file

editor window tells you where the cursor
is. The cursor is currently on line 12.

21

3 - Strings

Saving Your Program

A video tutorial of how to use the file editor is available from this book's website at
http://inventwithpython.com/videos/.

If you get an error that looks like this:

Hello world!
What is your name?
Albert

Traceback (most recent call last):
 File "C:/Python26/test1.py", line 4, in <module>
 myName = input()
 File "<string>", line 1, in <module>
NameError: name 'Albert' is not defined

...then this means you are running the program with Python 2, instead of Python 3. You
can either install Python 3, or convert the source code in this book to Python 2. Appendix A

Once you've
entered your
source code, save
it so that you
won't have to
retype it each
time we start
IDLE. To do so,
choose the File
menu at the top of
the File Editor
window, and then
click on Save As.
The Save As
window should
open. Enter
hello.py in the
File Name box
then press Save.
(See Figure 3-4.)

You should save your programs every once in a while as you type them. That way, if
the computer crashes or you accidentally exit from IDLE, only the typing you've done
since your last save will be lost. Press Ctrl-S to save your file quickly, without using the
mouse at all.

Figure 3-4: Saving the program.

22

lists the differences between Python 2 and 3 that you will need for this book.

Opening The Programs You've Saved

To load a saved program, choose File > Open. Do that now, and in the window that
appears choose hello.py and press the Open button. Your saved hello.py program should
open in the File Editor window.

Now it's time to run our program. From the File menu, choose Run > Run Module or
just press the F5 key on your keyboard. Your program should run in the shell window that
appeared when you first started IDLE. Remember, you have to press F5 from the file
editor's window, not the interactive shell's window.

When your program asks for your name, go ahead and enter it as shown in Figure 3-5:

Figure 3-5: What the interactive shell looks like when running the "Hello World" program.

Now, when you push Enter, the program should greet you (the user) by name.
Congratulations! You've written your first program. You are now a beginning computer
programmer. (You can run this program again if you like by pressing F5 again.)

How the "Hello World" Program Works

How does this program work? Well, each line that we entered is an instruction to the
computer that is interpreted by Python in a way that the computer will understand. A
computer program is a lot like a recipe. Do the first step first, then the second, and so on
until you reach the end. Each instruction is followed in sequence, beginning from the very
top of the program and working down the list of instructions. After the program executes
the first line of instructions, it moves on and executes the second line, then the third, and so
on.

We call the program's following of instructions step-by-step the flow of execution, or
just the execution for short.

Now let's look at our program one line at a time to see what it's doing, beginning with
23

3 - Strings

line number 1.

Comments

1. # This program says hello and asks for my name.

This line is called a comment . Any text following a # sign (called the pound sign) is
a comment. Comments are not for the computer, but for you, the programmer. The
computer ignores them. They're used to remind you of what the program does or to tell
others who might look at your code what it is that your code is trying to do.

Programmers usually put a comment at the top of their code to give their program a title.
The IDLE program displays comments in red to help them stand out.

Functions

A function is kind of like a mini-program inside your program. It contains lines of code
that are executed from top to bottom. Python provides some built-in functions that we can
use. The great thing about functions is that we only need to know what the function does,
but not how it does it. (You need to know that the print() function displays text on the
screen, but you don't need to know how it does this.)

A function call is a piece of code that tells our program to run the code inside a
function. For example, your program can call the print() function whenever you want to
display a string on the screen. The print() function takes the string you type in between
the parentheses as input and displays the text on the screen. Because we want to display
Hello world! on the screen, we type the print function name, followed by an
opening parenthesis, followed by the 'Hello world!' string and a closing parenthesis.

The print() Function

2. print('Hello world!')
3. print('What is your name?')

This line is a call to the print function, usually written as print() (with the string to
be printed going inside the parentheses).

We add parentheses to the end of function names to make it clear that we're referring to a
function named print() , not a variable named print. The parentheses at the end of the
function let us know we are talking about a function, much like the quotes around the
number '42' tell us that we are talking about the string '42' and not the integer 42.

Line 3 is another print() function call. This time, the program displays "What is your
name?"
24

The input() Function

4. myName = input()

This line has an assignment statement with a variable (myName) and a function call
(input()). When input() is called, the program waits for input; for the user to enter
text. The text string that the user enters (your name) becomes the function's output value.

Like expressions, function calls evaluate to a single value. The value that the function
call evaluates to is called the return value. In this case, the return value of the input()
function is the string that the user typed in-their name. If the user typed in Albert, the
input() function call evaluates to the string 'Albert' .

The function named input() does not need any input (unlike the print() function),
which is why there is nothing in between the parentheses.

5. print('It is good to meet you, ' + myName)

On the last line we have a print() function again. This time, we use the plus operator
(+) to concatenate the string 'It is good to meet you, ' and the string stored in
the myName variable, which is the name that our user input into the program. This is how
we get the program to greet us by name.

Ending the Program

Once the program executes the last line, it stops. At this point it has terminated or
exited and all of the variables are forgotten by the computer, including the string we stored
in myName. If you try running the program again with a different name, like Carolyn, it
will think that's your name.

Hello world!
What is your name?
Carolyn
It is good to meet you, Carolyn

Remember, the computer only does exactly what you program it to do. In this, our first
program, it is programmed to ask you for your name, let you type in a string, and then say
hello and display the string you typed.

But computers are dumb. The program doesn't care if you type in your name, someone
else's name, or just something dumb. You can type in anything you want and the computer
will treat it the same way:

25

3 - Strings

Hello world!
What is your name?
poop
It is good to meet you, poop

Variable Names

The computer doesn't care what you name your variables, but you should. Giving
variables names that reflect what type of data they contain makes it easier to understand
what a program does. Instead of name, we could have called this variable
abrahamLincoln or nAmE. The computer will run the program the same (as long as you
consistently use abrahamLincoln or nAmE).

Variable names (as well as everything else in Python) are case-sensitive. Case-
sensitive means the same variable name in a different case is considered to be an entirely
separate variable name. So spam, SPAM, Spam, and sPAM are considered to be four
different variables in Python. They each can contain their own separate values.

It's a bad idea to have differently-cased variables in your program. If you stored your
first name in the variable name and your last name in the variable NAME, it would be very
confusing when you read your code weeks after you first wrote it. Did name mean first and
NAME mean last, or the other way around?

If you accidentally switch the name and NAME variables, then your program will still
run (that is, it won't have any syntax errors) but it will run incorrectly. This type of flaw in
your code is called a bug. It is very common to accidentally make bugs in your programs
while you write them. This is why it is important that the variable names you choose make
sense.

It also helps to capitalize variable names if they include more than one word. If you store
a string of what you had for breakfast in a variable, the variable name
whatIHadForBreakfastThisMorning is much easier to read than
whatihadforbreakfastthismorning. This is a convention (that is, an optional
but standard way of doing things) in Python programming. (Although even better would be
something simple, like todaysBreakfast. Capitalizing the first letter of each word in
variable names makes the program more readable.

Summary

Now that we have learned how to deal with text, we can start making programs that the
user can run and interact with. This is important because text is the main way the user and
the computer will communicate with each other. The player will enter text to the program
through the keyboard with the input() function. And the computer will display text on

26

the screen when the print() function is executed.

Strings are just a different data type that we can use in our programs. We can use the +
operator to concatenate strings together. Using the + operator to concatenate two strings
together to form a new string is just like using the + operator to add two integers to form a
new integer (the sum).

In the next chapter, we will learn more about variables so that our program will
remember the text and numbers that the player enters into the program. Once we have
learned how to use text, numbers, and variables, we will be ready to start creating games.

27

3 - Strings

Topics Covered In This Chapter:

� import sta tements
� Modules
� Arguments
� while statements
� Conditions
� Blocks
� Booleans
� Comparison operators
� The difference between = and ==.
� if statements
� The break keyword.
� The str() and int() functions.
� The random.randint() function.

The "Guess the Number" Game

We are going to make a "Guess the Number" game. In this game, the computer will think
of a random number from 1 to 20, and ask you to guess the number. You only get six
guesses, but the computer will tell you if your guess is too high or too low. If you guess the
number within six tries, you win.

This is a good game for you to start with because it uses random numbers, loops, and
input from the user in a fairly short program. As you write this game, you will learn how to
convert values to different data types (and why you would need to do this).
28

Because this program is a game, we'll call the user the player , but the word "user"
would be correct too.

Sample Run of "Guess the Number"

Here is what our game will look like to the player when the program is run. The text that
the player types in is in bold.

Hello! What is your name?
Albert
Well, Albert, I am thinking of a number between 1
and 20.
Take a guess.
10
Your guess is too high.
Take a guess.
2
Your guess is too low.
Take a guess.
4
Good job, Albert! You guessed my number in 3
guesses!

Enter this code exactly as it appears here, and then save it by clicking on the File menu
and then Save As. Give it a file name like guess.py then run it by pressing the F5 key. Don't
worry if you don't understand the code now, I'll explain it step by step.

Guess the Number's Source Code

Here is the source code for our Guess the Number game. When you enter this code into
the file editor, be sure to pay attention to the spacing at the front of some of the lines. Some
lines have four or eight spaces in front of them. After you have typed in the code, save the
file as guess.py. You can run the program from the file editor by pressing F5. If you see an
error message, check that you have typed the program in exactly as written.

If you don't want to type all this code, you can download it from this book's website at
the URL http://inventwithpython.com/chapter4.

Important Note! Be sure to run this program with Python 3, and not Python 2. The
programs in this book use Python 3, and you'll get errors if you try to run them with Python
2. You can click on Help and then About IDLE to find out what version of Python you
have.

29

4 - Guess the Number

guess.py
This code can be downloaded from http://inventwithpython.com/guess.py
If you get errors after typing this code in, compare it to the book's code with the online
diff tool at http://inventwithpython.com/diff or email the author at
al@inventwithpython.com

1. # This is a guess the number game.
2. import random
3.
4. guessesTaken = 0
5.
6. print('Hello! What is your name?')
7. myName = input()
8.
9. number = random.randint(1, 20)

10. print('Well, ' + myName + ', I am thinking of a number
between 1 and 20.')

11.
12. while guessesTaken < 6:
13. print('Take a guess.') # There are four spaces in

front of print.
14. guess = input()
15. guess = int(guess)
16.
17. guessesTaken = guessesTaken + 1
18.
19. if guess < number:
20. print('Your guess is too low.') # There are eight

spaces in front of print.
21.
22. if guess > number:
23. print('Your guess is too high.')
24.
25. if guess == number:
26. break
27.
28. if guess == number:
29. guessesTaken = str(guessesTaken)
30. print('Good job, ' + myName + '! You guessed my

number in ' + guessesTaken + ' guesses!')
31.
32. if guess != number:
33. number = str(number)
34. print('Nope. The number I was thinking of was ' +

number)

Even though we are entering our source code into a new file editor window, we can
return to the shell to enter individual instructions in order to see what they do. The
interactive shell is very good for experimenting with different instructions when we are not
running a program. You can return to the interactive shell by clicking on its window or on
its taskbar button. In Windows or Mac OS X, the taskbar or dock is on the bottom of the
screen. On Linux the taskbar may be located along the top of the screen.
30

If the program doesn't seem to work after you've typed it, check to see if you have typed
the code exactly as it appears in this book. You can also copy and paste your code to the
online "diff" tool at http://inventwithpython.com/diff. The diff tool will show you how your
code is different from the source code in this book. In the file editor, press Ctrl-A to "Select
All" the text you've typed, then press Ctrl-C to copy the text to the clipboard. Then, paste
this text by clicking in the diff tool's text field on the website and click the "Compare"
button. The website will show you any differences between your code and the code in this
book.

There is a diff tool for each program in this book on the http://inventwithpython.com
website. A video tutorial of how to use the diff tool is available from this book's website at
http://inventwithpython.com/videos/.

The import Statement

Let's look at each line of code in turn to see how this program works.

1. # This is a guess the number game.

This line is a comment. Comments were introduced in our Hello World program in
Chapter 3. Remember that Python will ignore everything after the # sign. This just reminds
us what this program does.

2. import random

This is an import statement . Statements are not functions (notice that neither import
nor random has parentheses after its name). Remember, statements are instructions that
perform some action but do not evaluate to a value. You have already seen statements:
assignment statements store a value into a variable (but the statement does not evaluate to
anything).

While Python includes many built-in functions, some functions exist in separate
programs called modules. Modules are Python programs that contain additional functions.
We use the functions of these modules by bringing them into our programs with the
import statement. In this case, we're importing the module random.

The import statement is made up of the import keyword followed by the module
name. Together, the keyword and module name make up the statement. Line 2 then is an
import statement that imports the module named random which contains several
functions related to random numbers. (We'll use one of these functions later to have the
computer come up with a random number for us to guess.)

4. guessesTaken = 0

31

4 - Guess the Number

This line creates a new variable named guessesTaken . We'll store the number of
guesses the player makes in this variable. Since the player hasn't made any guesses so far,
we store the integer 0 here.

6. print('Hello! What is your name?')
7. myName = input()

Lines 6 and 7 are the same as the lines in the Hello World program that we saw in
Chapter 3. Programmers often reuse code from their other programs when they need the
program to do something that they've already coded before.

Line 6 is a function call to the print() function. Remember that a function is like a
mini-program that our program runs, and when our program calls a function it runs this
mini-program. The code inside the print() function displays the string you passed it
inside the parentheses on the screen.

When these two lines finish executing, the string that is the player's name will be stored
in the myName variable. (Remember, the string might not really be the player's name. It's
just whatever string the player typed in. Computers are dumb and just follow their
programs no matter what.)

The random.randint() Function

9. number = random.randint(1, 20)

In Line 9 we call a new function named randint(), and then store the return value in
a variable named number. Remember that function calls are expressions because they
evaluate to a value. We call this value the function call's return value.

Because the randint() function is provided by the random module, we precede it
with random. (don't forget the period!) to tell our program that the function randint()
is in the random module.

The randint() function will return a random integer between (and including) the two
integers we give it. Here, we give it the integers 1 and 20 between the parentheses that
follow the function name (separated by a comma). The random integer that randint()
returns is stored in a variable named number-this is the secret number the player is trying
to guess.

Just for a moment, go back to the interactive shell and enter import random to
import the random module. Then enter random.randint(1, 20) to see what the
function call evaluates to. It should return an integer between 1 and 20. Now enter the
same code again and the function call will probably return a different integer. This is

32

because each time the randint() function is called, it returns some random number,
just like when you roll dice you will get a random number each time.

>>> import random
>>> random.randint(1, 20)
12
>>> random.randint(1, 20)
18
>>> random.randint(1, 20)
3
>>> random.randint(1, 20)
18
>>> random.randint(1, 20)
7
>>>

Whenever we want to add randomness to our games, we can use the randint()
function. And we use randomness in most games. (Think of how many board games use
dice.)

You can also try out different ranges of numbers by changing the arguments. For
example, enter random.randint(1, 4) to only get integers between 1 and 4
(including both 1 and 4). Or try random.randint(1000, 2000) to get integers
between 1000 and 2000. Here is an example of calling the random.randint()
function and seeing what values it returns. The results you get when you call the
random.randint() function will probably be different (it is random, after all).

>>> random.randint(1, 4)
3
>>> random.randint(1, 4)
4
>>> random.randint(1000, 2000)
1294
>>> random.randint(1000, 2000)
1585
>>>

We can change the game's code slightly to make the game behave differently. Try
changing line 9 and 10 from this:

9. number = random.randint(1, 20)
10. print('Well, ' + name + ', I am thinking of a number

between 1 and 20.')

33

4 - Guess the Number

into these lines:

9. number = random.randint(1, 100)
10. print('Well, ' + name + ', I am thinking of a number

between 1 and 100.')

And now the computer will think of an integer between 1 and 100. Changing line 9 will
change the range of the random number, but remember to change line 10 so that the game
also tells the player the new range instead of the old one.

Calling Functions that are Inside Modules

By the way, be sure to enter random.randint(1, 20) and not j ust randint(1,
20), or the computer will not know to look in the random module for the randint()
function and you'll get an error like this:

>>> randint(1, 20)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
NameError: name 'randint' is not defined
>>>

Remember, your program needs to run import random before it can call the
random.randint() function. This is why import statements usually go at the
beginning of the program.

Passing Arguments to Functions

The integer values between the parentheses in the random.randint(1, 20)
function call are called arguments. Arguments are the values that are passed to a function
when the function is called. Arguments tell the function how to behave. Just like the
player's input changes how our program behaves, arguments are inputs for functions.

Some functions require that you pass them values when you call them. For example, look
at these function calls:

input()
print('Hello')
random.randint(1, 20)

The input() function has no arguments but the print() function call has one and
the randint() function call has two. When we have more than one argument, we separate

34

each with commas, as you can see in this example. Programmers say that the arguments
are delimited (that is, separated) by commas. This is how the computer knows where one
value ends and another begins.

If you pass too many or too few arguments in a function call, Python will display an
error message, as you can see below. In this example, we first called randint() with
only one argument (too few), and then we called randint() with three arguments (too
many).

>>> random.randint(1)
Traceback (most recent call last):
 File "<pyshell#1>", line 1, in <module>
random.randint(1)
TypeError: randint() takes exactly 3 positional
arguments (2 given)
>>> random.randint(1, 2, 3)
Traceback (most recent call last):
 File "<pyshell#2>", line 1, in <module>
random.randint(1, 2, 3)
TypeError: randint() takes exactly 3 positional
arguments (4 given)
>>>

Notice that the error message says we passed 2 and 4 arguments instead of 1 and 3. This
is because Python always passes an extra, invisible argument. This argument is beyond the
scope of this book, and you don't have to worry about it.

Welcoming the Player

Lines 10 and 12 greets the player and tells them about the game, and then starts letting
the player guess the secret number. Line 10 is fairly simple, but line 12 introduces a useful
concept called a loop.

10. print('Well, ' + myName + ', I am thinking of a number
bet ween 1 and 20.')

In Line 10 the print() function welcomes the player by name, and tells them that the
computer is thinking of a random number.

But wait - didn't I say that the print() function takes only one string? It may look like
there's more than one string there. But look at the line carefully. The plus signs concatenate
the three strings to evaluate down to one string, and that is the one string the print()
function prints. It might look like the commas are separating the strings, but if you look
closely you see that the commas are inside the quotes, and part of the strings themselves.

35

4 - Guess the Number

Loops

Line 12 has something called a while statement, which indicates the beginning of a
while loop. Loops are parts of code that are executed over and over again. But before we
can learn about while loops, we need to learn a few other concepts first. Those concepts
are blocks, booleans, comparison operators, conditions, and finally, the while statement.

Blocks

A block is one or more lines of code grouped together with the same minimum amount
of indentation. You can tell where a block begins and ends by looking at the line's
indentation (that is, the number of spaces in front of the line).

A block begins when a line is indented by four spaces. Any following line that is also
indented by four spaces is part of the block. A block within a block begins when a line is
indented with another four spaces (for a total of eight spaces in front of the line). The block
ends when there is a line of code with the same indentation before the block started.

Below is a diagram of the code with the blocks outlined and numbered. The spaces have
black squares filled in to make them easier to count.

Figure 4-1: Blocks and their indentation. The black dots represent spaces.

For example, look at the code above. The spaces have been replaced with dark squares to
make them easier to count. Line 12 has an indentation of zero spaces and is not inside any
block. Line 13 has an indentation of four spaces. Since this indentation is larger than the
previous line's indentation, we can tell that a new block has started. Lines 14, 15, 17 and 19
also have four spaces for indentation. Both of these lines have the same amount of
indentation as the previous line, so we know they are in the same block. (We do not count
blank lines when we look for indentation.)

36

Line 20 has an indentation of eight spaces. Eight spaces is more than four spaces, so we
know a new block has started. This is a block that is inside of another block.

Line 22 only has four spaces. The line before line 22 had a larger number of spaces.
Because the indentation has decreased, we know that block has ended. Line 22 is in the
same block as the other lines with four spaces.

Line 23 increases the indentation to eight spaces, so again a new block has started.

To recap, line 12 is not in any block. Lines 13 to 23 all in one block (marked with the
circled 1). Line 20 is in a block in a block (marked with a circled 2). And line 23 is the only
line in another block in a block (marked with a circled 3).

When you type code into IDLE, each letter is the same width. You can count the number
of letters above or below the line to see how many spaces you have put in front of that line
of code.

In this figure, the lines of code inside box 1 are all in the same block, and blocks 2 and 3
are inside block 1. Block 1 is indented with at least four spaces from the left margin, and
blocks 2 and 3 are indented eight spaces from the left margin. A block can contain just one
line. Notice that blocks 2 and 3 are only one line each.

The Boolean Data Type

The Boolean data type has only two values: True or False. These values are case-
sensitive and they are not string values; in other words, you do not put a ' quote character
around them. We will use Boolean values with comparison operators to form conditions.
(See below.)

Comparison Operators

In line 12 of our program, the line of code containing the while statement:

12. while guessesTaken < 6:

The expression that follows the while keyword (guessesTaken < 6) contains two
values (the value in the variable guessesTaken, and the integer value 6) connected by
an operator (the < sign, the "less than" sign). The < sign is called a comparison
operator .

The comparison operator is used to compare two values and evaluate to a True or
False Boolean value. A list of all the comparison operators is in Table 4-1.

37

4 - Guess the Number

Conditions

A condition is an expression that combines two values with a comparison operator
(such as < or >) and evaluates to a Boolean value. A condition is just another name for an
expression that evaluates to True or False. You'll find a list of other comparison
operators in Table 4-1.

Conditions always evaluate to a Boolean value-either True or False. For example, the
condition in our code, guessesTaken < 6 asks "is the value stored in
guessesTaken less than the number 6?" If so, then the condition evaluates to True. If
not, the condition evaluates to False.

In the case of our Guess the Number program, in line 4 we stored the value 0 in
guessesTaken. Because 0 is less than 6, this condition evaluates to the Boolean value
of True. Remember, a condition is just a name for an expression that uses comparison
operators such as < or !=.

Experiment with Booleans, Comparison Operators,
and Conditions

Enter the following expressions in the interactive shell to see their Boolean results:

>>> 0 < 6
True
>>> 6 < 0
False
>>> 50 < 10
False
>>> 10 < 11
True
>>> 10 < 10

Table 4-1: Comparison operators.

Operator Sign Operator Name

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

== Equal to

!= Not equal to

38

False

The condition 0 < 6 returns the Boolean value True because the number 0 is less than
the number 6. But because 6 is not less than 0, the condition 6 < 0 evaluates to False.
50 is not less than 10, so 50 < 10 is False. 10 is less than 11, so 10 < 11 is True.

But what about 10 < 10? Why does it evaluate to False? It is False because the
number 10 is not smaller than the number 10. They are exactly the same size. If a girl
named Alice was the same height as a boy named Bob, you wouldn't say that Alice is taller
than Bob or that Alice is shorter than Bob. Both of those statements would be false.

Try entering some conditions into the shell to see how these comparison operators work:

>>> 10 == 10
True
>>> 10 == 11
False
>>> 11 == 10
False
>>> 10 != 10
False
>>> 10 != 11
True
>>> 'Hello' == 'Hello'
True
>>> 'Hello' == 'Good bye'
False
>>> 'Hello' == 'HELLO'
False
>>> 'Good bye' != 'Hello'
True

Notice the difference between the assignment operator (=) and the "equal to" comparison
operator (==). The equal (=) sign is used to assign a value to a variable, and the equal to
(==) sign is used in expressions to see whether two values are equal. It's easy to
accidentally use one when you meant to use the other, so be careful of what you type in.

Two values that are different data types will always be not equal to each other. For
example, try entering the following into the interactive shell:

>>> 42 == 'Hello'
False
>>> 42 != 'Hello'

39

4 - Guess the Number

True

Looping with While Statements

The while statement marks the beginning of a loop. Sometimes in our programs, we
want the program to do something over and over again. When the execution reaches a
while statement, it evaluates the condition next to the while keyword. If the condition
evaluates to True, the execution moves inside the while-block. (In our program, the while-
block begins on line 13.) If the condition evaluates to False, the execution moves all the
way past the while-block. (In our program, the first line after the while-block is line 28.)

12. while guessesTaken < 6:

Figure 4-2: The while loop's condition.

Figure 4-2 shows how the execution flows depending on the condition. If the condition
evaluates to True (which it does the first time, because the value of guessesTaken is
0), execution will enter the while-block at line 13 and keep going down. Once the program
reaches the end of the while-block, instead of going down to the next line, it jumps back up
to the while statement's line (line 12). It then re-evaluates the condition, and if it is True

40

we enter the while-block again.

This is how the loop works. As long as the condition is True, the program keeps
executing the code inside the while-block repeatedly until we reach the end of the while-
block and the condition is False. And, until guessesTaken is equal to or greater than
6, we will keep looping.

Think of the while statement as saying, "while this condition is true, keep looping
through the code in this block".

You can make this game harder or easier by changing the number of guesses the player
gets. All you have to do is change this line:

12. while guessesTaken < 6:

into this line:

12. while guessesTaken < 4:

...and now the player only gets four guesses instead of six guesses. By setting the
condition to guessesTaken < 4 , we ensure that the code inside the loop only runs four
times instead of six. This makes the game much more difficult. To make the game easier,
set the condition to guessesTaken < 8 or guessesTaken < 10 , which will cause
the loop to run a few more times than before and accept more guesses from the player.

Of course, if we removed line 17 altogether then the guessesTaken would never
increase and the condition would always be True. This would give the player an unlimited
number of guesses.

The Player Guesses

Lines 13 to 17 ask the player to guess what the secret number is and lets them enter their
guess. We store this guess in a variable, and then convert that string value into an integer
value.

13. print('Take a guess.') # There are four spaces in
fro nt of print.

14. guess = input()

The program now asks us for a guess. We type in our guess and that number is stored in
a variable named guess.

41

4 - Guess the Number

Converting Strings to Integers with the int() Function

15. guess = int(guess)

In line 15, we call a new function called int(). The int() function takes one
argument. The input() function returned a string of text that player typed. But in our
program, we will want an integer, not a string. If the player enters 5 as their guess, the
input() function will return the string value '5' and not the integer value 5. Remember
that Python considers the string '5' and the integer 5 to be different values. So the int()
function will take the string value we give it and return the integer value form of it.

Let's experiment with the int() function in the interactive shell. Try typing the
following:

>>> int('42')
42
>>> int(42)
42
>>> int('hello')

Traceback (most recent call last):
 File "<pyshell#4>", line 1, in <module>
int('forty-two')
ValueError: invalid literal for int() with base
10: 'hello'
>>> int('forty-two')

Traceback (most recent call last):
 File "<pyshell#5>", line 1, in <module>
int('forty-two')
ValueError: invalid literal for int() with base
10: 'forty-two'
>>> int(' 42 ')
42
>>> 3 + int('2')
5

We can see that the int('42') call will return the integer value 42, and that int
(42) will do the same (though it is kind of pointless to convert an integer to an integer).
However, even though you can pass a string to the int() function, you cannot just pass
any string. For example, passing 'hello' to int() (like we do in the int('hello')
call) will result in an error. The string we pass to int() must be made up of numbers.

The integer we pass to int() must also be numerical, rather than text, which is why
42

int('forty-two') also produces an error. That said, the int() function is slightly
forgiving- if our string has spaces on either side, it will still run without error. This is why
the int(' 42 ') call works.

The 3 + int('2') line shows an expression that adds an integer 3 to the return value
of int('2') (which evaluates to 2 as well). The expression evaluates to 3 + 2, which
then evaluates to 5. So even though we cannot add an integer and a string (3 + '2'
would show us an error), we can add an integer to a string that has been converted to an
integer.

Remember, back in our program on line 15 the guess variable originally held the string
value of what the player typed. We will overwrite the string value stored in guess with the
integer value returned by the int() function. This is because we will later compare the
player's guess with the random number the computer came up with. We can only compare
two integer values to see if one is greater (that is, higher) or less (that is, lower) than the
other. We cannot compare a string value with an integer value to see if one is greater or less
than the other, even if that string value is numeric such as '5'.

In our Guess the Number game, if the player types in something that is not a number,
then the function call int() will result in an error and the program will crash. In the other
games in this book, we will add some more code to check for error conditions like this and
give the player another chance to enter a correct response.

Notice that calling int(guess) does not change the value in the guess variable. The
code int(guess) is an expression that evaluates to the integer value form of the string
stored in the guess variable. We must assign this return value to guess in order to change
the value in guess to an integer with this full line: guess = int(guess)

Incrementing Variables

17. guessesTaken = guessesTaken + 1

Once the player has taken a guess, we want to increase the number of guesses that we
remember the player taking.

The first time that we enter the loop block, guessesTaken has the value of 0. Python
will take this value and add 1 to it. 0 + 1 is 1. Then Python will store the new value of 1
to guessesTaken .

Think of line 17 as meaning, "the guessesTaken variable should be one more than
what it already is".

When we add 1 to an integer value, programmers say they are incrementing the value
(because it is increasing by one). When we subtract one from a value, we are
decrementing the value (because it is decreasing by one). The next time the loop block

43

4 - Guess the Number

loops around, guessesTaken will have the value of 1 and will be incremented to the
value 2.

Is the Player's Guess Too Low?

Lines 19 and 20 check if the number that the player guessed is less than the secret
random number that the computer came up with. If so, then we want to tell the player that
their guess was too low by printing this message to the screen.

if Statements

19. if guess < number:
20. print('Your guess is too low.') # There are

eight spaces in front of print.

Line 19 begins an if statement with the keyword, if. Next to the if keyword is the
condition. Line 20 starts a new block (you can tell because the indentation has increased
from line 19 to line 20.) The block that follows the if keyword is called an if-block. An
if statement is used if you only want a bit of code to execute if some condition is true.
Line 19 has an if statement with the condition guess < number. If the condition
evaluates to True, then the code in the if-block is executed. If the condition is False,
then the code in the if-block is skipped.

Figure 4-3: if and while statements.

Like the while statement, the if
statement also has a keyword, followed
by a condition, and then a block of code.
See Figure 4-3 for a comparison of the
two statements.

The if statement works almost the
same way as a while statement, too. But
unlike the while-block, execution does
not jump back to the if statement at the
end of the if-block. It just continues on
down to the next line. In other words, if
blocks won't loop.

If the condition is True , then all the
lines inside the if-block are executed. The
only line inside this if-block on line 19 is
a print() function call.

44

If the integer the player enters is less than the random integer the computer thought up,

the program displays Your guess is too low . If the integer the player enters is
equal to or larger than the random integer (in which case, the condition next to the if
keyword would have been False), then this block would have been skipped over.

Is the Player's Guess Too High?

Lines 22 to 26 in our program check if the player's guess is either too big or exactly
equal to the secret number.

22. if guess > number:
23. print('Your guess is too high.')

If the player's guess is larger than the random integer, we enter the if-block that follows
the if statement. The print() line tells the player that their guess is too big.

Leaving Loops Early with the break Statement

25. if guess == number:
26. break

This if statement's condition checks to see if the guess is equal to the random integer. If
it is, we enter line 26, the if-block that follows it.

The line inside the if-block is a break statement that tells the program to immediately
jump out of the while-block to the first line after the end of the while-block. (The break
statement does not bother re-checking the while loop's condition, it just breaks out
immediately.)

The break statement is just the break keyword by itself, with no condition or colon
(the : sign).

If the player's guess is not equal to the random integer, we do not break out of the while-
block, we will reach the bottom of the while-block anyway. Once we reach the bottom of
the while-block, the program will loop back to the top and recheck the condition
(guessesTaken < 6). Remember after the guessesTaken = guessesTaken +
1 line of code executed, the new value of guessesTaken is 1. Because 1 is less than 6,
we enter the loop again.

If the player keeps guessing too low or too high, the value of guessesTaken will
change to 2, then 3, then 4, then 5, then 6. If the player guessed the number correctly, the
condition in the if guess == number statement would be True, and we would have

45

4 - Guess the Number

executed the break statement. Otherwise, we keep looping. But when
guessesTaken has the number 6 stored, the while s tatement's condition is False,
since 6 is not less than 6. Because the while statement's condition is False, we will not
enter the loop and instead jump to the end of the while-block.

The remaining lines of code run when the player has finished guessing (either because
the player guessed the correct number, or because the player ran out of guesses). The
reason the player exited the previous loop will determine if they win or lose the game, and
the program will display the appropriate message on the screen for either case.

Check if the Player Won

28. if guess == number:

Unlike the code in line 25, this line has no indentation, which means the while-block has
ended and this is the first line outside the while-block. When we left the while block, we
did so either because the while statement's condition was False (when the player runs
out of guesses) or if we executed the break statement (when the player guesses the
number correctly). With line 28, check again to see if the player guessed correctly. If so, we
enter the if-block that follows.

29. guessesTaken = str(guessesTaken)
30. print('Good job, ' + myName + '! You guessed my

number in ' + guessesTaken + ' guesses!')

Lines 29 and 30 are inside the if-block. They only execute if the condition in the if
statement on line 28 was True (that is, if the player correctly guessed the computer's
number).

In line 29 (which is similar to the guess = int(guess) code on line 15), we call
the new function str(), which returns the string form of an argument. We use this
function because we want to change the integer value in guessesTaken into its string
version because we can only use strings in calls to print().

Line 29 tells the player that they have won, and how many guesses it took them. Notice
in this line that we change the guessesTaken value into a string because we can only
add strings to other strings. If we were to try to add a string to an integer, the Python
interpreter would display an error.

Check if the Player Lost

32. if guess != number:

46

In Line 32, we use the comparison operator != with the if statement's condition to
mean "is not equal to." If the value of the player's guess is lower or higher than (and
therefore, not equal to) the number chosen by the computer, then this condition evaluates to
True, and we enter the block that follows this if statement on line 33.

Lines 33 and 34 are inside the if-block, and only execute if the condition is True.

33. number = str(number)
34. print('Nope. The number I was thinking of was ' +

number)

In this block, we tell the player what the number is because they failed to guess correctly.
But first we have to store the string version of number as the new value of number.

This line is also inside the if-block, and only executes if the condition was True. At this
point, we have reached the end of the code, and the program terminates.

Congratulations! We've just programmed our first real game!

Summary: What Exactly is Programming?

If someone asked you, "What exactly is programming anyway?" what could you say to
them? Programming is just the action of writing code for programs, that is, creating
programs that can be executed by a computer.

"But what exactly is a program?" When you see someone using a computer program (for
example, playing our Guess The Number game), all you see is some text appearing on the
screen. The program decides what exact text to show on the screen (which is called the
output), based on its instructions (that is, the program) and on the text that the player
typed on the keyboard (which is called the input). The program has very specific
instructions on what text to show the user. A program is just a collection of instructions.

"What kind of instructions?" There are only a few different kinds of instructions, really.

Expressions, which are made up of values connected by operators. Expressions are all
evaluated down to a single value, like 2 + 2 evaluates to 4 or 'Hello' + ' ' +
'World' evaluates to 'Hello World'. Function calls are also part of expressions
because they evaluate to a single value themselves, and this value can be connected by
operators to other values. When expressions are next to the if and while keywords, we
also call them conditions.

Assignment statements, which simply store values in variables so we can remember the
values later in our program.

if, while and break are flow control statements because they decide which

47

4 - Guess the Number

instructions are executed. The normal flow of execution for a program is to start at the
top and execute each instruction going down one by one. But these flow control statements
can cause the flow to skip instructions, loop over instructions, or break out of loops.
Function calls also change the flow of execution by jumping to the start of a function.

The print() function, which displays text on the screen. Also, the input() function
can get text from the user through the keyboard. This is called I/O (pronounced like the
letters, "eye-oh"), because it deals with the input and output of the program.

And that's it, just those four things. Of course, there are many details about those four
types of instructions. In this book you will learn about new data types and operators, new
flow control statements besides if, while and break, and several new functions. There
are also different types of I/O (input from the mouse, and outputting sound and graphics
and pictures instead of just text.)

For the person using your programs, they really only care about that last type, I/O. The
user types on the keyboard and then sees things on the screen or hears things from the
speakers. But for the computer to figure out what sights to show and what sounds to play, it
needs a program, and programs are just a bunch of instructions that you, the programmer,
have written.

A Web Page for Program Tracing

If you have access to the Internet and a web browser, you can go to this book's website at
http://inventwithpython.com/traces you will find a page that traces through each of the
programs in this book. By following along with the trace line by line, it might become more
clear what the Guess the Number program does. This website just shows a simulation of
what happens when the program is run. No actual code is really being executed.

48

Figure 4-4: The tracing web page.

The left side of the web page shows the source code, and the highlighted line is the line
of code that is about to be executed. You execute this line and move to the next line by
clicking the "Next" button. You can also go back a step by clicking the "Previous" button,
or jump directly to a step by typing it in the white box and clicking the "Jump" button.

On the right side of the web page, there are three sections. The "Current variable values"
section shows you each variable that has been assigned a value, along with the value itself.
The "Notes" section will give you a hint about what is happening on the highlighted line.
The "Program output" section shows the output from the program, and the input that is sent
to the program. (This web page automatically enters text to the program when the program
asks.)

So go to each of these web pages and click the "Next" and "Previous" buttons to trace
through the program like we did above.

A video tutorial of how to use the online tracing tool is available from this book's
website at http://inventwithpython.com/videos/.

49

4 - Guess the Number

Topics Covered In This Chapter:

� Using print()'s end keyword argument to skip newlines.
� Escape characters.
� Using single quotes and double quotes for strings.

Make the Most of print()

Most of the games in this book will have simple text for input and output. The input is
typed by the user on the keyboard and entered to the computer. The output is the text
displayed on the screen. In Python, the print() function can be used for displaying
textual output on the screen. We've learned how the basics of using the print() function,
but there is more to learn about how strings and print() work in Python.

Sample Run of Jokes

What do you get when you cross a snowman with a vampire ?

Frostbite!

What do dentists call an astronaut's cavity?

A black hole!

Knock knock.

50

Who's there?

Int errupting cow.

Interrupting cow wh-MOO!

Joke's Source Code

Here is the source code for our short jokes program. Type it into the file editor and save
it as jokes.py. If you do not want to type this code in, you can also download the source
code from this book's website at the URL http://inventwithpython.com/chapter5.

Important Note! Be sure to run this program with Python 3, and not Python 2. The
programs in this book use Python 3, and you'll get errors if you try to run them with Python
2. You can click on Help and then About IDLE to find out what version of Python you
have.

jokes.py
This code can be downloaded from http://inventwithpython.com/jokes.py
If you get errors after typing this code in, compare it to the book's code with the online
diff tool at http://inventwithpython.com/diff or email the author at
al@inventwithpython.com

1. print('What do you get when you cross a snowman with a
vampire?')

2. input()
3. print('Frostbite!')
4. print()
5. print('What do dentists call a astronaut\'s cavity?')
6. input()
7. print('A black hole!')
8. print()
9. print('Knock knock.')

10. input()
11. print("Who's there?")
12. input()
13. print('Interrupting cow.')
14. input()
15. print('Interrupting cow wh', end='')
16. print('-MOO!')

Don't worry if you don't understand everything in the program. Just save and run the
program. Remember, if your program has bugs in it, you can use the online diff tool at
http://inventwithpython.com/chapter5.

How the Code Works

Let's look at the code more carefully.
51

5 - Jokes

1. print('What do you get when you cross a snowman with a
va mpire?')

2. input()
3. print('Frostbite!')
4. print()

Here we have three print() function calls. Because we don't want to tell the player
what the joke's punch line is, we have a call to the input() function after the first print
(). The player can read the first line, press Enter, and then read the punch line.

The user can still type in a string and hit Enter, but because we aren't storing this string
in any variable, the program will just forget about it and move to the next line of code.

The last print() function call has no string argument. This tells the program to just
print a blank line. Blank lines can be useful to keep our text from being bunched up
together.

Escape Characters

5. print('What do dentists call a astronaut\'s cavity?')
6. i nput()
7. print('A black hole!')
8. print()

In the first print()above, you'll notice that we have a slash right before the single
quote (that is, the apostrophe). This backslash (\ is a backslash, / is a forward slash) tells us
that the letter right after it is an escape character. An escape character helps us print out
letters that are hard to enter into the source code. There are several different escape
characters, but in our call to print() the escape character is the single quote.

We have to have the single quote escape character because otherwise the Python
interpreter would think that this quote meant the end of the string. But we want this quote
to be a part of the string. When we print this string, the backslash will not show up.

Some Other Escape Characters

What if you really want to display a backslash? This line of code would not work:

>>> print('He flew away in a green\teal
helicopter.')

That print() function call would show up as:

52

He flew away in a green eal helicopter.

This is because the "t" in "teal" was seen as an escape character since it came after a
backslash. The escape character t simulates pushing the Tab key on your keyboard. Escape
characters are there so that strings can have characters that cannot be typed in.

Instead, try this line:

>>> print('He flew away in a green\\teal
helicopter.')

Here is a list of escape characters in Python:

Quotes and Double Quotes

Strings don't always have to be in between single quotes in Python. You can also put
them in between double quotes. These two lines print the same thing:

>>> print('Hello world')
Hello world
>>> print("Hello world")
Hello world

But you cannot mix quotes. This line will give you an error if you try to use them:

>>> print('Hello world")
SyntaxError: EOL while scanning single-quoted
string
>>>

Table 5-1: Escape Characters

Escape Character What Is Actually Printed
\\ Backslash (\)
\' Single quote (')
\" Double quote (")
\n Newline
\t Tab

53

5 - Jokes

I like to use single quotes because I don't have to hold down the shift key on the
keyboard to type them. It's easier to type, and the computer doesn't care either way.

But remember, just like you have to use the escape character \' to have a single quote in a
string surrounded by single quotes, you need the escape character \" to have a double quote
in a string surrounded by double quotes. For example, look at these two lines:

>>> print('I asked to borrow Abe\'s car for a
week. He said, "Sure."')
I asked to borrow Abe's car for a week. He said,
"Sure."
>>> print("He said, \"I can't believe you let him
borrow your car.\"")
He said, "I can't believe you let him borrow your
car."

Did you notice that in the single quote strings you do not need to escape double quotes,
and in the double quote strings you do not need to escape single quotes? The Python
interpreter is smart enough to know that if a string starts with one type of quote, the other
type of quote doesn't mean the string is ending.

The end Keyword Argument

9. print('Knock knock.')
10. input()
11. print("Who's there?")
12. input()
13. print('Interrupting cow.')
14. input()
15. print('Interrupting cow wh', end='')
16. print('-MOO!')

Did you notice the second parameter on line 15's print()? Normally, print() adds
a newline character to the end of the string it prints. (This is why a blank print()
function will just print a newline.) But the print() function can optionally have a second
parameter (which has the name end.) The blank string we are passing is called a keyword
argument . The end parameter has a specific name, and to pass an argument to this
specific parameter we need to use the end= syntax.

Notice that when you type the keyword and the keyword argument, you use only one =
sign. It is end='', and not end==''.

By passing a blank string for the end we tell the print() function to not add a newline
at the end of the string, but instead add a blank string. This is why '-MOO!' appears next

54

to the previous line, instead of on its own line. There was no newline printed after the
'Interrupting cow wh' string.

Summ ary

This chapter briefly covered how software (including our Python programs) runs on your
computer. Python is a higher-level programming language that the Python interpreter (that
is, the Python software you have downloaded and installed) converts into machine
language. Machine language are the 1s and 0s that make up instructions that your computer
can understand and process.

The rest of this chapter explores the different ways you can use the print() function.
Escape characters are used for characters that are difficult or impossible to type into the
code with the keyboard. Escape characters are typed into strings beginning with a backslash
\ followed by a single letter for the escape character. For example, \n would print out a
newline. To display a backslash, you would use the escape character \\.

The print() function automatically appends a newline character to the end of the
string we pass it to be displayed on the screen. Most of the time, this is a helpful shortcut.
But sometimes we don't want a newline character at the end. To change this, we pass the
end keyword argument with a blank string. For example, to print "spam" to the screen
without a newline character, you would call print('spam', end='') .

By adding this level of control to the text we display on the screen, we have much more
flexible ways to display text on the screen the exact way we want to.

55

5 - Jokes

Topics Covered In This Chapter:

� The time module.
� The time.sleep() function.
� The return keyword.
� Creating our own functions with the def keyword.
� The and and or and not boolean operators.
� Truth tables
� Variable scope (Global and Local)
� Parameters and Arguments
� Flow charts

Introducing Functions

We've already used two functions in our previous programs: input() and print().
In our previous programs, we have called these functions to execute the code that is inside
these functions. In this chapter, we will write our own functions for our programs to call. A
function is like a mini-program that is inside of our program. Many times in a program we
want to run the exact same code multiple times. Instead of typing out this code several
times, we can put that code inside a function and call the function several times. This has
the added benefit that if we make a mistake, we only have one place in the code to change
it.

The game we will create to introduce functions is called "Dragon Realm", and lets the
player make a guess between two caves which randomly hold treasure or certain doom.

56

How to Play "Dragon Realm"

In this game, the player is in a land full of dragons. The dragons all live in caves with
their large piles of collected treasure. Some dragons are friendly, and will share their
treasure with you. Other dragons are greedy and hungry, and will eat anyone who enters
their cave. The player is in front of two caves, one with a friendly dragon and the other with
a hungry dragon. The player is given a choice between the two.

Open a new file editor window by clicking on the File menu, then click on New
Window. In the blank window that appears type in the source code and save the source
code as dragon.py. Then run the program by pressing F5.

Sample Run of Dragon Realm

You are in a land full of dragons. In front of you,
you see two caves. In one cave, the dragon is friendly
and will share his treasure with you. The other dragon
is greedy and hungry, and will eat you on sight.

Which cave will you go into? (1 or 2)
1
You a pproach the cave...
It is dark and spooky...
A large dragon jumps out in front of you! He opens his jaws
and...

Gobbles you down in one bite!
Do you want to play again? (yes or no)
no

Dragon Realm's Source Code

Here is the source code for the Dragon Realm game. Typing in the source code is a great
way to get used to the code. But if you don't want to do all this typing, you can download
the source code from this book's website at the URL http://inventwithpython.com/chapter6.
There are instructions on the website that will tell you how to download and open the
source code file. You can use the online diff tool on the website to check for any mistakes
in your code.

One thing to know as you read through the code below: The blocks that follow the def
lines define a function, but the code in that block does not run until the function is called.
The code does not execute each line in this program in top down order. This will be
explained in more detail later in this chapter.

57

6 - Dragon Realm

Important Note! Be sure to run this program with Python 3, and not Python 2. The
programs in this book use Python 3, and you'll get errors if you try to run them with Python
2. You can click on Help and then About IDLE to find out what version of Python you
have.

dragon.py
This code can be downloaded from http://inventwithpython.com/dragon.py
If you get errors after typing this code in, compare it to the book's code with the online
diff tool at http://inventwithpython.com/diff or email the author at
al@inventwithpython.com

1. import random
2. import time
3.
4. def displayIntro():
5. print('You are on a planet full of dragons. In front

of you,')
6. print('you see two caves. In one cave, the dragon is

friendly')
7. print('and will share his treasure with you. The

other dragon')
8. print('is greedy and hungry, and will eat you on

sight.')
9. print()

10.
11. def chooseCave():
12. cave = ''
13. while cave != '1' and cave != '2':
14. print('Which cave will you go into? (1 or 2)')
15. cave = input()
16.
17. return cave
18.
19. def checkCave(chosenCave):
20. print('You approach the cave...')
21. time.sleep(2)
22. print('It is dark and spooky...')
23. time.sleep(2)
24. print('A large dragon jumps out in front of you! He

opens his jaws and...')
25. print()
26. time.sleep(2)
27.
28. friendlyCave = random.randint(1, 2)
29.
30. if chosenCave == str(friendlyCave):
31. print('Gives you his treasure!')
32. else:
33. print('Gobbles you down in one bite!')
34.
35. playAgain = 'yes'
36. while playAgain == 'yes' or playAgain == 'y':
37.
38. displayIntro()

58

39.
40. caveNumber = chooseCave()
41.
42. checkCave(caveNumber)
43.
44. print('Do you want to play again? (yes or no)')
45. playAgain = input()

How the Code Works

Let's look at the source code in more detail.

1. import random
2. import time

Here we have two import statements. We import the random module like we did in the
Guess the Number game. In Dragon Realm, we will also want some time-related functions
that the time module includes, so we will import that as well.

Defining the displayIntro() Function

4. def displayIntro():
5. print('You are on a planet full of dragons. In front

of you,')
6. print('you see two caves. In one cave, the dragon is

friendly')
7. print('and will share his treasure with you. The other

dragon')
8. print('is greedy and hungry, and will eat you on

sight.')
9. print()

Figure 6-1 shows a new type of
statement, the def statement . The
def statement is made up of the def
keyword, followed by a function name
with parentheses, and then a colon
(the : sign). There is a block after the
statement called the def-block.

Figure 6-1: Parts of a def statement.

59

6 - Dragon Realm

def Statements

The def statement isn't a call to a function named displayIntro(). I nstead, the def
statement means we are creating, or defining, a new function that we can call later in our
program. After we define this function, we can call it the same way we call other functions.
When we call this function, the code inside the def-block will be executed.

We also say we define variables when we create them with an assignment statement. The
code spam = 42 defines the variable spam.

Remember, the def statement doesn't execute the code right now, it only defines what
code is executed when we call the displayIntro() function later in the program.
When the program's execution reaches a def statement, it skips down to the end of the def-
block. We will jump back to the top of the def-block when the displayIntro()
function is called. It will then execute all the print() statements inside the def-block. So
we call this function when we want to display the "You are on a planet full of dragons..."
introduction to the user.

When we call the displayIntro() function, the program's execution jumps to the
start of the function on line 5. When the function's block ends, the program's execution
returns to the line that called the function.

We will explain all of the functions that this program will use before we explain the main
part of the program. It may be a bit confusing to learn the program out of the order that it
executes. But just keep in mind that when we define the functions they just silently sit
around waiting to be called into action.

Defining the chooseCave() Function

11. def chooseCave():

Here we are defining another function called chooseCave. The code in this function
will prompt the user to select which cave they should go into.

12. cave = ''
13. while cave != '1' and cave != '2':

Inside the chooseCave() function, we create a new variable called cave and store a
blank string in it. Then we will start a while loop. This while statement's condition
contains a new operator we haven't seen before called and. Just like the - or * are
mathematical operators, and == or != are comparison operators, the and operator is a
boolean operator.

60

Boolean Operators

Boolean logic deals with things that are either true or false. This is why the boolean data
type only has two values, True and False. Boolean statements are always either true or
false. If the statement is not true, then it is false. And if the statement is not false, then it is
true.

Boolean operators compare two different boolean values and evaluate to a single boolean
value. Do you remember how the * operator will combine two integer values and produce a
new integer value (the product of the two original integers)? And do you also remember
how the + operator can combine two strings and produce a new string value (the
concatenation of the two original strings)? The and boolean operator combines two
boolean values to produce a new boolean value. Here's how the and operator works.

Think of the sentence, "Cats have whiskers and dogs have tails." This sentence is true,
because "cats have whiskers" is true and "dogs have tails" is also true.

But the sentence, "Cats have whiskers and dogs have wings." would be false. Even
though "cats have whiskers" is true, dogs do not have wings, so "dogs have wings" is false.
The entire sentence is only true if both parts are true because the two parts are connected by
the word "and." If one or both parts are false, then the entire sentence is false.

The and operator in Python works this way too. If the boolean values on both sides of
the and keyword are True, then the expression with the and operator evaluates to True.
If either of the boolean values are False, or both of the boolean values are False, then
the expression evaluates to False.

Evaluating an Expression That Contains Boolean Operator s

So let's look at line 13 again:

13. while cave != '1' and cave != '2':

This condition is made up of two expressions connected by the and boolean operator.
We first evaluate these expressions to get their boolean (that is, True or False) values.
Then we evaluate the boolean values with the and operator.

The string value stored in cave when we first execute this while statement is the blank
string, ''. The blank string does not equal the string '1', so the left side evaluates to
True. The blank string also does not equal the string '2', so the right side evaluates to
True. So the condition then turns into True and True. Because both boolean values
are True, the condition finally evaluates to True. And because the while statement's
condition is True, the program execution enters the while-block.

61

6 - Dragon Realm

This is all done by the Python interpreter, but it is important to understand how the
interpreter does this. This picture shows the steps of how the interpreter evaluates the
condition (if the value of cave is the blank string):

while cave != '1' and cave != '2':

while '' != '1' and cave != '2':

while True and cave != '2':

while True and '' != '2':

while True and True:

while True:

Experimenting with the and and or Operators

Try typing the following into the interactive shell:

>>> True and True
True
>>> True and False
False
>>> False and True
False
>>> False and False
False

There are two other boolean operators. The next one is the or operator. The or operator
works similar to the and, except it will evaluate to True if either of the two boolean values
are True. The only time the or operator evaluates to False is if both of the boolean
values are False.

The sentence "Cats have whiskers or dogs have wings." is true. Even though dogs don't
have wings, when we say "or" we mean that one of the two parts is true. The sentence "Cats
have whiskers or dogs have tails." is also true. (Most of the time when we say "this OR
that", we mean one thing is true but the other thing is false. In programming, "or" means
that either of the things are true, or maybe both of the things are true.)

62

Try typing the following into the interactive shell:

>>> True or True
True
>>> True or False
True
>>> False or True
True
>>> False or False
False

Experimenting with the not Operator

The third boolean operator is not. The not operator is different from every other
operator we've seen before, because it only works on one value, not two. There is only
value on the right side of the not keyword, and none on the left. The not operator will
evaluate to True as False and will evaluate False as True.

Try typing the following into the interactive shell:

>>> not True
False
>>> not False
True
>>> True not
SyntaxError: invalid syntax (<pyshell#0>, line 1)

Notice that if we put the boolean value on the left side of the not operator results in a
syntax error.

We can use both the and and not operators in a single expression. Try typing True
and not False into the shell:

>>> True and not False
True

Normally the expression True and False would evaluate to False. But the True
and not False expression evaluates to True. This is because not False evaluates to
True, which turns the expression into True and True, which evaluates to True.

63

6 - Dragon Realm

Truth Tables

If you ever forget how the boolean operators work, you can look at these charts, which
are called truth tables :

Getting the Player's Input

14. print('Which cave will you go into? (1 or 2)')
15. cave = input()

Here, the player is asked to enter which cave they chose to enter by typing in 1 or 2 and
hitting Enter. Whatever string the player typed will be stored in cave. After this code is
executed, we jump back to the top of the while statement and recheck the condition.
Remember that the line was:

13. while cave != '1' and cave != '2':

If this condition evaluates to True, we will enter the while-block again and ask the
player for a cave number to enter. But if the player typed in 1 or 2, then the cave value
will either be '1' or '2'. This causes the condition to evaluate to False, and the

Table 6-1: The and operator's truth table.

A and B is Entire statement
True and True is True
True and False is False
False and True is False
False and False is False

Table 6-2: The or operator's truth table.

A or B is Entire statement
True or True is True
True or False is True
False or True is True
False or False is False

Table 6-3: The not operator's truth table.

not A is Entire statement
not True is False
not False is True

64

program execution will continue on past the while loop.

The reason we have a loop here is because the player may have typed in 3 or 4 or
HELLO. Our program doesn't make sense of this, so if the player did not enter 1 or 2, then
the program loops back and asks the player again. In fact, the computer will patiently ask
the player for the cave number over and over again until the player types in 1 or 2. When
the player does that, the while-block's condition will be False, and we will jump down
past the while-block and continue with the program.

Return Values

17. return cave

This is the return keyword, which only appears inside def-blocks. Remember how the
input() function returns the string value that the player typed in? Or how the randint
() function will return a random integer value? Our function will also return a value. It
returns the string that is stored in cave.

This means that if we had a line of code like spam = chooseCave(), the code
inside chooseCave() would be executed and the function call will evaluate to
chooseCave()'s return value. The return value will either be the string '1' or the string
'2'. (Our while loop guarantees that chooseCave() will only return either '1' or
'2'.)

The return keyword is only found inside def-blocks. Once the return statement is
executed, we immediately jump out of the def-block. (This is like how the break
statement will make us jump out of a while-block.) The program execution moves back to
the line that had called the function.

You can also use the return keyword by itself just to break out of the function, just
like the break keyword will break out of a while loop.

Variable Scope

Just like the values in our program's variables are forgotten after the program ends,
variables created inside the function are forgotten after the execution leaves the function.
Not only that, but when execution is inside the function, we cannot change the variables
outside of the function, or variables inside other functions. The variable's scope is this
range that variables can be modified in. The only variables that we can use inside a function
are the ones we create inside of the function (or the parameter variables, described later).
That is, the scope of the variable is inside in the function's block. The scope of variables
created outside of functions is outside of all functions in the program.

Not only that, but if we have a variable named spam created outside of a function, and

65

6 - Dragon Realm

we create a variable named spam inside of the function, the Python interpreter will
consider them to be two separate variables. That means we can change the value of spam
inside the function, and this will not change the spam variable that is outside of the
function. This is because these variables have different scopes, the global scope and the
local scope.

Global Scope and Local Scope

We have names for these scopes. The scope outside of all functions is called the global
scope . The scope inside of a function is called the local scope . The entire program has
only one global scope, and each function has a local scope of its own.

Variables defined in the global scope can be read outside and inside functions, but can
only be modified outside of all functions. Variables defined in a function's local scope can
only be read or modified inside that function.

Specifically, we can read the value of global variables from the local scope, but
attempting to change the value in a global variable from the local scope will leave the
global variable unchanged. What Python actually does is create a local variable with the
same name as the global variable. But Python will consider these to be two different
variables.

Look at this example to see what happens when you try to change a global variable from
inside a local scope. Remember that the code in the funky() function isn't run until the
funky() function is called. The comments explain what is going on:

This block doesn't run until funky() is called:
def funky():
 # We read the global variable's value:
 print(spam) # 42

 # We create a local variable named "spam"
 # instead of changing the value of the global
 # variable "spam":
 spam = 99

 # The name "spam" now refers to the local
 # variable only for the rest of this
 # function:
 print(spam) # 99

A global variable named "spam":
spam = 42

Call the funky() function:
funky()

66

The global variable was not changed in funky():
print(spam) # 42

It is important to know when a variable is defined because that is how we know the
variable's scope. A variable is defined the first time we use it in an assignment statement.
When the program first executes the line:

12. cave = ''

...the variable cave is defined.

If we call the chooseCave() function twice, the value stored in the variable the first
time won't be remember the second time around. This is because when the execution left
the chooseCave() function (that is, left chooseCave() 's local scope), the cave
variable was forgotten and destroyed. But it will be defined again when we call the function
a second time because line 12 will be executed again.

The important thing to remember is that the value of a variable in the local scope is not
remembered in between function calls.

Defining the checkCave() Function

19. def checkCave(chosenCave):

Now we are defining yet another function named checkCave(). Notice that we put the
text chosenCave in between the parentheses. The variable names in between the
parentheses are called parameters .

Remember, for some functions like for the str() or randint() , we would pass an
argument in between the parentheses:

>>> str(5)
'5'
>>> random.randint(1, 20)
14

When we call checkCave(), we will also pass one value to it as an argument. When
execution moves inside the checkCave() function, a new variable named chosenCave
will be assigned this value. This is how we pass variable values to functions since functions
cannot read variables outside of the function (that is, outside of the function's local scope).

67

6 - Dragon Realm

Parameters are local variables that get defined when a function is called. The value
stored in the parameter is the argument that was passed in the function call.

Parameters

For example, here is a short program that demonstrates parameters. Imagine we had a
short program that looked like this:

def sayHello(name):
 print('Hello, ' + name)

print('Say hello to Alice.')
fizzy = 'Alice'
sayHello(fizzy)
print('Do not forget to say hello to Bob.')
sayHello('Bob')

If we run this program, it would look like this:

Say hello to Alice.
Hello, Alice
Do not forget to say hello to Bob.
Hello, Bob

This program calls a function we have created, sayHello() and first passes the value
in the fizzy variable as an argument to it. (We stored the string 'Alice' in fizzy.)
Later, the program calls the sayHello() function again, passing the string 'Bob' as an
argument.

The value in the fizzy variable and the string 'Bob' are arguments. The name
variable in sayHello() is a parameter. The difference between arguments and
parameters is that arguments are the values passed in a function call, and parameters are the
local variables that store the arguments. It might be easier to just remember that the thing in
between the parentheses in the def statement is an parameter, and the thing in between the
parentheses in the function call is an argument.

We could have just used the fizzy variable inside the sayHello() function instead
of using a parameter. (This is because the local scope can still see variables in the global
scope.) But then we would have to remember to assign the fizzy variable a string each
time before we call the sayHello() function. Parameters make our programs simpler.
Look at this code:

def sayHello():
68

 print('Hello, ' + fizzy)

print('Say hello to Alice.')
fizzy = 'Alice'
sayHello()
print('Do not forget to say hello to Bob.')
sayHello()

When we run this code, it looks like this:

Say hello to Alice.
Hello, Alice
Do not forget to say hello to Bob.
Hello, Alice

This program's sayHello() function does not have a parameter, but uses the global
variable fizzy directly. Remember that you can read global variables inside of functions,
you just can't modify the value stored in the variable.

Without parameters, we have to remember to set the fizzy variable before calling
sayHello(). In this program, we forgot to do so, so the second time we called
sayHello() the value of fizzy was still 'Alice' . Using parameters makes function
calling simpler to do, especially when our programs are very big and have many functions.

Local Variables and Global Variables with the Same Name

Now look at the following program, which is a bit different. To make it clear to see, the
global variable has been bordered with a line, and the local variable has been bordered with
dots.

def spam(myName):
 print('Hello, ' + myName)
 myName = 'Waffles'
 print('Your new name is ' + myName)

myName = 'Albert'
spam(myName)
print('Howdy, ' + myName)

If we run this program, it would look like this:

Hello, Albert
Your new name is Waffles

69

6 - Dragon Realm

Howdy, Albert

This program defines a new variable called myName and stores the string 'Albert' in
it. Then the program calls the spam() function, passing the value in myName as an
argument. The execution moves to the spam() function. The parameter in spam() is also
named myName, and has the argument value assigned to it. Remember, the myName inside
the spam() function (the local scope) is considered a different variable than the myName
variable outside the function (the global scope).

The function then prints 'Hello, Albert' , and then on the next line changes the
value in myName to 'Waffles'. Remember, this only changes the local myName
variable that is inside the function. The global myName variable that is outside the function
still has the value 'Albert' stored in it.

The function now prints out 'Your new name is Waffles' , because the
myName variable in the local scope has changed to 'Waffles'. The execution has
reached the end of the function, so it jumps back down to where the function call was. The
local myName is destroyed and forgotten. The next line after that is print('Howdy, '
+ myName), which will display Howdy, Albert.

Remember, the myName outside of functions (that is, in the global scope) still has the
value 'Albert', not 'Waffles'. This is because the myName in the global scope and
the myName in spam() 's local scope are different variables, even though they have the
same name.

Where to Put Function Definitions

A function's definition (where we put the def statement and the def-block) has to come
before you call the function. This is like how you must assign a value to a variable before
you can use the variable. If you put the function call before the function definition, you will
get an error. Look at this code:

sayGoodBye()

def sayGoodBye():
 print('Good bye!')

If you try to run it, Python will give you an error message that looks like this:

Traceback (most recent call last):
 File "C:\Python31\foo.py", line 1, in <module>
sayGoodBye()

70

NameError: name 'sayGoodBye' is not defined

To fix this, put the function definition before the function call:

def sayGoodBye():
 print('Good bye!')

sayGoodBye()

Displaying the Game Results

Back to the game's source code:

20. print('You approach the cave...')
21. time.sleep(2)

We display some text to the player, and then call the time.sleep() function.
Remember how in our call to randint(), the function randint() is inside the
random module? In the Dragon Realm game, we also imported the time module. The
time module has a function called sleep() that will pause the program for a few
seconds. We pass the integer value 2 as an argument to the time.sleep() function to
tell it to pause for exactly 2 seconds.

22. print('It is dark and spooky...')
23. time.sleep(2)

Here we print some more text and wait again for another 2 seconds. These short pauses
add suspense to the game, instead of displaying all the text all at once. In our jokes
program, we called the input() function to wait until the player pressed the Enter key.
Here, the player doesn't have to do anything at all except wait.

24. print('A large dragon jumps out in front of you! He
opens his jaws and...')

25. print()
26. time.sleep(2)

What happens next? And how does the program decide what happens?

71

6 - Dragon Realm

Deciding Which Cave has the Friendly Dragon

28. friendlyCave = random.randint(1, 2)

Now we are going to have the program randomly chose which cave had the friendly
dragon in it. Our call to the random.randint() function will return either the integer 1
or the integer 2, and store this value in a variable called friendlyCave.

30. if chosenCave == str(friendlyCave):
31. print('Gives you his treasure!')

Here we check if the integer of the cave we chose ('1' or '2') is equal to the cave
randomly selected to have the friendly dragon. But wait, the value in chosenCave was a
string (because input() returns strings) and the value in friendlyCave is an integer
(because random.randint() returns integers). We can't compare strings and integers
with the == sign, because they will always be different ('1' does not equal 1).

Comparing values of different data types with the == operator will always evaluate to
False.

So we are passing friendlyCave to the str() function, which returns the string
value of friendlyCave.

What the condition in this if statement is really comparing is the string in
chosenCave and the string returned by the str() function. We could have also had this
line instead:

if int(chosenCave) == friendlyCave:

Then the if statement's condition would compare the integer value returned by the int
() function to the integer value in friendlyCave. The return value of the int()
function is the integer form of the string stored in chosenCave.

If the if statement's condition evaluates to True, we tell the player they have won the
treasure.

32. else:
33. print('Gobbles you down in one bite!')

Line 32 has a new keyword. The else keyword always comes after the if-block. The
else-block that follows the else keyword executes if the condition in the if statement was

72

False . Think of it as the program's way of saying, "If this condition is true then execute
the if-block or else execute the else-block."

Remember to put the colon (the : sign) after the else keyword.

The Colon :

You may have noticed that we always place a colon at the end of if, else, while, and
def statements. The colon marks the end of the statement, and tells us that the next line
should be the beginning of a new block.

Where the Program Really Begins

35. playAgain = 'yes'

This is the first line that is not a def statement or inside a def-block. This line is where
our program really begins. The previous def statements merely defined the functions, it
did not run the code inside of the functions. Programs must always define functions before
the function can be called. This is exactly like how variables must be defined with an
assignment statement before the variable can be used in the program.

36. while playAgain == 'yes' or playAgain == 'y':

Here is the beginning of a while loop. We enter the loop if playAgain is equal to
either 'yes' or 'y'. The first time we come to this while statement, we have just
assigned the string value 'yes' to the playAgain variable. That means this condition
will be True.

Calling the Functions in Our Program

38. displayIntro()

Here we call the displayIntro() function. This isn't a Python function, it is our
function that we defined earlier in our program. When this function is called, the program
execution jumps to the first line in the displayIntro() function on line 5. When all the
lines in the function are done, the execution jumps back down to the line after this one.

40. caveNumber = chooseCave()

This line also calls a function that we created. Remember that the chooseCave()

73

6 - Dragon Realm

function lets the player type in the cave they choose to go into. When the return cave line
in this function executes, the program execution jumps back down here, and the local
variable cave's value is the return value of this function. The return value is stored in a
new variable named caveNumber. Then the execution moves to the next line.

42. checkCave(caveNumber)

This line calls our checkCave() function with the argument of caveNumber's value.
Not only does execution jump to line 20, but the value stored in caveNumber is copied to
the parameter chosenCave inside the checkCave() function. This is the function that
will display either 'Gives you his treasure!' or 'Gobbles you down in
one bite!', depending on the cave the player chose to go in.

Asking the Player to Play Again

44. print('Do you want to play again? (yes or no)')
45. playAgain = input()

After the game has been played, the player is asked if they would like to play again. The
variable playAgain stores the string that the user typed in. Then we reach the end of the
while-block, so the program rechecks the while statement's condition: while
playAgain == 'yes' or playAgain == 'y'

The difference is, now the value of playAgain is equal to whatever string the player
typed in. If the player typed in the string 'yes' or 'y', then we would enter the loop
again at line 38.

If the player typed in 'no' or 'n' or something silly like 'Abraham Lincoln' ,
then the while statement's condition would be False, and we would go to the next line
after the while-block. But since there are no more lines after the while-block, the program
terminates.

But remember, the string 'YES' is different from the string 'yes'. If the player typed
in the string 'YES' , then the while statement's condition would evaluate to False and
the program would still terminate.

We've just completed our second game! In our Dragon Realm game, we used a lot of
what we learned in the "Guess the Number" game and picked up a few new tricks as well.
If you didn't understand some of the concepts in this program, then read the summary at the
end of this chapter, or go over each line of the source code again, or try changing the source
code and see how the program changes. In the next chapter we won't create a game, but a
computer program that will create secret codes out of ordinary messages and also decode
the secret code back to the original message.

74

We went through the source code from top to bottom. If you would like to go through the
source code in the order that the execution flows, then check out the online tracing web site
for this program at the URL http://inventwithpython.com/traces/dragon.html.

Designing the Program

Dragon Realm was a pretty simple game. The other games in this book will be a bit more
complicated. It sometimes helps to write down everything you want your game or program
to do before you start writing code. This is called "designing the program."

For example, it may help to draw a flow chart. A flow chart is a picture that shows
every possible action that can happen in our game, and in what order. Normally we would
create a flow chart before writing our program, so that we remember to write code for each
thing that happens in the game. Figure 6-2 is a flow chart for Dragon Realm.

Figure 6-2: Flow chart for the Dragon Realm game.

To see what happens in the game, put your finger on the "Start" box and follow one
75

6 - Dragon Realm

arrow from the box to another box. Your finger is kind of like the program execution.
Your finger will trace out a path from box to box, until finally your finger lands on the
"End" box. As you can see, when you get to the "Check for friendly or hungry dragon" box,
the program could either go to the "Player wins" box or the "Player loses" box. Either way,
both paths will end up at the "Ask to play again" box, and from there the program will
either end or show the introduction to the player again.

Summary

In the "Dragon Realm" game, we created our own functions that the main section of the
program called. You can think of functions as mini-programs within our program. The code
inside the function is run when our program calls that function. By breaking up our code
into functions, we can organize our code into smaller and easier to understand sections. We
can also run the same code by placing it inside of a function, instead of typing it out each
time we want to run that code.

The inputs for functions are the arguments we pass when we make a function call. The
function call itself evaluates to a value called the return value. The return value is the
output of the function.

We also learned about variable scopes. Variables that are created inside of a function
exist in the local scope, and variables created outside of all functions exist in the global
scope. Code in the global scope can not make use of local variables. If a local variable has
the same name as a variable in the global scope, Python considers it to be a separate
variable and assigning new values to the local variable will not change the value in the
global variable.

Variable scopes might seem complicated, but they are very useful for organizing
functions as pieces of code that are separate from the rest of the function. Because each
function has it's own local scope, we can be sure that the code in one function will not
cause bugs in other functions.

All nontrivial programs use functions because they are so useful, including the rest of the
games in this book. By understanding how functions work, we can save ourselves a lot of
typing and make our programs easier to read later on.

76

Topics Covered In This Chapter:

� 3 Different Types of Errors
� IDLE's Debugger
� Stepping Into, Over, and Out
� Go and Quit
� Break Points

Bugs!

"On two occasions I have been asked, 'Pray, Mr. Babbage, if you put into the
machine wrong figures, will the right answers come out?' I am not able rightly
to apprehend the kind of confusion of ideas that could provoke such a
question."

-Charles Babbage, 19th century English mathematician, philosopher, inventor
and mechanical engineer who originated the concept of a programmable
computer.
http://en.wikipedia.org/wiki/Charles_Babbage

If you enter the wrong code, the computer will not give you the right program. A
computer program will always do what you tell it to, but what you tell the program to do
might not be the same as what you wanted the program to do. A bugs is another name for
an error or problem in a computer program. Bugs happen when the programmer has not

77

carefully thought about what exactly the program is doing. There are three types of bugs
that can happen with your program:

� Syntax Errors are a type of bug that comes from typos in your program. When the
Python interpreter sees a syntax error, it is because your code is not written in proper
Python language. A Python program with even a single syntax error will not run.

� Runtime Errors are bugs that happen while the program is running (that is,
executing). The program will work up until it reaches the line of code with the error,
and then the program terminates with an error message (this is called crashing).
The Python interpreter will display something called a "traceback" and show the line
where the problem happens.

� Semantic Errors are the trickiest bugs to fix. This bug does not crash the program,
and the program appears to work fine. However, it is not doing what the programmer
intended for the program to do. For example, if the programmer wants the variable
total to be the sum of the values in variables a, b, and c but writes total = a
+ b * c, then the value in total will be wrong. This won't cause the program to
crash immediately, but may or may not cause some other code to crash later on
because of the unexpected value in total.

Finding bugs in our program can be hard, if you even notice them at all! When running
your program, you may discover that sometimes functions are not called when they are
suppose to be, or maybe they are called too many times. You may code the condition for a
while loop wrong, so that it loops the wrong number of times. (A loop in your program
that never exits is a kind of bug is called an infinite loop. In order to stop this program,
you can press Ctrl-C in the interactive shell.) Any of these things could mistakenly happen
in your code if you are not careful.

It can be hard to figure out how your code could be producing a bug because all the lines
of code get executed very quickly and the values in variables change so often. A
debugger is a program that lets you step through your code one line at a time (in the same
order that Python executes them), and shows what values are stored in all of the variables.
A debugger lets you look at how each line of code affects your program. This can be very
helpful to figure out what exactly the program is doing.

A video tutorial on using the debugger that comes with IDLE can be found on this book's
website at http://inventwithpython.com/videos/

Starting the Debugger

In IDLE, go ahead and open the Dragon Realm game that you made in the last chapter.
In the interactive shell, click on File and then Open, and then select dragon.py (or
whatever you named the file when you saved it).

After opening the dragon.py file, click on the Debug menu item at the top of the
interactive shell, and then click Debugger to make the Debug Control window appear
(Figure 7-1).

78

Figure 7-1: The Debug Control window.

Now when you run the Dragon Realm game (by pressing F5 or clicking Run, then Run
Module in the file editor window's top menu), the debugger program will be activated. This
is called running a program "under a debugger". In the Debug Control window, check the
Source and Globals checkboxes. Then run the program by pressing F5 in the file editor
window (Figure 7-2).

Figure 7-2: Running the Dragon Realm game under the debugger.

When you run Python programs with the debugger activated, the program will stop
before it executes the first line of code. If you click on the file editor window's title bar (and

79

7 - Using the Debugger

you have checked the Source checkbox in the Debug Control window), the first line of
code is highlighted in gray. Also, the Debug Control window shows that you are on line 1,
which is the import random line.

The debugger lets you execute one line or code at a time (called "stepping"). To execute
a single instruction, click the Step button in the Debug Window. Go ahead and click the
Step button once. This will cause the Python interpretter to execute the import random
instruction, and then stop before it executes the next instruction. The Debug Control
window will change to show that you are now on line 2, the import time line.

Stepping

Stepping is the process of executing one instruction of the program at a time. Doing
this lets you see what happens after running a single line of code, which can help you figure
out where a bug first appears in your programs.

The Debug Control window will show you what line is about to be executed when you
click the Step button in the Debug Control window. This window will also tell you what
line number it is on and show you the instruction itself.

Click the Step button again to run the import time instruction. The debugger will
execute this import statment and then move to line 4. The debugger skipped line 3
because it is a blank line. Notice that you can only step forward with the debugger, you
cannot go backwards.

Click the Step button three more times. This will execute the three def statements to
define the functions. The debugger skips over the def-blocks of these functions because we
are only defining the functions, not calling them. As you define these functions, they will
appear in the Globals area of the Debug Control window.

The text next to the function names in the Global area will look something like
"<function checkCave at 0x012859B0>". The module names also have confusing looking
text next to them, such as "<module 'random' from 'C:\\Python25\\lib\\random.pyc'>". This
is only useful to advanced Python programmers, and you don't need to know what this
means to debug your programs. Just seeing that the functions and modules are there in the
Global area will tell you if the function has been defined or the module has been imported.
You can also ignore the __builtins__, __doc__, and __name__ lines in the Global area.

The debugger will now be (after clicking Step four times) at line 35, the playAgain =
'yes' line. When you click Step to execute this line, the playAgain variable will be
created and will show up in the Global area. Next to it will be the value stored in this
variable, which is the string 'yes'. The debugger lets you see the values of all the
variables in the program as the run program runs. This can be very useful if you need to fix
your programs.

The Global area in the Debug Control window is where all the global variables are

80

stored. Global variables are the variables that are created outside of any functions (that
is, in the global scope). There is also a Local area, which shows you the local scope
variables and their values. The local area will only have variables in it when the program
execution is inside of a function. Since we are still in the global scope, this area is blank.

The Python debugger (and almost all debuggers) only lets you step forward in your
program. Once you have executed an instruction, you cannot step backwards and undo the
instruction.

The Go and Quit Buttons

If you get tired of clicking the step button over and over again, and just want the program
to run normally, click the Go button at the top of the Debug Control window. This will tell
the program to run as if you didn't have the debugger turned on.

If you ever want to terminate the program while it is running, just click the Quit button at
the top of the Debug Control window. The program will immediately exit. This can be
handy if you want to stop the program and start debugging it from the beginning again.

Stepping Into, Over, and Out

Start the Dragon Realm program with the debugger, and keep stepping (by clicking the
Step button in the Debug Control window) until the debugger is at line 38 (the call to
displayIntro() line). When you click Step again, the debugger will jump into this
function call and appear on line 5 (the first line in the def-block of the displayIntro()
function. The kind of stepping we have been doing is called stepping into, because it will
step into function calls.

81

7 - Using the Debugger

Figure 7-3: Keep stepping until you reach line 38.

If you click Step a few more times, you will see the output of the print() function call
appear in the interactive shell window one at a time. When you step over the last print()
function call in the displayIntro() function, the debugger will jump back to the first
line (line 40) after function call.

Click Step one more time to step into the choosecave function. Keep stepping through
the code until you execute the function call raw_input() call. The program will wait
until you type a response into the shell, just like when you run the program normally. If you
try clicking the Step button now, nothing will happen because the program will wait for a
response.

Enter a response by clicking back on the interactive shell window and type which cave
you want to enter. You have to click on the bottom line in the shell before typing. If you are
typing but nothing appears on the screen (and the blinking cursor is not below the Which
cave will you go into? (1 or 2) text), then you have not clicked on the last
line of the shell window.

Once you press the Enter key to enter your response, the debugger will continue to step
lines of code again. Instead of clicking Step, try clicking the Out button on the Debug
Control window. This is called stepping out, because it will cause the debugger to step
over as many lines as it needs to until it jumps out of the function that it was in. For
example, if you were inside the displayIntro() function on line 6, clicking Out would

82

have the debugger keep stepping until the function was over and returned to the line after
the call to displayIntro(). Stepping out can save you from having to click Step over
and over again to jump out of the function.

If you are not inside a function (that is, you are in the global scope) and you click Out,
the debugger will execute all the remaining lines in the program (exactly as if you clicked
the Go button).

The last kind of stepping is done by the Over button in the Debug Control window, and
it is for stepping over function calls. Stepping over means that the debugger will not step
into function calls. Instead, the debugger executes all the code inside the function at once
and only stop at the line after the function call. This is useful if you do not want to step
through every single line inside the function.

You now know what the five buttons at the top of the Debug Control window do. Here's
a recap:

� Go - Executes the rest of the code as normal, or until it reaches a break point. (Break
points are described later.)

� Step - Step one line of code. If the line is a function call, the debugger will step into
the function.

� Over - Step one line of code. If the line is a function call, the debugger will not step
into the function, but instead step over the call.

� Out - Keeps stepping over lines of code until the debugger leaves the function it was
in when Out was clicked. This steps out of the function.

� Quit - Immediately terminates the program.

Find the Bug

Using the debugger is a good way to figure out what is causing bugs in your program. As
an example, here is a small program that has a bug in it. The program comes up with a
random addition problem for the user to solve. In the interactive shell window, click on
File, then New Window to open a new file editor window. Type this program into that
window, and save the program as buggy.py.

buggy.py
1. i mport random
2. number1 = random.randint(1, 10)
3. number2 = random.randint(1, 10)
4. print('What is ' + str(number1) + ' + ' + str(number2) +

'?')
5. answer = input()
6. if answer == number1 + number2:
7. print('Correct!')
8. else:
9. print('Nope! The answer is ' + str(number1 +

83

7 - Using the Debugger

number2))

Type the program in exactly as it is above, even if you can already tell what the bug is.
Then trying running the program by pressing F5. This is a simple arithmetic game that
comes up with two random numbers and asks you to add them. Here's what it might look
like when you run the program:

What is 5 + 1?
6
Nope! The answer is 6

That's not right! This program has a semantic bug in it. Even if the user types in the
correct answer, the program says they are wrong.

You could look at the code and think hard about where it went wrong. That works
sometimes. But you might figure out the cause of the bug quicker if you run the program
under the debugger. At the top of the interactive shell window, click on Debug, then
Debugger (if there is no check already by the Debugger menu item) to display the Debug
Control window. In the Debug Control window, make sure the all four checkboxes (Stack,
Source, Locals, Globals) are checked. This makes the Debug Control window provide the
most information. Then press F5 in the file editor window to run the program under the
debugger.

The debugger starts at the import random line. Nothing special happens here, so just
click Step to execute it. You should see the random module at the bottom of the Debug
Control window in the Globals area.

Click Step again to run line 2. A new file editor window will pop open. Remember that
the randint() function is inside the random module. When you stepped into the
function, you stepped into the random module because that is where the randint function
is. The functions that come with Python's modules almost never have bugs in their code, so
you can just click Out to step out of the randint() function and back to your program.
After you have stepped out, you can close the random module's window.

Line 3 is also a call to the randint() function. We don't need to step through this code,
so just click Over to step over this function call. The randint() function's code is still
executed, it is just executed all at once so that we don't have to step through it.

Line 4 is a print() call to show the player the random numbers. But since we are using
the debugger, we know what numbers the program will print even before it prints them! Just
look at the Globals area of the Debug Control window. You can see the number1 and
number2 variables, and next to them are the integer values stored in those variables. When
I ran the debugger, it looked like this:

84

Figure 7-4: The Debug Control window.

The number1 variable has the value 9 and the number2 variable has the value 10.
When you click Step, the program will display the string in the print() call with these
values. (Of course, we use the str() function so that we can concatenate the string
version of these integers.)

Clicking on Step on line 5 will cause the debugger to wait until the player enters a
response. Go ahead and type in the correct answer (in my case, 19) into the interactive shell
window. The debugger will resume and move down to line 6.

Line 6 is an if statement. The condition is that the value in answer must match the
sum of number1 and number2. If the condition is True, then the debugger will move to
line 7. If the condition is False, the debugger will move to line 9. Click Step one more
time to find out where it goes.

The debugger is now on line 9! What happened? The condition in the if statement must
have been False. Take a look at the values for number1, number2, and answer.
Notice that number1 and number2 are integers, so their sum would have also been an
integer. But answer is a string. That means that the answer == number1 +
number2 condition would have evaluated to '19' == 19. A string value and an integer
value will always not equal each other, so the condition would have evaluated to False.

That is the bug in the program. The bug is that we use answer when we should be using
int(answer). Go ahead and change line 6 to use int(answer) == number1 +
number2 instead of answer == number1 + number2 , and run the program again.

What is 2 + 3?
5
Correct!

This time, the program worked correctly. Run it one more time and enter a wrong answer
on purpose to make sure the program doesn't tell us we gave the correct answer. We have
now debugged this program. Remember, the computer will run your programs exactly as
you type them, even if what you type is not what you intend.

85

7 - Using the Debugger

Break Points

Stepping through the code one line at a time might still be too slow. Often you will want
the program to run at normal speed until it reaches a certain line. You can do this with
break points. A break point is set on a line when you want the debugger to take control
once execution reaches that line. So if you think there is a problem with your code on, say,
line 17, just set a break point on line 17 and when execution reaches that line, the debugger
will stop execution. Then you can step through a few lines to see what is happening. Then
you can click Go to let the program execute until it reaches the end (or another break
point).

To set a break point, right-click on the line that you want a break point on and select "Set
Breakpoint" from the menu that appears. The line will be highlighted with yellow to
indicate a break point is on that line. You can set break points on as many lines as you
want. To remove the break point, click on the line and select "Clear Breakpoint" from the
menu that appears.

Figure 7-5: The file editor with two break points set.

Example of Using Break Points

Let's try debugging a program with break points. Here is a program that simulates coin
flips by calling random.randint(0, 1). Each time this function call returns the
integer 1, we will consider that "heads" and increment a variable called heads. We will
also increment a variable called flips to keep track of how many times we do this "coin
flip".

The program will do "coin flips" one thousand times. This would take a person over an
hour to do, but the computer can do it in one second! Type in the following code into the
file editor and save it as coinFlips.py. You can also download this code from
http://inventwithpython.com/coinFlips.py

86

coinFlips.py
This code can be downloaded from http://inventwithpython.com/coinFlips.py
If you get errors after typing this code in, compare it to the book's code with the online
diff tool at http://inventwithpython.com/diff or email the author at
al@inventwithpython.com

1. import random
2. print('I will flip a coin 1000 times. Guess how many

times it will come up heads. (Press enter to begin)')
3. input()
4. flips = 0
5. heads = 0
6. while flips < 1000:
7. if random.randint(0, 1) == 1:
8. heads = heads + 1
9. flips = flips + 1

10.
11. if flips == 900:
12. print('900 flips and there have been ' + str

(heads) + ' heads.')
13. if flips == 100:
14. print('At 100 tosses, heads has come up ' + str

(heads) + ' times so far.')
15. if flips == 500:
16. print('Half way done, and heads has come up ' +

str(heads) + ' times.')
17.
18. print()
19. print('Out of 1000 coin tosses, heads came up ' + str

(heads) + ' times!')
20. print('Were you close?')

The program runs pretty fast. It probably spent more time waiting for the user to press
the Enter key than it did doing the coin flips. Lets say we wanted to see it do coin flips one
by one. On the interactive shell's window, click on Debug and then Debugger at the top
menu to bring up the Debug Control window. Then press F5 to run the program.

The program starts in the debugger on line 1. Press Step three times in the Debug Control
window to execute the first three lines. You'll notice the buttons become disabled because
the input() function has been called and the interactive shell window is waiting for the
player to type something. Click on the interactive shell window and press Enter. (Be sure to
click beneath the text in the shell window, otherwise IDLE might not receive your
keystrokes.) After entering text for the input() call, the Step buttons will become
enabled again.

You can click Step a few more times, but you'll find that it would take quite a while to
get through the entire program. Instead, set a break point on lines 12, 14, and 16 (Figure 7-
6).

87

7 - Using the Debugger

Figure 7-6: Three break points set.

After setting the breakpoints, click Go in the Debug Control window. The program will
run at its normal speed until it reaches flip 100. On that flip, the condition for the if
statement on line 13 is True. This causes line 14 (where we have a break point set) to
execute, which tells the debugger to stop the program and take over. Look at the Debug
Control window in the Globals section to see what the value of flips and heads are.

Click Go again and the program will continue until it reaches the next break point on line
16. Again, see how the values in flips and heads have changed. You can click Go one
more time to continue the execution until it reaches the next break point.

And if you click Go again, the execution will continue until the next break point is
reached, which is on line 12. You probably noticed that the print() functions on lines
12, 14 and 16 are called in a different order than they appear in the source code. That is
because they are called in the order that their if statement's condition becomes True.
Using the debugger can help make it clear why this is.

Summary

Writing programs is only part of the work for making games. The next part is making
sure the code we wrote actually works. Debuggers let us step through the code one line at a
time, while examining which lines execute (and in what order) and what values the
variables contain. When this is too slow, we can set break points and click Go to let the
program run normally until it reaches a break point.

Using the debugger is a great way to understand what exactly a program is doing. While
this book provides explanations of all the games in it, the debugger can help you find out
more on your own.

88

Topics Covered In This Chapter:

� How to play Hangman.
� ASCII art
� Designing our game by drawing a flow chart before programming.

In this chapter, we are going to make a Hangman game. This game is more complicated
than our previous game, but it is also much more fun. Because the game is advanced, we
should first carefully plan it out by creating a diagram called a flow chart (explained later).
In the next two chapters, we will actually write out the code for Hangman.

In case you've never played Hangman before, let's first learn the rules for Hangman.

How to Play "Hangman"

In case you don't know, Hangman is a game for two people that's usually played using
paper and pencil. One player thinks of a word, and then draws a blank on the page for each
letter in the word. Then the second player tries to guess letters that might be in the word. If
they guess correctly, the first player writes the letter in the blank. If they guess incorrectly,
the first player draws a single body part of the hanging man. If the second player can guess
all the letters in the word before the man has been completely drawn, they win. But if they
can't figure it out in time, the man is hanged and they lose the game!

Sample Run of "Hangman"

Here is an example of what the player might see when they run the Hangman program
89

we will write later. The text that the player enters in shown in bold.

H A N G M A N

 +---+
 | |
 |
 |
 |
 |
=========
Missed letters:
_ _ _
Guess a letter.
a

 +---+
 | |
 |
 |
 |
 |
=========
Missed letters:
_ a _
Guess a letter.
o

 +---+
 | |
 O |
 |
 |
 |
=========

Missed letters: o
_ a _
Guess a letter.
r

 +---+
 | |
 O |
 | |
 |
 |
=========

Missed letters: or
_ a _
Guess a letter.

90

t

 +---+
 | |
 O |
 | |
 |
 |
=========
Missed letters: or
_ a t
Guess a letter.
a
You have already guessed that letter. Choose again.
Guess a letter.
c
Yes! The secret word is "cat"! You have won!
Do you want to play again? (yes or no)
no

ASCII Art

Half of the lines of code in the Hangman program aren't really code at all, but are multiline
strings that use keyboard characters to draw pictures. This type of graphics is called ASCII
art (pronounced "ask-ee"), because keyboard characters (such as letters, numbers, and also
all the other signs on the keyboard) are called ASCII characters. ASCII stands for
American Standard Code for Information Interchange (we'll learn more about it in the
Caesar Cipher chapter). Here are a couple cats done in ASCII art:

 ^___^ __________________
 |) _____/ xx xxx _____
 |. .) _/xxx xx xxx xxx __
(v) __/ xxx xxx xx xxx __
 ____ | /xxxxxxxxx xx xx xx xx xxx\
 | \ / xx /\ xx xx\
 | | / / \ x xx \
 | \ | /\ | \ xx x\
 | | | | | \ | ____ Z x \
 | | | \ | | ____/ \ z xxx |
 | | | |-. | | \ z |
 | | | ____/ | \/ \ \
 ((((()(______/ / ____/ | |
 __| ____ | xxx|
 / | ___ ___------- __/ x|
 / | | | _______ ____/ |
 | o\ -------- _/ _/ ___/ xx /
 |oo \ _____/ _/______/ xx/
 \ __ __/ xx /
 \ ______________/ x_/
 \ /
 ____ _______/
 _______________________________/

91

8 - Flow Charts

Designing a Program with a Flowchart

This game is a bit more complicated than the ones we've seen so far, so let's take a
moment to think about how it's put together. First we'll create a flow chart (like the one at
the end of the Dragon Realm chapter) to help us visualize what this program will do. A
flow chart is a diagram that shows a series of steps as a number of boxes connected with
arrows. Each box represents a step, and the arrows show how one step leads to other steps.
You can trace through the flow chart by putting your finger on the "Start" box of the flow
chart and following the arrows to other boxes until you get to the "End" box. You can only
move from one box to another in the direction of the arrow. You can never go backwards
(unless there is a second arrow going back, like in the "Player already guessed this letter"
box below.) Here is the complete flow chart for the Hangman game (Figure 8-1).

Figure 8-1: The complete flow chart for what happens in the Hangman game.

Of course, we don't have to make a flow chart. We could just start writing code. But
often, once we start programming, we will think of things that need to be added or changed

92

that we hadn't considered before. We may end up having to change or delete a lot of code
that we had already written, which would be a waste of effort. To avoid this, it's always
best to think carefully, and plan how the program will work before we start writing it.

The following flow chart is provided as an example of what flow charts look like and
how to make them. For now, since you're just using the source code from this book, you
don't need to draw a flow chart before writing code. The program is already written, so you
don't have to plan anything out. But when you make your own games, a flow chart can be
very handy.

Creating the Flow Chart

Keep in mind, your flow charts don't always have to look exactly like this one. As long
as you understand the flow chart you made, it will be helpful when you start coding. We'll
begin with a flow chart that only has a "Start" and an "End" box, as shown in Figure 8-2:

Figure 8-2: Begin your flow chart with a Start and End box.

93

8 - Flow Charts

Now let's think about what happens when we play Hangman. First, one player (the
computer in this case) thinks of a secret word. Then the second player (the person running
the program) will guess letters. Let's add boxes for these events, as shown in Figure 8-3.
(The boxes that are new to each flow chart have a dashed outline around them.) The arrows
show the order that the program should move. That is, first the program should come up
with a secret word, and after that it should ask the player to guess a letter.

Figure 8-3: Draw out the first two steps of Hangman as boxes with descriptions.

But the game doesn't end after the player guesses one letter. It needs to check to see if
that letter is in the secret word or not.

94

Branching from a Flowchart Box

There are two possibilities: the letter will either be in the word or it won't be. This means
we need to add two new boxes to our flowchart. From the "Ask player to guess a letter"
box, we can only move to the "Letter is in secret word" box or the "Letter is not in secret
word" box. This will create a branch (that is, a split) in the flow chart, as show in Figure 8-
4:

Figure 8-4: There are two different things that could happen after
the player guesses, so have two arrows going to separate boxes.

95

8 - Flow Charts

If the letter is in the secret word, we need to check to see if the player has guessed all the
letters, which would mean they've won the game. But, if the letter is not in the secret word,
another body part is added to the hanging man.

We can add boxes for those cases too. We don't need an arrow from the "Letter is in
secret word" box to the "Player has run out of body parts and loses" box, because it's
impossible to lose as long as you are only guessing correct letters. Also, it's impossible to
win as long as you are guessing only incorrect letters, so we don't need to draw that arrow
either. Our flow chart now looks like Figure 8-5.

Figure 8-5: After the branch, the steps continue on their separate paths.

96

Ending or Restarting the Game

Once the player has won or lost, we'll ask them if they want to play again with a new
secret word. If the player doesn't want to play again, the program will end. If the program
doesn't end, we think of a new secret word, as shown in Figure 8-6:

Figure 8-6: The game ends if the player doesn't want to play again, or the game goes back to the beginning.

97

8 - Flow Charts

Guessing Again

This flow chart might look like it is finished, but there's something we're forgetting: the
player doesn't guess a letter just once. They have to keep guessing letters over and over
until they either win or lose. We need to draw two new arrows so the flow chart shows this,
as shown in Figure 8-7.

Figure 8-7: The game does not always end after a guess. The new arrows (outlined) show that the player can guess

again.

98

We are forgetting something else, as well. What if the player guesses a letter that they've
guessed before? Rather than have them win or lose in this case, we'll allow them to guess a
different letter instead, as shown in Figure 8-8.

Figure 8-8: Adding a step in case the player guesses a letter they already guessed.

Offering Feedback to the Player

We also need some way to show the player how they're doing. In order to do this, we'll
show them the hangman board, as well as the secret word (with blanks for the letters they
haven't guessed yet). These visuals will let them see how close they are to winning or
losing the game.

We'll need to update this information every time the player guesses a letter. We can add
a "Show the board and blanks to the player." box to the flow chart between the "Come up
with a secret word" box and the "Ask player to guess a letter" box, as shown in Figure 8-9.
This box will remind us that we need to show the player an updated hangman board so they
can see which letters they have guessed correctly and which letters are not in the secret
word.

99

8 - Flow Charts

Figure 8-9: Adding "Show the board and blanks to the player." to give the player feedback.

That looks good! This flow chart completely maps out everything that can possibly
happen in Hangman, and in what order. Of course this flow chart is just an example-you
won't really need to use it, because you're just using the source code that's given here. But
when you design your own games, a flow chart can help you remember everything you
need to code.

Summary: The Importance of Planning Out the
Game

It may seem like a lot of work to sketch out a flow chart about the program first. After
all, people want to play games, not look at flowcharts! But it is much easier to make
changes and notice problems by thinking about how the program works before writing the
code for it.

If you jump in to write the code first, you may discover problems that require you to
100

change the code you've already written. Every time you change your code, you are taking
a chance that you create bugs by changing too little or too much. It is much better to know
what you want to build before you build it.

101

8 - Flow Charts

Topics Covered In This Chapter:

� Methods
� The append() list method
� The lower() and upper() string methods
� The reverse() list method
� The split() string method
� The range() function
� The list() function
� for loops
� elif statements
� The startswith() and endswith() string methods.
� The dictionary data type.
� key-value pairs
� The keys() and values() dictionary methods
� Multiple variable assignment, such as a, b, c = [1, 2, 3]

This game introduces many new concepts. But don't worry; we'll experiment with these
programming concepts in the interactive shell first. Some data types such as strings and
lists have functions that are associated with their values called methods. We will learn
several different methods that can manipulate strings and lists for us. We will also learn
about a new type of loop called a for loop and a new type of data type called a dictionary.
Once you understand these concepts, it will be much easier to understand the game in this
chapter: Hangman.

You can learn more from Wikipedia: http://en.wikipedia.org/wiki/Hangman_(game)

102

Hangman's Source Code

This chapter's game is a bit longer than our previous games. You can either type in the
code below directly into the file editor (which I recommend) or you can obtain the code
from this book's website. To grab the code from the web, in a web browser go to the URL
http://inventwithpython.com/chapter9 and follow the instructions for downloading the
source code.

hangman.py
This code can be downloaded from http://inventwithpython.com/hangman.py
If you get errors after typing this code in, compare it to the book's code with the online
diff tool at http://inventwithpython.com/diff or email the author at
al@inventwithpython.com

1. import random
2. HANGMANPICS = ['''
3.
4. +---+
5. | |
6. |
7. |
8. |
9. |

10. =========''', '''
11.
12. +---+
13. | |
14. O |
15. |
16. |
17. |
18. =========''', '''
19.
20. +---+
21. | |
22. O |
23. | |
24. |
25. |
26. =========''', '''
27.
28. +---+
29. | |
30. O |
31. /| |
32. |
33. |
34. =========''', '''
35.
36. +---+
37. | |
38. O |

103

9 - Hangman

39. /|\ |
40. |
41. |
42. =========''', '''
43.
44. +---+
45. | |
46. O |
47. /|\ |
48. / |
49. |
50. =========''', '''
51.
52. +---+
53. | |
54. O |
55. /|\ |
56. / \ |
57. |
58. =========''']
59. words = 'ant baboon badger bat bear beaver camel cat clam

cobra cougar coyote crow deer dog donkey duck eagle ferret
fox frog goat goose hawk lion lizard llama mole monkey
moose mouse mule newt otter owl panda parrot pigeon python
rabbit ram rat raven rhino salmon seal shark sheep skunk
sloth snake spider stork swan tiger toad trout turkey
turtle weasel whale wolf wombat zebra'.split()

60.
61. def getRandomWord(wordList):
62. # This function returns a random string from the

passed list of strings.
63. wordIndex = random.randint(0, len(wordList) - 1)
64. return wordList[wordIndex]
65.
66. def displayBoard(HANGMANPICS, missedLetters,

correctLetters, secretWord):
67. print(HANGMANPICS[len(missedLetters)])
68. print()
69.
70. print('Missed letters:', end=' ')
71. for letter in missedLetters:
72. print(letter, end=' ')
73. print()
74.
75. blanks = '_' * len(secretWord)
76.
77. for i in range(len(secretWord)): # replace blanks with

correctly guessed letters
78. if secretWord[i] in correctLetters:
79. blanks = blanks[:i] + secretWord[i] + blanks

[i+1:]
80.
81. for letter in blanks: # show the secret word with

spaces in between each letter

104

82. print(letter, end=' ')
83. print()
84.
85. def getGuess(alreadyGuessed):
86. # Returns the letter the player entered. This function

makes sure the player entered a single letter, and not
something else.

87. while True:
88. print('Guess a letter.')
89. guess = input()
90. guess = guess.lower()
91. if len(guess) != 1:
92. print('Please enter a single letter.')
93. elif guess in alreadyGuessed:
94. print('You have already guessed that letter.

Choose again.')
95. elif guess not in 'abcdefghijklmnopqrstuvwxyz':
96. print('Please enter a LETTER.')
97. else:
98. return guess
99.

100. def playAgain():
101. # This function returns True if the player wants to

play again, otherwise it returns False.
102. print('Do you want to play again? (yes or no)')
103. return input().lower().startswith('y')
104.
105.
106. print('H A N G M A N')
107. missedLetters = ''
108. correctLetters = ''
109. secretWord = getRandomWord(words)
110. gameIsDone = False
111.
112. while True:
113. displayBoard(HANGMANPICS, missedLetters,

correctLetters, secretWord)
114.
115. # Let the player type in a letter.
116. guess = getGuess(missedLetters + correctLetters)
117.
118. if guess in secretWord:
119. correctLetters = correctLetters + guess
120.
121. # Check if the player has won
122. foundAllLetters = True
123. for i in range(len(secretWord)):
124. if secretWord[i] not in correctLetters:
125. foundAllLetters = False
126. break
127. if foundAllLetters:
128. print('Yes! The secret word is "' + secretWord

+ '"! You have won!')
129. gameIsDone = True

105

9 - Hangman

130. else:
131. missedLetters = missedLetters + guess
132.
133. # Check if player has guessed too many times and

lost
134. if len(missedLetters) == len(HANGMANPICS) - 1:
135. displayBoard(HANGMANPICS, missedLetters,

correctLetters, secretWord)
136. print('You have run out of guesses!\nAfter ' +

str(len(missedLetters)) + ' missed guesses and ' + str(len
(correctLetters)) + ' correct guesses, the word was "' +
secretWord + '"')

137. gameIsDone = True
138.
139. # Ask the player if they want to play again (but only

if the game is done).
140. if gameIsDone:
141. if playAgain():
142. missedLetters = ''
143. correctLetters = ''
144. gameIsDone = False
145. secretWord = getRandomWord(words)
146. else:
147. break

How the Code Works

1. i mport random

The Hangman program is going to randomly select a secret word from a list of secret
words. This means we will need the random module imported.

2. HANGMANPICS = ['''
3.
4. +---+
5. | |
6. |
7. |
8. |
9. |

10. =========''', '''

...the rest of the code is too big to show here...

This "line" of code a simple variable assignment, but it actually stretches over several real
lines in the source code. The actual "line" doesn't end until line 58. To help you understand

106

what this code means, you should learn about multi-line strings and lists:

Multi-line Strings

Ordinarily when you write strings in your source code, the string has to be on one line.
However, if you use three single-quotes instead of one single-quote to begin and end the
string, the string can be on several lines:

>>> fizz = '''Dear Alice,
I will return home at the end of the month. I will
see you then.
Your friend,
Bob'''
>>> print fizz
Dear Alice,
I will return home at the end of the month. I will
see you then.
Your friend,
Bob
>>>

If we didn't have multi-line strings, we would have to use the \n escape character to
represent the new lines. But that can make the string hard to read in the source code, like in
this example:

>>> fizz = 'Dear Alice,\nI will return home at the
end of the month. I will see you then.\nYour
friend,\nBob'
>>> print fizz
Dear Alice,
I will return home at the end of the month. I will
see you then.
Your friend,
Bob
>>>

Multi-line strings do not have to keep the same indentation to remain in the same block.
Within the multi-line string, Python ignores the indentation rules it normally has for where
blocks end.

def writeLetter():
 # inside the def-block
 print '''Dear Alice,

107

9 - Hangman

How are you? Write back to me soon.

Sincerely,
 Bob''' # end of the multi-line string and print
statement
 print 'P.S. I miss you.' # still inside the
def-block

writeLetter() # This is the first line outside the
def-block.

Constant Variables

You may have noticed that HANGMANPICS's name is in all capitals. This is the
programming convention for constant variables. Constants are variables whose values do
not change throughout the program. Although we can change HANGMANPICS just like any
other variable, the all-caps reminds the programmer to not write code that does so.

Constant variables are helpful for providing descriptions for values that have a special
meaning. Since the multi-string value never changes, there is no reason we couldn't copy
this multi-line string each time we needed that value. The HANGMANPICS variable never
varies. But it is much shorter to type HANGMANPICS than it is to type that large multi-line
string.

Also, there are cases where typing the value by itself may not be obvious. If we set a
variable eggs = 72 , we may forget why we were setting that variable to the integer 72.
But if we define a constant variable DOZEN = 12 , then we could set eggs = DOZEN *
6 and by just looking at the code know that the eggs variable was set to six dozen.

Like all conventions, we don't have to use constant variables, or even put the names of
constant variables in all capitals. But doing it this way makes it easier for other
programmers to understand how these variables are used. (It even can help you if you are
looking at code you wrote a long time ago.)

Lists

I will now tell you about a new data type called a list . A list value can contain several
other values in it. Try typing this into the shell: ['apples', 'oranges', 'HELLO
WORLD']. This is a list value that contains three string values. Just like any other value,
you can store this list in a variable. Try typing spam = ['apples', 'oranges',
'HELLO WORLD'] , and then type spam to view the contents of spam.

>>> spam = ['apples', 'oranges', 'HELLO WORLD']
>>> spam

108

['apples', 'oranges', 'HELLO WORLD']
>>>

Lists are a good way to store several different values into one variable. The individual
values inside of a list are also called items. Try typing: animals = ['aardvark',
'anteater', 'antelope', 'albert'] to store various strings into the variable
animals. The square brackets can also be used to get an item from a list. Try typing
animals[0], or animals[1], or animals[2] , or animals[3] into the shell to see
what they evaluate to.

>>> animals = ['aardvark', 'anteater', 'antelope',
'albert']
>>> animals[0]
'aardvark'
>>> animals[1]
'anteater'
>>> animals[2]
'antelope'
>>> animals[3]
'albert'
>>>

The number between the square brackets is the index . In Python, the first index is the
number 0 instead of the number 1. So the first item in the list is at index 0, the second item
is at index 1, the third item is at index 2, and so on. Lists are very good when we have to
store lots and lots of values, but we don't want variables for each one. Otherwise we would
have something like this:

>>> animals1 = 'aardvark'
>>> animals2 = 'anteater'
>>> animals3 = 'antelope'
>>> animals4 = 'albert'
>>>

This makes working with all the strings as a group very hard, especially if you have
hundreds or thousands (or even millions) of different strings that you want stored in a list.
Using the square brackets, you can treat items in the list just like any other value. Try
typing animals[0] + animals[2] into the shell:

>>> animals[0] + animals[2]
'aardvarkantelope'
>>>

109

9 - Hangman

Because animals[0] evaluates to the string 'aardvark' and animals[2]
evaluates to the string 'antelope', t hen the expression animals[0] + animals
[2] is the same as 'aardvark' + 'antelope'. This string concatenation evaluates
to 'aardvarkantelope' .

What happens if we enter an index that is larger than the list's largest index? Try typing
animals[4] or animals[99] into the shell:

>>> animals = ['aardvark', 'anteater', 'antelope',
'albert']
>>> animals[4]
Traceback (most recent call last):
File "", line 1, in
animals[4]
IndexError: list index out of range
>>> animals[99]
Traceback (most recent call last):
File "", line 1, in
animals[99]
IndexError: list index out of range
>>>

If you try accessing an index that is too large, you will get an index error.

Changing the Values of List Items with Index
Assignment

You can also use the square brackets to change the value of an item in a list. Try typing
animals[1] = 'ANTEATER', then type animals to view the list.

>>> animals = ['aardvark', 'anteater', 'antelope',
'albert']
>>> animals[1] = 'ANTEATER'
>>> animals
['aardvark', 'ANTEATER', 'antelope', 'albert']
>>>

The second item in the animals list has been overwritten with a new string.

List Concatenation

You can join lists together into one list with the + operator, just like you can join strings.

110

When joining lists, this is known as list concatenation . Try typing [1, 2, 3, 4]
+ ['apples', 'oranges'] + ['Alice', 'Bob'] int o the shell:

>>> [1, 2, 3, 4] + ['apples', 'oranges'] +
['Alice', 'Bob']
[1, 2, 3, 4, 'apples', 'oranges', 'Alice', 'Bob']
>>>

Notice that lists do not have to store values of the same data types. The example above
has a list with both integers and strings in it.

The in Operator

The in operator makes it easy to see if a value is inside a list or not. Expressions that use
the in operator return a boolean value: True if the value is in the list and False if the
value is not in the list. Try typing 'antelope' in animals into the shell:

>>> animals = ['aardvark', 'anteater', 'antelope',
'albert']
>>> 'antelope' in animals
True
>>>

The expression 'antelope' in animals returns True because the string
'antelope' can be found in the list, animals. (It is located at index 2.)

But if we type the expression 'ant' in animals, this will return False because
the string 'ant' does not exist in the list. We can try the expression 'ant' in
['beetle', 'wasp', 'ant'], and see that it will return True.

>>> animals = ['aardvark', 'anteater', 'antelope',
'albert']
>>> 'antelope' in animals
True
>>> 'ant' in animals
False
>>> 'ant' in ['beetle', 'wasp', 'ant']
True
>>>

The in operator also works for strings as well as lists. You can check if one string exists
in another the same way you can check if a value exists in a list. Try typing 'hello' in

111

9 - Hangman

'Alice said hello to Bob.' into the shell. This expression will evaluate to
True.

>>> 'hello' in 'Alice said hello to Bob.'
True
>>>

Removing Items from Lists with del Statements

You can remove items from a list with a del statement. ("del" is short for "delete.") Try
creating a list of numbers by typing: spam = [2, 4, 6, 8, 10] and then del
spam[1]. Type spam to view the list's contents:

>>> spam = [2, 4, 6, 8, 10]
>>> del spam[1]
>>> spam
[2, 6, 8, 10]
>>>

Notice that when you deleted the item at index 1, the item that used to be at index 2
became the new index 1. The item that used to be at index 3 moved to be the new index 2.
Everything above the item that we deleted moved down one index. We can type del
spam[1] again and again to keep deleting items from the list:

>>> spam = [2, 4, 6, 8, 10]
>>> del spam[1]
>>> spam
[2, 6, 8, 10]
>>> del spam[1]
>>> spam
[2, 8, 10]
>>> del spam[1]
>>> spam
[2, 10]
>>>

Just remember that del is a statement, not a function or an operator. It does not evaluate
to any return value.

112

Lists of Lists

Lists are a data type that can contain other values as items in the list. But these items can
also be other lists. Let's say you have a list of groceries, a list of chores, and a list of your
favorite pies. You can put all three of these lists into another list. Try typing this into the
shell:

>>> groceries = ['eggs', 'milk', 'soup', 'apples',
'bread']
>>> chores = ['clean', 'mow the lawn', 'go grocery
shopping']
>>> favoritePies = ['apple', 'frumbleberry']
>>> listOfLists = [groceries, chores,
favoritePies]
>>> listOfLists
[['eggs', 'milk', 'soup', 'apples', 'bread'],
['clean', 'mow the lawn', 'go grocery shopping '],
['apple', 'frumbleberry']]
>>>

You could also type the following and get the same values for all four variables:

>>> listOfLists = [['eggs', 'milk', 'soup',
'apples', 'bread'], ['clean', 'mow the lawn', 'go
grocery shopping'], ['apple', 'frumbleberry']]
>>> groceries = listOfLists[0]
>>> chores = listOfLists[1]
>>> favoritePies = listOfLists[2]
>>> groceries
['eggs', 'milk', 'soup', 'apples', 'bread']
>>> chores
['clean', 'mow the lawn', 'go grocery shopping']
>>> favoritePies
['apple', 'frumbleberry']
>>>

To get an item inside the list of lists, you would use two sets of square brackets like this:
listOfLists[1][2] which would evaluate to the string 'go grocery
shopping'. This is because listOfLists[1] evaluates to the list ['clean',
'mow the lawn', 'go grocery shopping'][2]. That finally evaluates to
'go grocery shopping'.

Here is another example of a list of lists, along with some of the indexes that point to the
items in the list of lists named x. The red arrows point to indexes of the inner lists

113

9 - Hangman

themselves. The image is also flipped on its side to make it easier to read:

Figure 9-1: The indexes of a list of lists.

Methods

Methods are just like functions, but they are always attached to a value. For example,
all string values have a lower() method, which returns a copy of the string value in
lowercase. You cannot just call lower() by itself and you do not pass a string argument
to lower() by itself (as in lower('Hello')). You must attach the method call to a
specific string value using a period.

The lower() and upper() String Methods

Try entering 'Hello world!'.lower() into the interactive shell to see an example
of this method:

>>> 'Hello world'.lower()
'hello world!'
>>>

There is also an upper() method for strings, which changes all the characters in a
string to uppercase. Try entering 'Hello world'.upper() into the shell:

114

>>> 'Hello world'.upper()
'HELLO WORLD! '
>>>

Because the upper() method returns a string, you can call a method on that string as
well. Try typing 'Hello world!'.upper().lower() into the shell:

>>> 'Hello world'.upper().lower()
'hello world!'
>>>

'Hello world!'.upper() eva luates to the string 'HELLO WORLD!', and then
we call that string's lower() method. This returns the string 'hello world!' , which
is the final value in the evaluation. The order is important. 'Hello world!'.lower
().upper() is not the same as 'Hello world!'.upper().lower() :

>>> 'Hello world'.lower().upper()
'HELLO WORLD!'
>>>

Remember, if a string is stored in a variable, you can call a string method on that
variable. Look at this example:

>>> fizz = 'Hello world'
>>> fizz.upper()
'HELLO WORLD'
>>>

The reverse() and append() List Methods

The list data type also has methods. The reverse() method will reverse the order of
the items in the list. Try entering spam = [1, 2, 3, 4, 5, 6, 'meow',
'woof'], and then spam.reverse() to reverse the list. Then enter spam to view the
contents of the variable.

>>> spam = [1, 2, 3, 4, 5, 6, 'meow', 'woof']
>>> spam.reverse()
>>> spam
['woof', 'meow', 6, 5, 4, 3, 2, 1]

115

9 - Hangman

>>>

The most common list method you will use is append(). This method will add the
value you pass as an argument to the end of the list. Try typing the following into the shell:

>>> eggs = []
>>> eggs.append('hovercraft')
>>> eggs
['hovercraft']
>>> eggs.append('eels')
>>> eggs
['hovercraft', 'eels']
>>> eggs.append(42)
>>> eggs
['hovercraft', 'eels', 42]
>>>

Though string and list data types have methods, integers do not happen to have any
methods.

The Difference Between Methods and Functions

You may be wondering why Python has methods, since they seem to act just like
functions. Some data types have methods. Methods are functions associated with values of
that data type. For example, string methods are functions that can be called on any string. If
you have the string value 'Hello', you could call the string method upper() like this:
'Hello'.upper() . Or if the string 'Hello' were stored in a variable named spam, it
would look like this: spam.upper()

You cannot call string methods on values of other data types. For example, [1, 2,
'apple'].upper() would cause an error because [1, 2, 'apple'] is a list and
upper() is a string method.

The values of data types that have methods are also called objects. Object-oriented
programming is a bit advanced for this book, and you don't need to completely understand
it to make games. Just understand that objects are another name for a values of data types
that have methods.

The split() List Method

Line 59 is a very long line of code, but it is really just a simple assignment statement.
This line also uses the split() method, which is a method for the string data type (just
like the lower() and upper() methods).

116

59. words = 'ant baboon badger bat bear beaver camel cat clam
cob r a cougar coyote crow deer dog donkey duck eagle
ferret fox frog goat goose hawk lion lizard llama mole
monkey moose mouse mule newt otter owl panda parrot
pigeon python rabbit ram rat raven rhino salmon seal
shark sheep skunk sloth snake spider stork swan tiger
toad trout turkey turtle weasel whale wolf wombat
zebra'.split()

As you can see, this line is just one very long string, full of words separated by spaces.
And at the end of the string, we call the split() method. The split() method changes
this long string into a list, with each word making up a single list item. The "split" occurs
wherever a space occurs in the string. The reason we do it this way, instead of just writing
out the list, is that it is easier for us to type as one long string. If we created it as a list to
begin with, we would have to type: ['ant', 'baboon', 'badger', ... and so on,
with quotes and commas for every single word.

For an example of how the split() string method works, try typing this into the shell:

>>> 'My very energetic mother just served us nine
pies'.split()
['My', 'very', 'energetic', 'mother', 'just',
'served', 'us', 'nine', 'pies']
>>>

The result is a list of nine strings, one string for each of the words in the original string.
The spaces are dropped from the items in the list. Once we've called split(), the words
list will contain all the possible secret words that can be chosen by the computer for our
Hangman game. You can also add your own words to the string, or remove any you don't
want to be in the game. Just make sure that the words are separated by spaces.

How the Code Works

Starting on line 61, we define a new function called getRandomWord(), which has a
single parameter named wordList. We will call this function when we want to pick a
single secret word from a list of secret words.

61. def getRandomWord(wordList):
62. # This function returns a random string from the

passed list of strings.
63. wordIndex = random.randint(0, len(wordList) - 1)
64. return wordList[wordIndex]

117

9 - Hangman

The function getRandomWord() is passed a list of strings as the argument for the
wordList parameter. On line 63, we will store a random index in this list in the
wordIndex va riable. We do this by calling randint() with two arguments. Remember
that arguments in a function call are separated by commas, so the first argument is 0 and
the second argument is len(wordList) - 1. The second argument is an expression
that is first evaluated. len(wordList) will return the integer size of the list passed to
getRandomWord(), minus one.

The reason we need the - 1 is because the indexes for list start at 0, not 1. If we have a
list of three items, the index of the first item is 0, the index of the second item is 1, the
index of the third item is 2. The length of this list is 3, but the index 3 is after the last index.
This is why we subtract 1 from the length.

For example, if we passed ['apple', 'orange', grape'] as an argument to getRandomWord
(), then len(wordList) would return the integer 3 and the expression 3 - 1 would evaluate
to the integer 2.

That means that wordIndex would contain the return value of randint(0, 2), which means
wordIndex would equal 0, 1, or 2. On line 64, we would return the element in wordList at
the integer index stored in wordIndex.

Let's pretend we did send ['apple', 'orange', grape'] as the argument to
getRandomWord() and that randint(0, 2) returned the integer 2. That would
mean that line 64 would become return wordList[2] , which would evaluate to
return 'grape'. This is how the getRandomWord() returns a random string in the
wordList list. The following code entered into the interactive shell demonstrates this:

>>> import random
>>> print(wordIndex)
2
>>> print(['apple', 'orange', 'grape'][wordIndex])
grape
>>>

And remember, we can pass any list of strings we want to the getRandomWord()
function, which is what makes it so useful for our Hangman game.

Displaying the Board to the Player

Next we need to create another function which will print the hangman board on the
screen, along with how many letters the player has correctly (and incorrectly) guessed.

66. def displayBoard(HANGMANPICS, missedLetters,
cor rectLetters, secretWord):

118

67. print(HANGMANPICS[len(missedLetters)])
68. print()

This code defines a new function named displayBoard(). Thi s function has four
parameters. This function will implement the code for the "Show the board and blanks to the
player" box in our flow chart. Here is what each parameter means:

� HANGMANPICS - This is a list of multi-line strings that will display the board as
ASCII art. We will always pass the global HANGMANPICS variable as the argument
for this parameter.

� missedLetters - This is a string made up of the letters the player has guessed that
are not in the secret word.

� correctLetters - This is a string made up of the letters the player has guessed
that are in the secret word.

� secretWord - This string is the secret word that the player is trying to guess..

The first print() function call will display the board. HANGMANPICS will be a list of
strings for each possible board. HANGMANPICS[0] shows an empty gallows,
HANGMANPICS[1] shows the head (this happens when the player misses one letter),
HANGMANPICS[2] shows a head and body (this happens when the player misses two
letters), and so on until HANGMANPICS[6] when the full hangman is shown and the player
loses.

The number of letters in missedLetters will tell us how many incorrect guesses the
player has made. We can call len(missedLetters) to find out this number. This
number can also be used as the index to the HANGMANPICS list, which will allow us to print
the correct board for the number of incorrect guesses. So, if missedLetters is 'aetr'
then len('aetr') will return 4 and we will display the string HANGMANPICS[4] . This
is what HANGMANPICS[len(missedLetters)] evaluates to. This line shows the
correct hangman board to the player.

70. print('Missed letters:', end=' ')
71. for letter in missedLetters:
72. print(letter, end=' ')
73. print()

Line 71 is a new type of loop, called a for loop. A for loop is kind of like a while
loop. Line 72 is the entire body of the for loop. The range() function is often used with
for loops. I will explain both in the next two sections.

Remember that the keyword argument end=' ' uses only one = sign, not two.

119

9 - Hangman

The range() and list() Functions

The range() function is easy to understand. You can call it with either one or two
integer arguments. When called with one argument, range() will return a range object of
integers from 0 up to (but not including) the argument. This range object can be converted
to the more familiar list data type with the list() function. Try typing list(range
(10)) into the shell:

>>> list(range(10))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>>

The list() function is very similar to the str() or int() functions. It just converts
the object it is passed into a list. It's very easy to generate huge lists with the range()
function. Try typing in list(range(10000)) into the shell:

>>> list(range(10000))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15,...
 ...The text here has been skipped for
brevity...
...9989, 9990, 9991, 9992, 9993, 9994, 9995, 9996,
9997, 9998, 9999]
>>>

The list is so huge, that it won't even all fit onto the screen. But we can save the list into
the variable just like any other list by entering this:

>>> spam = list(range(10000))
>>>

If you pass two arguments to range(), the list of integers it returns is from the first
argument up to (but not including) the second argument. Try typing list(range(10,
20)) into the shell:

>>> list(range(10, 20))
[10, 11, 12, 13, 14, 15, 16, 17, 18, 19]
>>>

The range() is a very useful function, because we often use it in for loops (which are

120

much like the while loops we have already seen).

for Loops

The for loop is very good at looping over a list of values. This is different from the
while loop, which loops as long as a certain condition is true. A for statement begins
with the for keyword, followed by a variable, followed by the in keyword, followed by a
sequence (such as a list or string) or a range object (returned by the range() function),
and then a colon. Each time the program execution goes through the loop (that is, on each
iteration through the loop) the variable in the for statement takes on the value of the next
item in the list.

For example, you just learned that the range() function will return a list of integers.
We will use this list as the for statement's list. In the shell, type for i in range
(10): and press Enter. Nothing will happen, but the shell will indent the cursor, because it
is waiting for you to type in the for-block. Type print(i) and press Enter. Then, to tell
the interactive shell you are done typing in the for-block, press Enter again to enter a blank
line. The shell will then execute your for statement and block:

>>> for i in range(10):
... print(i)
...
0
1
2
3
4
5
6
7
8
9
>>>

Notice that with for loops, you do not need to convert the range object returned by the
range() function into a list with list(). For loops do this for us automatically.

The for loop executes the code inside the for-block once for each item in the list. Each
time it executes the code in the for-block, the variable i is assigned the next value of the
next item in the list. If we used the for statement with the list [0, 1, 2, 3, 4, 5,
6, 7, 8, 9] instead of range(10) , it would have been the same since the range()
function's return value is the same as that list:

121

9 - Hangman

>>> for i in range([0, 1, 2, 3, 4, 5, 6, 7, 8,
9]):
... print(i)
...
0
1
2
3
4
5
6
7
8
9
>>>

Try typing this into the shell: for thing in ['cats', 'pasta',
'programming', 'spam']: and press Enter, then type print('I really like
' + thing) and press Enter, and then press Enter again to tell the shell to end the for-
block. The output should look like this:

>>> for thing in ['cats', 'pasta', 'programming',
'spam']:
... print('I really like ' + thing)
...
I really like cats
I really like pasta
I really like programming
I really like spam
>>

And remember, because strings are also a sequence data type just like lists, you can use
them in for statements as well. This example uses a single character from the string on
each iteration:

>>> for i in 'Hello world!':
... print(i)
...
H
e
l
l

122

o

w
o
r
l
d
!
>>>

A while Loop Equivalent of a for Loop

The for loop is very similar to the while loop, but w hen you only need to iterate over
items in a list, using a for loop is much less code to type. You can make a while loop
that acts the same way as a for loop by adding extra code:

>>> sequence = ['cats', 'pasta', 'programming',
'spam']
>>> index = 0
>>> while (index < len(sequence)):
... thing = sequence[index]
... print('I really like ' + thing)
... index = index + 1
...
I really like cats
I really like pasta
I really like programming
I really like spam
>>>

But using the for statement automatically does all this extra code for us and makes
programming easier since we have less to type. Our Hangman game will use for loops so
you can see how useful they are in real games.

One more thing about for loops, is that the for statement has the in keyword in it. But
when you use the in keyword in a for statement, Python does not treat it like the in
operator you would use in something like 42 in [0, 42, 67]. The in keyword in
for statements is just used to separate the variable and the list it gets its values from.

The rest of the displayBoard() function displays the missed letters and creates the
string of the secret word with all the unguessed letters as blanks.

 print('Missed letters:', end=' ')
 for letter in missedLetters:

123

9 - Hangman

 print(letter, end=' ')
 print()

This for loop one line 71 will display all the missed guesses that the player has made.
When you play Hangman on paper, you usually write down these letters off to the side so
you know not to guess them again. On each iteration of the loop the value of letter will
be each letter in missedLetters in turn. Remember that the end=' ' will replace the
newline character that is printed after the string is replaced by a single space character.

If missedLetters was 'ajtw' then this for loop would display a j t w.

Displaying the Secret Word with Blanks

So by this point we have shown the player the hangman board and the missed letters. Now
we want to print the secret word, except we want blank lines for the letters. We can use the _
character (called the underscore character) for this. But we should print the letters in the
secret word that the player has guessed, and use _ characters for the letters the player has not
guessed yet. We can first create a string with nothing but one underscore for each letter in
the secret word. Then we can replace the blanks for each letter in correctLetters. So if
the secret word was 'otter' then the blanked out string would be '_____' (five _
characters). If correctLetters was the string 'rt' then we would want to change the
blanked string to '_tt_r'. Here is the code that does that:

75. blanks = '_' * len(secretWord)
76.
77. for i in range(len(secretWord)): # replace blanks with

correctly guessed letters
78. if secretWord[i] in correctLetters:
79. blanks = blanks[:i] + secretWord[i] + blanks

[i+1:]
80.
81. for letter in blanks: # show the secret word with

spaces in between each letter

Line 75 creates the blanks variable full of _ underscores using string replication.
Remember that the * operator can also be used on a string and an integer, so the expression
'hello' * 3 evaluates to 'hellohellohello'. This will make sure that blanks
has the same number of underscores as secretWord has letters.

Then we use a for loop to go through each letter in secretWord and replace the
underscore with the actual letter if it exists in correctLetters. Line 79 may look
confusing. It seems that we are using the square brackets with the blanks and
secretWord variables. But wait a second, blanks and secretWord are strings, not
lists. And the len() function also only takes lists as parameters, not strings. But in Python,
many of the things you can do to lists you can also do to strings:

124

Replacing the Underscores with Correctly Guessed Letters

77. for i in range(len(secretWord)): # replace blanks
wit h correctly guessed letters

78. if secretWord[i] in correctLetters:
79. blanks = blanks[:i] + secretWord[i] + blanks

[i+1:]

Let's pretend the value of secretWord is 'otter' and the value in
correctLetters is 'tr'. Then len(secretWord) will return 5. Then range
(len(secretWord)) becomes range(5), which in turn returns the list [0, 1, 2,
3, 4].

Because the value of i will take on each value in [0, 1, 2, 3, 4], then the for
loop code is equivalent to this:

if secretWord[0] in correctLetters:
blanks = blanks[:0] + secretWord[0] + blanks[1:]
if secretWord[1] in correctLetters:
blanks = blanks[:1] + secretWord[1] + blanks[2:]
if secretWord[2] in correctLetters:
blanks = blanks[:2] + secretWord[2] + blanks[3:]
if secretWord[3] in correctLetters:
blanks = blanks[:3] + secretWord[3] + blanks[4:]
if secretWord[4] in correctLetters:
blanks = blanks[:4] + secretWord[4] + blanks[5:]

(By the way, writing out the code like this is called loop unrolling.)

If you are confused as to what the value of something like secretWord[0] or
blanks[3:] is, then look at this picture. It shows the value of the secretWord and
blanks variables, and the index for each letter in the string.

Figure 9-2: The indexes of the blanks and secretWord strings.

125

9 - Hangman

If we replace the list slices and the list indexes with the values that they represent, the
unrolled loop code would be the same as this:

if 'o' in 'tr': # Condition is False, blanks ==
'_____'
blanks = '' + 'o' + '____' # This line is skipped.
if 't' in 'tr': # Condition is True, blanks ==
'_____'
blanks = '_' + 't' + '___' # This line is
executed.
if 't' in 'tr': # Condition is True, blanks ==
'_t___'
blanks = '_t' + 't' + '__' # This line is
executed.
if 'e' in 'tr': # Condition is False, blanks ==
'_tt__'
blanks = '_tt' + 'e' + '_' # This line is skipped.
if 'r' in 'tr': # Condition is True, blanks ==
'_tt__'
blanks = '_tt_' + 'r' + '' # This line is
executed.
blanks now has the value '_tt_r'

The above three code examples all do the same thing (at least, they do when
secretWord is 'otter' and correctLetters is 'tr'. The first box is the actual
code we have in our game. The second box shows code that does the same thing except
without a for loop. The third box is the same as the second box, except we have evaluated
many of the expressions in the second box.

The next few lines of code display the new value of blanks with spaces in between
each letter.

81. for letter in blanks: # show the secret word with
sp aces in between each letter

82. print(letter, end=' ')
83. print()

This for loop will print out each character in the string blanks. Remember that by
now, blanks may have some of its underscores replaced with the letters in
secretWord. The end keyword argument in line 82's print() call makes the print
() function put a space character at the end of the string instead of a newline character.
This is the end of the displayBoard() function.

126

Get the Player's Guess

The getGuess() function we create next will be called whenever we want to let the
player type in a letter to guess. The function returns the letter the player guessed as a string.
Further, getGuess() will make sure that the player types a valid letter before returning
from the function.

85. def getGuess(alreadyGuessed):
86. # Returns the letter the player entered. This

function makes sure the player entered a single letter,
and not something else.

The getGuess() function has a string parameter called alreadyGuessed which
contains the letters the player has already guessed, and will ask the player to guess a single
letter. This single letter will be the return value for this function.

87. while True:
88. print('Guess a letter.')
89. guess = input()
90. guess = guess.lower()

We will use a while loop because we want to keep asking the player for a letter until
they enter text that is a single letter they have not guessed previously. Notice that the
condition for the while loop is simply the Boolean value True. That means the only way
execution will ever leave this loop is by executing a break statement (which leaves the
loop) or a return statement (which leaves the entire function). Such a loop is called an
infinite loop , because it will loop forever (unless it reaches a break statement).

The code inside the loop asks the player to enter a letter, which is stored in the variable
guess. If the player entered a capitalized letter, it will be converted to lowercase on line
90.

elif ("Else If") Statements

Take a look at the following code:

if catName == 'Fuzzball':
 print('Your cat is fuzzy.')
else:
 print('Your cat is not very fuzzy at all.')

We've seen code like this before and it's rather simple. If the catName variable is equal
to the string 'Fuzzball' , then the if statement's condition is True and we tell the user

127

9 - Hangman

that her cat is fuzzy. If catName is anything else, then we tell the user her cat is not
fuzzy.

But what if we wanted something else besides "fuzzy" and "not fuzzy"? We could put
another if and else statement inside the first else block like this:

if catName == 'Fuzzball':
 print('Your cat is fuzzy.')
else:
 if catName == 'Spots'
 print('Your cat is spotted.')
 else:
 print('Your cat is neither fuzzy nor
spotted.')

But if we wanted more things, then the code starts to have a lot of indentation:

if catName == 'Fuzzball':
 print('Your cat is fuzzy.')
else:
 if catName == 'Spots'
 print('Your cat is spotted.')
 else:
 if catName == 'FattyKitty'
 print('Your cat is fat.')
 else:
 if catName == 'Puff'
 print('Your cat is puffy.')
 else:
 print('Your cat is neither fuzzy
nor spotted nor fat nor puffy.')

Typing all those spaces means you have more chances of making a mistake with the
indentation. So Python has the elif keyword. Using elif , the above code looks like this:

if catName == 'Fuzzball':
 print('Your cat is fuzzy.')
elif catName == 'Spots'
 print('Your cat is spotted.')
elif catName == 'FattyKitty'
 print('Your cat is fat.')
elif catName == 'Puff'
 print('Your cat is puffy.')
else:

128

 print('Your cat is neither fuzzy nor spotted
nor fat nor puffy.')

If the condition for the if statement is False, then the program will check the
condition for the first elif statement (which is catName == 'Spots'. If that
condition is False, then the program will check the condition of the next elif statement.
If all of the conditions for the if and elif statements are False, then the code in the
else block executes.

But if one of the elif conditions are True, the elif-block code is executed and then
execution jumps down to the first line past the else-block. So only one of the blocks in this
if-elif-else statement will be executed. You can also leave off the else-block if you don't
need one, and just have an if-elif statement.

Making Sure the Player Entered a Valid Guess

91. if len(guess) != 1:
92. print('Please enter a single letter.')
93. elif guess in alreadyGuessed:
94. print('You have already guessed that letter.

Choose again.')
95. elif guess not in 'abcdefghijklmnopqrstuvwxyz':
96. print('Please enter a LETTER.')
97. else:
98. return guess

The guess variable contains the text the player typed in for their guess. We need to
make sure they typed in a single lowercase letter. If they didn't, we should loop back and
ask them again. The if statement's condition checks that the text is one and only letter. If it
is not, then we execute the if-block code, and then execution jumps down past the else-
block. But since there is no more code after this if-elif-else statement, execution loops back
to line 87.

If the condition for the if statement is False, we check the elif statement's condition
on line 93. This condition is True if the letter exists inside the alreadyGuessed
variable (remember, this is a string that has every letter the player has already guessed). If
this condition is True, then we display the error message to the player, and jump down
past the else-block. But then we would be at the end of the while-block, so execution jumps
back up to line 87.

If the condition for the if statement and the elif statement are both False, then we
check the second elif statement's condition on line 95. If the player typed in a number or
a funny character (making guess have a value like '5' or '!'), then guess would not
exist in the string 'abcdefghijklmnopqrstuvwxyz' . If this is the case, the elif
statement's condition is True.

129

9 - Hangman

Figure 9-3 is an example of elif statements. Unless these three conditions are all
False, the player will keep looping and keep being asked for a letter. But when all three
of the conditions are False, then the else-block's return statement will run and we will
exit this loop and function.

Figure 9-3: The elif statement.

Asking the Player to Play Again

100. def playAgain():
101. # This function returns True if the player wants to

play again, otherwise it returns False.
102. print('Do you want to play again? (yes or no)')
103. return input().lower().startswith('y')

The playAgain() function has just a print() function call and a return
statement. The return statement has an expression that looks complicated, but we can
break it down. Once we evaluate this expression to a value, that value will be returned from
this function.

The expression on line 103 doesn't have any operators, but it does have a function call
and two method calls. The function call is input() and the method calls are lower()
and startswith('y'). Remember that method calls are function calls that are attached
by a period to the value on their left. lower() is attached to the return value of input
().

input() returns a string of the text that the user typed in. Here's a step by step look at
how Python evaluates this expression if the user types in YES.

return input().lower().startswith('y')

return 'YES'.lower().startswith('y')

130

return 'yes'.startswith('y')

return True

The point of the playAgain() function is to let the player type in yes or no to tell our
program if they want to play another round of Hangman. If the player types in YES, then
the return value of input() is the string 'YES'. And 'YES'.lower() returns the
lowercase version of the attached string. So the return value of 'YES'.lower() is
'yes'.

But there's the second method call, startswith('y'). This function returns True if
the associated string begins with the string parameter between the parentheses, and False
if it doesn't. The return value of 'yes'.startswith('y') is True.

Now we have evaluated this expression! We can see that what this does is let the player
type in a response, we lowercase the response, check if it begins with the letter 'y' or 'Y',
and then return True if it does and False if it doesn't. Whew!

On a side note, there is also a endswith(someString) string method that will
return True if the string ends with the string in someString and False if it doesn't.

Review of the Functions We Defined

That's all the functions we are creating for this game!

� getRandomWord(wordList) will take a list of strings passed to it as a
parameter, and return one string from it. That is how we will choose a word for the
player to guess.

� displayBoard(HANGMANPICS, missedLetters, correctLetters,
secretWord) will show the current state of the board, including how much of the
secret word the player has guessed so far and the wrong letters the player has
guessed. This function needs four parameters passed to work correctly.
HANGMANPICS is a list of strings that hold the ASCII art for each possible hangman
board. correctLetters and missedLetters are strings made up of the letters
that the player has guessed that are in and not in the secret word. And secretWord
is the secret word the player is trying to guess. This function has no return value.

� getGuess(alreadyGuessed) takes a string of letters the player has already
guessed and will keep asking the player for a letter that is a letter that he hasn't
already guessed. (That is, a letter that is not in alreadyGuessed. This function
returns the string of the acceptable letter the player guessed.

� playAgain() is a function that asks if the player wants to play another round of
Hangman. This function returns True if the player does and False if the player

131

9 - Hangman

doesn't.

We'll now start the code for the main part of the game, which will call the above
functions as needed. Look back at our flow chart.

Figure 9-4: The complete flow chart of Hangman.

The Main Code for Hangman

We need to write code that does everything in this flow chart, and does it in order. The
main part of the code starts at line 106. Everything previous was just function definitions
and a very large variable assignment for HANGMANPICS.

Setting Up the Variables

106. print('H A N G M A N')

132

107. missedLetters = ''
108 . correctLetters = ''
109. secretWord = getRandomWord(words)
110. gameIsDone = False

Line 106 is the first actual line that executes in our game. We start by assigning a blank
string for missedLetters and correctLetters, because the player has not guessed
any missed or correct letters yet. Then we call getRandomWord(words), where words
is a variable with the huge list of possible secret words we assigned on line 59. The return
value of getRandomWord(words) is one of these words, and we save it to the
secretWord variable. Then we also set a variable named gameIsDone to False . We
will set gameIsDone to True when we want to signal that the game is over and the
program should ask the player if they want to play again.

Setting the values of these variables is what we do before the player starts guessing letters.

Displaying the Board to the Player

112 . while True:
113. displayBoard(HANGMANPICS, missedLetters,

correctLetters, secretWord)

The while loop's condition is always True, which means we will always loop forever
until a break statement is encountered. We will execute a break statement when the game
is over (either because the player won or the player lost).

Line 113 calls our displayBoard() function, passing it the list of hangman ASCII art
pictures and the three variables we set on lines 107, 108, and 109. Program execution moves
to the start of displayBoard() at line 66. Based on how many letters the player has
correctly guessed and missed, this function displays the appropriate hangman board to the
player.

Letting the Player Enter Their Guess

115. # Let the player type in a letter.
116. guess = getGuess(missedLetters + correctLetters)

If you look at our flow chart, you see only one arrow going from the "Show the board and
the blanks to the player." box to the "Ask a player to guess a letter." box. Since we have
already written a function to get the guess from the player, let's call that function. Remember
that the function needs all the letters in missedLetters and correctLetters
combined, so we will pass as an argument a string that is a concatenation of both of those
strings. This argument is needed by getGuess() because the function has code to check if
the player types in a letter that they have already guessed.

133

9 - Hangman

Checking if the Letter is in the Secret Word

118. if guess in secretWord:
119. correctLetters = correctLetters + guess

Now let's see if the single letter in the guess string exists in secretWord. If it does
exist, then we should concatenate the letter in guess to the correctLetters string.
Next we can check if we have guessed all of the letters and won.

Checking if the Player has Won

121. # Check if the player has won
122. foundAllLetters = True
123. for i in range(len(secretWord)):
124. if secretWord[i] not in correctLetters:
125. foundAllLetters = False
126. break

How do we know if the player has guessed every single letter in the secret word? Well,
correctLetters has each letter that the player correctly guessed and secretWord is
the secret word itself. We can't just check if correctLetters == secretWord
because consider this situation: if secretWord was the string 'otter' and
correctLetters was the string 'orte' , then correctLetters ==
secretWord would be False even though the player has guessed each letter in the
secret word.

The player simply guessed the letters out of order and they still win, but our program
would incorrectly think the player hasn't won yet. Even if they did guess the letters in order,
correctLetters would be the string 'oter' because the player can't guess the letter t
more than once. The expression 'otter' == 'oter' would evaluate to False even
though the player won.

The only way we can be sure the player won is to go through each letter in
secretWord and see if it exists in correctLetters . If, and only if, every single letter
in secretWord exists in correctLetters will the player have won.

Note that this is different than checking if every letter in correctLetters is in
secretWord. If correctLetters was the string 'ot' and secretWord was
'otter', it would be true that every letter in 'ot' is in 'otter' , but that doesn't mean
the player has guessed the secret word and won.

So how can we do this? We can loop through each letter in secretWord and if we find
a letter that does not exist in correctLetters , we know that the player has not guessed
all the letters. This is why we create a new variable named foundAllLetters and set it

134

to the Boolean value True . We start out assuming that we have found all the letters, but
will change foundAllLetters to False w hen we find a letter in secretWord that is
not in correctLetters.

The for loop will go through the numbers 0 up to (but not including) the length of the
word. Remember that range(5) will evaluate to the list [0, 1, 2, 3, 4] . So on
line 123, the program executes all the code inside the for-block with the variable i will be
set to 0, then 1, then 2, then 3, then 4.

We use range(len(secretWord)) so that i can be used to access each letter in the
secret word. So if the first letter in secretWord (which is located at secretWord[0])
is not in correctLetters, we know we can set foundAllLetters to False. Also,
because we don't have to check the rest of the letters in secretWord, we can just break
out of this loop. Otherwise, we loop back to line 123 and check the next letter.

If foundAllLetters manages to survive every single letter without being turned to
False, then it will keep the original True value we gave it. Either way, the value in
foundAllLetters is accurate by the time we get past this for loop and run line 127.

129. if foundAllLetters:
130 . print('Yes! The secret word is "' +

secretWord + '"! You have won!')
131. gameIsDone = True

This is a simple check to see if we found all the letters. If we have found every letter in
the secret word, we should tell the player that they have won. We will also set the
gameIsDone variable to True. We will check this variable to see if we should let the
player guess again or if the player is done guessing.

When the Player Guesses Incorrectly

130. else:

This is the start of the else-block. Remember, the code in this block will execute if the
condition was False. But which condition? To find out, point your finger at the start of
the else keyword and move it straight up. You will see that the else keyword's
indentation is the same as the if keyword's indentation on line 118. So if the condition on
line 118 was False, then we will run the code in this else-block. Otherwise, we skip down
past the else-block to line 140.

131. missedLetters = missedLetters + guess

135

9 - Hangman

Because the player's guessed letter was wrong, we will add it to the missedLetters
string. This is like what we did on line 119 when the player guessed correctly.

133. # Check if player has guessed too many times and
lo st

134. if len(missedLetters) == len(HANGMANPICS) - 1:
135. displayBoard(HANGMANPICS, missedLetters,

correctLetters, secretWord)
136. print('You have run out of guesses!\nAfter '

+ str(len(missedLetters)) + ' missed guesses and ' + str
(len(correctLetters)) + ' correct guesses, the word was
"' + secretWord + '"')

137. gameIsDone = True

Think about how we know when the player has guessed too many times. When you play
Hangman on paper, this is when the drawing of the hangman is finished. We draw the
hangman on the screen with print() calls, based on how many letters are in
missedLetters. Remember that each time the player guesses wrong, we add (or as a
programmer would say, concatenate) the wrong letter to the string in missedLetters.
So the length of missedLetters (or, in code, len(missedLetters)) can tell us the
number of wrong guesses.

At what point does the player run out of guesses and lose? Well, the HANGMANPICS list
has 7 pictures (really, they are ASCII art strings). So when len(missedLetters)
equals 6, we know the player has lost because the hangman picture will be finished.
(Remember that HANGMANPICS[0] is the first item in the list, and HANGMANPICS[6]
is the last one. This is because the index of a list with 7 items goes from 0 to 6, not 1 to 7.)

So why do we have len(missedLetters) == len(HANGMANPICS) - 1 as
the condition on line 134, instead of len(missedLetters) == 6 ? Pretend that we
add another string to the HANGMANPICS list (maybe a picture of the full hangman with a
tail, or a third mutant arm). Then the last picture in the list would be at HANGMANPICS
[7]. So not only would we have to change the HANGMANPICS list with a new string, but
we would also have to remember to change line 134 to len(missedLetters) == 7 .
This might not be a big deal for a program like Hangman, but when you start writing larger
programs you may have to change several different lines of code all over your program just
to make a change in the program's behavior. This way, if we want to make the game harder
or easier, we just have to add or remove ASCII art strings to HANGMANPICS and change
nothing else.

A second reason we user len(HANGMANPICS) - 1 is so that when we read the code
in this program later, we know why this program behaves the way it does. If you wrote
len(missedLetters) == 6 and then looked at the code two weeks later, you may
wonder what is so special about the number 6. You may have forgotten that 6 is the last
index in the HANGMANPICS list. Of course, you could write a comment to remind yourself,
like:

136

134. if len(missedLetters) == 6: # 6 is the last index in the
HANGMANPICS list

But it is easier to just use len(HANGMANPICS) - 1 instead.

So, when the length of the missedLetters string is equal to len(HANGMANPICS)
- 1, we know the player has run out of guesses and has lost the game. We print a long
string telling the user what the secret word was, and then set the gameIsDone value to the
Boolean value True. This is how we will tell ourselves that the game is done and we
should start over.

Remember that when we have \n in a string, that represents the newline character.

139. # Ask the player if they want to play again (but only
if t he game is done).

140. if gameIsDone:
141. if playAgain():
142. missedLetters = ''
143. correctLetters = ''
144. gameIsDone = False
145. secretWord = getRandomWord(words)

If the player won or lost after guessing their letter, then our code would have set the
gameIsDone variable to True. If this is the case, we should ask the player if they want
to play again. We already wrote the playAgain() function to handle getting a yes or no
from the player. This function returns a Boolean value of True if the player wants to play
another game of Hangman, and False if they've had enough.

If the player does want to play again, we will reset the values in missedLetters and
correctLetters to blank strings, set gameIsDone to False, and then choose a new
secret word by calling getRandomWord() again, passing it the list of possible secret
words.

This way, when we loop back to the beginning of the loop (on line 112) the board will be
back to the start (remember we decide which hangman picture to show based on the length
of missedLetters, which we just set as the blank string) and the game will be just as
the first time we entered the loop. The only difference is we will have a new secret word,
because we programmed getRandomWord() to return a randomly chosen word each
time we call it.

There is a small chance that the new secret word will be the same as the old secret word,
but this is just a coincidence. Let's say you flipped a coin and it came up heads, and then
you flipped the coin again and it also came up heads. Both coin flips were random, it was
just a coincidence that they came up the same both times. Accordingly, you may get the

137

9 - Hangman

same word return from getRandomWord() twice in a row, but this is just a
coincidence.

146. else:
147. break

If the player typed in 'no' when asked if they wanted to play again, then they return
value of the call to the playAgain() function would be False and the else-block
would have executed. This else-block only has one line, a break statement. This causes
the execution to jump to the end of the loop that was started on line 112. But because there
is no more code after the loop, the program terminates.

Making New Changes to the Hangman Program

This program was much bigger than the Dragon Realm program, but this program is also
more sophisticated. It really helps to make a flow chart or small sketch to remember how
you want everything to work. Take a look at the flow chart and try to find the lines of code
that represent each block.

At this point, you can move on to the next chapter. But I suggest you keep reading on to
find out about some ways we can improve our Hangman game.

After you have played Hangman a few times, you might think that six guesses aren't
enough to get many of the words. We can easily give the player more guesses by adding
more multi-line strings to the HANGMANPICS list. It's easy, just change the] square
bracket on line 58 to a ,''' comma and three quotes (see line 57 below). Then add the
following:

58. ==========''', '''
59.
60. +----+
61. | |
62. [O |
63. /|\ |
64. / \ |
65. |
66. ==========''', '''
67.
68. +----+
69. | |
70. [O] |
71. /|\ |
72. / \ |
73. |
74. ==========''']

138

We have added two new multi-line strings to the HANGMANPICS list, one with the
hangman's left ear drawn, and the other with both ears drawn. Because our program will tell
the player they have lost when the number of guesses is the same as the number of strings
in HANGMANPICS (minus one), this is the only change we need to make.

We can also change the list of words by changing the words on line 59. Instead of
animals, we could have colors:

59. words = 'red orange yellow green blue indigo violet white
bla ck brown'.split()

60. Or shapes:
61. words = 'square triangle rectangle circle ellipse rhombus

trapazoid chevron pentagon hexagon septagon
octogon'.split()

62. Or fruits:
63. words = 'apple orange lemon lime pear watermelon grape

grapefruit cherry banana cantalope mango strawberry
tomato'.split()

Dictionaries

With some modification, we can change our code so that our Hangman game can use all
of these words as separate sets. We can tell the player which set the secret word is from
(like "animal", "color", "shape", or "fruit"). This way, the player isn't guessing animals all
the time.

To make this change, we will introduce a new data type called a dictionary. A
dictionary is a collection of other values much like a list, but instead of accessing the items
in the dictionary with an integer index, you access them with an index of any data type (but
most often strings).

Try typing the following into the shell:

>>> stuff = {'hello':'Hello there, how are you?',
'chat':'How is the weather?', 'goodbye':'It was
nice talking to you!'}
>>>

Those are curly braces { and }. On the keyboard they are on the same key as the square
braces [and]. We use curly braces to type out a dictionary value in Python. The values in
between them are key-value pairs. The keys are the things on the left of the colon and the
values are on the right of the colon. You can access the values (which are like items in lists)
in the dictionary by using the key (which are like indexes in lists). Try typing into the shell
stuff['hello'] and stuff['chat'] and stuff['goodbye']:

139

9 - Hangman

>>> stuff['hello']
'Hello there, how are you?'
>>> stuff['chat']
'How is the weather?'
>>> stuff['goodbye']
'It was nice talking to you!'
>>>

Getting the Size of Dictionaries with len()

You see, instead of putting an integer index in between the square brackets, you put a
key string index. This will evaluate to the value for that key. You can get the size (that is,
how many key-value pairs in the dictionary) with the len() function. Try typing len
(stuff) into the shell:

>>> len(stuff)
3
>>>

The list version of this dictionary would have only the values, and look something like
this:

listStuff = ['Hello there, how are you?', 'How is
the weather?', 'It was nice talking to you!']

The list doesn't have any keys, like 'hello' and 'chat' and 'goodbye' in the
dictionary. We have to use integer indexes 0, 1, and 2.

The Difference Between Dictionaries and Lists

Dictionaries are different from lists because they are unordered . The first item in a list
named listStuff would be listStuff[0]. But there is no "first" item in a
dictionary, because dictionaries do not have any sort of order. Try typing this into the shell:

>>> favorites1 = {'fruit':'apples',
'animal':'cats', 'number':42}
>>> favorites2 = {'animal':'cats', 'number':42,
'fruit':'apples'}
>>> favorites1 == favorites2
True

140

>>>

As you can see, the expression favorites1 == favorites2 evaluates to True
because dictionaries are unordered, and they are considered to be the same if they have the
same key-value pairs in them. Lists are ordered, so a list with the same values in them but
in a different order are not the same. Try typing this into the shell:

>>> listFavs1 = ['apples', 'cats', 42]
>>> listFavs2 = ['cats', 42, 'apples']
>>> listFavs1 == listFavs2
False
>>>

As you can see, the two lists listFavs1 and listFavs2 are not considered to be the
same because order matters in lists.

You can also use integers as the keys for dictionaries. Dictionaries can have keys of any
data type, not just strings. But remember, because 0 and '0' are different values, they will
be different keys. Try typing this into the shell:

>>> myDict = {'0':'a string', 0:'an integer'}
>>> myDict[0]
'an integer'
>>> myDict['0']
'a string'
>>>

You might think that using a for loop is hard with dictionaries because they do not have
integer indexes. But actually, it's easy. Try typing the following into the shell. (Here's a
hint, in IDLE, you do not have to type spaces to start a new block. IDLE does it for you. To
end the block, just insert a blank line by just hitting the Enter key. Or you could start a new
file, type in this code, and then press F5 to run the program.)

>>> favorites = {'fruit':'apples', 'animal':'cats',
'number':42}
>>> for i in favorites:
... print(i)

fruit
number
animal
>>> for i in favorites:
... print(favorites[i])

141

9 - Hangman

apples
42
cats
>>>

As you can see, if you just use a dictionary in a for loop, the variable i will take on the
values of the dictionary's keys, not its values. But if you have the dictionary and the key,
you can get the value as we do above with favorites[i]. But remember that because
dictionaries are unordered, you cannot predict which order the for loop will execute in.
Above, we typed the 'animal' key as coming before the 'number' key, but the for
loop printed out 'number' before 'animal'.

Dictionaries also have two useful methods, keys() and values(). These will return
values of a type called dict_keys and dict_values, respectively. Those data types
are beyond the scope of this book, but you can easily convert them to lists with the list()
function (just like str() converts a value to a string value.) Then you will have an ordered
list of the key values and the value values in the dictionary value. Try typing the following
into the shell:

>>> favorites = {'fruit':'apples', 'animal':'cats',
'number':42}
>>> list(favorites.keys())
['fruit', 'number', 'animal']
>>> list(favorites.values())
['apples', 42, 'cats']
>>>

Using these methods to get a list of the keys and values that are in a dictionary can be
very helpful. Do not forget to convert the return value of dict_keys and dict_keys
with the dict_keys function first, otherwise you may get errors in your program.

Sets of Words for Hangman

We will make changes to our original Hangman program. These changes can be
downloaded from http://inventwithpython.com/hangman2.py

So how can we use dictionaries in our game? First, let's change the list words into a
dictionary whose keys are strings and values are lists of strings. (Remember that the string
method split() evaluates to a list.

59. words = {'Colors':'red orange yellow green blue indigo
violet white black brown'.split(),

142

60. 'Shapes':'square triangle rectangle circle ellipse rhombus
tra pazoid chevron pentagon hexagon septagon octogon'.split
(),

61. 'Fruits':'apple orange lemon lime pear watermelon grape
grapefruit cherry banana cantalope mango strawberry
tomato'.split(),

62. 'Animals':'bat bear beaver cat cougar crab deer dog donkey
duck eagle fish frog goat leech lion lizard monkey moose
mouse otter owl panda python rabbit rat shark sheep skunk
squid tiger turkey turtle weasel whale wolf wombat
zebra'.split()}

This code is put across multiple lines in the file, even though the Python interpreter thinks
of it as just one "line of code." (The line of code doesn't end until the final } curly brace.)

The random.choice() Function

Now we will have to change our getRandomWord() function so that it chooses a
random word from a dictionary of lists of strings, instead of from a list of strings. Here is
what the function originally looked like:

61. def getRandomWord(wordList):
62. # This function returns a random string from the

passed list of strings.
63. wordIndex = random.randint(0, len(wordList) - 1)
64. return wordList[wordIndex]

Change the code in this function so that it looks like this:

64. def getRandomWord(wordDict):
65. # This function returns a random string from the

passed dictionary of lists of strings, and the key also.
66. # First, randomly select a key from the dictionary:
67. wordKey = random.choice(list(wordDict.keys()))
68.
69. # Second, randomly select a word from the key's list

in the dictionary:
70. wordIndex = random.randint(0, len(wordDict[wordKey]) -

1)
71.
72. return [wordDict[wordKey][wordIndex], wordKey]

Line 61 just changes the name of the parameter to something a little more descriptive.
Now instead of choosing a random word from a list of strings, first we choose a random key
from the dictionary and then we choose a random word from the key's list of strings. Line 65
calls a new function in the random module named choice(). The choice() function
has one parameter, a list. The return value of choice() is an item randomly selected from

143

9 - Hangman

this list each time it is called.

Remember that randint(a, b) will return a random integer between (and including)
the two integers a and b and choice(a) returns a random item from the list a. Look at
these two lines of code, and figure out why they do the exact same thing:

random.randint(0, 9)
random.choice(list(range(0, 10)))

Line 64 (line 70 in the new code) has also been changed. Now instead of returning the
string wordList[wordIndex] , we are returning a list with two items. The first item is
wordDict[wordKey][wordIndex]. The second item is wordKey. We return a list
because we actually want the getRandomWord() to return two values, so putting those
two values in a list and returning the list is the easiest way to do this.

Evaluating a Dictionary of Lists

wordDict[wordKey][wordIndex] may look ki nd of complicated, but it is just an
expression you can evaluate one step at a time like anything else. First, imagine that
wordKey had the value 'Fruits' (which was chosen on line 65) and wordIndex has
the value 5 (chosen on line 68). Here is how wordDict[wordKey][wordIndex]
would evaluate:

wordDict[wordKey][wordIndex]

wordDict['Fruits'][5]

['apple', 'orange', 'lemon', 'lime', 'pear',
'watermelon', 'grape', 'grapefruit', 'cherry',
'banana', 'cantalope', 'mango', 'strawberry',
'tomato'][5]

'watermelon'

In the above case, the item in the list this function returns would be the string
'watermelon'. (Remember that indexes start at 0, so [5] refers to the 6th item in the
list.)

There are just three more changes to make to our program. The first two are on the lines
that we call the getRandomWord() function. The function is called on lines 109 and 145
in the original program:

144

108. correctLetters = ''
109 . secretWord = getRandomWord(words)
110. gameIsDone = False

...

144. gameIsDone = False
145. secretWord = getRandomWord(words)
146. else:

Because the getRandomWord() function now returns a list of two items instead of a
string, secretWord will be assigned a list, not a string. We would then have to change
the code as follows:

108. correctLetters = ''
109 . secretWord = getRandomWord(words)
110. secretKey = secretWord[1]
111. secretWord = secretWord[0]
112. gameIsDone = False

...

144. gameIsDone = False
145. secretWord = getRandomWord(words)
146. secretKey = secretWord[1]
147. secretWord = secretWord[0]
148. else:

With the above changes, secretWord is first a list of two items. Then we add a new
variable named secretKey and set it to the second item in secretWord. Then we set
secretWord itself to the first item in the secretWord list. That means that
secretWord will then be a string.

Multiple Assignment

But there is an easier way by doing a little trick with assignment statements. Try typing
the following into the shell:

>>> a, b, c = ['apples', 'cats', 42]
>>> a
'apples'
>>> b
'cats'
>>> c

145

9 - Hangman

42
>>>

The trick is to put the same number of variables (delimited by commas) on the left side of
the = sign as are in the list on the right side of the = sign. Python will automatically assign
the first item's value in the list to the first variable, the second item's value to the second
variable, and so on. But if you do not have the same number of variables on the left side as
there are items in the list on the right side, the Python interpreter will give you an error.

>>> a, b, c, d = ['apples', 'cats', 42]

Traceback (most recent call last):
 File "<pyshell#8>", line 1, in <module>
 a, b, c, d = ['apples', 'cats', 42]
ValueError: need more than 3 values to unpack

>>> a, b, c, d = ['apples', 'cats']

Traceback (most recent call last):
 File "<pyshell#9>", line 1, in <module>
 a, b, c = ['apples', 'cats']
ValueError: need more than 2 values to unpack
>>>

So we should change our code in Hangman to use this trick, which will mean our
program uses fewer lines of code.

118. correctLetters = ''
119. secretWord, secretKey = getRandomWord(words)
120. gameIsDone = False

...

155. gameIsDone = False
156. secretWord, secretKey = getRandomWord(words)
157. else:

Printing the Word Category for the Player

The last change we will make is to add a simple print() cal l to tell the player which
set of words they are trying to guess. This way, when the player plays the game they will
know if the secret word is an animal, color, shape, or fruit. Add this line of code after line
112. Here is the original code:

146

112. while True:
113 . displayBoard(HANGMANPICS, missedLetters,

correctLetters, secretWord)

Add the line so your program looks like this:

122. while True:
123 . print('The secret word is in the set: ' + secretKey)
124. displayBoard(HANGMANPICS, missedLetters,

correctLetters, secretWord)

Now we are done with our changes. Instead of just a single list of words, the secret word
will be chosen from many different lists of words. We will also tell the player which set of
words the secret word is from. Try playing this new version. You can easily change the
words dictionary on line 59 to include more sets of words.

Summary

We're done with Hangman. This has been a long chapter, and several new concepts have
been introduced. But Hangman has been our most advanced game yet. As your games get
more and more complex, it'll be a good idea to sketch out a flow chart on paper of what
happens in your program.

Methods are functions that are associated with values. The return values of methods
depend on the values that the method is associated with.

for loops iterate over the items in a list. The range() function is often used with for
loops because it is an easy way to create lists of sequential numbers.

Else if statements (which use the elif keyword) will execute their block if their
condition is True and the previous if and elif conditions are False

Dictionaries are very similar to lists except that they can use any value for an index. The
indexes in dictionaries are called keys. Keys can be strings, integers, or any value of any
data type.

147

9 - Hangman

Topics Covered In This Chapter:

� Artificial Intelligence
� List References
� Short-Circuit Evaluation
� The None Value

We will now create a Tic Tac Toe game where the player plays against a simple artificial
intelligence. An artificial intelligence (or AI) is a computer program that can
intelligently respond to the player's moves. This game doesn't introduce any complicated
new concepts. We will see that the artificial intelligence that plays Tic Tac Toe is really just
a few lines of code.

Tic Tac Toe is a simple game to play with a paper and pencil between two people. One
player is X and the other player is O. On a simple nine square grid (which we call the
board), the players take turns placing their X or O o)n the board. If a player gets three of
their marks on the board in a row, column or one of the two diagonals, they win.

Most games of Tic Tac Toe end in a draw which happens when the board is filled up
with neither player having three marks in a row. Instead of second player, our artificial
intelligence will make moves against the user. You can learn more about Tic Tac Toe from
Wikipedia: http://en.wikipedia.org/wiki/Tic-tac-toe

While this chapter may not introduce many new programming concepts, it does make
use of our existing programming knowledge to make an intelligent Tic Tac Toe player.
Let's get started by looking at a sample run of the program.

148

Sample Run of Tic Tac Toe

Welcome to Tic Tac Toe!
Do you want to be X or O?
X
The c omputer will go first.
 | |
 O | |

 | |
 | |
 | |
What is your next move? (1-9)
3
 | |
 O | |

 | |
 O | | X
 | |
What is your next move? (1-9)
4
 | |
 O | | O
X

 | |
 O | | X
 | |
What is your next move? (1-9)
5
 | |
 O | O | O
X

 | |

149

10 - Tic Tac Toe

 O | | X
 | |
The computer has beaten you! You lose.
Do you want to play again? (yes or no)
no

Source Code of Tic Tac Toe

In a new file editor window, type in this source code and save it as tictactoe.py. Then run
the game by pressing F5. You do not need to type in this program before reading this
chapter. You can also download the source code by visiting the website at the URL
http://inventwithpython.com/chapter10 and following the instructions on the webpage.

tictactoe.py
This code can be downloaded from http://inventwithpython.com/tictactoe.py
If you get errors after typing this code in, compare it to the book's code with the online
diff tool at http://inventwithpython.com/diff or email the author at
al@inventwithpython.com

1. # Tic Tac Toe
2.
3. import random
4.
5. def drawBoard(board):
6. # This function prints out the board that it was

passed.
7.
8. # "board" is a list of 10 strings representing the

board (ignore index 0)
9. print(' | |')

10. print(' ' + board[7] + ' | ' + board[8] + ' | ' +
board[9])

11. print(' | |')
12. print('-----------')
13. print(' | |')
14. print(' ' + board[4] + ' | ' + board[5] + ' | ' +

board[6])
15. print(' | |')
16. print('-----------')
17. print(' | |')
18. print(' ' + board[1] + ' | ' + board[2] + ' | ' +

board[3])
19. print(' | |')
20.
21. def inputPlayerLetter():
22. # Let's the player type which letter they want to be.
23. # Returns a list with the player's letter as the

first item, and the computer's letter as the second.
24. letter = ''
25. while not (letter == 'X' or letter == 'O'):
26. print('Do you want to be X or O?')

150

27. letter = input().upper()
28.
29. # the first element in the tuple is the player's

letter, the second is the computer's letter.
30. if letter == 'X':
31. return ['X', 'O']
32. else:
33. return ['O', 'X']
34.
35. def whoGoesFirst():
36. # Randomly choose the player who goes first.
37. if random.randint(0, 1) == 0:
38. return 'computer'
39. else:
40. return 'player'
41.
42. def playAgain():
43. # This function returns True if the player wants to

play again, otherwise it returns False.
44. print('Do you want to play again? (yes or no)')
45. return input().lower().startswith('y')
46.
47. def makeMove(board, letter, move):
48. board[move] = letter
49.
50. def isWinner(bo, le):
51. # Given a board and a player's letter, this function

returns True if that player has won.
52. # We use bo instead of board and le instead of letter

so we don't have to type as much.
53. return ((bo[7] == le and bo[8] == le and bo[9] == le)

or # across the top
54. (bo[4] == le and bo[5] == le and bo[6] == le) or #

across the middle
55. (bo[1] == le and bo[2] == le and bo[3] == le) or #

across the bottom
56. (bo[7] == le and bo[4] == le and bo[1] == le) or #

down the left side
57. (bo[8] == le and bo[5] == le and bo[2] == le) or #

down the middle
58. (bo[9] == le and bo[6] == le and bo[3] == le) or #

down the right side
59. (bo[7] == le and bo[5] == le and bo[3] == le) or #

diagonal
60. (bo[9] == le and bo[5] == le and bo[1] == le)) #

diagonal
61.
62. def getBoardCopy(board):
63. # Make a duplicate of the board list and return it the

duplicate.
64. dupeBoard = []
65.
66. for i in board:
67. dupeBoard.append(i)

151

10 - Tic Tac Toe

68.
69. return dupeBoard
70.
71. def isSpaceFree(board, move):
72. # Return true if the passed move is free on the passed

board.
73. return board[move] == ' '
74.
75. def getPlayerMove(board):
76. # Let the player type in his move.
77. move = ' '
78. while move not in '1 2 3 4 5 6 7 8 9'.split() or not

isSpaceFree(board, int(move)):
79. print('What is your next move? (1-9)')
80. move = input()
81. return int(move)
82.
83. def chooseRandomMoveFromList(board, movesList):
84. # Returns a valid move from the passed list on the

passed board.
85. # Returns None if there is no valid move.
86. possibleMoves = []
87. for i in movesList:
88. if isSpaceFree(board, i):
89. possibleMoves.append(i)
90.
91. if len(possibleMoves) != 0:
92. return random.choice(possibleMoves)
93. else:
94. return None
95.
96. def getComputerMove(board, computerLetter):
97. # Given a board and the computer's letter, determine

where to move and return that move.
98. if computerLetter == 'X':
99. playerLetter = 'O'

100. else:
101. playerLetter = 'X'
102.
103. # Here is our algorithm for our Tic Tac Toe AI:
104. # First, check if we can win in the next move
105. for i in range(1, 10):
106. copy = getBoardCopy(board)
107. if isSpaceFree(copy, i):
108. makeMove(copy, computerLetter, i)
109. if isWinner(copy, computerLetter):
110. return i
111.
112. # Check if the player could win on his next move, and

block them.
113. for i in range(1, 10):
114. copy = getBoardCopy(board)
115. if isSpaceFree(copy, i):
116. makeMove(copy, playerLetter, i)

152

117. if isWinner(copy, playerLetter):
118 . return i
119.
120. # Try to take one of the corners, if they are free.
121. move = chooseRandomMoveFromList(board, [1, 3, 7, 9])
122. if move != None:
123. return move
124.
125. # Try to take the center, if it is free.
126. if isSpaceFree(board, 5):
127. return 5
128.
129. # Move on one of the sides.
130. return chooseRandomMoveFromList(board, [2, 4, 6, 8])
131.
132. def isBoardFull(board):
133. # Return True if every space on the board has been

taken. Otherwise return False.
134. for i in range(1, 10):
135. if isSpaceFree(board, i):
136. return False
137. return True
138.
139.
140. print('Welcome to Tic Tac Toe!')
141.
142. while True:
143. # Reset the board
144. theBoard = [' '] * 10
145. playerLetter, computerLetter = inputPlayerLetter()
146. turn = whoGoesFirst()
147. print('The ' + turn + ' will go first.')
148. gameIsPlaying = True
149.
150. while gameIsPlaying:
151. if turn == 'player':
152. # Player's turn.
153. drawBoard(theBoard)
154. move = getPlayerMove(theBoard)
155. makeMove(theBoard, playerLetter, move)
156.
157. if isWinner(theBoard, playerLetter):
158. drawBoard(theBoard)
159. print('Hooray! You have won the game!')
160. gameIsPlaying = False
161. else:
162. if isBoardFull(theBoard):
163. drawBoard(theBoard)
164. print('The game is a tie!')
165. break
166. else:
167. turn = 'computer'
168.
169. else:

153

10 - Tic Tac Toe

170. # Computer's turn.
171. move = getComputerMove(theBoard,

computerLetter)
172. makeMove(theBoard, computerLetter, move)
173.
174. if isWinner(theBoard, computerLetter):
175. drawBoard(theBoard)
176. print('The computer has beaten you! You

lose.')
177. gameIsPlaying = False
178. else:
179. if isBoardFull(theBoard):
180. drawBoard(theBoard)
181. print('The game is a tie!')
182. break
183. else:
184. turn = 'player'
185.
186. if not playAgain():
187. break

Designing the Program

Figure 10-1: Flow chart for Tic Tac Toe

154

Tic Tac Toe is a very easy and short game to play on paper. In our Tic Tac Toe computer
game, we'll let the player choose if they want to be X or O, randomly choose who goes
first, and then let the player and computer take turns making moves on the board. Here is
what a flow chart of this game could look like:

You can see a lot of the boxes on the left side of the chart are what happens during the
player's turn. The right side of the chart shows what happens on the computer's turn. The
player has an extra box for drawing the board because the computer doesn't need the board
printed on the screen. After the player or computer makes a move, we check if they won or
caused a tie, and then the game switches turns. If either the computer or player ties or wins
the game, we ask the player if they want to play again.

Representing the Board as Data

First, we need to figure out how we are going to represent the board as a variable. On
paper, the Tic Tac Toe board is drawn as a pair of horizontal lines and a pair of vertical
lines, with either an X, O, or empty space in each of the nine spaces.

In our program, we are going to represent the Tic Tac Toe board as a list of strings. Each
string will represent one of the nine positions on the board. We will give a number to each
of the spaces on the board. To make it easier to remember which index in the list is for
which piece, we will mirror the numbers on the keypad of our keyboard. See Figure 10-2.

Figure 10-2: The board will be numbered like the keyboard's number pad.

The strings will either be 'X' for the X player, 'O' for the O player, or a space string '
' to mark a spot on the board where no one has marked yet. The index of the string in the
list will also be the number of the space on the board.

So if we had a list with ten strings named board, then board[7] would be the top-left
square on the board (either an X, O, or blank space). board[5] would be the very center.
When the player types in which place they want to move, they will type a number from 1 to

155

10 - Tic Tac Toe

9. (Because there is no 0 on the keypad, we will just ignore the string at index 0 in our
list.)

Game AI

When we talk about how our AI
behaves, we will be talking about which
types of spaces on the board it will move
on. Just to be clear, we will label three
types of spaces on the Tic Tac Toe board:
corners, sides, and the center. Figure 10-3
is a chart of what each space is:

The AI for this game will follow a
simple algorithm. An algorithm is a
series of instructions to compute
something. This is a very loose In the case
of our Tic Tac Toe AI's algorithm, the
series of steps will determine which is the
best place to move. There is nothing in the
code that says, "These lines are an algorithm." like there is with a function's def-block. We
just consider the AI algorithm as all the code that is used in our program that determines the
AI's next move.

Our algorithm will have the following steps:

1. First, see if there is a move the computer can make that will win the game. If there is,
take that move. Otherwise, go to step 2.

2. See if there is a move the player can make that will cause the computer to lose the
game. If there is, we should move there to block the player. Otherwise, go to step 3.

3. Check if any of the corner spaces (spaces 1, 3, 7, or 9) are free. (We always want to
take a corner piece instead of the center or a side piece.) If no corner piece is free,
then go to step 4.

4. Check if the center is free. If so, move there. If it isn't, then go to step 5.
5. Move on any of the side pieces (spaces 2, 4, 6, or 8). There are no more steps,

because if we have reached step 5 the side spaces are the only spaces left.

This all takes place in the "Get computer's move." box on our flow chart. We could add
this information to our flow chart like this:

Figure 10-3: Locations of the side, corner, and center places.

156

Figure 10-4: The five steps of the "Get computer's move" algorithm.

The arrows leaving go to the "Check if computer won" box.

We will implement this algorithm as code in our getComputerMove() function, and
the other functions that getComputerMove() calls.

How the Code Works: Lines 1 to 81

Now that we know about how we want the program to work, let's look at what each line
does.

The Start of the Program

1. # Tic Tac Toe
2.
3. import random

The first couple of lines are a comment and importing the random module so we can
use the randint() function in our game.

157

10 - Tic Tac Toe

Printing the Board on the Screen

5. def drawBoard(board):
6. # This function prints out the board that it was

passed.
7.
8. # "board" is a list of 10 strings representing the

board (ignore index 0)
9. print(' | |')

10. print(' ' + board[7] + ' | ' + board[8] + ' | ' +
board[9])

11. print(' | |')
12. print('-----------')
13. print(' | |')
14. print(' ' + board[4] + ' | ' + board[5] + ' | ' +

board[6])
15. print(' | |')
16. print('-----------')
17. print(' | |')
18. print(' ' + board[1] + ' | ' + board[2] + ' | ' +

board[3])
19. print(' | |')

This function will print out the game board, marked as directed by the board parameter.
Remember that our board is represented as a list of ten strings, where the string at index 1
is the mark on space 1 on the Tic Tac Toe board. (And remember that we ignore the string
at index 0, because the spaces are labeled with numbers 1 to 9.) Many of our functions will
work by passing the board as a list of ten strings to our functions. Be sure to get the spacing
right in the strings that are printed, otherwise the board will look funny when it is printed
on the screen.

Just as an example, here are some values that the board parameter could have (on the
left) and what the drawBoard() function would print out:

Table 10-1: Examples of values of board and output from
drawBoard(board) calls.

board data structure drawBoard(board) ou tput

[' ', ' ', ' ', ' ', 'X',
 'O', ' ', 'X', ' ', 'O']

 | |
 X | | O
X

 | |
 | |

158

 | |

[' ', 'O', 'O', ' ', ' ',
 'X', ' ', ' ', ' ', ' ']

 | |
 | |
X

 | |
 O | O |
 | |

[' ', ' ', ' ', ' ', ' ',
 ' ', ' ', ' ', ' ', ' ']

 | |
 | |

 | |
 | |
 | |

[' ', 'X', 'X', 'X', 'X',
 'X', 'X', 'X', 'X', 'X']

 | |
 X | X | X
X

 | |
 X | X | X
 | |

['0', '1', '2', '3', '4',
'5', '6', '7', '8', '9']

 | |
 7 | 8 | 9
4

 | |
 1 | 2 | 3
 | |

159

10 - Tic Tac Toe

The second to last board filled with X's could not possibly have happened (unless the X
player skipped all of the O player's turns!) And the last board has strings of digits instead of
X and O, which are invalid strings for the board. But the drawBoard() function doesn't
care. It just prints the board parameter that it was passed. Computer programs only do
exactly what you tell them, even if you tell them the wrong things to do. We will just make
sure these invalid strings are not put into the passed list in the first place.

Letting the Player be X or O

21. def inputPlayerLetter():
22. # Let's the player type which letter they want to be.
23. # Returns a list with the player's letter as the

first item, and the computer's letter as the second.
24. letter = ''
25. while not (letter == 'X' or letter == 'O'):
26. print('Do you want to be X or O?')
27. letter = input().upper()

The inputPlayerLetter() is a simple function. It asks if the player wants to be X
or O, and will keep asking the player (with the while loop) until the player types in an X
or O. Notice on line 26 that we automatically change the string returned by the call to
input() to uppercase letters with the upper() string method.

The while loop's condition contains parentheses, which means the expression inside the
parentheses is evaluated first. If the letter variable was set to 'X', the expression would
evaluate like this:

while not (letter == 'X' or letter == 'O'):

while not ('X' == 'X' or 'X' == 'O'):

while not (True or False):

while not (True):

while not True:

while False:

As you can see, if letter has the value 'X' or 'O', then the loop's condition will be

160

False and lets the program execution continue.

29. # the first element in the tuple is the player's
let t er, the second is the computer's letter.

30. if letter == 'X':
31. return ['X', 'O']
32. else:
33. return ['O', 'X']

This function returns a list with two items. The first item (that is, the string at index 0)
will be the player's letter, and the second item (that is, the string at index 1) will be the
computer's letter. This if-else statement chooses the appropriate list to return.

Deciding Who Goes First

35. def whoGoesFirst():
36. # Randomly choose the player who goes first.
37. if random.randint(0, 1) == 0:
38. return 'computer'
39. else:
40. return 'player'

The whoGoesFirst() function does a virtual coin flip to determine who goes first,
the computer or the player. Instead of flipping an actual coin, this code gets a random
number of either 0 or 1 by calling the random.randint() function. If this function call
returns a 0, the whoGoesFirst() function returns the string 'computer' . Otherwise,
the function returns the string 'player'. The code that calls this function will use the
return value to know who will make the first move of the game.

Asking the Player to Play Again

42. def playAgain():
43. # This function returns True if the player wants to

play again, otherwise it returns False.
44. print('Do you want to play again? (yes or no)')
45. return input().lower().startswith('y')

The playAgain() function asks the player if they want to play another game. The
function returns True if the player types in 'yes' or 'YES' or 'y' or anything that
begins with the letter Y. For any other response, the function returns False. The order of
the method calls on line 151 is important. The return value from the call to the input()
function is a string that has its lower() method called on it. The lower() method
returns another string (the lowercase string) and that string has its startswith()
method called on it, passing the argument 'y'.

161

10 - Tic Tac Toe

There is no loop, because we assume that if the user entered anything besides a string
that begins with 'y', they want to stop playing. So, we only ask the player once.

Placing a mark on the Board

47. def makeMove(board, letter, move):
48. board[move] = letter

The makeMove() function is very simple and only one line. The parameters are a list
with ten strings named board, one of the player's letters (either 'X' or 'O') named
letter, and a place on the board where that player wants to go (which is an integer from
1 to 9) named move.

But wait a second. You might think that this function doesn't do much. It seems to
change one of the items in the board list to the value in letter . But because this code is
in a function, the board variable will be forgotten when we exit this function and leave the
function's scope.

Actually, this is not the case. This is because lists are special when you pass them as
arguments to functions. This is because you pass a reference to the list and not the list itself.
Let's learn about the difference between lists and list references.

List References

Try entering the following into the shell:

>>> spam = 42
>>> cheese = spam
>>> spam = 100
>>> spam
100
>>> cheese
42

This makes sense from what we know so far. We assign 42 to the spam variable, and
then we copy the value in spam and assign it to the variable cheese. When we later
change the value in spam to 100, this doesn't affect the value in cheese. This is because
spam and cheese are different variables that store different values.

But lists don't work this way. When you assign a list to a variable with the = sign, you
are actually assigning a reference to the list. A reference is a value that points to some bit
of data, and a list reference is a value that points to a list. Here is some code that will
make this easier to understand. Type this into the shell:

162

>>> spam = [0, 1, 2, 3, 4, 5]
>>> cheese = spam
>>> cheese[1] = 'Hello!'
>>> spam
[0, 'Hello!', 2, 3, 4, 5]
>>> cheese
[0, 'Hello!', 2, 3, 4, 5]

Notice that the line cheese = spam copies the list reference in spam to cheese,
instead of copying the list value itself. This is because the value stored in the spam
variable is a list reference, and not the list value itself. This means that the values stored in
both spam and cheese refer to the same list. There is only one list because the list was
not copied, the reference to the list was copied. So when you modify cheese in the
cheese[1] = 'Hello!' line, you are modifying the same list that spam refers to.
This is why spam seems to have the same list value that cheese does.

Remember when you first learned about variables, I said that variables were like boxes
that contain values. List variables don't actually contain lists at all, they contain references
to lists. Here are some pictures that explain what happens in the code you just typed in:

Figure 10-5: Variables do no store lists, but rather references to lists.

On the first line, the actual list is not contained in the spam variable but a reference to
the list. The list itself is not stored in any variable.

163

10 - Tic Tac Toe

Figure 10-6: Two variables store two references to the same list.

When you assign the reference in spam to cheese, the cheese variable contains a
copy of the reference in spam. Now both cheese and spam refer to the same list.

Figure 10-7: Changing the list changes all variables with references to that list.

164

When you alter the list that cheese refers to, the list that spam refers to is also changed
because they are the same list. If you want spam and cheese to store two different lists,
you have to create two different lists instead of copying a reference:

>>> spam = [0, 1, 2, 3, 4, 5]
>>> cheese = [0, 1, 2, 3, 4, 5]

In the above example, spam and cheese have two different lists stored in them (even
though these lists are identical in content). Now if you modify one of the lists, it will not
affect the other because spam and cheese have references to two different lists:

>>> spam = [0, 1, 2, 3, 4, 5]
>>> cheese = [0, 1, 2, 3, 4, 5]
>>> cheese[1] = 'Hello!'
>>> spam
[0, 'Hello!', 2, 3, 4, 5]
>>> cheese
[0, 1, 2, 3, 4, 5]

Figure 10-8 shows how the two references point to two different lists:

Figure 10-8: Two variables each storing references to two different lists.

165

10 - Tic Tac Toe

Using List References in makeMove()

Let's go back to the makeMove() function:

47. def makeMove(board, letter, move):
48. board[move] = letter

When we pass a list value as the argument for the board parameter, the function's local
variable is a copy of the reference, not a copy of the list itself. The letter and move
parameters are copies of the string and integer values that we pass. Since they are copies, if
we modify letter or move in this function, the original variables we used when we
called makeMove() would not be modified. Only the copies would be modified.

But a copy of the reference still refers to the same list that the original reference refers to.
So if we make changes to board in this function, the original list is modified. When we
exit the makeMove() function, the copy of the reference is forgotten along with the other
parameters. But since we were actually changing the original list, those changes remain
after we exit the function. This is how the makeMove() function modifies the list that a
reference of is passed.

Checking if the Player Has Won

50. def isWinner(bo, le):
51. # Given a board and a player's letter, this function

returns True if that player has won.
52. # We use bo instead of board and le instead of letter

so we don't have to type as much.
53. return ((bo[7] == le and bo[8] == le and bo[9] == le)

or # across the top
54. (bo[4] == le and bo[5] == le and bo[6] == le) or #

across the middle
55. (bo[1] == le and bo[2] == le and bo[3] == le) or #

across the bottom
56. (bo[7] == le and bo[4] == le and bo[1] == le) or #

down the left side
57. (bo[8] == le and bo[5] == le and bo[2] == le) or #

down the middle
58. (bo[9] == le and bo[6] == le and bo[3] == le) or #

down the right side
59. (bo[7] == le and bo[5] == le and bo[3] == le) or #

diagonal
60. (bo[9] == le and bo[5] == le and bo[1] == le)) #

diagonal

Lines 53 to 60 in the isWinner() function are actually one very long if statement. We
use bo and le for the board and letter parameters so that we have less to type in this

166

function. (This is a trick programmers sometimes use to reduce the amount they need to
type. Be sure to add a comment though, otherwise you may forget what bo and le are
supposed to mean.)

There are eight possible ways to win at Tic Tac Toe. First, have a line across the top,
middle, and bottom. Second, have a line down the left, middle, or right. And finally, have
either of the two diagonals. Note that each line of the condition checks if the three spaces
are equal to the letter provided (combined with the and operator) and we use the or
operator to combine the eight different ways to win. This means only one of the eight ways
must be true in order for us to say that the player who owns letter in le is the winner.

Let's pretend that le is 'O' , and the board looks like this:

 | |
 X | |
X

 | |
 O | O | O
 | |

If the board looks like that, then bo must be equal to [' ', 'O', 'O', 'O', '
', 'X', ' ', 'X', ' ', ' ']. Here is how the expression after the return
keyword on line 53 would evaluate:

Here is the expression as it is in the code:

53. return ((bo[7] == le and bo[8] == le and bo[9] == le) or
54. (bo[4] == le and bo[5] == le and bo[6] == le) or
55. (bo[1] == le and bo[2] == le and bo[3] == le) or
56. (bo[7] == le and bo[4] == le and bo[1] == le) or
57. (bo[8] == le and bo[5] == le and bo[2] == le) or
58. (bo[9] == le and bo[6] == le and bo[3] == le) or
59. (bo[7] == le and bo[5] == le and bo[3] == le) or
60. (bo[9] == le and bo[5] == le and bo[1] == le))

First Python will replace the variable bo with the value inside of it:

53. return (('X' == 'O' and ' ' == 'O' and ' ' == 'O') or
54. (' ' == 'O' and 'X' == 'O' and ' ' == 'O') or
55. ('O' == 'O' and 'O' == 'O' and 'O' == 'O') or

167

10 - Tic Tac Toe

56. ('X' == 'O' and ' ' == 'O' and 'O' == 'O') or
57. (' ' == 'O' and 'X' == 'O' and 'O' == 'O') or
58. (' ' == 'O' and ' ' == 'O' and 'O' == 'O') or
59. ('X' == 'O' and 'X' == 'O' and 'O' == 'O') or
60. (' ' == 'O' and 'X' == 'O' and 'O' == 'O'))

Next, Python will evaluate all those == comparisons inside the parentheses to a boolean value:

53. return ((False and False and False) or
54. (False and False and False) or
55. (True and True and True) or
56. (False and False and True) or
57. (False and False and True) or
58. (False and False and True) or
59. (False and False and True) or
60. (False and False and True))

Then the Python interpreter will evaluate all those expressions inside the parentheses:

53. return ((False) or
54. (False) or
55. (True) or
56. (False) or
57. (False) or
58. (False) or
59. (False) or
60. (False))

Since now there is only one value inside the parentheses, we can get rid of them:

53. return (False or
54. False or
55. True or
56. False or
57. False or
58. False or
59. False or
60. False)

Now we evaluate the expression that is connecter by all those or operators:

53. return (True)

168

Once again, we get rid of the parentheses, and we are left with one value:

53. return True

So given those values for bo and le , the expression would evaluate to True. Remember
that the value of le matters. If le is 'O' and X has won the game, the isWinner()
would return False.

Duplicating the Board Data

62. def getBoardCopy(board):
63. # Make a duplicate of the board list and return it

the duplicate.
64. dupeBoard = []
65.
66. for i in board:
67. dupeBoard.append(i)
68.
69. return dupeBoard

The getBoardCopy() function is here so that we can easily make a copy of a given
10-string list that represents a Tic Tac Toe board in our game. There are times that we will
want our AI algorithm to make temporary modifications to a temporary copy of the board
without changing the original board. In that case, we call this function to make a copy of the
board's list. The actual new list is created on line 64, with the blank list brackets [].

Line 64 actually creates a brand new list and stores a reference to it in dupeBoard. But
the list stored in dupeBoard is just an empty list. The for loop will go through the board
parameter, appending a copy of the string values in the original board to our duplicate
board. Finally, after the loop, we will return the dupeBoard variable's reference to the
duplicate board. So you can see how the getBoardCopy() function is building up a
copy of the original board and returning a reference to this new board, and not the original
one.

Checking if a Space on the Board is Free

71. def isSpaceFree(board, move):
72. # Return true if the passed move is free on the

passed board.
73. return board[move] == ' '

This is a simple function that, given a Tic Tac Toe board and a possible move, will return
if that move is available or not. Remember that free spaces on our board lists are marked as
a single space string.

169

10 - Tic Tac Toe

Letting the Player Enter Their Move

75. def getPlayerMove(board):
76. # Let the player type in his move.
77. move = ' '
78. while move not in '1 2 3 4 5 6 7 8 9'.split() or not

isSpaceFree(board, int(move)):
79. print('What is your next move? (1-9)')
80. move = input()
81. return int(move)

The getPlayerMove() function asks the player to enter the number for the space
they wish to move. The function makes sure that they enter a space that is a valid space (an
integer 1 through 9). It also checks that the space that is not already taken, given the Tic
Tac Toe board passed to the function in the board parameter.

The two lines of code inside the while loop simply ask the player to enter a number
from 1 to 9. The loop's condition will keep looping, that is, it will keep asking the player
for a space, as long as the condition is True. The condition is True if either of the
expressions on the left or right side of the or keyword is True.

The expression on the left side checks if the move that the player entered is equal to '1',
'2', '3', and so on up to '9' by creating a list with these strings (with the split()
method) and checking if move is in this list. '1 2 3 4 5 6 7 8 9'.split()
evaluates to be the same as ['1', '2', '3', '4', '5', '6', '7', '8',
'9'], but it easier to type.

The expression on the right side checks if the move that the player entered is a free space
on the board. It checks this by calling the isSpaceFree() function we just wrote.
Remember that isSpaceFree() will return True if the move we pass is available on
the board. Note that isSpaceFree() expects an integer for move, so we use the int()
function to evaluate an integer form of move.

We add the not operators to both sides so that the condition will be True when both of
these requirements are unfulfilled. This will cause the loop to ask the player again and
again until they enter a proper move.

Finally, on line 81, we will return the integer form of whatever move the player entered.
Remember that input() returns a string, so we will want to use the int() function to
evaluate the string as an integer.

Short-Circuit Evaluation

You may have noticed there is a possible problem in our getPlayerMove() function.
What if the player typed in 'X' or some other non-integer string? The move not in

170

'1 2 3 4 5 6 7 8 9'.split() expression on the left side of or would return
False as expected, and then we would evaluate the expression on the right side of the or
operator. But when we pass 'X' (which would be the value in move) to the int()
function, int('X') would give us an error. It gives us this error because the int()
function can only take strings of number characters, like '9' or '42', not strings like 'X'

As an example of this kind of error, try entering this into the shell:

>>> int('42')
42
>>> int('X')

Traceback (most recent call last):
 File "<pyshell#3>", line 1, in <module>
 int('X')
ValueError: invalid literal for int() with base
10: 'X'

But when you play our Tic Tac Toe game and try entering 'X' in for your move, this
error doesn't happen. The reason is because the while loop's condition is being short-
circuited.

What short-circuiting means is that because the expression on the left side of the or
keyword (move not in '1 2 3 4 5 6 7 8 9'.split()) evaluates to True, the
Python interpreter knows that the entire expression will evaluate to True. It doesn't matter
if the expression on the right side of the or keyword evaluates to True or False, because
only one value on the side of the or operator needs to be True.

Think about it: The expression True or False evaluates to True and the expression
True or True also evaluates to True. If the value on the left side is True, it doesn't
matter what the value is on the right side. So Python stops checking the rest of the
expression and doesn't even bother evaluating the not isSpaceFree(board, int
(move)) part. This means the int() and the isSpaceFree() functions are never
called.

This works out well for us, because if the expression on the right side is True then
move is not a string in number form. That would cause int() to give us an error. The
only times move not in '1 2 3 4 5 6 7 8 9'.split() evaluates to False
are when move is not a single-digit string. In that case, the call to int() would not give
us an error.

An Example of Short-Circuit Evaluation

Here's a short program that gives a good example of short-circuiting. Open a new file in
the IDLE editor and type in this program, save it as truefalsefizz.py, then press F5 to run it.

171

10 - Tic Tac Toe

Don't add the numbers down the left side of the program, those just appear in this book
to make the program's explanation easier to understand. The function calls in bold are the
function calls that are evaluated.

truefalsefizz.py
This code can be downloaded from http://inventwithpython.com/truefalsefizz.py
If you get errors after typing this code in, compare it to the book's code with the online
diff tool at http://inventwithpython.com/diff or email the author at
al@inventwithpython.com

1. def TrueFizz(message):
2. print(message)
3. return True
4.
5. def FalseFizz(message):
6. print(message)
7. return False
8.
9. if FalseFizz('Cats') or TrueFizz('Dogs'):

10. print('Step 1')
11.
12. if TrueFizz('Hello') or TrueFizz('Goodbye'):
13. print('Step 2')
14.
15. if TrueFizz('Spam') and TrueFizz('Cheese'):
16. print('Step 3')
17.
18. if FalseFizz('Red') and TrueFizz('Blue'):
19. print('Step 4')

When you run this program, you can see the output (the letters on the left side have been
added to make the output's explanation easier to understand):

A. Cats
B. Dogs
C. Step 1
D. Hello
E. Step 2
F. Spam
G. Cheese
H. Step 3
I. Red

172

This small program has two functions: TrueFizz() and FalseFizz() . TrueFizz
() wi ll display a message and return the value True, while FalseFizz() will display a
message and return the value False. This will help us determine when these functions are
being called, or when these functions are being skipped due to short-circuiting.

The First if Statement (Cats and Dogs)

The first if statement on line 9 in our small program will first evaluate TrueFizz().
We know this happens because Cats is printed to the screen (on line A in the output). The
entire expression could still be True if the expression to the right of the or keyword is
True. So the call TrueFizz('Dogs') one line 9 is evaluated, Dogs is printed to the
screen (on line B in the output) and True is returned. On line 9, the if statement's
condition evaluates to False or True, which in turn evaluates to True. Step 1 is then
printed to the screen. No short-circuiting took place for this expression's evaluation.

The Second if Statement (Hello and Goodbye)

The second if statement on line 12 also has short-circuiting. This is because when we call
TrueFizz('Hello') on line 12, it prints Hello (see line D in the output) and returns
True. Because it doesn't matter what is on the right side of the or keyword, the Python
interpreter doesn't call TrueFizz('Goodbye'). You can tell it is not called because
Goodbye is not printed to the screen. The if statement's condition is True, so Step 2 is
printed to the screen on line E.

The Third if Statement (Spam and Cheese)

The third if statement on line 15 does not have short-circuiting. The call to TrueFizz
('Spam') returns True , but we do not know if the entire condition is True or False
because of the and operator. So Python will call TrueFizz('Cheese'), which prints
Cheese and returns True. The if statement's condition is evaluated to True and
True, which in turn evaluates to True. Because the condition is True, Step 3 is printed
to the screen on line H.

The Fourth if Statement (Red and Blue)

The fourth if statement on line 18 does have short-circuiting. The FalseFizz
('Red') call prints Red on line I in the output and returns False. Because the left side
of the and keyword is False, it does not matter if the right side is True or False , the
condition will evaluate to False anyway. So TrueFizz('Blue') is not called and
Blue does not appear on the screen. Because the if statement's condition evaluated to
False, Step 4 is also not printed to the screen.

Short-circuiting can happen for any expression that includes the Boolean operators and
and or. It is important to remember that this can happen; otherwise you may find that some
function calls in the expression are never called and you will not understand why.

173

10 - Tic Tac Toe

How the Code Works: Lines 83 to 94

Choosing a Move from a List of Moves

83. def chooseRandomMoveFromList(board, movesList):
84. # Returns a valid move from the passed list on the

passed board.
85. # Returns None if there is no valid move.
86. possibleMoves = []
87. for i in movesList:
88. if isSpaceFree(board, i):
89. possibleMoves.append(i)

The chooseRandomMoveFromList() function will be of use to us when we are
implementing the code for our AI. The first parameter board is the 10-string list that
represents a Tic Tac Toe board. The second parameter movesList is a list of integers that
represent possible moves. For example, if movesList is [1, 3, 7, 9], that means
we should return the number for one of the corner spaces on the board.

The chooseRandomMoveFromList() function will then choose one of those moves
from the possibleMoves list. It also makes sure that the move that it chooses is not
already taken. To do this, we create a blank list and assign it to possibleMoves. The
for loop will go through the list of moves passed to this function in movesList. If that
move is available (which we figure out with a call to isSpaceFree()), then we add it to
possibleMoves with the append() method.

91. if len(possibleMoves) != 0:
92. return random.choice(possibleMoves)
93. else:
94. return None

At this point, the possibleMoves list has all of the moves that were in movesList
that are also free spaces on the board represented by board. If the list is not empty, then
there is at least one possible move that can be made on the board.

This list might be empty. For example, if movesList was [1, 3, 7, 9] but the
board represented by the board parameter had all the corner spaces already taken, the
possibleMoves list would have been empty.

If possibleMoves is empty, then len(possibleMoves) will evaluate to 0 and
the code in the else-block will execute. Notice that it returns something called None.

174

The None Value

None is a special value that you can assign to a variable. The None value represents the
lack of a value. None is the only value of the data type NoneType. (Just like the boolean
data type has only two values, the NoneType data type has only one value, None.) It can be
very useful to use the None value when you have not set a variables value yet. For
example, say you had a variable named quizAnswer which holds the user's answer to
some True-False pop quiz question. You could set quizAnswer to None if the user
skipped the question or did not answer it. Using None would be better because if you set it
to True or False before assigning the value of the user's answer, it may look like the user
gave an answer the question even though they didn't.

Calls to functions that do not return anything (that is, they exit by reaching the end of the
function and not from a return statement) will evaluate to None. The None value is written
without quotes and with a capital "N" and lowercase "one".

How the Code Works: Lines 96 to 187

Creating the Computer's Artificial Intelligence

96. def getComputerMove(board, computerLetter):
97. # Given a board and the computer's letter, determine

where to move and return that move.
98. if computerLetter == 'X':
99. playerLetter = 'O'

100. else:
101. playerLetter = 'X'

The getComputerMove() function is where our AI will be coded. The parameters
are a Tic Tac Toe board (in the board parameter) and which letter the computer is (either
'X' or 'O'). The first few lines simply assign the other letter to a variable named
playerLetter. This lets us use the same code, no matter who is X and who is O. This
function will return the integer that represents which space the computer will move.

Remember how our algorithm works:

First, see if there is a move the computer can make that will win the game. If there is,
take that move. Otherwise, go to the second step.

Second, see if there is a move the player can make that will cause the computer to lose
the game. If there is, we should move there to block the player. Otherwise, go to the third
step.

Third, check if any of the corner spaces (spaces 1, 3, 7, or 9) are free. (We always want
to take a corner piece instead of the center or a side piece.) If no corner piece is free, then

175

10 - Tic Tac Toe

go to the fourth step.

Fourth, check if the center is free. If so, move there. If it isn't, then go to the fifth step.

Fifth, move on any of the side pieces (spaces 2, 4, 6, or 8). There are no more steps,
because if we have reached this step then the side spaces are the only spaces left.

The Computer Checks if it Can Win in One Move

103. # Here is our algorithm for our Tic Tac Toe AI:
104. # First, check if we can win in the next move
105. for i in range(1, 10):
106. copy = getBoardCopy(board)
107. if isSpaceFree(copy, i):
108. makeMove(copy, computerLetter, i)
109. if isWinner(copy, computerLetter):
110. return i

More than anything, if the computer can win in the next move, the computer should
immediately make that winning move. We will do this by trying each of the nine spaces on
the board with a for loop. The first line in the loop makes a copy of the board list. We
want to make a move on the copy of the board, and then see if that move results in the
computer winning. We don't want to modify the original Tic Tac Toe board, which is why
we make a call to getBoardCopy() . We check if the space we will move is free, and if
so, we move on that space and see if this results in winning. If it does, we return that
space's integer.

If moving on none of the spaces results in winning, then the loop will finally end and we
move on to line 112.

The Computer Checks if the Player Can Win in One Move

112. # Check if the player could win on his next move, and
bl ock them.

113. for i in range(1, 10):
114. copy = getBoardCopy(board)
115. if isSpaceFree(copy, i):
116. makeMove(copy, playerLetter, i)
117. if isWinner(copy, playerLetter):
118. return i

At this point, we know we cannot win in one move. So we want to make sure the human
player cannot win in one more move. The code is very similar, except on the copy of the
board, we place the player's letter before calling the isWinner() function. If there is a
position the player can move that will let them win, the computer should move there to
block that move.
176

If the human player cannot win in one more move, the for loop will eventually stop and
execution continues on to line 120.

Checking the Corner, Center, and Side Spaces (in that Or der)

120. # Try to take one of the corners, if they are free.
121 . move = chooseRandomMoveFromList(board, [1, 3, 7, 9])
122. if move != None:
123. return move

Our call to chooseRandomMoveFromList() with the list of [1, 3, 7, 9] will
ensure that it returns the integer for one of the corner spaces. (Remember, the corner spaces
are represented by the integers 1, 3, 7, and 9.) If all the corner spaces are taken, our
chooseRandomMoveFromList() function will return the None value. In that case,
we will move on to line 125.

125. # Try to take the center, if it is free.
126 . if isSpaceFree(board, 5):
127. return 5

If none of the corners are available, we will try to move on the center space if it is free. If
the center space is not free, the execution moves on to line 129.

129. # Move on one of the sides.
130 . return chooseRandomMoveFromList(board, [2, 4, 6, 8])

This code also makes a call to chooseRandomMoveFromList() , except we pass it
a list of the side spaces ([2, 4, 6, 8]). We know that this function will not return
None, because the side spaces are the only spaces we have not yet checked. This is the end
of the getComputerMove() function and our AI algorithm.

Checking if the Board is Full

132. def isBoardFull(board):
133 . # Return True if every space on the board has been

taken. Otherwise return False.
134. for i in range(1, 10):
135. if isSpaceFree(board, i):
136. return False
137. return True

The last function we will write is isBoardFull(), which returns True if the 10-
string list board argument it was passed has an 'X' or 'O' in every index (except for

177

10 - Tic Tac Toe

index 0, which is just a placeholder that we ignore). If there is at least one space in
board that is set to a single space ' ' then it will return False.

The for loop will let us check spaces 1 through 9 on the Tic Tac Toe board. (Remember
that range(1, 10) will make the for loop iterate over the integers 1, 2, 3, 4, 5, 6, 7,
8, and 9.) As soon as it finds a free space in the board (that is, when isSpaceFree
(board, i) returns True), the isBoardFull() function will return False.

If execution manages to go through every iteration of the loop, we will know that none of
the spaces are free. So at that point, we will execute return True.

The Start of the Game

140. print('Welcome to Tic Tac Toe!')

Line 140 is the first line that isn't inside of a function, so it is the first line of code that is
executed when we run this program.

142. while True:
143. # Reset the board
144. theBoard = [' '] * 10

This while loop has True for the condition, so that means we will keep looping in this
loop until we encounter a break statement. Line 144 sets up the main Tic Tac Toe board
that we will use, named theBoard. It is a 10-string list, where each string is a single
space ' '. Remember the little trick using the multiplication operator with a list to replicate
it: [' '] * 10. That evaluates to [' ', ' ', ' ', ' ', ' ', ' ', ' ',
' ', ' ', ' '], but is shorter for us to type [' '] * 10.

Deciding the Player's Mark and Who Goes First

145. playerLetter, computerLetter = inputPlayerLetter()

The inputPlayerLetter() function lets the player type in whether they want to be
X or O. The function returns a 2-string list, either ['X', 'O'] or ['O', 'X']. We use
the multiple assignment trick here that we learned in the Hangman chapter. If
inputPlayerLetter() returns ['X', 'O'], then playerLetter is set to 'X' and
computerLetter is set to 'O'. If inputPlayerLetter() returns ['O', 'X'],
then playerLetter is set to 'O' and computerLetter is set to 'X'.

146. turn = whoGoesFirst()
147 . print('The ' + turn + ' will go first.')

178

148. gameIsPlaying = True

The whoGoesFirst() function randomly decides who goes first, and returns either the
string 'player' or the string 'computer'. On line 147, we tell the player who will go
first. The gameIsPlayer variable is what we will use to keep track of whether the game
has been won, lost, tied or if it is the other player's turn.

Running the Player's Turn

150. while gameIsPlaying:

This is a loop that will keep going back and forth between the player's turn and the
computer's turn, as long as gameIsPlaying is set to True.

151. if turn == 'player':
152. # Player's turn.
153. drawBoard(theBoard)
154. move = getPlayerMove(theBoard)
155. makeMove(theBoard, playerLetter, move)

The turn variable was originally set by whoGoesFirst(). It is either set to 'player'
or 'computer' . If turn contains the string 'computer', then the condition is False
and execution will jump down to line 169.

The first thing we do when it is the player's turn (according to the flow chart we drew at
the beginning of this chapter) is show the board to the player. Calling the drawBoard()
and passing the theBoard variable will print the board on the screen. We then let the
player type in his move by calling our getPlayerMove() function, and set the move on
the board by calling our makeMove() function.

157. if isWinner(theBoard, playerLetter):
158. drawBoard(theBoard)
159. print('Hooray! You have won the game!')
160. gameIsPlaying = False

Now that the player has made his move, our program should check if they have won the
game with this move. If the isWinner() function returns True, we should show them the
winning board (the previous call to drawBoard() shows the board before they made the
winning move) and print a message telling them they have won.

Then we set gameIsPlaying to False so that execution does not continue on to the
computer's turn.

179

10 - Tic Tac Toe

161. else:
162. if isBoardFull(theBoard):
163. drawBoard(theBoard)
164. print('The game is a tie!')
165. break

If the player did not win with his last move, then maybe his last move filled up the entire
board and we now have a tie. In this else-block, we check if the board is full with a call to
the isBoardFull() function. If it returns True, then we should draw the board by
calling drawBoard() and tell the player a tie has occurred. The break statement will
break us out of the while loop we are in and jump down to line 186.

Running the Computer's Turn

166. else:
167. turn = 'computer'

If the player has not won or tied the game, then we should just set the turn variable to
'computer' so that when this while loop loops back to the start it will execute the
code for the computer's turn.

169. else:

If the turn variable was not set to 'player' for the condition on line 151, then we
know it is the computer's turn and the code in this else-block will execute. This code is very
similar to the code for the player's turn, except the computer does not need the board
printed on the screen so we skip calling the drawBoard() function.

170. # Computer's turn.
171. move = getComputerMove(theBoard,

computerLetter)
172. makeMove(theBoard, computerLetter, move)

This code is almost identical to the code for the player's turn on line 154 and 155.

174. if isWinner(theBoard, computerLetter):
175 . drawBoard(theBoard)
176. print('The computer has beaten you! You

lose.')
177. gameIsPlaying = False

180

We want to check if the computer won with its last move. The reason we call
drawBoard() here is because the player will want to see what move the computer made
to win the game. We then set gameIsPlaying to False so that the game does not
continue. Notice that lines 174 to 177 are almost identical to lines 157 to 160.

178. else:
179 . if isBoardFull(theBoard):
180. drawBoard(theBoard)
181. print('The game is a tie!')
182. break

These lines of code are identical to the code on lines 162 to 165. The only difference is
this is a check for a tied game after the computer has moved.

183. else:
184 . turn = 'player'

If the game is neither won nor tied, it then becomes the player's turn. There are no more
lines of code inside the while loop, so execution would jump back to the while
statement on line 150.

186. if not playAgain():
187 . break

These lines of code are located immediately after the while-block started by the while
statement on line 150. Remember, we would only exit out of that while loop if it's
condition (the gameIsPlaying variable) was False. gameIsPlaying is set to
False when the game has ended, so at this point we are going to ask the player if they
want to play again.

Remember, when we evaluate the condition in this if statement, we call the
playAgain() function which will let the user type in if they want to play or not.
playAgain() will return True if the player typed something that began with a 'y' like
'yes' or 'y'. Otherwise playAgain() will return False.

If playAgain() returns False, then the if statement's condition is True (because of
the not operator that reverses the Boolean value) and we execute the break statement. That
breaks us out of the while loop that was started on line 142. But there are no more lines of
code after that while-block, so the program terminates.

181

10 - Tic Tac Toe

Summary: Creating Game-Playing Artificial
Intelligences

Creating a program that can play a game comes down to carefully considering all the
possible situations the AI can be in and how it should respond in each of those situations.
Our Tic Tac Toe AI is fairly simple because there are not many possible moves in Tic Tac
Toe compared to a game like chess or checkers.

Our AI simply blocks the players move if the player is about to win. If the player is not
about to win, it checks if any possible move can allow itself to win. Then the AI simply
chooses any available corner space, then the center space, then the side spaces. This is a
simple algorithm for the computer to follow.

The key to implementing our AI is by making copies of the board data and simulating
moves on the copy. That way, the AI code can see if a move will result in a win or loss.
Then the AI can make that move on the real board. This type of simulation is very effective
at predicting what is a good move or not.

182

Topics Covered In This Chapter:

� Hard-coding
� Augmented Assignment Operators, +=, -=, *=, /=
� The random.shuffle() Function
� The sort() List Method
� The join() List Method
� String Interpolation (also called String Formatting)
� Conversion Specifier %s
� Nested Loops

In this chapter you will learn a few new methods and functions that come with Python.
You will also learn about augmented assignment operators and string interpolation. These
concepts don't let you do anything you couldn't do before, but they are nice shortcuts that
make typing your code easier.

Bagels is a simple game you can play with a friend. Your friend thinks up a random 3-
digit number with no repeating digits, and you try to guess what the number is. After each
guess, your friend gives you clues on how close your guess was. If the friend tells you
"bagels", that means that none of the three digits you guessed is in the secret number. If
your friend tells you "pico", then one of the digits is in the secret number, but your guess
has the digit in the wrong place. If your friend tells you "fermi", then your guess has a
correct digit in the correct place. Of course, even if you get a pico or fermi clue, you still
don't know which digit in your guess is the correct one.

You can also get multiple clues after each guess. Say the secret number is 456, and your
guess is 546. The clue you get from your friend would be "fermi pico pico" because one

183

digit is correct and in the correct place (the digit 6), and two digits are in the secret
number but in the wrong place (the digits 4 and 5).

Sample Run

I am thinking of a 3-digit number. Try to guess what i t is.
Here are some clues:
When I say: That means:
 Pico One digit is correct but in the wrong position.
 Fermi One digit is correct and in the right position.
 Bagels No digit is correct.
I have thought up a number. You have 10 guesses to get it.
Guess #1:
123
Fermi
Guess #2:
453
Pico
Guess #3:
425
Fermi
Guess #4:
326
Bagels
Guess #5:
489
Bagels
Guess #6:
075
Fermi Fermi
Guess #7:
015
Fermi Pico
Guess #8:
175
You got it!
Do you want to play again? (yes or no)
no

Bagel's Source Code

bagels.py
This code can be downloaded from http://inventwithpython.com/bagels.py
If you get errors after typing this code in, compare it to the book's code with the online
diff tool at http://inventwithpython.com/diff or email the author at
al@inventwithpython.com

1. import random
2. def getSecretNum(numDigits):
3. # Returns a string that is numDigits long, made up of

184

unique random digits.
4. numbers = list(range(10))
5. random.shuffle(numbers)
6. secretNum = ''
7. for i in range(numDigits):
8. secretNum += str(numbers[i])
9. return secretNum

10.
11. def getClues(guess, secretNum):
12. # Returns a string with the pico, fermi, bagels clues

to the user.
13. if guess == secretNum:
14. return 'You got it!'
15.
16. clue = []
17.
18. for i in range(len(guess)):
19. if guess[i] == secretNum[i]:
20. clue.append('Fermi')
21. elif guess[i] in secretNum:
22. clue.append('Pico')
23. if len(clue) == 0:
24. return 'Bagels'
25.
26. clue.sort()
27. return ' '.join(clue)
28.
29. def isOnlyDigits(num):
30. # Returns True if num is a string made up only of

digits. Otherwise returns False.
31. if num == '':
32. return False
33.
34. for i in num:
35. if i not in '0 1 2 3 4 5 6 7 8 9'.split():
36. return False
37.
38. return True
39.
40. def playAgain():
41. # This function returns True if the player wants to

play again, otherwise it returns False.
42. print('Do you want to play again? (yes or no)')
43. return input().lower().startswith('y')
44.
45. NUMDIGITS = 3
46. MAXGUESS = 10
47.
48. print('I am thinking of a %s-digit number. Try to guess

what it is.' % (NUMDIGITS))
49. print('Here are some clues:')
50. print('When I say: That means:')
51. print(' Pico One digit is correct but in the

wrong position.')

185

11 - Bagels

52. print(' Fermi One digit is correct and in the
ri ght position.')

53. print(' Bagels No digit is correct.')
54.
55. while True:
56. secretNum = getSecretNum(NUMDIGITS)
57. print('I have thought up a number. You have %s guesses

to get it.' % (MAXGUESS))
58.
59. numGuesses = 1
60. while numGuesses <= MAXGUESS:
61. guess = ''
62. while len(guess) != NUMDIGITS or not isOnlyDigits

(guess):
63. print('Guess #%s: ' % (numGuesses))
64. guess = input()
65.
66. clue = getClues(guess, secretNum)
67. print(clue)
68. numGuesses += 1
69.
70. if guess == secretNum:
71. break
72. if numGuesses > MAXGUESS:
73. print('You ran out of guesses. The answer was

%s.' % (secretNum))
74.
75. if not playAgain():
76. break

Designing the Program

Here is a flow chart for this program. The flow chart describes the basic events of what
happens in this game, and in what order they can happen:

186

Figure 11-1: Flow chart for the Bagels game.

And here is the source code for our game. Start a new file and type the code in, and then
save the file as bagels.py. We will design our game so that it is very easy to change the size
of the secret number. It can be 3 digits or 5 digits or 30 digits. We will do this by using a
constant variable named NUMDIGITS instead of hard-coding the integer 3 into our source
code.

Hard-coding means writing a program in a way that it changing the behavior of the
program requires changing a lot of the source code. For example, we could hard-code a
name into a print() function call like: print('Hello, Albert'). Or we could
use this line: print('Hello, ' + name) which would let us change the name that is
printed by changing the name variable while the program is running.

How the Code Works: Lines 1 to 9

At the start of the program we import the random module and also create a function for
generating a random secret number for the player to guess. The process of creating this
number isn't hard, and also guarantees that it only has unique digits in it.

187

11 - Bagels

1. import random

This game imports the random module so we can use the module's random number
functions.

Shuffling a Unique Set of Digits

2. def getSecretNum(numDigits):
3. # Returns a string that is numDigits long, made up of

unique random digits.
4. numbers = list(range(10))
5. random.shuffle(numbers)

Our first function is named getSecretNum(), which will generate the random secret
number. Instead of having the code only produce 3-digit numbers, we use a parameter
named numDigits to tell us how many digits the secret number should have. (This way,
we can make the game produce secret numbers with four or six digits, for example, just by
passing 4 or 6 as numDigits .)

You may have noticed that the return value of our call to range() was in turn passed to
a function called list(). The list() function returns a list value of the value passed to
it, much like the str() function returns a string form or the int() function returns an
integer form. The reason we do this is because the range() function technically does not
return a list but something called an iterator object. Iterators are a topic that you don't need
to know at this point, so they aren't covered in this book.

Just about every time we use the range() function it is in a for loop. Iterators are fine
to use in for loops (just like lists are), but if we ever want to store a list of integers in a
variable, be sure to convert the return value of range() to a list with the list()
function first. (Just like we do on line 4.)

The random.shuffle() Function

First, we create a list of integers 0 to 9 by calling list(range(10)) and store a
reference to this list in numbers. Then we call a function in the random module named
shuffle(). The only parameter to random.shuffle() is a reference to a list. The
shuffle() function will randomly change the order of all the items in the list.

Notice that random.shuffle() does not return a value. It changes the list you pass it
"in place" (just like our makeMove() function in the Tic Tac Toe chapter modified the list
it was passed in place, rather than return a new list with the change). It would actually be
incorrect to write numbers = random.shuffle(numbers) .

188

Try experimenting with the random.shuffle() function by entering the following
code into the interactive shell:

>>> import random
>>> spam = range(list(10))
>>> print(spam)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> random.shuffle(spam)
>>> print(spam)
[1, 2, 5, 9, 4, 7, 0, 3, 6, 8]
>>> random.shuffle(spam)
>>> print(spam)
[3, 0, 5, 9, 6, 8, 2, 4, 1, 7]
>>> random.shuffle(spam)
>>> print(spam)
[9, 8, 3, 5, 4, 7, 1, 2, 0, 6]
>>>

Every time you pass a list reference to random.shuffle(), the list it references has
all the same items but in a different order. The reason we do this is because we want the
secret number to have unique values. The Bagels game is much more fun if you don't have
duplicate numbers in the secret number, such as '244' or '333'.

Getting the Secret Number from the Shuffled Digits

6. secretNum = ''
7. for i in range(numDigits):
8. secretNum += str(numbers[i])
9. return secretNum

The secret number will be a string of the first three digits (because we'll pass 3 for the
numDigits parameter) of the shuffled list of integers. For example, if the shuffled list is
[9, 8, 3, 5, 4, 7, 1, 2, 0, 6] then we want the string returned by getSecretNum() to be
'983'.

The secretNum variable starts out as a blank string. We then loop a number of times
equal to the integer value in numDigits. On each iteration through the loop, a new
integer is pulled from the shuffled list, converted to a string, and concatenated to the end of
secretNum. So if numDigits is 3, the loop will iterate three times and three random
digits will be concatenated as strings.

For example, if numbers refers to the list [9, 8, 3, 5, 4, 7, 1, 2, 0, 6] ,
then on the first iteration, numbers[0] (that is, 9) will be passed to str(), which in
turn returns '9' which is concatenated to the end of secretNum. On the second iteration,

189

11 - Bagels

the same happens with numbers[1] (that is, 8) and on the third iteration the same
happens with numbers[2] (that is, 3). The final value of secretNum t hat is returned is
'983'.

You may notice that secretNum in this function is a string, not an integer. This may
seem odd, but remember that our secret number could be something like '012'. If we
stored this as an integer, it would be 12 (without the leading zero) which would make it
harder to work with in our program.

Augmented Assignment Operators

The += operator on line 8 is new. This is one of the augmented assignment operators.
Normally, if you wanted to add or concatenate a value to a variable, you would use code
that looked like this:

spam = 42
spam = spam + 10
cheese = 'Hello '
cheese = cheese + 'world!'

After running the above code, spam would have the value 52 and cheese would have
the value 'Hello world!' . The augmented assignment operators are a shortcut that
frees you from retyping the variable name. The following code does the exact same thing as
the above code:

spam = 42
spam += 10 # Same as spam = spam + 10
cheese = 'Hello '
cheese += 'world!' # Same as cheese = cheese +
'world!'

There are other augmented assignment operators. -= will subtract a value from an
integer. *= will multiply the variable by a value. /= will divide a variable by a value.
Notice that these augmented assignment operators do the same math operations as the -, *,
and / operators. Augmented assignment operators are a neat shortcut.

How the Code Works: Lines 11 to 24

We also need a way of figuring out which clues to show to the player.

11. def getClues(guess, secretNum):
12. # Returns a string with the pico, fermi, bagels clues

190

to the user.
13. if guess == secretNum:
14. return 'You got it!'

The getClues() function will return a string with the fermi, pico, and bagels clues,
depending on what it is passed for the guess and secretNum parameters. The most
obvious and easiest step is to check if the guess is the exact same as the secret number. In
that case, we can just return 'You got it!' .

16. clue = []
17.
18. for i in range(len(guess)):
19. if guess[i] == secretNum[i]:
20. clue.append('Fermi')
21. elif guess[i] in secretNum:
22. clue.append('Pico')

If the guess is not the exact same as the secret number, we need to figure out what clues to
give the player. First we'll set up a list named clue, which we will add the strings
'Fermi' and 'Pico' as needed. We will combine the strings in this list into a single
string to return.

We do this by looping through each possible index in guess and secretNum (they both
are the same size). We will assume that guess and secretNum ar e the same size. As the
value of i changes from 0 to 1 to 2, and so on, the if statement checks if the first, second,
third, etc. letter of guess is the same as the number in the same position in secretNum. If
so, we will add a string 'Fermi' to clue.

If that condition is False we will check if the number at the ith position in guess
exists anywhere in secretNum. If this condition is True we know that the number is
somewhere in the secret number but not in the same position. This is why we add the
'Pico' to clue .

23. if len(clue) == 0:
24. return 'Bagels'

If we go through the entire for loop above and never add anything to the clue list, then
we know that there are no correct digits at all in guess. In this case, we should just return
the string 'Bagels' as our only clue.

191

11 - Bagels

The sort() List Method

26. clue.sort()

Lists have a method named sort() that rearranges the items in the list to be in
alphabetical order. Try entering the following into the interactive shell:

>>> spam = [5, 3, 4, 1, 2]
>>> spam.sort()
>>> spam
[1, 2, 3, 4, 5]

Notice that the sort() method does not return a sorted list, but rather just sorts the list
it is called on "in place". This is much like how the reverse() method works. You
would never want to use this line of code: return spam.sort() because that would
return the value None (which is what sort() returns). Instead you would want a separate
line spam.sort() and then the line return spam.

The reason we want to sort the clue list is because we might return extra clues that we
did not intend based on the order of the clues. If clue referenced the list ['Pico',
'Fermi', 'Pico'], then that would tell us that the center digit of our guess is in the
correct position. Since the other two clues are both Pico, then we know that all we have to
do is swap the first and third digit and we have the secret number. But if the clues are
always sorted in alphabetical order, the player can't be sure which number the Fermi clue
refers to.

The join() String Method

27. return ' '.join(clue)

The join() string method returns a string of each item in the list argument joined
together. The string that the method is called on (on line 27, this is a single space, ' ')
appears in between each item in the list. So the string that is returned on line 27 is each
string in clue combined together with a single space in between each string.

For an example, enter the following into the interactive shell:

>>> 'x'.join(['hello', 'world'])
'helloxworld'
>>> 'ABCDEF'.join(['x', 'y', 'z'])
'xABCDEFyABCDEFz'

192

>>> ' '.join(['My', 'name', 'is', 'Zophie'])
'My name is Zophie'

How the Code Works: Lines 29 to 53

We need a couple more functions for our game to use. The first is a function that will tell
us if the guess that the player entered is a valid integer. Remember that the input()
function returns a string of whatever the player typed in. If the player enters in anything but
numbers for their guess, we want to ask the player again for a proper guess.

The second function is something we've seen before in previous games. We want a
function that will ask the player if they want to play the game again and from the player's
response, figure out if it was a Yes or No answer.

Checking if a String Only has Numbers

29. def isOnlyDigits(num):
30. # Returns True if num is a string made up only of

digits. Otherwise returns False.
31. if num == '':
32. return False

The isOnlyDigits() is a small function that will help us determine if the player
entered a guess that was only made up of numbers. To do this, we will check each
individual letter in the string named num and make sure it is a number.

Line 31 does a quick check to see if we were sent the blank string, and if so, we return
False.

34. for i in num:
35. if i not in '0 1 2 3 4 5 6 7 8 9'.split():
36. return False
37.
38. return True

We use a for loop on the string num. The value of i will have a single character from
the num string on each iteration. Inside the for-block, we check if i does not exist in the list
returned by '0 1 2 3 4 5 6 7 8 9'.split(). If it doesn't, we know that there is
a character in num that is something besides a number. In that case, we should return the
value False.

If execution continues past the for loop, then we know that every character in num is a
number because we did not return out of the function. In that case, we return the value
True.

193

11 - Bagels

Finding out if the Player Wants to Play Again

40. def playAgain():
41. # This function returns True if the player wants to

play again, otherwise it returns False.
42. print('Do you want to play again? (yes or no)')
43. return input().lower().startswith('y')

The playAgain() function is the same one we used in Hangman and Tic Tac Toe.
The long expression on line 43 will evaluate to either True or False. The return value
from the call to the input() function is a string that has its lower() method called on
it. The lower() method returns another string (the lowercase string) and that string has its
startswith() method called on it, passing the argument 'y'.

The Start of the Game

45. NUMDIGITS = 3
46. MAXGUESS = 10
47.
48. print('I am thinking of a %s-digit number. Try to guess

what it is.' % (NUMDIGITS))
49. print('Here are some clues:')
50. print('When I say: That means:')
51. print(' Pico One digit is correct but in the

wrong position.')
52. print(' Fermi One digit is correct and in the

right position.')
53. print(' Bagels No digit is correct.')

This is the actual start of the program. Instead of hard-coding three digits as the size of
the secret number, we will use the constant variable NUMDIGITS. And instead of hard-
coding a maximum of ten guesses that the player can make, we will use the constant
variable MAXGUESS. (This is because if we increase the number of digits the secret number
has, we also might want to give the player more guesses. We put the variable names in all
capitals to show they are meant to be constant.)

The print() function call will tell the player the rules of the game and what the Pico,
Fermi, and Bagels clues mean. Line 48's print() call has % (NUMDIGITS) added to
the end and %s inside the string. This is a technique know as string interpolation.

String Interpolation

String interpolation is another shortcut, like augmented assignment operators. Normally,
if you want to use the string values inside variables in another string, you have to use the +
concatenation operator:

194

>>> name = 'Alice'
>>> event = 'party'
>>> where = 'the pool'
>>> when = 'Saturday'
>>> time = '6:00pm'
>>> print('Hello, ' + name + '. Will you go to the
' + event + ' at ' + where + ' this ' + when + '
at ' + time + '?')
Hello, Alice. Will you go to the party at the pool
this Saturday at 6:00pm?
>>>

As you can see, it can be very hard to type a line that concatenates several strings
together. Instead, you can use string interpolation, which lets you put placeholders like
%s (these placeholders are called conversion specifiers), and then put all the variable
names at the end. Each %s is replaced with the value in the variable at the end of the line.
For example, the following code does the same thing as the above code:

name = 'Alice'
event = 'party'
where = 'the pool'
when = 'Saturday'
time = '6:00pm'
print('Hello, %s. Will you go to the %s at %s this
%s at %s?' % (name, event, where, when, time))
Hello, Alice. Will you go to the party at the pool
this Saturday at 6:00pm?
>>>

String interpolation can make your code much easier to type and read, rather than using
several + concatenation operators.

The final line has the print() call with a string with conversion specifiers, followed
by the % sign, followed by a set of parentheses with the variables in them. The first
variable name will be used for the first %s, the second variable with the second %s and so
on. The Python interpreter will give you an error if you do not have the same number of %s
conversion specifiers as you have variables.

Another benefit of using string interpolation instead of string concatenation is that
interpolation works with any data type, not just strings. All values are automatically
converted to the string data type. (This is what the s in %s stands for.) If you typed this
code into the shell, you'd get an error:

195

11 - Bagels

>>> spam = 42
>>> print('Spam == ' + spam)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: Can't convert 'int' object to str
implicitly
>>>

You get this error because string concatenation can only combine two strings, and spam
is an integer. You would have to remember to put str(spam) in there instead. But with
string interpolation, you can have any data type. Try entering this into the shell:

>>> spam = 42
>>> print('Spam == %s' % (spam))
Spam == 42
>>>

As you can see, using string interpolation instead of string concatenation is much easier
because you don't have to worry about the data type of the variable. Also, string
interpolation can be done on any strings, not just strings used in print() function calls.

String interpolation is also known as string formatting.

How the Code Works: Lines 55 to 76

Now that the program has displayed the rules to Bagels to the player, the program will
randomly create a secret number and then enter a loop where it repeatedly asks for the
player's guesses until she has either correctly guessed the secret number, or has run out of
guesses. After that, we will ask the player if she wants to play again.

Creating the Secret Number

55. while True:
56. secretNum = getSecretNum(NUMDIGITS)
57. print('I have thought up a number. You have %s

guesses to get it.' % (MAXGUESS))
58.
59. numGuesses = 1
60. while numGuesses <= MAXGUESS:

We start with a while loop that has a condition of True, meaning it will loop forever
until we execute a break statement. Inside the infinite loop, we get a secret number from

196

our getSecretNum() function (passing it NUMDIGITS to tell how many digits we
want the secret number to have) and assign it to secretNum. Re member that
secretNum is a string, not an integer.

We tell the player how many digits is in our secret number by using string interpolation
instead of string concatenation. We set a variable numGuesses to 1, to denote that this is
the first guess. Then we enter a new while loop which will keep looping as long as
numGuesses is less than or equal to MAXGUESS.

Getting the Player's Guess

Notice that this second while loop on line 60 is inside another while loop that started
on line 55. Whenever we have these loops-inside-loops, we call them nested loops . You
should know that any break or continue statements will only break or continue
out of the innermost loop, and not any of the outer loops.

61. guess = ''
62. while len(guess) != NUMDIGITS or not isOnlyDigits

(guess):
63. print('Guess #%s: ' % (numGuesses))
64. guess = input()

The guess variable will hold the player's guess. We will keep looping and asking the
player for a guess until the player enters a guess that has the same number of digits as the
secret number and is made up only of digits. This is what the while loop that starts on line
62 is for. We set guess as the blank string on line 61 so that the while loop's condition is
False the first time, ensuring that we enter the loop at least once.

Getting the Clues for the Player's Guess

66. clue = getClues(guess, secretNum)
67. print(clue)
68. numGuesses += 1

After execution gets past the while loop on line 62, we know that guess contains a
valid guess. We pass this and the secret number in secretNum to our getClues()
function. It returns a string that contains our clues, which we will display to the player. We
then increment numGuesses by 1 using the augmented assignment operator for addition.

Checking if the Player Won or Lost

70. if guess == secretNum:
71. break
72. if numGuesses > MAXGUESS:

197

11 - Bagels

73. print('You ran out of guesses. The answer was
%s. ' % (secretNum))

If guess is the same value as secretNum, t hen we know the player has correctly
guessed the secret number and we can break out of this loop (the while loop that was
started on line 60). If not, then execution continues to line 72, where we check to see if the
player ran out of guesses. If so, then we tell the player that they have lost and what the secret
number was. We know that the condition for the while loop on line 55 will be False, so
there is no need for a break statement.

At this point, execution jumps back to the while loop on line 60 where we let the player
have another guess. If the player ran out of guesses (or we broke out of the loop with the
break statement on line 71), then execution would proceed to line 75.

Asking the Player to Play Again

75. if not playAgain():
76. break

After leaving the while loop on line 60, we ask the player if want to play again by
calling our playAgain() function. If playAgain() returns False, then we should
break out of the while loop that was started on line 55. Since there is no more code after
this loop, the program terminates.

If playAgain() returned True, then we would not execute the break statement and
execution would jump back to line 55. A new secret number would be generated so that the
player can play a new game.

Summary: Getting Good at Bagels

Bagels is a fairly simple game to program but can be difficult to win at. But if you keep
playing, you will eventually discover better ways to guess and make use of the clues the
game gives you.

This chapter introduced a few new functions and methods (random.shuffle() , sort
() , and join()), along with a couple handy shortcuts. Using the augmented assignment
operators involve less typing when you want to change a variable's relative value (such as in
spam = spam + 1 , which can be shortend to spam += 1). String interpolation can
make your code much more readable by placing %s (called a conversion specifier) inside the
string instead of using many string concatenation operations.

The join() string method is passed a list of strings that will be concatenated together,
with the original associated string in between them. For example, 'X'.join
(['hello', 'world', 'yay']) will evaluate to the string,

198

'helloXworldXyay' .

The sort() list method will rearrange the items in the list to be in alphabetical order.

The append() list method will add a value to the end of the associated list. If spam
contains the list ['a', 'b', 'c'] , then calling spam.append('d') will change
the list in spam to be ['a', 'b', 'c', 'd'] .

The next chapter is not about programming directly, but will be necessary for the games
we want to create in the later chapters of this book. We will learn about the math concepts
of Cartesian coordinates and negative numbers. These will be used in the Sonar, Reversi,
and Dodger games, but Cartesian coordinates and negative numbers are used in almost all
games (especially graphical games). If you already know about these concepts, give the
next chapter a brief reading anyway just to freshen up. Let's dive in!

199

11 - Bagels

Topics Covered In This Chapter:

� Cartesian coordinate systems.
� The X-axis and Y-axis.
� The Commutative Property of Addition.
� Absolute values and the abs() function.

This chapter does not introduce a new game, but instead goes over some simple
mathematical concepts that we will use in the rest of the games in this book.

When you look at 2D games (such as Tetris or old Super Nintendo or Sega Genesis
games) you can see that most of the graphics on the screen can move left or right (the first
dimension) and up or down (the second dimension, hence 2D). In order for us to create
games that have objects moving around two dimensions (such as the two dimensional
computer screen), we need a system that can translate a place on the screen to integers that
our program can deal with.

This is where Cartesian coordinate systems come in. The coordinates can point to a very
specific point on the screen so that our program can keep track of different areas on the
screen.

Negative numbers are often used with Cartesian coordinate systems as well. The second
half of this chapter will explain how we can do math with negative numbers.

You may already know about Cartesian coordinate systems and negative numbers from
math class. In that case, you can just give this chapter a quick read anyway to refresh
yourself.
200

Grids and Cartesian Coordinates

A problem in many games is how to talk
about exact points on the board. A common
way of solving this is by marking each
individual row and column on a board with a
letter and a number. Figure 12-1 is a chess
board that has each row and each column
marked.

In chess, the knight piece looks like a
horse head. The white knight is located at the
point e, 6 and the black knight is located at
point a, 4. We can also see that every space
on row 7 and every space in column c is
empty.

A grid with labeled rows and columns like
the chess board is a Cartesian coordinate
system. By using a row label and column
label, we can give a coordinate that is for one
and only one space on the board. This can really help us describe to a computer the exact
location we want. If you have learned about Cartesian coordinate systems in math class,
you may know that usually we have numbers for both the rows and columns. This is handy,
because otherwise after the 26th column we would run out of letters. That board would
look like Figure 12-2.

The numbers going left and right that describe the columns are part of the X-axis. The
numbers going up and down that describe the rows are part of the Y-axis. When we
describe coordinates, we always say the X-coordinate first, followed by the Y-coordinate.
That means the white knight in the above picture is located at the coordinate 5, 6 (and not
6, 5). The black knight is located at the coordinate 1, 4 (not to be confused with 4, 1).

Notice that for the black knight to move to the white knight's position, the black knight
must move up two spaces, and then to the right by four spaces. (Or move right four spaces
and then move up two spaces.) But we don't need to look at the board to figure this out. If
we know the white knight is located at 5, 6 and the black knight is located at 1, 4, then we
can just use subtraction to figure out this information.

Subtract the black knight's X-coordinate and white knight's X-coordinate: 5 - 1 = 4. That
means the black knight has to move along the X-axis by four spaces.

Subtract the black knight's Y-coordinate and white knight's Y-coordinate: 6 - 4 = 2. That
means the black knight has to move along the Y-axis by two spaces.

Figure 12-1: A sample chessboard with a
black knight at a, 4 and a white knight at e, 6.

201

12 - Cartesian Coordinates

Negative Numbers

Another concept that Cartesian
coordinates use is negative numbers.
Negative numbers are numbers that are
smaller than zero. We put a minus sign in
front of a number to show that it is a
negative number. -1 is smaller than 0. And -2
is smaller than -1. And -3 is smaller than -2.
If you think of regular numbers (called
positive numbers) as starting from 1 and
increasing, you can think of negative
numbers as starting from -1 and decreasing.
0 itself is not positive or negative. In this
picture, you can see the positive numbers
increasing to the right and the negative
numbers decreasing to the left:

Figure 12-3: A number line.

The number line is really useful for doing subtraction and addition with negative
numbers. The expression 4 + 3 can be thought of as the white knight starting at position 4
and moving 3 spaces over to the right (addition means increasing, which is in the right
direction).

Figure 12-4: Moving the white knight to the right adds to the coordinate.

As you can see, the white knight ends up at position 7. This makes sense, because 4 + 3
is 7.

Subtraction can be done by moving the white knight to the left. Subtraction means
decreasing, which is in the left direction. 4 - 6 would be the white knight starting at position
4 and moving 6 spaces to the left:

Figure 12-2: The same chessboard but with
numeric coordinates for both rows and columns.

202

Figure 12-5: Moving the white knight to the left subtracts from the coordinate.

The white knight ends up at position -2. That means 4 - 6 equals -2.

If we add or subtract a negative number, the white knight would move in the opposite
direction. If you add a negative number, the knight moves to the left. If you subtract a
negative number, the knight moves to the right. The expression -6 - -4 would be equal to -
2. The knight starts at -6 and moves to the right by 4 spaces. Notice that -6 - -4 has the
same answer as -6 + 4.

Figure 12-6: Even if the white knight starts at a negative coordinate, moving right still adds to the coordinate.

Figure 12-7: Putting two number lines together creates a Cartesian coordinate system.

The number line is the same as the X-axis. If we made the number line go up and down

203

12 - Cartesian Coordinates

instead of left and right, it would model the Y-axis. Adding a positive number (or
subtracting a negative number) would move the knight up the number line, and subtracting
a positive number (or adding a negative number) would move the knight down. When we
put these two number lines together, we have a Cartesian coordinate system like in Figure
12-7.

The 0, 0 coordinate has a special name: the origin.

Math Tricks

Subtracting negative numbers or adding negative numbers seems easy when you have a
number line in front of you, but it can be easy when you only have the numbers too. Here
are three tricks you can do to make evaluating these expressions by yourself easier to do.

Trick 1: "A Minus Eats the Plus Sign on its Left"

The first is if you are adding a negative number, for example; 4 + -2. The first trick is "a
minus eats the plus sign on its left". When you see a minus sign with a plus sign on the left,
you can replace the plus sign with a minus sign. The answer is still the same, because
adding a negative value is the same as subtracting a positive value. 4 + -2 and 4 - 2 both
evaluate to 2.

Figure 12-8: Trick 1 - Adding a positive and negative number.

Trick 2: "Two Minuses Combine Into a Plus"

The second trick is if you are subtracting a negative number, for example, 4 - -2. The
second trick is "two minuses combine into a plus". When you see the two minus signs next
to each other without a number in between them, they can combine into a plus sign. The
answer is still the same, because subtracting a negative value is the same as adding a
positive value.

204

Figure 12-9: Trick 2 - Subtracting a positive and negative number.

Trick 3: The Commutative Property of Addition

A third trick is to remember that when you add two numbers like 6 and 4, it doesn't
matter what order they are in. (This is called the commutative property of addition.)
That means that 6 + 4 and 4 + 6 both equal the same value, 10. If you count the boxes in the
figure below, you can see that it doesn't matter what order you have the numbers for
addition.

Figure 12-10: Trick 3 - The commutative property of addition.

Say you are adding a negative number and a positive number, like -6 + 8. Because you
are adding numbers, you can swap the order of the numbers without changing the answer. -
6 + 8 is the same as 8 + -6. But when you look at 8 + -6, you see that the minus sign can eat
the plus sign to its left, and the problem becomes 8 - 6 = 2. But this means that -6 + 8 is
also 2! We've rearranged the problem to have the same answer, but made it easier for us to
solve without using a calculator or the computer.

205

12 - Cartesian Coordinates

Figure 12-11: Using our math tricks together.

Of course, you can always use the interactive shell as a calculator to evaluate these
expressions. It is still very useful to know the above three tricks when adding or subtracting
negative numbers. After all, you won't always be in front of a computer with Python all the
time!

>>> 4 + -2
2
>>> -4 + 2
-2
>>> -4 + -2
-6
>>> 4 - -2
6
>>> -4 - 2
-6
>>> -4 - -2
-2
>>>

Absolute Values and the abs() Function

The absolute value of a number is the number without the negative sign in front of it.
This means that positive numbers do not change, but negative numbers become positive.
For example, the absolute value of -4 is 4. The absolute value of -7 is 7. The absolute value
of 5 (which is positive) is just 5.

We can find how far away two things on a number line are from each other by taking the
absolute value of their difference. Imagine that the white knight is at position 4 and the

206

black knight is at position -2. To find out the distance between them, you would find the
difference by subtracting their positions and taking the absolute value of that number.

It works no matter what the order of the numbers is. -2 - 4 (that is, negative two minus
four) is -6, and the absolute value of -6 is 6. However, 4 - -2 (that is, four minus negative
two) is 6, and the absolute value of 6 is 6. Using the absolute value of the difference is a
good way of finding the distance between two points on a number line (or axis).

The abs() function can be used to return the absolute value of an integer. The abs()
function is a built-in function, so you do not need to import any modules to use it. Pass it an
integer or float value and it will return the absolute value:

>>> abs(-5)
5
>>> abs(42)
42
>>> abs(-10.5)
10.5

Coordinate System of a Computer Monitor

It is common that computer
monitors use a coordinate system
that has the origin (0, 0) at the top
left corner of the screen, which
increases going down and to the
right. There are no negative
coordinates. This is because text
is printed starting at the top left,
and is printed going to the right
and downwards. Most computer
graphics use this coordinate
system, and we will use it in our
games. Also it is common to
assume that monitors can display
80 text characters per row and 25
text characters per column (look
at Figure 12-12). This used to be
the maximum screen size that
monitors could support. While
today's monitors can usually display much more text, we will not assume that the user's
screen is bigger than 80 by 25.

Figure 12-12: The Cartesian coordinate system on a computer monitor.

207

12 - Cartesian Coordinates

Summary: Using this Math in Games

This hasn't been too much math to learn for programming. In fact, most programming
does not require understanding a lot of math. Up until this chapter, we have been getting by
on simple addition and multiplication.

Cartesian coordinate systems are needed to describe exactly where in a two dimensional
area a certain position is. Coordinates are made up of two numbers: the X-coordinate and
the Y-coordinate. The X-axis runs left and right and the Y-axis runs up and down. On a
computer screen (and in most computer programming), the X-axis starts at 0 at the left side
and increases on the way to the right. The Y-axis starts at 0 on the top of the screen and
increases on the way down.

For the rest of the book, we will use the concepts we learned in this chapter in our games
because they have two dimensional areas in them. All graphical games require
understanding how Cartesian coordinates work.

208

Topics Covered In This Chapter:

� Data structures.
� The remove() list method.
� The isdigit() string method.
� The sys.exit() function.

The game in this chapter only introduces a couple new helpful methods that come with
Python, the remove() list method and the isdigit() string method. But this is the
first program which will make use of Cartesian coordinates and the mathematical concepts
we learned in chapter 11. This program will also use make use of data structures (which is
really just a fancy way of saying variables that contain lists of lists.) As our games become
more complicated, we will need to store our data in well-organized ways.

Sonar is a technology that ships use to locate objects under the sea. In this chapter's
game, the player places sonar devices at various places in the ocean to locate sunken
treasure chests. The sonar devices (in our game) can tell the player how far away a treasure
chest is from the sonar device, but not in what direction. But by placing multiple sonar
devices down, the player can figure out where exactly the treasure chest is.

There are three chests to collect, but the player has only sixteen sonar devices to use to
find them. Imagine that we could not see the treasure chest in the following picture.
Because each sonar device can only find the distance but not direction, the possible places
the treasure could be is anywhere in a ring around the sonar device (see Figure 13-1).

209

Figure 13-1: The first sonar device shows a ring
of possible places the treasure could be located.

Figure 13-2: Combining the rings of all three sonar

devices shows only one possible place for the treasure.

But if we have multiple sonar devices working together, we can narrow it down to an
exact place where all the rings intersect each other. (See Figure 13-2)

Sample Run

S O N A R !

Would you like to view the instructions? (yes/no)
no
 1 2 3 4 5
 012345678901234567890123456789012345678901234567890123456789

 0 `~~~`~~~`~`~~`~~~~~`~``~~~~`~`~~~`~``~``~~````~`~```~`~~~~`` 0
 1 ~`~~~```~~~~`~`~~`~``~`~~```~`~`~~`~`~~~~~~`~`````~`~~`~~~~` 1
 2 `~``~``~~~`~``~`~`~``~`````~~~~~~~~~`~`~~`~``~~~~~```~~`~``` 2

210

 3 ``~`~~``~`~``~`~`~`~~`~`~~`~`~``~~~`~``~````~``````~~~~``~`` 3
 4 ``~~`~~~``~``~~````~`~`~`~``~~~``~~```~`~~`~~`~`~`~~`~~~~``` 4
 5 ~~```~~~`~`~~``~`~``~```~`~~`~~~~~`~~``~`~`~~~`~~`~`~`~`~~~` 5
 6 ``~~`````~~~~`~`~~~```~~~~`~~`~~`~~```~~`~~~`~~~``~`~~~``~~~ 6
 7 `~`````````~```~``~``~~`~~~~`~~``~``~~~```~`~~`~``~``~~```~~ 7
 8 `~````~```~`~~`~~~`~~``~~~``~`~``~~~``~`~`````~`~~```~`~~~~` 8
 9 ~```~~`~`~``~``~~``~``~```~`~``~~~~`~`~`~~~`~`~`~`~~~``~~``` 9
10 ```~`~```~``~``~`~~`~``~````~``~~~`~~`~~``~~~~`~~~`~`~~````~ 10
11 ```~```~~~`~```~~`~~~`~`````~`~~`~`~~`~~`~`~~`~~~````~````~` 11
12 ~~~`~`~~~``~~~~~~`~~~``~`~`~~`~`~~`~```~~~```~~`~~`~``~``~`~ 12
13 `~~````~~``~```~~~`~```~`~~~~~~~~~`~~``~~~~~`````~`~`~``~~~~ 13
14 `~~`~`~````~```~`~`~```~~`~~~~`~```~``~``~``~~~````~~``````~ 14

 012345678901234567890123456789012345678901234567890123456789
 1 2 3 4 5
You have 16 sonar devices left. 3 treasure chests remaining.
Where do you want to drop the next sonar device? (0-59 0-14) (or
type quit)
10 10
 1 2 3 4 5
 012345678901234567890123456789012345678901234567890123456789

 0 `~~~`~~~`~`~~`~~~~~`~``~~~~`~`~~~`~``~``~~````~`~```~`~~~~`` 0
 1 ~`~~~```~~~~`~`~~`~``~`~~```~`~`~~`~`~~~~~~`~`````~`~~`~~~~` 1
 2 `~``~``~~~`~``~`~`~``~`````~~~~~~~~~`~`~~`~``~~~~~```~~`~``` 2
 3 ``~`~~``~`~``~`~`~`~~`~`~~`~`~``~~~`~``~````~``````~~~~``~`` 3
 4 ``~~`~~~``~``~~````~`~`~`~``~~~``~~```~`~~`~~`~`~`~~`~~~~``` 4
 5 ~~```~~~`~`~~``~`~``~```~`~~`~~~~~`~~``~`~`~~~`~~`~`~`~`~~~` 5
 6 ``~~`````~~~~`~`~~~```~~~~`~~`~~`~~```~~`~~~`~~~``~`~~~``~~~ 6
 7 `~`````````~```~``~``~~`~~~~`~~``~``~~~```~`~~`~``~``~~```~~ 7
 8 `~````~```~`~~`~~~`~~``~~~``~`~``~~~``~`~`````~`~~```~`~~~~` 8
 9 ~```~~`~`~``~``~~``~``~```~`~``~~~~`~`~`~~~`~`~`~`~~~``~~``` 9
10 ```~`~```~5`~``~`~~`~``~````~``~~~`~~`~~``~~~~`~~~`~`~~````~ 10
11 ```~```~~~`~```~~`~~~`~`````~`~~`~`~~`~~`~`~~`~~~````~````~` 11
12 ~~~`~`~~~``~~~~~~`~~~``~`~`~~`~`~~`~```~~~```~~`~~`~``~``~`~ 12
13 `~~````~~``~```~~~`~```~`~~~~~~~~~`~~``~~~~~`````~`~`~``~~~~ 13
14 `~~`~`~````~```~`~`~```~~`~~~~`~```~``~``~``~~~````~~``````~ 14

 012345678901234567890123456789012345678901234567890123456789
 1 2 3 4 5
Treasure detected at a distance of 5 from the sonar device.
You have 15 sonar devices left. 3 treasure chests remaining.
Where do you want to drop the next sonar device? (0-59 0-14) (or
type quit)
15 6
 1 2 3 4 5
 012345678901234567890123456789012345678901234567890123456789

 0 `~~~`~~~`~`~~`~~~~~`~``~~~~`~`~~~`~``~``~~````~`~```~`~~~~`` 0
 1 ~`~~~```~~~~`~`~~`~``~`~~```~`~`~~`~`~~~~~~`~`````~`~~`~~~~` 1
 2 `~``~``~~~`~``~`~`~``~`````~~~~~~~~~`~`~~`~``~~~~~```~~`~``` 2
 3 ``~`~~``~`~``~`~`~`~~`~`~~`~`~``~~~`~``~````~``````~~~~``~`` 3
 4 ``~~`~~~``~``~~````~`~`~`~``~~~``~~```~`~~`~~`~`~`~~`~~~~``` 4
 5 ~~```~~~`~`~~``~`~``~```~`~~`~~~~~`~~``~`~`~~~`~~`~`~`~`~~~` 5
 6 ``~~`````~~~~`~4~~~```~~~~`~~`~~`~~```~~`~~~`~~~``~`~~~``~~~ 6
 7 `~`````````~```~``~``~~`~~~~`~~``~``~~~```~`~~`~``~``~~```~~ 7
 8 `~````~```~`~~`~~~`~~``~~~``~`~``~~~``~`~`````~`~~```~`~~~~` 8
 9 ~```~~`~`~``~``~~``~``~```~`~``~~~~`~`~`~~~`~`~`~`~~~``~~``` 9
10 ```~`~```~5`~``~`~~`~``~````~``~~~`~~`~~``~~~~`~~~`~`~~````~ 10
11 ```~```~~~`~```~~`~~~`~`````~`~~`~`~~`~~`~`~~`~~~````~````~` 11
12 ~~~`~`~~~``~~~~~~`~~~``~`~`~~`~`~~`~```~~~```~~`~~`~``~``~`~ 12
13 `~~````~~``~```~~~`~```~`~~~~~~~~~`~~``~~~~~`````~`~`~``~~~~ 13
14 `~~`~`~````~```~`~`~```~~`~~~~`~```~``~``~``~~~````~~``````~ 14

211

13 - Sonar Treasure Hunt

 012345678901234567890123456789012345678901234567890123456789
 1 2 3 4 5
Treasure detected at a distance of 4 from the sonar device.
You have 14 sonar devices left. 3 treasure chests remaining.
Where do you want to drop the next sonar device? (0-59 0-14) (or
type quit)
15 10
 1 2 3 4 5
 012345678901234567890123456789012345678901234567890123456789

 0 `~~~`~~~`~`~~`~~~~~`~``~~~~`~`~~~`~``~``~~````~`~```~`~~~~`` 0
 1 ~`~~~```~~~~`~`~~`~``~`~~```~`~`~~`~`~~~~~~`~`````~`~~`~~~~` 1
 2 `~``~``~~~`~``~`~`~``~`````~~~~~~~~~`~`~~`~``~~~~~```~~`~``` 2
 3 ``~`~~``~`~``~`~`~`~~`~`~~`~`~``~~~`~``~````~``````~~~~``~`` 3
 4 ``~~`~~~``~``~~````~`~`~`~``~~~``~~```~`~~`~~`~`~`~~`~~~~``` 4
 5 ~~```~~~`~`~~``~`~``~```~`~~`~~~~~`~~``~`~`~~~`~~`~`~`~`~~~` 5
 6 ``~~`````~~~~`~O~~~```~~~~`~~`~~`~~```~~`~~~`~~~``~`~~~``~~~ 6
 7 `~`````````~```~``~``~~`~~~~`~~``~``~~~```~`~~`~``~``~~```~~ 7
 8 `~````~```~`~~`~~~`~~``~~~``~`~``~~~``~`~`````~`~~```~`~~~~` 8
 9 ~```~~`~`~``~``~~``~``~```~`~``~~~~`~`~`~~~`~`~`~`~~~``~~``` 9
10 ```~`~```~O`~``O`~~`~``~````~``~~~`~~`~~``~~~~`~~~`~`~~````~ 10
11 ```~```~~~`~```~~`~~~`~`````~`~~`~`~~`~~`~`~~`~~~````~````~` 11
12 ~~~`~`~~~``~~~~~~`~~~``~`~`~~`~`~~`~```~~~```~~`~~`~``~``~`~ 12
13 `~~````~~``~```~~~`~```~`~~~~~~~~~`~~``~~~~~`````~`~`~``~~~~ 13
14 `~~`~`~````~```~`~`~```~~`~~~~`~```~``~``~``~~~````~~``````~ 14

 012345678901234567890123456789012345678901234567890123456789
 1 2 3 4 5
You have found a sunken treasure chest!
You have 13 sonar devices left. 2 treasure chests remaining.
Where do you want to drop the next sonar device? (0-59 0-14) (or
type quit)

...skipped over for brevity....

 1 2 3 4 5
 012345678901234567890123456789012345678901234567890123456789

 0 `~~~`~~~`~`~~`~~~~~`~``~~~~`~`~~~`~``~``~~````~`~```~`~~~~`` 0
 1 ~`~~~```~~~~`~`~~`~``~`~~```~O~`~~`~`~~~~~~`~`````~`~~`~~~~` 1
 2 `~``~``~~~`~``~`~`~``~`````~~O~~~O~~`~`~~`~``~~~~~```~~`~``` 2
 3 ``~3~~``8`~``~`~`~`~~`~`~~`~`~``~~~`~`O~````~``````~~~~``~`` 3
 4 ``~~`~~~``~``~~````~`~`~`~O`~~O``~~```~`~~`~~`~`~`~~`~~~~``` 4
 5 ~~```~~~`~`~~``~`~``~```~`~~`~~~~~`~~``~`~`~~~`~~`~`~`~`~~~` 5
 6 ``~~`````~~~~`~O~~~```~~~~`~~`~~`~~```~~`~~~`~~~``O`~~~``~~~ 6
 7 `~`````````~```~``~``~~`~~~~`~~``~``~~~```~`~~`~``~``~~```~~ 7
 8 `~````~```~`~~`~~~`~~``~~~``~`~``~~~``~`O```0`~`~~```~`~~~~` 8
 9 ~```~~`~`~``~``~~``~``~```~O~``~~~~`~`~`~~~`~`~`~`~~~``~~``` 9
10 ```~`~```~O`~``O`~~`~``~````~``~~~`~~`~~``~~~~`~~~`~`~~````~ 10
11 ```~```~~~`~```~~`~~~`~`````~`~~`~`~~`~~`~`~~`~~~````~````~` 11
12 ~~~`~`~~~``~~~~~~`~~~``~`~`~~`~`~~`~```~~~```~~`~~`~``~``~`~ 12
13 `~~````~~``~```~~~`~```~`~~~~~~~~~`~~``~~~~~`````~`~`~``~~~~ 13
14 `~~`~`~````~```~`~`~```~~`~~~~`~```~``~``~``~~~````~~``````~ 14

 012345678901234567890123456789012345678901234567890123456789
 1 2 3 4 5
Treasure detected at a distance of 4 from the sonar device.
We've run out of sonar devices! Now we have to turn the ship around
and head
for home with treasure chests still out there! Game over.

212

 The remaining chests were here:
 0, 4
Do you want to play again? (yes or no)
no

Sonar 's Source Code

Knowing about Cartesian coordinates, number lines, negative numbers, and absolute
values will help us out with our Sonar game. If you do not think you understand these
concepts, go back to chapter 11 to brush up. Below is the source code for the game. Type it
into a new file, then save the file as sonar.py and run it by pressing the F5 key. You do not
need to understand the code to type it in or play the game, the source code will be explained
later.

Also, you can download the source code from the book's website at the URL
http://inventwithpython.com/chapter13.

sonar.py
This code can be downloaded from http://inventwithpython.com/sonar.py
If you get errors after typing this code in, compare it to the book's code with the online
diff tool at http://inventwithpython.com/diff or email the author at
al@inventwithpython.com

1. # Sonar
2.
3. import random
4. import sys
5.
6. def drawBoard(board):
7. # Draw the board data structure.
8.
9. hline = ' ' # initial space for the numbers down

the left side of the board
10. for i in range(1, 6):
11. hline += (' ' * 9) + str(i)
12.
13. # print the numbers across the top
14. print(hline)
15. print(' ' + ('0123456789' * 6))
16. print()
17.
18. # print each of the 15 rows
19. for i in range(15):
20. # single-digit numbers need to be padded with an

extra space
21. if i < 10:
22. extraSpace = ' '
23. else:
24. extraSpace = ''
25. print('%s%s %s %s' % (extraSpace, i, getRow

(board, i), i))
26.

213

13 - Sonar Treasure Hunt

27. # print the numbers across the bottom
28. print()
29. print(' ' + ('0123456789' * 6))
30. print(hline)
31.
32.
33. def getRow(board, row):
34. # Return a string from the board data structure at a

certain row.
35. boardRow = ''
36. for i in range(60):
37. boardRow += board[i][row]
38. return boardRow
39.
40. def getNewBoard():
41. # Create a new 60x15 board data structure.
42. board = []
43. for x in range(60): # the main list is a list of 60

lists
44. board.append([])
45. for y in range(15): # each list in the main list

has 15 single-character strings
46. # use different characters for the ocean to

make it more readable.
47. if random.randint(0, 1) == 0:
48. board[x].append('~')
49. else:
50. board[x].append('`')
51. return board
52.
53. def getRandomChests(numChests):
54. # Create a list of chest data structures (two-item

lists of x, y int coordinates)
55. chests = []
56. for i in range(numChests):
57. chests.append([random.randint(0, 59),

random.randint(0, 14)])
58. return chests
59.
60. def isValidMove(x, y):
61. # Return True if the coordinates are on the board,

otherwise False.
62. return x >= 0 and x <= 59 and y >= 0 and y <= 14
63.
64. def makeMove(board, chests, x, y):
65. # Change the board data structure with a sonar device

character. Remove treasure chests
66. # from the chests list as they are found. Return False

if this is an invalid move.
67. # Otherwise, return the string of the result of this

move.
68. if not isValidMove(x, y):
69. return False
70.

214

71. smallestDistance = 100 # any chest will be closer than
100.

72. for cx, cy in chests:
73. if abs(cx - x) > abs(cy - y):
74. distance = abs(cx - x)
75. else:
76. distance = abs(cy - y)
77.
78. if distance < smallestDistance: # we want the

closest treasure chest.
79. smallestDistance = distance
80.
81. if smallestDistance == 0:
82. # xy is directly on a treasure chest!
83. chests.remove([x, y])
84. return 'You have found a sunken treasure chest!'
85. else:
86. if smallestDistance < 10:
87. board[x][y] = str(smallestDistance)
88. return 'Treasure detected at a distance of %s

from the sonar device.' % (smallestDistance)
89. else:
90. board[x][y] = 'O'
91. return 'Sonar did not detect anything. All

treasure chests out of range.'
92.
93.
94. def enterPlayerMove():
95. # Let the player type in her move. Return a two-item

list of int xy coordinates.
96. print('Where do you want to drop the next sonar

device? (0-59 0-14) (or type quit)')
97. while True:
98. move = input()
99. if move.lower() == 'quit':

100. print('Thanks for playing!')
101. sys.exit()
102.
103. move = move.split()
104. if len(move) == 2 and move[0].isdigit() and move

[1].isdigit() and isValidMove(int(move[0]), int(move[1])):
105. return [int(move[0]), int(move[1])]
106. print('Enter a number from 0 to 59, a space, then

a number from 0 to 14.')
107.
108.
109. def playAgain():
110. # This function returns True if the player wants to

play again, otherwise it returns False.
111. print('Do you want to play again? (yes or no)')
112. return input().lower().startswith('y')
113.
114.
115. def showInstructions():

215

13 - Sonar Treasure Hunt

116. print('''Instructions:
117 . You are the captain of the Simon, a treasure-hunting ship.

Your current mission
118. is to find the three sunken treasure chests that are

lurking in the part of the
119. ocean you are in and collect them.
120.
121. To play, enter the coordinates of the point in the ocean

you wish to drop a
122. sonar device. The sonar can find out how far away the

closest chest is to it.
123. For example, the d below marks where the device was

dropped, and the 2's
124. represent distances of 2 away from the device. The 4's

represent
125. distances of 4 away from the device.
126.
127. 444444444
128. 4 4
129. 4 22222 4
130. 4 2 2 4
131. 4 2 d 2 4
132. 4 2 2 4
133. 4 22222 4
134. 4 4
135. 444444444
136. Press enter to continue...''')
137. input()
138.
139. print('''For example, here is a treasure chest (the c)

located a distance of 2 away
140. from the sonar device (the d):
141.
142. 22222
143. c 2
144. 2 d 2
145. 2 2
146. 22222
147.
148. The point where the device was dropped will be marked with

a 2.
149.
150. The treasure chests don't move around. Sonar devices can

detect treasure
151. chests up to a distance of 9. If all chests are out of

range, the point
152. will be marked with O
153.
154. If a device is directly dropped on a treasure chest, you

have discovered
155. the location of the chest, and it will be collected. The

sonar device will
156. remain there.
157.

216

158. When you collect a chest, all sonar devices will update to
loca t e the next

159. closest sunken treasure chest.
160. Press enter to continue...''')
161. input()
162. print()
163.
164.
165. print('S O N A R !')
166. print()
167. print('Would you like to view the instructions? (yes/no)')
168. if input().lower().startswith('y'):
169. showInstructions()
170.
171. while True:
172. # game setup
173. sonarDevices = 16
174. theBoard = getNewBoard()
175. theChests = getRandomChests(3)
176. drawBoard(theBoard)
177. previousMoves = []
178.
179. while sonarDevices > 0:
180. # Start of a turn:
181.
182. # show sonar device/chest status
183. if sonarDevices > 1: extraSsonar = 's'
184. else: extraSsonar = ''
185. if len(theChests) > 1: extraSchest = 's'
186. else: extraSchest = ''
187. print('You have %s sonar device%s left. %s

treasure chest%s remaining.' % (sonarDevices, extraSsonar,
len(theChests), extraSchest))

188.
189. x, y = enterPlayerMove()
190. previousMoves.append([x, y]) # we must track all

moves so that sonar devices can be updated.
191.
192. moveResult = makeMove(theBoard, theChests, x, y)
193. if moveResult == False:
194. continue
195. else:
196. if moveResult == 'You have found a sunken

treasure chest!':
197. # update all the sonar devices currently

on the map.
198. for x, y in previousMoves:
199. makeMove(theBoard, theChests, x, y)
200. drawBoard(theBoard)
201. print(moveResult)
202.
203. if len(theChests) == 0:
204. print('You have found all the sunken treasure

chests! Congratulations and good game!')

217

13 - Sonar Treasure Hunt

205. break
206 .
207. sonarDevices -= 1
208.
209. if sonarDevices == 0:
210. print('We\'ve run out of sonar devices! Now we

have to turn the ship around and head')
211. print('for home with treasure chests still out

there! Game over.')
212. print(' The remaining chests were here:')
213. for x, y in theChests:
214. print(' %s, %s' % (x, y))
215.
216. if not playAgain():
217. sys.exit()

Designing the Program

Sonar is kind of complicated, so it might be better to type in the game's code and play it a
few times first to understand what is going on. After you've played the game a few times,
you can kind of get an idea of the sequence of events in this game.

The Sonar game uses lists of lists and other complicated variables. These complicated
variables are known as data structures . Data structures will let us store nontrivial
arrangements of values in a single variable. We will use data structures for the Sonar board
and the locations of the treasure chests. One example of a data structure was the board
variable in the Tic Tac Toe chapter.

It is also helpful to write out the things we need our program to do, and come up with
some function names that will handle these actions. Remember to name functions after what
they specifically do. Otherwise we might end up forgetting a function, or typing in two
different functions that do the same thing.

Table 13-1: A list of each function the Sonar game needs.

What the code should do. The function that will do
it.

Prints the game board on the screen based on the board
data structure it is passed, including the coordinates along
the top, bottom, and left and right sides.

drawBoard()

Create a fresh board data structure. getNewBoard()

Create a fresh chests data structure that has a number
of chests randomly scattered across the game board.

getRandomChests()

Check that the XY coordinates that are passed to this
function are located on the game board or not.

isValidMove()

Let the player type in the XY coordinates of his next
218

These might not be all of the functions we need, but a list like this is a good idea to help
you get started with programming your own games. For example, when we are writing the
drawBoard() function in the Sonar game, we figure out that we also need a getRow()
function. Writing out a function once and then calling it twice is preferable to writing out
the code twice. The whole point of functions is to reduce duplicate code down to one place,
so if we ever need to make changes to that code we only need to change one place in our
program.

How the Code Works: Lines 1 to 38

1. # Sonar
2.
3. i mport random
4. import sys

Here we import two modules, random and sys. The sys module contains the exit()
function, which causes the program to immediately terminate. We will call this function
later in our program.

Drawing the Game Board

6. def drawBoard(board):

The back tick (`) and tilde (~) characters are located next to the 1 key on your keyboard.
They resemble the waves of the ocean. Somewhere in this ocean are three treasure chests,
but you don't know where. You can figure it out by planting sonar devices, and tell the
game program where by typing in the X and Y coordinates (which are printed on the four
sides of the screen.)

The drawBoard() function is the first function we will define for our program. The
sonar game's board is an ASCII-art ocean with coordinates going along the X- and Y-axis,
and looks like this:

move, and keep asking until they type in the coordinates
correctly.

enterPlayerMove()

Place a sonar device on the game board, and update the
board data structure then return a string that describes
what happened.

makeMove()

Ask the player if they want to play another game of
Sonar.

playAgain()

Print out instructions for the game. showInstructions()

219

13 - Sonar Treasure Hunt

 1 2 3 4 5
 012345678901234567890123456789012345678901234567890123456789

 0 ~~~`~``~~~``~~~~``~`~`~`~`~~`~~~`~~`~``````~~`~``~`~~```~`~` 0
 1 `~`~````~~``~`~```~```~```~`~~~``~~`~~~``````~`~``~~``~~`~~` 1
 2 ```~~~~`~`~~```~~~``~````~~`~`~~`~`~`~```~~`~``~~`~`~~~~~~`~ 2
 3 ~~~~`~~~``~```~``~~`~`~~`~`~~``~````~`~````~```~`~`~`~`````~ 3
 4 ~```~~~~~`~~````~~~~```~~~`~`~`~````~`~~`~`~~``~~`~``~`~``~~ 4
 5 `~```~`~`~~`~~~```~~``~``````~~``~`~`~~~~`~~``~~~~~~`~```~~` 5
 6 ``~~`~~`~``~`````~````~~``~`~~~~`~~```~~~``~`~`~~``~~~```~~~ 6
 7 ``~``~~~~~~```~`~```~~~``~`~``~`~~~~~~```````~~~`~~`~~`~~`~~ 7
 8 ~~`~`~~```~``~~``~~~``~~`~`~~`~`~```~```~~~```~~~~~~`~`~~~~` 8
 9 ```~``~`~~~`~~```~``~``~~~```~````~```~`~~`~~~~~`~``~~~~~``` 9
10 `~~~~```~`~````~`~`~~``~`~~~~`~``~``~```~~```````~`~``~````` 10
11 ~~`~`~~`~``~`~~~````````````````~~`````~`~~``~`~~~~`~~~`~~`~ 11
12 ~~`~~~~```~~~`````~~``~`~`~~``````~`~~``~```````~~``~~~`~~`~ 12
13 `~``````~~``~`~~~```~~~~```~~`~`~~~`~```````~~`~```~``~`~~~~ 13
14 ~~~``~```~`````~~`~`~``~~`~``~`~~`~`~``~`~``~~``~`~``~```~~~ 14

 012345678901234567890123456789012345678901234567890123456789
 1 2 3 4 5

We will split up the drawing in the drawBoard() function into four steps. First, we
create a string variable of the line with 1, 2, 3, 4, and 5 spaced out with wide gaps. Second,
we use that string to display the X-axis coordinates along the top of the screen. Third, we
print each row of the ocean along with the Y-axis coordinates on both sides of the screen.
And fourth, we print out the X-axis again at the bottom. Having the coordinates on all sides
makes it easier for the player to move their finger along the spaces to see where exactly
they want to plan a sonar device.

Drawing the X-coordinates Along the Top

7. # Draw the board data structure.
8.
9. hline = ' ' # initial space for the numbers down

the left side of the board
10. for i in range(1, 6):
11. hline += (' ' * 9) + str(i)

Let's look again at the top part of the board, this time with plus signs instead of blank
spaces so we can count the spaces easier:

Figure 13-3: The spacing we use for printing the top of the game board.

220

The numbers on the first line which mark the tens position all have nine spaces in
between them, and there are thirteen spaces in front of the 1. We are going to create a string
with this line and store it in a variable named hline.

13. # print the numbers across the top
14. print(hline)
15. print(' ' + ('0123456789' * 6))
16. print()

To print the numbers across the top of the sonar board, we first print the contents of the
hline variable. Then on the next line, we print three spaces (so that this row lines up
correctly), and then print the string
'012345678901234567890123456789012345678901234567890123456789'
But this is tedious to type into the source, so instead we type ('0123456789' * 6)
which evaluates to the same string.

Drawing the Rows of the Ocean

18. # print each of the 15 rows
19. for i in range(15):
20. # single-digit numbers need to be padded with an

extra space
21. if i < 10:
22. extraSpace = ' '
23. else:
24. extraSpace = ''
25. print('%s%s %s %s' % (extraSpace, i, getRow

(board, i), i))

Now we print the each row of the board, including the numbers down the side to label
the Y-axis. We use the for loop to print rows 0 through 14 on the board, along with the
row numbers on either side of the board.

We have a small problem. Numbers with only one digit (like 0, 1, 2, and so on) only take
up one space when we print them out, but numbers with two digits (like 10, 11, and 12)
take up two spaces. This means the rows might not line up and would look like this:

 8 ~~`~`~~```~``~~``~~~``~~`~`~~`~`~```~```~~~```~~~~~~`~`~~~~` 8
 9 ```~``~`~~~`~~```~``~``~~~```~````~```~`~~`~~~~~`~``~~~~~``` 9
10 `~~~~```~`~````~`~`~~``~`~~~~`~``~``~```~~```````~`~``~````` 10
11 ~~`~`~~`~``~`~~~````````````````~~`````~`~~``~`~~~~`~~~`~~`~ 11

The solution is easy. We just add a space in front of all the single-digit numbers. The if-
else statement that starts on line 21 does this. We will print the variable extraSpace
when we print the row, and if i is less than 10 (which means it will have only one digit),

221

13 - Sonar Treasure Hunt

we assign a single space string to extraSpace . Otherwise, we set extraSpace to be
a blank string. This way, all of our rows will line up when we print them.

The getRow() function will return a string representing the row number we pass it. Its
two parameters are the board data structure stored in the board variable and a row
number. We will look at this function next.

Drawing the X-coordinates Along the Bottom

27. # print the numbers across the bottom
28. print()
29. print(' ' + ('0123456789' * 6))
30. print(hline)

This code is similar to lines 14 to 17. This will print the X-axis coordinates along the
bottom of the screen.

Getting the State of a Row in the Ocean

33. def getRow(board, row):
34. # Return a string from the board data structure at a

certain row.
35. boardRow = ''
36. for i in range(60):
37. boardRow += board[i][row]
38. return boardRow

This function constructs a string called boardRow from the characters stored in board.
First we set boardRow to the blank string. The row number (which is the Y coordinate) is
passed as a parameter. The string we want is made by concatenating board[0][row],
board[1][row], board[2][row], and so on up to board[59][row] . (This is
because the row is made up of 60 characters, from index 0 to index 59.)

The for loop iterates from integers 0 to 59. On each iteration the next character in the
board data structure is copied on to the end of boardRow. By the time the loop is done,
extraSpace is fully formed, so we return it.

How the Code Works: Lines 40 to 62

Now that we have a function to print a given game board data structure to the string, let's
turn to the other functions that we will need. At the start of the game, we will need to create
a new game board data structure and also place treasure chests randomly around the board.
We should also create a function that can tell if the coordinates entered by the player are a
valid move or not.

222

Creating a New Game Board

40. def getNewBoard():
41. # Create a new 60x15 board data structure.
42. board = []
43. for x in range(60): # the main list is a list of 60

lists
44. board.append([])

At the start of each new game, we will need a fresh board data structure. The board
data structure is a list of lists of strings. The first list represents the X coordinate. Since our
game's board is 60 characters across, this first list needs to contain 60 lists. So we create a
for loop that will append 60 blank lists to it.

45. for y in range(15): # each list in the main list
has 15 single-character strings

46. # use different characters for the ocean to
make it more readable.

47. if random.randint(0, 1) == 0:
48. board[x].append('~')
49. else:
50. board[x].append('`')

But board is more than just a list of 60 blank lists. Each of the 60 lists represents the Y
coordinate of our game board. There are 15 rows in the board, so each of these 60 lists must
have 15 characters in them. We have another for loop to add 15 single-character strings
that represent the ocean. The "ocean" will just be a bunch of '~' and '`' strings, so we
will randomly choose between those two. We can do this by generating a random number
between 0 and 1 with a call to random.randint(). If the return value of
random.randint() is 0, we add the '~' string. Otherwise we will add the '`'
string.

This is like deciding which character to use by tossing a coin. And since the return value
from random.randint() will be 0 about half the time, half of the ocean characters will
be '~' and the other half will be '`'. This will give our ocean a random, choppy look to
it.

Remember that the board variable is a list of 60 lists that have 15 strings. That means
to get the string at coordinate 26, 12, we would access board[26][12], and not board
[12][26]. The X coordinate is first, then the Y coordinate.

Here is the picture to demonstrate the indexes of a list of lists named x. The red arrows
point to indexes of the inner lists themselves. The image is also flipped on its side to make
it easier to read:

223

13 - Sonar Treasure Hunt

Figure 13-4: The indexes of a list of lists.

51. return board

Finally, we return the board variable. Remember that in this case, we are returning a
reference to the list that we made. Any changes we made to the list (or the lists inside the
list) in our function will still be there outside of the function.

Creating the Random Treasure Chests

53. def getRandomChests(numChests):
54. # Create a list of chest data structures (two-item

lists of x, y int coordinates)
55. chests = []
56. for i in range(numChests):
57. chests.append([random.randint(0, 59),

random.randint(0, 14)])
58. return chests

Another task we need to do at the start of the game is decide where the hidden treasure
chests are. We will represent the treasure chests in our game as a list of lists of two
integers. These two integers will be the X and Y coordinates. For example, if the chest data
structure was [[2, 2], [2, 4], [10, 0]] , then this would mean there are three
treasure chests, one at 2, 2, another at 2, 4, and a third one at 10, 0.

224

We will pass the numChests parameter to tell the function how many treasure chests
we want it to generate. We set up a for loop to iterate this number of times, and on each
iteration we append a list of two random integers. The X coordinate can be anywhere from
0 to 59, and the Y coordinate can be from anywhere between 0 and 14. The expression
[random.randint(0, 59), random.randint(0, 14)] that is passed to the
append method will evaluate to something like [2, 2] or [2, 4] or [10, 0]. This
data structure is then returned.

Determining if a Move is Valid

60. def isValidMove(x, y):
61. # Return True if the coordinates are on the board,

otherwise False.
62. return x >= 0 and x <= 59 and y >= 0 and y <= 14

The player will type in X and Y coordinates of where they want to drop a sonar device.
But they may not type in coordinates that do not exist on the game board. The X
coordinates must be between 0 and 59, and the Y coordinate must be between 0 and 14.
This function uses a simple expression that uses and operators to ensure that each
condition is True. If just one is False, then the entire expression evaluates to False.
This Boolean value is returned by the function.

How the Code Works: Lines 64 to 91

Placing a Move on the Board

64. def makeMove(board, chests, x, y):
65. # Change the board data structure with a sonar device

character. Remove treasure chests
66. # from the chests list as they are found. Return

False if this is an invalid move.
67. # Otherwise, return the string of the result of this

move.
68. if not isValidMove(x, y):
69. return False

In our Sonar game, the game board is updated to display a number for each sonar device
dropped. The number shows how far away the closest treasure chest is. So when the player
makes a move by giving the program an X and Y coordinate, we will change the board
based on the positions of the treasure chests. This is why our makeMove() function takes
four parameters: the game board data structure, the treasure chests data structures, and the
X and Y coordinates.

This function will return the False Boolean value if the X and Y coordinates if was
passed do not exist on the game board. If isValidMove() returns False, then

225

13 - Sonar Treasure Hunt

makeMove() will return False .

If the coordinates land directly on the treasure, makeMove() wi ll return the string
'You have found a sunken treasure chest!'. If the XY coordinates are
within a distance of 9 or less of a treasure chest, we return the string 'Treasure
detected at a distance of %s from the sonar device.' (where %s is
the distance). Otherwise, makeMove() will return the string 'Sonar did not
detect anything. All treasure chests out of range.' .

71. smallestDistance = 100 # any chest will be closer
tha n 100.

72. for cx, cy in chests:
73. if abs(cx - x) > abs(cy - y):
74. distance = abs(cx - x)
75. else:
76. distance = abs(cy - y)
77.
78. if distance < smallestDistance: # we want the

closest treasure chest.
79. smallestDistance = distance

Given the XY coordinates of where the player wants to drop the sonar device, and a list
of XY coordinates for the treasure chests (in the chests list of lists), how do we find out
which treasure chest is closest?

An Algorithm for Finding the Closest Treasure Chest

While the x and y variables are just integers (say, 5 and 0), together they represent the
location on the game board (which is a Cartesian coordinate system) where the player
guessed. The chests variable may have a value such as [[5, 0], [0, 2], [4,
2]], that value represents the locations of three treasure chests. Even though these
variables are a bunch of numbers, we can visualize it like this:

226

Figure 13-5: The places on the board that [[5, 0], [0, 2], [4, 2]] represents.

We figure out the distance from the sonar device located at 0, 2 with "rings" and the
distances around it:

Figure 13-6: The board marked with distances from the 0, 2 position.

But how do we translate this into code for our game? We need a way to represent
distance as an expression. Notice that the distance from an XY coordinate is always the
larger of two values: the absolute value of the difference of the two X coordinates and the
absolute value of the difference of the two Y coordinates.

That means we should subtract the sonar device's X coordinate and a treasure chest's X
coordinate, and then take the absolute value of this number. We do the same for the sonar
device's Y coordinate and a treasure chest's Y coordinate. The larger of these two values is
the distance. Let's look at our example board with rings above to see if this algorithm is
correct.

227

13 - Sonar Treasure Hunt

The sonar's X and Y coordinates are 3 and 2. The first treasure chest's X and Y
coordinates (first in the list [[5, 0], [0, 2], [4, 2]] that is) are 5 and 0.

For the X coordinates, 3 - 5 evaluates to -2, and the absolute value of -2 is 2.

For the Y coordinates, 2 - 1 evaluates to 1, and the absolute value of 1 is 1.

Comparing the two absolute values 2 and 1, 2 is the larger value and should be the
distance from the sonar device and the treasure chest at coordinates 5, 1. We can look at the
board and see that this algorithm works, because the treasure chest at 5,1 is in the sonar
device's 2nd ring. Let's quickly compare the other two chests to see if his distances work
out correctly also.

Let's find the distance from the sonar device at 3,2 and the treasure chest at 0,2. abs(3
- 0) evaluates to 3. The abs() function returns the absolute value of the number we
pass to it. abs(2 - 2) evaluates to 0. 3 is larger than 0, so the distance from the sonar
device at 3,2 and the treasure chest at 0,2 is 3. We look at the board and see this is true.

Let's find the distance from the sonar device at 3,2 and the last treasure chest at 4,2. abs
(3 - 4) evaluates to 1. abs(2 - 2) evaluates to 0. 1 is larger than 0, so the distance
from the sonar device at 3,2 and the treasure chest at 4,2 is 1. We look at the board and see
this is true also.

Because all three distances worked out correctly, our algorithm works. The distances
from the sonar device to the three sunken treasure chests are 2, 3, and 1. On each guess, we
want to know the distance from the sonar device to the closest of the three treasure chest
distances. To do this we use a variable called smallestDistance. Let's look at the
code again:

71. smallestDistance = 100 # any chest will be closer
tha n 100.

72. for cx, cy in chests:
73. if abs(cx - x) > abs(cy - y):
74. distance = abs(cx - x)
75. else:
76. distance = abs(cy - y)
77.
78. if distance < smallestDistance: # we want the

closest treasure chest.
79. smallestDistance = distance

You can also use multiple assignment in for loops. For example, the assignment
statement a, b = [5, 10] will assign 5 to a and 10 to b. Also, the for loop for i
in [0, 1, 2, 3, 4] will assign the i variable the values 0 and 1 and so on for each
iteration.

228

The for loop for cx, cy in chests: combines both of these principles.
Because chests is a list where each item in the list is itself a list of two integers, the first
of these integers is assigned to cx and the second integer is assigned to cy. So if chests
has the value [[5, 0], [0, 2], [4, 2]], on the first iteration through the loop,
cx will have the value 5 and cy will have the value 0.

Line 73 determines which is larger: the absolute value of the difference of the X
coordinates, or the absolute value of the difference of the Y coordinates. (abs(cx - x)
< abs(cy - y) seems like much easier way to say that, doesn't it?). The if-else
statement assigns the larger of the values to the distance variable.

So on each iteration of the for loop, the distance variable holds the distance of a
treasure chest's distance from the sonar device. But we want the shortest (that is, smallest)
distance of all the treasure chests. This is where the smallestDistance variable comes
in. Whenever the distance variable is smaller than smallestDistance, then the
value in distance becomes the new value of smallestDistance.

We give smallestDistance the impossibly high value of 100 at the beginning of
the loop so that at least one of the treasure chests we find will be put into
smallestDistance. By the time the for loop has finished, we know that
smallestDistance holds the shortest distance between the sonar device and all of the
treasure chests in the game.

81. if smallestDistance == 0:
82. # xy is directly on a treasure chest!
83. chests.remove([x, y])
84. return 'You have found a sunken treasure chest!'

The only time that smallestDistance is equal to 0 is when the sonar device's XY
coordinates are the same as a treasure chest's XY coordinates. This means the player has
correctly guessed the location of a treasure chest. We should remove this chest's two-
integer list from the chests data structure with the remove() list method.

The remove() List Method

The remove() list method will remove the first occurrence of the value passed as a
parameter from the list. For example, try typing the following into the interactive shell:

>>> x = [42, 5, 10, 42, 15, 42]
>>> x.remove(10)
>>> x
[42, 5, 42, 15, 42]

229

13 - Sonar Treasure Hunt

You can see that the 10 value has been removed from the x list. The remove() method
removes the first occurrence of the value you pass it, and only the first. For example, type
the following into the shell:

>>> x = [42, 5, 10, 42, 15, 42]
>>> x.remove(42)
>>> x
[5, 10, 42, 15, 42]

Notice that only the first 42 value was removed, but the second and third ones are still
there. The remove() method will cause an error if you try to remove a value that is not in
the list:

>>> x = [5, 42]
>>> x.remove(10)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: list.remove(x): x not in list
>>>

After removing the found treasure chest from the chests list, we return the string
'You have found a sunken treasure chest!' to tell the caller that the guess
was correct. Remember that any changes made to the list in a function will exist outside the
function as well.

85. else:
86. if smallestDistance < 10:
87. board[x][y] = str(smallestDistance)
88. return 'Treasure detected at a distance of %s

from the sonar device.' % (smallestDistance)
89. else:
90. board[x][y] = 'O'
91. return 'Sonar did not detect anything. All

treasure chests out of range.'

The else block executes if smallestDistance was not 0, which means the player
did not guess an exact location of a treasure chest. We return two different strings,
depending on if the sonar device was placed within range of any of the treasure chests. If it
was, we mark the board with the string version of smallestDistance. If not, we mark
the board with a '0'.

230

How the Code Works: Lines 94 to 162

The last few functions we need are to let the player enter their move on the game board,
ask the player if he wants to play again (this will be called at the end of the game), and print
the instructions for the game on the screen (this will be called at the beginning of the
game).

Getting the Player's Move

94. def enterPlayerMove():
95. # Let the player type in her move. Return a two-item

list of int xy coordinates.
96. print('Where do you want to drop the next sonar

device? (0-59 0-14) (or type quit)')
97. while True:
98. move = input()
99. if move.lower() == 'quit':

100. print('Thanks for playing!')
101. sys.exit()

This function collects the XY coordinates of the player's next move. It has a while loop
so that it will keep asking the player for her next move. The player can also type in quit
in order to quit the game. In that case, we call the sys.exit() function which
immediately terminates the program.

103. move = move.split()
104. if len(move) == 2 and move[0].isdigit() and move

[1].isdigit() and isValidMove(int(move[0]), int(move
[1])):

105. return [int(move[0]), int(move[1])]
106. print('Enter a number from 0 to 59, a space, then

a number from 0 to 14.')

Assuming the player has not typed in 'quit', we call the split() method on move
and set the list it returns as the new value of move. What we expect move to be is a list of
two numbers. These numbers will be strings, because the split() method returns a list of
strings. But we can convert these to integers with the int() function.

If the player typed in something like '1 2 3', then the list returned by split()
would be ['1', '2', '3']. In that case, the expression len(move) == 2 would
be False and the entire expression immediately evaluates to False (because of
expression short-circuiting.)

If the list returned by split() does have a length of 2, then it will have a move[0] and
move[1]. We call the string method isdigit() on those strings. isdigit() will

231

13 - Sonar Treasure Hunt

return True if the string consists solely of numbers. Otherwise it returns False . Try
typing the following into the interactive shell:

>>> '42'.isdigit()
True
>>> 'forty'.isdigit()
False
>>> ''.isdigit()
False
>>> 'hello'.isdigit()
False
>>> x = '10'
>>> x.isdigit()
True
>>>

As you can see, both move[0].isdigit() and move[1].isdigit() must be
True. The final part of this expression calls our move[1] function to check if the XY
coordinates exist on the board. If all these expressions are True, then this function returns
a two-integer list of the XY coordinates. Otherwise, the player will be asked to enter
coordinates again.

Asking the Player to Play Again

109. def playAgain():
110 . # This function returns True if the player wants to

play again, otherwise it returns False.
111. print('Do you want to play again? (yes or no)')
112. return input().lower().startswith('y')

The playAgain() function will ask the player if they want to play again, and will
keep asking until the player types in a string that begins with 'y'. This function returns a
Boolean value.

Printing the Game Instructions for the Player

115. def showInstructions():
116 . print('''Instructions:
117. You are the captain of the Simon, a treasure-hunting

ship. Your current mission
118. is to find the three sunken treasure chests that are

lurking in the part of the
119. ocean you are in and collect them.
120.
121. To play, enter the coordinates of the point in the ocean

232

you wish to drop a
122. sonar device. The sonar can find out how far away the

closest chest is to it.
123. For example, the d below marks where the device was

dropped, and the 2's
124. represent distances of 2 away from the device. The 4's

represent
125. distances of 4 away from the device.
126.
127. 444444444
128. 4 4
129. 4 22222 4
130. 4 2 2 4
131. 4 2 d 2 4
132. 4 2 2 4
133. 4 22222 4
134. 4 4
135. 444444444
136. Press enter to continue...''')
137. input()

The showInstructions() is just a couple of print() cal ls that print multi-line
strings. The input() function just gives the player a chance to press Enter before printing
the next string. This is because the screen can only show 25 lines of text at a time.

139. print('''For example, here is a treasure chest (the c)
located a distance of 2 away

140. from the sonar device (the d):
141.
142. 22222
143. c 2
144. 2 d 2
145. 2 2
146. 22222
147.
148. The point where the device was dropped will be marked with

a 2.
149.
150. The treasure chests don't move around. Sonar devices can

detect treasure
151. chests up to a distance of 9. If all chests are out of

range, the point
152. will be marked with O
153.
154. If a device is directly dropped on a treasure chest, you

have discovered
155. the location of the chest, and it will be collected. The

sonar device will
156. remain there.
157.
158. When you collect a chest, all sonar devices will update to

233

13 - Sonar Treasure Hunt

locate the next
159 . closest sunken treasure chest.
160. Press enter to continue...''')
161. input()
162. print()

This is the rest of the instructions in one multi-line string. After the player presses Enter,
the function returns. These are all of the functions we will define for our game. The rest of
the program is the main part of our game.

How the Code Works: Lines 165 to 217

Now that we are done writing all of the functions our game will need, let's start the main
part of the program.

The Start of the Game

165. print('S O N A R !')
166. p rint()
167. print('Would you like to view the instructions? (yes/no)')
168. if input().lower().startswith('y'):
169. showInstructions()

The expression input().lower().startswith('y') asks the player if they want
to see the instructions, and evaluates to True if the player typed in a string that began with
'y' or 'Y'. If so, showInstructions() is called.

171. while True:
172. # game setup
173. sonarDevices = 16
174. theBoard = getNewBoard()
175. theChests = getRandomChests(3)
176. drawBoard(theBoard)
177. previousMoves = []

This while loop is the main game loop. Here are what the variables are for:

Table 13-2: Variables used in the main game loop.

Variable Description

sonarDevices The number of sonar devices (and turns) the player has left.

theBoard
The board data structure we will use for this game. getNewBoard
() will set us up with a fresh board.

The list of chest data structures. getRandomChests() will return
234

Displaying the Game Status for the Player

179. while sonarDevices > 0:
180. # Start of a turn:
181.
182. # show sonar device/chest status
183. if sonarDevices > 1: extraSsonar = 's'
184. else: extraSsonar = ''
185. if len(theChests) > 1: extraSchest = 's'
186. else: extraSchest = ''
187. print('You have %s sonar device%s left. %s

treasure chest%s remaining.' % (sonarDevices,
extraSsonar, len(theChests), extraSchest))

This while loop executes as long as the player has sonar devices remaining. We want
to print a message telling the user how many sonar devices and treasure chests are left. But
there is a problem. If there are two or more sonar devices left, we want to print '2 sonar
devices'. But if there is only one sonar device left, we want to print '1 sonar
device' left. We only want the plural form of devices if there are multiple sonar devices.
The same goes for '2 treasure chests' and '1 treasure chest' .

Notice on lines 183 through 186 that we have code after the if and else statements'
colon. This is perfectly valid Python. Instead of having a block of code after the statement,
instead you can just use the rest of the same line to make your code more concise. (Of
course, this means you can only have one line of code for the if-block and else-block.) This
applies to any statement that uses colons, including while and for loops.

So we have two string variables named extraSsonar and extraSchest, which are
set to ' ' (space) if there are multiple sonar devices or treasures chests. Otherwise, they
are blank. We use them in the while statement on line 187.

Getting the Player's Move

189. x, y = enterPlayerMove()
190. previousMoves.append([x, y]) # we must track all

moves so that sonar devices can be updated.
191.
192. moveResult = makeMove(theBoard, theChests, x, y)
193. if moveResult == False:
194. continue

Line 189 uses the multiple assignment trick. enterPlayerMove() returns a two-item

theChests a list of three treasure chests at random places on the board.

previousMoves A list of all the XY moves that the player has made in the game.

235

13 - Sonar Treasure Hunt

list. The first item will be stored in the x variable and the second will be stored in the y
variable. We then put these two variables into another two-item list, which we store in the
previousMoves li st with the append() method. This means previousMoves is a
list of XY coordinates of each move the player makes in this game.

The x and y variables, along with theBoard and theChests (which represent the
current state of the game board) are all sent to the makeMove() function. As we have
already seen, this function will make the necessary modifications to the game board. If
makeMove() returns the value False, then there was a problem with the x and y values
we passed it. The continue statement will send the execution back to the start of the
while loop that began on line 179 to ask the player for XY coordinates again.

Finding a Sunken Treasure Chest

195. else:
196 . if moveResult == 'You have found a sunken

treasure chest!':
197. # update all the sonar devices currently

on the map.
198. for x, y in previousMoves:
199. makeMove(theBoard, theChests, x, y)
200. drawBoard(theBoard)
201. print(moveResult)

If makeMove() did not return the value False, it would have returned a string that
tells us what were the results of that move. If this string was 'You have found a
sunken treasure chest!', then that means we should update all the sonar devices
on the board so they detect the second closest treasure chest on the board. We have the XY
coordinates of all the sonar devices currently on the board stored in previousMoves. So
we can just pass all of these XY coordinates to the makeMove() function again to have it
redraw the values on the board.

We don't have to worry about this call to makeMove() having errors, because we
already know all the XY coordinates in previousMoves are valid. We also know that
this call to makeMove() won't find any new treasure chests, because they would have
already been removed from the board when that move was first made.

The for loop on line 198 also uses the same multiple assignment trick for x and y
because the items in previousMoves list are themselves two-item lists. Because we
don't print anything here, the player doesn't realize we are redoing all of the previous
moves. It just appears that the board has been entirely updated.

Checking if the Player has Won

203. if len(theChests) == 0:

236

204. print('You have found all the sunken treasure
ches t s! Congratulations and good game!')

205. break

Remember that the makeMove() function modifies the theChests list we send it.
Because theChests is a list, any changes made to it inside the function will persist after
execution returns from the function. makeMove() removes items from theChests when
treasure chests are found, so eventually (if the player guesses correctly) all of the treasure
chests will have been removed. (Remember, by "treasure chest" we mean the two-item lists
of the XY coordinates inside the theChests list.)

When all the treasure chests have been found on the board and removed from
theChests , the theChests list will have a length of 0. When that happens, we display a
congratulations to the player, and then execute a break statement to break out of this
while loop. Execution will then move down to line 209 (the first line after the while-
block.)

Checking if the Player has Lost

207. sonarDevices -= 1

This is the last line of the while loop that started on line 179. We decrement the
sonarDevices variable because the player has used one. If the player keeps missing the
treasure chests, eventually sonarDevices will be reduced to 0. After this line, execution
jumps back up to line 179 so we can re-evaluate the while statement's condition (which is
sonarDevices > 0). If sonarDevices is 0, then the condition will be False and
execution will continue outside the while-block on line 209.

But until then, the condition will remain True and the player can keep making guesses.

209. if sonarDevices == 0:
210. print('We\'ve run out of sonar devices! Now we

have to turn the ship around and head')
211. print('for home with treasure chests still out

there! Game over.')
212. print(' The remaining chests were here:')
213. for x, y in theChests:
214. print(' %s, %s' % (x, y))

Line 209 is the first line outside the while loop. By this point the game is over. But how
do we tell if the player won or not? The only two places where the program execution would
have left the while loop is on line 179 if the condition failed. In that case,
sonarDevices would be 0 and the player would have lost.

237

13 - Sonar Treasure Hunt

The second place is the break statement on line 205. That statement is executed if the
player has found all the treasure chests before running out of sonar devices. In that case,
sonarDevices woul d be some value greater than 0.

Lines 210 to 212 will tell the player they've lost. The for loop on line 213 will go
through the treasure chests remaining in theChests and show their location to the player
so that they know where the treasure chests had been lurking.

Asking the Player to Play Again, and the sys.exit() Function

216. if not playAgain():
217 . sys.exit()

Win or lose, we call the playAgain() function to let the player type in whether they
want to keep playing or not. If not, then playAgain() returns False. The not operator
changes this to True, making the if statement's condition True and the sys.exit()
function is executed. This will cause the program to terminate.

Otherwise, execution jumps back to the beginning of the while loop on line 171.

Summary: Review of our Sonar Game

Remember how our Tic Tac Toe game numbered the spaces on the Tic Tac Toe board 1
through 9? This sort of coordinate system might have been okay for a board with less than
ten spaces. But the Sonar board has nine hundred spaces! The Cartesian coordinate system
we learned in the last chapter really makes all these spaces manageable, especially when
our game needs to find the distance between two points on the board.

Game boards in games that use a Cartesian coordinate system are often stored in a list of
lists so that the first index is the x-coordinate and the second index is the y-coordinate. This
make accessing a coordinates look like board[x][y].

These data structures (such as the ones used for the ocean and locations of the treasure
chests) make it possible to have complicated concepts represented as data in our program,
and our game programs become mostly about modifying these data structures.

In the next chapter, we will be representing letters as numbers using their ASCII
numbers. (This is the same ASCII term we used in "ASCII art" previously.) By
representing text as numbers, we can perform mathematically operations on them which
will encrypt or decrypt secret messages.

238

Topics Covered In This Chapter:

� Cryptography and ciphers
� Encrypting and decrypting
� Ciphertext, plaintext, keys, and symbols
� The Caesar Cipher
� ASCII ordinal values
� The chr() and ord() functions
� The isalpha() string method
� The isupper() and islower() string methods
� Cryptanalysis
� The brute force technique

The program in this chapter is not really a game, but it is fun to play with nonetheless.
Our program will convert normal English into a secret code, and also convert secret codes
back into regular English again. Only someone who is knowledgeable about secret codes
will be able to understand our secret messages.

Because this program manipulates text in order to convert it into secret messages, we
will learn several new functions and methods that come with Python for manipulating
strings. We will also learn how programs can do math with text strings just as it can with
numbers.

About Cryptography

The science of writing secret codes is called cryptography . Cryptography has been

239

used for thousands of years to send secret messages that only the recipient could
understand, even if someone captured the messenger and read the coded message. A secret
code system is called a cipher. There are thousands of different ciphers that have been
used, each using different techniques to keep the messages a secret.

In cryptography, we call the message that we want to be secret the plaintext . The
plaintext could look something like this:

Hello there! The keys to the house are hidden under the
reddish flower pot.

When we convert the plaintext into the encoded message, we call this encrypting the
plaintext. The plaintext is encrypted into the ciphertext. The ciphertext looks like random
letters (also called garbage data), and we cannot understand what the original plaintext
was by just looking at the ciphertext. Here is an example of some ciphertext:

Ckkz fkx kj becqnejc kqp pdeo oaynap iaoowca!

But if we know about the cipher used to encrypt the message, we can decrypt the
ciphertext back to the plaintext. (Decryption is the opposite of encryption.)

Many ciphers also use keys. Keys are secret values that let you decrypt ciphertext that
was encrypted using a specific cipher. Think of the cipher as being like a door lock.
Although all the door locks of the same type are built the same, but a particular lock will
only unlock if you have the key made for that lock.

The Caesar Cipher

When we encrypt a
message using a cipher,
we will choose the key
that is used to encrypt and
decrypt this message. The
key for our Caesar Cipher
will be a number from 1 to
26. Unless you know the
key (that is, know the
number), you will not be
able to decrypt the
encrypted message.

The Caesar Cipher was one of the earliest ciphers ever invented. In this cipher, you
encrypt a message by taking each letter in the message (in cryptography, these letters are
called symbols because they can be letters, numbers, or any other sign) and replacing it
with a "shifted" letter. If you shift the letter A by one space, you get the letter B. If you shift
the letter A by two spaces, you get the letter C. Figure 14-1 is a picture of some letters
shifted over by 3 spaces.

Figure 14-1: Shifting over letters by three spaces. Here, B becomes E.

240

To get each shifted letter, draw out a row of boxes with each letter of the alphabet. Then
draw a second row of boxes under it, but start a certain number of spaces over. When you
get to the leftover letters at the end, wrap around back to the start of the boxes. Here is an
example with the letters shifted by three spaces:

Figure 14-2: The entire alphabet shifted by three spaces.

The number of spaces we shift is the key in the Caesar Cipher. The example above
shows the letter translations for the key 3.

Using a key of 3, if we encrypt the plaintext "Howdy", then the "H" becomes "E". The
letter "o" becomes "l". The letter "w" becomes "t". The letter "d" becomes "a". And the
letter "y" becomes "v". The ciphertext of "Hello" with key 3 becomes "Eltav".

We will keep any non-letter characters the same. In order to decrypt "Eltav" with the key
3, we just go from the bottom boxes back to the top. The letter "E" becomes "H", the letter
"l" becomes "o", the letter "t" becomes "w", the letter "a" becomes "d", and the letter "v"
becomes "y" to form "Howdy".

You can find out more about the Caesar Cipher from Wikipedia at
http://en.wikipedia.org/wiki/Caesar_cipher

ASCII, and Using Numbers for Letters

How do we implement this shifting of the letters in our program? We can do this by
representing each letter as a number (called an ordinal), and then adding or subtracting
from this number to form a new number (and a new letter). ASCII (pronounced "ask-ee"
and stands for American Standard Code for Information Interchange) is a code that
connects each character to a number between 32 and 127. The numbers less than 32 refer to
"unprintable" characters, so we will not be using them.

The capital letters "A" through "Z" have the ASCII numbers 65 through 90. The
lowercase letters "a" through "z" have the ASCII numbers 97 through 122. The numeric
digits "0" through "9" have the ASCII numbers 48 through 57.

241

14 - Caesar Cipher

So if we wanted to shift "A" by three spaces, we first convert it to a number (65). Then
we add 3 to 65, to get 68. Then we convert the number 68 back to a letter ("D"). We will
use the chr() and ord() functions to convert between letters and numbers.

For example, the letter "A" is represented by the number 65. The letter "m" is
represented by the number 109. A table of all the ASCII characters from 32 to 12 is in
Table 14-1.

The chr() and ord() Functions

The chr() function (pronounced "char", short for "character") takes an integer ASCII
number for the parameter and returns the single-character string. The ord() function
(short for "ordinal") takes a single-character string for the parameter, and returns the integer
ASCII value for that character. Try typing the following into the interactive shell:

>>> chr(65)
'A'
>>> ord('A')
65

Table 14-1: The ASCII Table

32 (space) 48 0 64 @ 80 P 96 ` 112 p

33 ! 49 1 65 A 81 Q 97 a 113 q

34 " 50 2 66 B 82 R 98 b 114 r

35 # 51 3 67 C 83 S 99 c 115 s

36 $ 52 4 68 D 84 T 100 d 116 t

37 % 53 5 69 E 85 U 101 e 117 u

38 & 54 6 70 F 86 V 102 f 118 v

39 ' 55 7 71 G 87 W 103 g 119 w

40 (56 8 72 H 88 X 104 h 120 x

41) 57 9 73 I 89 Y 105 i 121 y

42 * 58 : 74 J 90 Z 106 j 122 z

43 + 59 ; 75 K 91 [107 k 123 {

44 , 60 < 76 L 92 \ 108 l 124 |

45 - 61 = 77 M 93] 109 m 125 }

46 . 62 > 78 N 94 ^ 110 n 126 ~

47 / 63 ? 79 O 95 _ 111 o

242

>>> chr(65+8)
'I'
>>> chr(52)
'4'
>>> chr(ord('F'))
'F'
>>> ord(chr(68))
68
>>>

On the third line, chr(65+8) evaluates to chr(73). If you look at the ASCII table,
you can see that 73 is the ordinal for the capital letter "I". On the fifth line, chr(ord
('F')) evaluates to chr(70) which evaluates to 'F'. Feeding the result of ord() to
chr() will give you back the original argument. The same goes for feeding the result of
chr() to ord(), as shown by the sixth line.

Using chr() and ord() will come in handy for our Caesar Cipher program. They are
also helpful when we need to convert strings to numbers and numbers to strings.

Sample Run of Caesar Cipher

Here is a sample run of the Caesar Cipher program, encrypting a message:

Do you wish to encrypt or decrypt a message?
encr ypt
Enter your message:
The sky above the port was the color of television, tune d to a
dead channel.
Enter the key number (1-26)
13
Your translated text is:
Gur fxl nobir gur cbeg jnf gur pbybe bs gryrivfvba, gharq gb n
qrnq punaary.
Now we will run the program and decrypt the text that we just
encrypted.
Do you wish to encrypt or decrypt a message?
decrypt
Enter your message:
Gur fxl nobir gur cbeg jnf gur pbybe bs gryrivfvba, ghar q gb n
qrnq punaary.
Enter the key number (1-26)
13
Your translated text is:
The sky above the port was the color of television, tuned to a
dead channel.

On this run we will try to decrypt the text that was encrypted, but we will use the wrong
243

14 - Caesar Cipher

key. Remember that if you do not know the correct key, the decrypted text will just be
garbage data.

Do you wish to encrypt or decrypt a message?
decrypt
Ent er your message:
Gur fxl nobir gur cbeg jnf gur pbybe bs gryrivfvba, gha rq gb n
qrnq punaary.
Ente r the key number (1-26)
15
Your translated text is:
Rfc qiw yzmtc rfc nmpr uyq rfc amjmp md rcjctgqgml, rslcb rm y
bcyb afyllcj.

Caesar Cipher's Source Code

Here is the source code for the Caesar Cipher program. If you don't want to type all of
this code in, you can visit this book's website at the URL
http://inventwithpython.com/chapter14 and follow the instructions to download the source
code. After you type this code in, save the file as cipher.py

cipher.py
This code can be downloaded from http://inventwithpython.com/cipher.py
If you get errors after typing this code in, compare it to the book's code with the online
diff tool at http://inventwithpython.com/diff or email the author at
al@inventwithpython.com

1. # Caesar Cipher
2.
3. MAX_KEY_SIZE = 26
4.
5. def getMode():
6. while True:
7. print('Do you wish to encrypt or decrypt a

message?')
8. mode = input().lower()
9. if mode in 'encrypt e decrypt d'.split():

10. return mode
11. else:
12. print('Enter either "encrypt" or "e" or

"decrypt" or "d".')
13.
14. def getMessage():
15. print('Enter your message:')
16. return input()
17.
18. def getKey():
19. key = 0
20. while True:
21. print('Enter the key number (1-%s)' %

244

(MAX_KEY_SIZE))
22. key = int(input())
23. if (key >= 1 and key <= MAX_KEY_SIZE):
24. return key
25.
26. def getTranslatedMessage(mode, message, key):
27. if mode[0] == 'd':
28. key = -key
29. translated = ''
30.
31. for symbol in message:
32. if symbol.isalpha():
33. num = ord(symbol)
34. num += key
35.
36. if symbol.isupper():
37. if num > ord('Z'):
38. num -= 26
39. elif num < ord('A'):
40. num += 26
41. elif symbol.islower():
42. if num > ord('z'):
43. num -= 26
44. elif num < ord('a'):
45. num += 26
46.
47. translated += chr(num)
48. else:
49. translated += symbol
50. return translated
51.
52. mode = getMode()
53. message = getMessage()
54. key = getKey()
55.
56. print('Your translated text is:')
57. print(getTranslatedMessage(mode, message, key))

How the Code Works: Lines 1 to 34

This code is much shorter compared to our other games. The encryption and decryption
processes are the just the reverse of the other, and even then they still share much of the
same code. Let's look at how each line works.

1. # Caesar Cipher
2.
3. MAX_KEY_SIZE = 26

The first line is simply a comment. The Caesar Cipher is one cipher of a type of ciphers
called simple substitution ciphers. Simple substitution ciphers are ciphers that replace

245

14 - Caesar Cipher

one symbol in the plaintext with one (and only one) symbol in the ciphertext. So if a "G"
was substituted with "Z" in the cipher, every single "G" in the plaintext would be replaced
with (and only with) a "Z".

MAX_KEY_SIZE is a variable that stores the integer 26 in it. MAX_KEY_SIZE reminds
us that in this program, the key used in our cipher should be between 1 and 26.

Deciding to Encrypt or Decrypt

5. def getMode():
6. while True:
7. print('Do you wish to encrypt or decrypt a

message?')
8. mode = input().lower()
9. if mode in 'encrypt e decrypt d'.split():

10. return mode
11. else:
12. print('Enter either "encrypt" or "e" or

"decrypt" or "d".')

The getMode() function will let the user type in if they want to encrypt or decrypt the
message. The return value of input() (which then has the lower() method called on it,
which returns the lowercase version of the string) is stored in mode. The if statement's
condition checks if the string stored in mode exists in the list returned by 'encrypt e
decrypt d'.split(). This list is ['encrypt', 'e', 'decrypt', 'd'] , but
it is easier for the programmer to just type in 'encrypt e decrypt d'.split()
and not type in all those quotes and commas. But you can use whatever is easiest for you;
they both evaluate to the same list value.

This function will return the first character in mode as long as mode is equal to
'encrypt', 'e', 'decrypt', or 'd'. This means that getMode() will return the
string 'e' or the string 'd'.

Getting the Message from the Player

14. def getMessage():
15. print('Enter your message:')
16. return input()

The getMessage() function simply gets the message to encrypt or decrypt from the
user and uses this string as its return value.

246

Getting the Key from the Player

18. def getKey():
19. key = 0
20. while True:
21. print('Enter the key number (1-%s)' %

(MAX_KEY_SIZE))
22. key = int(input())
23. if (key >= 1 and key <= MAX_KEY_SIZE):
24. return key

The getKey() function lets the player type in key they will use to encrypt or decrypt
the message. The while loop ensures that the function only returns a valid key. A valid
key here is one that is between the integer values 1 and 26 (remember that
MAX_KEY_SIZE will only have the value 26 because it is constant). It then returns this
key. Remember that on line 22 that key was set to the integer version of what the user
typed in, and so getKey() returns an integer.

Encrypt or Decrypt the Message with the Given Key

26. def getTranslatedMessage(mode, message, key):
27. if mode[0] == 'd':
28. key = -key
29. translated = ''

getTranslatedMessage() is the function that does the encrypting and decrypting
in our program. It has three parameters. mode sets the function to encryption mode or
decryption mode. message is the plaintext (or ciphertext) to be encrypted (or decrypted).
key is the key that is used in this cipher.

The first line in the getTranslatedMessage() function determines if we are in
encryption mode or decryption mode. If the first letter in the mode variable is the string
'd', then we are in decryption mode. The only difference between the two modes is that in
decryption mode, the key is set to the negative version of itself. If key was the integer 22,
then in decryption mode we set it to -22. The reason for this will be explained later.

translated is the string that will hold the end result: either the ciphertext (if we are
encrypting) or the plaintext (if we are decrypting). We will only be concatenating strings to
this variable, so we first store the blank string in translated. (A variable must be
defined with some string value first before a string can be concatenated to it.)

The isalpha() String Method

The isalpha() string method will return True if the string is an uppercase or
247

14 - Caesar Cipher

lowercase letter from A to Z. If the string contains any non-letter characters, then
isalpha() will return False. Try typing the following into the interactive shell:

>>> 'Hello'.isalpha()
True
>>> 'Forty two'.isalpha()
False
>>> 'Fortytwo'.isalpha()
True
>>> '42'.isalpha()
False
>>> ''.isalpha()
False
>>>

As you can see, 'Forty two'.isalpha() will return False because 'Forty
two' has a space in it, which is a non-letter character. 'Fortytwo'.isalpha()
returns True because it does not have this space. '42'.isalpha() returns False
because both '4' and '2' are non-letter characters. And ''.isalpha() is False
because isalpha() only returns True if the string has only letter characters and is not
blank.

We will use the isalpha() method in our program next.

31. for symbol in message:
32. if symbol.isalpha():
33. num = ord(symbol)
34. num += key

We will run a for loop over each letter (remember in cryptography they are called
symbols) in the message string. Strings are treated just like lists of single-character
strings. If message had the string 'Hello', then for symbol in 'Hello' would
be the same as for symbol in ['H', 'e', 'l', 'l', 'o'] . On each
iteration through this loop, symbol will have the value of a letter in message.

The reason we have the if statement on line 32 is because we will only encrypt/decrypt
letters in the message. Numbers, signs, punctuation marks, and everything else will stay in
their untranslated form. The num variable will hold the integer ordinal value of the letter
stored in symbol. Line 34 then "shifts" the value in num by the value in key.

The isupper() and islower() String Methods

The isupper() and islower() string methods (which are on line 36 and 41) work

248

in a way that is very similar to the isdigit() and isalpha() methods. isupper
() wi ll return True if the string it is called on contains at least one uppercase letter and no
lowercase letters. islower() returns True if the string it is called on contains at least
one lowercase letter and no uppercase letters. Otherwise these methods return False. The
existence of non-letter characters like numbers and spaces does not affect the outcome.
Although strings that do not have any letters, including blank strings, will also return
False. Try typing the following into the interactive shell:

>>> 'HELLO'.isupper()
True
>>> 'hello'.isupper()
False
>>> 'hello'.islower()
True
>>> 'Hello'.islower()
False
>>> 'LOOK OUT BEHIND YOU!'.isupper()
True
>>> '42'.isupper()
False
>>> '42'.islower()
False
>>> ''.isupper()
False
>>> ''.islower()
False
>>>

How the Code Works: Lines 36 to 57

The process of encrypting (or decrypting) each letter is fairly simple. We want to apply
the same Python code to every letter character in the string, which is what the next several
lines of code do.

Encrypting or Decrypting Each Letter

36. if symbol.isupper():
37. if num > ord('Z'):
38. num -= 26
39. elif num < ord('A'):
40. num += 26

This code checks if the symbol is an uppercase letter. If so, there are two special cases
we need to worry about. What if symbol was 'Z' and key was 4? If that were the case,

249

14 - Caesar Cipher

the value of num here would be the character '^' (The ordinal of '^' is 94). But ^ isn't
a letter at all. We wanted the ciphertext to "wrap around" to the beginning of the alphabet.

The way we can do this is to check if key has a value larger than the largest possible
letter's ASCII value (which is a capital "Z"). If so, then we want to subtract 26 (because
there are 26 letters in total) from num. After doing this, the value of num is 68, which is
the ASCII value for 'D'.

41. elif symbol.islower():
42. if num > ord('z'):
43. num -= 26
44. elif num < ord('a'):
45. num += 26

If the symbol is a lowercase letter, the program runs code that is very similar to lines 36
through 40. The only difference is that we use ord('z') and ord('a') instead of ord
('Z') and ord('A').

If we were in decrypting mode, then key would be negative. Then we would have the
special case where num -= 26 might be less than the smallest possible value (which is
ord('A'), that is, 65). If this is the case, we want to add 26 to num to have it "wrap
around".

47. translated += chr(num)
48. else:
49. translated += symbol

The translated string will be appended with the encrypted/decrypted character. If
the symbol was not an uppercase or lowercase letter, then the else-block on line 48 would
have executed instead. All the code in the else-block does is append the original symbol to
the translated string. This means that spaces, numbers, punctuation marks, and other
characters will not be encrypted (or decrypted).

50. return translated

The last line in the getTranslatedMessage() function returns the translated
string.

The Start of the Program

52. mode = getMode()
53. message = getMessage()
54. key = getKey()

250

55.
56. print('Your translated text is:')
57. print(getTranslatedMessage(mode, message, key))

This is the main part of our program. We call each of the three functions we have defined
above in turn to get the mode, message, and key that the user wants to use. We then pass
these three values as arguments to getTranslatedMessage() , whose return value (the
translated string) is printed to the user.

Brute Force

That's the entire Caesar Cipher. However, while this cipher may fool some people who
don't understand cryptography, it won't keep a message secret from someone who knows
cryptanalysis. While cryptography is the science of making codes, cryptanalysis is the
science of breaking codes.

Do you wish to encrypt or decrypt a message?
encrypt
Enter your message:
Doubts may not be pleasant, but certainty is absurd.
Enter the key number (1-26)
8
Your translated text is:
Lwcjba uig vwb jm xtmiaivb, jcb kmzbiqvbg qa ijaczl.

The whole point of cryptography is that so if someone else gets their hands on the
encrypted message, they cannot figure out the original unencrypted message from it. Let's
pretend we are the code breaker and all we have is the encrypted text:

Lwcjba uig vwb jm xtmiaivb, jcb kmzbiqvbg qa ijaczl.

One method of cryptanalysis is called brute force. Brute force is the technique of trying
every single possible key. If the cryptanalyst knows the cipher that the message uses (or at
least guesses it), they can just go through every possible key. Because there are only 26
possible keys, it would be easy for a cryptanalyst to write a program than prints the
decrypted ciphertext of every possible key and see if any of the outputs make sense. Let's
add a brute force feature to our program.

Adding the Brute Force Mode to Our Program

First, change lines 7, 9, and 12 (which are in the getMode() function) to look like the
following (the changes are in bold):

5. def getMode():

251

14 - Caesar Cipher

6. while True:
7. print('Do you wish to encrypt or decrypt or brute

force a message?')
8. mode = input().lower()
9. if mode in 'encrypt e decrypt d brute b '.split():

10. return mode[0]
11. else:
12. print('Enter either "encrypt" or "e" or

"decrypt" or "d" or "brute" or "b" .')

This will let us select "brute force" as a mode for our program. Then modify and add the
following changes to the main part of the program:

52. mode = getMode()
53. message = getMessage()
54. if mode[0] != 'b':
55. key = getKey()
56.
57. print('Your translated text is:')
58. if mode[0] != 'b':
59. print(getTranslatedMessage(mode, message, key))
60. else:
61. for key in range(1, MAX_KEY_SIZE + 1):
62. print(key, getTranslatedMessage('decrypt',

message, key))

These changes make our program ask the user for a key if they are not in "brute force"
mode. If they are not in "brute force" mode, then the original getTranslatedMessage
() call is made and the translated string is printed.

However, otherwise we are in "brute force" mode, and we run a
getTranslatedMessage() loop that iterates from 1 all the way up to
MAX_KEY_SIZE (which is 26). Remember that when the range() function returns a list
of integers up to but not including the second parameter, which is why we have + 1. This
program will print out every possible translation of the message (including the key number
used in the translation). Here is a sample run of this modified program:

252

Do you wish to encrypt or decrypt or brute force a
message?
brute
Enter your message:
Lwcjba uig vwb jm xtmiaivb, jcb kmzbiqvbg qa ijaczl.
Your translated text is:
1 Kvbiaz thf uva il wslhzhua, iba jlyahpuaf pz hizbyk.
2 Juahzy sge tuz hk vrkgygtz, haz ikxzgotze oy ghyaxj.
3 Itzgyx rfd sty gj uqjfxfsy, gzy hjwyfnsyd nx fgxzwi.
4 Hsyfxw qec rsx fi tpiewerx, fyx givxemrxc mw efwyvh.
5 Grxewv pdb qrw eh sohdvdqw, exw fhuwdlqwb lv devxug.
6 Fqwdvu oca pqv dg rngcucpv, dwv egtvckpva ku cduwtf.
7 Epvcut nbz opu cf qmfbtbou, cvu dfsubjouz jt bctvse.
8 Doubts may not be pleasant, but certainty is absurd.
9 Cntasr lzx mns ad okdzrzms, ats bdqszhmsx hr zartqc.
10 Bmszrq kyw lmr zc njcyqylr, zsr acpryglrw gq yzqspb.
11 Alryqp jxv klq yb mibxpxkq, yrq zboqxfkqv fp xyproa.
12 Zkqxpo iwu jkp xa lhawowjp, xqp yanpwejpu eo wxoqnz.
13 Yjpwon hvt ijo wz kgzvnvio, wpo xzmovdiot dn vwnpmy.
14 Xiovnm gus hin vy jfyumuhn, von wylnuchns cm uvmolx.
15 Whnuml ftr ghm ux iextltgm, unm vxkmtbgmr bl tulnkw.
16 Vgmtlk esq fgl tw hdwsksfl, tml uwjlsaflq ak stkmjv.
17 Uflskj drp efk sv gcvrjrek, slk tvikrzekp zj rsjliu.
18 Tekrji cqo dej ru fbuqiqdj, rkj suhjqydjo yi qrikht.
19 Sdjqih bpn cdi qt eatphpci, qji rtgipxcin xh pqhjgs.
20 Rciphg aom bch ps dzsogobh, pih qsfhowbhm wg opgifr.
21 Qbhogf znl abg or cyrnfnag, ohg pregnvagl vf nofheq.
22 Pagnfe ymk zaf nq bxqmemzf, ngf oqdfmuzfk ue mnegdp.
23 Ozfmed xlj yze mp awpldlye, mfe npceltyej td lmdfco.
24 Nyeldc wki xyd lo zvokckxd, led mobdksxdi sc klcebn.
25 Mxdkcb vjh wxc kn yunjbjwc, kdc lnacjrwch rb jkbdam.
26 Lwcjba uig vwb jm xtmiaivb, jcb kmzbiqvbg qa ijaczl.

After looking over each row, you can see that the 8th message is not garbage, but plain
English! The cryptanalyst can deduce that the original key for this encrypted text must have
been 8. This brute force would have been difficult to do back in the days of Caesars and the
Roman Empire, but today we have computers that can quickly go through millions or even
billions of keys in a short time. You can even write a program that can recognize when it
has found a message in English, so you don't have read through all the garbage text.

Summary: Reviewing Our Caesar Cipher Program

Computers are very good at doing mathematics. When we create a system to translate
some piece of information into numbers (such as we do with text and ASCII or with space
and coordinate systems), computer programs can process these numbers very quickly and
efficiently.

253

14 - Caesar Cipher

But while our Caesar cipher program here can encrypt messages that will keep them
secret from people who have to figure it out with pencil and paper, it won't keep it secret
from people who know how to get computers to process information for them. (Our brute
force mode proves this.) And there are other cryptographic ciphers that are so advanced that
nobody knows how to decrypt the secret messages they make. (Except for the people with
the key of course!)

A large part of figuring out how to write a program is figuring out how to represent the
information you want to manipulate as numbers. I hope this chapter has especially shown
you how this can be done. The next chapter will present our final game, Reversi (also
known as Othello). The AI that plays this game will be much more advanced than the AI
that played Tic Tac Toe in chapter 9. In fact, the AI is so good, that you'll find that most of
the time you will be unable to beat it!

254

Topics Covered In This Chapter:

� The bool() Function
� Evaluating Non-Boolean Values as Booleans

How to Play Reversi

In this chapter we will make a game called Reversi. Reversi (also called Othello) is a
board game that is played on a grid (so we will use a Cartesian coordinate system with XY
coordinates, like we did with Sonar.) It is a game played with two players. Our version of
the game will have a computer AI that is more advanced than the AI we made for Tic Tac
Toe. In fact, this AI is so good that it will probably beat you almost every time you play. (I
know I lose whenever I play against it!)

If you would like to see a video of Reversi being played, there is a demonstration on this
book's website. Go to the URL http://inventwithpython.com/videos and find the "Reversi
Demo Video" video.

Reversi has an 8 x 8 board with tiles that are black on one side and white on the other
(our game will use O's and X's though). The starting board looks like Figure 15-1. Each
player takes turn placing down a new tile of their color. Any of the opponent's tiles that are
between the new tile and the other tiles of that color is flipped. The goal of the game is to
have as many of the tiles with your color as possible. For example, Figure 15-2 is what it
looks like if the white player places a new white tile on space 5, 6.

255

The black tile at 5, 5 is in between the new white tile and the existing white tile at 5, 4.
That black tile is flipped over and becomes a new white tile, making the board look like
Figure 15-3. Black makes a similar move next, placing a black tile on 4, 6 which flips the
white tile at 4, 5. This results in a board that looks like Figure 15-4.

Tiles in all directions are flipped as long as they are in between the player's new tile and
existing tile. Below in Figure 15-5, the white player places a tile at 3, 6 and flips black tiles
in both directions (marked by the lines.) The result is in Figure 15-6.

Figure 15-1: The starting Reversi board
has two white tiles and two black tiles.

Figure 15-2: White places a new tile.

Figure 15-3: White's move will
fl ip over one of black's tiles.

Figure 15-4: Black places a new tile,
which flips over one of white's tiles.

256

As you can see, each player can quickly grab a majority of the tiles on the board in just
one or two moves. Players must always make a move that captures at least one tile. The
game ends when a player either cannot make a move, or the board is completely full. The
player with the most tiles of their color wins.

The basic strategy of Reversi is to look at which move would turn over the most tiles.
But you should also consider taking a move that will not let your opponent recapture many
tiles after your move. Placing a tile on the sides or, even better, the corners is good because
there is less chance that those tiles will end up between your opponent's tiles. The AI we
make for this game will simply look for any corner moves they can take. If there are no
corner moves available, then the computer will select the move that claims the most tiles.

You can learn more about Reversi from Wikipedia: http://en.wikipedia.org/wiki/Reversi

Sample Run

Notice that our version of Reversi doesn't use black and white tiles because the text that
our program creates will always be the same color. Instead, we will use X's and O's to
represent the human and computer players.

Welcome to Reversi!
Do y ou want to be X or O?
x
The p layer will go first.
 1 2 3 4 5 6 7 8
 +---+---+---+---+---+---+---+---+
 | | | | | | | | |

Figure 15-5: White's second move
at 3, 6 will flip two of black's tiles.

Figure 15-6: The board after white's second move.

257

15 - Reversi

1 | | | | | | | | |
 | | | | | | | | |
 +---+---+---+---+---+---+---+---+
 | | | | | | | | |
2 | | | | | | | | |
 | | | | | | | | |
 +---+---+---+---+---+---+---+---+
 | | | | | | | | |
3 | | | | | | | | |
 | | | | | | | | |
 +---+---+---+---+---+---+---+---+
 | | | | | | | | |
4 | | | | X | O | | | |
 | | | | | | | | |
 +---+---+---+---+---+---+---+---+
 | | | | | | | | |
5 | | | | O | X | | | |
 | | | | | | | | |
 +---+---+---+---+---+---+---+---+
 | | | | | | | | |
6 | | | | | | | | |
 | | | | | | | | |
 +---+---+---+---+---+---+---+---+
 | | | | | | | | |
7 | | | | | | | | |
 | | | | | | | | |
 +---+---+---+---+---+---+---+---+
 | | | | | | | | |
8 | | | | | | | | |
 | | | | | | | | |
 +---+---+---+---+---+---+---+---+
You have 2 points. The computer has 2 points.
Enter your move, or type quit to end the game, or hints to turn
off/on hints.
53
 1 2 3 4 5 6 7 8
 +---+---+---+---+---+---+---+---+
 | | | | | | | | |
1 | | | | | | | | |
 | | | | | | | | |
 +---+---+---+---+---+---+---+---+
 | | | | | | | | |
2 | | | | | | | | |
 | | | | | | | | |
 +---+---+---+---+---+---+---+---+
 | | | | | | | | |
3 | | | | | X | | | |
 | | | | | | | | |
 +---+---+---+---+---+---+---+---+
 | | | | | | | | |
4 | | | | X | X | | | |
 | | | | | | | | |
 +---+---+---+---+---+---+---+---+
 | | | | | | | | |
5 | | | | O | X | | | |
 | | | | | | | | |
 +---+---+---+---+---+---+---+---+

258

 | | | | | | | | |
6 | | | | | | | | |
 | | | | | | | | |
 +---+---+---+---+---+---+---+---+
 | | | | | | | | |
7 | | | | | | | | |
 | | | | | | | | |
 +---+---+---+---+---+---+---+---+
 | | | | | | | | |
8 | | | | | | | | |
 | | | | | | | | |
 +---+---+---+---+---+---+---+---+
You have 4 points. The computer has 1 points.
Press Enter to see the computer's move.

...skipped for brevity...

 1 2 3 4 5 6 7 8
 +---+---+---+---+---+---+---+---+
 | | | | | | | | |
1 | O | O | O | O | O | O | O | O |
 | | | | | | | | |
 +---+---+---+---+---+---+---+---+
 | | | | | | | | |
2 | O | O | O | O | O | O | O | O |
 | | | | | | | | |
 +---+---+---+---+---+---+---+---+
 | | | | | | | | |
3 | O | O | O | O | O | O | O | O |
 | | | | | | | | |
 +---+---+---+---+---+---+---+---+
 | | | | | | | | |
4 | O | O | X | O | O | O | O | O |
 | | | | | | | | |
 +---+---+---+---+---+---+---+---+
 | | | | | | | | |
5 | O | O | O | X | O | X | O | X |
 | | | | | | | | |
 +---+---+---+---+---+---+---+---+
 | | | | | | | | |
6 | O | X | O | X | X | O | O | |
 | | | | | | | | |
 +---+---+---+---+---+---+---+---+
 | | | | | | | | |
7 | O | X | X | O | O | O | O | O |
 | | | | | | | | |
 +---+---+---+---+---+---+---+---+
 | | | | | | | | |
8 | O | X | X | O | | | X | |
 | | | | | | | | |
 +---+---+---+---+---+---+---+---+
You have 12 points. The computer has 48 points.
Enter your move, or type quit to end the game, or hints to turn
off/on hints.
86

259

15 - Reversi

X scored 15 points. O scored 46 points.
You lost. The computer beat you by 31 points.
Do you want to play again? (yes or no)
no

As you can see, the AI was pretty good at beating me. To help the player out, we'll
program our game to provide hints. If the player types 'hints' as their move, they can
toggle the hints mode on and off. When hints mode is on, all the possible moves the player
can make will show up on the board as '.' characters, like this:

 1 2 3 4 5 6 7 8
 +---+---+---+---+---+---+---+---+
 | | | | | | | | |
1 | | | | | | | | |
 | | | | | | | | |
 +---+---+---+---+---+---+---+---+
 | | | | | | | | |
2 | | | | . | | . | | |
 | | | | | | | | |
 +---+---+---+---+---+---+---+---+
 | | | | | | | | |
3 | | | | O | O | O | | |
 | | | | | | | | |
 +---+---+---+---+---+---+---+---+
 | | | | | | | | |
4 | | | . | O | O | X | | |
 | | | | | | | | |
 +---+---+---+---+---+---+---+---+
 | | | | | | | | |
5 | | | . | O | O | O | X | |
 | | | | | | | | |
 +---+---+---+---+---+---+---+---+
 | | | | | | | | |
6 | | | | . | | . | | |
 | | | | | | | | |
 +---+---+---+---+---+---+---+---+
 | | | | | | | | |
7 | | | | | | | | |
 | | | | | | | | |
 +---+---+---+---+---+---+---+---+
 | | | | | | | | |
8 | | | | | | | | |
 | | | | | | | | |
 +---+---+---+---+---+---+---+---+

Reversi's Source Code

Reversi is a mammoth program compared to our previous games. It comes in over 300
lines long! (But don't worry, many of these lines are just comments or blank lines to space
out the code and make it more readable.) As always, you don't have to type in the program

260

before reading this chapter. And you can also download the program by going to this
book's website at the URL, http://inventwithpython.com/chapter15 and following the
instructions online.

As with our other programs, we will first create several functions to carry out Reversi-
related tasks that the main section of our program will call. Roughly the first 250 lines of
code are for these helper functions, and the last 50 lines of code implement the Reversi
game itself.

reversi.py
This code can be downloaded from http://inventwithpython.com/reversi.py
If you get errors after typing this code in, compare it to the book's code with the online
diff tool at http://inventwithpython.com/diff or email the author at
al@inventwithpython.com

1. # Reversi
2.
3. import random
4. import sys
5.
6. def drawBoard(board):
7. # This function prints out the board that it was

passed. Returns None.
8. HLINE = ' +---+---+---+---+---+---+---+---+'
9. VLINE = ' | | | | | | | | |'

10.
11. print(' 1 2 3 4 5 6 7 8')
12. print(HLINE)
13. for y in range(8):
14. print(VLINE)
15. print(y+1, end=' ')
16. for x in range(8):
17. print('| %s' % (board[x][y]), end=' ')
18. print('|')
19. print(VLINE)
20. print(HLINE)
21.
22.
23. def resetBoard(board):
24. # Blanks out the board it is passed, except for the

original starting position.
25. for x in range(8):
26. for y in range(8):
27. board[x][y] = ' '
28.
29. # Starting pieces:
30. board[3][3] = 'X'
31. board[3][4] = 'O'
32. board[4][3] = 'O'
33. board[4][4] = 'X'
34.
35.
36. def getNewBoard():

261

15 - Reversi

37. # Creates a brand new, blank board data structure.
38. board = []
39. for i in range(8):
40. board.append([' '] * 8)
41.
42. return board
43.
44.
45. def isValidMove(board, tile, xstart, ystart):
46. # Returns False if the player's move on space xstart,

ystart is invalid.
47. # If it is a valid move, returns a list of spaces that

would become the player's if they made a move here.
48. if board[xstart][ystart] != ' ' or not isOnBoard

(xstart, ystart):
49. return False
50.
51. board[xstart][ystart] = tile # temporarily set the

tile on the board.
52.
53. if tile == 'X':
54. otherTile = 'O'
55. else:
56. otherTile = 'X'
57.
58. tilesToFlip = []
59. for xdirection, ydirection in [[0, 1], [1, 1], [1, 0],

[1, -1], [0, -1], [-1, -1], [-1, 0], [-1, 1]]:
60. x, y = xstart, ystart
61. x += xdirection # first step in the direction
62. y += ydirection # first step in the direction
63. if isOnBoard(x, y) and board[x][y] == otherTile:
64. # There is a piece belonging to the other

player next to our piece.
65. x += xdirection
66. y += ydirection
67. if not isOnBoard(x, y):
68. continue
69. while board[x][y] == otherTile:
70. x += xdirection
71. y += ydirection
72. if not isOnBoard(x, y): # break out of

while loop, then continue in for loop
73. break
74. if not isOnBoard(x, y):
75. continue
76. if board[x][y] == tile:
77. # There are pieces to flip over. Go in the

reverse direction until we reach the original space,
noting all the tiles along the way.

78. while True:
79. x -= xdirection
80. y -= ydirection
81. if x == xstart and y == ystart:

262

82. break
83. tilesToFlip.append([x, y])
84.
85. board[xstart][ystart] = ' ' # restore the empty space
86. if len(tilesToFlip) == 0: # If no tiles were flipped,

this is not a valid move.
87. return False
88. return tilesToFlip
89.
90.
91. def isOnBoard(x, y):
92. # Returns True if the coordinates are located on the

board.
93. return x >= 0 and x <= 7 and y >= 0 and y <=7
94.
95.
96. def getBoardWithValidMoves(board, tile):
97. # Returns a new board with . marking the valid moves

the given player can make.
98. dupeBoard = getBoardCopy(board)
99.

100. for x, y in getValidMoves(dupeBoard, tile):
101. dupeBoard[x][y] = '.'
102. return dupeBoard
103.
104.
105. def getValidMoves(board, tile):
106. # Returns a list of [x,y] lists of valid moves for the

given player on the given board.
107. validMoves = []
108.
109. for x in range(8):
110. for y in range(8):
111. if isValidMove(board, tile, x, y) != False:
112. validMoves.append([x, y])
113. return validMoves
114.
115.
116. def getScoreOfBoard(board):
117. # Determine the score by counting the tiles. Returns a

dictionary with keys 'X' and 'O'.
118. xscore = 0
119. oscore = 0
120. for x in range(8):
121. for y in range(8):
122. if board[x][y] == 'X':
123. xscore += 1
124. if board[x][y] == 'O':
125. oscore += 1
126. return {'X':xscore, 'O':oscore}
127.
128.
129. def enterPlayerTile():
130. # Let's the player type which tile they want to be.

263

15 - Reversi

131. # Returns a list with the player's tile as the first
it em, and the computer's tile as the second.

132. tile = ''
133. while not (tile == 'X' or tile == 'O'):
134. print('Do you want to be X or O?')
135. tile = input().upper()
136.
137. # the first element in the tuple is the player's tile,

the second is the computer's tile.
138. if tile == 'X':
139. return ['X', 'O']
140. else:
141. return ['O', 'X']
142.
143.
144. def whoGoesFirst():
145. # Randomly choose the player who goes first.
146. if random.randint(0, 1) == 0:
147. return 'computer'
148. else:
149. return 'player'
150.
151.
152. def playAgain():
153. # This function returns True if the player wants to

play again, otherwise it returns False.
154. print('Do you want to play again? (yes or no)')
155. return input().lower().startswith('y')
156.
157.
158. def makeMove(board, tile, xstart, ystart):
159. # Place the tile on the board at xstart, ystart, and

flip any of the opponent's pieces.
160. # Returns False if this is an invalid move, True if it

is valid.
161. tilesToFlip = isValidMove(board, tile, xstart, ystart)
162.
163. if tilesToFlip == False:
164. return False
165.
166. board[xstart][ystart] = tile
167. for x, y in tilesToFlip:
168. board[x][y] = tile
169. return True
170.
171.
172. def getBoardCopy(board):
173. # Make a duplicate of the board list and return the

duplicate.
174. dupeBoard = getNewBoard()
175.
176. for x in range(8):
177. for y in range(8):
178. dupeBoard[x][y] = board[x][y]

264

179.
180 . return dupeBoard
181.
182.
183. def isOnCorner(x, y):
184. # Returns True if the position is in one of the four

corners.
185. return (x == 0 and y == 0) or (x == 7 and y == 0) or

(x == 0 and y == 7) or (x == 7 and y == 7)
186.
187.
188. def getPlayerMove(board, playerTile):
189. # Let the player type in their move.
190. # Returns the move as [x, y] (or returns the strings

'hints' or 'quit')
191. DIGITS1TO8 = '1 2 3 4 5 6 7 8'.split()
192. while True:
193. print('Enter your move, or type quit to end the

game, or hints to turn off/on hints.')
194. move = input().lower()
195. if move == 'quit':
196. return 'quit'
197. if move == 'hints':
198. return 'hints'
199.
200. if len(move) == 2 and move[0] in DIGITS1TO8 and

move[1] in DIGITS1TO8:
201. x = int(move[0]) - 1
202. y = int(move[1]) - 1
203. if isValidMove(board, playerTile, x, y) ==

False:
204. continue
205. else:
206. break
207. else:
208. print('That is not a valid move. Type the x

digit (1-8), then the y digit (1-8).')
209. print('For example, 81 will be the top-right

corner.')
210.
211. return [x, y]
212.
213.
214. def getComputerMove(board, computerTile):
215. # Given a board and the computer's tile, determine

where to
216. # move and return that move as a [x, y] list.
217. possibleMoves = getValidMoves(board, computerTile)
218.
219. # randomize the order of the possible moves
220. random.shuffle(possibleMoves)
221.
222. # always go for a corner if available.
223. for x, y in possibleMoves:

265

15 - Reversi

224. if isOnCorner(x, y):
225. return [x, y]
226.
227. # Go through all the possible moves and remember the

best scoring move
228. bestScore = -1
229. for x, y in possibleMoves:
230. dupeBoard = getBoardCopy(board)
231. makeMove(dupeBoard, computerTile, x, y)
232. score = getScoreOfBoard(dupeBoard)[computerTile]
233. if score > bestScore:
234. bestMove = [x, y]
235. bestScore = score
236. return bestMove
237.
238.
239. def showPoints(playerTile, computerTile):
240. # Prints out the current score.
241. scores = getScoreOfBoard(mainBoard)
242. print('You have %s points. The computer has %s

points.' % (scores[playerTile], scores[computerTile]))
243.
244.
245.
246. print('Welcome to Reversi!')
247.
248. while True:
249. # Reset the board and game.
250. mainBoard = getNewBoard()
251. resetBoard(mainBoard)
252. playerTile, computerTile = enterPlayerTile()
253. showHints = False
254. turn = whoGoesFirst()
255. print('The ' + turn + ' will go first.')
256.
257. while True:
258. if turn == 'player':
259. # Player's turn.
260. if showHints:
261. validMovesBoard = getBoardWithValidMoves

(mainBoard, playerTile)
262. drawBoard(validMovesBoard)
263. else:
264. drawBoard(mainBoard)
265. showPoints(playerTile, computerTile)
266. move = getPlayerMove(mainBoard, playerTile)
267. if move == 'quit':
268. print('Thanks for playing!')
269. sys.exit() # terminate the program
270. elif move == 'hints':
271. showHints = not showHints
272. continue
273. else:
274. makeMove(mainBoard, playerTile, move[0],

266

move[1])
275 .
276. if getValidMoves(mainBoard, computerTile) ==

[]:
277. break
278. else:
279. turn = 'computer'
280.
281. else:
282. # Computer's turn.
283. drawBoard(mainBoard)
284. showPoints(playerTile, computerTile)
285. input('Press Enter to see the computer\'s

move.')
286. x, y = getComputerMove(mainBoard,

computerTile)
287. makeMove(mainBoard, computerTile, x, y)
288.
289. if getValidMoves(mainBoard, playerTile) == []:
290. break
291. else:
292. turn = 'player'
293.
294. # Display the final score.
295. drawBoard(mainBoard)
296. scores = getScoreOfBoard(mainBoard)
297. print('X scored %s points. O scored %s points.' %

(scores['X'], scores['O']))
298. if scores[playerTile] > scores[computerTile]:
299. print('You beat the computer by %s points!

Congratulations!' % (scores[playerTile] - scores
[computerTile]))

300. elif scores[playerTile] < scores[computerTile]:
301. print('You lost. The computer beat you by %s

points.' % (scores[computerTile] - scores[playerTile]))
302. else:
303. print('The game was a tie!')
304.
305. if not playAgain():
306. break

How the Code Works

The Game Board Data Structure

Before we get into the code, we should talk about the board data structure. This data
structure is a list of lists, just like the one in our previous Sonar game. The list is created so
that board[x][y] will represent the character on space located at position x on the X-axis
(going left/right) and position y on the Y-axis (going up/down). This character can either be
a ' ' spa ce character (to represent a blank space), a '.' period character (to represent a
possible move in hint mode), or an 'X' or 'O' (to represent a player's tile). Whenever you

267

15 - Reversi

see a parameter named board, that parameter variable is meant to be this list of lists
board data structure.

Importing Other Modules

1. # Reversi
2.
3. import random
4. import sys

We import the random module for its randint() and choice() functions and the
sys module for its exit() function.

Drawing the Board Data Structure on the Screen

6. def drawBoard(board):
7. # This function prints out the board that it was

passed. Returns None.
8. HLINE = ' +---+---+---+---+---+---+---+---+'
9. VLINE = ' | | | | | | | | |'

10.
11. print(' 1 2 3 4 5 6 7 8')
12. print(HLINE)

The drawBoard() function will print out the current game board based on the data
structure in board. Notice that each square of the board looks like this:

+---+
| |
| X |
| |
+---+

Since we are going to print the string with the horizontal line (and plus signs at the
intersections) over and over again, we will store that in a constant variable named HLINE.
There are also lines above and below the very center of X or O tile that are nothing but '|'
characters (called "pipe" characters) with three spaces in between. We will store this string
in a constant named VLINE.

Line 11 is the first print() function call executed, and it prints out the labels for the
X-axis along the top of the board. Line 12 prints the top horizontal line of the board.

13. for y in range(8):

268

14. print(VLINE)
15. print(y+1, end=' ')
16. for x in range(8):
17. print('| %s' % (board[x][y]), end=' ')
18. print('|')
19. print(VLINE)
20. print(HLINE)

Printing each row of spaces on the board is fairly repetitive, so we can use a loop here. We
will loop eight times, once for each row. Line 15 prints the label for the Y-axis on the left
side of the board, and has a comma at the end of it to prevent a new line. This is so we can
have another loop (which again loops eight times, once for each space) print out each space
(along with the 'X', 'O', or ' ' character for that space depending on what is stored in
board.

The print() function call inside the inner loop also has a comma at the end of it,
meaning a space character is printed instead of a newline character. This produces the
second space in the pipe-space-tile-space string that we print out, over and over for eight
times. That will produce a single line on the screen that looks like '| X | X | X | X
| X | X | X | X ' (that is, if each of the board[x][y] values were 'X'). After the
inner loop is done, the print() func tion call on line 18 prints out the final '|' character
along with a newline (since it does not end with a comma).

(The print()call forces us to always print a newline character or a space at the end of
everything we print. If we do not want this last character, then we can always use the
sys.stdout.write() function, which has a single string parameter that it prints out. Be
sure to import sys fi rst before calling this function.)

The code inside the outer for loop that begins on line 13 prints out an entire row of the
board like this:

X	X	X	X	X	X	X	X
+---+---+---+---+---+---+---+---+

When printed out eight times, it forms the entire board (of course, some of the spaces on
the board will have 'O' or ' ' instead of 'X'.:

X	X	X	X	X	X	X	X
+---+---+---+---+---+---+---+---+							
X	X	X	X	X	X	X	X
+---+---+---+---+---+---+---+---+

269

15 - Reversi

X	X	X	X	X	X	X	X
+---+---+---+---+---+---+---+---+							
X	X	X	X	X	X	X	X
+---+---+---+---+---+---+---+---+							
X	X	X	X	X	X	X	X
+---+---+---+---+---+---+---+---+							
X	X	X	X	X	X	X	X
+---+---+---+---+---+---+---+---+							
X	X	X	X	X	X	X	X
+---+---+---+---+---+---+---+---+							
X	X	X	X	X	X	X	X
+---+---+---+---+---+---+---+---+

Resetting the Game Board

An important thing to remember is that the coordinates that we print out to the player are
from 1 to 8, but the indexes in the board data structure are from 0 to 7.

23. def resetBoard(board):
24. # Blanks out the board it is passed, except for the

original starting position.
25. for x in range(8):
26. for y in range(8):
27. board[x][y] = ' '

Here we use a loop inside a loop to set the board data structure to be all blanks. We will
call the resetBoard() function whenever we start a new game and want to remove the
tiles from a previous game.

Setting Up the Starting Pieces

29. # Starting pieces:
30. board[3][3] = 'X'
31. board[3][4] = 'O'
32. board[4][3] = 'O'
33. board[4][4] = 'X'

270

When we start a new game of Reversi, it isn't enough to have a completely blank board.
At the very beginning, each player has two tiles already laid down in the very center, so we
wil l also have to set those.

We do not have to return the board variable, because board is a reference to a list.
Even when we make changes inside the local function's scope, these changes happen in the
global scope to the list that was passed as an argument. (Remember, this is one way list
variables are different from non-list variables.)

Creating a New Game Board Data Structure

36. def getNewBoard():
37. # Creates a brand new, blank board data structure.
38. board = []
39. for i in range(8):
40. board.append([' '] * 8)
41.
42. return board

The getNewBoard() function creates a new board data structure and returns it. Line
38 creates the outer list and assigns a reference to this list to board. Line 40 create the
inner lists using list replication. ([' '] * 8 is the same as [' ', ' ', ' ', ' ',
' ', ' ', ' ', ' '] but with less typing.) The for loop here runs line 40 eight
times to create the eight inner lists. The spaces represent a completely empty game board.

Checking if a Move is Valid

45. def isValidMove(board, tile, xstart, ystart):
46. # Returns False if the player's move on space xstart,

ystart is invalid.
47. # If it is a valid move, returns a list of spaces

that would become the player's if they made a move here.
48. if board[xstart][ystart] != ' ' or not isOnBoard

(xstart, ystart):
49. return False
50.
51. board[xstart][ystart] = tile # temporarily set the

tile on the board.
52.
53. if tile == 'X':
54. otherTile = 'O'
55. else:
56. otherTile = 'X'
57.
58. tilesToFlip = []

isValidMove() is one of the more complicated functions. Given a board data

271

15 - Reversi

structure, the player's tile, and the XY coordinates for player's move, this function should
return True if the Reversi game rules allow that move and False if they don't.

The easiest check we can do to disqualify a move is to see if the XY coordinates are on
the game board or if the space at XY is not empty. This is what the if statement on line 48
checks for. isOnBoard() is a function we will write that makes sure both the X and Y
coordinates are between 0 and 7.

For the purposes of this function, we will go ahead and mark the XY coordinate pointed
to by xstart and ystart with the player's tile. We set this place on the board back to a
space before we leave this function.

The player's tile has been passed to us, but we will need to be able to identify the other
player's tile. If the player's tile is 'X' then obviously the other player's tile is 'O'. And it is
the same the other way.

Finally, if the given XY coordinate ends up as a valid position, we will return a list of all
the opponent's tiles that would be flipped by this move.

59. for xdirection, ydirection in [[0, 1], [1, 1], [1,
0] , [1, -1], [0, -1], [-1, -1], [-1, 0], [-1, 1]]:

The for loop iterates through a list of lists which represent directions you can move on
the game board. The game board is a Cartesian coordinate system with an X and Y
direction. There are eight directions you can move: up, down, left, right, and the four
diagonal directions. We will move around the board in a direction by adding the first value
in the two-item list to our X coordinate, and the second value to our Y coordinate.

Because the X coordinates increase as you go to the right, you can "move" to the right by
adding 1 to the X coordinate. Moving to the left is the opposite: you would subtract 1 (or
add -1) from the X coordinate. We can move up, down, left, and right by adding or
subtracting to only one coordinate at a time. But to move diagonally, we need to add or
subtract to both coordinates. For example, adding 1 to the X coordinate to move right and
adding -1 to the Y coordinate to move up would result in moving to the up-right diagonal
direction.

Checking Each of the Eight Directions

Here is a diagram to make it easier to remember which two-item list represents which
direction:

272

Figure 15-7: Each two-item list represents one of the eight directions.

59. for xdirection, ydirection in [[0, 1], [1, 1], [1,
0], [1, -1], [0, -1], [-1, -1], [-1, 0], [-1, 1]]:

60. x, y = xstart, ystart
61. x += xdirection # first step in the direction
62. y += ydirection # first step in the direction

Line 60 sets an x and y variable to be the same value as xstart and ystart ,
respectively. We will change x and y to "move" in the direction that xdirection and
ydirection dictate. xstart and ystart will stay the same so we can remember
which space we originally intended to check. (Remember, we need to set this place back to
a space character, so we shouldn't overwrite the values in them.)

We make the first step in the direction as the first part of our algorithm.

63. if isOnBoard(x, y) and board[x][y] == otherTile:
64. # There is a piece belonging to the other

player next to our piece.
65. x += xdirection
66. y += ydirection
67. if not isOnBoard(x, y):
68. continue

Remember, in order for this to be a valid move, the first step in this direction must be 1)
on the board and 2) must be occupied by the other player's tile. Otherwise there is no
chance to flip over any of the opponent's tiles. In that case, the if statement on line 63 is
not True and execution goes back to the for statement for the next direction.

273

15 - Reversi

But if the first space does have the other player's tile, then we should keep proceeding in
that direction until we reach on of our own tiles. If we move off of the board, then we
should continue back to the for statement to try the next direction.

69. while board[x][y] == otherTile:
70. x += xdirection
71. y += ydirection
72. if not isOnBoard(x, y): # break out of

while loop, then continue in for loop
73. break
74. if not isOnBoard(x, y):
75. continue

The while loop on line 69 ensures that x and y keep going in the current direction as
long as we keep seeing a trail of the other player's tiles. If x and y move off of the board,
we break out of the for loop and the flow of execution moves to line 74. What we really
want to do is break out of the while loop but continue in the for loop. But if we put a
continue statement on line 73, that would only continue to the while loop on line 69.

Instead, we recheck not isOnBoard(x, y) on line 74 and then continue from
there, which goes to the next direction in the for statement. It is important to know that
break and continue will only break or continue in the loop they are called from, and
not an outer loop that contain the loop they are called from.

Finding Out if There are Pieces to Flip Over

76. if board[x][y] == tile:
77. # There are pieces to flip over. Go in

the reverse direction until we reach the original space,
noting all the tiles along the way.

78. while True:
79. x -= xdirection
80. y -= ydirection
81. if x == xstart and y == ystart:
82. break
83. tilesToFlip.append([x, y])

If the while loop on line 69 stopped looping because the condition was False, then
we have found a space on the board that holds our own tile or a blank space. Line 76
checks if this space on the board holds one of our tiles. If it does, then we have found a
valid move. We start a new while loop, this time subtracting x and y to move them in the
opposite direction they were originally going. We note each space between our tiles on the
board by appending the space to the tilesToFlip list.

We break out of the while loop once x and y have returned to the original position
(which was still stored in xstart and ystart).
274

85. board[xstart][ystart] = ' ' # restore the empty space
86. if len(tilesToFlip) == 0: # If no tiles were flipped,

this is not a valid move.
87. return False
88. return tilesToFlip

We perform this check in all eight directions, and afterwards the tilesToFlip list
will contain the XY coordinates all of our opponent's tiles that would be flipped if the
player moved on xstart, ystart. Remember, the isValidMove() function is only
checking to see if the original move was valid, it does not actually change the data structure
of the game board.

If none of the eight directions ended up flipping at least one of the opponent's tiles, then
tilesToFlip would be an empty list and this move would not be valid. In that case,
isValidMove() should return False . Otherwise, we should return tilesToFlip.

Checking for Valid Coordinates

91. def isOnBoard(x, y):
92. # Returns True if the coordinates are located on the

board.
93. return x >= 0 and x <= 7 and y >= 0 and y <=7

isOnBoard() is a function called from isValidMove() , and is just shorthand for
the rather complicated Boolean expression that returns True if both x and y are in
between 0 and 7. This function lets us make sure that the coordinates are actually on the
game board.

Getting a List with All Valid Moves

96. def getBoardWithValidMoves(board, tile):
97. # Returns a new board with . marking the valid moves

the given player can make.
98. dupeBoard = getBoardCopy(board)
99.

100. for x, y in getValidMoves(dupeBoard, tile):
101. dupeBoard[x][y] = '.'
102. return dupeBoard

getBoardWithValidMoves() is used to return a game board data structure that has
'.' characters for all valid moves on the board. This is used by the hints mode to display
to the player a board with all possible moves marked on it.

Notice that this function creates a duplicate game board data structure instead of
275

15 - Reversi

modifying the one passed to it by the board parameter. Line 100 calls
getValidMoves(), which returns a list of xy coordinates with all the legal moves the
player could make. The board copy is then marked with a period in those spaces. How
getValidMoves() works is described next.

105. def getValidMoves(board, tile):
106. # Returns a list of [x,y] lists of valid moves for

the given player on the given board.
107. validMoves = []
108.
109. for x in range(8):
110. for y in range(8):
111. if isValidMove(board, tile, x, y) != False:
112. validMoves.append([x, y])
113. return validMoves

The getValidMoves() function returns a list of two-item lists that hold the XY
coordinates for all valid moves for tile's player, given a particular game board data structure
in board.

This function uses two loops to check every single XY coordinate (all sixty four of them)
by calling isValidMove() on that space and checking if it returns False or a list of
possible moves (in which case it is a valid move). Each valid XY coordinate is appended to
the list, validMoves.

The bool() Function

Remember how you could use the int() and str() functions to get the integer and
string value of other data types? For example, str(42) would return the string '42', and
int('100') would return the integer 100.

There is a similar function for the Boolean data type, bool(). Most other data types
have one value that is considered the False value for that data type, and every other value
is consider True. The integer 0, the floating point number 0.0, the empty string, the
empty list, and the empty dictionary are all considered to be False when used as the
condition for an if or loop statement. All other values are True. Try entering the
following into the interactive shell:

>>> bool(0)
False
>>> bool(0.0)
False
>>> bool('')
False
>>> bool([])

276

False
>>> bool({})
False
>>> bool(1)
True
>>> bool('Hello')
True
>>> bool([1, 2, 3, 4, 5])
True
>>> bool({'spam':'cheese', 'fizz':'buzz'})
True
>>>

Whenever you have a condition, imagine that the entire condition is placed inside a call
to bool() as the parameter. Conditions are automatically interpreted as Boolean values.
This is similar to how print() can be passed non-string values and will automatically
interpret them as strings when they print.

This is why the condition on line 111 works correctly. The call to the isValidMove()
function either returns the Boolean value False or a non-empty list. If you imagine that
the entire condition is placed inside a call to bool(), then False becomes bool
(False) (which, of course, evalutes to False). And a non-empty list placed as the
parameter to bool() will return True. This is why the return value of isValidMove()
can be used as a condition.

Getting the Score of the Game Board

116. def getScoreOfBoard(board):
117. # Determine the score by counting the tiles. Returns

a dictionary with keys 'X' and 'O'.
118. xscore = 0
119. oscore = 0
120. for x in range(8):
121. for y in range(8):
122. if board[x][y] == 'X':
123. xscore += 1
124. if board[x][y] == 'O':
125. oscore += 1
126. return {'X':xscore, 'O':oscore}

The getScoreOfBoard() function uses nested for loops to check all 64 spaces on
the board (8 rows times 8 columns per row is 64 spaces) and see which tile (if any) is on
them. For each 'X' tile, the code increments xscore. For each 'O' tile, the code
increments oscore.

Notice that this function does not return a two-item list of the scores. A two-item list
277

15 - Reversi

might be a bit confusing, because you may forget which item is for X and which item is
for O. Instead the function returns a dictionary with keys 'X' a nd 'O' whose values are
the scores.

Getting the Player's Tile Choice

129. def enterPlayerTile():
130. # Let's the player type which tile they want to be.
131. # Returns a list with the player's tile as the first

item, and the computer's tile as the second.
132. tile = ''
133. while not (tile == 'X' or tile == 'O'):
134. print('Do you want to be X or O?')
135. tile = input().upper()

This function asks the player which tile they want to be, either 'X' or 'O'. The for
loop will keep looping until the player types in 'X' or 'O'.

137. # the first element in the tuple is the player's
ti l e, the second is the computer's tile.

138. if tile == 'X':
139. return ['X', 'O']
140. else:
141. return ['O', 'X']

The enterPlayerTile() function then returns a two-item list, where the player's
tile choice is the first item and the computer's tile is the second. We use a list here instead
of a dictionary so that the assignment statement calling this function can use the multiple
assignment trick. (See line 252.)

Determining Who Goes First

144. def whoGoesFirst():
145. # Randomly choose the player who goes first.
146. if random.randint(0, 1) == 0:
147. return 'computer'
148. else:
149. return 'player'

The whoGoesFirst() function randomly selects who goes first, and returns either the
string 'computer' or the string 'player'.

278

Asking the Player to Play Again

152. def playAgain():
153 . # This function returns True if the player wants to

play again, otherwise it returns False.
154. print('Do you want to play again? (yes or no)')
155. return input().lower().startswith('y')

We have used the playAgain() in our previous games. If the player types in
something that begins with 'y', then the function returns True. Otherwise the function
returns False.

Placing Down a Tile on the Game Board

158. def makeMove(board, tile, xstart, ystart):
159 . # Place the tile on the board at xstart, ystart, and

flip any of the opponent's pieces.
160. # Returns False if this is an invalid move, True if

it is valid.
161. tilesToFlip = isValidMove(board, tile, xstart,

ystart)

makeMove() is the function we call when we want to place a tile on the board and flip
the other tiles according to the rules of Reversi. This function modifies the board data
structure that is passed as a parameter directly. Changes made to the board variable
(because it is a list) will be made to the global scope as well. Most of the work is done by
isValidMove(), which returns a list of XY coordinates (in a two-item list) of tiles that
need to be flipped. (Remember, if the the xstart and ystart arguments point to an
invalid move, then isValidMove() will return the Boolean value False.)

163. if tilesToFlip == False:
164 . return False
165.
166. board[xstart][ystart] = tile
167. for x, y in tilesToFlip:
168. board[x][y] = tile
169. return True

If the return value of isValidMove() was False, then makeMove() will also
return False.

Otherwise, isValidMove() would have returned a list of spaces on the board to put
down our tiles (the 'X' or 'O' string in tile). Line 166 sets the space that the player has
moved on, and the for loop after that sets all the tiles that are in tilesToFlip .

279

15 - Reversi

Copying the Board Data Structure

172. def getBoardCopy(board):
173. # Make a duplicate of the board list and return the

duplicate.
174. dupeBoard = getNewBoard()
175.
176. for x in range(8):
177. for y in range(8):
178. dupeBoard[x][y] = board[x][y]
179.
180. return dupeBoard

getBoardCopy() is different from getNewBoard() . getNewBoad() will create
a new game board data structure which has only empty spaces. getBoardCopy() will
create a new game board data structure, but then copy all of the pieces in the board
parameter. This function is used by our AI to have a game board that it can change around
without changing the real game board. This is like how you may imagine making moves on
a copy of the board in your mind, but not actually put pieces down on the real board.

A call to getNewBoard() handles getting a fresh game board data structure. Then the
nested for loops copies each of the 64 tiles from board to our duplicate board,
dupeBoard.

Determining if a Space is on a Corner

183. def isOnCorner(x, y):
184. # Returns True if the position is in one of the four

corners.
185. return (x == 0 and y == 0) or (x == 7 and y == 0) or

(x == 0 and y == 7) or (x == 7 and y == 7)

This function is much like isOnBoard(). Because all Reversi boards are 8 x 8 in size,
we only need the XY coordinates to be passed to this function, not a game board data
structure itself. This function returns True if the coordinates are on either (0,0), (7,0), (0,7)
or (7,7). Otherwise isOnCorner() returns False.

Getting the Player's Move

188. def getPlayerMove(board, playerTile):
189 . # Let the player type in their move.
190. # Returns the move as [x, y] (or returns the strings

'hints' or 'quit')
191. DIGITS1TO8 = '1 2 3 4 5 6 7 8'.split()

280

The getPlayerMove() function is called to let the player type in the coordinates of
their next move (and check if the move is valid). The player can also type in 'hints' to
turn hints mode on (if it is off) or off (if it is on). The player can also type in 'quit' to
quit the game.

The DIGITS1TO8 constant variable is the list ['1', '2', '3', '4', '5',
'6', '7', '8']. We create this constant because it is easier type DIGITS1TO8 than
the entire list.

192. while True:
193 . print('Enter your move, or type quit to end the

game, or hints to turn off/on hints.')
194. move = input().lower()
195. if move == 'quit':
196. return 'quit'
197. if move == 'hints':
198. return 'hints'

The while loop will keep looping until the player has typed in a valid move. First we
check if the player wants to quit or toggle hints mode, and return the string 'quit' or
'hints'. We use the lower() method on the string returned by input() so the player
can type 'HINTS' or 'Quit' but still have the command understood by our game.

The code that calls getPlayerMove() will handle what to do if the player wants to
quit or toggle hints mode.

200. if len(move) == 2 and move[0] in DIGITS1TO8 and
move[1] in DIGITS1TO8:

201. x = int(move[0]) - 1
202. y = int(move[1]) - 1
203. if isValidMove(board, playerTile, x, y) ==

False:
204. continue
205. else:
206. break

Our game is expecting that the player would have typed in the XY coordinates of their
move as two numbers without anything in between them. The if statement first checks
that the size of the string the player typed in is 2. After that, the if statement also checks
that both move[0] (the first character in the string) and move[1] (the second character
in the string) are strings that exist in DIGITS1TO8, which we defined at the beginning of
the function.

Remember that our game board data structures have indexes from 0 to 7, not 1 to 8. We
show 1 to 8 when we print the board using drawBoard() because people are used to

281

15 - Reversi

numbers beginning at 1 instead of 0. So when we convert the strings in move[0] and
move[1] to integers, we also subtract 1.

Even if the player typed in a correct move, we still need to check that the move is
allowed by the rules of Reversi. We do this by calling isValidMove(), passing the
game board data structure, the player's tile, and the XY coordinates of the move. If
isValidMove() returns False, then we execute the continue statement so that the
flow of execution goes back to the beginning of the while loop and asks the player for the
move again.

If isValidMove() does not return False , then we know the player typed in a valid
move and we should break out of the while loop.

207. else:
208. print('That is not a valid move. Type the x

digit (1-8), then the y digit (1-8).')
209. print('For example, 81 will be the top-right

corner.')

If the if statement's condition on line 200 was False, then the player did not type in a
valid move. We should display a message instructing them how to type in moves that our
Reversi program can understand. Afterwards, the execution moves back to the while
statement on line 192 because line 209 is not only the last line in the else-block, but also the
last line in the while-block.

211. return [x, y]

Finally, getPlayerMove() returns a two-item list with the XY coordinates of the
player's valid move.

Getting the Computer's Move

214. def getComputerMove(board, computerTile):
215. # Given a board and the computer's tile, determine

where to
216. # move and return that move as a [x, y] list.
217. possibleMoves = getValidMoves(board, computerTile)

getComputerMove() and is where our Reversi AI is implemented. The
getValidMoves() function is very helpful for our AI. Normally we use the results from
getValidMoves() for hints move. Hints mode will print '.' period characters on the
board to show the player all the potential moves they can make. But if we call
getValidMoves() with the computer AI's tile (in computerTile), we can get all the

282

possible moves that the computer can make. We will select the best move from this list.

219. # randomize the order of the possible moves
220 . random.shuffle(possibleMoves)

First, we are going to use the random.shuffle() function to randomize the order of
moves in the possibleMoves list. Remember that the random.shuffle() function
will reorder the items in the list that you pass to it. The function also modifies the list
directly, much like our resetBoard() function does with the game board data structure.

We will explain why we want to shuffle the possibleMoves list, but first let's look at
our algorithm.

Corner Moves are the Best Moves

222. # always go for a corner if available.
223 . for x, y in possibleMoves:
224. if isOnCorner(x, y):
225. return [x, y]

First, we loop through every move in possibleMoves and if any of them are on the
corner, we return that as our move. Corner moves are a good idea because once a tile has
been placed on the corner, it can never be flipped over. Since possibleMoves is a list of
two-item lists, we use the multiple assignment trick in our for loop to set x and y.

Because we immediately return on finding the first corner move in possibleMoves,
if possibleMoves contains multiple corner moves we always go with the first one. But
since possibleMoves was shuffled on line 220, it is completely random which corner
move is first in the list.

Get a List of the Best Scoring Moves

227. # Go through all the possible moves and remember the
bes t scoring move

228. bestScore = -1
229. for x, y in possibleMoves:
230. dupeBoard = getBoardCopy(board)
231. makeMove(dupeBoard, computerTile, x, y)
232. score = getScoreOfBoard(dupeBoard)[computerTile]
233. if score > bestScore:
234. bestMove = [x, y]
235. bestScore = score
236. return bestMove

283

15 - Reversi

If there are no corner moves, we will go through the entire list and find out which move
gives us the highest score. The for loop will set x and y to every move in
possibleMoves. bestMove will be set to the highest scoring move we've found so far,
and bestScore will be set to the best move's score. When the code in the loop finds a
move that scores higher than bestScore, we will store that move and score as the new
values of bestMove and bestScore.

Simulate All Possible Moves on Duplicate Board Data St ructures

In order to figure out the score of the possible move we are currently iterating on, we
first make a duplicate game board data structure by calling getBoardCopy(). We want
a copy so we can modify without changing the real game board data structure stored in the
board variable.

Then we call makeMove(), passing the duplicate board instead of the real board.
makeMove() will handle placing the computer's tile and the flipping the player's tiles on
the duplicate board.

We call getScoreOfBoard() with the duplicate board, which returns a dictionary
where the keys are 'X' and 'O', and the values are the scores. getScoreOfBoard()
does not know if the computer is 'X' or 'O', which is why it returns a dictionary.

By making a duplicate board, we can simulate a future move and test the results of that
move without changing the actual game board data structure. This is very helpful in
deciding which move is the best possible move to make.

Pretend that getScoreOfBoard() returns the dictionary {'X':22, 'O':8} and
computerTile is 'X'. Then getScoreOfBoard(dupeBoard)
[computerTile] would evaluate to {'X':22, 'O':8}['X'], which would then
evaluate to 22. If 22 is larger than bestScore, bestScore is set to 22 and
bestMove is set to the current x and y values we are looking at. By the time this for
loop is finished, we can be sure that bestScore is the highest possible score a move can
make, and that move is stored in bestMove.

You may have noticed that on line 228 we first set bestScore to -1. This is so that
the first move we look at in our for loop over possibleMoves will be set to the first
bestMove. This will guarantee that bestMove is set to one of the moves when we return
it.

Say that the highest scoring move in possibleMoves would give the computer a
score of 42. What if there was more than one move in possibleMoves that would give
this score? The for loop we use would always go with the first move that scored 42
points, because bestMove and bestScore only change if the move is greater than the
highest score. A tie will not change bestMove and bestScore.

284

We do not always want to go with the first move in the possibleMoves list, because
that would make our AI predictable by the player. But it is random, because on line 220 we
shuffled the possibleMoves list. Even though our code always chooses the first of these
tied moves, is random which of the moves will be first in the list because the order is
random. This ensures that the AI will not be predictable when there is more than one best
move.

Printing the Scores to the Screen

239. def showPoints(playerTile, computerTile):
240 . # Prints out the current score.
241. scores = getScoreOfBoard(mainBoard)
242. print('You have %s points. The computer has %s

points.' % (scores[playerTile], scores[computerTile]))

showPoints() simply calls the getScoreOfBoard() function and then prints out
the player's score and the computer's score. Remember that getScoreOfBoard()
returns a dictionary with the keys 'X' and 'O' and values of the scores for the X and O
players.

That's all the functions we define for our Reversi game. The code starting on line 246
will implement the actual game and make calls to these functions when they are needed.

The Start of the Game

246. print('Welcome to Reversi!')
247 .
248. while True:
249. # Reset the board and game.
250. mainBoard = getNewBoard()
251. resetBoard(mainBoard)
252. playerTile, computerTile = enterPlayerTile()
253. showHints = False
254. turn = whoGoesFirst()
255. print('The ' + turn + ' will go first.')

The while loop on line 248 is the main game loop. The program will loop back to line
248 each time we want to start a new game. First we get a new game board data structure
by calling getNewBoard() and set the starting tiles by calling resetBoard().
mainBoard is the main game board data structure we will use for this program. The call
to enterPlayerTile() will let the player type in whether they want to be 'X' or 'O',
which is then stored in playerTile and computerTile.

showHints is a Boolean value that determines if hints mode is on or off. We originally
set it to off by setting showHints to False.

285

15 - Reversi

The turn variable is a string will either have the string value 'player' or
'computer', and will keep track of whose turn it is. We set turn to the return value of
whoGoesFirst(), w hich randomly chooses who will go first. We then print out who
goes first to the player on line 255.

Running the Player's Turn

257. while True:
258. if turn == 'player':
259. # Player's turn.
260. if showHints:
261. validMovesBoard = getBoardWithValidMoves

(mainBoard, playerTile)
262. drawBoard(validMovesBoard)
263. else:
264. drawBoard(mainBoard)
265. showPoints(playerTile, computerTile)

The while loop that starts on line 257 will keep looping each time the player or
computer takes a turn. We will break out of this loop when the current game is over.

Line 258 has an if statement whose body has the code that runs if it is the player's turn.
(The else-block that starts on line 282 has the code for the computer's turn.) The first thing
we want to do is display the board to the player. If hints mode is on (which it is if
showHints is True), then we want to get a board data structure that has '.' period
characters on every space the player could go.

Our getBoardWithValidMoves() function does that, all we have to do is pass the
game board data structure and it will return a copy that also contains '.' period characters.
We then pass this board to the drawBoard() function.

If hints mode is off, then we just pass mainBoard to drawBoard().

After printing out the game board to the player, we also want to print out the current
score by calling showPoints().

266. move = getPlayerMove(mainBoard, playerTile)

Next we let the player type in their move. getPlayerMove() handles this, and its
return value is a two-item list of the X and Y coordinate of the player's move.
getPlayerMove() makes sure that the move the player typed in is a valid move, so we
don't have to worry about it here.

286

Handling the Quit or Hints Commands

267. if move == 'quit':
268 . print('Thanks for playing!')
269. sys.exit() # terminate the program
270. elif move == 'hints':
271. showHints = not showHints
272. continue
273. else:
274. makeMove(mainBoard, playerTile, move[0],

move[1])

If the player typed in the string 'quit' for their move, then getPlayerMove()
would have returned the string 'quit'. In that case, we should call the sys.exit() to
terminate the program.

If the player typed in the string 'hints' for their move, then getPlayerMove()
would have returned the string 'hints'. In that case, we want to turn hints mode on (if it
was off) or off (if it was on). The showHints = not showHints assignment
statement handles both of these cases, because not False evaluates to True and not
True evaluates to False. Then we run the continue statement to loop back (turn has
not changed, so it will still be the player's turn after we loop).

Make the Player's Move

Otherwise, if the player did not quit or toggle hints mode, then we will call makeMove
() to make the player's move on the board.

276. if getValidMoves(mainBoard, computerTile) ==
[]:

277. break
278. else:
279. turn = 'computer'

After making the player's move, we call False to see if the computer could possibly
make any moves. If False returns a blank list, then there are no more moves left that the
computer could make (most likely because the board is full). In that case, we break out of
the while loop and end the current game.

Otherwise, we set turn to 'computer'. The flow of execution skips the else-block
and reaches the end of the while-block, so execution jumps back to the while statement
on line 257. This time, however, it will be the computer's turn.

287

15 - Reversi

Running the Computer's Turn

281. else:
282. # Computer's turn.
283. drawBoard(mainBoard)
284. showPoints(playerTile, computerTile)
285. input('Press Enter to see the computer\'s

move.')
286. x, y = getComputerMove(mainBoard,

computerTile)
287. makeMove(mainBoard, computerTile, x, y)

The first thing we do when it is the computer's turn is call drawBoard() to print out
the board to the player. Why do we do this now? Because either the computer was selected
to make the first move of the game, in which case we should display the original starting
picture of the board to the player before the computer makes its move. Or the player has
gone first, and we want to show what the board looks like after the player has moved but
before the computer has gone.

After printing out the board with drawBoard(), we also want to print out the current
score with a call to showPoints().

Next we have a call to input() to pause the script while the player can look at the
board. This is much like how we use input() to pause the program in our Jokes chapter.
Instead of using a print() call to print a string before a call to input() , you can pass
the string as a parameter to input(). input() has an optional string parameter. The
string we pass in this call is 'Press Enter to see the computer\'s move.'.

After the player has looked at the board and pressed Enter (any text the player typed is
ignored since we do not assign the return value of input() to anything), we call
getComputerMove() to get the X and Y coordinates of the computer's next move. We
store these coordinates in variables x and y, respectively.

Finally, we pass x and y, along with the game board data structure and the computer's
tile to the makeMove() function to change the game board to reflect the computer's move.
Our call to getComputerMove() got the computer's move, and the call to makeMove
() makes the move on the board.

289. if getValidMoves(mainBoard, playerTile) ==
[] :

290. break
291. else:
292. turn = 'player'

Lines 289 to 292 are very similar to lines 276 to 279. After the computer has made its

288

move, we check if there exist any possible moves the human player can make. If
getValidMoves() returns an empty list, then there are no possible moves. That means
the game is over, and we should break out of the while loop that we are in.

Otherwise, there is at least one possible move the player should make, so we should set
turn to 'player' . There is no more code in the while-block after line 292, so execution
loops back to the while statement on line 257.

Drawing Everything on the Screen

294. # Display the final score.
295 . drawBoard(mainBoard)
296. scores = getScoreOfBoard(mainBoard)
297. print('X scored %s points. O scored %s points.' %

(scores['X'], scores['O']))
298. if scores[playerTile] > scores[computerTile]:
299. print('You beat the computer by %s points!

Congratulations!' % (scores[playerTile] - scores
[computerTile]))

300. elif scores[playerTile] < scores[computerTile]:
301. print('You lost. The computer beat you by %s

points.' % (scores[computerTile] - scores[playerTile]))
302. else:
303. print('The game was a tie!')

Line 294 is the first line beyond the while-block that started on line 257. This code is
executed when we have broken out of that while loop, either on line 290 or 277. (The
while statement's condition on line 257 is simply the value True, so we can only exit the
loop through break statements.)

At this point, the game is over. We should print out the board and scores, and determine
who won the game. getScoreOfBoard() will return a dictionary with keys 'X' and
'O' and values of both players' scores. By checking if the player's score is greater than,
less than, or equal to the computer's score, we can know if the player won, if the player lost,
or if the player and computer tied.

Subtracting one score from the other is an easy way to see by how much one player won
over the other. Our print() calls on lines 299 and 301 use string interpolation to put the
result of this subtraction into the string that is printed.

Ask the Player to Play Again

305. if not playAgain():
306. break

289

15 - Reversi

The game is now over and the winner has been declared. We should call our
playAgain() function, which returns True if the player typed in that they want to play
another game. If playAgain() returns False (which makes the if statement's
condition True), we break out of the while loop (the one that started on line 248), and
since there are no more lines of code after this while-block, the program terminates.

Otherwise, playAgain() has returned True (which makes the if statement's
condition False), and so execution loops back to the while statement on line 248 and a
new game board is created.

Summary: Reviewing the Reversi Game

The AI may seem almost unbeatable, but this isn't because the computer is very smart.
The strategy it follows is very simple: move on the corner if you can, otherwise make the
move that will flip over the most tiles. We could do that, but it would take us a long time to
figure out how many tiles would be flipped for every possible valid move we could make.
But calculating this for the computer is very simple. The computer isn't smarter than us, it's
just much faster!

This game is very similar to Sonar because it makes use of a grid for a board. It is also
like the Tic Tac Toe game because there is an AI that plans out the best move for it to take.
This chapter only introduced one new concept: using the bool() function and the fact that
empty lists, blank strings, and the integer 0 all evaluate to False in the context of a
condition.

Other than that, this game used programming concepts that you already knew! You don't
have to know very much about programming in order to create interesting games. However,
this game is stretching how far you can get with ASCII art. The board took up almost the
entire screen to draw, and the game didn't have any color.

Later in this book, we will learn how to create games with graphics and animation, not
just text. We will do this using a module called Pygame, which adds new functions and
features to Python so that we can break away from using just text and keyboard input.

290

Topics Covered In This Chapter:

� Simulations
� Percentages
� Pie Charts
� Integer Division
� The round() Function

"Computer vs. Computer" Games

The Reversi AI algorithm was very simple, but it beats me almost every time I play it.
This is because the computer can process instructions very fast, so checking each possible
position on the board and selecting the highest scoring move is easy for the computer. If I
took the time to look at every space on the board and write down the score of each possible
move, it would take a long time for me to find the best move.

Did you notice that our Reversi program in Chapter 14 had two functions,
getPlayerMove() and getComputerMove() , which both returned the move
selected as a two-item list like [x, y]? The both also had the same parameters, the game
board data structure and which tile they were. getPlayerMove() decided which [x,
y] move to return by letting the player type in the coordinates. getComputerMove()
decided which [x, y] move to return by running the Reversi AI algorithm.

What happens when we replace the call to getPlayerMove() with a call to
getComputerMove()? Then the player never types in a move, it is decided for them!
The computer is playing against itself!

291

We are going to make three new programs, each based on the Reversi program in the last
chapter. We will make changes to reversi.py to create AISim1.py. Next we will make
changes to AISim1.py to create AISim2.py. And finally, we will make changes to AISim2.py
to for AISim3.py. You can either type these changes in yourself, or download them from the
book's website at the URL http://inventwithpython.com/chapter16.

Making the Computer Play Against Itself

Save the old reversi.py file as AISim1.py by clicking on File and then Save As, and then
entering AISim1.py for the file name and clicking Ok. This will create a copy of our
Reversi source code as a new file that we can make changes to, while leaving the original
Reversi game the same (we may want to play it again). Change the following code in
AISim1.py:

266. move = getPlayerMove(mainBoard, playerTile)

To this (the change is in bold):

266. move = getComputerMove(mainBoard, playerTile)

And run the program. Notice that the game still asks you if you want to be X or O, but it
will not ask you to enter in any moves. When we replaced getPlayerMove(), we no
longer call any code that takes this input from the player. We still press Enter after the
original computer's moves (because of the input('Press Enter to see the
computer\'s move.') on line 285), but the game plays itself!

Let's make some other changes to AISim1.py. All of the functions we defined for Reversi
can stay the same. But replace the entire main section of the program (line 246 and on) to
look like the following code. Some of the code has remained, but most of it has been
altered. But all of the lines before line 246 are the same as in Reversi in the last chapter.
You can also avoid typing in the code by downloading the source from the URL
http://inventwithpython.com/chapter16.

AISim1.py
This code can be downloaded from http://inventwithpython.com/AISim1.py
If you get errors after typing this code in, compare it to the book's code with the online
diff tool at http://inventwithpython.com/diff or email the author at
al@inventwithpython.com
246. print('Welcome to Reversi!')
247.
248. while True:
249. # Reset the board and game.
250. mainBoard = getNewBoard()
251. resetBoard(mainBoard)
252. if whoGoesFirst() == 'player':

292

253. turn = 'X'
254 . else:
255. turn = 'O'
256. print('The ' + turn + ' will go first.')
257.
258. while True:
259. drawBoard(mainBoard)
260. scores = getScoreOfBoard(mainBoard)
261. print('X has %s points. O has %s points' %

(scores['X'], scores['O']))
262. input('Press Enter to continue.')
263.
264. if turn == 'X':
265. # X's turn.
266. otherTile = 'O'
267. x, y = getComputerMove(mainBoard, 'X')
268. makeMove(mainBoard, 'X', x, y)
269. else:
270. # O's turn.
271. otherTile = 'X'
272. x, y = getComputerMove(mainBoard, 'O')
273. makeMove(mainBoard, 'O', x, y)
274.
275. if getValidMoves(mainBoard, otherTile) == []:
276. break
277. else:
278. turn = otherTile
279.
280. # Display the final score.
281. drawBoard(mainBoard)
282. scores = getScoreOfBoard(mainBoard)
283. print('X scored %s points. O scored %s points.' %

(scores['X'], scores['O']))
284.
285. if not playAgain():
286. sys.exit()

How the AISim1.py Code Works

The AISim1.py program is the same as the original Reversi program, except that the call to
getPlayerMove() has been replaced with a call to getComputerMove(). There have
been some other changes to the text that is printed to the screen to make the game easier to
follow.

When you run the AISim1.py program, all you can do is press Enter for each turn until the
game ends. Run through a few games and watch the computer play itself. Since both the X
and O players are using the same algorithm, it really is just a matter of luck to see who wins.
The X player will win half the time, and the O player will win half the time.

293

16 - AI Simulation

Making the Computer Play Itself Several Times

But what if we created a new algorithm? Then we could set this new AI against the one
implemented in getComputerMove(), and see which one is better. Let's make some
changes to our program. Click on File and then Save As, and save this file as AISim2.py so
that we can make changes without affecting AISim1.py. At this point, AISim1.py and
AISim2.py have the same code. We will make changes to AISim2.py and save that file so
that AISim2.py has the new changes and AISim1.py has the original code.

Add the following code. The additions are in bold, and some lines have been removed.
When you are done changing the file, save it as AISim2.py.

If this is confusing, you can always download the AISim2.py source code from the book's
website at http://inventwithpython.com/chapter16.

AISim2.py
This code can be downloaded from http://inventwithpython.com/AISim2.py
If you get errors after typing this code in, compare it to the book's code with the online
diff tool at http://inventwithpython.com/diff or email the author at
al@inventwithpython.com
246. print('Welcome to Reversi!')
247.
248. xwins = 0
249. owins = 0
250. ties = 0
251. numGames = int(input('Enter number of games to run: '))
252.
253. for game in range(numGames):
254. print('Game #%s:' % (game), end=' ')
255. # Reset the board and game.
256. mainBoard = getNewBoard()
257. resetBoard(mainBoard)
258. if whoGoesFirst() == 'player':
259. turn = 'X'
260. else:
261. turn = 'O'
262.
263. while True:
264. if turn == 'X':
265. # X's turn.
266. otherTile = 'O'
267. x, y = getComputerMove(mainBoard, 'X')
268. makeMove(mainBoard, 'X', x, y)
269. else:
270. # O's turn.
271. otherTile = 'X'
272. x, y = getComputerMove(mainBoard, 'O')
273. makeMove(mainBoard, 'O', x, y)
274.
275. if getValidMoves(mainBoard, otherTile) == []:
276. break

294

277. else:
278 . turn = otherTile
279.
280. # Display the final score.
281. scores = getScoreOfBoard(mainBoard)
282. print('X scored %s points. O scored %s points.' %

(scores['X'], scores['O']))
283.
284. if scores['X'] > scores['O']:
285. xwins += 1
286. elif scores['X'] < scores['O']:
287. owins += 1
288. else:
289. ties += 1
290.
291. numGames = float(numGames)
292. xpercent = round(((xwins / numGames) * 100), 2)
293. opercent = round(((owins / numGames) * 100), 2)
294. tiepercent = round(((ties / numGames) * 100), 2)
295. print('X wins %s games (%s%%), O wins %s games (%s%%),

ties for %s games (%s%%) of %s games total.' % (xwins,
xpercent, owins, opercent, ties, tiepercent, numGames))

How the AISim2.py Code Works

We have added the variables xwins, owins, and ties to keep track of how many times
X wins, O wins, and when they tie. Lines 284 to 289 increment these variables at the end of
each game, before it loops back to start a brand new game.

We have removed most of the print() function calls from the program, and the calls to
drawBoard() . When you run AISim2.py, it asks you how many games you wish to run.
Now that we've taken out the call to drawBoard() and replace the while True: loop
with a for game in range(numGames): loop, we can run a number of games
without stopping for the user to type anything. Here is a sample run where we run ten games
of computer vs. computer Reversi:

Welcome to Reversi!
Enter number of games to run: 10
Game #0: X scored 40 points. O scored 23 points.
Game #1: X scored 24 points. O scored 39 points.
Game #2: X scored 31 points. O scored 30 points.
Game #3: X scored 41 points. O scored 23 points.
Game #4: X scored 30 points. O scored 34 points.
Game #5: X scored 37 points. O scored 27 points.
Game #6: X scored 29 points. O scored 33 points.
Game #7: X scored 31 points. O scored 33 points.
Game #8: X scored 32 points. O scored 32 points.
Game #9: X scored 41 points. O scored 22 points.

295

16 - AI Simulation

X wins 5 games (50.0%), O wins 4 games (40.0%),
ties for 1 games (10.0%) of 10.0 games total.

Because the algorithm does have a random part, your run might not have the exact same
numbers as above.

Printing things out to the screen slows the computer down, but now that we have
removed that code, the computer can run an entire game of Reversi in about a second or
two. Think about it. Each time our program printed out one of those lines, it ran through an
entire game (which is about fifty or sixty moves, each move carefully checked to be the one
that gets the most points).

Percentages

Percentages are a portion of a total amount, and
range from 0% to 100%. If you had 100% of a pie,
you would have the entire pie. If you had 0% of a
pie, you wouldn't have any pie at all. 50% of the
pie would be half of the pie. A pie is a common
image to use for percentages. In fact, there is a
kind of chart called a pie chart which shows how
much of the full total a certain portion is. Here is a
pie chart with 10%, 15%, 25%, and 50% portions
below. Notice that 10% + 15% + 25% + 50% adds
up to 100%.

We can calculate the percentage with division.
To get a percentage, divide the part you have by
the total, and then multiply by one hundred. For example, if X won 50 out of 100 games,
you would calculate the expression 50 / 100, which would evaluate to 0.5. We
multiply this by 100 to get a percentage (in this case, 50%). Notice that if X won 100 out
of 200 games, we could calculate the percentage with 100 / 200, which would also
evaluate to 0.5. When we multiply 0.5 by 100 to get the percentage, we get 50%.
Winning 100 out of 200 games is the same percentage (that is, the same portion) as winning
50 out of 100 games.

Division Evaluates to Floating Point

It is important to note that when you use the / division operator, the expression will
always evaluate to a floating point number. For example, the expression 10 / 2 will
evaluate to the floating point value 5.0 and not to the integer value 5.

This is important to remember, because adding an integer to a floating point value with
the + addition operator will also always evaluate to a floating point value. For example, 3
+ 4.0 will evaluate to the floating point value 7.0 and not to the integer 7.

Figure 16-1: A pie chart with 10%,
15%, 25%, and 50% portions.

296

Try entering the following code into the interactive shell:

>>> spam = 100 / 4
>>> spam
25.0
>>> spam = spam + 20
>>> spam
45.0
>>>

Notice that in the above example, the data type of the value stored in spam is always a
floating point value. You can pass the floating point value to the int() function, which
will return an integer form of the floating point value. But this will always round the
floating point value down. For example, the expressions int(4.0), int(4.2), and
int(4.9) will all evaluate to 4, and never 5.

The round() Function

The round() function will round a float number to the nearest whole float number. Try
entering the following into the interactive shell:

>>> round(10.0)
10.0
>>> round(10.2)
10.0
>>> round(8.7)
9.0
>>> round(4.5)
5.0
>>> round(3.5)
4.0
>>> round(3.4999)
3.0
>>> round(2.5422, 2)
2.54
>>>

As you can see, whenever the fraction part of a number is .5 or greater, the number is
rounded up. Otherwise, the number is rounded down. The round() function also has an
optional parameter, where you can specify to what place you wish to round the number to.
For example, the expression round(2.5422, 2) evaluates to 2.54.

297

16 - AI Simulation

Displaying the Statistics

291. numGames = float(numGames)
292. xpercent = round(((xwins / numGames) * 100), 2)
293. opercent = round(((owins / numGames) * 100), 2)
294. tiepercent = round(((ties / numGames) * 100), 2)
295. print('X wins %s games (%s%%), O wins %s games (%s%%),

ties for %s games (%s%%) of %s games total.' % (xwins,
xpercent, owins, opercent, ties, tiepercent, numGames))

The code at the bottom of our program will show the user how many wins X and O had,
how many ties there were, and how what percentages these make up. Statistically, the more
games you run, the more accurate your percentages will be. If you only ran ten games, and
X won three of them, then it would seem that X's algorithm only wins 30% of the time.
However, if you run a hundred, or even a thousand games, then you may find that X's
algorithm wins closer to 50% (that is, half) of the games.

To find the percentages, we divide the number of wins or ties by the total number of
games. We convert numGames to a float to ensure we do not use integer division in our
calculation. Then we multiply the result by 100. However, we may end up with a number
like 66.66666666666667. So we pass this number to the round() function with the
second parameter of 2 to limit the precision to two decimal places, so it will return a float
like 66.67 instead (which is much more readable).

Let's try another experiment. Run AISim2.py again, but this time have it run a hundred
games:

Sample Run of AISim2.py

Welcome to Reversi!
Enter number of games to run: 100
Game #0: X scored 42 points. O scored 18 point s.
Game #1: X scored 26 points. O scored 37 points.
Game #2: X scored 34 points. O scored 29 points.
Game #3: X scored 40 points. O scored 24 points.

...skipped for brevity...

Game #96: X scored 22 points. O scored 39 points.
Game #97: X scored 38 points. O scored 26 points.
Game #98: X scored 35 points. O scored 28 points.
Game #99: X scored 24 points. O scored 40 points.
X wins 46 games (46.0%), O wins 52 games (52.0%),
ties for 2 games (2.0%) of 100.0 games total.

298

Depending on how fast your computer is, this run might have taken a about a couple
minutes. We can see that the results of all one hundred games still evens out to about fifty-
fif ty, because both X and O are using the same algorithm to win.

Comparing Different AI Algorithms

Let's add some new functions with new algorithms. But first click on File, then Save As,
and save this file as AISim3.py. Before the print('Welcome to Reversi!') line,
add these functions:

AISim3.py
This code can be downloaded from http://inventwithpython.com/AISim3.py
If you get errors after typing this code in, compare it to the book's code with the online
diff tool at http://inventwithpython.com/diff or email the author at
al@inventwithpython.com
245. def getRandomMove(board, tile):
246. # Return a random move.
247. return random.choice(getValidMoves(board, tile))
248.
249.
250. def isOnSide(x, y):
251. return x == 0 or x == 7 or y == 0 or y ==7
252.
253.
254. def getCornerSideBestMove(board, tile):
255. # Return a corner move, or a side move, or the best

move.
256. possibleMoves = getValidMoves(board, tile)
257.
258. # randomize the order of the possible moves
259. random.shuffle(possibleMoves)
260.
261. # always go for a corner if available.
262. for x, y in possibleMoves:
263. if isOnCorner(x, y):
264. return [x, y]
265.
266. # if there is no corner, return a side move.
267. for x, y in possibleMoves:
268. if isOnSide(x, y):
269. return [x, y]
270.
271. return getComputerMove(board, tile)
272.
273.
274. def getSideBestMove(board, tile):
275. # Return a corner move, or a side move, or the best

move.
276. possibleMoves = getValidMoves(board, tile)
277.
278. # randomize the order of the possible moves

299

16 - AI Simulation

279. random.shuffle(possibleMoves)
280.
281. # return a side move, if available
282. for x, y in possibleMoves:
283. if isOnSide(x, y):
284. return [x, y]
285.
286. return getComputerMove(board, tile)
287.
288.
289. def getWorstMove(board, tile):
290. # Return the move that flips the least number of

tiles.
291. possibleMoves = getValidMoves(board, tile)
292.
293. # randomize the order of the possible moves
294. random.shuffle(possibleMoves)
295.
296. # Go through all the possible moves and remember the

best scoring move
297. worstScore = 64
298. for x, y in possibleMoves:
299. dupeBoard = getBoardCopy(board)
300. makeMove(dupeBoard, tile, x, y)
301. score = getScoreOfBoard(dupeBoard)[tile]
302. if score < worstScore:
303. worstMove = [x, y]
304. worstScore = score
305.
306. return worstMove
307.
308.
309. def getCornerWorstMove(board, tile):
310. # Return a corner, a space, or the move that flips the

least number of tiles.
311. possibleMoves = getValidMoves(board, tile)
312.
313. # randomize the order of the possible moves
314. random.shuffle(possibleMoves)
315.
316. # always go for a corner if available.
317. for x, y in possibleMoves:
318. if isOnCorner(x, y):
319. return [x, y]
320.
321. return getWorstMove(board, tile)
322.
323.
324.
325. print('Welcome to Reversi!')

300

How the AISim3.py Code Works

A lot of these functions are very similar to one another, and some of them use the new
isOnSide() func tion. Here's a review of the new algorithms we've made:

Comparing the Random Algorithm Against the Regular Algorithm

Now the only thing to do is replace one of the getComputerMove() calls in the main
part of the program with one of the new functions. Then we can run several games and see
how often one algorithm wins over the other. First, let's replace O's algorithm with the one
in getComputerMove() with getRandomMove() on line 351:

351. x, y = getRandomMove(mainBoard, 'O')

When we run the program with a hundred games now, it may look something like this:

Welcome to Reversi!
Enter number of games to run: 100
Game #0: X scored 25 points. O scored 38 points.
Game #1: X scored 32 points. O scored 32 points.
Game #2: X scored 15 points. O scored 0 points.
Game #3: X scored 50 points. O scored 14 points.

...skipped for brevity...

Game #96: X scored 31 points. O scored 33 points.
Game #97: X scored 41 points. O scored 23 points.

Table 17-1: Functions used for our Reversi AI.

Function Description

getRandomMove() Randomly choose a valid move to make.

getCornerSideBestMove
()

Take a corner move if available. If there is no corner,
take a space on the side. If no sides are available, use
the regular getComputerMove() algorithm.

getSideBestMove()
Take a side space if there is one available. If not, then
use the regular getComputerMove() algorithm (side
spaces are chosen before corner spaces).

getWorstMove() Take the space that will result in the fewest tiles being
flipped.

getCornerWorstMove() Take a corner space, if available. If not, use the
getWorstMove() algorithm.

301

16 - AI Simulation

Game #98: X scored 33 points. O scored 31 points.
Game #99: X scored 45 points. O scored 19 points.
X wins 84 games (84.0%), O wins 15 games (15.0 %),
ties for 1 games (1.0%) of 100.0 games total.

Wow! X win far more often than O did. That means that the algorithm in
getComputerMove() (take any available corners, otherwise take the space that flips the
most tiles) wins more games than the algorithm in getRandomMove() (which just makes
moves randomly). This makes sense, because making intelligent choices is usually going to
be better than just choosing things at random.

Comparing the Random Algorithm Against Itself

What if we changed O's algorithm to also use the algorithm in getRandomMove() ?
Let's find out by changing O's function call on line 351 from getComputerMove() to
getRandomMove() and running the program again.

Welcome to Reversi!
Enter number of games to run: 100
Game #0: X scored 37 points. O scored 24 points.
Game #1: X scored 19 points. O scored 45 points.

...skipped for brevity...

Game #98: X scored 27 points. O scored 37 points.
Game #99: X scored 38 points. O scored 22 points.
X wins 42 games (42.0%), O wins 54 games (54.0%),
ties for 4 games (4.0%) of 100.0 games total.

As you can see, when both players are making random moves, they each win about 50%
of the time. (In the above case, O just happen to get lucky and won a little bit more than
half of the time.)

Just like moving on the corner spaces is a good idea because they cannot be flipped,
moving on the side pieces may also be a good idea. On the side, the tile has the edge of the
board and is not as out in the open as the other pieces. The corners are still preferable to the
side spaces, but moving on the sides (even when there is a move that can flip more pieces)
may be a good strategy.

Comparing the Regular Algorithm Against the CornersSideBest
Algorithm

Change X's algorithm on line 346 to use getComputerMove() (our original
algorithm) and O's algorithm on line 351 to use getCornerSideBestMove() , and let's

302

run a hundred games to see which is better. Try changing the function calls and running
the program again.

Welcome to Reversi!
Enter number of games to run: 100
Game #0: X scored 52 points. O scored 12 points.
Game #1: X scored 10 points. O scored 54 points.

...skipped for brevity...

Game #98: X scored 41 points. O scored 23 poin ts.
Game #99: X scored 46 points. O scored 13 points.
X wins 65 games (65.0%), O wins 31 games (31.0%),
ties for 4 games (4.0%) of 100.0 games total.

Wow! That's unexpected. It seems that choosing the side spaces over a space that flips
more tiles is a bad strategy to use. The benefit of the side space is not greater than the cost
of choosing a space that flips fewer of the opponent's tiles. Can we be sure of these results?
Let's run the program again, but this time let's have the program play one thousand games.
This may take a few minutes for your computer to run (but it would take days for you to do
this by hand!) Try changing the function calls and running the program again.

Welcome to Reversi!
Enter number of games to run: 1000
Game #0: X scored 20 points. O scored 44 points.
Game #1: X scored 54 points. O scored 9 points.

...skipped for brevity...

Game #998: X scored 38 points. O scored 23 points.
Game #999: X scored 38 points. O scored 26 points.
X wins 611 games (61.1%), O wins 363 games
(36.3%), ties for 26 games (2.6%) of 1000.0 games
total.

The more accurate statistics from the thousand-games run are about the same as the
statistics from the hundred-games run. It seems that choosing the move that flips the most
tiles is a better idea than choosing a side move.

Comparing the Regular Algorithm Against the Worst Algorithm

Now set the X player's algorithm on line 346 to use getComputerMove() and the O
player's algorithm on line 351 to getWorstMove() , and run a hundred games. Try
changing the function calls and running the program again.

303

16 - AI Simulation

Welcome to Reversi!
Enter number of games to run: 100
Game #0: X scored 50 points. O scored 14 point s.
Game #1: X scored 38 points. O scored 8 points.

...skipped for brevity...

Game #98: X scored 36 points. O scored 16 points.
Game #99: X scored 19 points. O scored 0 points.
X wins 98 games (98.0%), O wins 2 games (2.0%),
ties for 0 games (0.0%) of 100.0 games total.

Whoa! The algorithm in getWorstMove(), which always choose the move that flips
the fewest tiles, will almost always lose to our regular algorithm. This isn't really surprising
at all.

Comparing the Regular Algorithm Against the WorstCorner
Algorithm

How about when we replace getWorstMove() on line 351 with
getCornerWorstMove(), which is the same algorithm except it takes any available
corner pieces. Try changing the function calls and running the program again.

Welcome to Reversi!
Enter number of games to run: 100
Game #0: X scored 36 points. O scored 7 points .
Game #1: X scored 44 points. O scored 19 points.

...skipped for brevity...

Game #98: X scored 47 points. O scored 17 points.
Game #99: X scored 36 points. O scored 18 points.
X wins 94 games (94.0%), O wins 6 games (6.0%),
ties for 0 games (0.0%) of 100.0 games total.

The getCornerWorstMove() still loses most of the games, but it seems to win a
few more games than getWorstMove() (6% compared to 2%). Does taking the corner
spaces when they are available really make a difference?

Comparing the Worst Algorithm Against the WorstCorner Algorithm

We can check by setting X's algorithm to getWorstMove() and O's a lgorithm to
getCornerWorstMove(), and then running the program. Try changing the function
304

calls and running the program again.

Welcome to Reversi!
Enter number of games to run: 100
Game #0: X scored 25 points. O scored 39 points.
Game #1: X scored 26 points. O scored 33 points.

...skipped for brevity...

Game #98: X scored 36 points. O scored 25 points.
Game #99: X scored 29 points. O scored 35 points.
X wins 32 games (32.0%), O wins 67 games (67.0%),
ties for 1 games (1.0%) of 100.0 games total.

Yes, it does seem like taking the algorithm that takes the corners when it can does
translate into more wins. While we have found out that going for the sides makes you lose
more often, going for the corners is always a good idea.

Learning New Things by Running Simulation
Experiments

This chapter didn't really cover a game, but it modeled various strategies for Reversi. If
we thought that taking side moves in Reversi was a good idea, we would have to spend
days, even weeks, carefully playing games of Reversi by hand and writing down the results.
But if we know how to program a computer to play Reversi, then we can have the computer
play Reversi using these strategies for us. If you think about it, you will realize that the
computer is executing millions of lines of our Python program in seconds! Your
experiments with the simulation of Reversi can help you learn more about playing Reversi
in real life.

In fact, this chapter would make a good science fair project. Your problem can be which
set of moves leads to the most wins against other sets of moves, and make a hypothesis
about which is the best strategy. After running several simulations, you can determine
which strategy works best. You can make a science fair project out of a simulation of any
board game! And it is all because you know exactly how to instruct the computer to do it,
step by step, line by line. You can speak the computer's language, and get it to do large
amounts of data processing and number crunching for you.

That's all for the text-based games in this book. Games that only use text can be fun,
even though there simple. But most modern games use graphics, sound, and animation to
make much more exciting looking games. For the rest of the chapters in this book, we will
learn how to create games with graphics by using a Python module called Pygame.

305

16 - AI Simulation

Topics Covered In This Chapter:

� Software Libraries
� Installing Pygame
� Graphical user interfaces (GUI)
� Drawing primitives
� Creating a GUI window with Pygame
� Color in Pygame
� Fonts in Pygame
� Aliased and Anti-Aliased Graphics
� Attributes
� The pygame.font.Font Data Type
� The pygame.Surface Data Type
� The pygame.Rect Data Type
� The pygame.PixelArray Data Type
� Constructor Functions
� The type() Function
� Pygame's Drawing Functions
� The blit() Method for Surface Objects
� Events
� The Game Loop
� Animation

So far, all of our games have only used text. Text is displayed on the screen as output,
and the player types in text from the keyboard as input. This is simple, and an easy way to
learn programming. But in this chapter, we will make some more exciting games with
advanced graphics and sound using the Pygame library. Chapters 17, 18, and 19 will teach
306

you how to use the Pygame library to make games with graphics, animation, and sound.
In these chapters we'll find source code for simple programs that are not games but
demonstrate the Pygame concepts we've learned. Chapter 20 will present the source code
for a complete Pygame game using all the concepts you've learned.

A software library is code that is not meant to be run by itself, but included in other
programs to add new features. By using a library a programmer doesn't have to write the
entire program, but can make use of the work that another programmer has done before
them. Pygame is a software library that has modules for graphics, sound, and other features
that games commonly use.

Installing Pygame

Pygame does not come with Python. Like Python, Pygame is available for free. You will
have to download and install Pygame, which is as easy as downloading and installing the
Python interpreter. In a web browser, go to the URL http://pygame.org and click on the
"Downloads" link on the left side of the web site. This book assumes you have the
Windows operating system, but Pygame works the same for every operating system. You
need to download the Pygame installer for your operating system and the version of Python
you have installed (3.1).

You do not want to download the "source" for Pygame, but rather the Pygame for your
operating system. For Windows, download the pygame-1.9.1.win32-py3.1.msi file. (This is
Pygame for Python 3.1 on Windows. If you installed a different version of Python (such as
2.5 or 2.4) download the .msi file for your version of Python.) The current version of
Pygame at the time this book was written is 1.9.1. If you see a newer version on the
website, download and install the newer Pygame. For Mac OS X and Linux, follow the
directions on the download page for installation instructions.

Figure 17-1: The pygame.org website.

On Windows, double click on the downloaded file to install Pygame. To check that
Pygame is install correctly, type the following into the interactive shell:

>>> import pygame

307

17 - Graphics and Animation

If nothing appears after you hit the Enter key, then you know Pygame has successfully
been installed. If the error ImportError: No module named pygame appears,
then try to install Pygame again (and make sure you typed import pygame correctly).

This chapter has five small programs that demonstrate how to use the different features
that Pygame provides. In the last chapter, you will use these features for a complete game
written in Python with Pygame.

A video tutorial of how to install Pygame is available from this book's website at
http://inventwithpython.com/videos/.

Hello World in Pygame

We are going to create a new "Hello World!" program, just like you created at the
beginning of the book. This time, we will use Pygame to make "Hello world!" appear in a
graphical user interface (GUI, which is pronounced "gooey") window. A graphical
user interface gives you a window that color, shapes, and images can be drawn on by your
program, as well as accepting mouse input (and not just keyboard input). The basic shapes
that we draw on the screen are called drawing primitives. GUI windows are used instead
of the text window (also called a console window or a terminal window) that we used
for all our previous games.

Pygame does not work well with the interactive shell because it relies on a game loop
(we will describe game loops later). Because of this, you can only write Pygame programs
and cannot send commands to Pygame one at a time through the interactive shell.

Pygame programs also do not use the input() function. There is no text input and
output. Instead, the program displays output in a window by drawing graphics and text to
the window. Pygame program's input comes from the keyboard and the mouse through
things called events, which we will go over in the next chapter. However, if our program
has bugs that cause Python to display an error message, the error message will show up in
the console window.

You can also use print() calls to display text in the console window, however in
Pygame the print() function is only used for temporarily printing messages to help you
find bugs in your program. It can be useful to print out the values of variables while your
program is running so that you can make sure it is working correctly.

You can also look up information about how to use the Pygame library by visiting the
web site http://pygame.org/docs/ref/.

Hello World's Source Code

Type in the following code into the file editor, and save it as pygameHelloWorld.py. Or
you can download this source code by going to this book's website at
http://inventwithpython.com/chapter17

308

pygameHelloWorld.py
This code can be downloaded from http://inventwithpython.com/pygameHelloWorld.py
If you get errors after typing this code in, compare it to the book's code with the online
diff tool at http://inventwithpython.com/diff or email the author at
al@inventwithpython.com

1. import pygame, sys
2. from pygame.locals import *
3.
4. # set up pygame
5. pygame.init()
6.
7. # set up the window
8. windowSurface = pygame.display.set_mode((500, 400), 0,

32)
9. pygame.display.set_caption('Hello world!')

10.
11. # set up the colors
12. BLACK = (0, 0, 0)
13. WHITE = (255, 255, 255)
14. RED = (255, 0, 0)
15. GREEN = (0, 255, 0)
16. BLUE = (0, 0, 255)
17.
18. # set up fonts
19. basicFont = pygame.font.SysFont(None, 48)
20.
21. # set up the text
22. text = basicFont.render('Hello world!', True, WHITE,

BLUE)
23. textRect = text.get_rect()
24. textRect.centerx = windowSurface.get_rect().centerx
25. textRect.centery = windowSurface.get_rect().centery
26.
27. # draw the white background onto the surface
28. windowSurface.fill(WHITE)
29.
30. # draw a green polygon onto the surface
31. pygame.draw.polygon(windowSurface, GREEN, ((146, 0),

(291, 106), (236, 277), (56, 277), (0, 106)))
32.
33. # draw some blue lines onto the surface
34. pygame.draw.line(windowSurface, BLUE, (60, 60), (120,

60), 4)
35. pygame.draw.line(windowSurface, BLUE, (120, 60), (60,

120))
36. pygame.draw.line(windowSurface, BLUE, (60, 120), (120,

120), 4)
37.
38. # draw a blue circle onto the surface
39. pygame.draw.circle(windowSurface, BLUE, (300, 50), 20, 0)
40.
41. # draw a red ellipse onto the surface
42. pygame.draw.ellipse(windowSurface, RED, (300, 250, 40,

309

17 - Graphics and Animation

80), 1)
43.
44. # draw the text's background rectangle onto the surface
45. pygame.draw.rect(windowSurface, RED, (textRect.left - 20,

textRect.top - 20, textRect.width + 40, textRect.height +
40))

46.
47. # get a pixel array of the surface
48. pixArray = pygame.PixelArray(windowSurface)
49. pixArray[480][380] = BLACK
50. del pixArray
51.
52. # draw the text onto the surface
53. windowSurface.blit(text, textRect)
54.
55. # draw the window onto the screen
56. pygame.display.update()
57.
58. # run the game loop
59. while True:
60. for event in pygame.event.get():
61. if event.type == QUIT:
62. pygame.quit()
63. sys.exit()

Running the Hello World Program

When you run this program, you should see a new GUI window appear which looks like
Figure 17-2.

What is nice about using a GUI instead of a console is that the text can appear anywhere
in the window, not just after the previous text we have printed. The text can be any color or
size.

One thing you may notice is that Pygame uses a lot of tuples instead of lists. Remember
that tuples are almost the same as lists (they can contain other values) except they are typed
with parentheses (and), instead of square brackets [and]. The main difference is that
once you create a tuple, you cannot change, add, or remove any values in the tuple. For
technical reasons, knowing that the contents of the tuple never change allows Python to
handle this data more efficiently, which is why Pygame uses tuples instead of lists.

310

Figure 17-2: The "Hello World" program.

Importing the Pygame Module

Let's go over each of these lines of code and find out what they do.

1. import pygame, sys
2. f r om pygame.locals import *

First we need to import the pygame module so we can call the functions in the Pygame
software library. You can import several modules on the same line by delimiting the
module names with commas. Line 1 imports both the pygame and sys modules.

The second line imports the pygame.locals module. This module contains many
constant variables that we will use with Pygame such as QUIT or K_ESCAPE (which we
will explain later). However, using the form from moduleName import * we can
import the pygame.locals module but not have to type pygame.locals in front of
each time we use the module's functions and variables in our program. The * symbol
means we should import everything inside the module.

The pygame.locals module contains some constant variables we will use in this
program . If you have from sys import * instead of import sys in your program,

311

17 - Graphics and Animation

you could call exit() instead of sys.exit() in your code. (But most of the time it
is better to use the full function name so that you know which module the exit() is in.)

The pygame.init() Function

4. # set up pygame
5. pygame.init()

The Pygame software library has some initial code that needs to be run before we can
use it. All Pygame programs must run this code by calling the pygame.init() after
importing the pygame module but before calling any other Pygame functions.

The pygame.display.set_mode() and
pygame.display.set_caption() Functions

7. # set up the window
8. windowSurface = pygame.display.set_mode((500, 400), 0,

32)
9. pygame.display.set_caption('Hello world!')

Line 8 creates a GUI window for our program by calling the set_mode() method in
the pygame.display module. (The display module is a module inside the pygame
module. Pygame is so advanced that even the pygame module has its own modules!)

Just to avoid confusion, you should know the difference between the window that is
created is different and the Windows operating system. The graphical user interface is
printed as "window" (lower case and singular) and the Microsoft operating system is
"Windows" (upper case and plural).

There are three parameters to the set_mode() method. The first parameter is a tuple of
two integers for the width and height of the window, in pixels. A pixel is the tiniest dot on
your computer screen. A single pixel on your screen can turn into any color. All the pixels
on your screen work together to display all the pictures you see. To see how tiny a pixel is,
look at the bottom right corner of the "Hello World!" window. This program sets just one
pixel as white.

We want the window to be 500 pixels wide and 400 pixels high, so we use the tuple
(500, 400) for the first parameter. To get the total number of pixels in our window,
multiply the width and the height. Our window is made up of 20,000 pixels, and it doesn't
even take up the entire computer screen!

The second parameter is for advanced GUI window options. You won't really need this
for your games, so you can always just pass 0 for this parameter. The third parameter is
312

another advanced option called the color depth. You can just pass the value 32.

The set_caption() call returns a pygame.Surface obje ct (which we will call
Surface objects for short). Objects are values of a data type that have methods as well as
data. For example, strings are objects in Python because they have data (the string itself)
and methods (such as lower() and split()). You can store objects in variables just
like any other value. The Surface object represents the window and we will include the
windowSurface variable in all of our calls to drawing functions.

Variables Store References to Objects

You should know that variables never hold objects (including lists and dictionaries), they
only hold references to objects. This is exactly the same way that variables never hold lists
but only hold references to lists. The difference between holding the object and holding a
reference to the object is that if you copy the variable to a second variable, any changes
made to object in one of the variables will also change the object in the other variable. This
is because both variables hold references to the same object because only a copy of the
reference was made, not a copy of the object.

Here is an example with lists (just like in the Hangman chapter). Type the following into
the interactive shell:

>>> x = ['a', 'b', 'c']
>>> y = x
>>> x[2] = 'Hello!'
>>> print(y)
['a', 'b', 'Hello!']

Notice that changing the x list has also changed the y list, because they both contain
references to the same list. y made a copy of the reference in x, not a copy of the list.

The same applies to objects. Consider the following code:

>>> import pygame
>>> pygame.init()
>>> windowSurface = pygame.display.set_mode((500,
500), 0, 32)
>>> secondSurface = windowSurface

windowSurface a nd secondSurface contain references to the same Surface
object. Any changes made to windowSurface will change the same object that
secondSurface references. The same is true that any changes to windowSurface
will change windowSurface .

313

17 - Graphics and Animation

Colors in Pygame

11. # set up the colors
12. BLACK = (0, 0, 0)
13. WHITE = (255, 255, 255)
14. RED = (255, 0, 0)
15. GREEN = (0, 255, 0)
16. BLUE = (0, 0, 255)

There are three primary colors of light: red, green
and blue. By combining different amounts of these
three colors you can form any other color. In Python,
we represent colors with tuples of three integers. The
first value in the tuple is how much red is in the
color. A value of 0 means there is no red in this
color, and a value of 255 means there is a maximum
amount of red in the color. The second value is for
green and the third value is for blue.

For example, we will create the tuple (0, 0, 0)
and store it in a variable named BLACK. With no
amount of red, green, or blue, the resulting color is
completely black. The color black is the absence of
any color.

On line 13, we use the tuple (255, 255, 255)
for a maximum amount of red, green, and blue to
result in white. The color white is the full
combination of red, green, and blue. We store this
tuple in the WHITE variable. (255, 0, 0)
represents the maximum amount of red but no
amount of green and blue, so the resulting color is
red. Similarly, (0, 255, 0) is green and (0, 0,
255) is blue.

These variable names are in all capitals because they are constant variables. It's just
easier to type BLACK in our code than (0, 0, 0) every time we want to specify the
color black, so we set up these color variables at the start of our program.

If you want to make a color lighter, try adding an equal amount from all three values.
For example, the RGB value for gray is (128, 128, 128). You can get the RGB
value for a lighter gray by adding 20 to each value to get (148, 148, 148). You can
get the RGB value for a darker gray by subtracting 20 from each value to get (108,
108, 108). And you can get the RGB value for a slightly redder gray by adding 20 to
only the red value to get (148, 128, 128). Table 17-1 has some common colors and

Table 17-1: Colors and their RGB
values.

Color RGB Values
Aqua (0, 255, 255)
Black (0, 0, 0)
Blue (0, 0, 255)

Cornflower Blue (100, 149, 237)
Fuchsia (255, 0, 255)

Gray (128, 128, 128)
Green (0, 128, 0)
Lime (0, 255, 0)

Maroon (128, 0, 0)
Navy Blue (0, 0, 128)

Olive (128, 128, 0)
Purple (128, 0, 128)
Red (255, 0, 0)

Silver (192, 192, 192)
Teal (0, 128, 128)

White (255, 255, 255)
Yellow (255, 255, 0)

314

Fonts, and the pygame.font.SysFont() Function

18. # set up fonts
19. basicFont = pygame.font.SysFont(None, 48)

The render() Method for Font Objects

21. # set up the text
22. t ext = basicFont.render('Hello world!', True, WHITE,

BLUE)
23. textRect = text.get_rect()

their RGB values.

A font is a complete set of letters,
numbers, symbols, and characters of
a single style. Here is an example of
the same sentence printed in different
fonts:

In our earlier games, we only told
Python to print out text. The color,
size, and font that was used to display
this text was completely determined
by whatever font your operating
system uses for console windows. Our programs could not change the font at all.
However, since we will be drawing out letters to a GUI window we need to tell Pygame
exactly what font to use when drawing the text.

On line 19 we create a pygame.font.Font object (which we will just call Font
objects for short) by calling the pygame.font.SysFont() function. The first
parameter is the name of the font, but we will pass the None value to use the default
system font. The second parameter will be the size of the font. In our call on line 19, we
want the font size to be 48 points.

Figure 17-3: Examples of different fonts.

The Font obje ct that we have stored in the basicFont variable has a method called
render(). This method will create a Surface object with the text drawn on it. The
first parameter to render() is the string of the text to draw. The second parameter is a
boolean for whether or not we want anti-aliasing. Anti-aliasing is a technique for making a
drawing look less blocky. On line 22, we pass True to say we want to use anti-aliasing.
Figure 17-4 is an example of what a line (when we enlarge the individual pixels) looks
like with and without anti-aliasing:

315

17 - Graphics and Animation

Attributes

24. textRect.centerx = windowSurface.get_rect().centerx
25. textRect.centery = windowSurface.get_rect().centery

The pygame.Rect data type (which we will just call Rect for short) makes working
with rectangle-shaped things easy. To create a new Rect object call the function
pygame.Rect(). The parameters are integers for the XY coordinates of the top left
corner, followed by the width and height. These integers are in number of pixels.

The function name with the parameters looks like this: pygame.Rect(left, top,
width, height)

Just like methods are functions that are associated with an object, attributes are
variables that are associated with an object. The Rect data type (that is, the data type of all
Rect objects) has many attributes that describe the rectangle they represent. Here is a list
of attributes of a Rect object named myRect:

Anti-aliasing can make your text and lines
look blurry but smoother. It takes a little more
computation time to do anti-aliasing, so although
the graphics may look better, your program may
run slower (but only just a little).

Figure 17-4: An aliased line and an anti-aliased line.

pygame.Rect
Attribute

Description

myRect.left The int value of the X-coordinate of the left side of the
rectangle.

myRect.right The int value of the X-coordinate of the right side of the
rectangle.

myRect.top The int value of the Y-coordinate of the top side of the
rectangle.

myRect.bottom The int value of the Y-coordinate of the bottom side of the
rectangle.

myRect.centerx The int value of the X-coordinate of the center of the
rectangle.

The int value of the Y-coordinate of the center of the
316

The great thing about Rect objects is that if you modify any of these variables, all the
other variables will automatically modify themselves as well. For example, if you create a
Rect object that is 20 pixels wide and 20 pixels high, and has the top left corner at the
coordinates (30, 40), then the X-coordinate of the right side will automatically be set to 50
(because 20 + 30 = 50). However, if you change the left attribute with the line
myRect.left = 100, then Pygame will automatically change the right attribute to
120 (because 20 + 100 = 120). Every other attribute for that Rect object will also be
updated as well.

The get_rect() Methods for pygame.font.Font
and pygame.Surface Objects

Notice that both the Font object (stored in the text variable) and the Surface object
(stored in windowSurface variable) both have a method called get_rect().
Technically, these are two different methods. But the programmers of Pygame gave them
the same name because they both do the same thing and return Rect objects that represent
the size and position of the Font or Surface object.

Also, remember that pygame is a module that we import, and inside the pygame
module are the font and surface modules. Inside those modules are the Font and
Surface data types. The Pygame programmers made the modules begin with a lowercase
letter, and the data types begin with an uppercase letter. This makes it easier to distinguish
the data types and the modules that the data types can be found in.

Constructor Functions and the type() function.

We create a pygame.Rect object by calling a function named pygame.Rect(). The
pygame.Rect() function has the same name as the pygame.Rect data type.

myRect.centery rectangle.

myRect.width The int value of the width of the rectangle.
myRect.height The int value of the height of the rectangle.
myRect.size A tuple of two ints: (width, height)

myRect.topleft A tuple of two ints: (left, top)
myRect.topright A tuple of two ints: (right, top)
myRect.bottomleft A tuple of two ints: (left, bottom)
myRect.bottomright A tuple of two ints: (right, bottom)

myRect.midleft A tuple of two ints: (left, centery)
myRect.midright A tuple of two ints: (right, centery)
myRect.midtop A tuple of two ints: (centerx, top)
myRect.midbottom A tuple of two ints: (centerx, bottom)

317

17 - Graphics and Animation

Functions that have the same name as their data type and create objects or values of this
data type are called constructor functions .

The int() and str() functions are also constructor functions. The int() function
returns an int version of whatever you pass it, whether it is int(5) or int('5'). (The
proper name for strings in Python is str.)

You can always find out what the proper name of a value's data type with the type()
function. For example, try typing the following into the interactive shell:

>>> type('This is a string')
<type 'str'>
>>> type(5)
<type 'int'>
>>> spam = 'Another string'
>>> type(spam)
<type 'str'>
>>> import pygame
>>> pygame.init()
>>> myRect = pygame.Rect(10, 10, 40, 50)
>>> type(myRect)
<type 'pygame.Rect'>
>>> pygame.quit()

(You need to call the pygame.quit() function when you are done with typing
Pygame functions into the interactive shell. Otherwise you may cause Python to crash.)
Notice that the return value from the type() function is not a string, but a value of a data
type called "type"! Try typing this into the interactive shell:

>>> type(type('This is a string'))
<type 'type'>

For the most part, you don't need to know about data types and the type() function
when programming games. But it can be very useful if you need to find out the data type of
the value stored in a variable in your program.

The fill() Method for Surface Objects

27. # draw the white background onto the surface
28. windowSurface.fill(WHITE)

This is the first drawing function call in our program. We want to fill the entire surface

318

stored in windowSurface with the color white. The fill() function will completely
cover the entire surface with the color we pass as the parameter. (In this case, we pass
BLACK to make the background black.)

An important thing to know about Pygame is that the window on the screen will not
change when we call the fill() method or any of the other drawing functions. These will
draw on the Surface object, but the Surface object will not be drawn on the user's
screen until the pygame.display.update() function is called. This is because
drawing on the Surface object (which is stored in the computer's memory) is much faster
than drawing to the computer screen. It is much more efficient to draw onto the screen once
and only after all of our drawing functions to draw to the surface.

The pygame.draw.polygon() Function

30. # draw a green polygon onto the surface
31. pygame.draw.polygon(windowSurface, GREEN, ((146, 0),

(291, 106), (236, 277), (56, 277), (0, 106)))

A polygon is any multisided shape with sides that are only straight lines. The
pygame.draw.polygon() function can draw any shape that you give it and fill the
inside space of the polygon. The tuple of tuples you pass it represents the XY coordinates
of the points to draw in order. The last tuple will automatically connect to the first tuple to
complete the shape.

Figure 17-5: Examples of Polygons.

Polygons only have straight lines for sides (circles and ellipses are not polygons). Figure
17-5 has some examples of polygons.

319

17 - Graphics and Animation

The pygame.draw.line() Function

33. # draw some blue lines onto the surface
34. pygame.draw.line(windowSurface, BLUE, (60, 60), (120,

60), 4)
35. pygame.draw.line(windowSurface, BLUE, (120, 60), (60,

120))
36. pygame.draw.line(windowSurface, BLUE, (60, 120), (120,

120), 4)

The pygame.draw.line() function will draw a line on the Surface object that
you provide. Notice that the last parameter (the width of the line) is optional. If you pass 4
for the width, the line will be four pixels thick. If you do not specify the width parameter,
it will take on the default value of 1.

The pygame.draw.circle() Function

38. # draw a blue circle onto the surface
39. pygame.draw.circle(windowSurface, BLUE, (300, 50), 20, 0)

The pygame.draw.circle() function will draw a circle on the Surface object
you provide. The third parameter is for the X and Y coordinates of the center of the circle
as a tuple of two ints. The fourth parameter is an int for the radius (that is, size) of the
circle in pixels. A width of 0 means that the circle will be filled in.

The pygame.draw.ellipse() Function

41. # draw a red ellipse onto the surface
42. pygame.draw.ellipse(windowSurface, RED, (300, 250, 40,

80), 1)

The pygame.draw.ellipse() function will draw an ellipse. It is similar to the
pygame.draw.circle() function, except that instead of specifying the center of the
circle, a tuple of four ints is passed for the left, top, width, and height of the ellipse.

The pygame.draw.rect() Function

44. # draw the text's background rectangle onto the surface
45. pygame.draw.rect(windowSurface, RED, (textRect.left - 20,

textRect.top - 20, textRect.width + 40, textRect.height +

320

40))

The pygame.draw.rect() function will draw a rectangle. The third parameter is a
tuple of four ints for the left, top, width, and height of the rectangle. Instead of a tuple of four
ints for the third parameter, you can also pass a Rect object. In line 45, we want the
rectangle we draw to be 20 pixels around all the sides of the text. This is why we want the
drawn rectangle's left and top to be the left and top of textRect minus 20. (Remember,
we subtract because coordinates decrease as you go left and up.) And the width and height
will be equal to the width and height of the textRect plus 40 (because the left and top
were moved back 20 pixels, so we need to make up for that space).

The pygame.PixelArray Data Type

47. # get a pixel array of the surface
48. pixArray = pygame.PixelArray(windowSurface)
49. pixArray[480][380] = BLACK

On line 48 we create a pygame.PixelArray object (which we will just call a
PixelArray object for short). The PixelArray object is a list of lists of color tuples
that represents the Surface object you passed it. We passed windowSurface object
when we called the PixelArray() constructor function on line 48, so assigning BLACK
to pixArray[480][380] will change the pixel at the coordinates (480, 380) to be a
black pixel. Pygame will automatically modify the windowSurface object with this
change.

The first index in the PixelArray object is for the X-coordinate. The second index is
for the Y-coordinate. PixelArray objects make it easy to set individual pixels on a
PixelArray object to a specific color.

50. del pixArray

Creating a PixelArray object from a Surface object will lock that Surface object.
Locked means that no blit() function calls (described next) can be made on that
Surface object. To unlock the Surface object, you must delete the PixelArray
object with the del operator. If you forget to delete the Surface object, you will get an
error message that says pygame.error: Surfaces must not be locked
during blit .

321

17 - Graphics and Animation

The blit() Method for Surface Objects

52. # draw the text onto the surface
53. windowSurface.blit(text, textRect)

The blit() method will draw the contents of one Surface object onto another
Surface object. Line 54 will draw the "Hello world!" text (which was drawn on the
Surface object stored in the text variable) and draws it to the Surface object stored
in the windowSurface variable.

Remember that the text object had the "Hello world!" text drawn on it on line 22 by
the render() method. Surface objects are just stored in the computer's memory (like
any other variable) and not drawn on the screen. The Surface object in
windowSurface is drawn on the screen (when we call the
pygame.display.update() function on line 56 below) because this was the
Surface object created by the pygame.display.set_mode() function.

The second parameter to blit() specifies where on the windowSurface surface the
text surface should be drawn. We will just pass the Rect object we got from calling
text.get_rect() (which was stored in textRect on line 23).

The pygame.display.update() Function

55. # draw the window onto the screen
56. pygame.display.update()

In Pygame, nothing is drawn to the screen until the pygame.display.update()
function is called. This is done because drawing to the screen is a slow operation for the
computer compared to drawing on the Surface objects while they are in memory. You do
not want to draw to the screen after each drawing function is called, but only draw the
screen once after all the drawing functions have been called.

You will need to call pygame.display.update() each time you want to update
the screen to display the contents of the Surface object returned by
pygame.display.set_mode(). (In this program, that object is the one stored in
windowSurface.) This will become more important in our next program which covers
animation.

Events and the Game Loop

In our previous games, all of the programs print out everything immediately until they
reach a input() function call. At that point, the program stops and waits for the user to

322

type something in and press Enter. Pygame programs do not work this way. Instead,
Pygame programs are constantly running through a loop called the game loop. (In this
program, we execute all the lines of code in the game loop about one hundred times a
second.)

The game loop is a loop that constantly checks for new events, updates the state of the
window, and draws the window on the screen. Events are values of the
pygame.event.Event data type that are generated by Pygame whenever the user
presses a key, clicks or moves the mouse, or makes some other event occur. Calling
pygame.event.get() retrieves any new pygame.event.Event objects that have
been generated since the last call to pygame.event.get().

58. # run the game loop
59. while True:

This is the start of our game loop. The condition for the while statement is set to True
so that we loop forever. The only time we exit the loop is if an event causes the program to
terminate.

The pygame.event.get() Function

60. for event in pygame.event.get():
61. if event.type == QUIT:

The pygame.event.get() function returns a list of pygame.event.Event
objects. This list has every single event that has occurred since the last time
pygame.event.get() was called. All pygame.event.Event objects have an
attribute called type which tell us what type of event it is. (A list of event types is given in
the next chapter. In this chapter we only deal with the QUIT event.)

Pygame comes supplied with its own constant variables in the pygame.locals
module. Remember that we have imported the pygame.locals module with the line
from pygame.locals import *, which means we do not have to type
pygame.locals in front of the variables and functions in that module.

On line 60 we set up a for loop to check each pygame.event.Event object in the
list returned by pygame.event.get() . If the type attribute of the event is equal to the
value of the constant variable QUIT (which is provided by the pygame.locals module),
then we know the user has closed the window and wants to terminate the program.

Pygame generates the QUIT event when the user clicks on the X button at the top right
of the program's window. It is also generated if the computer is shutting down and tries to
terminate all the programs running. For whatever reason the QUIT event was generated, we

323

17 - Graphics and Animation

know that we should run any code that we want to happen to stop the program. You
could choose to ignore the QUIT event entirely, but that may cause the program to be
confusing to the user.

The pygame.quit() Function

62. pygame.quit()
63. sys.exit()

If the QUIT event has been generated, then we can know that the user has tried to close
the window. In that case, we should call the exit functions for both Pygame
(pygame.quit()) and Python (sys.exit()).

This has been the simple "Hello world!" program from Pygame. We've covered many
new topics that we didn't have to deal with in our previous games. Even though they are
more complicated, the Pygame programs can also be much more fun and engaging than our
previous text games. Let's learn how to create games with animated graphics that move.

Animation

In this program we have several different blocks bouncing off of the edges of the
window. The blocks are different colors and sizes and move only in diagonal directions. In
order to animate the blocks (that is, make them look like they are moving) we will move
the blocks a few pixels over on each iteration through the game loop. By drawing new
blocks that are located a little bit differently then the blocks before, we can make it look
like the blocks are moving around the screen.

The Animation Program's Source Code

Type the following program into the file editor and save it as animation.py. You can also
download this source code from http://inventwithpython.com/chapter17.

animation.py
This code can be downloaded from http://inventwithpython.com/animation.py
If you get errors after typing this code in, compare it to the book's code with the online
diff tool at http://inventwithpython.com/diff or email the author at
al@inventwithpython.com

1. import pygame, sys, time
2. from pygame.locals import *
3.
4. # set up pygame
5. pygame.init()
6.
7. # set up the window
8. WINDOWWIDTH = 400

324

9. WINDOWHEIGHT = 400
10. windowSurface = pygame.display.set_mode((WINDOWWIDTH,

WINDOWHEIGHT), 0, 32)
11. pygame.display.set_caption('Animation')
12.
13. # set up direction variables
14. DOWNLEFT = 1
15. DOWNRIGHT = 3
16. UPLEFT = 7
17. UPRIGHT = 9
18.
19. MOVESPEED = 4
20.
21. # set up the colors
22. BLACK = (0, 0, 0)
23. RED = (255, 0, 0)
24. GREEN = (0, 255, 0)
25. BLUE = (0, 0, 255)
26.
27. # set up the block data structure
28. b1 = {'rect':pygame.Rect(300, 80, 50, 100), 'color':RED,

'dir':UPRIGHT}
29. b2 = {'rect':pygame.Rect(200, 200, 20, 20), 'color':GREEN,

'dir':UPLEFT}
30. b3 = {'rect':pygame.Rect(100, 150, 60, 60), 'color':BLUE,

'dir':DOWNLEFT}
31. blocks = [b1, b2, b3]
32.
33. # run the game loop
34. while True:
35. # check for the QUIT event
36. for event in pygame.event.get():
37. if event.type == QUIT:
38. pygame.quit()
39. sys.exit()
40.
41. # draw the black background onto the surface
42. windowSurface.fill(BLACK)
43.
44. for b in blocks:
45. # move the block data structure
46. if b['dir'] == DOWNLEFT:
47. b['rect'].left -= MOVESPEED
48. b['rect'].top += MOVESPEED
49. if b['dir'] == DOWNRIGHT:
50. b['rect'].left += MOVESPEED
51. b['rect'].top += MOVESPEED
52. if b['dir'] == UPLEFT:
53. b['rect'].left -= MOVESPEED
54. b['rect'].top -= MOVESPEED
55. if b['dir'] == UPRIGHT:
56. b['rect'].left += MOVESPEED
57. b['rect'].top -= MOVESPEED
58.

325

17 - Graphics and Animation

59. # check if the block has move out of the window
60. if b['rect'].top < 0:
61. # block has moved past the top
62. if b['dir'] == UPLEFT:
63. b['dir'] = DOWNLEFT
64. if b['dir'] == UPRIGHT:
65. b['dir'] = DOWNRIGHT
66. if b['rect'].bottom > WINDOWHEIGHT:
67. # block has moved past the bottom
68. if b['dir'] == DOWNLEFT:
69. b['dir'] = UPLEFT
70. if b['dir'] == DOWNRIGHT:
71. b['dir'] = UPRIGHT
72. if b['rect'].left < 0:
73. # block has moved past the left side
74. if b['dir'] == DOWNLEFT:
75. b['dir'] = DOWNRIGHT
76. if b['dir'] == UPLEFT:
77. b['dir'] = UPRIGHT
78. if b['rect'].right > WINDOWWIDTH:
79. # block has moved past the right side
80. if b['dir'] == DOWNRIGHT:
81. b['dir'] = DOWNLEFT
82. if b['dir'] == UPRIGHT:
83. b['dir'] = UPLEFT
84.
85. # draw the block onto the surface
86. pygame.draw.rect(windowSurface, b['color'], b

['rect'])
87.
88. # draw the window onto the screen
89. pygame.display.update()
90. time.sleep(0.02)

326

Figure 17-6: The Animation program.

How the Animation Program Works

In this program, we will have three different colored blocks moving around and
bouncing off the walls. In order to do this, we need to first consider exactly how we want
the blocks to move.

Moving and Bouncing the Blocks

Each block will move in one of four diagonal directions: down and left, down and right,
up and left, or up and right. When the block hits the side of the window, we want it to
"bounce" off the wall and move in a new diagonal direction. The blocks will bounce as
shown in this picture:

The new direction that a block moves after it bounces depends on two things: which
direction it was moving before the bounce and which wall it bounced off of. There are a
total of eight possible ways a block can bounce: two different ways for each of the four
walls. For example, if a block is moving down and right, and then bounces off of the
bottom edge of the window, we want the block's new direction to be up and right.

We can represent the blocks with a Rect object to represent the position and size of the
block, a tuple of three ints to represent the color of the block, and an integer to represent

327

17 - Graphics and Animation

which of the four diagonal directions the block is currently moving. On each iteration in
the game loop, we will adjust the X and Y position of the block in the Rect object. Also in
each iteration we will draw all the blocks on the screen at their current position. As the
program execution loops through the game loop, the blocks will gradually move across the
screen so that it looks like they are smoothly moving and bouncing around on their own.

Figure 17-7: The diagram of how blocks will bounce.

Creating and Setting Up Pygame and the Main Window

1. import pygame, sys, time

In this program, we also want to import the time module.

7. # set up the window
8. WINDOWWIDTH = 400
9. WINDOWHEIGHT = 400

10. windowSurface = pygame.display.set_mode((WINDOWWIDTH,
WINDOWHEIGHT), 0, 32)

328

In this program the size of the window's width and height is used for more than just the
call to set_mode(). We will use a constant variables to make the program more
readable. Remember, readability is for the benefit of the programmer, not the computer. If
we ever want to change the size of the window, we only have to change lines 8 and 9.

If we did not use the constant variable, we would have to change ever occurance of the
int value 400. If any unrelated values in the program were also 400, we might think it was
for the width or height and also accidentally change it too. This would put a bug in our
program. Since the window width and height never change during the program's execution,
a constant variable is a good idea.

11. pygame.display.set_caption('Animation')

For this program, we will set the caption at the top of the window to 'Animation'
with a call to pygame.display.set_caption() .

13. Setting Up Constant Variables for Direction
14. # set up direction variables
15. DOWNLEFT = 1
16. DOWNRIGHT = 3
17. UPLEFT = 7
18. UPRIGHT = 9

We will use the keys on the number pad of the keyboard to remind us which belongs to
which direction. This will be similar to our Tic Tac Toe game. 1 is down and left, 3 is
down and right, 7 is up and left, and 'Animation'9 is up and right. However, it may be
hard to remember this, so instead we will use constant variables instead of these integer
values.

We could use any values we wanted to for these directions, as long as we had different
values for each direction. For example, we could use the string 'downleft' to represent
the down and left diagonal direction. However, if we ever mistype the 'downleft' string
(for example, as 'fownleft'), the computer would not recognize that we meant to type
'downleft' instead of 'downleft' . This bug would cause our program to behave
strangely.

But if we use constant variables, and accidentally type the variable name FOWNLEFT
instead of the name DOWNLEFT, Python would notice that there is no such variable named
FOWNLEFT and crash the program with an error. This would still be a pretty bad bug, but
at least we would know immediately about it and could fix it. Otherwise it may be hard to
notice that there is a bug at all.

19. MOVESPEED = 4

329

17 - Graphics and Animation

We will use a constant variable to determine how fast the blocks should move. A value
of 4 here means that each block will move 4 pixels on each iteration through the game loop.

Setting Up Constant Variables for Color

21. # set up the colors
22. BLACK = (0, 0, 0)
23. RED = (255, 0, 0)
24. GREEN = (0, 255, 0)
25. BLUE = (0, 0, 255)

We set up constant variables for the colors we will use. Remember, Pygame uses a tuple
of three int values for the amounts of red, green, and blue called an RGB value. The
integers are from 0 to 255. Unlike our "Hello World" program, this program doesn't use
the white color, so we left it out.

Again, the use of constant variables is for readability. The computer doesn't care if we
use a variable named GREEN for the color green. But if we later look at this program, it is
easier to know that GREEN stands for the color green rather than a bunch of int values in a
tuple.

Setting Up The Block Data Structures

27. # set up the block data structure
28. b1 = {'rect':pygame.Rect(300, 80, 50, 100), 'color':RED,

'dir':UPRIGHT}

We will set up a dictionary to be the data structure that represents each block.
(Dictionaries were introduced at the end of the Hangman chapter.) The dictionary will have
the keys of 'rect' (with a Rect object for a value), 'color' (with a tuple of three ints
for a value), and 'dir' (with one of our direction constant variables for a value).

We will store one of these data structures in a variable named r1. This block will have
its top left corner located at an X-coordinate of 300 and Y-coordinate of 80. It will have a
width of 50 pixels and a height of 100 pixels. Its color will be red (so we'll use our RED
constant variable, which has the tuple (255, 0, 0) stored in it). And its direction will
be set to UPRIGHT.

29. b2 = {'rect':pygame.Rect(200, 200, 20, 20),
'co lor':GREEN, 'dir':UPLEFT}

30. b3 = {'rect':pygame.Rect(100, 150, 60, 60), 'color':BLUE,
'dir':DOWNLEFT}

Here we create two more similar data structures for blocks that will be different sizes,
330

positions, colors, and directions.

31. blocks = [b1, b2, b3]

On line 31 we put all of these data structures in a list, and store the list in a variable
named rectangles.

rectangles is a list. rectangles[0] would be the dictionary data structure in r1.
rectangles[0]['color'] would be the 'color' key in r1 (which we stored the
value in RED in), so the expression rectangles[0]['color'] would evaluate to
(255, 0, 0). In this way we can refer to any of the values in any of the block data
structures by starting with rectangles .

Running the Game Loop

33. # run the game loop
34. while True:

Inside the game loop, we want to move all of the blocks around the screen in the
direction that they are going, then bounce the block if they have hit a wall, then draw all of
the blocks to the windowSurface surface, and finally call
pygame.display.update() to draw the surface to the screen. Also, we will call
pygame.event.get() to check if the QUIT event has been generated by the user
closing the window.

The for loop to check all of the events in the list returned by pygame.event.get()
is the same as in our "Hello World!" program, so we will skip its explanation and go on to
line 44.

41. # draw the black background onto the surface
42. windowSurface.fill(BLACK)

Before we draw any of the blocks on the windowSurface surface, we want to fill the
entire surface with black so that anything we previously drew on the surface is covered.
Once we have blacked out the entire surface, we can redraw the blocks with the code
below.

Moving Each Block

44. for b in blocks:

331

17 - Graphics and Animation

We want to update the position of each block, so we must loop through the
rectangles list and perform the same code on each block's data structure. Inside the
loop, we will refer to the current block as simply r so it will be easy to type.

45. # move the block data structure
46. if b['dir'] == DOWNLEFT:
47. b['rect'].left -= MOVESPEED
48. b['rect'].top += MOVESPEED
49. if b['dir'] == DOWNRIGHT:
50. b['rect'].left += MOVESPEED
51. b['rect'].top += MOVESPEED
52. if b['dir'] == UPLEFT:
53. b['rect'].left -= MOVESPEED
54. b['rect'].top -= MOVESPEED
55. if b['dir'] == UPRIGHT:
56. b['rect'].left += MOVESPEED
57. b['rect'].top -= MOVESPEED

The new value that we want to set the left and top attributes to depends on the
direction the block is moving. Remember that the X-coordinates start at 0 on the very left
edge of the window, and increase as you go right. The Y-coordinates start at 0 on the very
top of the window, and increase as you go down. So if the direction of the block (which,
remember, is stored in the 'dir' key) is either DOWNLEFT or DOWNRIGHT, we want to
increase the top attribute. If the direction is UPLEFT or UPRIGHT, we want to decrease
the top attribute.

If the direction of the block is DOWNRIGHT or UPRIGHT, we want to increase the left
attribute. If the direction is DOWNLEFT or UPLEFT, we want to decrease the left
attribute.

We could have also modified right instead of the left attribute, or the bottom
attribute instead of the top attribute, because Pygame will update the Rect object either
way. Either way, we want to change the value of these attributes by the integer stored in
MOVESPEED, which stores how many pixels over we will move the block.

Checking if the Block has Bounced

59. # check if the block has move out of the window
60. if b['rect'].top < 0:
61. # block has moved past the top
62. if b['dir'] == UPLEFT:
63. b['dir'] = DOWNLEFT
64. if b['dir'] == UPRIGHT:
65. b['dir'] = DOWNRIGHT

After we have moved the block, we want to check if the block has gone past the edge of

332

the window. If it has, we want to "bounce" the block, which in the code means set a new
value for the block's 'dir' key. When the direction is set, the block will move in the new
direction on the next iteration of the game loop.

We need to check if the block has moved passed each of the four edges of the window.
In the above if statement, we decide the block has moved past the top edge of the window
if the block's Rect object's top attribute is less than 0. If it is, then we need to change the
direction based on what direction the block was moving.

Changing the Direction of the Bouncing Block

Look at the bouncing diagram earlier in this chapter. In order to move past the top edge
of the window, the block had to either be moving in the UPLEFT or UPRIGHT directions.
If the block was moving in the UPLEFT direction, the new direction (according to our
bounce diagram) will be DOWNLEFT. If the block was moving in the UPRIGHT direction,
the new direction will be DOWNRIGHT.

66. if b['rect'].bottom > WINDOWHEIGHT:
67. # block has moved past the bottom
68. if b['dir'] == DOWNLEFT:
69. b['dir'] = UPLEFT
70. if b['dir'] == DOWNRIGHT:
71. b['dir'] = UPRIGHT

Here we see if the block has moved past the bottom edge of the window by checking if
the bottom attribute (not the top attribute) is greater than the value in WINDOWHEIGHT.
Remember that the Y-coordinates start at 0 at the top of the window and increase to
WINDOWHEIGHT because we passed WINDOWHEIGHT as the height in our call to
pygame.display.set_mode().

The rest of the code changes the direction based on what our bounce diagram says.

72. if b['rect'].left < 0:
73. # block has moved past the left side
74. if b['dir'] == DOWNLEFT:
75. b['dir'] = DOWNRIGHT
76. if b['dir'] == UPLEFT:
77. b['dir'] = UPRIGHT

This is similar to the above code, but checks if the left side of the block has moved to the
left of the left edge of the window. Remember, the X-coordinates start at 0 on the left edge
of the window and increase to WINDOWWIDTH on the right edge of the window.

78. if b['rect'].right > WINDOWWIDTH:
79. # block has moved past the right side

333

17 - Graphics and Animation

80. if b['dir'] == DOWNRIGHT:
81. b['dir'] = DOWNLEFT
82. if b['dir'] == UPRIGHT:
83. b['dir'] = UPLEFT

This code is similar to the previous pieces of code, but it checks if the block has moved
past the rightmost edge of the window.

Drawing the Blocks on the Window in Their New Positions

85. # draw the block onto the surface
86. pygame.draw.rect(windowSurface, b['color'], b

['rect'])

Now that we have moved the block (and set a new direction if the block has bounced off
the window's edges), we want to draw it on the windowSurface surface. We can draw
this using the pygame.draw.rect() function. We pass windowSurface , because that
is the Surface object we want to draw on. We pass the b['color'] value, because this
is the color we want to use. Then we pass b['rect'], because that Rect object has the
information about the position and size of the rectangle we want to draw.

This is the last line of the for loop. We want to run the moving, bouncing, and drawing
code on each of the blocks stored in the blocks list, which is why we loop through each of
them. Also, if we wanted to add new blocks or remove blocks from our program, we only
have to modify the blocks list and the rest of the code still works.

Drawing the Window on the Screen

88. # draw the window onto the screen
89. pygame.display.update()
90. time.sleep(0.02)

After we have run this code on each of the blocks in the blocks list, we want to finally
call pygame.display.update() so that the windowSurface surface is draw on the
screen. After this line, we loop back to the start of the game loop and begin the process all
over again. This way, the blocks are constantly moving a little, bouncing off the walls, and
being drawn on the screen in their new positions. Meanwhile, we also check if the QUIT
event has been generated by the Pygame library (which happens if the player closes the
window or shuts down their computer). In that case we terminate the program.

The call to the time.sleep() function is there because the computer can move,
bounce, and draw the blocks so fast that if the program ran at full speed, all the blocks would
just look like a blur. (Try commenting out the time.sleep(0.02) line and running the
program to see this.) This call to time.sleep() will stop the program for 20

334

milliseconds. There are 1000 milliseconds in a second, so 0.001 seconds equals 1
millisecond and 0.02 equals 20 milliseconds.

Some Small Modifications

Drawing as Fast as Possible

Just for fun, let's make some small modifications to our program so we can see what it
does. Try adding a # in front of line 90 (the time.sleep(0.2) line) of our animation
program. This will cause Python to ignore this line because it is now a comment. Now try
running the program.

Without the time.sleep() function call to intentionally slow down the program,
your computer will run through the game loop as fast as possible. This will make the
rectangles bounce around the screen so fast, they'll only look like a blur. Now you can see
why it is important for us to slow down the program with this line.

Drawing Trails of Blocks

Remove the # from the front of line 90 so that the line is no longer a comment and
becomes part of the program again. This time, comment out line 42 (the
windowSurface.fill(BLACK) line) by adding a # to the front of the line. Now run
the program.

Without the call to windowSurface.fill(BLACK), we do not black out the entire
window before drawing the rectangles in their new position. This will cause trails of
rectangles to appear on the screen instead of individual rectangles. The trails appear
because all the old rectangles that are drawn in previous iterations through the game loop
don't disappear.

Remember that the blocks are not really moving. We are just redrawing the entire
window over and over again. On each iteration through the game loop, we redraw the entire
window with new blocks that are located a few pixels over each time. When the program
runs very fast, we make it is just one block each time. In order to see that we are just
redrawing the blocks over and over again, change line 90 to time.sleep(1.0). This
will make the program (and the drawing) fifty times slower than normal. You will see each
drawing being replaced by the next drawing every second.

Summary: Pygame Programming

This chapter has presented a whole new way of creating computer programs. Our
programs before would stop and wait for the player to enter text. However, in our
animation program, we are constantly updating the data structures of things without waiting
for input from the player. Remember in our Hangman and Tic Tac Toe games we had data
structures that would represent the state of the board, and these data structures would be
passed to a drawBoard() function to be displayed on the screen. Our animation program

335

17 - Graphics and Animation

is very similar. The blocks variable held a list of data structures representing things to
be drawn to the screen, and these are drawn to the screen inside the game loop.

But without calls to input(), how do we get input from the player? In our next
chapter, we will cover how our program can know when the player presses any key on the
keyboard. We will also learn of a concept called collision detection, which is used in many
graphical computer games.

336

Topics Covered In This Chapter:

� Collision Detection
� Don't Modify a List While Iterating Over It
� Keyboard Input in Pygame
� Mouse Input in Pygame

A very common behavior in most graphical games is collision detection. Collision
detection is figuring when two things on the screen have touched (that is, collided with)
each other. This is used very often in computer games. For example, if the player touches
an enemy they may lose health or a game life. Or we may want to know when the player
has touched a coin so that they automatically pick it up. Collision detection can help
determine if the game character is standing on solid ground, or if there is nothing but empty
air underneath them. In our games, collision detection is determining if two rectangles are
overlapping each other or not. Our next example program will cover this basic technique.

Later in this chapter, we will look at how our Pygame programs can accept input from
the user through the keyboard and the mouse. It's a bit more complicated than calling the
input() function like we did for our text programs. But using the keyboard is much more
interactive in GUI programs, and using the mouse isn't even possible in our text games.
Knowing these two concepts will make our games more advanced and exciting!

The Collision Detection Program's Source Code

Much of this code is similar to the animation program, so we will skip over explaining
how to make the bouncer move and bounce off of the walls. (See the animation program in

337

the previous chapter for an explanation of that code.) We will use a list of
pygame.Rect objects to represent the food squares. Each pygame.Rect obj ect in the
list represents a single food square. On each iteration through the game loop, our program
will read each pygame.Rect object in the list and draw a green square on the window.
Every forty iterations through the game loop we will add a new pygame.Rect to the list
so that the screen constantly has new food squares in it.

The bouncer is represented by a dictionary. The dictionary has a key named
'rect' (whose value is a pygame.Rect object) and a key named 'dir' (whose value
is one of the constant direction variables just like we had in last chapter's Animation
program). As the bouncer bounces around the window, we check if it collides with any of
the food squares. If it does, we delete that food square so that it will no longer be drawn on
the screen.

Type the following into a new file and save it as collisionDetection.py. If you don't want
to type all of this code, you can download the source from the book's website at
http://inventwithpython.com/chapter18.

collisionDetection.py
This code can be downloaded from http://inventwithpython.com/collisionDetection.py
If you get errors after typing this code in, compare it to the book's code with the online
diff tool at http://inventwithpython.com/diff or email the author at
al@inventwithpython.com

1. import pygame, sys, random
2. from pygame.locals import *
3.
4. def doRectsOverlap(rect1, rect2):
5. for a, b in [(rect1, rect2), (rect2, rect1)]:
6. # Check if a's corners are inside b
7. if ((isPointInsideRect(a.left, a.top, b)) or
8. (isPointInsideRect(a.left, a.bottom, b)) or
9. (isPointInsideRect(a.right, a.top, b)) or

10. (isPointInsideRect(a.right, a.bottom, b))):
11. return True
12.
13. return False
14.
15. def isPointInsideRect(x, y, rect):
16. if (x > rect.left) and (x < rect.right) and (y >

rect.top) and (y < rect.bottom):
17. return True
18. else:
19. return False
20.
21.
22. # set up pygame
23. pygame.init()
24. mainClock = pygame.time.Clock()
25.
26. # set up the window
27. WINDOWWIDTH = 400

338

28. WINDOWHEIGHT = 400
29. windowSurface = pygame.display.set_mode((WINDOWWIDTH,

WINDOWHEIGHT), 0, 32)
30. pygame.display.set_caption('Collision Detection')
31.
32. # set up direction variables
33. DOWNLEFT = 1
34. DOWNRIGHT = 3
35. UPLEFT = 7
36. UPRIGHT = 9
37.
38. MOVESPEED = 4
39.
40. # set up the colors
41. BLACK = (0, 0, 0)
42. GREEN = (0, 255, 0)
43. WHITE = (255, 255, 255)
44.
45. # set up the bouncer and food data structures
46. foodCounter = 0
47. NEWFOOD = 40
48. FOODSIZE = 20
49. bouncer = {'rect':pygame.Rect(300, 100, 50, 50),

'dir':UPLEFT}
50. foods = []
51. for i in range(20):
52. foods.append(pygame.Rect(random.randint(0, WINDOWWIDTH

- FOODSIZE), random.randint(0, WINDOWHEIGHT - FOODSIZE),
FOODSIZE, FOODSIZE))

53.
54. # run the game loop
55. while True:
56. # check for the QUIT event
57. for event in pygame.event.get():
58. if event.type == QUIT:
59. pygame.quit()
60. sys.exit()
61.
62. foodCounter += 1
63. if foodCounter >= NEWFOOD:
64. # add new food
65. foodCounter = 0
66. foods.append(pygame.Rect(random.randint(0,

WINDOWWIDTH - FOODSIZE), random.randint(0, WINDOWHEIGHT -
FOODSIZE), FOODSIZE, FOODSIZE))

67.
68. # draw the black background onto the surface
69. windowSurface.fill(BLACK)
70.
71. # move the bouncer data structure
72. if bouncer['dir'] == DOWNLEFT:
73. bouncer['rect'].left -= MOVESPEED
74. bouncer['rect'].top += MOVESPEED
75. if bouncer['dir'] == DOWNRIGHT:

339

18 - Collision Detection and Input

76. bouncer['rect'].left += MOVESPEED
77. bouncer['rect'].top += MOVESPEED
78. if bouncer['dir'] == UPLEFT:
79. bouncer['rect'].left -= MOVESPEED
80. bouncer['rect'].top -= MOVESPEED
81. if bouncer['dir'] == UPRIGHT:
82. bouncer['rect'].left += MOVESPEED
83. bouncer['rect'].top -= MOVESPEED
84.
85. # check if the bouncer has move out of the window
86. if bouncer['rect'].top < 0:
87. # bouncer has moved past the top
88. if bouncer['dir'] == UPLEFT:
89. bouncer['dir'] = DOWNLEFT
90. if bouncer['dir'] == UPRIGHT:
91. bouncer['dir'] = DOWNRIGHT
92. if bouncer['rect'].bottom > WINDOWHEIGHT:
93. # bouncer has moved past the bottom
94. if bouncer['dir'] == DOWNLEFT:
95. bouncer['dir'] = UPLEFT
96. if bouncer['dir'] == DOWNRIGHT:
97. bouncer['dir'] = UPRIGHT
98. if bouncer['rect'].left < 0:
99. # bouncer has moved past the left side

100. if bouncer['dir'] == DOWNLEFT:
101. bouncer['dir'] = DOWNRIGHT
102. if bouncer['dir'] == UPLEFT:
103. bouncer['dir'] = UPRIGHT
104. if bouncer['rect'].right > WINDOWWIDTH:
105. # bouncer has moved past the right side
106. if bouncer['dir'] == DOWNRIGHT:
107. bouncer['dir'] = DOWNLEFT
108. if bouncer['dir'] == UPRIGHT:
109. bouncer['dir'] = UPLEFT
110.
111. # draw the bouncer onto the surface
112. pygame.draw.rect(windowSurface, WHITE, bouncer

['rect'])
113.
114. # check if the bouncer has intersected with any food

squares.
115. for food in foods[:]:
116. if doRectsOverlap(bouncer['rect'], food):
117. foods.remove(food)
118.
119. # draw the food
120. for i in range(len(foods)):
121. pygame.draw.rect(windowSurface, GREEN, foods[i])
122.
123. # draw the window onto the screen
124. pygame.display.update()
125. mainClock.tick(40)

340

When you run this code, this is what the program looks like. The white square (the
bouncer) will bounce around the window, and when it collides with the green squares (the
food) will disappear from the screen.

Figure 18-1: The Collision Detection program.

Importing the Modules

1. import pygame, sys, random
2. f r om pygame.locals import *

The collision detection program imports the same things as the Animation program in the
last chapter, along with the random module.

The Collision Detection Function

4. def doRectsOverlap(rect1, rect2):

In order to do collision detection, we will need a function that can determine if two
rectangles intersect each other or not. Here is a picture of intersecting rectangles (on the
left) and rectangles that do not intersect (on the right):

341

18 - Collision Detection and Input

Figure 18-2: Examples of intersecting rectangles (on the left) and rectangles that do not intersect (on the right).

We will make a single function that is passed two pygame.Rect objects. The function,
doRectsOverlap(), will return True if they do and False if they don't.

There is a very simple rule we can follow to determine if rectangles intersect (that is,
collide). Look at each of the four corners on both rectangles. If at least one of these eight
corners is inside the other rectangle, then we know that the two rectangles have collided.
We will use this fact to determine if doRectsOverlap() returns True or False.

5. for a, b in [(rect1, rect2), (rect2, rect1)]:
6. # Check if a's corners are inside b
7. if ((isPointInsideRect(a.left, a.top, b)) or
8. (isPointInsideRect(a.left, a.bottom, b)) or
9. (isPointInsideRect(a.right, a.top, b)) or

10. (isPointInsideRect(a.right, a.bottom, b))):
11. return True

Above is the code that checks if one rectangle's corners are inside another. Later we will
create a function called isPointInsideRect() that returns True if the XY
coordinates of the point are inside the rectangle. We call this function for each of the eight
corners, and if any of these calls return True, the or operators will make the entire
condition True.

The parameters for doRectsOverlap() are rect1 and rect2. We first want to
check if rect1's corners are inside rect2 and then check if rect2's corners are in
rect1.

342

We don't want to repeat the code that checks all four corners for both rect1 and
rect2, so instead we use a and b on lines 7 to 10. The for loop on l ine 5 uses the
multiple assignment trick so that on the first iteration, a is set to rect1 and b is set to
rect2. On the second iteration through the loop, it is the opposite. a is set to rect2 and
b is set to rect1.

We do this because then we only have to type the code for the if statement on line 7
once. This is good, because this is a very long if statement. The less code we have to type
for our program, the better.

13. return False

If we never return True from the previous if statements, then none of the eight corners
we checked are in the other rectangle. In that case, the rectangles did not collide and we
return False.

Determining if a Point is Inside a Rectangle

15. def isPointInsideRect(x, y, rect):
16. if (x > rect.left) and (x < rect.right) and (y >

rect.top) and (y < rect.bottom):
17. return True

The isPointInsideRect() function is used by the doRectsOverlap()
function. isPointInsideRect() will return True if the XY coordinates passed to it
as the first and second parameters are located "inside" the pygame.Rect object that is
passed as the third parameter. Otherwise, this function returns False.

Figure 18-3 is an example picture of a rectangle and several dots. The dots and the
corners of the rectangle are labeled with coordinates.

The pattern that points inside a rectangle have is an X-coordinate that is greater than the
X-coordinate of the left side and less than the X-coordinate of the right side, and a Y-
coordinate that is greater than the Y-coordinate of the top side and less than the Y-
coordinate of the bottom side. If any of those conditions are false, then the point is outside
the rectangle.

We combine all four of these conditions into the if statement's condition with and
operators because all four of the conditions must be True.

343

18 - Collision Detection and Input

Figure 18-3: Example of coordinates inside and outside
of a rectangle. The (50, 30), (85, 30) and (50, 50) points
are inside the rectangle, and all the others are outside.

18. else:
19. return False

If just one of the four expressions in the condition on line 16 is False, then we should
have isPointInsideRect() return the value False.

This function will be called from the doRectsOverlap() function to see if any of the
corners in the two pygame.Rect objects are inside each other. These two functions give
us the power to do collision detection between two rectangles.

The pygame.time.Clock Object and tick()
Method

Much of lines 22 to 43 do the same thing that Animation program in the last chapter did:
initialize the Pygame library, set WINDOWHEIGHT and WINDOWWIDTH, and put together
the color and direction constants. However, line 24 is new:

24. mainClock = pygame.time.Clock()

In the previous Animation program, we had a call to time.sleep(0.02) inside the
game loop in order to slow down the program enough so that we could see the blocks
moving. The problem with this is that the program might run too fast on fast computers and
too slow on slow computers. We want to limit the maximum number of iterations through
the game loop there are per second.

344

A pygame.time.Clock object can do this for us. You can see on line 125 that we
call mainClock.tick(40) inside the game loop. This call to the Clock obje ct's tick
() method will check if we have iterated through the game loop more than 40 times in the
last second. If so, it puts a short sleep into the program for us based on frequently tick()
is being called. This ensures that the game never runs faster than we expect. Be sure to call
tick() only once in the game loop.

Setting Up the Window and Data Structures

30. pygame.display.set_caption('Collision Detection')
31.
32. # set up the bouncer and food data structures
33. foodCounter = 0
34. NEWFOOD = 40
35. FOODSIZE = 20

We are going to set up a few variables for the food blocks that appear on the screen.
foodCounter will start at the value

49. bouncer = {'rect':pygame.Rect(300, 100, 50, 50),
'di r ':UPLEFT}

We are going to set up a new data structure called bouncer. bouncer is a dictionary
with two keys. The value stored in the 'rect' key will be a pygame.Rect object that
represents the bouncer's size and position. The value stored in the 'dir' key will be a
direction that the bouncer is currently moving. The bouncer will move the same way the
blocks did in our previous animation program: moving in diagonal directions and bouncing
off of the sides of the window.

50. foods = []
51. f or i in range(20):
52. foods.append(pygame.Rect(random.randint(0,

WINDOWWIDTH - FOODSIZE), random.randint(0, WINDOWHEIGHT -
FOODSIZE), FOODSIZE, FOODSIZE))

Our program will keep track of every food square with a list of pygame.Rect objects
called foods. At the start of the program, we want to create twenty food squares randomly
placed around the screen. We can use the random.randint() function to come up with
random XY coordinates.

On line 52, we will call the pygame.Rect() constructor function to return a new
pygame.Rect object that will represent the position and size of the food square. The

345

18 - Collision Detection and Input

Drawing the Bouncer on the Screen

Lines 71 to 109 cause the bouncer to move around the window and bounce off of the
edges of the window. This code is very similar to lines 44 to 83 of our animation program
in the last chapter, so we will not go over them again here.

111. # draw the bouncer onto the surface
112. pygame.draw.rect(windowSurface, WHITE, bouncer

['rect'])

After moving the bouncer, we now want to draw it on the window in its new position.
We call the pygame.draw.rect() function to draw a rectangle. The
windowSurface passed for the first parameter tells the computer which
pygame.Surface object to draw the rectangle on. The WHITE variable, which has
(255, 255, 255) stored in it, will tell the computer to draw a white rectangle. The
pygame.Rect object stored in the bouncer dictionary at the 'rect' key tells the
position and size of the rectangle to draw. This is all the information needed to draw a
white rectangle on windowSurface .

first two parameters for
pygame.Rect() are the XY
coordinates of the top left corner. We
want the random coordinate to be
between 0 and the size of the window
minus the size of the food square. If
we had the random coordinate
between 0 and the size of the window,
then the food square might be pushed
outside of the window altogether.
Look at the diagram in Figure 18-4.

The square on the left has an X-
coordinate of its top left corner at
380. Because the food square is 20
pixels wide, the right edge of the food
square is at 400. (This is because 380
+ 20 = 400.) The square on the right
has an X-coordinate of its top left
corner at 400. Because the food square is 20 pixels wide, the right edge of the food square
is at 420, which puts the entire square outside of the window (and not viewable to the
user).

The third parameter for pygame.Rect() is a tuple that contains the width and height
of the food square. Both the width and height will be equal to the value in the FOODSIZE
constant.

Figure 18-4: For a 20 by 20 rectangle, having the top left
corner at (400, 200) in a 400 by 400 window would place

the rectangle outside of the window. To be inside, the
top left corner should be at (380, 200) instead.

346

Remember, we are not done drawing things on the windowSurface object yet. We
still need to draw a green square for each food square in the foods list. And we are just
"drawing" rectangles on the windowSurface object. This pygame.Surface object is
only inside the computer's memory, which is much faster to modify than the pixels on the
screen. The window on the screen will not be updated until we call the
pygame.display.update() function.

Colliding with the Food Squares

114. # check if the bouncer has intersected with any food
squ ares.

115. for food in foods[:]:

Before we draw the food squares, we want to see if the bouncer has overlapped any of
the food squares. If it has, we will remove that food square from the foods list. This way,
the computer won't draw any food squares that the bouncer has "eaten".

On each iteration through the for loop, the current food square from the foods (plural)
list will be stored inside a variable called food (singular).

Don't Add to or Delete from a List while Iterating Over It

Notice that there is something slightly different with this for loop. If you look carefully
at line 116, we are not iterating over foods but actually over foods[:]. Just as foods
[:2] would return a copy of the list with the items from the start and up to (but not
including) the item at index 2, and just as foods[3:] would return a copy of the list with
the items from index 3 to the end of the list, foods[:] will give you a copy of the list
with the items from the start to the end. Basically, foods[:] creates a new list with a
copy of all the items in foods. (This is a shorter way to copy a list than our
getBoardCopy() function in the Tic Tac Toe game.)

Why would we want to iterate over a copy of the list instead of the list itself? It is
because we cannot add or remove items from a list while we are iterating over it. Python
can lose track of what the next value of food variable should be if the size of the foods
list is always changing. Think of how difficult it would be for you if you tried to count the
number of jelly beans in a jar while someone was adding or removing jelly beans. But if we
iterate over a copy of the list (and the copy never changes), then adding or removing items
from the original list won't be a problem.

Removing the Food Squares

116. if doRectsOverlap(bouncer['rect'], food):
117. foods.remove(food)

347

18 - Collision Detection and Input

Line 116 is where our doRectsOverlap() function that we defined earlier comes in
handy. We pass two pygame.Rect objects to doRectsOverlap(): the bouncer and
the current food square. If these two rectangles overlap, then doRectsOverlap() will
return True and we will remove the overlapping food squares from foods list.

Drawing the Food Squares on the Screen

119. # draw the food
120. for i in range(len(foods)):
121. pygame.draw.rect(windowSurface, GREEN, foods[i])

The code on lines 120 and 121 are very similar to how we drew the white square for the
player. We will loop through each food square in the foods list, and then draw the
rectangle onto the windowSurface surface. This demonstration of collision detection is
fairly easy. This program was very similar to our bouncing program in the previous
chapter, except now the bouncing square will "eat" the other squares as it passes over them.

These past few programs are interesting to watch, but the user does not get to actually
control anything. In this next program, we will learn how to get input from the keyboard.
Keyboard input is handled in Pygame by using events.

The Keyboard Input Program's Source Code

Start a new file and type in the following code, then save it as pygameInput.py.

pygameInput.py
This code can be downloaded from http://inventwithpython.com/pygameInput.py
If you get errors after typing this code in, compare it to the book's code with the online
diff tool at http://inventwithpython.com/diff or email the author at
al@inventwithpython.com

1. import pygame, sys, random
2. from pygame.locals import *
3.
4. # set up pygame
5. pygame.init()
6. mainClock = pygame.time.Clock()
7.
8. # set up the window
9. WINDOWWIDTH = 400

10. WINDOWHEIGHT = 400
11. windowSurface = pygame.display.set_mode((WINDOWWIDTH,

WINDOWHEIGHT), 0, 32)
12. pygame.display.set_caption('Input')
13.
14. # set up the colors

348

15. BLACK = (0, 0, 0)
16. GREEN = (0, 255, 0)
17. WHITE = (255, 255, 255)
18.
19. # set up the player and food data structure
20. foodCounter = 0
21. NEWFOOD = 40
22. FOODSIZE = 20
23. player = pygame.Rect(300, 100, 50, 50)
24. foods = []
25. for i in range(20):
26. foods.append(pygame.Rect(random.randint(0, WINDOWWIDTH

- FOODSIZE), random.randint(0, WINDOWHEIGHT - FOODSIZE),
FOODSIZE, FOODSIZE))

27.
28. # set up movement variables
29. moveLeft = False
30. moveRight = False
31. moveUp = False
32. moveDown = False
33.
34. MOVESPEED = 6
35.
36.
37. # run the game loop
38. while True:
39. # check for events
40. for event in pygame.event.get():
41. if event.type == QUIT:
42. pygame.quit()
43. sys.exit()
44. if event.type == KEYDOWN:
45. # change the keyboard variables
46. if event.key == K_LEFT or event.key == ord

('a'):
47. moveRight = False
48. moveLeft = True
49. if event.key == K_RIGHT or event.key == ord

('d'):
50. moveLeft = False
51. moveRight = True
52. if event.key == K_UP or event.key == ord('w'):
53. moveDown = False
54. moveUp = True
55. if event.key == K_DOWN or event.key == ord

('s'):
56. moveUp = False
57. moveDown = True
58. if event.type == KEYUP:
59. if event.key == K_ESCAPE:
60. pygame.quit()
61. sys.exit()
62. if event.key == K_LEFT or event.key == ord

('a'):

349

18 - Collision Detection and Input

63. moveLeft = False
64. if event.key == K_RIGHT or event.key == ord

('d'):
65. moveRight = False
66. if event.key == K_UP or event.key == ord('w'):
67. moveUp = False
68. if event.key == K_DOWN or event.key == ord

('s'):
69. moveDown = False
70. if event.key == ord('x'):
71. player.top = random.randint(0,

WINDOWHEIGHT - player.height)
72. player.left = random.randint(0,

WINDOWWIDTH - player.width)
73.
74. if event.type == MOUSEBUTTONUP:
75. foods.append(pygame.Rect(event.pos[0],

event.pos[1], FOODSIZE, FOODSIZE))
76.
77. foodCounter += 1
78. if foodCounter >= NEWFOOD:
79. # add new food
80. foodCounter = 0
81. foods.append(pygame.Rect(random.randint(0,

WINDOWWIDTH - FOODSIZE), random.randint(0, WINDOWHEIGHT -
FOODSIZE), FOODSIZE, FOODSIZE))

82.
83. # draw the black background onto the surface
84. windowSurface.fill(BLACK)
85.
86. # move the player
87. if moveDown and player.bottom < WINDOWHEIGHT:
88. player.top += MOVESPEED
89. if moveUp and player.top > 0:
90. player.top -= MOVESPEED
91. if moveLeft and player.left > 0:
92. player.left -= MOVESPEED
93. if moveRight and player.right < WINDOWWIDTH:
94. player.right += MOVESPEED
95.
96. # draw the player onto the surface
97. pygame.draw.rect(windowSurface, WHITE, player)
98.
99. # check if the player has intersected with any food

squares.
100. for food in foods[:]:
101. if player.colliderect(food):
102. foods.remove(food)
103.
104. # draw the food
105. for i in range(len(foods)):
106. pygame.draw.rect(windowSurface, GREEN, foods[i])
107.
108. # draw the window onto the screen

350

109. pygame.display.update()
110 . mainClock.tick(40)

This program looks identical to the collision detection program earlier in this chapter. But
in this program, the bouncer only moves around when we hold down keys on the keyboard.
Holding down the "W" key moves the bouncer up. The "A" key moves the bouncer to the
left and the "D" key moves the bouncer to the right. The "S" key moves the bouncer down.
You can also move the bouncer by holding down the arrow keys on the keyboard. The user
can also use the keyboard's arrow keys.

We can also click anywhere in the GUI window and create new food objects at the
coordinates where we clicked. In addition, the ESC key will quit the program and the "X"
key will teleport the bouncer to a random place on the screen.

Setting Up the Window and Data Structures

First, we set the caption of the window's title bar to the string to 'Mouse' on line 12. W e
set the caption of the window with a call to pygame.display.set_caption() the
same way as we did in our previous Pygame programs. Next we want to set up some
variables that track the movement of the bouncer.

28. # set up movement variables
29. moveLeft = False
30. moveRight = False
31. moveUp = False
32. moveDown = False

We are going to use four different boolean variables to keep track of which of the arrow
keys are being held down. For example, when the user pushes the left arrow key on her
keyboard, we will set the moveLeft variable to True. When she lets go of the key, we will
set the moveLeft var iable back to False. The "W" key affects the moveUp variable, the
"S" key affects the moveDown variable, and the "D" key affects the moveRight variable
in a similar way.

Lines 34 to 43 are identical to code in the previous Pygame programs. These lines handle
the start of the game loop and handling what to do when the user wants to quit the program.
We will skip the explanation for this code here since we have already covered it in the last
chapter.

351

18 - Collision Detection and Input

Events and Handling the KEYDOWN Event

The code to handle the key press and key release events is below. But at the start of the
program, we will set all of these variables to False.

Table 18-1: Events, and what causes them to be generated.

Event Description
QUIT Generated when the user closes with window.

KEYDOWN

Generated when the user pressed down a key. Has a key
attribute that tells which key was pressed. Also has a mod
attribute that tells if the Shift, Ctrl, Alt, or other keys were held
down when this key was pressed.

KEYUP
Generated when the user releases a key. Has a key and mod
attribute that are similar to those for KEYDOWN.

MOUSEMOTION

Generated whenever the mouse moves over the window. Has a
pos attribute that returns tuple (x, y) for the coordinates of
where the mouse is in the window. The rel attribute also
returns a (x, y) tuple, but it gives coordinates relative since the
last MOUSEMOTION event. For example, if the mouse moves
left by four pixels from (200, 200) to (196, 200), then rel will
be (-4, 0). The buttons attribute returns a tuple of three
integers. The first integer in the tuple is for the left mouse
button, the second integer for the middle mouse button (if there
is a middle mouse button), and the third integer is for the right
mouse button. These integers will be 0 if they are not being
pressed down when the mouse moved and 1 if they are pressed
down.

MOUSEBUTTONDOWN

Generated when a mouse button is pressed down in the window.
This event has a pos attribute which is an (x, y) tuple for the
coordinates of where the mouse was when the button was
pressed. There is also a button attribute which is an integer
from 1 to 5 that tells which mouse button was pressed:

Value of button Mouse Button
1 Left button
2 Middle button
3 Right button
4 Scroll wheel moved up
5 Scroll wheel moved down

MOUSEBUTTONUPGenerated when the mouse button is released. This has the same
attributes as MOUSEBUTTONDOWN

352

44. if event.type == KEYDOWN:

Pygame has another event type called KEYDOWN. On line 41, we check if the
event.type attribute is equal to the QUIT value to check if we should exit the program.
But there are other events that Pygame can generate. A brief list of the events that could be
returned by pygame.event.get() is in Table 18-1.

Setting the Four Keyboard Variables

45. # change the keyboard variables
46. if event.key == K_LEFT or event.key == ord

('a'):
47. moveRight = False
48. moveLeft = True
49. if event.key == K_RIGHT or event.key == ord

('d'):
50. moveLeft = False
51. moveRight = True
52. if event.key == K_UP or event.key == ord

('w'):
53. moveDown = False
54. moveUp = True
55. if event.key == K_DOWN or event.key == ord

('s'):
56. moveUp = False
57. moveDown = True

If the event type is KEYDOWN, then the event object will have a key attribute that will
tell us which key was pressed down. On line 46, we can compare this value to K_LEFT,
which represents the left arrow key on the keyboard. We will do this for each of the arrow
keys: K_LEFT, K_RIGHT, K_UP, K_DOWN.

When one of these keys is pressed down, we will set the corresponding movement
variable to True. We will also set the movement variable of the opposite direction to
False. For example, the program executes lines 47 and 48 when the left arrow key has
been pressed. In this case, we will set moveLeft to True and moveRight to False
(even though moveRight might already be False, we set it to False just to be sure).

You may notice that on line 46, in event.key can either be equal to K_LEFT or ord
('a'). The value in event.key is set to the integer ASCII value of the key that was
pressed on the keyboard. (There is no ASCII value for the arrow keys, which is why we use
the constant variable K_LEFT.) You can use the ord() function to get the ASCII value of
any single character to compare it with event.key.

By executing the code on lines 47 and 48 if the keystroke was either K_LEFT or ord

353

18 - Collision Detection and Input

('a') , we make the left arrow key and the A key do the same thing. You may notice
that the W, A, S, and D keys are all used as alternates for changing the movement variables.
This is because some people may want to use their left hand to press the WASD keys
instead of their right hand to press the arrow keys. Our program offers them both!

Handling the KEYUP Event

58. if event.type == KEYUP:

When the user releases the key that they are holding down, a KEYUP event is generated.

59. if event.key == K_ESCAPE:
60. pygame.quit()
61. sys.exit()

If the key that the user released was the Esc key, then we want to terminate the program.
Remember, in Pygame you must call the pygame.quit() function before calling the
sys.exit() function. We want to do this when the user releases the Esc key, not when
they first Esc key down.

Lines 62 to 69 will set a movement variable to False if that direction's key was let go.

62. if event.key == K_LEFT or event.key == ord
(' a'):

63. moveLeft = False
64. if event.key == K_RIGHT or event.key == ord

('d'):
65. moveRight = False
66. if event.key == K_UP or event.key == ord

('w'):
67. moveUp = False
68. if event.key == K_DOWN or event.key == ord

('s'):
69. moveDown = False

Teleporting the Player

If the user released one of the keys that moves the player, then we want to set the
movement variable that corresponds with the key to False. This will tell the later parts of
our program to no longer move the player's square on the screen.

70. if event.key == ord('x'):
71. player.top = random.randint(0,

WINDOWHEIGHT - player.height)

354

72. player.left = random.randint(0,
WINDOWWIDTH - player.width)

We will also add teleportation to our game. If the user presses the "X" key, then we will
set the position of the user's square to a random place on the window. This will give the user
the ability to teleport around the window by pushing the "X" key (though they can't control
where they will teleport: it's completely random).

Handling the MOUSEBUTTONUP Event

74. if event.type == MOUSEBUTTONUP:
75. foods.append(pygame.Rect(event.pos[0],

event.pos[1], FOODSIZE, FOODSIZE))

Mouse input is handled by events just like keyboard input is. The MOUSEBUTTONUP
event occurs when the user clicks a mouse button somewhere in our window, and releases
the mouse button. The pos attribute in the Event object is set to a tuple of two integers for
the XY coordinates. On line 75, the X-coordinate is stored in event.pos[0] and the Y-
coordinate is stored in event.pos[1]. We will create a new Rect object to represent a
new food and place it where the MOUSEBUTTONUP event occurred. By adding a new Rect
object to the foods list, a new food square will be displayed on the screen.

Moving the Bouncer Around the Screen

86. # move the player
87. if moveDown and player.bottom < WINDOWHEIGHT:
88. player.top += MOVESPEED
89. if moveUp and player.top > 0:
90. player.top -= MOVESPEED
91. if moveLeft and player.left > 0:
92. player.left -= MOVESPEED
93. if moveRight and player.right < WINDOWWIDTH:
94. player.right += MOVESPEED

We have set the movement variables (moveDown, moveUp, moveLeft , and
moveRight) to True or False depending on what keys the user has pressed. Now we
will actually move the player's square (which is represented by the pygame.Rect object
stored in player) around by adjusting the XY coordinates of player. If moveDown is set
to True (and the bottom of the player's square is not below the bottom edge of the window),
then we move the player's square down by adding MOVESPEED to the player's current top
attribute. We do the same thing for the other three directions as well.

355

18 - Collision Detection and Input

The colliderect() Method

99. # check if the player has intersected with any food
sq uares.

100. for food in foods[:]:
101. if player.colliderect(food):
102. foods.remove(food)

In our previous Collision Detection program, we had our own function to check if one
rectangle had collided with another. That function was included in this book so that you
could understand how the code behind collision detection works. In this program, we can
use the collision detection function that comes with Pygame. The colliderect()
method for pygame.Rect objects is passed another pygame.Rect object as an
argument and returns True if the two rectangles collide and False if they do not. This is
the exact same behavior as the doRectsOverlap() function in our previous Collision
Detection program.

110. mainClock.tick(40)

The rest of the code is similar to the code in the Input program is similar to the earlier
Collision Detection program: draw the food squares and the player squares to the
windowSurface surface, occasionally add a new food square at a random location to the
foods list, check if the player square has collided with any of the food squares, and call
mainClock.tick(40) to make the program run at an appropriate speed.

Summary: Collision Detection and Pygame Input

This chapter introduced the concept of collision detection, which is used in most
graphical games. Detecting collisions between two rectangles is easy: we just check if the
four corners of either rectangle are within the other rectangle. This is such a common thing
to check for that Pygame provides it's own collision detection method named
colliderect() for pygame.Rect objects.

The first several games in this book were text-based. The program output was text
printed to the screen and the input was text typed by the user on the keyboard. But GUI
programs can accept keyboard and mouse inputs. Furthermore, GUI programs can respond
to single keystrokes when the user pushes down or lets up a single key. The user does not
have to type in an entire response and press Enter. This allows for immediate feedback
when the player presses down any key on the keyboard and much more interactive games.

The Pygame programs we shown so far have drawn rectangles, lines, circles, and even
individual pixels to the screen. These are called drawing primitives. But we also want to
356

use pictures and images instead of simple drawing primitives. The next chapter will tell
you how to load images and draw them on the screen. We will also learn how to play
sounds and music for the player to hear.

357

18 - Collision Detection and Input

Topics Covered In This Chapter:

� Image and Sound Files
� Drawing Sprites
� The pygame.image.load() Function
� The pygame.mixer.Sound Data Type
� The pygame.mixer.music Module

In the last two chapters, we've learned how to make GUI programs that have graphics
and can accept input from the keyboard and mouse. We've also learned how to draw shapes
in different colors on the screen. In this chapter, we will learn how to show pictures and
images (called sprites) and play sounds and music in our games.

A sprite is a name for a single two-dimensional image that is used as part of the
graphics on the screen. Here are some example sprites:

358

Figure 19-1: Some examples of sprites.

This is an example of sprites being used in a complete scene.

Figure 19-2: An example of a complete scene, with sprites drawn on top of a background.

The sprite images are drawn on top of the background. Notice that we can flip the sprite
image horizontally so that the sprites are facing the other way. We can draw the same sprite
image multiple times on the same window. We can also resize the sprites to be larger or
smaller than the original sprite image. The background image can also be considered one

359

19 - Sound and Images

large sprite.

The next program we make will demonstrate how to play sounds and draw sprites using
Pygame.

Image and Sound Files

Sprites are stored in image files on your computer. There are several different image
formats that Pygame can use. You can tell what format an image file uses by looking at the
end of the file name. For example, the file happy.png is in the PNG format. The image
formats Pygame supports include BMP, PNG, JPG (and JPEG), and GIF.

You can download images from your web browser. On most web browsers, you just
have to right-click on the image in the web page and select Save from the menu that
appears. Remember where on the hard drive you saved the image file. You can also create
your own images with a drawing program like MS Paint or Tux Paint.

The sound file formats that Pygame supports are MID, WAV, and MP3. You can
download sound effects from the Internet just like image files, as long as the sound effects
are in one of these three formats. If you have a microphone, you can also record sounds
with your computer and use them in your games.

Sprites and Sounds Program

This program is the same as the Keyboard and Mouse Input program from the last
chapter. However, in this program we will use sprites instead of plain looking squares. We
will use a sprite of a little man instead of the white player square, and a sprite of cherries
instead of the green food squares. We also play background music and a sound effect when
the player sprite eats one of the cherry sprites.

The Sprites and Sounds Program's Source Code

If you know how to use graphics software such as Photoshop or MS Paint, you can draw
your own images and use the image files in your games. If you don't know how to use these
programs, you can just download graphics from websites and use those image files instead.
The same applies for music and sound files. You can also find images on web sites or
images from a digital camera. You can download the image and sound files from this
book's website at http://inventwithpython.com/resources/. You can download the source
code in this chapter from the URL http://inventwithpython.com/chapter19.

spritesAndSounds.py
This code can be downloaded from http://inventwithpython.com/spritesAndSounds.py
If you get errors after typing this code in, compare it to the book's code with the online
diff tool at http://inventwithpython.com/diff or email the author at
al@inventwithpython.com

360

1. import pygame, sys, time, random
2. f r om pygame.locals import *
3.
4. # set up pygame
5. pygame.init()
6. mainClock = pygame.time.Clock()
7.
8. # set up the window
9. WINDOWWIDTH = 400

10. WINDOWHEIGHT = 400
11. windowSurface = pygame.display.set_mode((WINDOWWIDTH,

WINDOWHEIGHT), 0, 32)
12. pygame.display.set_caption('Sprites and Sound')
13.
14. # set up the colors
15. BLACK = (0, 0, 0)
16.
17. # set up the block data structure
18. player = pygame.Rect(300, 100, 40, 40)
19. playerImage = pygame.image.load('player.png')
20. playerStretchedImage = pygame.transform.scale(playerImage,

(40, 40))
21. foodImage = pygame.image.load('cherry.png')
22. foods = []
23. for i in range(20):
24. foods.append(pygame.Rect(random.randint(0, WINDOWWIDTH

- 20), random.randint(0, WINDOWHEIGHT - 20), 20, 20))
25.
26. foodCounter = 0
27. NEWFOOD = 40
28.
29. # set up keyboard variables
30. moveLeft = False
31. moveRight = False
32. moveUp = False
33. moveDown = False
34.
35. MOVESPEED = 6
36.
37. # set up music
38. pickUpSound = pygame.mixer.Sound('pickup.wav')
39. pygame.mixer.music.load('background.mid')
40. pygame.mixer.music.play(-1, 0.0)
41. musicPlaying = True
42.
43. # run the game loop
44. while True:
45. # check for the QUIT event
46. for event in pygame.event.get():
47. if event.type == QUIT:
48. pygame.quit()
49. sys.exit()
50. if event.type == KEYDOWN:
51. # change the keyboard variables

361

19 - Sound and Images

52. if event.key == K_LEFT or event.key == ord
(' a'):

53. moveRight = False
54. moveLeft = True
55. if event.key == K_RIGHT or event.key == ord

('d'):
56. moveLeft = False
57. moveRight = True
58. if event.key == K_UP or event.key == ord('w'):
59. moveDown = False
60. moveUp = True
61. if event.key == K_DOWN or event.key == ord

('s'):
62. moveUp = False
63. moveDown = True
64. if event.type == KEYUP:
65. if event.key == K_ESCAPE:
66. pygame.quit()
67. sys.exit()
68. if event.key == K_LEFT or event.key == ord

('a'):
69. moveLeft = False
70. if event.key == K_RIGHT or event.key == ord

('d'):
71. moveRight = False
72. if event.key == K_UP or event.key == ord('w'):
73. moveUp = False
74. if event.key == K_DOWN or event.key == ord

('s'):
75. moveDown = False
76. if event.key == ord('x'):
77. player.top = random.randint(0,

WINDOWHEIGHT - player.height)
78. player.left = random.randint(0,

WINDOWWIDTH - player.width)
79. if event.key == ord('m'):
80. if musicPlaying:
81. pygame.mixer.music.stop()
82. else:
83. pygame.mixer.music.play(-1, 0.0)
84. musicPlaying = not musicPlaying
85.
86. if event.type == MOUSEBUTTONUP:
87. foods.append(pygame.Rect(event.pos[0] - 10,

event.pos[1] - 10, 20, 20))
88.
89. foodCounter += 1
90. if foodCounter >= NEWFOOD:
91. # add new food
92. foodCounter = 0
93. foods.append(pygame.Rect(random.randint(0,

WINDOWWIDTH - 20), random.randint(0, WINDOWHEIGHT - 20),
20, 20))

94.
362

95. # draw the black background onto the surface
96. windowSurface.fill(BLACK)
97.
98. # move the player
99. if moveDown and player.bottom < WINDOWHEIGHT:

100. player.top += MOVESPEED
101. if moveUp and player.top > 0:
102. player.top -= MOVESPEED
103. if moveLeft and player.left > 0:
104. player.left -= MOVESPEED
105. if moveRight and player.right < WINDOWWIDTH:
106. player.right += MOVESPEED
107.
108.
109. # draw the block onto the surface
110. windowSurface.blit(playerStretchedImage, player)
111.
112. # check if the block has intersected with any food

squares.
113. for food in foods[:]:
114. if player.colliderect(food):
115. foods.remove(food)
116. player = pygame.Rect(player.left, player.top,

player.width + 2, player.height + 2)
117. playerStretchedImage = pygame.transform.scale

(playerImage, (player.width, player.height))
118. if musicPlaying:
119. pickUpSound.play()
120.
121. # draw the food
122. for food in foods:
123. windowSurface.blit(foodImage, food)
124.
125. # draw the window onto the screen
126. pygame.display.update()
127. mainClock.tick(40)

363

19 - Sound and Images

Figure 19-3: The Sprites and Sounds game.

Setting Up the Window and the Data Structure

Most of the code in this program was explained in the previous chapter, so we will only
focus on the parts that add sprites and sound.

12. pygame.display.set_caption('Sprites and Sound')

First, let's set the caption of the title bar to a string that describes this program. Pass the
string 'Sprites and Sound' to the pygame.display.set_caption()
function.

17. # set up the block data structure
18. player = pygame.Rect(300, 100, 40, 40)
19. playerImage = pygame.image.load('player.png')
20. playerStretchedImage = pygame.transform.scale

(playerImage, (40, 40))
21. foodImage = pygame.image.load('cherry.png')

We are going to use three different variables to represent the player, unlike the previous
programs that just used one. The player variable will store a Rect object that keeps

364

track of where and how big the player is. The player variable doesn't contain the
player's image, just the player's size and location. At the beginning of the program, the top
left corner of the player will be located at (300, 100) and the player will have a height and
width of 40 pixels to start.

The second variable that represents the player will be playerImage. The
pygame.image.load() function is passed a string of the filename of the image to
load. The return value of pygame.image.load() is a Surface object that has the
image in the image file drawn on its surface. We store this Surface object inside of
playerImage.

The pygame.transform.scale() Function

On line 20, we will use a new function in the pygame.transform module. The
pygame.transform.scale() function can shrink or enlarge a sprite. The first
argument is a pygame.Surface object with the image drawn on it. The second
argument is a tuple for the new width and height of the image in the first argument. The
pygame.transform.scale() function returns a pygame.Surface object with the
image drawn at a new size. We will store the original image in the playerImage
variable but the stretched image in the playerStretchedImage variable.

On line 21, we call pygame.image.load() again to create a Surface object with
the cherry image drawn on it.

Be sure that you have the player.png and cherry.png file in the same directory as the
spritesAndSounds.py file, otherwise Pygame will not be able to find them and will give an
error.

The Surface objects that are stored in playerImage and foodImage are the same
as the Surface object we use for the window. In our game, we will blit these surfaces
onto the window's surface to create the window that the user sees. This is exactly the same
as the when we got a Surface object returned from the render() method for Font
objects in our Hello World program. In order to actually display the text, we had to blit this
Surface object (which the text was drawn on) to the window's Surface object. (And
then, of course, call the update() method on the window's Surface object.)

Setting Up the Music and Sounds

37. # set up music
38. pickUpSound = pygame.mixer.Sound('pickup.wav')
39. pygame.mixer.music.load('background.mid')
40. pygame.mixer.music.play(-1, 0.0)
41. musicPlaying = True

Next we need to load the sound files. There are two modules for sound in Pygame. The
365

19 - Sound and Images

pygame.mixer module is responsible for playing short sound effects during the game.
The pygame.mixer.music module is used for playing background music.

We will call the pygame.mixer.Sound() constructor function to create a
pygame.mixer.Sound object (which we will simply call a Sound object). This object
has a play() method that when called will play the sound effect.

On line 39 we load the background music by calling pygame.mixer.music.load(). We
will start playing the background music immediately by calling
pygame.mixer.music.play(). The first parameter tells Pygame how many times to
play the background music after the first time we play it. So passing 5 will cause Pygame
to play the background music 6 times over. If you pass -1 for the first parameter, the
background music will repeat itself forever.

The second parameter to pygame.mixer.music.play() tells at what point in the
sound file to start playing. Passing 0.0 will play the background music starting from the
very beginning. If you passed 2.5 for the second parameter, this will cause the background
music to start playing two and half seconds after the start of the music.

Finally, we have a simple boolean variable named musicPlaying that will tell our
program if it should play the background music and sound effects or not. It is nice to give
the player the option to run the program without the sound playing.

Toggling the Sound On and Off

79. if event.key == ord('m'):
80. if musicPlaying:
81. pygame.mixer.music.stop()
82. else:
83. pygame.mixer.music.play(-1, 0.0)
84. musicPlaying = not musicPlaying

We will check if the user has pressed the M key. The M key will turn the background
music on or off. If musicPlaying is set to True, then that means the background music
is currently playing and we should stop the music by calling
pygame.mixer.music.stop(). If musicPlaying is set to False, then that
means the background music is not currently playing and should be started by calling
pygame.mixer.music.play(). The parameters we pass to the
pygame.mixer.music.play() function are the same as we passed on line 40.

Finally, no matter what, we want to toggle the value in musicPlaying. Toggling a
boolean value means we set it to the opposite of its current value. The line
musicPlaying = not musicPlaying will set the variable to False if it is
currently True or set it to True if it is currently False. Think of toggling as what
happens when you flip a light switch on or off.

366

Toggling the value in musicPlaying will ensure that the next time the user presses
the M key, it will do the opposite of what it did before.

Drawing the Player on the Window

109. # draw the block onto the surface
110 . windowSurface.blit(playerStretchedImage, player)

Remember that the value stored in playerStretchedImage is a Surface object.
"Blitting" is the process of drawing the contents of one Surface object to another
Surface object. In this case, we want to draw the sprite of the player onto the window's
Surface object (which is stored in windowSurface). (Also remember that the surface
used to display on the screen is the Surface object that is returned by
pygame.display.set_caption().)

The second parameter to the blit() method is a Rect object that specifies where the
sprite should be blitted. The Rect object stored in player is what keeps track of the
position of the player in the window.

Checking if the Player Has Collided with Cherries

114. if player.colliderect(food):
115 . foods.remove(food)
116. player = pygame.Rect(player.left, player.top,

player.width + 2, player.height + 2)
117. playerStretchedImage = pygame.transform.scale

(playerImage, (player.width, player.height))
118. if musicPlaying:
119. pickUpSound.play()

This code is similar to the code in the previous programs. But here we are adding a
couple of new lines. We want to call the play() method on the Sound object stored in the
pickUpSound variable. But we only want to do this if musicPlaying is set to True
(which tells us that the sound turned on).

When the player eats one of the cherries, we are going to enlarge the size of the player by
two pixels in height and width. On line 116, we create a new Rect object to store in the
player variable which will have the same sizes as the old Rect object stored in player.
Except the width and height of the new Rect object will be 2 pixels larger.

When the Rect object that represents the position and size of the player, but the image
of the player is stored in a playerStretchedImage as a Surface object. We want to
create a new stretched image by calling pygame.transform.scale(). Be sure to
pass the original Surface object in playerImage and not

367

19 - Sound and Images

playerStretchedImage . Stretching an image often distorts it a little. If we keep
restretching a stretched image over and over, the distortions add up quickly. But by
stretching the original image to the new size, we only distort the image once. This is why
we pass playerImage as the first argument for pygame.transform.scale().

Draw the Cherries on the Window

121. # draw the food
122. for food in foods:
123. windowSurface.blit(foodImage, food)

In our previous programs, we called the pygame.draw.rect() function to draw a
green square for each Rect object stored in the foods list. However, in this program we
want to draw the cherry sprites instead. We will call the blit() method and pass the
Surface object stored in foodImage . (This is the surface that has the image of cherries
drawn on it.)

We only use the food variable (which contains each of the Rect objects in foods on
each iteration through the for loop) to tell the blit() method where to draw the
foodImage.

Summary: Games with Graphics and Sounds

This game has added even more advanced graphics and introduced using sound in our
games. The images (called sprites) look much better than the simple drawing primitives
used in our previous programs. The game presented in this chapter also has music playing
in the background while also playing sound effects.

Sprites can be scaled (that is, stretched) to a larger or smaller size. This way we can
display sprites at any size we want. This will come in handy in the game presented in the
next chapter.

Now that we know how to create a GUI window, display sprites and drawing primitives,
collect keyboard and mouse input, play sounds, and implement collision detection, we are
now ready to create a graphical game in Pygame. The next chapter brings all of these
elements together for our most advanced game yet.

368

Topics Covered In This Chapter:

� The pygame.FULLSCREEN flag
� Pygame Constant Variables for Keyboard Keys
� The move_ip() Method for Rect objects
� The pygame.mouse.set_pos() Function
� Implementing Cheat Codes in Your Games
� Modifying the Dodger Game

The last three chapters have gone over the Pygame software library and demonstrated
how to use its many features. (You don't need to read those chapters before reading this
chapter, though it may make this chapter easier to understand.) In this chapter, we will use
that knowledge to create a graphical game with sound that receives input from the keyboard
and mouse.

The Dodger game has the player control a small man (which we call the player's
character) who must dodge a whole bunch of baddies that fall from the top of the screen.
The longer the player can keep dodging the baddies, the higher the score they will get.

Just for fun, we will also add some cheat modes to the game. If the player holds down
the "x" key, every baddie's speed will be reduced to a super slow rate. If the player holds
down the "z" key, the baddies will reverse their direction and travel up the screen instead of
downwards.

369

Review of the Basic Pygame Data Types

Let's review some of the basic data types used in the Pygame library:

� pygame.Rect - Rect objects represent a rectangular space's location and size.
The location can be determined by the Rect object's topleft attribute (or the
topright, bottomleft, and bottomright attributes). These corner attributes
are a tuple of integers for the X and Y coordinates. The size can be determined by the
width and height attributes, which are integers of how many pixels long or high the
rectangle area is. Rect objects have a colliderect() method to check if they
are intersecting with another Rect object.

� pygame.Surface - Surface objects are areas of colored pixels. Surface
objects represent a rectangular image, while Rect objects only represent a
rectangular space and location. Surface objects have a blit() method that is
used to draw the image on one Surface object onto another Surface object. The
Surface object returned by the pygame.display.set_mode() function is
special because anything drawn on that Surface object will be displayed on the user's
screen.

� Remember that Surface have things drawn on them, but we cannot see this
because it only exists in the computer's memory. We can only see a Surface object
when it is "blitted" (that is, drawn) on the screen. This is just the same as it is with
any other piece of data. If you think about it, you cannot see the string that is stored
in a variable until the variable is printed to the screen.

� pygame.event.Event - The Event data type in the pygame.event module
generates Event objects whenever the user provides keyboard, mouse, or another
kind of input. The pygame.event.get() function returns a list of Event
objects. You can check what type of event the Event object is by checking its type
attribute. QUIT, KEYDOWN, and MOUSEBUTTONUP are examples of some event
types.

� pygame.font.Font - The pygame.font module has the Font data type
which represent the typeface used for text in Pygame. You can create a Font object
by calling the pygame.font.SysFont() constructor function. The arguments to
pass are a string of the font name and an integer of the font size, however it is
common to pass None for the font name to get the default system font. For example,
the common function call to create a Font object is pygame.font.SysFont
(None, 48).

� pygame.time.Clock - The Clock object in the pygame.time module are
very helpful for keeping our games from running as fast as possible. (This is often
too fast for the player to keep up with the computer, and makes the games not fun.)
The Clock object has a tick() method, which we pass how many frames per
second (fps) we want the game to run at. The higher the fps, the faster the game runs.
Normally we use 40 fps. Notice that the pygame.time module is a different
module than the time module which contains the sleep() function.

Type in the following code and save it to a file named dodger.py. This game also

370

requires some other image and sound files which you can download from the URL
http://inventwithpython.com/resources.

Dodger's Source Code

You can download this code from the URL http://inventwithpython.com/chapter20.

dodger.py
This code can be downloaded from http://inventwithpython.com/dodger.py
If you get errors after typing this code in, compare it to the book's code with the online
diff tool at http://inventwithpython.com/diff or email the author at
al@inventwithpython.com

1. import pygame, random, sys
2. from pygame.locals import *
3.
4. WINDOWWIDTH = 600
5. WINDOWHEIGHT = 600
6. TEXTCOLOR = (255, 255, 255)
7. BACKGROUNDCOLOR = (0, 0, 0)
8. FPS = 40
9. BADDIEMINSIZE = 10

10. BADDIEMAXSIZE = 40
11. BADDIEMINSPEED = 1
12. BADDIEMAXSPEED = 8
13. ADDNEWBADDIERATE = 6
14. PLAYERMOVERATE = 5
15.
16. def terminate():
17. pygame.quit()
18. sys.exit()
19.
20. def waitForPlayerToPressKey():
21. while True:
22. for event in pygame.event.get():
23. if event.type == QUIT:
24. terminate()
25. if event.type == KEYDOWN:
26. if event.key == K_ESCAPE: # pressing

escape quits
27. terminate()
28. return
29.
30. def playerHasHitBaddie(playerRect, baddies):
31. for b in baddies:
32. if playerRect.colliderect(b['rect']):
33. return True
34. return False
35.
36. def drawText(text, font, surface, x, y):
37. textobj = font.render(text, 1, TEXTCOLOR)
38. textrect = textobj.get_rect()

371

20 - Dodger

39. textrect.topleft = (x, y)
40. surface.blit(textobj, textrect)
41.
42. # set up pygame, the window, and the mouse cursor
43. pygame.init()
44. mainClock = pygame.time.Clock()
45. windowSurface = pygame.display.set_mode((WINDOWWIDTH,

WINDOWHEIGHT))
46. pygame.display.set_caption('Dodger')
47. pygame.mouse.set_visible(False)
48.
49. # set up fonts
50. font = pygame.font.SysFont(None, 48)
51.
52. # set up sounds
53. gameOverSound = pygame.mixer.Sound('gameover.wav')
54. pygame.mixer.music.load('background.mid')
55.
56. # set up images
57. playerImage = pygame.image.load('player.png')
58. playerRect = playerImage.get_rect()
59. baddieImage = pygame.image.load('baddie.png')
60.
61. # show the "Start" screen
62. drawText('Dodger', font, windowSurface, (WINDOWWIDTH / 3),

(WINDOWHEIGHT / 3))
63. drawText('Press a key to start.', font, windowSurface,

(WINDOWWIDTH / 3) - 30, (WINDOWHEIGHT / 3) + 50)
64. pygame.display.update()
65. waitForPlayerToPressKey()
66.
67.
68. topScore = 0
69. while True:
70. # set up the start of the game
71. baddies = []
72. score = 0
73. playerRect.topleft = (WINDOWWIDTH / 2, WINDOWHEIGHT -

50)
74. moveLeft = moveRight = moveUp = moveDown = False
75. reverseCheat = slowCheat = False
76. baddieAddCounter = 0
77. pygame.mixer.music.play(-1, 0.0)
78.
79. while True: # the game loop runs while the game part

is playing
80. score += 1 # increase score
81.
82. for event in pygame.event.get():
83. if event.type == QUIT:
84. terminate()
85.
86. if event.type == KEYDOWN:
87. if event.key == ord('z'):

372

88. reverseCheat = True
89. if event.key == ord('x'):
90. slowCheat = True
91. if event.key == K_LEFT or event.key == ord

('a'):
92. moveRight = False
93. moveLeft = True
94. if event.key == K_RIGHT or event.key ==

ord('d'):
95. moveLeft = False
96. moveRight = True
97. if event.key == K_UP or event.key == ord

('w'):
98. moveDown = False
99. moveUp = True

100. if event.key == K_DOWN or event.key == ord
('s'):

101. moveUp = False
102. moveDown = True
103.
104. if event.type == KEYUP:
105. if event.key == ord('z'):
106. reverseCheat = False
107. score = 0
108. if event.key == ord('x'):
109. slowCheat = False
110. score = 0
111. if event.key == K_ESCAPE:
112. terminate()
113.
114. if event.key == K_LEFT or event.key == ord

('a'):
115. moveLeft = False
116. if event.key == K_RIGHT or event.key ==

ord('d'):
117. moveRight = False
118. if event.key == K_UP or event.key == ord

('w'):
119. moveUp = False
120. if event.key == K_DOWN or event.key == ord

('s'):
121. moveDown = False
122.
123. if event.type == MOUSEMOTION:
124. # If the mouse moves, move the player

where the cursor is.
125. playerRect.move_ip(event.pos[0] -

playerRect.centerx, event.pos[1] - playerRect.centery)
126.
127. # Add new baddies at the top of the screen, if

needed.
128. if not reverseCheat and not slowCheat:
129. baddieAddCounter += 1
130. if baddieAddCounter == ADDNEWBADDIERATE:

373

20 - Dodger

131. baddieAddCounter = 0
132. baddieSize = random.randint(BADDIEMINSIZE,

BADDIEMAXSIZE)
133. newBaddie = {'rect': pygame.Rect

(random.randint(0, WINDOWWIDTH-baddieSize), 0 -
baddieSize, baddieSize, baddieSize),

134. 'speed': random.randint
(BADDIEMINSPEED, BADDIEMAXSPEED),

135. 'surface':pygame.transform.scale
(baddieImage, (baddieSize, baddieSize)),

136. }
137.
138. baddies.append(newBaddie)
139.
140. # Move the player around.
141. if moveLeft and playerRect.left > 0:
142. playerRect.move_ip(-1 * PLAYERMOVERATE, 0)
143. if moveRight and playerRect.right < WINDOWWIDTH:
144. playerRect.move_ip(PLAYERMOVERATE, 0)
145. if moveUp and playerRect.top > 0:
146. playerRect.move_ip(0, -1 * PLAYERMOVERATE)
147. if moveDown and playerRect.bottom < WINDOWHEIGHT:
148. playerRect.move_ip(0, PLAYERMOVERATE)
149.
150. # Move the mouse cursor to match the player.
151. pygame.mouse.set_pos(playerRect.centerx,

playerRect.centery)
152.
153. # Move the baddies down.
154. for b in baddies:
155. if not reverseCheat and not slowCheat:
156. b['rect'].move_ip(0, b['speed'])
157. elif reverseCheat:
158. b['rect'].move_ip(0, -5)
159. elif slowCheat:
160. b['rect'].move_ip(0, 1)
161.
162. # Delete baddies that have fallen past the

bottom.
163. for b in baddies[:]:
164. if b['rect'].top > WINDOWHEIGHT:
165. baddies.remove(b)
166.
167. # Draw the game world on the window.
168. windowSurface.fill(BACKGROUNDCOLOR)
169.
170. # Draw the score and top score.
171. drawText('Score: %s' % (score), font,

windowSurface, 10, 0)
172. drawText('Top Score: %s' % (topScore), font,

windowSurface, 10, 40)
173.
174. # Draw the player's rectangle
175. windowSurface.blit(playerImage, playerRect)

374

176.
177 . # Draw each baddie
178. for b in baddies:
179. windowSurface.blit(b['surface'], b['rect'])
180.
181. pygame.display.update()
182.
183. # Check if any of the baddies have hit the player.
184. if playerHasHitBaddie(playerRect, baddies):
185. if score > topScore:
186. topScore = score # set new top score
187. break
188.
189. mainClock.tick(FPS)
190.
191. # Stop the game and show the "Game Over" screen.
192. pygame.mixer.music.stop()
193. gameOverSound.play()
194.
195. drawText('GAME OVER', font, windowSurface,

(WINDOWWIDTH / 3), (WINDOWHEIGHT / 3))
196. drawText('Press a key to play again.', font,

windowSurface, (WINDOWWIDTH / 3) - 80, (WINDOWHEIGHT / 3)
+ 50)

197. pygame.display.update()
198. waitForPlayerToPressKey()
199.
200. gameOverSound.stop()

When you run this program, the game will look like this:

375

20 - Dodger

Figure 20-1: A screenshot of the Dodger game in action.

Importing the Modules

1. import pygame, random, sys
2. f rom pygame.locals import *

The Dodger game will import the same modules that our previous Pygame games have:
pygame, random, sys, and pygame.locals . The pygame.locals module
contains several constant variables that the Pygame library uses such as the event types
(QUIT, KEYDOWN, etc.) and keyboard keys (K_ESCAPE, K_LEFT, etc.). By using the
from pygame.locals import * syntax, we can just type QUIT instead of
pygame.locals.QUIT.

Setting Up the Constant Variables

There are several constant variables in this game. We use constant variables because the
variable name is much more descriptive than a number. For example, from the line
windowSurface.fill(BACKGROUNDCOLOR) we know that the argument being sent

376

is a color for the background. However, the line windowSurface.fill
(BACKGROUNDCOLOR) is not as clear what the argument being passed means.

We can also easily change some simple aspects about our game without having the
change much of the code by changing the values stored in these constant variables. By
changing WINDOWWIDTH on line 4, we automatically change the code everywhere
WINDOWWIDTH is used. If we had used the value 600 instead, then we would have to
change each occurrence of 600 in the code. This would be especially confusing because
600 would also be used for the height of the window as well, and we would not want to
change those values.

4. WINDOWWIDTH = 600
5. WI NDOWHEIGHT = 600
6. TEXTCOLOR = (255, 255, 255)
7. BACKGROUNDCOLOR = (0, 0, 0)

Here we set the height and width of the main window. Since the rest of our code works
off of these constant variables, changing the value here will change it everywhere in our
program.

Instead of storing color tuples into a variable named WHITE or BLACK, we will use
constant variables for the color of the text and background. Remember that the three
integers in the color tuples range from 0 to 255 and stand for red, green, and blue.

8. FPS = 40

Just so the computer does not run the game too fast for the user to handle, we will call
mainClock.tick() on each iteration of the game loop to slow it down. We need to
pass an integer to mainClock.tick() so that the function knows how long to pause the
program. This integer will be the number of frames per second we want the game to run. A
"frame" is the drawing of graphics on the screen for a single iteration through the game
loop. We will set up a constant variable FPS to 40, and always call mainClock.tick
(FPS). You can change FPS to a higher value to have the game run faster or a lower value
to slow the game down.

9. BADDIEMINSIZE = 10
10. BADDIEMAXSIZE = 40
11. BADDIEMINSPEED = 1
12. BADDIEMAXSPEED = 8
13. ADDNEWBADDIERATE = 6

Here we set some more constant variables that will describe the falling baddies. The
width and height of the baddies will be between BADDIEMINSIZE and
BADDIEMAXSIZE. The rate at which the baddies fall down the screen will be between

377

20 - Dodger

BADDIEMINSPEED and BADDIEMAXSPEED pixels per iteration through the game
loop. And a new baddie will be added to the top of the window every
ADDNEWBADDIERATE iterations through the game loop.

14. PLAYERMOVERATE = 5

The PLAYERMOVERATE will store the number of pixels the player's character moves in
the window on each iteration through the game loop (if the character is moving). By
increasing this number, you can increase the speed the character moves. If you set
PLAYERMOVERATE to 0, then the player's character won't be able to move at all (the
player would move 0 pixels per iteration). This wouldn't be a very fun game.

Defining Functions

We will create several functions for our game. By putting code into functions, we can
avoid having to type the same code several times in our program. And because the code is
in one place, if we find a bug the code only needs to be fixed in one place.

16. def terminate():
17. pygame.quit()
18. sys.exit()

There are several places in our game that we want to terminate the program. In our other
programs, this just required a single call to sys.exit(). But since Pygame requires that
we call both pygame.quit() and sys.exit(), we will put them into a function
called terminate() and just call the function. This keeps us from repeating the same
code over and over again. And remember, the more we type, the more likely we will make
a mistake and create a bug in our program.

20. def waitForPlayerToPressKey():
21. while True:
22. for event in pygame.event.get():

There are also a couple places where we want the game to pause and wait for the player
to press a key. We will create a new function called waitForPlayerToPressKey()
to do this. Inside this function, we have an infinite loop that only breaks when a KEYDOWN
or QUIT event is received. At the start of the loop, we call pygame.event.get() to
return a list of Event objects to check out.

23. if event.type == QUIT:
24. terminate()

378

If the player has closed the window while the program is waiting for the player to press a
key, Pygame will generate a QUIT event and we should terminate the program. We will
call our terminate() function here, rather than call pygame.quit() and sys.exit
() themselves.

25. if event.type == KEYDOWN:
26. if event.key == K_ESCAPE: # pressing

escape quits
27. terminate()
28. return

If we receive a KEYDOWN event, then we should first check if it is the Esc key that was
pressed. If we are waiting for the player to press a key, and the player presses the Esc key,
we want to terminate the program. If that wasn't the case, then execution will skip the if-
block on line 27 and go straight to the return statement, which exits the
waitForPlayerToPressKey() function.

If a QUIT or KEYDOWN event is not generated, then this loop will keep looping until it is.
This will freeze the game until the player presses a key or closes the window.

30. def playerHasHitBaddie(playerRect, baddies):
31. for b in baddies:
32. if playerRect.colliderect(b['rect']):
33. return True
34. return False

We will also define a function named playerHasHitBaddie() which will return
True if the player's character has collided with one of the baddies. The baddies
parameter is a list of baddie data structures. These data structures are just dictionaries, so it
is accurate to say that baddies is a list of dictionary objects. Each of these dictionaries
has a 'rect' key, and the value for that key is a Rect object that represents the baddie's
size and location.

playerRect is also a Rect object. Remember that Rect objects have a method
named colliderect() that returns True if the Rect object has collided with the Rect
object that is passed to the method. Otherwise, colliderect() will return False.

We can use this method in our playerHasHitBaddie() function. First we iterate
through each baddie data structure in the baddies list. If any of these baddies collide with
the player's character, then playerHasHitBaddie() will return True. If the code
manages to iterate through all the baddies in the baddies list without colliding with any
of them, we will return False.

36. def drawText(text, font, surface, x, y):

379

20 - Dodger

37. textobj = font.render(text, 1, TEXTCOLOR)
38. textrect = textobj.get_rect()
39. textrect.topleft = (x, y)
40. surface.blit(textobj, textrect)

Drawing text on the window involves many different steps. First, we must create a
Surface object that has the string rendered in a specific font on it. The render()
method does this. Next, we need to know the size and location of the Surface object we
just made. We can get a Rect object with this information with the get_rect() method
for Surface objects.

This Rect object has no special connection to the Surface object with the text drawn on
it, other than the fact that it has a copy of the width and height information from the
Surface object. We can change the location of the Rect object by setting a new tuple
value for its topleft attribute.

Finally, we blit the Surface object of the rendered text onto the Surface object that
was passed to our drawText() function. Displaying text in Pygame take a few more steps
than simply calling the print() function, but if we put this code into a single function
(drawText()), then we only need to call the function instead of typing out all the code
every time we want to display text on the screen.

Initializing Pygame and Setting Up the Window

Now that the constant variables and functions are finished, we can start calling the
Pygame functions that will set up Pygame for use in our code. Many of these function calls
are to set up the GUI window and create objects that we will use in the game.

42. # set up pygame, the window, and the mouse cursor
43. pygame.init()
44. mainClock = pygame.time.Clock()
45. windowSurface = pygame.display.set_mode((WINDOWWIDTH,

WINDOWHEIGHT))
46. pygame.display.set_caption('Dodger')
47. pygame.mouse.set_visible(False)

Line 43 sets up the Pygame library. Remember, the pygame.init() function must be
called before we can use any of Pygame's functions or data types. Line 44 creates a
pygame.time.Clock() object and stores it in the mainClock variable. This object
will help us keep the program from running too fast.

Line 45 creates a new Surface object which will be used for the window displayed on
the screen. We will specify the width and height of this Surface object (and the window)
by passing a tuple with the WINDOWWIDTH and WINDOWHEIGHT constant variables. Notice
that there is only one argument passed to pygame.display.set_mode(): a tuple. The

380

arguments for pygame.display.set_mode() are not two integers but a tuple of
two integers.

On line 46, the caption of the window is set to the string 'Dodger'. This caption will
appear in the title bar at the top of the window.

In our game, we do not want the mouse cursor (the mouse cursor is the arrow that moves
around the screen when we move the mouse) to be visible. This is because we want the
mouse to be able to move the player's character around the screen, and the arrow cursor
would get in the way of the character's image on the screen. We pass False to tell Pygame
to make the cursor invisible. If we wanted to make the cursor visible again at some point in
the program, we could call pygame.mouse.set_visible(True).

Fullscreen Mode

The pygame.display.set_mode() function has a second, optional parameter that
you can pass to it. The value you can pass for this parameter is pygame.FULLSCREEN,
like this modification to line 45 in our Dodger program:

45. windowSurface = pygame.display.set_mode((WINDOWWIDTH,
WINDOWHEIGHT), pygame.FULLSCREEN)

Passing pygame.FULLSCREEN will make the program take up the entire space of the
screen. It will still be WINDOWWIDTH and WINDOWHEIGHT in size for the windows width
and height, but the image will be stretched larger to fit the screen. There may be wasted
space along the top and bottom (or the left and right) sides of the screen if you did not set
the window size in proportion with the screen's resolution.) To avoid the wasted space, you
should set the size of the window to a 4:3 ratio (for every 4 pixels of width, have 3 pixels
for height).

If you do not use the fullscreen mode, then you do not need to worry about using a 4:3
ratio for the width and height. Just use whatever width and height works best for your
game.

49. # set up fonts
50. f ont = pygame.font.SysFont(None, 48)

We need to create a Font object to use when we create a Surface object with the
image of text drawn on it. (This process is called "rendering".) We want to create a generic
font, so we will use the default Font object that the pygame.font.SysFont()
constructor function returns. We pass None so that the default font is used, and we pass 48
so that the font has a size of 48 points.

52. # set up sounds

381

20 - Dodger

53. gameOverSound = pygame.mixer.Sound('gameover.wav')
54. pygame.mixer.music.load('background.mid')

Next we want to create the Sound objects and also set up the background music. The
background music will constantly be playing during the game, but Sound objects will only
be played when we specifically want them to. In this case, the Sound object will be played
when the player loses the game.

You can use any .wav or .mid file for this game. You can download these sound files from
this book's website at the URL http://inventwithpython.com/resources. Or you can use your
own sound files for this game, as long as they have the filenames of gameover.wav and
background.mid. (Or you can change the strings used on lines 53 and 54 to match the
filenames.)

The pygame.mixer.Sound() constructor function creates a new Sound object and
stores a reference to this object in the gameOverSound variable. In your own games, you
can create as many Sound objects as you like, each with a different sound file that it will
play.

The pygame.mixer.music.load() function loads a sound file to play for the
background music. This function does not create any objects, and only one sound file can be
loaded at a time.

56. # set up images
57. playerImage = pygame.image.load('player.png')
58. playerRect = playerImage.get_rect()
59. baddieImage = pygame.image.load('baddie.png')

Next we will load the image files that used for the player's character and the baddies on
the screen. The image for the character is stored in player.png and the image for the baddies
is stored in baddie.png. All the baddies look the same, so we only need one image file for
them. You can download these images from the book's website at the URL
http://inventwithpython.com/resources.

Display the Start Screen

When the game first starts, we want to display the name of the game on the screen. We
also want to instruct the player that they can start the game by pushing any key. This screen
appears so that the player has time to get ready to start playing after running the program.
Also, before each game starts, we want to reset the value of the top score back to 0.

61. # show the "Start" screen
62. drawText('Dodger', font, windowSurface, (WINDOWWIDTH / 3),

(WINDOWHEIGHT / 3))
63. drawText('Press a key to start.', font, windowSurface,

382

(WINDOWWIDTH / 3) - 30, (WINDOWHEIGHT / 3) + 50)
64. pygame.display.update()
65. waitForPlayerToPressKey()

On lines 62 and 63, we call our drawText() function and pass it five arguments: 1) the
string of the text we want to appear, 2) the font that we want the string to appear in, 3) the
Surface object onto which to render the text, and 4) and 5) the X and Y coordinate on the
Surface object to draw the text at.

This may seem like many arguments to pass for a function call, but keep in mind that this
function call replaces five lines of code each time we call it. This shortens our program and
makes it easier to find bugs since there is less code to check.

The waitForPlayerToPressKey() function will pause the game by entering into a
loop that checks for any KEYDOWN events. Once a KEYDOWN event is generated, the
execution breaks out of the loop and the program continues to run.

Start of the Main Game Code

68. topScore = 0
69. wh ile True:

We have finished defining the helper functions and variables that we need for this game.
Line 68 is the start of the main game code. The value in the topScore variable starts at 0
only when the program first runs. Whenever the player loses and has a score larger than the
current top score, the top score is replaced with the player's score.

The infinite loop started on line 69 is technically not the "game loop". (The main game
loop handles events and drawing the window while the game is running.) Instead, this
while loop will iterate each time the player starts a new game. We will set up the code so
that when the player loses and we need to reset the game, the program's execution will go
back to the start of this loop.

70. # set up the start of the game
71. baddies = []
72. score = 0

At the very beginning, we want to set the baddies list to an empty list. The baddies
list is a list of dictionary objects with the following keys:

� 'rect' - The Rect object that describes where and what size the baddie is.
� 'speed' - How fast the baddie falls down the screen. This integer represents pixels

per iteration through the game loop.
� 'surface' - The Surface object that has the scaled image of the baddie image

383

20 - Dodger

drawn on it. This is the Surface object that will be blitted to the Surface object
returned by pygame.display.set_mode() and drawn on the screen.

Next, we want to reset the player's score to 0.

73. playerRect.topleft = (WINDOWWIDTH / 2, WINDOWHEIGHT -
50)

The starting location of the player will be in the center of the screen and 50 pixels up
from the bottom. The tuple that we set the topleft attribute to will change the location of
the playerRect object. The first item in the tuple is the X-coordinate of the left edge.
The second item in the tuple is the Y coordinate of the top edge.

74. moveLeft = moveRight = moveUp = moveDown = False
75. reverseCheat = slowCheat = False
76. baddieAddCounter = 0

Also at the start of the game, we want to have the movement variables moveLeft,
moveRight, moveUp, and moveDown set to False . The reverseCheat and
slowCheat variables will be set to True only when the player enables these cheats by
holding down the "z" and "x" keys, respectively.

The baddieAddCounter variable is used for a counter to tell the program when to
add a new baddie at the top of the screen. The value in baddieAddCounter will be
incremented by one each time the game loop iterates. When the baddieAddCounter
counter is equal to the value in ADDNEWBADDIERATE, then the baddieAddCounter
counter is reset back to 0 and a new baddie is added to the top of the screen.

77. pygame.mixer.music.play(-1, 0.0)

At the start of the game, we want the background music to begin playing. We can do this
with a call to pygame.mixer.music.play(). The first argument is the number of
times the music should repeat itself. -1 is a special value that tells Pygame we want the
music to repeat endlessly. The second argument is a float that says how many seconds into
the music we want it to start playing. Passing 0.0 means we want to play the music
starting from the beginning of the music file. (Passing 2.0, for example, would have
started the music two seconds into the music file.)

The Game Loop

The game loop contains the code that is executed while the game is being played. The
game loop constantly updates the state of the game world by changing the position of the
player and baddies, handling events generated by Pygame, and drawing the state of the
384

game world on the screen. All of this happens several dozen times a second, which
makes it seem that the game is happening in real time to the player.

79. while True: # the game loop runs while the game part
is playing

80. score += 1 # increase score

Line 79 is the start of the main game loop. In the main game loop, we will increase the
player's score, handle any events that were generated, add any baddies to the top of the
screen if needed, move the baddies down a little, and then draw everything on the screen.
This code will be executed over and over again as the program execution iterates through
the game loop. The loop will only exit when the player either loses the game or quits the
program.

First, we will increment the player's score. The longer the player can go without losing,
the higher their score will be.

Event Handling

There are four different types of events we will handle in our game: QUIT, KEYDOWN,
KEYUP, and MOUSEMOTION. The QUIT event is generated by Pygame if the player closes
the program's window or shuts down the computer. In that case, we want the program to
close itself. The KEYDOWN and KEYUP events are generated when the player pushes down
and releases the keyboard keys, respectively. These events will be how we can tell which
direction the player wants to move the character. The player could also have pressed the
Esc key to signal that they want to shut down the program. Each time the player moves the
mouse, Pygame will generate a MOUSEMOTION event which will tell us the X and Y
coordinates of the mouse cursor over the window.

82. for event in pygame.event.get():
83. if event.type == QUIT:
84. terminate()

Line 82 is the start of the event-handling code. First we call pygame.event.get(),
which returns a list of Event objects. Each Event object represents an event that has
been created since the last call to pygame.event.get(). We will check the type
attribute of the event object to see what type of event it is, and handle the event
accordingly.

If the type attribute of the Event object is equal to QUIT, then this tells us that the
user has closed the program somehow. The QUIT constant variable was imported from the
pygame.locals module, but since we imported that module with the line from
pygame.locals import * instead of simply import pygame.locals, we only
need to type QUIT and not pygame.locals.QUIT.

385

20 - Dodger

86. if event.type == KEYDOWN:
87. if event.key == ord('z'):
88. reverseCheat = True
89. if event.key == ord('x'):
90. slowCheat = True

If the event's type is KEYDOWN, then we know that the player has pressed down a key.
The Event object for keyboard events will also have a key attribute that is set to the
numeric ASCII value of the key pressed. The ord() function will return the ASCII value
of the letter passed to it.

For example, on line 87, we can check if the event describes the "z" key being pressed
down by checking if event.key == ord('z'). If this condition is True, then we
want to set the reverseCheat variable to True to indicate that the reverse cheat has
been activated. We will also check if the "x" key has been pressed to activate the slow cheat
in a similar way.

Pygame's keyboard events always use the ASCII values of lowercase letters, not
uppercase. What this means for your code is that you should always use event.key ==
ord('z') instead of event.key == ord('Z') . Otherwise, your program may act
as though the key hasn't been pressed at all.

91. if event.key == K_LEFT or event.key ==
or d('a'):

92. moveRight = False
93. moveLeft = True
94. if event.key == K_RIGHT or event.key ==

ord('d'):
95. moveLeft = False
96. moveRight = True
97. if event.key == K_UP or event.key == ord

('w'):
98. moveDown = False
99. moveUp = True

100. if event.key == K_DOWN or event.key ==
ord('s'):

101. moveUp = False
102. moveDown = True

We also want to check if the event was generated by the player pressing one of the arrow
keys. There is not an ASCII value for every key on the keyboard, such as the arrow keys or
the Esc key. Instead, Pygame provides some constant variables to use instead.

We can check if the player has pressed the left arrow key with the condition:
event.key == K_LEFT. Again, the reason we can use K_LEFT instead of
pygame.locals.K_LEFT is because we imported pygame.locals with the line
386

from pygame.locals import * instead of import pygame.locals .

Noticed that pressing down on one of the arrow keys not only sets one of the movement
variables to True, but it also sets the movement variable in the opposite direction to
False. For example, if the left arrow key is pushed down, then the code on line 93 sets
moveLeft to True, but it also sets moveRight to False. This prevents the player
from confusing the program into thinking that the player's character should move in two
opposite directions at the same time.

Here is a list of commonly-used constant variables for the key attribute of keyboard-
related Event objects:

104. if event.type == KEYUP:
105. if event.key == ord('z'):
106. reverseCheat = False
107. score = 0
108. if event.key == ord('x'):
109. slowCheat = False

Table 20-1: Constant Variables for Keyboard Keys

Pygame Constant
Variable

Keyboard
Key

Pygame Constant
Variable

Keyboard
Key

K_LEFT Left arrow K_HOME Home

K_RIGHT Right arrow K_END End

K_UP Up arrow K_PAGEUP PgUp

K_DOWN Down arrow K_PAGEDOWN PgDn

K_ESCAPE Esc K_F1 F1

K_BACKSPACE Backspace K_F2 F2

K_TAB Tab K_F3 F3

K_RETURN
Return or
Enter K_F4 F4

K_SPACE Space bar K_F5 F5

K_DELETE Del K_F6 F6

K_LSHIFT Left Shift K_F7 F7

K_RSHIFT Right Shift K_F8 F8

K_LCTRL Left Ctrl K_F9 F9

K_RCTRL Right Ctrl K_F10 F10

K_LALT Left Alt K_F11 F11

K_RALT Right Alt K_F12 F12

387

20 - Dodger

110. score = 0

The KEYUP event is created whenever the player stops pressing down on a keyboard key
and it returns to its normal, up position. KEYUP objects with a type of KEYUP also have a
key attribute just like KEYDOWN events.

On line 105, we check if the player has released the "z" key, which will deactivate the
reverse cheat. In that case, we set reverseCheat to False and reset the score to 0. The
score reset is to discourage the player for using the cheats.

Lines 108 to 110 do the same thing for the "x" key and the slow cheat. When the "x" key
is released, slowCheat is set to False and the player's score is reset to 0.

111. if event.key == K_ESCAPE:
112. terminate()

At any time during the game, the player can press the Esc key on the keyboard to quit the
game. Here we check if the key that was released was the Esc key by checking event.key
== K_ESCAPE. If so, we call our terminate() function which will exit the program.

114. if event.key == K_LEFT or event.key == ord
('a'):

115. moveLeft = False
116. if event.key == K_RIGHT or event.key ==

ord('d'):
117. moveRight = False
118. if event.key == K_UP or event.key == ord

('w'):
119. moveUp = False
120. if event.key == K_DOWN or event.key == ord

('s'):
121. moveDown = False

Lines 114 to 121 check if the player has stopped holding down one of the arrow keys (or
the corresponding WASD key). In that event, we will set the corresponding movement
variable to False . For example, if the player was holding down the left arrow key, then the
moveLeft would have been set to True on line 93. When they release it, the condition on
line 114 will evaluate to True, and the moveLeft variable will be set to False.

The move_ip() Method for Rect objects

123. if event.type == MOUSEMOTION:
124. # If the mouse moves, move the player

where the cursor is.

388

125. playerRect.move_ip(event.pos[0] -
pla yerRect.centerx, event.pos[1] - playerRect.centery)

Now that we have handled the keyboard events, let's handle any mouse events that may
have been generated. In the Dodger game we don't do anything if the player has clicked a
mouse button, but the game does respond when the player moves the mouse. This gives the
player two ways of controlling the player character in the game: the keyboard and the
mouse.

If the event's type is MOUSEMOTION, then we want to move the player's character to the
location of the mouse cursor. The MOUSEMOTION event is generated whenever the mouse is
moved. Event objects with a type of MOUSEMOTION also have an attribute named pos.
The pos attribute stores a tuple of the X and Y coordinates of where the mouse cursor
moved in the window.

The move_ip() method for Rect objects will move the location of the Rect object
horizontally or vertically by a number of pixels. For example, playerRect.move_ip
(10, 20) would move the Rect object 10 pixels to the right and 20 pixels down. To
move the Rect object left or up, pass negative values. For example,
playerRect.move_ip(-5, -15) will move the Rect object left by 5 pixels and up
15 pixels.

The "ip" at the end of move_ip() stands for "in place". This is because the method
changes the Rect object itself, in its own place. There is also a move() method which does
not change the Rect object, but instead creates a new Rect object that has the new
location. This is useful if you want to keep the original Rect object's location the same but
also have a Rect object with the new location.

Adding New Baddies

127. # Add new baddies at the top of the screen, if
needed.

128. if not reverseCheat and not slowCheat:
129. baddieAddCounter += 1

On each iteration of the game loop, we want to increment the baddieAddCounter
variable by one. However, we only want to do this if the cheats are not enabled. Remember
that reverseCheat and slowCheat: are only set to True as long as the "z" and "x"
keys are being held down, respectively. And while those keys are being held down,
baddieAddCounter is not incremented. This means that no new baddies will appear at
the top of the screen.

130. if baddieAddCounter == ADDNEWBADDIERATE:
131. baddieAddCounter = 0

389

20 - Dodger

132. baddieSize = random.randint(BADDIEMINSIZE,
BADDIEMAXSIZE)

133. newBaddie = {'rect': pygame.Rect
(random.randint(0, WINDOWWIDTH-baddieSize), 0 -
baddieSize, baddieSize, baddieSize),

134. 'speed': random.randint
(BADDIEMINSPEED, BADDIEMAXSPEED),

135. 'surface':pygame.transform.scale
(baddieImage, (baddieSize, baddieSize)),

136. }

When the baddieAddCounter reaches the value in ADDNEWBADDIERATE, then the
condition on line 130 is True and it is time to add a new baddie to the top of the screen.
First, the baddieAddCounter counter is reset back to 0 (otherwise, when it keeps
incrementing it will always be greater than ADDNEWBADDIERATE and never equal to it.
This will cause baddies to stop appearing at the top of the screen.)

Line 132 generates a size for the baddie in pixels. The size will be between
BADDIEMINSIZE and BADDIEMAXSIZE, which we have set to 10 and 40 in this
program.

Line 133 is where a new baddie data structure is created. Remember, the data structure for
baddies is simply a dictionary with keys 'rect', 'speed' , and 'surface'. The
'rect' key holds a reference to a Rect object which stores the location and size of the
baddie. The call to the pygame.Rect() constructor function has four parameters: the X-
coordinate of the top edge of the area, the Y coordinate of the left edge of the area, the width
in pixels, and the height in pixels.

We want the baddie to appear randomly across the top of the window, so we pass
random.randint(0, WINDOWWIDTH-baddieSize) for the X-coordinate of the left
edge. This will evaluate to a random place across the top of the window. The reason we pass
WINDOWWIDTH-baddieSize instead of WINDOWWIDTH is because this value is for the
left edge of the baddie. If the left edge of the baddie is too far on the right side of the screen,
then part of the baddie will be off the edge of the window and not visible.

We want the bottom edge of the baddie to be just above the top edge of the window. The
Y-coordinate of the top edge of the window is 0, so to put the baddie's bottom edge there, we
want to set the top edge to 0 - baddieSize.

The baddie's width and height should be the same (the image is a square), so we will pass
baddieSize for the third and fourth argument.

The rate of speed that the baddie moves down the screen will be set in the 'speed' key,
and is set to a random integer between BADDIEMINSPEED and BADDIEMAXSPEED.

138. baddies.append(newBaddie)

390

Line 138 will add the newly created baddie data structure to the list of baddie data
structures. Our program will use this list to check if the player has collided with any of the
baddies and to know where to draw baddies on the window.

Moving the Player's Character

140. # Move the player around.
141 . if moveLeft and playerRect.left > 0:
142. playerRect.move_ip(-1 * PLAYERMOVERATE, 0)

The four movement variables moveLeft, moveRight, moveUp and moveDown are
set to True and False when Pygame generates the KEYDOWN and KEYUP events,
respectively. (This code is from line 86 to line 121.)

If the player's character is moving left and the left edge of the player's character is greater
than 0 (which is the left edge of the window), then we want to move the character's Rect
object (stored in playerRect).

We will always move the playerRect object by the number of pixels in
PLAYERMOVERATE. To get the negative form of an integer, you can simply multiple it by
-1. So on line 142, since 5 is stored in PLAYERMOVERATE, the expression -1 *
PLAYERMOVERATE evaluates to -5.

This means that calling playerRect.move_ip(-1 * PLAYERMOVERATE, 0)
will change the location of playerRect by 5 pixels to the left of its current location.

143. if moveRight and playerRect.right < WINDOWWIDTH:
144 . playerRect.move_ip(PLAYERMOVERATE, 0)
145. if moveUp and playerRect.top > 0:
146. playerRect.move_ip(0, -1 * PLAYERMOVERATE)
147. if moveDown and playerRect.bottom < WINDOWHEIGHT:
148. playerRect.move_ip(0, PLAYERMOVERATE)

We want to do the same thing for the other three directions: right, up, and down. Each of
the three if statements in lines 143 to 148 checks that their movement variable is set to
True and that the edge of the Rect object of the player is inside the window before
calling the move_ip() method to move the Rect object.

The pygame.mouse.set_pos() Function

150. # Move the mouse cursor to match the player.
151. pygame.mouse.set_pos(playerRect.centerx,

playerRect.centery)

391

20 - Dodger

Line 151 moves the mouse cursor to the same position as the player's character. The
pygame.mouse.set_pos() function moves the mouse cursor to the X and Y
coordinates that you pass it. Specifically, the cursor will be right in the middle of the
character's Rect object because we pass the centerx and centery attributes of
playerRect for the coordinates. The mouse cursor still exists and can be moved, even
though it is invisible because we called pygame.mouse.set_visible(False) on
line 47.

The reason we want the mouse cursor to match the location of the player's character is to
avoid sudden jumps. Imagine that the mouse cursor and the player's character are at the
same location on the left side of the window. When the player holds down the right arrow
key, the character moves to the right edge of the window but the mouse cursor would stay
at the left edge of the screen. If the player then moves the mouse just a little bit, the player's
character would immediately jump to the location of the mouse cursor on the left edge of
the screen. By moving the mouse cursor along with the player's character, any mouse
movements would not result in a sudden jump across the window.

153. # Move the baddies down.
154. for b in baddies:

Now we want to loop through each baddie data structure in the baddies list to move
them down a little.

155. if not reverseCheat and not slowCheat:
156. b['rect'].move_ip(0, b['speed'])

If neither of the cheats have been activated (by the player pushing the "z" or "x" keys
which sets reverseCheat or slowCheat to True, respectively), then move the
baddie's location down a number of pixels equal to its speed, which is stored in the
'speed' key.

Implementing the Cheat Codes

157. elif reverseCheat:
158. b['rect'].move_ip(0, -5)

If the reverse cheat has been activated, then the baddie should actually be moved up by
five pixels. Passing -5 for the second argument to move_ip() will move the Rect
object upwards by five pixels.

159. elif slowCheat:
160 . b['rect'].move_ip(0, 1)

392

If the slow cheat has been activated, then the baddie should move downwards, but only
by the slow speed of one pixel per iteration through the game loop. The baddie's normal
speed (which is stored in the 'speed' key of the baddie's data structure) will be ignored
while the slow cheat is activated.

Removing the Baddies

162. # Delete baddies that have fallen past the
bot t om.

163. for b in baddies[:]:

After moving the baddies down the window, we want to remove any baddies that fell
below the bottom edge of the window from the baddies list. Remember that we while we
are iterating through a list, we should not modify the contents of the list by adding or
removing items. So instead of iterating through the baddies list with our baddies loop,
we will iterate through a copy of the baddies list.

Remember that a list slice will evaluate a copy of a list's items. For example, spam
[2:4] will return a new list with the items from index 2 up to (but not including) index 4.
Leaving the first index blank will indicate that index 0 should be used. For example, spam
[:4] will return a list with items from the start of the list up to (but not including) the item
at index 4. Leaving the second index blank will indicate that up to (and including) the last
index should be used. For example, spam[2:] will return a list with items from index 2
all the way to (and including) the last item in the list.

But leaving both indexes in the slice blank is a way to represent the entire list. The
baddies[:] expression is a list slice of the whole list, so it evaluates to a copy of the
entire list. This is useful because while we are iterating on the copy of the list, we can
modify the original list and remove any baddie data structures that have fallen past the
bottom edge of the window.

Our for loop on line 163 uses a variable b for the current item in the iteration through
baddies[:].

164. if b['rect'].top > WINDOWHEIGHT:
165 . baddies.remove(b)

Let's evaluate the expression b['rect'].top. b is the current baddie data structure from the
baddies[:] list. Each baddie data structure in the list is a dictionary with a 'rect' key,
which stores a Rect object. So b['rect'] is the Rect object for the baddie. Finally, the top is
the Y-coordinate of the top edge of the rectangular area. Remember that in the coordinate
system, the Y-coordinates increase going down. So b['rect'].top >
WINDOWHEIGHT will check if the top edge of the baddie is below the bottom of the
window.

393

20 - Dodger

If this condition is True , then the we will remove the baddie data structure from the
baddies list.

Drawing the Window

It isn't enough that our game updates the state of the game world in its memory. Our
program will also have to display the game world to the player. We can do this by drawing
the graphics of the baddies and player's character on the screen. Because the game loop is
executed several times a second, drawing the baddies and player in new positions makes
their movement look smooth and natural. But every element on the screen must be drawn
one at a time by calling the appropriate Pygame function.

167. # Draw the game world on the window.
168. windowSurface.fill(BACKGROUNDCOLOR)

Now that we have updated all the data structures for the baddies and the player's
character, let's draw everything on the screen. First, before we draw anything else on the
Surface object referred to by windowSurface , we want to black out the entire screen
to erase anything drawn on it in a previous iteration through the game loop.

Remember that the Surface object in windowSurface is the special Surface
object because it was the one returned by pygame.display.set_mode(). This means
that anything drawn on that Surface object will appear on the screen, but only after the
pygame.display.update() function is called.

Drawing the Player's Score

170. # Draw the score and top score.
171. drawText('Score: %s' % (score), font,

windowSurface, 10, 0)
172. drawText('Top Score: %s' % (topScore), font,

windowSurface, 10, 40)

Next we will render the text for score and top score to the top left corner of the window.
The 'Score: %s' % (score) uses string interpolation to insert the value in the score
variable into the string. This is the same thing as 'Score: ' + str(score). We pass
this string, the Font object stored in the font variable, the Surface object on which to
draw the text on, and the X and Y coordinates of where the text should be placed.
Remember that our drawText() will handle the call to the render() and blit()
methods.

For the top score, we do the exact same thing. We pass 40 for the Y-coordinate instead
of 0 (like we do for the score) so that the top score text appears beneath the score text.

394

Drawing the Player's Character

174. # Draw the player's rectangle
175 . windowSurface.blit(playerImage, playerRect)

Remember that the information about the player is kept in two different variables.
playerImage is a Surface object that contains all the colored pixels that make up the
player's character's image. playerRect is a Rect object that stores the information
about the size and location of the player's character.

We call the blit() method on windowSurface and pass playerImage and
playerRect. This draws the player character's image on windowSurface at the
appropriate location.

177. # Draw each baddie
178 . for b in baddies:
179. windowSurface.blit(b['surface'], b['rect'])

We use a for loop here to draw every baddie on the windowSurface object.
Remember that each item in the baddies list is a dictionary with 'surface' and
'rect' keys containing the Surface object with the baddie image and the Rect object
with the position and size information, respectively.

181. pygame.display.update()

Now that we have finished drawing everything to the windowSurface object, we
should draw this surface to the screen with a call to pygame.display.update() .

Collision Detection

183. # Check if any of the baddies have hit the
pla yer.

184. if playerHasHitBaddie(playerRect, baddies):
185. if score > topScore:
186. topScore = score # set new top score
187. break

Now let's check if the player has collided with any of the baddies. We already wrote a
function to check for this: playerHasHitBaddie(). This function will return True if
the player's character has collided with any of the baddies in the baddies list. Otherwise,
the function will return False.

395

20 - Dodger

If the player's character has hit a baddie, then we check if the player's current score is
greater than the top score. If it is, we set the new top score to be the player's current score.
Either way, we break out of the game loop. The program's execution will jump down to line
191.

189. mainClock.tick(FPS)

To keep the computer from running through the game loop as fast as possible (which
would be much too fast for the player to keep up with), we call mainClock.tick() to
pause for a brief amount of time. The pause will be long enough to ensure that about 40
(the value we stored inside the FPS variable) iterations through the game loop occur each
second.

The Game Over Screen

191. # Stop the game and show the "Game Over" screen.
192. pygame.mixer.music.stop()
193. gameOverSound.play()

When the player loses, we want to stop playing the background music and play the
"game over" sound effect. We call the stop() function in the pygame.mixer.music
module to stop the background music. Then we call the play() method on the Sound
object stored in gameOverSound.

195. drawText('GAME OVER', font, windowSurface,
(WI NDOWWIDTH / 3), (WINDOWHEIGHT / 3))

196. drawText('Press a key to play again.', font,
windowSurface, (WINDOWWIDTH / 3) - 80, (WINDOWHEIGHT / 3)
+ 50)

197. pygame.display.update()
198. waitForPlayerToPressKey()

Now we want to display text on the window to tell the player that the game is over, and
they should press a key to start playing a new game. The two calls to our drawText()
function will draw this text to the windowSurface object, and the call to
pygame.display.update() will draw this Surface object to the screen.

After displaying this text, we want the game to stop until the player presses a key, so we
call our waitForPlayerToPressKey() function.

200. gameOverSound.stop()

396

After the player presses a key, the program execution will return from the
waitForPlayerToPressKey() call on line 198. Depending on how long the player
takes to press a key, the "game over" sound effect may or may not still be playing. We want
to stop this sound effect before this loop ends and we start a new game, so we have a call to
gameOverSound.stop() here.

Modifying the Dodger Game

That's it for our graphical game. You may find that the game is too easy or too hard. But
the game is very easy to modify because we took the time to use constant variables instead
of typing in the values directly. Now all we need to do to change the game is modify the
value set in the constant variables.

For example, if you want the game to run slower in general, change the FPS variable on
line 8 to a smaller value such as 20. This will make both the baddies and the player's
character move slower since the game loop will only be executed 20 times a second instead
of 40.

If you just want to slow down the baddies and not the player, then change
BADDIEMAXSPEED to a smaller value such as 4. This will make all the baddies move
between 1 (the value in BADDIEMINSPEED) and 4 pixels per iteration through the game
loop instead of 1 and 8.

If you want the game to have fewer but larger baddies instead of many fast baddies, then
increase ADDNEWBADDIERATE to 12, BADDIEMINSIZE to 40, and BADDIEMAXSIZE
to 80. Now that baddies are being added every 12 iterations through the game loop instead
of every 6 iterations, there will be half as many baddies as before. But to keep the game
interesting, the baddies are now much larger than before.

While the basic game remains the same, you can modify any of the constant variables to
drastically affect the behavior of the game. Keep trying out new values for the constant
variables until you find a set of values you like the best.

Summary: Creating Your Own Games

Unlike our previous text-based games, Dodger really looks like the kind of modern
computer game we usually play. It has graphics and music and uses the mouse. While
Pygame provides functions and data types as building blocks, it is you the programmer who
puts them together to create fun, interactive games.

And it is all because you know exactly how to instruct the computer to do it, step by step,
line by line. You can speak the computer's language, and get it to do large amounts of
number crunching and drawing for you. This is a very useful skill, and I hope you will
continue to learn more about Python programming. (And there is still more to learn!)

Here are several websites that can teach you more about programming Python:
397

20 - Dodger

Or you can find out more about Python by searching the World Wide Web. Go to the
search engine website http://google.com and search for "Python programming" or "Python
tutorials" to find web sites that can teach you more about Python programming.

Now get going and invent your own games. And good luck!

http://www.python.org/doc/
More Python tutorials and the documentation of all
the Python modules and functions.

http://www.pygame.org/docs/ Complete documentation on the modules and
functions for Pygame.

http://inventwithpython.com

This book's website, which includes all the source
code for these programs and additional information.
This site also has the image and sound files used in
the Pygame programs.

http://inventwithpython.com/traces
A web application that helps you trace through the
execution of the programs in this book, step by step.

http://inventwithpython.com/videos Videos that accompany the programs in this book.

http://gamedevlessons.com A helpful website about how to design and program
video games.

al@inventwithpython.com
The author's email address. Feel free to email Al
your questions about this book or about Python
programming.

398

Most of the programs in this book make use of the newer version 3 of Python. The
Pygame games make use of Python 2 because the Pygame library is not yet compatible
with Python 3. Python 3 corrects many of the faults with version 2 of the langugae,
however, these changes can also make it impossible to run Python 3 programs with the
Python 2 interpreter, and vice versa.

There are only a few changes between the two versions, and this appendix will go
through the ones relevant to this book. Learning both Python 2 and 3 is fairly simple. All of
the modules imported by the programs in this book (except for the pygame module) are part
of the standard library and work with both Python 2 and Python 3.

In short, use Python 3 unless you need to use a library that is not yet compatible with
version 3. Learning both Python 2 and 3 is easy because there are only a few changes
between them.

The print() Function and the print statement

In Python 3, print() is a function just like input() or len(). The function version
requires parentheses just like any other function call (although you can add parentheses to
the print statement optionally).

The print statement in Python 2 will always print a newline character at the end of the
string. To make it print a space instead, put a comma at the end of the print statement:

>>> # Python 2

399

>>> print "Hello",

To print something besides a newline at the end of the print() function in Python 3,
use the keyword argument end:

>>> # Python 3
>>> print("Hello", end="")

The input() and raw_input() Functions

In Python 2, the function to get input from the keyboard is raw_input(). In Python 3,
the input() function does this. You can simply rename the function wherever it appears
in your code.

>>> # Python 2
>>> name = raw_input()

>>> # Python 3
>>> name = input()

The range() Function's Return Value

In Python 2, the range() function returns an actual list with the integers. In Python 3,
the range() function returns a "range object". Both can be used exactly the same way in
for loops:

>>> for i in range(10): # Works in Python 2 and
3
... print(i)

However, if you want to create an actual list of integers in Python 3, you must convert
the "range object" into a list with the list() function:

>>> # Python 2
>>> listOfInts = range(10)

>>> # Python 3

400

>>> listOfInts = list(range(10))

Div ision with the / Operator

In Python 2, doing division with the / operator results in a floating point number (that is,
a number with a decimal point) only if one of the numbers is a float itself:

>>> # Python 2
>>> 25.0 / 8
3.125
>>> 25 / 8.0
3.125

However, in Python 2, if both of the numbers are integers, then the result of division is
the rounded down integer. In Python 3, the result is a floating point number no matter what:

>>> # Python 2
>>> 25 / 8
3

>>> # Python 3
>>> 25 / 8
3.125

Formatting Strings with the format() Method and
%s

In both Python 2 and 3, you can include %s inside a string and follow it with a list of
values for each %s such as:

>>> # Python 2 and 3
>>> 'My name is %s and I am from %s.' % ('Al',
'Houston')
'My name is Al and I am from Houston.'

However, Python 3 adds a new string method called format() . This string lets you
provide a list of arguments as parameters to format(). Instead of %s, you use {0} and {1}
and {2} and so on:

401

A - Differences Between Python 2 and 3

>>> # Python 3
>>> 'My name is {0} and I am from {1}.'.format
('Al', 'Houston')
'My name is Al and I am from Houston.'

The numbers inside the curly braces are the index of the parameters to format(). So
switching them around in the string will switch around where the parameters to format()
are placed:

>>> # Python 3
>>> 'My name is {1} and I am from {0}.'.format
('Al', 'Houston')
'My name is Houston and I am from Al.'

One nice feature is that you can use the same parameter to format() multiple times in
the string without making extra parameters to format():

>>> # Python 3
>>> 'My name is {0}, {0}, {0}, {0} and I am from
{1}.'.format('Jimmy Four Times', 'Houston')
'My name is Jimmy Four Times, Jimmy Four Times,
Jimmy Four Times, Jimmy Four Times and I am from
Houston.'

Along with numeric indexes, you can also put text inside the curly braces. This text can
match to keyword arguments passed to format():

>>> # Python 3
>>> 'My name is {0} and I like {thing} and I am
from {hometown}.'.format('Al', hometown='Houston',
thing='cats')
'My name is Al and I like cats and I am from
Houston.'

402

Ack!

This appendix contains a list of all the statements, functions, and methods presented in
this book. It doesn't present any new information, but it is a handy list.

As it turns out, there wasn't enough space in this book to include it. But you can find it
online for free at http://inventwithpython.com/appendixb.html

The rest of the book is also freely available online as well at http://inventwithpython.com

403

You may want to share the game programs you make with other people. Having other
people play your games is a great way to show off your skills. However, they may not have
Python installed on their computer. There is a way to run Python programs without
installing the Python interpreter: You will have to compile your .py script into a .exe
executable program.

Compiling source code means converting that source code into machine language, which
is the programming language your computer understands. Programming in machine
language is very long and tedious, and higher-level languages such as Python make
programming easier.

This appendix will show you how to compile your .py Python files into .exe programs
that can be run on Windows without having Python installed.

Step 1: Download and Install py2exe

First, you will need to download and install a module called py2exe from
http://sourceforge.net/projects/py2exe/files/. Be sure to download the correct version of
py2exe for your version of Python. (For example, download py2exe-0.6.9.win32-py2.6.exe
if you have installed Python 2.6 on your computer.)

The py2exe module only works on 2.x versions of Python, and not Python 3. You will
have to convert your programs to run on Python 2 if you have written them for Python 3.
This is fairly easy. There are not many differences between Python 2 and 3, and they are
documented in Appendix A of this book.

After downloading the py2exe installer, double click on it to install it. This installation is
404

much like how you installed Python. Just keep clicking the Next button until you reach
the end.

After you have installed py2exe, you can make sure that the installation was successful
by running the interactive shell and typing the following:

>>> import py2exe
>>>

If you do not see anything, then the installation was successful. If you see this error:

>>> import py2exe
>>> import py2exe
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
ImportError: No module named py2exe
>>>

Step 2: Create Your setup.py Script

After you have installed py2exe and confirmed that it is installed, you will need to create
a Python program with the name setup.py. The contents of this program should be as
follows:

from distutils.core import setup
import py2exe
setup(console=['hello.py'])

Replace hello.py in the source code above with the filename of the Python program you
want to compile. Be sure to save the setup.py in the same folder as the Python program you
want to compile (that is, hello.py, or whatever the filename is).

Step 3: Run Your setup.py Script

Next, you will have to run your setup.py with a command line option. You cannot run
setup.py from IDLE by pushing the F5 key or selecting Run Module from the Run menu.
You must use the Windows command line.

To start the Windows command line, click on the Start button in the bottom left corner
and select "Run". In the windows that opens, type "cmd" and click OK.

A black window with text should appear. Type "cd c:\Python26 " (or the folder that
you have saved your programs to) to change folders to the folder containing your Python

405

C - Running Python Programs without Python Installed

script and setup.py. From that folder, type "c:\Python26\python.exe
setup.py py2exe" . The first part (c:\Python26\python.exe) runs the Python
interpreter from the command line. The first command line option (setup.py) is the
script that the interpreter should run. The second command line option (py2exe) tells the
script to run with the py2exe option.

There will be a large amount of text from running this program. You can ignore this text.

When the compilation is finished, there will be two new folders, named build and dist.
You can delete the build folder because it only contains files that were used during
compilation. The dist folder contains all the files you want to give to other people,
including the hello.exe binary executable. (Your executable may have a different name. If
your setup.py had hello.py, then compilation produces a program named hello.exe.)

Step 4: Distribute Your Program

It's not easy to email all the files in the dist folder to someone. You can use a "zip
program" to package these many files into one file (called a zip file because it has the
extension .zip). Zip programs can be downloaded from the Internet for free. Some popular,
free zip programs are:

You can rename the dist folder to something else if you wish. The files simply have to be
in the same directory.

Summary

The process for turning your .py Python scripts into .exe binary executable programs for
Windows is simple:

Step 1: Download and install py2exe from http://sourceforge.net/projects/py2exe/files/

Step 2: Create a setup.py file that looks like this:

from distutils.core import setup
import py2exe
setup(console=['hello.py'])

Step 3: Run "c:\Python26\python.exe setup.py py2exe "

Step 4: Package up the dist folder into a zip file.

Zip Software Website
7-zip http://www.7-zip.org/download.html
WinRAR http://www.rarlab.com/download.htm

406

Error messages in Python can often be confusing. Here is a list of common error
messages you may find, along with a plain English explanation. These error messages are
the result of runtime errors. They will immediately crash your Here are the error messages
explained (your error messages may be slightly different but mean the same thing):

� SyntaxError: invalid syntax
� ImportError: No module named raandom
� SyntaxError: EOL while scanning string literal
� AttributeError: 'str' object has no attribute 'lowerr'
� IndentationError: expected an indented block
� IndentationError: unexpected indent
� IndentationError: unindent does not match any outer indentation level
� TypeError: bad operand type for abs(): 'str'
� TypeError: abs() takes exactly one argument (2 given)
� IndexError: list index out of range
� KeyError: 'spam'

SyntaxError: invalid syntax

This is the most generic error message the Python interpreter will give you. It means that
Python was expecting something that isn't there, or there is something there that it didn't
expect. Maybe you forgot to include or inserted an extra character. Here are some
examples:

if guess = 5:

407

In the above case, the programmer used = (the assignment operator) instead of == (the
equals comparator operator). Python never expects assignment statements where there
should be a condition.

def foo(:

In the above case, the programmer forgot to match the ending) closing parenthesis.

def foo()

In the above case, the programmer forgot to put the colon at the end of the def
statement. This can also happen with for, while, if, elif, and else statements.

ImportError: No module named raandom

This error shows up when you try to import a module that does not exist. Most likely,
you have a typo in the module name. For example, you may have typed raandom instead
of random.

SyntaxError: EOL while scanning string literal

print('Hello world!)
print("Hello world!')

This error happens when you do not have two quote marks for a string, or you use
different quote marks for the same string. Look at these two examples:

AttributeError: 'str' object has no attribute 'lowerr'

'Hello'.lowerr()
'Hello'.append('x')

This error appears when you call a method or access an attribute that does not exist. This
is most likely because 1) you have a typo in the method or attribute name, or 2) you are
calling the method or attribute on a value that is the wrong data type. For example, strings
have a method named lower(), but not lowerr() (that is a typo). And the append()
method is a list method, so calling it on a string value will cause this error.

408

IndentationError: expected an indented block

def foo():
print('Hello world!')

This error happens if you fail to indent your code for a block. In the above example the
print() call is at the same level of indentation as the def statement, when it should have
a larger indentation.

IndentationError: unexpected indent

def foo():
 print('Hello world!')
 print('Goodbye')

An unexpected indent error happens when you add an indentation for no reason. You
should only add indentation after a def, if, else , elif, while, or for statment (or
any statement that ends with a colon.)

IndentationError: unindent does not match any outer ind entation
level

def foo():
 print('Hello world!')
 print('Goodbye')

This indentation error appears when you are decreasing the indentation, but not
decreasing it to the same level as the previous indentation. The print('Goodbye') call
should either be at the same indentation as the other print() call (and be inside the if
block) or at the same indentation as the if statement (and be outside of the if block).

409

D - Common Error Messages in Python

TypeError: bad operand type for abs(): 'str'

abs('Hello')

This error occurs when the value of an argument you pass to a function or method is of
the wrong data type. In the above example, the abs() function takes an integer or floating
point number. Passing a string for the argument results in an error.

TypeError: abs() takes exactly one argument (2 given)

abs(42, 50)

This error appears when you pass the wrong number of arguments to a function or
method, either too many or too few. The abs() function takes exactly one (and only one)
argument. In our example we pass two arguments, which results in this error.

IndexError: list index out of range

myList = ['spam', 'fizz', 'eggs']
print(myList[3])

The IndexError happens when the index you use is larger than or equal to the number of
actual items in the list. In our above example, the myList list only has 3 items in it, so the
only valid indexes to use are 0, 1, and 2. The index 3 (or any other index larger than 2) is
larger than any of these indexes, so the code results in an IndexError.

KeyError: 'spam'

myDict = {'fizz':42, 'eggs':100}
myDict['spam']

The KeyError happens when you try to access a key in a dictionary object that does not
exist. Either the key was never added to the dictionary, was deleted previously with the
del operator, or the key you are using has a typo in it.

410

Glossary

absolute value - The positive form of a negative number. For example, the absolute
value of -2 is 2. The absolute value of a positive number is simply the positive number
itself.

AI - see, artificial intelligence

algorithm - A series of instructions to compute something.

applications - A program that is run by an operating system. See also, program.

arguments - The values that are passed for parameters in a function call.

artificial intelligence - Code or a program that can intelligent make decisions (for
example, decisions when playing a game) in response to user actions.

ASCII art - Using text characters and spaces to draw simple pictures.

assembly language - The simplest programming language. Assembly language
instructions are a human-readable form that can directly translate into machine code
instructions.

assignment operator - The = sign. Used to assign values to variables.

assignment statement - A line of code that assigns a value to a variable using the
assignment operator. This defines, that is, creates the variable when used with a new
variable. For example: spam = 42

asterisk - The * symbol. The asterisk is used as a multiplication sign.

augmented assignment operator - The +=, -=, *=, and /= operators. The
assignment spam += 42 is equivalent to spam = spam + 42.

block - A group of lines of code with the same amount of indentation. Blocks can
contain other blocks of greater indentation inside them.

boolean - A data type with only two values, True and False.

boolean operator - Boolean operators include and, or, and not.

break point - A break point can be set on a specific line of code, which will cause the
debugger to take over when that line is executed while running the program under a
debugger.

break statement - The break statement immediately jumps out of the current while
411

or for loop to the first line after the end of the loop's block.

brute force - In cryptography, to try every possible key in order to decrypt an
encrypted message.

bugs - Errors in your program's code. The three types of bugs are syntax errors, runtime
errors, and semantic errors.

caesar cipher - A simple substitution cipher in which each symbol is replaced by one
and only one other symbol.

cartesian coordinate system - A system of coordinates used to identify exact points
in some area of space (such as the monitor, or on a game board). Cartesian coordinates
systems commonly have two coordinates, one of the X-axis (that is, the horizontal left-right
axis) and one of the Y-axis (that is, the vertical up-down axis).

case-sensitivity - Declaring different capitalizations of a name to mean different
things. Python is a case-sensitive language, so spam, Spam, and SPAM are three different
variables.

central processing unit - CPU, the main chip that your computer uses to process
software instructions.

cipher - In cryptography, an algorithm used to encrypt and decrypt messages with a
certain key.

ciphertext - In cryptography, the encrypted form of a message.

comment - Part of the source code that is ignored by the Python interpreter. Comments
are there to remind the programmer about something about the code. Comments begin with
a # sign and go on for the rest of the line.

commutative property - The property of addition and multiplication that describes
how the order of the numbers being added or multiplied does not matter. For example, 2 +
4 = 6, and 4 + 2 = 6. Also, 3 * 5 = 15, and 5 * 3 = 15.

comparison operators - The operators < ("less than"), <= ("less than or equal to"), >
("greater than"), >= ("greater than or equal to"), == ("equal to"), and != ("not equal too").

condition - Another name for an expression, one that exists in an if or while
statement that evaluates to a boolean True or False value.

constant variables - Variables whose values do not change. Constant variables are
often used because it is easier to type the name of the variable then the value that they store.
As a convention, constant variable names are typed in all uppercase letters.

convention - A way of doing things that is not required, but is usually done to make a
412

task easier.

conversion specifiers - The text inside a string that makes use of string interpolation.
The most common conversion specifier is %s, which specifies that the variable it
interpolates should be converted to a string.

cpu - see, Central Processing Unit

crash - An event that happens because of a runtime error. After crashing, the program
immediately terminates.

cryptanalysis - The science of breaking secret codes and ciphers.

cryptography - The science of making secret codes and ciphers.

data types - A category of values. Some types in Python are: strings, integers, floats,
boolean, lists, and NoneType.

debugger - A program that lets you step through your code one line at a time (in the
same order that Python executes them), and shows what values are stored in all of the
variables.

decrementing - To decrease a numeric value by one.

decrypting - To convert an encrypted message to the readable plaintext version.

def statement - A statement that defines a new function. The def statement begins with
the def keyword, followed by the function name and a set of parentheses, with any
number of parameter names delimited by commas. At the end is a : colon character. For
example, def funcName(param1, param2):

delimit - To separate with. For example, the string 'cats,dogs,mice' is delimited
with commas.

dictionary - A container data type that can store other values. Values are accessed by a
key. For example, spam['foo'] = 42 assigns the key 'foo' of the spam dictionary
the value 42.

else statement - An else statement always follows an if statement, and the code
inside the else-block is executed if the if statement's condition was False.

empty list - The list [], which contains no values and has a length of zero. See also,
empty string.

empty string - The string '', which contains no characters and has a length of zero.
See also, empty list.

413

Glossary

encrypting - To convert a message into a form that resembles garbage data, and cannot
be understood except by someone who knows the ciphr and key used to encrypt the
message.

escape character - Escape characters allow the programmer to specify characters in
Python that are difficult or impossible to type into the source code. All escape characters
are preceeded by a \ forward backslash character. For example, \n displays a newline
character when it is printed.

evaluate - Reducing an expression down to a single value. The expression 2 + 3 +
1 evaluates to the value 6.

execute - The Python interpreter executes lines of code, by evaluating any expressions
or performing the task that the code does.

exit - When a program ends. "Terminate" means the same thing.

expression - Values and function calls connected by operators. Expressions can be
evaluated down to a single value.

file editor - A program used to type in or change files, including files of Python source
code. The IDLE program has a file editor that you use to type in your programs.

floating point numbers - Numbers with fractions or decimal points are not integers.
The numbers 3.5 and 42.1 and 5.0 are floating point numbers.

flow chart - A chart that informally shows the flow of execution for a program, and the
main events that occur in the program and in what order.

flow control statements - Statements that cause the flow of execution to change,
often depending on conditions. For example, a function call sends the execution to the
beginning of a function. Also, a loop causes the execution to iterate over a section of code
several times.

flow of execution - The order that Python instructions are executed. Usually the
Python interpreter will start at the top of a program and go down executing one line at a
time. Flow control statements can move the flow of execution to different parts of code in
the program.

function - A collection of instructions to be executed when the function is called.
Functions also have a return value, which is the value that a function call evaluates to.

function call - A command to pass execution to the code contained inside a function,
also passing arguments to the function. Function calls evaluate to the return value of the
function.

garbage data - Random data or values that have no meaning.
414

global scope - The scope of variables outside of all functions. Python code in the
global scope cannot see variables inside any function's local scope.

hard-coding - Using a value in a program, instead of using a variable. While a variable
could allow the program to change, by hard-coding a value in a program, the value stays
permanently fixed unless the source code is changed.

hardware - The parts of a computer that you can touch, such as the keyboard, monitor,
case, or mouse. See also, software.

higher-level programming languages - Programming languages that humans can
understand, such as Python. An interpreter can translate a higher-level language into
machine code, which is the only language computers can understand.

IDLE - Interactive DeveLopment Environment. IDLE is a program that helps you type in
your programs and games.

I/O - Input/Output. This is a term used in reference of the data that is sent into a program
(input) and that is produced by the program (output).

immutable sequence - A container data type that cannot have values added or deleted
from it. In Python, the two immutable sequence data types are strings and tuples.

import statement - A line of code with the import keyword followed by the name of
a module. This allows you to call any functions that are contained in the module.

incrementing - To increase the value of a numeric variable by one.

indentation - The indentation of a line of code is the number of spaces before the start
of the actual code. Indentation in Python is used to mark when blocks begin and end.
Indentation is usually done in multiples of four spaces.

index - An integer between square brackets that is placed at the end of an ordered
container variable (most often a list) to evaluate to a specific item in that container. The
first index starts at 0, not 1. For example, if spam refers to the list ['a', 'b', 'c',
'd'], then spam[2] evaluates to 'c'.

index error - An index error occurs when you attempt to access an index that does not
exist. This is much like using a variable that does not exist. For example, if spam refers to
the list ['a', 'b', 'c', 'd'], then spam[10] would cause an index error.

infinite loop - A loop that has a condition that always evaluates to True, which makes
the loop keep looping forever. The only way to exit an infinite loop is with a break
statement.

input - The text or data that the user or player enters into a program, mostly from the
keyboard.

415

Glossary

integer division - Division that ignores any remainder and rounds the evaluated
number down. Integer division occurs when both numbers in the division expression are
integers. For example, 20 / 7 evaluates to the integer 6, even though the answer is 6.666
or 6 remainder 2.

integers - Integers are whole numbers like 4 and 99 and 0. The numbers 3.5 and
42.1 and 5.0 are not integers.

interactive shell - A part of IDLE that lets you execute Python code one line at a time.
It allows you to immediately see what value the expression you type in evaluates to.

interpreter - A program that translates instructions written in a higher-level
programming language (such as Python) to machine code that the computer can understand
and execute.

iteration - A single run through of the code in a loop's block. For example, if the code
in a while-block is executed ten times before execution leaves the loop, we say that there
were ten iterations of the while-block's code.

key-value pairs - In dictionary data types, keys are values that are used to access the
values in a dictionary, much like a list's index is used to access the values in a list. Unlike
lists, dictionary keys can be of any data type, not just integers.

keys - In dictionaries, keys are the indexes used to

keys - In cryptography, a specific value (usuaully a number) that determines how a
cipher encrypts a message. To decrypt the message, you must know both the cipher and the
key value that was used.

list - The main container data type, lists can contain several other values, including other
lists. Values in lists are accessed by an integer index between square brackets. For example,
if spam is assigned the list ['a', 'b', 'c'] , then spam[2] would evaluate to 'c'.

list concatenation - Combining the contents of one list to the end of another with the
+ operator. For example, [1, 2, 3] + ['a', 'b', 'c'] evaluates to [1, 2,
3, 'a', 'b', 'c'].

local scope - The scope of variables inside a single functions. Python code inside a
function can read the value of variables in the global scope, but any changes or new
variables made will only exist while execution is inside that function call.

loop - A block of code inside a loop (after a for or while statement) will repeatedly
execute until some condition is met.

loop unrolling - Replacing code inside a loop with multiple copies of that code. For
example, instead of for i in range(10): print 'Hello' , you could unroll that
loop by having ten lines of print 'Hello'
416

machine code - The language that the computer's CPU understands. Machine code
instructions are series of ones and zeros, and is generally unreadable by humans.
Interpreters (such as the Python interpreter) translate a higher-level language into machine
code.

methods - Functions that are associated with values of a data type. For example, the
string method upper() would be invoked on a string like this: 'Hello'.upper()

module - A separate Python program that can be included in your programs so that you
can make use of the functions in the module.

modulus operator - The "remainder" operator that is represented with a % percent
sign. For example, while 20 / 7 is 6 with a remainder of 2, 20 % 7 would evaluate to 2.

mutable sequence - A container data type that is ordered and can have values added
or removed from it. Lists are a mutable sequence data type in Python.

negative numbers - All numbers less than 0. Negative numbers have a minus sign in
front of them to differentiate them from positive numbers, for example, -42 or -10.

nested loops - Loops that exist inside other loops.

None - The only value in the NoneType data type. "None" is often used to represent the
lack of a value.

operating system - A large program that runs other software programs (called
applications) the same way on different hardware. Windows, Mac OS, and Linux are
examples of operating systems.

operators - Operators connect values in expressions. Operators include +, -, *, /,
and, and or

ordinal - In ASCII, the number that represents an ASCII character. For example, the
ASCII character "A" has the ordinal 65.

origin - In cartesian coordinate systems, the point at the coordinates 0, 0.

OS - see, operating system

output - The text that a program produces for the user. For example, print statements
produce output.

overwrite - To replace a value stored in a variable with a new value.

parameter - A variable that is specified to have a value passed in a function call. For
example, the statement def spam(eggs, cheese) defines a function with two

417

Glossary

parameters named eggs and cheese .

pie chart - A circular chart that shows percentage portions as portions of the entire
circle.

plaintext - The decrypted, human-readable form of a message.

player - A person who plays the computer game.

positive numbers - All numbers equal to or greater than 0.

pound sign - The # sign. Pound signs are used to begin comments.

print statement - The print keyword followed by a value that is to be displayed on
the screen.

program - A collection of instructions that can process input and produce output when
run by computer.

programmer - A person who writes computer programs.

reference - Rather than containing the values themselves, list variables actually contain
references to lists. For example, spam = [1, 2, 3] assigns spam a reference to the
list. cheese = spam would copy the reference to the list spam refers to. Any changes
made to the cheese or spam variable would be reflected in the other variable.

return statement - The return followed by a single value, which is what the call to
the function the return statement is in will evaluate to.

return value - The value that a call to the function will evaluate to. You can specify
what the return value is with the return keyword followed by the value. Functions with
no return statement will return the value None.

runtime error - An error that occurs when the program is running. A runtime error will
cause the program to crash and stop executing.

scope - See, local scope and global scope.

sequence - A sequence data type is an ordered container data type, and have a "first" or
"last" item. The sequence data types in Python are lists, tuples, and strings. Dictionaries are
not sequences, they are unordered.

semantic error - An error that will not cause the program to crash immediately, but
will cause the program to run in an unintended way. A semantic error may cause a runtime
error and crash later on in the program.

418

shell - see, interactive shell

simple substitution ciphers - A cipher where each letter is replaced by one and only
one other letter.

slice - A subset of values in a list. These are accessed using the : colon character in
between the square brackets. For example, if spam has the value ['a', 'b', 'c',
'd', 'e', 'f'], then the slice spam[2:4] has the value ['c', 'd']. Similar to a
substring.

software - see, program

source code - The text that you type in to write a program.

statement - A command or line of Python code that does not evaluate to a value.

stepping - Executing one line of code at a time in a debugger, which can make it easier
to find out when problems in the code occur.

string concatenation - Combining two strings together with the + operator to form a
new string. For example, 'Hello ' + 'World!' evaluates to the string 'Hello
World!'

string formatting - Another term for string interpolation.

string interpolation - Using conversion specifiers in a string as place holders for other
values. Using string interpolation is a more convenient alternative to string concatenation.
For example, 'Hello, %s. Are you going to %s on %s?' % (name,
activity, day) evaluates to the string 'Hello, Albert. Are you going
to program on Thursday?', if the variables have those corresponding values.

string - A value made up of text. Strings are typed in with a single quote ' or double " on
either side. For example, 'Hello'

substring - A subset of a string value. For example, if spam is the string 'Hello',
then the substring spam[1:4] is 'ell'. Similar to a list slice.

symbols - In cryptography, the individual characters that are encrypted.

syntax - The rules for how code is ordered in a programming language, much like
grammar is made up of the rules for understandable English sentences.

syntax error - An error that occurs when the Python interpreter does not understand the
code because the code is incomplete or in the wrong order. A program with a syntax error
will not run.

419

Glossary

terminate - When a program ends. "Exit" means the same thing.

tracing - To follow through the lines of code in a program in the order that they would
execute.

truth tables - Tables showing every possible combination of

tuple - A container data type similar to a list. Tuples are immutable sequence data types,
meaning that they cannot have values added or removed from them. For example, (1, 2,
'cats', 'hello') is a tuple of four values.

type - see, data types

unordered - In container data types, unordered data types do not have a "first" or "last"
value contained inside them, they simply contain values. Dictionaries are the only
unordered data type in Python. Lists, tuples, and strings are ordered data types. See also,
sequence.

user - The person using the program.

value - A specific instance of a data type. 42 is a value of the integer type. 'Hello' is
a value of the string type.

variables - A container that can store a value. List variables contain references to lists.

while loop statement - The while keyword, followed by a condition, ending with a :
colon character. The while statement marks the beginning of a while loop.

X-axis - In cartesian coordinate systems, the horizontal (left-right) coordinate axis.

Y-axis - In cartesian coordinate systems, the vertical (up-down) coordinate axis.

420

About the Author

Albert Sweigart (but you can call him Al), is a software developer in San Francisco,
California who enjoys bicycling, reading, volunteering, computer security, haunting coffee
shops, and making useful software.

He is originally from Houston, Texas. He finally put his University of Texas at Austin
computer science degree in a frame. He is, of course, an atheist. He is a friendly introvert, a
cat person, and fears that he is losing brain cells over time. He laughs out loud when
watching park squirrels, and people think he’s a simpleton.

"Invent with Python" is his first book and will not be his last.

His web site and blog are located at http://coffeeghost.net

421

	A Note to Parents and FellowProgrammers
	Who is this book for?
	Table of Contents
	Chapter 1: Installing Python
	Chapter 2: The Interactive Shell
	Chapter 3: Strings
	Chapter 4: Guess the Number
	Chapter 5: Jokes
	Chapter 6: Dragon Realm
	Chapter 7: Using the Debugger
	Chapter 8: Flow Charts
	Chapter 9: Hangman
	Chapter 10: Tic Tac Toe
	Chapter 11: Bagels
	Chapter 12: Cartesian Coordiantes
	Chapter 13: Sonar Treasure Hunt
	Chapter 14: Caesar Chipher
	Chapter 15: Reversi
	Chapter 16: AI Simulation
	Chapter 17: Graphics and Animation
	Chapter 18: Collision Detection and Input
	Chapter 19: Sound and Images
	Chapter 20: Dodger
	Appendix A: Differences between Python 2 and 3
	Appendix B: Statements, Functions and Method Reference
	Appendix C: Running Python Programs without Python Installed
	Appendix D: Common Error Messages in Python
	Glossary
	About the Author

