

Bioinformatics Programming Using Python

Bioinformatics Programming
Using Python

Mitchell L Model

Beijing • Cambridge • Farnham • Köln • Sebastopol • Taipei • Tokyo

Bioinformatics Programming Using Python
by Mitchell L Model

Copyright © 2010 Mitchell L Model. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Mike Loukides
Production Editor: Sarah Schneider
Copyeditor: Rachel Head
Proofreader: Sada Preisch

Indexer: Lucie Haskins
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Printing History:
December 2009: First Edition.

O’Reilly and the O’Reilly logo are registered trademarks of O’Reilly Media, Inc. Bioinformatics Pro-
gramming Using Python, the image of a brown rat, and related trade dress are trademarks of O’Reilly
Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

TM

This book uses RepKover, a durable and flexible lay-flat binding.

ISBN: 978-0-596-15450-9

[M]

1259959883

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com

Table of Contents

Preface . xi

1. Primitives . 1
Simple Values 1

Booleans 2
Integers 2
Floats 3
Strings 4

Expressions 5
Numeric Operators 5
Logical Operations 7
String Operations 9
Calls 12
Compound Expressions 16

Tips, Traps, and Tracebacks 18
Tips 18
Traps 20
Tracebacks 20

2. Names, Functions, and Modules . 21
Assigning Names 23
Defining Functions 24

Function Parameters 27
Comments and Documentation 28
Assertions 30
Default Parameter Values 32

Using Modules 34
Importing 34
Python Files 38

Tips, Traps, and Tracebacks 40
Tips 40

v

Traps 45
Tracebacks 46

3. Collections . 47
Sets 48
Sequences 51

Strings, Bytes, and Bytearrays 53
Ranges 60
Tuples 61
Lists 62

Mappings 66
Dictionaries 67

Streams 72
Files 73
Generators 78

Collection-Related Expression Features 79
Comprehensions 79
Functional Parameters 89

Tips, Traps, and Tracebacks 94
Tips 94
Traps 96
Tracebacks 97

4. Control Statements . 99
Conditionals 101
Loops 104

Simple Loop Examples 105
Initialization of Loop Values 106
Looping Forever 107
Loops with Guard Conditions 109

Iterations 111
Iteration Statements 111
Kinds of Iterations 113

Exception Handlers 134
Python Errors 136
Exception Handling Statements 138
Raising Exceptions 141

Extended Examples 143
Extracting Information from an HTML File 143
The Grand Unified Bioinformatics File Parser 146
Parsing GenBank Files 148
Translating RNA Sequences 151
Constructing a Table from a Text File 155

vi | Table of Contents

Tips, Traps, and Tracebacks 160
Tips 160
Traps 162
Tracebacks 163

5. Classes . 165
Defining Classes 166

Instance Attributes 168
Class Attributes 179

Class and Method Relationships 186
Decomposition 186
Inheritance 194

Tips, Traps, and Tracebacks 205
Tips 205
Traps 207
Tracebacks 208

6. Utilities . 209
System Environment 209

Dates and Times: datetime 209
System Information 212
Command-Line Utilities 217
Communications 223

The Filesystem 226
Operating System Interface: os 226
Manipulating Paths: os.path 229
Filename Expansion: fnmatch and glob 232
Shell Utilities: shutil 234
Comparing Files and Directories 235

Working with Text 238
Formatting Blocks of Text: textwrap 238
String Utilities: string 240
Comma- and Tab-Separated Formats: csv 241
String-Based Reading and Writing: io 242

Persistent Storage 243
Persistent Text: dbm 243
Persistent Objects: pickle 247
Keyed Persistent Object Storage: shelve 248
Debugging Tools 249

Tips, Traps, and Tracebacks 253
Tips 253
Traps 254
Tracebacks 255

Table of Contents | vii

7. Pattern Matching . 257
Fundamental Syntax 258

Fixed-Length Matching 259
Variable-Length Matching 262
Greedy Versus Nongreedy Matching 263
Grouping and Disjunction 264

The Actions of the re Module 265
Functions 265
Flags 266
Methods 268

Results of re Functions and Methods 269
Match Object Fields 269
Match Object Methods 269

Putting It All Together: Examples 270
Some Quick Examples 270
Extracting Descriptions from Sequence Files 272
Extracting Entries From Sequence Files 274

Tips, Traps, and Tracebacks 283
Tips 283
Traps 284
Tracebacks 285

8. Structured Text . 287
HTML 287

Simple HTML Processing 289
Structured HTML Processing 297

XML 300
The Nature of XML 300
An XML File for a Complete Genome 302
The ElementTree Module 303
Event-Based Processing 310
expat 317

Tips, Traps, and Tracebacks 322
Tips 322
Traps 323
Tracebacks 323

9. Web Programming . 325
Manipulating URLs: urllib.parse 325

Disassembling URLs 326
Assembling URLs 327

Opening Web Pages: webbrowser 328
Module Functions 328

viii | Table of Contents

Constructing and Submitting Queries 329
Constructing and Viewing an HTML Page 330

Web Clients 331
Making the URLs in a Response Absolute 332
Constructing an HTML Page of Extracted Links 333
Downloading a Web Page’s Linked Files 334

Web Servers 337
Sockets and Servers 337
CGI 343
Simple Web Applications 348

Tips, Traps, and Tracebacks 354
Tips 355
Traps 357
Tracebacks 358

10. Relational Databases . 359
Representation in Relational Databases 360

Database Tables 360
A Restriction Enzyme Database 365

Using Relational Data 370
SQL Basics 371
SQL Queries 380
Querying the Database from a Web Page 392

Tips, Traps, and Tracebacks 395
Tips 395
Traps 398
Tracebacks 398

11. Structured Graphics . 399
Introduction to Graphics Programming 399

Concepts 400
GUI Toolkits 404

Structured Graphics with tkinter 406
tkinter Fundamentals 406
Examples 411

Structured Graphics with SVG 431
SVG File Contents 432
Examples 436

Tips, Traps, and Tracebacks 444
Tips 444
Traps 445
Tracebacks 447

Table of Contents | ix

A. Python Language Summary . 449

B. Collection Type Summary . 459

Index . 473

x | Table of Contents

Preface

This preface provides information I expect will be important for someone reading and
using this book. The first part introduces the book itself. The second talks about
Python. The third part contains other notes of various kinds.

Introduction
I would like to begin with some comments about this book, the field of bioinformatics,
and the kinds of people I think will find it useful.

About This Book
The purpose of this book is to show the reader how to use the Python programming
language to facilitate and automate the wide variety of data manipulation tasks en-
countered in life science research and development. It is designed to be accessible to
readers with a range of interests and backgrounds, both scientific and technical. It
emphasizes practical programming, using meaningful examples of useful code. In ad-
dition to meeting the needs of individual readers, it can also be used as a textbook for
a one-semester upper-level undergraduate or graduate-level course.

The book differs from traditional introductory programming texts in a variety of ways.
It does not attempt to detail every possible variation of the mechanisms it describes,
emphasizing instead the most frequently used. It offers an introduction to Python pro-
gramming that is more rapid and in some ways more superficial than what would be
found in a text devoted solely to Python or introductory programming. At the same
time, it includes some advanced features, techniques, and topics that are often omitted
from entry-level Python books. These are included because of their wide applicability
in bioinformatics programming, and they are used extensively in the book’s examples.

Python’s installation includes a large selection of optional components called
“modules.” Python books usually cover a small selection of the most generally useful
modules, and perhaps some others in less detail. Having bioinformatics
programming as this book’s target had some interesting effects on the choice of which
modules to discuss, and at what depth. The modules (or parts of modules) that are

xi

covered in this book are the ones that are most likely to be particularly valuable in
bioinformatics programming. In some cases the discussions are more substantial than
would be found in a generic Python book, and many of the modules covered here appear
in few other books. Chapter 6, in particular, describes a large number of narrowly
focused “utility” modules.

The remaining chapters focus on particular areas of programming technology: pattern
matching, processing structured text (HTML and XML), web programming (opening
web pages, programming HTTP requests, interacting with web servers, etc.), relational
databases (SQL), and structured graphics (Tk and SVG). They each introduce one or
two modules that are essential for working with these technologies, but the chapters
have a much larger scope than simply describing those modules.

Unlike many technical books, this one really should be read linearly. Even in the later
chapters, which deal extensively with particular kinds of programming work, examples
will often use material from an earlier chapter. In most places the text says that and
provides cross-references to earlier examples, so you’ll at least know when you’ve en-
countered something that depends on earlier material. If you do jump from one place
to another, these will provide a path back to what you’ve missed.

Each chapter ends with a special “Tips, Traps, and Tracebacks” section. The tips pro-
vide guidance for applying the concepts, mechanisms, and techniques discussed in the
chapter. In earlier chapters, many of the tips also provide advice and recommendations
for learning Python, using development tools, and organizing programs. The traps are
details, warnings, and clarifications regarding common sources of confusion or error
for Python programmers (especially new ones). You’ll soon learn what a traceback is;
for now it is enough to say that they are error messages likely to be encountered when
writing code based on the chapter’s material.

About Bioinformatics
Any title with the word “bioinformatics” in it is intrinsically ambiguous. There are (at
least) three quite different kinds of activities that fall within this term’s wide scope.
Both the nature of the work performed and the educational backgrounds and technical
talents of the people who perform these various activities differ significantly. The three
main areas of bioinformatics are:

Computational biology
Concerned with the development of algorithms for mining biological data and
modeling biological phenomena

Software development
Focused on writing software to implement computational biology algorithms,
visualize complex data, and support research and development activity, with par-
ticular attention to the challenges of organizing, searching, and manipulating
enormous quantities of biological data

xii | Preface

Life science research and development
Focused on the application of the tools and results provided by the other two areas
to probe the processes of life

This book is designed to teach you bioinformatics software development. There is no
computational biology here: no statistics, formulas, equations—not even explanations
of the algorithms that underlie commonly used informatics software. The book’s ex-
amples are all based on the kind of data life science researchers work with and what
they do with it.

The book focuses on practical data management and manipulation tasks. The term
“data” has a wide scope here, including not only the contents of databases but also the
contents of text files, web pages, and other information sources. Examples focus on
genomics, an area that, relative to others, is more mature and easier to introduce to
people new to the scientific content of bioinformatics, as well as dealing with data that
is more amenable to representation and manipulation in software. Also, and not inci-
dentally, it is the part of bioinformatics with which the author is most familiar.

About the Reader
This book assumes no prior programming experience. Its introduction to and use of
Python are completely self-contained. Even if you do have some programming experi-
ence, the nature of Python and the book’s presentation of technical matter won’t nec-
essarily relate directly to anything you’ve learned before: you too might find much to
explore here.

The book also assumes no particular knowledge of or experience in bioinformatics or
any of the scientific fields to which it relates. It uses real examples from real biological
data, and while nearly all of the topics should be familiar to anyone working in the
field, there’s nothing conceptually daunting about them. Fundamentally, the goal here
is to teach you how to write programs that manipulate data.

This book was written with several audiences in mind:

• Life scientists

• Life sciences students, both undergraduate and graduate

• Technical staff supporting life science research

• Software developers interested in the use of Python in the life sciences

To each of these groups, I offer an introductory message:

Scientists
Presumably you are reading this book because you’ve found yourself doing, or
wanting to do, some programming to support your work, but you lack the com-
puter science or software engineering background to do it as well as you’d like.
The book’s introduction to Python programming is straightforward, and its

Preface | xiii

examples are drawn from bioinformatics. You should find the book readable even
if you are just curious about programming and don’t plan to do any yourself.

Students
This book could serve as a textbook for a one-semester course in bioinformatics
programming or an equivalent independent study effort. If you are majoring in a
life science, the technical competence you can gain from this book will enable you
to make significant contributions to the projects in which you participate. If you
are majoring in computer science or software engineering but are intrigued by
bioinformatics, this book will give you an opportunity to apply your technical
education in that field. In any case, nothing in the book should be intimidating to
any student with a basic background either in one of the life sciences or in
computing.

Technical staff
You’re probably already doing some work managing and manipulating data in
support of life science research and development, and you may be accustomed to
writing small scripts and performing system maintenance tasks. Perhaps you’re
frustrated by the limits of your knowledge of computing techniques. Regardless,
you have developed an interest in the science and technology of bioinformatics.
You want to learn more about those fields and develop your skills in working with
biological data. Whatever your training and responsibilities, you should find this
book both approachable and helpful.

Programmers
Bioinformatics software differs from most other software in important, though
hard to pin down, ways. Python also differs from other programming languages in
ways that you will probably find intriguing. This book moves quickly into signifi-
cant technical material—it does not follow the pattern of a traditional kind of
“Programming in...” or “Learning...” or “Introduction to...” book. Though it
makes no attempt to provide a bioinformatics primer, the book includes sufficient
examples and explanations to intrigue programmers curious about the field and
its unusual software needs.

I would like to point out to computer scientists and experienced soft-
ware developers who may read this book that some very particular
choices were made for the purposes of presentation to its intended au-
dience. At the risk of sounding arrogant, I assure you that these are
backed by deep theoretical knowledge, extensive experience, and a full
awareness of alternatives. These choices were made with the intention
of simplifying technical vocabulary and presenting as clear and uniform
a view of Python programming as possible. They also were based on the
assumption that most people making use of what they learn in this book
will not move on to more advanced programming or large-scale software
development.

xiv | Preface

Some things that will appear strange to anyone with significant programming experi-
ence are in reality true to a pure “Pythonic” approach. It is delightful to have the
opportunity to write in this vocabulary without the need to accommodate more tradi-
tional terminology.

The most significant example of this is that the word “variable” is never used in the
context of assignment statements or function calls. Python does not assign values to
variables in the way that traditional “values in a box” languages do. Instead, like some
of the languages that influenced its design, what Python does is assign names to values.
The assignment statement should be read from left to right as assigning a name to an
existing value. This is a very real distinction that goes beyond the ways languages such
as Java and C++ refer to objects through pointer-valued variables.

Another aspect of the book’s heavily Pythonic approach is its routine use of compre-
hensions. Approached by someone familiar with other languages, these can appear
quite mysterious. For someone learning Python as a first language, though, they can
be more natural and easier to use than the corresponding combinations of assignments,
tests, and loops or iterations.

Python
This section introduces the Python language and gives instructions for installing and
running Python on your machine.

Some Context
There are many kinds of programming languages, with different purposes, styles, in-
tended uses, etc. Professional programmers often spend large portions of their careers
working with a single language, or perhaps a few similar ones. As a result, they are often
unaware of the many ways and levels at which programming languages can differ. For
educational and professional development purposes, it can be extremely valuable for
programmers to encounter languages that are fundamentally different from the ones
with which they are familiar.

The effects of such an encounter are similar to learning a foreign human language from
a different culture or language family. Learning Portuguese when you know Spanish is
not much of a mental stretch. Learning Russian when you are a native English speaker
is. Similarly, learning Java is quite easy for experienced C++ programmers, but learning
Lisp, Smalltalk, ML, or Perl would be a completely different experience.

Broadly speaking, programming languages embody combinations of four paradigms.
Some were designed with the intention of staying within the bounds of just one, or
perhaps two. Others mix multiple paradigms, although in these cases one is usually
dominant. The paradigms are:

Preface | xv

Procedural
This is the traditional kind of programming language in which computation is
described as a series of steps to be executed by the computer, along with a few
mechanisms for branching, repetition, and subroutine calling. It dates back to the
earliest days of computing and is still a core aspect of most modern languages,
including those designed for other paradigms.

Declarative
Declarative programming is based on statements of facts and logical deduction
systems that derive further facts from those. The primary embodiment of the logic
programming paradigm is Prolog, a language used fairly widely in Artificial Intel-
ligence (AI) research and applications starting in the 1980s. As a purely logic-based
language, Prolog expresses computation as a series of predicate calculus assertions,
in effect creating a puzzle for the system to solve.

Functional
In a purely functional language, all computation is expressed as function calls. In
a truly pure language there aren’t even any variable assignments, just function
parameters. Lisp was the earliest functional programming language, dating back
to 1958. Its name is an acronym for “LISt Processing language,” a reference to the
kind of data structure on which it is based.

Lisp became the dominant language of AI in the 1960s and still plays a major role
in AI research and applications. The language has evolved substantially from its
early beginnings and spawned many implementations and dialects, although most
of these disappeared as hardware platforms and operating systems became more
standardized in the 1980s.

A huge standardization effort combining ideas from several major dialects and a
great many extensions, including a complete object-oriented (see below) compo-
nent, was undertaken in the late 1980s. This effort resulted in the now-dominant
CommonLisp.* Two important dialects with long histories and extensive current
use are Scheme and Emacs Lisp, the scripting language for the Emacs editor. Other
functional programming languages in current use are ML and Haskell.

Object-oriented
Object-oriented programming was invented in the late 1960s, developed in the
research community in the 1970s, and incorporated into languages that spread
widely into both academic and commercial environments in the 1980s (primarily
Smalltalk, Objective-C, and C++). In the 1990s this paradigm became a key part
of modern software development approaches. Smalltalk and Lisp continued to be
used, C++ became dominant, and Java was introduced. Mac OS X, though built
on a Unix-like kernel, uses Objective-C for upper layers of the system, especially
the user interface, as do applications built for Mac OS X. JavaScript, used primarily
to program web browser actions, is another object-oriented language. Once a

* See http://www.lispworks.com/documentation/HyperSpec/Body/01_ab.htm.

xvi | Preface

http://www.lispworks.com/documentation/HyperSpec/Body/01_ab.htm

radical innovation, object-oriented programming is today very much a mainstream
paradigm.

Another dimension that distinguishes programming languages is their primary inten-
ded use. There have been languages focused on string matching, languages designed
for embedded devices, languages meant to be easy to learn, languages built for efficient
execution, languages designed for portability, languages that could be used interac-
tively, languages based largely on list data structures, and many other kinds.

Language designers, whether consciously or not, make choices in these and other
dimensions. Subsequent evolutions of their languages are subject to market forces,
intellectual trends, hardware developments, and so on. These influences may help a
language mature and reach a wider audience. They may also steer the language in
directions somewhat different from those originally intended.

The Python Language
Simply put, Python is a beautiful language. It is effective for everything from teaching
new programmers to advanced computer science study, from simple scripts to sophis-
ticated advanced applications. It has always had some purchase in bioinformatics, and
in recent years its popularity has been increasing rapidly. One goal of this book is to
help significantly expand Python’s use for bioinformatics programming.

Python features a syntax in which the ends of statements are marked only by the end
of a line, and statements that form part of a compound statement are indented relative
to the lines of code that introduce them. The semicolons or keywords that end state-
ments and the braces that group statements in other languages are entirely absent.

Programmers familiar with “standard syntax” languages often find Python’s unclut-
tered syntax deeply disconcerting. New programmers have no such problem, and for
them, this simple and readable syntax is far easier to deal with than the visually arcane
constructions using punctuation (with the attendant compilation errors that must be
confronted). Traditional programmers should reconsider Python’s syntax after per-
forming this experiment:

1. Open a file containing some well-formatted code.

2. Delete all semicolons, braces, and terminal keywords such as end, endif, etc.

3. Look at the result.

To the human eye, the simplified code is easier to read—and it looks an awful lot like
Python. It turns out that the semicolons, terminal keywords, and braces are primarily
for the benefit of the compiler. They are not really necessary for human writers and
readers of program code. Python frees the programmer from the drudgery of serving
as a compiler assistant.

Python is an interesting and powerful language with respect to computing paradigms.
Its skeleton is procedural, and it has been significantly influenced by functional

Preface | xvii

programming, but it has evolved into a fundamentally object-oriented language. (There
is no declarative programming component—of the four paradigms, declarative pro-
gramming is the one least amenable to fitting together with another.) Few, if any, other
languages provide a blend like this as seamlessly and elegantly as does Python.

Installing Python
This book uses Python 3, the language’s first non-backward-compatible release. With
a few minor changes, noted where applicable, Python 2.x will work for most of the
book’s examples. There are a few notes about Python 2 in Chapters 1, 3, and 5; they
are there not just to help you if you find yourself using Python 2 for some work, but
also for when you read Python 2 code. The major exception is that print was a statement
in Python 2 but is now a function, allowing for more flexibility. Also, Python 3 reor-
ganized and renamed some of its library modules and their contents, so using Python
2.x with examples that demonstrate the use of certain modules would involve more
than a few minor changes.

Determing Which Version of Python Is Installed
Some version of Python 2 is probably installed on your computer, unless you are using
Windows. Typing the following into a command-line window (using % as an example
of a command-line prompt) will tell you which version of Python is installed as the
program called python:

% python -V

The name of the executable for Python 3 may be python3 instead of just python. You
can type this:

% python3 -V

to see if that is the case.

If you are running Python in an integrated development environment—in particular
IDLE, which is part of the Python installation—type the following at the prompt
(>>>) of its interactive shell window to get information about its version:

>>> from sys import version
>>> version

If this shows a version earlier than 3, look for another version of the IDE on your
computer, or install one that uses Python 3. (The Python installation process installs
the GUI-based IDLE for whatever version of Python is being installed.)

The current release of Python can be downloaded from http://python.org/download/.
Installers are available for OS X and Windows. With most distributions of Linux, you
should be able to install Python through the usual package mechanisms. (Get help from
someone who knows how to do that if you don’t.) You can also download the source,

xviii | Preface

http://python.org/download/

unpack the archive, and, following the steps in the “Build Instructions” section of the
README file it contains, configure, “make,” and install the software.

If you are installing Python from its source code, you may need to
download, configure, make, and install several libraries that Python uses
if available. At the end of the “make” process, a list of missing optional
libraries is printed. It is not necessary to obtain all the libraries. The ones
you’ll want to have are:

• curses

• gdbm

• sqlite3†

• Tcl/Tk‡

• readline

All of these should be available through standard package installers.

Running Python
You can start Python in one of two ways:

1. Type python3 on the command line.§

2. Run an IDE. Python comes with one called IDLE, which is sufficient for the work
you’ll do in this book and is a good place to start even if you eventually decide to
move on to a more sophisticated IDE.

The term Unix in this book refers to all flavors thereof, including Linux and Mac
OS X. The term command line refers to where you type commands to a “shell”—in
particular, a Unix shell such as tcsh or bash or a Windows command window—as
opposed to typing to the Python interpreter. The term interpreter may refer to either
the interpreter running in a shell, the “Python Shell” window in IDLE, or the corre-
sponding window in whatever other development environment you might be using.

† You can find precompiled binaries for most platforms at http://sqlite.org/download.html.

‡ See http://www.activestate.com/activetcl.

§ On OS X, a command-line shell is obtained by running the Terminal application, found in the Utilities folder
in the Applications folder. On most versions of Windows, a “Command Prompt” window can be opened
either by selecting Run from the Start menu and typing cmd or by selecting Accessories from the Start menu,
then the Command Prompt entry of that menu. You may also find an Open Command Line Here entry when
you right-click on a folder in a Windows Explorer window; this is perhaps the best way to start a command-
line Python interpreter in Windows because it starts Python with the selected folder as the current directory.
You may have to change your path settings to include the directory that contains the Python executable file.
On a Unix-based system, you do that in the “rc” file of the shell you are using (e.g., ~/.bashrc). On Windows,
you need to set the path as an environment variable, a rather arcane procedure that differs among different
versions of Windows. You can also type the full path to the Python executable; on Windows, for example,
that would probably be C:\\python3.1\\python.exe.

Preface | xix

http://sqlite.org/download.html
http://www.activestate.com/activetcl

When Python starts interactively, it prints some information about its version. Then it
repeats a cycle in which it:

1. Prints the prompt >>> to indicate that it is waiting for you to type something

2. Reads what you type

3. Interprets its meaning to obtain a value

4. Prints that value

Throughout the book, the appearance of the >>> prompt in examples indicates the use
of the interpreter. Like nearly all command-line interactive applications, the Python
interpreter won’t pay any attention to what you’ve typed until you press the Return
(Enter) key. Pressing the Return key does not always provide complete input for Python
to process, though; as you’ll see, it is not unusual to enter multiline inputs. In the
command-line interpreter, Python will indicate that it is still waiting for you to complete
your input by starting lines following the >>> prompt with IDLE, unfortunately,
gives no such indication.

Both IDLE and the command-line interpreter provide simple keyboard shortcuts for
editing the current line before pressing Return. There are also keys to recall previous
inputs. IDLE provides quite a few additional keyboard shortcuts that are worth learning
early on. In addition, if you are using an IDE—IDLE, in particular—you’ll be able to
use the mouse to click to move the cursor on the input line.

To get more information about using IDLE, select “IDLE Help” from its Help menu.
That won’t show you the keyboard shortcuts, though; they are listed in the “Keys” tab
of IDLE’s preferences dialog. Note that you can use that dialog to change the keystroke
assignments, as well as the fonts, colors, window size, and so on.

When you want to quit a command-line Python interpreter, simply type Ctrl-D in Unix
(including Linux and the Mac OS X Terminal application). In Windows, type Ctrl-Z.
You exit an IDE with the usual Quit menu command.

Notes
I end this preface with some notes about things I think will help you make the most of
your experience with this book.

Reading and Reference Recommendations
The documentation that comes with the Python installation is excellent, extensive, and
well organized, but it can be overwhelming to newcomers. Moreover, the topics this
book presents and the way it presents them are designed specifically with bioinfor-
matics students and professionals in mind (though of course it’s hoped that it will be
valuable to a much wider audience than that). Unless you find yourself needing more
information about the Python language or library than is provided in this book while

xx | Preface

you’re reading it, it’s probably best to wait until you finish it before spending much
time with the documentation. The documentation is aimed primarily at Python
programmers. You’ll be one when you finish this book, at which point you’ll use the
documentation all the time.

With respect to the bioinformatics side of things, I trust you won’t encounter anything
unfamiliar here. But if you do, or you want to delve deeper, Wikipedia is a remarkably
deep resource for bioinformatics—for programming and computer science too, for that
matter. There are two astoundingly extensive bioinformatics references you should at
least have access to, if not actually own:

• Bioinformatics and Functional Genomics, Second Edition, by Jonathan Pevsner
(Wiley-Blackwell)

• Bioinformatics: Sequence and Genome Analysis, Second Edition, by David W.
Mount (Cold Spring Harbor Laboratory Press)

An unusual collection of essays containing detailed information about approaches to
analyzing bioinformatics data and the use of a vast array of online resources and tools
is:

• Bioinformatics for Geneticists: A Bioinformatics Primer for the Analysis of Genetic
Data, Second Edition, by Michael R. Barnes (Ed.) (Wiley)

Example Code
All the code for this book’s examples, additional code, some lists of URLs, data for the
examples, and so forth are found on the book’s website. In many cases, there is a
sequence of files for the same example or set of examples that shows the evolution of
the example from its simplest start to where it ends up. In a few cases, there are versions
of the code that go beyond what is shown in the book. There are also some examples
that are not in the book at all, as well as exercises for each chapter.

Within the book’s code examples, statement keywords are in boldface. Comments and
documentation are in serif typeface. Some examples use oblique monospace to indicate
descriptive “pseudocode” meant to be replaced with actual Python code. A shaded
background indicates either code that has changed from the previous version of an
example or code that implements a point made in the preceding paragraph(s).

Unfortunate and Unavoidable Vocabulary Overlap
This book’s vocabulary is drawn from three domains that, for the most part, are inde-
pendent of each other: computer science (including data structures and programming
language concepts), Python (which has its own names for the program and data struc-
tures it offers), and biology. Certain words appear in two or even all three of these
domains, often playing a major role and having a different meaning in each. The result
is unfortunate and unavoidable collisions of vocabulary. Care was taken to establish

Preface | xxi

http://oreilly.com/catalog/9780596154516

sufficient context for the use of these words to make their meanings clear, but the reader
should be prepared for the occasional mental backtrack to try another meaning for a
term while attempting to make sense of what is being said.

Even within a single domain, a term’s importance does not necessarily rescue it from
ambiguity. Consider the almost unrelated meanings of the term “frame” as the offset
from the start of a DNA sequence and in the phrase “open reading frame.” There can
be many open reading frames in a frame and many frames with open reading frames.
And sometimes there are three frames to consider, and sometimes also the reverse
complement frames, making six. Open reading frames can appear in any of the six
reading frames.

The vocabulary overlap is so omnipresent that it is almost humorous. Then again, the
words involved are fine words that have meanings in a great many other domains too,
so we should not be surprised to encounter them in our three. Even though you have
not yet been properly introduced to them, Table P-1 lists some of the most vexing
examples. Stay particularly alert when you encounter these, especially when you see
the words in code examples.

Table P-1. Domain-ambiguous terms

Term Biology Programming Python

Sequence Part of a DNA or RNA mole-
cule; more often refers to the
abstraction thereof, as rep-
resented with letters

(Usually) one of a number of data struc-
tures that arrange their elements linearly

A linear, and therefore numer-
ically indexable, collection of
values

Base A single nucleotide in a DNA
or RNA molecule

Base 10, 16, 2, etc. Base 10, 16, 2, etc., as used in
input and output operations

String A series of letters represent-
ing a DNA, RNA, or amino
acid sequence

A sequence of characters, often a “primi-
tive type” of a language

An immutable sequence type
named str

Expression The production of proteins
under the control of cellular
machinery influenced by life
stage, the organ containing
the cell, internal states (dis-
ease, hunger), and external
conditions (dryness, heat)

(1) (Generally) a combination of primitive
values, operators, and function calls, with
specifics differing significantly among
languages

(1) A combination of primitive
values, operators, and function
calls

 (2) Regular expression: a pattern describ-
ing a set of strings with notations for types
of characters, grouping, repetition, and so
on, the details of which differ among lan-
guages and editors

(2a) A regular expression string

(2b) A regular expression string
compiled into a regular expres-
sion object

Type The specimen of an organ-
ism first used to describe and
name it

A theoretical construct defined differently
in different contexts and implemented
differently by different programming lan-

Synonymous with “class,” but
often used in the context of Py-
thon’s built-in types, as op-

xxii | Preface

Term Biology Programming Python
guages; corresponds roughly to “the kind
of thing” something is and “the kind of
operations” it supports

posed to classes defined in a
Python or externally obtained
library or in user code

Translate,
translate

Convert DNA codons (base
triples) to amino acids ac-
cording to the genetic code
of the organism

Convert computer code in one language
into computer code in another, typically
lower-level, language

A method of str that uses a
table to produce a new str
with all the characters of the
original replaced by the corre-
sponding entries in the table

Class One of the levels in the
standard taxonomic classi-
fication of organisms

In languages that support object-
oriented programming, the encapsulated
definition of data and related code

As in programming; more spe-
cifically, the type of an object,
which itself is an object that
defines the methods for its
instances

Loop A property of RNA secondary
structures (among other
meanings)

An action performed repeatedly until
some condition is no longer true

An action performed repeat-
edly until some condition is no
longer true

Library A collection of related se-
quences, most commonly
used in the context of a li-
brary of expressed RNA in
cDNA form

Like a program, but meant to be used by
other programs rather than as a free-
standing application; most languages use
a core set of libraries and provide a large
selection of optional ones

A collection of modules, each
containing a collection of rela-
ted definitions, as in “Python
comes with an extensive
library of optional tools and
facilities”

Complement The nucleotide with which
another always pairs

“Two’s complement” is the standard rep-
resentation of negative integers

R.E. Restriction enzyme Regular expression

Fortunately, while the term “sequence” has a conceptual meaning in Python, there is
nothing defined in the language by that name, so we can use it in our descriptions and
code examples. Likewise, the name of the string type is str, so we can use the term
“string” in descriptions and examples. The lack of overlap in these instances saves a
fair amount of awkward clarification that would otherwise be required.

Comments
Write code as you read: it will really help you understand and benefit from what you
are reading. Read through the code examples. Look for more detailed code, additional
examples, and exercises on the book’s website.

Bioinformatics is a fascinating field. Python is a wonderful language. Programming is
an exciting challenge. Technologies covered here are important. This book is an invi-
tation to investigate, experience, and learn (more) about all of these topics. Enjoy!

Preface | xxiii

http://oreilly.com/catalog/9780596154516

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, filenames, and file extensions, and is used for docu-
mentation and comments in code examples

Constant width
Used for names of values, functions, methods, classes, and other code elements,
as well as the code in examples, the contents of files, and printed output

Constant width bold
Indicates user input to be typed at an interactive prompt, and highlights Python
statement keywords in examples

Constant width italic
Shows text that should be replaced with user-supplied values; also used in exam-
ples for “pseudocode” meant to be replaced with actual Python code

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Some chapters include text and code in specially labeled sidebars. These capture ex-
planations and examples in an abstract form. They are meant to serve as aids to learning
the first time you go through the material, and useful references later. There are three
kinds of these special sidebars:

S T A T E M E N T

Every kind of Python statement is explained in text and examples and summarized in
a statement box.

S Q L

SQL boxes are used in Chapter 10 to summarize statements from the database language
SQL.

xxiv | Preface

T E M P L A T E

In place of theoretical discussions of the many ways a certain kind of code can be
written, this book presents generalized abstract patterns that show how such code
would typically appear in bioinformatics programs. The idea is that, at least in the early
stages of using what you learn in this book, you can use the templates in your programs,
replacing the abstract parts with the concrete details of your code.

We’d Like to Hear from You
Every example in this book has been tested, but occasionally you may encounter prob-
lems. Mistakes and oversights can occur, and we will gratefully receive details of any
that you find, as well as any suggestions you would like to make for future editions.
You can contact the author and editor at:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://www.oreilly.com/catalog/9780596154509/

To comment or ask technical questions about this book, send email to the following,
quoting the book’s ISBN number (9780596154509):

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our website at:

http://www.oreilly.com

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example

Preface | xxv

http://www.oreilly.com/catalog/9780596154509/
mailto:bookquestions@oreilly.com
http://www.oreilly.com

code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Bioinformatics Programming using Py-
thon by Mitchell L Model. Copyright 2010 Mitchell L Model, 978-0-596-15450-9.”

If you feel your use of code examples falls outside fair use or the permission given here,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you easily
search over 7,500 technology and creative reference books and videos to
find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, and get exclusive access to manuscripts in development and post
feedback for the authors. Copy and paste code samples, organize your favorites, down-
load chapters, bookmark key sections, create notes, print out pages, and benefit from
tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

Acknowledgments
The many O’Reilly people who worked with me to turn my draft into a book were an
impressive lot. Two of them deserve particular thanks. The term “editor” does not come
close to describing the roles Mike Loukides played in this project, among them man-
ager, confidante, and contributor; it was delightful to work with him and to have him
as an audience for my technical musings. Rachel Head, copyeditor extraordinaire, con-
tributed extensively to the clarity and accuracy of this book; I enjoyed working with
her and was amazed by her ability to detect even tiny technical inconsistencies.

My thanks to James Tisdall, whose O’Reilly books Beginning Perl for Bioinformatics
and Mastering Perl for Bioinformatics were the original impetus—though longer ago
than I would like to remember—for my writing a similar book using Python and whose
encouragements I much appreciated. A number of reviewers made helpful comments.
Foremost among them was my friend and colleague Tom Stambaugh, founder of Zeetix
LLC, who gave one draft an extremely close reading that resulted in many changes after
hours of discussion. Though I initially resisted much of what reviewers suggested, I
eventually acceded to most of it, which considerably improved the book.

xxvi | Preface

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://oreilly.com/catalog/9780596000806
http://oreilly.com/catalog/9780596003074/

I thank my students at Northeastern University’s Professional Masters in Bioinformat-
ics program for their patience, suggestions, and error detection while using earlier ver-
sions of the book’s text and code. Special thanks go to Jyotsna Guleria, a graduate of
that program, who wrote test programs for the example code that uncovered significant
latent errors. (Extended versions of the test programs can be found on the book’s
website.) Finally, I hope what I have produced justifies what my friends, family, and
colleagues endured during its creation—especially Janet, my wife, whose unwavering
support during the book’s writing made the project possible.

Preface | xxvii

CHAPTER 1

Primitives

Computer programs manipulate data. This chapter describes the simplest kinds of
Python data and the simplest ways of manipulating them. An individual item of data
is called a value. Every value in Python has a type that identifies the kind of value it is.
For example, the type of 2 is int. You’ll get more comfortable with the concepts of
types and values as you see more examples.

The Preface pointed out that Python is a multiparadigm programming language. The
terms “type” and “value” come from traditional procedural programming. The equiv-
alent object-oriented terms are class and object. We’ll mostly use the terms “type” and
“value” early on, then gradually shift to using “class” and “object” more frequently.
Although Python’s history is tied more to object-oriented programming than to tradi-
tional programming, we’ll use the term instance with both terminologies: each value is
an instance of a particular type, and each object is an instance of a particular class.

Simple Values
Types for some simple kinds of values are an integral part of Python’s implementation.
Four of these are used far more frequently than others: logical (Boolean), integer,
float, and string. There is also a special no-value value called None.

When you enter a value in the Python interpreter, it prints it on the following line:

>>> 90
90
>>>

When the value is None, nothing is printed, since None means “nothing”:

>>> None
>>>

If you type something Python finds unacceptable in some way, you will see a multiline
message describing the problem. Most of what this message says won’t make sense

1

until we’ve covered some other topics, but the last line should be easy to understand
and you should learn to pay attention to it. For example:

>>> Non
Traceback (most recent call last):
 File "<pyshell#7>", line 1, in <module>
 Non
NameError: name 'Non' is not defined
>>>

When a # symbol appears on a line of code, Python ignores it and the rest of the line.
Text following the # is called a comment. Typically comments offer information about
the code to aid the reader, but they can include many other kinds of text: a program-
mer’s notes to fix or investigate something, a reference (documentation entry, book
title, URL, etc.), and so on. They can even be used to “comment out” code lines that
are not working or are obsolete but still of interest. The code examples that follow
include occasional comments that point out important details.

Booleans
There are only two Boolean values: True and False. Their type is bool. Python names
are “case-sensitive,” so true is not the same as True:

>>> True
True
>>> False
False

Integers
There’s not much to say about Python integers. Their type is int, and they can have as
many digits as you want. They may be preceded by a plus or minus sign. Separators
such as commas or periods are not used:

>>> 14
14
>>> −1
−1
>>> 1112223334445556667778889990000000000000 # a very large integer!
1112223334445556667778889990000000000000

Python 2: A distinction is made between integers that fit within a certain
(large) range and those that are larger; the latter are a separate type called
long.

Integers can also be entered in hexadecimal notation, which uses base 16 instead of
base 10. The letters A through F represent the hexadecimal digits 10 through 15.
Hexadecimal notation begins with 0x. For example:

2 | Chapter 1: Primitives

>>> 0x12 # (1 x 16)+ 2
18
>>> 0xA40 # (10 x 16 x 16) + (4 x 16) + 0
2624
>>> 0xFF # (15 x 16) + 15
255

The result of entering a hexadecimal number is still an integer—the only difference is
in how you write it. Hexadecimal notation is used in a lot of computer-related contexts
because each hexadecimal digit occupies one half-byte. For instance, colors on a web
page can be specified as a set of three one-byte values indicating the red, green, and
blue levels, such as FFA040.

Floats
“Float” is an abbreviated version of the term “floating point,” which refers to a number
that is represented in computer hardware in the equivalent of scientific notation. Such
numbers consist of two parts: digits and an exponent. The exponent is adjusted so the
decimal point “floats” to just after the first digit (or just before, depending on the
implementation), as in scientific notation.

The written form of a float always contains a decimal point and at least one digit after
it:

>>> 2.5
2.5

You might occasionally see floats represented in a form of scientific notation, with the
letter “e” separating the base from the exponent. When Python prints a number in
scientific notation it will always have a single digit before the decimal point, some
number of digits following the decimal point, a + or - following the e, and finally an
integer. On input, there can be more than one digit before the decimal point. Regardless
of the form used when entering a float, Python will output very small and very large
numbers using scientific notation. (The exact cutoffs are dependent on the Python
implementation.) Here are some examples:

>>> 2e4 # Scientific notation, but...
20000.0 # within the range of ordinary floats.
>>> 2e-2
0.02
>>>.0001 # Within the range of ordinary floats
0.0001 # so printed as an ordinary float.
>>>.00001 # An innocent-looking float that is
1e-05 # smaller than the lower limit, so e.
>>> 1002003004005000. # A float with many digits that is
1002003004005000.0 # smaller than the upper limit, so no e.
>>> 100200300400500060. # Finally, a float that is larger than the
1.0020030040050006e+17 # upper limit, so printed with an e.

Simple Values | 3

Strings
Strings are series of Unicode* characters. Their type is str. Many languages have a
separate “character” type, but Python does not: a lone character is simply a string of
length one. A string is enclosed in a pair of single or double quotes. Other than style
preference, the main reason to choose one or the other kind of quote is to make it
convenient to include the other kind inside a string.

If you want a string to span multiple lines, you must enclose it in a matched pair of
three single or double quotes. Adding a backslash in front of certain characters causes
those characters to be treated specially; in particular, '\n' represents a line break and
'\t' represents a tab.

Python 2: Strings are composed of one-byte characters, not Unicode
characters; there is a separate string type for Unicode, designated by
preceding the string’s opening quote with the character u.

We will be working with strings a lot throughout this book, especially in representing
DNA/RNA base and amino acid sequences. Here are the amino acid sequences for
some unusually small bacterial restriction enzymes:†

>>> 'MNKMDLVADVAEKTDLSKAKATEVIDAVFA'
MNKMDLVADVAEKTDLSKAKATEVIDAVFA
>>> "AARHQGRGAPCGESFWHWALGADGGHGHAQPPFRSSRLIGAERQPTSDCRQSLQQSPPC"
AARHQGRGAPCGESFWHWALGADGGHGHAQPPFRSSRLIGAERQPTSDCRQSLQQSPPC
>>> """MKQLNFYKKN SLNNVQEVFS YFMETMISTN RTWEYFINWD KVFNGADKYR NELMKLNSLC GS
LFPGEELK SLLKKTPDVV KAFPLLLAVR DESISLLD"""
'MKQLNFYKKN SLNNVQEVFS YFMETMISTN RTWEYFINWD KVFNGADKYR NELMKLNSLC GS
LFPGEELK\nSLLKKT PDVV KAFPLLLAVR DESISLLD'
>>> '''MWNSNLPKPN AIYVYGVANA NITFFKGSDI LSYETREVLL KYFDILDKDE RSLKNALKD LEN PFGFAPYI
RKAYEHKRNF LTTTRLKASF RPTTF'''
'MWNSNLPKPN AIYVYGVANA NITFFKGSDI LSYETREVLL KYFDILDKDE RSLKNALKDL EN\nPFGF
APYI RKAYEHKRNF LTTTRLKASF RPTTF'

There are three situations that cause input or output to begin on a new line:

• You hit Return as you are typing inside a triple-quoted string.

• You keep typing characters until they “wrap around” to the next line before you
press Return.

• The interpreter responds with a string that is too long to fit on one line.

* Unicode characters occupy between one and four bytes each in memory, depending on several factors. See
http://docs.python.org/3.1/howto/unicode.html for details (in particular, http://docs.python.org/3.1/howto/
unicode.html#encodings). For general information about Unicode outside of Python, consult http://www
.unicode.org/standard/WhatIsUnicode.html, http://www.unicode.org/standard/principles.html, and http://
www.unicode.org/resources.

† Data for these examples was obtained from the “Official REBASE Homepage” site. Files in formats used by
various applications can be downloaded from http://rebase.neb.com/rebase/rebase.files.html.

4 | Chapter 1: Primitives

http://docs.python.org/3.1/howto/unicode.html
http://docs.python.org/3.1/howto/unicode.html#encodings
http://docs.python.org/3.1/howto/unicode.html#encodings
http://www.unicode.org/standard/WhatIsUnicode.html
http://www.unicode.org/standard/WhatIsUnicode.html
http://www.unicode.org/standard/principles.html
http://www.unicode.org/resources
http://www.unicode.org/resources
http://rebase.neb.com/rebase/rebase.files.html

Only the first one is “real.” The other two are simply the effect of output “line wrapping”
like what you would see in text editors or email programs. In the second and third
situations, if you change the width of the window the input and output strings will be
“rewrapped” to fit the new width. The first case does not cause a corresponding line
break when the interpreter prints the string—the Return you typed becomes a '\n' in
the string.

Normally, Python uses a pair of single quotes to enclose strings it prints. However, if
the string contains single quotes (and no double quotes), it will use double quotes. It
never prints strings using triple quotes; instead, the line breaks typed inside the string
become '\n's.

Expressions
An operator is a symbol that indicates a calculation using one or more operands. The
combination of the operator and its operand(s) is an expression.

Numeric Operators
A unary operator is one that is followed by a single operand. A binary operator is one
that appears between two operands. It isn’t necessary to surround operators with
spaces, but it is good style to do so. Incidentally, when used in a numeric expression,
False is treated as 0 and True as 1.

Plus and minus can be used as either unary or binary operators:

>>> −1 # unary minus
-1
 >>> 4 + 2
6
>>> 4 − 1
3
>>> 4 * 3
12

The power operator is ** (i.e., nk is written n ** k):

>>> 2 ** 10
1024

There are three operators for the division of one integer by another: / produces a
float, // (floor division) an integer with the remainder ignored, and % (modulo) the
remainder of the floor division. The formal definition of floor division is “the largest
integer not greater than the result of the division”:

>>> 11 / 4
2.75
>>> 11 // 4 # "floor" division
2

Expressions | 5

>>> 11 % 4 # remainder of 11 // 3
3

Python 2: The / operator performs floor division when both operands
are ints, but ordinary division if one or both operands are floats.

Whenever one or both of the operators in an arithmetic expression is a float, the result
will be a float:

>>> 2.0 + 1
3.0
>>> 12 * 2.5
30.0
>>> 7.5 // 2
3.0

While the value of floor division is equal to an integer value, its type may
not be integer! If both operands are ints, the result will be an int, but if
either or both are floats, the result will be a float that represents an
integer.

The result of an operation does not always print the way you might expect. Consider
the following numbers:

>>> .009
.009
>>> .01
.01
>>> .029
.029
>>> .03
.03
>>> .001
.001

So far, everything is as expected. If we subtract the first from the second and the third
from the fourth, we should in both cases get the result .001. Typing in .001 also gives
the expected result. However, typing in the subtraction operations does not:

>>> .03 - .029
0.0009999999999999974
>>> .01 - .009
0.0010000000000000009

Strange results like this arise from two sources:

• For a given base, only some rational numbers have “exact” representations—that
is, their decimal-point representations terminate after a finite number of digits. The
rest end in an infinitely repeating sequence of digits (e.g., 1/3 = 0.3333333...).

6 | Chapter 1: Primitives

• A computer stores rational numbers in a finite number of binary digits; the binary
representation of a rational number may in fact have an exact binary representa-
tion, but one that would require more digits than are used.

A rational number is one that can be expressed as a/b, where b is not
zero; the decimal-point expression of a rational number in a given num-
ber system either has a finite number of digits or ends with an infinitely
repeating sequence of digits. There’s nothing wrong with the binary
system: whatever base is used, some real numbers have exact represen-
tations and others don’t. Just as only some rational numbers have exact
decimal representations, only some rational numbers have exact binary
representations.

As you can see from the results of the two division operations, the difference between
the ideal rational number and its actual representation is quite small, but in certain
kinds of computations the differences do accumulate.‡

Here’s an early lesson in an extremely important programming principle: don’t trust
what you see! Everything printed in a computing environment or by a programming
language is an interpretation of an internal representation. That internal representation
may be manipulated in ways that are intended to be helpful but can be misleading. In
the preceding example, 0.009 in fact does not have an exact binary representation. In
Python 2, it would have printed as 0.0089999999999999993, and 0.003 would have prin-
ted as 0.0089999999999999993. The difference is that Python 3 implements a more so-
phisticated printing mechanism for rational numbers that makes some of them look as
they would have had you typed them.

Logical Operations
Python, like other programming languages, provides operations on “truth values.”
These follow the mathematical laws of Boolean logic. The classic Boolean operators
are not, and, and or. In Python, those are written just that way rather than using special
symbols:

>>> not True
False
>>> not False
True
>>> True and True
True
>>> True and False
False
>>> True or True
True

‡ A computer science field called “numerical analysis” provides techniques for managing the accumulation of
such errors in complex or repetitive computations.

Expressions | 7

>>> True or False
True
>>> False and False
False
>>> False or True

The results of and and or operations are not converted to Booleans. For
and expressions, the first operand is returned if it is false; otherwise, the
second operand is returned. For or expressions, the first operand is re-
turned if it is true; otherwise, the second operand is returned. For
example:

>>> '' and 'A'
'' # Not False: '' is a false value
>>> 0 and 1 or 2 # Read as (0 and 1) or 2
2 # Not True: 2 is a false value

While confusing, this can be useful; we’ll see some examples later.

The operands of and and or can actually be anything. None, 0, 0.0, and the empty string,
as well as the other kinds of “empty” values explained in Chapter 3, are considered
False. Everything else is treated as True.

To avoid repetition and awkward phrases, this book will use “true” and
“false” in regular typeface to indicate values considered to be True and
False, respectively. It will only use the capitalized words True and
False in the code typeface when referring to those specific Boolean
values.

There is one more logical operation in Python that forms a conditional expression.
Written using the keywords if and else, it returns the value following the if when the
condition is true and the value following the else when it is false. We’ll look at some
more meaningful examples a bit later, but here are a few trivial examples that show
what conditional expressions look like:

>>> 'yes' if 2 - 1 else 'no'
'yes'
>>> 'no' if 1 % 2 else 'no'
'no'

In addition to the Boolean operators, there are six comparison operators that return
Boolean values: ==, !=, <, <=, >, and >=. These work with many different kinds of
operands:

>>> 2 == 5 // 2
True
>>> 3 > 13 % 5
False
>>> 'one' < 'two'
True

8 | Chapter 1: Primitives

>>> 'one' != 'one'
False

You may already be familiar with logical and comparison operations from other com-
puter work you’ve done, if only entering spreadsheet formulas. If these are new to you,
spend some time experimenting with them in the Python interpreter until you become
comfortable with them. You will use them frequently in code you write.

String Operations
There are four binary operators that act on strings: in, not in, +, and *. The first three
expect both operands to be strings. The last requires the other operator to be an integer.
A one-character substring can be extracted with subscription and a longer substring
by slicing. Both use square brackets, as we’ll see shortly.

String operators

The in and not in operators test whether the first string is a substring of the second
one (starting at any position). The result is True or False:

>>> 'TATA' in 'TATATATATATATATATATATATA'
True
>>> 'AA' in 'TATATATATATATATATATATATA'
False
>>> 'AA' not in 'TATATATATATATATATATATATA'
True

A new string can be produced by concatenating two existing strings. The result is a
string consisting of all the characters of the first operand followed by all the characters
of the second. Concatenation is expressed with the plus operator:

>>> 'AC' + 'TG'
'ACTG'
>>> 'aaa' + 'ccc' + 'ttt' + 'ggg'
'aaaccctttggg'

A string can be repeated a certain number of times by multiplying it by an integer:

>>> 'TA' * 12
'TATATATATATATATATATATATA'
>>> 6 * 'TA'
'TATATATATATA'

Subscription

Subscription extracts a one-character substring of a string. Subscription is expressed
with a pair of square brackets enclosing an integer-valued expression called an index.
The first character is at position 0, not 1:

>>> 'MNKMDLVADVAEKTDLSKAKATEVIDAVFA'[0]
'M'
>>> 'MNKMDLVADVAEKTDLSKAKATEVIDAVFA'[1]
'N'

Expressions | 9

The index can also be negative, in which case the index is counted from the end of the
string. The last character is at index −1:

>>> 'MNKMDLVADVAEKTDLSKAKATEVIDAVFA'[−1]
'A'
>>> 'MNKMDLVADVAEKTDLSKAKATEVIDAVFA'[−5]
'D'
>>> 'MNKMDLVADVAEKTDLSKAKATEVIDAVFA'[7 // 2]
'K'

As Figure 1-1 shows, starting at 0 from the beginning or end of a string, an index can
be thought of as a label for the character to its right. The end of a string is the position
one after the last element. If you are unfamiliar with indexing in programming lan-
guages, this is probably an easier way to visualize it than if you picture the indexes as
aligned with the characters.

Figure 1-1. Index positions in strings

Attempting to extract a character before the first or after the last causes an error, as
shown here:

>>> 'MNKMDLVADVAEKTDLSKAKATEVIDAVFA'[50]
Traceback (most recent call last):
 File "<pyshell#14>", line 1, in <module>
 'MNKMDLVADVAEKTDLSKAKATEVIDAVFA'[50]
IndexError: string index out of range

The last line reports the nature of the error, while the next-to-last line shows the input
that caused the error.

Slicing

Slicing extracts a series of characters from a string. You’ll use it often to clearly and
concisely designate parts of strings. Figure 1-2 illustrates how it works.

The character positions of a slice are specified by two or three integers inside square
brackets, separated by colons. The first index indicates the position of the first character
to be extracted. The second index indicates where the slice ends. The character at that
position is not included in the slice. A slice [m:n] would therefore be read as “from

10 | Chapter 1: Primitives

character m up to but not including character n.” (We’ll explore the use of the third
index momentarily). Here are a few slicing examples:

>>> 'MNKMDLVADVAEKTDLSKAKATEVIDAVFA'[1:4]
'NKM'
>>> 'MNKMDLVADVAEKTDLSKAKATEVIDAVFA'[4:-1]
'DLVADVAEKTDLSKAKATEVIDAVF'
>>> 'MNKMDLVADVAEKTDLSKAKATEVIDAVFA'[-5:-4]
'D'

Either of the indexes can be positive, indicating “from the beginning,” or negative,
indicating “from the end.” If neither of the two numbers is negative, the length of the
resulting string is the difference between the second and the first. If either (or both) is
negative, just add it to the length of the string to convert it to a nonnegative number.

What if the two numbers are the same? For example:

>>> 'MNKMDLVADVAEKTDLSKAKATEVIDAVFA'[5:5]
''

Since this reads as “from character 5 up to but not including character 5,” the result is
an empty string. Now, what about character positions that are out of order—i.e., where
the first character occurs after the second? This results in an empty string too:

>>> 'MNKMDLVADVAEKTDLSKAKATEVIDAVFA'[-4:-6]
''

For subscription, the index must designate a character in the string, but the rules for
slicing are less constraining.

When the slice includes the beginning or end of the string, that part of the slice notation
may be omitted. Note that omitting the second index is not the same as providing −1
as the second index—omitting the second index says to go up to the end of the string,
one past the last character, whereas −1 means go up to the penultimate character (i.e.,
up to but not including the last character):

>>> 'MNKMDLVADVAEKTDLSKAKATEVIDAVFA'[:8]
'MNKMDLVADVAEKTDLSKAKAT'
>>> 'MNKMDLVADVAEKTDLSKAKATEVIDAVFA'[9:]

Figure 1-2. String slicing

Expressions | 11

'VAEKTDLSKAKATEVIDAVFA'
>>> 'MNKMDLVADVAEKTDLSKAKATEVIDAVFA'[9:-1]
'VAEKTDLSKAKATEVIDAVF'

In fact, both indexes can be omitted, in which case the entire string is selected:

>>> 'MNKMDLVADVAEKTDLSKAKATEVIDAVFA'[:]
'MNKMDLVADVAEKTDLSKAKATEVIDAVFA'

Finally, as mentioned earlier, a slice operation can specify a third number, also follow-
ing a colon. This indicates a number of characters to skip after each one that is included,
known as a step. When the third number is omitted, as it often is, the default is 1,
meaning don’t skip any. Here’s a simple example:

>>> 'MNKMDLVADVAEKTDLSKAKATEVIDAVFA'[0:9:3]
'MMV'

This example’s result was obtained by taking the first, fourth, and seventh characters
from the string. The step can be also be a negative integer. When the step is negative,
the slice takes characters in reverse order. To get anything other than an empty string
when you specify a negative step, the start index must be greater than the stop index:

>>> 'MNKMDLVADVAEKTDLSKAKATEVIDAVFA'[16:0:-4]
'SKDD'

Notice that the first character of the string is not included in this example’s results. The
character at the stop index is never included. Omitting the second index so that it
defaults to the beginning of the string—beginning, not end, because the step is
negative—results in a string that does include the first character, assuming the step
would select it. Changing the previous example to omit the 0 results in a longer string:

>>> 'MNKMDLVADVAEKTDLSKAKATEVIDAVFA'[16::-4]
'SKDDM'

Omitting the first index when the step is negative means start from the end of the string:

>>> 'MNKMDLVADVAEKTDLSKAKATEVIDAVFA'[:25:-1]
'AFVA'

A simple but nonobvious slice expression produces a reversed copy of a string:
s[::-1]. This reads as “starting at the end of the string, take every character up to and
including the first, in reverse order”:

>>> 'MNKMDLVADVAEKTDLSKAKATEVIDAVFA'[::-1]
'AFVADIVETAKAKSLDTKEAVDAVLDMKNM'

Calls
We’ll look briefly at calls here, deferring details until later. A call is a kind of expression.

Function calls

The simplest kind of call invokes a function. A call to a function consists of a function
name, a pair of parentheses, and zero or more argument expressions separated by

12 | Chapter 1: Primitives

commas. The function is called, does something, then returns a value. Before the func-
tion is called the argument expressions are evaluated, and the resulting values are
passed to the function to be used as input to the computation it defines. An argument
can be any kind of expression whose result has a type acceptable to the function. Those
expressions can also include function calls.

Each function specifies the number of arguments it is prepared to receive. Most func-
tions accept a fixed number—possibly zero—of arguments. Some accept a fixed num-
ber of required arguments plus some number of optional arguments. We will follow
the convention used in the official Python documentation, which encloses optional
arguments in square brackets. Some functions can even take an arbitrary number of
arguments, which is shown by the use of an ellipsis.

Python has a fairly small number of “built-in” functions. Some of the more frequently
used are:

len(arg)
Returns the number of characters in arg (although it’s actually more general than
that, as will be discussed later)

print(args...[, sep=seprstr][, end=endstr])
Prints the arguments, of which there may be any number, separating each by a
seprstr (default ' ') and omitting certain technical details such as the quotes sur-
rounding a string, and ending with an endstr (default '\n')

Python 2: print is a statement, not a function. There is no way to specify
a separator. The only control over the end is that a final comma sup-
presses the newline.

input(string)
Prompts the user by printing string, reads a line of input typed by the user (which
ends when the Return or Enter key is pressed), and returns the line as a string

Python 2: The function’s name is raw_input.

Here are a few examples:

>>> len('TATA')
4
>>> print('AAT', 'AAC', 'AAG', 'AAA')
AAT AAC AAG AAA
>>> input('Enter a codon: ')
Enter a codon: CGC
'CGC'
>>>

Expressions | 13

Here are some common numeric functions in Python:

abs(value)
Returns the absolute value of its argument

max(args...)
Returns the maximum value of its arguments

min(args...)
Returns the minimum value of its arguments

Types can be called as functions too. They take an argument and return a value of the
type called. For example:

str(arg)
Returns a string representation of its argument

int(arg)
Returns an integer derived from its argument

float(arg)
Returns a float derived from its argument

bool(arg)
Returns False for None, zeros, empty strings, etc., and True otherwise; rarely used,
because other types of values are automatically converted to Boolean values
wherever Boolean values are expected

Here are some examples of these functions in action:

>>> str(len('TATA'))
'4'
>>> int(2.1)
2
>>> int('44')
44
>>> bool('')
False
>>> bool(' ')
True
>>> float(3)
3.0

Using int is the only way to guarantee that the result of a division is an
integer. As noted earlier, // is the floor operator and results in a float if
either operand is a float.

There is a built-in help facility for use in the Python interpreter. Until we’ve explored
more of Python, much of what the help functions print will probably appear strange
or even unintelligible. Nevertheless, the help facility is a useful tool even at this early
stage. You can use either of these commands to access it:

14 | Chapter 1: Primitives

help()
Enters the interactive help facility

help(x)
Prints information about x, which can be anything (a value, a type, a function, etc.);
help for a type generally includes a long list of things that are part of the type’s
implementation but not its general use, indicated by names beginning with
underscores

Occasionally your code needs to test whether a value is an instance of a certain type;
for example, it may do one thing with strings and another with numbers. You can do
this with the following built-in function:

isinstance(x, sometype)
Returns True if x is an instance of the type (class) sometype, and False otherwise

Method calls

Many different types of values can be supplied as arguments to Python’s built-in func-
tions. Most functions, however, are part of the implementation of a specific type. These
are called methods. Calling a method is just like calling a function, except that the first
argument goes before the function name, followed by a period. For example, the
method count returns the number of times its argument appears in the string that pre-
cedes it in the call. The following example returns 2 because the string 'DL' appears
twice in the longer string:

>>> 'MNKMDLVADVAEKTDLSKAKATEVIDAVFA'.count('DL')
2

Except for having their first argument before the function name, calls to methods have
the same features as calls to ordinary functions: optional arguments, indefinite number
of arguments, etc. Here are some commonly used methods of the str type:

string1.count(string2[, start[, end]])
Returns the number of times string2 appears in string1. If start is specified, starts
counting at that position in string1; if end is also specified, stops counting before
that position in string1.

string1.find(string2[, start[, end]])
Returns the position of the last occurrence of string2 in string1; −1 means
string2 was not found in string1. If start is specified, starts searching at that
position in string1; if end is also specified, stops searching before that position in
string1.

string1.startswith(string2[, start[, end]])
Returns True or False according to whether string2 starts with string1. If start is
specified, uses that as the position at which to start the comparison; if end is also
specified, stops searching before that position in string1.

Expressions | 15

string1.strip([string2])
Returns a string with all characters in string2 removed from its beginning and end;
if string2 is not specified, all whitespace is removed.

string1.lstrip([string2])
Returns a string with all characters in string2 removed from its beginning; if
string2 is not specified, all whitespace is removed.

string1.rstrip([string2])
Returns a string with all characters in string2 removed from its end; if string2 is
not specified, all whitespace is removed.

Here are some examples of method calls in action:

>>> 'MNKMDLVADVAEKTDLSKAKATEVIDAVFA'.find('DL')
4
>>> 'MNKMDLVADVAEKTDLSKAKATEVIDAVFA'.find('DL', 5)
14
>>> 'MNKMDLVADVAEKTDLSKAKATEVIDAVFA'.find('DL', 5, 12)
-1
>>> 'MNKMDLVADVAEKTDLSKAKATEVIDAVFA'.startswith('DL')
False
>>> 'MNKMDLVADVAEKTDLSKAKATEVIDAVFA'.startswith('DL', 4)
True

The restriction enzyme with the amino acid sequence in these examples recognizes the
site with the base sequence TCCGGA. It’s easy enough to find the first location in a
DNA base sequence where this occurs:

>>> 'AAAAATCCCGAGGCGGCTATATAGGGCTCCGGAGGCGTAATATAAAA'.find('TCCGGA')
27
>>>

If the recognition site did not occur in the sequence, find would have returned −1.

Compound Expressions
The examples of operator expressions that we’ve looked at thus far have had only a
single operator. However, just as in traditional algebra, operators can be compounded
in a series. For example:

>>> 2 * 3 + 4 − 1
9

This is read as “2*3 is 6, 6+4 is 10, and 10−1 is 9.” The story isn’t quite that simple,
though. Consider the following example:

>>> 4 + 2 * 3 − 1
9

Reading from left to right, we’d have “4+2 is 6, 6*3 is 18, 18−1 is 17,” not 9. So why
do we get 9 as the result? Programming languages incorporate operator precedence
rules that determine the order in which operations in a series should be performed. Like

16 | Chapter 1: Primitives

most programming languages, Python performs multiplications and divisions first and
then goes back and performs additions and subtractions.

You can indicate your intended interpretation of a sequence of operations by sur-
rounding parts of an expression with parentheses. Everything inside a pair of paren-
theses will be evaluated completely before the result is used in another operation. For
instance, parentheses could be used as follows to make the result of the preceding
example be 17:

>>> (4 + 2) * 3 − 1
17

Comparisons can be combined to form “between” expressions:

>>> 1 < 4 < 6
True
>>> 2 <= 2 < 5
True
>>> 2 < 2 < 5
False

Strings can participate in sequences of operations:

>>> 'tc' in ('ttt' + 'ccc' + 'ggg' + 'aaa')
True
>>> 'tc' in 't' * 3 + 'c' * 3 + 'g' * 3 + 'a' * 3
True

The second variation demonstrates that * has a higher precedence than +, and + has a
higher precedence than in. Don’t hesitate to use parentheses if you have any doubt
about the interpretation of operation series.

Here is a list of the operators mentioned in this chapter, ordered from highest prece-
dence to lowest:

• Calls

• Slicings

• Subscriptions

• Exponentiation (**)

• Unary +, -

• Multiplication, division, and remainder (*, /, //, %)

• Addition and subtraction (+, -)

• Comparisons (==, !=, <, <=, >, >=)

• Membership (in, not in)

• Boolean not (not)

• Boolean and (and)

• Boolean or (or)

Expressions | 17

Tips, Traps, and Tracebacks

Tips
• Don’t trust what you see! Everything printed out in a computing environment or

by a programming language is an interpretation of an internal representation. The
visible interpretation may not be what you anticipated, even though the internal
representation is actually the result you expected.

Statements and expressions

• The results of and and or expressions are not converted to Booleans. For and ex-
pressions, the first operand is returned if it is false, and otherwise the second op-
erand is returned. For or expressions, the first operand is returned if it is true, and
otherwise the second operand is returned. For example, '' and 'A' evaluates to
'', not False, while '' or 'A' evaluates to 'A', not True. We’ll see examples later
of idioms based on this behavior.

• Function calls are both expressions and statements.

• Experiment with using the sep and end keyword arguments to print. They give you
more control over your output. The default is to separate every argument by a space
and end with a newline.

• A method call is simply a function call with its first argument moved before the
function name, followed by a period.

• If you are ever in doubt about the order in which an expression’s operations are
performed, use parentheses to indicate the ordering you want. Parentheses can
sometimes help make the code more readable. They are never required in operation
expressions.

Running Python interactively

• Start the Python interpreter from the command line§ by typing python at a com-
mand prompt. Here are a few points to keep in mind:

— If the initial message you see when Python starts indicates that its version num-
ber begins with a 2, exit and try typing python3. If that doesn’t work, try
including a version number (e.g., python3.1 or python3.2).

— If that doesn’t work, either you don’t have Python 3 installed or it’s not on the
path used in your command-line environment. If you don’t know how to add

§ Command line is a term that refers to an interactive terminal-like window: a Unix shell, OS X Terminal
window, or Windows Command window. The command line prompts for input and executes the commands
you type.

18 | Chapter 1: Primitives

it, find someone knowledgeable about the command-line environment in your
operating system to help you resolve the problem.

• The way to exit Python follows each platform’s usual conventions: Ctrl-D on Unix-
based systems, Ctrl-Z on Windows variants. You can also type quit().

• In Unix and OS X shells, depending on how Python was installed, you may be able
to edit the current line you are typing to Python and navigate back and forth in the
history of inputs.‖ After you’ve typed at least one line to Python, try Ctrl-P or the
up arrow. If that changes the input to what you typed previously, the editing ca-
pability is functioning. You can use Ctrl-P or the down arrow to move to a later
line in the input history. Following are some editing operations that work on the
current line:

Ctrl-A
Go to the beginning of the line.

Ctrl-E
Go to the end of the line.

Ctrl-B or left arrow
Move one character to the left.

Ctrl-F or right arrow
Move one character to the right.

Backspace
Delete the preceding character.

Ctrl-D
Delete the next character.

Ctrl-K
Delete the rest of the line after the cursor.

Ctrl-Y
“Yank” the last killed text into the line at the location of the cursor.

Ctrl-_ (underscore)
Undo; can be repeated.

Ctrl-R
Search incrementally for a preceding input line.

Ctrl-S
Search incrementally for a subsequent input line.

‖ If not, the Python you are using was built without the readline system (not Python) library. If you configured,
compiled, and installed Python yourself, you probably know how to get the readline library, install it, and
repeat the configure-compile-install process. If not, you will have no idea what any of this is about, and there
probably isn’t anything you can do about it.

Tips, Traps, and Tracebacks | 19

Return
Give the current line to the interpreter. Similar functionality may be available
when Python is run in a Windows command window.

Traps
• The value of a floor division (//) equals an integer but has the type int only if both

operands were ints; otherwise, the value is a float that prints with a 0 after the
decimal point.

• The result of an operation with a float operand may produce a result very slightly
more or very slightly less than its “true” mathematical equivalent.

• Remember that the first element of a string is at index 0 and the last at −1.

• The index in a string indexing expression must be greater than or equal to 0 and
less than the length of the string. (The restriction does not apply to slices.)

• In a function call with more than one argument, every argument except the last
must be followed by a comma. Usually omitting a comma will cause syntax errors,
but in some situations you will accidentally end up with a syntactically correct
expression that is not what you intended.

• Omitting a right parenthesis that closes a function call’s argument list results in a
syntax error message pointing to the line after the one containing the function call.

• Function and method calls with no arguments must still be followed by (an empty
pair of) parentheses. Failing to include them will not lead to a syntax error, because
the value of the name of the function is the function itself—a legitimate value—
but it will lead to very unexpected results and, often, runtime errors.

Tracebacks
Representative error messages include:

NameError: 'Non' is not defined
Python doesn’t recognize a name (more on this in the next chapter).

IndexError: string index out of range
For a string of length N, an index (i.e., the value between square brackets) must be
in the range -N <= index < N-1.

SyntaxError
Python syntax violation.

ZeroDivisionError
/, //, or % with 0 as the second operand.

20 | Chapter 1: Primitives

CHAPTER 2

Names, Functions, and Modules

In this chapter we’ll see how to name values, define new functions, and incorporate
optional software from the Python library. All of these operations rest on Python mech-
anisms for naming and interpreting names.

A Python name consists of an arbitrary number of letters, underscores, and digits. The
only restriction is that the first character must not be a digit (otherwise Python would
interpret the digit as the beginning of a number). Names beginning with two under-
scores are special in one of several ways that will be explained later, so names you
choose will almost always begin with a letter.

A name is used to refer to something—a primitive value, a function, or any of a number
of other possibilities. A name is not the same as a string. A name refers to something,
whereas a string has no intrinsic meaning to Python. Unlike strings, names are not
enclosed in quotes. Giving a name to a value is called binding. One value may have
multiple names bound to it, as Figure 2-1 illustrates.

Figure 2-1. Names bound to objects

The same name can mean different things in different contexts. The technical term for
such a context is a namespace. The types and built-in functions we saw in the previous

21

chapter are all part of the global namespace. A separate namespace is associated with
each type, such as str. This enables each type to have its own version of common
methods, such as count and find. Which version gets executed is determined by the
type of the value through which the method is called. We’ll see more details about all
of this later, but Figure 2-2 should give you an idea of how namespaces in Python work.

Figure 2-2. Names in different namespaces bound to objects

We’ve already seen some kinds of things that have names: types such as str, functions
such as len, and methods such as str.count. Here’s what Python responds with when
given these names as input:

>>> str
<class 'str'>
>>> len
<built-in function len>
>>> str.count
<method 'count' of 'str' objects>

In Python, class is a synonym for “type” and object is a synonym for “value.”* The period
in str.count tells Python to look for the named method in the class str. 'actg'.count
has a similar effect, because the type of 'actg' is str. The statement “every value has
a type” can be rephrased as “every object is an instance of a class.” Classes and instances
form the basis of object-oriented programming. Built-in types and types loaded from
Python libraries take advantage of Python’s object-oriented features. Chapter 5 dis-
cusses how to use those to build your own classes, but until then all we’ll need is the
little bit of object-oriented vocabulary just introduced.

* Older versions of Python did distinguish classes from types and objects from values.

22 | Chapter 2: Names, Functions, and Modules

Assigning Names
A Python program consists of a series of statements. Statements do not produce values
and cannot be used as expressions.

S T A T E M E N T

Assignment
An assignment statement binds a name to an object. Assignment is denoted by a single
equals sign:

name = value

All an assignment statement does is name a value. That value can also have other names.
Assigning a name to a value never changes that value, or any of its other names. Here
are some examples of assignment statements and their effects:

>>> aaseq1 = 'MNKMDLVADVAEKTDLSKAKATEVIDAVFA' # no value printed
>>> aaseq2 = 'AARHQGRGAPCGESFWHWALGADGGHGHAQPPFRSSRLIGAERQPTSDCRQSLQ'
>>> aaseq1
'MNKMDLVADVAEKTDLSKAKATEVIDAVFA'
>>> len(aaseq2)
54
>>> aaseq3 # never bound
Traceback (most recent call last):
 File "<pyshell#65>", line 1, in <module>
 aaseq3
NameError: name 'aaseq3' is not defined
>>> aaseq3 = aaseq1
>>> aaseq3
'MNKMDLVADVAEKTDLSKAKATEVIDAVFA'

Assignment statements may be chained together. This feature is used primarily to bind
several names to some initial value:

>>> a = b = c = 0

Another variation on assignment statements is a bit of shorthand for arithmetic
updates. Statements like the following are so common:

>>> a = a + 1

that Python provides a shorthand for them:

>>> a += 1

This is called an augmented assignment statement. The operation of an augmented as-
signment statement can be any of the arithmetic operations shown in the previous
chapter: +=, -=, *=, /=, //=, %=, and **=.

Assigning Names | 23

Defining Functions
New functions are defined with function definition statements. A definition is a com-
pound statement, meaning it comprises more than one line of code. We will see other
kinds of compound statements later, especially in Chapter 4. The first line of each
compound statement ends with a colon. Subsequent lines are indented relative to the
first.

The standard practice is to indent by four spaces, and you should adhere to that rule.
Also, do not use tab characters since they confuse Python’s indentation computations.

S T A T E M E N T

Function Definition
Definition statements have the general form:

def name(parameter-list):
 body

where body is one or more statements, each indented relative to the line with the def.
The parameter-list is a (possibly empty) list of names. If there is more than one
parameter in the list, they are separated by commas.

When one function calls another, Python records the call from the first function and
passes control to the second. If that one calls a third, its call would be recorded and
control passed to the third. The record of a call includes the location of the function
call in the caller’s code so that when a function regains control it can continue executing
the code following the function call. Figure 2-3 illustrates how function calling works,
with the curved arrows representing the call records.

Some functions are intended to return a value and some aren’t. A return statement is
used to return a value from a function. The word return is usually followed by an
expression whose value is returned as the value of the function. Occasionally a
return is not followed by an expression, in which case the value returned is None. All
functions return a value, whether or not they contain a return statement: if the function
finishes executing without encountering a return, it returns None.

S T A T E M E N T

Function Return
return exits the currently executing function, returning value to its caller. value may
be omitted, in which case None is returned.

return value

24 | Chapter 2: Names, Functions, and Modules

If you call a function from the interpreter or an IDE while you are de-
veloping code and nothing is printed, that means your function returned
None. A very common reason for this is that you simply forgot to include
a return statement in the function definition. Even experienced Python
programmers stumble over this from time to time.

When a function returns, the function that called it continues executing at the point in
its code following the call. This happens whether the function returns by executing all
its statements or by executing a return statement. Once the function returns, Python
no longer needs the information associated with its call. Figure 2-4 illustrates the returns
from the functions shown in Figure 2-3.

Figure 2-3. Function calls

Defining Functions | 25

Figure 2-4. Function returns

When you start working on a function, you might not know what to put in the body
until you’ve done some more experimentation. A function’s body must contain at least
one statement. The do-nothing statement that is equivalent to the no-value None is the
simple statement pass.

S T A T E M E N T

Do Nothing
The pass statement does nothing. It is used as a placeholder in compound statements
when you haven’t yet decided what to actually put there.

pass

26 | Chapter 2: Names, Functions, and Modules

A minimal function definition would therefore be:

def fn():
 pass

Now fn can be called, though it does nothing and returns nothing:

>>> fn()
>>>

Words such as def, return, and pass are known as keywords or, because
programs cannot use them as names, reserved words. True, False, and
None are keywords, as are operators such as and, or, not, and in. A com-
plete list of keywords is found in Table A-1 in Appendix A.

Function Parameters
When a function is called, Python evaluates each of the call’s argument expressions.
Then it assigns the first parameter name to the first argument’s value, the second pa-
rameter name to the second value, and so on, for however many parameters there are.
Once all the parameter names have been assigned, the statements in the function body
are executed. Example 2-1 shows a definition based on a simple use of str.find.

Example 2-1. A simple function for recognizing a binding site

def recognition_site(base_seq, recognition_seq):
 return base_seq.find(recognition_seq)

Each function has a separate namespace associated with it. The function’s parameters
go in that namespace. Assignment statements in the function body also create bindings
within the function’s namespace. Therefore, a name bound in the interpreter and a
name with the same spelling bound in a function definition are in different namespaces
and have nothing to do with each other. Example 2-2 illustrates these details.

Example 2-2. Some function definition details

def validate_base_sequence(base_sequence):
 seq = base_sequence.upper()
 return len(seq) == (seq.count('T') + seq.count('C') +
 seq.count('A') + seq.count('G'))

>>> seq = 'AAAT'
>>> validate_base_sequence('tattattat')
True
>>> seq
'AAAT'

Line begins the definition of a function called validate_base_sequence that has one
parameter, base_sequence. Line assigns the name seq to the result of calling the
method upper on the value of base_sequence. The purpose of line is to simplify the
rest of the definition by ensuring that all the base characters will be uppercase even if

Defining Functions | 27

the function is called with a lowercase string. By assigning a name to the result of
upper, we avoid having to repeat that call four times later.

Lines and compare the length of the sequence string to the sum of the number of
Ts, Cs, As, and Gs in the sequence string. If the length is equal to that sum, the function
returns True; otherwise, there is a character in the parameter sequence that isn’t a valid
base character, and the result will be False.

Note that the right side of the equality expression beginning on line continues on
line . This is because it begins with a left parenthesis, and Python won’t consider it
complete until it sees a matching right parenthesis. Without the opening parenthesis,
the interpreter would produce an error message as soon as it encountered the end of
line . Line breaks can appear within a parenthesized expression, giving you more
control over how you format long expressions.

Another way to continue a long line without using parentheses is to end the line with
a backslash; this tells Python that the current line is continued on the next. (Usually
it’s preferable to rely on parentheses for multiline expressions, but occasionally back-
slashes are a better choice.) Example 2-3 shows Example 2-2 rewritten using a backslash
instead of the outermost parentheses.

Example 2-3. Using backslash for line continuations

def validate_base_sequence(base_sequence):
 seq = base_sequence.upper()
 return len(seq) == \
 seq.count('A') + seq.count('G') + \
 seq.count('T') + seq.count('C')

The definition is followed by a blank line. What is significant is not that the line is blank
but that it is not indented to a position beyond that of the def that begins the definition.
A block in Python ends with the first line that is indented less than the first line of the
block—i.e., the line following the one that ends with a colon.

Comments and Documentation
The # character tells Python to ignore the rest of the line. This convention can be used
for a short comment following the code on a line, or for a more extensive comment
consisting of one or more lines beginning with a #. For instance, we could add com-
ments to the validate_base_sequence definition, as in Example 2-4.

Example 2-4. Documentation of a function with commented lines

A short example illustrating various details of function definitions. Given a string ostensibly
representing a base sequence, return True or False according to whether the string is composed
entirely of upper- or lowercase T, C, A, and G characters
def validate_base_sequence(base_sequence):
 # argument should be a string
 seq = base_sequence.upper()
 # ensure all uppercase characters

28 | Chapter 2: Names, Functions, and Modules

 return len(seq) == (seq.count('T') + seq.count('C') +
 seq.count('A') + seq.count('G'))

In general, the kind of information provided in the comment lines before the function
definition in this example should be inside the definition, not in a comment before it.
Python has a separate feature for this called a docstring. Syntactically, it is simply a
string that begins the function definition. (Because it is often more than one line long,
triple quotes—single or double—are normally used.) Example 2-5 shows the comment
of Example 2-4 changed to a docstring.

Example 2-5. A function definition with a docstring

def validate_base_sequence(base_sequence):
 """Return True if the string base_sequence contains only
 upper- or lowercase T, C, A, and G characters, otherwise False"""
 seq = base_seq.upper()
 return len(seq) == (seq.count('T') + seq.count('C') +
 seq.count('A') + seq.count('G'))

Normally, the only kinds of expressions that have any effect when used as statements
are function and method calls; docstrings are an exception. Docstrings are different
from comments. Comments disappear when Python interprets code, but docstrings are
retained. Consequently, docstrings have greater utility than comments. In particular,
the help function looks at the docstring of a user-defined function together with its
parameter list to generate a help description, as shown in Example 2-6. (The phrase
in module __main__ simply means “defined in the interpreter.”)

Example 2-6. Help called on a user-defined function

>>> help(validate_base_sequence)
Help on function validate_base_sequence in module __main__:

validate_base_sequence(base_sequence)
 Return True if the string base_sequence contains only
 upper- or lowercase T, C, A, and G characters, otherwise False

Function definitions contain only statements. A string by itself is a
statement because it is a value, a value is an expression, and an expres-
sion is a statement. However, docstrings are the only place where a
freestanding string would have any effect.

Let’s look at another example. Genomes of different species—and regions within a
genome—vary with respect to the proportion of Gs and Cs in their DNA as opposed
to Ts and As. It is a straightforward exercise to compute the GC content of a given DNA
sequence represented as a string. One of the advantages of an interactive environment
such as Python’s interpreter is that you can experiment with small pieces of code before
putting them together. Here’s what such experimentation might look like in working
toward a definition of a gc_content function:

Defining Functions | 29

>>> seq = 'ATCCGGGG'
>>> seq.count('G')
4
>>> seq.count('C')
2
>>> len(seq)
8
>>> seq.count('G') + seq.count('C')
6
>>> (seq.count('G') + seq.count('C')) / len(seq)
0.75

The end result is shown in Example 2-7.

Example 2-7. Defining a function to compute GC content

def gc_content(base_seq):
 """"Return the percentage of G and C characters in base_seq"""
 seq = base_seq.upper()
 return (seq.count('G') + seq.count('C')) / len(seq)

A meaningful example of the use of this function would require a long base sequence,
and then it would be difficult to tell whether the result was correct. When writing
functions, it is generally a good idea to construct some small “test cases” for which the
correct answer is known:

>>> seq50 = 'AACCTTGG'
>>> seq75 = 'ATCCCGGG'
>>> seq40 = 'ATATTTCGCG'
>>> gc_content(seq50)
0.5
>>> gc_content(seq75)
0.75
>>> gc_content(seq40)
0.4

Assertions
While developing code, it often happens that your functions get called with arguments
of the wrong type or value. Depending on the details of the code, an invalid argument
value may result in a Python error or a nonsensical result. Even worse, it might result
in an apparently meaningful, but incorrect, result. For example, the definition of
gc_content assumes that it gets called with a string that contains only (upper- or
lowercase) Ts, Cs, As, and Gs. Since it is only counting Cs and Gs, all other characters
are assumed to be Ts or As. If given a string that contains a few invalid characters, it
will return a value that “makes sense” but is nonetheless “off” by a small amount.

It’s often a good idea to express a function’s assumptions in its docstring. However,
the documentation doesn’t have any effect on the computation—nothing stops some-
one from calling a function with values that violate the documented assumptions. To

30 | Chapter 2: Names, Functions, and Modules

ensure compliance Python provides a simple assertion statement, one of whose uses is
to validate arguments.

S T A T E M E N T

Assertion
An assertion statement tests whether an expression is true or false, causing an error if
it is false.

assert expression

Example 2-8 illustrates what happens when an assertion fails.

Example 2-8. A failed assertion

>>> assert 1 == 2
Traceback (most recent call last):
 File "<pyshell#53>", line 1, in <module>
 assert 1 == 2
AssertionError

There is another form of the assertion statement that takes two expressions. If the first
expression is false, the second becomes part of the error report.

S T A T E M E N T

Two-Expression Assertion
A two-expression assertion statement takes two arguments: an expression to evaluate
and an expression to use in the error report if the first expression is false.

assert expression1, expression2

Example 2-9 shows a two-expression assertion.

Example 2-9. A failed assertion with a second expression

>>> assert 1 == 2, 'invalid arguments'
Traceback (most recent call last):
 File "<pyshell#54>", line 1, in <module>
 assert 1 == 2, "invalid arguments"
AssertionError: invalid argument

Let’s improve gc_content by ensuring that its argument is a valid sequence string. We
already have a function that does what we need—validate_base_sequence. We’ll add
an assertion statement that calls that function. The assertion in Example 2-10 both
documents the function’s assumptions and enforces them when the function is called.

Defining Functions | 31

Example 2-10. Adding an assertion to the gc_content function

def gc_content(base_seq):
 """Return the percentage of G and C characters in base_seq"""
 assert validate_base_sequence(base_seq), \
 'argument has invalid characters'
 seq = base_seq.upper()
 return ((base_seq.count('G') + base_seq.count('C')) /
 len(base_seq))

The function in Example 2-10 calls another function that we’ve defined. This is quite
common. Each function should perform what is conceptually a single coherent action.
This means you’ll write many relatively small functions that call each other rather than
writing large functions with many steps.

You can think of the functions you define as building up a vocabulary. In defining a
vocabulary, it is natural to define some of its words in terms of others. Python provides
a small initial set of words, and you expand on that set by defining more of them.

One reason for writing small functions is that simple functions are easier to write and
test than complicated ones. If function A calls B, and B calls C, and C calls D, but
something isn’t working in D, you can call D yourself from the interpreter. Once you’re
sure that D works, you can call C, and so on. Another reason for defining a separate
function for each action is that a very focused function is likely to prove more useful in
other definitions than a larger multipurpose one.

Writing many small functions helps avoid code duplication, that is, having a group of
statements repeated in more than one definition. Code duplication is bad because if
you want to change those statements you’ll have to find every definition that uses them
and spend considerable time making the same changes in each definition. Changing
multiple occurrences risks ending up with inconsistencies.

Default Parameter Values
You’ll often find that most calls to a certain function are likely to include the same value
for a particular parameter. Frequently this value is something simple such as True, 0,
or None. In such cases, Python provides a way to assign a default value to the parameter
that will be used if no explicit value is included in a call to the function.

As mentioned in the preceding chapter, some parameters of some functions are op-
tional. A function definition designates an optional parameter by assigning it a default
value in the parameter list. There can be any number of parameters with default values.
All parameters with default values must follow any parameters that do not have them.

By way of example, we’ll make validate_base_sequence more flexible by giving it the
ability to handle RNA sequences too. This simply entails checking for a U instead of a
T. Example 2-11 adds a second parameter whose value determines whether the function
looks for Ts or Us. The term or syllable flag (sometimes abbreviated to flg) is commonly
used for a Boolean value that determines which of two actions is performed. We’ll call

32 | Chapter 2: Names, Functions, and Modules

our new parameter RNAflag. By using a three-part conditional expression, we can make
the change with very little rewriting.

Example 2-11. Adding a “flag” parameter

def validate_base_sequence(base_sequence, RNAflag):
 """Return True if the string base_sequence contains only upper- or lowercase
 T (or U, if RNAflag), C, A, and G characters, otherwise False"""
 seq = base_sequence.upper()
 return len(seq) == (seq.count('U' if RNAflag else 'T') +
 seq.count('C') +
 seq.count('A') +
 seq.count('G'))

>>> validate_base_sequence('ATCG', False)
True
>>> validate_base_sequence('ATCG', True)
False
>>> validate_base_sequence('AUCG', True)
True

The new definition requires calls to the function to provide two arguments. To make
using the function a bit more convenient, we can give RNAFlag a default value, as shown
in Example 2-12. We don’t really know whether the function will get used more often
for DNA sequences or RNA sequences, so it’s hard to choose a default value on that
basis. In general, default values should be chosen to “turn off” the feature a parameter
provides, so that users of the function who don’t know about the feature aren’t sur-
prised by its use. A common default is the kind of false value appropriate for the sit-
uation: False, an empty string, a zero, etc. Flags, being Boolean, normally have default
values of False.

Example 2-12. Adding a default value for the flag parameter

def validate_base_sequence(base_sequence, RNAflag=False):
 """Return True if the string base_sequence contains only upper- or lowercase
 T (or U, if RNAflag), C, A, and G characters, otherwise False"""
 seq = base_sequence.upper()
 return len(seq) == (seq.count('U' if RNAflag else 'T') +
 seq.count('C') +
 seq.count('A') +
 seq.count('G'))

>>> validate_base_sequence('ATCG', False)
True
>>> validate_base_sequence('ATCG', True)
False
>>> validate_base_sequence('AUCG', True)
True
>>> validate_base_sequence('AUCG')
>>> # second argument omitted; defaults to True
True

Keyword parameters have the following properties:

Defining Functions | 33

• They are optional (i.e., do not need to be included in calls to the function).

• They are defined by specifying default values in the function’s parameter list; if the
keyword does not appear in a call to the function, its default value is used.

• In both the parameter list of a function definition and the argument list of its calls,
all “positional” (i.e., required) arguments must appear before any keyword
parameters.

• Keyword parameters may appear in any order.

• With a few exceptions, keyword arguments may be provided positionally in a
function call in the order in which the keywords appear in the function’s definition.

Using Modules
In addition to those built into the base interpreter environment, Python offers a large
selection of optional types, functions, and methods. These are defined by module files
placed in a library directory as part of Python’s installation. Modules can also be
obtained from external sources and added to Python’s library.

A module file is an ordinary file containing Python statements (defs, mostly). A doc-
string at the beginning of the file (if present) describes its contents and purpose. Later
chapters of this book discuss many modules important for bioinformatics program-
ming. Here, I’ll only explain the mechanics of module use and give a few basic examples.

Importing
A module’s contents are brought into the interpreter’s environment by an import
statement.

S T A T E M E N T

Importing
The basic form of the import statement loads a module into the Python environment
and makes its name available in the namespace into which it was imported (usually the
interpreter or a program).

import name

The name is just the name of the module—no path and no extension.

For example, the module os provides an interface to the computer’s operating system.
You can import it using this statement:

>>> import os

Python keeps track of the directories in which modules may be found and of which
modules have already been imported. The first time a module is imported—with any

34 | Chapter 2: Names, Functions, and Modules

form of import statement—Python looks for it in each library directory in turn until it
is found. It then executes the file’s statements and creates an object to represent the
module and its contents. Subsequent imports skip all of this.

Python incorporates quite a few modules during its build process. While their con-
tents are in the system, their names are not. Consider the os module just mentioned—
all the contents of the module are actually already in Python, but the name os has no
meaning until the module is imported. Importing assigns the name of the module to
the object that represents the module’s information.

Module namespaces

Each module has a separate namespace associated with it. In fact, a module object is
little more than a namespace. Module contents are accessed using the same dot notation
used for method calls. Some modules even have submodules, which are referenced
using dot notation—for example, os.path. Let’s look at some examples:

>>> os # after import
<module 'os' from '/usr/lib/python31/os.py'>
>>> os.getcwd() # a function in the os module
'/Users/mlm/programming/python'
>>> os.getlogin() # another function in the os module
'mlm'

Each module’s namespace is isolated from the interpreter’s namespace and the name-
spaces of other modules. Functions with the same name can be defined in multiple
namespaces and not interfere with each other, because each is accessed by a name in a
different namespace.

Another form of the import statement is used to purposely bring a name from a module
into the namespace in which the import appears—the interpreter or another module.

S T A T E M E N T

Selective Import
This form of import statement loads a library into the Python environment but does
not make its name available in the namespace from which it was loaded. Instead, it
imports specific names from the module into the importing namespace.

from modulename import name1, name2, ...

You can give something you are importing a different name when you import it by using
the following form of the import statement:

from modulename import actualname as yourname

You can import all the names from a module with the following variation:

from modulename import *

Using Modules | 35

In general, it is best to avoid the “import all” form (occasionally a mod-
ule’s documentation or examples suggest you begin a program by im-
porting all of its names, in which case it’s probably all right to do so).
The reason to avoid this form is that you don’t know what names you’ll
be importing. Some might rebind existing names—this is called a name
conflict—and lead to strange problems. Even importing specific names
using the from form isn’t necessarily the best idea—when someone else
reads your code, or you read it later, using the module prefix makes it
clear which names come from which modules and, if there is no prefix,
are defined in the file itself.

If your code frequently uses a particular name from a module, you’ll find it convenient
to import that name into the code’s namespace. For example, sys is another module
that is already in the base Python system without its name being in the interpreter’s
namespace. One name sys provides is version, whose value is a string describing
Python’s version. After executing the following statement:

from sys import version

your code will be able to refer directly to version instead of sys.version. Consider the
interactions in Example 2-13.

Example 2-13. Importing and namespaces

 >>> sys
Traceback (most recent call last):
 File "<pyshell#103>", line 1, in <module>
 sys
NameError: name 'sys' is not defined

 >>> version
Traceback (most recent call last):
 File "<pyshell#105>", line 1, in <module>
 version
NameError: name 'version' is not defined

 >>> from sys import version
 >>> version

'3.0 (r30:67503, Jan 2 2009, 12:13:58) \n[GCC 4.0.1 (Apple Inc. build 5488)]'
 >>> sys

Traceback (most recent call last):
 File "<pyshell#108>", line 1, in <module>
 sys
NameError: name 'sys' is not defined

 >>> import sys
 >>> from sys import version_number

Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ImportError: cannot import name version_number

 >>> import version
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ImportError: No module named version

36 | Chapter 2: Names, Functions, and Modules

This series of inputs demonstrates the following points:

The name sys is not in the interpreter’s namespace.

The name version is not in the interpreter’s namespace.

The name version is imported from the module sys.

The name version is now in the interpreter’s namespace.

The name sys is still not in the interpreter’s namespace.

The name sys is now in the interpreter’s namespace.

The module sys does not define anything called version_number.

There is no module named version.

The random module

One useful module is random, which provides various ways to generate random num-
bers. The function random.randint takes two integer arguments and returns a random
integer in the range of the first to the second inclusive. For example,
random.randint(1,4) will return 1, 2, 3, or 4. (Note that the range is inclusive of the
second number, unlike with string slicing, which designates a substring from the first
position up to but not including the second position indicated by the slice.)

One good use of random.randint is to generate examples and “test cases” to use with
code you are developing. Example 2-14 shows how to generate a random codon.

Example 2-14. Generating a random codon

from random import randint

def random_base(RNAflag = False):
 return ('UCAG' if RNAflag else 'TCAG')[randint(0,3)]

def random_codon(RNAflag = False):
 return random_base(RNAflag) + random_base(RNAflag) + random_base(RNAflag)

Notice how breaking the code into two separate functions, each of which does its own
narrowly focused job, helps readability. There’s not much reason to avoid using small
functions like these. You’ll see as you write them that they’ll turn out to be useful for
other code. It’s helpful to think of types, functions, and methods as parts of a
vocabulary: types and their instances are nouns, and functions and methods are verbs.
Your definitions add to that vocabulary.

Example 2-15 shows a function that simulates single-base mutation. It uses assignment
statements to name everything along the way to the final result.

Using Modules | 37

Example 2-15. Naming intermediate results in a function definition

from random import randint

def replace_base_randomly_using_names(base_seq):
 """Return a sequence with the base at a randomly selected position of base_seq replaced
 by a base chosen randomly from the three bases that are not at that position"""
 position = randint(0, len(base_seq) - 1) # −1 because len is one past end

 base = base_seq[position]
 bases = 'TCAG'
 bases.replace(base, '') # replace with empty string!
 newbase = bases[randint(0,2)]
 beginning = base_seq[0:position] # up to position
 end = base_seq[position+1:] # omitting the base at position
 return beginning + newbase + end

Example 2-16 shows another version of the same function. This variation uses a com-
plex expression instead of a lot of names. It does use the name position to save the
value of the call to randint, because that is used in two places; if randint were called
twice, it would return two different values, and the definition needs to use the same
value in both places.

Example 2-16. The same function without intermediate result names

def replace_base_randomly_using_expression(base_seq):
 position = randint(0, len(base_seq) - 1)
 return (base_seq[0:position] +
 'TCAG'.replace(base_seq[position], '')[randint(0,2)] +
 base_seq[position+1:])

There’s no clear-cut rule about which style to use. Sometimes naming things improves
readability (even taking the place of comments) and aids debugging. Often, however,
it doesn’t contribute much, especially if the value named is only used once in the def-
inition. In the case of this function, something between these two extremes would
probably be best. The compromise version is shown in Example 2-17.

Example 2-17. A function definition with some intermediate names

def replace_base_randomly(base_seq):
 position = randint(0, len(base_seq) - 1)
 bases = 'TCAG'.replace(base_seq[position], '')
 return (base_seq[0:position] +
 bases [randint(0,2)] +
 base_seq[position+1:])

Python Files
A file of yours that you import becomes a module just as if the file had been in Python’s
library. Accessing any of its contents requires using the file’s name as a prefix, except
for specific names imported into the interpreter’s namespace using the “from” form of
the import statement. Normally a file meant for importing assigns names and defines

38 | Chapter 2: Names, Functions, and Modules

functions but doesn’t do any observable computation when imported. Files intended
to be run or executed normally end with function calls and statements that do some-
thing observable, such as printing results.

Each Python file must import any modules it uses. That is, if file A uses module M, it
must import module M even if it imports another file that imports M or is imported
into the interactive interpreter after M has been imported there. Example 2-18 shows
a file containing the functions defined in examples earlier in this chapter, along with a
new one for testing the others. The test function is called at the end of the file. That
call occurs regardless of whether the file is imported or executed.

Example 2-18. A Python file

def validate_base_sequence(base_sequence, RNAflag = False):
 """Return True if the string base_sequence contains only upper- or lowercase
 T (or U, if RNAflag), C, A, and G characters, otherwise False"""
 seq = base_sequence.upper()
 return len(seq) == (seq.count('U' if RNAflag else 'T') +
 seq.count('C') +
 seq.count('A') +
 seq.count('G'))

def gc_content(base_seq):
 """Return the percentage of bases in base_seq that are C or G"""
 assert validate_base_sequence(base_seq), \
 'argument has invalid characters'
 seq = base_seq.upper()
 return (base_seq.count('G') +
 base_seq.count('C')) / len(base_seq)

def recognition_site(base_seq, recognition_seq):
 """Return the first position in base_seq where recognition_seq
 occurs, or −1 if not found"""
 return base_seq.find(recognition_seq)

def test():
 assert validate_base_sequence('ACTG')
 assert validate_base_sequence('')
 assert not validate_base_sequence('ACUG')

 assert validate_base_sequence('ACUG', False)
 assert not validate_base_sequence('ACUG', True)
 assert validate_base_sequence('ACTG', True)

 assert .5 == gc_content('ACTG')
 assert 1.0 == gc_content('CCGG')
 assert .25 == gc_content('ACTT')

 print('All tests passed.')

test()

Using Modules | 39

Tips, Traps, and Tracebacks

Tips

Names

• One object may have many names.

• Choose clear, descriptive names for functions and arguments.

• Assignment changes what a name means—i.e., which object it references. If a name
refers to something that is modifiable (a phenomenon we will encounter in the next
chapter), assignment does not modify the object.

Function definitions

• Think of function definitions as adding to Python’s vocabulary of built-in func-
tions, types, methods, etc.

• Use pass as a placeholder for the body of a function you are defining; it allows you
to start the function definition and specify its parameters without it doing anything
while you work on the rest of the code. The other code can even call the function
at the appropriate place. Later, you can replace the pass to define what the function
should really do.

• Your function definitions should normally be quite small. Each should do one main
thing. Get comfortable with the idea of defining functions that call each other.

• Except perhaps for functions of a couple of lines with self-descriptive names, always
include docstrings in your function definitions.

• Read the following (and occasionally reread them, as they will make more sense
and seem more helpful the more Python work you do):

— Style Guide for Python Code

— Docstring Conventions

— The Zen of Python, accessed by typing the following at the command line:

import this

The code examples in this book do not adhere to certain aspects of the
official docstring conventions. In particular, the conventions call for
docstrings longer than one line to begin with a one-line summary and a
blank line before continuing with further details, and to end with a blank
line followed by the closing quotes on a separate line. Given the large
number of examples contained in this book and an approach to writing
code that emphasizes very small functions, following the conventions
strictly would have resulted in docstrings whose size rivaled that of the
code they documented, as well as simply taking up too much space on
the page.

40 | Chapter 2: Names, Functions, and Modules

http://www.python.org/dev/peps/pep-0008
http://www.python.org/dev/peps/pep-0257

Executing code

• Do not be intimidated by tracebacks—they identify the nature and location of the
problems they are reporting.

• Start putting your code in Python files as soon as possible. Testing bits of code in
the interpreter and then copying them into a file is fine, but eventually, as you
become more competent in writing Python code, you will want to edit files directly
and then run them in the interpreter. You can use whatever text editor you are
comfortable with. Save the files in text format with the extension .py.

• Learn how to run Python programs from the command line. If you don’t know
how, ask someone to show you. (They don’t have to know Python!) Using the file
echo.py as an example, and assuming that the python3 command runs Python:

1. Type:

pythonpath/python3 echo.py

where pythonpath is the full path to the Python executable on your machine.

2. If the folder containing the Python executable is in your execution path, as
defined by system and shell variables, you only need to type:

python3 echo.py

These commands will execute the code in echo.py, then exit. To execute all the
code in the file, enter the interpreter and include -i (for “interactive”) before the
name of your file.

• One of the great advantages of using an interactive interpreter is that you can test
pieces of your code without having to test entire function definitions or scripts:

— When you are first defining a function, you can try out bits of code or aspects
of Python about which you are uncertain.

— You can try various ways of expressing a part of a function definition.

— After assigning names, you can look at their values.

— You can test functions interactively by calling them with various values.

Using IDLE

The Python installation comes with a simple integrated development environment
(IDE) called IDLE. It has a window with the interpreter running in it and it allows you
to edit files in other windows. You can start it by double-clicking its icon or by double-
clicking a Python file. (You may have to change the default application for .py files to
open with the Python 3 version of IDLE: on Windows, the default is to run the program
in a shell, then exit the shell. On any platform, if a version of Python 2 is present on
your computer, you may have to change the default application for .py files to be the
Python 3 version of IDLE.

Tips, Traps, and Tracebacks | 41

When you open a file with IDLE—either by double-clicking it or selecting the Open
command from IDLE’s File menu—the file will be displayed in an IDLE editor window.
Editor windows provide many conveniences, including “syntax highlighting” and key-
board shortcuts. However you open IDLE, you will see a “Python Shell” window that
is the equivalent of the command-line interpreter. Here are some hints for using IDLE:

• The typical shortcut keys are available for the Edit menu’s commands, for most of
the other menu commands, and for some movement and editing commands that
are not on a menu. The Preferences command on the IDLE menu opens a tabbed
window that you can use to customize IDLE’s appearance (including the typeface
and font size), shortcut keys, and behavior.

• The IDLE Help command on the Help menu brings up a window explaining the
menu commands, keyboard shortcuts for editing and moving around, and other
aspects of using IDLE. (This is also available as the file help.txt in the idle subdir-
ectory of the Python installation’s library directory.)† You should periodically review
this documentation, as IDLE has many useful features that you won’t at first
appreciate.

• When in an editor window, you can execute the code in the window by selecting
the Run Module command from the Run menu or pressing F5. (The Run menu is
replaced by the Debug menu when the cursor is in the interpreter window.) Every
time you execute code using IDLE’s Run Module command, the Python interpreter
is restarted. No previous assignments, definitions, or imports survive this restart.

The restart behavior is another reason why it’s useful to include everything you
need in files you are developing in IDLE, including assignments to strings and
numbers that you want to use in testing and debugging your code. Basically, any-
thing you don’t want to type repeatedly should go in a file. However, once you’ve
run the code, all of its assignments and definitions will be available in the interpreter
until the next time you execute the Run Module command.

• The text in IDLE’s editor window is colored to distinguish various aspects of Py-
thon code. (The colors are also customizable, so if you find some either too dra-
matic or too difficult to distinguish, you should take the time to adjust them to
your liking.) This feature is called, naturally enough, syntax highlighting. It makes
the code much more readable. In addition, the color of the text you are presently
typing and of the text that follows it can reveal syntax problems without you even
running the program.

Perhaps the most useful example of this is when you notice that the text you are
typing is colored as a string, indicating that you did not type the quotes required
to end the string where you intended. Incomplete multiline strings (those beginning
with three single or three double quotes, as with docstrings) make for especially
dramatic effects: as soon as you begin the string, the rest of the file gets recolored

† See also section 24.6 of the Python library documentation (library/idle/idle.html in the HTML version).

42 | Chapter 2: Names, Functions, and Modules

as a string—at least, until the next set of matching triple quotes is encountered.
That’s fine if you’re still typing the string, but if the following code is still colored
as a string after you think you have finished typing the string, you need to add or
fix the quotes at the end of the string.

• A particularly helpful command is Show Surrounding Parens on the Edit menu,
typically used by typing its keyboard shortcut. This briefly highlights the code
around the cursor within the corresonding parentheses, brackets, or braces. This
can help you spot mistakes and clear up confusion about the structure of expres-
sions you are editing.

• When you press Return (Enter), IDLE will indent the new line to a column match-
ing the current syntactic context. For example, when you hit Return after the colon
at the end of the first line of a function definition, it indents the next line four
spaces. If the line doesn’t start in the column you expect, check the syntax of the
previous lines. Common situations in which this occurs include:

— When you type more right parentheses at the end of a statement than are needed
to “close” the last expression of the statement. The next line will indent much
further to the left than you expected, perhaps to column 0.

— When you don’t type enough right parentheses to close the last expression. The
line will indent much further to the right than you expected.

• Another very useful feature of IDEs is automatic completion of partially typed
Python names and filenames. Taking advantage of automatic completion can save
you not just a lot of typing, but a lot of mistakes (down to either typos or misre-
membering Python names). Here are some autocompletion hints (be aware that it
can take a while to get used to how this facility works):

— If you pause for a few seconds after typing some characters, and there are pos-
sible completions to what you have just typed, an “autocomplete window”
opens.

— Typing a tab brings up the autocomplete window immediately.

— If there is only one possibility, the word will be completed without the window
appearing.

— The IDLE Preferences window allows you to customize several aspects of
autocompletion.

Eventually, if you end up doing heavy-duty software development, you might want to
switch to a more sophisticated environment. There are a number of them to choose
from, including individual efforts, open source projects, and free, “personal,” and
“professional” editions of commercial products. As of this writing, only a small number
have been released in a version compatible with Python 3. This is another reason to use
IDLE—it is part of Python itself, so the version that comes with the Python 3 installation
works with Python 3.

Tips, Traps, and Tracebacks | 43

You can find a complete list of Python IDEs at http://wiki.python.org/
moin/IntegratedDevelopmentEnvironments. There is no indication in
that list of which IDEs support Python 3, but those last updated before
2009 definitely do not (unless the page’s information is not current).

Managing Python files

• Filenames are expected to be in all lowercase and to have the extension .py.

• Python files may be edited in any text editor as long as they are saved in plain text
format.

• Do not save the files you edit in Python’s or IDLE’s directory, for these reasons:

— Other people may be using the Python installation on your machine; seeing your
files there may confuse them, and they may even delete or overwrite them.

— You may want to replace your entire Python installation; in this event, you won’t
want to have to figure out which files are yours and move them someplace else
before you can do so.

— Eventually you will want to have multiple directories for your Python files—
different projects, different versions of a project, etc.

Instead, create a Python working directory wherever you feel comfortable putting
it—in your Documents folder, for example. Then create a subdirectory for each
project.

• Back up the directory containing all your Python work daily, if not more often. As
you work, save your files frequently according to a set backup scheme; for instance,
if working on test.py, save it to test01.py, then a bit later to test02.py, etc.‡ (The
zero is so that when you get to version 10, file listings will still be alphabetized.)
Saving multiple versions will make you less wary of experimenting, since you’ll
know you can always go back to an earlier version—if you decide to abandon the
direction you took while working on part of your code, it is often easier to revert
to an earlier version than it is to make wholesale changes to the current one.

• Files with the extension .pyc are intermediate files that contain “compiled” versions
of the corresponding .py file’s definitions. Python saves these after successfully
importing a .py file for the first time, and after importing a file that has been changed
since the last time it was imported. The only purpose of these files is to increase
import speed—they have no effect on how fast programs actually run once their
modules have all been loaded.

‡ If you happen to know how, or can get someone to show you, a better approach is simply to manage the files
with a version management system such as CVS, Subversion, git, or Mercurial.

44 | Chapter 2: Names, Functions, and Modules

http://wiki.python.org/moin/IntegratedDevelopmentEnvironments
http://wiki.python.org/moin/IntegratedDevelopmentEnvironments
http://www.nongnu.org/cvs/
http://subversion.tigris.org/
http://git-scm.com/
http://mercurial.selenic.com

It is always safe to delete the .pyc files. In fact, deleting old .pyc files can
be a good idea. You may occasionally rename or delete .py files and then
accidentally import a module with one of the old names. The import
will be successful as long as there is still a corresponding .pyc file—that
is, your code might import a module you thought was gone. Of course,
you won’t have meant for your code to import a deleted or renamed
module: the issue here is that it can happen in a way that doesn’t produce
an error message to alert you to the need to change the import statement.

Traps
• Assignment uses one =, comparison two (==). Using only one instead of two is a

very common error. Worse, it often occurs in a context where it isn’t a syntax error,
in which case you are left to figure out the program’s consequent misbehavior by
yourself.

• If your function doesn’t do anything when you call it, you probably forgot to
include a return statement in it.

• If nothing happens when you run a file, either from the command line or within
IDLE, your file contains no top-level statements that produce output. The file
should end with calls to print or functions you’ve defined that print things.

• Names assigned in a function have no meaning outside that function. Two different
functions can assign the same name, but because the names are in different scopes
they have no relation to each other.

• Keyword arguments must appear after all the “positional” (i.e., required) argu-
ments in a function call.

• Module names are not quoted in import statements, nor do their names include .py.

• Syntax errors are frequently caused by something wrong at the end of the line before
the line shown by the error message. Common causes of these errors include:

— Failing to end the first line of a def with a colon

— Ending the previous line with too few or too many parentheses

Before even thinking about what the error means, you should glance at the line
indicated by the error message, and then the one before it. If you notice an obvious
problem, fix it and try again.

Tips, Traps, and Tracebacks | 45

Tracebacks
Here are some representative error messages:

AssertionError: invalid argument
The value in an assertion statement is false; the second value in the statement, if
there is one, becomes the message.

ImportError: No module named version
An attempt was made to import a module named version, but Python couldn’t
find a module by that name.

ImportError: cannot import name vision
An attempt was made to import a name from a module using the from module
import name form of the import statement, but the module doesn’t define anything
with that name.

NameError: name 'Non' is not defined
Python doesn’t recognize a name: it’s not built in and hasn’t been defined with an
assignment or def statement. Other than misspellings, two frequent causes are the
use of the name in one function when it was assigned in another and the use of a
name from a module without preceding it with the module’s name or importing
the name from the module.

TypeError: gc_content() takes exactly 1 positional argument (0 given)
A call to a function supplied too few or too many positional (i.e., required, or,
equivalently, nonkeyword) arguments.

46 | Chapter 2: Names, Functions, and Modules

CHAPTER 3

Collections

Instances of primitive Python types represent individual values, as we saw in the first
chapter. Python also has built-in types that are compound, meaning that they group
together multiple objects. These are called collections or containers. The objects in a
collection are generally referred to as items or elements. Collections can hold any num-
ber of items. Some collection types can even contain items with a mixture of types,
including other collections.

There are three categories of built-in collection types in Python: sets, sequences, and
mappings. Streams are another kind of collection whose elements form a series in time,
rather than the computer’s memory space. Though they are not formally recognized in
Python, many of Python’s functions and methods—especially those that manipulate
files—implement stream-like behavior. Modules such as array and collections provide
additional collection types.

The primary distinguishing characteristic of the four collection categories is how indi-
vidual elements are accessed: sets don’t allow individual access; sequences use numer-
ical indexes; mappings use keys; and streams just provide one address—“next.” Strings
straddle the border between primitives and collections, having characteristics of both;
when treated as collections they are interpreted as sequences of one-character
substrings.

Some types are immutable, meaning that once they are created they cannot be changed:
elements may not be added, removed, or reordered. Primitive (noncollection) types are
also immutable; in particular, strings cannot be changed once created. There is one
very important restriction on the types of elements some collections can contain:
mutable built-in collections cannot be added to sets or used as mapping keys.

You can create a collection by calling its type as a function. With no arguments, an
empty collection is created. With a sequence argument, a new collection is created from
the sequence’s elements. Some collection types can be called with an integer argument
to create an empty collection of that number of elements. Many of the collection types
can also be created directly with Python syntax, the way strings are created using quotes.

47

Certain basic operations and functions are applicable to all collection types. These are
shown in Table 3-1. The first four return a Boolean value; such functions are called
predicates.

Table 3-1. Operations and functions that work for all collection types

Operation Returns
x in coll True if coll contains x.
x not in coll True if coll does not contain x.
any(coll) True if any item in coll is true, otherwise False.
all(coll) True if every item in coll is true, otherwise False.
len(coll) The number of items in coll (not supported by streams).
max(coll[, key=function]) The maximum item in coll, which may not be empty.a

min(coll[, key=function]) The minimum item in coll, which may not be empty.a

sorted(coll[, keyfn]
 [, reverseflag])

A list containing the elements of coll, sorted by comparing elements or, if keyfn is
included in the call, comparing the results of calling keyfn for each element; if
reverseflag is true, the ordering is reversed. keyfn and reverseflg must be
specified as keyword arguments, not positionally.a

a Atypically, the optional arguments to max, min, and sorted may not be supplied positionally in a call—they must be provided as
keyword arguments. The keyfn parameter is explained at the end of the chapter, in the section “Functional Parameters” on page 89.

Sets
A set is an unordered collection of items that contains no duplicates. The implementation
enforces the restriction against duplication: attempting to add an element that a set
already contains has no effect. The type frozenset is an immutable version of set. There
is one important limitation on the type of objects that sets and frozensets can contain:
they cannot contain instances of mutable types, or even immutable types that contain
mutable elements.

Since strings behave as collections, a string can be used as the argument for a call to
set. The resulting set will contain a single-character string for each unique character
that appears in the argument. (This behavior may surprise you from time to time!) The
order in which the elements of a set are printed will not necessarily bear any relation
to the order in which they were added:

>>> set('TCAGTTAT')
{'A', 'C', 'T', 'G'}

Sets can also be created syntactically by enclosing comma-separated values in curly
braces ({}). This construction is called a set display. There is no corresponding syntax
for frozensets—you must call frozenset to create one. Empty braces do not create an
empty set, but calling set with no arguments does. (Empty braces create an empty
dictionary, discussed shortly.)

48 | Chapter 3: Collections

Python 2: The brace notation for creating sets is not supported; you
must call set as a function to create a set.

Let’s look at some examples:

>>> DNABases = {'T', 'C', 'A', 'G'}
>>> DNABases
{'A', 'C', 'T', 'G'}
>>> RNABases = {'U', 'C', 'A', 'G'}
>>> RNABases
{'A', 'C', 'U', 'G'}

When a string is inside the pair of braces that creates a set, the string is not broken up
into its individual characters:

>>> {'TCAG'}
{'TCAG'}
>>> {'TCAG', 'UCAG'}
{'UCAG', 'TCAG'}
>>>

Sets can be compared as shown in Table 3-2. The operator versions require both op-
erands to be sets, but the method versions allow the argument to be any collection.

Table 3-2. Set comparison operations

Operator Method Returns

 set1.isdisjoint(coll) True if the set and the argument have no elements in common

set1 <= set2 set1.issubset(coll) True if every element of set1 is also in set2 (coll for the
method)

set1 < set2 True if every element of set1 is also in set2 (coll for the
method) and set2 is larger than set1 (i.e., set1 is a proper
subset of set2)

set1 >= set2 set1.issuperset(coll) True if every element of set2 (coll for the method) is also
in set1

set1 > set2 True if every element of set2 is also in set1 and set1 is
larger than set2 (i.e., set2 is a proper subset of set1)

Python’s set and frozenset types implement the mathematical operations of set alge-
bra. These use regular operator symbols and, in some cases, equivalent method calls.
As with the comparison operations, the operator versions require both operands to be
sets, while the methods allow the argument to be any collection. Table 3-3 shows the
operators and the corresponding methods.

Sets | 49

Table 3-3. Algebraic set operations

Operator Method Returns

set1 | set2 set1.union(coll, ...) A new set with the elements of both set1 and set2
(or set1 and each of the arguments)

set1 & set2 set1.intersection(coll, ...) A new set with the elements that are common to
set1 and set2 (or set1 and each of the arguments)

set1 - set2 set1.difference(coll, ...) A new set with the elements in set1 that are not in
set2 (or any of the arguments)

set1 ^ set2 set1.symmetric_difference(coll) A new set with the elements that are in either set1 or
set2 (or each of the arguments) but not both

Using sets, we can rewrite validate_base_sequence more succinctly than with the pon-
derous conditional expressions used in the last chapter. Example 3-1 illustrates.

Example 3-1. Rewriting validate_base_sequence using a set

DNAbases = set('TCAGtcag')
RNAbases = set('UCAGucag')
def validate_base_sequence(base_sequence, RNAflag = False):
 """Return True if the string base_sequence contains only upper- or lowercase
 T (or U, if RNAflag), C, A, and G characters, otherwise False"""
 return set(base_sequence) <= (RNAbases if RNAflag else DNAbases)

We could have just written out the set values directly, enclosing eight
one-character strings within braces, either in the assignment statements
or instead of the assigned names in the function definition. Using set to
convert a string meant less typing, though, which is always good. A
fundamental fact about programming—or any computer use, for that
matter—is that every character you type is a chance to make a mistake!

Not only is this version of the function definition more succinct, but it more directly
expresses the function’s purpose. The function tests whether all the characters in its
argument are in the set of allowable base characters. This definition says that explicitly,
whereas the previous definition counted the number of times each base occurred and
compared the sum of those counts to the length of the sequence. It worked, but it was
a roundabout way of saying something that can be said more simply and clearly.

The algebraic set operations produce new sets. There is also a group of operators and
methods for modifying sets, shown in Table 3-4. The operator forms require both op-
erands to be sets, while the methods can take any kind of collection argument.

50 | Chapter 3: Collections

The assignment statements in Example 3-1 were placed before the func-
tion definition, so they only get executed once rather than every time
the function is called. It’s not likely to matter much in this case, but keep
in mind that in general you should avoid repeating computations un-
necessarily where convenient. You should never let “efficiency” con-
siderations get in your way while developing code, since you won’t
know how fast your program runs or which parts are slow—or even
whether you’ll end up using the part of the code whose efficiency con-
cerns you—until the code is working. That said, it’s easy enough to keep
simple, obvious things like assignment statements whose values don’t
change out of loops as a matter of practice.

Table 3-4. Set update operations

Operator Method Result

set1 |= set2 set1.update(coll) Updates set1 by adding the elements in
set2 (coll for the method)

set1 &= set2 set1.intersection_update(coll) Updates set1 to keep only the elements that
are in both set1 and set2 (coll for the
method)

set1 -= set2 set1.difference_update(coll) Updates set1 to keep only the elements that
are in set1 but not in set2 (coll for the
method)

set1 ^= set2 set1.symmetric_difference_update(coll) Updates set1 to keep only the elements that
are in either set1 or set2 (coll for the
method)

 set1.add(item) Adds item to set1

 set1.remove(item) Removes item from set1; it is an error if
item is not in the set

 set1.discard(item) Removes item from set1 if it is present; no
error if it is not present

Sequences
Sequences are ordered collections that may contain duplicate elements. Unfortunately,
the word “sequence” is frequently used in both Python programming and bioinfor-
matics, not to mention in ordinary writing. Hopefully, the context will make its inten-
ded meaning clear.

Because sequences are ordered, their elements can be referenced by position. We’ve
already seen how this works with string indexing and slicing; the same mechanisms
work with other sequence types. Table 3-5 summarizes the various cases of slicing
expressions. Remember that a negative index counts from just past the last element.

Sequences | 51

Table 3-5. Summary of sequence slicing

Expression Returns

seq[i:j] Elements of seq from i up to, but not including, j

seq[i:] Elements of seq from i through the end of the sequence

seq[:j] Elements of seq from the first up to, but not including, j

seq[:-1] Elements of seq from the first up to, but not including, the last

seq[:] All the elements of seq—i.e., a copy of seq

seq[i:j:k] Every kth element of seq, from i up to, but not including, j

There are six built-in sequence types, as summarized in Table 3-6.

Table 3-6. Sequence types

Type Element type Mutable? Syntax

str One-character stringsa No Quotes of various kinds

bytes 8-bit bytesb No A string with a b prefix

bytearray 8-bit bytes Yes None

range Integers No None

tuple Any No Parentheses

list Any Yes Brackets
a Strings don’t really “contain” characters or one-character strings, but for many purposes they behave as if they did.
b Bytes are equivalent to the integers from 0 through 255.

Python 2: Substantial changes were made to the sequence types from
Python 2.x to 3.x. The most significant change was that Python 2.x
strings contain one-byte “ASCII” characters but Python 3.x strings con-
tain “Unicode” characters. In Python 2 range was a function, but in
Python 3 it is a type, replacing what in Python 2 was the type xrange.
Several other sequence types were also replaced by new ones with
different characteristics.

Table 3-7 lists the operations that are supported by all sequence types, with some
clarifying details.

Table 3-7. Generally supported by sequence operations

Operation Restriction

<, <=, >, >= Same type operands, except that bytes and bytearray may be compared

==, != Any type operands, but always False if the operand types are different

in, not in

Repetition (*)

52 | Chapter 3: Collections

Operation Restriction

Concatenation (+) Same type operands, except that a bytes and a bytearray may be concatenated, with the
type of the result the type of the lefthand operand

Indexing

Slicing

All sequence types except for ranges and files support the methods count and index. In
addition, all sequence types support the reversed function, which returns a special
object that produces the elements of the sequence in reverse order.

Strings, Bytes, and Bytearrays
Strings are sequences of Unicode characters (though there is no “character” type). Uni-
code is an international standard* that assigns a unique number to every character of
all major languages (including special “languages” such as musical notation and math-
ematics), as well as special characters such as diacritics and technical symbols. Unicode
currently defines more than 100,000 characters. The 128 “ASCII” characters (digits,
lower- and uppercase letters, punctuation, etc.) have the same numerical values in both
plain ASCII and Unicode representations.

The bytes and bytearray types are sequences of single bytes. They have essentially the
same operations and methods as str. One important difference is that with a string,
regardless of whether you index an element or specify a slice, you always get back a
string. With bytes and bytearrays, although slices return the same type, indexing an
element returns an integer from 0 through 255.

Another interesting difference is that when either bytes or bytearray is called with an
integer argument, it creates an instance of that length containing all 0s. If called with a
sequence of integers with values from 0 through 255, it performs the normal “conver-
sion” kind of instance creation, creating a bytes or bytearray object with those integers
as its elements. Note that strings do not contain integers—their components are single
character strings—so they can’t be the argument to bytes or bytearray.

There are some differences in how each sequence type treats the in and not in opera-
tions. When the righthand operand is of type str, the lefthand operator must also be
a str, and the operation is interpreted as a substring test. When the righthand operand
is of type bytes or bytearray, the lefthand side can be an integer from 0 to 255, or it can
be a bytes or a bytearray. If it is an integer, in and not in are membership tests;
otherwise, they are subsequence tests, as with str.

The bytes and bytearray types serve many purposes, one of which is to efficiently store
and manipulate raw data. For instance, a piece of lab equipment might assign a signal

* See http://www.unicode.org/standard/WhatIsUnicode.html and http://www.unicode.org/standard/principles
.html for more information.

Sequences | 53

http://www.unicode.org/standard/WhatIsUnicode.html
http://www.unicode.org/standard/principles.html
http://www.unicode.org/standard/principles.html

strength value of between 0 and 255 for something it is measuring repetitively. The
natural way to store these values in Python is to use bytes. Data obtained from outside
a program in other ways is often in the form of raw bytes. (We’ll see this when we
discuss database access, web downloads, and other such topics later in the book.) That
is, the bytes meant something where the data came from, but they have no intrinsic
meaning inside Python. Interpretation of externally obtained bytes is the program’s
responsibility.

Strings, bytes, and bytearrays have a very wide range of application in the management
and manipulation of data and human-readable text. They provide a much richer rep-
ertoire of methods than other sequence types. The more commonly used ones are listed
in the following sections. The sections refer only to strings, but bytes and bytearrays
support the same methods. Other methods will be discussed a little later, in the section
“Sequence-oriented string methods” on page 65.

Creating

We know that a new empty collection can be created by using the name of its type in
a call with no arguments. Some collection types can also be called with arguments.
Following are the creation calls for str, bytes, and bytearray objects:

str()
Returns an empty string

str(obj)
Returns a printable representation of obj, as specified by the definition of the type
of obj

bytes()
Returns an empty bytes object

bytes(n)
With n an integer, returns a bytes object with n zeros

bytes(integer-sequence)
With integer-sequence a sequence containing integers between 0 and 255 inclusive,
returns a bytes object with the corresponding integers

char(n)
Returns the one-character string corresponding to the integer n in the Unicode
system

ord(char)
Returns the Unicode number corresponding to the one-character string char

The functions for creating bytearray objects work the same way as the corresponding
functions for bytes.

54 | Chapter 3: Collections

Testing

It is often necessary in processing a string to determine what kinds of characters it
“contains.” These methods provide convenient ways to determine that for the most
common cases:

str1.isalpha()
Returns true if str1 is not empty and all of its characters are alphabetic

str1.isalnum()
Returns true if str1 is not empty and all of its characters are alphanumeric

str1.isdigit()
Returns true if str1 is not empty and all of its characters are digits

str1.numeric()
Returns true if str1 is not empty and all of its characters are numeric, including
Unicode number values and names

str1.isdecimal()
Returns true if str1 is not empty and all of its characters are characters that can be
used in forming decimal-radix numbers, including Unicode number values and
names

str1.islower()
Returns true if str1 contains at least one “cased” character and all of its cased
characters are lowercase

str1.isupper()
Returns true if str1 contains at least one “cased” character and all of its cased
characters are uppercase

str1.istitle()
Returns true if str1 is not empty, all of its uppercase characters follow “uncased”
characters (spaces, punctuation, etc.), and all of its lowercase characters follow
cased characters

Searching

The following methods search for one string inside another. In the descriptions that
follow, startpos and endpos function as they do in slices:

str1.startswith(str2[, startpos, [endpos]])
Returns true if str1 starts with str2

str1.endswith(str2[, startpos, [endos]])
Returns true if str1 ends with str2

str1.find(str2[, startpos[, endpos]])
Returns the lowest index of str1 at which str2 is found, or −1 if it is not found

Sequences | 55

str1.rfind(str2[, startpos[, endpos]])
Performs a reverse find: returns the highest index where str2 is found in str1, or
−1 if it is not found

str1.index(str2[, startpos[, endpos]])
Returns the lowest index of str1 at which str2 is found, or ValueError if it is not
found

str1.rindex(str2[, startpos[, endpos]])
Returns the highest index of str1 at which str2 is found, or ValueError if it is not
found

str1.count(str2[, startpos[, endpos]])
Returns the number of occurrences of str2 in str1

Replacing

Methods that return a new string with parts of the old string replaced with something
else form the basis of a lot of code. The replace method is used particularly frequently,
but there are also two other methods that constitute a powerful little facility (though
they aren’t used all that much):

str1.replace(oldstr, newstr[, count])
Returns a copy of str1 with all occurrences of the substring oldstr replaced by the
string newstr; if count is specified, only the first count occurrences are replaced.

str1.translate(dictionary)
With dictionary having integers as keys, returns a copy of str1 with any character
char for which ord(char) is a key in dictionary replaced by the corresponding
value. Exactly what the replacement does depends on the type of the value in the
dictionary, as follows:

None
Character is removed from str1

Integer n
Character is replaced by chr(n)

String str2
Character is replaced by str2, which may be of any length

str.maketrans(x[, y[, z]])
(Called directly through the str type, not an individual string.) Produces a trans-
lation table for use with translate more conveniently than manually constructing
the table. Arguments are interpreted differently depending on how many there are:

x
x is a dictionary like that expected by translate, except that its keys may be
either integers or one-character strings.

56 | Chapter 3: Collections

x, y
x and y are strings of equal length; the table will translate each character of x
to the character in the corresponding position of y.

x, y, z
As with two arguments, plus all characters in the string z will be translated to
x (i.e., removed).

Changing case

The methods listed in this section return a new string that is a copy of the original with
its characters converted as necessary to a specified case:

str1.lower()
Returns a copy of the string with all of its characters converted to lowercase

str1.upper()
Returns a copy of the string with all of its characters converted to uppercase

str1.capitalize()
Returns a copy of the string with only its first character capitalized; has no effect
if the first character is not a letter (e.g., if it is a space)

str1.title()
Returns a copy of the string with each word beginning with an uppercase character
and the rest lowercase

str1.swapcase()
Returns a copy of the string with lowercase characters made uppercase and vice
versa

Reformatting

Each of the methods in this group returns a string that is a copy of the original after
applying text formatting operations:

str1.lstrip([chars])
Returns a copy of str1 with leading characters removed. chars is a string that in-
cludes the characters to be removed (any combination of them); if it is omitted or
None, the default is whitespace.

str1.rstrip([chars])
Returns a copy of str1 with trailing characters removed. chars is a string that in-
cludes the characters to be removed (any combination of them); if it is omitted or
None, the default is whitespace.

str1.strip([chars])
Returns a copy of str1 with leading and trailing characters removed. chars is a
string that includes the characters to be removed (any combination of them); if it
is omitted or None, the default is whitespace.

Sequences | 57

str1.ljust(width[, fillchar])
Returns str1 left-justified in a new string of length width, “padded” with
fillchar (the default fill character is a space).

str1.rjust(width[, fillchar])
Returns str1 right-justified in a new string of length width, “padded” with
fillchar (the default fill character is a space).

str1.center(width[, fillchar])
Returns str1 centered in a new string of length width, “padded” with fillchar (the
default fill character is a space).

str1.expandtabs([tabsize])
Returns str1 with all of its tabs replaced by one or more spaces according to
tabsize (the default is 8) and the column at which the tab occurs on its line.

The format method and function

Many Python programs produce formatted text output. While the methods described
in the preceding sections provide a substantial set of operations for manipulating in-
dividual strings, arranging the output of several pieces of information together can be
a rather intricate project. Python includes a very powerful general formatting facility
that can be invoked either through the built-in function called format or through a string
method of the same name. These can save you a lot of effort:

format(value[, format-specification])
Returns a string obtained by formatting value according to the format-
specification; if no format-specification is provided, this is equivalent to
str(value)

format-specification.format(posargs, ..., kwdargs, ...)
Returns a string formatted according to the format-specification; any number of
positional arguments may be followed by any number of keyword arguments

Format specifications incorporate values where curly braces occur. A pair of braces can
contain a number (to indicate a positional argument), a name (to indicate a keyword
argument), or neither (to indicate the next positional argument). However, empty
braces cannot appear in a format string after braces containing numbers or names. The
advantage of using names in format specifications is the same as that of using keyword
arguments in function definitions: they describe the role the value plays in the formatted
string, and they allow the arguments to be specified in any order.

Given:

str1 = 'a string'

the following all produce the result '"a string" contains 8 characters':

58 | Chapter 3: Collections

'"{0}" contains {1} characters'.format(str1, len(str1))
'"{}" contains {} characters'.format(str1, len(str1))
'"{string}" contains {length} characters'.format(string=str1,
length=len(str1))
'"{string}" contains {length} characters'.format(length=len(str1),
string=str1)

The format method and function can do more than simply replace values. The format
specification dictates how each value is formatted within the resulting string. A colon
inside a pair of braces begins a format specifier. The complete general structure of a
format specifier is as follows:

[[fill]align][sign][#][0][width][.precision][type]

Some of these you will use only rarely, but when you need them they give you all the
control you need over the format of a string. The values for the fill, align, and
width fields are listed in Table 3-8. The numeric parts of the specifier are described in
Table 3-9, and Table 3-10 gives the options for integer and floating-point type
specifications.

Table 3-8. General format specifier fields

Field Option Meaning

align < Align left (the default)

> Align right

^ Center

= Padding goes between sign and digits (for numeric values only)

fill not } Fill character used for aligning; if the second character of the specifier is not a fill option,
the first character is not interpreted as a fill character

width integer Minimum field width

Table 3-9. Numeric format specifier fields

Field Option Meaning

sign + Indicates that signs should be used for both positive and negative numbers

- Indicates that a sign should be used only for negative numbers (the default)

space Indicates that a leading space should be used for positive numbers

Only for binary, octal, or hexadecimal output of integers: prefix the number with 0b,
0o, or 0x, respectively

0 zero-padding Preceding width, indicates zero-padding; equivalent to alignment = and fill
character 0

precision integer The number of digits to be displayed after the decimal point of a number formatted
with f or F or before and after the decimal point of a number formatted with g or G

Sequences | 59

Table 3-10. Numeric type specifier fields

Field Option Meaning

Types for
integers

b Binary (base 2)

c Character: converts the integer to the corresponding Unicode character

d Decimal digit (base 10; the default)

o Octal (base 8)

x Hexadecimal (base 16), using lowercase letters a–f

X Hexadecimal (base 16), using uppercase letters A–F

 n Like d but uses the locally appropriate number separators

Types for
floating-
point and
decimal
values

e Exponent notation (scientific notation using e for the exponent)

E Same as e but uses uppercase E for the exponent

f Fixed point

F Same as f

g “General” format (the default): prints the number as fixed point unless it is too large,
in which case it switches to e

G Same as g but uses E

n Like g but uses the locally appropriate number separators

Ranges
A range represents a series of integers. We’ll see some uses for ranges later in this chapter
and also in the next. They may not look like much, but their use is quite fundamental
to Python programming.

With one argument, range(stop) creates a range representing the integers from 0 up to
but not including stop. With two arguments, range(start, stop) creates a range rep-
resenting the integers from start up to but not including stop. (If stop is less than or
equal to start, the range will be empty.) With three arguments, range(start, stop,
step) creates a range representing the integers from start up to but not including
stop, in increments of step. Normally, if step is negative, stop will be less than start.
Note the similarity between ranges and slice expressions. Here are some usage
examples:

>>> range(5)
range(0, 5)
>>> set(range(5))
{0, 1, 2, 3, 4}
>>> range(5, 10)
range(5, 10)
>>> set(range(5, 10))
{8, 9, 5, 6, 7}
>>> range(5, 10, 2)
range(5, 10, 2)
>>> set(range(5, 10, 2))

60 | Chapter 3: Collections

{9, 5, 7}
>>> set(range(15, 10, −2))
{15, 13, 11}
>>> set(range(0, −25, −5))
{0, −15, −5, −20, −10}

Tuples
A tuple is an immutable sequence that can contain any type of element. A very common
use of tuples is as a simple representation of pairs such as x, y coordinates. For example,
the built-in function divmod(x,y) returns a two-element tuple containing the quotient
and the remainder of the integer division of x by y. Tuples are also the natural form for
record-oriented data obtained from an external source, such as a row in a database.

Tuple syntax

Tuples are written as comma-separated series of items surrounded by parentheses. This
leads to the only ambiguity in Python’s syntax: since parentheses are used to group
expressions, a parenthesized expression such as (3 * 5) cannot be read as a one-element
tuple. To get around this problem, one-element tuples must be written with a comma
after their single element. (Commas may always follow the last element of any sequence
display.) An empty pair of parentheses creates an empty tuple. Here are some examples:

>>> ('TCAG', 'UCAG') # a two-element tuple
('TCAG', 'UCAG')
>>> ('TCAG',) # a one-element tuple
('TCAG',)
>>> () # an empty tuple
()
>>> ('TCAG') # not a tuple!
'TCAG'

Given a sequence as an argument, the tuple function creates a tuple containing the
elements of the sequence. Remember, a string is considered a sequence of one-character
strings in contexts like this:

>>> tuple('TCAG')
('T', 'C', 'A', 'G')
>>> tuple(range(5,10))
(5, 6, 7, 8, 9)

Tuple packing and unpacking

The righthand side of an assignment statement can be a series of comma-separated
expressions. The result is a tuple with those values. This is called tuple packing:

>>> bases = 'TCAG', 'UCAG' # a two-element tuple
>>> bases
('TCAG', 'UCAG')

Multiple expressions in a return statement are also packed into a tuple, so this is a very
convenient way for a function to return more than one value. Example 3-2 illustrates

Sequences | 61

a multiple return from a function. It uses the recognition_site function defined in the
preceding chapter to simulate the enzyme’s cut.

Example 3-2. Returning multiple values from a function

def restriction_cut(base_seq, recognition_seq, offset = 0):
 """Return a pair of sequences derived from base_seq by splitting it at the first appearance
 of recognition_seq; offset, which may be negative, is the number of bases relative to the
 beginning of the site where the sequence is cut"""
 site = recognition_site(base_seq, recognition_seq)
 return base_seq[:site+offset], base_seq[site+offset:]

A tuple—either explicitly enclosed in parentheses or packed—can be the lefthand side
of a simple assignment statement (but not an augmented assignment statement, such
as one that uses +=). The righthand side of the assignment statement must be a sequence
containing the same number of elements as the tuple on the left, either as an implicitly
packed tuple or a single sequence value. For example:

>>> DNABases, RNABases = 'TCAG', 'UCAG'
>>> DNABases
'TCAG'
>>> RNABases
'UCAG'
>>>

A tuple on the left and a tuple-returning function on the right is a fairly common con-
struction. Sometimes a single name will be assigned to the tuple result, but often a series
of names will be assigned to the unpacked values that are returned:

>>> aseq1 = 'AAAAATCCCGAGGCGGCTATATAGGGCTCCGGAGGCGTAATATAAAA'
>>> left, right = restriction_cut(aseq1, 'TCCGGA')
>>> left
'AAAAATCCCGAGGCGGCTATATAGGGC'
>>> right
'TCCGGAGGCGTAATATAAAA'
>>>

An interesting consequence of this is that the bindings of two names can be exchanged
in one statement. This kind of situation does arise from time to time. This works be-
cause all the values on the right are evaluated, then packed into a tuple, and finally
unpacked for assignment on the left:

>>> left, right = right, left

Lists
A list is a mutable sequence of any kind of element. Lists are a highly flexible and widely
applicable kind of container—so much so that they could be considered the archetypal
collection type. One way of thinking of lists is as mutable tuples, since anything you
can do with a tuple you can also do with a list. However, you can do a lot more with
lists than you can with tuples.

62 | Chapter 3: Collections

The syntax for lists is a comma-separated series of values enclosed in square brackets.
(Square brackets do not lead to the kind of ambiguity with a one-element list that
parentheses do with tuples.)

A few built-in functions return lists. For example, dir(x) returns a list of the names
associated with whatever x is. As with help(x), the list will contain more than you
probably want to see: it includes all the names beginning with underscores, which are
meant to be internal to x’s implementation. Later in this chapter (Example 3-4), we’ll
define a function called dr that filters the result of calling dir to omit the private names.

There are many operations and methods that modify lists. Even slicing can be used to
change what a list contains. Lists are often used as a way of producing a modified copy
of an immutable sequence. First, a new list is created by calling list with an immutable
sequence as its argument; then the list is modified, and finally, the type of the immutable
sequence is called with the modified list as its argument. As you’ll see in the next chap-
ter, another common use of lists is to accumulate values.

Bytearrays are essentially lists with elements restricted to the integers 0 to 255 inclusive.
All the operations and methods that you can use for modifying a list can also be used
to modify a bytearray.

Statements that modify lists

An index expression designates a particular element of a sequence. A slice specifies a
subsequence. Index and slice expressions of lists and bytearrays—the two mutable
sequence types—can appear on the lefthand side of an assignment statement. What
this means is that the element or subsequence represented by the index or slice ex-
pression is replaced by the value of the expression on the assignment statement’s right-
hand side. The change is made to the list itself, not to a copy (the way it would be with
string operations).

Slice assignments can express many kinds of list manipulations, as shown in Ta-
ble 3-11. Some can even change the size of the list. It is well worth studying their
varieties.

Table 3-11. List modification assignments

Assignment expression Result

lst[n] = x Replaces the nth element of lst with x

lst[i:j] = coll Replaces the ith through jth elements of lst with the elements of coll

lst[i:j] = any_empty_collection Deletes the ith through jth elements of lst (an important special case of
lst[i:j] = seq)

lst[i:j:k] = coll Replaces the elements of lst designated by the slice with the elements of
coll, whose length must equal the number of elements designated by the slice

lst[n:n] = coll Inserts the elements of coll before the nth element of lst

lst[len(lst):len(lst)] = [x] Adds x to the end of lst

Sequences | 63

Assignment expression Result

lst[len(lst):len(lst)] = coll

lst += coll

Adds the elements of coll at the end of lst

lst[:] = coll Replaces the entire contents of lst with the elements of coll

There is a simple statement that can remove elements: del, for “delete.”

S T A T E M E N T

Deletion
The del statement removes one or more elements from a list or bytearray.

del lst[n] # remove the nth element from lst
del lst[i:j] # remove the ith through jth elements from lst
del lst[i:j:k] # remove every k elements from i up to j from lst

List modification methods

Table 3-12 shows the methods that change a list. These methods are unusual in that
they actually change the list itself, rather than producing a modified copy as would
similar methods of other types. They are also unusual because—with the exception of
pop—they do not return a value (i.e., they return None).

Table 3-12. List modification methods

Method Result
lst.append(x) Adds x to the end of lst
lst.extend(x) Adds the elements of x at the end of lst
lst.insert(i, x) Inserts x before the ith element of lst
lst.remove(x) Removes the first occurrence of x from lst; an error is raised if x is not in lst
lst.pop([i]) Removes the ith element from lst and returns it; if i is not specified, removes the last element
lst.reverse() Reverses the list
lst.sort([reverseflag]
 [, keyfn])

Sorts the list by comparing elements or, if keyfn is included in the call, comparing the results
of calling keyfn for each element; if reverseflag is true, the ordering is reversed; keyfn
and reverseflg must be specified as keyword arguments, not positionallya

a Atypically, the optional arguments to sort may not be supplied positionally. Either or both may be supplied, but only as keyword arguments.
The parameter reverse is simply a flag that controls whether the list is sorted in increasing or decreasing order. The keyfn parameter
is explained at the end of the chapter, in the section “Functional Parameters” on page 89.

Sets, frozensets, strings, tuples, and lists can be concatenated with other values of the
same type, and the result is a new value of the same type. List modifications are different.
No new list is created; instead, the contents of the original list are changed. This is
particularly evident in the different results obtained by concatenating two lists as

64 | Chapter 3: Collections

opposed to using the extend method, as demonstrated in the following interaction and
Figure 3-1:

>>> list1 = [1,2,3]
>>> list2 = [4,5]
>>> list1 + list2 # concatenation
[1, 2, 3, 4, 5] # produces a new list
>>> list1
[1, 2, 3] # while list1 remains unchanged
>>> list2
[4, 5] # as does list2
>>> list1.extend(list2) # extension
>>> list1
[1, 2, 3, 4, 5] # modifies list1
>>> list2
[4, 5] # but not list2

Figure 3-1. List concatenation versus list modification

Augmented assignment of one list to another modifies the list on the
lefthand side of the statement.

Sequence-oriented string methods

There are some important string methods that we haven’t looked at yet; they were not
included earlier in the chapter because we hadn’t yet discussed the types of sequences
they take as arguments or return as results. In practice the sequence arguments are

Sequences | 65

usually lists, but in principle they can be any kind of sequence. Remember too that
when a sequence argument is expected, a string is interpreted as a sequence of one-
character strings. Here are the remaining string methods:

string.splitlines([keepflg])
Returns a list of the “lines” in string, splitting at end-of-line characters. If
keepflg is omitted or is false, the end-of-line characters are not included in the
lines; otherwise, they are.

string.split([sepr[, maxwords]])
Returns a list of the “words” in string, using sepr as a word delineator. In the
special case where sepr is omitted or is None, words are delineated by any consec-
utive whitespace characters; if maxwords is specified the result will have at most
maxwords +1 elements.

string.rsplit([sepr[, maxwords]])
Performs a reverse split: same as split except that if maxwords is specified and its
value is less than the number of words in string the result returned is a list con-
taining the last maxwords+1 words.

sepr.join(seq)
Returns a string formed by concatenating the strings in seq separated by sepr,
which can be any string (including the empty string).

string.partition(sepr)
Returns a tuple with three elements: the portion of string up to the first occurrence
of sepr, sepr, and the portion of string after the first occurrence of sepr. If sepr is
not found in string, the tuple is (string, '', '').

string.rpartition(sepr)
Returns a tuple with three elements: the portion of string up to the last occurrence
of sepr, sepr, and the portion of string after the last occurrence of sepr. If sepr is
not found in string, the tuple is ('', '', string).

Mappings
A mapping is a mutable unordered collection of key/value pairs.† Computer scientists
use a number of other names to refer to data structures implementing mappings, in-
cluding associative arrays, lookup tables, and hash tables. A physical dictionary is a real-
world example of a mapping: given a word, you get a definition. Figure 3-2 illustrates
the concept.

† The term “mapping” comes from mathematics, where it represents a function from a “domain” of values to
a “range” of values.

66 | Chapter 3: Collections

Figure 3-2. A dictionary

Dictionaries
Dictionaries have many applications in programming. There are reasons for Python to
have sets, frozensets, bytes, bytearrays, and ranges, but you could easily write most of
your programs using just strings, lists, and dictionaries. There is just one mapping type
in Python: dict, for “dictionary.” Like other collection types, dict can be called with a
collection argument to create a dictionary with the elements of the argument. However,
those elements must be tuples or lists of two elements—a key and a value:

dict((('A', 'adenine'),
 ('C', 'cytosine'),
 ('G', 'guanine'),
 ('T', 'thymine')
))

Because they are so frequently used, Python provides a notation for dictionaries similar
to that of sets:‡ a comma-separated list of key/value pairs enclosed in curly braces, with
each key and value separated by a colon. You can put spaces before, after, or both
before and after the colon. They are printed with no space before and a space after the
colon, so you might want to choose that style. Empty braces create an empty dictionary
(not an empty set). The order within the braces doesn’t matter, since the dictionary
implementation imposes its own order. A simple example demonstrates that:

>>> {'A': 'adenine', 'C': 'cytosine', 'G': 'guanine', 'T': 'thymine'}
{'A': 'adenine', 'C': 'cytosine', 'T': 'thymine', 'G': 'guanine'}

The keys of a mapping must be unique within the collection, because the dictionary
has no way to distinguish different values indexed by the same key. As with sets, the
implementation of dict does not allow keys to be instances of mutable built-in types.

‡ You could consider a set to be a dictionary where the value associated with each key is the key itself; in fact,
they are often implemented that way in various languages and libraries.

Mappings | 67

Even a tuple used as a key may not contain mutable built-in types. Any other kind of
object may be used as a key, including numbers, strings, and frozensets.

What happens if the argument added to a set or a key used with a dic-
tionary is a collection with mutable elements? Here’s an example:

>>> set([['T', 'C', 'A', 'G'], # attempt to create a set
 ['U', 'C', 'A', 'G']]) # from a list of two lists
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: unhashable type: 'list'

“Hashable” refers to the computation performed as part of storing items
in lists and dictionaries so that they can be retrieved extremely effi-
ciently. That’s all you need to know about it.

Error Message Vocabulary
Error messages developed for a programming language are phrased using a reasonable
technical vocabulary, but not one beginning users—even if they are experienced pro-
grammers—will necessarily understand. (Even if you’re familiar with the concept that
a term refers to, you may not recognize it because you may know it by a different name.)
Some error messages are pretty clear; for example, NameError: name 'Non' is not
defined. Others are more “opaque”—you’ll learn what they mean, but you may not
understand why they say what they do.

As you gain experience, you’ll develop your own mental dictionary that uses these error
messages as keys and has explanations as values. In this case, you just have to learn
that “unhashable” refers to the technical limitation that prevents mutable built-in col-
lections from being used as elements of sets or keys of dictionaries. Summaries of some
of these translations will be provided at the end of the chapters in which they appear.

Dictionary example: RNA codon translation table

Dictionaries are the natural Python representation for tabular data. For example, they
can be used to hold rows obtained from a database table: the table’s primary key is the
dictionary’s key, and the value can be a tuple, with each element of the tuple repre-
senting one column of the table.§ (There is nothing strange about a dictionary key being
part of the value associated with it—in fact, this is quite common.)

Table 3-13 shows the usual RNA codon-to-amino acid translation table. Exam-
ple 3-3 shows how to represent this as a Python dictionary.

§ If you are not familiar with these database terms, you might want to read the section “Database
Tables” on page 360.

68 | Chapter 3: Collections

Table 3-13. The RNA amino acid translation table

First Base

Second Base

Third BaseU C A G

U Phe Ser Tyr Cys U

Phe Ser Tyr Cys C

Leu Ser stop stop A

Leu Ser stop Trp G

C Leu Pro His Arg U

Leu Pro His Arg C

Leu Pro Gln Arg A

Leu Pro Gln Arg G

A Ile Thr Asn Ser U

Ile Thr Asn Ser C

Ile Thr Lys Arg A

Met/start Thr Lys Arg G

G Val Ala Asp Gly U

Val Ala Asp Gly C

Val Ala Glu Gly A

Val Ala Glu Gly G

Example 3-3. The RNA translation table as a Python dictionary

RNA_codon_table = {
Second Base
U C A G
U
 'UUU': 'Phe', 'UCU': 'Ser', 'UAU': 'Tyr', 'UGU': 'Cys', # UxU
 'UUC': 'Phe', 'UCC': 'Ser', 'UAC': 'Tyr', 'UGC': 'Cys', # UxC
 'UUA': 'Leu', 'UCA': 'Ser', 'UAA': '---', 'UGA': '---', # UxA
 'UUG': 'Leu', 'UCG': 'Ser', 'UAG': '---', 'UGG': 'Urp', # UxG
C
 'CUU': 'Leu', 'CCU': 'Pro', 'CAU': 'His', 'CGU': 'Arg', # CxU
 'CUC': 'Leu', 'CCC': 'Pro', 'CAC': 'His', 'CGC': 'Arg', # CxC
 'CUA': 'Leu', 'CCA': 'Pro', 'CAA': 'Gln', 'CGA': 'Arg', # CxA
 'CUG': 'Leu', 'CCG': 'Pro', 'CAG': 'Gln', 'CGG': 'Arg', # CxG
A
 'AUU': 'Ile', 'ACU': 'Thr', 'AAU': 'Asn', 'AGU': 'Ser', # AxU
 'AUC': 'Ile', 'ACC': 'Thr', 'AAC': 'Asn', 'AGC': 'Ser', # AxC
 'AUA': 'Ile', 'ACA': 'Thr', 'AAA': 'Lys', 'AGA': 'Arg', # AxA
 'AUG': 'Met', 'ACG': 'Thr', 'AAG': 'Lys', 'AGG': 'Arg', # AxG
G
 'GUU': 'Val', 'GCU': 'Ala', 'GAU': 'Asp', 'GGU': 'Gly', # GxU
 'GUC': 'Val', 'GCC': 'Ala', 'GAC': 'Asp', 'GGC': 'Gly', # GxC
 'GUA': 'Val', 'GCA': 'Ala', 'GAA': 'Glu', 'GGA': 'Gly', # GxA

Mappings | 69

 'GUG': 'Val', 'GCG': 'Ala', 'GAG': 'Glu', 'GGG': 'Gly' # GxG
}

Had we used lists, we would have had to write code to search through the list for a
codon whose translation we needed. With dictionaries the task is trivial, as you can see
in Example 3-4.

Example 3-4. RNA codon lookup from a dictionary

def translate_RNA_codon(codon):
 return RNA_codon_table[codon]

The nicely formatted, organized dictionary in Example 3-3 was constructed manually.
Example 3-5 shows what this dictionary looks like when printed in the interpreter with
a 75-column window,‖ as in this book’s code examples. This is really just one long line,
with “wrapping” at the window edge. Since comments are ignored on input, they aren’t
part of the output. Notice that the key/value pairs in the dictionary Python constructs
from the input appear in an arbitrary order—dictionaries are unordered data structures.

Example 3-5. Dictionary representing the RNA codon table

>>> RNA_codon_table
{'CUU': 'Leu', 'UAG': '---', 'ACA': 'Thr', 'AAA': 'Lys', 'AUC': 'Ile', 'AAC
': 'Asn', 'AUA': 'Ile', 'AGG': 'Arg', 'CCU': 'Pro', 'ACU': 'Thr', 'AGC': 'S
er', 'AAG': 'Lys', 'AGA': 'Arg', 'CAU': 'His', 'AAU': 'Asn', 'AUU': 'Ile',
'CUG': 'Leu', 'CUA': 'Leu', 'CUC': 'Leu', 'CAC': 'His', 'UGG': 'Trp', 'CAA'
: 'Gln', 'AGU': 'Ser', 'CCA': 'Pro', 'CCG': 'Pro', 'CCC': 'Pro', 'UAU': 'Ty
r', 'GGU': 'Gly', 'UGU': 'Cys', 'CGA': 'Arg', 'CAG': 'Gln', 'UCU': 'Ser', '
GAU': 'Asp', 'CGG': 'Arg', 'UUU': 'Phe', 'UGC': 'Cys', 'GGG': 'Gly', 'UGA':
 '---', 'GGA': 'Gly', 'UAA': '---', 'ACG': 'Thr', 'UAC': 'Tyr', 'UUC': 'Phe
', 'UCG': 'Ser', 'UUA': 'Leu', 'UUG': 'Leu', 'UCC': 'Ser', 'ACC': 'Thr', 'U
CA': 'Ser', 'GCA': 'Ala', 'GUA': 'Val', 'GCC': 'Ala', 'GUC': 'Val', 'GGC':
'Gly', 'GCG': 'Ala', 'GUG': 'Val', 'GAG': 'Glu', 'GUU': 'Val', 'GCU': 'Ala'
, 'GAC': 'Asp', 'CGU': 'Arg', 'GAA': 'Glu', 'AUG': 'Met', 'CGC': 'Arg'}

The way complicated combinations of collections are printed in the interpreter gener-
ally does not reveal the structure of the data. To obtain a function that will help you
see the structure of your data, you should include the following line in your Python files:

from pprint import pprint

This imports the function pprint from the module pprint—short for “pretty-print”—
and adds it to your namespace so that you can call it as a function without the module
prefix. You can make the function even easier to use if you import it as a shorter alias:

from pprint import pprint as pp

‖ The output will vary with your window width, which you can change in IDLE by dragging the lower-right
corner. On the General tab of IDLE’s Preferences window, you can also specify the size for the interpreter
window when IDLE starts up.

70 | Chapter 3: Collections

This imports the function but calls it pp in your namespace. Here is what
RNA_codon_table looks like when pretty-printed (to save space, only the first few and
last few lines are shown):

>>> pp(RNA_codon_table)
{'AAA': 'Lys',
 'AAC': 'Asn',
 'AAG': 'Lys',
 'AAU': 'Asn',
 'ACA': 'Thr',
 # . . . output deleted here
 'UUG': 'Trp',
 'UUT': 'Cys',
 'UUA': 'Leu',
 'UUC': 'Phe',
 'UUG': 'Leu',
 'UUU': 'Phe'}

This output goes to the other extreme, printing each dictionary entry on a separate line
so that the full output takes up 64 lines. Doing this reveals something interesting that
you might not have noticed if several key/value pairs were printed on each line:
pprint.pprint orders the dictionary entries alphabetically by their keys. Thus, whereas
on input the bases were ordered at each position by the usual TCAG, the order in the
output was ACGT. We’ll see in the next chapter how to write a function that prints the
codon table the way it was organized on input.

Dictionary operations

An interesting ambiguity arises when talking about a value being “in a dictionary.”
Dictionaries consist of key/value pairs, so are we looking at the keys or the values?
Python’s answer is “the keys”: the membership operators in and not in test whether a
key is present; max and min compare keys; and all and any test keys.

The syntax for getting and setting the value associated with a key is simple. Because
dictionaries are unordered, there is no equivalent to the flexible slicing operations of
sequences. Table 3-14 summarizes the index-based dictionary expressions.

Table 3-14. Dictionary indexing and removal

Expression Result

d[key] The value associated with key; an error is raised if d does not contain key

d[key] = value Associates value with key, either adding a new key/value pair or, if key was already in the dictionary,
replacing its value

d[key] ·= value Augmented assignment, with · being any of +, -, *, /, //, %, and **; an error is raised if d does not
have a value for key or if the value is not numeric

del d[key] Deletes key from the dictionary; an error is raised if d does not contain key

Mappings | 71

Slice assignment can remove an element from a mutable sequence, so it isn’t necessary
to use del statements with mutable sequences (though they can make your code
clearer). Dictionary assignment, however, can only add or replace an element, not re-
move one. That makes del statements more important with dictionaries than with
sequences. While there are dict methods that remove elements from a dictionary,
del statements are more concise.

Dictionary methods

Because items in a mapping involve both a key and an associated value, there are meth-
ods that deal with keys, values, and key/value pairs. In addition, there are methods that
perform the equivalent of the dictionary operations but with more options. There is
also a method for adding the key/value pairs from another dictionary, replacing the
values of any keys that were already present. Explanations of the details of these oper-
ations are found in Table 3-15.

Table 3-15. Dictionary methods

Expression Result

d.get(key[, default_value]) Like d[key], but does not cause an error if d does not contain key;
instead, it returns default_value, which, if not provided, is None

d.setdefault(key[, default_value]) Like d[key] if key is in d; otherwise, adds key with a value of
default_value to the dictionary and returns default_value (if
not specified, default_value is None)

d.pop(key[, default_value]) Like del d[key], but does not cause an error if d does not contain
key; instead, it returns default_value, which, if not provided, is
None

d1.update(d2) For each key in d2, sets d1[key] to d2[key], replacing the existing
value if there was one

d.keys() Returns a special sequence-like object containing the dictionary’s keys

d.values() Returns a special sequence-like object containing the dictionary’s values

d.items() Returns a special sequence-like object containing (key, value) tuples
for the dictionary’s keys

Note that the last three methods return “sequence-like objects”: they aren’t sequences,
but they can be used as if they were in many contexts. If you need a dictionary’s keys,
values, or items in the form of a list, simply call list with what the corresponding
method returns.

Streams
A stream is a temporally ordered sequence of indefinite length, usually limited to one
type of element. Each stream has two ends: a source that provides the elements and a
sink that absorbs the elements. The term “stream” is apt, conjuring as it does the flow

72 | Chapter 3: Collections

of water into or out of a hose. The more common kinds of stream sources are files,
network connections, and the output of a kind of function called a generator. Files and
network sources are also common kinds of sinks.

Your input to a command-line shell or the Python interpreter becomes a stream of
characters (see Figure 3-3). When Python prints to the terminal, that too is a stream of
characters. These examples demonstrate the temporal nature of streams: their elements
don’t necessary exist anywhere other than in the mechanisms that implement the
stream itself. For instance, the keystrokes don’t “come from” anywhere—they are
events that happen in time. (Stream implementations usually involve some kind of
buffer that does hold onto the items coming in or going out, but that is largely an issue
of efficiency and doesn’t affect the conceptual interpretation of the stream as a data
type.)

Figure 3-3. A stream of characters issuing from the user’s fingers

Files
Usually, the term “file” refers to data stored on media such as a hard disk drive or CD.
The term “file” is also used in programming, but with a somewhat different meaning.
A Python file is an object that is an interface to an external file, not the file itself. File
objects provide methods for reading, writing, and managing their instances. The in-
terface is sufficiently natural that the distinction between file objects and the external
data they represent can largely be ignored.

The smallest unit of data in external files is, of course, the bit, each representing a 1 or
a 0. Bytes are groups of eight bits. They are generally the basic unit of data that moves
through the various levels of hardware, operating system software, and programs. Bytes
do get grouped into chunks of various kinds throughout the different levels of computer
systems, but programmers can usually ignore the details of the larger groupings.

Streams | 73

Python’s implementation of file objects manages all the details of moving bytes to and
from external files. In most respects, a file object is a kind of sequence. Depending on
a parameter supplied when an instance is created, the elements of the file object are
either bytes or Unicode characters. Some methods treat files as streams of bytes or
characters, and other methods treat them as streams of lines of bytes or characters.
Figure 3-4 illustrates an input stream and Figure 3-5 an output stream.

Figure 3-4. Inputting a stream of characters from an external file

Figure 3-5. Outputting a stream of characters to an external file

Most of the time a file object is a one-way sequence: it can either be read from or written
to. It is possible to create a file object that is a two-way stream, though it would be more
accurate to say it is a pair of streams—one for reading and one for writing—that just
happen to connect to the same external file. Normally when a file object is created, if
there was already a file with the same path that file is emptied. File objects can be created
to append instead, though, so that data is written to the end of an existing file.

Creating file objects

The built-in function open(path, mode) creates a file object representing the external
file at the operating system location specified by the string path. The mode parameter is
a string whose character(s) specify how the file is to be used and its contents interpreted.

74 | Chapter 3: Collections

The default use is reading, and the default interpretation is text. You can omit the
second parameter entirely, in which case the value of mode would be 'rt'.

Specifying 'r', 'w', or 'a' without 't' or 'b' is allowable, but the value of mode cannot
be just 't' or 'b'. If either of those is specified, 'r', 'w', or 'a' must be explicitly
included. If the string contains a plus sign (+) in addition to 'r', 'w', or 'a' the file
object will be both readable and writable. The order of the characters within the mode
string is immaterial. Content modes are summarized in Table 3-16 and use the modes
listed in Table 3-17.

Table 3-16. Content mode values for opening a file

Value Mode Interpretation

t Text (default) Characters or strings

b Binary Bytes

Table 3-17. Use mode values for opening a file

Value Initial file position Read? Write?

r Beginning (default) Yes No

w Beginning No Yes

a End No Yes

r+ Beginning Yes No

w+ Beginning Yes Yes

a+ End Yes Yes

You could use an assignment statement to name the file object created by open, but
there’s a major problem with this simplistic approach. Due to the way files are imple-
mented both in programming languages and in operating systems, there are various
“cleanup” actions that must be performed when a file object is no longer needed. If
these actions are not performed after writing with file methods, some characters might
not get written to the external file. Other problems can also arise, but that’s the most
important one.

You could call the method close() to close a file object when it’s no longer needed, but
if an error occurs while you’re using the file, close won’t get called, so this won’t always
work. For this reason Python offers the with statement, which combines naming the
file object created by open with a mechanism to ensure that the appropriate cleanup
actions are performed. Even if an error occurs during the execution of the statements
in a with, the actions necessary to properly close the open file are performed.

Streams | 75

S T A T E M E N T

The with Statement
The with statement is used to open and name a file, then automatically close the file
regardless of whether an error occurs during the execution of its statements. Like a
def statement, a with statement contains an indented block of statements.

with open(path, mode) as name:
 statements-using-name

More than one file can be opened with the same with statement, as when reading from
one and writing to the other.

with open(path1, mode1) as name1, open(path2, mode2) as name2, ...:
 statements-using-names

In versions of Python before 2.6, the executable first line of a file that
uses a with statement must be:

from __future__ import with_statement

File methods

Methods for reading from files include the following:

fileobj.read([count])
Reads count bytes, or until the end of the file, whichever comes first; if count is
omitted, reads everything until the end of the file. If at the end of the file, returns
an empty string. This method treats the file as an input stream of characters.

fileobj.readline([count])
Reads one line from the file object and returns the entire line, including the end-
of-line character; if count is present, reads at most count characters. If at the end
of the file, returns an empty string. This method treats the file as an input stream
of lines.

fileobj.readlines()
Reads lines of a file object until the end of the file is reached and returns them as
a list of strings; this method treats the file as an input stream of lines.

File methods for writing to files include the following:

fileobj.write(string)
Writes string to fileobj, treating it as an output stream of characters.

fileobj.writelines(sequence)
Writes each element of sequence, which must all be strings, to fileobj, treating it
as an output stream of lines. Note, however, that although this method’s name is
intentionally analogous to readlines, newline characters are not added to the
strings in sequence when they are written to fileobj.

76 | Chapter 3: Collections

Notice that these functions do not provide a location within the sequence to read the
characters or lines from or write them to. That’s because the location is implicit: the
next item in the stream.

In addition, the print function has an optional (keyword) argument, file, that wasn’t
documented in Chapter 1. When it’s included, print writes its output to the value of
the file argument rather than to the terminal. The print function can be thought of as
a way to convert an object to a string and then send its characters to an output stream.

Example

To manipulate the contents of a file, it is often convenient to just read the entire contents
into a string and then manipulate the string instead. This approach runs into trouble
with large files, but we’ll see ways to fix that in the next chapter. Meanwhile, we’ll look
at reading FASTA files.#

The first step will be to read the contents of a FASTA file into a string and split that
string at every occurrence of '>'. To remind you how str.split works, here’s a tiny
example. I’ll emphasize again the importance of building up your functions from small
pieces that you can experiment with to see the behavior:

>>> '>id1>id2>id3'.split('>')
['', 'id1', 'id2', 'id3']

The list returned by split in this example has a surprising first element. Imagine how
difficult it would be to find the source of bugs or erroneous return values if you were
writing a 20-line function to fully process a FASTA file. You’re better off starting small,
with small functions and small input to test them on. There’s nothing wrong—and a
lot right—with having functions so small that they each do only one significant thing.

We can capture this bit of code directly in a function that substitutes the contents of a
file for the string in the example (Example 3-6). The slice at the end of the function
eliminates that surprising and useless first element.

Example 3-6. Reading FASTA sequences from a file, step 1

def read_FASTA_strings(filename):
 with open(filename) as file:
 return file.read().split('>')[1:]

There are some problems with this function, which we’ll fix at the end of this chapter:
the description line preceding each sequence is part of the sequence string, and the
string contains internal newline characters. We will also see many more examples of
ways to read data from FASTA files in later chapters.

#FASTA-formatted files are widely used in bioinformatics. They consist of one or more base or amino acid
sequences broken up into lines of reasonable size (typically 70 characters), each preceded by a line beginning
with a “>” character. That line is referred to as the sequence’s description, and it generally contains various
identifiers and comments that pertain to the sequence that follows.

Streams | 77

Since the call to the read method returns the entire contents of the file, we’re done with
the file after that call. For many situations, though, it’s not appropriate to read the
entire file. Considerations include:

• The file might be very large, so reading its entire contents could take a long time
and use a lot of computer memory.

• The file might contain different sorts of information, each of which needs to be
handled differently.

• In many file formats, delimiters separating items aren’t as straightforward as they
are in FASTA files.

These situations call for using methods that read a restricted amount from the file. The
restriction may be in terms of either what it reads—for example, readline—or for how
long it reads, by providing an argument to specify the number of characters.

Generators
A generator is an object that returns values from a series it computes. An example is
random.randint, as illustrated in Figure 3-6. What’s interesting and important about
generator objects is that they produce values only on request. Some of the important
advantages of generator objects are as follows:

• A generator can produce an infinitely large series of values, as in the case of
random.randint; its callers can use as many as they want.

• A generator can encapsulate significant computation with the caller requesting
values until it finds one that meets some condition; the computation that would
have been needed to produce the rest of the possible values is avoided.

• A generator can take the place of a list when the list is so long and/or its values are
so large that creating the entire list before processing its elements would use enor-
mous amounts of memory.

Figure 3-6. A function generating a stream of numbers

The local names of an ordinary function are rebound each time the function is called.
The challenge a language faces in implementing generators is that the values of the local
names must be retained between calls so that they can be used to compute the next
value. (That’s how random.randint works, for example.) To fully understand how

78 | Chapter 3: Collections

generators are used, you’ll need to learn about some of the statements introduced in
the next chapter, but they are mentioned here because of their stream-like behavior.

A value is obtained from a generator by calling the built-in function next with the
generator object as its argument. The function that produced the generator object re-
sumes its execution until a yield statement is encountered. At that point, the value of
the yield is returned as the value of next. The values of parameters and names assigned
in the function are retained between calls. In some simple uses, this is the main purpose
of using a generator.

S T A T E M E N T

Yielding a Value from a Generator
A function definition that uses a yield statement in place of return creates a new gen-
erator object each time it is called. The generator object encapsulates the function’s
bindings and code, keeping them together for as long as the object is in use.

yield value

What happens if next is called on a generator when the generator has no more values
to produce? The function takes an optional second parameter that specifies the value
to return when there are no more values:

next(generator[, default])
Gets the next value from the generator object; if the generator has no more values
to produce, returns default, raising an error if no default value was specified

Collection-Related Expression Features
We’ve completed our introduction to Python’s collection data types. Next, we’ll turn
to some powerful expression constructs that work with collections.

Comprehensions
A comprehension creates a set, list, or dictionary from the results of evaluating an ex-
pression for each element of another collection. Each kind of comprehension is written
surrounded by the characters used to surround the corresponding type of collection
value: brackets for lists, and braces for sets and dictionaries. We’ll start with basic list
comprehensions, then look at some variations; finally, we’ll explore some examples of
set and dictionary comprehensions.

Collection-Related Expression Features | 79

The core of a comprehension is an expression evaluated for each element
of a collection. It really must be an expression: statements are not per-
mitted. However, in most situations where you want to use a statement
in a comprehension, you can call either a function defined for that
purpose or an ad hoc lambda expression, discussed a bit later in this
chapter. Function calls are expressions, so they can be used in compre-
hensions. (Yes, function calls, being expressions, can also be used as
statements, but they are still expressions.)

List comprehensions

The simplest form of list comprehension is:

[expression for item in collection]

This produces a new list created by evaluating the expression with each element of the
collection. List comprehensions have wide applicability and can often reduce the com-
plexity of code, making it easier to read and write. You’ll probably find them strange
at first, but once you’re comfortable with them you’ll see how powerful and convenient
they are. Note that the expression must be just that—an expression. Statements are
not allowed, but since function calls are expressions they are allowed.

Example 3-7 is yet another rewrite of our validate_base_sequence function. The
expression in this example is base in valid_bases and the sequence is
base_sequence.upper(). (The expression is shown within parentheses to highlight its
role, but the parentheses aren’t necessary.) The list generated by the comprehension
contains only Boolean values. That list is then passed to the built-in function all to
check whether or not all the values are true.

Example 3-7. Validating base sequences using a list comprehension

def validate_base_sequence(base_sequence, RNAflag = False):
 valid_bases = 'UCAG' if RNAflag else 'TCAG'
 return all([(base in valid_bases)
 for base in base_sequence.upper()])

Next, we’ll use the functions random_base and random_codon, which we defined in the
previous chapter, to generate a random base sequence. (The function definitions are
repeated in Example 3-8 for convenience.) This list comprehension is atypical in that
the expression doesn’t use the collection items at all—instead, it uses range to deter-
mine how many times the expression should be evaluated (i.e., how many codons
should go in the list). The expression itself is independent of the numbers generated.

Example 3-8. Generating a random list of codons

from random import randint

def random_base(RNAflag = False):
 return ('UCAG' if RNAflag else 'TCAG')[randint(0,3)]

80 | Chapter 3: Collections

def random_codon(RNAflag = False):
 return random_base(RNAflag) + random_base(RNAflag) + random_base(RNAflag)

def random_codons(minlength = 3, maxlength = 10, RNAflag = False):
 """Generate a random list of codons (RNA if RNAflag, else DNA)
 between minlength and maxlength, inclusive"""
 return [random_codon(RNAflag)
 for n in range(randint(minlength, maxlength))]

Often, code makes more sense when it’s read from the inside out. Let’s take apart the
pieces of the last definition to see how it works. We’ll assign names to the default values
of the parameters so we can evaluate the expressions interactively rather than calling
the function:

>>> minlength = 3
>>> maxlength = 10
>>> RNAflag = True

Next, we name the result of the call randint:

>>> randnum = randint(minlength, maxlength)
>>> randnum
4

Then we show how that can be used as the collection of a list comprehension:

>>> [n for n in range(randnum)]
[0, 1, 2, 3]

Finally, we make the expression generate a random codon for each of those integers
(ignoring the values of the integers):

>>> [random_codon(RNAflag) for n in range(randnum)]
['ACT', 'AGG', 'GAG', 'TCT']

Of course, since this is all based on a random number, you won’t necessarily get the
same results if you try these examples yourself.

We can take this example a step further, as shown in Example 3-9. We already have a
translate_RNA_codon function, which we developed in the section “Dictionar-
ies” on page 67. We can use that to define a function that translates a collection of
codons. We could also add the code to the random_codons function, but as explained
earlier, it is often best to leave small function definitions as they are. You can then use
them in the construction of other functions, rather than trying to pack all the desired
capabilities into one function.

Example 3-9. Translating random base sequences

def random_codons_translation(minlength = 3, maxlength = 10):
 """Generate a random list of codons between minlength and maxlength, inclusive"""
 return [translate_RNA_codon(codon) for codon in
 random_codons(minlength, maxlength, True)]

Collection-Related Expression Features | 81

Now let’s run a few calls to see what the results look like:

>>> random_codons_translation()
['Ser', 'Gly', 'Ile']
>>> random_codons_translation()
['Ser', 'Leu', 'Ala', 'Leu', 'Asn', 'Val', 'Lys', 'Pro', 'His', 'Tyr']

Next, let’s revisit our primitive FASTA reader. The beginning of each string in the list
returned by the definition in Example 3-6 contains information about a base sequence.
The rest of the string represents the base sequence itself. Suppose we want to split the
description from a base sequence returned from the function read_FASTA_strings, as
defined in Example 3-6. There happens to be a string method that does just what we
need. Given a string string and another string sepr, the call string.partition(sepr)
returns a tuple with three elements: the part of string up to the first appearance of sepr,
sepr, and the part of string after sepr. Calling partition with an argument of '\n' will
split the description from the base sequence.

We can call partition on each string produced by a call to read_FASTA_strings and use
a list comprehension to collect the results. We could add the necessary code to
read_FASTA_strings, but we’ll adhere to our recommendation of having each function
do only one significant thing. Besides, read_FASTA_strings is a function that is perfectly
good in its own right and that might have uses beyond the current example. Instead,
we’ll define a new function, read_FASTA_entries (Example 3-10).

Example 3-10. Reading FASTA sequences from a file, step 2

def read_FASTA_entries(filename):
 return [seq.partition('\n') for seq in read_FASTA_strings(filename)]

This function returns a list of the sequences from a FASTA file, each one a tuple of the
form (information, '\n', sequence). (Remember to use pprint.pprint to help you
understand the structure of results that are this complicated.) Next, we need to remove
the newline characters from within each sequence string. Again, we’ll define a new
function: it will use str.replace and another list comprehension. We’ll take this op-
portunity to discard the useless '>' that begins each description. Example 3-11 shows
the new function, read_FASTA_sequences.

Example 3-11. Reading FASTA sequences from a file, step 3

def read_FASTA_sequences(filename):
 return [[seq[0][1:], # ignore the initial '>'
 seq[2].replace('\n', '')] # delete newlines
 for seq in read_FASTA_entries(filename)]

When the value used in the comprehension—seq in this case—is a sequence, it can be
unpacked into multiple names, which helps make the code clearer. Compare Exam-
ple 3-12 with Example 3-11. It’s not a big difference, but it can be helpful in more
complicated examples. Naming the elements of the sequence saves you from having to
figure out what the elements were when you come back to the code later.

82 | Chapter 3: Collections

Example 3-12. Reading FASTA sequences from a file, step 3, unpacked

def read_FASTA_sequences(filename):
 return [(info[1:], seq.replace('\n', ''))
 for info, ignore, seq in # ignore is ignored (!)
 read_FASTA_entries(filename)]

This is probably all beginning to look a bit rich. Play with the code by trying out its bits
separately, as demonstrated earlier. You’ll have reached a key stage in your Python
education when you can look at a function like read_FASTA_sequences in Exam-
ple 3-12 and see more or less immediately what it is doing. In the meantime, it can be
very helpful to work through functions like this by entering them into the interpreter
line by line and examining the results.

The description lines of FASTA files generally contain vertical bars to separate field
values. Example 3-13 defines a new function that calls read_FASTA_sequences, then uses
str.split to return a list of field values for the description instead of just a string.

Example 3-13. Reading FASTA sequences from a file, step 4

def read_FASTA_sequences_and_info(filename):
 return [[seq[0].split('|'), seq[1]] for seq in
 read_FASTA_sequences(filename)]

Notice how we continue to keep each function small. When building a “vocabulary”
of such functions, you don’t know which ones you or other programmers will ultimately
need. In any case, it’s easier to leave the working definitions alone and build on top of
them than it is to keep changing already working functions.

Altogether, the functions we developed to read sequences from a FASTA file do the
following:

• Split the file contents at '>' to get a list of strings representing entries

• Partition the strings to separate the first line from the rest

• Remove the useless '>' from the resulting triples

• Remove the newlines from the sequence data

• Split the description line into pieces where vertical bars appear

Each sequence in the result returned is represented by a two-element list. The first
element is a list of the segments of the description, and the second is the whole sequence
with no newline characters.

What would it look like to do this all at once? A combined definition is shown in
Example 3-14.

Example 3-14. Reading FASTA sequences with one compact function

def read_FASTA(filename):
 with open(filename) as file:
 return [(part[0].split('|'),

Collection-Related Expression Features | 83

 part[2].replace('\n', ''))
 for part in
 [entry.partition('\n')
 for entry in file.read().split('>')[1:]]]

This isn’t terrible, but it’s near the limit of what you could hope to readily comprehend
even once you’re comfortable with code like this. You’d probably try to understand it
by looking at each piece individually to see what it does, so why not just define each
piece as a separate function that names what it does? Doing so makes it easier to read,
test, and fix your code.

If ever you do want to produce an all-in-one function like the one in Example 3-14, you
should still develop it piece by piece, working from the inside out. Follow the same
steps we followed in developing the sequence of separate functions, making one change
to the function at a time. It’s true that using four separate functions requires a few more
lines of code, but they are much more readable than the ensemble of maneuvers in the
all-in-one definition. Also, some of them might prove useful in situations that call for
less processing of each entry.

Yet another approach is shown in Example 3-15, which defines the function as a series
of steps, naming the results of each. This does help to clarify what each piece is doing
and can help with debugging, but it’s a style more appropriate for programming in
older languages. Python’s expressiveness and clarity make assignment statements su-
perfluous in many situations. That said, you could write the function using a lot of
assignment statements as you are developing. Then, once you’ve got the definition
working, you could remove them and pack everything together into more complex
expressions.

Example 3-15. Reading FASTA entries from a file, binding names

def read_FASTA(filename):
 with open(filename) as file:
 contents = file.read() # only statement inside the with
 entries = contents.split('>')[1:] # skip blank first entry
 partitioned_entries = [entry.partition('\n') for entry in entries]
 pairs = [(entry[0], entry[2]) for entry in partitioned_entries] # omit '>'
 pairs2 = [(pair[0], pair[1].replace('\n', '')) for pair in pairs]
 result = [(pair[0].split('|'), pair[1]) for pair in pairs2]
 return result

Finally, there’s nothing to prevent you using an intermediary style. For instance, in
Example 3-15 there’s no reason to have one step that removes the newlines from the
second element of the pairs and a second step that splits the first element at vertical
bars. These actions could be merged into one step:

[(pair[0].split('|'), pair[1].replace('\n', '')) for pair in pairs]

84 | Chapter 3: Collections

Set and dictionary comprehensions

Set comprehensions work like list comprehensions. They are enclosed in braces and
produce a set:

{expression for item in collection}

One important difference from list comprehensions is that the result of a set compre-
hension doesn’t necessarily have as many elements as the collection used by the com-
prehension. Because it’s a set, duplicates accumulated during the comprehension are
ignored. Also, the value of expression cannot be an instance of a mutable built-in
collection, because that could not be an element of a set.

Dictionary comprehensions are also enclosed in braces, but they are a bit more com-
plicated because they require key/value pairs:

{key-expression: value-expression for key, value in collection}

Just as when you call dict with a collection argument, the collection in a dictionary
comprehension must contain only two-element lists or tuples. As always with diction-
aries, the key values may not be mutable collections.

Taking a list of pairs of the form (info-fields, sequence) as produced by read_FASTA
in Example 3-16 and assuming the first info field is 'gi' and the second the identifier,
it’s easy to construct a dictionary of sequences indexed by identifier.

Example 3-16. Constructing a dictionary with a comprehension

def make_indexed_sequence_dictionary(filename):
 return {info[0]: seq for info, seq in read_FASTA(filename)}

Generator expressions

A bit earlier in this chapter we discussed using the yield statement to create a function
that returns a new generator object each time it is called. Comprehensions are often a
more convenient way to express computations that otherwise would be defined as
separate functions, and Python has something similar for generators. A generator
expression is syntactically like a list or set comprehension, except that it is surrounded
with parentheses and its value is a generator:

(expression for item in collection)

Since yield is implicit in generator expressions, they are often quite a bit simpler than
equivalent generator-producing functions.

Generators look just like equivalent list or set comprehensions. Accessing individual
elements of these three collection types requires following different rules, though:

• There is no way to access an individual element of a set.

• There is only one element that can be accessed from a generator, and that is
obtained by calling next.

• Any element of a list can be directly accessed with an index expression.

Collection-Related Expression Features | 85

Some collection types can accept any other kind of collection as their argument when
called as a function. Thus, set(g) will return a set constructed from all the elements of
the generator g, and list(g) will return a list of all the elements of the generator g. Note
the similarity to files, another kind of stream: next and list for generators correspond
to readline and readlines for files. You can get the next item of the stream, or get them
all. However, you cannot ask for a specific item using an index expression.

Generator expressions are useful when the expressions they encompass require sub-
stantial computational resources or the collections are large. By using next to get one
element of the generated stream at a time and stopping when certain criteria have been
fulfilled, we can avoid unnecessary computation. Also, like generator functions, gen-
erator expressions can generate infinite streams. (But don’t try to call set, list, or
tuple on one of those!) Example 3-17 shows how a generator expression could be used
to produce amino acid abbreviations from an RNA sequence.

Example 3-17. Generating amino acid translations of codons

def aa_generator(rnaseq):
 """Return a generator object that produces an amino acid by translating
 the next three characters of rnaseq each time next is called on it"""
 return (translate_RNA_codon(rnaseq[n:n+3])
 for n in range(0, len(rnaseq), 3))

Since we’re ignoring the problem of running out of codons, the definition does not
handle the extra base or two that might appear at the end of the string following the
last codon. Here’s how this works:

>>> aagen = aa_generator('CCACCGCACCAACAGCGC')
>>> next(aagen, None)
'Pro'
>>> next(aagen, None)
'Pro'
>>> next(aagen, None)
'His'
>>> next(aagen, None)
'Gln'
>>> next(aagen, None)
'Gln'
>>> next(aagen, None)
'Arg'

It is an error to call next on a generator that has no more elements to produce, unless
a second argument is included in the call. In that case, the second argument is a value
to return when the generator is exhausted. It is not an error to call next on an exhausted
generator as long as the second argument is included. Consider the following two calls
after the preceding series of inputs:

>>> next(aagen, None) # OK, default value None returned
>>> next(aagen) # Error, since no default value is provided
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
StopIteration

86 | Chapter 3: Collections

StopIteration doesn’t look much like the name of an error message, and we haven’t
even discussed “iteration” yet (we will in the next chapter). Actually, StopIteration is
used in the implementation of certain parts of Python, and we’ll even use it in some
later examples. It’s not so much an error as an indication that the end of a stream has
been reached. What makes it an error in this case is that the call to next didn’t say what
to do when the stream was exhausted.

Conditional comprehensions

The value of a comprehension does not necessarily have to include an element corre-
sponding to every element in its collection. One or more tests can be added to determine
the elements for which the comprehension expression will be evaluated. This is
called filtering and is implemented with a conditional comprehension:

[expression for element in collection if test]

Multiple tests can be included as a series of “if” components of the comprehension.
Example 3-18 demonstrates the use of a conditional comprehension. The function fil-
ters the names returned by dir to eliminate names beginning with underscores.

Example 3-18. Filtering out the underscore names from dir

def dr(name):
 """Return the result of dir(name), omitting any names beginning with an underscore"""
 return [nm for nm in dir(name) if nm[0] != '_']

Files often contain different kinds of information on different lines, such as the de-
scriptions and sequences of a FASTA file. This kind of situation is another good can-
didate for a conditional comprehension. Example 3-19 shows how easy it is to extract
just sequence descriptions from a FASTA file and split them into fields at their vertical
bars.

Example 3-19. Reading FASTA descriptions from a file

def get_FASTA_descriptions(filename):
 with open(filename) as file:
 return [line[1:].split('|') for line in file if line[0] == '>']

Conditional comprehensions work the same way for sets as they do for lists. We could
use one to find all the codes in the third position of the description lines of a FASTA
file. For example, a file obtained from GenBank will begin with gi, an identifier, gb,
and a GenBank accession number. However, the third field of a FASTA file obtained
from another source or generated by an application might have a different meaning.
Example 3-20 defines a function that looks at the descriptions in a FASTA file and
returns a list of all the different codes it finds in the third field.

Example 3-20. Reading FASTA descriptions using set comprehension

def get_FASTA_codes(filename):
 with open(filename) as file:

Collection-Related Expression Features | 87

 if len(line.split('|')) < 3:
 return []
 return {line.split('|')[2] for line in file if line[0] == '>'}

Conditional dictionary comprehensions are similar. They use braces and must supply
both a key and a value, separated by a colon. In Example 3-20 no provision was made
for entries whose descriptions begin with something other than 'gi'. The definition
presented in Example 3-21 omits such sequences (which may or may not be a useful
thing to do).

Example 3-21. Constructing a selective dictionary

def make_gi_indexed_sequence_dictionary(filename):
 return {info[1]: seq for info, seq in read_FASTA(filename)
 if len(info) >= 2 and info[0] == 'gi'}

Even generator expressions can include conditionals. They produce values only for
those elements of the collection for which the conditional(s) are true. Example 3-22
shows an interesting use of a conditional generator expression to find the first element
in one list that is also in a second.

Example 3-22. Using a generator to find the first common element

def first_common(list1, list2):
 """Return the first element in list1 that is in list2"""
 return next((item for item in list1 if item in list2), None)

Nested comprehensions

Comprehensions can have more than one for in them. When they do, the innermost
ranges over its collection for each of the next one out’s collection, and so on. It is rare
to see more than two for sections in a comprehension, but occasionally three can be
useful.

Example 3-23 shows how clear a terse comprehension can be while defining a signifi-
cant computation. The function returns a list containing every three-character combi-
nation of the (unique) characters in its argument. It first converts its argument to a set
in order to eliminate any duplicates. The intended use is to generate a list of the strings
representing all the codons for a given collection of bases. The default is 'TCAG', but it
could be called with 'UCAG'.

Example 3-23. A nested comprehension for generating codons

def generate_triples(chars='TCAG'):
 """Return a list of all three-character combinations of unique characters in chars"""
 chars = set(chars)
 return [b1 + b2 + b3 for b1 in chars for b2 in chars for b3 in chars]

In fact, the function is entirely general. It will produce a list containing the result of
evaluating the + operator with every combination of three values in its argument:

88 | Chapter 3: Collections

• A string of any length:

>>> generate_triples('01')
['111', '110', '101', '100', '011', '010', '001', '000']

• Any nonstring collection containing one-character strings:

>>> generate_triples(('.', '-'))
['---', '--.', '-.-', '-..', '.--', '.-.', '..-', '...']

• Any nonstring collection containing strings of any length:

>>> generate_triples({'0', '555'})
['555555555', '5555550', '5550555', '55500', '0555555', '05550', '00555', '000']

• Any nonstring collection containing anything that supports +:

>>> generate_triples(range(2,4))
[6, 7, 7, 8, 7, 8, 8, 9]

Functional Parameters
Earlier in this chapter we saw two functions and one method with optional key
parameters. How this works requires some discussion.

The parameter “key”

We first encountered the two functions, max and min, in Chapter 1, where functions
were introduced. There they were described as taking any number of positional argu-
ments, but these two functions can also be called with a collection as the only positional
argument. (That wasn’t mentioned before because collections hadn’t yet been intro-
duced.) Both forms accept an optional key parameter, which is expected to be a func-
tion. The value of the key argument is called on each element of the collection. The
values returned by those calls are used to select the maximum or minimum element:

>>> max(range(3, 7), key=abs)
7
>>> max(range(-7, 3), key=abs)
-7

Note that although abs was used here to compare the elements of the range, what’s
returned is the element for which abs returned the largest value—not the value of calling
the key function on the element. For a more interesting illustration, consider a list
seq_list containing RNA base sequences. We could select the sequence with the lowest
GC content by calling min with key = gc_content (a function defined in the previous
chapter).

Earlier in this chapter, the method list.sort was described. It too can take an optional
key parameter. The key parameter works the way it does for min and max—the value of
key is called on each element, and the elements of the list are sorted according to the
values returned. The sort method uses < to order the elements of the list. If a call does
not include a key argument, the elements of the collection being sorted must have

Collection-Related Expression Features | 89

mutually comparable types: for example, a list of numbers or a list of strings, but not
a mixed list of numbers and strings. If the call does include a key argument, its value is
called for each element and the results are compared using <. Let’s look at an example:

>>> lst = ['T', 'G', 'A', 'G', 't', 'g', 'a', 'g']
>>> lst
['T', 'G', 'A', 'G', 't', 'g', 'a', 'g']
>>> lst.sort()
>>> lst
['A', 'G', 'G', 'T', 'a', 'g', 'g', 't']

Sorting lst in this example did change the order of its elements, but in
a way that may surprise you: all uppercase letters are considered “less
than” all lowercase letters. This behavior has a long history in computer
technology, the details of which are not important; keep it in mind,
though, when sorting lists of strings.

The way to have a list sorted according to an order you define is to provide a key
function. In this example we can eliminate the distinction between upper- and lower-
case letters by providing a key that returns the uppercase (or, equivalently, the lower-
case) version of its string argument.

Python 2: The key argument is a function of two arguments, defaulting
to cmp, that is called to compare two elements of the collection.

>>> lst.sort(key=str.lower)
>>> lst
['A', 'a', 'C', 'c', 'G', 'g', 'T', 't']
>>>

Another thing you might have noticed is that after sorting using
str.lower, each uppercase letter appears before the corresponding
lowercase one. This is not due to anything about letter case; for technical
reasons it is helpful for sorting functions to be stable, meaning that if
two items are equal, they will be in the same order after the sort as they
were before it.

One use of sorting by key is to order a list of base sequence strings where some use
lowercase and some uppercase (perhaps because they were obtained from different
sources, sites, databases, or programs). The default sort does not do what we want:

>>> seqs = ['TACCTATACCGGCTA', 'cacctctaccgta', 'AACCTGTCCGGCTA']
>>> seqs.sort()
>>> seqs
['AACCTGTCCGGCTA', 'TACCTATACCGGCTA', 'cacctctaccgta']

90 | Chapter 3: Collections

The sequence beginning with 'c' should go between the other two but appears at the
end. This is only a small example; imagine what would happen when sorting a large
number of sequences, some uppercase and others lowercase (or worse, using mixed
case). What we want instead is for sort to ignore case:

>>> seqs = ['TACCTATACCGGCTA', 'cacctctaccgta', 'AACCTGTCCGGCTA']
>>> seqs.sort(key=str.lower)
>>> seqs
['AACCTGTCCGGCTA', 'cacctctaccgta', 'TACCTATACCGGCTA']
>>>

Function objects

The value of the key argument in the preceding examples appeared to be just a name.
However, as with any use of names in expressions, it is the value the name is bound to
that is actually passed to the function. The value of abs is a built-in function, and the
value of str.lower is a method in the class str.

The idea of using a function or method as an argument to another function or method
may seem strange, but functions and methods are objects, just like everything else in
Python. The def statement creates a function object and names it.

You can type the name of a function in the interpreter to see what kind of object it is
(what is printed for built-in functions and methods is somewhat different than what
you’ll see for ones you define or import, and what is printed for functions differs from
what is printed for methods, but the values are all objects):

>>> max
<built-in function max>
>>> gc_content
<function gc_content at 0x74a198>
>>> str.lower
<method 'lower' of 'str' objects>
>>> lower
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
NameError: name 'lower' is not defined
>>>

The reason for the error in the last example is that there is no function called “lower”.
Only the str class provides a lower method, so either str or an instance of str must
appear before lower, with a dot in between.

Like any value, a function can have multiple names. Binding a name to an existing
function is no different than binding a name to an existing object of any other type:

>>> fn = gc_content
>>> fn('ATCCCGGG')
0.75

A function call is a kind of expression. In evaluating the expression Python obtains the
function object named in the call, binds its parameters to the arguments in the call, and

Collection-Related Expression Features | 91

begins executing the function. What “route” (name) it takes to get to the object has no
effect on the process.

Anonymous functions

Passing functions as arguments is not as esoteric as it may seem. There are many sit-
uations in which a functional parameter avoids a great deal of repetitive code. Imagine
if you had to define a separate function for every different way you might want to find
the maximum value in a collection or sort a list. Just as other parameters generalize
pieces of computation, so do functional parameters.

Functional parameters are powerful tools, but you still have to write the different func-
tions to pass as arguments. Functions passed as arguments are generally small and
simple. Defining a lot of these little functions used solely to pass to other functions gets
tedious. Also, definitions used in a subsidiary way like these really shouldn’t be as
prominent within a file as normal functions—they’d distract the reader and obscure
the real structure of the file’s code.

Fortunately, Python has a mechanism for defining lightweight functions without using
def. These functions don’t even have names—they are anonymous. Although they are
functions, they are defined by an expression, not a statement. This kind of expression
is called a lambda expression.* Its syntax is as follows:

lambda args: expression-using-args

A lambda expression has one or more arguments. The result is an anonymous function
that can be used anywhere you would use a named function. The key parameters of
min, max, and lst.sort expect functions of one argument, so a lambda passed to one of
these must have exactly one argument. The expression can be any kind of expression,
including one with function calls, but it must be an expression, not a statement.

Lambda expressions can be passed as arguments, just as if they were named functions.
They have a few important benefits, though: they are a little more concise than func-
tions defined with def; they are anonymous, so there’s no risk of them being used
inappropriately or accidentally elsewhere in your code; and they keep the definition
right where it’s used, which improves readability. Actually, you can name a lambda
expression with an assignment statement, just as you’d name any other value. The effect
would be the same as if you had used def to define and name the function. The following
two ways of defining the function named fn are in all ways equivalent:

def fn (x, y):
 return x*x + y*y

fn = lambda x, y: x*x + y*y

In fact, when a lambda expression is passed to another function, it does get named. Just
like any value passed as an argument in a function call, the corresponding name in the

* The term “lambda” and the corresponding concept come from formal logic and mathematics.

92 | Chapter 3: Collections

function’s parameter list is bound to the lambda expression. Inside the function defi-
nition, there is no difference whatsoever between using a parameter name to call a
function that has been defined with def or an anonymous function defined by a lambda
expression.

Let’s look at an example. Python has two built-in functions called all and any. They
each take an iterable as an argument. The function all returns True if all the elements
of the iterable are true, while any returns True if any of them are. Arguably, it might
have been better for those functions to have been defined to take an optional function
to call on each element and then to check the result returned by the function instead
of testing the elements themselves. If no function were provided, the default would be
to use the element itself.

We can define functions to do this. It is never a good idea to redefine built-in functions,
so we must invent two other names: every and some, perhaps. Example 3-24 shows a
definition for some that uses a conditional generator. The function calls next once. If
there is an item in coll for which pred(item) is true, the generator produces at least one
True value. If, however, pred(item) is not true of any item, the generator produces an
empty stream and next will use the default value False, as specified in its call.

Example 3-24. Definition of a function with a functional argument

def some(coll, pred=lambda x: x):
 """Return true if pred(item) is true for some item in coll"""
 return next((True for item in coll if pred(item)), False)

>>> some([0, '', False])
True
>>> some([0, '', False])
False
>>> some([0, '', 4])
True
>>> some([0, 1, 4], lambda x: isinstance(x, int) and x % 2) # odd ints?
True
>>> def odd(n):
... return bool(n % 2)
)>>> some([0, 2, 4], odd)
False
>>> some({'a string', ''}, len)
False
>>> some({tuple(), ''}, len)
False

The last two lines of input illustrate that some can be used on any collection, not just a
sequence. The definition of odd and the input before and after it show that the name of
a function and a lambda expression have the same effect in a function call.

Collection-Related Expression Features | 93

It is rarely necessary to call bool: anywhere you would use the result of
an expression on which you can call bool, you can just use the expression
by itself. The definitions of some and odd in this example did use bool
because the functions are predicates like all and any; thus, they are
expected to always return a Boolean value.

Returning to the example of sorting a list of strings in mixed case, suppose we want to
order them by size first, and then alphabetically. We could order them by size easily
enough by providing len as the key argument, just as we ordered them alphabetically
after converting all of the sequences to lowercase. However, there’s no straightforward
way to order them by multiple criteria without passing a function defined for that
purpose as the key argument.

What would such a function look like? It could be anything that returns a result ap-
propriate for use in a < expression. It turns out that the definition of < when its operands
are sequences is to compare their first elements, then their second, and so on, until one
is “less than” the other. For example:

>>> l = [(3, 'abc'), (5, 'ghijk'), (5, 'abcde'), (2, 'bd')]
>>> l.sort()
>>> l
[(2, 'bd'), (3, 'abc'), (5, 'abcde'), (5, 'ghijk')]

To sort by both length and alphabetically ignoring case, we need a function that returns
a pair (tuple or list) whose first element is the sequence’s length and its second is the
sequence converted to either lower- or uppercase. We could define such a function:

def sequence_sort_key(seq):
 return (len(seq), seq.lower())

Then l.sort(key=sequence_sortkey) would do the trick. We probably don’t need such
a function anywhere else, though, and it’s better to use a lambda expression than define
a superfluous function:

>>> l.sort(key=lambda seq: (len(seq), seq.lower())))

It’s never necessary to use a lambda expression. Once you become familiar with them,
though, you’ll find them a welcome tool. Even if you don’t use them, learning about
them will help you better understand the true nature of functions. We’ll be using
lambda expressions for some important purposes later in the book.

Tips, Traps, and Tracebacks

Tips
• When typing the contents of a collection inside its enclosing punctuation—

parentheses for tuples, brackets for lists, and curly braces for sets and

94 | Chapter 3: Collections

dictionaries—it’s a good idea to always end with an extra comma. That avoids
errors if you later add more elements and forget to add the comma after what had
previously been the last element. Then, when you do add more elements, make
sure you include a comma after the new ones too.

• Keep in mind that there only a few functions that are used with string arguments.
Most string operations are method calls; for instance, 'ATTCATT'.count('A').

Language features

• Don’t call close on files opened using a with statement; the file will automatically
be closed at the end of the statement’s execution.

• Practice using comprehensions. They may appear strange at first, but they are an
elegant and powerful way to express computations that construct one collection
from another, and these are quite common.

• Give generator expressions and generator functions a try.

• Practice using lambda expressions for anonymous function definitions that consist
of only an expression.

• Where does Python find files whose names are given as arguments to open? If the
argument is an absolute path—i.e., one beginning with a slash—that is the path
to the file. Otherwise, the path is relevant to the “current” directory. Determining
which directory is current can be confusing. Some of the ways Python determines
the current directory are:

— When the interpreter is started from a command line, the current directory is
the directory that was current in the command-line environment.

— The directory that is current when IDLE starts is platform-dependent: on OS X,
it is the user’s Documents folder; on Linux, in might be the home directory or
the home/Documents directory; and on Windows, it is the Python installation
directory (although, as with all Windows programs, an alias to IDLE can be set
up and given a different start directory through its property dialog).

— When a file is run from IDLE, the current directory is changed to the directory
of the file.

• You can find out what the current directory is by typing the following to the
interpreter:

import os
os.getcwd()

Developing and testing code

• Build programs step by step, keeping function definitions small and testing your
code each time you add one or two new ones.

• If you test your code after every change, or every few changes, you’ll have a much
better idea of what caused a new error than if you write a whole bunch of new code

Tips, Traps, and Tracebacks | 95

and try to make it work. Ideally, you should test every new function definition
immediately, then test how other functions work when you add calls to the new
function to them.

• Use assertion statements liberally to:

— Validate arguments.

— Validate expected partial results in the middle of function definitions.

— Validate results obtained from calls to one of your functions from another.

Why not just use calls to print? There are several reasons:

— It can be quite a strain—and quite boring—to repeatedly examine similar-
looking output as you write and test your code.

— It is very easy to overlook small problems in the output.

— The details of formatting output sufficiently to be able to examine it are often
needed only for that purpose, in which case it is a waste of time—let Python do
the checking with assert statements.

Very common tests to put in assertions include:

— The expected length of a collection.

— The range of a numerical value returned from a call to one of your functions
(e.g., gc_content).

— The contents of lines read from a file.

• When you do look at collection values—especially as you begin working with col-
lections that contain other collections—remember to use pprint.pprint. You
might as well just put this line:

from pprint import pprint as pp

at the beginning of every file to make it easier to use.

• Periodically step back from the details of the code you are developing and look at
its overall “shape.” Keep an eye out for long functions, repeated code, strings that
appear in more than one place, and so on; these are candidates for new definitions
and assignments.

Traps
• (value) is simply value with parentheses around it, so it is equal to value, not a

one-element tuple. A one-element tuple is written with a trailing comma: e.g.,
(value,).

• An augmented assignment list1 += list2 modifies list1, whereas list1 +
list2 creates a new list.

• The result of file.readline includes a newline character; the lines returned by
file.readlines do not.

96 | Chapter 3: Collections

• In a comprehension that just selects elements of a collection, it is very easy to forget
to include the for part, since a comprehension like this looks perfectly natural:

[x in lst if x > 0]

It should be:

[x for x in lst if x > 0]

• The result returned by max or min is an element of its collection argument, even if
a keyfn argument is provided. The keyfn is used to compute a value for the purpose
of comparison; when max or min identifies the appropriate element it returns that
element, not the result of calling keyfn on that element.

• The keys, values, and items methods of dict look like they should return lists, but
they don’t; they return special types of objects, which you will see if you call one
of them on a dictionary. These objects are iterables, but they are not in themselves
equal to any list. Usually the only thing you do with the results of these methods
is use them in a for statement or comprehension. If you do need a list value, call
list on the result of the method call, but keep in mind that the order within the
list is not predictable.

• Your computer’s operating system may be suppressing common file extensions in
file browser windows. This can lead to all sorts of problems because you are not
seeing the actual name of the filename. Turn off this consumer-oriented feature,
as follows:

OS X
In the Finder Preferences, click Advanced (the gear icon) at the top and turn
on “Show all File Extensions.”

Windows
In a Windows Explorer window, select “Folder Options” from the Tools
menu, click the View tab, and uncheck “Hide extensions for known file types.”

Unix/Linux
Different desktop environments may do this differently, but you should be
able to figure out how to make sure file extensions are always shown in the
standard file browser.

• To open a file that contains Unicode characters, it is necessary to include
encoding='utf-8' as the third argument to open.

Tracebacks
Representative error messages include:

NameError: [len(x) in lst]
Missing for x before in.

SyntaxError: [len(x) in lst if x > 3]
Missing for x before in.

Tips, Traps, and Tracebacks | 97

IndexError: string index out of range
For a string of length N, an index (i.e., the value between square brackets) must be
in the range -N <= index < N-1.

TypeError: unhashable type 'list'
TypeErrors have many causes and variations. “Unhashable” indicates a violation
of the prohibition against using mutable built-in types as elements of sets or keys
of dictionaries.

object is not iterable: 'builtin_function_or_method'
A function name was used in place of a function call in the in part of a compre-
hension; i.e., you forgot the parentheses! This is a common mistake when calling
dict.keys(), dict.values(), and dict.items().

98 | Chapter 3: Collections

CHAPTER 4

Control Statements

This chapter’s material is rich and intellectually challenging. Don’t give
up if you start to feel lost (but do review it later to make sure you have
absorbed it all). This chapter, together with the next, will complete our
introduction to Python. To help you understand its contents, the chap-
ter ends with some extended examples that reiterate the points made in
its shorter examples. The rest of the book has a very different flavor.

Chapters 1 and 2 introduced simple statements:

• Expressions, including function calls

• Assignments

• Augmented assignments

• Various forms of import

• Assertions

• return

• yield (to implement generators)

• pass

They also introduced the statements def, for defining functions, and with, to use with
files.* These are compound statements because they require at least one indented state-
ment after the first line. This chapter introduces other compound statements. As with
def and with, the first line of every compound statement must end with a colon and be
followed by at least one statement indented relative to it. Unlike def and with state-
ments, though, the other compound statements do not name anything. Rather, they
determine the order in which other statements are executed. That order is traditionally

* The with statement is more general than how it was described in Chapter 2: it actually does not need to name
the object of the with in an as portion of the statement, and its use is not limited to files. However, the way
it was described is the only way it is used in this book.

99

called the control flow or flow of control, and statements that affect it are called control
statements.†

Some kinds of compound statements can or must have more than one clause. The first
line of each clause of a compound statement—its header in Python terminology—is at
the same level of indentation as the headers of the statement’s other clauses. Each
header begins with a keyword and ends with a colon. The rest of the clause—its suite—
is a series of statements indented one level more than its header.

The term “suite” comes from Python’s technical documentation. We’ll
generally use the more common term block instead. Also, when discus-
sing compound statements, we frequently refer to clauses by the key-
words that introduce them (for example, “a with clause”).

Figure 4-1 illustrates the structure of a multi-clause compound statement. Not all com-
pound statements are multi-clause, but every clause has a header and a suite containing
at least one statement (if only pass).

Figure 4-1. The structure of compound statements

† Strictly speaking, a function call expression (not a function definition) also affects the flow of control since
it causes execution to proceed in the body of the function. Function calls can appear as separate statements
or as part of expressions; either way, execution of the statements that follow or the rest of the expression is
suspended until the function returns. From the point of view of the code calling the function, it is a single
step that does not affect the order in which statements are executed.

100 | Chapter 4: Control Statements

The statements discussed in this chapter are the scaffolding on which you will build
your programs. Without them you are limited to the sort of simple computations shown
in the examples of the previous chapters. The four kinds of compound statements
introduced here are:

• Conditionals

• Loops

• Iterations

• Exception handlers

Starting later in this chapter, some common usage patterns of Python
functions, methods, and statements will be presented as abstract tem-
plates, along with examples that illustrate them. These templates are a
device for demonstrating and summarizing how these constructs work
while avoiding a lot of written description. They contain a mixture of
Python names, self-descriptive “roles” to be replaced by real code, and
occasionally some “pseudocode” that describes a part of the template
in English rather than actual Python code.

The templates are in no way part of the Python language. In addition to
introducing new programming constructs and techniques as you read,
the templates are designed to serve as references while you work on later
parts of the book and program in Python afterwards. Some of them are
quite sophisticated, so it would be worth reviewing them periodically.

Conditionals
The most direct way to affect the flow of control is with a conditional statement. Con-
ditionals in Python are compound statements beginning with if.

S T A T E M E N T

Simple Conditional
The basic form of a conditional statement controls whether or not a block of statements
will get executed.

if expression:
 statements

If the expression is true, the statements are executed; otherwise, they are skipped. This
is like the if inside a conditional comprehension, but it’s more powerful since it is
followed by statements, whereas a comprehension is limited to expressions.

Conditionals | 101

During the import of a module __name__ is bound to the name of the module, but while
the file is being executed __name__ is bound to '__main__'. This gives you a way to
include statements in your Python files that are executed only when the module is run
or, conversely, only when it is imported. The comparison of __name__ to '__main__'
would almost always be done in a conditional statement and placed at the end of the file.

A common use for this comparison is to run tests when the module is executed, but
not when it is imported for use by other code. Suppose you have a function called
do_tests that contains lots of assignment and assertion statements that you don’t want
to run when the module is imported in normal use, but you do want to execute when
the module is executed. While informal, this is a useful technique for testing modules
you write. At the end of the file you would write:

if __name__ == '__main__':
 do_tests()

There are several forms of conditional statements. The next one expresses a choice
between two groups of statements and has two clauses, an if and an else.

S T A T E M E N T

One-Alternative Conditional
In this form of conditional, the statements in the first block are executed if the expres-
sion is true; otherwise, the statements in the second block are executed.

if expression:
 statements1
else:
 statements2

A simple use of the one-alternative form of conditional is to expand the test for whether
a file is being imported as opposed to being executed. We can set it up so that one thing
happens when the file is imported and a different thing happens when it’s executed.

This example shows only one statement in each block. There could be others, but
another reason to group statements into simple functions is so you can invoke them
“manually” in the interpreter during development and testing. You might run
do_tests, fix a few things, then run it again. These test functions are useful whether
invoked automatically or manually:

if __name__ == '__main__':
 do_tests()
else:
 print(__name__, 'has been imported.')

The third form of conditional statement contains more than one test. Except for the
if at the beginning, all the test clauses are introduced by the keyword elif.

102 | Chapter 4: Control Statements

S T A T E M E N T

Multi-Test Conditional
This form of the statement contains an if clause and any number of elif clauses. The
statement may end with an else clause, but that is not necessary.

The expressions in the if clause and each of the elif clauses are evaluated in order
until one is true. Then, that clause’s statements are executed and the rest of the con-
ditional is skipped. If none of the expressions is true and there is an else clause, its
statements get executed; otherwise, none of the statements are executed.

if expression1:
 statements1
elif expression2:
 statements2
. . . any number of additional elif clauses
else:
 statements

Python has a rich repertoire of mechanisms for controlling execution. Many kinds of
maneuvers that would have been handled in older languages by conditionals—and
could still be in Python—are better expressed using these other mechanisms. In par-
ticular, because they emphasize values rather than actions, conditional expressions or
conditional comprehensions are often more appropriate than conditional statements.

Programming languages have many of the same properties as ordinary human lan-
guages. Criteria for clear writing are similar in both types of language. You want what
you write to be:

• Succinct

• Clear

• Accurate

It’s important not to burden readers of your code (you included!) with
too many details. People can pay attention to only a few things at once.
Conditionals are a rather heavy-handed form of code that puts signifi-
cant cognitive strain on the reader. With a little experience and exper-
imentation, you should find that you don’t often need them. There will
be examples of appropriate uses in the rest of this chapter, as well as in
later ones. You should observe and absorb the style they suggest.

Conditionals | 103

Loops
A loop is a block of statements that gets executed as long as some condition is true.
Loops are expressed in Python using while statements.

S T A T E M E N T

Loop
The basic form of loop begins with the keyword while and an expression.

while expression:
 statements

If the expression is true, the statements are executed and the expression is evaluated
again. As long as the expression is true, the statements are executed repeatedly. Once
the expression is false, the statements are skipped, completing the execution of the
while statement.

Note that the test may well be false the first time it is evaluated. In that case, the state-
ments of the block won’t get executed at all. If you want some code to execute once
the test is false, include an else clause in your loop.

S T A T E M E N T

Loop with Final Clause
This form of loop statement adds an else clause whose statements are executed after
the expression evaluates to false.

while expression:
 statements1
else:xs
 statements2

There are two simple statements that are associated with both loops and iterations (the
subject of the next section): continue and break.

S T A T E M E N T

Loop Interruption
Occasionally it is useful to interrupt the execution of a loop’s statements. The
continue statement causes execution of the loop to return to the test. The break state-
ment interrupts the entire loop’s execution, causing the program to continue with the
statement following the while.

104 | Chapter 4: Control Statements

The continue statement is rarely used in Python programming, but it’s worth men-
tioning it here in case you run across it while reading someone else’s Python code. The
break statement is seen somewhat more often, but in most cases it is better to embed
in the loop’s test all the conditions that determine whether it should continue rather
than using break. Furthermore, in many cases the loop is the last statement of a
function, so you can just use a return statement to both end the loop and exit the
function. (A return exits the function that contains it even if execution is in the middle
of a conditional or loop.) Using a return instead of break is more convenient when each
function does just one thing: most uses of break are intended to move past the loop to
execute code that appears later in the function, and if there isn’t any code later in the
function a return statement inside the loop is equivalent to a break.

An error that occurs during the execution of a loop’s test or one of its statements also
terminates the execution of the loop. Altogether, then, there are three ways for a loop’s
execution to end:

Normally
The test evaluates to false.

Abnormally
An error occurs in the evaluation of the test or body of the loop.

Prematurely
The body of the loop executes a return or break statement.

When you write a loop, you must make sure that the test expression eventually becomes
false or a break or return is executed. Otherwise, the program will get stuck in what is
called an infinite loop. We’ll see at the end of the chapter how to control what happens
when errors occur, rather than allowing them to cause the program to exit abnormally.

Simple Loop Examples
Example 4-1 presents the simplest possible loop, along with a function that reads a line
typed by the user, prints it out, and returns it.

Example 4-1. Echo

def echo():
 """Echo the user's input until an empty line is entered"""
 while echo1():
 pass

def echo1():
 """Prompt the user for a string, "echo" it, and return it"""
 line = input('Say something: ')
 print('You said', line)
 return line

The function echo1 reads a line, prints it, and returns it. The function echo contains the
simplest possible while statement. It calls a function repeatedly, doing nothing (pass),

Loops | 105

until the function returns something false. If the user just presses Return, echo1 will
print and return an empty string. Since empty strings are false, when the while gets an
empty string back from echo1 it stops. A slight variation, shown in Example 4-2, is to
compare the result returned from echo1 to some specified value that signals the end of
the conversation.

Example 4-2. Polite echo

def polite_echo():
 """Echo the user's input until it equals 'bye'"""
 while echo1() != 'bye':
 pass

Of course, the bodies of loops are rarely so trivial. What allows the loop in these ex-
amples to contain nothing but a pass is that echo1 is called both to perform an action
and to return True or False. This example uses such trivial loop bodies only to illustrate
the structure of the while statement.

Initialization of Loop Values
Example 4-3 shows a more typical loop. It records the user’s responses, and when the
user types 'bye' the function returns a record of the input it received. The important
thing here is that it’s not enough to use echo1’s result as a test. The function also needs
to add it to a list it is building. That list is returned from the function after the loop exits.

Example 4-3. Recording echo

def recording_echo():
 """Echo the user's input until it equals 'bye', then return a list of all the inputs received"""
 lst = []
 entry = echo1()
 while entry != 'bye':
 lst.append(entry)
 entry = echo1()
 return lst

In this example, echo1 is called in two places: once to get the first response and then
each time around the loop. Normally it is better not to repeat a piece of code in two
places, even if they are so close together. It’s easy to forget to change one when you
change the other or to make incompatible changes, and changing the same thing in
multiple places is tedious and error-prone. Unfortunately, the kind of repetition shown
in this example is often difficult to avoid when combining input—whether from the
user or from a file—with while loops.

T E M P L A T E

Function with a Simple Loop
As small as Example 4-3 is, it demonstrates all the usual parts of functions containing
a while statement.

106 | Chapter 4: Control Statements

def fn():
 initialize values
 while test values:
 use values
 change values
 # repeat
 return result

Example 4-4 shows the same function as Example 4-3, but with comments added to
emphasize the way the code uses a simple loop.

Example 4-4. Commented recording echo function

def recording_echo():

 # initialize entry and lst
 lst = []

 # get the first input
 entry = echo1()

 # test entry
 while entry != 'bye':

 # use entry
 lst.append(entry)

 # change entry
 entry = echo1()

 # repeat

 # return result
 return lst

All parts of this template are optional except for the line beginning with while. Typi-
cally, one or more of the values assigned in the initialization portion are used in the
loop test and changed inside the loop. In recording_echo the value of entry is initialized,
tested, used, and changed; lst is initialized, used, and changed, but it is not part of the
loop’s test.

Looping Forever
Sometimes you just want your code to repeat something until it executes a return
statement. In that case there’s no need to actually test a value. Since while statements
require a test, we use True, which is, of course, always true. This may seem a bit odd,
but there are times when something like this is appropriate. It is often called “looping
forever.” Of course, in reality the program won’t run “forever,” but it might run forever
as far as it is concerned—that is, until something external causes it to stop. Such pro-
grams are found frequently in operating system and server software.

Loops | 107

T E M P L A T E

Loop Forever
A conditional’s loop expression can be as simple as a single true value, causing it to
loop until an external event stops the program.

initialize values
while True:
 change values
 if test values:
 return
 use values
 # repeat
return result

Example 4-5 shows a rewrite of Example 4-3 using the Loop Forever template. Typical
loops usually get the next value at the end of the loop, but in this kind, the next value
is obtained at the beginning of the loop.

Example 4-5. Recording echo using “loop forever”

def recording_echo_with_conditional():
 """Echo the user's input until it equals 'bye', then return a list of all the inputs received"""
 seq = []
 # no need to initialize a value to be tested since nothing is tested!
 while True:
 entry = echo1()
 if entry == 'bye':
 return seq
 seq.append(entry)

Loops over generators are always effectively “forever” in that there’s no way to know
how many items the generator will produce. The program must call next over and over
again until the generator is exhausted. We saw in Chapter 3 (in “Genera-
tors” on page 78) that the generator argument of next can be followed by a value to
return when the generator is exhausted. A “forever” loop can be written to use this
feature in a function that combines all of the generated amino acid abbreviations into
a string. Example 4-6 repeats the definition of the generator function and shows the
definition of a new function that uses it.

Example 4-6. Looping over a generator of amino acid symbols

def aa_generator(rnaseq):
 """Return a generator object that produces an amino acid by translating
 the next three characters of rnaseq each time next is called on it"""
 return (translate_RNA_codon(rnaseq[n:n+3])
 for n in range(0, len(rnaseq), 3))

def translate(rnaseq):
 """Translate rnaseq into amino acid symbols"""
 gen = aa_generator(rnaseq)

108 | Chapter 4: Control Statements

 seq = ''
 aa = next(gen, None)
 while aa:
 seq += aa
 aa = next(gen, None)
 return seq

Loops with Guard Conditions
Loops are often used to search for a value that meets the test condition when there is
no guarantee that one does. In such situations it is not enough to just test each value—
when there are no more values, the test would be repeated indefinitely. A second
conditional expression must be added to detect that no more values remain to be tested.

T E M P L A T E

Search Loop
In a loop that searches for a value that meets a particular test, the loop condition takes
the form:

not end and not test

The loop stops when either there are no more values (end is true) or a value passes the
test. If the function is intended to return a value it must test end again after the loop,
returning None if it is true and the value that met the test if it is false.

initialize values
while not at-end and not at-target:
 use current values
 get new values
 # repeat
return success-result if test else None

Loops like these are used when there are two separate reasons for them to end: either
there are no more values to use—at-end—or some kind of special value has been en-
countered, detected by at-target. If there are no more values to consider, evaluating
at-target would be meaningless, or, as is often the case, would cause an error. The
and operator is used to “protect” the second part of the test so that it is evaluated only
if the first is true. This is sometimes called a guard condition.

When a loop can end for more than one reason, the statements after the while will need
to distinguish the different cases. The simplest and most common case is to return one
value if the loop ended because at-end became true and a different value if the loop
ended because at-target became true.

Two-condition loops like this occur frequently in code that reads from streams such as
files, terminal input, network connections, and so on. That’s because the code cannot
know when it has reached the end of the data until it tries to read past it. Before the
result of a read can be used, the code must check that something was actually read.

Loops | 109

Because readline returns '\n' when it reads a blank line but returns '' at the end of a
file, it is sufficient to check to see that it returned a nonempty string. Repeated calls to
readline at the end of the file will continue to return empty strings, so if its return value
is not tested the loop will never terminate.

Example 4-7 shows a function that reads the first sequence from a FASTA file. Each
time it reads a line it must check first that the line is not empty, indicating that the end
of file has been reached, and if not, that the line does not begin with '>', indicating the
beginning of the next sequence.

Example 4-7. Checking for a result after every read

def read_sequence(filename):
 """Given the name of a FASTA file named filename, read and return
 its first sequence, ignoring the sequence's description"""
 seq = ''
 with open(filename) as file:
 line = file.readline()
 while line and line[0] == '>':
 line = file.readline()
 while line and line[0] != '>': # must check for end of file
 seq += line
 line = file.readline()
 return seq

Although files can often be treated as collections of lines using compre-
hensions or readlines, in some situations it is more appropriate to loop
using readline. This is especially true when several related functions all
read from the same stream.

The bare outline of code that loops over the lines of a file, doing something to each, is
shown in the next template.

T E M P L A T E

Looping Over Lines of a File
When several related functions each loop over lines of a file while testing for an end
condition that terminates their processing, each must check whether the end of the file
has been reached before performing its test. Each function’s loop would have the form:

line = file.readline()
while line and not test(line):
 do something with line
 line = file.readline()

110 | Chapter 4: Control Statements

Iterations
Collections contain objects; that’s more or less all they do. Some built-in functions—
min, max, any, and all—work for any type of collection. The operators in and not in
accept any type of collection as their second operand. These functions and operators
have something very important in common: they are based on doing something with
each element of the collection.‡ Since any element of a collection could be its minimum
or maximum value, min and max must consider all the elements. The operators in and
not in and the functions any and all can stop as soon as they find an element that meets
a certain condition, but if none do they too will end up considering every element of
the collection.

Doing something to each element of a collection is called iteration. We’ve actually
already seen a form of iteration—comprehensions. Comprehensions “do something”
to every element of a collection, collecting the results of that “something” into a set,
list, or dictionary. Comprehensions with multiple for clauses perform nested iterations.
Comprehensions with one or more if clauses perform conditional iteration: unless an
element passes all the if tests, the “something” will not be performed for that element
and no result will be added.

The code in this book uses comprehensions much more aggressively than many Python
programmers do. You should get comfortable using them, because in applicable sit-
uations they say just what they mean and say it concisely. Their syntax emphasizes the
actions and tests performed on the elements. They produce collection objects, so the
result of a comprehension can be used in another expression, function call, return
statement, etc. Comprehensions help reduce the littering of code with assignment
statements and the names they bind.

The question, then, is: what kinds of collection manipulations do not fit the mold of
Python’s comprehensions? From the point of view of Python’s language constructs, the
answer is that actions performed on each element of a collection sometimes must be
expressed using statements, and comprehensions allow only expressions. Comprehen-
sions also can’t stop before the end of the collection has been reached, as when a target
value has been located. For these and other reasons Python provides the for statement
to perform general-purpose iteration over collections.

Iteration Statements
Iteration statements all begin with the keyword for. This section shows many ways
for statements can be used and “templates” that summarize the most important.

‡ The len function is a bit different: while it could be implemented by counting the elements one at a time,
most types implement length more directly.

Iterations | 111

S T A T E M E N T

Iteration
Python’s for statement expresses iteration succinctly:

for item in collection:
 do something with item

You will use for statements often, since so much of your programming will use collec-
tions. The for statement makes its purpose very clear. It is easy to read and write and
minimizes the opportunities for making mistakes. Most importantly, it works for col-
lections that aren’t sequences, such as sets and dictionaries. As a matter of fact, the
for statement isn’t even restricted to collections: it works with objects of a broader
range of types that together are categorized as iterables. (For instance, we are treating
file objects as collections (streams), but technically they are another kind of iterable.)

The continue and break statements introduced in the section on loops
work for iterations too.

T E M P L A T E

File Iteration
Doing something with each line of a file object is an especially useful application of the
for statement.

with open(filename) as file:
 for line in file:
 do something with line

By default, a dictionary iteration uses the dictionary’s keys. If you want the iteration to
use its values, call the values method explicitly. To iterate with both keys and values
at the same time, call the items method. Typically, when using both keys and values
you would unpack the result of items and assign a name to each, as shown at the end
of the following template.

T E M P L A T E

Dictionary Iteration
Iteration can be performed with a dictionary’s keys, values, or key/value pairs.

for key in dictionary.keys():
 do something with key

112 | Chapter 4: Control Statements

for value in dictionary.values():
 do something with value

While an iteration that uses a dictionary’s items could begin with for item in, it is
usually preferable to use tuple unpacking to name the key and value in each item tuple.

for key, value in dictionary.items():
 do something with key and value

The previous chapter pointed out that if you need a dictionary’s keys, values, or items
as a list you can call list on the result of the corresponding method. This isn’t necessary
in for statements—the results of the dictionary methods can be used directly. keys,
values, and items each return an iterable of a different type—dict_keys, dict_values,
and dict_items, respectively—but this difference almost never matters, since the results
of calls to these methods are most frequently used in for statements and as arguments
to list.

Sometimes it is useful to generate a sequence of integers along with the values over
which a for statement iterates. The function enumerate(iterable) generates tuples of
the form (n, value), with n starting at 0 and incremented with each value taken from
the iterable. It is rarely used anywhere but in a for statement.

T E M P L A T E

Numbering Iterations
Use the function enumerate and tuple unpacking to generate numerical keys in parallel
with the values in an iterable.

for n, value in enumerate(iterable):
 do something with n and value

A common use for enumerate is to print out the elements of a collection along with a
sequence of corresponding numbers. The “do something” line of the template becomes
a call to print like the following:

print(n, value, sep='\t')

Kinds of Iterations
Most iterations conform to one of a small number of patterns. Templates for these
patterns and examples of their use occupy most of the rest of this chapter. Many of
these iteration patterns have correlates that use loops. For instance, Example 4-3 is just
like the Collect template described shortly. In fact, anything an iteration can do can be
done with loops. In Python programming, however, loops are used primarily to deal
with external events and to process files by methods other than reading them line by
line.

Iterations | 113

Iteration should always be preferred over looping. Iterations are a clearer
and more concise way to express computations that use the elements of
collections, including streams. Writing an iteration is less error-prone
than writing an equivalent loop, because there are more details to “get
right” in coding a loop than in an iteration.

Do

Often, you just want to do something to every element of a collection. Sometimes that
means calling a function and ignoring its results, and sometimes it means using the
element in one or more statements (since statements don’t have results, there’s nothing
to ignore).

T E M P L A T E

Do
The simplest kind of iteration just does something for each element of a collection.

for item in collection:
 do something with item

A very useful function to have is one that prints every element of a collection. When
something you type into the interpreter returns a long collection, the output is usually
difficult to read. Using pprint.pprint helps, but for simple situations the solution
demonstrated in Example 4-8 suffices. Both pprint and this definition can be used in
other code too, of course.

Example 4-8. Doing something to (print) each element

def print_collection(collection):
 for item in collection:
 print(item)
 print()

Actually, even this action could be expressed as a comprehension:

[print(item) for item in collection]

Since print returns None, what you’d get with that comprehension is a list containing
one None value for each item in the collection. It’s unlikely that you’d be printing a list
large enough for it to matter whether you constructed another one, but in another
situation you might call some other no-result function for a very large collection. How-
ever, that would be silly and inefficient. What you could do in that case is use a set,
instead of list, comprehension:

{print(item)for item in collection}

114 | Chapter 4: Control Statements

That way the result would simply be {None}. Really, though, the use of a comprehension
instead of a Do iteration is not a serious suggestion, just an illustration of the close
connection between comprehensions and iterations.

We can create a generalized “do” function by passing the “something” as a functional
argument, as shown in Example 4-9.

Example 4-9. A generalized do function

def do(collection, fn):
 for item in collection:
 fn(item)

The function argument could be a named function. For instance, we could use do to
redefine print_collection from Example 4-8, as shown in Example 4-10.

Example 4-10. Redefining print_collection using a generalized do

def print_collection(collection):
 do(collection, print)

This passes a named function as the argument to do. For more ad hoc uses we could
pass a lambda expression, as in Example 4-11.

Example 4-11. Passing a lambda expression to do

do(collection, lambda elt: print('\t', elt, sep=''))

The way to express a fixed number of repetitions of a block of code is to iterate over a
range, as shown in the following template.

T E M P L A T E

Repeat
To repeat a block of statements n times, iterate over range(n).

for count in range(n):
 statements

Frequently, count would not even be used in the body of the iteration.

Collect

Iterations often collect the results of the “something” that gets done for each element.
That means creating a new list, dictionary, or set for the purpose and adding the results
to it as they are computed.

Iterations | 115

T E M P L A T E

Collect
A Collect iteration starts with an empty collection and uses a method or operator ap-
propriate to its type to add something to it for each iteration.

result = []
for item in collection:
 statements using item
 result.append(expression based on the statements)
return result

Most situations in which iteration would be used to collect results would be better
expressed as comprehensions. Sometimes, though, it can be tricky to program around
the limitation that comprehensions cannot contain statements. In these cases, a Collect
iteration may be more straightforward. Perhaps the most common reason to use a
Collect iteration in place of a comprehension or loop is when one or more names are
assigned and used as part of the computation. Even in those cases, it’s usually better
to extract that part of the function definition and make it a separate function, after
which a call to that function can be used inside a comprehension instead of an iteration.

Example 4-12 shows a rewrite of the functions for reading entries from FASTA files in
Chapter 3. In the earlier versions, all the entries were read from the file and then put
through a number of transformations. This version, an example of the Collect iteration
template, reads each item and performs all the necessary transformations on it before
adding it to the collection. For convenience, this example also repeats the most succinct
and complete comprehension-based definition.

While more succinct, and therefore usually more appropriate for most situations, the
comprehension-based version creates several complete lists as it transforms the items.
Thus, with a very large FASTA file the comprehension-based version might take a lot
more time or memory to execute. After the comprehension-based version is yet another,
this one using a loop instead of an iteration. You can see that it is essentially the same,
except that it has extra code to read the lines and check for the end of the file.

Example 4-12. Reading FASTA entries with a Collect iteration

def read_FASTA_iteration(filename):
 sequences = []
 descr = None
 with open(filename) as file:
 for line in file:
 if line[0] == '>':
 if descr: # have we found one yet?
 sequences.append((descr, seq))
 descr = line[1:-1].split('|')
 seq = '' # start a new sequence
 else:
 seq += line[:-1]

116 | Chapter 4: Control Statements

 sequences.append((descr, seq)) # add the last one found
 return sequences

def read_FASTA(filename):
 with open(filename) as file:
 return [(part[0].split('|'),
 part[2].replace('\n', ''))
 for part in
 [entry.partition('\n')
 for entry in file.read().split('>')[1:]]]

def read_FASTA_loop(filename):
 sequences = []
 descr = None
 with open(filename) as file:
 line = file.readline()[:-1] # always trim newline
 while line:
 if line[0] == '>':
 if descr: # any sequence found yet?
 sequences.append((descr, seq))
 descr = line[1:].split('|')
 seq = '' # start a new sequence
 else:
 seq += line
 line = file.readline()[:-1]
 sequences.append((descr, seq)) # easy to forget!
 return sequences

Combine

Sometimes we want to perform an operation on all of the elements of a collection to
yield a single value. An important feature of this kind of iteration is that it must begin
with an initial value. Python has a built-in sum function but no built-in product; Exam-
ple 4-13 defines one.

Example 4-13. A definition of product

def product(coll):
 """Return the product of the elements of coll converted to floats, including
 elements that are string representations of numbers; if coll has an element
 that is a string but doesn't represent a number, an error will occur"""
 result = 1.0 # initialize
 for elt in coll:
 result *= float(elt) # combine element with
 return result # accumulated result

As simple as this definition is, there is no reasonable way to define it just using a com-
prehension. A comprehension always creates a collection—a set, list, or dictionary—
and what is needed here is a single value. This is called a Combine (or, more technically,
a “Reduce”§) because it starts with a collection and ends up with a single value.

§ The term “reduce” comes from the mathematical idea that a one-dimensional collection is reduced to a “zero”-
dimensional “scalar” value.

Iterations | 117

T E M P L A T E

Combine
The general outline for a Combine iteration is as follows, with · representing a binary
operation and fn a two-parameter function. The identity value is the value i for which
i · v == v or fn(i,v) == v. Typical examples would be 0 for addition and 1 for multi-
plication. When collections are being combined, the identity element is an empty
collection.

Only one of the three forms shown inside the for statement would be used; they are
shown here together for convenience.

result = identity-value
for item in collection:
 result = result · item # One of these
 result ·= item # three forms
 result = fn(result, item) # is used.
return result

For another example, let’s find the longest sequence in a FASTA file. We’ll assume we
have a function called read_FASTA, like one of the implementations shown in Chap-
ter 3. Example 4-13 used a binary operation to combine each element with the previous
result. Example 4-14 uses a two-valued function instead, but the idea is the same. The
inclusion of an assignment statement inside the loop is an indication that the code is
doing something that cannot be done with a comprehension.

Example 4-14. Combine: identifying the longest FASTA sequence

def longest_sequence(filename):
 longest_seq = ''
 for info, seq in read_FASTA(filename):
 longest_seq = max(longest_seq, seq, key=len)
 return longest_seq

A special highly reduced form of Combine is Count, where all the iteration does is count
the number of elements. It would be used to count the elements in an iterable that
doesn’t support length. This template applies particularly to generators: for a generator
that produces a large number of items, this is far more efficient than converting it to a
list and then getting the length of the list.

T E M P L A T E

Count
A Count iteration “combines” the value 1 for each element of the iteration.

count = 0
for item in iterable:
 count += 1
return count

118 | Chapter 4: Control Statements

One of the most important and frequently occurring kinds of actions on iterables that
cannot be expressed as a comprehension is one in which the result of doing something
to each element is itself a collection (a list, usually), and the final result is a combination
of those results. An ordinary Combine operation “reduces” a collection to a value; a
Collection Combine reduces a collection of collections to a single collection. (In the tem-
plate presented here the reduction is done step by step, but it could also be done by
first assembling the entire collection of collections and then reducing them to a single
collection.)

T E M P L A T E

Collection Combine
In this variation on Combine, an action is performed on each element of a collection
that produces a collection as a result, but instead of returning a collection of the results,
the iteration combines the results into (reduces the results to) a single collection.

result = []
for item in collection:
 result += fn(item)
 # merge result with previous results
return result

Example 4-15 shows an example in which “GenInfo” IDs are extracted from each of
several files, and a single list of all the IDs found is returned.

Example 4-15. Collection Combine: sequence IDs from multiple files

def extract_gi_id(description):
 """Given a FASTA file description line, return its GenInfo ID if it has one"""
 if line[0] != '>':
 return None
 fields = description[1:].split('|')
 if 'gi' not in fields:
 return None
 return fields[1 + fields.index('gi')]

def get_gi_ids(filename):
 """Return a list of the GenInfo IDs of all sequences found in the file named filename"""
 with open(filename) as file:
 return [extract_gi_id(line) for line in file if line[0] == '>']

def get_gi_ids_from_files(filenames):
 """Return a list of the GenInfo IDs of all sequences found in the
 files whose names are contained in the collection filenames"""
 idlst = []
 for filename in filenames:
 idlst += get_gi_ids(filename)
 return idlst

Iterations | 119

Search

Another common use of iterations is to search for an element that passes some kind of
test. This is not the same as a combine iteration—the result of a combination is a
property of all the elements of the collection, whereas a search iteration is much like a
search loop. Searching takes many forms, not all of them iterations, but the one thing
you’ll just about always see is a return statement that exits the function as soon as a
matching element has been found. If the end of the function is reached without finding
a matching element the function can end without explicitly returning a value, since it
returns None by default.

T E M P L A T E

Search
Search is a simple variation on Do:

for item in collection:
 if test item:
 return item

Suppose we have an enormous FASTA file and we need to extract from it a sequence
with a specific GenBank ID. We don’t want to read every sequence from the file, because
that could take much more time and memory than necessary. Instead, we want to read
one entry at a time until we locate the target. This is a typical search. It’s also something
that comprehensions can’t do: since they can’t incorporate statements, there’s no
straightforward way for them to stop the iteration early.

As usual, we’ll build this out of several small functions. We’ll define four functions.
The first is the “top-level” function; it calls the second, and the second calls the third
and fourth. Here’s an outline showing the functions called by the top-level function:

search_FASTA_file_by_gi_id(id, filename)
 FASTA_search_by_gi_id(id, fil)
 extract_gi_id(line)
 read_FASTA_sequence(fil)

This opens the file and calls FASTA_search_by_gi_id to do the real work. That function
searches through the lines of the file looking for those beginning with a '>'. Each time
it finds one it calls get_gi_id to get the GenInfo ID from the line, if there is one. Then
it compares the extracted ID to the one it is looking for. If there’s a match, it calls
read_FASTA_sequence and returns. If not, it continues looking for the next FASTA de-
scription line. In turn, read_FASTA_sequence reads and joins lines until it runs across a
description line, at which point it returns its result. Example 4-16 shows the definition
of the top-level function.

“Top-level” functions should almost always be very simple. They are entry points into
the capabilities the other function definitions provide. Essentially, what they do is

120 | Chapter 4: Control Statements

prepare the information received through their parameters for handling by the func-
tions that do the actual work.

Example 4-16. Extracting a sequence by ID from a large FASTA file

def search_FASTA_file_by_gi_id(id, filename):
 """Return the sequence with the GenInfo ID ID from the FASTA file
 named filename, reading one entry at a time until it is found"""
 id = str(id) # user might call with a number
 with open(filename) as file:
 return FASTA_search_by_gi_id(id, file)

Each of the other functions can be implemented in two ways. Both
FASTA_search_by_gi_id and read_FASTA_sequence can be implemented using a loop or
iteration. The simple function get_gi_id can be implemented with a conditional ex-
pression or a conditional statement. Table 4-1 shows both implementations for
FASTA_search_by_gi_id.

Table 4-1. Two definitions of FASTA_search_by_gi_id

Iteration Loop

 def FASTA_search_by_gi_id(id, file):
for line in file:
 if (line[0] == '>' and
 str(id) == get_gi_id(line)):
 return \
 read_FASTA_sequence(file)

line = file.readline()
while (line and
 not (line[0] == '>' and
 (str(id) ==
 get_gi_id(line)))):
 line = file.readline()
return (line and
 read_FASTA_sequence(fil)

The iterative implementation of FASTA_search_by_gi_id treats the file as a collection of
lines. It tests each line to see if it is the one that contains the ID that is its target. When
it finds the line it’s seeking, it does something slightly different than what the template
suggests: instead of returning the line—the item found—it goes ahead and reads the
sequence that follows it.

The templates in this book are not meant to restrict your code to specific
forms: they are frameworks for you to build on, and you can vary the
details as appropriate.

The next function—read_FASTA_sequence—shows another variation of the search tem-
plate. It too iterates over lines in the file—though not all of them, since it is called after
FASTA_search_by_gi_id has already read many lines. Another way it varies from the
template is that it accumulates a string while looking for a line that begins with a '>'.
When it finds one, it returns the accumulated string. Its definition is shown in Ta-
ble 4-2, and the definition of get_gi_id is shown in Table 4-3.

Iterations | 121

Table 4-2. Two definitions of read_FASTA_sequence

Iteration Loop

 def
read_FASTA_sequence(file):
 seq = ''

for line in file:
 if not line or line[0] == '>':
 return seq
 seq += line[:-1]

line = file.readline()
while line and line[0] != '>':
 seq += line[:-1]
 line = file.readline()
return seq

Table 4-3. Two definitions of get_gi_id

Conditional statement Conditional expression

 def get_gi_id(description):
 fields = description[1:].split('|')

if fields and 'gi' in fields:
 return fields[(1 +
 fields.index('gi')]

return (fields and 'gi' in fields and
 fields[1+fields.index('gi')])

A special case of search iteration is where the result returned is interpreted as a Boolean
rather than the item found. Some search iterations return False when a match is found,
while others return True. The exact form of the function definition depends on which
of those cases it implements. If finding a match to the search criteria means the function
should return False, then the last statement of the function would have to return
True to show that all the items had been processed without finding a match. On the
other hand, if the function is meant to return True when it finds a match it is usually
not necessary to have a return at the end, since None will be returned by default, and
None is interpreted as false in logical expressions. (Occasionally, however, you really
need the function to return a Boolean value, in which case you would end the function
by returning False.) Here are two functions that demonstrate the difference:

def rna_sequence_is_valid(seq):
 for base in seq:
 if base not in 'UCAGucag':
 return False
 return True

def dna_sequence_contains_N(seq):
 for base in seq:
 if base == 'N':
 return True

Filter

Filtering is similar to searching, but instead of returning a result the first time a match
is found, it does something with each element for which the match was successful.
Filtering doesn’t stand on its own—it’s a modification to one of the other kinds of
iterations. This section presents templates for some filter iterations. Each just adds a

122 | Chapter 4: Control Statements

conditional to one of the other templates. The condition is shown simply as test
item, but in practice that test could be complex. There might even be a few initialization
statements before the conditional.

T E M P L A T E

Filtered Do
A Filtered Do performs an action for each item that meets a specified condition.

for item in collection:
 if test item:
 statements using item

An obvious example of a Filtered Do is printing the header lines from a FASTA file.
Example 4-17 shows how this would be implemented.

Example 4-17. Printing the header lines from a FASTA file

def print_FASTA_headers(filename): with open(filename) as file:
 for line in file:
 if line[0] == '>':
 print(line[1:-1])

As with Collect iterations in general, simple situations can be handled with compre-
hensions, while iterations can handle the more complex situations in which statements
are all but unavoidable. For example, extracting and manipulating items from a file can
often be handled by comprehensions, but if the number of items is large, each manip-
ulation will create an unnecessarily large collection. Rather than collecting all the items
and performing a sequence of operations on that collection, we can turn this inside out,
performing the operations on one item and collecting only the result.

T E M P L A T E

Filtered Collect
Here, the values for which test is true are collected one at a time.

result = []
for item in collection:
 if test item:
 statements using item
 result.append(expression based on the statements)
return result

In many cases, once a line passes the test the function should not return immediately.
Instead, it should continue to read lines, concatenating or collecting them, until the
next time the test is true. An example would be with FASTA-formatted files, where a
function might look for all sequence descriptions that contain a certain string, then

Iterations | 123

read all the lines of the sequences that follow them. What’s tricky about this is that the
test applies only to the lines beginning with '>'. The lines of a sequence do not provide
any information to indicate whether they should be included or not.

Really what we have here are two tests: there’s a preliminary test that determines
whether the primary test should be performed. Neither applies to the lines that follow
a description line in the FASTA file, though. To solve this problem, we add a flag to
govern the iteration and set it by performing the primary test whenever the preliminary
test is true. Example 4-18 shows a function that returns the sequence strings for all
sequences whose descriptions contain the argument string.

Example 4-18. Extracting sequences with matching descriptions

def extract_matching_sequences(filename, string):
 """From a FASTA file named filename, extract all sequences whose descriptions contain string"""
 sequences = []
 seq = ''
 with open(filename) as file:
 for line in file:
 if line[0] == '>':
 if seq: # not first time through
 sequences.append(seq)
 seq = '' # next sequence detected
 includeflag = string in line # flag for later iterations
 else:
 if includeflag:
 seq += line[:-1]
 if seq: # last sequence in file is included
 sequences.append(seq)
 return sequences

The generalization of this code is shown in the following template.

T E M P L A T E

Filtered Collect of Groups of Lines
The details of code implementing this template vary more than the template implies.
Its overall job is to look for a line that meets both a preliminary test and a primary test.
It collects or concatenates lines when the primary test is true until the next line for
which the preliminary test is true. This requires a flag that keeps track of the result of
the primary test while subsequent lines are read.

lines = []
with open(inputfilename) as file:
 for line in file:
 if preliminary-test:
 flag = primary-test(line)
 lines.append(line) # or concatenate, etc.
return lines

124 | Chapter 4: Control Statements

A Filtered Combine is just like a regular Combine, except only elements that pass the
test are used in the combining expression.

T E M P L A T E

Filtered Combine
As with a regular Combine, only one of the three forms shown inside the condition is
used for a given piece of code implementing this template.

result = identity-value
for item in collection:
 if test item:
 result = result · item # One of these
 result ·= item # three forms
 result = fn(result, item) # is used.
return result

Example 4-13 showed a definition for product. Suppose the collection passed to
product contained nonnumerical elements. You might want the product function to
skip nonnumerical values instead of converting string representations of numbers to
numbers.‖

All that’s needed to skip nonnumerical values is a test that checks whether the element
is an integer or float and ignores it if it is not. The function isinstance was described
briefly in Chapter 1; we’ll use that here to check for numbers. Example 4-19 shows this
new definition for product.

Example 4-19. Filtered Combine: another definition of product

def is_number(value):
 """Return True if value is an int or a float"""
 return isinstance(elt, int) or isinstance(elt, float)

def product(coll):
 """Return the product of the numeric elements of coll"""
 result = 1.0 # initialize
 for elt in coll:
 if is_number(elt):
 result = result * float(elt) # combine element with accumulated result
 return result

What we’ve done here is replace the template’s test with a call to is_number to perform
the test. Suppose we needed different tests at different times while computing the
product—we might want to ignore zeros or negative numbers, or we might want to
start at a different initial value (e.g., 1 if computing the product of only integers). We
might even have different actions to perform each time around the iteration. We can

‖ Spreadsheet applications, for example, typically skip nonnumbers when performing numeric operations like
“sum” on a row or column, rather than producing an error.

Iterations | 125

implement many of these templates as function definitions whose details are specified
by parameters. Example 4-20 shows a completely general combine function.

Example 4-20. Generalized combine function

def combine(coll, initval, action, filter=None):
 """Starting at initval, perform action on each element of coll, finally returning the result. If
 filter is not None, only include elements for which filter(element) is true. action is a function
 of two arguments--the interim result and the element--which returns a new interim result."""
 result = initval
 for elt in coll:
 if not filter or filter(elt):
 result = action(result, elt)
 return result

To add all the integers in a collection, we just have to call combine with the right
arguments:

combine(coll
 0,
 lambda result, elt: result + elt,
 lambda elt: isinstance(elt, int)
)

T E M P L A T E

Filtered Count
An important specific variation of Filtered Combine is Filtered Count. This is useful
for collections even if they support the len function, because len cannot include certain
items.

count = 0
for item in iterable:
 if test item:
 count += 1
return count

Nested iterations

One iteration often uses another. Example 4-21 shows a simple case—listing all the
sequence IDs in files whose names are in a collection.

Example 4-21. A nested iteration

def list_sequences_in_files(filelist):
 """For each file whose name is contained in filelist,
 list the description of each sequence it contains"""
 for filename in filelist:
 print(filename)
 with open(filename) as file:
 for line in file:
 if line[0] == '>':
 print('\t', line[1:-1])

126 | Chapter 4: Control Statements

Nesting is not a question of physical containment of one piece of code inside another.
Following the earlier recommendation to write short, single-purpose functions, Exam-
ple 4-22 divides the previous function, placing one iteration in each. This is still a nested
iteration, because the first function calls the second each time around the for, and the
second has its own for statement.

Example 4-22. A two-function nested iteration

def list_sequences_in_files(filelist):
 """For each file whose name is contained in filelist,
 list the description of each sequence it contains"""
 for filename in filelist:
 print(filename)
 with open(filename) as file:
 list_sequences_in_file(file)

def list_sequences_in_file(file)
 for line in file:
 if line[0] == '>':
 print('\t', line[1:-1])

These examples do present nested iterations, but they don’t show what’s special about
this kind of code. Many functions that iterate call other functions that also iterate. They
in turn might call still other functions that iterate. Nested iterations are more significant
when their “do something” parts involve doing something with a value from the outer
iteration and a value from the inner iteration together.

T E M P L A T E

Nested Iteration
The general form of a nested iteration is as follows, keeping in mind that the inner
iteration might actually be defined as a separate function.

for outer in outer_collection:
 for inner in inner_collection:
 do something with inner and outer

Perhaps a batch of samples is to be submitted for sequencing with each of a set of
primers:

for seq in sequences:
 for primer in primers:
 submit(seq, primer)

This submits a sequence and a primer for every combination of a sequence from
sequences and a primer from primers. In this case it doesn’t matter which iteration is
the outer and which is the inner, although if they were switched the sequence/primer
pairs would be submitted in a different order.

Iterations | 127

Three-level iterations are occasionally useful—especially in bioinformatics program-
ming, because codons consist of three bases. Example 4-23 shows a concise three-level
iteration that prints out a simple form of the DNA codon table.

Example 4-23. Printing the codon table

def print_codon_table():
 """Print the DNA codon table in a nice, but simple, arrangement"""
 for base1 in DNA_bases: # horizontal section (or "group")
 for base3 in DNA_bases: # line (or "row")
 for base2 in DNA_bases: # vertical section (or "column")
 # the base2 loop is inside the base3 loop!
 print(base1+base2+base3,
 translate_DNA_codon(base1+base2+base3),
 end=' ')
 print()
 print()
>>> print_codon_table()
TTT Phe TCT Ser TAT Tyr TGT Cys
TTC Phe TCC Ser TAC Tyr TGC Cys
TTA Leu TCA Ser TAA --- TGA ---
TTG Leu TCG Ser TAG --- TGG Trp

CTT Leu CCT Pro CAT His CGT Arg
CTC Leu CCC Pro CAC His CGC Arg
CTA Leu CCA Pro CAA Gln CGA Arg
CTG Leu CCG Pro CAG Gln CGG Arg

ATT Ile ACT Thr AAT Asn AGT Ser
ATC Ile ACC Thr AAC Asn AGC Ser
ATA Ile ACA Thr AAA Lys AGA Arg
ATG Met ACG Thr AAG Lys AGG Arg

GTT Val GCT Ala GAT Asp GGT Gly
GTC Val GCC Ala GAC Asp GGC Gly
GTA Val GCA Ala GAA Glu GGA Gly
GTG Val GCG Ala GAG Glu GGG Gly

Recursive iterations

Trees are an important class of data structure in computation: they provide the gener-
ality needed to represent branching information. Taxonomies and filesystems are good
examples. A filesystem starts at the top-level directory of, say, a hard drive. That di-
rectory contains files and other directories, and those directories in turn contain files
and other directories. The whole structure consists of just directories and files.

A data structure that can contain other instances of itself is said to be recursive. The
study of recursive data structures and algorithms to process them is a major subject in
computer science. Trees are the basis of some important algorithms in bioinformatics
too, especially in the areas of searching and indexing.

While we won’t be considering such algorithms in this book, it is important to know
some rudimentary techniques for tree representation and iteration. A simple while or

128 | Chapter 4: Control Statements

for statement can’t by itself follow all the branches of a tree. When it follows one
branch, it may encounter further branches, and at each juncture it can follow only one
at a time. It can only move on to the next branch after it’s fully explored everything on
the first one. In the meantime, it needs someplace to record a collection of the remaining
branches to be processed.

Each branch is just another tree. A function that processes a tree can call itself to process
each of the tree’s branches. What stops this from continuing forever is that eventually
subtrees are reached that have no branches; these are called leaves. A function that calls
itself—or calls another function that eventually calls it—is called a recursive function.

Discussions of recursion are part of many programming texts and courses. It often
appears mysterious until the idea becomes familiar, which can take some time and
practice. One of the advantages of recursive functions is that they can express compu-
tations more concisely than other approaches, even when recursion isn’t actually nec-
essary. Sometimes the code is so simple you can hardly figure out how it does its magic!

First, we’ll look at an example of one of the ways trees are used in bioinformatics. Some
very powerful algorithms used in indexing and searching genomic sequences rely on
what are called suffix trees. These are tree structures constructed so that every path
from the root to a leaf produces a subsequence that is not the prefix of any other sub-
sequence similarly obtained. The entire string from which the tree was constructed can
be recovered by traversing all paths to leaf nodes, concatenating the strings encountered
along the way, and collecting the strings obtained from each path. The longest string
in the resulting collection is the original string. Figure 4-2 shows an example.

Figure 4-2. Diagram of a suffix tree

Iterations | 129

Algorithms have been developed for constructing and navigating such trees that do
their work in an amount of time that is directly proportional to the length of the se-
quence. Normally algorithms dealing with tree-structured data require time propor-
tional to N2 or at best N log N, where N is the length of the sequence. As N gets as large
as is often required for genomic sequence searches, those quantities grow impossibly
large. From this point of view the performance of suffix tree algorithms borders on the
miraculous.

Our example will represent suffix trees as lists of lists of lists of... lists. The first element
of each list will always be a string, and each of the rest of the elements is another list.
The top level of the tree starts with an empty string. Example 4-24 shows an example
hand-formatted to reflect the nested relationships.

Example 4-24. Representing a tree as a list of lists

['',
 ['A',
 ['CC',
 ['CCTGATTACCG'],
 ['G']
],
 ['TTACCG']
],
 ['C',
 ['C',
 ['CTGATTACCG'],
 ['TGATTACCG'],
 ['G']
],
 ['TGATTACCG'],
 ['G']
],
 ['T',
 ['GATTACCG'],
 ['TACCG'],
 ['ACCG']
],
 ['GATTACCG']
]

Let’s assign tree1 to this list and see what Python does with it. Example 4-25 shows an
ordinary interpreter printout of the nested lists.

Example 4-25. Interpreter printing of nested lists representing a tree

['', ['A', ['CC', ['CCTGATTACCG'], ['G']], ['TTACCG']], ['C', ['C', ['CTGATTACCG'],
 ['TGATTACCG'], ['G']], ['TGATTACCG'], ['G']], ['T', ['GATTACCG'], ['TACCG'], ['ACCG']],
 ['GATTACCG']]

That output was one line, wrapped. Not very helpful. How much of an improvement
does pprint.pprint offer?

130 | Chapter 4: Control Statements

>>> pprint.pprint(tree1)
['',
 ['A', ['CC', ['CCTGATTACCG'], ['G']], ['TTACCG']],
 ['C', ['C', ['CTGATTACCG'], ['TGATTACCG'], ['G']], ['TGATTACCG'], ['G']],
 ['T', ['GATTACCG'], ['TACCG'], ['ACCG']],
 ['GATTACCG']]

This is a little better, since we can at least see the top-level structure. But what we want
is output that approximates the tree shown in Figure 4-2. (We won’t go so far as to
print symbols for lines and corners—we’re just looking to reflect the overall shape of
the tree represented by the data structure.) Here’s the template for a recursive function
to process a tree represented as just described here. (The information the tree contains
could be anything, not just strings: whatever value is placed in the first position of the
list representing a subtree is the value of that subtree’s root node.)

T E M P L A T E

Recursive Tree Iteration
This little bit of code will process all the nodes of a tree represented as a list containing
a value followed by a number of subtrees. A tree with no subtrees is a list containing
just a value.

def treewalk(tree, level=0):
 do something with tree[0] and level
 for subtree in tree[1:]:
 treewalk(node, level+1)

Do you find it difficult to believe that so simple a template can process a tree? Exam-
ple 4-26 shows how it would be used to print our tree.

Example 4-26. Printing a tree

def treeprint(tree, level=0):
 print(' ' * 4 * level, tree[0], sep='')
 for node in tree[1:]:
 treeprint(node, level+1)

This produces the following output for the example tree. It’s not as nice as the diagram;
not only are there no lines, but the root of each subtree is on a line before its subtrees,
rather than centered among them. Still, it’s not bad for four lines of code!

 A
 CC
 CCTGATTACCG
 G
 TTACCG
 C
 C
 CTGATTACCG
 TGATTACCG
 G

Iterations | 131

 TGATTACCG
 G
 T
 GATTACCG
 TACCG
 ACCG
 GATTACCG

Figures 4-3, 4-4, and 4-5 illustrate the process that ensues as the function in Exam-
ple 4-26 does its work with the list representing the subtree rooted at A.

Figure 4-3. Implementation of recursion, part 1

132 | Chapter 4: Control Statements

Figure 4-4. Implementation of recursion, part 2

Iterations | 133

Figure 4-5. Implementation of recursion, part 3

Exception Handlers
Let’s return to Example 4-15, from our discussion of collection iteration. We’ll add a
top-level function to drive the others and put all of the functions in one Python file
called get_gi_ids.py. The contents of the file are shown in Example 4-27.

Example 4-27. Collecting GenInfo IDs of the sequences in FASTA files

def extract_gi_id(description):
 """Given a FASTA file description line, return its GenInfo ID if it has one"""
 if line[0] != '>':
 return None

134 | Chapter 4: Control Statements

 fields = description[1:].split('|')
 if 'gi' not in fields:
 return None
 return fields[1 + fields.index('gi')]

def get_gi_ids(filename):
 """Return a list of GenInfo IDs from the sequences in the FASTA file named filename"""
 with open(filename) as file:
 return [extract_gi_id(line) for line in file if line[0] == '>']

def get_gi_ids_from_files(filenames):
 """Return a list of GenInfo IDs from the sequences in the
 FASTA files whose names are in the collection filenames"""
 idlst = []
 for filename in filenames:
 idlst += get_gi_ids(filename)
 return idlst

def get_gi_ids_from_user_files():
 response = input("Enter FASTA file names, separated by spaces: ")
 lst = get_gi_ids_from_files(response.split()) # assuming no spaces in file names
 lst.sort()
 print(lst)

get_gi_ids_from_user_files()

We run the program from the command line, enter a few filenames, and get the results
shown in Example 4-28.

Example 4-28. Traceback from attempting to open a nonexistent file

% python get_gi_ids.py
Enter a list of FASTA filenames:
aa1.fasta aa2.fasta aa3.fasta

Traceback (most recent call last):
 File "get_gi_ids.py", line 27, in <module>
 get_gi_ids_from_user_files
 File "get_gi_ids.py", line 23, in get_gi_ids_from_user_files
 lst = get_gi_ids_from_files(files))
 File "get_gi_ids.py", line 18, in get_gi_ids_from_files
 idlst += get_gi_ids(filename)
 File "get_gi_ids.py", line 10, in get_gi_ids
 with open(filename) as file:
 File "/usr/local/lib/python3.1/io.py", line 278, in __new__
 return open(*args, **kwargs)
 File "/usr/local/lib/python3.1/io.py", line 222, in open
 closefd)
 File "/usr/local/lib/python3.1/io.py", line 619, in __init__
 _fileio._FileIO.__init__(self, name, mode, closefd)
IOError: [Errno 2] No such file or directory: 'aa2.fasta'

Exception Handlers | 135

Python Errors
If you’ve executed any Python code you have written, you have probably already seen
output like that in the previous example splattered across your interpreter or shell
window. Now it’s time for a serious look at what this output signifies. It’s important
to understand more than just the message on the final line and perhaps a recognizable
filename and line number or two.

Tracebacks

As its first line indicates, the preceding output shows details of pending functions. This
display of information is called a traceback. There are two lines for each entry. The first
shows the name of the function that was called, the path to the file in which it was
defined, and the line number where its definition begins, though not in that order. (As
in this case, you will often see <module> given as the module name on the first line; this
indicates that the function was called from the top level of the file being run by Python
or directly from the interpreter.) The second line of each entry shows the text of the
line identified by the filename and line number of the first line, to save you the trouble
of going to the file to read it.

Some of this will make sense to you now. Some of it won’t until you
have more Python knowledge and experience. As the calls descend
deeper into Python’s implementation, some technical details are re-
vealed that we haven’t yet explored. It’s important that you resist the
temptation to dismiss tracebacks as hopelessly complicated and useless.
Even if you don’t understand all the details, tracebacks tell you very
clearly what has happened, where, and, to some extent, why.

The problem causing the traceback in this example is clear enough: the user included
the file aa2.fasta in the list of files to be processed, but when get_gi_id went to open
that file it couldn’t find it. As a result, Python reported an IOError and stopped exe-
cuting. It didn’t even print the IDs that it had already found—it just stopped.

Runtime errors

Is this what you want your program to do? You can’t prevent the user from typing the
name of a nonexistent file. While you could check that each file exists before trying to
open it (using methods from the os module that we’ll be looking in Chapter 6), this is
only one of the many things that could go wrong during the execution of your program.
Maybe the file exists but you don’t have read privileges for it, or it exists but is empty,
and you didn’t write your code to correctly handle that case. Maybe the program
encounters an empty line at the end of the file and tries to extract pieces from it. Maybe
the program tries to compare incompatible values in an expression such as 4 < '5'.

136 | Chapter 4: Control Statements

By now you’ve probably encountered ValueError, TypeError, IndexError, IOError, and
perhaps a few others. Each of these errors is actually a type. Table 4-4 shows examples
of common errors, the type of error instance that gets created when they occur, and
examples of the messages that get printed.

Table 4-4. Common runtime errors

Example Error class Message

foobah NameError name 'foobah' is not defined

3 < '4' TypeError unorderable types: int() < str()

['a', 'b'] + None TypeError can only concatenate list (not "NoneType") to
list

range() TypeError range expected 1 arguments, got 0

1/0 ZeroDivisionError int division or modulo by zero

int('21', 2)a ValueError invalid literal for int() with base 2: '21'

[1,2,3].index(4)b ValueError list.index(x): x not in list

''[1] IndexError string index out of range

{'a': 1}['b'] KeyError 'b'

range(4).index(5) AttributeError 'range' object has no attribute 'index'

open('') IOError No such file or directory: ''

input('?')^Dc EOFError

assert False AssertionError

assert 0, 'not 1' AssertionError not 1

^C^Cd KeyboardInterrupt
a The second argument of int is a base to use when reading the string that is its first argument; in this example, since base 2 was specified,

only '0' and '1' are valid in the first argument.
b index is like find, but instead of returning −1 when its argument is not in the list, it raises a ValueError.
c Typing Ctrl-D on an empty line (Ctrl-Z on Windows) ends input. Remember, though, that file.read and file.readline return

empty strings if they are at the end of a file.
d Pressing Ctrl-C twice stops whatever Python is doing and returns to the interpreter.

Even if get_gi_ids was written to detect nonexistent files before trying to open them,
what should it do if it detects one? Should it just return None? Should it print its own
error message before returning None? If it returns None, how can the function that called
it know whether that was because the file didn’t exist, couldn’t be read, wasn’t a
FASTA-formatted file, or just didn’t have any sequences with IDs? If each function has
to report to its caller all the different problems it might have encountered, each caller
will have to execute a series of conditionals checking each of those conditions before
continuing with its own executions.

To manage this problem, languages provide exception handling mechanisms. These
make it possible to ignore exceptions when writing most function definitions, while
specifically designating, in relatively few places, what should happen when exceptions

Exception Handlers | 137

do occur. The term “exception” is used instead of “error” because if the program is
prepared to handle a situation, it isn’t really an error when it arises. It becomes an
error—an unhandled exception—if the program does not detect the situation. In that
case, execution stops and Python prints a traceback with a message identifying the type
of error and details about the problem encountered.

Exception Handling Statements
Python’s exception handling mechanism is implemented through the try statement.
This looks and works much like a conditional, except that the conditions are not tests
you write, but rather names of error classes.

S T A T E M E N T

Exception Handling
The basic form of a statement that handles an exception is:

try:
 try-statements
except ErrorClass:
 except-statements

The error class is one of the error names you’ll see printed out on the last line of a
traceback: IOError, ValueError, and so on. When a try statement begins, it starts exe-
cuting the statements in the try-statements block. If they complete without any errors,
the rest of the try statement is skipped and execution continues at the next statement.

However, if an error of the type identified in the except clause occurs during the exe-
cution of the try block, something quite different happens: the call stack is “unwound”
by removing the calls to the functions “below” the one that contains the try statement.
Any of the try-statements that haven’t yet executed are abandoned. Execution con-
tinues with the statements in the except clause, and then moves on to the statement
that follows the entire try/except statement. Figures 4-6 and 4-7 show the difference.

Figure 4-6. Pending returns from function calls

138 | Chapter 4: Control Statements

Figure 4-7. Pending returns from function calls with an exception

Optional features of exception handling statements

The try statement offers quite a few options. The difficulty here is not so much in
comprehending all the details, although that does take some time. The real challenge
is to develop a concrete picture of how control “flows” through function calls and
Python’s various kinds of statements. Then you can begin developing an understanding
of the very different flow induced by exceptions.

Exception Handlers | 139

S T A T E M E N T

Exception Handling Options
try statement options include:

• Binding a name to the exception object caught by an except clause by following
the exception class name with as and a name, allowing the statements in the clause
to use details from the exception instance

• Multiple except clauses, each naming a different condition

• except clauses that specify a list of error types instead of just one

• A final except clause with no exception class to catch any exception not caught in
one of the other except clauses

• A finally clause whose statements are always executed, regardless of whether an
error occurs—in fact, the statements in a finally clause are executed even if the
try clause or an except clause executes a return

Here’s a template that shows the use of all of these features together:

try:
 statements
except ErrorClass1:
 statements1
except (ErrorClass2, ErrorClass3):
 statements2
except ErrorClass4 as err:
 statements that can refer to err
except:
 statements that are executed if an error occurs
 whose type is not in one of the above except clauses
finally:
 statements that always get executed, whether or not an error occurs

Now that we know how to handle errors, what changes might we want to make in our
little program for finding IDs? Suppose we’ve decided we want the program to print an
error message whenever it fails to open a file, but then continue with the next one. This
is easily accomplished with one simple try statement:

def get_gi_ids(filename):
 try:
 with open(filename) as file:
 return [extract_gi_id(line) for line in file
 if line[0] == '>']
 except IOError:
 print('File', filename, 'not found or not readable.')
 return []

Note that the except clause returns an empty list rather than returning None or allowing
the function to end without a return (which amounts to the same thing). This is because
the function that calls this one will be concatenating the result with a list it is accumu-
lating, and since None isn’t a sequence it can’t be added to one. (That’s another

140 | Chapter 4: Control Statements

TypeError you’ll often see, usually as a result of forgetting to return a value from a
function.) If you’ve named the exception with as name, you can print(name) instead of
or in addition to your own message.

Incidentally, this with statement:

with open('filename') as file:
 use file

is roughly the same as:

try:
 file = open('filename')
 use file
finally:
file.close()

The finally clause guarantees that the file will be closed whether an error happens or
not—and without the programmer having to remember to close it. This is a great con-
venience that avoids several kinds of common problems. The with statement requires
only one line in addition to the statements to be executed, rather than the four lines
required by the try version.

Exception handling and generator objects

An important special use of try statements is with generator objects. Each call to
next with a generator object as its argument produces the generator’s next value. When
there are no more values, next returns the value of its optional second argument, if one
is provided. If not, a StopIteration error is raised.

There are two ways to use next: either you can provide a default value and compare it
to the value next returns each time, or you can omit the argument and put the call to
next inside a try that has an except StopIteration clause. (An except clause with no
exception class or a finally would also catch the error.)

An advantage of the exception approach is that the try statement that catches it can
be several function calls back; also, you don’t have to check the value returned by
next each time. This is particularly useful when one function calls another that calls
another, and so on. A one-argument call to next in the innermost function and a try
statement in the top-level function will terminate the entire process and hand control
back to the top-level function, which catches StopIteration.

Raising Exceptions
Exception raising isn’t limited to library functions—your code can raise them too.

The raise statement

The raise statement is used to raise an exception and initiate exception handling.

Exception Handlers | 141

S T A T E M E N T

Exception Raising
The raise statement creates an instance of an exception class and begins the exception
handling process.

raise exception-expression

The exception-expression can be any expression whose value is either an exception
class or an instance of one. If it is an exception class, the statement simply creates an
instance for you. Creating your own instance allows you to specify arguments to the
new instance—typically a message providing more detail about the condition encoun-
tered. The class Exception can be used for whatever purposes you want, and it can take
an arbitrary number of arguments. You can put statements like this in your code:

raise Exception('File does not appear to be in FASTA format.', filename)

The statements in any of a try statement’s exception clauses can “reraise” an exception
using a raise statement with no expression. In that case, the stack unwinding resumes
and continues until the next try statement prepared to handle the exception is
encountered.

Not only can your code raise exceptions, but you can create your own exception classes
and raise instances of those. (The next chapter shows you how to create your own
classes.) It’s especially important for people building modules for other people to use,
since code in a module has no way of knowing what code from the outside wants to
do when various kinds of problems are encountered. The only reasonable thing to do
is design modules to define appropriate exception classes and document them for users
of the module so they know what exceptions their code should be prepared to handle.

Raising an exception to end a loop

The point was made earlier that exceptions aren’t necessarily errors. You can use a
combination of try and raise statements as an alternative way of ending loops. You
would do this if you had written a long sequence of functions that call each other,
expecting certain kinds of values in return. When something fails deep down in a se-
quence of calls it can be very awkward to return None or some other failure value back
through the series of callers, as each of them would have to test the value(s) it got back
to see whether it should continue or itself return None. A common example is repeatedly
using str.find in many different functions to work through a large string.

Using exception handling, you can write code without all that distracting error report-
ing and checking. Exceptional situations can be handled by raising an error. The first
function called can have a “while-true” loop inside a try statement. Whenever some
function determines that nothing remains to process, it can throw an exception. A good
exception class for this purpose is StopIteration, which is used in the implementation
of generators, while-as statements, and other mechanisms we’ve seen:

142 | Chapter 4: Control Statements

try:
 while(True):
 begin complicated multi-function input processing
except StopIteration:
 pass

... many definitions of functions that call each other; ...

... wherever one detects the end of input, it does: ...
 raise StopIteration

Extended Examples
This section presents some extended examples that make use of the constructs
described earlier in the chapter.

Extracting Information from an HTML File
Our first example in this section is based on the technique just discussed of raising an
exception to end the processing of some text. Consider how you would go about ex-
tracting information from a complex HTML page. For example, go to NCBI’s Entrez
Gene site (http://www.ncbi.nlm.nih.gov/sites/entrez), enter a gene name in the search
field, click the search button, and then save the page as an HTML file. Our example
uses the gene vWF.# Example 4-29 shows a program for extracting some information
from the results returned. The patterns it uses are very specific to results saved from
Entrez Gene, but the program would be quite useful if you needed to process many
such pages.

Example 4-29. Searching for data in an HTML file

endresults = '- - - - - - - - end Results - - - - - -'
patterns = (']',
 '\n',
 '</div><div class="rprtMainSec"><div class="summary">',
)

def get_field(contents, pattern, endpos):
 endpos = contents.rfind(pattern, 0, endpos)
 if endpos < 0:
 raise StopIteration
 startpos = contents.rfind('>', 0, endpos)
 return (endpos, contents[startpos+1:endpos])

def get_next(contents, endpos):
 fields = []
 for pattern in patterns:
 endpos, field = get_field(contents, pattern, endpos)

#vWF stands for “von Willebrand Factor,” which plays a role in von Willebrand disease, the most common
human hereditary coagulation abnormality. There are several forms of the disease, other genes involved, and
complex hereditary patterns.

Extended Examples | 143

http://www.ncbi.nlm.nih.gov/sites/entrez

 fields.append(field)
 fields.reverse()
 return endpos, fields

def get_gene_info(contents):
 lst = []
 endpos = contents.rfind(endresults, 0, len(contents))
 try:
 while(True):
 endpos, fields = get_next(contents, endpos)
 lst.append(fields)
 except StopIteration:
 pass
 lst.reverse()
 return lst

def get_gene_info_from_file(filename):
 with open(filename) as file:
 contents = file.read()
 return get_gene_info(contents)

def show_gene_info_from_file(filename):
 infolst = get_gene_info_from_file(filename)
 for info in infolst:
 print(info[0], info[1], info[2], sep='\n ')

if __name__ == '__main__':
 show_gene_info_from_file(sys.argv[1]
 if len(sys.argv) > 1
 else 'EntrezGeneResults.html')

Output for the first page of the Entrez Gene results for vWF looks like this:

Vwf
 Von Willebrand factor homolog
 Mus musculus
VWF
 von Willebrand factor
 Homo sapiens
VWF
 von Willebrand factor
 Canis lupus familiaris
Vwf
 Von Willebrand factor homolog
 Rattus norvegicus
VWF
 von Willebrand factor
 Bos taurus
VWF
 von Willebrand factor
 Pan troglodytes
VWF
 von Willebrand factor
 Macaca mulatta

144 | Chapter 4: Control Statements

vwf
 von Willebrand factor
 Danio rerio
VWF
 von Willebrand factor
 Gallus gallus
VWF
 von Willebrand factor
 Sus scrofa
Vwf
 lectin
 Bombyx mori
VWF
 von Willebrand factor
 Oryctolagus cuniculus
VWF
 von Willebrand factor
 Felis catus
VWF
 von Willebrand factor
 Monodelphis domestica
VWFL2
 von Willebrand Factor like 2
 Ciona intestinalis
ADAMTS13
 ADAM metallopeptidase with thrombospondin type 1 motif, 13
 Homo sapiens
MADE_03506
 Secreted protein, containing von Willebrand factor (vWF) type A domain
 Alteromonas macleodii 'Deep ecotype'
NOR51B_705
 putative secreted protein, containing von Willebrand factor (vWF) type A domain
 gamma proteobacterium NOR51-B
BLD_1637
 von Willebrand factor (vWF) domain containing protein
 Bifidobacterium longum DJO10A
NOR53_416
 secreted protein, containing von Willebrand factor (vWF) type A domain
 gamma proteobacterium NOR5-3

This code was developed in stages. The first version of the program had separate func-
tions get_symbol, get_name, and get_species. Once they were cleaned up and working
correctly it became obvious that they each did the same thing, just with a different
pattern. They were therefore replaced with a single function that had an additional
parameter for the search pattern.

The original definition of get_next contained repetitious lines. This definition replaces
those with an iteration over a list of patterns. These changes made the whole program
easily extensible. To extract more fields, we just have to add appropriate search patterns
to the patterns list.

It should also be noted that because the second line of some entries showed an “Official
Symbol” and “Name” but others didn’t, it turned out to be easier to search backward

Extended Examples | 145

from the end of the file. The first step is to find the line demarcating the end of the
results. Then the file contents are searched in reverse for each pattern in turn, from the
beginning of the file to where the last search left off. (Note that although you might
expect it to be the other way around, the arguments to rfind are interpreted just like
the arguments to find, with the second less than the third.)

The Grand Unified Bioinformatics File Parser
This section explores some ways the process of reading information from text files can
be generalized.

Reading the sequences in a FASTA file

Example 4-30 presents a set of functions for reading the sequences in a FASTA file.
They are actually quite general, and can work for a variety of the kinds of formats
typically seen in bioinformatics. The code is a lot like what we’ve seen in earlier exam-
ples. All that is needed to make these functions work for a specific file format is an
appropriate definition of skip_intro and next_item.

Example 4-30. Reading the sequences in a FASTA file

def get_items_from_file(filename, testfn=None):
 """Return all the items in the file named filename; if testfn
 then include only those items for which testfn is true"""
 with open(filename) as file:
 return get_items(file, testfn)

def find_item_in_file(filename, testfn=None):
 """Return the first item in the file named filename; if testfn
 then return the first item for which testfn is true"""
 with open(filename) as file:
 return find_item(file, testfn)

def find_item(src, testfn):
 """Return the first item in src; if testfn then return the first item for which testfn is true"""
 gen = item_generator(src, testfn)
 item = next(gen)
 if not testfn:
 return item
 else:
 try:
 while not testfn(item):
 item = next(gen)
 return item
 except StopIteration:
 return None

def get_items(src, testfn=None):
 """Return all the items in src; if testfn then include
 only those items for which testfn is true"""
 return [item for item in item_generator(src)

146 | Chapter 4: Control Statements

 if not testfn or testfn(item)]

def item_generator(src):
 """Return a generator that produces a FASTA sequence from src each time it is called"""
 skip_intro(src)
 seq = ''
 description = src.readline().split('|')
 line = src.readline()
 while line:
 while line and line[0] != '>':
 seq += line
 line = src.readline()
 yield (description, seq)
 seq = ''
 description = line.split('|')
 line = src.readline()

def skip_intro(src):
 """Skip introductory text that appears in src before the first item"""
 pass # no introduction in a FASTA file

The functions get_items_from_file and find_item_in_file simply take a filename and
call get_items and find_item, respectively. If you already have an open file, you can
pass it directly to get_items or find_item. All four functions take an optional filter
function. If one is provided, only items for which the function returns true are included.
Typically, a filter function like this would be a lambda expression. Note that
find_item can be called repeatedly on the same open file, returning the next item for
which testfn is true, because after the first one is found the rest of the source is still
available for reading.

next_item is a generator version of the functions we’ve seen for reading FASTA entries.
It reads one entry each time it is called, returning the split description line and the
sequence as a pair. This function and possibly skip_intro would need to be defined
differently for different file formats. The other four functions stay the same.

Generalized parsing

Extracting a structured representation from a text file is known as parsing. Python, for
example, parses text typed at the interpreter prompt or imported from a module in
order to convert it into an executable representation according to the language’s rules.
Much of bioinformatics programming involves parsing files in a wide variety of formats.
Despite the ways that formats differ, programs to parse them have a substantial
underlying similarity, as reflected in the following template.

Extended Examples | 147

T E M P L A T E

Grand Unified Bioinformatics File Parser
Example 4-30 defines six functions. Four of them are essentially universal, but each file
format will require its own definition of next_item, and if the format includes intro-
ductory text that must be skipped, skip_intro will need to be redefined as well. A large
proportion of bioinformatics text files can be read using this set of six functions. As a
reference, an outline of what each does follows.

---- Convenience functions for starting with a filename ----
get_items_from_file(filename, testfn=None)
find_item_in_file(filenamee, testfn=None):

---- Primary functions: get all and find next ----
get_items(src, testfn=None)
find_item(src, testfn=None)

---- Format-specific functions ----
skip_intro(src)
next_item(src)

Parsing GenBank Files
Next, we’ll look at an example of applying the generalized parser template to read
features and sequences from GenBank flat files.* There are many ways to navigate in a
browser to get a page in GenBank format from the NCBI website.† For instance, if you
know the GenInfo Identifier (GI), you can get to the corresponding GenBank record
using the URL http://www.ncbi.nlm.nih.gov/nuccore/ followed by the GI number. Then,
to download the page as a flat text file, simply click on the “Download” drop-down on
the right side of the page just above the name of the sequence and select “GenBank”
as the format. The file will be downloaded as sequence.gb to your browser’s default
download directory.

There’s a great deal of information in these GenBank entries. For this example we just
want to extract the accession code, GI number, feature information, and sequence.
Example 4-31 shows the code needed to implement the format-specific part of the
unified parser template: skip_intro and next_item. For a given format, the implemen-
tation of either of these two functions may require other supporting functions.

* See http://www.ncbi.nlm.nih.gov/Sitemap/samplerecord.html for an example and an explanation.

† See http://www.ncbi.nlm.nih.gov.

148 | Chapter 4: Control Statements

http://www.ncbi.nlm.nih.gov/nuccore/
http://www.ncbi.nlm.nih.gov/Sitemap/samplerecord.html
http://www.ncbi.nlm.nih.gov

Example 4-31. Reading sequences from a GenBank file

def get_GenBank_items_and_sequence_from_file(filename):
 with open(filename) as file:
 return [get_ids(file), get_items(file), get_sequence(file)]

def get_ids(src):
 line = src.readline()
 while not line.startswith('VERSION'):
 line = src.readline()
 parts = line.split() # split at whitespace; removes \n
 assert 3 == len(parts), parts # should be VERSION acc GI:id
 giparts = parts[2].partition(':')
 assert giparts[2], giparts # if no colon, [1] & [2] are empty
 assert giparts[2].isdigit() # all numbers?
 return (parts[1], giparts[2])

def get_sequence(src):
 """Return the DNA sequence found at end of src"""
 # When this is called the ORIGIN line should have just been read,
 # so we just have to read the sequence lines until the // at the end
 seq = ''
 line = src.readline()
 while not line.startswith('//'):
 seq += line[10:-1].replace(' ', '')
 line = src.readline()
 return seq

def skip_intro(src):
 """Skip introductory text that appears before the first item in src"""
 line = src.readline()
 while not line.startswith('FEATURES'):
 line = src.readline()

attribute_prefix = 21*' ' + '/'
def is_attribute_start(line):
 return line and line.startswith(attribute_prefix)

def is_feature_start(line):
 return line and line[5] != ' '

def next_item(src):
 """Return a generator that produces a FASTA sequence from src each time it is called"""
 skip_intro(src)
 line = src.readline()
 while not line.startswith('ORIGIN'):
 assert is_feature_start(line) # line should start a feature
 feature, line = read_feature(src, line)
 # need to keep line to feed back to read_feature
 yield feature

Extended Examples | 149

def read_feature(src, line):
 feature = line.split()
 props = {}
 line = src.readline()
 while not is_feature_start(line):
 key, value = line.strip()[1:].split('=')
 # remove initial / and split into [feature, value]
 if value[0] == '"':
 value = value[1:] # remove first "; remove final " later
 fullvalue, line = read_value(src, line, value)
 # need to keep line to feed back to read_value
 props[key] = fullvalue
 feature.append(props)
 return feature, line

def read_value(src, line, value):
 line = src.readline()
 while (not is_attribute_start(line) and
 not is_feature_start(line)):
 value += line.strip()
 line = src.readline()
 if value[-1] == '"':
 value = value[:-1] # remove final "
 return value, line

The template is meant as a helpful outline, not a restrictive structure. A program written
according to this template may add its own actions. In this case, the “items” to be read
are the features. Before reading the features, the program extracts the accession and GI
numbers. After all the features have been read, an extra step is needed to read the
sequence. The top-level function returns those items in a list: a pair containing the
accession and GI numbers, the list of features, and the sequence. Each feature is a list
containing the type of the feature, the range of bases it covers, and a dictionary of key/
value pairs defining properties.

For the GenBank sample record saved from http://www.ncbi.nlm.nih.gov/Sitemap/sam
plerecord.html, the result of executing the code would be as follows (sequence strings
have been truncated to fit on a single line, and explanations have been added to the
output as comments):

>>> data = get_genbank_items_and_sequence_from_file('sequences/sample.gb')
>>> pprint.pprint(data)
[('U49845.1', '1293613'), # (accession, GI)
 [['source', # first feature is source
 '1..5028', # range of source within base seq
 {'chromosome': 'IX',
 'db_xref': 'taxon:4932', # reference to Taxonomy DB
 'map': '9',
 'organism': 'Saccharomyces cerevisiae'}],
 ['CDS', # coding sequence
 '<1..206', # seq from base 1 to 206, 5' partial
 {'codon_start': '3', # translation starts at 3
 'db_xref': 'GI:1293614', # protein GI
 'product': 'TCP1-beta', # protein produced by the CDS

150 | Chapter 4: Control Statements

http://www.ncbi.nlm.nih.gov/Sitemap/samplerecord.html
http://www.ncbi.nlm.nih.gov/Sitemap/samplerecord.html

 'protein_id': 'AAA98665.1', # protein accession
 'translation': 'SSIYNGIS...'}], # amino acid sequence
 # gene AXL2 spans nucleotides 687 through 3158
 ['gene', '687..3158', {'gene': 'AXL2'}],
 ['CDS',
 '687..3158', # a complete coding sequence
 {'codon_start': '1',
 'db_xref': 'GI:1293615',
 'function': 'required for axial budding pattern of S.cerevisiae',
 'gene': 'AXL2',
 'note': 'plasma membrane glycoprotein',
 'product': 'Axl2p',
 'protein_id': 'AAA98666.1',
 'translation': 'MTQLQISL...'}],
 ['gene', 'complement(3300..4037)', {'gene': 'REV7'}],
 ['CDS',
 'complement(3300..4037)', # CDS is on opposite strand
 {'codon_start': '1',
 'db_xref': 'GI:1293616',
 'gene': 'REV7',
 'product': 'Rev7p',
 'protein_id': 'AAA98667.1',
 'translation': 'MNRWVEKW...'}]],
 # base sequence:
 'gatcctccatatacaacggtatctccacctcaggtttagatctcaacaacggaaccattgcc...']

Translating RNA Sequences
Next, we’re going to build a program to translate RNA sequences directly into strings
of three-letter amino acid abbreviations. We actually got a start on this in the previous
chapter, where we defined a codon table and a lookup function. They will be repeated
here for convenience.

Step 1

Example 4-32 begins a series of function definitions interleaved with brief explanatory
text and sample printouts.

Extended Examples | 151

Example 4-32. Translating RNA sequences, step 1

RNA_codon_table = {
Second Base
U C A G
U
 'UUU': 'Phe', 'UCU': 'Ser', 'UAU': 'Tyr', 'UGU': 'Cys', # UxU
 'UUC': 'Phe', 'UCC': 'Ser', 'UAC': 'Tyr', 'UGC': 'Cys', # UxC
 'UUA': 'Leu', 'UCA': 'Ser', 'UAA': '---', 'UGA': '---', # UxA
 'UUG': 'Leu', 'UCG': 'Ser', 'UAG': '---', 'UGG': 'Trp', # UxG
C
 'CUU': 'Leu', 'CCU': 'Pro', 'CAU': 'His', 'CGU': 'Arg', # CxU
 'CUC': 'Leu', 'CCC': 'Pro', 'CAC': 'His', 'CGC': 'Arg', # CxC
 'CUA': 'Leu', 'CCA': 'Pro', 'CAA': 'Gln', 'CGA': 'Arg', # CxA
 'CUG': 'Leu', 'CCG': 'Pro', 'CAG': 'Gln', 'CGG': 'Arg', # CxG
A
 'AUU': 'Ile', 'ACU': 'Thr', 'AAU': 'Asn', 'AGU': 'Ser', # AxU
 'AUC': 'Ile', 'ACC': 'Thr', 'AAC': 'Asn', 'AGC': 'Ser', # AxC
 'AUA': 'Ile', 'ACA': 'Thr', 'AAA': 'Lys', 'AGA': 'Arg', # AxA
 'AUG': 'Met', 'ACG': 'Thr', 'AAG': 'Lys', 'AGG': 'Arg', # AxG
G
 'GUU': 'Val', 'GCU': 'Ala', 'GAU': 'Asp', 'GGU': 'Gly', # GxU
 'GUC': 'Val', 'GCC': 'Ala', 'GAC': 'Asp', 'GGC': 'Gly', # GxC
 'GUA': 'Val', 'GCA': 'Ala', 'GAA': 'Glu', 'GGA': 'Gly', # GxA
 'GUG': 'Val', 'GCG': 'Ala', 'GAG': 'Glu', 'GGG': 'Gly' # GxG
}

def translate_RNA_codon(codon):
 return RNA_codon_table[codon]

Step 2

The next step is to write a function that translates an RNA base string into a string of
the corresponding three-letter amino acid abbreviations. The optional step argument
to range is useful for this. Testing with assertions while this code was being developed
revealed the need to ignore the last base or two of sequences whose length is not a
multiple of 3, something not considered when the code was first written. The expression
len(seq)%3 gives the remainder when the length of the sequence is divided by 3—we
have to subtract that from len(seq) so we don’t try to process an excess base or two at
the end of the sequence. The new example is shown in Example 4-33.

Example 4-33. Translating RNA sequences, step 2

def translate(seq):
 """Return the animo acid sequence corresponding to the RNA sequence seq"""
 translation = ''
 for n in range(0, len(seq) - (len(seq) % 3), 3): # every third base
 translation += translate_RNA_codon(seq[n:n+3])
 return translation

152 | Chapter 4: Control Statements

Step 3

Next, we take care of frame shifts and add printing functions with the functions shown
in Example 4-34.

Example 4-34. Translating RNA sequences, step 3

def translate_in_frame(seq, framenum):
 """Return the translation of seq in framenum 1, 2, or 3"""
 return translate(seq[framenum-1:])

def print_translation_in_frame(seq, framenum, prefix):
 """Print the translation of seq in framenum preceded by prefix"""
 print(prefix,
 framenum,
 ' ' * framenum,
 translate_in_frame(seq, framenum),
 sep='')

def print_translations(seq, prefix=''):
 """Print the translations of seq in all three reading frames, each preceded by prefix"""
 print('\n' ,' ' * (len(prefix) + 2), seq, sep='')
 for framenum in range(1,4):
 print_translation_in_frame(seq, framenum, prefix)

>>> print_translations('ATGCGTGAGGCTCTCAA')
 ATGCGTGAGGCTCTCAA
1 MetArgGluAlaLeu
2 CysValArgLeuSer
3 Ala---GlySerGln
>>> print_translations('ATGATATGGAGGAGGTAGCCGCGCGCCATGCGCGCTATATTTTGGTAT')
 ATGATATGGAGGAGGTAGCCGCGCGCCATGCGCGCTATATTTTGGTAT
1 MetIleTrpArgArg---ProArgAlaMetArgAlaIlePheTrpTyr
2 ---TyrGlyGlyGlySerArgAlaProCysAlaLeuTyrPheGly
3 AspMetGluGluValAlaAlaArgHisAlaArgTyrIleLeuVal

Step 4

Now we are ready to find the open reading frames. (We make the simplifying
assumption that we’re using the standard genetic code.) The second and third functions
here are essentially the same as in the previous step, except that they call
translate_with_open_reading_frames instead of translate_in_frame. Example 4-35
shows the new definitions.

Example 4-35. Translating RNA sequences, step 4

def translate_with_open_reading_frames(seq, framenum):
 """Return the translation of seq in framenum (1, 2, or 3), with ---'s when not within an
 open reading frame; assume the read is not in an open frame when at the beginning of seq"""
 open = False
 translation = ""
 seqlength = len(seq) - (framenum - 1)
 for n in range(frame-1, seqlength - (seqlength % 3), 3):
 codon = translate_RNA_codon(seq[n:n+3])

Extended Examples | 153

 open = (open or codon == "Met") and not (codon == "---")
 translation += codon if open else "---"
 return translation

def print_translation_with_open_reading_frame(seq, framenum, prefix):
 print(prefix,
 framenum,
 ' ' * framenum,
 translate_with_open_reading_frames(seq, framenum),
 sep='')

def print_translations_with_open_reading_frames(seq, prefix=''):
 print('\n', ' ' * (len(prefix) + 2), seq, sep='')
 for frame in range(1,4):
 print_translation_with_open_reading_frame(seq, frame, prefix)

>>> print_translations('ATGCGTGAGGCTCTCAA')
 ATGCGTGAGGCTCTCAA
1 MetArgGluAlaLeu
2 ---------------
3 ---------------
>>> print_translations('ATGATATGGAGGAGGTAGCCGCGCGCCATGCGCGCTATATTTTGGTAT')
 ATGATATGGAGGAGGTAGCCGCGCGCCATGCGCGCTATATTTTGGTAT
1 MetIleTrpArgArg------------MetArgAlaIlePheTrpTyr
2 ---
3 ---MetGluGluValAlaAlaArgHisAlaArgTyrIleLeuVal

Step 5

Finally, we print the sequence both forward and backward. Getting the reverse of a
sequence is easy, even though there’s no function for it: seq[::-1]. Remember that
trick, as you will need it any time you want to reverse a string. Working with biological
sequence data, that will be quite often! Example 4-36 shows the final piece of the code.

Example 4-36. Translating RNA sequences, step 5

def print_translations_in_frames_in_both_directions(seq):
 print_translations(seq, 'FRF')
 print_translations(seq[::-1], 'RRF')

def print_translations_with_open_reading_frames_in_both_directions(seq):
 print_translations_with_open_reading_frames(seq, 'FRF')
 print_translations_with_open_reading_frames(seq[::-1], 'RRF')

>>> print_translations('ATGCGTGAGGCTCTCAA')
 ATGCGTGAGGCTCTCAA
FRF1 MetArgGluAlaLeu
FRF2 ---------------
FRF3 ---------------

 AACTCTCGGAGTGCGTA
RRF1 ---------------
RRF2 ---------------
RRF3 ---------------

154 | Chapter 4: Control Statements

>>> print_translations('ATGATATGGAGGAGGTAGCCGCGCGCCATGCGCGCTATATTTTGGTAT')
 ATGATATGGAGGAGGTAGCCGCGCGCCATGCGCGCTATATTTTGGTAT
FRF1 MetIleTrpArgArg------------MetArgAlaIlePheTrpTyr
FRF2 ---
FRF3 ---MetGluGluValAlaAlaArgHisAlaArgTyrIleLeuVal

 TATGGTTTTATATCGCGCGTACCGCGCGCCGATGGAGGAGGTATAGTA
RRF1 --
RRF2 MetValLeuTyrArgAlaTyrArgAlaProMetGluGluVal---
RRF3 ---

Constructing a Table from a Text File
Our next project will be to construct a table from a text file. We’ll use the file located
at http://rebase.neb.com/rebase/link_bionet, which contains a list of restriction enzymes
and their cut sites. The file has a simple format.‡ Each line of data has the form:

EnzymeName (Prototype) ... spaces ... CutSite

A “prototype” in this data set is the first enzyme to be discovered with the specified cut
site. Lines that represent prototypes do not have anything in the “Prototype” column.

Several lines of information appear at the beginning of the file, before the actual data.
To ensure that our program ignores these lines we’ll use one of our usual skip_intro-
type functions, here called get_first_line. A look at the file shows that the first line of
data is the first one that begins with an A. This is certainly not an acceptable approach
for “production” software, since the organization of the file might change in the future,
but it’s good enough for this example. The end of the file may have some blank lines,
and we’ll need to ignore those too.

To represent the data in this file we’ll construct a dictionary whose keys are enzyme
names and whose values are the cut sites. We’ll make this simple and ignore the infor-
mation about prototypes. Because there are so many details we are going to take things
a step at a time. This is how you should work on your programs too.

Step 1

The general outline of the program will be:

1. Initialize the enzyme table.

2. Skip introductory lines, returning the first real line.

3. While line is not empty:

a. Parse line.

b. Store entry in the enzyme table.

c. Read another line.

‡ The site contains files in other formats with more information. We’ll use one of those later in the book.

Extended Examples | 155

http://rebase.neb.com/rebase/link_bionet

Turning those steps into function names and adding as few details as we can get away
with, we write some essentially empty functions (see Example 4-37). For example,
get_first_line just returns an empty string; in a sense it’s done its job, which is to
return a line.

Example 4-37. Simple Rebase reader, step 1

def load_enzyme_table():
 return load_enzyme_data_into_table({})
 # start with empty dictionary

def load_enzyme_data_into_table(table):
 line = get_first_line()
 while not end_of_data(line):
 parse(line)
 store_entry(table)
 line = get_next_line()
 return table

def get_first_line():
 return '' # stop immediately

def get_next_line():
 return ' ' # so it stops after getting the first line

def end_of_data(line):
 return True

def parse(line):
 return line

def store_entry(table):
 pass

testing:
def test():
 table = load_enzyme_table()
 assert len(table) == 0
 print('All tests passed.')

test()

Step 2

We can fill in the details of some of these functions immediately. Do not be disturbed
that some of the definitions remain trivial even after all the changes we’ll make. We
might want to modify this program to use with a different file format, and there’s no
guarantee that get_next_line, for instance, will always be as simple as it is here. Using
all these function names makes it very clear what the code is doing without having to
comment it.

156 | Chapter 4: Control Statements

In the following steps, changes from and additions to the previous step are highlighted.
They include:

• Binding names to the result of parse (using tuple unpacking)

• Passing the key and value obtained from parse to store_entry

• Returning a result from first_line to use in testing

• Implementing end_of_data

• Splitting the line into fields and returning the first and last using tuple packing

• Implementing store_entry

Many of the functions continue to have “pretend” implementations in step 2, which is
shown in Example 4-38.

Example 4-38. Simple Rebase reader, step 2

def load_enzyme_table():
 return load_enzyme_data_into_table({})
 # start with empty dictionary

def load_enzyme_data_into_table(table)
 line = get_first_line()
 while not end_of_data(line):
 key, value = parse(line)
 store_entry(table, key, value)
 line = get_next_line()
 return table

def get_first_line():
 return 'enzymeA (protoA) CCCGGG'
 # return a typical line

def get_next_line():
 return ' ' # so it stops after getting the first line

def end_of_data(line):
 return len(line) < 2
 # 0 means end of file, 1 would be a blank line

def parse(line):
 fields = line.split()
 # with no argument, split splits at whitespace
 # tuple packing (omitting optional parens)
 return fields[0], fields[-1]
 # avoiding having to determine whether there are 2 or 3

def store_entry(table, key, value):
 table[key] = value

def test():
 table = load_enzyme_table()
 assert len(table) == 1
 result = parse('enzymeA (protoA) CCCGGG')

Extended Examples | 157

 assert result == ('enzymeA', 'CCCGGG'), result
 print('All tests passed.')

test()

Step 3

In the next step, we actually read from the file. It’s silly to try to wrestle with a large
datafile while you are writing the functions to handle it. Instead, extract a small bit of
the actual file and put it in a “test file” that you can use until the program seems to
work. We’ll construct a file called rebase_test_data01.txt that contains exactly the
following text:

some introductory text
more introductory text
AnEnzyme (APrototype) cutsite1
APrototype cutsite2

Changes in this step include making some of the definitions more realistic:

• Adding a filename parameter to load_enzyme_table

• Embedding most of that function in a loop

• Adding a call to print for debugging purposes

• Passing the open file object to return_first_line and get_next_line

• Implementing get_first_line and get_next_line

Example 4-39 illustrates the third step.

Example 4-39. Simple Rebase reader, step 3

def load_enzyme_table(data_filename):
 with open(data_filename) as datafile:
 return load_enzyme_data_into_table(datafile, {})

def load_enzyme_data_into_table(datafile, table)
 line = get_first_line(datafile)
 while not end_of_data(line):
 print(line, end='')
 key, value = parse(line)
 store_entry(table, key, value)
 line = get_next_line(datafile)
 return table

def get_first_line(fil):
 line = fil.readline()
 while line and not line[0] == 'A':
 line = fil.readline()
 return line

def get_next_line(fil):
 return fil.readline()

158 | Chapter 4: Control Statements

def end_of_data(line):
 return len(line) < 2

def parse(line):
 fields = line.split()
 return fields[0], fields[-1]

def store_entry(table, key, value):
 table[key] = value

def test():
 print()
 datafilename = 'rebase_test_data01.txt'
 table = load_enzyme_table(datafilename)
 assert len(table) == 2, table
 result = parse('enzymeA (protoA) CCCGGG')
 assert result == ('enzymeA', 'CCCGGG'), result
 print()
 print('All tests passed.')

test()

Step 4

Finally, we clean up some of the code (not shown here), use the real file, and test some
results. Example 4-40 shows step 4.

Example 4-40. Simple Rebase reader, step 4

This step uses the definitions of the previous step unchanged, except
that the call to print in load_enzyme_data_into_table could be removed

def test():
 print()
 datafilename = 'link_bionet.txt'
 table = load_enzyme_table(datafilename)
 # check first entry from file:
 assert table['AaaI'] == 'C^GGCCG'
 # check an ordinary entry with a prototype:
 assert table['AbaI'] == 'T^GATCA', table
 # check an ordinary entry that is a prototype:
 assert table['BclI'] == 'T^GATCA', table
 # check last entry from file:
 assert table['Zsp2I'] == 'ATGCA^T'
 assert len(table) == 3559, len(table)
 print()
 print('All tests passed.')

Step 5

If we wanted to, we could also add a function for printing the table in a simpler format
to make it easier to read in the future and a corresponding function for doing that
reading. We can print each entry of the table on a separate line with the name of the

Extended Examples | 159

enzyme separated by a tab from the sequence it recognizes. Example 4-41 shows these
two simple functions.

Example 4-41. Simple Rebase reader, step 5

def write_table_to_filename(table, data_filename):
 """Write table in a simple format to a file named data_filename"""
 with open(data_filename, 'w') as file:
 write_table_entries(table, files)

def write_table_entries(table, datafile):
 for enzyme in sorted(table.keys()):
 print(enzyme, table[enzyme], sep=' ', file=datafile)

def read_table_from_filename(data_filename):
 """Return a table read from the file named data_filename
 that was previously written by write_table_to_filename"""
 with open(data_filename) as file:
 return read_table_entries(file, {})

def read_table_entries(datafile):
 for line in datafile:
 fields = line.split()
 table[fields[0]] = fields[1]
 return table

Tips, Traps, and Tracebacks

Tips
• Keep functions small.

• Prefer comprehensions to loops or iterations that collect values.

• Look for opportunities to use conditional expressions—(val1 if val2 else val3)
—instead of if/else statements when the two clauses contain just an expression
or assign the same name.

• The mechanisms discussed in this chapter are the core of Python programs. You
should review the chapter from time to time to better understand parts you didn’t
completely follow the first time through.

• Use the templates as a reference—they capture a large portion of the ways control
statements are used.

• In general, if a function is to return True if a certain condition holds and False
otherwise, spelling out the following is technically “silly”:

if condition:
 return True
else:
 return False

160 | Chapter 4: Control Statements

Instead, just write return condition. For example, instead of:

if len(seq1) > len(seq2):
 return True
else:
 return False

write:

return len(seq1) > len(seq2)

The result of the comparison is True or False.

• When it is last in the function, a statement such as the following (without an
else clause):

if boolean-condition:
 return expression

can be more concisely written as:

return boolean-condition and expression

This expression will return False if condition is false and the value of expression
if it is true. The primary reason you would need to use the conditional statement
instead of expression is if you specifically want the function to return None if
condition is false, rather than False.

• While assertions are valuable for testing code and for checking conditions at certain
points in function definitions while the definitions are still under development, do
not use assertions as a coding technique in place of conditionals. For example, if
you want to check the validity of some input, do that in a conditional statement
and take appropriate action if the condition is violated, such as raising an error.
Do not simply assert that condition.§

• The first Python code in a file should be a docstring. If enclosed in triple single or
double quotes, the docstring can be as many lines long as you want. If your file is
imported (rather than executed), the module that will be created for it will store
that docstring, and Python’s help facility will be able to display it. You’ll probably
want to comment the file to explain what it is, even if only for your own future
reference, so you might as well get in the habit of using docstrings rather than
comments.

• You should make a choice about how you will use single single, single double,
triple single, and triple double quotes, then follow that convention in a consistent
way. The reason for using each of the four kinds of quotes in a different way is that
it makes it easier to search for appearances in your code of a string that serves a
particular purpose, such as a docstring.

§ Other than coding style, the issue here is that assertions are meant to be executed only during development,
not in a “production” version of a program. When running Python from the command line, the -O option
can be added to optimize a few aspects of the execution, one of which is to ignore assertions.

Tips, Traps, and Tracebacks | 161

The following choices were made for the code in this book and the downloadable
code files:

Single single quotes
Used for short strings

Single double quotes
Used for short strings with internal single quotes

Triple double quotes
Used for docstrings

Triple single quotes
Used for long value strings

The difference between single single quotes and single double quotes is not so
important, but it’s better to use one most of the time. Don’t forget that you can
include a single quote inside a single-quoted string (or a double quote inside a
double-quoted string) simply by putting a backslash before it.

• If a compilation error points to a line that appears to be OK, the problem is probably
on the previous line. Check that all “structural” lines of compound statements—
def, if, else, elif, while, for, try, except, and finally—end with a colon.

• When your IDE indents a line to an unexpected level, don’t fight it or ignore it—
it’s giving you very useful information about a problem in your code. Make sure
that each colon in a compound statement is at the end of its “logical line” (i.e., that
the beginning and any continuation lines are treated as one). The only keywords
that are followed by a colon (and therefore nothing else on that line) are else,
try, and finally.

• Here’s a useful debugging function. It is better than just using assert for testing
code because an assertion failure stops the program, whereas failures identified by
calls to this function do not:

def expect_equal(expected, result):
 """Return expected == result, printing an error message if not true;
 use by itself or with assert in a statement such as:
 assert expect_equal(3438,
 count_hypothetical_proteins(gbk_filename)"""
 if expected == result:
 return True
 print('Expected', expected, 'but got', result)

Traps
• Many functions that collect values, whether using a loop or an iteration, must avoid

adding to the collection on the first pass through the loop or iteration. When that
is the case, the loop or iteration must be followed by a statement that adds the last
item to the collection.

162 | Chapter 4: Control Statements

• When processing data read from outside the program, do not trust that all of it is
in the expected form. There may be missing or aberrant lines or entries; for
example, an enzyme cut site that should be ? to mean “unknown” may be the digit
7 instead.

• It is rarely a good idea to process large files by calling readlines. Rather, process
one line at a time, by calling readline in a loop, by using a comprehension over the
lines of the file, or by using a for statement. This avoids creating enormous lists
that occupy large amounts of memory.

Tracebacks
Following are some representative error messages:

AttributeError: 'range' object has no attribute 'index'
A call has been made to a method not supported by the type.

EOFError
The programmer (or user) typed Ctrl-D (Ctrl-Z on Windows).

IndentationError: unexpected indent
This can happen (well) after a try statement with no except or finally clause.

IOError: [Errno 2] No such file or directory: 'aa2.fasta'
There are a number of IOError variations, each with a different Errno and message
format.

KeyboardInterrupt
The user typed Ctrl-C twice.

KeyError
An attempt has been made to reference a dictionary element by a key not present
in the dictionary.

TypeError: unorderable types int() < str()
An attempt has been made to compare two values of different types.

TypeError: 'NoneType' object is not iterable
The code contains a for statement that is iterating over something that has no
value. This is not the same as iterating over an empty collection, which, although
it does nothing, does not cause an error. Errors that mention NoneType are almost
always caused by a function meant to return a value that does not include a
return statement.

object is not iterable: 'builtin_function_or_method'
A function name was used in place of a function call in the in part of a compre-
hension or for statement; i.e., you forgot the parentheses. This is a common
mistake when calling dict.keys(), dict.values(), and dict.items().

Tips, Traps, and Tracebacks | 163

CHAPTER 5

Classes

Simple collections are appropriate for organizing relatively simple and transient infor-
mation. Elaborately nested collections, though, are not. Consider the output parsed
from the very small GenBank entry shown in Example 4-31. Even though it ignores
much of the file’s information, the program produces an elaborate nested structure.
Working with such a structure creates the following serious problems:

Complexity
Using the representation in a program requires understanding its intricacies.

Awkward navigation
Accessing specific parts of the representation requires tricky combinations of index
expressions and function calls.

Exposure to change
Changes to the representation require widespread changes in every program that
uses it.

The combination of these factors causes mental strain, slows programming, makes
debugging more difficult, and increases mistakes. It is too easy to write [1] instead of
[0], or [1] instead of [0][1]. Later, such index expressions have no apparent meaning,
so they are difficult to understand and correct. If changes must be made it is difficult
to make them consistently and find every place that must be edited. While collections
are powerful tools, they are best reserved for actions that operate on the entire collec-
tion, rather than being used with access expressions or functions that pick out specific
elements.

These problems arise because of the entanglement of code that does need to know
about representation details and code that does not. For instance, we can define a
function called get_organism that extracts the name of the organism from the complex
collection. That function needs to know the details of the representation. However,
other functions can just call get_organism when they need that piece of the collection.
With this approach, if the structure of the collection is changed in a way that affects

165

the way an organism’s name is accessed, only the get_organism function will be affected,
not any of the code that calls it.

Functions like get_organism hide details from code that uses a representation. Only a
small number of functions need to work with the representation directly; everything
else calls those functions. This strategy defines a functional interface to the complex
structure. Changes to the representation cause changes only to the small number of
functions in the interface. This enforces the principle of information hiding that dictates
the separation of implementation and use.

We have already seen two kinds of information hiding:

• Accessing built-in Python types through functions and methods without knowing
anything about how they are represented

• Dividing code into small chunks, with higher-level functions that organize the
computation separated from lower-level ones dealing with the details of file formats
and collection structures

The comments in the preceding paragraphs demonstrate the need for another kind:

• Packaging together a representation along with the functions that manipulate it so
that code can call those functions rather than accessing the data

If we had the third kind of information hiding, the result would be much like the first.
What we need, then, is a way to define new types (classes) the way we can define new
functions. Python does indeed give us such a mechanism.

Defining Classes
Python’s collection types work as follows:

1. The type is called like a function to create new instances.

2. The call to the type can include arguments used to initialize the new instance.

3. Methods are invoked on instances of types instead of accessing their internal
representations.

4. Methods defined for different types can have the same name: when a method is
called through a value, Python finds the appropriate function by looking in the
definition of the value’s type.

5. The way an instance is printed is based on its type.

None of this is special to collection types. These features are intrinsic to Python’s type
mechanisms. They are what make Python an object-oriented programming language.

Python’s class definition statement defines a new class (type), just the way a definition
statement defines a new function. The keyword that introduces the statement is
class. Like function definition statements, class definition statements are one-clause
compound statements containing other statements. The other statements are nearly

166 | Chapter 5: Classes

always function definitions, but any statement is allowed. Each def statement inside a
class defines a method for the instances of that class.

New instances are created by calling the name of the class as a function, just as with
built-in types. Each instance stores information in named fields. Together, fields and
methods are called attributes. They are accessed with the usual dot notation, such that
this expression:

obj.name()

would call the name method defined by obj’s type, and this expression:

obj.species

would access the species attribute of obj. That attribute might be a field or it might be
a method. Using str as an example:

>>> 'AAU'.isupper # ACCESS the isupper ATTRIBUTE
<built-in method isupper of str object at 0x1c523e0>
>>> 'AAU'.isupper() # CALL the isupper METHOD
True

What classes should your programs define? They can define pretty much whatever you
can name. Classes add nouns to the language you are building with your code, the way
functions add verbs. The definition of a class defines the functional interface to the data
its instances represent. Classes are the mechanism that supports information hiding.

Collections serve two very different purposes: grouping and structuring. A group has
no intrinsic meaning—it just collects values together. A complex collection structure
is different. The data returned by the GenBank parser of Example 4-31 (see “Parsing
GenBank Files” on page 148) is a list, but it’s not the same kind of list as one containing
primitive values. It has many levels of structure, with many elements playing specific
roles in what the collection represents. Classes should be used in place of all but the
simplest structuring collections.

S T A T E M E N T

Class Definition
A class definition begins with the keyword class and a name, followed by a colon and
one or more statements indented relative to the first line.

class name:

 def method1(args...):
 . . .
 def method2(args...):
 . . .

 . . .

Defining Classes | 167

You should begin each syllable of your class names with an uppercase
letter. Omit the underscores that would otherwise separate syllables in
the usual Python naming convention.

The statement in Example 5-1 defines a new Python type called GenBankEntry. Using
pass for the class body is just like using pass for the body of a function you know you
want to define but haven’t yet determined how to implement.

Example 5-1. Defining a class

class GenBankEntry:
 pass

>>> GenBankEntry()
<__main__.GenBankEntry object at 0x1cafdb0>
>>> GenBankEntry()
<__main__.GenBankEntry object at 0x1caff30>

The interpreter’s output when a new instance of GenBankEntry is created shows the
name of its module (__main__, indicating the interpreter), the name of the class, and a
hexadecimal memory address. The memory addresses don’t mean anything, but they
at least show that we have created two different instances of the class.

Values may be stored in fields of an instance using dot notation. We’ll do this initially
for demonstration purposes only—in general, we’ll want to use a functional interface:

>>> gb = GenBankEntry()
>>> gb.accession = 'U49845.1'
>>> gb.gi = '1293613'
>>> gb.accession
'U49845.1'

Instance Attributes
To demonstrate important features of classes, instances, and methods, we’ll build a
class to represent the information parsed from a GenBank entry as shown in Exam-
ple 4-31. The code will grow rather long as more methods are added, so only the new
methods are shown for each example.

Access methods

The first kind of methods we will consider are access methods, which return values
based on the fields of an instance. The simplest just return the value of a field. We want
programs using our class to call methods with expressions, such as gb.get_gi(), instead
of directly accessing the fields with expressions such as gb.gi. To support that, we need
to define the method get_gi() inside the class. It will return the value of the gi field for
the instance on which it is called.

168 | Chapter 5: Classes

How does a method determine which instance’s fields to access? Python automatically
adds the instance through which a method is called to the beginning of the call’s ar-
gument list. Therefore, the instance a method uses is the value of its first parameter.
By convention, the name of that parameter is self:

class GenBankEntry:

 def get_gi(self):
 return self.gi

 def get_accession(self):
 return self.accession

>>> gb.get_accession()
'U49845.1'

Suppose we decide to change the way we store the accession and GI values. We might
want to move them into a dictionary called info, anticipating the addition of more keys
and values. It would then be necessary to redefine the methods based on this new
representation:

class GenBankEntry:

 info = {}

 def get_gi(self):
 return self.info['gi']

 def get_accession(self):
 return self.info['accession']

Any code that uses the access functions would be completely unaffected by this change.
This is the essence of information hiding—separating the implementation of a repre-
sentation from its use:

>>> gb = GenBankEntry()
>>> gb.info = {'accession': 'U49845.1', 'gi': '1293613'}
>>> gb.get_accession()
'U49845.1'

Now suppose we extract the source information from the data returned by the GenBank
file parser and store it in a field called source. The source is the first feature in the data’s
list of features, which itself is the second element of the list returned. We’ll store the
source in one field and a list of the rest of the features in another:

>>> data = get_GenBank_items_and_sequence_from_file(genbank_file_name)
 # defined in Example 4-31
>>> gb.source = data[1][0]
>>> gb.features = data[1][1:]
>>> pprint.pprint(gb.source)
['source',
 '1..5028',
 {'chromosome': 'IX',
 'db_xref': 'taxon:4932',

Defining Classes | 169

 'map': '9',
 'organism': 'Saccharomyces cerevisiae'}]

We don’t want outside code digging around in the source’s qualifier dictionary, or even
knowing where it is and that it is a dictionary. So, we’ll define access methods to get
values from the qualifier dictionary. We will not define a method that returns the value
of the source field itself, since that would expose the representation of that part of the
information:

class GenBankEntry:

 def organism(self):
 return self.source[2].get('organism', None)

 def chromosome(self):
 return self.source[2].get('chromosome', None)

Not all access methods return data that is directly stored in the instance. Some perform
numerical computations, string manipulations, or other operations using the stored
data:

class GenBankEntry:

 def gc_content(self):
 return round((100 * ((self.sequence.count('g') +
 self.sequence.count('c'))) /
 len(self.sequence)),

 2)
>>> gb.gc_content()
37.97

Other methods do some kind of filtering or searching to find the desired information.
It isn’t even necessary for the data a method filters or searches to be the value of one of
the instance’s fields; for example, a method might search a collection obtained by call-
ing an access method of a different instance. Here is the definition of one that filters
and extracts the instance’s feature list to produce a list of genes and the range of their
coding region(s):

 def genes(self):
 return [(feature[1], feature[2]['gene'])
 for feature in self.features
 if feature[0] == 'gene']

>>> gb.genes()
[('687..3158', 'AXL2'), ('complement(3300..4037)', 'REV7')]

T E M P L A T E

Access Methods
Access methods return values based on the fields of an instance. They can do much
more than just return the value of a field. Part of information hiding, in fact, is that

170 | Chapter 5: Classes

programmers using access methods don’t have to know which ones refer to similarly
named fields. Access methods generally perform one of the following kinds of
computations:

• Get the value of a field

• Look up a value in a dictionary that is the value of a field

• Compute a value from the value of one or more fields

• Filter the collection that is the value of a field

• Search for a targeted value in a field that has a collection value or in some other
collection outside the instance

Predicate methods

A predicate is a Boolean-valued method or function. A predicate method is essentially
an access method that also does a comparison. Classes should define methods for
predicates that are likely to be important, difficult to compute, or frequently used. It is
better to define predicate methods for other code to use than it is to leave the other
code to interpret the meaning of values returned from access methods.

To highlight that a method is a predicate, its name should usually begin with is (we’ve
already seen quite a few predicates defined by the str class, such as isupper). Occa-
sionally, however, the grammar of the word(s) used for the method name calls for the
prefix has. If the rest of the method name has multiple syllables you would normally
include an underscore after the prefix, beginning the name with is_ or has_. A test for
whether a GenBankEntry contains a base sequence or an amino acid sequence would
probably be the most useful predicate for our class:

class GenBankEntry:

 def is_base_sequence(self):
 return set(self.get_sequence().lower()) <= {'a', 'c', 't', 'g'}

One predicate that it is often important to provide is one that determines whether an
instance is before another. This would be used to implement some kind of ordering
among the instances of the class. The method __lt__ is called by the built-in function
sorted and the method list.sort. Any call to one of these can include a key argument
to specify an ad hoc sorting order. If no key argument is supplied in a call, __lt__ is used.

Method names like __lt__ that begin and end with two underscores are
called special methods. They play predefined roles in Python’s imple-
mentation. You are not allowed to give other methods names that begin
and end with two underscores.

Many classes should implement __lt__, even if all it does is compare the name or iden-
tifier of its two arguments. For a class that does not implement __lt__, it is an error to

Defining Classes | 171

try to sort a sequence of its instances. The __lt__ method must have two parameters:
self and another for the other object to which self will be compared. If we want the
method to be able to compare only objects of the same type, we can begin its definition
by testing whether they are of the same type and raising an exception if not. Here’s a
definition of __lt__ that compares two instances of GenBankEntry using their GenInfo
IDs:

class GenBankEntry:

 def __lt__(self, other):
 if type(self) != type(other):
 raise Exception('Incompatible argument to __lt__: ' +
 str(other))
 return self.get_gid() < other.get_gid()

Though limited to comparing two instances of the same type, that definition is general
enough to capture it as a template.

T E M P L A T E

Supporting Sorting
The method __lt__ is called by sorted and list.sort when no key argument is provided.
A simple definition would check that its two arguments have the same type; more
sophisticated definitions could handle multiple types.

class ClassName:

 def __lt__(self, other):
 if type(self) != type(other):
 raise Exception(
 'Incompatible argument to __lt__: ' +
 str(other))
 return self.get_something() < other.get_something()

Initialization methods

One special method, __init__, is critical to the way classes work. When a class is called
to create a new instance, the arguments included in the call are passed automatically
to the __init__ method defined in the class. This method can initialize the instance’s
fields and ensure that the new instance is ready for use. This is how fields are normally
assigned their initial values, not by using dot notation with the field name outside of
the class.

The __init__ method plays a fundamental role in the interface defined by the class.
Although other methods could add other fields, the norm is to assign all fields in a
class’s __init__ method, even if the value is only None. To help anyone reading the class,
including its author, the __init__ method should go first in the body of the class’s
definition.

172 | Chapter 5: Classes

Following is the definition of a possible __init__ method for the GenBankEntry class. It
is designed to take just one argument other than self: the full complex of data read
from the GenBank entry parser. Note that __init__ methods embody the choices the
class’s author has made about field names and what goes in which fields. Because code
outside the class would use access methods, not field names, no one using the class
needs to know about anything inside the __init__ method:

class GenBankEntry:

 def __init__(self, data):
 self.accession, self.version = data[0][0].split('.')
 self.gid = data[0][1]
 self.sequence = data[2]
 # assuming first feature is source & treating specially
 assert 'source' == data[1][0][0]
 self.features = data[1][1:]
 self.source = data[1][0]

Now we no longer need to assign fields outside of the class. Instead, we just call the
class with the data obtained from the parser:

>>> gb = GenBankEntry(data)

This creates a new instance, calls GenBankEntry.__init__ (passing it the new instance
as the first argument and data as the second), and assigns gb to the result. In this one
case, there is no instance in front of a dot in the method call: Python automatically and
invisibly calls the __init__ method as part of the instance creation process. By the time
it calls __init__, the new instance has been created, so it can be passed as the self
argument to the method. Note that the __init__ method does not return a value. After
the method is called, the new instance is returned as the value of the call to the class.

String methods

Two other important special methods are __str__ and __repr__. These define how
Python prints instances of a class. Each returns a string. What that string contains is
up to the class implementer.

The two methods are slightly different, as shown in Table 5-1. If a class defines
__repr__ but not __str__, __repr__ will be called in place of __str__. However, if a class
defines __str__ but not __repr__, __str__ will not be called—the default definition of
repr will be used instead.

Table 5-1. __str__ versus __repr__

 __str__ __repr__

Called by str(obj) repr(obj)

Returns A human-readable
string

A string that could be typed at the interactive prompt or included in
a Python file to create an equivalent object

Where “called by”
functions are called

print Interpreter output

Defining Classes | 173

The “called by” functions call the methods. The interpreter and the print function call
the “called by” functions to get a string, then print it without the quotes. With neither
__str__ nor __repr__ defined yet, the four possible outputs would be as follows:

>>> gb
<__main__.GenBankEntry object at 0x1c69db0> # default repr, no quotes
>>> repr(gb)
'<__main__.GenBankEntry object at 0x1c69db0>' # default repr, quotes
>>> print(gb)
<__main__.GenBankEntry object at 0x1c69db0> # default repr, no quotes
>>> str(gb)
'<__main__.GenBankEntry object at 0x1c69db0>' # default repr, quotes

Here is a simple definition of GenBankEntry.__str__:

class GenBankEntry:

 def __str__(self):
 return 'GenBankEntry-' + self.get_gid()

With that definition in place, here’s what happens with the same four expressions:

>>> gb
<__main__.GenBankEntry object at 0x1c69db0> # default repr, no quotes
>>> repr(gb)
'<__main__.GenBankEntry object at 0x1c69db0>' # default repr, quotes
>>> print(gb)
GenBankEntry-1293613 # __str__, no quotes
>>> str(gb)
'GenBankEntry-1293613' # __str__, quotes

There are really two kinds of __repr__ implementations. For classes whose instances
can be represented succinctly, such as range, the goal is to have the interpreter output
be the same as the input:

>>> range(1,5)
range(1,5)

For other classes, the goal is more pragmatic. We could define the first kind of
__repr__ method for GenBankEntry, as it contains all the information needed to recon-
struct the complex collection structure that was passed to its initialization method.
That wouldn’t be a good idea, however: any time a GenBankEntry was typed to the
interpreter the resulting printout would be very long. That doesn’t necessarily mean
we must put up with the uninformative default, though. We can define __repr__ in a
way that is convenient for interaction with the interpreter, debugging, and so on.

If we change the name of the __str__ method to __repr__, the same method will be
called in all four of our situations, since __str__ defaults to __repr__ if not defined:

class GenBankEntry:

 def __repr__(self): # instead of __str__
 return 'GenBankEntry-' + self.get_gid()

This is what happens with the four expressions now:

174 | Chapter 5: Classes

>>> gb
'GenBankEntry-1293613' # __repr__, no quotes
>>> repr(gb)
'GenBankEntry-1293613' # __repr__, quotes
>>> print(gb)
GenBankEntry-1293613 # __repr__, no quotes
>>> str(gb)
'GenBankEntry-1293613' # __repr__, quotes

Finally, we also have the option of defining both methods. It is often useful to define
__repr__ to give more information than __str__. Usually you’ll want to keep the result
of __str__ fairly compact, since it is called by print. Let’s define the two methods as
follows, then run our expressions again:

class GenBankEntry:

 def __str__(self):
 return "GenBankEntry-" + self.get_gid()

 def __repr__(self):
 return "<GenBankEntry {} {} '{}'>".format(self.get_gid(),
 self.get_accession(),
 self.organism()
)

>>> gb
<GenBankEntry 1293613 U49845.1 'Saccharomyces cerevisiae'>
>>> repr(gb)
"<GenBankEntry 1293613 U49845.1 'Saccharomyces cerevisiae'>"
>>> print(gb)
GenBankEntry-1293613
>>> str(gb)
'GenBankEntry-1293613'

These definitions of __str__ and __repr__ do not directly access fields
of the instances. Information hiding is just as useful inside a class as
outside. Generally, only a small number of methods need direct access
to fields; the others can use those. That allows decisions about field
names and contents to be changed without requiring extensive editing
of the other methods of the class.

Modification methods

In many cases, once an instance has been created many of a class’s fields will not be
changed. As we’ve defined it so far, GenBankEntry is completely static—none of the
values of an instance’s fields will ever change. To make it possible for a program to
change the value of a field without violating the information hiding principle, the class
must define a modification method for that field.

Stretching our example just a bit, suppose we are writing a program that manages a
number of GenBankEntry instances for its user, and we want to add a field to contain

Defining Classes | 175

notes the user makes. Since the user may make multiple notations, we’ll store them in
a list. We need to do three things to implement this:

1. Assign the field to a new list in __init__.

2. Define an access method to retrieve the notes.

3. Define a modification method to add a note.

As with access methods, there are different kinds of modification methods that you can
use, depending on the type of the field’s value. The method may just replace the prim-
itive value of a field, or it may add elements to or remove elements from a field’s col-
lection value, navigate into a more complex field value, change multiple fields, and so
on. For this example, let’s assume that each note is a string, and all that happens when
a note is added is that it gets added to the end of a list of previous notes. The imple-
mentation looks like this:

class GenBankEntry:

 def __init__(self):
 # . . . other statements . . .
 notes = [] # initialize the notes field

 def get_notes(self):
 return self.notes

 def add_note(self, note):
 self.notes.append(note)

 def remove_note(self, note):
 self.notes.remove(note)

Modification methods are important in another way: with all changes to instances going
through these methods, they can control exactly what happens before and after the
changes are made. Before making any change, a method could check the validity of the
new value(s) supplied. After making the changes, it might update associated informa-
tion. These are all details that should be hidden behind modification methods.

Defining modification methods also has practical advantages for the class implementer.
Such methods can include code to print debugging information, or they can log changes
to a file for later examination. They are important places to set debugging breakpoints
in order to observe changes being made to instances.

Before moving on, we need to address a subtle problem in the definition of
get_notes. Because it returns the actual list value of the notes field, external code can
modify that list. The same would be true if a dictionary that is the value of a field were
returned. Changes to the list or dictionary might require other actions the external code
wouldn’t know about, such as printing debugging information or updating information
located elsewhere. Even if the external code did perform such actions, changes to the
representation or required actions would invalidate that code. As always, we want to
protect instances from outside meddling.

176 | Chapter 5: Classes

The solution, like the problem, is a bit subtle. Access methods should never return the
actual collection value of a field. Instead, they should return either copies or a generator.
We should therefore define get_notes in one of two ways:

class GenBankEntry:

 # return copy of list
 def get_notes(self):
 return self.notes[:]

 # return generator of the elements of the list
 def get_notes(self):
 return (note for note in self.notes)

Action methods

Some classes, like GenBankEntry, are designed simply to represent something. Except
perhaps for some modification methods and, of course, __init__, they are entirely pas-
sive; all of their other methods simply return values.

Other classes are more active; they provide methods that do something, in the sense of
having an effect outside the class. They may perform input and output operations,
create instances of other classes, or perform a wide variety of other sorts of activities.
Often, the actions are specific to a particular application.

There isn’t much to say about action methods, other than to point out the possibility
that a class might have them. They are entirely unconstrained in the arguments they
take and the computations they perform. We’ll see an example in a parser class later
in this chapter.

Support methods

Classes are not limited to defining methods for external code to use. We don’t want
long method definitions any more than we want long function definitions outside of
classes. If a method meant for external use grows too long, it can be divided into mul-
tiple methods. As with code extracted from long function definitions, it may turn out
that these small methods can be used from several others within the class. Normally
they would not be used from outside of the class.

We will call these methods “support methods.” They should be commented as such to
indicate that they are not really part of the class’s interface.

Summary

This section examined various kinds of methods in piecemeal fashion. It concludes
with a template for a basic class definition. Note that because it plays such a funda-
mental role in defining instance content, we put __init__ first. Then, since they too are
special functions, we put __repr__ and __str__ before the other method groups. Next

Defining Classes | 177

come predicates, partly to account for the remaining special method—__lt__—and
partly because predicates are the simplest methods, just returning a Boolean value.

T E M P L A T E

Basic Class
This is a high-level outline of the organization of a typical basic class definition. With
the exception of the fundamental methods listed first, there may be any number of
methods in each category.

class ClassName:

Fundamental Methods

 def __init__(self, ...):
 # initialize new instance's fields
 # no return

 def __repr__(self):
 return # string used by the interpreter to print instances

 def __str__(self):
 return # string used by print and str

Predicates

 def __lt__(self, other):
 if type(self) != type(other):
 raise Exception(
 'Incompatible argument to __lt__: ' +
 str(other))
 return self.somemethod() < other.somemethod()

 def is_some_characteristic(self):
 return # True or False

Access Methods

 def get_something(self):
 return # value obtained by one of:
 # accessing a field
 # lookup by key
 # computation
 # filtering a collection
 # searching a collection

Modification Methods

 def set_something(self, ...):
 # change the value of one or more fields based on
 # the parameter values supplied in the call.
 # generally no return value

Action Methods

 def do_something(self, ...):
 # do something that has effects outside the class

178 | Chapter 5: Classes

Private Support Methods

 def helper_method(self, ...):
 # something used by other methods of the class only

Class Attributes
Some fields and methods should be associated with the class itself, rather than its in-
dividual instances. Typical uses for class attributes are generating a unique ID number
for each instance and keeping track of all of a class’s instances.

Each class defines its own namespace, just the way modules and functions (including
methods) do. That is what allows methods in different classes to have the same name.
When a function is defined in a module, its name is added to the module’s namespace.
When a method is defined in a class, its name is added to the class’s namespace.

Actually, “added” is not quite correct: it would be more accurate to say “names and
values are added if they’re not already there, and otherwise the names are rebound.” It
is perfectly legitimate, though pointless, to define the same function several times in a
row. The first definition adds the function name to its containing namespace, and the
others simply rebind what that name means.

Assignment statements also define names, adding (or replacing) names and values
within their namespaces. Assignment statements can appear anywhere any other state-
ment can appear. In particular, they can appear inside class definitions alongside the
usual method definitions. An assignment statement at the top level of the class defini-
tion adds a class field to the class’s namespace.

Attributes in a class’s scope can be accessed in one of two ways:

• As usual, through an instance of the class using dot notation (including self inside
one of the class’s methods)

• Through the class itself, using dot notation

Class fields

Python classes do not track their instances. That is to say, there is no method you can
call on a class to get a list of all its instances. However, we can add instance tracking
to GenBankEntry with only two more lines of code: an assignment statement to initialize
the class field and a line in the __init__ method to add the new instance to its value.
We can use a list or a dictionary, depending on whether we want to be able to look up
instances by a key. Since it is very likely that we will want to find instances of
GenBankEntry by their GenInfo IDs, we’ll use those as the keys in a dictionary.

Defining Classes | 179

We use the same capitalization convention for the names of class fields
as for the names of classes themselves. This avoids confusion as to which
names are for instance fields and which for class fields.

The following code sets up the instance dictionary:

class GenBankEntry:

 Instances = {} # Initialize the instance dictionary

 def __init__(self):
 # . . . other statements . . .
 self.Instances[self.gid] = self
 # add the new instance to the class's Instances dictionary

After creating the GenBankEntry instance from the data we’ve been using for our exam-
ples, we would see one instance in the class’s Instances dictionary:

>>> GenBankEntry.Instances # access to field through class
{'1293613': <GenBankEntry 1293613 U49845.1 'Saccharomyces cerevisiae'>}

T E M P L A T E

Tracking a Class’s Instances
It is often useful for a class to track its instances. All that is required is to assign a name
to an empty list or dictionary in a top-level assignment statement and add a line to
__init__ to add the new instance to the collection.

class UsingList:
 Instances = []
 def __init__(self[, arg, ...]):
 # . . .
 self.Instances.append(self)

class UsingDictionary:
 Instances = {}
 def __init__(self[, arg, ...]):
 # . . .
 self.Instances[self.somefield] = self

Another common use for class fields is to keep track of the number of instances that
have been generated without tracking the instances themselves. This is useful in order
to give each new instance a unique identifier when the class doesn’t have a field that
can act as one. The identifier would typically be used to define __str__ and/or
__repr__ methods that distinguish the instances more helpfully than the awkward
default implementation of __repr__. They can also be used to define __lt__ if there is
nothing else on which to base comparisons for the class.

180 | Chapter 5: Classes

Why not just track all the instances? Sometimes a program generates many instances
of a class during one portion of its code, uses them, then doesn’t need them anymore.
If they are not tracked, Python can reuse the space they occupy. If they are in a collection
in a class, though, Python has no way of knowing if they are still needed. You also might
want to track instance counts over multiple executions of a program, which you could
do by storing the current count when the program exits and restoring it when the
program begins execution later.

Initializing the instance count is easy enough—it’s an assignment statement just like
the one for tracking the instances. There is one difference, though: there is no way to
increment the count that is the value of the class field without using the class’s name.
Based on the preceding discussion, you might think the following would work:

class SimpleClass:
 InstanceCount = 0

 def __init__(self):
 self.number = self.InstanceCount # no problem
 self.InstanceCount = self.InstanceCount + 1 # big problem

>>> sc = SimpleClass()
>>> sc.number
0 # as expected
>>> SimpleClass.InstanceCount
0 # surprise! why not incremented?
>>> sc.InstanceCount
1 # mystery!!

As you can see, though, it doesn’t. Here’s what’s going on in this code:

SimpleClass.InstanceCount is bound to 0 when the class is defined.

The __init__ method binds the field number of the newly created instance to the
current value of SimpleClass.InstanceCount, which is 0.

The full form of the increment statement was used, rather than += 1, to make what
happened more explicit. In any assignment statement, the righthand side is evalu-
ated, then the name(s) on the lefthand side is (are) bound to the resulting value(s).
The value of self.InstanceCount is still 0, from having been initialized in step 1, so
the value of the righthand side is 1. Finally, self.InstanceCount is bound to 1.

The issue lies in the meaning of self.InstanceCount on the lefthand side of the assign-
ment statement. That name refers to a field in the instance, just as self.number does.
Python doesn’t “understand” that you meant it to refer to the class field. The direct
solution to this problem is slightly awkward: use the name of the class explicitly when
rebinding the value. We didn’t need to do this when modifying a list or dictionary used
to track instances, because once the class field was assigned it was never rebound. We’ll
see a better solution shortly.

Class fields can be used for less dynamic purposes too. There are often names that are
specific to the class. These could be assigned at the top level of a module but really
should go in the class’s namespace. Examples include:

Defining Classes | 181

• File paths for input and output

• A format string used in __str__, __repr__, and additional output methods

• Minimum and maximum values

One sophisticated use of class fields turns the assignment problem we just looked at
into an advantage. As we saw, once a method assigns a field name in an instance, that
name refers to the instance’s field, not the class’s. The value of a name is determined
first by looking for a field by that name in the instance, then in its class. This means
that a class field can be used as a default value for instances that don’t have their own
values for a field with that name. Instances that need a different value than the default
can assign their own field with that name. The default can even be changed later in the
class, and all instances in which the field has not been assigned will take on the new
default value. Any instances that did provide a value for the field will keep that value.

Class methods

The benefits of information hiding are important for class fields too. Are they lists,
dictionaries, or more complex collections? Maybe their values are instances of other
classes the application defines. Changing the contents of a class field’s value may re-
quire other changes, and as usual, we don’t want outside code dealing with these details.
We want to be able to define methods to manage class fields the way other methods
manage instance fields.

A class method is a method for which self is the class itself, not one of its instances.
Like a class field, a class method can be accessed using dot notation through either an
instance of the class or the class itself.

The syllables that make up the name of a class method, including the
first, should be capitalized, as they are in names of classes and class
fields.

How are class methods distinguished from instance methods? A special indicator,
@classmethod, is placed on the line before a class method definition. (This odd syntax
is actually part of a sophisticated aspect of Python that is not discussed further in this
book. It is easy enough to use @classmethod without learning anything else about @
notation.) For example:

class GenBankEntry:

 Instances = {} # initialize the instance dictionary

 @classmethod # make the method a class method
 def InstanceCount(self):
 return len(self.Instances)

182 | Chapter 5: Classes

 @classmethod
 def GetInstances(self): # returning generator as discussed earlier
 return (value for value in self.Instance.keys())

 @classmethod
 def Get(self, target):
 """Return the instance whose GID is target"""
 return self.Instances.get(target, None)

Or, if the class keeps its instances in a list instead of a dictionary:

class GenBankEntry:

 Instances = []

 @classmethod
 def InstanceCount(self):
 return len(self.Instances)

 @classmethod
 def GetInstances(self): # returning generator as discussed earlier
 return (value for value in self.Instances)

 @classmethod
 def Get(self, target):
 """Return the instance whose GID is target"""
 for inst in self.GetInstances: # using the Find template
 if target == inst.get_gid():
 return inst

Earlier, we encountered problems where an __init__ method incremented a class field
used for an instance counter. The solution there was to access the counter through the
class name. This is inflexible, though: if the class name is changed, the __init__ method
must be changed too. (There is also a more important reason why this is not a good
solution, as we’ll see later.) A better option is to use a class method. The __init__
method shouldn’t be reassigning class fields any more than external code should be
reassigning instance fields.

An assignment statement in a class method assigns a name in the class’s namespace.
Assignment statements in a class definition are executed when the class statement is
executed, and assignment statements in a class method are executed when the method
is executed. The following template shows how a counter field should really be
implemented.

T E M P L A T E

Tracking the Instance Count
This template shows how to track instance counts using a class field. It doesn’t show
what to do with the number field each instance is assigned, but presumably it would be
used in the implementation of one or more of __str__, __repr__, and __lt__.

Defining Classes | 183

class SomeClass:
 InstanceCount = 0 # initial assignment

 @classmethod
 def IncrementCount(self):
 self.InstanceCount += 1 # reassignment

 def __init__(self, args)
 # . . .
 self.number = self.InstanceCount
 # assign an instance field to
 # the value of a class field
 self.IncrementCount() # class method call

Note that the only variable part of the entire template is the name of the class. (Of
course, the number instance field could also be given a different name.) The template’s
code can be used exactly as shown in any class.

Classes as objects

We’ve already discussed class fields and class methods with specific examples and
explained their use. There is nothing special or mysterious about class fields and meth-
ods. Python treats fields and methods of classes and fields and methods of their in-
stances the same way. This is because classes are themselves objects. Remembering this
will make it easier to understand how things work.

Class fields and methods are essentially the same as names and functions defined in
modules outside of classes. Module functions and values are referenced using dot no-
tation, with the module in front of the dot. Likewise, class fields and methods are
referenced using dot notation with the class in front of the dot. A class method can use
self before the dot; code outside the class would use the name of the class.

An instance method can call both instance and class methods through self. A field
accessed through self in an instance method could be either an instance field or a class
field. Python looks first in the instance to see if it contains a field with that name. If it
doesn’t find it there, it looks in the class. We can’t tell by looking at a method call
self.methodname() or an expression self.fieldname whether these refer to attributes of
the instance or of its class. That is one reason why it is a good idea to use capitalization
to distinguish class attribute names from instance attribute names.

An assignment to self.fieldname in an instance method always gives fieldname a value
within the instance, whether or not it already has one in the class. Table 5-2 captures
all the possibilities.

184 | Chapter 5: Classes

Table 5-2. Functions and assignments

 Module m Class C Instance t

Internal Inside m Inside C

Function definition def fn(): @classmethod

def Cmeth(self)...

def imeth(self)...

Internal call fn() self.Cmeth() self.imeth() or

self.Cmeth()

Top-level assignment name = value Name = value C.name = value

Binds m.name Binds C.Name

Assignment inside a function fn (like
m unless preceded by self, C, or t)

name = value self.Name = value self.name = value

Binds name in fn binds C.Name Binds t.name

Scope order (where Python looks)
from inside a function (like m unless
preceded by self, C, or t)

name self.Name self.name

Function (local)

Module

Global

Class Instance

Class

External access From outside m From outside C

External call m.name() C.name() t.name()

External field m.name C.name t.name

Compare the module and class columns of the table. With the exception of the use of
self, there is no difference between the two. Classes and modules are both objects, and
their mechanisms are similar. The only difference between the two columns, other than
the class’s use of self, is that the top-level assignment to a class field does not use self—
self is only a method parameter, not something associated with the class itself. Note
that if a name inside a method is not preceded by self, the sequence of scopes in which
Python looks for names is the same as if the method had been an ordinary function
outside the class.

Comparing the class and instance columns, there are only a few small differences:

• Class method definitions are preceded by @classmethod.

• Methods called through self in an instance method can be either instance or class
methods, whereas methods called through self in a class method are always class
methods.

• To assign a class field, an instance method must use the class name, exactly as if it
were a function outside the class. (It is much better to call a class method that does
the assignment so that the name of the class is not part of the method definition.)

• When the value of a field is accessed—not assigned—through self in an instance
method, Python looks first in the instance and then in the class.

Defining Classes | 185

Class and Method Relationships
There are two fundamental ways that multiple classes can be related to each other. The
first implements part/whole relationships among the objects of the classes. The second
is as a taxonomy of types. They are both hierarchical relationships, but they differ in
their implementation and consequences.

Decomposition
Just as it is important to keep functions focused on relatively narrowly defined tasks,
it is important to keep classes focused on relatively narrow representations. When
function definitions grow uncomfortably large and perform too many actions, they
should be broken up into smaller functions that work together. The same is true for
classes: when there is too much information in a class, and—often as a consequence—
an uncomfortably large number of methods, it is best to break up the class into several
that work together.

In addition to being easier to edit and debug, more narrowly focused functions and
classes often turn out to be useful beyond their original intended purposes. This hap-
pens especially frequently in a field like bioinformatics, where applications often share
modules of functions and classes that implement common kinds of data and operations.
A class that buries many different kinds of information inside its instances makes it
difficult for an application to use only some of that content. In particular, the applica-
tion might have only some of the data necessary for initializing the instances of the full
class.

Dividing up function and class definitions is a programming technique called decom-
position. This term refers to the act of breaking up the functions and classes, but it also
refers to a design strategy. Decomposing large function and class definitions is good
technique. Even better, though, is to think through the likely shape of a part of a pro-
gram in advance and plan to implement a hierarchy of functions and possibly a group
of related classes. Becoming adept at this advanced decomposition takes some practice,
so you shouldn’t be discouraged if your early efforts in this direction don’t seem to
accomplish much.

Class decomposition

We know how to divide up a function definition into smaller ones that call each other.
But how do we divide up a class? The basic principle is the same one that led to creating
a class in the first place: complex structuring collections (as opposed to simple grouping
collections) are better represented as instances of a class. We therefore look for fields
whose values are complex collections and methods that reach into them. Instances of
the new class replace the complex collections in instances of the original class.

186 | Chapter 5: Classes

Let’s take a look at the definition of GenBankEntry. Even though it omits a substantial
part of the data found in a GenBank file, it still contains a great deal of information. Its
definition would include a large number of access methods that reach into collection-
valued fields to pull out information. The value of features is a list in which each feature
is itself a rather elaborate data structure. The situation calls for defining a separate
GenBankFeature class and having the value of fields be a list of GenBankFeature
instances.

This is an example of turning a collection of complex collections into a collection of
instances. The source field is an example of a field whose value is a single complex
collection that could be replaced by a single instance. We separated out source from
the other features because it plays a different, and more fundamental, role in the
GenBankEntry. Since its value has the same structure as the individual features list, it
too can be replaced by an instance of GenBankFeature.

A GenBankFeature class would look something like the definition shown in Example 5-2.

Example 5-2. Definition of GenBankFeature

class GenBankFeature:

 # interesting use of a class field!
 FeatureNameOrder = ('gene', 'promoter', 'RBS', 'CDS')

Fundamental Methods

 def __init__(self, feature_type, locus, qualifiers):
 self.type = feature_type
 self.locus = locus
 self.qualifiers = qualifiers

 def __repr__(self):
 """Return a true __repr__ string"""
 return ('GenBankFeature' +
 repr((self.type, self.locus, self.qualifiers)))
 # repr of the list of arguments __init__ would take

 def __str__(self):
 return self.type + '@' + self.locus

Predicates

 def __lt__(self, other):
 if type(self) != type(other):
 raise Exception('Incompatible argument to __lt__: ' +
 str(other))
 return self.locus_lt(other) and self.type_lt(other)

 def is_gene(self):
 return 'gene' == self.get_type()

 def is_cds(self):
 return 'CDS' == self.get_type()

Class and Method Relationships | 187

Access Methods

 def get_type(self):
 return type

 def get_locus(self):
 return locus

 def get_qualifier(self, name):
 return self.qualifiers.get(name, None)

Private Support Methods

 def locus_lt(self, other):
 """Is this instance's locus "less than" that of other? This could be quite complicated.
 This is just a simple demonstration that only looks for the first integer."""
 assert type(self) == type(other) # insisting, not testing
 return ((extract_first_integer(self.get_locus()) or −1) <
 (extract_first_integer(other.get_locus()) or −1))
 # extract_first_integer defined elsewhere; not a method

 def type_lt(self, other):
 assert type(self) == type(other) # insisting, not testing
 return (self.FeatureNameOrder.find(self.get_type()) <
 other.FeatureNameOrder.find(self.get_type()))

Note that GenBankFeature.__init__ is defined with individual parameters for each of
the values it needs, rather than one collection containing all of them. This is actually a
more common approach than just providing a single complex collection argument for
the method to disassemble. We’ll change GenBankEntry.__init__ similarly, so that we
can pass in the GenBankFeature instances after they’ve been created:

class GenBankEntry:

 def __init__(self, accession, gid, source, sequence, features):
 # . . .

Now we define a pair of functions to take the parsed data and create first the
GenBankFeature instances and then the GenBankEntry itself:

def create_genbank_entry(entry_data):
 return GenBankEntry(entry_data[0][0],
 entry_data[0][1],
 GenBankFeature(entry_data[1][0]), # source
 entry_data[2],
 [GenBankFeature(info) # features
 for info in entry_data[1][1:]])

Separating GenBankFeature from GenBankEntry doesn’t mean that we can’t define
GenBankEntry methods that do things with GenBankFeatures. Such GenBankEntry meth-
ods will basically just call the corresponding methods in GenBankFeature. Since the
features field in a GenBankEntry instance is a collection of GenBankFeatures, accessing
a specific attribute of each of the features would be implemented as a comprehension.

188 | Chapter 5: Classes

For example:

class GenBankEntry:

 def gene_names(self):
 return [feature.get_qualifier('gene') for feature in features
 if feature.is_gene()]

This definition doesn’t know how to tell if a feature is a gene, so it asks each feature
whether it is by using the predicate is_gene. Then it collects the names of all features
that are genes and returns the resulting collection as its value. When a field’s value is
not a collection, methods like this can be even simpler. They often just return the result
of calling a method on the value of the field. Having replaced source with an instance
of GenBankFeature, we can redefine GenBankEntry.get_organism as:

class GenBankEntry:

 def get_organism(self):
 return self.source.get_qualifier('organism')

Implementing a method primarily by just calling a similar method on a different object
is known as delegation.

Method decomposition

Since methods are functions, we can apply the usual functional decomposition strat-
egies to break large methods into smaller ones. Instance methods offer a tactical twist
that is sometimes convenient and occasionally powerful: methods can use instance
fields to share values among related methods instead of passing them as parameters.

We’ll collect the GenBank file parser code into a class, to see how values can be shared
as instance fields. While we are rewriting this, we can move the code that creates the
GenBankFeature and GenBankEntry instances into the new class, as there is no need for
the complex data structure the old code produced or the top-level functions that created
instances with them. In doing so, we can compact the code somewhat since we don’t
need all the features of the original code.

We can also simplify the code by using instance fields to share state among the methods.
The code for the parser from Chapter 4 (in “Parsing GenBank Files” on page 148)
showed some interesting techniques that are sometimes necessary but that we won’t
need when implementing the parser as a class. One is that nearly all the functions take
an open file as one of their arguments. We can assign an instance field to the open file
to be accessed by any method, thereby avoiding having to pass it from one function to
the next.

Another situation addressed in that example was that certain functions stopped when
they encountered a line meeting some kind of test, but other functions needed that line.
As a result, some functions returned the most recently read line, and the functions that
called them passed that line as an argument to others. This was one way of “maintaining

Class and Method Relationships | 189

the state of the process.” Instead of passing the line back and forth among the functions,
though, we can just use an instance field.

Example 5-3 outlines the structure of a parser class for GenBank files in terms of which
methods would call which. A number of predicates that check whether the current line
signals the start or end of some section of the file are included. These predicates can be
thought of as testing the state of the parser as it moves through the file. They have been
italicized in the figure to distinguish them from the more substantial methods. The
method read_next_line is omitted from the outline; it is called from 10 places in the
code and simply assigns the instance variable line to the result of a call to readline.

Example 5-3. Using an instance field to share state

parse
 get_ids
 is_at_version
 make_feature_generator
 skip_intro
 is_at_features
 is_at_sequence_start
 read_feature
 read_qualifiers
 is_at_feature_start
 read_qualifier_value
 is_at_attribute_start
 is_at_feature_start
 GenBankFeature
 get_sequence
 is_at_sequence_end
 GenBankEntry

The definition of a GenBankParser class is shown in Example 5-4. The method parse
parses the file and returns a GenBankEntry, including its GenBankFeatures. The filename
is a parameter to parse, and there are no arguments for __init__. (An alternative design
would be to pass the filename to __init__ and then call parse with no arguments.)

Example 5-4. A GenBankEntry parser class

"""Parse a GenBankEntry file, returning a GenBankEntry instance"""

from genbank import GenBankEntry, GenBankFeature

class GenBankParser:

 def __init__(self):
 self.line = None
 self.src = None

 # interesting use of a class field!
 AttributePrefix = (21 * ' ') + '/'

190 | Chapter 5: Classes

Predicates

 def is_at_version(self):
 return self.line and self.line.startswith('VERSION')

 def is_at_features(self):
 return self.line and self.line.startswith('FEATURES')

 def is_at_attribute_start(self):
 return self.line and self.line.startswith(self.AttributePrefix)

 def is_at_feature_start(self):
 return len(self.line) > 5 and self.line[5] != ' '

 def is_at_sequence_start(self):
 return self.line and self.line.startswith('ORIGIN')

 def is_at_sequence_end(self):
 return self.line and self.line.startswith('//')

Action

 def parse(self, filename):
 """Use the data in file named filename to create and return an instance of GenBankEntry"""
 with open(filename) as self.src:
 accession, gid = self.get_ids()
 feature_generator = self.make_feature_generator()
 source = next(feature_generator)
 features = list(feature_generator) # remainder after source
 seq = self.get_sequence()
 return GenBankEntry(accession, gid, source, features, seq)

Action Support

 def read_next_line(self):
 """Better to call this than write its one line of code"""
 self.line = self.src.readline() # no need to return, just assign

 def get_ids(self):
 """Return the accession and GenInfo IDs"""
 self.read_next_line()
 while not self.is_at_version():
 self.read_next_line()
 parts = self.line.split()
 giparts = parts[2].partition(':')
 return parts[1], giparts[2]

 def skip_intro(self):
 """Skip text that appears in self.src before the first feature"""
 self.read_next_line()
 while not self.is_at_features():
 self.read_next_line()

Class and Method Relationships | 191

 def get_sequence(self):
 """Return sequence at end of file"""
 seq = ''
 self.read_next_line()
 while not self.is_at_sequence_end():
 seq += self.line[10:-1].replace(' ', '')
 self.read_next_line()
 return seq

 def make_feature_generator(self):
 """Return a generator that produces instances of GenBankFeature
 using the data found in the features section of the file"""
 self.skip_intro()
 while not self.is_at_sequence_start():
 yield self.read_feature()

 def read_feature(self):
 """Return an instance of GenBankFeature created
 from the data in the file for a single feature"""
 feature_type, feature_locus = self.line.split()
 self.read_next_line()
 return GenBankFeature(feature_type,
 feature_locus,
 self.read_qualifiers())

 def read_qualifiers(self):
 qualifiers = {}
 while not self.is_at_feature_start():
 parts = self.line.strip()[1:].split('=')
 key = parts[0]
 value = '' if len(parts) < 2 else parts[1]
 if value and value[0] == '"':
 value = value[1:] # remove first quote; last removed later
 qualifiers[key] = self.read_qualifier_value(value)
 return qualifiers

 def read__qualifier_value(self, value):
 """With value, the string after a qualifier name, and its equal and quote, keep
 reading lines and removing leading and trailing whitespace, adding to
 value until the final quote is read, then return the accumulated value"""
 self.read_next_line()
 while (not self.is_at_attribute_start() and
 not self.is_at_feature_start()):
 value += self.line.strip()
 self.read_next_line()
 if value and value[-1] == '"':
 value = value[:-1] # remove final quote
 return value

192 | Chapter 5: Classes

It isn’t actually necessary for __init__ to initialize file and line, the
fields that maintain the state of the parsing process. Fields can be as-
signed for the first time in methods other than __init__: until the first
assignment of the field is executed, wherever it occurs, the instance just
doesn’t have a field by that name. However, readers of the code will
expect to see all fields initialized in __init__, and are unlikely to want
to read through the entire class’s code checking for field assignments.
Therefore, it is good practice to assign all fields the instance will use in
the __init__ method, even if only to None. In essence this is a form of
documentation, identifying which fields are used by the class’s methods.

Even if a method is called from only a few others, it can be useful to assign a field to its
arguments. This can be done in the method itself, or it can be done by a calling method
before a call, in which case the values will not be included in the call. In fact, even if a
method assigns names of its own for local use it can be helpful to turn those into field
assignments.

An additional benefit of using this technique is that it makes debugging much easier.
The field assignments capture the state of the instance. After the program calls a method
on the instance, or while the program is stopped in the debugger, you can look at the
values of its fields to figure out what has happened. (The Python debugger is introduced
at the end of the next chapter.) This can be easier than tracing or stepping through a
series of method calls to watch what values parameters take on.

Singleton classes

Classes that define parsing actions for a particular file format are a common application
of object-oriented programming techniques. In this case, the motivations for the defi-
nition of a class to parse GenBank entry files were purely technical. Reconfiguring the
previous code as a set of methods made certain aspects of the code easier to read, write,
and debug, and using instance fields to share state among methods avoided some of
the complexity of the functional solution.

To use GenBankParser, code would create an instance and call its parse method, giving
it the name of the file containing the GenBank entry text. That method returns an
instance of GenBankEntry. Suppose we want to write an application that parses multiple
GenBank files. Do we need a new instance of GenBankParser for each file? There are two
things we need to know to answer that question:

• After parse returns, is there any state left in the instance that we’ll want to retrieve
later?

• After parse returns, is there any state left in the instance that would get in the way
of using it again?

If the answer to both questions is “no,” as it is in this case, we can reuse the same
instance to parse multiple files. A different reason for needing only one instance of a

Class and Method Relationships | 193

class is that it represents the application itself, the state of the user interface, or some-
thing else that must exist during the entire execution of the application. This is different
from reuse: it is continual use.

Classes of which an application needs only one instance are called singleton classes. It
may seem strange to create a class that has only one instance: most classes are defined
in order to have many instances, each with their own state. There’s nothing wrong with
it, though, and singleton classes are rather common. The concept is introduced here
so you’ll recognize such classes for what they are.

One unusual thing about singleton classes is that it doesn’t matter whether their im-
plementations use all instance fields and methods or all class fields and methods. If we
were to copy the definition of GenBankParser, delete the __init__ method, and put
@classmethod in front of every method, it would work exactly the same as the original
definition. The only difference is that instead of creating an instance and calling
parse on it, we would just call GenBankParser(filename) directly.

Sometimes there isn’t much reason to choose one approach over another. If there are
many methods that might be called from outside the class (instead of just one, as in
this example), it is somewhat easier to call them using the name of the class than through
a name bound to a single instance of the class. That is because once the name of the
class is imported into a module’s namespace, it can be used directly, which is much
easier than passing an instance among many functions as one of their arguments.

Inheritance
It often happens that you want to design and implement a class that is a lot like another.
You could copy the code from the other class to use as a starting point and then modify
it slightly, but that strategy has many weaknesses:

• The more copies of a body of code there are, the more work it takes to maintain
them.

• The more copies of code there are that need changing, the more likely it is that
mistakes will be made in making the changes.

• The larger the code grows, the more there is to read and understand.

• The larger the code grows, the more effort it takes to navigate through and edit the
code.

Object-oriented languages provide a powerful mechanism called inheritance that allows
you to define a new class that differs from an old one only in the methods it defines.
This new class is called a subclass, and the class on which it is based is called a super-
class. (The terms base class and derived class are also sometimes used.) When a class is
defined with one or more superclasses, its definition implicitly includes all the methods
and class fields of each of its superclasses. Those, in turn, contain all the methods and

194 | Chapter 5: Classes

class fields of their superclasses. Before it defines anything at all, the new subclass
inherits all of the methods and class fields of the entire chain of superclasses.

Defining subclasses

A subclass is defined by following its name with the name of its superclass, enclosed
in parentheses, as shown in Example 5-5.

Example 5-5. Defining a subclass

class BaseSequence:

 def __init__(self, seqstring):
 self.seq = seqstring

 def get_sequence(self):
 return self.seq

 def gc_content(self):
 """"Return the percentage of G and C characters in base_seq"""
 seq = self.get_sequence.upper()
 return (seq.count('G') + seq.count('C')) / len(seq)

class RNASequence(BaseSequence): # subclass
 # . . .

The parentheses can actually contain a list of superclass names. Having
more than one superclass is called multiple inheritance. Multiple inher-
itance can be used for a wide range of purposes, from specific imple-
mentation techniques to high-level architectural mechanisms. Multiple
inheritance is not all that difficult to understand or use in Python, but
it leads to complexities and issues beyond the scope of this book.

A method in a class can refer to its superclass by calling the built-in Python function
super. The word self does not appear either before super or within its argument list.
The call to the function super takes the place of self in a method call. The result of
super is an object that represents the same instance as self, but for which methods are
obtained from the superclass.

Python 2: In Python 2 code you may occasionally see a class defined
with object as its superclass. In Python 3 object is a superclass of every
class, so class definitions do not include it explicitly.

We need super as soon as we start defining subclasses, because the __init__ method
of a subclass must call the __init__ method of its superclass. This is so that each class
can initialize the fields of the new object according to its own __init__ procedure.
Example 5-6 shows a small example.

Class and Method Relationships | 195

Example 5-6. A basic subclass

class RNASequence(BaseSequence):

 CodonTable = {'UUU': 'F', 'UCU': 'S', 'UAU': 'Y', 'UGU': 'C',
 # . . .
 }

 @classmethod
 def translate_codon(self, codon):
 return self.CodonTable[codon.upper()]

 def __init__(self, seqstring):
 super().__init__(seqstring) # note that super does not use self

 def translate(self, frame=1):
 """Produce a protein sequence by translating this
 RNA sequence starting at frame 1, 2, or 3"""
 return ''.join([self.translate_codon(self.get_sequence()[n:n+3])
 for n in
 range(frame-1,
 # ignore 1 or 2 bases after last triple
 len(self.get_sequence()) -
 (len(self.get_sequence()) - (frame-1)) % 3,
 3)])

This example defines the class BaseSequence, which simply stores a sequence (presum-
ably a string) and provides an access method for it. It also defines RNASequence as a
subclass of BaseSequence. Because BaseSequence defines get_sequence, that method can
be called on instances of RNASequence. The translate method can be called on an in-
stance of RNASequence, but not on an instance of the more general BaseSequence, since
it doesn’t define that method. Although an RNASequence has no initialization work to
do for its own purposes, it must forward to BaseSequence.__init__ the arguments it
expects:

>>> rnaseq1 = RNASequence('UUACCUGGCAUUGCAA')
>>> rnaseq.getsequence()
'UUACCUGGCAUUGCAA'
>>> for n in range(1,4):
 print('Frame', n, rna1.translate(n), sep = ' ')
Frame 1 LeuProGlyIleAla
Frame 2 TyrLeuAlaLeuGln
Frame 3 ThrTrpHisCys

Initialization functions often check the validity of their arguments. We’ll extend the
definition of RNASequence.__init__ to use a class method that raises an exception if
there is an invalid character in seq:

 @classmethod
 def invalid_chars(self, seqstring):
 return {char for char in seq if char not in 'UCAGucag'}

 def __init__(self, seqstring):
 invalid = self.invalid_chars(seqstring)

196 | Chapter 5: Classes

 if invalid:
 raise Exception(
 'Sequence contains one or more invalid character]: ' +
 str(invalid))
 super().__init__(seqstring)

Next, we’ll add a DNASequence class with a very slightly different definition of
isinvalid. Instead of translate, it includes a transcribe method that returns its RNA
complement:

class DNASequence(BaseSequence)
 # construct a string translation table for use with str.translate
 TranslationTable = str.maketrans('TCAGtcag', 'AGUCaguc')

 @classmethod
 def invalid_chars(self, seqstring):
 return {char for char in seq if char not in 'TCAGtcag'}

 def __init__(self, seqstring):
 invalid = self.invalid_chars(seqstring)
 if invalid:
 raise Exception(
 'Sequence contains one or more invalid characters: ' +
 str(invalid))
 super().__init__(seqstring)

 def transcribe(self):
 """Produce an instance of RNASequence that is
 the transcribed complement of this sequence"""
 return RNASequence(# use string translation table to transcribe
 self.get_sequence().translate(self.TranslationTable))

Classes related by inheritance form a class hierarchy. Conceptually, this is a taxonomy
of types, analogous to a biological taxonomy. However, the relationship is more than
just conceptual, due to the technical consequences of the superclass/subclass relation-
ship. The (simple) taxonomy for the preceding example is shown in Figure 5-1.

Figure 5-1. A class hierarchy

Class and Method Relationships | 197

Factoring out common code

Notice the repetition of code in RNASequence and DNASequence in the steps taken to
validate the seq argument of __init__. The only difference is two characters in the string
of invalid_chars. Otherwise, invalid_chars and __init__ are exactly the same in the
two classes. Were we to notice such duplication in an ordinary function, we would pull
out the common code and put it in a new function, calling it from the old ones. Slight
differences in the old code would be handled by adding parameters to the new function.

With classes, we can do even better than that: methods that are duplicated in sibling
classes can be moved up to a common superclass. Removing such duplication is one
of the most common uses of inheritance. By analogy with the similar notion from al-
gebra, this reorganization is often called factoring out.

Example 5-7 shows revised—and shorter—definitions of the classes. The method
invalid_chars has been moved to BaseSequence, and the test for invalid characters
has been moved from RNASequence.__init__ and DNASequence.__init__ into
BaseSequence__init__.

Example 5-7. Factoring out common code to a superclass

class BaseSequence:

 @classmethod
 def invalid_chars(self, seqstring):
 return {char for char in seq if char not in self.ValidChars}

 def __init__(self, seqstring):
 invalid = self.invalid_chars(seqstring)
 if invalid:
 raise Exception(
 type(self).__name__ +
 'Sequence contains one or more invalid characters: ' +
 str(invalid))
 self.__seq = seqstring

 def get_sequence(self):
 return self.__seq

 def gc_content(self):
 """"Return the percentage of G and C characters in the sequence"""
 seq = self.get_sequence.upper()
 return (seq.count('G') + seq.count('C')) / len(seq)

class RNASequence(BaseSequence):

 ValidChars = 'UCAGucag'
 CodonTable = {'UUU': 'F', 'UCU': 'S', 'UAU': 'Y', 'UGU': 'C',
 # . . .
 }

 @classmethod
 def translate_codon(self, codon):

198 | Chapter 5: Classes

 return self.CodonTable[codon.upper()]

 def __init__(self, seqstring):
 super().__init__(seqstring)

 def translate(self, frame=1):
 """Produce a protein sequence by translating this
 RNA sequence starting at frame 1, 2, or 3"""
 return ''.join([self.translate_codon(self.get_sequence()[n:n+3])
 for n in
 range(frame-1,
 # ignore 1 or 2 bases after last triple
 len(self.get_sequence()) -
 (len(self.get_sequence()) - (frame-1)) % 3,
 3)])

class DNASequence(BaseSequence):
 ValidChars = 'TCAGtcag'
 # construct a string translation table for use with str.translate
 TranslationTable = str.maketrans('TCAGtcag', 'AGUCaguc')

 def __init__(self, seqstring):
 super().__init__(seqstring) # note absence of self

 def transcribe(self):
 """Produce an instance of RNASequence that is
 the transcribed complement of this sequence"""
 return RNASequence(
 self.get_sequence().translate(self.TranslationTable))

To generalize the definition of invalid_chars, the strings the old definitions contained
have been replaced by a class variable, ValidChars. When the method is executed,
self will be an instance of either RNASequence or DNASequence, so in evaluating the ex-
pression self.ValidChars Python will look first in the instance, then in the instance’s
class, where it will find the value. (If the instance’s class did not define the class field,
Python would next look for it in the superclass.) Example 5-8 demonstrates this process
in the creation of a new DNASequence.

Example 5-8. Referencing a subclass class value

DNASequence('ATTCTGGC')
 → DNASequence.__init__('ATTCTGGC')
 → BaseSequence.__init__('ATTCTGGC')
 → BaseSequence.isinvalid('ATTCTGGC')
 which references self.ValidChars
 1. does self have a ValidChars field? no
 2. does self's class have a ValidChars field? yes
 [3. if it did not, the superclass of self's class
 would be examined for a ValidChars field]

Class and Method Relationships | 199

Generalization

It is often the case that after defining two apparently independent classes, some com-
monality becomes apparent. Such situations motivate the definition of a new class. This
new class is a generalization of its subclasses. In truth, any class can be described as a
generalization of its subclasses, but the term specifically calls attention to the action of
creating a new superclass to capture code common to some existing classes.

As an example of generalization, suppose we want to add ProteinSequence to our group
of classes. It will share some, but not all, of BaseSequence’s implementation. Therefore,
we’ll define a more generalized class called Sequence. This leads to the following
changes:

• BaseSequence is changed to inherit from Sequence.

• A new class, ProteinSequence, is defined with Sequence as its superclass.

• The initialization of seq is moved to Sequence.__init__.

• The method sequence is moved to Sequence.

• The method gc_content stays in BaseSequence, because it is only applicable to base
sequences, not to amino acid sequences.

• The method valid_chars is moved to Sequence.

While we’re at it, we can also add a new class called AmbiguousDNASequence, which allows
sequences to have ambiguity codes in addition to DNA symbols. At first sight it might
look like this should be a subclass of DNASequence. However, ambiguous sequences
cannot be transcribed into RNASequences, and it is rarely appropriate to define a subclass
when its superclass has methods that are inapplicable to the new class’s instances. Thus,
we’ll make AmbiguousDNASequence a direct subclass of BaseSequence.

Now that we have a ProteinSequence class we can change RNASequence.translate to
return an instance of that instead of a string, the way DNASequence returns an instance
of RNASequence. We’ll also define a __str__ method for Sequence that simply returns the
sequence. Because these classes are all instantiated with a single string argument, we
can define an appropriate __repr__ as well.

For both ProteinSequence and AmbiguousDNASequence, we’ll assign appropriate
ValidChars values and define the usual __init__ methods. We’ll also give
ProteinSequence a long_string method that returns a string with the one-letter codes
replaced by the corresponding three-letter ones. We’ll use another class field to define
a dictionary to implement that and create a list of valid characters by extracting its keys.
Note that during the execution of the class definition statement, class fields are just
ordinary names. One assignment can use the result of a previous assignment. There is
no self at that point, because the class is not defined until the class statement has
completely finished executing.

Example 5-9 shows the definitions of the new classes and the changes to the old ones.

200 | Chapter 5: Classes

Example 5-9. Generalized Sequence class and its subclasses

class Sequence:

 @classmethod
 def invalid_chars(self, seqstring):
 return {char for char in seq if char not in self.ValidChars}

 def __init__(self, seqstring):
 invalid = self.invalid_chars(seqstring)
 if invalid:
 raise Exception(
 type(self).__name__ +
 " contains one or more invalid characters: " +
 str(invalid))
 self.__seq = seqstring

 def get_sequence(self):
 return self.__seq

class BaseSequence(Sequence):

 def __init__(self, seqstring):
 super().__init__(seqstring)

 def gc_content(self):
 """"Return the percentage of G and C characters in the sequence"""
 seq = self.get_sequence.upper()
 return (seq.count('G') + seq.count('C')) / len(seq)

class ProteinSequence(Sequence):

 ThreeLetterCodes = { # including ambiguity codes B, X, and Y
 'A': 'Ala', 'B': 'Asx', 'C': 'Cys', 'D': 'Asp',
 'E': 'Glu', 'F': 'Phe', 'G': 'Gly', 'H': 'His',
 'I': 'Ile', 'K': 'Lys', 'L': 'Leu', 'M': 'Met',
 'N': 'Asn', 'P': 'Pro', 'Q': 'Gln', 'R': 'Arg',
 'S': 'Ser', 'T': 'Thr', 'V': 'Val', 'W': 'Trp',
 'X': 'Xxx', 'Y': 'Tyr', 'Z': 'Glx'}

 ValidChars = ''.join(ThreeLetterCodes.keys())
 ValidChars += ValidChars.lower()
 TranslationTable = str.maketrans(ThreeLetterCodes)

 def long_str(self):
 return self.get_sequence().translate(self.TranslationTable)
 # or ''.join([ThreeLetterCodes[key]
 # for key in self.get_sequence()])

 def __init__(self, seqstring):
 super().__init__(seqstring)

class RNASequence(BaseSequence):

 ValidChars = 'ucagUCAG'

Class and Method Relationships | 201

 CodonTable = {'UUU': 'F', 'UCU': 'S', 'UAU': 'Y', 'UGU': 'C',
 # . . .
 }

 @classmethod
 def translate_codon(self, codon):
 return self.CodonTable[codon.upper()]

 def __init__(self, seqstring):
 super().__init__(seqstring)

 def translate(self, frame=1):
 return ProteinSequence(
 ''.join((self.translate_codon(self.get_sequence()[n:n+3])
 for n in
 range(frame-1,
 len(self.get_sequence()) -
 ((len(self.get_sequence()) - (frame-1)) % 3),
 3))))

class DNASequence(BaseSequence):
 ValidChars = 'TCAGtcag'
 # construct a string translation table for use with str.translate
 TranslationTable = str.maketrans('TCAGtcag', 'AGUCaguc')

 def __init__(self, seqstring):
 super().__init__(seqstring) # note absence of self

 def transcribe(self):
 """Produce an instance of RNASequence that is
 the transcribed complement of this sequence"""
 return RNASequence(
 self.get_sequence().translate(self.TranslationTable))

class AmbiguousDNASequence(DNASequence):

 ValidChars = 'TCAGBDHKMNSRWVY'
 ValidChars += ValidChars.lower()

 def __init__(self, seqstring):
 super().__init__(seqstring)

The inheritance relationships among these classes are shown in class hierarchy dia-
grammed in Figure 5-2.

The changes made in Example 5-9 left BaseSequence empty. Let’s add a method that
applies to all kinds of BaseSequences, but not to ProteinSequences: complement. We’ll
use translation tables to implement it, as we did for DNASequence.transcribe. We’ll even
take the somewhat unusual step of defining complements for ambiguity codes:

202 | Chapter 5: Classes

class BaseSequence(Sequence):
 # . . .

 def complement(self):
 return self(self.get_sequence().translate(self.ComplementTable))

 def gc_content(self):
 """"Return the percentage of G and C characters in the sequence"""
 seq = self.get_sequence.upper()
 return (seq.count('G') + seq.count('C')) / len(seq)

class RNASequence(BaseSequence):

 ComplementTrans = str.maketrans('UCAGucag', 'AGUCaguc')
 # . . .

class DNASequence(BaseSequence):

 ComplementTable = str.maketrans('TCAGtcag', 'AGTCagtc')
 # . . .

class AmbiguousDNASequence(DNASequence):

 ComplementTable = str.maketrans('TCAGRYMKSWNBVDH', 'AGTCYRKMSWNVBHD')
 # . . .

Now we can invoke complement on instances of any subclass of BaseSequence, getting
results appropriate to each type of instance.

Subclass methods

Methods defined in a subclass can serve a number of different purposes relative to the
methods of their superclasses:

Addition
The subclass extends the superclass’s repertoire by defining new methods.

Figure 5-2. A class hierarchy

Class and Method Relationships | 203

Compounding
A subclass method can invoke several superclass methods. This has the effect of
combining the actions of those methods.

Blocking
Very occasionally, especially in elaborate inheritance hierarchies, it makes sense to
define a class as a subclass of another even if it does not support a few of the
superclass’s methods. For instance, a simplistic view of real-world biology would
say that a penguin is a kind of (i.e., subclass of) bird, except that it doesn’t fly.
Usually, though, it is better to refactor (i.e., rearrange) the class hierarchy to elim-
inate this conflict. We did this when adding ProteinSequence to our earlier example.

You have three options when defining a method that blocks an inherited one: do
nothing, print or log a “not supported” warning, or raise an exception.

Extension
The subclass method calls the superclass method before, in the middle of, or after
performing some other action(s). Each class’s __init__ method is necessarily an
extension of its superclass’s __init__ method. For other methods, extension can
take many forms. The subclass can add additional verification of values used by
the superclass’s methods, add printing or logging facilities, check security restric-
tions, store or update information beyond what is managed by the superclass
method, and so on.

An extension method’s call to the corresponding superclass
method is not limited to passing the values of its parameters. There
are many kinds of opportunities for passing values that have been
changed or replaced in some way.

Definitions of __init__ are usually more constrained. They almost
always begin with a call to super.__init__, with an unmodified set
of arguments corresponding to the inherited parameter list. If the
subclass’s __init__ defines additional parameters, those will typi-
cally be processed after the call to the superclass’s __init__.

Overriding
There is nothing problematic about defining a method in a subclass that simply
replaces one with the same name in its superclass. This is called overriding. Unlike
extension methods, a method that overrides one its superclass defines does not use
super. Normally, the subclass method serves the same purpose as the superclass
method; the only difference is in its implementation.

One method that needs overriding in our example is gc_content. In computing the
proportion of G and C bases, we divided the total count of the two by the length
of the sequence. However, assuming it makes sense to compute gc_content for
DNA sequences that include ambiguity codes, we need a different definition for
gc_content in AmbiguousDNASequence. In computing the sum of the G and C bases

204 | Chapter 5: Classes

it should also include occurrences of the ambiguity code S, since that stands for
either a G or a C. It should then compare the sum of those counts not to the entire
length of the sequence, but rather to the count of symbols that are either definitely
G or C (which includes S) or definitely A or T (which includes W). For the purposes
of this computation, we must ignore other ambiguity codes. The definition, a typ-
ical example of overriding, would be:

class AmbiguousDNASequence(DNASequence):

 def gc_content(self):
 """"Return the percentage of G and C characters in the sequence, counting
 only bases that are either definitely G or C or definitely A or T"""
 seq = self.get_sequence.upper()
 gc_count = (seq.count('G') + seq.count('C') + seq.count('S')
 at_count = (seq.count('A') + seq.count('T') + seq.count('W')
 return gc_count / (gc_count + at_count)

 # . . .

Overriding and extension are different from the other techniques in a
very important respect: because the subclass method replaces the
superclass method in calls through instances of the subclass, its param-
eter list should conform to that of the superclass method. That is, it
should look like the superclass method so that it can be used without
distinguishing the type of the instance through which it is called. This
means that the subclass’s parameter list should begin with the same
parameters as the ones in the superclass method’s parameter list.

Other arguments may be added after those for the benefit of code that
knows it is dealing with instances of the subclass. Such arguments must
be optional so that other code does not need to supply values for them;
they must be defined as keyword arguments that follow the parameters
of the superclass method.

Tips, Traps, and Tracebacks

Tips
• Don’t capitalize the names of class files: Python filenames should be all lowercase.

Confusion can result from having modules and classes with the same names. Cap-
italizing all your class names and leaving filenames in lowercase avoids problems.

• The class definitions in this book’s examples generally use the same name for the
parameters of __init__ methods as the fields that get initialized with their values.
This is a stylistic preference, not a requirement.

• Most methods of a class should use its own get and set methods to access its fields
instead of accessing them directly. The advantages of information hiding are

Tips, Traps, and Tracebacks | 205

important for the class developer too, not just for other programmers who use the
class. It may not seem important when you first develop a class, but when you
come back to it later, it is easy to forget what the fields contain. Also, many get
methods may compute, search for, or look up values that aren’t directly stored in
a field. Dictionary-valued fields are particularly problematic in this regard:

— Quite often, other methods in the class will do something with the dictionary’s
entries. They should call get_entries. Otherwise, when the developer comes
back to the class after a while and sees a field with the name entries, he may
well try to use it directly, thinking it is a sequence. The errors that result when
keys are used instead of values are distracting at minimum, and often quite
difficult to decipher.

— A very common mistake with dictionary-valued fields is using them directly in
an iteration, comprehension, or generator expression without calling keys,
values, or items. Doing so is the same as calling keys, which is not always what
you want. An access function get_entries that accesses the values of a
dictionary-valued field would normally be coded as a generator expression:

def get_entries(self):
 return (entry for entry in self.entries.values())

— Calling the field entry_dict might avoid that particular confusion, but there is
still the problem that if the representation is changed from a list to a dictionary,
or the other way around, the name of the field will have to be changed through-
out the class. More importantly, the code that used to use entry_dict.values
will have to be changed to use entries directly. This can be avoided by using
get_entries in the class’s own methods. Then, a change in the representation
requires changing only get_entries (and perhaps one or more “set” methods).

• When extending an inherited method, think carefully about whether you want the
superclass’s method to be called before, in the middle of, or after the body of the
subclass’s method. For __init__, the call to super should almost always be first.
Otherwise, it depends on the way the methods are designed to work, especially if
the superclass method calls others.

Information Hiding
We have talked extensively about defining a functional interface to classes and instances
and insisting that external code use it. Yet the mechanisms and techniques shown in
this chapter are insufficient to prevent external code from directly accessing class and
instance fields or calling methods meant to be used only from other methods of the
class. Information hiding can be enforced in Python at two different levels:

• Prefixing a method or field with a single underscore is a convention indicating that
those names should not be used outside the class, except perhaps by closely related
classes. It has no effect, but it does highlight the class implementer’s intention that
the method or field should not be used outside the class.

206 | Chapter 5: Classes

• Prefixing a name with two underscores makes that name unavailable outside the
class; this restriction is implemented by Python. For example, if an __init__
method assigned self.__name, external code would not be able to access that field
—it would be forced to use the get_name method the class presumably supplies.

Do not end a name with two underscores—this is a different convention than Python’s
special methods, which both begin and end with two underscores.

Traps
• Omitting self from the parameter list of a method is a common mistake. The error

that results is usually a complaint about the method being called with one too many
arguments.

• Omitting self. before a reference to a field or method of the same class inside of
a method is another common mistake; this will typically manifest itself as a name
error, since the field or method name is not likely to have a binding outside of the
instance’s namespace.

• If an instance is lacking a field you expected to find, make sure the assignments in
__init__ begin with self. Otherwise, the names assigned will just be local to the
method’s namespace, and they’ll disappear when the method exits.

• No assignments at the top level of a class, including assignment of default values
for method parameters, may refer to self. The class does not exist until its defini-
tion statement has completed execution. At that point Python attaches its name-
space to it. The same thing happens with modules: a module being imported does
not get created until all of its statements have been executed, at which point Python
creates a module object and attaches to it the namespace containing its definitions.

• In an instance method, reassignment to a class field through self assigns that field
in the instance, not the class field as intended. You must use the name of the class
to rebind the class field from within an instance method: for example,
GenBankEntry.count instead of this.count. You can access the value of the class
field through self, but you cannot rebind it that way. Assigning a name through
self binds a field in that instance the way assigning a name inside a function def-
inition binds that as a name to the function.

• When you run Python from the command line or run a program using IDLE’s Run
menu command (F5), your classes are loaded into a clean Python. If, however, you
are using Python interactively outside of IDLE, you must understand the effects of
executing and importing code. This is much more of an issue when using classes,
and even more so with multiple modules:

— Reimporting a module has no effect: Python keeps a list of modules that have
been imported and doesn’t import ones that are on that list. There are ways to
“reload” modules, but they are not meant for casual use. If you are not using
IDLE (or another IDE that clears the status of the Python environment when a

Tips, Traps, and Tracebacks | 207

file executes), and you are executing the code in one file that imports code from
another file that has changed, you pretty much have to restart Python.

— Trouble can arise with old definitions even if you have all your code in one file.
When you reexecute a class’s definition, the old instances continue to refer to
the old class definition, with its old method definitions. A module that creates
instances of another module’s classes may also end up referring to the old
classes. This is a very confusing area of Python use. While inconvenient in some
respects, IDLE’s automatic restart eliminates this problem too. If you are getting
mysterious results after editing and reexecuting class definitions outside of
IDLE, try restarting Python.

Tracebacks
Here are some representative error messages:

AttributeError: type object 'super' has no attribute 'draw'
super was used without parentheses.

NameError: global name 'attribute' is not defined
The name attribute (a field or method) was not preceded by self. inside a method.

TypeError: method() takes no arguments (1 given)
A method’s parameter list did not include self.

TypeError: unorderable types: Classname() < Classname()
No __lt__ method was defined for Classname, and sorted was called on a sequence
of its instances or list.sort on a list of its instances.

The following does not cause a traceback, but it is probably not what you expected
when you tried to call a method such as get_gid while omitting the parentheses:

>>> gb
 <GenBankEntry 1293613 U49845.1 'Saccharomyces cerevisiae'> # uses __repr__
>>> gb.get_gid
<bound method GenBankEntry.get_gid of # line break inserted manually for formatting purposes
 <GenBankEntry 1293613 U49845.1 'Saccharomyces cerevisiae'>>

This is simply another form of leaving out the parentheses in an expression intended
to be a function call. For instance:

>>> print
<built-in function print>

A bound method is a method associated with (bound to) a particular instance. Before
it is bound, it is just a function like any other:

>>> GenBankEntry.get_gid
<function get_gid at 0x1c7d228>

Once it is called through an instance, however, the method’s type changes to bound
method and its printout includes the instance to which it is bound.

208 | Chapter 5: Classes

CHAPTER 6

Utilities

This chapter surveys many Python modules that are particularly important for bioin-
formatics programming. We will look at utilities that help you connect Python to its
external environment, deal with filesystems, work with text, and debug your programs,
among others. These aren’t particularly exciting, but it’s easy enough to learn how to
use them. You’ll need some of them to deal with operating systems, filesystems, dates
and times, and so on. Others will likewise prove extremely useful in the right circum-
stances, giving you ways to do in a few lines of code things that could take pages oth-
erwise. Some of the modules aren’t necessary for simple scripts or initial development
but provide the features users expect from mature programs.

System Environment
The first set of modules we’ll look at are those that allow Python to interact with its
external environment. The categories included here are dates and times, command-line
processing of various kinds, email, and logging.

Dates and Times: datetime
The datetime module defines classes that represent a date, a time, a combination of
date and time, and a couple of others. There are some basic ways of manipulating
instances of these classes, as well as some more elaborate ones that we won’t consider
here.

Classes

The datetime module defines five classes. Their representations are simple, consisting
only of several fields with primitive types. This allows them to define __repr__ methods
that print exactly what you would enter to create one. You’ll see such output when you
enter into the interpreter an expression whose value is an instance of one of these
classes. They also define __str__ methods for the more human-oriented output used
by print. The five classes are:

209

datetime.date
Represents a date with attributes year, month, and day

datetime.time
Represents a time with attributes hour, minute, second, microsecond, and tzinfo
(time zone information)

datetime.datetime
Represents a combination of date and time with the attributes of each

datetime.timedelta
Represents the difference between two dates, two times, or two datetimes, with
attributes days, seconds, and microseconds

datetime.tzinfo
Represents time zone information

Note that unlike many classes, these don’t define “access” methods to get the values
of their attributes. Instead the attributes are accessed directly using dot notation, e.g.,
date1.year. It is very important to note that as with strings, instances of the classes in
this module are immutable. There are methods to create one instance based on the
values of another’s attributes, but once an instance is created its attribute values cannot
be changed.

Instance creation

Like any other type, the types in the datetime module can be called as functions to
create new instances:

datetime.date(year, month, day)
datetime.time(hour[, minute[, second[, microsecond[, tzinfo]]]])
datetime.datetime(year, month, day[, hour[, minute[, second[, microsecond[,
tzinfo]]]]])
datetime.timedelta([days[, seconds[, microseconds[, milliseconds[, minutes[,
hours[, weeks]]]]]]])

The classes also provide methods to create instances based on the current date and/or
time:

datetime.date.today()
datetime.datetime.now([tz])
datetime.datetime.combine(date, time)

Return a datetime with the date portion taken from date and the time portion taken
from time

There are also methods that create new instances from existing ones, possibly of a
different class:

210 | Chapter 6: Utilities

date1.replace(year, month, day)
Returns a new date with the same attribute values as date1, except for those for
which new values are specified (usually as keyword arguments)

time1.replace([hour[, minute[, second[, microsecond[, tzinfo]]]]])
Returns a new time with the same attribute values as time1, except for those given
new values by whichever keyword arguments are specified

datetime1.date()
Returns a new date with the day, month, and year of datetime1

datetime1.time()
Returns a new time with the hour, minute, second, and microsecond of datetime1

datetime1.replace([year[, month[, day[, hour[, minute[, second[, microsecond[,
tzinfo]]]]]]]])

Returns a new datetime with the same attribute values as datetime1, except for
those given new values by whichever keyword arguments are specified

Operations

Instances of these classes support a few arithmetic and comparison operations. Ta-
ble 6-1 shows the arithmetic operations supported by instances of date.

Table 6-1. Operations supported by date instances

Operation Result

date1 + time
delta1

date1 + timedelta1.days

date1 - time
delta1

date1 - timedelta1.days

date1 - date2 A timedelta

date1 < date2 True if date1 is earlier than date2

The same operations are supported by instances of datetime with equivalent interpre-
tations. However, the only operation supported by time instances is <. Table 6-2 shows
operations that can be performed with instances of timedelta.

Table 6-2. Operations supported by timedelta instances

Operation Result

t1 + t2 Sum

t1 - t2 Difference

t1 * i, i * t1 Product of t1 and integer i

t1 // i “Floor” division, as with numbers

-t1 A new timedelta whose attribute values are the negation
of t1’s

System Environment | 211

Operation Result

abs(t1) A copy of t1, except that a negative value of days is made
positive

comparisons The usual six: ==, !=, <, <=, >, >=

Methods

In addition to being able to access the attributes described in the preceding sections
using the usual dot notation, the following methods are often useful (the module’s
classes define many more, but most are used primarily in low-level system
development):

date1.isoweekday()
Returns the day of the week of date1 as an integer, with Monday = 1

date1.isocalendar()
Returns a tuple of date1’s values with the following elements:

(ISO year, ISO week number, ISO weekday)

date1.isoformat([sep])
Returns a string representing date1 in the standard format:

YYYY-MM-DD

time1.isoformat([sep])
Returns a string representing time1 in the standard format:

HH:MM:SS.mmmmmm

omitting the microseconds if 0

datetime1.isoweekday()
Returns the day of the week of datetime1 as an integer, with Monday = 1

datetime1.isocalendar()
Returns a tuple of datetime1’s values with the following elements:

(ISO year, ISO week number, ISO weekday)

datetime1.isoformat([sepchar])
Returns a string representing datetime1 in the standard format:

YYYY-MM-DDsepcharHH:MM:SS.mmmmmm

omitting the microseconds if 0; sepchar is an optional one-character string that
separates the date and time portions of the string ('T', if omitted)

System Information
When a program is started, it may be given command-line arguments that are in effect
parameters of the program itself. While it is executing, it can read from and write to

212 | Chapter 6: Utilities

predefined standard streams that connect it to the environment in which it is running.
These fundamental features, along with access to details about Python’s internal envi-
ronment, are implemented by the sys module. Programs may also occasionally need to
access aspects of the external environment, including the computer’s internal clock and
information about other time-related details such as the time zone and daylight savings
time settings. The time module provides facilities for that.

The Python runtime environment: sys

The sys module provides access to a great deal of technical information about the
Python implementation. It provides mechanisms for modifying various aspects of the
interpreter, such as the prompt. Following are frequently used values defined by the
module (remember, you must use either import sys or from sys import name for what-
ever name you want to use):

sys.argv
This is the single most important name defined in sys. When Python is run from
the command line, sys.argv is a list of strings containing the parts of the command
line. The first—sys.argv[0]—is the name of the Python program being run. You
will use this often. Consider the following very brief demonstration program:

File showargs.py
import sys
for arg in sys.argv:
 print(arg, end=' ')

Running this program from the command line simply prints the name of the file
and the command-line arguments:

% python showargs.py a 1
showargs.py a 1

If your program expects a certain number of arguments, you should
always check that no fewer arguments than expected and no more
than allowed have been provided. This should be done at the end
of the file, inside a test that determines whether __name__ is
'__main__', since you wouldn’t check for command-line argu-
ments if the module were imported. (Remember that sys.argv al-
ways includes the name of the Python file being executed, so its
length is always at least 1.) A Unix-style “usage” message should
be printed when an unacceptable number of arguments are provi-
ded, and the program should exit. A typical construction is:

if __name__ == '__main__':
 if len(sys.argv) < 2:
 print('Usage: downloadPDFs filename ...')
 else:
 for filename in sys.argv[1:]:
 process(filename)

System Environment | 213

sys.modules
This is a dictionary whose keys are the names of the currently loaded modules and
whose values are the corresponding module objects. These are the modules that
have been loaded into the system. When Python first starts there are 50–75 modules
in the system, depending on how it was compiled; the version; and the platform,
among other details. Most of the preloaded modules are low-level implementation
facilities, but some of them are modules we’ll be discussing and you’ll be importing.
Although these modules are already in Python, their names are not in the inter-
preter’s namespace until you import them. Modules imported by your code get
added to this list.

This value is mentioned only as a view into a bit of Python’s implementation. You
won’t do anything with this value, but you can look at it if you’re curious. Most
importantly, it shows how simple and consistent Python’s implementation is: even
its collection of modules is an ordinary dictionary. In fact, module objects are
themselves very little more than dictionaries.

sys.builtin_module_names
This is another value that you might find interesting but will rarely need to look
at, and certainly will never need to change. It’s simply a list of the names of the
modules from which the system was built. Most, but not all, are names of modules
that are also imported and are therefore in the sys.modules dictionary.

sys.path
This is a list of directories where Python looks for modules when it executes an
import statement. By customizing this value, you can inform Python about direc-
tories containing Python modules you use in your code (these could be libraries
you’ve downloaded, libraries your organization has built, or libraries of code
you’ve developed yourself).

When IDLE is started, a platform-dependent default directory is added to the front
of sys.path—for example, on OS X it would be the user’s Documents directory.
When the interactive interpreter is started from the command line, the command
line’s “current directory” is added to the front of sys.path. When a Python file is
executed, either from the command line or from within IDLE, the file’s directory
is added to the front of sys.path.

sys.stdin, sys.stdout, sys.stderr
Languages whose programs can be run from a command line generally use three
default streams for their input and output, called stdin, stdout, and stderr. As
their names suggest, the first is for input, the second is for output, and the third is
for error messages. The sys module defines names for these three streams.

The input function always reads from sys.stdin. However, the input stream is not
necessarily taken from the user’s typing—a file or the output of another process
could be redirected to your program, which could read it with input. You could
also call sys.stdin.readline or use any of file’s other input methods.

214 | Chapter 6: Utilities

The significance of having separate streams for output and error messages is that
one or the other can be “redirected” to a file or another program, and it’s important
to be able to separate normal from error output. In particular, you will often redirect
standard output to a file but leave error output printing to the command-line en-
vironment, where you can see it immediately. You can use either sys.stdout or
sys.stderr as the optional file argument to print, or call any of file’s output
methods on them.

A subtle difference between sys.stdout and sys.stderr is that sys.stdout is buf-
fered while sys.stderr is not. Low-level operating system input and output oper-
ations involve significant overhead. Instead of incurring that overhead for every
character or line, output to sys.stdout is accumulated and written only in reason-
able-sized chunks. Error messages, however, usually need to be seen immediately,
so each line printed to sys.stderr is delivered immediately.

sys.exit([arg])
A function definition can exit a program by calling sys.exit, which returns arg
(default 0) to the operating system. (The Unix convention is that 0 signifies no error,
1 signals a runtime error, and 2 indicates a command-line error.)

When a function is defined with a parameter for the stream (open file) the function
should print to, that parameter appears in three places:

• In the function definition

• In every call to the function

• In every call to print or any other output function within the definition

Some programs contain many functions that write output to the same destination. It
becomes very tedious to have to specify that destination in every function definition,
function call, and call to print. An alternative approach is to omit the destination pa-
rameter from the function definitions, function calls, and print calls, and let all the
output default to sys.stdout. To write the output to the desired file, the program can
simply rebind sys.stdout to the result of a call to open. (Except for keywords, there are
no sacred names in Python—any name can be rebound with an assignment statement.)
If the program will need the original value of sys.stdout, it can save the old value, assign
the new value, and, in a finally clause of a try statement, rebind it to its original value.
This is shown in the following template.

T E M P L A T E

Redirecting to stdout in a Program
You can simplify a portion of a program with a large number of function definitions
and calls that all write output to the same destination by rebinding sys.stdout. This is
a lot easier than including that output destination as a parameter to every function, an
argument in every function call, and a file keyword argument in every call to print.

System Environment | 215

stdout_save = sys.stdout
try:
 sys.stdout = open(filename, 'w')
 ... statements ...
finally:
 sys.stdout = stdout_save

The system clock: time

The time module does not define any classes. It provides functions for accessing the
system’s clock, converting among time formats, and working with details of times such
as time zones and daylight savings time settings. Most of them are very technical, so
we won’t discuss them here. A few of the functions, though, are important.

Computer time is defined relative to a zero starting point sometimes
called the epoch. Different operating systems define the starting point
differently. The absolute value is almost never relevant—what is usually
significant is the difference between a clock value saved at one point in
the program and the clock value sometime later in its execution.

time functions you are likely to find useful include:

time.gmtime(0)
Returns a data structure that describes time zero (in case you are curious)

time.ctime([seconds])
Returns a string showing the date and time at seconds past time zero, defaulting to
nowtime.time

time.clock()
Returns the number of seconds past time zero, expressed as a floating-point num-
ber—use round to convert this value to an int

time.sleep(seconds)
Stops executing for seconds amount of time, then resumes

The clock function is useful for timing the execution of Python programs when you are
trying to figure out how to make them run faster. The sleep function is used mostly
when the program must wait for some external condition. The next template shows
how that works.

T E M P L A T E

Waiting on an External Condition
Many programs contain a function that must wait until some external condition has
been satisfied. A typical example is a file becoming available for reading.

216 | Chapter 6: Utilities

while not external-condition-test:
 optional-waiting-action
 time.sleep(seconds)

The optional waiting action in the template might be something like printing a period
(.) to the terminal to show the user that the program is waiting. Without the delay built
into the loop, the program would repeat the test and action immediately over and over
again, wasting processing resources that the computer could better use doing some-
thing else.

Command-Line Utilities
Next, we’ll look at utilities for processing information provided by the command-line
invocation of a program. We’ll also see some utilities that go in the other direction,
invoking command-line commands.

Reading multiple files: fileinput

Many programs you write will take a list of files as their command-line arguments and
do the same thing with each of them. While you could write a loop that opens and
processes each one, sometimes you’ll want to treat the contents of the files as one
continuous stream of lines. You may also want information about how many lines have
been encountered, which file is being read, and so on. The fileinput module is a con-
venient tool to use in these situations in place of writing your own code.

The simplest use is:

import fileinput
for line in fileinput.input():
 process(line)

By default, fileinput.input uses sys.argv[1:] as the list of files to iterate over. How-
ever, you can give it a different list as an argument. An unusual feature of this module
is that it creates a global state that can be accessed through its functions—you don’t
even need to create and manage an instance of a class (it does that for you). The state
functions include:

fileinput.filename()
Returns the name of the current file

fileinput.filelineno()
Returns the number of the line just read from of the current file

fileinput.isfirstline()
Indicates whether the line just read is the first of its file

fileinput.lineno()
Returns the cumulative line number of the line that has just been read

System Environment | 217

fileinput.nextfile()
Closes the current file, skipping the rest of its lines

Command-line options: optparse

You will sometimes want your Python code to handle the kinds of command-line op-
tions you’ve seen in programs you’ve used. Dealing with various option formats and
analyzing all of a program’s command-line arguments to see which are options, which
options they are, and what values (if any) they have can turn into a mind-boggling
exercise. Even if you write some simple code to handle a couple of options, you may
well add more options in the future, and the code will grow in complexity.

The optparse module does all the command-line argument parsing for you. You just
have to tell it what options the program can take and a bit of information about each.
When it’s done its work, you are left with an object containing values for the options
and a separate list of the arguments that follow the options. Also, optparse can generate
-h and --help options automatically from the options you describe.

The optparse module implements a large set of features. Just a few of the most impor-
tant are described here.

T E M P L A T E

Using optparse
The basic use of the module follows the outline:

import optparse
optparser = optparse.OptionParser(usage=usage_string)
optparser.add_option(details)
optparser.add_option(details)
...more options...
optparser.set_defaults(option default values as keyword arguments)
options, args = optparser.parse_args()

The first value returned by parse_args is a dictionary-like object whose values can be
accessed using keyword notation (i.e., options.key). The other value is a list of the
positional arguments that followed all the options on the command line.

The optional usage string is normally in the typical Unix format. For example, a pro-
gram to copy something from a source to a destination might have a usage string such
as the following:

'usage: copy [options] source destination'

If the program can take an indefinite number of arguments, you would end the string
with an ellipsis:

'usage: copy [options] filename...'

When the program prints the usage string, %prog will be replaced with the name of the
program from the command line (sys.argv[0]). (Sometimes it’s useful to use filesystem

218 | Chapter 6: Utilities

links so you can call the same program with different names and do something different
depending on which name is used; that’s a reason for using %prog other than just for
convenience.) If you don’t provide a usage string, a default value will be used:

"usage: %prog [options]"

The details part of each call to add_option provides two kinds of information:

• One or more strings indicating the way the option can be specified on the command
line; for example:

parser.add_option('-o', '--output', '--output_filename')

• Optional keyword arguments (“attributes”) giving further details about the option

Typically, two strings are provided, following the usual Unix style: a “short” name
beginning with a single dash, and a “long” name beginning with two dashes. The value
of the option specified on the command line (if any) is called the option argument. The
arguments of both short and long option names may be separated from the names by
whitespace. Arguments of short option names may also appear directly following the
option name with no intervening whitespace. A long option name’s arguments may be
separated from the name by an equals sign, without whitespace.

No other syntax for option arguments is supported. Therefore, the possible ways to
provide an option argument on the command line are:

-o value
-ovalue
--option value
--option=value

The basic keyword arguments are shown in Table 6-3, along with their default values.

Table 6-3. Option parser attributes

Name Default Description

action 'store' What the option does (see below)

type 'string' Type of argument expected (see below)

nargs 1 For n, the value of the attribute; if n > 1, the option takes the next n values from the
command line and returns them in a tuple

default None The default value for the option

choices A list of strings that are the valid values for the option

dest Name of option The name to use for the option in the option object returned by parse_args

help Help text for the option

An option’s help text should be a string with no line feeds. When help is printed, the
module formats the help strings appropriately.

The option’s destination is the key that will be used in storing the option’s value in the
option dictionary. If an option’s specification does not include dest, its destination is

System Environment | 219

determined by its names. If there are one or more “long option” names—those begin-
ning with two dashes—the first is used as the destination. If there is no such name, the
first “short option” name—which begins with one dash—is used. Default destinations
do not include the initial dashes of the option name.

Option default values may be set in one of two ways: you can include default values in
the option specifications, or you can call the parser’s set_defaults method. That
method takes a series of keyword arguments. Each keyword is the destination name of
an option, and its value is the default to use if the user of the program does not specify
a value for that option on the command line. The method must be called before the
option specifications are parsed.

Table 6-4 summarizes how each option type is parsed.

Table 6-4. Option parser types

Types How parsed

string As is

int 0x for hexadecimal, int if no prefix

float float()

choice Like string; check by calling check_choice()

Table 6-5 describes option parser actions.

Table 6-5. Option parser actions

Action Consequence

store The option must be followed by an argument on the command line; the argument will be converted
according to the option’s type and stored in the option object under the name give by its dest

store_true No command-line value; store the value True

store_false No command-line value; store the value False

append Like store, but the command line can contain multiple occurrences of the option and the dest value
will be a tuple

The value of the -h/--help option is generated automatically. The help message will
show the usage string (if provided) and the name of each option followed by the value
of its help attribute. When a help option is specified on the command line, the program
exits after showing the help text. Your program can also call the print_help function
on the instance of OptionParser, which prints the help text but does not exit the pro-
gram. If %default appears in an option’s help string, the value of the option’s default
will appear in its place when the help message is printed. Examples 9-4 and 9-5 show
the use of optparse in a program to download the links contained in a web page (see
“Downloading a Web Page’s Linked Files” on page 334).

220 | Chapter 6: Utilities

Command-line commands: subprocess

Sometimes you need a program to execute a command as if it had been typed at the
command line. This can be a very powerful way of driving other programs from a
Python script, controlling the sequence in which they are called, and coordinating their
results. It can also be used to invoke command-line facilities rather than programming
their equivalents when they don’t exist in Python.

The subprocess module provides sophisticated, highly generalized facilities that can be
used in various ways. The following two high-level functions provide access to most of
the module’s capabilities (in both, command can be either a string or a sequence of
strings):

subprocess.getoutput(command)
Executes command in a shell and returns its output

subprocess.call(command, ...keyword args...)
Executes command, waits until it returns, then returns the “success value” of the
command

The success value is platform-dependent, but it’s usually 0. To fit this
into the usual Python-style tests, you should think of the result as indi-
cating whether an error has occurred: 0 means no/false (no error has
occurred).

Many optional arguments are available for subprocess.call, but we’ll consider only the
two most important. Example 6-1, presented momentarily, shows the use of this func-
tion to approximate the behavior of the Unix ls command. A more extensive example
follows that one.

Probably the most important keyword argument to consider controls whether
command is invoked directly—as, for example, when it is simply the name of a program
to run—or is executed by a command shell. The difference is important both for the
form of command and for how it is interpreted when executed. The default is to not
execute in a shell; specify the keyword argument shell=True to change that. Here are
the key points to keep in mind:

Interpretation of the command argument
If executing directly, command should be either a string containing just the program
name or a sequence whose first element is the program name (the rest being the
arguments for that program).

If executing in a shell, command can be specified either as a string or as a sequence.
A string will be passed directly to the shell. With a sequence, the first element names
the command to execute and the rest of the elements are the arguments to that
command.

System Environment | 221

Contents of the command argument
If executing in a shell, command can be anything you can type in a shell. It can include
wildcard filenames, environment variables (whose names are preceded by a dollar
sign), actions that are commands to the shell itself rather than programs to run,
multiple commands separated by semicolons, and so on.

If executing directly, no variables will be expanded or wildcard filenames matched.

The other important keyword argument is cwd, the value of which is a string represent-
ing a path to a directory. If a cwd argument is provided, the command (whether in a
shell or not) will execute in that directory. Many other keyword arguments are also
available, but they are for much more specialized technical uses.

Now, here’s the promised approximation of the ls command (Example 6-1).

Example 6-1. An approximation of the Unix ls command

def ls(path ='.', args = ''):
 """Invoke the shell ls command with args on path"""
 subprocess.call('ls' + ' ' + args + ' ' + path), shell=True)

This definition accepts only one path, but it could easily be changed to accept either
one path or a sequence of paths. The important aspect of this definition is the
shell=True argument to subprocess.call. Without that there would be no expansion
of wildcards, environment variables, and, in Unix, tildes.

Sometimes it’s much easier to use a preexisting command-line command than it would
be to write your own program to perform a similar function. Unix provides a huge set
of programs to manipulate files and their contents. These are particularly useful when
dealing with very large files where reading all the data into Python would be impractical
or when you need the efficiency and reliability of built-in programs rather than a Python
solution you’ve written yourself. Also, except for the purposes of experimentation and
learning, it’s almost never a good idea to code functionality you could find somewhere
else—keep in mind that this applies to command-line tools.

Example 6-2 uses the Unix sort command to sort the data from a Rebase file by the
second value on each line. (In the “bionet” format that value is the sequence recognized
by the enzyme.)

Example 6-2. Using the Unix sort command to sort a file

"""Produce a file of enzyme names and cut sites from the Rebase bionet file with
prototypes omitted and ^s removed, sorted by recognition site sequences"""

def sort_bionet_file(filename = 'data/Rebase/link_bionet.txt'):
 cleanfilename = write_clean(filename)
 sortedfilename = cleanfilename[:cleanfilename.rfind('.')] + '.sorted'
 # Construct Unix sort command
 command = ('sort -f -k 2 -b -o ' + sortedfilename + ' ' + cleanfilename)
 subprocess.call(command) # tell Unix to execute the command

222 | Chapter 6: Utilities

def write_clean(infilename):
 """Write a copy of file named infilename with prototypes and ^s omitted"""
 extpos = infilename.rfind('.')
 outfilename = ((infilename if extpos < 0 else infilename[:extpos]) +
 '.clean')
 with open(infilename) as infile, open(outfilename, 'w') as outfile:
 write_clean_lines(infile, outfile)
 return outfilename

def clean_line(line):
 """Return line without its prototype (if any) and ^ (if any)"""
 line = line.replace('^', '')
 lpos = line.find('(')
 if lpos >= 0:
 rpos = line.find(')')
 return line[:lpos] + ' '*(rpos - lpos + 1) + line[rpos+1:]
 else:
 return line

def write_clean_lines(infile, outfile):
 for n in range(11):
 line = infile.readline() # skip first 10 lines (introduction)
 while len(line) > 1: # stop at empty line or end of file
 outfile.write(clean_line(line))
 line = infile.readline()

The arguments to the sort command the example constructs have the following
meanings:

-f
Ignore case

-k 2
Sort by the second “field”

-b
Ignore leading blanks in the field; the definition of a “field” (unless a separator
character is specified with -t) is the transition from nonwhitespace to whitespace,
so without b, the lines will be sorted by groups according to increasing length of
the enzyme name

-o
The name of the output file

Communications
When an application is used seriously it becomes important to keep track of its status
and activity. Python provides a range of modules that can be used for this purpose.
These include a very elaborate email module, which we will not talk about; a much
simpler way to send email, which we will talk about; and a feature-rich logging facility.

System Environment | 223

Sending email: smtplib

The straightforward way to send an email message is to use the Simple Mail Transport
Protocol (SMTP), which dates from the early 1980s, as implemented by Python’s
smtp module. This protocol is still used by many email programs. The steps involved
are creating an instance of smtplib.SMTP, creating a connection to an email server, pro-
viding a username and password if necessary, then sending a message that begins with
text in a specific format:

To: username, username, ...
From: sender
Subject: optional subject line
Content-Type: text/plain; charset="us-ascii"

Body of message

Although the sender and receiver(s) are included in the message text, they must be
submitted separately when the message is sent. For most mail servers, especially ones
external to your organization, a username and password are required. If your organi-
zation’s email server can accept SMTP requests without a username and password, they
aren’t necessary; otherwise, you can set up an account and password for your program
to use.

Example 6-3 shows how to put all of this together, including catching the exceptions
that typically occur when something goes wrong. While it could be used for many other
purposes, the reason we include it here is that it is a good way for a program to email
someone when something needs attention, or even just to say that everything’s OK.

Example 6-3. Sending email

import smtplib
import socket # just for socket.err

def sendmsg(fromaddr, toaddr,
 username=None, password=None,
 subject='', msg='',
 hostname='localhost', port=25):

 # Destination can be a single username or a sequence of them
 dest = toaddr if type(toaddr) == str else ', '.join(toaddr)

 msg = '''To: {1}
From: {0}
Subject: {2}
Content-Type: text/plain; charset="us-ascii"

'''.format(fromaddr, dest, subject) + msg

 connection = None
 try:
 connection = smtplib.SMTP()
 connection.connect(hostname, port)
 if username:

224 | Chapter 6: Utilities

 connection.login(username, password)
 connection.sendmail(fromaddr, dest, msg)
 print('\nMessage sent from {}:\nto: {}'.
 format(fromaddr, dest),
 file=sys.stderr)
 except smtplib.SMTPConnectError as err:
 print('Attempted conneection to {} on port {} failed',
 format(hostname, port),
 file=sys.stderr)
 except smtplib.SMTPAuthenticationError as err:
 print('Authentication for user', username, 'failed',
 'Invalid username-password combination?',
 sep='\n',
 file=sys.stderr)
 except socket.error as err:
 print('Socket error:', err, file=sys.stderr)
 finally:
 if connection:
 try:
 connection.quit()
 except smtplib.SMTPServerDisconnected:
 pass # can't quit an unconnected SMTP

Logging: logging

The logging module provides a wide range of options and facilities. The primary ad-
vantage of using a logging facility rather than just writing to a file is that different
programs can log to the same file without interfering with each other. Other logging
features allow various kinds of control over what is logged and where the output goes.

A fundamental concept of logging is that of a priority level. The logging module uses
the levels debug, info, warning, error, and critical. They are defined both as functions
and, with all uppercase names, values (e.g., logging.WARNING). Example 6-4 shows a
minimal use of the module. We won’t go into its many other options and capabilities
here, but you should keep the many possibilities in mind when the time comes that
you need a logging facility.

Example 6-4. A minimal logging example

import datetime
import logging

LOG_FILENAME = 'temp/logging.out'

This directs the logging facility to use the named file and to
ignore any requests for log entries with a level less than DEBUG
logging.basicConfig(filename=LOG_FILENAME,level=logging.INFO)

This appends an entry to the logfile
logging.info("This message was logged at {}."
 .format(datetime.datetime.now().strftime('%H:%M')))

System Environment | 225

If you examine the contents of the logfile you will notice that each line begins with the
log level and the word “root”. In more sophisticated uses of the logging facilities, you
can set up hierarchies of logs; the name of the log that actually handles the request will
then appear in place of “root”.

The Filesystem
In this section we’ll examine important modules for working with the filesystem.

Operating System Interface: os
The os module contains a few environmental values and operations similar to those in
sys. Mostly, though, it provides operations for manipulating files and directories. It
implements many low-level operations that you are unlikely to use, but it also contains
some that you will use frequently.

The functions in os raise an OSError when given arguments of the wrong type, paths
that aren’t valid (e.g., a file that doesn’t exist), or paths to files or directories that your
program doesn’t have the necessary privileges to read.

Environment access

Before moving on to the main content of the os module, it is worth mentioning two
variables it provides:

os.sep
The string used to separate path components—'/' on Unix-based systems, '\\'
on Windows*

os.environ
A dictionary containing the names and values of “environment variables” obtained
from the operating system environment from which you started Python; assigning
os.environ[varname] will change the value of the environment variable varname
outside, as well as inside, Python

You can obtain the value of an environment variable either by accessing os.environ as
a dictionary or by using the following function:

os.getenv(varname[, defaultvalue])
A function that returns the value of the environment variable varname— i.e., the
value of the key varname in the dictionary os.environ; if that key is not in the dic-
tionary the function returns defaultvalue if specified, and otherwise None

* Remember that backslashes in strings signify special characters, so including a backslash in a string requires
two of them; '\\' is a “special character” like '\t' and '\n'.

226 | Chapter 6: Utilities

Managing files and directories

os provides various functions that mimic the kinds of file and directory management
commands available from the operating system command line. The module contains
many other functions like these for more technical purposes, but the following sections
outline the ones you’re most likely to use.

Common directory-related functions include:

os.getcwd()
Returns the current “working directory” (like the command-line pwd)

os.chdir(path)
Makes path the working directory

os.mkdir(path)
Creates a directory at path

os.mkdirs(path)
Creates all the directories along path

os.rmdir(path)
Removes the directory at path

os.removedirs(path)
Removes all the directories along path

Useful file-manipulation functions include the following:

os.remove(path)
Removes the file specified by path

os.rename(sourcepath, destpath)
Renames the file at sourcepath to destpath

os.startfile(path)
Opens the file at path using its associated application

Two very useful functions in os deal with the contents of directories:

os.listdir(path)
This function simply returns a list of the names of the files and directories in the
directory specified by its argument. The argument is not optional, though it would
be nice if it defaulted to the current directory—i.e., '.'. (That said, it’s easy enough
to define your own version of listdir that calls os.listdir('.').) Note that the
list is ordered arbitrarily; you will often want to sort it.

os.walk(path)
This is almost a facility on its own. Its purpose is to produce the names of all the
files and directories at path and below. For each directory encountered starting at
path, it produces a tuple of the form:

(directory-path, subdirectory-names, filenames)

Directories.

Files.

Directory contents.

The Filesystem | 227

The directory-path in the tuple is a string indicating the path to the directory
starting at the initial path argument. The two lists contain directory names and
filenames only, not full paths; if you need paths, you simply add the directory-
path to the directory name or filename. The function has several optional param-
eters, but we’ll just deal with the basics here.

The value returned by os.walk is another kind of iterable. This special kind of object
is integrated with os.walk in an interesting way: each time around an iteration over
the result of os.walk you can remove elements from the subdirectory-names list,
and the walk will skip those as it descends into the directory hierarchy. This is
useful for ignoring directories such as those beginning with a period or those con-
taining some kind of configuration information that you don’t want included in
the walk. (The special paths '.' and '..'—current directory and parent directory,
respectively—are never included in the walk.)

Example 6-5 demonstrates a simple of use of os.walk. It prints the names of all the
directories and filenames in an initial path and below, ignoring any directories whose
names begin with a period. The function show_in_path obtains the information to be
printed and show_directory_contents prints it. Indentation is added by show_in_path
to indicate the “depth” of each file and directory name. (Depth—the number of parent
directories up to the original path—is easily calculated by simply counting the number
of separator characters in the path.) Using indentation to indicate depth is a common
nongraphical technique for showing tree-structured information, such as classical bi-
ological taxonomies and filesystem folders. Filesystems are inherently tree-structured
because each directory can contain subdirectories.

Example 6-5. Showing a file tree

def show_directory_contents(dirpath, filenames, level):
 print(' '*level, dirpath, sep='')
 for name in filenames:
 print(' '*(level+1), name, sep='')

def show_in_path(startpath, ignoredots=True):
 print(startpath)
 for path, dirnames, filenames in os.walk(startpath):
 for dirname in dirnames:
 if dirname[0] == '.':
 dirnames.remove(dirname)
 show_directory_contents(path[len(startpath)+1:], # strip dirpath
 filenames,
 path.count(os.sep))

You might recognize this as a Filtered Do iteration (see “Filter” on page 122 in Chap-
ter 4). It’s actually a filtered recursive do, but os.walk is handling the recursion. We
could instead write this example using the template shown in the previous chapter,
where recursive iterations were discussed, but this is only a simple example; for more
complex tasks you’ll find os.walk more convenient than writing equivalent code
yourself.

228 | Chapter 6: Utilities

Temporary files: tempfile

Creating a new file for output with a name that doesn’t conflict with existing names is
something programs sometimes do. You could write your own code, generating a
numbered filename, checking whether one with that name exists, and incrementing
the number until you find a name for which no file exists. However, there are many
problems with that naive approach. The module tempfile provides a solid facility that
takes care of all the intricacies of creating temporary files. It provides the following
functions, among some others that are useful for more technical applications:

tempfile.makestemp([suffix, [prefix, [dir, [text]]]])
Creates and returns the absolute path of a temporary file with a name that includes
suffix at the end (default '') and prefix at the beginning (default 'tmp'), located
in the specified directory (default as described for tempfile.gettempdir below), and
in binary mode unless text is given as True. (The “s” in the name stands for
“secure.”)

tempfile.makedtemp([suffix, [prefix, [dir]]])
Creates and returns the absolute path of a temporary directory; suffix, prefix, and
dir have the same meaning as they do in tempfile.makestemp.

tempfile.gettempdir()
Returns the path of the current default directory for creating temporary files and
directories. This may be set by assigning tempfile.tempdir. If that is unbound or
None, the environment variables TMPDIR, TEMP, and TMP are examined, with the value
of the first one that has a value being used. If none of those environment variables
has a value, on Windows the function will look for the directories C:\TEMP,
C:\TMP, \TEMP, and \TMP; on other platforms it will look for /tmp, /var/tmp,
and /usr/tmp.

While these are called “temporary files,” that is more a reflection of their
intended use than of any special treatment they receive. It is up to the
program(mer) to delete temporary files and directories that are no longer
needed.

Manipulating Paths: os.path
The os module contains a submodule, os.path, which contains functions for manipu-
lating paths (as opposed to the files and directories at those paths). The following
sections outline some of the more important of those functions.

Path components

One of the most frequent kinds of manipulations you will do to file paths is breaking
them apart into their components in various ways. The os module provides these func-
tions for that purpose:

The Filesystem | 229

os.path.split(path)
Returns a pair (head, tail), where tail is the file part of the path, if any, and
head is the directory part of the path, if any (i.e., everything through the last slash
is part of head, and the rest of path is part of tail)

os.path.dirname(path)
Returns the file part of the path (the same as the first element of the pair returned
by split)

os.path.basename(path)
Returns the directory part of the path (the same as the second element of the pair
returned by split)

os.path.splitdrive(path)
Returns a pair (drive, tail), where drive is the drive specification, if any, and
tail is the remainder of the path

os.path.splitext(path1)
Returns a pair (path2, ext); if path1 contains one or more periods (.), path2 will
be the part of path1 up to the last period and ext the part after the last period;
otherwise, the result is (path1, '')

As we saw, the function os.listdir(dirpath) returns a list of the names of all the files
and directories that are in the directory at dirpath. The result is often hard to read,
partly because it’s a list, not the formatted output printed by command-line utilities,
and partly because it contains a lot of uninteresting files, such as editor backup
files, .pyc files, and so on.

The first problem can be solved simply by using print on each element of the list re-
turned by os.listdir. The second problem can be solved by using os.path.splitext
to filter out files with extensions you’re not interested in seeing. These solutions are
incorporated into the function defined in Example 6-6, a Filtered Do (see “Fil-
ter” on page 122 in Chapter 4).

Example 6-6. Filtered directory listing

def filtered_directory_listing(dirpath = '.',
 ignore_extensions = ('.pyc', '.bak')):
 for filename in os.listdir(dirpath):
 if os.path.splitext(filename)[1] not in ignore_extensions:
 print(filename)

Path manipulations

Many programs deal with paths that have no or only a few directory names, but need
full paths for certain purposes. The following functions expand or join paths in ways
that would be difficult, or at least laborious, to program yourself:

os.path.abspath(path)
Returns a full absolute version of path

230 | Chapter 6: Utilities

os.path.expanduser(path)
Returns path with an initial ~ or ~username replaced by the user’s home directory

os.path.join(path1, path2, ...)
Returns a path formed by joining the arguments appropriately; roughly similar to
the expression os.sep.join(path1, path2, ...) (os.sep is the platform-specific
path separator mentioned a few pages back) except it doesn’t add separators after
arguments that already end in a separator, and any argument that is an absolute
path causes it to ignore the arguments that precede it

The functions in the os.path module are important tools. Many programs perform at
least a few manipulations on file and directory paths. In addition, you can use the
os.path functions to define some utilities for your own convenience when using the
interpreter. Here are a few examples:

def cd(path):
 """Make path the current directory, expanding environment
 variables and a ~ representing the user's home directory"""
 os.chdir(os.path.expandvars(os.path.expanduser(path)))

def merge_ext(path, ext=''):
 """Return path with its extension replaced by ext, which normally
 starts with a period; with no arguments, remove the extension"""
 splitpath, splitname = os.path.split(path)
 return os.path.join(splitpath, os.path.splitext(splitname)[0] + ext)

Path information

Often, you just need to test something about a path before doing something with it.
Here are three predicates and a function to get the size of a file:

os.path.exists(path)
Returns True if there is there a file or directory at path

os.path.isfile(path)
Returns True if there is there a file at path

os.path.isdir(path)
Returns True if there is there a directory at path

os.path.getsize(path)
Returns the size in bytes of the file at path

Example 6-7 shows an example of a Filtered Combine iteration (see “Fil-
ter” on page 122 in Chapter 4) in a complete program. The collection is the list of file
and directory names in a path; the test is os.path.isfile; and what is being combined
is the result of a call to os.path.getsize. To emphasize how brief well-written code can
be, most of the examples in this book omit the imports and the “if main” code at the
end. They are included in this example, though, so you can see what it’s like to turn a
simple function like this into a usable program.

The Filesystem | 231

Example 6-7. Calculating the total size of files in a directory

"""Print the sum of the sizes of the files in the directory given on the command line
(or the current directory if none is given), in megabytes rounded to 2 places"""

import os.path

def directory_size(path='.'):
 """Sum of the sizes of all files in the directory at path, including
 those beginning with a '.', and ignoring subdirectories"""
 result = 0 # identity element
 for item in os.listdir(path):
 if os.path.isfile(item): # the test
 result += os.path.getsize(os.path.join(path, item))
 return result

if __name__ == '__main__':
 if len(sys.argv) > 2:
 print('Usage: directory_size path')
 else:
 size = directory_size('.' if len(sys.argv) == 1 else sys.argv[1])
 print(round(size/1024/1024, 2), 'Mb', sep='')

Another very useful utility would be one that prints a directory structure in hierarchical
form. We can define one based on the Recursive Tree Iteration template of Chapter 4
(see “Recursive iterations” on page 128). However, whereas the template assumed the
first argument was an entire tree, in this example each call to the function provides just
a path. The function gets the tree below that path from a call to os.listdir. Exam-
ple 6-8 shows the code.

Example 6-8. Hierarchical directory listing

def dirtree(path='.', ignoredots=True, level=0):
 print_path(path, level) # "do something" with tree root and level
 for name in os.listdir(path): # repeat with the rest of the tree
 subpath = os.path.join(path, name)
 if os.path.isdir(subpath):
 dirtree(subpath, ignoredots, level+1)

def print_path(path, level):
 print(' ' * 3 * level, path, sep='')

Filename Expansion: fnmatch and glob
The fnmatch and glob modules reproduce the wildcard expansion operations of
command-line shells. The difference is that fnmatch works directly on strings, while
glob actually goes out to the indicated path to expand wildcards relative to the
filesystem content. Both use the command-line matching syntax shown in Table 6-6.

232 | Chapter 6: Utilities

Table 6-6. Wildcard characters for fnmatch and glob

Pattern Meaning

* Match 0 or more characters

? Match a single character

[characters] Match any of the characters inside the brackets; the characters are not separated (e.g., '[aeiou]')

[!characters] Match any of the characters except those inside the brackets

fnmatch

The main functions of the fnmatch module are as follows:

fnmatch.fnmatch(filename, pattern)
Returns True if the string filename matches the string pattern

fnmatch.filter(filenames, pattern)
Returns the list of strings in filenames that match the string pattern

The fnmatch module is extremely simple: it treats periods and slashes
the same as any other characters. For example, '.pythonrc' matches
'*rc'. This would not be the case on the command line.

Example 6-9 gives an example of using fnmatch.filter in a Collection Combine (see
Example 4-15, shown in the section “Combine” on page 117) to search a directory
hierarchy for all files whose names match a particular pattern. You could use this to
locate all files with a particular extension (such as .fasta), all files with a particular prefix
(such as gb), and so on.

Example 6-9. Find files matching a pattern

def find_matching_files(startpath, pattern):
 """Return a list of filenames that match pattern in the directory tree starting at startpath"""
 paths = []
 for path, dirnames, filenames in os.walk(startpath):
 for dirname in dirnames:
 if dirname[0] == '.':
 dirnames.remove(dirname)
 paths += [os.path.join(path, filename)
 for filename in fnmatch.filter(filenames, pattern)]
 return path

glob

More useful is the glob module. It uses the same pattern syntax but matches against
the contents of the filesystem itself, not against a list of strings the way the fnmatch
functions do. glob matches the way the command line does: it ignores files beginning

The Filesystem | 233

with a period (unless the pattern begins with a period), and it treats slashes as separating
path components.

The glob functions do not expand tildes and environment variable
names in paths; for that you need os.path.expandvars.

The glob module can return results either as a list or as a generator, depending on which
function you call. The generator version is important for when there are a very large
number of filenames matching the pattern, only some of which need to be used. The
two relevant functions are:

glob.glob(pattern)
Returns a list of paths (strings) that match pattern (which doesn’t necessarily con-
tain wildcards)

glob.iglob(pattern)
Same as glob.glob, but returns an iterator instead of a list

For example, to do something to each Python file in the current directory:

for filename in glob.iglob('*.py'):
 . . .

Shell Utilities: shutil
The shutil module provides functions for performing common file operations at a
higher level than those provided by os—copying and deleting, in particular. There are
several kinds of copy operations in the module, but the ones you would normally use
are as follows:

copy(source, destination)
Copies the file specified by the path source to the file or directory specified by the
path destination; if destination is a directory, the file will be copied into it

Like its command-line equivalent, copy will overwrite a file of the
same name as the one specified by source—either a file by that
name in destination, if it’s a directory, or in the directory contain-
ing destination, if it’s a file.

copytree(source, destination)
Recursively copies the directory source to destination; all parent directories in the
path destination will be created as necessary and an OSError is raised if
destination already exists

234 | Chapter 6: Utilities

Moving and removing operations are:

move(source, destination)
Moves the file or directory source to destination

rmtree(path)
Deletes the directory path and everything under it

When programming with these functions you should test your code on
directories and files set up for that purpose, so you don’t end up unin-
tentionally copying or deleting files.

Comparing Files and Directories
You may be familiar with using a feature of an editor or even a separate application to
compare the contents of two files or two directories. Operations like these can have
many practical uses in programs, too. For example, you may need to extract the dif-
ferences between two versions of a program’s hourly or daily output, or you might need
to know if the results of some BLAST queries you’ve run are any different from the
previous results. Directory comparison is similarly useful: you can compare the con-
tents of directories that contain files produced by programs you are using and extract
or report the differences.

File and directory comparison: filecmp

The filecmp module provides just two functions, along with a class having only a few
methods, but they are powerful and easy to use:

filecmp.cmp(filepath1, filepath2)
Compares the files at filepath1 and filename2 and returns True if their contents
are equal

filecmp.cmpfiles(directorypath1, directorypath2, filepaths)
Compares the files in the list filepaths in the directory at directorypath1 with the
corresponding files in the directory at directorypath2, and returns three lists of file
paths:

matches
The paths in filepaths to files whose contents were the same in both
directories

mismatches
The paths in filepaths to files that were in both directories but had different
contents

errors
The paths to files in filepaths that were not found in both directories or that
caused some kind of error when an attempt was made to read them (e.g.,
because of inadequate user permissions)

The Filesystem | 235

filecmp.dircmp(directorypath1, directorypath2, hidenames)
Creates an instance of the class filecmp.dircmp to compare the directories at
directorypath1 and directorypath2, with hidenames a list of names to ignore
(defaulting to [os.curdir, os.pardir])

Instances of filecmp.dircmp implement the following methods that print fairly elabo-
rate reports to sys.stdout:

report()
Prints a comparison between the two directories

report_partial_closure()
Prints a comparison of the two directories as well as of the immediate subdirectories
of the two directories

report_full_closure()
Prints a comparison of the two directories, all of their subdirectories, all the sub-
directories of those subdirectories, and so on (i.e., recursively)

In addition, many details of the comparisons that the reporting methods print out may
be accessed directly as attributes. Their names use the syllable “left” for what was found
in directorypath1 and “right” for what was found in directorypath2. The attributes are:

left_list
The names of files and subdirectories found in directorypath1, not including
elements of hidelist

right_list
The names of files and subdirectories found in directorypath2, not including
elements of hidelist

common
The names of files and subdirectories that are in both directorypath1 and
directorypath2

left_only
The names of files and subdirectories that are in directorypath1 only

right_only
The names of files and subdirectories that are in directorypath2 only

common_dirs
The names of subdirectories that are in both directorypath1 and directorypath2

common_files
The names of files that are in both directorypath1 and directorypath2

common_funny
Names common to both directorypath1 and directorypath2 but that name a file
in one and a directory in the other, along with names of files and directories that
caused an error when an attempt to read them was made

236 | Chapter 6: Utilities

same_files
The paths to files whose contents are identical in both directorypath1 and
directorypath2

diff_files
The paths to files that are in both directorypath1 and directorypath2 but whose
contents differ

funny_files
The paths to files that are in both directorypath1 and directorypath2 but could
not be compared for some reason

subdirs
A dictionary that maps names in common_dirs to dircmp objects

Showing the differences between two files: difflib

Suppose you are faced with two large FASTA files that you know differ only slightly.
You may know how to use your editor, the Unix diff command, or another application
to get details about the differences between the two files. But what if getting those
differences is part of a series of steps your program must perform that at some point
involves the difference between the two files. You could use subprocess.getoutput,
giving as its argument a command you construct, but then you would have to write
code to parse the result it returns. What you really should use is Python’s difflib
module. It provides classes for three different kinds of comparisons:

difflib.SequenceMatcher
Finds the differences between two hashable sequences (i.e., strings, tuples, tuples
of strings, etc.). It provides the following instance methods:

set_seqs(seq1, seq2)
set_seq1(seq1)
set_seq2(seq2)

Set the sequences to be compared.

find_longest_match(start1, end1, start2, end2)
Finds the longest sequence common to seq1[start1:end1] and
seq2[start2:end2], returning three values: the position in seq1 where the
common sequence began, the position in seq2 where the common sequence
began, and the length of the common sequence

get_matching_blocks()
Returns a list of triples describing all the matching subsequences of seq1 and
seq2 in the form returned by find_longest_match

difflib.Differ
Compares two sequences of lines of text, finding both completely different lines
and differences within a pair of lines using the following method:

The Filesystem | 237

compare(stringlist1, stringlist2)
Compares the sequences of strings stringlist1 and stringlist2 and returns
a list of lines showing which are the same in both lists, which appear only in
stringlist1, which appear only in stringlist2, and which appear in both but
with slight differences (which are marked in the result returned)

difflib.HtmlDiff
Like difflib.Differ, but prepares HTML-formatted output according to specified
parameters. It provides two methods:

make_file(stringlist1, stringlist2 [, title1=''[,title2='']])
Returns a string containing the HTML for a table highlighting both the inter-
line and intraline differences between the strings in stringlist1 and those in
stringlist2. (The function’s name is a misnomer: it doesn’t write to a file, it
returns a string.) The optional parameters title1 and title2 are the strings to
use as column headers in the HTML table.

make_table(stringlist1, stringlist2 [, title1=''[,title2='']])
Works just like make_file, except that it only returns the HTML for the dif-
ference table itself, not the surrounding text that would make it a complete
HTML page.

There are further functions in difflib and other methods supported by its three classes.
These can provide extensive control over exactly what is matched and how it is
reported.

Working with Text
Next, we’ll look at some modules for text manipulation. Three address specific needs.
A fourth supports reading from and writing to strings instead of files, a feature with
wide applicability.

Formatting Blocks of Text: textwrap
The textwrap module provides functions for formatting blocks of text. Programming
such operations is notoriously tedious and error-prone, so it’s good to have these func-
tions available when you need them:

textwrap.dedent(text)
Returns a copy of the string text with whitespace common to all of its lines re-
moved; for instance, if every line begins with four or more spaces, the result will
be shifted to the left four spaces. While tabs and spaces are both whitespace, this
function does not treat them as matching.

textwrap.wrap(text, [width[, ...]])
Wraps the string text as a single paragraph, returning a list of lines (without new-
line characters) of at most width characters (default 78).

238 | Chapter 6: Utilities

textwrap.fill(text, [width[, ...]])
Wraps the string text as a single paragraph, returning a single string containing
the wrapped paragraph (including newlines). This is just shorthand for:

'\n'.join(textwrap.wrap(text))

In addition to width, both wrap and fill accept a large number of keyword arguments
for controlling their behavior:

expand_tabs (default True)
If true, use text.expandtabs in place of text

replace_whitespace (default True)
If true, replace every whitespace character with a space; if expand_tabs is false each
tab character is replaced with just one space, but if it’s true tabs are expanded before
whitespace is replaced

drop_whitespace (default True)
If true, eliminate whitespace that appears at the beginning and ends of lines after
wrapping, except for whitespace at the beginning of the first line

initial_indent (default '')
Specifies a string to add at the beginning of the first line

subsequent_indent (default '')
Specifies a string to add at the beginning of every line except the first

fix_sentence_endings (default False)
If true, tries to identify sentence endings and ensures that sentences are separated
by exactly two spaces

break_long_words (default True)
If true, words longer than width will be broken so that no line is longer than width

break_on_hyphens (default True)
If true, lines may be broken at hyphens in compound words in addition to being
broken at whitespace

The textwrap functions fill and wrap are particularly useful for breaking up a sequence
into lines of a fixed length, as when writing a FASTA file. Given a sequence string named
seq, we can divide it into a list of lines using wrap or keep it as a long string but with
newline characters inserted at appropriate positions using fill:

textwrap.wrap(seq, 80) # break up seq to a list of 80-line strings
textwrap.fill(seq, 80) # insert newlines every 80 characters

Of course, like all string manipulations in Python and its library modules,
textwrap.wrap returns a new string.

Working with Text | 239

String Utilities: string
An assortment of string-related values, functions, and classes are collected in the
string module. This module has nothing to do with the implementation of the built-
in str type; it provides strings that describe kinds of characters and a template facility.
Useful string module values include:

string.whitespace
Space, tab, line feed, return, form feed, and vertical tab

string.punctuation
Punctuation characters as defined in the local character set

string.digits
'0123456789'

string.hexdigits
'0123456789abcdefABCDEF'

string.ascii_lowercase
'abcdefghijklmnopqrstuvwxyz'

string.ascii_uppercase
'ABCDEFGHIJKLMNOPQRSTUVWXYZ'

string.ascii_letters
string.ascii_lowercase + string.ascii_uppercase

string.printable
whitespace + punctuation + digits + ascii_letters

The module has one function that will occasionally be useful:

string.capwords(string)
Returns a new string formed by splitting string at whitespace, capitalizing each
of the words, and joining them. Its definition is:

def capwords(s, sep=None):
 return (sep or ' ').join([x.capitalize() for x in s.split(sep)]

The module’s template facility is easier to use than str.format with large bodies of
mostly constant text (e.g., a generic web page with placeholders for a few details).
Substitution is done according to a dictionary. Wherever a placeholder of the form
$key appears in the template, the value of key in the dictionary is substituted. Keys must
be valid identifiers (i.e., names you could give to values, functions, etc.). $$ is replaced
by a single $. In contexts where $key is followed immediately by characters that could
be part of a key, ${key} is used instead.

A template is created as an instance of the class Template, with the template string given
as an argument. To make the substitutions on the template instance’s string, the
method substitute is called on the instance with a dictionary as its argument. If any of
the keys are missing from the dictionary, substitute raises a KeyError exception. The

240 | Chapter 6: Utilities

method safe_substitute is similar, but instead of raising an exception for missing keys
it leaves the original placeholder intact. There is no provision for deleting placeholders
that aren’t keys in the dictionary.

Example 6-10 shows a function that demonstrates the use of templates for a simple
form-letter facility. It assumes there are a number of files with similar placeholders. The
function’s parameters are a subject string, the name of the file containing the template,
a substitutions dictionary, and a list of email addresses. The function creates a template
from the contents of the designated file, makes substitutions using the dictionary, and
for each email address calls the function sendmsg, defined in Example 6-3.

Example 6-10. Using the string template facility to email a form letter

def broadcast(subject, filename, substitutions, receivers):
 with open(filename) as file:
 message = string.Template(file.read()).substitute(substitutions)
 for receiver in receivers:
 sendmsg('your-program',
 receiver,
 subject=subject,
 msg=message
)

Comma- and Tab-Separated Formats: csv
Comma-separated values (CSV) files are a widely used “interchange” format, especially
in conjunction with spreadsheet and data-collection applications. The term actually
applies to a variety of text field conventions, including tab-separated. The exact rules
for representing a field’s value are not standardized and can vary in frustrating ways
from one application to another. Python’s csv module hides this variability from you,
allowing you to focus on the real purpose of your program.

Very briefly, the module contains the functions csv.reader and csv.writer. It also
includes facilities for defining other formats and for more complicated reading and
writing operations, but we won’t cover those details here. Here are the basics:

csv.reader(source[, dialect='excel'])
Returns an iterator for the lines of source (which can be any iterable that produces
strings; if a file, it must already be open).

When opening a file to use with csv.reader, it is necessary to pro-
vide a keyword argument in the call to open for a parameter that
wasn’t included in the description of the function in Chapter 3:
newline=''. This allows the reader to correctly interpret newline
characters inside quoted field values in a platform-independent
way.

Working with Text | 241

Each step of the iterator (either one cycle of a for statement or the result returned
by a call to next) produces a list of the values in the comma-separated fields of one
line.

If dialect is 'excel-tab', reads the file as tab-separated values; otherwise, reads it
as comma-separated values.

csv.writer(destination[, dialect='excel'])
Returns an instance of a csvwriter for a file—or anything else with a write
method—that is open for writing.

If dialect is 'excel-tab', writes tab-separated values; otherwise, writes comma-
separated values.

The writer provides the following methods (the “row” in their names refers to the
widespread use of CSV files as representations of simple spreadsheets, with each
list of fields corresponding to a spreadsheet row):

writerow(fieldlist)
Writes the fields of fieldlist to the writer’s destination according to the
writer’s dialect, followed by '\n'

writerows(rowlist)
Does csvwriter.writerow for each row in rowlist

String-Based Reading and Writing: io
The io module provides the core implementation of Python’s input and output facili-
ties, including the definition of open. It offers classes for a variety of capabilities. Some
of them can be used for both reading and writing, while others are for just one or the
other.

StringIO is used for reading from and writing to strings, and ByteIO is for reading from
and writing to bytearrays. This allows you to work with data in memory just as you
would with a file on the disk, with the same set of methods (such as readline and
writeline). You can also provide instances of these classes as the optional file param-
eter in calls to print.

To write to a string, you create an instance of io.StringIO, generally with no arguments.
That object contains an internal buffer, which is the destination for the strings written
to it. The method getvalue obtains a string based on the contents of that buffer. You
can call it at any time, even multiple times, until close is called for the instance. (You
can either call close explicitly in a finally clause of a try statement, or simply use a
with statement, which will call close for you the way it does with files.)

242 | Chapter 6: Utilities

T E M P L A T E

String Output
import io
with io.StringIO() as dest: # create new StringIO
 write to dest using methods such as write and writelines
 result = dest.getvalue() # get the string from dest

Instances of io.StringIO are also used for reading from strings. The difference is that
when you create the instance you provide a string as an argument. Subsequently, the
io.StringIO instance can perform the usual input operations, such as readline and
readlines.

T E M P L A T E

String Input
import io
with io.StringIO(string) as src:
 # string is the StringIO source
 read from src using methods such as readline and readlines

With io.StringIO, you can use a string as the source in place of a file in code such as
the definition of get_items shown in various earlier examples. Where a function uses
open and passes the open file to get_items, it could just as well create an io.StringIO
from a string and pass that instance to get_items. This would work with most of the
examples in Chapters 3 and 4 that used readline to parse the contents of a file.

Persistent Storage
Data stored in text files is adequate for many applications. However, as the quantity
and complexity of the data increases, it becomes too cumbersome to rely on formatted
text. This is especially true when an application selectively accesses small amounts of
data from a much larger store. For these cases, Python provides three persistent stor-
age modules that use special binary files to store objects more like the way they are
represented in memory. These mechanisms make access to external data much faster
and much easier to program.

Persistent Text: dbm
The simplest form of persistent storage is essentially a file-based dictionary whose keys
and values are both text. This is implemented by the dbm module, which provides the
following function for opening database files:

Persistent Storage | 243

dbm.open(filename[, flag])
Returns an object providing access to the database in filename; flag must be one
of the following:

'r'
Opens an existing database for reading (the default)

'w'
Opens an existing database for reading and writing

'c'
Opens a database for reading and writing, creating it if it doesn’t exist

'n'
Opens a new, empty database for reading and writing, replacing it if it already
exists

Only one program at a time can have a dbm database open (with an exception shown
for the gnu variation discussed momentarily). Table 6-7 shows the operations and
methods supported for an object returned from dbm.open.

Table 6-7. Core dbm operations and methods

Operation/method Description

db[str1] = str2 Stores str2 as the value of key str1 (as bytes)

db[str1] Returns the value of key str1 (as bytes)

del db[str1] Deletes the entry for the key str1

str1 in db Returns true if db contains the key str1

str1 not in db Returns true if db does not contain the key str1

db.keys() Returns a list of all the keys in db

There are three submodules of dbm, each of which implements the core functionality in
a different way. When you create a new file with dbm.open it determines which sub-
module’s open function to use based on what facilities are available in the operating
system environment.† When dbm.open is called on an existing file, it determines which
of the implementations created it and calls the corresponding submodule’s open func-
tion. (You can tell by the type of the object returned which module was used; you can
also specify which to use by importing a submodule and calling its open function.) The
submodules are:

dbm.ndbm
An implementation based on the Unix (n)dbm facility

† Python running on Windows will have only dbm.dumb. Otherwise, dbm.ndbm should be present as well. When
installed through a Linux package manager, Python may have dbm.gnu. The dbm.gnu implmentation will also
be available in Python built from its source files with the gdbm library installed.

244 | Chapter 6: Utilities

dbm.gnu
An implementation based on GNU gdbm

dbm.dumb
A pure Python implementation

Beyond their implementation of the core operations shown in Table 6-7, the submod-
ules differ somewhat. The current implementation of dbm.dumb.open ignores its flag
parameter: files are always opened for reading and writing and created if they don’t
already exist. The ndbm implementation provides two additional methods that are just
like the ones with the same names provided by dict: get and setdefault.

The gnu variation is the richest of the three. The flag parameter of gnu.open can have
additional characters that specify further details of how the database file will be used:

'f'
Opens an existing database in “fast mode”—individual changes to the database
are not immediately written to the file but rather are buffered for efficiency, similar
to the way the buffered output stream sys.stdout works

's'
Opens an existing database in “synchronized mode”—each individual change is
immediately written to the database file, similar to the way the unbuffered output
stream sys.stderr works

'u'
Doesn’t lock the database, allowing other programs and other users to access its
contents while your program has it open

The gnu submodule also provides some additional features. The method reorganize is
used to compact the database file after many items have been deleted. If the database
has been opened with 'f' included in the flag argument, the method sync forces
accumulated changes to be written out to the file.

The firstkey and nextkey methods allow you to iterate using the keys of a gnu database.
Start with a call to firstkey, which returns a key. Then call nextkey with the first key
to get the next one. Repeat the process with the result of the previous call to nextkey
until nextkey returns None.

The Rebase data reader example at the end of Chapter 4 constructed a dictionary whose
keys were the names of restriction enzymes and whose values were recognition se-
quences. It included functions to write the parsed data to a file in a simple format and
to read the data from that file into a dictionary. With a few small changes, we could
convert that program to use dbm instead of a dictionary to store its data. This would
mean the data would be loaded only once; subsequently, individual entries could be
accessed directly from the database file, and programs that use the database wouldn’t
need the reading and writing functions at all.

Persistent Storage | 245

The datafile used for this example is fairly small, so in practice switching
to dbm wouldn’t make much of a difference. However, if the datafile were
much larger it could be significantly more efficient to load the data just
once and then access it directly from the database. Even if the file is
relatively small, it can be advantageous for other programs to use dbm to
access the data so that they won’t need the original parsing code. (As
always, we want a given piece of code confined to one place, especially
one as complex as the parsing code from Chapter 4’s examples. In fact,
it would be a good idea in this case to have the code that loads the
database in a separate file from the code that uses it.)

Example 6-11 shows the functions from that example for loading the data into the table,
with modifications to use dbm. The functions that parse the original file will be unaf-
fected by the switch to dbm, but they will be used only once, to load the database. Note
that dbm files must be closed, and they must be closed explicitly—they don’t support
the automatic closing feature of with statements.

Example 6-11. Loading Rebase data into a dbm database

import dbm

def load_enzyme_data(data_filename, dbm_filename):
 try:
 table = dbm.open(dbm_filename, 'n') # 'n' for new database
 with open(data_filename) as datafile:
 load_enzyme_data_into_table(datafile, table)
 finally:
 table.close()

def load_enzyme_data_into_table(datafile, table):
 line = get_first_line(datafile)
 while not end_of_data(line):
 key, value = parse(line)
 store_entry(table, key, value)
 line = get_next_line(datafile)
 # return table not needed

def store_entry(table, key, value):
 table[key] = val # table is an open dbm file, but [] unchanged

After loading the data into the database by running this program, individual entries
would be accessed as follows:

>>> table = dbm.open(dbm_filename, 'r')
>>> table['AatII']
b'GACGT^C'
>>> table.close() # can do repeated reads before closing

Notice that the data returned is a bytes object, not a string. The database stores both
keys and values as bytes. Strings are automatically converted into bytes when stored
in the database, but not when they are retrieved.

246 | Chapter 6: Utilities

To convert a bytes object to a str you need to call its decode method. If
you want to use an encoding other than the default, you should convert
your keys and values to bytes explicitly when storing them into the da-
tabase. To convert a string s to bytes for a chosen value of encoding,
(e.g., 'utf-8'), call s.encode(encoding) when storing it into the data-
base. To convert a bytes b to a string using a specific encoding, call
b.decode(encoding).

Persistent Objects: pickle
Using disk files to store bytes is straightforward, since bytes are exactly what files con-
tain. All the dbm module adds to the raw bytes is a bit of structuring so it can efficiently
access values by their keys, the way dictionaries do. (Some versions of dbm use a separate
file for an index into the file.) This simple mechanism is fine if all you need is a persistent
dictionary with keys and values stored as bytes. Storing anything more complicated
presents a number of problems, though, some of them quite deep.

The Python module pickle‡ solves some of those problems. It encodes objects into byte
representations from which the objects can be re-created. This facility can handle self-
referential data structures, references to types and functions, large objects, and objects
with intricate internal structures. The module’s functions read and write byte-encoded
representations of objects, but you don’t need to know anything about those repre-
sentations—the module takes care of all the details for you.

Pickling is strictly byte-based; therefore, files used to write and read
pickled objects must be opened in binary mode. This doesn’t affect the
programs: unlike dbm, pickle restores objects to their original types. In
particular, stored strings are restored with type str, not bytes.

When an object is encoded, any object that is the value of one of its attributes will also
be encoded, along with references to classes and functions. Therefore, pickling one
object may actually result in the encoding of many objects. It is often convenient to
pickle an entire list or dictionary, which in turn pickles all the list elements or dictionary
keys and values.

The pickle module’s core functions are:

pickle.dumps(object)
Produces a byte-encoded representation of object that pickle.loads can use to
create an equivalent object

‡ Other languages, libraries, and books use other terms for what Python calls “pickling,” including
“marshaling,” “serializing,” “flattening,” or “persisting.”

Persistent Storage | 247

pickle.loads(bytesinstance)
Re-creates the object represented by bytesinstance, such as that returned by
pickle.dumps

pickle.dump(object, bytestream)
Pickles an object and writes it to bytestream, which must be a binary write stream
such as a file opened with mode 'wb' or an instance of ByteIO; more than one object
may be pickled and written to the same byte stream

pickle.load(bytestream)
Reads an object from bytestream, which must be a binary read stream such as a file
opened with mode 'rb' or an instance of ByteIO, and unpickles it; bytestream may
contain a series of pickled objects, in which case each call to pickle.load reads just
one

T E M P L A T E

Using pickle
To save an object using pickle:

with open(filename, 'wb') as file:
 pickle.dump(object, file)

To load an object from a pickle file:

with open(filename, 'rb') as file:
 result = pickle.load(file)

An important use of pickling, though we won’t demonstrate it, is for communicating
objects across networks. There is an example in Chapter 9 (see “Server fundamen-
tals” on page 338) that demonstrates sending simple text between a client and a server.
Much more complex architectures can involve cooperating processes on multiple ma-
chines rather than a simple client/server configuration, in what’s known as distributed
computing. Typically, these processes must exchange more complex data. If the pro-
cesses are running Python programs they can send (copies of) groups of objects among
each other by pickling them and sending the resulting text, which can then be unpickled
by one or more receivers.

Keyed Persistent Object Storage: shelve
One of the limitations of pickling objects to files is that the code loading the objects
must know what to do with what it loads. This isn’t a problem if the file contains just
one object, including the case where what was pickled was a single collection. With
many separate objects pickled to a file, it would certainly be possible to retrieve them
one at a time in a loop, collecting them into a list or dictionary. However, this would
not be a useful approach in situations where only one of many objects is needed.

248 | Chapter 6: Utilities

Pickling a collection of objects also has its own problems. A dictionary with many
thousands of list values may be used by a number of small applications. Unpickling the
entire collection of objects each time a program starts could lead to long delays, in
addition to wasting a great deal of memory space when only a few instances of the
classes are actually needed. The same problems reappear if new instances are created
or old ones changed: it will be necessary to repickle the whole collection.

The solution to these problems is to pickle each object individually, rather than pickling
whole collections of objects, and to identify each one by a name. Instead of pickling
and unpickling the entire dictionary, this approach will allow an application to access
just the values it needs using their names. As with so many other things in Python, the
way to do this is with a dictionary mechanism. The module shelve combines the keyed-
storage aspect of dbm with the object persistence capabilities of pickle. Keys must be
instances of str (not bytes). The values may be anything that can be pickled. Like
dbm, the shelve module provides a function for opening database files:

shelve.open(filename[, flag='c'])
Opens filename as a persistent dictionary (i.e., a dictionary whose keys are strings
and whose values are pickled objects); flag has the same options as for dbm.open
(see “Persistent Text: dbm” on page 243)

An opened “shelf” acts like a dictionary, with one critical distinction: modifying a value
obtained from a shelf does not affect the value stored in the shelf file. The only actions
that affect the file are assignments and deletions—i.e., db[key]=value and del
db[key]. If you want to modify a value that is in the file, you must explicitly use an
assignment statement with the modified value.

T E M P L A T E

Using shelve
Assignment of a shelf entry does the pickling for you, so this module is very easy to use.

db = shelve.open(filename, 'c')
db['key'] = value # store value in the shelf, naming it key
db['key'] # get the value with name key
del db['key'] # remove the entry with name key
db.close()

Debugging Tools
Debuggers are facilities that allow you to investigate the state of your program when
its execution has stopped. You can use them to determine the sequence of function and
method calls that led to the current place in the program, look at the values of local
names, execute assignment statements to rebind local names, and “step” through your
code to observe what happens.

Persistent Storage | 249

There are two kinds of Python debugging facilities: the pdb module and tools built into
IDEs, including IDLE.

The Python debugger: pdb

Whether from the command-line interpreter, IDLE’s Python Shell window, or even a
Python file, importing the module pdb gives you access to some highly useful debugging
tools. The debugger uses its own read-evaluate-print loop, with the prompt (pdb) and
some different behavior than is found at Python’s usual top level:

• In general, you can type anything to the debugging prompt that you can type to
Python, with the same effect.

• In addition, there is set of commands—not function calls—that you can type to
perform various actions specific to debugging.

The pdb module provides three functions for entering the debugger:

• Immediately after a traceback, before doing anything else, call pdb.pm0
(“postmortem”). That will put you into the pdb command loop, positioned at the
location of the error that caused the traceback.

• Put a call to pdb.set_trace0 in your code. When Python executes that line, it enters
the pdb command loop.

• Call pdb.run(), giving it a string as an argument. The string would be something
you would type to the interpreter. The debugger pauses immediately, and then you
can step through your code.

You can also run the debugger on a Python file without importing the module by typing
the following at the command line:

python3 -m pdb file.py

This will enter the command loop before the program even starts running.

The debugger is a tool that warrants continual experimentation and
learning. As you become more comfortable with what you learn initially,
you can explore more powerful techniques and advanced commands.

Following are descriptions of the basic commands of the pdb command loop; you can
type just their first letter or the entire word. First we’ll look at commands for getting
information and quitting:

h(elp) [command]
Without an argument, prints the list of available commands. With an argument,
prints help about that command. If the argument is pdb, prints the full
documentation.

250 | Chapter 6: Utilities

w(here)
Prints a full “stack trace,” with the most recent frame at the bottom and an arrow
showing the current context for other commands. This is like what you see in a
traceback, but it shows the entire stack, not just the last few entries.

q(uit)
Quits the debugger.

The next set of commands are for controlling execution:

n(ext)
Executes code until the next line of the current function is reached.

s(tep)
Executes the current line, stopping at the next executable line. If the current line
is a call to another function, this “steps into” that other function, whereas next
would not.

r(eturn)
Continues execution until the current function returns.

c(ontinue)
Continues execution.

run [args...]
Restarts the program. If args are provided, uses those as the value of sys.argv.

The commands you’ll use to view values are:

a(rgs)
Prints the value of the current function’s arguments.

p(rint) expression
Prints the value of expression. Usually this is not needed, since you can just type
the expression to get its value; using p is necessary only when the expression is
something that looks like a pdb command (including ones not shown here).

pp expression
Prints expression using pprint.pprint.

!statement
Executes statement. Usually the exclamation point is not necessary, since you can
just type a statement to execute it; using ! is necessary only when the beginning of
the statement looks like a pdb command.

The expressions evaluated by p, pp, and typing an expression, as well as the statements
executed with ! or simply by typing them, are evaluated as if they had been in the code
of the current stack frame. That means that arguments to the corresponding function
and local names it has bound will be available. Typically a stack frame corresponds to
a function definition, but comprehensions and exception handlers also create stack
frames that will be visible in the debugger. You can change the current focus, or context,
of the stack by moving up or down within it, one frame at a time, using these commands:

Persistent Storage | 251

d(own)
Moves down to the next more recent frame

u(p)
Moves up to the next older frame

Moving around in the stack does not change its contents—that is, the state of the pro-
gram is not changed; what it changes is the context in which debugging commands are
executed and expressions evaluated. In particular, moving up to an older frame doesn’t
remove the more recent ones from the stack. Moving around the stack lets you inves-
tigate the values names have in different contexts without disturbing the state of the
computation.

Another key feature of debuggers is the ability to set breakpoints. A breakpoint can be
set at a particular line of code or in a specific function. When execution reaches that
point in the code, the pdb command loop is entered. This is something you should
eventually explore. More about this, and the rest of the pdb features not covered here,
can be found in the pdb library module documentation (http://docs.python.org/py3k/
library/pdb.html or the equivalent on your computer).

The pdb loop operates in a different namespace from the top-level Py-
thon loop. Some names that are defined at the top level are not defined
inside pdb, and names assigned inside pdb are assigned in the namespace
of its current stack frame, not the top level, so the assignment will not
survive exiting pdb.

The IDLE debugger

IDLE has its own debugger. You open it with the Debug command that replaces the
Run Module command when the Python Shell is the current window. When you do
so, you’ll see a [DEBUG ON] message in the shell window. Naturally, you’ll see a [DEBUG
OFF] message when you select the Debug menu command again.

You can still use pdb in IDLE, either by calling pdb.set_trace from your
code or by calling pdb.pm in the interpreter immediately after a
traceback.

The IDLE debugger works on similar principles to pdb, but it has a simple graphical
user interface. There is a Stack Viewer window and a Debug Control window. It’s
difficult to describe exactly how best to use these, but experimentation will be rewar-
ded. Even if you don’t know quite what to do to take advantage of the contents of these
windows, open them and get used to seeing what’s in them. That will help you use
them later, when you need them.

252 | Chapter 6: Utilities

http://docs.python.org/py3k/library/pdb.html
http://docs.python.org/py3k/library/pdb.html

Tips, Traps, and Tracebacks

Tips
• Before writing complicated functions to do things with files and their contents,

investigate whether command-line facilities are already available to do what you
want. If they are, you can just use subprocess.call to invoke them.

• It is extremely important that you understand where Python looks for modules you
want to import (including your own). Keep these points in mind:

— Import statements look for modules in each directory in the list sys.path. The
system installation gives sys.path an initial value. Packages you obtain from
outside the Python installation may also add to that path as part of their instal-
lation, as may your own programs.§

— When you open IDLE by double-clicking a file, the file’s directory is added to
the front of sys.path.

— Different IDEs on different platforms have different ideas about the “default
directory” for creating, opening, and saving files. Pay attention and learn what
yours is doing so that you don’t save files in strange places—into the Python
installation directories, in particular.

• If you get an error that a file your program is trying to open can’t be found, first
check that you have turned off the system feature that hides some file extensions,
as described on page XXX. The next thing to do is use os.getcwd() to confirm that
Python’s current directory is what you think it is. Finally, use os.listdir('.') to
see what files Python thinks are in the current directory. The Python installation
includes extensive, well-written, helpfully organized, and nicely formatted
documentation:

— You can find the documentation online at http://docs.python.org/py3k.

— You can open the documentation from IDLE by selecting the Python Docs
command from the Help menu.

— On Windows, the documentation is installed in the Python installation direc-
tory as a .chm file in the doc subdirectory.

— On OS X, the documentation is a set of HTML files deep inside /Library/Frame-
works/Python.framework; after opening it from IDLE, you can bookmark the
URL in your browser.

— Bookmark the link to the Python library documentation in your browser. You
will use that starting point far more than any other. If you can find the

§ To modify sys.path, you must of course first import sys; even though its contents are built into Python, until
you import it the names it assigns and defines are not in the namespace of the interpreter or a program you
are executing from the command line. The same goes for other frequently used system modules, such as os.

Tips, Traps, and Tracebacks | 253

http://docs.python.org/py3k

documentation directory on your computer, link to the library/index.html file it
contains, so you can work offline. If you can’t find it, you can link to its online
location at http://docs.python.org/py3k/library/index.html.

— Documentation can be downloaded in HTML, PDF, or text format from http:
//docs.python.org/py3k/download.html. After downloading, you can install the
files anywhere you’d like.

— At the top- and bottom-right corners of every page of the HTML documentation
are links to a module index and to a comprehensive index. The pages those link
to are invaluable both for finding what you are looking for at the moment and
noticing new things to explore.

— If you are fond of browser windows with multiple tabs, it’s a good idea to open
tabs to the following pages in the documentation directory—or the online
equivalent—and then save the set as a bookmark folder that you can open all
at once (note that the first two files are in the same directory as the library
directory, not underneath it):

modindex.html
The global module index

genindex.html
The general index

library/index.html
Despite the file’s name, a table of contents for the entire library
documentation

library/functions.html
Documentation of all built-in functions

library/stdtypes.html
Documentation of all built-in types, including their operations and methods

Traps
• It’s easy to forget the exact name of the os.getcwd function, because it’s not like its

command-line equivalent, pwd.

• If you get an ImportError in the interpreter, make sure the current directory is what
you think it is. Use os.getcwd() to check and os.chdir(path) to change it if
necessary.

• Most of the time, the function you want will be in os.path, not os. If you get a
'module' object has no attribute error, don’t assume you used the wrong func-
tion name—check that you did write os.path, not just os.

254 | Chapter 6: Utilities

http://docs.python.org/py3k/library/index.html
http://docs.python.org/py3k/download.html
http://docs.python.org/py3k/download.html

Tracebacks
Some of the errors you might encounter when using the utility modules described in
this chapter include:

OSError
The functions in os raise OSError when given arguments of the wrong type, paths
that aren’t valid (e.g., a file that doesn’t exist), or paths to files or directories that
your program doesn’t have the privileges necessary to read.

smtplib.SMTPConnectError
An attempt to connect to the SMTP server failed.

smtplib.SMTPAuthenticationError
Authentication with the password and username provided failed.

socket.error
A low-level communications failure occurred.

Tips, Traps, and Tracebacks | 255

CHAPTER 7

Pattern Matching

This chapter treats an enormously important topic and the Python module that sup-
ports it. We’ll use its features frequently in examples later in the book. As you gain
familiarity with them, you’ll be using them increasingly more often. Some patience is
required, though: the topic is quite technical, and you can’t absorb it all at once. You’ll
need to come back to this periodically and explore it further. Be ambitious in experi-
menting with it. This is the only chapter in the book that’s like this.

The mysterious topic is string pattern matching using regular expressions. The term
“pattern matching” should be enough of a hint for you to realize how important this
topic is for working with bioinformatics data. It’s also important for processing web
pages and for many other kinds of work a bioinformatics programmer needs to do.
Among other things, restriction enzyme binding sites can be expressed as regular ex-
pressions. A carefully constructed regular expression can take the place of many lines
of string manipulations, loops, and iterations. Once you’ve learned to use regular
expressions, you’ll have a very powerful tool in your hand.

If you have never encountered regular expressions before—or even if
you’ve used only their most basic features—you should be aware that
the topic is rather large, and learning it is not easy. More than most
aspects of programming, learning to use regular expressions requires
experimentation. Start by using the basics, and whenever you can’t do
what you want with what you already know, go back to this chapter (or
some other documentation) and learn a little more.

Despite how much this chapter gives you to absorb, there are many advanced aspects
of regular expressions that aren’t covered here at all. One could write an entire book
about regular expressions, and in fact several people have.* Regular expression facilities
are found in the libraries of many languages, as well as in editors, IDEs, and other tools.

* See, in particular, Jeffrey Friedl’s Mastering Regular Expressions, Third Edition, and Jan Goyvaerts and Steven
Levithan’s Regular Expressions Cookbook, both published by O’Reilly.

257

http://oreilly.com/catalog/9780596528126
http://oreilly.com/catalog/9780596520694/

Unfortunately, the details of regular expressions differ somewhat among different pro-
gramming languages and editors, and not all resources cover Python’s version exactly.

Working out the details of a regular expression you need for a particular
task can be frustrating. You should design and test regular expressions
outside of Python before putting them into a program. Some Python
IDEs incorporate a regular expression editor and tester, but IDLE does
not. An excellent interactive web page for testing regular expressions
can be found at http://re-try.appspot.com (with a hyphen between “re”
and “try”); you should use it often.

Regular expressions are strings used as patterns to perform matching and searching
operations on other strings, which we’ll call the “targets.” The result of a successful
operation is a match object, which has quite a few fields and methods providing details
about the match, such as the position within the target where the pattern was found.
If the match or search fails, the result is None, rather than a match object.

Python makes a distinction between matching and searching, which
other languages do not. Matching looks only at the start of the target
string, whereas searching looks for the pattern anywhere in the target.
In discussing regular expressions it is very difficult to limit the use of the
term “match” to Python’s matching operations, and we will use it for
both cases.

Fundamental Syntax
Within a regular expression string, certain characters have special significance. The
most frequently used are similar to the wildcard characters of command-line file utilities
such as ls or dir. The wildcard characters don’t have quite the same meaning in regular
expressions as they do on the command line, but the idea is similar.

Backslashes have special significance within regular expressions. Backslashes also have
special significance within Python strings in general. Unfortunately, what a backslash
means to Python isn’t always the same as what it means in a regular expression, and to
include a backslash inside a regular Python string requires doubling it as \\ (just as
strings can include quotes by preceding them with backslashes).

To help reduce confusion and simplify the use of backslashes in regular expression
strings, Python provides a raw string syntax: preceding a string with the character r or
R tells Python to ignore the usual special interpretation of backslashes within the string.
Whatever backslashes appear in a raw string are just backslashes. Always use raw strings
for regular expressions. Here is a demonstration of the difference:

>>> '\n'
'\n'
>>> len('\n')

258 | Chapter 7: Pattern Matching

http://re-try.appspot.com

1
>>> r'\n'
'\\n' # a slash followed by a newline character
>>> len(r'\n')
2

Fixed-Length Matching
Except for characters that have special interpretations, each character in a regular ex-
pression matches only that character in the target. We’ll start by looking at how re-
striction enzyme recognition sites can be represented as simple regular expressions.

Literal matches

The recognition site of the restriction enzyme EcoRI is GAATTC. The regular expression
'GAATTC' will match exactly those characters. Since 'GAATTC' has no special regular
expression characters in it, searching for it isn’t really any different from using
target.find(pattern). Table 7-1 gives a few examples.

Table 7-1. Literal regular expression matches

Pattern Target Match position Search position

GAATTC GAATTC 0 0

TTGAATTC None 2

AATGTGAATTCT None 5

Many restriction enzymes recognize sites with more flexibility than a literal match. For
instance, EcoRII recognizes either CCAGG or CCTGG. We don’t really need regular expres-
sions to look for any of several substrings: we could easily write functions for matching
or searching that do this, as in Example 7-1.

Example 7-1. Functions for multiple match and search

def multi_match(target, patterns):
 """Return True if target begins with any of the strings in patterns"""
 for pattern in patterns:
 if target.startswith(pattern):
 return True

def multi_search(target, patterns):
 """Return the first position in target where any of the strings in patterns is found"""
 return min([target .find(pattern)
 for pattern in patterns
 if target.find(pattern) >= 0])

Then we could write this:

multi_match(sequence, ('CCAGG', 'CCTGG'))

to see if sequence begins with either of EcoRII’s recognition sites, and this:

Fundamental Syntax | 259

multi_search(sequence, ('CCAGG', 'CCTGG'))

to find the first position matched by either site.

The enzyme DsaI recognizes any of CCGCGG, CCGTGG, CCACGG, or CCATGG. To use these
functions for this enzyme’s recognition sites we would have to provide a list of four
patterns. SecI recognizes any site of the form CCNNGG; that means we’d have to include
16 sequences in the list of patterns for those sites. This would get out of hand pretty
quickly. For instance, CjuI recognizes CA, followed by C or T, followed by any five bases,
followed by a G or an A, followed by TG. This is 2*4*4*4*4*4*2 = 4,096 possibilities!

Character sets

The simplest tool provided by regular expressions to manage this “combinatorial ex-
plosion” of possibilities is the ability to specify a character set rather than a single char-
acter. A character set consists of one or more characters enclosed in square brackets.
Each character set in the pattern corresponds to exactly one character in the target: if
none of the characters in the set matches that character in the target, the pattern is not
a match. A regular expression for DsaI’s site would be:

'CC[GA][TC]GG'

SecI’s sites can be represented as:

'CC[TCAG][TCAG]GG'

And CjuI’s can be represented as:

'CA[CT][TCAG][TCAG][TCAG][TCAG][TCAG][GA]GG'

Character sets can contain character ranges in addition to individual characters. A range
consists of two characters separated by a minus sign (-). This is equivalent to including
the first character, the last character, and every character in between in the square
brackets. For example, '[A-Za-z_]' would match an underscore or any uppercase or
lowercase ASCII letter.

Characters that have special meanings in other regular expression contexts do not have
special meanings within square brackets. The only character with a special meaning
inside square brackets is a ̂ , and then only if it is the first character after the left (open-
ing) bracket. In that case it negates the character set, meaning the set matches any
character except the ones specified inside the square brackets.

If you want to include a right bracket in a character set, you have to make it the first
character; otherwise, it will be interpreted as the end of the character set. Similarly, if
you want to include a minus sign in the character set you have to make it the first
character, or it will be interpreted as showing a range.

You can also preface a ^,], or - with a backslash. While backslashes are used for a lot
of things in regular expressions, they are always used with at least one other character,
and technically are not one of the characters with “special meanings.” To include a
backslash in a regular expression—in a character set or by itself—you must use two

260 | Chapter 7: Pattern Matching

backslashes. The usual backslashed characters, such as \t for tab, can also be included
in character sets.

Within a regular expression, a period matches any character. In effect, it represents a
universal character set. Table 7-2 gives some examples.

Table 7-2. Character sets in regular expressions

Pattern Matches

[ACTG] One DNA base character

[A-Za-z_] One underscore or letter

[^0-9] Any character except a digit

[-+/*^] Any of +, -, /, *, ̂ ; ̂ does not negate the others
because it is not the first character in the set

[0-9\t] A tab or a digit

. Any character

Character classes

For convenience, the regular expression syntax offers some notation for character
classes. These are similar to character sets in that they represent any of a certain group
of characters. In fact, a character class can even be included in a character set, the way
a range can. Character classes are simply convenient abbreviations for commonly used
character sets and ranges that might be included as part of character sets. Table 7-3
lists Python’s regular expression character classes.

Table 7-3. Character classes in regular expressions

Character Matches

\d Any digit

\D Any nondigit

\s Any whitespace character

\S Any nonwhitespace character

\w Any character considered part of a word

\W Any character not considered part of a word

Boundaries

We’ve already seen in previous chapters that Python makes it very easy to treat a text
file as a collection of lines. Several of the chapters that follow this one include examples
of regular expressions used in processing plain text. These will include sequence data,
protein data, web pages, and text in structured formats.

There is regular expression notation to indicate the beginning or end of a target, the
beginning or end of a line within a target, and word boundaries. These boundary

Fundamental Syntax | 261

indicators are a bit unusual in that they don’t actually match any characters: they just
indicate positions within the target. They’re listed in Table 7-4.

Table 7-4. Boundaries in regular expressions

Character Matches

^ The start of a line or the beginning of the pattern

$ The end of a line or the end of the pattern

\A The start of the pattern only

\Z The end of the pattern only

\b The boundary between a word and nonword character or vice versa

\B Anywhere except the boundary between a word and nonword char-
acter or vice versa

Table 7-5 gives a few examples of how boundary indicators are used in regular
expressions.

Table 7-5. Line beginnings and endings in regular expressions

Pattern Matches

^CG A target line or string starting with CG

TATATA$ A target line or string ending with TATATA

Variable-Length Matching
The real power of regular expressions comes from the ability to specify that certain
parts of a pattern can be repeated to match the target.

Repetition

Repetition is specified using the notation shown in Table 7-6. Each of these repetition
notations refers to the regular expression that directly precedes it. A single letter by
itself is a regular expression, as are a character set and a period.

Table 7-6. Repetition characters in regular expressions

Character Matches

? Zero or one repetitions of the preceding regular expression

* Zero or more repetitions of the preceding regular expression

+ One or more repetitions of the preceding regular expression

{n} Exactly n repetitions of the preceding regular expression

{m,n} Between m and n (inclusive) repetitions of the preceding regular
expression

262 | Chapter 7: Pattern Matching

Using the brace notation, we can collapse the repeated elements of recognition sites
into very brief expressions. SecI’s sites can be represented as 'CC[TCAG]{2}GG', CjuI’s
4,096 recognition sequences can be represented as 'CA[CT][TCAG]{5}[GA]GG', and the
sequences XcmI recognizes can be expressed as 'CCA[TCAG]{9}TGG'—that’s 262,144
possibilities represented as a 15-character regular expression!

Restriction enzyme recognition sites are fixed-length sequences. Variation in what se-
quences a particular enzyme recognizes arises from positions that can match two, three,
or four bases instead of just one. While the number of possible combinations within a
fixed-length sequence might be enormous, the number of bases to be matched is fixed
for any restriction enzyme.

However, regular expressions are far more general than that. Except for {m}, the repe-
tition characters produce regular expressions that can match targets of different lengths.
We’ll need more general kinds of targets to match against, so for now we’ll use arbitrary
base and amino acid sequences. Table 7-7 gives some examples.

Table 7-7. Repetition characters in regular expressions

Pattern Matches

CC[TCAG]{2}GG CC, followed by any two DNA bases, followed by GG

(TA){3,8} Between three and eight repetitions of TA, inclusive

[GC]* Zero or more Gs and Cs (in any combination)

A+ One or more As

AT?AA AAA or ATAA only

Greedy Versus Nongreedy Matching
The repetition-matching characters listed in Table 7-7 match the maximum possible
portion of the target, provided the rest of the regular expression matches the rest of the
target. This is often referred to as greedy matching. But much of the time—perhaps
most of the time in bioinformatics—greedy matches absorb a far larger portion of the
target than was intended.

Suppose you want to search an RNA string for the first occurrence of the polyadeny-
lation signal AAUAAA. The regular expression r'[UCAG]+AAUAAA[UCAG]+' will match from
the beginning of the string to the last occurrence of AAUAAA. That is because the initial
[UCAG]+ grabs as much of the string as it can, which, since it includes all possible bases,
is nearly the entire sequence. All that remains following that part of the match is the
last occurrence of AAUAAA and one or more bases after it.

Adding a question mark after one of *, +, or ? changes the behavior to minimal possible
matching, or nongreedy matching. The nongreedy matching characters are listed in
Table 7-8. To return to the example of trying to find the first AAUAAA in an RNA sequence,
adding a question mark after each of the plus signs in the pattern will change it so that

Fundamental Syntax | 263

it matches the first occurrence instead of the last. The pattern would be
r'[UCAG]+?AAUAAA[UCAG]+?'.

Table 7-8. Nongreedy regular expression repetition characters

Characters Matches

*? Zero or more repetitions of the preceding regular expression, nongreedily

+? One or more repetitions of the preceding regular expression, nongreedily

?? Zero or one repetitions of the preceding regular expression, nongreedily (rare)

The concept of nongreedy matching is a confusing one. When a pattern that contains
repetition characters is matched against a target string, there are often many different
ways the pattern can match. For example, the pattern r'[TA]+[UTAG]* could match the
target 'TATATATA' by matching [TA]+ against all four TAs and [UTAG]* against no char-
acters, [TA]* against three TAs and [UTAG]* against the final TA, and so on.

The definition of greedy matching is that each variable portion of the pattern will match
against as much of the target as it can, as long as the rest of the pattern can match the
rest of the string. In nongreedy matching, each variable portion of the pattern will match
as little of the target as possible as long as the rest of the pattern can match the rest of
the string.

Grouping and Disjunction
A portion of a regular expression can be enclosed inside parentheses. (To use (or) as
a literal, either precede it with a backslash or put it inside square brackets.) This has
much the same effect as using parentheses in algebraic expressions. A repetition char-
acter that follows a parenthesized regular expression indicates the repetition of the
expression inside the parentheses.

Parentheses do more than just group parts of a regular expression, though. The parts
of the target that match groups in a regular expression are assigned numbers in sequence
(starting with 1). One part of a regular expression can refer to an earlier part using the
syntax \i, where i is the group number. Suppose you wanted to match a date in the
format YYYY-MM-DD, but allow any of several characters to be used in place of the
hyphen as long as the same character is used in both places. Here’s one way to work
this out:

'\d\d\d\d-\d\d-\d\d' # brute-force match using hyphen
'\d{4}-\d{2}-\d{2}' # clearer
1 '\d{4}[-.,:']\d{2}[-.,:']\d{2}' # various punctuation, can be different
2 '\d{4}([-.,:'])\d{2}\1\d{2}' # punctuation must be the same

264 | Chapter 7: Pattern Matching

Remember that when including a hyphen in a character set, it must be
the first character; otherwise, it is interpreted as indicating a range.

The last step in the preceding sequence enclosed the first character set in parentheses.
This allowed a later “back reference” to whatever the set matched in the target, desig-
nated by \1.

Groups have a much more important use than back references, though: after a match
has succeeded, the characters of the target that correspond to each group can be ob-
tained from the match object returned by functions and methods that perform matches.
This is a very powerful capability, which we’ll explore as we go along—not just in the
rest of this chapter, but as we use regular expressions in subsequent chapters as well.

The character | between two regular expressions is similar to or in Boolean expressions.
It says to try a match with the first expression and then, if it fails, try the second. Any
number of regular expressions can be separated by vertical bars. Each one is tried in
turn until one matches or there are none left to try. If you enclose the whole sequence
inside parentheses, later parts of the same regular expression and the resulting match
object can tell what part of the target matched that group without even knowing which
of the alternatives was matched.

The Actions of the re Module
The re module provides functions and methods that use regular expressions for a va-
riety of actions. Matching and searching functions and methods return match objects
when successful; otherwise, they return None. We’ll discuss match objects a bit later.
For now, we can just treat them as true values.

Functions
First, we’ll look at some of the re module’s functions (the meaning of the flags argu-
ments to these functions is described in the next section):

re.match(pattern, target[, flags])
Returns a match object if the regular expression pattern matches zero or more
characters starting at the beginning of the target string, under the control of the
flags value

re.search(pattern, target[, flags])
Returns a match object for the first place in the target string that pattern matches

re.findall(pattern, target[, flags])
Returns a list of all nonoverlapping matches in target as a list of strings or, if the
pattern included groups, a list of lists of strings

The Actions of the re Module | 265

re.finditer(pattern, target[, flags=0])
Returns an iterator that produces a match object for each place in target that
pattern matches

re.split(pattern, target[, maxsplit=0[, flags=0]])
Returns a list of strings obtained by splitting the target at each place where
pattern matches, up to maxsplit splits (all if 0 or omitted)

re.sub(pattern, replacement, target[, count=0[, flags=0]])
Returns the string obtained by replacing each match of pattern to target with
replacement, up to count matches (all if 0 or omitted)

re.subn(pattern, replacement, target[, count=0[, flags=0]])
Performs the same actions as re.sub, but returns a tuple (newstring, number), where
newstring is the string with the replacements made and number is the number of
substitutions made

The module also provides two important functions that don’t do matches or searches:

re.escape(string)
Returns a string with all characters other than letters and digits preceded by slashes,
for when you want to use a string as a literal regular expression pattern and don’t
want any characters taking on special meanings

re.compile(pattern[, flags])
Returns a regular expression object constructed from pattern and flags; the sig-
nificance of this function will be discussed shortly

Flags
Some details of matching and searching are controlled by flags. Table 7-9 describes the
re module’s flag values. You can refer to a flag by either its short or its long form.

Table 7-9. Regular expression match and search flags

Long form
Short
form Effect

re.ASCII re.A Restrict \w, \W, \b, \B, \s, and \S to matching based on ASCII characters only, not the
full Unicode character set

re.IGNORECASE re.I Ignore case

re.LOCALE re.L Make \w, \W, \b, \B, \s, and \S dependent on the local language

re.DOTALL re.S Allow . (dot) to match a newline

re.MULTILINE re.M Allow ^ to match at the beginning of each line in addition to the beginning of the string
and $ to match at the end of each line (after the newline) in addition to the end of the string

re.VERBOSE re.X Permit writing of formatted regular expressions that can even include comments

266 | Chapter 7: Pattern Matching

Functions in the module that take flag arguments expect a single value, not an arbitrary
number of flags or a sequence of flags. When you need to specify multiple flags, you
must use the | operator to combine them. The | operator—in an algebraic context, not
within a regular expression—performs a bitwise logical or. Instead of treating the op-
erands as two values that are each either true or false, bitwise logical operations treat
each bit of each operand as a separate true or false value. For example, the bitwise or
of 12 and 6 is 14:

 12 1100
 | 6 0110
 = 14 1110

It is a common computing technique to define a set of flags that are each integers with
just a single bit. That allows the bitwise or operator to act as a set union operator for
the flags, so that any combination of flags can be passed as a single value. For example,
re.I is 2 (binary 00010), re.M is 8 (binary 01000), and RE.S is 16 (binary 10000), so if you
wanted to pass the combination of the three flags as an argument you would pass the
expression re.I | re.M | re.S. (The order doesn’t matter.) The binary result of that
expression is 11010, but using the names for the flags and the | operator allows you to
ignore all that.

You probably won’t use the LOCALE flag much. The ASCII flag introduces a limitation
that is usually not necessary, except perhaps to avoid confusion in your mind about
which Unicode characters are “space” or “word” characters. (This is an intricate topic
that you’ll probably want to stay away from if you can.) The IGNORECASE flag, as it
suggests, ignores the case of letters in the target when performing the match.

You will use DOTALL and MULTILINE quite frequently, especially when using regular ex-
pressions to process sequence data. Without DOTALL, periods won’t match newlines.
Without MULTILINE, ^ and $ will match only at the beginning and end of the target,
respectively. When matching against a target string with internal newline characters,
such as a sequence read directly from a FASTA file, you need these flags (specified as
re.DOTALL | re.MULTILINE or re.S | re.M). Matching text containing URLs raises the
same problem—you can write a regular expression to match hyperlinks (and we will),
but there’s no requirement in HTML that they appear entirely on one line.

The VERBOSE flag is quite different from the others. It doesn’t control specific details of
the match, but rather lets you write regular expressions in a more readable format,
much like regular code. Unless preceded by a backslash, whitespace and comment
characters are ignored.

Example 7-2 shows a regular expression that could be used to match decimal numbers.
Note that the space after the d on the first line is ignored: all whitespace is ignored
unless preceded by a backslash. Without the VERBOSE flag set, and assuming therefore
that the comments and newlines are removed, the beginning of the pattern would read
“one digit followed by one or more spaces” instead of “one or more digits.”

The Actions of the re Module | 267

Example 7-2. A VERBOSE regular expression for decimal numbers

r"""\d + # match one or more digits (remember to use raw strings!)
 \. # match a decimal point (not any character, because backslashed)
 \d * # match 0 or more digits"""

Methods
The re.compile function returns a regular expression object that encapsulates a data
structure built from the pattern and controlled by the flags provided as arguments.
Regular expression objects have methods corresponding to the module’s match and
search functions. Some of them have startpos and endpos arguments that provide more
control over matches and searches than the corresponding module functions. Using
the compiled version is more efficient when the regular expression is used more than
once, since otherwise the regular expression will have to be compiled each time it is
used.

The parameters of match object methods are different from those of the corresponding
module functions. Since the pattern and flags are incorporated into the regular expres-
sion object, they aren’t included in the parameters. Compiled regular expression objects
have the following methods:

match(target[, startpos[, endpos]])
Returns a match object if the regular expression matches zero or more characters
starting at the beginning of target

search(target[, startpos[, endpos]])
Returns a match object for the first match in the target string

findall(target[, startpos[, endpos]])
Returns a list of all nonoverlapping matches in target as a list of strings or, if the
pattern included groups, a list of lists of strings

finditer(target[, startpos[, endpos]])
Returns an iterator that produces a match object for each match

split(target[, maxsplit=0])
Returns a list of strings obtained by splitting the target at each match, up to
maxsplit splits (all if 0 or omitted)

sub(replacement, target[, count=0])
Returns the string obtained by replacing each match with replacement, up to
count matches (all if 0 or omitted); replacement can be a function, in which case it
is called with the result of each match and its return value is used to replace the
corresponding match in target

subn(replacement, target[, count=0])
Same as re.sub, but returns not just the string, but a tuple (string, number) where
number is the number of matches; replacement can be a function, in which case it

268 | Chapter 7: Pattern Matching

is called with the result of each match and its return value is used to replace the
corresponding match in target

Results of re Functions and Methods
Many of the re module’s functions and regular expression object methods return match
objects. These provide a wealth of information about the successful matches, some
accessible as fields and some by calling methods.

The most powerful feature of match objects is that they capture the parts of each match
in a target string that corresponds to one of the pattern’s parenthesized groups. As a
result, regular expressions and the functions and methods that use them can give much
more than a yes or no answer to matches and searches. The groups captured in the
match objects are an analysis of the structure of the matched string. We’ll see how this
works in examples later in this chapter.

Match Object Fields
Match object fields are accessed directly using dot notation. That is, if mobj is a match
object, the startpos field will be accessed as mobj.startpos. The fields include:

startpos
The value of startpos passed to the function or method that returned the match
object

endpos
The value of endpos passed to the function or method that returned the match
object

re
The regular expression passed to the function or method that returned the match
object

string
The target passed to the function or method that returned the match object

lastindex
The index (integer) of the last group in the match, or None if there were no groups

Match Object Methods
Match object methods include the following. In any match object method with group
numbers as parameters, 0 refers to the entire match, 1 to the first parenthesized group
in the match, 2 to the second, and so on:

Results of re Functions and Methods | 269

group([groupnumber1 [, groupnumber2 [,]]])
With no arguments, returns the entire match; with one argument returns the string
that matched the corresponding group number, and with multiple arguments re-
turns a tuple with the strings corresponding to the specified groups

groups([default])
Returns a tuple containing all the groups of the match; for any group in the pattern
that was not used in matching the target, the value in the tuple will be default (or
None if not specified)

start([groupnumber])
Returns the starting position of the target string that was matched by the group
with index groupnumber; with no arguments, returns the whole part of the target
that was matched

end([groupnumber])
Returns the ending position of the target string that was matched by the group with
index groupnumber; with no arguments, returns the whole part of the target that
was matched

span([groupnumber])
Returns the pair (startpos, endpos) corresponding to the range of the target string
that was matched by the group with index groupnumber; with no arguments, returns
the first and last position of the whole part of the target that was matched

expand(string)
Performs “backslash substitution” like the regular expression object sub method,
but also replaces each occurrence of \1, \2, etc., in string with the value of the
corresponding matched group

Putting It All Together: Examples
Now that we’ve looked at the features of the re module in some detail, it’s time to put
them together and see how they work in some useful examples.

Some Quick Examples
We’ll start with a few simple examples to give you a more concrete idea of how to use
the re module’s facilities; then we’ll move on to more substantial examples.

Using regular expressions to ignore case

The find and index methods of str do not provide any way to search while ignoring
letter case. In some of our examples, we got around that problem by converting the
target string to all uppercase or all lowercase. This is fine for simple cases, but it’s
awkward for situations in which you want to obtain information from the target string
in its original case: you’d have to first search a single-case copy for the positions where

270 | Chapter 7: Pattern Matching

what you are looking for are found, then use those positions to extract the correspond-
ing substrings from the original.

Regular expression searching provides a simple solution: just use the re.IGNORE flag.
Despite their general power, there is no reason to reserve regular expressions for
complicated situations. If you want to search target for string, ignoring case, this
expression is all you need:

re.search(string, target, re.IGNORE)

Listing files in a directory, excluding some

Chapter 6 showed a function for listing the contents of a directory while excluding files
with certain extensions. Example 7-3 shows a more flexible version of this function
based on a list of file patterns instead of just file extensions. The function joins regular
expressions in the list into a single pattern with the disjunction character | separating
them.

Example 7-3. Directory listing filtered by regular expressions

def ls(path = ".", ignorepats = (r'.+\.pyc$', r'.+~$', r'^\#')):
 if ignorepats:
 pat = re.compile('|'.join(ignorepats))
 # construct an RE disjunction containing each item of
 # ignorepats to create an RE that matches any of the items
 for filnam in os.listdir(path):
 if not ignorepats or not pat.search(filnam):
 print(filnam)

Finding open reading frames

Regular expressions are ideal for all sorts of sequence feature detection. For example,
they dramatically simplify finding open reading frames when compared to the kind of
loops we saw in the examples of Chapter 4. We don’t even have to worry about an
extra base or two left over at the end of the sequence, the way we did in the loop-based
code. Here’s all we need:

openpat = re.compile('''
 ([TCAG]{3})*? # 0 or more codons
 (ATG # start codon; begin match group
 ([TCAG]{3})*? # 0 or more codons
) # end match group
 (TAA|TGA|TAG) # a stop codon
''', re.I | re.X)

The two occurrences of ([TCAG]{3})*? force the match to consider three bases at a time.
The pattern [TCAG]{3} is equivalent to [TCAG][TCAG][TCAG]. The first occurrence con-
sumes codons that precede the ATG that begins the open reading frame, three at a time.
The second finds the codons within the open reading frame. The parentheses around
the first one are there not because we care about the result, but simply to make the

Putting It All Together: Examples | 271

*? apply to the codon characters, since regular expressions don’t allow one repetition
indicator to directly follow another.

It would be nice if we could just use findall to find all the matches, but that would
find the ATGs in any reading frame—for the same sequence, it might find one in reading
frame 1 and another in reading frame 3, which makes no sense. We need to specify the
reading frame we want the regular expression to use, so instead of findall we’ll use
match, which will force the regular expression to always start its match at the beginning
of the string. We still need a loop to start each match at the end of the previous one and
to collect the results, though. Example 7-4 shows a function that uses the compiled
regular expression to find all the open reading frames starting in a given frame.

Example 7-4. Finding open reading frames with a regular expression

def open_reading_frames(seq, frame=1):
 lst = []
 matchobj = openpat.match(seq, frame-1)
 while m:
 lst.append(m.group(2))
 matchobj = openpat.match(seq, matchobj.end())
 return lst

An even more compact version can be written as a generator, as shown in Example 7-5.

Example 7-5. Regular-expression-based open reading frame generator

def open_reading_frames_generator(seq, frame=1):
 matchobj = openpat.match(seq, frame-1)
 while matchobj:
 yield matchobj.group(2)
 m = openpat.match(seq, matchobj.end())

The expression open_reading_frames_generator(seq, frame) will return a generator,
and every time next is called on that generator the next open reading frame will be
returned.

Extracting Descriptions from Sequence Files
The web page at http://rebase.neb.com/rebase/rebase.seqs.html has links for viewing and
downloading DNA and protein sequences for restriction enzymes. The sequences are
grouped into files according to enzyme category, but the format of the files is consistent.
Assume we’ve downloaded one of the DNA files to the file rebaseseqs.txt, and we want
to extract the description data for each of its sequences.

The description data in these files has a rigid format:

>EnzymeName RecognitionSequence SequenceLength Type

The number of spaces separating the fields is fixed: 3, 2, and 1. Not all sequences in
these files designate a RecognitionSequence field. Examples in Chapters 3 and 4 showed
a variety of ways of approaching a problem like this using comprehensions, loops, and

272 | Chapter 7: Pattern Matching

http://rebase.neb.com/rebase/rebase.seqs.html

iterations. We’re going to see now how much simpler a solution using regular
expressions can be. If we can define an appropriate regular expression, we can use
re.findall to find all the descriptions, doing the repetitions for us that we would oth-
erwise have to program with a comprehension, loop, or iteration. Not only that, but a
regular expression with grouping will even parse the results into their fields.

The first step is to create a regular expression that matches the whole description line.
To simplify things, we’ll assume that the contents of the datafile have been read and
named data:

re.findall(r'^>.*$', data, re.MULTILINE)

This regular expression matches target substrings characterized by:

• > at the beginning of a line

• Followed by any characters

• Until the end of the line

We use re.MULTILINE so ^ and $ can match lines within data; otherwise, they would
match only at the beginning and end of the whole string. Using this pattern with
re.search returns a list of strings such as:

'>M.AacDam GATC 855 nt'

The next step is to match the fields of the data individually.

re.findall(r'^>[^]+ [\w]* \d+ .+$', data, re.M)

When you are first learning about them, even a regular expression as basic as this one
looks quite cryptic. When you encounter one, try writing down what you think it
means. Just go from left to right, as you would with an algebraic expression. This one
is read as;

• A > at the beginning of a line

• One or more nonspace characters, captured as a group

• Exactly three spaces

• Zero or more word characters, captured as a group

• Exactly two spaces

• One or more digits, captured as a group

• Exactly one space

• One or more characters at the end of the line, in a group

• The end of the line

You can also use the re.VERBOSE (re.X) flag and comment the expression itself. Just be
sure to put backslashes in front of any spaces inside the regular expression, because
with that flag all whitespace—space, tabs, newlines—is ignored, apart from whitespace

Putting It All Together: Examples | 273

indicated by escaped characters (\ \n\t). Here’s how we could combine our regular
expression with the explanation that follows it:

 r'''
^> # a > at the beginning of the line
([^\]+) # one or more nonspace characters, captured as a group
\ \ \ # exactly three spaces
([\w]*) # zero or more word characters, captured as a group
\ \ # exactly two spaces
(\d+) # one or more digits, captured as a group
\ # exactly one space
(.+?)$ # one or more characters at the end of the line, in a group
'''

The result returned by findall is the same as for the earlier regular expression. We take
this step in developing the regular expression to make sure that we have the pieces
described accurately. For instance, if there were only two spaces after the first +, there
wouldn’t be any matches. In the next step we simply put parentheses around the parts
we are interested in so that we can extract them from the match objects as groups:

re.findall(r'^>([^]+) ([\w]*) (\d+) (.+$)', data, re.M)

The result we get now is different, and more useful: instead of a list of strings, we get
back a list of tuples of strings. Each tuple contains the portion of the matched string
corresponding to one of the parenthesized portions of the regular expression. For the
line:

'>M.AacDam GATC 855 nt'

the tuple in the list of results would be:

('M.AacDam', 'GATC', '855', 'nt')

Earlier in the chapter, it was observed that regular expressions used with bioinformatics
data usually contain nongreedy repetition characters. The reason we didn’t need them
here is that the pattern anchored the match to the beginning and end of a single line.
Since the goal was to extract single lines and the information they contained, using
greedy repetition characters did not create any problems in this case.

Extracting Entries From Sequence Files
Also in Chapters 3 and 4 were a number of examples that involved reading descriptions
and/or sequences from FASTA files. They required function definitions to use string
methods to search and split either individual lines or the entire file contents. As a result
they were somewhat complex.

Using regular expressions to extract entries

Regular expressions make getting the next sequence from the file a much simpler task.
To extract a description and all the sequence characters, the following suffices:

re.search(r'^>[^>]*', src).group()

274 | Chapter 7: Pattern Matching

This reads as “match the next > that starts a line through all characters that aren’t a
>.” This takes care of the problem of needing to read the description line to find the
end of the previous sequence. We’d like to do better than that, though. First we’ll
separate the description from the sequence, capturing two groups:

re.search(r'^>(.*)$([^>]+)', src, re.M).groups()

The plus at the end prevents the pattern from matching a (possibly partial) description
line not followed by any sequence characters, which could happen at the end of the
src string. The $ serves to split the match into everything on the description line and
everything else.

Then, all we have to do is use ordinary string functions to clean up each of the two
groups returned. Example 7-6 shows a complete definition of next_item that doesn’t
use subfunctions to read the fields from the file. (The cleanup code, however, is in a
separate function, so those details are out of the way of the basic matching loop.) In
this example, next_item searches for the next part of the text that matches the compiled
regular expression, then calls extract_from_match to process the result. If there is no
match, matchobj will be None and extract_from_match will return None. Otherwise, it
will return a tuple of the form (description, sequence). The description, found in group
1 of the match object, is broken up into a tuple by splitting at the occurrences of | and
stripping the spaces from the results. The sequence, found in group 2, has its newline
characters removed.

Example 7-6. Defining next_item for FASTA with a regular expression

pat = re.compile(r'^>(.*)$([^>]+)', re.MULTILINE)

def next_item(src):
 return extract_from_match(pat.search(src))

def extract_from_match(matchobj):
 return (matchobj and # return None when match fails
 (([field.strip() for field in matchobj.group(1).split('|')],
 matchobj.group(2).replace('\n', '')),
 matchobj.end()))

A really powerful feature of this solution is that we can accommodate variations in the
file format with only slight changes to either the pattern or the cleanup in match_item.

Keeping track of the position between calls

Unfortunately, this definition of next_item has a major problem. Regular expression
operations expect their arguments to be strings (or things like strings, such as bytes and
bytearrays); they do not work with open files. The src parameter of next_item must
therefore be a string representing the entire file contents. However, the preceding def-
inition will return the same item each time it is called.

Putting It All Together: Examples | 275

We can fix this problem by keeping track of where the last match ended and starting
from there the next time next_item is called. This is called state maintenance. One way
to keep track of a value in between function calls is:

1. Add a parameter for the previous value to the function.

2. Return the value along with the other value(s) the function returns.

3. Have each function supply the previous value as one of its arguments.

4. Assign a name to the value part of the result of the function.

This is probably easier to illustrate with an example than with a written description.
Let’s consider how we could implement a findall function for plain strings using
str.find. Example 7-7 shows a straightforward iterative definition like many we’ve
already seen. Each time the target substring is found, the function adds its position to
a list it is accumulating and then searches again, starting at the next character after the
substring.

Example 7-7. A findall function for ordinary strings

def findall(string, substring):
 """Return a list of all nonoverlapping positions in string where substring appears"""
 positions = []
 pos = string.find(substring)
 while pos >= 0:
 positions.append(pos)
 pos = string.find(substring, pos + len(substring))
 return positions

Example 7-8 shows an alternative approach with two functions: one just finds the next
occurrence of the target, and the other calls it and collects the results. There’s no par-
ticular advantage to doing things this way for this simple example; it simply illustrates
the technique so we can use it for something more substantial next.

Example 7-8. Keeping track of a value between calls

def findnext(string, substring, startpos=0):
 """Return the position of the next nonoverlapping occurrence of
 substring in string, beginning at startpos where substring appears"""
 pos = string.find(substring, startpos)
 if pos < 0:
 return −1, −1
 else:
 return pos, pos + len(substring)

def findeach(string, substring):
 positions = []
 pos, startpos = findnext(string, substring)
 while pos >= 0:
 positions.append(pos)
 pos, startpos = findnext(string, substring, startpos)
 return positions

276 | Chapter 7: Pattern Matching

The important point to note about these two functions is that findnext needs to know
where to start looking for the substring each time it is called. It’s up to findeach to keep
track of that next starting position between calls. We’ve defined findnext so that it
returns two positions: the position where the substring starts and the position where
search should recommence. In findeach, the two values returned from findnext are
assigned, and the second is fed back into findnext when it is called. This example is so
simple that findeach could compute where to start the next search as easily as
findnext could, but if findnext does anything more interesting that might well not be
the case.

Example 7-9 shows a definition of next_item that applies this technique to keep track
of the search position between calls. It also shows an example of the function’s use.

Example 7-9. Defining next_item to return and receive a position

def next_item(src, pos):
 return extract_from_match(pat.search(src, pos))

def extract_from_match(matchobj):
 return ((None, −1) # pos doesn't matter here
 if not matchobj
 else
 (([field.strip() for field in matchobj.group(1).split('|')],
 matchobj.group(2).replace('\n', '')),
 matchobj.end())) # new value of pos to be remembered

def find_item(src, testfn):
 item, pos = next_item(src, 0)
 while (item):
 if testfn(item):
 return item
 item, pos = next_item(src, pos)

Another thing we can do is wrap next_item in a generator. Keeping track of the values
of parameters and other names assigned in the function is one of the primary respon-
sibilities of the generator mechanism. Another is keeping track of where the yield oc-
curred in the definition (there may be several) so that execution can resume right after
that statement when next is called on the generator object. Example 7-10 shows what
that would look like.

Example 7-10. Defining next_item as a generator

def item_generator(src):
 pos = 0
 item, pos = next_item(src, pos)
 while item:
 yield item
 item, pos = next_item(src, pos)

def find_item(src, testfn):
 itemgen = item_generator(src)
 item = next(itemgen)

Putting It All Together: Examples | 277

 while (item):
 if testfn(item):
 return item
 item = next(itemgen)

We’ve chosen to leave the definition of next_item unchanged from its definition in
Example 7-9. Instead of adding complexity to next_item and extract_from_match, we’ve
defined a second function to produce the generator object that keeps track of the
position. Each time next is called on the generator object returned by item_generator,
execution resumes in item_generator and continues until the yield. All this generator
is doing is holding onto the value of pos between calls to next_item.

Notice also the changes in find_item. It no longer does anything to keep track of the
position and provide it as an argument to next_item. In fact, it no longer calls
next_item at all. Instead, it calls item_generator once at the beginning of the function,
then uses next(itemgen) each time it wants another item.

Example 5-4 showed a class whose methods share state using instance
fields. The problem here is not quite the same as the one solved by the
class example. There, the emphasis was on avoiding a lot of useless
argument-passing for values that were used unchanged by many meth-
ods. Here, the challenge is to maintain changing state between one
function call and the next, not just share it. In the technique demon-
strated in the preceding example, one function returns values to its caller
that it will need again later, and the caller passes them back as arguments
the next time it calls the function. State maintenance is even more of a
reason to use a class than state sharing, and usually you would use a
class rather than the tricks of the previous example. We’ll see examples
of a two such classes in Chapter 8 (in Examples 8-17 and 8-18).

Buffering input

Another problem with these definitions is that code using them must read the entire
contents of a file to pass find_item. If the file is extremely large this could take an
inconvenient amount of time and space, especially if the sequence is located early in
the data. And even if the intent is to do something with every sequence in a file, you
still may not want to read the entire contents all at once.

The solution to this sort of problem is to interpose a buffer between the file and
next_item. A buffer is a standard programming mechanism that turns processing a
source or destination—reading from a file, writing to a file, searching a string, etc.—
into a two-step process. A file buffer contains a moderate portion of the file’s bytes or
characters. Reading is done from the buffer, rather than from the file itself. When the
end of the buffer is reached, its contents (or most of them, anyway) are discarded and
another piece of the file is read into the buffer. For writing, the process is reversed:
writing is directed to the buffer, and when it’s full its contents are written out to the
file and the buffer is emptied. (This is called flushing the buffer.)

278 | Chapter 7: Pattern Matching

The main reason for buffering is that input and output operations that involve hardware
storage devices are many orders of magnitude slower than reading from and writing
into the computer’s memory. Buffering replaces many small external interactions with
many small internal interactions and only the occasional bulk transfer from or to ex-
ternal storage. As noted in Chapter 6 (in “The Python runtime environment:
sys” on page 213), sys.stdout is a buffered file stream for this reason.

Python’s implementation of input and output streams includes buffering capabilities,
but programs can also implement their own, higher-level buffering mechanisms. We
can add a buffer to Example 7-10’s definition of item_gen, enabling it to pass strings to
re functions and methods without first having to read the entire contents of a huge file
into memory. This will improve efficiency in the event that a call to find_item locates
a targeted item after examining only a small portion of the file.

The strategy will be to read a number of characters from the file and read sequences
from the string returned; then, when all the sequences of the string have been read,
another chunk of characters will be read. What’s tricky about this is that the string
beginning with the last > is almost definitely incomplete; the rest of the sequence will
be in the next chunk.

The process is illustrated in Figures 7-1, 7-2, and 7-3. It’s not easy to develop code like
this, but it shouldn’t be too hard to understand.

Example 7-11 shows a get_item function added to manage the buffering.

Example 7-11. Buffered regular expression search of a file

def get_item(fil, buffer, pos, chunksize):
 """Return a possibly incomplete item along with the new value
 of buffer and the end position of the successful match"""
 item, endpos = next_item(buffer, pos) # initialize loop
 while not item: # look for next item
 chunk = fil.read(chunksize) # read next chunk
 if not chunk:
 return None # end of file
 buffer += chunk # add chunk to buffer
 item, endpos = next_item(buffer, pos) # try again
 return item, buffer, endpos # beginning of an item

The purpose of get_item is to call next_item until it returns an item. Each time
next_item fails to find an item, get_item reads chunksize characters from the file and
appends them to the buffer. When enough of the file has been read into the buffer for
next_item to find an item, get_item returns the item, the (possibly extended) buffer,
and the ending position of the match. This follows the approach discussed earlier,
whereby values are maintained between calls by returning them to the caller and having
the caller pass them back in. In this case, two values are tracked: the buffer itself and
the position within the buffer where the search should resume.

The end of the buffer might contain a FASTA description and the beginning of its
sequence, but not the entire sequence. How can we know whether get_item has

Putting It All Together: Examples | 279

returned a complete sequence? The solution is to always read a second sequence ahead
of the one to be returned. As long as the beginning of another sequence is found, we
know the current one is complete. When the current sequence is the last in the buffer,
looking for the next one will cause the buffer to be extended until a next sequence is
found. At that point, the current sequence must be reread to get its full contents.

The outline of the code is similar to a lot of loop-based functions: it reads an item, then
loops until there are no more items. In this case, however, the code starts by reading
two items and loops until there is no more second item. The technical term for reading
one item beyond the targeted one is lookahead, for obvious reasons. Lookahead is re-
quired whenever some information from the next item is needed to process the current
item (including, at a minimum, whether there is a next item). In the normal case, each
time around the loop, the name of the first item is rebound to the second item and a
new second item is read. This code also has to deal with the abnormal case when no

Figure 7-1. Buffering input while doing searches, part 1

280 | Chapter 7: Pattern Matching

second item is found, because that is when the buffer will be extended (except at the
end of the file). The outline looks like this:

1 initialize
2 first item = read item
3 nextitem = read item
4 while nextitem:
5 if finding the next item caused the buffer to be enlarged
6 reread item from the buffer because it was incomplete
7 shorten buffer to exclude previously read items
8 yield item
9 item = nextitem
10 nextitem = read item
11 yield item # at end of file

Figure 7-2. Buffering input while doing searches, part 2

Putting It All Together: Examples | 281

Example 7-12 shows code that implements this outline. The solution is complicated
by having to maintain three positions: the beginning of the current item (curpos), the
beginning of the next item (nxtpos), and the end of the next item (nxtend). (At the end
of the buffer, nxtend will equal the length of the buffer). A numbered line in the code,
together with any following unnumbered lines, implements the correspondingly num-
bered part of the outline.

Example 7-12. Buffered regular expression generator for a file

def item_generator(file, chunksize=4000):
1 curpos = 0
2 itm, buffer, nxtpos = get_item(file, '', curpos, chunksize)
3 nxtitm, buffer, nxtend = get_item(file, buffer, nxtpos,

Figure 7-3. Buffering input while doing searches, part 3

282 | Chapter 7: Pattern Matching

4 while nxtitm:
5 if len(buffer) > nxtend:
6 itm, nxtpos = next_item(buffer, curpos)

7 nxtend -= nxtpos

8 yield itm
9 itm, curpos, nxtpos = nxtitm, nxtpos, nxtend
10 nxtitm, buffer, nxtend = get_item(file, buffer, nxtpos,

11 yield next_item(buffer, pos)[0]

Tips, Traps, and Tracebacks

Tips
The importance of constructing regular expressions piece by piece cannot be empha-
sized enough. Make sure each pattern is working as expected before making it more
complex. Does this sound familiar? It should: this book has repeatedly stressed this
approach for defining functions. Unfortunately, regular expressions don’t have the
ability to call other regular expressions, so you can’t really build them out of truly
separate pieces. You can, however, still proceed in a step-by-step manner, increasing
the complexity as you go.

Debugging regular expressions is far more difficult than debugging programs. You can’t
work your way step by step through the match the way you can with a Python debugger.
There are tools for testing and debugging regular expressions, but even without one
you can often accomplish a lot by simply printing the results of a findall, one to a line.
Another trick that’s useful when a regular expression isn’t doing what you expect is to
remove parts of it gradually and repeat the search until you locate the problem.

As you start building more complex regular expressions, you will experience more than
a little frustration. Here are a few pointers:

• Use a regular expression testing tool such as re-try. You don’t need the entire source
file for testing your regular expression—just grab a section that will produce a
match or two once your regular expression is working.

• Remember to use raw strings for regular expressions.

• In general, it’s probably not worth trying to tune a regular expression so that a
group such as FASTA sequence characters matches multiple lines but excludes the
newlines. Just use replace('\n', '') on the result.

• Separating fields by a delimiter character such as a vertical bar on a FASTA de-
scription line can be done within the regular expression, but if you are having
trouble accomplishing that, just have the expression match the whole line and use
the following to get a list of the fields:

Tips, Traps, and Tracebacks | 283

http://re-try.appspot.com

[field.strip() for field in line.split('|')]

• To search any of a list of patterns, search for:

'|'.join(list_of_patterns)

Traps
• Remember to use the | operator to combine flags; re functions that take a flag

argument, including re.compile, only accept one such argument. If you forget and
use commas instead you will get an error message like the following:

TypeError: fn() takes at most 2 positional arguments (3 given)

The exact numbers will depend on which function you called and how many
arguments you supplied.

• Beware of vertical bars in regular expressions! They represent disjunction. If you
are trying to match a vertical bar, as in FASTA headers, you must use a backslash
(\|).

• When attempting to capture a group, make sure the repetition characters are inside
the group unless you really do mean to repeat the group. That is, if you want a
sequence of digits, write (\d+) and not (\d)+. The latter will return the last digit
only, a rather mysterious result. This is an easy mistake to make, especially if you
casually put parentheses around a small part of a partially completed regular
expression.

• When matching the contents between “delimiter” characters—quotes, parenthe-
ses, brackets, braces, angle brackets, etc.—a * or +, and even a nongreedy *? or
+?, will often match too much of the target string. In these situations you should
match a repetition of “anything but the closing delimiter.” For example, to match
something enclosed in quotes, use "[^"]+" instead of ".+?".

• Make sure to use the re.DOTALL (re.S) flag if a newline can occur within text you
want matched by .*, .+, .*?, or .+?, and not to use it if you don’t want newlines
matched.

• Make sure to use re.MULTILINE (re.M) if you are using anchors—^ for the beginning
of a line and $ for the end. Otherwise, ̂ will match only the beginning of the entire
string, and $ will match only the end.

• If you use re.VERBOSE (re.X), make sure to put a backslash in front of any space
that you mean to be part of the pattern; otherwise, it will be ignored just like the
whitespace you use for making the string readable.

• A negated character set such as [^>]* will match line feeds. This pattern:

r'^>[^>]*'

will match an entire FASTA entry—the description and all of the sequence char-
acters, with newlines embedded, regardless of whether re.DOTALL is specified.

284 | Chapter 7: Pattern Matching

If re.MULTILINE is specified, a dollar sign added to the end of that expression will
have no effect because the character set will still match newlines. To prevent ne-
gated character sets from matching newlines you must include the newlines ex-
plicitly in the character set, either as \n or \s (which would exclude all whitespace).

Tracebacks
• The same kinds of errors that occur when parentheses aren’t balanced in code,

especially in algebraic expressions, can easily happen with group parentheses in
regular expressions, producing the error:

sre_constants.error: unbalanced parenthesis

• The error:

sre_constants.error: nothing to repeat

can be particularly irksome. If you are developing a pattern incrementally, the
obvious place to look for the source of this problem is where you last added a
repetition character, or perhaps a pair of parentheses.

• The error:

sre_constants.error: multiple repeat

means that somewhere in the regular expression there are adjacent repetition char-
acters. Perhaps the most likely culprit is putting the question mark before the plus
sign or asterisk in a nongreedy repetition, instead of after. This problem can also
arise when, while developing a regular expression, you accidentally remove the
character(s) that separated two repetition characters.

• Unfortunately, the error won’t point you to where in the expression the problem
occurs; in fact, if you are using re.VERBOSE (re.X) it won’t even show you which
line to look at—the error always points to the end of the function call in which the
expression appears. Note also that the line number of the offending function call
appears early in the traceback, followed by many calls to compile, parse, and related
subfunctions. This contrasts with most tracebacks, where it is the last few lines
that show you where in your code the error occurred.

Tips, Traps, and Tracebacks | 285

CHAPTER 8

Structured Text

In Chapter 6, we took a very brief look at the csv module that is used to read and write
lines of tab- or comma-separated values, with each line corresponding to one item in
the file. We’ve also looked at a variety of ways to scan files looking for certain patterns
of data, including using str methods and regular expressions. Files that are in tab- or
comma-separated values format, FASTA files, GenBank files, and many other file for-
mats encountered in bioinformatics work are called flat files.* What is “flat” about them
is that they are just text files: the data has no explicit structure beyond agreed-on
conventions regarding special characters, blank lines, whitespace, etc. They can have
introductory material before the data, other material after the data, several sets of
data in one file, and so on.

The opposite of “flat” in this context is structured. A structured text file contains ele-
ments, each of which can have attributes and/or “sub” or child elements. There can be
different kinds of elements, and in general there are rules specifying what attributes
and children each kind of element can have. The linear approaches for processing text
files that we’ve seen so far are inadequate for structured files, essentially because the
files are two-dimensional. This chapter describes some ways to process structured files.

HTML
An obvious example of a structured file format is basic HTML. (We’ll ignore all the
fancy stuff like JavaScript, frames, and so on.) HTML’s structuring rules are a bit loose,
but we can ignore those details. The top-level structure of an HTML file is:

<html>
 <head>
 . . . tags and text . . .
 </head>

* In computer science the term “flat file” usually has a stricter meaning, referring only to text files with one
item per line, each having fields designated by separators (commas, tabs, vertical bars, spaces, etc.) or
conforming to some specified number of characters. Files in formats such as FASTA and GenBank would be
considered “free form,” even though they have some regularity.

287

 <body>
 . . . tags and text . . .
 </body>
</html>

Each HTML element opens with a start tag, which begins with one of the tag names
defined by the HTML specifications and is enclosed in angle brackets (<>). Tags may
have attributes, in the form attribute-_name = attribute_value. Elements may also have
content—either text or other elements—that appears after the start tag. Tags with no
content may be closed by a slash at the end of the start tag instead of an end tag: for
instance, <hr/> to draw a horizontal line. Comments, which can span many lines and
cause the text between them to be ignored by a browser displaying the HTML, begin
with the characters <!-- and end with -->.

The end of a tag with content may be indicated by </tagname>, where tagname is the
same as the name in the start tag, but for the most part the HTML standards don’t
require that. For instance, it is common practice to mark the beginning of a paragraph
with a <p> tag but not to bother with the closing </p>, leaving the browser to figure out
that the paragraph has been closed because a new one has been started (among other
reasons).

People often use the term “tag” to refer to the structure element a tag
specifies, in addition to using it for the tag itself. In the rest of the book
we will use just the tag name when talking generically about a tag, as in
the phrase “an hr tag.” When we specifically mean a start or end tag,
we will use angle brackets.

Some tags in a file contain others. For instance, the top-level html tag contains the
body tag, which contains the rest of the tags in the file. Many of those could be tags for
headers or paragraphs whose content is just text. Other kinds of tags have “child” tags
as their content. Lists are an example:

 Item 1
 Item 2
 Item 3

This bit of HTML says to create a numbered list (ol) containing three items (each li).

There are other sorts of things inside HTML files, such as a few tags at the beginning
that contain information about the file itself and embedded scripts that you usually
won’t want to consider as part of the document. There are also special notations such
as named entities for punctuation, Unicode characters, and so on.† You’ll see those most
often where characters with meaning inside HTML itself are part of content; for

† You can find some good references at http://www.w3schools.com/tags/ref_entities.asp, http://www.entitycode
.com/#common-content, and http://www.escapecodes.info.

288 | Chapter 8: Structured Text

http://www.w3schools.com/tags/ref_entities.asp
http://www.entitycode.com/#common-content
http://www.entitycode.com/#common-content
http://www.escapecodes.info

example, & or & for ampersand and < or < for <. Each named entity
begins with an ampersand, ends with a semicolon, and contains either letters or a pound
sign followed by a base-10 number that refers to specific characters in standardized
character sets.

Unicode Characters in HTML Files
HTML files often contain actual Unicode characters, not just named entities that rep-
resent them. Any attempt to read from a file that contains Unicode characters will cause
an error unless you provide the optional keyword argument encoding='utf-8' in the
call to open. Since the default encoding is a subset of Unicode, you can use that argument
even with files that contain just ordinary ASCII characters.

If you want to use the file’s actual encoding rather than guessing that 'utf-8' will work,
you can find it in the file itself. Any HTML file that contains non-ASCII characters
should have a tag like the following in its head section:

<meta http-equiv="Content-Type” content="text/html; charset=UTF-8">

The following code will extract the encoding from an HTML file. It opens the file in
binary mode to avoid any encoding issues, reads some characters, uses a binary regular
expression to look for the tag that specifies the encoding, closes the file, and (if it finds
one) returns the value of the tag’s encoding attribute decoded into a string. Subsequent
examples that read from HTML files will use get_html_file_encoding to determine the
encoding argument they should provide when opening the file for processing:

encoding_pat = re.compile(
 b'<meta [^>]*?content *= *[^>]*' + # just to fit line
 b'charset *= *([a-zA-Z0-9-]+)',
 re.I | re.A)

def get_html_encoding(html):
 encoding = encoding_pat.search(html)
 return encoding and encoding.group(1).decode()

def get_html_file_encoding(filename):
 with open(filename, 'rb') as file:
 return get_html_encoding(file.read(2000))

Simple HTML Processing
Some simple search or replace operations can be performed on HTML files using a text
editor, a web design tool, Python, or another programming language. Suppose you find
a web page with many interesting hyperlinks, and you want to extract them from the
rest of the page. You could just search for '<a ', then for 'href=', and so on, but there
are too many possible variations to handle. You need regular expressions.

HTML | 289

Searching HTML text

In this section we’ll develop a program to extract all hyperlinks and associated text
from a web page saved as an HTML file. The program will look a lot like some of the
other examples we’ve already seen in the book. Example 8-1 shows the high-level
functions that won’t change as we develop the code further and the test at the end that
lets us run it as a command-line program.

Example 8-1. Extracting <a> links from an HTML file, step 1

def print_atags_in_files(lst):
 for filename in lst:
 print(64*'-') # draw separator line
 print_atags_in_file(filename)

def print_atags_in_file(filename):
 with open(filename, encoding=get_html_file_encoding(filename)) as file:
 print_atags(file.read())

def print_atags(string):
 for atag in get_all_atags(string): # defined below
 print_atag(atag)

def print_atag(results):
 print(textwrap.fill(results[0], 75),
 textwrap.fill(results[1], 75),
 sep='\n',
 end='\n\n')

if __name__ == "__main__":
 if len(sys.argv) < 2:
 print("Usage: show_atags htmlfile ...")
 else:
 print_atags_in_files(sys.argv[1:])

This time we’ve shown the definitions “top-down”—i.e., callers above
callees. The order of the function definitions within a file doesn’t matter
to Python; it’s up to you to decide how to organize the file for easiest
understanding. Often that means putting the “high-level” functions at
the top, so someone interested in using the program can see them with-
out having to read through all the details. Then again, if you begin the
program with a docstring describing the functions meant to be called
from other files, there would be no need for a user to read the code to
find them.

Next we’ll present a series of definitions for get_all_tags, omitted from the preceding
code. URL references span a wide range of formats. Before trying to formulate regular
expressions to match them, it’s well worth defining what we’re trying to capture. As
the program gets used it may produce some unexpected output, at which point we can

290 | Chapter 8: Structured Text

choose to accommodate the new example it reveals or make a note that we are ignoring
the problem.

There are a variety of start tags that can contain href attributes, such as , but we
are only interested in <a> tags. If we discover that we are interested in others, we can
always add them later. Even in trying to describe the URL pattern, we will follow the
incremental approach exhibited in our earlier code examples. We’ll start by capturing
the <a> tags, their attributes, and their content and see what they look like before tack-
ling more complex aspects of the patterns. That will actually bring us quite far toward
our goal, but, as we’ll see, may include a variety of extraneous information. Exam-
ple 8-2 shows the initial regular expression.

Example 8-2. Extracting <a> links from an HTML file, step 2

atagpat = re.compile(
 r'''<a\s+(.*?)> # the <a> tag attributes up to first >
 (.*?) # capturing the entire content up to first
 # the end tag
 ''',
 re.IGNORECASE|re.MULTILINE | re.DOTALL | re.VERBOSE)

def get_all_atags(string):
 return atagpat.findall(string)

Here are some of the results extracted from the output of the program run on the results
of an advanced search for the phrase “nonsense mediated decay” at http://biology.plos
journals.org. (The actual output would be several hundred lines long.) For each link
the content is printed first, followed by the attributes of the <a> tag starting on a new
line. Where more than two lines are shown it is because one or both of these lines
overflowed the line length in the Python window where the code was executed:

PLoS.org
href="http://www.plos.org" title="PLoS.org"

Site Map
href="http://journals.plos.org/plosbiology/sitemap.php"
title="PLoS Biology Site Map"

Readers' Responses
href="http://biology.plosjournals.org/perlserv/?request=read-response&
issn=1545-7885&past_days=360" title="For Readers: Readers' Responses"

A Combinatorial Code for Splicing Silencing: UAGG and GGGG Motifs
href="http://biology.plosjournals.org/perlserv/?request=get-document&
doi=10.1371/journal.pbio.0030158"

Posttranscriptional Gene Regulation by Spatial Rearrangement of the 3′
Untranslated Region
href="http://biology.plosjournals.org/perlserv/?request=get-document&
doi=10.1371/journal.pbio.0060092"

HTML | 291

http://biology.plosjournals.org
http://biology.plosjournals.org

Now that we have the attributes and the content, we want to do some cleanup. First,
we’ll extend the pattern to extract the value of the href attribute. This is a bit tricky—
the equals sign can be surrounded by spaces and newline characters, and the value can
be surrounded by a pair of single or double quotes. We’ll allow for the quotes, but we
won’t worry about them matching, and quotes aren’t allowed inside the value of the
href attribute. We will also assume there is no whitespace within the value of href. The
modified regular expression is:

 r'''<a.*?href\s*=\s* # href=, optional spaces
 ['"]? # optional quotes
 ([^'"\s]*) # the value: no ', ", or whitespace
 ['"]? # optional quotes
 [^>]*?> # the rest of the tag
 (.*?) # capturing the entire content
 # the end tag
 '''

The results for the <a> tags shown previously are now:

PLoS.org
http://www.plos.org

Site Map
http://journals.plos.org/plosbiology/sitemap.php

Readers' Responses
http://biology.plosjournals.org/perlserv/?request=read-response&
issn=1545-7885&past_days=360

A Combinatorial Code for Splicing Silencing: UAGG and GGGG Motifs
http://biology.plosjournals.org/perlserv/?request=get-document&
doi=10.1371/journal.pbio.0030158

Posttranscriptional Gene Regulation by Spatial Rearrangement of the 3′
Untranslated Region
http://biology.plosjournals.org/perlserv/?request=get-document&
doi=10.1371/journal.pbio.0060092

For the next step, we’ll replace some HTML entities with their ordinary equivalents.
This is a perfect use for a dictionary, a small portion of which is shown along with a
function that uses it and a changed version of print_atag in Example 8-3. (The regular
expression doesn’t change.) With this code, the ′ in the last title in the previous
output is replaced with a single quote.

Example 8-3. Extracting <a> links from an HTML file, step 3

html_entities = {
Reserved characters in HTML
 '"' : '"', '"' : '"',
 ''' : "'", ''' : "'",
 '&' : '&', '&' : '&',
 '<' : '<', '<' : '<',
 '>' : '>', '>' : '>',

292 | Chapter 8: Structured Text

ISO 8859-1 symbols 160-191, 215, 247
 ' ' : ' ', ' ' : ' ',
Math symbols
 '–' : '-', '–' : '-',
 '—' : '-', '—' : '--',
 '′' : "'", '′' : "'",
 '″' : "'", '″' : '"',
}

def replace_substrings(string, dictionary):
 """Return a copy of string in which every key of dictionary has
 been replaced with the corresponding value, in arbitrary order"""
 for key, value in dictionary.items():
 string = string.replace(key, value)
 return string

Although they didn’t happen to show up in the one web page used for the preceding
examples, experimentation with other web pages revealed that sometimes the value of
an href attribute begins with a pound sign (#). These are document fragment markers
used at the end of a URL to specify a location within the page containing the marker.
We don’t need these, so we want to exclude <a> tags whose href attributes have a value
beginning with a pound sign.

We could exclude these tags by adding \# to the list of forbidden characters where the
value of the href attribute is captured. (The backslash is required to prevent Python
from interpreting the # as the beginning of a comment.) The problem is that although
this would make the value match fail, it wouldn’t make the overall match fail: all we’d
get is an empty href value with whatever content the fragment identifier was associated
with.

Nothing says we have to do all the work with a single regular expression, though. We
can use one regular expression to extract something from the results obtained using
another one, or we can filter the results we get back from a call to findall. To solve
this problem we’ll filter the results, as shown in Example 8-4.

Example 8-4. Extract <a> links from an HTML file, step 4

def get_all_atags(string):
 return [result for result in atagpat.findall(string)
 if result[0][0] != '#']

The change is in the function get_all_atags, and it justifies having made
this a separate function. When this was added during development of
the earlier stages, it seemed entirely superfluous; there was no indication
it would ever do anything other than a findall. It was placed there on
principle, but now it turns out to have been a good decision. Note how
this works—it’s important.

HTML | 293

The code should now give us what we want from the value of the href attribute in the
<a> tag. Some of the values will be ugly because they form HTTP requests with
arguments, as indicated by the presence of a ? in the URL, and some of the request
strings are quite long. For example, the URL corresponding to a link to “next” on the
page with the PLoS search results looks like this:

?request=advanced-search&search_fulltext=1&row_start=11&
issn=15457885&surname_type=all&surname=&fname_type=all&fname=&aff_type=all&
aff=&fundsrc_type=all&fundsrc=&anywhere_type=phrase&
anywhere=nonsense+mediated+decay&title_type=all&title=&abstract_type=all&
abstract=&biblist_type=all&biblist=&tblfig_type=all&tblfig=&
jrn_issn=15457885&subj_id=all&vol_pubdate_start=&iss_pubdate_start=&
vol_pubdate_end=&iss_pubdate_end=&vol_no_start=&iss_no_start=&vol_no_end=&
iss_no_end=&limit=10&order=score&document_count=12#results

We could filter these, or perhaps give the program’s user that choice, but since so many
web pages offering document retrieval do so by way of requests rather than URLs link-
ing to documents directly, we’ll leave them in. That will allow the results to be used as
real URLs, perhaps in an HTML page the code writes.

There’s one other problem with this code that we’ll put off dealing with until the next
chapter: many URLs on a page will not begin with a site address (or a protocol). These
are addresses relative to either the root of the site from which the page was retrieved
or the directory from which the page was retrieved (the former is the case if the partial
URL begins with a slash). For now, we won’t be able to extract sufficient information
from these URLs for them to be used to retrieve a page or submit a request.

Next, we’ll turn our attention to the content extracted. The challenge here is that the
content can contain all sorts of markup, and we want the output to be plain text. This
is another case where it is too difficult to insert this additional processing into the
existing regular expression. Instead, we’ll use another one to remove the tags from the
content and add that step to get_all_atags. We’ll also add a test in print_atags to avoid
printing empty content. The comprehension in get_all_tags would be a little messy if
we didn’t unpack the results of findall, so we add that in Example 8-5 too.

Example 8-5. Extracting <a> links from an HTML file, step 5

tagpat = re.compile(r"<[^>]+?>") # easy - anything within a pair of <>s

def remove_tags(content):
 return tagpat.sub('', content)

def get_all_atags(string):
 return [(url, remove_tags(content))
 for url, content in atagpat.findall(string)
 if url[0] != '#']

def print_atags(string):
 for atag in get_all_atags(string):
 if atag[1]:
 print_atag(atag)

294 | Chapter 8: Structured Text

More elaborate HTML pattern matching

Example 8-6 shows a simple program for printing an outline of a web page based on
its heading tags (h1, h2, ..., h6). (Most modern web pages use other organizational
techniques, so you might not find many—or any—heading tags on a page you down-
load, but heading tags are still used for simple pages.) Try this function with the path
to a simple web page with header tags that you’ve saved to the disk.

Example 8-6. Extracting an outline from an HTML file

pattern = r'<h(\d).*?>(.+?)</h'
def print_outline(filename):
 with open(filename) as fil:
 for level, hd in re.findall(pattern, fil.read()):
 # indent for each level and print the level in brackets
 print("{0}[{1}] {2}".format(' '*3*int(level), level, hd))

When running Python from the command line, you may find that at-
tempts to print Unicode characters cause errors. If so, this is because
your terminal application doesn’t support Unicode. In Unix environ-
ments, if you set the environment variable LANG to something like
en_US.UTF-8 before running Python you will be able to print Unicode
characters. You won’t run into this problem in IDLE, though, because
its shell is built on top of code that supports Unicode.

Even if you can find a page that uses header tags for its general organization, there may
be other markup around the header contents that ruins the output. For instance, go to
http://www.ncbi.nlm.nih.gov and save the BLAST QuickStart document bookshelf/
br.fcgi?book=comgen&part=blast to your disk. Then load the definition of print_out
line and call it on the name of the file you used when you saved the document.

The output will be an outline, but it contains extraneous formatting detail—in partic-
ular, a lot of span tags. (span tags define formatting attributes for the content they
surround.) Here’s a sample line from that file:

<h4> Documentation </h4>

We can filter out the span tags with a more complex regular expression, as shown in
Example 8-7.

Example 8-7. Filtering span tags from HTML

pattern = re.compile(r'''
<h(\d)[^>]*?> # a header start tag, such as <h2>
\s* # optional whitespace
([^<]*) # header text before the span
(<span[^>]*>)? # optional span start tag -- a '<span', followed by
 # characters other than > until the first >
(.*?) # header text after the span
()? # optional span end (we aren't checking that this
 # ends the span tag found previously)
\s* # optional whitespace

HTML | 295

http://www.ncbi.nlm.nih.gov

</h # header end tag (we aren't checking that this ends
 # the one just started)
 ''',
 re.IGNORECASE | re.DOTALL | re.VERBOSE)

def print_outline(filename):
 with open(filename) as fil:
 for level, pretag, optstart, posttag, optclose in \
 pattern.findall(fil.read()):
 print("{0}{1}{2}".format(' '*3*(int(level) - 1), pretag, posttag))

With some practice, you’ll be able to do this sort of thing yourself. However, unless
you have a lot of web pages to process that use tags in a similar way, your attempts to
cope with all the details by writing increasingly complex code and regular expressions
won’t be worth the effort and frustration. Instead, either use several regular expressions
or a mix of regular expressions and regular programming techniques.

Turning HTML into plain text

One important use for str.replace is to delete all occurrences of a substring from a
string, by providing an empty string as the replacement. That is also an important use
of re.sub. As a simple (though not entirely realistic) example, let’s turn an HTML file
into plain text by removing all the tags. The results will be pretty much a mess, since
they’ll reflect the spacing and line breaks of the original HTML rather than any kind
of formatted text equivalent. More useful results could be obtained if the patterns were
tuned to specific kinds of HTML pages.

Before we remove the tags we should skip to the <body> tag that starts the page’s content,
so we don’t have to deal with the complexities of what can appear before that. There
is also the complication that pages can contain script code placed between a <script>
start tag and a </script> end tag. Although usually these occur in the <head>, they can
occur anywhere in the <body> too. There can also be comment tags, which can get
tangled up in the other tags. (Sound familiar? This is another “skip introduction.”) Our
code will proceed in these steps:

1. Skip to the <body> tag.

2. Remove all <script> ... </script> sections of the body.

3. Remove all comments (<!-- ... -->).

4. Remove all other tags.

We’ll use re.search with the re.IGNORECASE flag to locate the <body>, <script>, and
</script> strings, as just described. Normally we would define a separate function for
each of these steps, but since each one after the first would do the same thing—one
call to sub—we can do something a bit more clever: we can just loop through the
patterns in succession in one function. This makes it easy to extend the program. For
instance, if we also want to remove the contents of forms or all lines with just spaces,
we can add another pattern for that to the patterns list. Example 8-8 demonstrates.

296 | Chapter 8: Structured Text

Example 8-8. Extracting plain text from HTML

patterns = (r'<!--.*?-->'), # comments
 r'<script.*?</script>, # scripts
 r'<[^<>]*>), # other tags
)

def skip_to_body(string):
 matchobj = re.search('<body.*?>', string, re.I)
 return string[matchobj.end():] if matchobj else string

def remove_pats(string, pats):
 for pat in pats:
 string = re.sub(pat,' ', string, flags=re.I|re.S)
 return string

def remove_html(string)
 return remove_pats(string, patterns)

HTML pattern matching is notoriously tricky. In HTML patterns, even
nongreedy matches often consume too many of the target string’s
characters. If you look back at the regular expression patterns in the
preceding examples, you’ll see that there are a lot of places where a
character set is used to exclude one or two characters. The excluded
characters appear right after the repetition characters (for example,
[^>]*?>, which matches everything up to the first >). Typically it is angle
brackets that govern the structure of the match, but quotes and other
delimiting characters play an important role too. If you are having trou-
ble with a pattern that matches too much, try using this technique to
restrict the repetitions it contains.

Structured HTML Processing
The techniques and examples we’ve seen so far in this chapter are fairly crude. Many
kinds of complications arise that make programs using them limited in scope and
brittle. In this section we consider the source of the problems and explore the use of a
Python module that solves some of them.

Problems with HTML pattern matching

Extracting the contents of header tags is one of the simplest things you might do with
an HTML document. Even so, the expressions we used to accomplish that were not
simple. Attempts to use regular expressions to selectively extract other parts of HTML
pages will often run into more substantive difficulties.

One of the most irritating problems is that the people or programs producing the web
pages from which you are extracting data may change the markup slightly after you’ve
written your code. Where there was a space, for instance, there might be a “nonbreaking
space” entity, written in HTML as . Some spaces may be eliminated, and line

HTML | 297

breaks might be moved or deleted. Attributes in tags may also be added, removed, or
changed. Every time this happens, you may have to update your program to accom-
modate the changes.

The real problem with HTML tags, though, is that they are nested. An li tag inside an
ol tag can contain another ol tag that contains li tags, and so on. Likewise, there can
be all sorts of span and div tags embedded inside other span and div tags. The documents
are fundamentally tree-structured, like the example of the suffix tree in Chapter 4. Trees
are recursive structures, so they can’t be processed by linear methods.

In fact, browsers actually do convert the HTML they obtain from web servers into tree-
structured data, based on a standardized “document object model.” In that model, each
element has attributes, content, and children, just like the tags we’ve been describing.
Because elements have children, the document object model is organized as a tree.

There are basic computer science techniques for handling recursive structures other
than the tree pattern we encountered in Chapter 4. However, these can’t handle HTML
generally, for the same reasons the other Python libraries can’t: many start tags in many
HTML documents do not have corresponding end tags, and many complex parts of
HTML files don’t fit the simple pattern of tags with an opening, optional content, and
a closing. Browsers must deal with these complexities, but it’s too big a challenge for
ordinary programming.

Structured HTML parsing: html.parser

Fortunately, Python’s library contains a class that can deal with messy HTML content.
Contained in the html.parser module, HTMLParser defines a framework that calls empty
methods at significant points in its parsing of HTML text. The framework is fully im-
plemented, though by itself it does nothing. All you have to do is define a subclass of
HTMLParser that overrides some of its methods with definitions that implement the
actions you want your application to perform.

The way to use your subclass is to create an instance of it (with no arguments), then
provide it text with the feed(string) method. This method implements a form of buf-
fering, so you can actually call it multiple times. When you are done feeding the
instance, you call close on it. Methods called by an HTMLParser instance when it en-
counters the corresponding HTML construct include:

handle_starttag(tag, attributes)
Called when <tag> is encountered, with tag the name of the tag (in lowercase) and
attributes a list of name/value pairs

handle_endtag(tag)
Called when </tag> is encountered, with tag the name of the tag (not including
the slash)

298 | Chapter 8: Structured Text

handle_startendtag(tag, attributes)
Called when a tag that is closed in its start tag is encountered (such as <hr/>), with
tag the name of the tag (in lowercase) and attributes a list of name/value pairs; if
not overridden, it calls handle_starttag and then handle_endtag

handle_data(data)
Called for text that is not a tag or something else special to HTML, with data a
string containing that text

handle_comment(data)
Called when a comment is encountered, with data the text of the comment

As a simple example, parsing <h1>a heading</h1> will result in the following calls:

handle_starttag('h1')
handle_data('a heading')
handle_endtag('h1')

There are a few other “handlers” that cover more obscure HTML items, which aren’t
mentioned here. Example 8-9 shows a subclass of HTMLParser that implements the out-
line generator in a more robust way than the one in Example 8-6.

Example 8-9. Using a subclass of html.parser.HTMLParser

class HTMLOutlineParser(html.parser.HTMLParser):
 """Show an indented outline of the headings in the HTML file provided as a command-line argument"""

 # HTMLParser converts tag to lowercase
 HeadingPat = re.compile('title|h([1-6])')
 Indent = 4

 def __init__(self):
 super().__init__()
 self.inheading = False

 def handle_starttag(self, tag, attrs):
 match = self.HeadingPat.match(tag)
 if match:
 self.inheading = True
 if match.group(1): # otherwise title & do nothing
 print('{0:{1}}[{2}]'.format(' ',
 self.Indent * int(match.group(1)),
 match.group(1)),
 end=' ')

 def handle_data(self, data):
 if self.inheading:
 print(data, end=' ')
 # end=' ' so printing stays on this line in case
 # parts of the heading are nested inside other
 # markup, such as <i></i>

 def handle_endtag(self, tag):
 if self.inheading and self.HeadingPat.match(tag):
 # assuming heading tags (h1, h2, ...) cannot be nested

HTML | 299

 print() # close tag
 self.inheading = False

if __name__ == '__main__':
 if len(sys.argv) != 2:
 print('Usage: prognam file.html')
 else:
 filename = testfile
 parser = HTMLOutlineParser()
 with open(filename, encoding='utf8') as file:
 contents = file.read()
 print('File contains', len(contents), 'bytes')
 parser.feed(contents)
 parser.close()

XML
XML stands for the Extensible Markup Language. It defines some basic syntactic rules
for tags, attributes, and content that are similar to, but stricter than, those in HTML.
What it doesn’t define are what tags and attributes a document can use. That’s the
extensible part: XML documents can contain any tags, attributes, and content. The tag
names, their allowable attributes, what kinds of tags can be nested in what other kinds
of tags, and other such details are specified by a schema written in a formal schema
language, such as Document Type Definition‡ and RELAX NG.§

Before looking at Python’s facilities for processing XML files, we’ll explore their
structure in more detail. We’ll also take a look at an XML datafile that we’ll use in
subsequent Python examples.

The Nature of XML
Roughly speaking, XML is the data equivalent of HTML. Its purpose is to support the
text-based representation of structured data in well-defined formats. A great deal of
data in bioinformatics, as well as in other fields, is available in XML form on the Web.

XML must adhere to very strict rules:

• The first line of an XML file is expected to specify the schema it uses.

• Tags with textual content must be completed by corresponding end tags.

• Attribute values must be quoted (single or double).

• A tag with no content may end with /> in place of a separate end tag.

‡ See http://www.w3.org/QA/Tips/Doctype and http://www.w3.org/QA/2002/04/valid-dtd-list.html.

§ See http://www.relaxng.org.

300 | Chapter 8: Structured Text

http://www.w3.org/QA/Tips/Doctype
http://www.w3.org/QA/2002/04/valid-dtd-list.html
http://www.relaxng.org

The regularity enforced by these rules makes parsing XML files straightforward. That
doesn’t mean you’ll want to write that code yourself, though, especially not when there
are Python library modules to do it for you.

Other representation languages used in bioinformatics, such as the Resource Descrip-
tion Framework (RDF)‖ and the related Web Ontology Language (OWL),# are based
on XML. Those languages are part of the more general Semantic Web* initiative. Var-
ious parsers and even logical deduction mechanisms are available for them.

A variety of approaches to parsing XML files are possible. Some parsers process an
entire file at once, while others parse incrementally. Some produce a tree structure that
represents the XML content, while others generate “events.”† (The subclass of
html.parser.HTMLParser defined in Example 8-9 implements simple event-based pro-
cessing.) The event-based model is particularly useful when a large amount of XML
text is to be searched for specific information. The tree-based model is appropriate
where many actions will be performed on the results of parsing the entire file. Some
modules can be used in several ways, and most have advanced features we won’t cover
here.

A parser understands a language’s grammar, but it leaves it up to other code to process
the syntactic elements it has extracted from its input. Python’s library contains several
event-based parsers, and XML’s highly constrained syntax makes parsing an XML file
straightforward. (Verifying that a schema’s rules are followed in addition to the basic
syntactic rules is a much more difficult challenge.) Parsing an XML file basically gen-
erates information about tag names, attribute name/value pairs, tag content, and the
nesting relationships among the tags. It is up to the application to interpret what all
that means.

Our main goal here is to demonstrate the nature of XML data and some of the ways it
can be processed. We’ll use two Python modules to parse some XML data downloaded
from the Web. One, xml.etree.cElementTree, creates a tree for subsequent use. The
other, xml.parsers.expat, is an interface to the event-based Expat C library.‡ The

‖ See http://www.w3.org/RDF.

#See http://www.w3.org/TR/owl-features, http://www.w3.org/TR/owl-guide, http://www.w3.org/TR/owl-ref,
and (for the new features introduced by OWL 2) http://www.w3.org/TR/2009/WD-owl2-new-features
-20090421.

* See http://www.w3.org/2001/sw/.

† We’ve seen this kind of choice before, in processing FASTA files. We had the option of reading in all the
sequences with their descriptions and then searching for sequences meeting certain criteria, or reading one
sequence at a time and stopping after locating the one(s) meeting those criteria. The advantages and
disadvantages here are the same. Processing an entire file means doing a lot of computation and producing
a large data structure that the program can then use for repeated actions. An event-based scan of a file could
potentially stop after a relatively small amount of processing and retrieve only a small amount of data;
however, getting different data later would mean reparsing the file.

‡ See http://www.libexpat.org.

XML | 301

http://www.w3.org/RDF
http://www.w3.org/TR/owl-features
http://www.w3.org/TR/owl-guide
http://www.w3.org/TR/owl-ref
http://www.w3.org/TR/2009/WD-owl2-new-features-20090421
http://www.w3.org/TR/2009/WD-owl2-new-features-20090421
http://www.w3.org/2001/sw/
http://www.libexpat.org

cElementTree module will detect violations of the XML file’s schema, but Expat will
not—it is a nonvalidating parser. The xml package contains several other parsers, in-
cluding some that work with the same document object model (DOM) that browsers
use when interpreting HTML and executing JavaScript, but we won’t cover those here.

An XML File for a Complete Genome
For this part’s examples we are going to use an XML file representing an entire bacterial
genome. The steps followed to obtain this are as follows (you can choose your own
organism, of course; we’re using a microbe genome because its XML file is of manage-
able size):

1. In a browser, go to http://www.ncbi.nlm.nih.gov/genomes/MICROBES/microbial
_taxtree.html.

2. Expand some taxa (in green) until you see individual organism names (in blue),
e.g., the class Acidobacteria, about nine lines down.

3. Click on an organism name. For Acidobacteria only one organism name is shown:
Acidobacteria capsulatum.

4. Click on the organism to get a page with an extensive summary of the information
available about the organism and its genome.

5. Below the tabs visible in the upper-left corner, select “Protein Table” from the pull-
down that is showing “Overview.”

6. From the “Send to” pull-down, select “File.”

7. Save the file wherever you want, perhaps naming it with the “UID” of the organism,
as shown in the page title, and the extension .xml.

This will be a fairly large file. (The one for Acidobacteria capsulatum was 44 MB.) It has
a rather deeply nested structure, which is summarized next. While you read the sum-
mary, it will help to refer to the display in the web page from which you downloaded
the data to see how the two correspond.

The outline of the saved file is as follows. The numbers of lines listed are rough counts
for the file Acidobacteria capsulatum, which identifies 3,377 proteins. The file consists
of:

• The two lines identifying the XML version and the document schema that usually
appear at the beginning of an XML file

• A few top-level start tags

• Some tags inside a Bioseq-set_descr tag that provide basic information about the
organism, its source, publication data, etc. (1,500 lines)

• Some tags inside a Bioseq-set_seq-set tag that provide information about the
genome (142,000 lines)

302 | Chapter 8: Structured Text

http://www.ncbi.nlm.nih.gov/genomes/MICROBES/microbial_taxtree.html
http://www.ncbi.nlm.nih.gov/genomes/MICROBES/microbial_taxtree.html

• A Seq-entry tag for each protein that describes that protein’s sequence (600,000
lines)

• A Seq-annot tag for each protein that describes its annotations (155,000 lines)

The file uses a over 200 distinct tags and over 500,000 tags in total, as well as some
attributes and tag content.

The following Python script counted the tags and distinct tags. It is very
important to appreciate the power of the tools you are acquiring and
learn to use them not just for what you consider “programming,” but
for small one-time tasks as well):

import re
pat = re.compile((r'</([A-Za-z-_]+)')
with open(filename) as file:
 closetags = pat.findall(file.read())
print('The number of total tags was {}, ' +
 'of which {} were distinct' .format(len(closetags), len(set(closetags)))

The ElementTree Module
The xml.etree.ElementTree module provides an easy way to read an entire XML docu-
ment and create objects to represent its elements, attributes, and content. Its only
disadvantage is the same as its strength: it reads the entire file. Whether to use an event-
based parser or one that processes the entire file and creates a data structure from its
contents depends on what your application will do with the parsed XML. If you had
to process an extremely large XML document, or use the objects for many smaller ones
together, reading their entire contents could cause problems. Searching for a particular
element, for example, would suggest the use of an event-based parser.

For extreme situations or complicated processing patterns, one of Python’s XML li-
braries that we aren’t covering here might be more appropriate. There are also a few
more advanced features of the ElementTree module that would allow partial processing
to get something of a compromise between the two approaches.

Two Versions of the ElementTree Module
There are actually two versions of the ElementTree module: xml.etree.ElementTree and
xml.etree.cElementTree. The first is written in Python, and the second is written in C
with a Python interface. The C version’s parser is quite a bit faster than the Python one,
and the behavior of some of its methods differs in a few advantageous ways. In partic-
ular, its functions that return requested nodes return generators that produce them one
at a time, whereas the Python versions return complete lists. For large numbers of
nodes, a generator would be much more efficient. There being in this case no particular
advantage to using the Python version or disadvantage to using the C version, we’ll use
the C one.

XML | 303

To avoid confusion between the module ElementTree and the class ElementTree.Element
Tree, both in this discussion and the code examples, we’ll import the module with the
name Etree. In addition to being a shorter name, creating this alias for the actual module
has the more significant benefit that the code will be able to work with either version
of the module—we just have to change the import statement to import from whichever
of xml.etree.ElementTree and xml.etree.cElementTree we want to use:

>>> import xml.etree.cElementTree as ETree
>>> ETree
<module 'xml.etree.cElementTree' from
'/usr/local/lib/python3.1/xml/etree/cElementTree.py'>

Getting started with ElementTree

An instance of the class ETree.ElementTree represents a tree with features correspond-
ing to the various aspects of XML. The tree consists of ETree.Element instances. Most
of the ETree.ElementTree instance methods simply call the same method on its root
Element—an example of delegation, as discussed in “Class decomposi-
tion” on page 186 (Chapter 5)—but a few provide additional functionality.

The module function ETree.parse(source) parses the XML text from source, a filename
or a file open for reading, and returns an instance of ETree.ElementTree. To write a tree
to a file, call its method write(destination), where destination is either a filename or
a file open for writing.

ElementTrees are quite general and can be used for pretty much any kind of tree-
structured information. The module provides functions for building a tree program-
matically, which you can use to convert hierarchical but non-XML data into XML, or
to structure data your program is generating in preparation for its output as XML. You
could also use it to construct trees for the program’s own internal purposes that have
nothing to do with XML. These are powerful capabilities, but we won’t be discussing
them any further. Our focus here is on manipulation of the tree created by the parsing
functions.

We’ll start by creating a tree for an XML genome file, such as one downloaded as
described earlier in “An XML File for a Complete Genome” on page 302. We can see
in Example 8-10 that ETree.parse returns an instance of ElementTree. The root of the
tree is an Element. We can also see that while ElementTree instances don’t give us any-
thing more than the default information when the interpreter prints them, Element
instances at least show the names of their tags.

Example 8-10. Basic ElementTree manipulations

>>> source = 'data/Entrez/sequences-24289.xml'
>>> tree = ETree.parse(source)
>>> tree
<ElementTree object at 0x18a3e70>
>>> root = tree.getroot()

304 | Chapter 8: Structured Text

>>> root
<Element 'Bioseq-set' at 0x18a7188>

The XML-related features of an Element are accessed as Python attributes, not with
method calls. There are four:

tag
The name of the tag, as shown in the printout in Example 8-10

attrib
A dictionary of attribute names and values as extracted from the start tag

text
The text, if any, that appeared between the tag and its end tag

tail
The text appearing between the end tag and the start of the next tag, whatever that
tag is

The Python documentation warns that although the current implementations use
actual Python dictionaries for Element.attrib, that may not always be the case. It is
recommended that the following Element methods be used instead of directly accessing
attrib. They are defined to perform the same actions as the corresponding dictionary
methods:

• items()

• keys()

• values()

• get(key[, default])

• set(key, value)

Navigating around an ElementTree

Pretty much everything a program does with a tree involves navigating around its nodes.
Sometimes a program takes steps to get to a specific node. Sometimes it searches for
one that meets specific criteria. Other times it traverses the entire tree, doing something
to each node encountered (a Recursive Tree iteration, as described in Chapter 4).
ElementTree and Element provide the following methods for these kinds of operations:

find(target)
Returns the first (immediate) child matching target

findall(target)
Returns a list of all the (immediate) children matching target, in the order in which
they appear in the document

XML | 305

findtext(target[, default=None])
Returns the text of the first (immediate) child matching target, or default if no
such element was found; an empty string is returned if a matching target is found
that has no text content

getiterator([tag=None])
Returns a generator that produces, from an element and all its descendants, all
elements whose tag is tag; if tag=None or tag='*' the generator returns all of the
elements

In addition, Element, but not ElementTree, provides the following method for navigating
the tree recursively:

getchildren()
Returns a list of all the subelements of Element, in the order in which their tags
appeared in the document

ElementTree, but not Element, also provides the getroot() method to get its root
Element.

Example 8-11 shows a function based on the Filtered Count template from Chap-
ter 4 (“Nested iterations” on page 126). The definition counts the number of nodes in
an ElementTree subtree whose tag has a specified name.

Example 8-11. Counting the nodes for a specified tag

def count_nodes(element, tagname):
 """Return the number of tagname nodes in the tree rooted at element"""
 count = 0
 for node in element.getiterator(tagnames):
 count += 1
 return count

Initial examination of the XML seemed to indicate that there was a series of
Seq-entry tags, first one for the entire genome and then one for each protein. These
contained core information. Later in the file there is a series of Seq-feat tags that follow
in the file with sequence annotations. Let’s see whether there are the same number of
Seq-entry tags as Seq-feat tags:

>>> count_nodes(tree, 'Seq-entry')
3379
>>> count_nodes(tree, 'Seq-feat')
10360
>>>

Apparently not. This is an easy way to interactively investigate simple hypotheses you
might have about the structure of a deeply nested and/or large XML file after some
preliminary examination using an editor. How about getting all tag names in the file,
avoiding duplicates by using a set?

>>> tags = set()
>>> for element in tree.getiterator():

306 | Chapter 8: Structured Text

 tags.add(element.tag)
>>> len(tags)
208

Let’s count how many times each tag occurs:

>>> counts = {}
>>> for element in tree.getiterator():
 counts[element.tag] = 1 + counts.get(element.tag, 0)

Since there are 208 keys in this dictionary, we don’t want to print the whole thing. We
can first check the results obtained this way against the results obtained earlier using
count_nodes:

>>> counts['Seq-entry']
3379
>>> counts['Seq-feat']
10360

Now let’s print out the counts of the 20 most common tags. This is another way to
explore the nature of an XML file. There’s no guarantee that a frequently occurring tag
is only used inside a particular other tag—it could be used all over the file—but at least
these counts are a hint. With some more work we could write a program that counted
how many times each tag appeared within each other tag, and so on:

>>> sortedtags = sorted(counts.items(),
 key=lambda item: item[1],
 reverse=True)
>>> for item in sortedtags[:20]:
 print(item)
('Object-id', 27150)
('Seq-id', 23872)
('Object-id_str', 20277)
('Seq-id_gi', 17116)
('User-field', 16898)
('User-field_data', 16898)
('User-field_label', 16898)
('Seq-loc', 13739)
('Seqdesc', 13520)
('SeqFeatData', 10384)
('Seq-interval_to', 10361)
('Seq-interval_id', 10361)
('Seq-interval_from', 10361)
('Seq-loc_int', 10361)
('Seq-interval', 10361)
('Seq-feat_location', 10360)
('Seq-feat_data', 10360)
('Seq-feat', 10360)
('Na-strand', 6984)
('Seq-interval_strand', 6984)

Here are a few examples of method calls using the tree created in Example 8-10:

all elements with protein names
>>> proteins = root.getiterator('Seqdesc_title')
>>> protein1 = next(proteins)

XML | 307

>>> protein1 # first protein is actually the whole genome
<Element 'Seqdesc_title' at 0x1965218>
>>> protein1.text
'Acidobacterium capsulatum ATCC 51196, complete genome'
>>> next(proteins).text
'YkgG family protein [Acidobacterium capsulatum ATCC 51196]'
>>> next(proteins).text
'iron-sulfur cluster binding protein [Acidobacterium capsulatum ATCC 51196]'
>>> prot = next(proteins)
>>> print_element(prot)
 Seqdesc_title: cysteine-rich domain protein [Acidobacterium capsulatum ATCC 51196]

Example 8-12 shows a pair of function definitions used to print a subtree starting at a
given Element. This is a straightforward use of the Recursive Tree Iteration template
like the one in Example 4-26 (see “Recursive iterations” on page 128).

Example 8-12. Functions for printing subtree of an ElementTree

def print_element(element, level=1):
 """Print tag, content, and attributes of element, indented level
 spaces, but only if element has text or attributes"""
 # ignoring tail
 if element.text and not element.text.isspace():
 print(' '*level, element.tag, ': ', element.text.strip(), sep='')
 elif element.attrib:
 print(' '*level, element.tag)
 for attr in sorted(element.keys()):
 print(' '*(level+2), attr, '=', element.get(attr))

def print_subtree(element, level = 0):
 """Print the tags, attributes, and contents of element and all of its children,
 in depth-first order, starting with an indentation of level spaces"""
 print_element(element, level)
 for subelt in element.getchildren():
 print_subtree(subelt, level+1)

Example 8-13 shows what a printout using these functions would look like.

Example 8-13. Printing an ElementTree subtree

>>> descrs = root.getiterator('Seqdesc_source')
>>> print_subtree(next(descrs))
Seqdesc_source
 BioSource
 BioSource_genome: 1
 value = genomic
 BioSource_org
 Org-ref
 Org-ref_taxname: Acidobacterium capsulatum ATCC 51196
 Org-ref_db
 Dbtag
 Dbtag_db: taxon
 Dbtag_tag
 Object-id
 Object-id_id: 240015

308 | Chapter 8: Structured Text

 Org-ref_orgname
 OrgName
 OrgName_name
 OrgName_name_binomial
 BinomialOrgName
 BinomialOrgName_genus: Acidobacterium
 BinomialOrgName_species: capsulatum
 OrgName_mod
 OrgMod
 OrgMod_subtype: 2
 value = strain
 OrgMod_subname: ATCC 51196
 OrgMod
 OrgMod_subtype: 35
 value = culture-collection
 OrgMod_subname: ATCC:51196
 OrgMod
 OrgMod_subtype: 255
 value = other
 OrgMod_subname: type strain of Acidobacterium capsulatum
 OrgName_lineage: Bacteria; Acidobacteria; Acidobacteriales;
Acidobacteriaceae; Acidobacterium
 OrgName_gcode: 11
 OrgName_div: BCT

Many other manipulations are possible using the small set of methods
documented earlier. Experiment with them using a tree like this. While
experimenting, it is best to assign names to results rather than just hav-
ing them print in the interpreter—you never know how many thousands
of lines will result from a method call! If you assign a name, you can
check its length, or its first element, or some other feature before trying
to print anything. You could also write functions that print only a limi-
ted number of items.

Example 8-14 illustrates a function that prints the information about a limited number
of proteins starting at a specified number. This calls the print_subtree function of
Example 8-12 and relies on the information that each protein’s description’s outermost
tag is called Seq-entry.

Example 8-14. Printing information for a range of proteins

def describe_proteins(tree, limit=2, start=1):
 # start at 1 because 0 is the whole genome!
 iter = tree.getiterator('Seq-entry')
 # +1 to always skip entry for entire genome
 for n in range(start+1):
 next(iter)
 for k in range(limit+1):
 print('{:4}'.format(k+start))
 print_subtree(next(iter), 6)

XML | 309

Event-Based Processing
Before exploring one of Python’s event-based XML parsers, we need to take an excur-
sion to confront some unusual properties of event-based processing in general.

Function calls, exceptions, and the call stack

The usual pattern of function calling has the following characteristics:

1. When function A calls function B, it passes values for function B’s parameters.

2. Function B returns a value to function A. (Either it executes all of its statements
without encountering a return statement, in which case it returns None, or at some
point it executes a return statement.)

3. When function B returns, function A continues from where it called function B.

Function calls are implemented by adding a data structure called a frame to the call
stack for each function called. That frame contains (at least) the following critical
information:

• Bindings for the function’s local variables

• The address in the computer’s memory of the machine-level instruction at which
the function should continue when a function it has called returns to it

• The frame it should return to when it executes a return statement or finishes
executing all of its statements

These stack frames implement the usual pattern of function call and return. When a
function returns, its frame is “removed” from the stack. Actually, the only thing that
really happens is that an index representing the current top of the stack is incremented
so that it references the previous stack frame. If the function of the previous frame then
calls another function, the new function’s frame simply overwrites the frame of the one
that just returned. Figure 8-1 illustrates the process.

Figure 8-1. Function calling and stack frames

310 | Chapter 8: Structured Text

When an exception is raised, it returns control to somewhere further back in the stack.
Unless the exception is caught within the same function in which it was raised, frames
are removed from the stack, in a process called unwinding, until an except clause is
encountered that matches the exception raised. This breaks the normal pattern of
function call and return, since some of the “deeper” functions are simply abandoned
without having a chance to execute the rest of their statements and return normally.

In the normal operation of the stack, each function returns control to the one that called
it by making the caller’s stack frame the current one. For control to return to the
except clause of a try statement requires that there be another kind of entry in the stack
to represent the clause apart from the stack frame of the function that contains the
statement. When an exception is raised, Python unwinds the stack, checking every
except clause entry along the way until it finds one that specified an exception class
that matches the type of the exception being processed. Finally, it starts executing the
statements in that except clause.

Almost everything about exception handling is the reverse of function calling:

• Each function call adds one frame to the stack, whereas raising an exception
removes one or more frames from the stack.

• Function calls pass control to a known piece of code, whereas raising an exception
tosses control up the stack with no idea of where it will end up.

• In the absence of an exception that bypasses the function call, a function returns
control to where it was called from, whereas control is never returned to where the
exception was raised.

In effect, raising an exception “calls” backward in the stack with a single argument to
an unknown location, causing all the intervening stack frames to be discarded (see
Figure 8-2). This is a strange beast indeed, yet one that plays critical roles. The lack of
a direct connection between where the exception is raised and where it is caught, and
the reverse direction of the frame movement in exception handling, is what makes it
such a valuable tool.

The primary benefit of an exception handling mechanism is that it allows the separation
of the code that detects an exceptional situation from the code that knows what to do
about it. In particular, it allows library code to raise exceptions that are caught by
application code that has called into the library. The library code that detects the ex-
ceptional situations will rarely know what actions it would be appropriate to take, while
the code using the library will rarely be able to detect the exceptional situations.

Callbacks: Reversed function calls

There is another kind of reversed function call, known as a callback. It is not disruptive
the way exceptions are: it is really just an ordinary function call used in a special way.
Callbacks are a major feature of event-based processing where the processor, typically
something from a library, calls a specific application function each time a corresponding

XML | 311

event occurs during its processing. This places the processor in control of the compu-
tation while still allowing the application to define the actions to take at well-defined
points.

Graphical user interface systems are the archetypal example. These systems monitor
input devices such as mice and keyboards, constructing objects representing “events”
for each keystroke and mouse click. It looks up each event in a table (a dictionary or
something similar) to retrieve a description of the action to take in response to the event,
usually expressed as a function to call. One of the challenges of this kind of architecture

Figure 8-2. Stack frames and exceptions

312 | Chapter 8: Structured Text

is giving application code a way to specify which function should be called when a
particular icon is clicked, key is pressed, and so on.

Callbacks are the mechanism that allows the application to respond to processor events.
The application defines functions and binds events to them. Then it turns control over
to the event-based system. When an event occurs, the system “calls back” to the ap-
plication via the function corresponding to the event. The technical definition of the
system and its callback mechanism specifies what arguments will be passed to the
function call through this mechanism. Some systems also allow applications to register
additional values to be passed back to a function when the corresponding event occurs.

No new mechanisms are required to implement a callback system. Event-based pro-
cessing simply reverses the roles of library and application code. The library provides
functions for registering callback functions. After the application registers its callbacks
with the event-based system, it passes control to it. Subsequently, the application func-
tions play the kind of passive role that library functions usually do. The order in which
they are called is undetermined since the calls are in response to input to the event-
based system. Figure 8-3 illustrates this arrangement.

Figure 8-3. Event-driven architecture

XML | 313

Once you understand all of this, you’ll see that the major difference in
programming an application with an event-based system is the initial
setup that associates functions with events. Some systems use assign-
ment statements to do the binding, while others use function calls.
Either way, the principle is the same.

Note that callbacks don’t have to be functions named with a def state-
ment—they can be “anonymous” functions created with a lambda ex-
pression. Just remember that lambda expressions cannot themselves
include statements, though there’s no problem with them calling func-
tions that do. Like nested function definitions, lambda expressions have
access to all the names in the scope in which they are defined. Therefore,
they can pass information from the scope they are in as an argument to
the function in another scope.

In a way, the html.parser.HTMLParser class we looked at earlier in this chapter imple-
ments event-based processing. Every time one of its instances encounters a tag in the
HTML text it is parsing, it calls the method handle_starttag. Every time it encounters
a closing tag, it calls handle_endtag. To implement an application using this class, you
implement a subclass and override the class’s “do-nothing” methods with definitions
that perform your application’s actions. This is a kind of event-based processing, with
each kind of thing the parser recognizes causing the corresponding method to be
invoked.

It feels as if html.parser.HTMLParser is in control, not your class, because it does all the
parsing and event handling; your subclass just defines what to do with each event. In
reality, though, the instance of your subclass does the parsing and event handling. It
uses methods inherited from HTMLParser, including ones you may not even know about,
but there is only one object doing the work. (In true event-based processing there is
one object that generates events and calls event handlers and a separate object that
handles the events.)

Programming for an event-based processor

Event-based architectures confront the programmer using them with two interesting
challenges:

• How to stop the processing

• How to maintain application state between callbacks

These two problems stem from the same source. Typical applications are coherent in
the sense that their conditionals, loops, iterations, and function calls constitute a seam-
less flow of computation. However, the application side of event-driven systems is
fragmented: its functions are called by other code, at unpredictable times, and under
unpredictable circumstances.

314 | Chapter 8: Structured Text

To set things up so an application exits in response to a certain event, you can simply
have it call sys.exit from the callback function. However, it is sometimes the case that
the application wants to take back control from the event-based system. Doing so re-
quires returning past where the event loop was invoked, back into the application code.
We can do this by raising an exception in a callback and catching it where the event
system was invoked:

def stop(args):
 raise StopIteration

set up callbacks, etc.
 try:
 call_external_event_loop()
 except StopIteration:
 pass
do more

The code is straightforward, except that its try statement looks misleadingly like a
typical one designed to handle errors. StopIteration was chosen as the exception class
instead of the more general Exception to provide at least a hint of the purpose of the
try. The strange function stop, which simply throws the exception, would be registered
as the callback for an event. Unless something in the event processor happens to catch
StopIteration, as soon as stop is invoked from the event loop it will throw the excep-
tion. The stack will then be unwound all the way through the event loop and back to
the try statement that invoked it—awkward, but effective.

The second problem requires a way for separate functions to share state. Normally,
names are bound to values through function calls and assignment statements. The
names in one function are independent of the names in any other function, even if they
are spelled the same. Likewise, names assigned inside a function are independent of
names assigned at the top level of a module that contains it. Event-based architectures
present a problem for this kind of arrangement because the application functions don’t
call each other, but instead are called by the external system. They are therefore denied
the function call arguments mechanism by which they normally pass information to
each other.

We addressed this problem earlier by using a class to encapsulate all the necessary state
together with the methods that manipulate it. Many methods of the GenBank parser
class we created in Chapter 5 (see Example 5-4 and the surrounding discussion) used
the same variables. Instead of cluttering up the code with many parameters in method
definitions and arguments in method calls, all the definitions just accessed the fields of
the instance. A method of a subclass of html.parser.HTMLParser may need values com-
puted in a previous call or in a call to a different event-handling method. Storing values
in the fields of an instance makes them available to all the methods of the instance’s
class, whatever happens between calls to them.

GenBankParser was an ordinary class that defined all its own methods. The
HTMLOutlineParser class that we defined in Example 8-9 is a subclass of the class that

XML | 315

generates the events. In both cases, all calls stay within the context of a single instance.
When an external event-based processor is used, we need a way to tie the event handlers
to instance state. Python gives us two easy ways to do just that:

• Define one function inside another (usually with a lambda expression, but one def
statement can appear inside another). The inner function, when executed, has full
access to the local state of the function in which it was defined. If the outer function
is a method, the inner function can access the instance through the name self, just
as the outer method can.

• Use a bound method. You have undoubtedly seen interpreter output of the form:

<bound method ClassName.method_name of object>

This is what you get when you type

>>> name.method_name

with no parentheses, where name is the name of an instance of ClassName and
method_name is the name of a method of ClassName. The way this works might sur-
prise you at first, but it is just binding at work as usual. Because method_name is
accessed through the value of an instance, its value is the value that name has within
the instance’s namespace, with self bound to that instance. In other words, a
bound method carries around with it the instance to which it is bound.

Example 8-15 presents a tiny class that demonstrates how these two approaches work.

Example 8-15. Access to outer scope from inner functions

class Value:
 """Hold a value, demonstrating some aspects of nested scope"""
 def __init__(self, v=None):
 self.val = v

 def get(self):
 return self.val

 def set(self, v):
 self.val = v

 def setter(self):
 """Return a function that can be called to change the value held by the instance"""
 return lambda newval: self.set(newval)

 def __str__(self):
 return str(self.get())

 def __repr__(self):
 return 'value({})'.format(self.get())

>>> v = Value()
>>> v
value(None)
>>> v.set(0)

316 | Chapter 8: Structured Text

>>> v
value(0)
>>> fn = v.setter() # with parentheses
>>> fn(9)
>>> v
value(9)

The function returned by Value.setter is an ordinary function with one parameter, not
a method. When it is called, it calls self.set with its parameter as the argument. The
point of this is that every function (and method) has access to all the names available
where it is defined. If it is defined inside another function (or method), it has access to
that other function’s parameters and to any names the other function has assigned.
This demonstrates the first of the previously mentioned techniques. Using the same
Value class, here’s a demonstration of the second technique:

>>> fn = v.set # no parentheses
>>> fn
<bound method value.set of value(9)>
>>> fn(4)
>>> v
value(4)

expat
The xml.parsers.expat module is a straightforward incremental event-based parser
based on the widely used Expat C library.§ To use it, you define a few callback functions,
create an instance of a parser object, assign some of its fields to your callback functions,
and feed the parser text. The text can be fed all at once or in segments. To create a new
instance, use the following method:

xml.parsers.expat.ParserCreate([encoding])
Creates an instance of xml.parsers.expat.xmlparser for text with the encoding
specified by encoding. encoding defaults to None, with the only other options
being 'UTF-8', 'UTF-16', 'ISO-8859-1' (Latin1), and 'ASCII'.

To parse XML text, use one of the following two methods with the instance returned
from ParserCreate:

Parse(string[, endflag])
Parses string, which may be empty; endflag (default False) must be True on the
last call to this method

ParseFile(readable)
Parses the contents of readable, which can be any object that provides the method
read(nbytes); since it reads bytes, if readable is an opened file, it must have been
opened in binary mode

§ See http://www.libexpat.org.

XML | 317

http://www.libexpat.org

The most common event handlers are similar to the event-handling methods of
html.parser.HTMLParser, because HTML is similar to (though much less well-
structured than) XML. However, they are fields, not methods: you assign them rather
than overriding them in a subclass. Their values are functions.

Remember, functions (including lambda expressions) are objects, ob-
jects are values, values can be named, and fields of an instance are one
kind of name. A function can therefore be assigned as the value of a field
of an instance.

The three event handler fields that will serve most needs are as follows, with parser an
instance of xml.parsers.expat.xmlparser:

StartElementHandler
The function to be called when a start tag is encountered, with its first argument
the name of the tag and its second a dictionary of attribute names and values

StopElementHandler
The function to be called when an end tag is encountered, with the name of the
tag as its sole argument

CharacterDataHandler
The function to be called for text encountered outside of a start or end tag, with
the text as its sole argument

Other than callbacks, the instance has a number of fields that control its behavior, most
of which are fairly technical. This one is worth knowing about:

buffer_text
Controls whether text parsing should stop at every newline (if False, the default),
calling CharacterDataHander, or should join consecutive text lines together and pass
them as one large string to CharacterDataHander; this can be set at any time, even
after some text has been parsed, and can make parsing considerably more efficient

Obtaining a single piece of information

We’ll start with something simple. We downloaded this enormous file, but we want
to extract the content of just one tag from it. Example 8-16 shows how we would extract
the value of the first (and, as it turns out, the only) occurrence of the tag
<Seqdesc_title>. It uses the exception handling trick discussed earlier to stop the pro-
gram. The program is simple because it doesn’t need to keep state between callbacks,
and all it does when it receives the StopIteration exception is print the information
that was included in the exception when it was created. This assigns event handlers to
lambda expressions inside its function definitions: while the parameters of a particular
kind of handler are predefined, the lambda expression doesn’t have to use them all,
and it can call other functions with any combination of argument values.

318 | Chapter 8: Structured Text

Example 8-16. Getting content from a specified XML tag

import xml.parsers.expat

def handle_start(p, target, name):
 """Install data handler when target tag is encountered"""
 if name == target:
 # now install handler for data tag
 p.CharacterDataHandler = lambda data: return_data(data)

def return_data(data):
 """Stop searching, since the target has been found;
 installed when the target start tag has been encountered"""
 raise StopIteration(data)

def lookup(filename, target):
 p = xml.parsers.expat.ParserCreate()
 # install handler for start tags
 p.StartElementHandler = \
 lambda name, attrs: handle_start(p, target, name)
 # one way to "forward" a parameter to an outside function

 with open(filename) as file:
 try:
 while True:
 p.Parse(file.read(2000)) # read 2000 bytes at a time
 except StopIteration as stop: # expected!
 return str(stop)

Extracting a few pieces of data

Next, we’ll extract the genus and species names of the organism whose genome is in
the file. The XML for this looks like:

<OrgName_name_binomial>
 <BinomialOrgName>
 <BinomialOrgName_genus>Acidobacterium</BinomialOrgName_genus>
 <BinomialOrgName_species>capsulatum</BinomialOrgName_species>
 </BinomialOrgName>
</OrgName_name_binomial>

Example 8-17 shows an implementation similar to that in the previous example. What’s
different about this one is that we can’t just stop when we find one tag—we need to
find a second one too (first the genus, then the species). Because we need to maintain
state between callbacks, we must define a class and assign the callback fields to methods
of one of its instances. The code starts by installing the typical three expat parser call-
backs. This demonstrates the way expat is typically used.

XML | 319

Example 8-17. Getting the content of several XML tags

import xml.parsers.expat

class GenomeBinomialParser:

 ChunkSize = 4000 # number of bytes to read at a time

 def __init__(self):
 self.parser = xml.parsers.expat.ParserCreate()

 self.parser.pbuffer_text = True
 # don't break text content at line breaks

 # Install the three standard callbacks
 self.parser.pStartElementHandler = self.start_element
 self.parser.pEndElementHandler = self.end_element
 self.parser.pCharacterDataHandler = self.char_text

 def start_element(self, name, attrs):
 """Record name of start tag just encountered"""
 self.current_tag = name # ignore attrs

 def end_element(self, name):
 """Stop parsing when species name has been encountered"""
 if name == 'BinomialOrgName_species':
 raise StopIteration

 def char_text(self, text):
 """If current tag is for genus or species, record its content"""
 if not text.isspace():
 # checking for whitespace because this function gets called
 # for both tag content and whitespace between the end of
 # one tag and the beginning of the next
 if self.current_tag == 'BinomialOrgName_genus':
 self.genus = text.strip()
 elif self.current_tag == 'BinomialOrgName_species':
 self.species = text.strip()

 def find_binomial(self, filename):
 """Return (genus, species) as found in the XML genome file named filename"""

 # read only ChunkSize characters at a time in case we find it relatively early
 # and to not take up an enormous amount of memory with file contents
 with open(filename) as file:
 try:
 while True:
 self.parser.Parse(file.read(self.ChunkSize))
 except StopIteration:
 pass
 return self.genus, self.species

if __name__ == '__main__':
 p = GenomeBinomialParser()
 print(p.find_binomial(sys.argv[1] if len(sys.argv) > 1
 else 'data/XML/Example.xml'))

320 | Chapter 8: Structured Text

Getting the content of all tags with a specified name

In the XML file we are parsing, the names of the proteins are inside tags named
Seqdesc_title. Example 8-18 shows a class that extracts a list of the names of all the
proteins in the file.

Example 8-18. Getting content from all occurrences of a tag

import sys
import xml.parsers.expat

class GenomeProteinNameParser:

 def __init__(self):
 self.titleflag = False
 self.proteins = [] # a form of collect iteration
 self.count = 0 # just for user feedback
 self.parser = xml.parsers.expat.ParserCreate()
 self.parser.buffer_text = True
 # don't break text content at line breaks

 self.parser.StartElementHandler = self.start_element
 self.parser.EndElementHandler = self.end_element
 self.parser.CharacterDataHandler = self.char_data

 def start_element(self, name, attrs):
 """Keep a count of all Seqdesc_title tags and print a period to the terminal
 every 250 tags; if name == 'Seqdesc_title', turn on titleflag & ignore attrs"""
 if name is Seqdesc_title, ignoring attrs"""
 if name == 'Seqdesc_title':
 self.titleflag = True
 self.count += 1
 if not self.count % 250:
 print(self.count, file=sys.stderr)
 # sys.stderr so not buffered

 def end_element(self, name):
 """Set titleflag to False as soon as any end element is encountered"""
 self.titleflag = False # regardless of close tag

 def char_data(self, text):
 """If last start tag was a Seqdesc_title, then add text to the list of protein names"""
 if self.titleflag: # turned on by start_element
 self.proteins.append(text.strip())

 def get_protein_names_from_file(self, filename):
 print('Parsing...')
 with open(filename, 'rb') as file: # ParseFile requires bytes
 self.parser.ParseFile(file) # parse entire file
 return self.proteins

def print_protein_names(filename, number):
 p = GenomeProteinNameParser()
 protein_names = p.get_protein_names_from_file(filename)
print('\n\nFound {} proteins; the first {} are:\n'.

XML | 321

 format(len(protein_names), number))
 for protein_name in protein_names[:10]:
 print(protein_name)

if __name__ == '__main__':
 default_filename = 'data/XML/AcidobacteriumCapsulatum.xml'
 print_protein_names(sys.argv[1] if len(sys.argv) > 1
 else default_filename,
 sys.argv[2] if len(sys.argv) > 2 else 10)

The output from running this program with no arguments is:

Parsing...
250 ...
500 ...
750 ...
1000 ...
1250 ...
1500 ...
1750 ...
2000 ...
2250 ...
2500 ...
2750 ...
3000 ...
3250 ...

Found 3383 proteins; the first 10 are:

Acidobacterium capsulatum ATCC 51196, complete genome.
cellulose synthase operon protein YhjQ [Acidobacterium capsulatum ATCC 51196]
hypothetical protein ACP_0957 [Acidobacterium capsulatum ATCC 51196]
hypothetical protein ACP_0614 [Acidobacterium capsulatum ATCC 51196]
hypothetical protein ACP_0540 [Acidobacterium capsulatum ATCC 51196]
putative membrane protein [Acidobacterium capsulatum ATCC 51196]
hypothetical protein ACP_0928 [Acidobacterium capsulatum ATCC 51196]
type I restriction-modification system, S subunit [Acidobacterium capsulatum
ATCC 51196]
putative flp pilus assembly protein CpaB [Acidobacterium capsulatum ATCC 51196]
glycosyl hydrolase, family 3 [Acidobacterium capsulatum ATCC 51196]

Tips, Traps, and Tracebacks

Tips
• You don’t have to fit everything you are trying to do with HTML tags into a single

regular expression. You can use several, or you can use one or more together with
ordinary str methods.

• While developing a program, add functions for each step you recognize, even if
you don’t see anything for that step to do just yet. You can just use pass as the
entire body of the definition, or just have it return its argument. Later, as you extend

322 | Chapter 8: Structured Text

the program, you will often find that the structure is already there and you’ll just
have to expand the definitions of one or more existing functions.

• Once you’ve got a program working with a set of web pages you want to process,
make sure to try it on some similar web pages. Those experiments will often reveal
cases you didn’t handle in your regular expressions or function definitions, or bugs
present in your program that weren’t hit by the pages you were using initially.

Traps
• Don’t just print the results of accessing the children of an ElementTree element—

there could be thousands. First, assign a name to the result and check how many
there are.

Tracebacks
Here are a few representative error messages:

UnicodeDecodeError: 'ascii' codec can't decode byte 0xc2 in position 1784:
ordinal not in range(128)

An attempt was made to read a Unicode character from a file opened with the
default ASCII encoding rather than encoding='utf-8'.

xml.parsers.expat.ExpatError: not well-formed (invalid token): line 1, column 1
Invalid XML appears at the beginning of a file; perhaps a blank line.

Tips, Traps, and Tracebacks | 323

CHAPTER 9

Web Programming

This chapter introduces a variety of Python facilities for manipulating URLs, opening
documents in web browsers, submitting HTTP requests to web servers, and executing
programs on web servers to respond to HTTP requests. Along the way we will also look
at the foundations of the socket technology that underlies web interactions and the
basics of constructing HTML forms to use as an interface to server-based programs.

Manipulating URLs: urllib.parse
The urllib.parse module provides functions for manipulating URL strings. The gen-
eral form of a URL is:

scheme://network_location/path;parameters?query#fragment

The fragment, which doesn’t usually appear if the URL includes a query, is a reference
to a particular place within a web page. You may not have seen or noticed the
parameters portion of a URL before; it is not usually part of URLs visible to a browser’s
user, appearing—relatively rarely—as part of the value of href attributes in HTML tags.
The network_location can be further dissected into the following components:

username:password@hostname:port

The username/password combination is a way of supplying login information to sites
that accept this primitive kind of authentication. The port needs to be included when-
ever the server program that responds to a request for the given scheme is listening on
a nonstandard port number. We’ll see plenty of concrete examples of various forms of
URLs in this chapter.

Certain characters are “reserved” for use in URL syntax and may not be part of the
query component. These characters are represented by a percent sign (%) followed by
their hexadecimal equivalent. You have undoubtedly noticed these in URLs, though
you may not have realized what they were. Table 9-1 lists the characters and their URL
equivalents. This translation is generally called URL encoding, but the official web
standards call it percent-encoding.

325

Table 9-1. Reserved characters and their URL-encoded equivalents

! * " ' () ; : @ &

%21 %2A %22 %27 %28 %29 %3B %3A %40 %26

= + $, / ? % # []

%3D %2B %24 %2C %2F %3F %25 %23 %5B %5D

In addition, for various reasons, spaces in are not allowed in URLs. Sometimes they are
translated to plus signs (+) and sometimes to their hexadecimal equivalent, %20. Note
that URL encoding is not the same as encoding of HTML entities such as & or,
equivalently, &. Not only is the context completely different, but, to confuse things
further, URL encoding uses hexadecimal numbers while HTML entities are encoded
in decimal.

Disassembling URLs
Extracting a URL’s components is a miniature parsing problem with enough complex-
ity that Python provides library functions that implement it. You will want to use these
instead of writing your own code:

urllib.parse.urlparse(string[, default_scheme[, fragmentflg]])
Returns an instance of urllib.parse.ParseResult, which looks like a six-element
tuple whose elements correspond to the parts of the URL named in the preceding
section. URL components not present in string are represented by empty strings,
but if there is no scheme in string the tuple will contain default_scheme (if speci-
fied). If fragmentflg is false, a fragment in string is ignored.

Punctuation used to delimit fields, such as the :// after the scheme name and
the ? before a query, are not included in the results. However, the initial slash of a
path (if present) is retained, because in URLs that represent paths—those using a
file scheme, in particular—an initial slash indicates an absolute path as opposed
to a relative one (more on this later). In addition to its functioning as a six-element
tuple the instance also has the read-only attributes shown in Table 9-2, the first six
of which are shown in the order in which they appear in the tuple.

Table 9-2. Attributes of a ParseResult

Attribute Description

scheme URL scheme specifier

netloc Network location

path Hierarchical path

params Parameters for last path element (uncommon)

query Query component

326 | Chapter 9: Web Programming

Attribute Description

fragment Fragment identifier

username Login information

password Login information

hostname The actual host without the login and port

port Port number (integer) if present in location

urllib.parse.unquote(string)
Returns a copy of string with all %xx sequences replaced by their one-character
equivalents.

urllib.parse.unquote_plus(string)
Just like urllib.parse.unquote, except that it replaces plus signs with spaces.

Assembling URLs
Programs that work with web technologies frequently construct URLs from details
specified as parameters of programs and functions or fields of classes and instances.
The urllib.parse module provides a full range of functions for constructing URLs:

urllib.parse.urljoin(base, url[, allow_fragments])
Returns an absolute URL string constructed by adding to url any parts it is missing
from the corresponding part of base (if present)

urllib.parse.urlunparse(parts)
Returns a URL string constructed from parts, which is typically a ParseResult but
could be any six-item iterable

urllib.parse.urlencode(data)
Converts data, which is either a dictionary or a sequence of two-element tuples, to
a URL-encoded string ready to be used as the argument portion of a query; the
result is a string composed of key=value pairs separated by ampersands, with both
key and value quoted by calling urllib.parse.quote_plus

urllib.parse.quote(string)
Returns string with any special characters replaced by the corresponding %xx form
to allow those characters to be included in a URL, especially in a query

urllib.parse.quote_plus(string)
Just like urllib.parse.quote, except that it replaces spaces with plus signs instead
of %20

urllib.parse.urldefrag(url)
Returns a pair containing a copy of url without its fragment as its first element and
its fragment as its second; the second element will be an empty string if url does
not contain a fragment

Manipulating URLs: urllib.parse | 327

Opening Web Pages: webbrowser
The webbrowser module provides simple mechanisms for displaying documents or
query results in a web browser. The module’s functions and methods all take a URL
as their first argument and instruct the user’s browser to display it.

The functions in webbrowser give Python applications an easy way to use
a browser as a presentation mechanism. An application can write some
results into a text or HTML file to be displayed in the browser, submit
a query through a browser, or just open a page of HTML-formatted
documentation. Many other uses are also possible—all the program
needs to do is provide a URL.

Module Functions
Following are descriptions of the webbrowser module’s functions. All browser actions
are subject to the browser in question’s ability to perform those actions in the specified
way with the user’s current settings. For instance, if a function is described as opening
a new tab, the actual action might be opening a new window. The functions are:

webbrowser.open(url[, new=0[, autoraise=1]])
Displays url in a browser window (the current browser window if new is 0, a new
browser window if it’s 1, and a new browser tab if it’s 2); the window will be raised
unless autoraise is false

webbrowser.open_new(url)
Opens url in a new browser window (otherwise, it’s opened in the current browser
window)

webbrowser.open_new_tab(url)
Opens url in a new browser tab (otherwise, it’s opened in the current browser tab)

For example, to open the python.org home page:

webbrowser.open('http://www.python.org')

A function that opens the documentation for one of the core library modules follows:

def browse_module_doc(module_name):
 webbrowser.open('http://docs.python.org/py3k/library/' +
 module_name + '.html')

Alternatively, you could replace 'http://docs.python.org' with 'file://' and the full
path to where the documentation is in your Python installation (beginning with a
slash, /, to make it absolute).

On some platforms, opening a URL may open it in some other kind of application. The
type of URL—for example, ftp vs. http—may affect this behavior. If the URL is a path
to a file (whether or not it begins with file://), the system might choose an application
based on the file’s extension or one associated with that specific file. For instance, you

328 | Chapter 9: Web Programming

http://python.org

may have configured your system to open all .py files in IDLE, in which case
webbrowser.open('/full/file/path/name.py') may open name.py in IDLE. This makes
the webbrowser module useful for many scenarios beyond those involving browsers.*

Constructing and Submitting Queries
An application can use webbrowser.open to submit queries like the ones you see in your
browser’s address bar when you submit a query through a website. The only difference
between a query and a URL for an HTML document is that the query is a path to a
program on the client that gets its arguments from the part of the URL after a question
mark. For example, there’s a package index at http://pypi.python.org/pypi that lists in-
formation about a large assortment of externally available Python software. If you were
to type something into the search box at the top of the page and submit the query, the
URL the browser would send to the python.org server would be of this form:

http://pypi.python.org/pypi?%3Aaction=search&term=text&submit=search

where text is whatever you typed in and %3A is the URL encoding for a semicolon. If
your entry has more than one word, the individual words will be separated by plus
signs. (In other words, the spaces in the multi-word query are replaced by plus signs,
as described earlier.)

Example 9-1 shows a complete program for running a search of the Python Package
Index from the command line.

Example 9-1. Searching the Python Package Index

"""Search the Python Package Index for one or more words"""

import sys
import webbrowser
import urllib.parse

urlpart1 = 'http://pypi.python.org/pypi?;action=search&term='
urlpart2 = '&submit=search'

def search_pypi(words):
 webbrowser.open(urlpart1 + urllib.parse.quote_plus(words) + urlpart2)

if __name__ == "__main__":
 if len(sys.argv) < 2:
 print("Usage: pypi term ...")
 else:
 search_pypi(sys.argv[1:])

* Technically, using webbrowser for file:// URLs is unsupported and nonportable behavior, but if it does what
you want, you might as well use it. Just make sure to note in your files that the behavior is undocumented
and might well change in the future.

Opening Web Pages: webbrowser | 329

http://pypi.python.org/pypi
http://python.org

Constructing and Viewing an HTML Page
There are many ways to construct HTML pages. For instance, you could create an
HTML document that includes & placeholders and use string.Template (see “String
Utilities: string” on page 240 in Chapter 6) to replace them. (This is an ideal use for
string.Template .) Another approach is to use format and assign some formatting
strings for use in functions.

Example 9-2 shows an extension to the program for extracting links from HTML
(shown in “Searching HTML text” on page 290). Assume you have run that program
to produce some files that contain the pairs of URLs and text the program outputs.
What this example does is use some of those files to produce a simple HTML file by
putting each filename in an h3 tag, making a new a tag for each URL, and enclosing the
a tags in a numbered list. (There’s a good chance that some of the links picked up by
extract_links won’t be meaningful or useful. In that case, you can always hand-edit the
resulting file, or if there is a pattern to which links are useful and which aren’t, you can
filter them out either in that program’s get_all_tags function or in this one’s
make_html_for_file.)

Example 9-2. Making a web page with links extracted from HTML files

import sys
import webbrowser

html_start = ('''<!DOCTYPE html PUBLIC
 "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<title>Collected Links</title>
</head>
<body>
''')

html_end = '''
</body>
</html>
'''

filetagformat = '\n<h3>{0}</h3>\n'
atagformat = '{1}\n'

def make_html_file_from_files(filenames, outputfilename='links.html'):
 with open(outputfilename, 'w') as outfile:
 outfile.write(html_start)
 for filename in filenames:
 make_html_for_filename(filename, outfile)
 outfile.write(html_end)
 return outputfilename

def make_html_for_file(filename, outfile):
 outfile.write(filetagformat.format(filename))

330 | Chapter 9: Web Programming

 outfile.write('\n')
 with open(filename) as infile:
 for tag in get_all_atags(infile.read()):
 if tag[1]:
 make_html_for_tag(tag, outfile)
 outfile.write('\n')

def make_html_for_tag(tag, outfile):
 outfile.write(atagformat.format(tag[0], tag[1]))

if __name__ == "__main__":
 if len(sys.argv) < 2:
 print("Usage: browse_links filename ...")
 else:
 webbrowser.open(
 'file://' +
 os.path.abspath(make_html_file_from_files(sys.argv[:1]))
)

Web Clients
The webbrowser module we looked at earlier provides a simple way to request the open-
ing of a URL. Its functions return shortly after they are called, leaving a browser or
some other application outside of Python to fulfill the request. In contrast, the
urllib.request module provides a variety of sophisticated services for interacting with
web servers from within Python itself.

The most generally useful functions in the module are:

urllib.request.urlopen(url[, data[, timeout])
Performs the request specified by url, giving up after timeout seconds if specified;
if a data argument is provided, it should be in the form returned by
urllib.parse.urlencode, and it is supplied as the contents of a POST request
(otherwise, the url itself would include the request’s parameters); returns an object
with the functionality of a file object and two additional methods:

urllib.request.geturl()
Provides the URL of the actual resource retrieved; possibly redirected from the
original request

urllib.request.info()
Returns an instance of http.client.HTTPMessage, with information about
headers, etc.

urllib.request.urlretrieve(url[, filename[, reportfn[, data)
Performs the request specified by url, returning a two-element tuple containing
the path to the file where the contents of the response was saved and the headers
that would be returned by urllib.request.urlopen(url).urllib.request.info();
optional arguments are as follows:

Web Clients | 331

filename
The path to the file in which to save the query response; otherwise, a temporary
file is used

reportfn
If present, will be called when the network connection is established; then for
each “block” of data read from the response, with three arguments: the number
of blocks transferred so far, the number of bytes in a block, and the total size
of the file

data
If present, will be used as the contents of a POST request (and should be con-
structed by calling url.parse.encode); otherwise, query arguments must be
provided as part of the URL itself

Be careful using a string returned from urllib.request.urlopen, espe-
cially with regular expressions—the file-like behavior of the object re-
turned provides a stream of bytes, not Unicode characters. Any read
operation from the stream will therefore return a bytes, not a str. The
simplest thing to do is just call str on the input, which will work if the
bytes represent characters in the default encoding. You can specify an
encoding by either giving it as the second argument to str or calling the
decode method on the bytes, with the encoding as its argument.

If you try to use a string for a regular expression to match a bytes target,
you’ll get this error:

TypeError: can't use a string pattern on a bytes-like object

You could also use a bytes instead of a raw string for the regular ex-
pression, as long as the rest of the code is changed wherever necessary.
The main point is that what go in and out over a network are bytes.

Making the URLs in a Response Absolute
URLs in a web page do not necessarily have a scheme (e.g., http://) or a hostname (e.g.,
www.python.org), making them pretty much useless as links. A URL without a scheme
and host is known as a relative URL, because its actual address is derived from the site
and path at which the document containing the link was found. If a program such as
that shown in Example 9-2 is supposed to do something useful with these links, they
must first be converted to full URLs so that they can be used outside of the context of
the page on which they were found.

A relative address that begins with a slash (/) is treated as if it were prefixed with the
same protocol and site as the page on which it is found. This is similar to how paths in
filesystems are interpreted: an initial slash denotes the “root” directory, and any address
that does not begin with a slash is considered relative to the directory that contains its
document. If the address is just a filename, such as other.html, clicking on the link will
look for that file in the directory in which the current document was found.

332 | Chapter 9: Web Programming

http://www.python.org

If there are any slashes inside the address, everything through the last slash is treated
as a path starting with a subdirectory of the one containing the link’s document. For
example, a link images/small/img1.jpg in a web page at this URL:

http://www.example.com/top/middle/demo.html

would refer to a file at this location:

http://www.example.com/top/middle/images/small/img1.jpg

In contrast, because it begins with a slash, the link /images/small/img1.jpg would instead
refer to a file at this location:

http://www.example.com/images/small/img1.jpg

Expanding relative URLs to absolute ones could require a lot of code to cover all the
possible permutations of which parts are present in a URL and which aren’t. This would
get complicated quickly. There’s no need to bother with direct string manipulation,
though, because the urllib.parse module described at the beginning of this chapter
gives us the tools we need to disassemble and assemble URLs. The function
urllib.parse.urljoin is all we need here. It’s not even necessary to test whether a link’s
address begins with a scheme and a host before calling urllib.parse.urljoin—the
function works with whatever parts of a URL are present in the first argument. Any
parts present in both arguments get their values from the second argument.

One problem with the programs we have been using up to this point is that they process
saved HTML files. Although they know the names of the files, they have no information
about the original source of their content. What we’ll do now instead of saving and
then reading HTML files is use urllib.request.urlopen to read web pages directly. We
won’t even bother writing them to files. Then, when the pages are read, the code will
know their sites and paths and be able to use them to adjust the links they contain. The
command-line arguments will be URLs from which to read—HTML pages or requests.
(A long list of URLs can be provided by command-line input file redirection.)

Since web page contents are returned as bytes objects, not strings, if you
want to write the modified contents to a file you’ll have to either first
convert them to strings or open the file in 'wb' mode.

Constructing an HTML Page of Extracted Links
Let’s add some code to Example 9-2 to make the URLs in the document absolute. That
way, the files the program constructs will be usable on their own. Example 9-3 shows
the functions that replace those in Example 9-2. Everything else stays the same,
except that the __main__ code calls make_html_file_from_urls instead of
make_html_file_from_files. Also, the program must import urllib.parse and
urllib.request.

Web Clients | 333

Example 9-3. Constructing a web page directly from requests

import urllib.parse
import urllib.request

def make_html_file_from_urls(urls, outputfilename='links.html'):
 with open(outputfilename, 'w') as outfile:
 outfile.write(html_start)
 for url in urls:
 make_html_for_url(url, outfile)
 outfile.write(html_end)
 return outputfilename

def make_html_for_url(url, outfile):
 outfile.write(filetagformat.format(url))
 outfile.write('\n')
 for tag in get_all_atags(str(urllib.request.urlopen(url).read().decode())):
 if tag[1]:
 make_html_for_tag(url, tag, outfile)
 outfile.write('\n')

def make_html_for_tag(url, tag, outfile):
 outfile.write(atagformat.format(make_absolute(url, tag[0]), tag[1]))

def make_absolute(url, tagaddress):
 return urllib.parse.urljoin(url, tagaddress)

All the links in the HTML file produced by this revised program are absolute. You can
open the resulting file in a browser and click on the links to go to their pages or submit
their requests.

Downloading a Web Page’s Linked Files
Occasionally, you may come across a web page that’s full of links to files you would
like to download. Some browsers, browser extensions, and applications provide tools
for doing this. However, you might want to do this in a program to customize exactly
which links are downloaded and where they get stored, or to more easily run the pro-
gram as part of some automated task. It’s easy to modify the code from the previous
examples in this chapter for this purpose. We already know what the necessary steps
are:

1. Parse command-line options.

2. Fetch a document or submit request.

3. Read from the request.

4. Convert the bytes read to a string.

5. Extract all links.

6. Save documents to a file.

334 | Chapter 9: Web Programming

There is one import twist we’ll add to this program, though: we don’t want to download
all the links from a page, just those with certain extensions. We have no idea what kinds
of documents, requests, media, and just plain useless things might appear on a web
page, but we typically know what kinds of links we do want to download: perhaps
all .zip and .pdf files, or all .html links. With that in mind, we’ll set things up so that
the command-line arguments for the program are a URL and one or more extensions
to extract.

The program will not handle URLs with queries that are contained in the results re-
turned by urllib.request.urlopen. Query URLs usually don’t indicate the kinds of files
they will obtain, and they usually return new HTML pages with their results rather
than something you would want to save as a file. (Well, you might want to save them,
but we’ve already handled various aspects of that, and you can always click on a request
URL, save the file, and run this program, giving it a file URL with its path.)

First we’ll look at the options the program will accept. The function in Example 9-4
sets up the option parser (see “Command-line options: optparse” on page 218), but it
doesn’t actually parse the options.

Example 9-4. Downloading links: setting up the option parser

def make_command_line_parser():
 optparser = optparse.OptionParser(
 usage='Usage: downloadLinks [--destdir dir] [-extension ext]* URL')
 optparser.add_option('-d', '--destdir',
 help='directory to which files will be downloaded')
 optparser.add_option('-e', '--extension', action='append',
 help='extension(s) of links to download')
 optparser.add_option('-l', '--list', action='store_true',
 help="list, but don't download, links")
 optparser.set_defaults(extension=('zip', 'pdf'))
 return optparser

One of the nice things about using optparse is that the details specified
for the option parser do a good job of documenting the program’s be-
havior for the programmer, in addition to providing help strings for its
user.

Example 9-5 shows the “main” part of the program. It calls
make_command_line_parser to get a parser, tells it to parse the options, then checks to
see that there is only one argument other than the options. If the number of nonoption
arguments is not 1, the program exits with the value 2, the standard Unix value for
command-line errors (as opposed to runtime errors). If there is exactly one argument,
the action to be performed depends on whether the list option was specified. If it was,
the program lists all the links it would download were the list not specified. Otherwise,
it actually downloads them.

Web Clients | 335

Example 9-5. Downloading links: main

if __name__ == '__main__':
 optparser = make_command_line_parser()
 (options, args) = optparser.parse_args()
 if len(args) != 1:
 optparser.print_help()
 sys.exit(2) # command-line error
 else:
 if options.list:
 list_links_from_url(args[0], options)
 else:
 download_links_from_url(args[0], options)

Regardless of whether the program lists or downloads links, it calls get_url_links to
extract from the file any links whose extensions appear in the list indicated by the
extensions option. That function calls get_url_contents to read the contents of the
URL, then calls extract_links_from_string, which uses a regular expression to find all
the relevant links. See Example 9-6.

Example 9-6. Downloading links: finding the links

def get_url_contents(url):
 response = urllib.request.urlopen(url)
 contents = response.read()
 response.close()
 return str(contents)

linkstring = r"'([^']+?\.(exts))'|\"([^\"]+?\.(exts))\""

def extract_links_from_string(string, extensions):
 results = re.findall(linkstring.replace('exts', '|'.join(extensions)),
 string,
 re.M | re.S | re.I)
 return [result[1] or result[2] for result in results]

def get_url_links(url, options):
 return extract_links_from_string(get_url_contents(url),
 options.extension)

The function get_url_contents implements the usual routine for reading the contents
of an entire web page. Assuming link addresses are enclosed in either single or double
quotes and checking the two cases separately, extract_links_from_string replaces the
substring 'exts' in the regular expression with a disjunction of the actual extensions.
Only one of the two groups will match, depending on whether the address was enclosed
in single or double quotes. In Chapter 8 we ignored this little problem, allowing single
and double quotes to match either; here we fix that with a slightly more complex regular
expression.

Listing the links just involves printing the results of get_url_links, and downloading
the links is only a little more involved. Both are shown in Example 9-7.

336 | Chapter 9: Web Programming

Example 9-7. Downloading links: the real work

def list_links_from_url(url, options):
 for link in get_url_links(url, options):
 print(link)

def download_links_from_url(url, options):
 for n, link in enumerate(get_url_links(url, options)):
 path = urllib.parse.urlsplit(link).path
 targeturl = urllib.parse.urljoin(url, link)
 print(n+1, targeturl, sep='\t') # show progress
 urllib.request.urlretrieve(targeturl,
 os.join(options.destdir,
 os.path.basename(path)))

The code in these examples constitutes the entire program.† Try it on a familiar web
page to see what it does.

Web Servers
Web server technology is a mystery to many people. It conjures up images of heavy-
duty hardware, special-purpose software, expert system administrators to keep things
running, elaborate security precautions, and so on. Actually, though, even OS X and
Windows XP can run what are called “personal web servers,” and you can set them up
with just a few clicks. (OS X uses the open source Apache web server that is the standard
for Linux systems.)

Sockets and Servers
A web server is just one of many kind of services. You may already be aware of some
others: your computer might set its time by contacting a time server; shared disks on
your network are provided by file servers; and so on. In fact, time servers and file servers
date back to the earliest computer networks, circa 1970. Another service you probably
use is the Simple Mail Transport Protocol, which we covered in Chapter 6 (in “Sending
email: smtplib” on page 224).

Such services are built on top of a low-level operating system construct called a
socket. A socket is basically a pair of network streams managed by the operating system.
A socket is identified by an address, the usual form of which is the combination of a
hostname and a port number. The hostname can be an IP address such as
168.221.10.201, the name of a computer on the local area network (LAN), the name
of an Internet host, and so on. The machine on which the program is running can be
addressed with the empty string, 'localhost', or the IP address 127.0.0.1.

† A file containing all the code together is part of the downloadable code examples available from this book’s
website.

Web Servers | 337

http://oreilly.com/catalog/9780596154516
http://oreilly.com/catalog/9780596154516

Ports with numbers below 1024 are reserved for specific services; for example, port 80
is reserved for web servers. Programs are in principle free to use port numbers from
1024 through 65535, but some ports in the range 1024 through 49151 have the status
“registered”; this means that specific software products have reserved them for their
own use, but unless those products are running in your program’s environment no
problems arise from using those port numbers.

This little discussion of sockets and servers is here to prepare you to
understand what’s involved in implementing programs that run on a
server and respond to user requests. You are not likely to find yourself
programming at this low level, but it’s not inconceivable: one use for a
socket-based server would be to provide to other programs on the local
area network data stored across many different sources (different data-
bases, file directories, etc.) without those programs knowing where the
data is found.

Server fundamentals

A server program listens on a special server socket for connection attempts. When a
client program requests a connection, the server performs the following actions:

1. Create a new socket with a port number generated by the operating system.

2. Respond to the request by telling the client the port number.

3. Loop reading from the socket, processing the input, and writing a response out to
the socket.

The procedure is similar on the client side:

1. Request a connection to a server, specifying the server’s hostname and the port
number on which it is listening for connection attempts.

2. Loop writing data to the socket, reading the response, and acting on the response.

Figure 9-1 illustrates the process.

Example 9-8 shows the server code and Example 9-9 the client code for a simple di-
rectory listing server. The client accepts input from the user, in the form of a filename
that can include wildcard characters; it then sends that input to the server. The server
performs a glob.glob (see “Filename Expansion: fnmatch and glob” on page 232) on
the pattern and returns a string consisting of all the names of the files that matched,
separated by newline characters. The client reads that string and prints it.

338 | Chapter 9: Web Programming

Example 9-8. A directory listing socket server

import socket
import glob

HOST = socket.gethostname() # Instead of '', allows access over LAN
PORT = 5500 # Arbitrary nonprivileged port

listener socket
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) # standard
s.bind((HOST, PORT))
lisname = s.getsockname()
print('Listening on host', lisname[0], 'port', lisname[1])
s.listen(1)

create actual socket
conn, addr = s.accept()
sockname = conn.getsockname()
print('Connection from', addr[0], 'on port', addr[1])

try:
 data = conn.recv(1024)
 while data:
 print(data)

Figure 9-1. Client/server socket communication

Web Servers | 339

 conn.sendall(b'\n'.join(glob.glob(data))l
 data = conn.recv(1024)
except KeyboardInterrupt:
 pass
finally:
 try:
 conn.close()
 s.close()
 except:
 pass

Example 9-9. A directory listing socket client

import socket

HOST = socket.gethostname()
PORT = 5500 # The server's listener port number

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) # standard
s.connect((HOST, PORT))
sockname = s.getsockname()
print('Connected to', sockname[0], 'on port', sockname[1])

try:
 data = input('@ ')
 while data:
 s.send(data.encode(encoding))
 data = s.recv(1024).decode(encoding)
 print(data)
 data = input('@ ')
except (EOFError, KeyboardInterrupt):
 pass
finally:
 s.close()

A great many details and variations could be discussed; only the basics are demonstra-
ted by these examples. In particular, there are important issues involved in managing
multiple requests and larger amounts of transmitted data. For example,
socket.sendall, used in the example’s server code, keeps sending data until it has all
been sent, even if it takes more than one network “packet” to transmit. The client code
will have to take that into account and manage multiple packets.

As with all network communications, this example reads and writes
bytes, not strings. Since the function glob.glob, used to expand wild-
cards on the server side, accepts bytes arguments as well as strings, the
server doesn’t have to convert between bytes and strings. However,
socket.send does require an argument of type bytes, so the client must
encode the string read from the user. The response received could be
printed without being decoded (as long as the default encoding works),
but it just prints as one long string; after decoding, the '\n' characters
that separate the filenames are printed as newlines.

340 | Chapter 9: Web Programming

Running a server: The http.server module

Organizations often have their web servers configured so that each user has a directory
from which personal pages can be served, often called html. Even if yours does, though,
you probably don’t want your programming experiments visible throughout the entire
organization. Python’s http.server module provides an easy way to run a simple web
server for your own purposes. (Others within your LAN will also be able to access it if
you want to use it for more than just experiments.)

Experimenting with running your own web server will help you better
understand the fundamentals of the technology.

Example 9-10 shows the minimal setup code needed. This program will serve docu-
ments from the directory from which it was started. As it does, it will print information
showing every request it gets from a client.

Example 9-10. Running a simple web server

import http.server
def run(port=8000,
 server_class=http.server.HTTPServer,
 handler_class=http.server.SimpleHTTPRequestHandler):
 httpd = server_class(('', port), handler_class)
 httpd.serve_forever()
run()

The function is parameterized for flexibility if used with other applications, but here
we just call it with the default parameters. The tuple ('', port) tells the server to listen
on port. Since the official port assigned to the http protocol is 80, to access a web server
that is listening on a port other than 80 you must include the port after the hostname
in the URL, with a colon separating the two: http://localhost:port. This applies whether
the server is running on your own computer, another computer on the LAN, or a com-
puter somewhere on the Internet.

With the server running, enter http://localhost:8000 in the address field of a browser.
You should see a listing of the files contained in the server’s directory. This is the default
behavior of web servers not configured otherwise for directories that don’t contain a
file called index.html or index.htm. If one of those files is present, the browser will
display that file rather than a directory listing. If a directory listing is displayed, clicking
on one of the filenames will display it in the browser.

Web Servers | 341

Unless the directory from which the server was started contains a file
with the exact name favicon.ico, you will see repeated messages about
not finding that file. A favicon is the tiny logo you see next to the URL
in your browser’s address field. Every time a browser accesses a docu-
ment at a website, it also attempts to access that site’s favicon.

A favicon is simply a 16×16 or 32×32 image in one of three formats:
PNG, GIF, or ICO. The default name is favicon.ico, but a web page can
specify a different filename and/or format (by means we won’t go into
here).

You might as well put one in your directory: that will stop the messages
complaining about its absence and, even better, its presence in the
browser will at least indicate that something is happening when you try
to access a document even if no document appears. There’s one on this
book’s website that you can use if you don’t want to make your own.
(It doesn’t have to be anything special—a solid color is good enough; it
just has to have one of the expected sizes and formats.)

Sometimes, especially during program development, the port the code tries to use will
already be in use. This can happen because you’ve left a server running on that port in
another window, or even because a program that aborted left the port open and the
operating system didn’t immediately close it. If you try the code in Example 9-10 several
times in succession, interrupting it with Ctrl-Cs, you will probably see a
socket.error message with the text 'Address already in use'. That’s the exception
raised when the program fails in its attempt to open a socket that’s already open.

To deal with this problem we can extend the code so that if there’s an error trying to
open a port it retries with the next port number, continuing to retry until it succeeds.
We’ll stop before port+100, since if the code gets that far there’s undoubtedly a worse
problem than a conflicting port number. Example 9-11 shows the new version.

Example 9-11. Running a simple web server, finding a free port

def open_port(hostname, startport, server_class):
 for n in range(portnum, portnum+100):
 server_address = ('', portnum)
 try:
 return server_class(server_address, handler_class)
 except socket.error:
 pass

def run(portnum=8000,
 server_class=http.server.HTTPServer,
 handler_class=SimpleHTTPRequestHandler):
 httpd = open_port('', 8000, server_class)
 hostname, portnumber = httpd.socket.getsockname()
 print('Serving HTTP documents on {}, port {}...'
 .format(hostname, portnumber))
 httpd.serve_forever()

342 | Chapter 9: Web Programming

CGI
From the earliest days of web servers, requests submitted through web pages have used
a mechanism called the Common Gateway Interface (CGI). There are more sophisti-
cated mechanisms now, but CGI is still widely used. The CGI mechanism is nothing
more than a standardized way of passing a URL request and its arguments to a program.
After receiving the request, the program does its work and outputs HTML that gets
sent back to the browser for display. The Python module that supports this mechanism
is cgi.

As we saw at the beginning of this chapter, a URL often represents a request, rather
than a specific document. The address part of a request identifies a program to be
executed. A question mark identifies the beginning of the part of the URL containing
the arguments of the request and their values. These arguments are the equivalent of
keyword arguments in Python function calls, though they are not in any way specific
to Python.

Serving CGI requests

A web server must be configured to execute CGI programs, or else a URL for a CGI
program will simply display its text in the browser. Most web servers are configured to
run CGI scripts. There are two ways they can distinguish CGI scripts from regular web
pages: by their extension or by their location within the file hierarchy from which the
server serves pages. Organizations that configure their web servers so that each user
has a designated directory from which web pages may be served generally also configure
things so that a subdirectory of that directory, generally called either cgi-bin or cgi, can
contain CGI scripts.

If your organization has its web server configured appropriately, or you have a personal
web server running on your computer that you can configure, you can use that server
for experimenting with CGI scripts. In general, though, it is easier to do your experi-
ments and development using Python’s own simple server, as was shown in Exam-
ple 9-10. The code in that example, however, only serves documents. To enable it to
serve CGI requests too, the class CGIHTTPRequestHandler must be used in place of
SimpleHTTPRequestServer, as shown in Example 9-12.

The default directories that contain programs CGIHTTPRequestHandler can run are
listed in CGIHTTPRequestHandler.cgi_directories. The default value is ['/cgi-bin',
'/htbin'], but your program could change that (perhaps adding '/cgi' to the list, as
is done in Example 9-12). These subdirectories are relative to the directory from which
you start the server—if you start the server from /home/me/python/web, that’s what the
server will interpret / to mean.

Example 9-12. Running a CGI server

http.server.CGIHTTPRequestHandler.cgi_directories.append('/cgi')
def open_port(hostname, startport, server_class):

Web Servers | 343

 for n in range(portnum, portnum+80):
 server_address = ('', portnum)
 try:
 return server_class(server_address, handler_class)
 except socket.error:
 pass

def run(portnum=8000,
 server_class=http.server.HTTPServer,
 handler_class=http.server.CGIHTTPRequestHandler):
 httpd = open_port('', 8000, server_class)
 hostname, portnumber = httpd.socket.getsockname()
 print("Serving HTTP, including CGIs, on",
 hostname,
 "port",
 portnumber, "...")
 print('Serving HTTP documents and CGI requests on {}, port {}...'
 .format(hostname, portnumbe))
 print("CGI directories are:",
 http.server.SimpleHTTPRequestHandler.cgi_directories)
 httpd.serve_forever()

Documents can go in the same directory as the server, but executables must be in one
of the subdirectories listed in the value of CGIHTTPRequestHandler.cgi_directories.
Note that CGIHTTPRequestHandler can distinguish CGI scripts from documents only by
their being located in one of these directories; it does not support extension-based
determination the way full-powered web servers do.

Setting up CGI

When you first start working with CGI scripts, there are many mysterious things that
can go wrong. Some of them result in completely blank web pages, with no hint of the
nature of the problem. Sometimes what you get is a listing of the program instead of
the result of its execution. Some of the problems are caused by various aspects of your
CGI setup. Before trying to use your own code, you should take advantage of the cgi
module’s test function, which will send the browser a large amount of information
about the CGI environment. Example 9-13 shows a complete CGI program using
cgi.test. If cgi.test doesn’t work, you haven’t set things up entirely correctly.

Example 9-13. Running cgi.test

import cgi
cgi.test()

Run the program from Example 9-12 in a command window. It will run continuously
until you interrupt it. Note the port it says it is listening on when it starts. Put the
program shown in Example 9-13 in one of the subdirectories the program shows, nam-
ing it cgitest.py. On an operating system that supports “execute” permissions, change
(with the chmod command-line command) the permissions of the file so that everyone
can read and execute it (e.g., 755 on Unix-based systems).

344 | Chapter 9: Web Programming

Now, enter the following URL into your browser’s address field, replacing port with
the number of the port on which the server program is listening and cgi with the name
of the directory in which you put cgitest.py:

http://localhost:port/cgi/cgitest.py

Your browser should display a long list of details of the environment in which the
program ran.

CGI script arguments and responses

You won’t learn much from cgi.test, except whether your CGI server environment is
working and that you have your CGI script in the right directory with the right per-
missions. You will not see two lines that cgi.test prints first that are necessary to inform
the browser that the program is sending it HTML to display. All CGI scripts must print
these two lines before any other output:

Content-Type: text/html

<!-- the previous line must be blank; this line is just an HTML comment -->

Like many of the Python library’s more frequently used modules, cgi provides several
levels of interfaces. The simplest will suffice for most routine CGI scripting. The CGI
Script template presented here shows the general outline of a CGI program. The pro-
gram starts with the usual “shebang” line that specifies the program used to run the
script. (This takes the place of typing python3 and the name of the program at the
command line.) To be run as a CGI script, the file must also be readable and executable
by everyone, so set the file’s permissions accordingly.

Because the shebang line specifies that this is a Python file, it does not need the .py
extension to run. There’s no need for users to be distracted by extensions like that, so
it’s good form to remove the extension from the filename. However, the extension is
still needed so that operating systems, editors, and IDEs recognize it is a Python file
when you open it for editing. The way around this conflict is to keep the .py extension
on the file you are developing and create a link (“alias” or “shortcut”) to it that does
not have the extension. This also allows you to keep your files in a different directory
than the one containing your CGI scripts—the link can be made from the file to your
CGI directory.

When a CGI script is executed through a web server, everything it prints to
sys.stdout is sent to the user’s browser for display. (The newlines printed in the tem-
plate are just for readability, for viewing a page’s HTML “source” in a browser’s “view
source” window or the output when executing the program from the command line;
in most contexts browsers ignore whitespace between the end of one HTML tag and
the beginning of the next.)

Web Servers | 345

T E M P L A T E

Structure of a CGI Script
import cgi
import cgitb
cgitb.enable()

def respond():
 print(# the second line printed must be blank
'''Content-Type: text/html

<html>\n<head>\n<title>title</title>\n</head>\n<body>
''')
 args = cgi.FieldStorage()
 ... access args using getfirst and getlist ...
 print the HTML body
 print('</body>\n</html>')

if __name__ == '__main__':
 respond()

At the beginning the template initializes a very useful tool for debugging CGI scripts,
which will normally be removed for a production script: importing and enabling
cgitb arranges for nicely formatted runtime error reports to be displayed in the browser.
It does not catch syntax errors, though—if your program has syntax errors, all you will
see in the browser is a blank page. (You will see syntax errors reported in the window
in which the server is running.)

The crux of Python’s CGI module is the FieldStorage class. When an instance of the
class is created, it parses the URL’s query string and stores its arguments and values.
Subsequently, the value of a query argument can be obtained by accessing the
FieldStorage object as if it were a dictionary.

Because a request may have multiple values for the same argument, FieldStorage must
support both single- and multiple-value arguments. (Even if your program expects just
one value for an argument, a user might type in a URL that has more than one.) Dealing
with this can get awkward, so FieldStorage provides two convenience methods:
getfirst(argname) to return one value, and getlist(argname) to get a list of however
many were present in the request. You can provide a second argument to getfirst
(default None) that specifies the value to return if the request URL had no value for the
argument. Normally it’s better to obtain argument values this way rather than by
accessing the values directly with dictionary notation.

The mechanism by which a web server passes arguments to a CGI script is really quite
simple: all it does is set the environment variable QUERY_STRING to the part of the URL
that follows the question mark. (There is another, more elaborate way of passing ar-
guments that doesn’t put them in the query string; getting the arguments in that case
is a bit more complicated.) When a FieldStorage object is created, it checks whether

346 | Chapter 9: Web Programming

the os.environ dictionary contains the key 'QUERY_STRING'. If the key is present, its
value is used to populate the FieldStorage object. If the environment does not contain
'QUERY_STRING', the FieldStorage object next looks for a command-line argument. If
sys.argv[1] is present, it uses that as the query string.

This means that you can test your CGI scripts by giving them a query
string as a command-line argument. You don’t need the whole URL,
just the part after the question mark. This is especially useful for elim-
inating syntax errors before trying to run the script from a browser.

Let’s fill in the CGI Script template with enough details to “echo” the arguments and
values supplied in a URL. Example 9-14 shows what this would look like. In general,
CGI scripts ignore arguments with unrecognized names; to demonstrate this usage, the
program will only look for one argument named enzyme and any number of arguments
named sequence.

Example 9-14. A CGI echo script

import cgi
import cgitb
cgitb.enable()

def respond():
 print("Content-Type: text/html")
 print()
 print("<html>\n<head>\n<title>title</title>\n</head>\n<body>")
 args = cgi.FieldStorage()

 # completing the template:
 print('<p>Enzyme:', args.getfirst('enzyme'), '</p>')
 print('<p>Sequences:', args.getlist('sequence'), '</p>')

 print("</body>\n</html>")

if __name__ == '__main__':
 respond()

If you have everything set up correctly, typing the following URL (together on one line,
not with the line break):

http://localhost:8000/cgi/cgi_echo.py?enzyme='EcoRI'&
sequence=CCCC&sequence=CCGG&sequence=GGGG

into a browser should result in a web page that displays the following, unformatted:

Enzyme: 'EcoRI'

Sequences: ['CCCC', 'CCGG', 'GGGG']

Web Servers | 347

Simple Web Applications
We’ll close this section on web servers with a few real examples. The first is a straight-
forward application of the CGI techniques discussed earlier. The second will introduce
some new information about creating web pages with simple forms and using those
forms to submit requests to CGI scripts.

Using CGI scripts

This section’s example is a CGI program to search Rebase data for all enzymes that
recognize a particular site, specified as a site query argument in a URL. We’ll assume
that we have a datafile called bionet.table (bionet being one of the Rebase file formats),
as written by the write_table function of Example 4-41 (see “Step 5” on page 159).
Each line of that file contains the name of an enzyme, a tab, and a recognition sequence.
Some of those recognition sequences contain a caret (^) indicating where the enzyme
cuts the sequence, but we’ll ignore those for this program.

Reading this file into a dictionary is simple, but there’s a twist: we need to reverse the
table. Instead of looking up recognition sites by enzyme, we want to find all the enzymes
that recognize a particular site. Example 9-15 shows how to do this.

Example 9-15. Reading Rebase data into a reversed dictionary

def read_table(filename):
 table = {}
 with open(filename) as fil:
 for line in fil:
 enzyme, sequence = line.split()
 sequence = sequence.replace('^', '') # ignore cut sites
 table.get(sequence, []).add(enzyme)
 return table

To generate the HTML for the CGI response, we are going to take advantage of the
template facility in the string module (see “String Utilities: string” on page 240). This
makes it easy to specify a large chunk of text that has only a few variable parts, which
is just what we need (Example 9-16). In fact, we’ll use a series of templates.

Example 9-16. The main template for the recognition site script

html_template = string.Template(# second line is requisite empty line
 '''Content-Type: text/html

<head>
<title>Restriction Enzyme Search</title>
</head>
<body>
<h2>Restriction Enzyme Search</h2>
$response
</body>
</html>
''')

348 | Chapter 9: Web Programming

There are three conditions the program must handle:

1. The URL did not include a site argument.

2. There are no enzymes that recognize the site.

3. There are one or more enzymes that recognize the site.

The program’s responses for the three cases will be:

1. Display an error message.

2. Display a message that no matching enzymes were found.

3. Display an ordered (numbered) list showing the enzymes that recognize the speci-
fied site.

For each case the program will substitute appropriate HTML for the $reponse place-
holder of html_template from Example 9-16. For the second and third cases the program
uses templates to generate the response, as shown in Example 9-17; for the first case it
just uses a plain string.

Example 9-17. Response Templates for the recognition site script

none_recognized_template = string.Template(
 '''<i>No enzymes recognize $seq.</i>\n''')

response_template = string.Template(
 '''<p>Enzyme(s) recognizing $seq are:

$items

''')

Example 9-18 shows the code that gets the script’s one argument and produces the
HTML to return to the browser. It initializes a dictionary for use with the main template,
then for each of the three cases it sets the value of its 'response' entry appropriately
before performing a substitution.

Example 9-18. Code for the recognition site script

def make_html_body(table, seq):
 subst = {'seq': seq, 'items': [], 'response': ''}
 if not seq: # case 1 -- no value for seq
 subst['response'] = 'No value for site in query arguments'
 else:
 seq = seq.upper() # doesn't change value in subst dict
 if seq not in table: # case 2 -- no match found
 subst['response'] = \
 none_recognized_template.substitute({'seq': seq})
 else: # case 3 -- found, make list items
 items = '\n'.join(['' + enzyme + ''
 for enzyme in table[seq]])
 subst['response'] = \
 response_template.substitute({'seq': seq, 'items': items})
 return subst

Web Servers | 349

def print_response(table, seq):
 print(html_template.substitute(make_html_body(table, seq)))

def respond():
 print_response(read_table('data/Rebase/bionet.table'),
 cgi.FieldStorage().getfirst('site'))

if __name__ == "__main__":
 respond()

As described earlier, you can test this script from the command line. For example:

% python3 enzymes_for_site.py site=cccggg

The output from this example should be HTML that lists three enzymes recognizing
'CCCGGG'. (The script uses string.upper to make the sequence lookup case-insensitive.)
If you get a runtime error complaining that the file bionet.table cannot be found, make
sure that that file—or a link to it—is present in the directory from which the program
runs, whether from the command line or through CGI.

If you run the CGI program from a browser through a full-scale web
server rather than using http.CGIHTTPRequestHandler, the datafile’s per-
missions must be set to allow it to be “readable” by everyone, since
scripts will not be run under your username.

HTML forms with CGI scripts

Although a URL for a request can be constructed programmatically, as in Exam-
ple 9-1, requests are usually generated from web pages. HTML forms are the original
method for doing this, and while old and simplistic, they are still a reasonable approach
for simple web pages. More recent advances in client-side technologies are far beyond
the scope of this book. The purpose of introducing HTML forms here is twofold:

1. It’s easy to put together a simple interface with them, since the user’s browser does
most of the work.

2. It demonstrates the round-trip interactions involved in client/server technologies,
of which web forms together with CGI scripts are an important example.

An HTML form is specified by a form tag. Any HTML tags and text can appear between
the opening <form> and closing </form> tags. Certain tags designate form controls,
which have fairly standardized appearance and behavior.

Generally, each control tag has a name attribute, which is used as the name of the
parameter in any HTTP request the form submits. The form tag itself has an action
attribute that specifies the URL of the program that will run when the form is submitted.
(Frequently this is a relative URL—i.e., relative to the location of the page containing
the form—though that is not a requirement.) When the request is submitted you will

350 | Chapter 9: Web Programming

see a new URL in your browser’s address bar that includes the path to the CGI script,
a question mark, and name=value pairs for each field in the form.

Being able to see the request generated by submitting the form is a very
helpful aid to debugging and learning more about CGI.

Client-side scripts (usually in JavaScript) may be attached to various events related to
controls. Client-side scripts can also change the state of form controls. We will ignore
client-side programming here and talk only about the default behavior of each kind of
control and the interactions users have with them.

When a form is submitted, the value of a control is paired with the tag’s name attribute
to form the name=value pairs in the URL. The value is obtained from the state of the
control in the browser—control tags do not need value attributes. However, if the
form’s HTML provides a value attribute for a control tag, that value will be used to
initialize the state of that control. The kinds of tags that constitute forms are:

button
There are three types of button controls, specified by the value of the tag’s type
attribute:

submit
Clicking a submit button causes the form to be submitted—i.e., the names
and values of the form’s controls are combined with the form’s action URL to
create a request, which is then submitted to the web server (normally the server
from which the form was obtained in the first place).

reset
Clicking a reset button restores all the controls to their initial state.

push
Push buttons have no default behavior; they are used together with scripts, so
we won’t be discussing them any further here.

input
Input controls include the following, specified by the value of the tag’s type
attribute:

checkbox
On/off switches that the user can toggle. Several checkboxes in a form may
share the same name attribute value, allowing multiple values to be selected.

radio
Like checkboxes, but they have a different appearance and normally share a
name attribute value. The browser ensures that only one is selected at any time.

Web Servers | 351

text
A single-line area where the user can type text that becomes the value of the
control.

file
Opens a file selection dialog for uploading files.

textarea
A multi-line input control (text box).

select
A drop-down menu, each value of which is specified by an option tag.

Example 9-19 shows the HTML for a very simple web page. It has a form containing
three elements: a label, an input box, and a submit button. The intent of the form is to
generate a request to search the Rebase data loaded by the program shown in Examples
4-37 through 4-41.

Example 9-19. A simple HTML form for a restriction site query

<html> <!-- begin HTML -->
 <head> <!-- begin HEAD -->
 <title>Restriction Enzyme Search </title> <!-- window title -->
 </head> <!-- end HEAD -->
 <body> <!-- begin BODY -->
 <h2>Restriction Enzyme Search</h2> <!-- heading 2 -->
 <form action='cgi/enzymes_for_site'> <!-- begin FORM -->
 <!-- action attribute specifies CGI script to run on submit -->
 <label>Recognition Site:</label> <!-- just text -->
 <input type='text' name='site' size='25'> <!-- 25 char. input -->
 <button type='submit'>Find</button> <!-- submit button -->
 </form> <!-- end of FORM -->
 </body> <!-- end of BODY -->
</html> <!-- end of HTML -->

Figure 9-2 shows how a browser would display the form shown in Example 9-19. (Of
course, the actual fonts and possibly other details will differ according to which browser
is used and how its preferences are set.)

Figure 9-2. The restriction site query form

Suppose the URL for the HTML page displayed in Figure 9-2 is:

http://localhost:8000/enzymes_for_site.html

If the user enters the sequence CCGG in the text input field and presses the submit button,
the browser will submit the following request:

352 | Chapter 9: Web Programming

http://localhost:8000/cgi/enzymes_for_site?site=CCGG

The form’s action attribute does not begin with an http:, so its path uses the same host
as the HTML file. It doesn’t begin with a slash, so the path is relative to the directory
from which the server is running. Together that gives the partial URL http://local
host:8000/. The rest of the path, cgi/enzymes_for_size, is the value of the submit at-
tribute of the <form> tag. When a form like this is submitted, the name and value of
each of its input components is added to the URL, following a question mark. The
name and value are separated by an equals sign, and if there are more than one the pairs
are separated by ampersands.

The result will be something like what is shown in Figure 9-3.

Figure 9-3. The restriction site query results

There’s one more thing to take care of. The HTML produced by the preceding code
does not include a form. Once the user has submitted one query, the web page returned
can’t be used to submit another one. True, the user could use the browser’s back button,
but for various reasons that is not a particularly good solution. It would be better to
return the original form plus the results. All we’d need to do to implement this is extend
the main HTML template to incorporate the HTML from the original form into the
HTML for the response. Example 9-20 shows the new version of the HTML template
originally defined in Example 9-16.

Example 9-20. Returning a form with CGI results

html_template = string.Template(
 '''Content-Type: text/html

<head>
 <title>Restriction Enzyme Search</title>
</head>
<body>
 <h2>Restriction Enzyme Search</h2>
 <form action='enzymes_for_site'>
 <label>Recognition Site:</label>
 <input type='text' name='site' size='25' value=$seq>
 <button type='submit'>Find</button>

Web Servers | 353

 </form>
$response
 </body>
</html>
''')

Now, the user will see the results below the input area and will be able to use the form
again. In addition, the previous entry in the input form will still be there, ready for
editing in case the user wants to change it slightly. Figure 9-4 shows the results of the
same query as Figure 9-3 after changing the HTML template as shown in Example 9-20.

Figure 9-4. The restriction site query results with a form

We no longer even need the original HTML file now. We can just enter the query URL
with no arguments to get the empty form:

http://localhost:8000/cgi/enzymes_for_site

The cgi/ component is not part of the action attribute of the generated
HTML because the path will be relative to the directory where the CGI
script that generated it is found.

Tips, Traps, and Tracebacks

Entrez Programming Utilities
The Entrez Programming Utilities (E-Utilities) provide uniform access to many of the
Entrez databases. They are accessed through HTTP queries, but their parameters and
responses are designed for programmatic use, as opposed to HTML forms and web
pages marked up with formatting details. One of the query parameters specifies the
desired form of output: text, XML, etc. The starting point for their documentation is
http://eutils.ncbi.nlm.nih.gov/entrez/query/static/eutils_help.html. That page provides

354 | Chapter 9: Web Programming

http://eutils.ncbi.nlm.nih.gov/entrez/query/static/eutils_help.html

links to the documentation of each of the tools and a short course describing how to
use them to construct data pipelines (http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi
?book=coursework&part=eutils). Perhaps the most useful query in the context of the
kinds of data access shown in this book is Efetch, specifically in its use with “Sequence
and other Molecular Biology Databases,” as described at http://eutils.ncbi.nlm.nih.gov/
corehtml/query/static/efetchseq_help.html. A complete list of the software tools availa-
ble from the NCBI website is at http://www.ncbi.nlm.nih.gov/guide/data-software.

Tips

Web pages

• Put the following function, which we saw earlier, in a file of Python utilities you
maintain, and import it into the files you are working on. (For a module like this
it does make sense to use the from ... import * form of the import statement.)
You can call this function from within Python to open the documentation of a given
module. You’ll probably want to give it a shorter name, but there’s no need to
change the name of the function itself. Instead, simply assign the name you want
to browse_module_doc:

def browse_module_doc(module_name):
 webbrowser.open('http://docs.python.org/3.1/library/' +
 module_name + '.html')

mdoc = browse_module_doc

>>> mdoc('re') # browse re module doc
>>> mdoc('os.path') # browse os.path module doc
>>> mdoc('modules') # browse modules index
>>> mdoc('index') # browse library index

• Like Python strings, HTML attribute values may use single or double quotes. Mix-
tures of single and double quotes can cause a great deal of confusion and frustration
when you are constructing HTML strings, matching HTML text with regular ex-
pressions, or using ordinary string facilities to take apart HTML. If your program
is constructing HTML, you can choose which quotes to use where, and you should
make a point of using either single quotes for Python strings and double quotes for
HTML tag attributes, or vice versa. If your program is analyzing HTML obtained
from elsewhere, and that HTML uses either single or double quotes consistently,
use the other kind for your strings. Of course, if you always use triple quotes in
these situations—even for one-line strings—you will avoid such problems entirely.

• It is very tricky to develop and debug both web interactions and program actions
together. Whenever you do any kind of web programming, develop the code first
using data from a locally stored file. (In particular, if the data is supposed to be
obtained by a query, perform the web query manually and save the results to a text
file.) Once your code is working, add the actual web interaction.

Tips, Traps, and Tracebacks | 355

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=coursework&part=eutils
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=coursework&part=eutils
http://eutils.ncbi.nlm.nih.gov/corehtml/query/static/efetchseq_help.html
http://eutils.ncbi.nlm.nih.gov/corehtml/query/static/efetchseq_help.html
http://www.ncbi.nlm.nih.gov/guide/data-software

Debugging CGI scripts

• In general, you can run your CGI script from the command line, giving it a single
argument that contains arguments the way they would appear in a query following
its question mark: in the form of name=value pairs separated by ampersands. This
can be very helpful for debugging. (Usually you’ll have to quote the argument on
the command line, especially when there is more than one value, since most
command-line shells treat ampersands specially.)

• Importing your script into the interpreter and running pieces of it manually is
another effective debugging technique.

• Always import and include cgitb.enable in your code so that you get its elaborate
runtime error messages while developing CGI scripts.

• Syntax errors in CGI will show up in the window from which you are running one
of the http.server module’s servers.

HTTP servers

• The http.server module’s servers print every request they get to the window in
which they are running.

• You can stop the favicon messages by installing a favicon.ico file (see “Running a
server: The http.server module” on page 341) in the directories from which you
run web servers (Python’s or otherwise).

• Use links (aliases) to .py CGI files, omitting the file extension. This is a form of
information hiding. (This may not work in Windows environments, where the
extension is the only way to tell the system what program to use to execute a file.)
Keep the following points in mind:

— You want the URL submitted to look like a query, not a filename. The imple-
mentation of the query as a Python script is a detail that should not be exposed
to the outside world. (Don’t you get a bit irritated or confused when you
see .php or .pl or even .cgi extensions in URLs?)

— Because the alias separates the query name from the actual file that implements
it, you can change the path to the actual file and re-create the alias or link to the
new path without having to change anything in the HTML files that use the
query in form actions.

• Give your queries (the aliases or links to your .py files, or the .py files themselves
if you aren’t using aliases or links) descriptive but not enormously long names.
Users may read the query URLs in their browsers’ address bars, bookmark them,
etc. Later, they may search their history or bookmarks for a URL and should be
able to find it by recalling a natural syllable in the query name.

• Likewise, keep the paths of your query aliases relatively short, even if the actual
files are buried deep in your file hierarchy.

356 | Chapter 9: Web Programming

• When you’re running an http.SimpleHTTPServer or http.CGIHTTPServer from a
command-line Python program, syntax errors will appear in the window from
which it was started. Tracebacks will not. In order to view tracebacks you must
include the following lines in your program:

import cgitb
cgitb.enable()

Those tracebacks will appear (in dramatic color) in the web browser. Obviously,
you would not want to enable this when people are actually using your CGI script.

Traps
• All network programming protocols return bytes objects. You must call the decode

method on bytes objects you want converted to strings. You can specify the en-
coding to use as an argument; otherwise, the default decoding (usually the local
variant of ASCII) will be used.

• Web servers execute CGI scripts as separate executables with no shell environment.
Therefore, if using a “shebang” line it must specify the absolute path to the Python
executable, rather than using /usr/bin/env.

• For a file to be executed as a CGI script using an http.server module server:

— You must use http.CGIHTTPServer: it both serves documents and executes CGI
scripts, whereas http.CGIHTTPServer only serves documents.

— The script file must be executable.

— The http.CGIHTTPServer recognizes a request as a CGI script simply by checking
the path from the directory in which the server was started to the directory of
the script. Extensions (or lack thereof) have no effect. The subdirectory can be
several levels down.

• Absolute and relative URLs in an HTML file are treated very differently. Absolute
URLs begin with a slash: their paths begin at the directory from which the web
server is running. Relative URLs do not have a leading slash; their paths begin at
the directory from which the web page was obtained.

• Running scripts through a full-featured web server rather than using one from
Python’s http.server module introduces further constraints. The exact details de-
pend on the site’s configuration, but the following are likely to be issues. Many are
the result of the server’s executing scripts under a special username reserved for
the server. The considerations in this list were much more of an issue in earlier days
of organization web servers, but you should be aware of them, especially if your
organization may be using default configurations that retain some of these restric-
tions and requirements:

— Scripts must be readable and executable by “anyone.”

— Datafiles accessed by scripts must be readable by “anyone.”

Tips, Traps, and Tracebacks | 357

— Directories on the path from a script’s directory to any datafile it uses must be
navigable (probably readable and executable) by “anyone.”

— Whether a file is interpreted as a script to execute may depend on the name of
the directory in which it is found, its extension, or a combination of the two. (If
only certain extensions are allowed, you may have to use a .cgi extension in the
alias or links to your actual .py files.)

— It may be necessary to place scripts and HTML files in designated directories
under your home directory—html, for example.

— Your scripts may not be accessible from the Internet, depending on the site’s
configuration, firewall settings, etc.

— Links or aliases from within your designated HTML and CGI subdirectories to
files in directories outside of those directory trees may not be allowed, or they
may work for HTML but not for CGI.

Tracebacks
Here are some error messages you are likely to encounter while doing web programming
with Python’s libraries:

socket.error: Address already in use
An attempt has been made to start a server on a port that is already being used;
typically, this will happen when a server you started has not stopped and released
its port—either kill the process manually or start a new server using a different port
number.

TypeError: can't use a string pattern on a bytes-like object
You matched a regular expression string of type str against bytes returned from
urllib.request.urlopen; convert the bytes to a string by calling str, with an
encoding argument if necessary, or call the decode method on the bytes, giving it
an encoding argument if necessary.

urllib.error.HTTPError 400: Bad Request
An error has been returned from a web server in response to a call to
urllib.request.open or the like.

urllib.error.URLError: <urlopen error [Errno 8] nodename nor servname provided,
or not known>

In a call to urllib.request.open, the URL didn’t contain a hostname, or your
computer is not connected to the Internet.

358 | Chapter 9: Web Programming

CHAPTER 10

Relational Databases

Most generally, a database is simply an organized collection of data. The data can be
stored in memory, in files in one of your directories, in publicly accessible files, or in
files on a computer acting as a database server. Like a web server, a database server
stands between client programs and the actual data, so that applications never directly
access the files storing the data.

There isn’t necessarily anything special about database files, other than the structure
given to their data by the applications that access them. Spreadsheets have long been
used informally for recording and manipulating data in files. Desktop office application
suites generally include a database component that offers capabilities beyond those of
spreadsheets. These database components allow you to access data selectively instead
of having to read and write entire spreadsheet documents. They also provide mecha-
nisms like pattern-based searching that can be used to construct desktop applications.

Database servers, in turn, are far more powerful and can hold far more data than either
spreadsheets or desktop office suite database components. You may have heard of
commercial database systems such as Sybase and Oracle and open source systems such
as PostgreSQL and MySQL. Database servers use highly specialized file formats that
support capabilities such as concurrent access by multiple users, restrictions on access
to data, a variety of efficiency techniques, automatic backup, and a wide range of other
features necessary for group- and enterprise-scale data management. Client applica-
tions access data on these servers through a standardized language known as the
Structured Query Language (SQL).

Most database server technology is based on a relational data model. The theory of
relational data models is a rather complex subject. Fortunately, we can use the less
formal terminology of SQL, the standardized language used with relational
databases.* This section presents a very basic introduction to the relational model and
SQL. Next, we’ll explore an example of designing and loading data into a database.

* As an acronym for Structured Query Language, “SQL” should be pronounced “ess cue ell,” though many
people pronounce it like the word “sequel.”

359

Once we have data in a database, we can look at some examples of database queries.
The chapter culminates with the development of a web page and a CGI script that allow
the database to be queried through a form in a browser.

Representation in Relational Databases
A full introduction to relational database design would more comfortably occupy an
entire book than a section of a chapter. The goal here is to give you enough information
to get you started using relational databases. We will cover the essentials and demon-
strate them with an example.

Database Tables
A relational database stores data in tables that, like spreadsheets, are organized into
rows and columns. Each row represents an individual entity (a neutral term used to
avoid committing to a particular interpretation of what the data in the row means).
Each column represents an attribute of the entities in the tables. In Python terms, a
table is like a class (type), a row is like an object, and a column is like an attribute, with
each column of a row holding the value of the corresponding attribute.

As in Python dictionaries, the entries in relational database tables are identified by
keys. A key for a table’s entries may comprise the value of a single column or the values
of several columns. Because a table’s key identifies an individual row, each row’s key
must be distinct from the keys of every other row in that table.

A table may have more than one key, since there may be more than one column or
combination of columns that reliably distinguishes each row from every other. Usually,
however, one of the keys is designated as the primary key. This is not a requirement of
the relational data model, but a pragmatic aspect of the way database systems define
and manage tables. Database systems also offer a mechanism by which an integer-
valued column can be designated as a primary key with values automatically generated
in sequence.

Avoiding duplication of values

One important principle of good database design is that combinations of column values
should not appear in more than one row of a table. To give a minimal example, suppose
we write down the four ways to refer to an amino acid, as shown in Table 10-1. This
violates the rule, because each combination of values for Code, Short, and Name occurs
in more than one row.

360 | Chapter 10: Relational Databases

Table 10-1. A minimal example of column dependency

Codon Code Short Name

UUU F Phe Phenylalanine

UUC F Phe Phenylalanine

UUA L Leu Leucine

UUG L Leu Leucine

UCU S Ser Serine

UCC S Ser Serine

UCA S Ser Serine

UCG S Ser Serine

.

Bad things happen when this rule is violated. For example, “phenylalanine” may be
mistakenly spelled differently in the two rows in which it appears. That would mean
that “UUU” and “UUC” would refer to different amino acid names even though they
refer to the same amino acid code and short names, creating a serious inconsistency in
the data. Another problem is that repeating combinations of column values causes the
table to take up more space than is necessary.

The way to fix these kinds of problems is to create a second table to contain just a single
copy of the repetitive information, as shown in Table 10-2. Any of the three columns
in this table can be used as a key, because given the value of one of the columns, the
values of the other two are uniquely defined.

Table 10-2. A database table for amino acid codes and names

Code Short Name

F Phe Phenylalanine

L Leu Leucine

S Ser Serine

.

Table 10-1 can now be revised by dropping two of the redundant columns, as shown
in Table 10-3.

Table 10-3. A revised codon-amino acid table

Codon Code

UUU F

UUC F

UUA L

UUG L

Representation in Relational Databases | 361

Codon Code

UCU S

UCC S

UCA S

UCG S

.

Given these two tables, here are the steps for obtaining the full name of an amino acid
given a codon:

1. The row with the specified codon as the value of its Codon column is located in
the codons table.

2. The value of the Code column of that row is used as a key to the amino acids table.

3. Finding the row with that value in its Code column, the value of the Name column
is obtained.

In the vocabulary of dictionaries, the value of an entry in the first dictionary is used as
the key to access a value in the second dictionary. The technical term for one or more
columns of one table that are used to look up a row in another table is a foreign key—
foreign because it’s a key in a different table.

Representation of relationships

Together, Tables 10-2 and 10-3 define a relationship between codons and amino acids.
This is called a one-many or 1-N relationship, because for every one entry in the amino
acid table there are potentially many (N) entries in the codon table. Occasionally a
database will have a one-one or 1-1 relationship, where each entry in one table corre-
sponds to at most one entry in the other. More common than 1-1, but less common
than 1-N, are relationships in which for each entry in one table there can be many in
the other, and vice versa. This kind of relationship is called a many-many or M-N
relationship.

Strange as it may sound, the term “relationship” is not what the word
“relational” refers to in the terms “relational database” or “relational
data model.” “Relation” is a mathematical term akin to “function,” in
the sense of mapping a domain into a range. “Relationship” is a design
and implementation term signifying an interconnection among objects.

M-N relationships require special handling. Consider a table representing researchers
(Table 10-4) and another representing institutions (Table 10-5). The primary key for
the Researcher table will be the researcher’s Social Security number or equivalent ID.
In the Institution table we’ll make the simplifying assumption that no two institutions
have the same name, so we can use the name as the primary key. (If two institutions

362 | Chapter 10: Relational Databases

did have the same name, we could use a combination of the institution’s name and
state as the primary key, or we could use something more definitive, such as the insti-
tution’s government tax ID.)

Table 10-4. A table of information about researchers

ID First MI Last Position Institution

111-22-3333 Blue J Bird Professor Some Univ.

444-55-6666 Kay C Jones Student Another Univ.

777-88-9999 Elm Oh Postdoc Some Univ.

Table 10-5. A table of information about institutions

Name Street City State Country

Some Univ. 1 A St. Oneville MA USA

Another Univ. 20 B St. Twotown NY USA

Corporate R&D 9 Ave. Q Oneville MA USA

So far we have the same kind of 1-N relationship we had in the previous example: N
researchers for any institution, one institution for any researcher. Now let’s make Blue
J. Bird a consultant at Corporate R&D, as shown in Table 10-6.

Table 10-6. Adding another entry for a researcher

ID First MI Last Position Institution

111-22-3333 Blue J Bird Professor Some Univ.

444-55-6666 Kay C Jones Student Another Univ.

777-88-9999 Elm Oh Postdoc Some Univ.

111-22-3333 Blue J Bird Consultant Corporate R&D

Now we have a problem: rows 1 and 4 have the same primary key—the ID—which
violates the requirement that no two rows have the same value for a key. The problem
here is that an M-N relationship is essentially two 1-N relationships: one researcher
can have multiple positions and, of course, one institution can have multiple research-
ers. However, in a 1-N relationship only one of the tables can have rows that repeat
values for the foreign key to the other table.

M-N relationships must be represented in a separate table whose rows contain foreign
keys to each of the other two tables. First we’ll create a table called “Appointment.”
We’ll add to it a column for the foreign key from each of the two tables involved in the
relationship. The primary key for this table will be the combination of the values in
those columns. Table 10-7 illustrates this initial step. Note that no two rows have the
same value for the combination of researcher and institution.

Representation in Relational Databases | 363

Table 10-7. Creating an M-N Appointment table

Researcher Institution

111-22-3333 Some Univ.

444-55-6666 Another Univ.

777-88-9999 Some Univ.

111-22-3333 Corporate R&D

Next, we’ll remove the foreign key column from the Researcher table, as well as the
columns that differ between the rows with the same ID. We’ll then add those columns
to the new table. In this example the only column other than the foreign key is the
Position column. Moving the Position column to the Appointment table makes sense,
because a position is associated with the combination of researcher and institution: a
person isn’t a professor, but rather a professor at a particular institution. Table 10-8
shows the modified Appointment table and Table 10-9 the modified Researcher table.

Table 10-8. Adding a column to the Appointment table

Researcher Institution Position

111-22-3333 Some Univ. Professor

444-55-6666 Another Univ. Student

777-88-9999 Some Univ. Postdoc

111-22-3333 Corporate R&D Consultant

Table 10-9. Adding a column to the Researcher table

Researcher First MI Last

111-22-3333 Blue J Bird

444-55-6666 Kay C Jones

777-88-9999 Elm Oh

Database definition

The table definitions of a relational database constitute its schema. Many formal no-
tations and diagramming techniques exist for specifying complex schemas, but for
simple databases it is often sufficient just to list the table details in text format.
Specifically:

• The names of the database’s tables

• The name of each column of each table

• The type of value contained in each column of each table

• For each column of each table, whether its values can be null

• The column(s) of each table forming the key by which its entries can be referenced

364 | Chapter 10: Relational Databases

• The primary key of each table

• The columns of each table having values that are keys in another table (the foreign
keys)

A database containing both the amino acid tables and the researcher tables could be
described textually as shown in Table 10-10. (The asterisks denote primary keys; the
type char represents a fixed number of characters, while varchar represents a variable
number of characters up to the specified limit.)

Table 10-10. An informal database schema

Table Column Type Null? Foreign key

AminoAcid *Code char(1) N

 Short char(3) N

 Name char(13) N

Codon *Codon char(3) N

 Code char(1) N AminoAcid.Code

Researcher *ID integer N

 First varchar(255) N

 MI char(3)

 Last varchar(255) N

Institution *Name varchar(255) N

 Street varchar(255)

 City varchar(255) N

 State char(3) N

 Country char(5)

Appointment *ID text N Researcher.ID

 *Institution text N Institution.Name

 Position text

A Restriction Enzyme Database
In this section we’re going to build a small database that holds the information about
restriction enzymes contained in http://rebase.neb.com/rebase/link_allenz (“allenz”
standing for “all enzymes”). This version of the Rebase data provides substantially more
information than the version we used in our earlier examples. We’ll begin with the

Representation in Relational Databases | 365

http://rebase.neb.com/rebase/link_allenz

structure of the datafile, a program to read that data, and a design for the database
based on it. We’ll assume that the file is saved under the name allenz.data in the same
directory that will contain the Python file with the code to process it.

The data

After some introductory text, which we’ll skip as we’ve done in a number of other
examples, the datafile contains an entry for each enzyme in the following format:

<1> Enzyme Name
<2> Prototype
<3> Microorganism
<4> Source
<5> Recognition Sequence
<6> Methylation Site
<7> Commercial Availability
<8> References
... blank line ...

The details of each field are as follows (conveniently, the numbers in angle brackets are
actually part of the datafile format):

1. The enzyme name is the standard identifier of the enzyme (e.g., EcoRI).

2. The prototype is just the name of another of the file’s enzymes, which was the first
one discovered that recognizes the same sequence as the entry’s enzyme. Entries
for prototype enzymes have an empty prototype field.

3. The microorganism field consists of two or more subfields that name the genus,
species, and possibly subspecies information. Some subspecies entries consist of
somewhat informal multiword descriptions; others contain a single well-known
subspecies designation.

4. The source is the name of an individual or National Culture Collection.

5. The recognition sequence is a coded description of both the sequence recognized
by the enzyme and the way it cuts at that site.

6. The methylation site describes the location within the recognition sequence me-
thylated by the cognate methylase; only about 10% of the enzymes in the file have
information in this field. We will ignore this field.

7. Commercial availability is a series of single-letter codes indicating which vendors
supply the enzyme. We will ignore this field.

8. As stated at the beginning of the datafile from which the rest of this information
was extracted, “only the primary references for the isolation and/or purification of
the restriction enzyme or methylase, the determination of the recognition sequence
and cleavage site or the methylation specificity are given.” The information in the
references field is expressed as a list of one or more integers separated by a comma
and a space. The integers refer to numbered references whose details are listed after
the entry for the last enzyme.

366 | Chapter 10: Relational Databases

The content of the recognition site field is a series of DNA bases, written for one strand
only, from 5' to 3'. The cleavage site—if known—is represented by a caret (^), placed
within the base sequence so that the cleavage occurs on the 3' side of the caret.

Some enzymes cleave several bases away from an end of the recognition site. For these,
the base sequence in the field is followed by an indication of the location of the cut
site(s). This is expressed with parentheses and slashes: for example, (5/10). The first
number in this example indicates that the 5' to 3' cleavage occurs 5 bases downstream
from the end of the recognition site, and although the complementary sequence is not
shown, the second number indicates that the cleavage occurs 10 bases before the rec-
ognition site on the 5' to 3' complementary strand. Some enzymes cut on both sides of
their recognition sequences, in which case the field will contain a parenthesized pair of
numbers before and after the recognition sequence.

Reading the data

As we’ve seen in earlier examples, files often begin and/or end with information that is
not part of the information we want to extract from them. The datafile we are working
with in this case actually has two data sections, so the steps that skip, read, and stop
at nondata must be performed twice. We’ll read the data using an implementation of
the Grand Unified Bioinformatics File Parser (see “The Grand Unified Bioinformatics
File Parser” on page 146). The code is shown in Example 10-1.

Example 10-1. Reading Rebase “all enzyme” data

def read_enzymes_from_file(filename):
 with open(filename) as file:
 skip_intro(file)
 return (get_enzymes(file), get_references(file))

def skip_intro(file):
 """Skip through the documentation that appears at the beginning
 of file, leaving it positioned at the first line of the first enzyme"""
 line = ''
 while not line.startswith('<REFERENCES>'):
 line = file.readline()
 while len(line) > 1: # always 1 for '\n'
 line = file.readline()
 return line

def get_enzymes(src):
 enzymes = {}
 enzyme = next_enzyme(src)
 while enzyme:
 enzymes[enzyme[0]] = enzyme # dict key is enzyme's name
 enzyme = next_enzyme(src)
 return enzymes

def read_field(file):
 return file.readline()[3:-1]

Representation in Relational Databases | 367

def read_other_fields(file):
 """The name of the enzyme has already been read;
 read the rest of the fields, returning a 7-tuple"""
 return [read_field(file) for n in range(7)] # read 7 fields

def next_enzyme(file):
 """Read the data for the next enzyme, returning a list of the
 form: [enzyme_name, prototype, source, recognition_tuple,
 (genus, species, subspecies), references_tuple]"""
 name = read_field(file)
 if name: # otherwise last enzyme read
 fields = [name] + read_other_fields(file)
 fields[2] = parse_organism(fields[2])
 fields[7] = [int(num) for num in fields[7].split(',')]
 file.readline() # skip blank line
 return fields

def parse_organism(org):
 """Parse the organism details"""
 parts = org.split(' ')
 if len(parts) == 2:
 parts.append(None)
 elif len(parts) > 3:
 parts[2:] = ' '.join(parts[2:])
 return tuple(parts)

def skip_reference_heading(file):
 """Skip lines until the first reference"""
 line = file.readline()
 while not line.startswith('References:'):
 line = file.readline()
 file.readline() # skip following blank line

def next_reference(file):
 """Return tuple (refnum, reftext) or, if no more, (None, None)"""
 line = file.readline()
 if len(line) < 2: # end of file or blank line
 return (None, None)
 else:
 return (int(line[:4]), line[7:-1])

def get_references(file):
 """Return a dictionary of (refnum, reftext) items from the
 references section of file"""

 # using a dictionary here because there are many references
 # and an enzyme may reference several of them
 refs = {}
 skip_reference_heading(file)
 refnum, ref = next_reference(file)
 while refnum:
 refs[refnum] = ref
 refnum, ref = next_reference(file)
 return refs

368 | Chapter 10: Relational Databases

if __name__ == "__main__":
 if len(sys.argv) < 2:
 filename = 'data/Rebase/allenz.data'
 elif len(sys.argv == 2):
 filename = sys.argv[1]
 else:
 print('Usage: read_enzymes [filename]')
 enzymes, references = read_enzymes_from_file(filename)
 print('Read', len(enzymes), 'enzymes and', # print len instead of
 len(references), 'references') # contents of huge lists

A schema for the Rebase database

There are many graphical conventions for representing database schema, but we don’t
need anything fancy. Figure 10-1 should suffice. What it shows is:

• The name of each table

• The names of the columns of each table

• A 1-N relationship from Enzyme to Organism, meaning there is only one Organism
for each Enzyme, but there may be more than one Enzyme for each Organism

• A 1-N relationship from the Enzyme to itself, meaning there is (optionally) one
prototype Enzyme for each Enzyme, but a single Enzyme can be the prototype of
many others.

• A M-N relationship, represented in a separate table, between the Enzyme and Ref-
erence tables

The 1-N relationships are drawn the way they are because the relationship is represen-
ted in the database by a column in the N-side table that contains the key of the 1-side
table.

Table 10-11 is a textual representation of the diagram in Figure 10-1.

Table 10-11. A textual schema for the Rebase data

Table Column Type Null? Foreign key

Organism *OrgID integer N

 Genus varchar(255) N

 Species varchar(255) N

 Subspecies varchar(255)

Reference *RefID integer N

 Details varchar(255) N

Enzyme *Name varchar(255) N

 Prototype varchar(255) Enzyme.Namea

Representation in Relational Databases | 369

Table Column Type Null? Foreign key

 OrgID integer N Organism.OrgID

 Source varchar(255) N

 RecognitionSeq varchar(255) N

 TopCutPos integer

 BottomCutPos integer

 TopCutPos2 integer

 BottomCutPos2 integer

EnzymeReference *Enzyme varchar(255) N Enzyme.Name

 *RefID varchar(255) N Organism.OrgID
a Enzyme.name is a key back to the same table, not a foreign key, but it serves the same purpose—the establishment of a 1-N relationship.

There is nothing strange about one row in a table being related to another.

Figure 10-1. Schema diagram for the Rebase example

Using Relational Data
Given the preceding introduction and example, we can now look at the ways database
tables and their contents are manipulated in practice.

370 | Chapter 10: Relational Databases

SQL Basics
There are three major kinds of SQL operations:

Modify the schema
Add, remove, or modify tables.

Modify table contents
Add, remove, modify, or replace rows of tables.

Query the database
Get results matching database queries.

These operations are performed using SQL statements, as shown in Table 10-12.

Table 10-12. SQL statements

Category Statement Operation

Modify database schema CREATE TABLE Add table

DROP TABLE Remove table

ALTER TABLE ... RENAME TO Rename table

ALTER TABLE ... ADD COLUMN Add a column

Modify table contents INSERT INTO Add row(s)

DELETE Remove row(s)

UPDATE Modify a row(s)

REPLACE Replace a row(s)

Query database SELECT Obtain results

The rest of this chapter describes SQL fundamentals and how SQL is used from Python.
As it proceeds, it uses an extended narrated example. Certainly much more could be
done with this example, just as much more could be explained about SQL. The material
here is intended to be consistent in depth with the material in the rest of this book.

Using the sqlite3 module

Large-scale database systems provide interactive interpreters, graphical user interfaces,
and programs for executing SQL statements contained in text files. All of that is beyond
the scope of this book and even of much of the work programmers do to use a database.
What’s important for programming purposes is that database systems provide libraries
that implement functions (or methods, if object-oriented) for other code to call. We
will use the SQLite3 database† and Python’s sqlite3 module that interfaces to it be-
cause it is easy to use, it does not require a separate server, and it is included in the
Python installation.

† You can find further information about SQLite3 at http://www.sqlite.org.

Using Relational Data | 371

http://www.sqlite.org

Python defines an abstract interface to SQL database systems. Accessing
a specific database system requires a module that implements the in-
terface for that kind of database. Implementations of the interface for
many server-based systems can be found through the Python Package
Index.‡

The sqlite3 module is an interface to a SQLite3 library compiled into
the Python interpreter, so it doesn’t require SQLite3 to be installed on
your computer. However, if SQLite3 has been installed there will be a
command-line interpreter program you can run called sqlite3.§

If you use the command-line sqlite3 program, bear in mind that standard
interactive SQL tools require each statement to end with a semicolon.

While SQL is supposedly a standardized language, many database systems extend it in
various ways and/or fail to implement some of its features. It is therefore always some-
what risky to show how to do things for relational databases in general, since a given
SQL statement might not work with a specific database system. The SQLite3 database
system is intentionally quite minimalist, but it nevertheless implements a large portion
of SQL in a fairly standard way. Even though SQLite3 does not use a database server,
it provides the same sort of interface used by full-featured client/server systems.

You’ll want to learn more about databases and the sqlite3 module to
accomplish your goals, and perhaps learn about other database systems
as well. Beyond the pragmatics of actually using one, this section should
give you a fairly clear picture of how relational databases manage and
manipulate data. Given that foundation, it shouldn’t be too difficult to
learn about other uses and other database systems.

Connecting to the database

The first step in using the sqlite3 module is to create a database connection object:

conn = sqlite3.connect(dbname)

where dbname is the name of the file containing the database. The sqlite3 module pro-
vides convenient high-level methods for connection objects that hide some lower-level
details that are part of interacting with a database connection. We’ll look at three of
them here:

‡ Located at http://www.python.org/pypi; it is unclear how long it will be before each of these is
updated to run with Python 3.

§ If SQLite3 has not been installed on your machine and you want to try installing it, go to http:
//www.sqlite.org/download.html. There are several versions available for download. The one you
want (as of this writing) is sqlite3-3.6.14.bin.gz for Linux, sqlite3-3.6.14-osx-x86.bin.gz for Intel
Macs running 10.5+, or sqlite-3_6_14.zip for Windows. The numbers after the first “3” will vary
according to release.

372 | Chapter 10: Relational Databases

http://www.python.org/pypi
http://www.sqlite.org/download.html
http://www.sqlite.org/download.html

connection.execute("a SQL statement"[, values])
Executes the SQL statement, replacing placeholders in the statement (discussed
momentarily) with the corresponding element of values (a sequence or dictionary).
Results (if any) are returned as an iterable that produces tuples containing the
values for one result.

connection.executemany("a SQL statement", values-sequence)
Executes the SQL statement once for each sequence of values in values-
sequence, replacing placeholders in the statement with the corresponding values,
as with connection.execute. This is primarily used for insertions of multiple rows
into tables.

connection.executescript("a SQL script")
Executes multiple SQL statements. This is a convenient way to create all the tables
of a database in one method call, as you’ll see later in Example 10-4. Note that
each statement must end with a semicolon.

Programmatic SQL interfaces provide mechanisms for parameter substitution into
statements. (This is one of those areas that is not as standardized as it should be.) The
way it works in sqlite3 is very simple. The second argument to execute or
executemany can be either a sequence or a dictionary. The placeholder used with a
sequence is a question mark; when the query is executed, each question mark is re-
placed by the corresponding element of the sequence. There must be exactly as many
elements in the sequence as there are question marks in the query. If the values are
supplied in a dictionary, the query contains keys of the dictionary preceded by a colon,
and the dictionary must contain every key used in the query (though it may contain
others as well). We’ll see examples of both mechanisms later.

The sqlite3 module defines an exception class, sqlite3.Error. You should always em-
bed calls to execute inside try statements that catch this error and print out information
about what has happened. After printing the error the exception clause should reraise
the error with raise, since it won’t normally be able to fix the problem.

Changes SQL statements make to a database are accumulated without actually being
made to the underlying file. To move the changes into the file, it is necessary to
commit them. This is the rough equivalent of closing an output file. The SQL COMMIT
statement serves the same purpose in all standard SQL tools.

Connection objects provide the following methods for managing their state:

connection.commit()
Writes the accumulated changes to the database

connection.abort()
Abandons the accumulated changes without writing them to the database

close()
Closes the connection without committing the changes

Using Relational Data | 373

The accumulation of changes before a commit or rollback is called a transaction.
Transactions are a critical part of programming large-scale databases. They prevent
incomplete sets of changes from being made when an error occurs. For example, a
banking system must ensure that money withdrawn from one account is deposited into
another, so it uses a transaction to ensure that either both changes occur or neither
does. Also, databases manage transactions so that one program’s changes don’t inter-
leave with another’s—the banking system shouldn’t update the balance based on what
was in the account when its transaction started, because that amount may have been
changed by another transaction in the meantime.

A useful feature of methods of sqlite3 module classes is that they im-
plicitly open a transaction whenever a SQL statement that changes the
database schema is encountered. They also commit the implicit trans-
action when the next statement that does not change the schema is exe-
cuted. This avoids schema changes and content changes interfering with
each other.

Creating the database

SQL statements to create the four tables of the Rebase database look something like
those shown in Example 10-2. (Many variations are possible even for a particular SQL
implementation.) SQL keywords are usually shown in uppercase, so we’ll follow that
convention here.

Example 10-2. Database table creation statements for Rebase data

CREATE TABLE Organism(
 OrgID integer PRIMARY KEY,
 Genus text NOT NULL,
 Species text NOT NULL,
 Subspecies text
);

CREATE TABLE Reference(
 RefID integer PRIMARY KEY,
 Details text NOT NULL
);

CREATE TABLE Enzyme(
 Name text PRIMARY KEY,
 Prototype text,
 OrgID integer NOT NULL REFERENCES Organism(OrgID),
 Source text NOT NULL,
 RecogSeq text NOT NULL,
 TopCutPos integer,
 BottomCutPos integer,
 TopCutPos2 integer,
 BottomCutPos2 integer,
);

374 | Chapter 10: Relational Databases

CREATE TABLE EnzymeReference(
 Enzyme text NOT NULL REFERENCES Enzyme(Name),
 RefID integer NOT NULL REFERENCES Reference(RefID),
 PRIMARY KEY(Enzyme, RefID)
);

The beginning of each of these statements names a table. Then, for each of the table’s
columns, the statement lists its name, type, and zero or more constraints. Constraints
on the table itself follow the list of columns. Basic column constraints include:

NOT NULL
A value must be assigned to the column when a row is inserted or changed.

PRIMARY KEY
The column is the table’s primary key and, implicitly, NOT NULL.

UNIQUE
No two rows in the table may have the same value for the constraint’s column.

DEFAULT value
This specifies the value to give to a column in newly created rows when no value
is specified for that column.

REFERENCES TableName(ColumnName, ...)
The column is a foreign key corresponding to the column(s) of the same name in
the specified table.

Constraints that may appear on the table itself include:

PRIMARY KEY(ColumnName[, ...])
An alternate form of PRIMARY KEY constraint; if the primary key involves more than
one column it must be specified as a constraint on the table.

FOREIGN KEY(ColumnName[, ...]) REFERENCES TableName(ColumnName, ...)
An alternate form of FOREIGN KEY constraint; if the foreign key involves more than
one column it must be specified as a constraint on the table.

The next template shows the general form of the SQL statement for creating a table.

S Q L

Creating a Table
The CREATE TABLE statement gives the name of the table to create, followed by a list of
column specifications and other information. With brackets indicating optional com-
ponents and ellipses repetition, the basic form of SQL’s table creation statement is:

CREATE TABLE table_name(column_name column_constraint ...,
 column_name column_constraint ...,
 ...
 [table_constraint [, table_constraint
 ...]]
)

Using Relational Data | 375

If you are redefining a table and reloading its data, you should drop the table first. The
statements shown in Example 10-3 would normally precede the creation statements in
Example 10-2, allowing changes to be made to a program’s table creation statements
before it is reexecuted.

Example 10-3. Dropping tables from the Rebase database

DROP TABLE IF EXISTS Organism
DROP TABLE IF EXISTS Reference
DROP TABLE IF EXISTS Enzyme
DROP TABLE IF EXISTS EnzymeReference

Dropping a table removes both the table’s contents and its definition from the database.
The only variation on the DROP TABLE statement is that the IF EXISTS portion may be
omitted. An attempt made to drop a nonexistent table without IF EXISTS raises an
exception.

S Q L

Dropping a Table
The DROP TABLE statement removes a table from the database. Normally you would
include IF EXISTS because an exception will be raised if you try to drop a table that is
not in the database.

DROP TABLE [IF EXISTS] tablename

The sqlite3 Python code to execute the drop and create statements to define our ex-
ample database is shown in Example 10-4. We use the nonstandard convenience
method Connection.executescript to drop and create all the tables in one call, and a
closing commit to tell the database to accept all the changes.

Example 10-4. sqlite3 code to create the Rebase database

import sqlite3
conn = sqlite3.connect(datafilename)
try:
 conn.executescript('''
DROP TABLE IF EXISTS Organism
DROP TABLE IF EXISTS Reference
DROP TABLE IF EXISTS Enzyme
DROP TABLE IF EXISTS EnzymeReference

CREATE TABLE Organism(
 OrgID integer PRIMARY KEY,
 Genus text NOT NULL,
 Species text NOT NULL,
 Subspecies text
);

376 | Chapter 10: Relational Databases

CREATE TABLE Reference(
 RefID integer PRIMARY KEY,
 Details text NOT NULL
);

CREATE TABLE Enzyme(
 Name text PRIMARY KEY,
 Prototype text,
 OrgID integer NOT NULL REFERENCES Organism(OrgID),
 Source text NOT NULL,
 RecogSeq text NOT NULL,
 TopCutPos integer,
 BottomCutPos integer,
 TopCutPos2 integer,
 BottomCutPos2 integer,
);

CREATE TABLE EnzymeReference(
 Enzyme text NOT NULL REFERENCES Enzyme(Name),
 RefID integer NOT NULL REFERENCES Reference(RefID),
 PRIMARY KEY(Enzyme, RefID)
);
 ''')

 except: sqlite3.OperationalError as err:
 print(err, file=sys.stderr)
 conn.rollback() # abort changes
 raise
conn.commit() # commit changes

Tables can also be renamed, as shown in the next template.

S Q L

Renaming a Table
A table can be renamed as follows:

ALTER TABLE tablename RENAME TO new_name

Internal database mechanisms depend on column names and types in a number of
important ways that make changing the name, type, or constraints of a column prob-
lematic or even impossible. Database systems differ in the details. Other than renaming,
the only kind of modification to a table’s definition that SQLite3 supports is adding a
column.

S Q L

Adding a Column
To add a column to a SQLite3 database:

Using Relational Data | 377

ALTER TABLE tablename ADD COLUMN columnspec

The column specification is the same as in a CREATE TABLE statement, except that certain
kinds of constraints may not be included.

Loading data into tables

The statement used to add a row to a table is INSERT INTO. Only a few of the insertion
statements for our example database are shown, because altogether it will have
approximately 15,000 rows!

S Q L

Inserting a Row into a Table
The basic SQL statement for inserting a row into a table has the form:

INSERT INTO tablename VALUES(value1, value2, ..., valuen)

where n must be the number of columns in the table. The values must appear in the
order of the corresponding columns.

When a program is doing insertions, a better approach is to use a question mark in
place of each value and supply the actual values as the statement is repetitively executed:

connection.execute("INSERT INTO tablename
 VALUES(?,?,?,...)",
 value1, value2, ..., valuen)

As always, a dictionary may be used to supply the values instead of a sequence, with
names preceded by colons in place of the question marks.

The first step in loading the data into the database is to read all the information from
the datafile, as shown in Example 10-1. What that produces is a dictionary of enzyme
information keyed by the enzyme names, and a dictionary of references keyed by the
numbers as they appear in the datafile. The Reference table can be loaded directly from
the references dictionary, but the other three tables require some manipulation of the
raw data: we have to split the enzyme data into the information that goes into the
Organism table and the information that goes into the Enzyme table, and we need to
create the M-N table that connects the Enzyme and Reference tables.

Example 10-5 shows the code for loading the data from the text file into the database.
The top-level function is load_data. It calls a separate function for each table:

• load_reference_data

• load_organism_data

• load_enzyme_data

• load_enzyme_reference_data

378 | Chapter 10: Relational Databases

In addition, load_enzyme_data calls recognition_info to parse the cut site string into its
components. We’re ignoring that detail here but leaving the function in as a “stub” that
just returns a list of its sequence argument and four zeros. We will deal with these
details at a later point.

Example 10-5. Loading the Rebase database

def load_data(dbname, enzymes, references):
 """Reorganize the information in the enzymes and references dictionaries in accordance
 with the dbname's schema and load the data into the database's tables"""
 try:
 conn = get_connection(dbname)
 load_reference_data(conn, references)
 organism_ids = load_organism_data(conn, enzymes)
 load_enzyme_data(conn, enzymes, organism_ids)
 load_enzyme_reference_data(conn, enzymes)
 conn.commit()
 except sqlite3.OperationalError as ex:
 print(ex, file=sys.stderr)
 raise # reraise exception so Python can handle it

def load_reference_data(conn, references):
 for refid, ref in references.items():
 store_data(conn, 'Reference', (refid, ref))

def load_organism_data(conn, enzyme_data):
 """Return a 'reverse' dictionary keyed by the tuples in the list enzyme_data, which have
 the form (Genus, Species, Subspecies); the dictionary's values are sequentially generated
 integer IDs, which will be used as foreign keys in the Enzyme table"""
 organism_ids = {}
 for orgid, data in enumerate(enzyme_data.values()):
 # generating OrgIDs as we go
 org = data[2]
 # this is the only part of an enzyme's data that is relevant here
 if not org in organism_ids:
 store_data(conn, 'Organism', (orgid+1,) + org)
 organism_ids[org] = orgid+1
 return organism_ids

def load_enzyme_data(conn, enzymes, organism_ids):
 for data in enzymes.values():
 store_data(conn,
 'Enzyme',
 (data[0], # name
 data[1] or None, # prototype (None if '')
 organism_ids[data[2]], # organism ID
 data[3]) + # source
 recognition_info(data[4]) + # recognition sequence
 ('',) # methylation site
)

def load_enzyme_reference_data(conn, enzymes):
 """For each reference of each element of enzymes add an entry to the M-N EnzymeReference
 table with the name of the enzyme and the ID of the reference"""
 for data in enzymes.values():

Using Relational Data | 379

 for refid in data[7]: # refid list
 store_data(conn, 'EnzymeReference', (data[0], refid))

temporary implementation: does nothing
def recognition_info(seqdata):
 """Parse the recognition sequence data seqdata, returning a tuple of the form:
 (sequence, top_cut_pos, bottom_cut_pos, top_cut_pos2, bottom_cut_pos2)"""
 return (seq, 0, 0, 0, 0)

These four functions make use of the code shown in Example 10-6 to avoid lengthy
program text and code repetition. The function make_insert_string generates an
INSERT statement with the right number of question marks for a table of a given name
and number of columns. STORE_STMTS is a dictionary keyed by table name that contains
the result of make_insert_string for each of the four tables of the database. The function
store_data encapsulates the execution of an INSERT statement inside a try statement.
It obtains the appropriate string for the INSERT statement from the STORE_STMTS
dictionary.

Example 10-6. Utilities to support Rebase database loading

def make_insert_string(tablename, n):
 """Return an INSERT statement for tablename with n columns"""
 return ('INSERT INTO ' + tablename + ' VALUES ' +
 '(' + ', '.join('?' * n) + ')') # n comma-separated ?s

STORE_STMTS = {tablename: make_insert_string(tablename, ncols)
 for tablename, ncols in
 (('Organism', 4),
 ('Reference', 2),
 ('Enzyme', 9),
 ('EnzymeReference', 2))}

def store_data(conn, tablename, data):
 """Store data into tablename using connection conn"""
 try:
 conn.execute(STORE_STMTS[tablename], data)
 except Exception as ex:
 print(ex)
 raise

SQL Queries
With tables defined and data loaded into the database, it is time to consider the crux
of SQL use: queries that fetch information from the database. This final part of the
chapter explores the key aspects of SQL data access. The topic is far too complex for
us to cover anything but the most basic techniques, but the ones we will cover account
for a significant proportion of what even a moderately experienced SQL programmer
would use in practice. Also keep in mind that implementations in other databases may
vary in some minor ways from the SQLite3 syntax described here.

380 | Chapter 10: Relational Databases

Simple database queries

Creating and loading tables is essentially just administrative work. The real power—
and complexity—of SQL comes into play in accessing the information that’s already
stored in a database. A key advantage SQL has over directly accessing a program’s data
structures is that it provides many powerful mechanisms for choosing columns,
combining data from multiple tables, imposing filters, performing calculations, and
constructing temporary tables that can be used as the source for further accesses.

The heart of SQL is its SELECT statement. A SELECT statement specifies combinations of
column names, table names, calculations, conditions, and so on used to refer to data.
The execution of a SELECT statement produces a (possibly empty) stream of results from
which the program can read.

S Q L

Simple SELECT Statement
The simplest form of the SELECT statement is:

SELECT column_name, ... FROM table_name

The result is a stream of tuples containing values in the designated columns for every
row of the specified table. To access all the columns of a table, use the shorthand:

SELECT * FROM table_name

In documentation and discussion of SELECT statements, each part after the column
names—FROM table_name, for instance—is referred to as a clause. SELECT statements can
have a variety of optional clauses. An important one in practice is LIMIT, since for tables
with many rows, such as those in our Rebase example, you probably won’t want to
access all of them.

S Q L

Limiting SELECT Statement Results
You can limit the number of rows a query returns as follows:

SELECT column_name, ... FROM table_name LIMIT number

You can also add another clause to SELECT statements that have a LIMIT clause to say
where in the sequence of results you want to start (the “offset”):

SELECT column_name, ... FROM table_name LIMIT number OFFSET position

Another option is to add a clause specifying the column(s) to use in determining the
order of the results:

SELECT column_name, ... FROM table_name ORDER BY column_name

Using Relational Data | 381

Column names are not the only thing that can follow the SELECT keyword. A wide range
of expression types can be used, with syntax much like Python’s. (An important
exception is that a single equals sign is an equality test; there is no assignment.)

S Q L

Expressions in SELECT Statements
Some of the more important expressions are:

column_name
literal_value
expression(s)
expression1 binary_operator expression2
expresssion IS/NOT NULL
expression1 [NOT] LIKE expression2
expression1 [NOT] BETWEEN expression2 AND expression3
function_name(expression, ...)

(“Literal” values are numbers, single-quoted strings, NULL, etc.) SQL functions you can
use in SELECT statements include COUNT, MAX, MIN, AVG, and SUM. An expression following
LIKE includes wildcard characters, with _ matching a single character and % zero or
more. Matching is case-insensitive.

Another maneuver that is often important is to limit expressions—COUNT(), in
particular—to distinct values. This is like the difference between a set and a tuple, in
that sets do not contain duplicate values.

S Q L

DISTINCT in SELECT Statements
The SQL keyword DISTINCT can appear before the expressions of a SELECT statement or
the arguments to a function (inside the parentheses). This qualifies the query so that
only one row for each distinct value is included in the results.

SELECT COUNT(DISTINCT Genus, Species) FROM Organism

Example 10-7 shows some simple SELECT statements for the Rebase database. Exam-
ple 10-8 shows code to execute them in Python. The code includes a convenience
function to write some output since conn.execute() just returns an iterable object—it
doesn’t print anything.

Example 10-7. Simple SELECT statements in SQL

SELECT Name, Prototype FROM Enzyme LIMIT 5
SELECT * FROM Organism LIMIT 4 OFFSET 6
SELECT * FROM Organism
 ORDER BY Genus, Species, Subspecies

382 | Chapter 10: Relational Databases

 LIMIT 4 OFFSET 6
SELECT COUNT(*) FROM Organism

Example 10-8. Simple SELECT statements using the sqlite3 module

dbname = 'path to database'
conn = sqlite3.connect(dbname)

def execute(query, args=[]):
 print()
 print(query)
 print()
 try:
 for result in conn.execute(query, args):
 print(result)
 except sqlite3.Error as ex:
 print(ex, file=sys.stderr)
 raise

for query in (
 'SELECT Name, Prototype FROM Enzyme LIMIT 5',
 'SELECT * FROM Organism LIMIT 4 OFFSET 6',
 '''SELECT * FROM Organism
 ORDER BY Genus, Species, Subspecies
 LIMIT 4 OFFSET 6''',
 'SELECT COUNT(*) FROM Organism',
 'SELECT MAX(Name, FROM Enzyme',
 'SELECT COUNT(Subspecies) FROM Organism',
 'SELECT COUNT(DISTINCT Genus) FROM Organism',
 '''SELECT DISTINCT Species FROM Organism
 WHERE Genus = 'Mycobacterium'
 ORDER BY Species, Subspecies ''',
):
 execute(query)

conn.close()

The results of executing the preceding script are shown next. The third query reorders
the results first by genus, then species, and finally subspecies:

SELECT Name, Prototype FROM Enzyme LIMIT 5

('HpyF30I', 'TaqI')
('TmiI', '')
('BstD102I', 'BsrBI')
('BssHII', 'BsePI')
('BstXII', 'MboI')

SELECT * FROM Organism LIMIT 4 OFFSET 6

(7, 'Bacillus', 'stearothermophilus', '1473')
(8, 'Actinobacillus', 'suis', 'NH')
(9, 'Helicobacter', 'pylori', 'RFL21')
(10, 'Thermus', 'species', None)

Using Relational Data | 383

That the results of the second query are ordered according to the
numerical IDs we generated for them is an implementation detail that
you can’t generally rely on.

SELECT * FROM Organism
 ORDER BY Genus, Species, Subspecies
 LIMIT 4 OFFSET 6

(2400, 'Acetobacter', 'pasteurianus', None)
(1259, 'Acetobacter', 'pasteurianus', 'B')
(1538, 'Acetobacter', 'pasteurianus', 'C')
(1899, 'Acetobacter', 'pasteurianus', 'D')

SELECT COUNT(*) FROM Organism

(3031,) # note that even single values are returned as tuples

SELECT MAX(Name) FROM Enzyme

('Zsp2I',)

SELECT COUNT(Subspecies) FROM Organism
 # the number of organisms whose subspecies is not NULL
(2530,)

SELECT COUNT(DISTINCT Genus) FROM Organism

(241,)

There are ordering dependencies among the kinds of clauses that can
appear in a sqlite3 SELECT statement.‖ Essentially, whatever clauses are
contained in query must appear in the following order:

DISTINCT
EXPRESSION(s)
FROM
WHERE expression
GROUP BY column_names
ORDER BY column_names
LIMIT integer [OFFSET integer]

The definition of execute in Example 10-8 takes an optional second argument. This is
for the values to be substituted into a parameterized query. Here are two of the queries
we just showed, but in parameterized form. We use tuples to supply the query and the

‖ A diagram documenting all the variations on SELECT together with explanatory text is available
at http://www.sqlite.org/lang_select.html. Because this is complete documentation much of it is
more advanced than you will want to deal with, but you should be able to pick out the important
parts.

384 | Chapter 10: Relational Databases

http://www.sqlite.org/lang_select.html

values to be substituted. The first query uses a question mark as a placeholder, while
the second uses the dictionary notation:

for query in (
 ("SELECT Name, Prototype FROM Enzyme LIMIT ?", (5,)),
 ("SELECT * FROM Organism LIMIT :lim OFFSET :off", {off: 6, lim: 5})
):
 execute(query[0], query[1])

Qualified database queries

Despite the variety of queries we’ve seen so far, the most significant part of a SELECT
statement is the ability to restrict results based on column values. This is done using
WHERE clauses and expressions. WHERE clauses follow the FROM clause(s) in SELECT
statements.

S Q L

WHERE Clauses in SELECT Statements
A basic WHERE clause has the form:

SELECT * FROM table_name WHERE expression

Often, the expression has multiple subexpressions connected by combinations of AND
and OR:

SELECT * FROM tablename WHERE expression1 AND expression2

Example 10-9 shows two queries with WHERE clauses.

Example 10-9. WHERE clauses in SELECT statements

for query in (
 '''SELECT COUNT(*) FROM Enzyme WHERE Prototype IS NULL''',

 '''SELECT DISTINCT Species FROM Organism
 WHERE Genus = 'Mycobacterium'
 ORDER BY Species''',
):
 execute(query)

Here are the results:

SELECT COUNT(*) FROM Enzyme WHERE Prototype IS NULL

(606,)

SELECT DISTINCT Species FROM Organism
 WHERE Genus = 'Mycobacterium'
 ORDER BY Species

('avium',)
('butyricum',)

Using Relational Data | 385

('chelonei',)
('fortuitum',)
('gordonae',)
('habana',)

Relationship queries

Consider these example queries performed in the sqlite3 interactive command shell:

SELECT * FROM Organism WHERE OrgID BETWEEN 11 AND 14;
OrgID Genus Species Subspecies
11 Citrobacter freundii RFL22
12 Streptomyces luteoreticuli
13 Streptomyces albohelvatus
14 Mycobacterium butyricum

SELECT Name, OrgID FROM Enzyme WHERE OrgID BETWEEN 11 AND 14;
Name OrgID
Cfr22I 11
SluI 12
SabI 13
M.MbuII 14
M.MbuIV 14
M.MbuI 14
M.MbuIII 14

The results of these queries show that rows in the Enzyme table with an OrgID value
of 14 represent the enzymes produced by the organism whose OrgID is 14. Suppose we
wanted to start with the genus Mycobacterium, species butyricum, and subspecies NULL
and find the enzymes that organism produces. First we can find the OrgID of the row
representing the organism:

SELECT * FROM Organism
 WHERE Genus = Mycobacterium AND
 Species = butyricum AND
 Subspecies IS NULL;
OrgID Genus Species Subspecies
14 Mycobacterium butyricum

Now that we have the organism’s ID, we can use it in a query to get the enzymes it
produces:

SELECT Name FROM Organism WHERE OrgID = 14
Name
M.MbuII
M.MbuIV
M.MbuI
M.MbuIII

We can write a function that generalizes these steps to return a list of the enzymes any
organism produces, but it must handle an awkward problem. When using question
marks in queries, the second argument to execute must be a sequence with as many
elements as there are question marks in the query. However, to match a row where a
column value is NULL requires the WHERE clause to include IS NULL for the column, rather

386 | Chapter 10: Relational Databases

than = ?. Therefore, the function must prepare two different queries according to
whether or not a value is supplied for the subspecies:#

def get_organism_enzymes(genus, species, subspecies=None):
 query = ('''SELECT OrgID from Organism
 WHERE genus = ? AND species = ? AND subspecies ''' +
 (' = ?' if subspecies else 'IS NULL'))
 rows = conn.execute(query,
 (genus, species, subspecies) if subspecies
 else (genus, species))
 if rows:
 lst = list(rows) # a tuple of tuples
 assert len(lst) == 1, len(lst)
 orgid_tuple = lst[0] # the tuple (orgid,) retrieved by the
 # first query
 assert len(orgid_tuple) == 1, len(orgid_tuple)
 return [row[0] for row in
 conn.execute('''SELECT name FROM Enzyme WHERE OrgID = ?''',
 orgid_tuple)]

The first query gets the OrgID for the organism with the specified genus, species, and
subspecies. The second query uses that ID to retrieve from the Enzyme table all enzymes
with an OrgID that matches the one the first query retrieved. This corresponds to the
interactive queries shown previously.

These examples demonstrate how 1-N relationships work. A primary key in one table
is a foreign key in another table. While primary keys must be unique among the rows
of a table, foreign keys are not restricted in that way. The rows with a particular value
for their foreign key are the N rows of the 1-N relationship, with that value selecting a
unique row of the other table. (There could be several foreign keys in one table; we’re
talking about just one here for simplicity’s sake.) Figure 10-2 illustrates the process.

This kind of two-step lookup for 1-N relationships is so common that SQL provides
syntax expressing it in a single query. The definition of get_organism_enzymes shown
earlier can be greatly simplified by using this syntax:

def get_organism_enzymes_query(genus, species, subspecies=None):
 query = ('''SELECT Enzyme.name from Organism, Enzyme
 WHERE genus = :genus AND
 species = :species AND
 subspecies ''' +
 (' = :subspecies' if subspecies else 'IS NULL') +
 '''AND Organism.OrgID = Enzyme.OrgID''')
 return [row[0] for row in
 conn.execute(query,
 {'genus': genus,
 'species': species,
 'subspecies': subspecies}
)]

#It isn’t the question marks that are the problem—even if the function were to construct a literal query with
no question marks, either by string concatenation or the string formatting mechanism, it would still have to
construct a different query for when the subspecies is None and for when it’s not.

Using Relational Data | 387

This is the first query we’ve shown that accesses more than one table. Two tables may
have a column with the same name, so to disambiguate which table’s column is meant
the name of the table and a period are added to the column name. (This is analogous
to how names defined in a Python module are accessed by prefixing them with the
module’s name and a period.)

Even if a column name is unique among the tables of the query, quali-
fying each column name with the name of its table can help make the
query clearer.

The critical piece of the new query is the first line that’s highlighted. It restricts the
results to just those rows of the Enzyme table whose foreign key OrgID matches the
OrgID of the row of the Organism table with the values of genus, species, and
subspecies.

Figure 10-2. Navigating a 1-N relationship

388 | Chapter 10: Relational Databases

T E M P L A T E

Querying 1-N Relationships
Given the following:

• key is the primary key of table1.

• foreignkey is the foreign key from table2 to table1.

• criteria1 is a part of a SELECT statement that obtains a single row from table1.

• resultcolumns2 are the columns of table2 to return as results.

queries to obtain those results take the following form:

SELECT resultcolumns2
 FROM table1, table2
 WHERE criteria1 AND
 tablename1.key = tablename2.foreignkey

The syntax shows only single-column keys, but multicolumn keys can be used by add-
ing more AND phrases to the WHERE clause.

Working with M-N relationship tables is actually no different than working with the
foreign keys from one table to another that implement 1-N relationships. In most re-
spects an M-N relationship table just implements two separate 1-N relationships, one
with each of the two tables it connects. Each of the two 1-N relationships uses a different
foreign key. M-N relationships are really a design concept; the database mechanisms
used to implement them are the same.

One difference does show up in queries involving M-N tables, though. We saw earlier
how getting the “N” side of a 1-N relationship involves first finding the “1” row ac-
cording to specified criteria, then getting each row from the “N” side whose foreign
key corresponds to the primary key of the row on the “1” side. If we want to go from
a row in one table to all the rows in another table by way of an M-N table, we have
three tables to consider. Figure 10-3 illustrates the process.

Our Rebase database contains an M-N table that indicates what references apply to
which enzymes. This must be an M-N table because an enzyme can have multiple
references, and one reference can be for multiple enzymes. A typical query, though,
would ask either for the references corresponding to a specific enzyme or for the
enzymes corresponding to a specific reference:

Using Relational Data | 389

Figure 10-3. Navigating an M-N relationship

390 | Chapter 10: Relational Databases

def get_references_for_enzyme(enzyme):
 """Return the reference details for the enzyme named enzyme"""
 return [row[0] for row in
 conn.execute('''
 SELECT Reference.details
 FROM Enzyme, Reference, EnzymeReference
 WHERE Enzyme.name = ? AND
 Enzyme.name = EnzymeReference.Enzyme AND
 Reference.refID = EnzymeReference.RefID
 ''', (enzyme,))]

def get_enzymes_for_reference(ref):
 """Return the name of the enzymes referenced
 by the reference whose ID is ref"""
 return [row[0] for row in
 conn.execute('''
 SELECT Enzyme.name
 FROM Enzyme, Reference, EnzymeReference
 WHERE Reference.RefID = ? AND
 Enzyme.name = EnzymeReference.Enzyme AND
 Reference.refID = EnzymeReference.RefID
 ''', (ref,))]

In either case, the “specific” item is obtained through the usual selection
criteria, but its key column(s) match multiple rows of the M-N table
rather than of another table from a 1-N relationship. Then, the foreign
keys to the other side of the relationship are used to access rows in the
other table.

The following template sums up the details of queries for M-N relationships.

T E M P L A T E

Querying M-N Relationships
Given the following:

• key1 is the primary key of table1.

• key2 is the primary key of table2.

• table3 represents an M-N relationship between table1 and table2.

• foreignkey1 is the foreign key from table3 to table1.

• foreignkey2 is the foreign key from table3 to table2.

• criteria1 is a part of a SELECT statement that obtains a single row from table1.

• resultcolumns2 are the columns of table2 to return as results.

the form of the query to get those results is as follows:

SELECT resultcolumns2
 FROM tablename1, tablename2, tablename3
 WHERE criteria1 AND

Using Relational Data | 391

 tablename1.key1 = tablename3.foreignkey1 AND
 tablename2.key2 = tablename3.foreignkey2

The syntax shows only single-column keys, but multicolumn keys can be used by add-
ing more AND phrases to the WHERE clause.

Querying the Database from a Web Page
In this final section of the chapter we’ll put a web-based user interface in front of the
database. There are a number of strategies for accomplishing this based on HTML
forms. These include:

• Allowing the user to type an arbitrary query into a text box*

• JavaScript-driven dynamic pages that change what’s presented in the form accord-
ing to the information already entered, the way some widely used web search pages
do

• Elaborate “query by example” dynamic web pages

• A fixed form that provides fields for specifying values for a particular query

• A form that presents a menu of query forms

• A page that presents multiple forms, each with fields for specifying values for a
particular query

In order to keep the HTML details as simple as possible, we’ll use the last approach.

HTML frames

We are going to use HTML frames to construct a page with a choice of queries on top
and results on the bottom. Basic HTML frame arrangements are actually quite simple:
the frame page just names the other pages and says how much horizontal or vertical
space each should take. The amount of space is expressed either in pixels, as percen-
tages of the parent page, or with an asterisk (meaning that it should take all the
remaining space). Example 10-10 shows the HTML for our frame page.

Example 10-10. HTML page for Rebase browser-based queries

<html>
<head>
<title>Rebase Database Queries</title>
</head
 <frameset rows="400,*">
 <frame name='queries' src='allenz.html' scrolling='yes'>
 <frame name='results' scrolling='yes'>

* The obvious security problem of this approach can easily be obviated by requiring the first word of the query
to be SELECT. The real problem with this approach is the requirement that the user know enough SQL to
formulate the desired queries, as well as the schema of the target database.

392 | Chapter 10: Relational Databases

 </frameset>
</html>

Note that this page does not include a body—a frameset is used instead. The rows
attribute in the <frameset> tag specifies that the top frame should be 400 pixels high,
and the bottom frame should occupy the rest of the window. Each of the two
<frame> tags specifies a name and says to activate scrollbars when needed. The src
attribute of the first <frame> tag gives the address (relative, in this case) of the web page
to be displayed in that frame. The second frame starts out empty: it will be filled with
the results of the queries performed in the first frame.

An advantage of this two-frame approach is that the contents of the top frame are stable,
making it easier for a user to find queries within it. Another advantage is that the form
does not have to be sent back to the browser with each query’s results.† The results will
replace the contents of the bottom frame, leaving the top frame unaffected.

An HTML page of query forms

The HTML page in the top frame will contain little more than a series of forms. We’ll
avoid discussing HTML tables and Cascading Style Sheets (CSS) and consider only the
simplest possible construction (however, you can find several variations for this page
that use tables, CSS, and even JavaScript in the code files accompanying the book).
Each query will be displayed on the web page using HTML like that in Example 10-11.

Example 10-11. Simple HTML for query forms

 Species for Genus
 <form action='/cgi-bin/rebase' target='results'>
 <input type='hidden' name='query' value='species_for_genus'>
 genus <input name='genus'> (e.g. Vibrio)

 <p><input type='submit'></p>
 </form>

This will display in a browser something like what’s shown in Figure 10-4. Here’s a
line-by-line description of what the HTML means:

The title of the query, in bold.

The beginning of a form (on a new line).

a. The form’s action is the program rebase found in the cgi-bin subdirectory of the
directory from which the server is running.‡

† This was discussed at the end of the previous chapter; see Example 9-20 (“HTML forms with CGI
scripts” on page 350).

‡ See “Serving CGI requests” on page 343 for instructions on how to run a simple CGI server using Python’s
http.server module.

Using Relational Data | 393

b. The form specifies the target 'results', which is the name of the other frame;
if no target were specified the results of the query would replace the page with
the form in the browser.

An input field with type 'hidden'; this kind of field is not displayed but is included
with the rest of the fields when the form is submitted—in effect, it is an invisible
constant field. It is this field that tells the Python program which SQL query to
execute.

A label, a one-line text input field, and an example to show the user the sort of value
the query expects the field to contain.

The submit button; when this is pressed, the form’s action is submitted to the web
server along with the field values. With no 'value' attribute the button will have a
default label, which for most browsers will be “Submit.”

The end of the form.

Figure 10-4. Display of a simple query form

Multiple forms can appear on the same page, as Example 10-12 illustrates. Pressing a
submit button invokes the action of the form that contains it with the values of that
form’s fields. There is no connection to the fields of other forms on the same page.

Example 10-12. A page of Rebase queries

<html>
<head>
<title>Rebase Queries</title>
</head>
<body>
Number of Species by Genus
 <form action='cgi-bin/rebase' target='results'>
 <input type='hidden' name='query' value='number_of_species_by_genus'>
 minimum count <input name='minimum_count'> (e.g. 3)

 <p><input type='submit'></p>
 </form>
Number of Enzymes by Organism
 <form action='cgi-bin/rebase' target='results'>
 <input type='hidden' name='query' value='number_of_enzymes_by_organism'>
 minimum count <input name='minimum_count'> (e.g. 3)

 <p><input type='submit'></p>
 </form>
Species for Genus
 <form action='cgi-bin/rebase' target='results'>
 <input type='hidden' name='query' value='species_for_genus'>

394 | Chapter 10: Relational Databases

 genus <input name='genus'> (e.g. Vibrio)

 <p><input type='submit'></p>
 </form>
Subpecies for Genus and Species
 <form action='cgi-bin/rebase' target='results'>
 <input type='hidden' name='query' value='subspecies_for_genus_species'>
 genus <input name='genus'> (e.g. Thermus)

 species <input name='species'> (e.g. thermophilus)
 <p><input type='submit'></p>
 </form>
Enzymes for Organism
 <form action='cgi-bin/rebase' target='results'>
 <input type='hidden' name='query' value='enzymes_for_organism'>
 genus <input name='genus'> (e.g. Helicobacter)

 species <input name='species'> (e.g. pylori)

 (optional) subspecies <input name='subspecies'> (e.g. RFL44)
 <p><input type='submit'></p>
 </form>
Prototype Enzymes
 <form action='cgi-bin/rebase' target='results'>
 <input type='hidden' name='query' value='prototype_enzymes_like'>
 name like <input name='name_like'> (e.g. Ha%)

 <p><input type='submit'></p>
 </form>
References for Enzyme
 <form action='cgi-bin/rebase' target='results'>
 <input type='hidden' name='query' value='references_for_enzyme'>
 enzyme <input name='enzyme'> (e.g. EcoRI)

 <p><input type='submit'></p>
 </form>
Enzymes for Reference Number
 <form action='cgi-bin/rebase' target='results'>
 <input type='hidden' name='query' value='enzymes_for_reference'>
 reference number <input name='number'> (e.g. 11)
 <p><input type='submit'></p>
 </form>
</body>
</html>

This page by itself will display as in Figure 10-5. The frame-based web page is shown
in Figure 10-6.

Tips, Traps, and Tracebacks

Tips
• Just as you should develop and debug regular expressions using a testing tool like

re-try, it is often helpful to use a tool to explore a database directly. If your
computer has the command-line command sqlite3 installed, you could use that.
(If it doesn’t, you can try downloading the appropriate file for your platform from

Tips, Traps, and Tracebacks | 395

http://www.sqlite.org/download.html—you want just the file that contains the pre-
compiled command-line installation, or, if there is none for your platform, the
source code.) There are many GUI interfaces—some free, some commercial; some
platform-independent, some platform-specific. You can find a long list of infor-
mation about them at http://www.sqlite.org/cvstrac/wiki?p=ManagementTools. A
particularly convenient, simple, free, and cross-platform GUI interface to

Figure 10-5. Display of a page of query forms

396 | Chapter 10: Relational Databases

http://www.sqlite.org/download.html
http://www.sqlite.org/cvstrac/wiki?p=ManagementTools

sqlite3 is the SQLite Database Browser, which you can download from http://
sqlitebrowser.sourceforge.net/index.html.

• You can save yourself a lot of trouble by always using single-column integer-valued
primary keys in relational database tables. This chapter’s examples used some
other kinds in order to demonstrate how keys work, but in practice there is a major
problem with using meaningful column values as keys: you may need to change
those values while curating the database (e.g., to correct inconsistent abbrevia-
tions, spelling, or names), but database systems generally do not allow changes to
the values in primary key columns. Even if the database system did allow changes
to foreign key values, making them would require the same changes to be made in
all the rows of any other tables that use the key values as foreign keys. Using integer-
valued primary keys—preferably ones that are automatically generated by the
database system—avoids these problems.

Figure 10-6. Frame-based display of a page of query forms

Tips, Traps, and Tracebacks | 397

http://sqlitebrowser.sourceforge.net/index.html
http://sqlitebrowser.sourceforge.net/index.html

• The implementation of SQLite3 makes using an integer as a primary key easy,
because every table has a key called ROWID that is automatically incremented every
time a row is inserted into the table.

• You can simplify calls to Connection.execute by naming query strings elsewhere
and just using their names when calling execute. This also has the advantage that
the same query string can be used in multiple places.

Traps
• sqlite3.Connection.close does not do a commit; you must call commit before

closing the connection if you want the changes to be committed.

• If you are working in the interpreter and don’t close a sqlite3 database connection,
attempting to open it again will raise an error. This can happen very easily when
you are debugging your code. You should always close connections in the
finally of a try statement.

Tracebacks
Error messages you might encounter while using the sqlite3 module include the
following:

sqlite3.Error
An error has been produced by the sqlite3 module.

sqlite3.OperationalError
An attempt has been made to execute an invalid SQL statement.

SyntaxError: invalid syntax
A string passed to eval contained a syntax error. (Python must parse the string
before it can execute it.)

398 | Chapter 10: Relational Databases

CHAPTER 11

Structured Graphics

Bioinformatics deals with enormous amounts of data. People process visual imagery
far more easily and quickly than words and numbers, so many bioinformatics websites
and applications provide highly effective visualizations of complex data. Generating
graphical presentations is an important aspect of bioinformatics programming. This
chapter will show you how to do it.

We will look at implementations of three kinds of information displays:

• Histograms are useful for anything involving counts. They are used widely in many
fields and business operations. In bioinformatics, they are frequently used to pro-
vide high-level visual overviews of quantitative distributions.

• Dot plots are also a general-purpose chart type, but in bioinformatics they have
special uses for visualizing how two sequences—or a sequence and itself—are
related.

• Raw data collected from laboratory devices such as sequencing machines is usually
displayed as curves. The classic example is the four-colored “trace” of the data
from a traditional sequencing device.

The data used for all of the examples can be found on the book’s website. In writing
your own applications, you can obtain similar data via URL queries.

Introduction to Graphics Programming
Computers represent visual images in one of two ways:

Bitmaps
A bitmap is a two-dimensional arrangement of pixels, each representing the color
of a “dot” at a particular location in the image.

Structured graphics
A structured image is a set of instructions in a “drawing language” that describe
individual objects representing different kinds of shapes and text.

399

You may already be familiar with this distinction from having used some applications
that manipulate bitmaps and others that manipulate diagrams. Photographs, icons,
screen snapshots, and the contents of the display itself are represented as bitmaps.
Images in which you can select individual components, such as a rectangle or piece of
text, are structured. You can add, remove, and group components in a structured im-
age, and change a given component’s properties (color, location, border width, etc.).

A structured image may be converted to a bitmap, as when a snapshot is taken of a
window on the screen displaying a diagram. Bitmaps, though, cannot be turned into
structured representations, because they do not contain any information about the
individual components of the image.

Concepts
It is difficult to talk about graphics programming in the abstract. Structured graphics
are implemented in a variety of ways, using numerous file formats, languages, libraries,
and tools. Some technologies store images using file formats resembling the object
persistence mechanisms discussed at the end of Chapter 6, while others represent them
in an XML-based format. Still others are designed to display images in windows on the
screen.

For the most part, all graphics programming technologies share a common set of con-
cepts and mechanisms. However, the vocabulary and technical details used in working
with these concepts and mechanisms can vary significantly from one technology to
another. Learning to program in your first graphics technology can be quite discon-
certing because you must learn not only a new conceptual framework and new termi-
nology, but also all the details of that particular technology.

Structured graphics can be discussed and even programmed without anything more
than a vague idea of what output device will be used to display them. In fact, a diagram
or image can be generated without any display at all. The result is either a file written
in some structured graphics format, a textual description written in a well-defined
graphics language, or simply a data structure inside the computer’s memory. Output-
ting the graphics to a screen, printer, or other device is essentially an independent step.
The three main aspects of all structured graphics tools are their coordinate system,
components, and component properties.

Coordinate system

Structured graphics are created within a coordinate system—a grid of points referenced
by <x, y> pairs. In most graphics technologies, the upper-left corner of the window is
at (0,0) and the coordinates are positive numbers (not necessarily integers). This corner
is typically the most stable, given the way window systems and interfaces handle
changes to window size: dragging the lower-right corner with the mouse is probably
the most common resize action across all operating systems, and that leaves the upper-
left corner unaffected. Even where a system or application provides a way to resize a

400 | Chapter 11: Structured Graphics

window at the top or left, the contents usually stay at the resulting upper-left corner.
This is illustrated in Figure 11-1.

Figure 11-1. Illustration of coordinate system

Unfortunately for beginners, this coordinate system does not correspond to any of the
quadrants of the traditional Cartesian system. The position of the origin relative to the
quadrant corresponds to the lower-right Cartesian quadrant, in which x is positive and
y negative. For designing graphical user interfaces, this can be somewhat disorienting
at first. And for graphics representing quantitative data, it’s really confusing, because
every y coordinate must be negated. That is, the heights of titles, legends, and other
parts of a diagram that are not part of the quantitative display must be subtracted from
the y coordinates of each data point.

The basic unit of a coordinate system is the pixel. For most purposes, “pixel” means
the smallest dot a device can display independently. Computer display measurements
are an example: 1280×1024 means that the computer screen has 1,280 columns and
1024 rows of individually addressable points. However, all modern technologies that
involve “layout”—graphics, word processing, web pages, etc.—allow measures to be
specified in different units. Table 11-1 lists the measurements implemented by most
systems, along with their common abbreviations. Of course, not every system supports
every measure or every abbreviation.

Table 11-1. Units of measurement used in software

Name Abbreviations Meaning of 1 of the unit

Pixel (default) px Smallest unit of the display device

Inch i, in Number of “dots per inch” of the display device

Millimeter mm Relative to inch

Introduction to Graphics Programming | 401

Name Abbreviations Meaning of 1 of the unit

Centimeter cm Relative to inch

Pointa p, pt 1/72 inch

Pica P, pc 12 points, 1/6 inch

Em em Point size of the component’s font

Ex ex x-height of the current font
a “Point” and “pica” are printers’ terms with a very long history and slightly different values across countries and industries. Modern computer

technologies have standardized on the definition of a “point” as 1/72 inch.

A component’s bounding box is the rectangle that minimally encloses the component
within the coordinate system. For basic shapes it is obvious what the bounding box is,
but this is not always the case for more complicated shapes. Depending on the tech-
nology, the edge of the bounding box may include one or more spaces designated as
the border, padding, and margin. The “border” is a line drawn on a bounding box edge.
The width of the line and its color can be specified. “Padding” usually adds extra space
between what the component requires and its actual bounding box. The “margin”
usually refers to extra space between a component’s bounding box and a neighboring
component.

Some graphics systems allow the width of each of these spaces to be specified separately
for each of the four sides of the bounding box, while others allow only horizontal and
vertical distances to be specified. Some systems allow a color to be specified for margins
and/or padding as well as for borders. The definitions of the “height” and “width” of
a component, while related to its bounding box, also differ from system to system
depending on whether they include padding, borders, and/or margins.

Components

The primitive components of structured images are text items and a variety of shapes.
For each, there is at least one point that specifies its location. Other points and lengths
designate other aspects of its geometry. The components are defined as follows:

Text
An individual piece of text usually “wrapped” to fit within its bounding box’s width

Line
From one point to another

Polyline
A series of points, with a line drawn from each to the next; in effect, a composite
of line segments where each one’s end point is the same as the next one’s start point

Rectangle
Expressed using either two opposite corners or as a corner and a width and height

402 | Chapter 11: Structured Graphics

Polygon
A closed shape defined by a series of points, with a line drawn from each point to
the next and from the last to the first

Circle
Defined using a center point and radius length

Oval
May be defined by its rectangular bounding box or by its center point and its vertical
and horizontal radii

Arc
A segment of an oval specified in one of a number of ways (e.g., specifying the oval
along with a start and stop angle in degrees); whether the arc is meant to correspond
to the smaller portion of the oval or the larger must also be indicated

Cubic spline
A curve defined by a start point, an end point, and one control point

Quadratic spline
A curve defined by a start point, an end point, and two control points

Composite
Several components grouped to form a new component

Composition is recursive: since composites are components, they can be included in
other composites. A “top-level” component is one that is not included in a composite.
Top-level components are not necessarily composites, though. For instance, a drawing
may consist of a rectangle and a composite containing two lines; such a drawing would
consist of three shapes and two top-level components: a rectangle and a composite.

Properties

Text and most shapes have three areas that can be controlled separately with respect
to color: foreground, background, and border. Depending on the shape and the area, a
“pattern”—a bitmap or image displayed repeatedly—may be used in place of a color.
The color property may be called fill or stroke depending on the technology and whether
or not the shape has area (a rectangle versus a line, for example).

Text objects also have fonts and other properties regular shapes do not. Some, but not
all, technologies allow changes to font properties within a text object. If they do not, a
composite can be used to combine two text objects with different font properties.

Other properties are specific to one or more shapes. For example, a rectangle may have
a rounding angle to specify how its corners are drawn, and an arc defined as a segment
of an oval will have properties such as an angle to specify what part of the ellipse it
includes and a starting point along the ellipse.

Properties are generally optional when creating a component, and most properties can
be modified once a component has been created (either to refine the layout while the
diagram is being constructed or to add some dynamic aspects to the display).

Introduction to Graphics Programming | 403

GUI Toolkits
Window-based technologies do more than just support structured graphics. They are
complete toolkits for building graphical user interfaces (GUIs).

The primary purposes of a graphical user interface are to display content—documents,
images, etc.—to the user and to provide mechanisms—menus, buttons, scrollbars,
input fields, etc.—for invoking application actions. The term widget is used as a general
noncommittal term to refer to controls and other interface components.

Very few applications provide GUIs for structured graphics content. However, toolkits
generally provide a canvas widget that supports structured drawing. Canvases can be
added and displayed along with the rest of the interface and content.

GUI toolkits are not usually the best way to generate images for visualizing bioinfor-
matics data. They often do more than is needed, and they may be difficult to learn to
use. Other reasons why a GUI toolkit might not be appropriate include:

• The application may produce image files without displaying anything, often exe-
cuting with no user interaction.

• The application may generate images to be displayed in a web browser, in which
case the browser supplies the GUI technology.

• The application may simply need to display an image in a window, in which case
you don’t need buttons, menus, and all the other elaborate features of a GUI—
your operating system’s mechanisms for managing windows are good enough.

Still, it can be useful to learn the basic details of how to display an image on the screen
using a particular toolkit. Just because it provides elaborate controls and fancy features
doesn’t mean you have to use them.

GUI toolkits for Python

Python does not implement its own GUI toolkit. Instead, you will use one of four
popular platform-independent graphical user interface libraries, along with a Python
interface. This is analogous to how SQLite3 and other relational databases are used
from Python. As with the sqlite3 module, the interface for one of these—the
tkinter module interface to Tk—is built into Python.

The four toolkits, along with the URLs to their home pages and the corresponding
Python interface libraries, are listed in Table 11-2.

404 | Chapter 11: Structured Graphics

Table 11-2. Cross-platform GUI toolkits and their Python interfaces

Toolkit Home page Python toolkit Python interface home page

Tk http://activestate.com/activetcl tkinter tkinter module documentation

wxWidgets http://wxwidgets.org wxPython http://wxpython.org

Qt http://qt.nokia.com PyQt http://riverbankcomputing.com/software/pyqt/intro

GTK+ http://gtk.org PyGTK http://pygtk.org

One or more of these toolkits may already be installed on your computer. If not, you
can get installers and source code from the toolkits’ home pages. As of November 2009,
both tkinter and PyQt have been updated for Python 3, but wxPython and PyGTK
have not. Tk itself is not part of tkinter, so if it’s not on your system you’ll need to go
to the web page shown in the table to download an installer. Even if it is on your system,
it may be an older version; if you get error messages about version incompatibilities,
download and install the latest version.

A great deal of material has been published in books and on the Web about each of
these cross-platform toolkits. You should be able to find tutorials, examples, forums,
and many other sorts of resources that can help you get started with any of these and
solve any problems you may encounter when using them later.

If you want to experiment with building applications with user interfaces, start with
the tkinter documentation and the resources listed at its beginning. IDLE is imple-
mented using tkinter. You can find its code in a subdirectory called idlelib in your
Python installation’s library directory. That will give you a large body of tkinter code
to read.

Using a GUI toolkit

Interfaces using GUI toolkits have several high-level layers. As with structured graphics
components, the details vary among toolkits. In general, there is an outermost structure
called a frame that contains everything displayed—both controls and content. Around
the frame is the window, managed by the operating system. Inside the frame are one
or more geometry managers, or, as they are sometimes called, layout managers.

Every control and content item, including canvases, is added to a parent item, with the
frame acting as the top-level parent. The layout manager automates the work of ar-
ranging their exact placement according to its policy. Policies are provided for putting
each item next to the previous one either horizontally or vertically, arranging the items
in a grid, and so on. Some toolkits provide a wide range of layout managers and policies,
and others provide only a few. Some require layout managers to be explicitly created
and added to frames, while others automatically create a layout manager for each frame.
Many toolkits require a call to a function for the layout manager to do its work once
its elements have all been added. Others require a call to a function for each element
added.

Introduction to Graphics Programming | 405

http://activestate.com/activetcl
http://wxwidgets.org
http://wxpython.org
http://qt.nokia.com
http://riverbankcomputing.com/software/pyqt/intro
http://gtk.org
http://pygtk.org

To connect the GUI to the application, the application needs to initialize the toolkit,
add the necessary elements (frames, layout managers, controls, and content), then hand
control to the toolkit. As a result, GUI-based applications are largely event-driven. The
toolkit waits for the user to press a key, move the cursor, or click a mouse or trackpad
button. When it receives such an “event,” it invokes an application action (the appli-
cation establishes which action will be invoked when each control is created). The wait-
event-act cycle is usually called the event loop, for obvious reasons, and the toolkit will
include a high-level function that the application calls to start the cycle.

Using a GUI toolkit simply to display images on the screen typically requires only a few
steps (and not all of these will be necessary in every toolkit):

1. Initialize the toolkit.

2. Create a frame.

3. Create a layout manager for the frame.

4. Add a canvas to the layout manager.

5. Create shapes and text on the canvas.

6. Invoke the event loop function.

Structured Graphics with tkinter
The introduction to tkinter found here is far from complete. Remember that tkinter
is meant to be a full GUI toolkit, not just one for constructing graphics. The only one
of its “widgets” we really need for our current purposes is its Canvas class. We will
ignore controls entirely: our programs will simply put up a display and take it down
when the user hits the Return key.

tkinter Fundamentals
There are several ways to organize a tkinter-based program. You can just use functions,
or you can define a class. If you define a class, it can be independent of tkinter or it
can inherit from Frame. Inheriting from Frame would add very little to the way we will
be using tkinter, but classes are very useful in graphics programming, so we’ll use
independent classes.

The basic steps

The high-level steps of a minimal tkinter structured graphics program are:

1. root = tkinter.Tk()

Initialize tkinter and get a top-level instance.

2. root.title(string)

Give the window the title string.

406 | Chapter 11: Structured Graphics

3. canvas = tkinter.Canvas(root)

Create the canvas under the root.*

4. canvas.pack()

Call the Packer geometry manager to display the canvas.

5. Call Canvas drawing methods on the canvas.

6. root.close()

Close the window.

An instance of Tk represents a Tk environment. An application may have multiple in-
stances of Tk open at the same time. As soon as a Tk instance is created, a small window
appears on the screen.

There is a class for each kind of tkinter widget. The examples that follow use just
Canvas. The first initialization parameter of each tkinter widget class is the existing
container to which the new object should be added. This is called its “master” and must
be the top-level Tk object or one of the very few other “container” components
tkinter provides. The examples put the canvas directly into the top-level Tk instance.

Except for the master, all parameters in widget-creation calls are optional. These
parameters specify details about the object being created. All have reasonable defaults.

Common widget options

Frequently used widget options are shown in Table 11-3. These options can be specified
as keyword arguments when the widget is created, or they can be changed later with a
call to the widget’s configure method. Each of these options is supported by most, if
not all, of the widgets.

Table 11-3. Frequently used tkinter widget options

Name Keyword Value type Units (first is default)

Background color bg Color value An X11 color name or a 6-hexadecimal-digit “RGB” string (color name)
'#RRGGBB'Foreground color fg Color value

Border width bd Distance (px), p(t), i(n), c(m), m(m)

Width width Integer Relative to width (height) of average character or widget’s font

Height height Integer

Font font Font String or tuple; see following discussion

Anchor anchor Direction 'center', 'n', 'e', 'w', 's', 'ne', 'nw', 'se', 'sw'

* Either a dictionary or a series of keyword arguments may follow root to specify any of the following canvas
properties: background, bd, bg, borderwidth, closeenough, confine, cursor, height, highlightbackground,
highlightcolor, highlightthickness, insertbackground, and insertborderwidth (for example,
tkinter.Canvas(root, bg='gray', bd=4).

Structured Graphics with tkinter | 407

The anchor parameter specifies the alignment of a widget’s content within the widget.
Its value indicates a location relative to the content, which will be aligned with a cor-
responding location in the widget. For instance, 'nw' means that the upper-left corner
of the content will be aligned with the upper-left corner of the widget.

The '#RRGGBB' form of color specification works the way it does in HTML and CSS.
(The three-digit form is not acceptable.) Each pair of hexadecimal digits represents an
integer between 0 and 255. White would be '#FFFFFF', black '#000000', and red
'#FF0000'. X11 color names come from a large set that predates the Web.† For grayscale
graphics it is worth noting that the names include 'gray0' (black) through
'gray100' (white), in increments of 1.

Fonts are specified either as a family name (e.g., 'Futura') or as a tuple of the form:

(family, size[, variation1[, variation2[, ...]]])

In the tuple, family can be either a single family name or a sequence of family names.
If a sequence, tkinter will attempt to locate each one in the operating system environ-
ment in turn until a match is found. The variations are values such as 'bold',
'italic', and 'underline'. Any number of variations may be present.

Canvas drawing methods

The Canvas class implements six drawing methods. You can use pdb to step through the
drawing actions; as each item is drawn it will appear immediately in the canvas. These
are not actually widgets—they are not part of tkinter’s widget class hierarchy, and they
are accessible only through their canvas. Within the canvas, though, they behave very
much like regular widgets in most respects. The methods are:

create_text(x, y, string[, keyword-arguments])
Draw string at (x,y).

create_line(x1, y1, x2, y2[[, . . .], keyword-arguments])
Draw a line from (x1,y1) to (x2,y2) and so on, for however many points there are
(used for both lines and polylines).

create_rectangle(x1, y1, x2, y2[, keyword-arguments])
Draw a rectangle with (x1,y1) and (x2,y2) as opposite corners.

create_polygon(x1, y1, x2, y2, x3, y3[[, . . .], keyword-arguments])
Draw a polygon described by the line from (x1,y1) to (x2,y2) and then to each of
the other points, finally drawing a line from the last point to the first.

create_oval(x1, y1, x2, y2[, keyword-arguments])
Create an oval inside the rectangle defined by opposite points (x1,y1) and (x2,y2).

create_arc(x1, y1, x2, y2[, keyword-arguments])
Create an arc inside the rectangle defined by opposite points (x1,y1) and (x2,y2).

† See http://www.tcl.tk/man/tcl8.5/TkCmd/colors.htm for a list of names and RGB values.

408 | Chapter 11: Structured Graphics

http://www.tcl.tk/man/tcl8.5/TkCmd/colors.htm

Table 11-4 shows some of the keyword arguments commonly used when creating and
modifying objects on tkinter canvases. They are similar to those used for widgets in
general, but some have different names and meanings.

Table 11-4. General canvas object properties

Name Keyword Value type

Inside color fill Color value

Border color outline Color value

Border width width Distance

Note that the width and height of a graphic object on a Canvas are not specified directly:
they are derived from the x and y values in the call to the drawing method.

Each kind of drawing object also has its own specific options. Table 11-5 shows the
ones we will use for text objects.

Table 11-5. Canvas text properties

Name Keyword Value type

Text text String

Font font Font

Anchor anchor Direction

Example 11-1 is a small program that demonstrates the actions to set up a tkinter
window with just a canvas and an example of each kind of drawing operation. At the
end, it asks the user to press the Return key, at which point it closes the window.

Example 11-1. Example tkinter program for structured graphics

colors = ('gray80', 'black', 'black', 'gray30',
 'gray50', 'gray70', 'gray30', 'black')
import tkinter
tk = tkinter.Tk() # initialize tkinter
tk.title('demo') # give window a title
canvas = tkinter.Canvas(tk) # create the canvas
canvas.pack() # use the Packer geometry manager
canvas.create_rectangle(20, 10, 120, 80, fill=colors[0])
canvas.create_line(20, 100, 120, 100, width=4, fill=colors[1])
canvas.create_line(20, 170, 45, 115, 70, 170, 95, 115,
 120, 170, fill=colors[2])
canvas.create_polygon(150, 180, 175, 115, 190, 160, 215, 125,
 240, 180, fill=colors[3])
canvas.create_oval(180, 55, 250, 115, fill=colors[4])
canvas.create_arc(140, 10, 240, 80, extent=240,
 width=4, fill=colors[5], outline=colors[6])
canvas.create_text(20, 190, text='Drawing on a tkinter canvas',
 anchor='w', font=(('Verdana, 'sans'), 14, 'italic'),
 fill=colors[7])

Structured Graphics with tkinter | 409

input('Press the Return key to close the window(s)')
tk.destroy() # close the window

Figure 11-2 shows the result of running this little program.

Figure 11-2. A small tkinter example

Writing the contents of a canvas to a PostScript file

I mentioned earlier that some structured graphics applications write image descriptions
to files, and others write them to the screen. The Canvas class makes tkinter a bit of a
hybrid, because it has the ability to write a PostScript description of its contents to a
file. The PostScript file can then be sent to a printer, viewed on the screen with software
that can display files in that format, or converted to another format by one of the many
available image-conversion tools. A single method call suffices, specifying the filename,
the width and height (in pixels) of the area to be captured, and whether the output
should be in black and white (mono), gray, or color:

canvas.postscript(file=filename, width=width, height=height,
 colormode='gray') # 'color', 'gray', or 'mono'

The background of the PostScript image will be white, ignoring the bg setting for the
canvas. You may find when you view the resulting PostScript image, or a version of it
converted into another format, that it is not the same size as the tkinter image was on
the screen. You can scale the image proportionally in both horizontal and vertical di-
mensions by specifying either the pagewidth or the pageheight keyword argument, as
either an int or a float (if you specify both, the value of pagewidth will be used and
pageheight will be ignored). For instance, adding pagewidth=0.6*width to the preceding
call would reduce the size of the PostScript image by 60% in each dimension. Note that
pagewidth and pageheight represent the size of the image on the page—e.g., 800—not
a percentage: the example shows how to scale an image whose width you already know.

410 | Chapter 11: Structured Graphics

If the purpose of your graphics program is simply to produce the PostScript file and
not to display anything on the screen, then add the following after the call to
canvas.postscript:

tk.destroy()

This kills the frame and all of its content. In a reasonably short program, the canvas
will pack, the PostScript file will be written, and the frame and canvas will be destroyed
before the window even appears on the screen. For a longer program, the frame may
appear briefly in a window, though not necessarily with its canvas contents.

Examples
We’re going to look now at a class that uses tkinter to draw dot plots, and another
that produces histograms. Despite their different content, the steps required to draw
them and many of their details are quite similar. Even where the details vary, we will
be able to parameterize them. Therefore, we will first develop an abstract class that will
be used as the superclass of classes implemented to draw specific kinds of visualizations.

An abstract class for tkinter graphics

Building a full-featured class that could handle a wide variety of graphical content is a
far larger undertaking than would be appropriate here. Besides, such a facility would
involve a number of drawing and component classes, not just a single class.‡ The pur-
pose of this exercise is simply to demonstrate the power of using inheritance to imple-
ment a framework (we saw an example of this with HTML.parser, in “Structured HTML
parsing: html.parser” on page 298). It’s also worth pointing out that one normally
doesn’t start by developing such a class. Rather, a particular example is developed, then
another, and perhaps a third. Only as the similarities become apparent are they
abstracted into a new shared superclass.

Before we look at the class itself, let’s examine a short test script found at the end of its
module. Example 11-2 contains the code. The class field and the two methods defined
in its EmptyPlot class override those inherited from Plot. Note that since the class does
not override __init__, the definition of __init__ it inherits from its superclass gets
called. The execute method called to display the plot is defined in the abstract class.

‡ There is an excellent library called PyChart that produces very high-quality graphics in Encapsulated
PostScript (for publishing), PDF, PNG, and SVG. It uses Python only, so it doesn’t require anything else to
be installed. It provides a full range of chart and support classes, making it quite easy to use to produce
sophisticated graphics. Because it supports PNG and SVG, it is an excellent tool for generating graphical
displays for the Web using CGI scripts. You can view examples on its creator’s website at http://home.gna
.org/pychart/examples/index.html. The version supplied on that website is for Python 2. You can find a version
compatible with Python 3 on this book’s website, along with an example application that uses PyChart to
generate dot plots through a web interface.

Structured Graphics with tkinter | 411

http://home.gna.org/pychart/examples/index.html
http://home.gna.org/pychart/examples/index.html

Example 11-2. A subclass for testing an abstract class

if __name__ == '__main__':

 class EmptyPlot(Plot):
 canvas_background = 'gray90'
 def get_plot_dimensions(self):
 return 200, 150, 20, 20, 10, 10
 def draw_plot(self):
 self.draw_line(0, 0, 100, 100)

 plot = None
 try:
 plot = EmptyPlot()
 plot.execute()
 input(
'''You should see a light-gray plot with a line
from (0,0) to (100,100); press Return to close ''')
 finally:
 if plot:
 plot.close()

Something like this should go in almost every module. The code serves
multiple purposes:

• Importing or executing the module will reveal syntax errors.

• Importing or executing the module can reveal basic problems with
the implementation of the class, such as missing methods or
modules.

• The program shows the reader the basic use of the class.

• In a graphics program, the test can display a simple diagram that
shows what the class does on its own.

Detecting syntax and runtime errors is not something that you should
stop doing once everything seems to work: it’s a process you’ll want to
repeat every time you make significant changes to the class.

In this case, because the class is abstract, it is not meant to be used entirely on its own.
Therefore, the test code creates a very simple subclass and uses that instead. Fig-
ure 11-3 shows what it displays. Not only does this test the code, but it gives anyone
developing a subclass a guide to the abstract class’s basic facilities.

412 | Chapter 11: Structured Graphics

Figure 11-3. Basic example using the Plot class

The abstract class provides the following:

• Default values for class fields that control many details of the display

• An initialization method that sets off a cascade of “setup” methods that use the
values defined by the class fields and the results of certain other methods

• A hierarchy of “setup” methods that defines what needs to be set up and provides
reasonable defaults for some of these actions and empty methods for others

• A simplified interface to the Canvas drawing methods

• A few utilities, including one for finding fonts

• An execute method to create the widget(s), draw on the canvas, and optionally
write the canvas contents out to a PostScript file

Example 11-3 shows the hierarchy of calls among the class’s methods. (The actual code
is available on the book’s website.) What’s important about this class is not its use of
tkinter, but how it organizes everything for subclasses to more easily create certain
kinds of plots using tkinter’s Canvas drawing methods.

Example 11-3. The methods of the abstract Plot class

Key for subclass definitions:
 x normally would NOT implement (framework definition)
 ! MUST OVERRIDE
 * MUST EXTEND
 + MAY EXTEND
 / MAY EXTEND or OVERRIDE
 - MAY OVERRIDE (empty methods: convenience and clarity)

Utility Methods

x NextPlotNumber()
x closeall()
x findfont(families, size, boldflg, italicflg)

Access
x get_root
x add_font

Structured Graphics with tkinter | 413

x get_font
/ __str__

Layout Framework
* __init__ tracks instance, creates Tk root, stores parameters
x setup
+ setup_fonts
- setup_data
- setup_parameters
! get_plot_dimensions
x determine_layout canvas width & height, origin x,y

Drawing Framework
x execute
/ create_widgets
x create_canvas
x draw
x draw_axes
- draw_x_tics
- draw_y_tics
- draw_x_axis_labels
- draw_y_axis_labels
! draw_plot
x close

Drawing Functions
x draw_line
x draw_line_unscaled
x draw_oval
x draw_rectangle
x draw_text
x draw_text_unscaled

The basic steps in a program that uses this class are:

1. Create an instance.

2. Call execute and wait for the user to end the program.

3. Call close in the finally clause of a try statement.

The subclass is required to implement only three methods:

• __init__([windowtitle[, scale[, ps_filename[, ps_scale]]]])

which takes the following optional parameters:

windowtitle
A string; if false, one will be constructed

scale
A multiplier for all <x,y> values, including the axes

ps_filename
The path to a file to which the contents of the canvas in PostScript can be
written

414 | Chapter 11: Structured Graphics

ps_scale
The scale to use for the PostScript version of the drawing

• get_plot_dimensions()

which must return a tuple of the following form containing the details of the plot
within the canvas:

(width, height, leftpad, rightpad, toppad, bottompad)

width and height are the dimensions of the area of the plot itself—i.e., the area
defined by the extent of the x and y axes. The other values indicate how much
space to leave between the corresponding edge of the canvas and the plot. These
values, along with the values of certain class fields, are used in determine_layout
to set a number of values used in organizing the display.

• draw_plot()

which creates the objects that go in the Canvas and specifies their properties.

The subclass is free to implement setup_data and setup_parameters however it wishes.
It is intended that one or both of these methods, or perhaps just the subclass’s
__init__ method, will determine and store the values that will be used in draw_plot.
Note that draw_plot is not responsible for drawing axis lines, tics, or labels. The drawing
functions are relative to an origin at the lower left, with positive values above the axis.
This inverts the usual direction of y coordinates in tkinter to make plotting more
convenient.

Table 11-6 shows the class fields that control details of the display. Any of them may
be overridden in a subclass. Figure 11-4 illustrates the basic layout implemented by the
drawing framework. The four margins and the plot height and width are values returned
by a subclass’s get_plot_dimensions method. The two axis widths are the values of class
fields. The diagonal drawn demonstrates that y values increase upward. A line like this,
along with the circle and text at its end, is drawn using Plot’s drawing methods. Posi-
tions are expressed relative to the origin of the plot area, not the canvas.

Table 11-6. Class fields used by Plot class to control display

Name Value Use

PlotName 'Plot' Combined with the current instance count to construct a default
window name

canvas_pad_x,

canvas_pad_y

0 Horizontal and vertical padding of the canvas widget itself

canvas_border 0 Border width of the canvas

canvas_background 'white' Background color of the canvas

x_axis_width

y_axis_ width

2 Width of the axis lines; 0 means “no line”

x_tic_length 12 Length of “tic” lines on axes if axes are drawn

Structured Graphics with tkinter | 415

Name Value Use
y_tic_length

x_axis_font_size
y_axis_font_size

12 Size of font for labels drawn on axis, if any

serif_faces

sans_faces

mono_faces

Lists of likely font names Convenient defaults for subclasses to use as desired

Figure 11-4. Drawing framework layout

Dot plots

Dot plots are a simple technique for visually comparing two base or amino acid se-
quences of similar size to highlight slight differences.§ One sequence is arranged along
the horizontal axis and the other along the vertical axis. Then, the base or amino acid
at each sequence on one axis is compared to every one on the other. In the simplest
implementation, the plot contains a dot wherever there is an exact match. Fig-
ure 11-5 illustrates the process with two short sequences.

Due to random matches, however (more so in base sequences than in amino acid se-
quences), this implementation generates far too many dots to be useful for many pur-
poses. Random matches can be reduced by using two parameters: a window w and a
cutoff c. At each point, that point plus the next w-1 points are compared, and the total
number of matches is counted. A match is registered for that point only if the count is
at least c. A graphical display of the results could use multiple levels of gray to show
different scores above c. For some applications, amino acid sequence matching can be
refined further by scoring each comparison according to a substitution matrix rather
than just testing equality.

§ A good review article that covers the history, uses, and algorithms of two-sequence dot plots in bioinformatics
can be found at http://www.code10.info/index.php?view=article&id=64. It includes explanations of how the
various kinds of differences between a pair of sequences appear in dot plots.

416 | Chapter 11: Structured Graphics

http://www.code10.info/index.php?view=article&id=64

Figure 11-6 illustrates the effects of these parameters for a short amino acid sequence
compared against itself. On the left, w and t are both 1. On the right, w=3 and t=2. These
are more typical values for amino acid sequences (typical values for base sequences
would be w=11 and c=7). The actual values to use for these parameters will depend on
the purpose of the comparison. An application could easily provide controls that allow
the user to see what the dot plot looks like for different values of w and t.

Figure 11-5. Comparison of two sequences for a dot plot

Structured Graphics with tkinter | 417

Figure 11-6. A dot plot with different windows and cutoffs

A perfect match between two sequences will show a solid diagonal line. Two sequences
that match exactly except for their initial parts will also show a solid diagonal line, but
unless the nonmatching parts are the same length the diagonal will not be along the
x=y diagonal of the graph. Dots scattered elsewhere are not meaningful unless clustered
in certain ways.

Dot plots can visually highlight evolutionary modifications both between two similar
sequences and within a sequence. The effects of the possible changes are listed in
Table 11-7. Some applications display dot plots with the diagonal going from upper-
left to lower-right, and others from lower-right to lower-left. For this reason, the table
just says “toward the right” or “toward the left.” The direction is to be interpreted as
relative to the x=y diagonal.

Table 11-7. Appearance of mismatches in dot plots

Change in y-axis sequence Visual effect

Mutation Small gaps in the line

Deletion Line offset to the right of the diagonal

Insertion Line offset to the left of the diagonal

Duplication Line offset to the left of the diagonal, with a parallel overlap corresponding to the duplication

Inversion Large gap with a faint, broken line of similar length perpendicular to the gap and centered on
its center

Self-duplication Two line segments reflected around the diagonal when the sequence is compared to itself

Two other patterns have special significance. One is an artifact of sequencing technol-
ogy: a stretch of Ns in one sequence where the other sequence has real bases will result
in a horizontal or vertical swatch without dots.

418 | Chapter 11: Structured Graphics

The other pattern does have biological significance, but not necessarily an evolutionary
one: an area of low complexity manifests itself as dense, perhaps even solid, squares
around the diagonal. In base sequences, these squares reveal areas with many repeats
of a very short subsequence. An amino acid sequence would usually not have multiple
repeats of exactly the same short subsequence, but a stretch containing only a few of
the possible amino acids would have a similar effect (e.g., EKLKEKEKQKEKERQREKEK). These
squares can even reveal regions of self-similarity when a sequence is compared with
itself.

Figures 11-7, 11-8, and 11-9 illustrate the way the changes shown in Table 11-7 appear
in dot plots. These illustrations were constructed manually by making changes in a
copy of the x-axis sequence, an amino acid sequence of length 292. (Dot plots are often
used for much larger sequences, of course, such as cDNA sequences.)

Figure 11-7. Mutations and deletions in a sequence dot plot

Figure 11-8. Insertion and duplication in a sequence dot plot

Structured Graphics with tkinter | 419

Figure 11-9. Inversion and self-duplication in a sequence dot plot

Next, we’ll look at a complete definition of a class for generating dot plots. It is based
on the abstract Plot class described earlier. Where methods are defined that override
or extend the inherited versions, the method name is highlighted. In addition, if the
method extends the inherited method, the call to super is highlighted.

In anticipation of its use in real applications, our class provides a class method that
returns an optparser facility. One of its __init__ method’s required arguments is an
OptionParser that has already parsed the command line. Quite a few parameters are set
through the parser. Rather than passing them separately when the DotPlot is created,
the option object packages them. For convenience, methods throughout the class are
defined to access fields of the OptionParser pretty much as if they had been fields of the
DotPlot object.

The module includes test code just the way the abstract class’s module did, as shown
in Example 11-4. It generates a random sequence 201 amino acids long and plots it
against itself. Figure 11-10 shows the plot displayed.

Example 11-4. Test code for the DotPlot module

from random import randint

aacodes = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'K', 'L', 'M',
 'N', 'P', 'Q', 'R', 'S', 'T', 'V', 'W', 'X', 'Y', 'Z']

def generate_sequence(length):
 return ''.join([aacodes[randint(0, len(aacodes)-1)]
 for n in range(length)])

if __name__ == '__main__':
 string = generate_sequence(202)
 plot = DotPlot(string, string, window=3, threshold=2, with_axes=True)
 plot.execute() # defined in Plot
 try:
 sys.ps1 # are we running interactively?

420 | Chapter 11: Structured Graphics

 except: # no
 input("Press the Return key to close the window(s)")
 plot.close()

Figure 11-10. The plot drawn by the DotPlot test code

Example 11-5 is the first part of the class definition. It overrides a couple of class fields
and defines similar parameters for its own use. The __init__ method it shows is unusual
in that it calls its superclass’s __init__ last rather than first. This is because the abstract
class’s __init__ method sets off a cascade of initialization and setup methods that will
use some of the values stored by this class’s __init__ method.

Example 11-5. Generating a dot plot using tkinter

class DotPlot(Plot):

Overridden class fields
 x_tic_width = y_tic_width = 3
 sans_faces = ('Helvetica Narrow', 'Futura',
 'Helvetica', 'Arial', 'sans-serif')
 PlotName = 'Dot Plot'

Fields specific to this class
 title_font_size = 12
 top_title_margin = round(title_font_size / 2)
 name_height = 22
 tic_width = 3
 axis_width = 3
 # Defaults for showing the plot without axes;
 # if options.axes is true, they will be reset in setup_parameters
 left_title_margin = 10
 xaxis_width = yaxis_width = 0
 xlabel_height = ylabel_width = 0

 def __init__(self, seq1, seq2, seqname1 = '', seqname2='',
 window=1, threshold=1, with_axes=False, dot_size=1,
 # super parameters:

Structured Graphics with tkinter | 421

 window_title=None,
 scale=1.0, ps_filename=None, ps_scale = 1.0):
 self.seq1 = seq1
 self.seq2 = seq2
 self.seqname1 = seqname1
 self.seqname2 = seqname2
 self.window = window
 self.threshold = threshold
 self.with_axes = with_axes
 self.dot_size = dot_size
 self.window_title = window_title
 super().__init__(options.name, scale, ps_filename, ps_scale)

Example 11-6 contains configuration methods that extend or replace definitions in-
herited from Plot. These mostly determine details that are specific to the kind of plot
the class implements.

Example 11-6. Plot setup methods overridden in DotPlot

 def setup_fonts(self):
 super().setup_fonts()
 self.add_font('title', self.findfont(self.sans_faces,
 self.title_font_size))
 def setup_data(self):
 self.points = self.compute_points()
 self.max_x = max(self.points, key=lambda pt: pt[0])[0]
 self.max_y = max(self.points, key=lambda pt: pt[1])[1]

 def setup_parameters(self):
 super().setup_parameters()
 if not self.with_axes:
 self.x_axis_width = self.y_axis_width = 0
 else:
 self.x_axis_width = self.axis_width
 self.y_axis_width = self.axis_width
 self.x_label_height = self.x_tic_length + 5
 self.y_label_width = self.y_tic_length + 5
 self.left_title_margin = \
 self.left_title_margin + self.y_label_width

 def get_plot_dimensions(self): # required
 return (round((self.max_x + self.window) * self.scale),
 round((self.max_y + self.window) * self.scale) +
 self.y_tic_width,
 self.y_label_width,
 self.ipad_right,
 self.name_height *
 (bool(self.seqname1) + bool(self.seqname2)),
 self.x_label_height)

Example 11-7 shows the code that determines the points to be plotted. The
setup_data method from Example 11-6 calls compute_points and assigns the points field
to its result.

422 | Chapter 11: Structured Graphics

Example 11-7. Computing the points to be drawn in a DotPlot

 def compute_points(self):
 pts = []
 for y in range(1 + len(self.seq2) - self.window):
 for x in range(1 + len(self.seq1) - self.window):
 if self.test_point(self.seq1, x, self.seq2, y):
 pts.append((x, y))
 return pts

 def test_point(self, seq1, x, seq2, y):
 cnt = 0
 for n in range(self.window):
 if seq1[x+n] == seq2[y+n]:
 cnt += 1
 return cnt >= self.threshold

Example 11-8 implements the class’s drawing operations. If sequence names were pro-
vided in the call to DotPlot, their names are drawn above the plot. If the with_axes
argument is false, the setup_parameters method from Example 11-6 sets the width of
both axes to 0, and Plot does not draw the axes. If it’s true, setup_parameters sets the
axis widths along with some other parameters. In that case, the superclass draws the
axis lines and calls draw_x_axis_labels and draw_y_axis_labels. As defined, these
functions just draw tic marks every 100 points along each axis. Finally, a circle (oval)
of diameter dot_size pixels is drawn for each of the computed points. Few graphical
user interface facilities actually provide a point-drawing operation; instead, programs
simply draw very small circles.

Example 11-8. DotPlot’s drawing methods

 def draw(self):
 super().draw()
 self.draw_titles()

 def draw_titles(self):
 if self.seqname1 and self.seqname2:
 self.draw_title('x = ' + self.seqname1,
 self.top_title_margin)
 self.draw_title('y = ' + self.seqname2,
 self.top_title_margin +
 self.title_font_size + 6)
 elif self.seqname1 or self.seqname2:
 self.draw_title(self.seqname1 or self.seqname2,
 self.top_title_margin)

 def draw_title(self, title, ypos):
 self.draw_text_unscaled(self.left_title_margin,
 ypos, title, 'title', 'nw')

 def draw_x_axis_labels(self):
 for x in range(100, self.plot_width+1, 100):
 self.draw_line(x, -self.x_axis_width,
 x, -(self.x_axis_width + self.x_tic_length),

Structured Graphics with tkinter | 423

 self.x_tic_width)

 def draw_y_axis_labels(self):
 adjust = round((self.y_tic_width - 1)/2)
 for y in range(100, self.plot_height+1, 100):
 self.draw_line(-self.y_axis_width,
 y + adjust,
 -(self.y_axis_width + self.y_tic_length),
 y + adjust,
 self.y_tic_width)

 def draw_plot(self): # required
 for pt in self.points:
 self.draw_oval(
 pt[0],
 self.plot_height - self.window - pt[1],
 pt[0] + self.dot_size - 1,
 self.plot_height - self.window - pt[1] - self.dot_size - 1)

Histograms

An interesting use of histograms is to plot the distribution of codon usage among the
known coding sequences for an organism. The program shown in this section color-
codes the bars according to the GC content of the corresponding codon. The GC con-
tent for all of the cDNA sequences from which the data was taken is written at the
upper left of the graph. (Note that this is not the same as the GC content for the or-
ganism’s DNA as a whole, because it is based on coding sequences.) The code to extract
the data from a file is not shown here, but it is quite similar to our many FASTA
examples.‖

Histograms for two different bacteria are shown in Figures 11-11 and 11-12. Looking
at the two figures, it’s easy to see that the distributions of codons used by these two
species are substantially different.#

Example 11-9 shows the class fields of another subclass that uses the abstract Plot class
shown earlier. Method definitions are shown in subsequent examples. In those exam-
ples, the names of methods that override or extend methods inherited from Plot are
highlighted, as are calls to super.

‖ The program’s data source is a file of bacterial species codon distributions downloaded from ftp://ftp.kazusa
.or.jp/pub/codon/current/gbbct.codon. Interesting interactive tools for getting codon counts in several formats
for species matching a regular expression can be found at http://www.kazusa.or.jp/codon.

#The downloaded data at the previously mentioned site was computed from the GenBank flat file release of
June 15, 2007, using the cDNAs available for each species. The datafile simply contains alternating lines of
species information and 64 integers representing counts per thousand of each codon. The program doesn’t
do anything to compute those values; it just graphs them.

424 | Chapter 11: Structured Graphics

ftp://ftp.kazusa.or.jp/pub/codon/current/gbbct.codon
ftp://ftp.kazusa.or.jp/pub/codon/current/gbbct.codon
http://www.kazusa.or.jp/codon

Figure 11-11. Codon usage histogram for Helico pylori

Structured Graphics with tkinter | 425

Figure 11-12. Codon usage for Sporosarcina pasteurii using tkinter

426 | Chapter 11: Structured Graphics

Example 11-9. Codon distribution histograms using tkinter

class CodonUsageHistogram(Plot):

Fields that override inherited values
 x_tic_length = y_tic_length = 16

Fields specific to this class
 barwidth = 10 # width of histogram bars
 barspacing = 5 # spacing of histogram bars
 barscale = 3 # vertical pixels per data point
 codon_font_size = 14
 marker_font_size = 14
 title_font_size = 22
 key_font_size = 16
 codon_faces = ('Liberation Mono Regular',
 'Lucida Sans Typerwriter',
 'DejaVu Sans Mono',
 'Bitstream Sans Mono',
 'Courier')
 gc_colors = ('gray80', 'gray60', 'gray40', 'gray25')
 default_bar_color = 'gray94'
 plot_top_margin = 20
 ylabel_width = 60
 x_label_height = codon_font_size*5
 canvas_background = 'white'
 title_pad_y = 6
 key_pad_y = 12

 codons = [base1 + base2 + base3
 for base1 in 'TCAG'
 for base2 in 'TCAG'
 for base3 in 'TCAG']
 codon_labels = codons[:] # a copy to modify
 startchar = '*'
 altstartchar = "'"
 stopchar = '^'
 gc_colors = ('gray80', 'gray60', 'gray40', 'gray25')
 # add start and stop indicators
 # stop codons:
 for codon in ('TAA', 'TAG', 'TGA'):
 codon_labels[codon_labels.index(codon)] += stopchar
 # standard start codon:
 codon_labels[codon_labels.index('ATG')] = 'ATG' + startchar
 # alternate start codons in code 11
 for codon in ('TTG', 'CTG', 'GTG', 'ATT', 'ATA', 'ATC'):
 codon_labels[codon_labels.index(codon)] += altstartchar

Structured Graphics with tkinter | 427

Notice the for statements in the class field section. Remember that when
a class statement is executed, each of the statements it contains is exe-
cuted. Although normally classes contain just assignment and def state-
ments, they can contain loops, iterations, conditionals, and so on. These
for statements and associated assignments set up a list of codon labels
that incorporate start and stop codons as well as the alternate start co-
dons for the bacterial genetic code.* (The class could easily be general-
ized to allow specifying a code as an argument when creating an
instance; what’s shown here assumes bacterial sequences.)

Example 11-10 shows the definition of __init__. The name parameter is the name of
the organism, for the purpose of displaying a title. The data is simply a dictionary or
list of pairs that gives the count per thousand of the corresponding codon. The other
methods in the example are part of the setup area of the framework.

Example 11-10. Setup methods for the tkinter codon distribution plot

 def __init__(self, name, data,
 # super paramaters:
 windowtitle=None, scale=1.0,
 ps_filename=None, ps_scale = 1.0):
 self.data = dict(data)
 self.name = name
 super().__init__(name, scale, filename, ps_scale)

 def setup_fonts(self):
 super().setup_fonts()
 self.add_font('x', self.findfont(self.codon_faces,
 self.codon_font_size,
 True))
 self.add_font('title', self.findfont(self.sans_faces,
 self.title_font_size,
 True))
 self.add_font('key', self.findfont(self.sans_faces,
 self.key_font_size,
 False, True))
 self.add_font('marker', self.get_font('x').copy())
 self.get_font('marker').configure(size=self.marker_font_size)
 self.add_font('species', self.get_font('title').copy())
 self.get_font('species').configure(slant='italic')

 def setup_data(self):
 self.maxval = max(self.data.values())
 self.sumval = sum(self.data.values())
 self.maxpercent = round((100 * self.maxval) / self.sumval)

 def get_plot_dimensions(self): # required
 return (self.barspacing + round(64 * self.scale *

* All the alternate start codons documented for the bacterial genetic code at http://www.ncbi.nlm
.nih.gov/Taxonomy/Utils/wprintgc.cgi#SG11 are included, even those found very rarely.

428 | Chapter 11: Structured Graphics

http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi#SG11
http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi#SG11

 (self.barwidth + self.barspacing)),
 round(self.scale * self.barscale * (2 + self.maxval)),
 self.ylabel_width + 20,
 20,
 self.get_title_height(),
 self.xlabel_height + self.get_key_height()
)

 def get_title_height(self):
 return 2 * self.title_font_size

 def get_key_height(self):
 return 2 * self.key_font_size

Example 11-11 shows the definitions of the methods that override the empty superclass
methods for drawing the tics and labels of the y-axis and the elaborate codon labels
along the x-axis.

Example 11-11. Axis methods for the tkinter codon distribution plot

 def draw_y_tics(self):
 for n in range(1, self.maxpercent + 1):
 vertpos = 10 * n * self.barscale
 # * 10 because barheights are per thousand
 self.draw_line(0, vertpos, -self.y_tic_length, vertpos)

 def draw_y_axis_labels(self):
 for n in range(1, self.maxpercent + 1):
 self.draw_text(-self.tic_length-4,
 10 * n * self.barscale,
 str(n) + '%',
 'y',
 anchor='e')

 def draw_x_axis_labels(self):
 curx = self.barspacing + 5
 for n, codon in enumerate(self.codon_labels):
 self.draw_codon_label(curx, codon),
 curx += self.barwidth + self.barspacing

 def draw_codon_label(self, x, codon):
 for n, char in enumerate(codon):
 self.draw_text(x,
 # 6 * is additional separation for markers
 -((self.codon_font_size * (n+1)) +
 (6 * (n > f2))),
 char,
 'x' if n < 3 else 'marker',
 anchor='center')

The methods in Example 11-12 draw the title above the plot, the key below, and an
indication of the total GC content of the coding sequences at the upper left of the plot
area. The computation of the total GC content is done by the gccontent method shown
in the subsequent example.

Structured Graphics with tkinter | 429

Example 11-12. Title and key methods for the distribution plot

 def draw(self):
 super().draw()
 self.draw_title()
 self.draw_gc_content()
 self.draw_key()

 def draw_title(self):
 self.draw_text(round(self.plot_width / 2), self.plot_height,
 'cDNA Codon Usage for ', 'title', anchor='se')
 self.draw_text(round(self.plot_width / 2), self.plot_height,
 self.name, 'species', anchor='sw')

 def draw_gc_content(self):
 self.draw_text(20, self.plot_height-20,
 'GC content = {:.2f}%'.format(self.gccontent()),
 'key', 'sw')

 def draw_key(self):
 self.draw_text(
 0, -self.xlabel_height,
 'Key to Genetic Code 11: ' +
 '{} start, {} possible start, {} stop'.
 format(self.startchar, self.altstartchar, self.stopchar),
 'key', anchor='nw')
 self.draw_text(
 self.plot_width, -self.xlabel_height,
 'The more Gs and Cs a codon has the darker its bar.',
 'key', anchor='ne')

The methods in Example 11-13 draw the usage bars. Each bar is drawn in one of four
shades of gray, according to the number of Gs and Cs in the codon. The two class
methods are class methods simply because nothing they do is specific to the instance.
The gccontent method calls codon_gc_count as part of its computation of the total GC
content for the sequences. That is not a class method, because its computation depends
on the instance’s data field.

Example 11-13. Methods for drawing the distribution bars

 @classmethod
 def codon_gc_count(self, codon):
 return codon.count('G') + codon.count('C')

 @classmethod
 def gccolor(self, codon):
 return self.gc_colors[self.codon_gc_count(codon)]

 def gccontent(self):
 # 3 because there are 3 bases in each codon
 # 10 because the counts are per thousand
 return (3 * 10 * sum((self.codon_gc_count(codon) * count
 for codon, count in self.data.items())) /

430 | Chapter 11: Structured Graphics

 self.sumval
)

 def draw_plot(self): # required
 curx = self.barspacing
 for codon in self.codons:
 n = self.data[codon]
 self.draw_rectangle(curx, 0, self.barwidth, n * self.barscale,
 self.gccolor(codon))
 curx += self.barwidth + self.barspacing

The code in this chapter has a very different “shape” than other Python
code shown in this book. While the overall organization of graphics
programs can make good use of object-oriented techniques, in the end
drawing comes down to a series of commands to draw specific things
with specific properties in specific places. This results in many
procedural-style function calls with many arguments.

You might also have noticed some funny arithmetic going on: adjust-
ment factors, adding 1 or 2, calls to round, and so on. These are not
typically manipulations you can anticipate, and they won’t necessarily
be the same if you implement the same program with a different toolkit.
Rather, they come from seeing the results of straightforward calcula-
tions and then adjusting them. It is always best to at least name such
values in a way that indicates their purpose, such as adjustment or
border-displacement. Comments are more useful in this kind of pro-
gramming than they are in more straightforward code.

Structured Graphics with SVG
SVG—Scalable Vector Graphics—defines a set of XML markup tags and attributes for
describing shapes and text to be displayed in a web browser.† The name of the tech-
nology emphasizes several important characteristics:

Vector- versus pixel-based graphics
Most image formats represent pixels. They contain no information about what the
pixels represent, so transformations such as zooming in and out can operate only
on pixels. In contrast, a vector-based system describes what is in the image. The
description is used to generate pixels when the image is displayed. (This is analo-
gous to the difference between representing fonts as bitmaps versus representing
them as unit-independent curves.)

† See http://www.w3.org/TR/SVG11 for the complete specification. Much of it is very formal and sophisticated,
but the sections on shapes (http://www.w3.org/TR/SVG11/shapes.html) and text (http://www.w3.org/TR/
SVG11/text.html) are very useful references for even basic use of SVG. Both have excellent examples, including
the resulting images, and would constitute an excellent supplement to the brief descriptions in this chapter.

Structured Graphics with SVG | 431

http://www.w3.org/TR/SVG11
http://www.w3.org/TR/SVG11/shapes.html
http://www.w3.org/TR/SVG11/text.html
http://www.w3.org/TR/SVG11/text.html

Scalable technology
The term “scalable” in SVG means two things. The first one, which we won’t talk
about here although it’s important in other contexts, is that the technology itself
is scalable: one SVG file can refer to many others to build highly complex images
and can be used by many different kinds of applications.

Scalable graphics
What interests us here is that a vector-based image is in itself “dimensionless.” The
actual image is generated for a specified resolution. This means the images can be
zoomed in and out and used at different sizes on different web pages. A scalable
representation supports the different requirements of different output media—i.e.,
the widely varying resolutions of different makes and models of displays and
printers.

SVG is quite powerful: it supports scaling, resizing, interaction, and animation. An SVG
file can include Cascading Style Sheets (CSS) and scripts (JavaScript). SVG content can
be delivered to a browser in several forms, including:

• In a file containing just SVG

• By URL reference to a separate SVG file in an HTML or XHTML file <object> or
 tag

• Directly inside an XHTML file

For simple situations, a self-contained SVG file is fine. If the image is only a part of a
web page to be displayed, using an object or img tag is appropriate. More sophisticated
client-side programming techniques are best supported by embedding the SVG content
inside an XHTML file. We will use a plain SVG file here.

SVG is generally well supported by modern browsers. In the same way that a browser
interprets HTML to display a web page and other graphics formats—such as PNG,
JPEG, or GIF—to display an image, it interprets the contents of an SVG file and gen-
erates the corresponding image to display. A browser’s zoom commands should zoom
in and out on the image, and if the entire image doesn’t fit in the window the browser
should show scroll bars. (Actual behavior varies among browsers.)

SVG File Contents
The SVG File template shows the general outline for an SVG file.

The “standalone” on the first line means the file refers to outside docu-
ments, which it does in the first few lines. It does not mean that this is
an independent SVG file as opposed to one referenced by or embedded
in another web page.

432 | Chapter 11: Structured Graphics

The width and height parameters can be specified as pixels (e.g., 400) or percentages
followed by a percent sign (e.g., 100%). There are a number of other possibilities as well,
but those will serve our purposes.

The template shows where stylesheet information and the actual SVG tags belong.
We’ll see examples of these a little further on in the chapter.

T E M P L A T E

SVG File
The outline of an SVG file is:

<?xml version="1.0" standalone="no"?>

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">

<svg xmlns='http://www.w3.org/2000/svg' version='1.1'
 width='width' height='height'>
 <defs>
 <style type='text/css'><![CDATA[
 ... CSS style rules here, just as in HTML ...
]]>
 </style>
 </defs>
 ... SVG tags ...
</svg>

SVG tags

In its complete form, SVG is a sophisticated markup language. For many purposes,
though, all that’s needed is a simple repertoire of tags and a few of their more common
attributes. Tables 11-8 (shapes) and 11-9 (text) describe those. In addition, all of the
tags support the style attribute, which is described next. In the following, note that y
coordinates start with 0 at the top of the diagram and increase downward. The default
for all unspecified coordinates is 0.

Table 11-8. SVG shape tags

Tag Attributes Meaning

rect x Smaller of the two x-axis coordinates

y Smaller of the two y-axis coordinates

width A positive value

height A positive value

rx x-axis radius of rounded corners

ry y-axis radius of rounded corners

circle cx x-axis coordinate of center

Structured Graphics with SVG | 433

Tag Attributes Meaning

cy y-axis coordinate of center

r Radius

ellipse cx x-axis coordinate of center

cy y-axis coordinate of center

rx x-axis radius

ry x-axis radius

line x1 x-axis coordinate of starting point

y1 y-axis coordinate of starting point

x2 x-axis coordinate of ending point

y2 y-axis coordinate of ending point

polyline

(open)

points Quoted list of whitespace-separated points, each a comma-
separated x,y pair

polygon

(closed)

points Quoted list of whitespace-separated points, each a comma-
separated x,y pair

Table 11-9. SVG text tag

Tag Attributes Meaning

text x x-axis coordinate of start of text

y y-axis coordinate of start of text

width Width of text box (optional)

height Height of text box (optional)

SVG styles

SVG tags can be styled using CSS, just the way HTML tags can be. Two attributes,
shown in Table 11-10, can be used to specify a tag’s style. In addition, styles can be
defined within the style tag in the defs section at the beginning of an SVG document.‡

Table 11-10. SVG style attributes

Attribute Effect Value types

style Specifies the style for the tag Semicolon-separated name:value pairs

class Applies the style for the class as defined in the
style section

A name

id Applies the style for the elements with this id
as defined in the style section

A name

‡ Full details regarding the use of CSS with SVG can be found at http://www.w3.org/TR/SVG11/styling.html
#StylingWithCSS.

434 | Chapter 11: Structured Graphics

http://www.w3.org/TR/SVG11/styling.html#StylingWithCSS
http://www.w3.org/TR/SVG11/styling.html#StylingWithCSS

The basic style properties are described in Table 11-11. Table 11-12 shows the prop-
erties used to specify fonts.§

Table 11-11. Major SVG style properties

Property Effect Value type

fill Inside color Color (namea, #rgb, etc.)

stroke Border color Color (name, #rgb, etc.)

stroke-width Width of line Number

transform Modifies element (explained in
following discussion)

Space- or comma-separated transforms in function-like notation

a See http://www.w3.org/TR/SVG/types.html#ColorKeywords for a list of acceptable color names and their RGB equivalents.

Table 11-12. SVG font properties

Property Effect Value type

font-family Typeface Comma-separated list of font names to try, in the order in which they
appear. Names containing whitespace must be quoted. serif,
sans-serif, and monospace refer to the corresponding browser
settings.

font-size Size Number representing points.

font-style Italicization Normal, italic, or oblique.

font-weight Boldness Normal, bold, bolder, or lighter.

The transformation sublanguage provides a powerful range of capabilities for modify-
ing shapes and text. These include the following:‖

translate(tx [ty])
Add tx to the element’s x position and ty (0 if omitted) to its y position.

scale(sx [sy])
Scale the element by a factor of sx horizontally and sy (sx if omitted) vertically.

rotate(angle [cx cy])
Rotate by angle around the point <cx, cy> (<0, 0> if omitted, which usually has
very surprising effects, if you even see the object after it has been rotated).

In addition to the tags for shapes, paths, and text, SVG provides a grouping tag, g. This
is similar to the div tag in HTML. It provides a way to apply styles and transformations
to all the tags between the opening <g> and the closing </g>. The style for the group
can be specified in all the usual ways: as the value of a style attribute, with a class
attribute that corresponds to a style class, or with an id that corresponds to a style
defined for that ID.

§ See http://www.w3.org/TR/2008/REC-CSS2-20080411/fonts.html#font-specification for full details.

‖ http://www.w3.org/TR/SVG11/coords.html#TransformAttribute contains the full documentation.

Structured Graphics with SVG | 435

http://www.w3.org/TR/SVG/types.html#ColorKeywords
http://www.w3.org/TR/2008/REC-CSS2-20080411/fonts.html#font-specification
http://www.w3.org/TR/SVG11/coords.html#TransformAttribute

Examples
Next, we’ll look at two examples of programs that produce structured graphics using
SVG. The first repeats the tkinter histogram example without the benefit of a graphics
library. Because SVG files are ultimately just XML text, it is straightforward to generate
them with ordinary Python code. For the same reason, though, SVG is less useful for
graphics composed primarily of large numbers of individual points, such as the dot
plots we saw earlier. Each point would require a separate SVG tag, and there could be
tens of thousands of points in a real dot plot.

Histograms of codon use

Example 11-14 shows the outline of a program for producing the same sort of histo-
grams as in the earlier tkinter examples. Example 11-15 shows the resulting SVG text.
The code isn’t shown here, since it is somewhat long and doesn’t contain anything we
haven’t already seen; it is, however, available on the book’s website.

Example 11-14. The outline of the codon usage histogram program

chart_usage
 draw_chart
 draw_heading
 draw_key
 draw_text
 draw_title
 draw_text
 draw_axes
 draw_line
 draw_text
 draw_codon_label
 draw_bars
 draw_bar
 draw_closing

Figures 11-13 and 11-14 correspond to Figures 11-12 and 11-11. There are slight dif-
ferences, largely because of the way the x-axis was labeled with codons. In the
tkinter implementation, separate calls to Canvas.create_text were used to stack char-
acters vertically. Using SVG would have been fairly awkward, but SVG’s transforms
made it easy to rotate the text.

Although browser support for SVG has come a long way, browsers don’t
generally implement every possible feature and sometimes don’t get the
features they do implement quite right. It would be worth viewing the
SVG files for this example in more than one browser.

436 | Chapter 11: Structured Graphics

Figure 11-13. Chart of Helicobacter pylori codon usage

Structured Graphics with SVG | 437

Figure 11-14. Chart of Sporosarcina pasteurii codon usage

438 | Chapter 11: Structured Graphics

The opening part of the SVG file generated by this example, containing the required
invocations, is shown in Example 11-15. Next is a set of CSS style declarations. The
details are omitted here, but the beginning and end are shown to indicate how to include
CSS styles in an SVG document. (Example 11-15 includes a small section with actual
CSS declarations.) The rest of the SVG file relies on these CSS declarations to describe
things like color and font properties. A CSS declaration can specify properties in a
variety of ways, including for a type of tag (e.g., text) or for all tags with a certain value
of the class attribute. Finally, a few of the graphical element tags from each part of the
file are included, with ellipses indicating more of the same.

Example 11-15. SVG for dispaying a codon usage bar graph

<?xml version="1.0" standalone="no"?>

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">

<svg xmlns='http://www.w3.org/2000/svg' version='1.1'
 width='984' height='379'
>

 <defs>
 <style type='text/css'><![CDATA[
 ...CSS styles go here...
]]>
 </style>
 </defs>

 <!-- Key -->
 <text x='100' y='339' class='key' >
 Key to Genetic Code 11:
 ✱ start, – possible start, ∧ stop
 </text>
 <text class='keyright' x='944' y='310' >
 The more Gs and Cs a codon has the darker its bar. </text>
 <text x='100' y='72' >GC content = 36.30% </text>

 <!-- Title -->
 <text class='title' x='492' y='30' >
 cDNA Codon Usage for
 <tspan font-style='italic'
 text-anchor='middle' dominant-baseline='middle' >
 Sporosarcina pasteurii
 </tspan>
 </text>

 <!-- Axes -->
 <line class='axis' x1='80' y1='246' x2='944' y2='246' />
 <line class='axis' x1='80' y1='60' x2='80' y2='246' />
 <g class='tic'>
 <line x1='64' y1='216' x2='80' y2='216' />
 <text x='60' y='217' > 1% </text>
 <line x1='64' y1='186' x2='80' y2='186' />

Structured Graphics with SVG | 439

 <text x='60' y='187' > 2% </text>
 . . .
 </g>

 <!-- Codon Labels -->
 <g class='codon'>
 <text x='191.5' y='251' transform='rotate(90,191.5,251)' >TAT</text>
 <text x='205.0' y='251' transform='rotate(90,205.0,251)' >TAC</text>
 <text x='218.5' y='251' transform='rotate(90,218.5,251)' >TAA<</text>
 <text x='232.0' y='251' transform='rotate(90,232.0,251)' >TAG<</text>
 . . .
 </g>

 <!-- Bars -->
 <rect class='gc0' x='83.5' y='162' width='10' height='84' />
 <rect class='gc1' x='97.0' y='195' width='10' height='51' />
 <rect class='gc0' x='110.5' y='171' width='10' height='75' />
 <rect class='gc1' x='124.0' y='189' width='10' height='57' />
 . . .

 </svg>

Sequencing trace file curves using SVG

Many curves in bioinformatics data presentations are highly irregular. This makes them
difficult to draw using typical drawing facilities, such as those tkinter provides, or a
description language such as SVG. A simplifying trick that often works for these kinds
of curves is to draw a line from each point in the data to the next. The lines will be so
small that the overall image will appear to be a curve.

A classic example is the display of trace data obtained from sequencing machines. One
approach using SVG is simply to insert a line tag from every <x, y> position to the
corresponding <x+1, y'> position. It turns out that the lines drawn are so small that
the end result looks like a curve.

A file containing enough line tags for a sequencing trace will be quite large. Worse, a
browser would get bogged down interpreting the many thousands of tags it includes.
The SVG polyline is the perfect fix for this problem: using one dramatically shrinks
the size of the file and, even more, the time required to process it, since instead of a
complete line tag, with its various attributes, all that is needed for each point is an
<x, y> pair. Example 11-16 shows some of the code that implements this approach.
Figure 11-15, which follows the pages of code, shows the result.

It might help you to understand the code in the two SVG examples if
you pay more attention to its output and the way it looks in your browser
than to the Python code. The Python code isn’t all that intriguing: it just
does what it needs to do. What’s interesting is how a structured graph-
ical image can be constructed from a structured text format.

440 | Chapter 11: Structured Graphics

Example 11-16. Drawing a sequence trace using SVG polylines

colors = ('black', 'green', 'red', 'blue') # or whatever
axiscolor = '#333'
axisthickness = 2

tickcolor = '#666'
tickspacing = 100 # spacing of x-axis labels
tickheight = 18
tickthickness = 2

maxval = 1600
leftmargin = 10
topmargin = 20
yzero = 100

hscale = 5/2 # multiply x coordinates by this
vscale = 14 # divide y values by this
span = 1 # number of points to average together

def read_data(infilname):
 with open(infilname) as infil:
 return [eval(line) for line in infil.readlines()]

def write_text(fil, x, y, txt, cls):
 print(" <text class='{}' x='{}' y='{}'>{}</text>".
 format(cls, x+leftmargin, y+topmargin, txt),
 file=fil)

def write_line(fil, frompos, fromval, topos, toval, color, thickness):
 print(" <line x1='{}' y1='{}' x2='{}' y2='{}'".
 format(leftmargin + int(frompos * hscale),
 int(((maxval - fromval) / vscale)) + topmargin,
 leftmargin + int(topos * hscale),
 int(((maxval - toval) / vscale)) + topmargin),
 end=' ',
 file=fil),
 print("style='stroke: {}; stroke-width: {};'/>".
 format(color, thickness),
 file=fil)

def write_axes(fil, count):
 print(file=fil)
 write_line(fil, 0, 0, 0, maxval, axiscolor, axisthickness)
 write_line(fil, 0, 0, count, 0, axiscolor, axisthickness)
 print(file=fil)
 tickbottom = vscale * (-axisthickness - tickheight)
 for x in range(int(tickspacing / hscale),
 count,
 int(tickspacing // hscale)):
 write_line(fil, x, tickbottom + vscale * (1 + tickheight), x, tickbottom,
 tickcolor, tickthickness)
 write_text(fil,
 int(x * hscale),
 int((maxval / vscale)) + tickheight +1 5,

Structured Graphics with SVG | 441

 int(x * hscale),
 'tick')

def write_bases(outfil, start, bases, positions):
 for base, pos in zip(bases, positions):
 write_text(outfil,
 int(pos * hscale - 3),
 int((maxval / vscale)) + 15,
 base, # text
 base) # class
 # - to "center" the base at its position; just a guess
 print(file=outfil)

def print_point(outfil, x, y):
 print("{},{}".format(leftmargin + int(x * hscale),
 int((maxval - y) / vscale) + topmargin),
 file=outfil,
 end=' '
)

def write_curve(outfil, vals, color):
 # at a point in the curve instead of using every data point
 # hscale is how far apart the x points are
 print("""
 <polyline style='fill: none; stroke: {}; stroke-width: 1;'
 points='""".
 format(color),
 file=outfil,
 end=''),

 # span is a file-level parameter that specifies the number of points to average to compute
 # a value rather than having a value for every point on the x axis; blur does the averaging
 for pos in range(0, len(vals)-1, span):
 if not pos % 6: # 5-digit x's at the end
 print(20*' ', file=outfil, end='')
 print_point(outfil, pos/span, blur(vals[pos:pos+span]))

 print(" ' />", file=outfil) # close polyline

def write_curves(outfil, data,):
 for d, clr in zip(data, colors):
 write_curve(outfil, d, clr)

def blur(seq):
 """return the average of the values in seq"""
 return 0 if not seq else sum(seq)/len(seq)

def write_heading(outfil, width, height):
 print(
"""<?xml version="1.0" standalone="no"?>

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">

442 | Chapter 11: Structured Graphics

<svg xmlns='http://www.w3.org/2000/svg' version='1.1'
 width='{0}' height='{1}'
>""".format(width+(2*leftmargin), height+yzero+20),
"""
 <defs>
 <style type='text/css'><![CDATA[
 text {
 font-family: Futura, 'Andale Mono', Verdana, sans-serif;
 fill:black;
 font-weight: normal;
 font-size: 8pt;
 font-style: normal;
 text-rendering:optimizeLegibility;
 }
 text.tick { }
 text.T { fill: red; }
 text.C { fill: blue; }
 text.A { fill: green; }
 text.G { fill: black; }
]]>
 </style>
 </defs>
""", file = outfil, end='\n')

def write_closing(outfil):
 print('\n</svg>', file = outfil)

def write_svg_file(infilname, outfilname):
 data = read_data(infilname)
 start = data[0]
 bases = data[1]
 positions = data[2]
 values = data[3:]
 with open(outfilname, 'w') as outfil:
 write_heading(outfil, len(values[0]) // span, maxval // vscale)
 write_axes(outfil, len(values[0]) // span)
 write_bases(outfil, start, bases, positions)
 write_curves(outfil, values)
 write_closing(outfil)

write_svg_file('data/ABI/seqdata', 'data/ABI/abi-trace.xml')

Figure 11-15. A portion of the generated SVG trace display

Structured Graphics with SVG | 443

Tips, Traps, and Tracebacks

Tips
• The first time you use a graphics library such as tkinter or a language such as SVG,

the first program you write should be something very minimal. Before starting any
real work, make sure that you know how to create a diagram, add a shape, display
the diagram, and close it.

• Before doing any programming, sketch a high-level layout on paper. Draw vertical
and horizontal lines at each significant location in your sketch. Then, invent labels
for the vertical and horizontal distances in each segment of the resulting grid. Use
these labels in the code you write. Figure 11-4 shows an example of what a sketch
like this layout might look like, but do it by hand.

• In any kind of programming it is best to avoid using any unnamed significant
numbers, but in graphics programming it is essential. Graphics code is full of
numbers and computations for positions, dimensions, scaling factors, font sizes,
border widths, and so on. This is the “domain” of graphics programs. You cannot
avoid the numbers, but you can avoid a great deal of effort, frustration, and errors
by naming every value that goes into the computation of positions and dimensions,
if for no other reason than that your names will all be self-documenting.

If you decide to change the left margin from 12 to 18 but leave the right margin at
12, how will you know which 12s were for the right margin and which the left?
Don’t write code with a comment near the 12 that says “left margin.” That’s what
names are for! In object-oriented programming class fields are the way to give these
values names, as demonstrated in the programs in the first half of this chapter. For
example, the histogram examples in this chapter even had a name for the number
of pixels to use—3—for each 1/10 of a percent in the data. It’s all right to add or
subtract 1 or divide by 2 or 3 without giving the results names, but make sure the
significance of those small values is trivial, not something that is controlling the
nature of the graphics being constructed.

• As you develop the parts of the drawing, give each one a colored outline or back-
ground (perhaps even a different color for each one). Do this also for aspects of a
region’s border—that is, use different colors for padding, the border line itself, and
its outside margin, depending on which of these are supported by the graphics
software you are using. Coloring like this will help you detect positions and
dimensions that are slightly “off” and line up pieces of the drawing.

• You don’t have to develop the real parts of the drawing right away. Put in lines,
rectangles, or circles that represent the positions and dimensions of the pieces you
intend to add eventually. These are the graphics equivalent of pass statements.

• Concentrate on getting one part working at a time. Most programs are complex
because of the interdependence of their components. Graphics programming adds

444 | Chapter 11: Structured Graphics

the further complication that the components of its output are similarly interde-
pendent. In this chapter’s examples we’ve seen titles, keys, axes, tics, tic labels,
margins, and other elements that surround the content part of the graphics. The
positions and dimensions of each of these may be affected by the positions and
dimensions of several others. By programming just one component at a time you
will not only avoid getting overwhelmed by the complexity of your program, but
you will progressively develop a better understanding of the interrelationships
among the graphical components.

• Programs that draw structured graphics can almost always be organized in several
levels, as shown in this chapter’s examples. High-level code simply organizes and
sequences the construction of the diagram. Lower-level code typically just draws
a single line or piece of text, etc. The real work is done in the middle-layer code
that is called from the high-level code. The purpose of the lower-level code is to
extract the repetitive patterns of method calls and parameters in the middle-level
code. This can simplify the middle-level code considerably. In addition, as we saw
with the tkinter-based classes in this chapter’s examples, organizing your code
like this will reveal similarities among the various graphics programs you write.

• You will often be able to derive a new program from an existing one with relatively
few changes. Once you start doing that, you can capture the generalities in an
abstract superclass and make subclasses that define only the differences from that
class. The first few subclasses you develop will lead to many changes in all the
classes, but after a few the superclass will generally stabilize, and you’ll be able to
use it easily.

• It is more important in graphics programming than in almost any other kind of
software development to keep multiple versions of your files. You don’t need any-
thing fancy, just a way to save a file with a numerical suffix in a different directory.
Every time you make a significant change, you should save the file both to its
normal location and with an incremented backup suffix. For example, if you have
five backup versions of diagram.py and have just reworked the code to take into
account the border widths of some components, save it both to diagram.py and to
save/diagram06.py. (Use the zero in version numbers less than 10 so that file
listings are sorted appropriately.)

Traps
• “Off by one” errors and issues are pervasive in graphics programming. Avoiding

them is partly a matter of learning how the tools you are using behave. For instance,
a horizontal line of width 3 from (0, 10) to (50, 10) may cover the y coordinates
7–9, 8–10, 9–11, 10–12, or 11–13, depending on the software used and perhaps
on parameters specified when the line is drawn. Much of the problem, though, is
caused by the interdependence of component positions and dimensions. Graphics
code contains a lot of computations of positions and dimensions where each

Tips, Traps, and Tracebacks | 445

value is a combination of several others, and often you will need to add 1 to or
subtract 1 from some of these values to get things lined up properly.

• The same concerns apply to the borders of rectangles, along with some additional
complications. Do their width and height values include the padding? The border?
Half of the border? You’ll need to become familiar with the peculiarities of your
software.

• Intricacy is unavoidable in graphics code. It is rarely possible to achieve the kind
of elegant terseness one should strive for in most other kinds of programming tasks.
You will see just by looking at graphics code that it has an entirely different “shape”
or “feel” than other code you have written or read.

SVG traps

• As in HTML, a sequence of one or more whitespace characters is treated as a single
space.

• The value of each attribute must be quoted.

• Attributes are separated by spaces, not commas, semicolons, or any other
punctuation.

• Style properties are name:value pairs separated by semicolons; whitespace may
appear after the colon.

• All but text tags must be closed with a slash (i.e., />); text tags are closed with >,
then followed by text and a closing </text>.

• Font properties, stroke, stroke width, fill, etc., are style properties, not tag attrib-
utes; they must be specified as the value of a tag’s style attribute or in the stylesheet
for the document.

• SVG’s rotation operation is confusing: be sure to specify the second and third
arguments for rotate transformations, or the results will almost definitely not be
what you expect. In fact, rotating without an origin will usually make the element
disappear from the diagram. In general, you’ll want to rotate elements around
either their starting points or their centers.

• CSS has a concept of “class,” which is used to specify style details for all tags with
a particular value for the class attribute. However, remember that class is a key-
word in Python, used to define classes. Don’t try to use it for a variable in code that
deals with CSS classes; call it cls or cl or something similar instead. It would be
nice if syntax errors caused by the use of a keyword were flagged as such in the
Python error message, rather than the message simply pointing to the keyword,
but that’s not the case.

446 | Chapter 11: Structured Graphics

Tracebacks
Here’s an error message you might encounter programming with tkinter:

_tkinter.TclError: unknown color name "grue"
A typical, and fairly helpful, tkinter error message.

One surprising thing about this error message is the underscore that
precedes tkinter in its name. You will sometimes see single underscores
at the beginning of names of modules that are interfaces to external
libraries, such as Tk and SQLite3, or Python libraries that are imple-
mented in C for one reason or another. They occasionally appear at the
beginning of class names too. Don’t worry about them—they are just
ordinary names. (You can’t ignore the underscores if you are trying to
catch an exception whose class or module name begins with one,
though: you have to give an except clause the exact name of the error
class.)

Tips, Traps, and Tracebacks | 447

APPENDIX A

Python Language Summary

This appendix summarizes the Python language as used in this book. Some of its more
obscure features have been omitted.

Language Components

Special Syntactic Elements
#

Begins a comment; the rest of the line is ignored

\
At end of line, indicates that line break should be ignored

'' or ""
Enclose a one-line string

''' ''' or """ """
Enclose a multiline string

()
Enclose an expression or call a function

Keywords
Table A-1 shows the complete list of Python’s keywords. Note that a few of them play
multiple roles:

• not is a logical operator and part of the not in and is not operators.

• in is an operator as well as part of a for statement.

• as names things in both with statements and except clauses.

449

Table A-1. Keywords

Kind Keywords Note

Value names None True False

Operators not or and in

is

del

It is the words that are keywords: not is both a Boolean operator
and part of the not in and is not operators

General pass assert

return yield

Definitions def class as

import from

global nonlocal

lambda

These two keywords affect the scope of assigned names; they
are not used in any of the book’s code examples.

Conditionals if else elif

Loops and iterations while for break continue Also in, included with the operators, as part of a for statement

Exception handling try except finally

with raise

with is included here because it creates an implicit try/
finally exception handler

Special Names
In addition to keywords, the names described in Table A-2 have special significance.
An asterisk stands for any number of characters that can appear in a name.

Table A-2. Names with special significance

Names Significance

_ In the interpreter only, refers to the result of the last evaluation

_* Used for names not imported by from module import *

__* Used for names private to their classes

__*__ Reserved for system-defined method names used for implementation of fundamental operations

Operators
Boolean operators are listed in Table A-3.

Table A-3. Boolean operators

Operator Meaning

not Unary: True if operand is False; False if operand is True

or True if either operand is True; otherwise, False

and True if both operands are True; otherwise, False

450 | Appendix A: Python Language Summary

Table A-4 lists Python’s arithmetic operators. Two of them can be used with sequences:

• + produces a new sequence with all the elements of each of its sequence operands.

• * takes a sequence and an integer and produces a new sequence with that number
of repetitions of the original.

Otherwise, all operands must be numbers. If any of the operands is a float, the result
will be a float.

Table A-4. Arithmetic operators

Operator Meaning

+ Unary positive, binary addition, sequence concatenation

- Unary negative, binary subtraction

* Number multiplication, sequence repetition

** Exponentiation

/ Division; result is always a float

// Floor division; result equals an integer, but its type is an integer only if both arguments are integers

% Remainder (modulo) of dividing the first operand by the second

Floor division and modulo are related values that are returned as tuples by the built-in
function divmod:

divmod(n, m) == (n//m, n%m)
n == ((n // m) * m) + (n % m)

Python’s comparison operators are shown in Table A-5. The operands of equality and
inequality may have different types, but two values of different types are always un-
equal. In general, it is an error to try to compare values of different types using one of
the order comparisons.

Table A-5. Comparison operators

Operator Meaning

< op1 is less than op2

> op1 is greater than op2

<= op1 is less than or equal to op2

>= op1 is greater than or equal to op2

== op1 is equal to op2

!= op1 is not equal to op2

is op1 is identical to op2 (i.e., they are the same object)

is not op1 is not identical to op2

in op1 is in the collection op2

not in op1 is not in the collection op2

Language Components | 451

Table A-6 lists the operators that perform bitwise operations. Their operands must be
integers.

Table A-6. Bitwise operators

Operator Meaning

<< Shift op1 left by op2 bits

>> Shift op1 right by op2 bits

& Each bit is the and of the corresponding bit of the two operands

| Each bit is the inclusive or of the corresponding bit of the two operands

^ Each bit is the exclusive or of the corresponding bit of the two operands

~ A unary operator: each bit is the complement of the corresponding bit in the operand

Anonymous Functions
A lambda expression creates an anonymous function:

lambda x, y: expression using x and y

A lambda takes one or more arguments. Only one expression—not statement—is
allowed.

Types and Expressions
Table A-7 lists Python’s primitive types. Collection types are summarized in Appen-
dix B.

The str type may be considered a primitive for some purposes, and a
collection for others.

Table A-7. Primitive types

Type Description

None Special “no-value” value

bool True or False

int Integers (any magnitude)

float “Floating-point” numbers

str Unicode strings

Table A-8 shows the syntax for constructing expressions. (Sequences, of which strings
are an example, are fully documented in Appendix B.)

452 | Appendix A: Python Language Summary

Table A-8. Expressions

Kind of operator Syntax Notes

Numeric + - * / // % ** / is float division; // is int division; % is modulo; and **
is power

Logical not and or

Comparison == != < <= >= >

Sequence +, in, not in

Sequence subscription []

Sequence slicing [m:n], [m:n:k] Omitting m is equivalent to 0, omitting n is equivalent to the
end of the sequence

Function call fn(), fn(arg1,...)

Method call arg1.fn(arg2,...)

Statements
Table A-9 describes all the simple statements in Python. (The del statement is included
here for completeness; it applies only to collection types, which are described in Ap-
pendix B.)

Table A-9. Simple statements

Statement Description

name = expression Binds name to the value of expression

name1 = name2 = ... = expression Binds the names to the value of expression

pass Do-nothing placeholder used where statements are required, e.g., in a
function definition

return Returns None from a function

return expression Returns value of expression from a function

yield Makes the function containing it a generator, with every execution of
yield producing one value

assert expression Raises an error if the expression is false

assert expression, value Raises an error if the expression is false, including value in the error message

import module Adds the contents of module to Python and adds its name to the namespace
in which the statement is executed

from module import name Adds the contents of module to Python and adds name to the namespace
in which the statement is executed

from module import name as alias Adds the contents of module to Python and adds alias to the namespace
in which the statement is executed, with alias used instead of name

del coll[...] Removes the element(s) from coll (a list or dictionary) indicated by an
index or subscription

Statements | 453

Statement Description

continue Interrupts the current loop or iteration

break Exits the current loop or iteration

raise ExceptionClass(arg) Creates an instance of ExceptionClass and raises an exception

global name1, name2, ... Must be first statement of a function; indicates that assignments of the listed
names will be in the global scope

nonlocal name1, name2, ... Must be first statement of a function; indicates that assignments of the listed
names will be in the immediately enclosing scope; used when one function
is defined inside of another

Table A-10 lists Python’s augmented assignment statements. Both name and
expression must have numeric values. (The += operator also works when the value of
name is a list, in which case the value of expression may have any type; see Appen-
dix B.) The statements on the lefthand side of the table rebind name to the new value,
with the same effects as the statement on the righthand side of the same row of the table.

Table A-10. Augmented numeric assignment statements

Statement Equivalent

name += expression name = name + expression

name -= expression name = name - expression

name *= expression name = name * expression

name /= expression name = name / expression

name //= expression name = name // expression

name %= expression name = name % expression

name **= expression name = name * expression

There are a very small number of compound statements in Python that define new
names. They are shown in Table A-11.

Table A-11. Compound statements that define names

Statement Description
def name(parameter-list):
 statements

Binds name to a new function whose definition is specified by parameter-
list and body, which consists of one or more statements indented relative to the
word def.

class Name:
 statements

Defines a class, with statements one or more statements indented relative to the
word class; the statements are usually defs, occasionally assignments, and very
rarely anything else.

class Name(SuperName):
 statements

Defines a class with SuperName as its superclass.

with expression as name:
 statements

1. Evaluates the expression.

2. Binds name to the result.

454 | Appendix A: Python Language Summary

Statement Description
3. Executes the statements.

4. Whether an error occurs or not, performs special actions to undo the effect of
evaluating the expression.

Used most frequently with expression, a call to open.

Table A-12 describes Python’s conditional statements.

Table A-12. Conditional statements

Statement Description
if expression:
 statements

Evaluates expression and, if true, executes the statements

if expression:
 statements1
else:
 statements2

Evaluates expression and, if true, executes statements1; otherwise, execute
statements2

if expression1:
 statements1
elif expression2
 statements2
. . .
else:
 default-statements

Evaluates each expression in sequence until one is true, then executes the corre-
sponding statements; if none is true, executes default-statements

Table A-13 describes Python’s loop and iteration statements. See Appendix B for sum-
maries of common uses with collections.

Table A-13. Loop and iteration statements

Statement Description
while expression:
 statements

Repeatedly evaluates the expression and executes the statements until the
expression’s value is false

while expression:
 statements1
else:
 final-statements

Repeatedly evaluates the expression and executes the statements until the
expression’s value is false; then evaluates final-statements

for item in collection:
 statements

For each item in collection, executes the statements

An exception statement begins with the keyword try and must have at least one of the
other kinds of clauses. There can be any number of except clauses that list one or more
exception classes. There may not be more than one except clause that does not name
an exception class, nor more than one finally clause.

When an exception is raised during the execution of the try block (that is not handled
by a “deeper” try statement), that block is immediately exited. Next, the type of the
exception raised is compared to the type(s) of each except clause until a match is found,
at which point the statements of that clause are executed and execution continues after

Statements | 455

the last except clause. If an except clause without any classes is reached, its statements
are executed.

Note that it is possible for all the except clauses to list one or more class names, none
of which match the type of the exception raised. In that case, the try statement does
not catch the exception, and Python continues looking up the stack for a statement
that does catch the exception.

Regardless of whether the try statements completed without an exception being raised
or were interrupted by an exception, if there is a finally clause, its statements will be
executed.

The components of an exception handling statement are shown in Table A-14. Note
that what appears in the lefthand side of the statement are clauses, not statements. A
try statement must try and have one or more except clauses. It may have one
finally clause.

Table A-14. Exception handling statements

Statement Description
try:
 try-statements

Executes the try-statements

except ExceptionClass[, ...]:
 except-statements

If an exception that is an instance of one of the listed types is raised, executes
the except-statements; then continues after the last except clause
of the try statement

except ExceptionClass[, ...] as name:
 except-statements

As in the form described in the previous row, but also names the exception
object so it can be referenced in the except-statements

finally:
 finally-statements

Executes the finally-statements regardless of whether an error
occurred or not; must be the last in the series of clauses that follow the
try-statements

Notes
Two features of Python syntax were omitted from this book because they disturb the
regularity of code appearance. Since you may see these in other code you read, though,
you should know about them:

1. Strings can be concatenated during compilation, as opposed to execution, simply
by putting them next to each other with no separating +. They can even appear on
separate lines, as long as all that is between them is whitespace. For example:

print('This string might be too long to fit on one line where'
 ' it appears in your program, so just write two or more'
 ' strings in succession')

There’s no particular advantage to doing this rather than using a +, except in the
rare case where a statement containing a concatenation of string literals (not names
whose values are strings) would otherwise be executed a very large number of

456 | Appendix A: Python Language Summary

times. Concatenation at compile time creates a single string. Concatenation at
runtime creates a new string every time a string concatenation expression (str1 +
str2) is evaluated.

2. When the body of a one-clause compound statement (or the body of a clause of a
multiclause compound statement) consists of a single statement, it can appear on
the same line as the first line of the clause, after the colon. For example:

if value: print(value)
else: print('None found')

Notes | 457

APPENDIX B

Collection Type Summary

This appendix provides a compact summary of (most of) Python’s collection types. It
describes the characteristics and methods of each collection and the operators and
functions used with collection values. At the end of the appendix, you will find sum-
maries of the collection iteration templates shown in Chapter 4.

Types and General Operations
Table B-1 summarizes the characteristics of Python’s most commonly used collection
types. The column labeled “Syntax” shows examples of two-element collections, with
e1 and e2 representing elements of any type and k1 and k2 representing instances of an
immutable type.

Table B-1. Collection types

Element access Name Type Element type Mutable? Syntax

Unordered unique
elements

Set set Any immutable Yes {k1, k2}

Frozenset frozenset Any immutable No None

Ordered (indexed) String str One-character
stringsa

No 'ac' "ac"

'''ac'''
"""ac"""

Bytes bytes 8-bit bytesb No b'ac' b"ac"

b'''ac'''
b"""ac"""

Bytearray bytearray 8-bit bytes Yes None

Range range Integers No None

Tuple tuple Any No (e1, e2)

List list Any Yes [e1, e2]

Associative Dictionary dict Keys immutable,
values any

Yes {k1:e1,

459

Element access Name Type Element type Mutable? Syntax
k2:e2}

Stream (next) File object Dependsc Characters, bytes,
lines

Depends on
use

None

a Strings don’t really “contain” characters or one-character strings, but for many purposes they behave as if they do.
b Bytes are equivalent to the integers from 0 through 255.
c The type of the object returned by open is an instance of the class from the IO library; it isn’t one of the built-in collection types.

Common Operations
For all sequence types except range, calling the type with no arguments produces an
empty sequence, and calling the type with a sequence argument produces a new object
of the type containing the elements of the argument.

The two byte types—bytes and bytearray—can be called with an integer to create a
sequence of that many zero bytes.

When dict is called with a sequence argument the elements of the sequence must all
be sequences of length 2 containing a key and a value, in that order.

Except for range, all sequence types implement the methods count and index. Ta-
ble B-2 lists the operations and functions that apply to all collection types.

Table B-2. Operations and functions common to all collection types

Function/operation Returns
x in coll True if coll contains x.
x not in coll True if coll does not contain x.
any(coll) True if any item in coll is true; otherwise, False.
all(coll) True if every item in coll is true; otherwise, False.
len(coll) The number of items in coll.
max(coll) The maximum item in coll, which may not be empty.
min(coll) The minimum item in coll, which may not be empty.
sorted(coll[, keyfn]
 [, reverseflag])

A list containing the elements of coll, sorted by comparing elements or, if keyfn is
included in the call, comparing the results of calling keyfn for each element; if
reverseflag is true, the ordering is reversed. keyfn and reverseflg must be
specified as keyword arguments, not positionally.

Creating Collections
As with all types, collection types can be called to create new instances. Table B-3 shows
the details of the parameters of each type’s call.

460 | Appendix B: Collection Type Summary

In the Python documentation, you will find these functions in the sec-
tion “Built-in Functions,” under “Built-in Types.”

Table B-3. Collection creation calls

Method Description
set([iterable])
frozenset([iterable])
str([source[,
 encoding]])

If no source, returns an empty string; if no encoding, returns the result of source’s
__str__ method if it has one, or __repr__ if not. If the type of source is bytes or
bytearray, decodes it using encoding.

bytes([source[,
 encoding]])

If source is an integer, returns a bytes instance of that many null bytes; an iterable of integers
0<=x<=255 is used to initialize the new bytearray. If source is a string, encoding must
be specified (e.g., 'utf8') and will be used to encode source.

bytearray([source[,
 encoding]])

Same as with bytes.

range([start],
 stop[,
 step])

Arguments must be integers; returns a range object from start (default 0) to stop in
increments of step (default 1).

tuple([iterable]) Returns a tuple with the items of iterable in the order in which they appear there.
list([iterable]) Returns a list with the items of iterable in the order in which they appear there.
dict([arg]) With no arg, returns an empty dictionary; with arg a dictionary, returns a copy. Otherwise,

arg must be an iterable of key/value pairs.
open(filename, mode) Creates a file object.

Another way to create collections is with comprehensions:

List comprehension:
[expression for item in collection]

Set comprehension:
{expression for item in collection}

Dictionary comprehension:
{key-expression: value-expression
 for key, value in collection}

The collection in a dictionary comprehension must consist of two-element tuples or
lists.

Conditions can be added to comprehensions. There can be any number of tests, and
all have to be true for the element to be included in the result. Here are some examples
for lists:

[expression for item in collection if test]
[expression for item in collection if test1 if test2]

Types and General Operations | 461

Comprehensions can have more than one for. For example:

[c1 + c2 + c3 for c1 in 'TCAG' for c2 in 'TCAG' for c3 in 'TCAG']

Specific Collection Types
This section summarizes the nature of the collection types used in this book and the
functions, methods, and expressions that operate on them.

Sets
A set is an unordered collection of items that contains no duplicates.

Table B-4 lists comparison operations that can be performed on sets. Some are ex-
pressed using an operator whose operands are both sets, some with a method call whose
argument is any kind of collection, and some with either.

Table B-4. Set comparison operations

Operator Method Result

 set1.isdisjoint(coll) True if the set and the argument have no ele-
ments in common

set1 <= set2 set1.issubset(coll) True if every element of set1 is also in set2
(coll for the method)

set1 < set2 True if every element of set1 is also in set2
(coll for the method) and set2 is larger than
set1 (i.e., set1 is a proper subset of set2)

set1 >= set2 set1.issuperset(coll) True if every element of set2 (coll for the
method) is also in set1

set1 > set2 True if every element of set2 (coll for the
method) is also in set1 and set1 is larger than
set2 (i.e., set2 is a proper subset of set1)

Table B-5 lists operations that produce new sets from the elements of other sets or
collections. Each can be expressed using an operator whose operands are both sets.
Three of them have an equivalent method whose arguments are any number of any
kind of collection. One has an equivalent method that takes just one collection of any
type.

Table B-5. Algebraic set operations

Operator Method Result

set1 | set2 set1.union(coll, ...) A new set with the elements of both the set and
the arguments

set1 & set2 set1.intersection(coll, ...) A new set with the elements that are common to
the set and the arguments

462 | Appendix B: Collection Type Summary

Operator Method Result

set1 - set2 set1.difference(coll, ...) A new set with the elements that are in the set
but not in the arguments

set1 ^ set2 set1.symmetric_difference(coll) A new set with the elements that are in either the
set or the arguments but not both

Table B-6 lists the operations and methods that actually modify the first set rather than
returning a new set.

Table B-6. Set modification operations

Operator Method Result

set1 |= set2 set1.update(coll) Updates set1 by adding the elements in set2
(coll for the method)

set1 &= set2 set1.intersection_update(coll) Updates set1 to keep only the elements that are
in both set1 and set2 (coll for the method)

set1 - set2 set1.difference_update(coll) Updates set1 to keep only the elements that are
in set1 but not in set2 (coll for the method)

set1 ^ set2 set1.symmetric_differ
ence_update(coll)

Updates set1 to keep only the elements that are
in either set1 or set2 (coll for the method)

 set1.add(item) Adds item to set1

 set1.remove(item) Removes item from set1; it is an error if
item is not in the set

 set1.discard(item) Removes item from set1 if it is present; no error
if it is not present

Sequences
Sequences are ordered collections that may contain duplicate elements.

Table B-7 summarizes sequence indexing and slicing operations.

Table B-7. Sequence indexing and slicing

Type of seq Indexing Slicing Slice assignment

 seq[n] seq[i:j] seq[i:j] = obj

str Yes Yes No

bytes

bytearray

Yes Yes bytes no

bytearray yes

range Yes No No

tuple Yes Yes No

list Yes Yes Yes

Specific Collection Types | 463

Table B-8 summarizes other sequencing operations.

Table B-8. Sequence operators

Type of seq Membership Combination Repetition Comparison*

 obj in seq

obj not in seq

seq1 + seq2

(seq1 and seq2
have the same type)

seq * n

(n an int)

seq · other

with · one of ==, !=,
>, <, >=, or <=

str obj is a str str Yes other is a str

bytes

bytearray

obj is 0..255, a
bytes, or a
bytearray

Yes Yes other is a bytes or
bytearray

range obj is an inta No No No

tuple obj has any type Yes Yes other is a tuple

list obj has any type Yes Yes other is a list
a Actually, the expressions obj in rng and obj not in rng are always valid for any type of obj and any range rng, but always False if
obj is not an int.

Table B-9 documents the way various forms of slice expressions work.

Table B-9. Slice expressions

Operation Returns

seq[i:j] Elements of seq from i up to, but not including, j

seq[i:] Elements of seq from i through the end of the sequence

seq[:j] Elements of seq from first up to, but not including, j

seq[:-1] Elements of seq from first up to, but not including, the last

seq[:] All the elements of seq—i.e., a copy of seq

seq[i:j:k] Every kth element of seq, from i up to, but not including, j

Strings

Strings are sequences of Unicode characters (though there is no “character” type). The
bytes and bytearray types are sequences of single bytes. They have essentially the same
operations and methods as str. One important difference is that with a string, regard-
less of whether you index an element or specify a slice, you always get back a string.
With bytes and bytearrays, although slices return the same type, indexing an element
returns an integer from 0 through 255.

Since strings and bytes are immutable, no str or byte method modifies the string
through which it is called. However, bytearray is a mutable type; elements of its
instances may be replaced by using assignment, including assignment of slices.

Table B-10 lists string predicate methods. All predicates return False for an empty
string. For the “case” tests, the string must contain at least one character of the

464 | Appendix B: Collection Type Summary

appropriate type. Note that not all characters are “cased”: digits and punctuation, for
example, are not.

Table B-10. String predicates for kinds of characters

Method Result

isalpha True if all characters are alphabetic

isalnum True if all characters are alphanumeric

isdigit True if all characters are digits

isnumeric True if all characters are numeric, including Unicode number characters

isdecimal True if all characters are valid for use in decimal numbers

islower True if all cased characters are lowercase

isupper True if all cased characters are uppercase

istitle True if all uppercase characters follow uncased characters and all lowercase characters follow cased characters

Table B-11 describes the string methods that search for one string inside another. In
all the methods documented, startpos defaults to 0 and endpos defaults to the end of
the string (inclusive)—i.e., str2 is compared to str1, str1[startpos:], str1[:endpos],
or str1[startpos:endpos], according to which of the optional arguments are specified
in a call.

Table B-11. String predicate and search methods

Method Result
str1.startswith(str2[,
 startpos[,
 endpos]])

True if str1 starts with str2, taking into account startpos and
endpos

str1.endswith(str2[,
 startpos[,
 endpos]])

True if str1 ends with str2, taking into account startpos and
endpos

str1.find(str2[,
 startpos[,
 endpos]])

Lowest index of str2 in str1, taking into account startpos and
endpos; −1 if not found

str1.rfind(str2[,
 startpos[,
 endpos]])

Highest index of str2 in str1, taking into account startpos and
endpos; −1 if not found

str1.index(str2[,
 startpos[,
 endpos]])

Lowest index of str2 in str1, taking into account startpos and
endpos; error if not found

str1.rindex(str2[,
 startpos[,
 endpos]])

Highest index of str2 in str1, taking into account startpos and
endpos; error if not found

str1.count(str2[,
 startpos[,
 endpos]])

The number of occurrences of str2 in str1, taking into account
startpos and endpos

Specific Collection Types | 465

Table B-12 lists methods that return a new string with characters adjusted as necessary
to the corresponding case.

Table B-12. String methods for changing case

Method Result

str1.lower() A copy of str1 with all of its characters converted to lowercase

str1.upper() A copy of str1 with all of its characters converted to uppercase

str1.capitalize() A copy of str1 with only its first character capitalized; has no effect if the
first character is not a letter (e.g., if it is a space)

str1.title() A copy of str1 with each word beginning with an uppercase character and
the rest lowercase

str1.swapcase() A copy of str1 with lowercase characters made uppercase and vice versa

Methods that remove spaces from or add them to strings are described in Table B-13.

Table B-13. Methods for reformatting strings

Method Result
str1.lstrip([chars]) A copy of str1 with all characters until the first character not contained in

chars (default is whitespace) removed
str1.rstrip([chars]) Like lstrip, but removes characters from the end
str1.strip([chars]) Like lstrip, but removes characters from both the start and the end
str1.ljust(width[,
 fillchar])

A string that is at least width long, padded with fillchar on the left
(default is whitespace)

str1.rjust(width[,
 fillchar])

Like ljust, but the padding is on the right

str1.center(width[,
 fillchar])

Like ljust, but the padding is divided between the left and right

str1.center([tabsize]) A string with each tab of str1 replaced with enough spaces to reach the
next multiple of tabsize (default is 8)

Methods for joining and splitting strings are documented in Table B-14.

Table B-14. Methods for joining and splitting strings

Method Result
sepr.join(seq) A string formed by concatenating the strings in the sequence seq, separated

by sepr, which can be any string (including the empty string)
str1.splitlines([keepflg]) A list of the lines in str1; if keepflg is True, the string includes end-of-

line characters
str1.split([sepr [,
 count]])

A list of the “words” in str1, using sepr as a word delimiter (default is
whitespace); if count is included as an argument, the result is limited to
count words

466 | Appendix B: Collection Type Summary

Method Result
str1.rsplit([sepr [,
 count]])

Like split, but starts from the end

str1.partition(sepr) A tuple of three elements: the portion of str1 up to the first occurrence of
sepr, sepr, and the portion of str1 after the first occurrence of sepr; if
sepr is not found, the result is (s,'','')

str1.rpartition(sepr) Like partition, but starts from the end

Table B-15 lists some general-purpose string replacement methods.

Table B-15. General-purpose string replacement methods

Method Result
str1.replace(oldstr,
 newstr[,
 count])

Returns a copy of str1 with all occurrences of the substring oldstr re-
placed by the string newstr; if count is specified, only the first count
occurrences are replaced.

str1.translate(dictionary) With dictionary having integers as keys, returns a copy of str1 with
any character char for which ord(char) is a key in dictionary re-
placed by the corresponding value; exactly what the replacement does
depends on the type of the value in the dictionary, as follows:

• None—character is removed from str1

• Integer n—character is replaced by chr(n)

• String str2—character is replaced by str2, which may be of any
length

str.maketrans(x[, y[, z]]) (Called directly through the str type, not an individual string.) Produces a
translation table for use with translate more conveniently than man-
ually constructing the table; arguments are interpreted differently depend-
ing on how many there are:

• x—character is removed from str1

• x, y—x is a dictionary like that expected by translate, except
that its keys may be either integers or one-character strings

• x, y, z—x and y are strings of equal length; the table will translate
each character of x to the character in the corresponding position of
y

Lists

Lists can be modified through assignment statements, as shown in Table B-16.

Table B-16. List-modifying assignments

Statement Result

lst[n] = x Replaces the nth element of lst with x

lst[i:j] = coll Replaces the ith through jth elements of lst with the elements of coll

Specific Collection Types | 467

Statement Result

lst[i:j] = empty_coll Deletes the ith through jth elements of lst (an important special case of
lst[i:j] = seq)

lst[i:j:k] = coll Replaces the elements of lst designated by the slice with the elements of
coll, whose length must equal the number of elements designated by the
slice

lst[n:n] = coll Inserts the elements of coll before the nth element of lst

lst[len(lst):len(lst)] = [x] Adds x to the end of lst

lst[len(lst):len(lst)] = coll

lst += coll

Adds the elements of coll at the end of lst

lst[:] = coll Replaces the entire contents of lst with the elements of coll

The methods that modify lists are shown in Table B-17.

Table B-17. List-modifying methods

Method Result
lst.append(x) Adds x to the end of lst
lst.extend(x) Adds the elements of x at the end of lst
lst.insert(i, x) Inserts x before the ith element of lst
lst.remove(x) Removes the first occurrence of x from lst; raises an error if x is not in lst
lst.pop([i]) Removes the ith element from lst and returns it; if i is not specified,

removes the last element
lst.reverse() Reverses the list
lst.sort([reverseflag]
 [, keyfn])

Sorts the list by comparing elements or, if keyfn is included in the call,
comparing the results of calling keyfn for each element; if reverse
flag is true, the ordering is reversed; keyfn and reverseflg must be
specified as keyword arguments, not positionally

Mappings
A mapping is a mutable unordered collection of key/value pairs. The only mapping type
used in this book is dict. Expressions and statements for dictionaries are documented
in Table B-18.

Table B-18. Dictionary expressions and statements

Operation Result

d[key] Returns the value associated with key; raises an error if d does not contain
key

d[key] = value Associates value with key, either adding a new key/value pair or, if
key was already in the dictionary, replacing its value

468 | Appendix B: Collection Type Summary

Operation Result

d[key] ·= value Augmented assignment, with · any of +, -, *, /, //, %, or **; raises an
error if d does not have a value for key or if the value is not numeric

del d[key] Deletes key from the dictionary; raises an error if d does not contain key

Table B-19 lists methods that are unique to dict objects.

Table B-19. Methods unique to dictionaries

Method Result
d.get(key[, default]) Like d[key], but does not cause an error if d does not contain key; instead

it returns default, which, if not provided, is None
d.setdefault(key[,
 default])

Like d[key] if key is in d; otherwise, adds key with a value of
default to the dictionary and returns default (if not specified,
default is None)

d.pop(key[,default]) Like del d[key], but does not cause an error if d does not contain key;
instead it returns default, which, if not provided, is None

d1.update(d2) For each key in d2, sets d1[key] to d2[key], replacing the existing value
if there was one

d.keys() Returns a special sequence-like object containing the dictionary’s keys
d.values() Returns a special sequence-like object containing the dictionary’s values
d.items() Returns a special sequence-like object containing (key, value) tuples

for the dictionary’s keys

Streams
A stream is a temporally ordered sequence of indefinite length, usually limited to one
type of element. Each stream has two ends: a source that provides the elements and a
sink that absorbs the elements.

File objects

File objects are created by calling open(filename, mode). Tables B-20 and B-21 show
the characters that can be included in the mode string.

Table B-20. Mode values for opening a file—text or binary

 Mode Interpretation

t Text (default) Characters or strings depending on method

b Binary Bytes

Specific Collection Types | 469

Table B-21. Mode values for opening a file—use

 Initial file position Read? Write?

r Beginning (default) Yes No

w Beginning No Yes

a End No Yes

r+ Beginning Yes No

w+ Beginning Yes Yes

a+ End Yes Yes

Table B-22 describes the methods supported by file objects. Note that the read methods
in this table return empty strings when called at the end of the file, and that they may
be called repeatedly at the end of the file with no error occurring. Also, although
writelines is named analogously to readlines, it does not add end-of-file characters to
the lines it writes; if you want them, you need to include them explicitly in the lines in
the sequence. Another way to write to a file is to specify it as the value of the optional
file argument to the function print.

Table B-22. File object methods

Method Result

file.read([count]) Reads and returns count bytes or to the end of file, whichever comes first; if count is
omitted, reads to end of file

file.readline([count]) Reads and returns count lines or to the end of file, whichever comes first; if count is
omitted, reads to end of file

file.readlines() Reads and returns lines until the end of file is encountered

file.write(str) Writes str to file

file.writelines(seq) Writes the strings contained in the sequence seq to file

Generators

A generator is a stream that returns values from a series it computes. The only thing
you can do with a generator is call next on it to get its next value:

next(generator[, default])
Gets the next value from the generator object. If generator has no more values
to produce, returns default if specified in the call; otherwise, raises the
StopIteration exception.

Generators may be created in one of two ways:

• A function definition that uses yield in place of return returns a generator object
when it is called.

470 | Appendix B: Collection Type Summary

• The value of an expression with syntax like a comprehension, except with paren-
theses instead of brackets or braces, is a generator.

Iteration Templates
Most iterations conform to a limited set of patterns. The outlines in this section’s tables
use the following abbreviations:

—item—
Any use of item

?—item—?
Boolean expression using item

—item1, item2—
Any use of two items together

·
Any operator (or function call)

fn
Any function name

Basic Iteration Templates
The iteration templates are outlined in Table B-23.

Table B-23. Basic iteration templates

Section Action Code outline

“Do” on page 114 Do for item in collection:
 —item—

“Collect” on page 115 Collect

(comprehension usually better)

result = []
for item in collection:
 result.append(—item—)
return result

“Combine” on page 117 Combine result = initial_value
for item in collection:
 result = result · —item—
return result

“Combine” on page 117 Count count = 0
for item in collection:
 count += 1
return count

“Combine” on page 117 Collection Combine result = []
for item in collection:
 result += fn(item)
return result

Iteration Templates | 471

Filtering Templates
Templates in which operations are applied only to elements meeting criteria expressed
in some Boolean test are summarized in Table B-24.

Table B-24. Filtering templates

Section Action Code outline

“Search” on page 120 Search for item in collection:
 if ?—item—?:
 return item

“Filter” on page 122 Filtered Do for item in collection:
 if ?—item—?:
 —item—
return result

“Filter” on page 122 Filtered Collect

(conditional comprehension usually better)

result = []
for item in collection:
 if ?—item—?:
 result.append(—item—)
return result

“Filter” on page 122 Filtered Combine result = initial_value
for item in collection:
 if ?—item—?:
 result = result · —item—
return result

“Filter” on page 122 Filtered Count count = 0
 for item in collection:
 if ?—item—?:
 count += 1
return count

Other Kinds of Templates
A few other templates are described in Table B-25.

Table B-25. Other templates

Section Action Code outline

“Nested iterations” on page 126 Nested Do

(with similar variations for other kinds of
templates)

for item1 in collection1:
 for item2 in collection2:
 —item1,item2—

“Recursive itera-
tions” on page 128

Recursive Iteration A function definition that implements an
iteration during which the function calls
itself (or calls another function that calls it,
etc.); needed for recursive structures

472 | Appendix B: Collection Type Summary

Index

Symbols
!= (comparison operator), 8
symbol, 2, 28
% (operator), 5
* (binary operator), 9
** (power operator), 5
+ (binary operator), 9
/ (operator), 5
// (operator), 5
< (comparison operator), 8
<= (comparison operator), 8
== (comparison operator), 8
> (comparison operator), 8
>= (comparison operator), 8
@ notation, 182
| character, 265

A
a (HTML tag), 291–294
abs (function)

defined, 14
parameter considerations, 89
passing values, 91

absolute URLs, 332
access methods, 168–170
action attribute (HTML), 350
action methods, 177
all (function)

collection arguments, 48, 111
dictionary support, 71
lambda expressions and, 93
list comprehensions, 80

ALTER TABLE (SQL statement), 371, 377
amino acid sequences

dot plots example, 416
examples, 4, 16
FASTA files, 77–78
generating translations of codons, 86

amino acid translation table, 68–71
and (operator)

Boolean logic, 7
seach loops, 109

anonymous functions, 92–94, 452
any (function)

collection arguments, 48, 111
dictionary support, 71
lambda expressions and, 93

arc (as graphic component), 403
arguments

defined, 12
evaluating in functions, 13
functions as, 91, 92
lambda expressions, 92
in method calls, 15
methods as, 91
parameters and, 27
sequences as, 61
specifying for function calls, 13

arithmetic operators
augmented assignment statements and, 23
overview, 5–7

assertion statements
defined, 31
overview, 30–32
representative error messages, 46
with two-expressions, 31

AssertionError (error), 46, 137
assignment statement

bindings and, 27

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

473

class attributes and, 179
class method and, 183
classes as objects, 184
comprehension results and, 111
defined, 23

associative arrays (see mappings)
AttributeError (error)

classes, 208
control statements, 163
example, 137

attributes
class, 179–185
defined, 167
structured text and, 287

augmented assignment statements, 23, 62

B
backslashes, 258, 260
base classes, defined, 194
base sequences

reading from FASTA files, 146–147
translating example, 86, 151–154
translating random, 81

base, numeric
defined, xxii
hexidecimal notation, 2

binary operators
defined, 5
operator precedence order and, 17
string operations, 9–12

binding
assignment statements, 23
defined, 21
exception statements, 139
function parameters, 27
with statements, 76

bioinformatics
additional information, xxi
main areas, xii
software development, xii

bitmaps, 399
bits, defined, 73
body (HTML tag), 288, 296
bool (type)

defined, 2
function calls to, 14
lambda expressions and, 93

Boolean logic, 2
(see also bool (type))

assigning default values, 32
comparison operators, 8
operator precedence order and, 17
operators supporting, 7–9
predicates and, 48
supported values, 2

bound methods, 208, 316
boundaries, regular expressions, 261
brace notation, 263
break statement

iteration support, 112
loop interruption and, 104, 105

buffers
defined, 73, 278
example, 278–282
flushing, 278

button controls, 351
bytearray (type)

built-in for sequences, 52
creation calls, 54
defined, 53

bytearrays
in assignment statements, 63
lists and, 63

bytes (type)
built-in for sequences, 52
creation calls, 54
defined, 53

bytes, defined, 73

C
call stacks, 310–311
callbacks, 311–314
calls

defined, 12
function, 12–15
method, 15–16
operator precedence order and, 17

Canvas
overview, 408
writing contents to files, 410

Canvas (class)
create_arc (method), 408
create_line (method), 408
create_oval (method), 408
create_polygon (method), 408
create_rectangle (method), 408
create_text (method), 408

Cascading Style Sheets (CSS), 393

474 | Index

CGI (Common Gateway Interface)
defined, 343
serving requests, 343
setting up, 344

cgi (module), 343
CGI scripts

arguments and responses, 345–347
debugging, 346
HTML forms and, 350–354
PyChart library support, 411
simple applications, 348–350

cgi.FieldStorage (class), 346
cgi.test (function), 345
CGIHTTPRequestHandler (class), 343, 350
character classes (in regular expressions), 261
character sets (in regular expressions), 260
circle (as graphic component), 403
class attributes

accessing, 179
class fields, 179–182
class methods, 182–184
classes as objects, 184–185
overview, 179
typical uses, 179

class decomposition, 186–189
class definitions

decomposing, 186
defined, 166
statement template, 167

class fields
common uses, 180
overview, 179–182
tracking instance counts, 183

class methods
assignment statements and, 183
defined, 182
distinguishing from instance methods, 182
overview, 182–184
Tracking Instance Count template, 183

classes
basic template, 178
class attributes, 179–185
defined, xxiii
determining which to define, 167
inheritance, 194–205
instance attributes, 168–178
namespaces and, 179
as objects, 184–185
objects as instances, 1

overview, 166–168
relationships with methods, 186–205
representative error messages, 208
storing values, 168
tips using, 205
traps using, 207
types and, 1

clauses
defined, 100
headers in, 100
suites as synonym, 100

coding considerations
event-based processing, 314–317
infinite loops, 107
tips developing and testing, 95
tips executing, 41

collections
built-in type categories, 47
comprehensions, 79–89
comprehensions and, 117
creating, 47, 460
functional parameters, 89–94
items or elements, 47
mappings, 66–72
objects and, 47, 111
purposes of, 167
representative error messages, 97
sequences, 51–66
sets, 48–51
streams, 72–79
tips using, 94
traps using, 96
types and general operations, 459–462

colon
in class definition statement, 167
in compound statements, 24, 99
dictionaries and, 67
format specifier, 59
in headers, 100

command-line interpreter
editing operations supported, 19
quitting, xx
running Python interactively, 18
streams into, 73

command-line utilities
fileinput (module), 217
optparse (module), 218–220
subprocess (module), 221–223

comments

Index | 475

symbol in, 2, 28
defined, 2
docstrings versus, 29
overview, 28–30

COMMIT (SQL statement), 373
Common Gateway Interface (see CGI)
communications

logging (module), 225
smtplib (module), 224

comparison operators
defined, 8
operator precedence order and, 17
for sets, 49

composite (as graphic component), 403
compound expressions, 16–17
compound statements

defined, 24, 99
headers in, 100
kinds listed, 101

compound types (see collections)
comprehensions

collections and, 117
conditional, 87–88
conditional iterations, 111
defined, 79
dictionary, 85
generator expressions and, 85
list, 80–84
nested, 88, 111
set, 85

concatenating strings, 9
conditional comprehensions, 87–88
conditional expressions

defined, 8
loops with guard conditions, 109

conditional statements
defined, 101
infinite loops, 107
multi-test, 102
one-alternative, 102
simple, 101

connection objects
abort (method), 373
close (method), 373
commit (method), 373
creating, 372–374
execute (method), 373
executemany (method), 373
executescript (method), 373

containers (see collections)
continue statement

iteration support, 112
loop interruption and, 104, 105

control statements
conditionals, 101–103
defined, 100
exception handlers, 134–142
extended examples, 143–160
iterations, 111–132
loops, 104–110
representative error messages, 163
tips using, 160–162
traps using, 162

coordinate system, structured graphics, 400–
402

CREATE TABLE (SQL statement), 371, 375
CSS (Cascading Style Sheets), 393
csv (module), 241
csv.reader (function), 241
csv.writer (class)

writerow (method), 242
writerows (method), 242

csv.writer (function), 242
cubic spline (as graphic component), 403
curly braces

creating sets, 48
dictionaries and, 67
empty, 48
format specifiers, 58

D
database servers, 359
databases (see relational databases)
datetime (module)

classes supported, 209
instance creation, 210
methods supported, 212
operations supported, 211
overview, 209

datetime.date (class), 210
isocalendar (method), 212
isoweekday (method), 212
replace (method), 211
today (class method), 210

datetime.datetime (class), 210
combine (class method), 210
date (method), 211
isocalendar (method), 212

476 | Index

isoformat (method), 212
isoweekday (method), 212
now (class method), 210
replace (method), 211
time (method), 211

datetime.time (class), 210
isoformat (method), 212
replace (method), 211

datetime.timedelta (class), 210
datetime.tzinfo (class), 210
dbm (module), 243–246
dbm.dumb (module), 245
dbm.gnu (module), 245

firstkey (method), 245
nextkey (method), 245
reorganize (function), 245

dbm.ndbm (module), 244
dbm.open (function), 244
debugging

CGI scripts, 346
IDLE debugger, 252
overview, 249
pdb (module), 250–252
regular expressions, 283

decomposition
class, 186–189
defined, 186
method, 189–193
singleton classes, 193

def statement
defined, 24, 91
defining methods, 167

del statement
defined, 64
dictionary support, 72

delegation, defined, 189
DELETE (SQL statement), 371
deleting elements, 64
derived classes, defined, 194
dict

defined, 72
function call errors, 98
iterations and, 112
representative error messages, 163

dict (type), 67
get (method), 72
items (method), 72, 98, 112, 163
keys (method), 72, 98, 113, 163
pop (method), 72

setdefault (method), 72
update (method), 72
values (method), 72, 98, 112, 163

dict type, 67
dictionaries

empty, 48
indexing and removal, 71
iteration support, 112
methods supported, 72
operations supported, 71, 113
overview, 67–68
RNA codon translation table, 68–71
sets comparison, 67

dictionary comprehensions
conditional, 88
defined, 85

difflib (module), 237
difflib.Differ (class), 237

compare (method), 238
difflib.HtmlDiff (class), 238

make_file (method), 238
make_table (method), 238

difflib.SequenceMatcher (class), 237
find_longest_match (method), 237
get_matching_blocks (method), 237
set_seq1 (method), 237
set_seq2 (method), 237
set_seqs (method), 237

dir (function), 63, 87
directories

comparing with files, 235–238
listing contents, 271
managing, 227

distributed computing, 248
division operators, 5–7
divmod (function), 61
do-nothing statement (pass), 26
docstrings

comments versus, 29
defined, 29

Document Type Definition language, 300
documenting functions, 28–30
dot notation, 35, 167
dot plots

additional information, 416
defined, 399, 416
graphics example, 416–423

DROP TABLE (SQL statement), 371, 376

Index | 477

E
Element (class), 304

find (method), 305
findall (method), 305
findtext (method), 306
get (method), 305
getchildren (method), 306
getiterator (method), 306
items (method), 305
keys (method), 305
set (method), 305
values (method), 305

elements, collection
defined, 47
deleting, 64

elements, structured text, 287
ElementTree

navigation, 305–309
overview, 303–305

ElementTree (module)
find (method), 305
findall (method), 305
findtext (method), 306
getiterator (method), 306
getroot (method), 306
parse (function), 304

elif clause, 102
else clause

in conditionals (if statements), 102
in loops (while statements), 104

else keyword (conditional expression), 8
email messages, sending, 224
end tags (HTML), 288
Entrez Gene site, 143
enumerate (function), 113
environment variables, 234
EOFError (error), 137, 163
event loops, 406
event-based processing

callbacks, 311–314
function calls, 310–311
programming considerations, 314–317

except clause (try statement), 138, 139
Exception (class), 142
exception handlers

event-based processing and, 310–311
generators and, 141
overview, 134
runtime errors, 136–138

statements supporting, 138–141
tracebacks, 136

exception raising
ending loops, 142
extracting HTML file information, 143–

146
raise statement, 141

expat (module) (see xml.parsers.expat
(module))

expressions
compound, 16–17
comprehension results in, 111
defined, xxii, 5
function calls, 12–15, 91
generator, 85–87
lambda, 92–94, 316, 452
logical operators, 7–9
method calls, 15–16
numeric operators, 5–7
Python language summary, 452
statements and, 23
string operations, 9–12
tips using, 18
two-expression assertions, 31

Extensible Markup Language (see XML)
extension, defined, 204

F
factoring out common code, 198–199
FASTA files

Collect iteration example, 116
collecting information example, 134
Combine iteration example, 118
extracting entries, 274–282
Filtered Do iteration example, 123
loops with guard conditions, 110
reading, 77–78, 82–84, 87
reading sequences from, 146–147
Search iteration example, 120–122

fields (see class fields)
FieldStorage (class)

getfirst (method), 346
getlist (method), 346

file keyword, 77
file objects

creating, 74
iteration support, 112
methods supported, 76
read (method), 76

478 | Index

readline (method), 76, 78, 86, 110
readlines (method), 76, 86
summarized, 469
write (method), 76
writelines (method), 76

filecmp (module), 235–237
cmp (function), 235
cmpfiles (function), 235

filecmp.dircmp (class), 236
report (method), 236
report_full_closure (method), 236
report_partial_closure (method), 236

fileinput (module), 217
filelineno (function), 217
filename (function), 217
isfirstline (function), 217
lineno (function), 217
nextfile (function), 218

files
comparing with directories, 235–238
defined, 73
flat, 287
functionality in streams, 73–74
importing, 38
as interfaces, 73
listing contents of directories, 271
looping over lines in, 110
managing, 227
manipulating contents, 77–78
parsing, 147
showing differences between, 237
as stream sinks, 73
as stream sources, 73
temporary, 229
tips managing, 44

filesystem utilities
difflib (module), 237
filecmp (module), 235–237
fnmatch (module), 233
glob (module), 233
os (module), 226–228
os.path (module), 229–232
shutil (module), 234
tempfile (module), 229

filesystems, defined, 128
filtering

conditional comprehensions and, 87
defined, 87
iteration support, 122–126

finally clause (try statement), 139
fixed-length matching

boundaries, 261
character classes, 261
character sets, 260
literal matches, 259

flag parameters, 32
flat files, defined, 287
float (type)

defined, 3
function calls to, 14

floating point numbers
decimal points and, 3
integer division and, 5
scientific notation and, 3

floor division, 5
flushing buffers, 278
fnmatch (module), 233

filter (function), 233
fnmatch (function), 233

for statement
basic form, 111
Collect template, 115–116
Collection Combine template, 119
Combine template, 117–119
Count template, 118
dictionary iteration, 112
Do template, 114
file iteration, 112
Filtered Collect template, 123–125
Filtered Combine template, 125–126
Filtered Count template, 126
Filtered Do template, 122
nested comprehensions, 88, 111
Nested Iteration template, 126–128
numbering iterations, 113
Recursive Tree Iteration template, 128–132
Repeat template, 115
Search template, 120–122

form (HTML tag), 350
format (function), 58–60
format specifiers

defined, 58
general fields, 59
numeric fields, 59
numeric type fields, 60

forward slash, 332
frames (HTML)

defined, 310, 405

Index | 479

event-based processing, 310
querying databases, 392–395

frameset (HTML tag), 393
frozenset (type)

defined, 48
mathematical operations, 49

function calls
callbacks and, 311–314
comprehension results in, 111
event-based processing and, 310–311
as expressions, 91
flow of control and, 100
operator precedence order and, 17
overview, 12–15
specifying arguments, 13
to types, 14

function definitions
defined, 24
overview, 24–34
tips using, 40

function names, 12
function parameters

arguments and, 27
default values, 32–34
key parameter, 89–91
overview, 27–28

function return (see generators; return
statement)

functions
anonymous, 92–94, 452
as arguments, 91, 92
assertion statements, 30–32
built-in, 13–15
classes as objects, 184
collection arguments, 48
comments in, 28–30
components, 12
decomposing, 186
defined, 12
documentation in, 28–30
generators as, 73
initializing loop values, 106
method decomposition, 189
passing values to, 13, 24, 91
recursive, 129
representative error messages, 46

G
GenBank

class decomposition example, 187–189
file parsing example, 148–150
method decomposition example, 189–193
singleton classes example, 193

generalization of subclasses, 200–203
generator expressions

conditional, 88
defined, 85
overview, 85–87

generators
defined, 73, 78
exception handling and, 141
loop considerations, 108
as stream sources, 73
summarized, 470
yielding values from, 79

geometry managers, 405
glob (module), 233

glob (function), 234, 338, 340
iglob (function), 234

Grand Unified Bioinformatics File Parser, 147
graphics programming

building full-featured class, 411–416
concepts, 400–403
coordinate system, 400–402
GUI toolkits, 404–406
image components, 402
overview, 399
property considerations, 403

greedy matching, 263
GTK+ toolkit, 405
guard conditions

defined, 109
loops with, 109–110

GUI toolkits
overview, 404
for Python, 404
usage considerations, 405

H
hash tables (see mappings)
head (HTML tag), 296
headers, defined, 100
heading (HTML tag), 295–296
help (function)

defined, 14
looking at docstrings, 29

hexadecimal notation, 2
histograms

480 | Index

defined, 399
graphics example, 424–430, 436

href (HTML attribute), 291–294, 325
HTML

CGI scripts and, 350–354
constructing/viewing pages, 330
elaborate pattern matching, 295–296
extracted links and, 333
extracting information example, 143–146
nested tags, 298
problems with pattern matching, 297
querying databases, 392–395
searching text, 290–294
structured processing, 297–299
structured text and, 287–289
turning into plain text, 296

html.parser (module), 298–299
handle_comment (method), 299
handle_data (method), 299
handle_endtag (method), 298, 314
handle_startendtag (method), 299
handle_starttag (method), 298

HTMLParser (class), 298, 314
http.server (module), 341–342

I
IDLE

debugging support, 252
tips using, 41–43
traps using, 207

if keyword (conditional expression), 8
if statement

conditional iteration, 111
multi-test conditional form, 102
one-alternative conditional form, 102
simple condition form, 101

img (HTML tag), 291
immutable types, 47
import statement

overview, 34–38
Python files and, 38
selective, 35

ImportError (error), 46, 254
importing

files, 38
modules, 34–38
representative error messages, 46

in (operator)
collection arguments, 48, 111

dictionary support, 71, 113
sequence types, 53
string operations, 9

IndentationError (error), 163
indenting code

blank lines and, 28
tab characters and, 24

IndexError (error), 20, 98, 137
indexes

accessing sequences, 47
defined, 9
dictionary support, 71
negative values, 10
slicing strings, 10–12

infinite loops
coding, 107
defined, 105

information hiding principle, 166
inheritance

defined, 194
defining subclasses, 195–197
factoring out common code, 198–199
generalization of subclasses, 200–203
multiple, 195
subclass methods, 203–205

__init__ (method)
class fields example, 180
class methods example, 183
defining subclasses and, 195
method decomposition and, 193
overview, 172
as superclass extension, 204
validating arguments, 198

initialization methods, 172
input (function), 13
input controls, 351
INSERT INTO (SQL statement), 371, 378
instance dictionary, setting up, 180
instance fields

defined, 167
determining which to access, 169
initialization, 172–173
modification methods for, 175
storing values, 168

instance methods
access methods, 168–170
action methods, 177
distinguishing from class methods, 182
initialization methods, 172

Index | 481

modification methods, 175–177
predicate methods, 171–172
string methods, 173–175
support methods, 177

instances
defined, 1
testing value types, 15
tracking, 180

int (type)
defined, 2
function calls to, 14

integers
dividing, 5
hexadecimal notation, 2
repeating strings, 9
string operations, 9

interfaces, files as, 73
interpreter (see command-line interpreter)
io (module), 242
io.ByteIO (class), 242
io.StringIO (class), 242
IOError (error), 137, 163
isinstance (function), 15, 125
items (see elements)
iterations

Collect template, 115–116
Collection Combine template, 119
Combine template, 117–119
Count template, 118
defined, 111
dictionaries, 112
Do iteration, 114
file objects, 112
Filtered Collect template, 123–125
Filtered Combine template, 125–126
Filtered Count template, 126, 306
Filtered Do template, 122
filtering support, 122–126
for statement support, 111–113
kinds supported, 113–132
Nested Iteration template, 126–128
numbering, 113
overview, 111
Recursive Tree Iteration template, 128–132,

308
Search template, 120–122
template summary, 471–472

K
KeyboardInterrupt (error), 137, 163
KeyError (error), 137, 163
keys

accessing mappings, 47
defined, 360

keywords
defined, 27
in headers, 100
parameter properties, 33
Python language summary, 449

L
lambda expressions, 92–94, 316, 452
LANG environment variable, 295
layout managers, 405
leaves, defined, 129
len (function)

collection arguments, 48, 111
defined, 13
Filtered Count iteration and, 126
key parameter, 94

li (HTML tag), 288
libraries

defined, xxiii
modules and, 34

line (as graphic component), 402
list (type), 52

append (method), 64
extend (method), 64, 65
insert (method), 64
pop (method), 64
remove (method), 64
reverse (method), 64
sort (method)

defined, 64
key parameter, 89
lambda expressions and, 94
predicate method example, 171

list comprehensions
conditional, 87
defined, 80–84

lists
in assignment statements, 63
bytearrays and, 63
defined, 62
modification assignment expressions, 63
modification methods, 64

482 | Index

slicing, 63
suffix trees and, 130
summarized, 467

literal matches, 259
logging (module), 225
logical operators

conditional expressions, 8
operator precedence order and, 17
overview, 7–9

lookup tables (see mappings)
loops

basic form, 104
defined, xxiii, 104
exception raising and, 142
with final clause, 104
generators and, 108
with guard conditions, 109–110
infinite, 105, 107
initializing values, 106–107
interrupting, 104
over lines of files, 110
search, 109
simple examples, 105

__lt__ (method)
class fields example, 180
class methods example, 183
overview, 171
representative error messages, 208

M
many-many relationships, 362, 389
mappings

accessing elements of, 47
as collection type, 47
dictionaries, 67–72
summarized, 468–469
unique keys, 67

match objects
defined, 258, 265
findall (method), 268
finditer (method), 268
match (method), 268
re (module), 269–270
search (method), 268
split (method), 268
sub (method), 268
subn (method), 268

matching (see pattern matching)
max (function)

collection arguments, 48, 111
defined, 14
dictionary support, 71
key parameter, 89

measurement, units of, 401
method calls

operator precedence order and, 17
overview, 15–16

method decomposition, 189–193
methods, 182

(see also class methods; instance methods)
as arguments, 91
association with types, 22
defined, 15
dictionary, 72
file object, 73, 76
instance attributes, 168–178
list, 64
referring to superclasses, 195
relationships with classes, 186–205
sequence, 65
sets, 49, 50, 51
string, 15
subclass, 203–205

methods, bound, 208
min (function)

collection arguments, 48, 111
defined, 14
dictionary support, 71
key parameter, 89

modification methods, 175–177
modules

defined, 34
filesystem, 226–238
importing, 34–38
namespaces and, 35–37
persistent storage, 243–252
Python files and, 38
representative error messages, 46, 255
system environment, 209–226
tips using, 253
traps using, 254
working with text, 238–243

modulo, defined, 5
multiple inheritance, 195

N
name attribute (HTML), 350
named entities, 288

Index | 483

NameError (error)
classes, 208
collections, 97
example, 137
undefined names, 46

names
assigning to values, 23
conflict considerations, 36
defined, 21
function, 12
strings versus, 21
tips using, 40

namespaces
association with types, 22
classes and, 179
defined, 21
function parameters and, 27
modules and, 35–37

nested comprehensions, 88, 111
nested HTML tags, 298
nested iterations, 126–128
network connections as stream sources, 73
network sources as stream sinks, 73
next statement

defined, 79
generator expressions, 86

non-greedy matching, 263
None value

defined, 1
print (function) and, 114
search iterations and, 120
search loops and, 109

not (operator), 7
not in (operator)

collection arguments, 48, 111
dictionary support, 71
sequence types, 53
string operations, 9

numeric operators
operator precedence order and, 17
overview, 5–7

O
object-oriented programming, 22
objects

binding, 23
classes as, 184–185
in collections, 47, 111
file-supported, 73

files as interfaces, 73
as instances of classes, 1
persistent, 247–248
values and, 1

ol (HTML tag), 288
one-many relationships, 362, 387
one-one relationships, 362
open (function), 74
operands

Boolean operators, 8
defined, 5
string operations, 9

operators
compound expresssions, 16–17
defined, 5
logical, 7–9
numeric, 5–7
precedence rules, 16
Python language summary, 450–452
string operations, 9–12

optparse (module), 218–220
or (operator), 7
os (module)

chdir (function), 227
environ (variable), 226, 347
environment access, 226
getcwd (function), 227
getenv (function), 226
listdir (function), 227
managing files/directories, 227–228
mkdir (function), 227
mkdirs (function), 227
overview, 226
remove (function), 227
removedirs (function), 227
rename (function), 227
rmdir (function), 227
sep (variable), 226
startfile (function), 227
walk (function), 227

os.path (module), 229
abspath (function), 230
basename (function), 230
dirname (function), 230
exists (function), 231
expanduser (function), 231
getsize (function), 231
isdir (function), 231
isfile (function), 231

484 | Index

join (function), 231
split (function), 230
splitdrive (function), 230
splitext (function), 230

OSError (error), 255
oval (as graphic component), 403
overriding, defined, 204
OWL (Web Ontology Language), 301

P
parameters (see function parameters)
parentheses, 195, 264
parsing

defined, 147
GenBank file example, 148–150
method decomposition and, 190
singleton classes and, 193
XML files, 301

pass statement, 26
paths, manipulating, 229–232
pattern matching

examples, 270–282
fixed-length, 259–262
fundamental syntax, 258–265
greedy versus non-greedy, 263
HTML considerations, 295–296
problems with HTML, 297
re (module), 265–270
regular expressions and, 257
representative error messages, 285
searching versus, 258
tips using, 283
traps using, 284
variable-length, 262

pdb (module), 250–252
percent-encoding, 325
period, 261
persistent storage utilities

dbm (module), 243–246
pdb (module), 250–252
pickle (module), 247–248
shelve (module), 248

pickle (module), 247–248
dump (function), 248
dumps (function), 247
load (function), 248
loads (function), 248

policies, layout, defined, 405
polygon (as graphic component), 403

polyline (as graphic component), 402
PostScript files, 410
power operator

defined, 5
operator precedence order and, 17

pprint.pprint (function)
dictionary example, 70, 71
iterations and, 114
list comprehensions, 82

precedence rules, operators, 16
predicate methods, 171–172
predicates, defined, 48, 171
primary keys, 360
primitives

expressions, 5–17
as immutable types, 47
overview, 1
Python language summary, 452
representative error messages, 20
simple values, 1–5
tips using, 18
traps for, 20

print (function)
defined, 13
None value, 114
optional argument, 77
string methods and, 174

programming (see coding considerations;
graphics programming; web
programming)

programming languages
criteria for clear writing, 103
overview, xv–xvii

properties, graphics, 403
PyChart library, 411
Python

additional information, xx
exiting, 19
installing, xviii
language summary, 449–456
modules concept, xi
overview, xvii
running, xix–xx
running interactively, 18
syntax considerations, xvii
terminology, xxi

Q
Qt toolkit, 405

Index | 485

quadratic spline (as graphic component), 403
queries

constructing and submitting, 329
qualified, 385
relationship, 386
simple, 381–385
SQL, 380–391
from web pages, 392–395

question marks, 387
quotation marks surrounding strings, 5

R
raise statement, 141
random (module), 37

randint (function), 37, 78
random numbers

generating, 37
list comprehensions and, 81

range (function), 60, 80
range (type)

built-in for sequences, 52
overview, 60

ranges, defined, 60
rational numbers, 7
raw string syntax, 258
raw_input (function), 13
RDF (Resource Description Framework), 301
re

flags supported, 266–267
functions supported, 265–266
match objects, 269–270
methods supported, 268–269
overview, 265

re (module)
ASCII (flag), 266
compile (function), 266, 268
DOTALL (flag), 266, 284
escape (function), 266
findall (function), 265
finditer (function), 266
IGNORECASE (flag), 266, 271
LOCALE (flag), 266
match (function), 265
MULTILINE (flag), 266, 273, 284
search (function), 265
split (function), 266
sub (function), 266
subn (function), 266
VERBOSE (flag), 266, 273, 284

re.IGNORECASE flag, 296
re.search method, 296
re.sub (method), 296
readline library, 19
Rebase data, 348, 365–369, 374–380
rectangle (as graphic component), 402
recursive functions, 129
recursive iterations, 128–132
refactoring, defined, 204
reformatting strings, 57
regular expressions

additional information, 257
debugging, 283
defined, 258
disjunction, 264
extracting sequence file descriptions, 272–

274
extracting sequence file entries, 274–282
findingopen reading frames, 271–272
fixed-length matching, 259–262

boundaries, 261
character classes, 261
character sets, 260
literal matches, 259

fundamental syntax, 258–265
greedy versus non-greedy matching, 263
grouping, 264
ignoring case, 270
listing files in directories, 271
pattern matching and, 257
raw string syntax, 258
repetition characters, 262
testing, 258
traps using, 284
variable-length matching, 262

relational data models, 359
relational databases

avoiding duplication of values, 360–362
database definition, 364
querying from web pages, 392–395
representative error messages, 398
representing relationships, 362–364
restriction enzyme example, 365–369
tips using, 397
traps using, 398

relationships, representing, 362–364
relative URLs, 332
RELAX NG language, 300
repetition characters, regular expressions, 262

486 | Index

REPLACE (SQL statement), 371
replacing strings, 56
__repr__ (method)

class fields example, 180
class methods example, 183
overview, 173–175

reserved words, 27
Resource Description Framework (RDF), 301
restriction enzymes

database example, 365–369
literal matches, 259

return statement
comprehension results in, 111
loop interruption and, 105
overview, 13, 24
search iterations and, 120
traps using, 45
tuple packing and, 61

reversed (function), 53
rows attribute (HTML), 393
runtime errors, 136–138

S
Scalable Vector Graphics (see SVG)
scientific notation, 3
script (HTML tag), 296
searching

HTML text, 290–294
iteration support, 120–122
loops with guard conditions and, 109
matching versus, 258
strings, 55

SELECT (SQL statement)
defined, 371
DISTINCT keyword, 382
expressions in, 382
LIMIT clause, 381
qualified queries, 385
simple queries, 381–385
WHERE clause, 385

selective import, 35
Semantic Web, 301
sequence (see amino acid sequences; base

sequences)
sequence files

extracting descriptions, 272–274
extracting entries, 274–282

sequences types
accessing elements, 47

as arguments, 61
built-in types, 52
bytearrays, 53
bytes, 53
as collection type, 47
creating strings, 54
defined, xxii, 51
formatted text output, 58–60
generally supported operations, 52
list comprehensions and, 80
lists, 62–66
overview, 51–53
ranges, 60
reformatting strings, 57
replacing strings, 56
searching strings, 55
slicing, 52
string methods, 65
summarized, 52, 463–468
testing strings, 55
tuples, 61–62

servers (see web servers)
set (type), 48, 49

add (method), 51
difference (method), 50
difference_update (method), 51
discard (method), 51
intersection (method), 50
intersection_update (method), 51
isdisjoint (method), 49
issubset (method), 49
issuperset (method), 49
remove (method), 51
symmetric_difference (method), 50
symmetric_difference_update (method), 51
union (method), 50
update (method), 51

set comprehensions, 85
sets (type)

accessing elements of, 47
algebraic operations, 49
as collection type, 47
comparison operators, 49
creating, 48
defined, 48
dictionary comparison, 67
frozenset (type), 48
mathematical operations, 49
overview, 48–51

Index | 487

summarized, 462
update operations, 50

shape tags (SVG), 433
shelve (module), 248

open (function), 249
shutil (module), 234
Simple Mail Transport Protocol (SMTP), 224,

337
singleton classes, 193
slicing

defined, 9, 10–12
lists, 63
operator precedence order and, 17
sequences, 52

SMTP (Simple Mail Transport Protocol), 224,
337

smtplib (module), 224
smtplib.SMTPAuthenticationError (error),

255
smtplib.SMTPConnectError (error), 255
socket.error message, 255, 342, 358
socket.send (function), 340
socket.sendall (function), 340
sockets

defined, 337
web servers and, 337–342

sorted (function)
collection arguments, 48
predicate methods and, 171

span (HTML tag), 295
special methods, defined, 171
SQL (Structured Query Language)

defined, 359
major operations, 371–380
query support, 380–391

sqlite3 (module)
connecting to database, 372–374
installing, 372
overview, 371
relationship queries, 386

sqlite3.Error (class), 373, 398
sqlite3.OperationalError (class), 398
square brackets

enclosing optional arguments, 13
for lists, 63
slicing strings, 10

src attribute (HTML), 393
start tags (HTML), 288
statements, 100

(see also specific types of statements)
examples of simple, 99
modifying lists, 63
Python language summary, 453–456
tips using, 18
values and, 23

StopIteration (error)
event-based processing, 315, 318
generators and, 87, 141, 142

storage (see persistent storage utilities)
str (type)

built-in for sequences, 52
capitalize (method), 57
center (method), 58
commonly used methods, 15
count (method), 15, 56
creation calls, 54
defined, 4, 53
endswith (method), 55
expandtabs (method), 58
find (method), 15, 55, 142
format (method), 58
function calls to, 14
index (method), 56
isalnum (method), 55
isalpha (method), 55
isdecimal (method), 55
isdigit (method), 55
islower (method), 55
istitle (method), 55
isupper (method), 55, 171
join (method), 66
ljust (method), 58
lower (method)

defined, 57
key parameter, 90
passing values, 91

lstrip (method), 16, 57
maketrans (method), 56
numeric (method), 55
partition (method), 66, 82
replace (method), 56, 296
rfind (method), 56
rindex (method), 56
rjust (method), 58
rpartition (method), 66
rsplit (method), 66
rstrip (method), 16, 57
split (method), 66, 77, 83

488 | Index

splitlines (method), 66
startswith (method), 15, 55
strip (method), 16, 57
swapcase (method), 57
title (method), 57
translate (method), 56
upper (method), 57

__str__ (method)
class fields example, 180
class methods example, 183
overview, 173–175

stream sinks
common examples, 73
defined, 72

stream sources
common examples, 73
defined, 72

streams
accessing elements of, 47
buffers and, 73
defined, 47, 72
files and, 73–78
summarized, 469–470

string (module), 240–241
capwords (function), 240

string methods, 173–175
strings, 4

(see also regular expressions; str (type))
accessing as collections, 47
binary operators manipulating, 9–12
changing case, 57
compound expressions, 17
concatenating, 9
creating, 54
defined, xxii, 53
formatted output, 58–60
as immutable types, 47
line wrapping considerations, 5
names versus, 21
quotation marks surrounding, 5
reformatting, 57
repeating, 9
replacing, 56
searching, 55
sequence-oriented methods, 65
slicing, 9, 10–12
spanning multiple lines, 4
subscribing, 9–10
summarized, 464–467

testing, 55
as Unicode characters, 4

structured graphics
defined, 399
graphics programming, 399–406
representative error messages, 447
SVG support, 431–440
tips using, 444
tkinter toolkit, 406–430
traps using, 445

Structured Query Language (see SQL)
structured text

defined, 287
HTML format, 287–299
representative error messages, 323
tips using, 322
traps using, 323
XML support, 300–321

subclass methods, 203–205
subclasses

defined, 194
defining, 195–197
generalization of, 200–203

subprocess (module), 221–223
subprocess.call (function), 221
subprocess.getoutput (function), 221
subscription

defined, 9–10
operator precedence order and, 17

suffix trees, 129
suites (see blocks)
sum (function), 117
super (function), 195
superclasses

defined, 194
defining subclasses, 195
factoring out common code, 198
multiple inheritance, 195
subclass methods and, 203–205

support methods, 177
SVG (Scalable Vector Graphics)

additional information, 431
characteristics, 431
defined, 431
font properties, 435
graphics examples, 436–440
shape tags, 433
style attributes, 434
style properties, 435

Index | 489

SVG File template, 432–435
SyntaxError (error), 20, 97, 398
sys (module), 213

argv, 213
builtin_module_names, 214
exit, 215, 315
modules, 214
path, 214
stderr, 214
stdin, 214
stdout, 214, 279, 345

system environment utilities
datetime (module), 209–212
fileinput (module), 217
logging (module), 225
optparse (module), 218–220
smtplib (module), 224
subprocess (module), 221–223
sys (module), 213–215
time (module), 216

T
tab characters, 24
tempfile (module), 229

gettempdir (function), 229
makedtemp (function), 229
makestemp (function), 229

temporary files, 229
testing

code, 95
regular expressions, 258
simple conditional statements and, 102
strings, 55
value types, 15

text (as graphic component), 402
text files, constructing tables from, 155–160
text manipulation utilities

csv (module), 241
io (module), 242
string (module), 240–241
textwrap (module), 238

textwrap (module), 238
dedent (function), 238
fill (function), 239
wrap (function), 238

tilde character, 234
time (module), 216

clock (function), 216
ctime (function), 216

gmtime (function), 216
sleep (function), 216

tkinter (module)
basic steps, 406
Canvas drawing methods, 408–410
documentation, 405
graphics examples, 411–430
representative (error) messages, 447
widget options, 407
writing canvas contents to files, 410

trace file curves
defined, 399
SVG example, 440

tracebacks, defined, 136
transactions, defined, 374
translating

defined, xxiii
RNA sequences, 86, 151–154

trees, recursive iterations and, 128–132
try statement

exception handling, 138
exception raising, 142
optional features, 139–141

tuple (type)
built-in for sequences, 52
sequences as arguments, 61

tuples
defined, 61
packing and unpacking, 61, 113
syntax supported, 61

two-expression assertion statement, 31
type attribute (HTML), 351
TypeError (error)

argument errors, 46
classes, 208
collections, 98
control statements, 163
example, 137
web programming, 358

types, 1
(see also collections; specific types)
calling as functions, 14
classes and, 1
defined, xxii, 1
immutable, 47
namespaces and, 22
values as instances, 1
versions of methods, 22

490 | Index

U
unary operators

defined, 5
operator precedence order and, 17

underscore, 87, 171
Unicode characters

additional information, 4, 53
file objects and, 74
HTML considerations, 288

UnicodeDecodeError (error), 323
units of measurement, 401
unwinding process, 311
UPDATE (SQL statement), 371
urllib.error.HTTPError (error), 358
urllib.error.URLError (error), 358
urllib.parse

assembling URLs, 327
disassembling URLs, 326
overview, 325

urllib.parse (module)
quote (function), 327
quote_plus (function), 327
unquote (function), 327
unquote_plus (function), 327
urldefrag (function), 327
urlencode (function), 327
urljoin (function), 327, 333
urlparse (function), 326
urlunparse (function), 327

urllib.request (module), 331
geturl (function), 331
info (function), 331
urlopen (function), 331, 333, 335
urlretrieve (function), 331

URLs
absolute, 332
assembling, 327
constructing/submitting queries, 329
contructing/viewing HTML pages, 330
disassembling, 326
manipulating, 325–330
relative, 332

utility modules (see modules)

V
value attribute (HTML), 351
ValueError (error), 137
values, 1

(see also None value)
assigning names to, 23
bool (type), 2
for default parameters, 32–34
defined, 1
entering, 1
float (type), 3
in indexes, 10
initializing in loops, 106–107
as instances of types, 1
int (type), 2
objects and, 1
passing to functions, 13, 24, 91
statements and, 23
storing for classes, 168
str (type), 4
testing types, 15
yielding from generators, 79

variable-length matching, 262
vocabulary, defining, 32
von Willebrand disease, 143

W
web clients

absolute URLs, 332
dowloading linked files, 334–337
extracted links, 333
overview, 331

Web Ontology Language (OWL), 301
web programming

manipulating URLs, 325–330
representative error messages, 358
tips using, 356
traps using, 357
web clients, 331–337
web servers, 337–354

web servers
CGI support, 343–354
defined, 337
http.server (module), 341–342
overview, 338–340
simple applications, 348
sockets and, 337–342

webbrowser (module), 328, 331
open (function), 328, 329
open_new (function), 328
open_new_tab (function), 328

while statement
basic loop form, 104

Index | 491

loop interruption and, 104
loop with final clause, 104
recursive structures and, 128

wildcard characters
filename expansion, 232
pattern matching and, 258

with statement
exception handling, 141
overview, 75

wxWidgets toolkit, 405

X
XML (Extensible Markup Language)

ElementTree (module), 303–309
event-based processing, 310–317
expat (module), 317–322
genome example, 302
overview, 300–302
parsing files, 301

xml.etree.cElementTree (module), 301
xml.etree.ElementTree (module), 303–309
xml.parsers.expat (module), 301, 317–322

CharacterDataHandler (field), 318
ParseFile (method), 317
Parser (method), 317
ParserCreate (function), 317
StartElementHandler (field), 318
StopElementHandler (field), 318

xml.parsers.expat.ExpatError (error), 323
xrange (type), 52

Y
yield statement

defined, 79
generator expressions, 85

Z
ZeroDivisionError (error), 20, 137

492 | Index

About the Author
Mitchell L Model has worked in a wide range of platforms, languages, technologies,
and domains. His specialties include object technology, knowledge representation, user
interfaces, distributed computing, and software development practices, and he is an
inveterate software tool builder. He has held academic appointments at Brown,
Brandeis, and Wesleyan Universities and has worked at a number of early-phase
startup companies. As this book went into production, he joined a new synthetic bi-
ology startup. For much of his career, he has been an independent consultant, providing
training, mentoring, tools, and support to software development groups learning to
use new technologies and practices. He has written and taught many professional pro-
gramming and technology courses and wrote one of the first C++-based data structure
books.

Since 1994 Mitchell has been working primarily in bioinformatics, becoming captivated
by the complexities of the biological phenomena that it addresses. He was the senior
technologist in Millennium Pharmaceutical’s large bioinformatics department from
1994 through 2001. In recent years, he has been teaching courses in Northeastern
University’s Professional Masters in Bioinformatics program.

Mitchell is devoted to teaching, always seeking new ways to effectively communicate
the conceptual beauty of computer science. What gives him the greatest satisfaction is
coaching students and professionals in the art of software development to enable them
to work more effectively and creatively.

Colophon
The animal on the cover of Bioinformatics Programming Using Python is a brown rat
(Rattus norvegicus), also known as a common rat, sewer rat, Norway rat, or wharf rat.
One of the largest members of the Muroidea family, the brown rat is 10 to 15 inches
long with a 6- to 8-inch long tail. Its fur is coarse and mostly brown or gray. This rat
has very sharp hearing and smell, but poor vision. It is omnivorous and nocturnal, and
lives almost everywhere humans live, particularly in cities. Like other rodents, brown
rats may carry pathogens and spread disease.

Contrary to the brown rat’s genus name—norvegicus—it did not originate in Norway.
It was named by an 18th-century British naturalist who mistakenly believed that the
rat had migrated to England on Norwegian ships in the early 1700s. By the end of the
19th century, scientists had established that the brown rat had most likely originated
in China. Today the brown rat has spread to all continents and is the dominant rat in
Europe and North America—making it the most successful mammal on earth after
humans.

The cover image is from the Dover Pictorial Archive. The cover font is Adobe ITC
Garamond. The text font is Linotype Birka; the heading font is Adobe Myriad Con-
densed; and the code font is LucasFont’s TheSansMonoCondensed.

	Table of Contents
	Preface
	Introduction
	About This Book
	About Bioinformatics
	About the Reader

	Python
	Some Context
	The Python Language
	Installing Python
	Running Python

	Notes
	Reading and Reference Recommendations
	Example Code
	Unfortunate and Unavoidable Vocabulary Overlap
	Comments

	Conventions Used in This Book
	We’d Like to Hear from You
	Using Code Examples
	Safari® Books Online
	Acknowledgments

	Chapter 1. Primitives
	Simple Values
	Booleans
	Integers
	Floats
	Strings

	Expressions
	Numeric Operators
	Logical Operations
	String Operations
	String operators
	Subscription
	Slicing

	Calls
	Function calls
	Method calls

	Compound Expressions

	Tips, Traps, and Tracebacks
	Tips
	Statements and expressions
	Running Python interactively

	Traps
	Tracebacks

	Chapter 2. Names, Functions, and Modules
	Assigning Names
	Defining Functions
	Function Parameters
	Comments and Documentation
	Assertions
	Default Parameter Values

	Using Modules
	Importing
	Module namespaces
	The random module

	Python Files

	Tips, Traps, and Tracebacks
	Tips
	Names
	Function definitions
	Executing code
	Using IDLE
	Managing Python files

	Traps
	Tracebacks

	Chapter 3. Collections
	Sets
	Sequences
	Strings, Bytes, and Bytearrays
	Creating
	Testing
	Searching
	Replacing
	Changing case
	Reformatting
	The format method and function

	Ranges
	Tuples
	Tuple syntax
	Tuple packing and unpacking

	Lists
	Statements that modify lists
	List modification methods
	Sequence-oriented string methods

	Mappings
	Dictionaries
	Dictionary example: RNA codon translation table
	Dictionary operations
	Dictionary methods

	Streams
	Files
	Creating file objects
	File methods
	Example

	Generators

	Collection-Related Expression Features
	Comprehensions
	List comprehensions
	Set and dictionary comprehensions
	Generator expressions
	Conditional comprehensions
	Nested comprehensions

	Functional Parameters
	The parameter “key”
	Function objects
	Anonymous functions

	Tips, Traps, and Tracebacks
	Tips
	Language features
	Developing and testing code

	Traps
	Tracebacks

	Chapter 4. Control Statements
	Conditionals
	Loops
	Simple Loop Examples
	Initialization of Loop Values
	Looping Forever
	Loops with Guard Conditions

	Iterations
	Iteration Statements
	Kinds of Iterations
	Do
	Collect
	Combine
	Search
	Filter
	Nested iterations
	Recursive iterations

	Exception Handlers
	Python Errors
	Tracebacks
	Runtime errors

	Exception Handling Statements
	Optional features of exception handling statements
	Exception handling and generator objects

	Raising Exceptions
	The raise statement
	Raising an exception to end a loop

	Extended Examples
	Extracting Information from an HTML File
	The Grand Unified Bioinformatics File Parser
	Reading the sequences in a FASTA file
	Generalized parsing

	Parsing GenBank Files
	Translating RNA Sequences
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5

	Constructing a Table from a Text File
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5

	Tips, Traps, and Tracebacks
	Tips
	Traps
	Tracebacks

	Chapter 5. Classes
	Defining Classes
	Instance Attributes
	Access methods
	Predicate methods
	Initialization methods
	String methods
	Modification methods
	Action methods
	Support methods
	Summary

	Class Attributes
	Class fields
	Class methods
	Classes as objects

	Class and Method Relationships
	Decomposition
	Class decomposition
	Method decomposition
	Singleton classes

	Inheritance
	Defining subclasses
	Factoring out common code
	Generalization
	Subclass methods

	Tips, Traps, and Tracebacks
	Tips
	Traps
	Tracebacks

	Chapter 6. Utilities
	System Environment
	Dates and Times: datetime
	Classes
	Instance creation
	Operations
	Methods

	System Information
	The Python runtime environment: sys
	The system clock: time

	Command-Line Utilities
	Reading multiple files: fileinput
	Command-line options: optparse
	Command-line commands: subprocess

	Communications
	Sending email: smtplib
	Logging: logging

	The Filesystem
	Operating System Interface: os
	Environment access
	Managing files and directories
	Directories
	Files
	Directory contents

	Temporary files: tempfile

	Manipulating Paths: os.path
	Path components
	Path manipulations
	Path information

	Filename Expansion: fnmatch and glob
	fnmatch
	glob

	Shell Utilities: shutil
	Comparing Files and Directories
	File and directory comparison: filecmp
	Showing the differences between two files: difflib

	Working with Text
	Formatting Blocks of Text: textwrap
	String Utilities: string
	Comma- and Tab-Separated Formats: csv
	String-Based Reading and Writing: io

	Persistent Storage
	Persistent Text: dbm
	Persistent Objects: pickle
	Keyed Persistent Object Storage: shelve
	Debugging Tools
	The Python debugger: pdb
	The IDLE debugger

	Tips, Traps, and Tracebacks
	Tips
	Traps
	Tracebacks

	Chapter 7. Pattern Matching
	Fundamental Syntax
	Fixed-Length Matching
	Literal matches
	Character sets
	Character classes
	Boundaries

	Variable-Length Matching
	Repetition

	Greedy Versus Nongreedy Matching
	Grouping and Disjunction

	The Actions of the re Module
	Functions
	Flags
	Methods

	Results of re Functions and Methods
	Match Object Fields
	Match Object Methods

	Putting It All Together: Examples
	Some Quick Examples
	Using regular expressions to ignore case
	Listing files in a directory, excluding some
	Finding open reading frames

	Extracting Descriptions from Sequence Files
	Extracting Entries From Sequence Files
	Using regular expressions to extract entries
	Keeping track of the position between calls
	Buffering input

	Tips, Traps, and Tracebacks
	Tips
	Traps
	Tracebacks

	Chapter 8. Structured Text
	HTML
	Simple HTML Processing
	Searching HTML text
	More elaborate HTML pattern matching
	Turning HTML into plain text

	Structured HTML Processing
	Problems with HTML pattern matching
	Structured HTML parsing: html.parser

	XML
	The Nature of XML
	An XML File for a Complete Genome
	The ElementTree Module
	Getting started with ElementTree
	Navigating around an ElementTree

	Event-Based Processing
	Function calls, exceptions, and the call stack
	Callbacks: Reversed function calls
	Programming for an event-based processor

	expat
	Obtaining a single piece of information
	Extracting a few pieces of data
	Getting the content of all tags with a specified name

	Tips, Traps, and Tracebacks
	Tips
	Traps
	Tracebacks

	Chapter 9. Web Programming
	Manipulating URLs: urllib.parse
	Disassembling URLs
	Assembling URLs

	Opening Web Pages: webbrowser
	Module Functions
	Constructing and Submitting Queries
	Constructing and Viewing an HTML Page

	Web Clients
	Making the URLs in a Response Absolute
	Constructing an HTML Page of Extracted Links
	Downloading a Web Page’s Linked Files

	Web Servers
	Sockets and Servers
	Server fundamentals
	Running a server: The http.server module

	CGI
	Serving CGI requests
	Setting up CGI
	CGI script arguments and responses

	Simple Web Applications
	Using CGI scripts
	HTML forms with CGI scripts

	Tips, Traps, and Tracebacks
	Tips
	Web pages
	Debugging CGI scripts
	HTTP servers

	Traps
	Tracebacks

	Chapter 10. Relational Databases
	Representation in Relational Databases
	Database Tables
	Avoiding duplication of values
	Representation of relationships
	Database definition

	A Restriction Enzyme Database
	The data
	Reading the data
	A schema for the Rebase database

	Using Relational Data
	SQL Basics
	Using the sqlite3 module
	Connecting to the database
	Creating the database
	Loading data into tables

	SQL Queries
	Simple database queries
	Qualified database queries
	Relationship queries

	Querying the Database from a Web Page
	HTML frames
	An HTML page of query forms

	Tips, Traps, and Tracebacks
	Tips
	Traps
	Tracebacks

	Chapter 11. Structured Graphics
	Introduction to Graphics Programming
	Concepts
	Coordinate system
	Components
	Properties

	GUI Toolkits
	GUI toolkits for Python
	Using a GUI toolkit

	Structured Graphics with tkinter
	tkinter Fundamentals
	The basic steps
	Common widget options
	Canvas drawing methods
	Writing the contents of a canvas to a PostScript file

	Examples
	An abstract class for tkinter graphics
	Dot plots
	Histograms

	Structured Graphics with SVG
	SVG File Contents
	SVG tags
	SVG styles

	Examples
	Histograms of codon use
	Sequencing trace file curves using SVG

	Tips, Traps, and Tracebacks
	Tips
	Traps
	SVG traps

	Tracebacks

	Appendix A. Python Language Summary
	Language Components
	Special Syntactic Elements
	Keywords
	Special Names
	Operators
	Anonymous Functions

	Types and Expressions
	Statements
	Notes

	Appendix B. Collection Type Summary
	Types and General Operations
	Common Operations
	Creating Collections

	Specific Collection Types
	Sets
	Sequences
	Strings
	Lists

	Mappings
	Streams
	File objects
	Generators

	Iteration Templates
	Basic Iteration Templates
	Filtering Templates
	Other Kinds of Templates

	Index

