
Learn Prolog Now!

Patrick Blackburn
Johan Bos

Kristina Striegnitz

Copyright c� by Patrick Blackburn, Johan Bos and Kristina Striegnitz, 2001
patrick@aplog.org

jbos@cogsci.ed.ac.uk
kris@coli.uni-sb.de

This course is also available online:

http://www.coli.uni-sb.de/ kris/learn-prolog-now

Contents

1 Facts, Rules, and Queries 1

1.1 Some simple examples . 1

1.1.1 Knowledge Base 1 . 1

1.1.2 Knowledge Base 2 . 3

1.1.3 Knowledge Base 3 . 4

1.1.4 Knowledge Base 4 . 6

1.1.5 Knowledge Base 5 . 8

1.2 Prolog Syntax . 8

1.2.1 Atoms . 9

1.2.2 Numbers . 9

1.2.3 Variables . 9

1.2.4 Complex terms . 10

1.3 Exercises . 11

1.4 Practical Session 1 . 13

2 Matching and Proof Search 17

2.1 Matching . 17

2.1.1 Examples . 19

2.1.2 The occurs check . 22

2.1.3 Programming with matching 23

2.2 Proof Search . 26

2.3 Exercises . 31

2.4 Practical Session 2 . 33

3 Recursion 37

3.1 Recursive definitions . 37

3.1.1 Example 1: Eating . 37

3.1.2 Example 2: Descendant 40

3.1.3 Example 3: Successor . 43

3.1.4 Example 3: Addition . 45

3.2 Clause ordering, goal ordering, and termination 47

3.3 Exercises . 49

3.4 Practical Session 3 . 51

4 Lists 55

4.1 Lists . 55

4.2 Member . 59

4.3 Recursing down lists . 61

4.4 Exercises . 65

4.5 Practical Session 4 . 66

5 Arithmetic 69

5.1 Arithmetic in Prolog . 69

5.2 A closer look . 71

5.3 Arithmetic and lists . 73

5.4 Comparing integers . 75

5.5 Exercises . 78

5.6 Practical Session 5 . 79

6 More Lists 81

6.1 Append . 81

6.1.1 Defining append . 82

6.1.2 Using append . 84

6.2 Reversing a list . 87

6.2.1 Naive reverse using append 87

6.2.2 Reverse using an accumulator 88

6.3 Exercises . 89

6.4 Practical Session 6 . 90

7 Definite Clause Grammars 93

7.1 Context free grammars . 93

7.1.1 CFG recognition using append 95

7.1.2 CFG recognition using difference lists 98

7.2 Definite clause grammars . 100

7.2.1 A first example . 100

7.2.2 Adding recursive rules . 102

7.2.3 A DCG for a simple formal language 104

7.3 Exercises . 105

7.4 Practical Session 7 . 106

8 More Definite Clause Grammars 109

8.1 Extra arguments . 109

8.1.1 Context free grammars with features 109

8.1.2 Building parse trees . 114

8.1.3 Beyond context free languages 117

8.2 Extra goals . 118

8.2.1 Separating rules and lexicon 119

8.3 Concluding remarks . 121

8.4 Exercises . 122

8.5 Practical Session 8 . 122

9 A Closer Look at Terms 125

9.1 Comparing terms . 125

9.2 Terms with a special notation . 127

9.2.1 Arithmetic terms . 127

9.2.2 Lists as terms . 129

9.3 Examining Terms . 131

9.3.1 Types of Terms . 131

9.3.2 The Structure of Terms . 133

9.4 Operators . 136

9.4.1 Properties of operators . 136

9.4.2 Defining operators . 137

9.5 Exercises . 138

9.6 Practical Session . 140

10 Cuts and Negation 145

10.1 The cut . 145

10.2 If-then-else . 152

10.3 Negation as failure . 152

10.4 Exercises . 156

10.5 Practical Session 10 . 156

11 Database Manipulation and Collecting Solutions 159

11.1 Database manipulation . 159

11.2 Collecting solutions . 164

11.2.1 findall/3 . 164

11.2.2 bagof/3 . 165

11.2.3 setof/3 . 167

11.3 Exercises . 168

11.4 Practical Session 11 . 170

12 Working With Files 171

12.1 Splitting Programs Over Files . 171

12.1.1 Reading in Programs . 171

12.1.2 Modules . 172

12.1.3 Libraries . 174

12.2 Writing To and Reading From Files 174

12.3 Practical Session . 176

12.3.1 Step 1 . 176

12.3.2 Step 2 . 176

12.3.3 Step 3 . 176

12.3.4 Step 4 . 177

12.3.5 Step 5 . 177

12.3.6 Step 6 . 177

1

Facts, Rules, and Queries

This introductory lecture has two main goals:

1. To give some simple examples of Prolog programs. This will introduce us to the
three basic constructs in Prolog: facts, rules, and queries. It will also introduce
us to a number of other themes, like the role of logic in Prolog, and the idea of
performing matching with the aid of variables.

2. To begin the systematic study of Prolog by defining terms, atoms, variables and
other syntactic concepts.

1.1 Some simple examples

There are only three basic constructs in Prolog: facts, rules, and queries. A collection
of facts and rules is called a knowledge base (or a database) and Prolog programming
is all about writing knowledge bases. That is, Prolog programs simply are knowledge
bases, collections of facts and rules which describe some collection of relationships
that we find interesting. So how do we use a Prolog program? By posing queries. That
is, by asking questions about the information stored in the knowledge base. Now this
probably sounds rather strange. It’s certainly not obvious that it has much to do with
programming at all – after all, isn’t programming all about telling the computer what
to do? But as we shall see, the Prolog way of programming makes a lot of sense, at
least for certain kinds of applications (computational linguistics being one of the most
important examples). But instead of saying more about Prolog in general terms, let’s
jump right in and start writing some simple knowledge bases; this is not just the best
way of learning Prolog, it’s the only way ...

1.1.1 Knowledge Base 1

Knowledge Base 1 (KB1) is simply a collection of facts. Facts are used to state things
that are unconditionally true of the domain of interest. For example, we can state that
Mia, Jody, and Yolanda are women, and that Jody plays air guitar, using the following
four facts:

woman(mia).

woman(jody).

woman(yolanda).

playsAirGuitar(jody).

2 Chapter 1. Facts, Rules, and Queries

This collection of facts is KB1. It is our first example of a Prolog program. Note that
the names mia, jody, and yolanda, and the properties woman and playsAirGuitar,
have been written so that the first letter is in lower-case. This is important; we will see
why a little later.

How can we use KB1? By posing queries. That is, by asking questions about the
information KB1 contains. Here are some examples. We can ask Prolog whether Mia
is a woman by posing the query:

?- woman(mia).

Prolog will answer

yes

for the obvious reason that this is one of the facts explicitly recorded in KB1. Inci-
dentally, we don’t type in the ?-. This symbol (or something like it, depending on the
implementation of Prolog you are using) is the prompt symbol that the Prolog inter-
preter displays when it is waiting to evaluate a query. We just type in the actual query
(for example woman(mia)) followed by . (a full stop).

Similarly, we can ask whether Jody plays air guitar by posing the following query:

?- playsAirGuitar(jody).

Prolog will again answer “yes”, because this is one of the facts in KB1. However,
suppose we ask whether Mia plays air guitar:

?- playsAirGuitar(mia).

We will get the answer

no

Why? Well, first of all, this is not a fact in KB1. Moreover, KB1 is extremely simple,
and contains no other information (such as the rules we will learn about shortly) which
might help Prolog try to infer (that is, deduce whether Mia plays air guitar. So Prolog
correctly concludes that playsAirGuitar(mia) does not follow from KB1.

Here are two important examples. Suppose we pose the query:

?- playsAirGuitar(vincent).

Again Prolog answers “no”. Why? Well, this query is about a person (Vincent) that it
has no information about, so it concludes that playsAirGuitar(vincent) cannot be
deduced from the information in KB1.

Similarly, suppose we pose the query:

?- tatooed(jody).

Again Prolog will answer “no”. Why? Well, this query is about a property (being
tatooed) that it has no information about, so once again it concludes that the query
cannot be deduced from the information in KB1.

1.1. Some simple examples 3

1.1.2 Knowledge Base 2

Here is KB2, our second knowledge base:

listensToMusic(mia).

happy(yolanda).

playsAirGuitar(mia) :- listensToMusic(mia).

playsAirGuitar(yolanda) :- listensToMusic(yolanda).

listensToMusic(yolanda):- happy(yolanda).

KB2 contains two facts, listensToMusic(mia) and happy(yolanda). The last three
items are rules.

Rules state information that is conditionally true of the domain of interest. For exam-
ple, the first rule says that Mia plays air guitar if she listens to music, and the last rule
says that Yolanda listens to music if she if happy. More generally, the :- should be
read as “if”, or “is implied by”. The part on the left hand side of the :- is called the
head of the rule, the part on the right hand side is called the body. So in general rules
say: if the body of the rule is true, then the head of the rule is true too. And now for
the key point: if a knowledge base contains a rule head :- body, and Prolog knows
that body follows from the information in the knowledge base, then Prolog can infer
head.

This fundamental deduction step is what logicians call modus ponens.

Let’s consider an example. We will ask Prolog whether Mia plays air guitar:

?- playsAirGuitar(mia).

Prolog will respond “yes”. Why? Well, although playsAirGuitar(mia) is not a fact
explicitly recorded in KB2, KB2 does contain the rule

playsAirGuitar(mia) :- listensToMusic(mia).

Moreover, KB2 also contains the fact listensToMusic(mia). Hence Prolog can use
modus ponens to deduce that playsAirGuitar(mia).

Our next example shows that Prolog can chain together uses of modus ponens. Suppose
we ask:

?- playsAirGuitar(yolanda).

Prolog would respond “yes”. Why? Well, using the fact happy(yolanda) and the rule

listensToMusic(yolanda):- happy(yolanda),

Prolog can deduce the new fact listensToMusic(yolanda). This new fact is not
explicitly recorded in the knowledge base — it is only implicitly present (it is inferred
knowledge). Nonetheless, Prolog can then use it just like an explicitly recorded fact.
Thus, together with the rule

4 Chapter 1. Facts, Rules, and Queries

playsAirGuitar(yolanda) :- listensToMusic(yolanda)

it can deduce that playsAirGuitar(yolanda), which is what we asked it. Summing
up: any fact produced by an application of modus ponens can be used as input to further
rules. By chaining together applications of modus ponens in this way, Prolog is able
to retrieve information that logically follows from the rules and facts recorded in the
knowledge base.

The facts and rules contained in a knowledge base are called clauses. Thus KB2 con-
tains five clauses, namely three rules and two facts. Another way of looking at KB2 is
to say that it consists of three predicates (or procedures). The three predicates are:

listensToMusic

happy

playsAirGuitar

The happy predicate is defined using a single clause (a fact). The listensToMusic

and playsAirGuitar predicates are each defined using two clauses (in both cases, two
rules). It is a good idea to think about Prolog programs in terms of the predicates they
contain. In essence, the predicates are the concepts we find important, and the various
clauses we write down concerning them are our attempts to pin down what they mean
and how they are inter-related.

One final remark. We can view a fact as a rule with an empty body. That is, we
can think of facts as “conditionals that do not have any antecedent conditions”, or
“degenerate rules”.

1.1.3 Knowledge Base 3

KB3, our third knowledge base, consists of five clauses:

happy(vincent).

listensToMusic(butch).

playsAirGuitar(vincent):-

listensToMusic(vincent),

happy(vincent).

playsAirGuitar(butch):-

happy(butch).

playsAirGuitar(butch):-

listensToMusic(butch).

There are two facts, namely happy(vincent) and listensToMusic(butch), and
three rules.

KB3 defines the same three predicates as KB2 (namely happy, listensToMusic, and
playsAirGuitar) but it defines them differently. In particular, the three rules that
define the playsAirGuitar predicate introduce some new ideas. First, note that the
rule

1.1. Some simple examples 5

playsAirGuitar(vincent):-

listensToMusic(vincent),

happy(vincent).

has two items in its body, or (to use the standard terminology) two goals. What does
this rule mean? The important thing to note is the comma , that separates the goal
listensToMusic(vincent) and the goal happy(vincent) in the rule’s body. This is
the way logical conjunction is expressed in Prolog (that is, the comma means and). So
this rule says: “Vincent plays air guitar if he listens to music and he is happy”.

Thus, if we posed the query

?- playsAirGuitar(vincent).

Prolog would answer “no”. This is because while KB3 contains happy(vincent), it
does not explicitly contain the information listensToMusic(vincent), and this fact
cannot be deduced either. So KB3 only fulfils one of the two preconditions needed to
establish playsAirGuitar(vincent), and our query fails.

Incidentally, the spacing used in this rule is irrelevant. For example, we could have
written it as

playsAirGuitar(vincent):- happy(vincent),listensToMusic(vincent).

and it would have meant exactly the same thing. Prolog offers us a lot of freedom in
the way we set out knowledge bases, and we can take advantage of this to keep our
code readable.

Next, note that KB3 contains two rules with exactly the same head, namely:

playsAirGuitar(butch):-

happy(butch).

playsAirGuitar(butch):-

listensToMusic(butch).

This is a way of stating that Butch plays air guitar if either he listens to music, or if
he is happy. That is, listing multiple rules with the same head is a way of expressing
logical disjunction (that is, it is a way of saying or). So if we posed the query

?- playsAirGuitar(butch).

Prolog would answer “yes”. For although the first of these rules will not help (KB3
does not allow Prolog to conclude that happy(butch)), KB3 does contain listensToMusic(butch)

and this means Prolog can apply modus ponens using the rule

playsAirGuitar(butch):-

listensToMusic(butch).

6 Chapter 1. Facts, Rules, and Queries

to conclude that playsAirGuitar(butch).

There is another way of expressing disjunction in Prolog. We could replace the pair of
rules given above by the single rule

playsAirGuitar(butch):-

happy(butch);

listensToMusic(butch).

That is, the semicolon ; is the Prolog symbol for or, so this single rule means exactly
the same thing as the previous pair of rules. But Prolog programmers usually write
multiple rules, as extensive use of semicolon can make Prolog code hard to read.

It should now be clear that Prolog has something do with logic: after all, the :- means
implication, the , means conjunction, and the ; means disjunction. (What about nega-
tion? That is a whole other story. We’ll be discussing it later in the course.) Moreover,
we have seen that a standard logical proof rule (modus ponens) plays an important role
in Prolog programming. And in fact “Prolog” is short for “Programming in logic”.

1.1.4 Knowledge Base 4

Here is KB4, our fourth knowledge base:

woman(mia).

woman(jody).

woman(yolanda).

loves(vincent,mia).

loves(marcellus,mia).

loves(pumpkin,honey_bunny).

loves(honey_bunny,pumpkin).

Now, this is a pretty boring knowledge base. There are no rules, only a collection of
facts. Ok, we are seeing a relation that has two names as arguments for the first time
(namely the loves relation), but, let’s face it, that’s a rather predictable idea.

No, the novelty this time lies not in the knowledge base, it lies in the queries we are
going to pose. In particular, for the first time we’re going to make use of variables.
Here’s an example:

?- woman(X).

The X is a variable (in fact, any word beginning with an upper-case letter is a Prolog
variable, which is why we had to be careful to use lower-case initial letters in our earlier
examples). Now a variable isn’t a name, rather it’s a “placeholder” for information.
That is, this query essentially asks Prolog: tell me which of the individuals you know
about is a woman.

Prolog answers this query by working its way through KB4, from top to bottom, trying
to match (or unify) the expression woman(X) with the information KB4 contains. Now

1.1. Some simple examples 7

the first item in the knowledge base is woman(mia). So, Prolog matches X to mia,
thus making the query agree perfectly with this first item. (Incidentally, there’s a lot
of different terminology for this process: we can also say that Prolog instantiates X to
mia, or that it binds X to mia.) Prolog then reports back to us as follows:

X = mia

That is, it not only says that there is information about at least one woman in KB4,
it actually tells us who she is. It didn’t just say “yes”, it actually gave us the variable
binding, or instantiation that led to success.

But that’s not the end of the story. The whole point of variables — and not just in
Prolog either — is that they can “stand for” or “match with” different things. And
there is information about other women in the knowledge base. We can access this
information by typing the following simple query

?- ;

Remember that ; means or, so this query means: are there any more women? So
Prolog begins working through the knowledge base again (it remembers where it got
up to last time and starts from there) and sees that if it matches X with jody, then the
query agrees perfectly with the second entry in the knowledge base. So it responds:

X = jody

It’s telling us that there is information about a second woman in KB4, and (once again)
it actually gives us the value that led to success. And of course, if we press ; a second
time, Prolog returns the answer

X = yolanda

But what happens if we press ; a third time? Prolog responds “no”. No other matches
are possible. There are no other facts starting with the symbol woman. The last four
entries in the knowledge base concern the love relation, and there is no way that such
entries can match a query of the form of the form woman(x).

Let’s try a more complicated query, namely

loves(marcellus,X),woman(X).

Now, remember that , means and, so this query says: is there any individual X such
that Marcellus loves X and X is a woman? If you look at the knowledge base you’ll see
that there is: Mia is a woman (fact 1) and Marcellus loves Mia (fact 5). And in fact,
Prolog is capable of working this out. That is, it can search through the knowledge
base and work out that if it matches X with Mia, then both conjuncts of the query are
satisfied (we’ll learn in later lectures exactly how Prolog does this). So Prolog returns
the answer

X = mia

This business of matching variables to information in the knowledge base is the heart
of Prolog. For sure, Prolog has many other interesting aspects — but when you get
right down to it, it’s Prolog’s ability to perform matching and return the values of the
variable binding to us that is crucial.

8 Chapter 1. Facts, Rules, and Queries

1.1.5 Knowledge Base 5

Well, we’ve introduced variables, but so far we’ve only used them in queries. In fact,
variables not only can be used in knowledge bases, it’s only when we start to do so that
we can write truly interesting programs. Here’s a simple example, the knowledge base
KB5:

loves(vincent,mia).

loves(marcellus,mia).

loves(pumpkin,honey_bunny).

loves(honey_bunny,pumpkin).

jealous(X,Y) :- loves(X,Z),loves(Y,Z).

KB5 contains four facts about the loves relation and one rule. (Incidentally, the blank
line between the facts and the rule has no meaning: it’s simply there to increase the
readability. As we said earlier, Prolog gives us a great deal of freedom in the way we
format knowledge bases.) But this rule is by far the most interesting one we have seen
so far: it contains three variables (note that X, Y, and Z are all upper-case letters). What
does it say?

In effect, it is defining a concept of jealousy. It says that an individual X will be jealous
of an individual Y if there is some individual Z that X loves, and Y loves that same
individual Z too. (Ok, so jealously isn’t as straightforward as this in the real world ...)
The key thing to note is that this is a general statement: it is not stated in terms of mia,
or pumpkin, or anyone in particular — it’s a conditional statement about everybody in
our little world.

Suppose we pose the query:

?- jealous(marcellus,W).

This query asks: can you find an individual W such that Marcellus is jealous of W?
Vincent is such an individual. If you check the definition of jealousy, you’ll see that
Marcellus must be jealous of Vincent, because they both love the same woman, namely
Mia. So Prolog will return the value

W = vincent

Now some questions for you, First, are there any other jealous people in KB5? Fur-
thermore, suppose we wanted Prolog to tell us about all the jealous people: what query
would we pose? Do any of the answers surprise you? Do any seem silly?

1.2 Prolog Syntax

Now that we’ve got some idea of what Prolog does, it’s time to go back to the beginning
and work through the details more carefully. Let’s start by asking a very basic question:
we’ve seen all kinds of expressions (for example jody, playsAirGuitar(mia), and

1.2. Prolog Syntax 9

X) in our Prolog programs, but these have just been examples. Exactly what are facts,
rules, and queries built out of?

The answer is terms, and there are four kinds of terms in Prolog: atoms, numbers,
variables, and complex terms (or structures). Atoms and numbers are lumped together
under the heading constants, and constants and variables together make up the simple
terms of Prolog.

Let’s take a closer look. To make things crystal clear, let’s first get clear about the
basic characters (or symbols) at our disposal. The upper-case letters are A, B, ..., Z; the
lower-case letters are a, b, ..., z; the digits are 1, 2, ..., 9; and the special characters
are +, -, *, /, <, >, =, :, ., &, ~, and _. The _ character is called underscore. The
blank space is also a character, but a rather unusual one, being invisible. A string is an
unbroken sequence of characters.

1.2.1 Atoms

An atom is either:

1. A string of characters made up of upper-case letters, lower-case letters, digits,
and the underscore character, that begins with a lower-case letter. For example:
butch, big_kahuna_burger, and m_monroe2.

2. An arbitrary sequence of character enclosed in single quotes. For example ’Vincent’,
’The Gimp’, ’Five_Dollar_Shake’, ’&^%&#@$ &*’, and ’ ’. The character be-
tween the single quotes is called the atom name. Note that we are allowed to use
spaces in such atoms — in fact, a common reason for using single quotes is so
we can do precisely that.

3. A string of special characters. For example: @= and ====> and ; and :- are
all atoms. As we have seen, some of these atoms, such as ; and :- have a
pre-defined meaning.

1.2.2 Numbers

Real numbers aren’t particularly important in typical Prolog applications. So although
most Prolog implementations do support floating point numbers or floats (that is, rep-
resentations of real numbers such as 1657.3087 or π) we are not going to discuss them
in this course.

But integers (that is: ... -2, -1, 0, 1, 2, 3, ...) are useful for such tasks as counting the
elements of a list, and we’ll discuss how to manipulate them in a later lecture. Their
Prolog syntax is the obvious one: 23, 1001, 0, -365, and so on.

1.2.3 Variables

A variable is a string of upper-case letters, lower-case letters, digits and underscore
characters that starts either with an upper-case letter or with underscore. For example,
X, Y, Variable, _tag, X_526, and List, List24, _head, Tail, _input and Output

are all Prolog variables.

The variable _ (that is, a single underscore character) is rather special. It’s called the
anonymous variable, and we discuss it in a later lecture.

10 Chapter 1. Facts, Rules, and Queries

1.2.4 Complex terms

Constants, numbers, and variables are the building blocks: now we need to know how
to fit them together to make complex terms. Recall that complex terms are often called
structures.

Complex terms are build out of a functor followed by a sequence of arguments. The
arguments are put in ordinary brackets, separated by commas, and placed after the
functor. The functor must be an atom. That is, variables cannot be used as functors.
On the other hand, arguments can be any kind of term.

Now, we’ve already seen lots of examples of complex terms when we looked at KB1
– KB5. For example, playsAirGuitar(jody) is a complex term: its functor is
playsAirGuitar and its argument is jody. Other examples are loves(vincent,mia)
and, to give an example containing a variable, jealous(marcellus,W).

But note that the definition allows far more complex terms than this. In fact, it allows
us to to keep nesting complex terms inside complex terms indefinitely (that is, it is a
recursive definition). For example

hide(X,father(father(father(butch))))

is a perfectly ok complex term. Its functor is hide, and it has two arguments: the vari-
able X, and the complex term father(father(father(butch))). This complex term
has father as its functor, and another complex term, namely father(father(butch)),
as its sole argument. And the argument of this complex term, namely father(butch),
is also complex. But then the nesting “bottoms out”, for the argument here is the con-
stant butch.

As we shall see, such nested (or recursively structured) terms enable us to represent
many problems naturally. In fact the interplay between recursive term structure and
variable matching is the source of much of Prolog’s power.

The number of arguments that a complex term has is called its arity. For instance,
woman(mia) is a complex term with arity 1, while loves(vincent,mia) is a complex
term with arity 2.

Arity is important to Prolog. Prolog would be quite happy for us to define two pred-
icates with the same functor but with a different number of arguments. For example,
we are free to define a knowledge base that defines a two place predicate love (this
might contain such facts as love(vincent,mia)), and also a three place love predi-
cate (which might contain such facts as love(vincent,marcellus,mia)). However,
if we did this, Prolog would treat the two place love and the three place love as com-
pletely different predicates.

When we need to talk about predicates and how we intend to use them (for example,
in documentation) it is usual to use a suffix / followed by a number to indicate the
predicate’s arity. To return to KB2, instead of saying that it defines predicates

listensToMusic

happy

playsAirGuitar

1.3. Exercises 11

we should really say that it defines predicates

listensToMusic/1

happy/1

playsAirGuitar/1

And Prolog can’t get confused about a knowledge base containing the two different
love predicates, for it regards the love/2 predicate and the love/3 predicate as com-
pletely distinct.

1.3 Exercises

Exercise 1.1 Which of the following sequences of characters are atoms, which are
variables, and which are neither?

1. vINCENT

2. Footmassage

3. variable23

4. Variable2000

5. big_kahuna_burger

6. ’big kahuna burger’

7. big kahuna burger

8. ’Jules’

9. _Jules

10. ’_Jules’

Exercise 1.2 Which of the following sequences of characters are atoms, which are
variables, which are complex terms, and which are not terms at all? Give the functor
and arity of each complex term.

1. loves(Vincent,mia)

2. ’loves(Vincent,mia)’

3. Butch(boxer)

4. boxer(Butch)

5. and(big(burger),kahuna(burger))

6. and(big(X),kahuna(X))

7. _and(big(X),kahuna(X))

12 Chapter 1. Facts, Rules, and Queries

8. (Butch kills Vincent)

9. kills(Butch Vincent)

10. kills(Butch,Vincent

Exercise 1.3 How many facts, rules, clauses, and predicates are there in the follow-
ing knowledge base? What are the heads of the rules, and what are the goals they
contain?

woman(vincent).

woman(mia).

man(jules).

person(X) :- man(X); woman(X).

loves(X,Y) :- knows(Y,X).

father(Y,Z) :- man(Y), son(Z,Y).

father(Y,Z) :- man(Y), daughter(Z,Y).

Exercise 1.4 Represent the following in Prolog:

1. Butch is a killer.

2. Mia and Marcellus are married.

3. Zed is dead.

4. Marcellus kills everyone who gives Mia a footmassage.

5. Mia loves everyone who is a good dancer.

6. Jules eats anything that is nutritious or tasty.

Exercise 1.5 Suppose we are working with the following knowledge base:

wizard(ron).

hasWand(harry).

quidditchPlayer(harry).

wizard(X) :- hasBroom(X),hasWand(X).

hasBroom(X) :- quidditchPlayer(X).

How does Prolog respond to the following queries?

1. wizard(ron).

2. witch(ron).

3. wizard(hermione).

4. witch(hermione).

5. wizard(harry).

6. wizard(Y).

7. witch(Y).

1.4. Practical Session 1 13

1.4 Practical Session 1

Don’t be fooled by the fact that the descriptions of the practical sessions are much
shorter than the text you have just read — the practical part of the course is definitely
the most important. Yes, you need to read the text and do the exercises, but that’s not
enough to become a Prolog programmer. To really master the language you need to sit
down in front of a computer and play with Prolog — a lot!

The goal of the first practical session is for you to become familiar with the basics of
how to create and run simple Prolog programs. Now, because there are many different
implementations of Prolog, and many different operating systems you can run them
under, we can’t be too specific here. Rather, what we’ll do is describe in very gen-
eral terms what is involved in running Prolog, list the practical skills you will need to
master, and make some suggestions for things to do.

The simplest way to run a Prolog program is as follows. You have a file with your
Prolog program in it (for example, you may have a file kb2.pl which contains the
knowledge base KB2). You then start Prolog running. Prolog will display its prompt,
something like

?-

which indicates that it is ready to accept a query.

Now, at this stage, Prolog knows absolutely nothing about KB2 (or indeed anything
else). To see this, type in the command listing, followed by a full stop, and hit
return. That is, type

?- listing.

and press the return key.

Now, the listing command is a special in-built Prolog predicate that instructs Prolog
to display the contents of the current knowledge base. But we haven’t yet told Prolog
about any knowledge bases, so it will just say

yes

This is a correct answer: as yet Prolog knows nothing — so it correctly displays all
this nothing and says yes. Actually, with more sophisticated Prolog implementations
you may get a little more (for example, the names of libraries that have been loaded)
but, one way or another, you will receive what is essentially an “I know nothing about
any knowledge bases!” answer.

So let’s tell Prolog about KB2. Assuming you’ve stored KB2 in the file kb2.pl, and
that this file is in the same directory where you’re running Prolog, all you have to type
is

?- [kb2].

14 Chapter 1. Facts, Rules, and Queries

This tells Prolog to consult the file kb2.pl, and load the contents as its new knowledge
base. Assuming that the kb2.pl contains no typos, Prolog will read it in, maybe print
out a message saying that it is consulting the file kb2.pl, and then answer:

yes

Incidentally, it is quite common to store Prolog code in files with a .pl suffix. It’s a
useful indication of what the file contains (namely Prolog code) and with many Prolog
implementations you don’t actually have to type in the .pl suffix when you consult a
file.

Ok, so Prolog should now know about all the KB2 predicates. And we can check
whether it does by using the listing command again:

?- listing.

If you do this, Prolog will list (something like) the following on the screen:

listensToMusic(mia).

happy(yolanda).

playsAirGuitar(mia) :-

listensToMusic(mia).

playsAirGuitar(yolanda) :-

listensToMusic(yolanda).

listensToMusic(yolanda):-

happy(yolanda).

yes

That is, it will list the facts and rules that make up KB2, and then say yes. Once again,
you may get a little more than this, such as the locations of various libraries that have
been loaded.

Incidentally, listing can be used in other ways. For example, typing

?- listing(playsAirGuitar).

simply lists all the information in the knowledge base about the playsAirGuitar pred-
icate. So in this case Prolog will display

playsAirGuitar(mia) :-

listensToMusic(mia).

playsAirGuitar(yolanda) :-

listensToMusic(yolanda).

yes

1.4. Practical Session 1 15

Well — now you’re ready to go. KB2 is loaded and Prolog is running, so you can (and
should!) start making exactly the sort of inquiries we discussed in the text ...

But let’s back up a little, and summarize a few of the practical skills you will need to
master to get this far:

� You will need to know some basic facts about the operating system you are using,
such as the directory structure it uses. After all, you will need to know how to
save the files containing programs where you want them.

� You will need to know how to use some sort of text editor, in order to write and
modify programs. Some Prolog implementations come with in-built text editors,
but if you already know a text editor (such as Emacs) it is probably a better idea
to use this to write your Prolog code.

� You may want to take example Prolog programs from the internet. So make sure
you know how to use a browser to find what you want, and to store the code
where you want it.

� Make sure you know how to start Prolog, and consult files from it.

The sooner you pick up these skills, the better. With them out of the way (which
shouldn’t take long) you can start concentrating on mastering Prolog (which will take
a lot longer).

But assuming you have mastered these skills, what next? Quite simply, play with Pro-
log! Consult the various knowledge bases discussed today, and check that the queries
discussed really do work the way we said they did. In particular, take a look at KB5
and make sure you understand why you get those peculiar “jealousy” relations. Try
posing new queries. Experiment with the listing predicate (it’s a useful tool). Type
in the knowledge base used in Exercise 5, and check whether your answers are correct.
Best of all, think of some simple domain that interests you, and create a brand-new
knowledge base from scratch ...

16 Chapter 1. Facts, Rules, and Queries

2

Matching and Proof Search

Today’s lecture has two main goals:

1. To discuss the idea of matching in Prolog, and to explain how Prolog matching
differs from standard unification. Along the way, we’ll introduce =, the built-in
Prolog predicate for matching.

2. To explain the search strategy Prolog uses when it tries to prove something.

2.1 Matching

When working with knowledge base KB4 in the previous chapter, we introduced the
term matching. We said, e.g. that Prolog matches woman(X) with woman(mia), thereby
instantiating the variable X to mia. We will now have a close look at what matching
means.

Recall that there are three types of term:

1. Constants. These can either be atoms (such as vincent) or numbers (such as
24).

2. Variables.

3. Complex terms. These have the form: functor(term_1,...,term_n).

We are now going to define when two terms match. The basic idea is this:

Two terms match, if they are equal or if they contain variables that can be
instantiated in such a way that the resulting terms are equal.

That means that the terms mia and mia match, because they are the same atom. Sim-
ilarly, the terms 42 and 42 match, because they are the same number, the terms X

and X match, because they are the same variable, and the terms woman(mia) and
woman(mia) match, because they are the same complex term. The terms woman(mia)
and woman(vincent), however, do not match, as they are not the same (and neither of
them contains a variable that could be instantiated to make them the same).

Now, what about the terms mia and X? They are not the same. However, the variable X

can be instantiated to mia which makes them equal. So, by the second part of the above

18 Chapter 2. Matching and Proof Search

definition, mia and X match. Similarly, the terms woman(X) and woman(mia) match,
because they can be made equal by instantiating X to mia. How about loves(vincent,X)
and loves(X,mia)? It is impossible to find an instantiation of X that makes the two
terms equal, and therefore they don’t match. Do you see why? Instantiating X to
vincent would give us the terms loves(vincent,vincent) and loves(vincent,mia),
which are obviously not equal. However, instantiating X to mia, would yield the terms
loves(vincent,mia) and loves(mia,mia), which aren’t equal either.

Usually, we are not only interested in the fact that two terms match, but we also want
to know in what way the variables have to be instantiated to make them equal. And
Prolog gives us this information. In fact, when Prolog matches two terms it performs
all the necessary instantiations, so that the terms really are equal afterwards. This
functionality together with the fact that we are allowed to build complex terms (that is,
recursively structured terms) makes matching a quite powerful mechanism. And as we
said in the previous chapter: matching is one of the fundamental ideas in Prolog.

Here’s a more precise definition for matching which not only tells us when two terms
match, but one which also tells us what we have to do to the variables to make the
terms equal.

1. If term1 and term2 are constants, then term1 and term2 match if and only if
they are the same atom, or the same number.

2. If term1 is a variable and term2 is any type of term, then term1 and term2

match, and term1 is instantiated to term2. Similarly, if term2 is a variable
and term1 is any type of term, then term1 and term2 match, and term2 is
instantiated to term1. (So if they are both variables, they’re both instantiated to
each other, and we say that they share values.)

3. If term1 and term2 are complex terms, then they match if and only if:

(a) They have the same functor and arity.

(b) All their corresponding arguments match

(c) and the variable instantiations are compatible. (I.e. it is not possible to
instantiate variable X to mia, when matching one pair of arguments, and to
then instantiate X to vincent, when matching another pair of arguments.)

4. Two terms match if and only if it follows from the previous three clauses that
they match.

Note the form of this definition. The first clause tells us when two constants match.
The second term clause tells us when two terms, one of which is a variable, match:
such terms will always match (variables match with anything). Just as importantly,
this clause also tells what instantiations we have to perform to make the two terms the
same. Finally, the third clause tells us when two complex terms match.

The fourth clause is also very important: it tells us that the first three clauses completely
define when two terms match. If two terms can’t be shown to match using Clauses 1-3,
then they don’t match. For example, batman does not match with daughter(ink).
Why not? Well, the first term is a constant, the second is a complex term. But none
of the first three clauses tell us how to match two such terms, hence (by clause 4) they
don’t match.

2.1. Matching 19

2.1.1 Examples

We’ll now look at lots of examples to make this definition clear. In these examples
we’ll make use of an important built-in Prolog predicate, the =/2 predicate (recall that
the /2 at the end is to indicate that this predicate takes two arguments).

Quite simply, the =/2 predicate tests whether its two arguments match. For example,
if we pose the query

=(mia,mia).

Prolog will respond ‘yes’, and if we pose the query

=(mia,vincent).

Prolog will respond ‘no’.

But we usually wouldn’t pose these queries in quite this way. Let’s face it, the notation
=(mia,mia) is rather unnatural. It would be much nicer if we could use infix notation
(that is, put the = functor between its arguments) and write things like:

mia = mia .

And in fact, Prolog lets us do this. So in the examples that follow we’ll use the (much
nicer) infix notation.

Let’s return to this example:

mia = mia.

yes

Why does Prolog say ‘yes’? This may seem like a silly question: surely it’s obvious
that the terms match! That’s true, but how does this follow from the definition given
above? It is very important that you learn to think systematically about matching (it is
utterly fundamental to Prolog), and ‘thinking systematically’ means relating the exam-
ples to the definition of matching given above. So let’s think this example through.

The definition has three clauses. Clause 2 is for when one argument is a variable,
and clause 3 is for when both arguments are complex terms, so these are no use here.
However clause 1 is relevant to our example. This tells us that two constants unify if
and only if they are are exactly the same object. As mia and mia are the same atom,
matching succeeds.

A similar argument explains the following responses:

2 = 2.

yes

mia = vincent.

no

20 Chapter 2. Matching and Proof Search

Once again, clause 1 is relevant here (after all, 2, mia, and vincent are all constants).
And as 2 is the same number as 2, and as mia is not the same atom as vincent, Prolog
responds ‘yes’ to the first query and ‘no’ to the second.

However clause 1 does hold one small surprise for us. Consider the following query:

’mia’ = mia.

yes

What’s going here? Why do these two terms match? Well, as far as Prolog is con-
cerned, ’mia’ and mia are the same atom. In fact, for Prolog, any atom of the form
’symbols’ is considered the same entity as the atom of the form symbols. This can
be a useful feature in certain kinds of programs, so don’t forget it.

On the other hand, to the the query

’2’ = 2.

Prolog will respond ‘no’. And if you think about the definitions given in Lecture 1,
you will see that this has to be the way things work. After all, 2 is a number, but ’2’ is
an atom. They simply cannot be the same.

Let’s try an example with a variable:

mia = X.

X = mia

yes

Again, this in an easy example: clearly the variable X can be matched with the constant
mia, and Prolog does so, and tells us that it has made this matching. Fine, but how does
this follow from our definition?

The relevant clause here is clause 2. This tells us what happens when at least one of the
arguments is a variable. In our example it is the second term which is the variable. The
definition tells us unification is possible, and also says that the variable is instantiated
to the first argument, namely mia. And this, of course, is exactly what Prolog does.

Now for an important example: what happens with the following query?

X = Y.

Well, depending on your Prolog implementation, you may just get back the output

X = Y.

yes

Prolog is simply agreeing that the two terms unify (after all, variables unify with any-
thing, so certainly with each other) and making a note that from now on, X and Y denote
the same object. That is, if ever X is instantiated, Y will be instantiated too, and to the
same thing.

On the other hand, you may get the following output:

2.1. Matching 21

X = _5071

Y = _5071

Here, both arguments are variables. What does this mean?

Well, the first thing to realize is that the symbol _5071 is a variable (recall from Lecture
1 that strings of letters and numbers that start with a _ are variables). Now look at clause
2 of the definition. This tells us that when two variables are matched, they share values.
So what Prolog is doing here is to create a new variable (namely _5071) and saying
that, from now on, both X and Y share the value of this variable. That is, in effect,
Prolog is creating a common variable name for the two original variables. Incidentally,
there’s nothing magic about the number 5071. Prolog just needs to generate a brand
new variable name, and using numbers is a handy way to do this. It might just as well
generate _5075, or _6189, or whatever.

Here is another example involving only atoms and variables. How do you think will
Prolog respond?

X = mia, X = vincent.

Prolog will respond ’no’. This query involves two goals, X = mia and X = vincent.
Taken seperately, Prolog would succeed for both of them, instantiating X to mia in the
first case and to vincent in the second. And that’s exactly the problem here: once
Prolog has worked through the first query, X is instantiated, and therefore equal, to
mia, so that that it doesn’t match with vincent anymore and the second goal fails.

Now, let’s look at an example involving complex terms:

kill(shoot(gun),Y) = kill(X,stab(knife)).

X = shoot(gun)

Y = stab(knife)

yes

Clearly the two complex terms match if the stated variable instantiations are carried
out. But how does this follow from the definition? Well, first of all, Clause 3 has to
be used here because we are trying to match two complex terms. So the first thing we
need to do is check that both complex terms have the same functor (that is: they use
the same atom as the functor name and have the same number of arguments). And they
do. Clause 3 also tells us that we have to match the corresponding arguments in each
complex term. So do the first arguments, shoot(gun) and X, match? By Clause 2, yes,
and we instantiate X to shoot(gun). So do the second arguments, Y and stab(knife),
match? Again by Clause 2, yes, and we instantiate Y to kill(stab).

Here’s another example with complex terms:

kill(shoot(gun), stab(knife)) = kill(X,stab(Y)).

X = shoot(gun)

Y = knife

yes

22 Chapter 2. Matching and Proof Search

It should be clear that the two terms match if these instantiations are carried out. But
can you explain, step by step, how this relates to the definition?

Here is a last example:

loves(X,X) = loves(marcellus,mia).

Do these terms match? No, they don’t. They are both complex terms and have the same
functor and arity. So, up to there it’s ok. But then, Clause 3 of the definition says that
all corresponding arguments have to match and that the variable instantiations have
to be compatible, and that is not the case here. Matching the first arguments would
instantiate X with marcellus and matching the second arguments would instantiate X

with mia.

2.1.2 The occurs check

Instead of saying that Prolog matches terms, you’ll find that many books say that Pro-
log unifies terms. This is very common terminology, and we will often use it ourselves.
But while it does not really matter whether you call what Prolog does ‘unification’ or
‘matching’, there is one thing you do need to know: Prolog does not use a standard uni-
fication algorithm when it performs unification/matching. Instead, it takes a shortcut.
You need to know about this shortcut.

Consider the following query:

father(X) = X.

Do you think these terms match or not?

A standard unification algorithm would say: No, they don’t. Do you see why? Pick
any term and instantiate X to the term you picked. For example, if you instantiate X to
father(father(butch)), the left hand side becomes father(father(father(butch))),
and the right hand side becomes father(father(butch)). Obviously these don’t
match. Moreover, it makes no difference what you instantiate X to. No matter what
you choose, the two terms cannot possibly be made the same, for the term on the left
will always be one symbol longer than the term on the right (the functor father on the
left will always give it that one extra level). The two terms simply don’t match.

But now, let’s see what Prolog would answer to the above query. With old Prolog
implementations you would get a message like:

Not enough memory to complete query!

and a long string of symbols like:

X = father(father(father(father(father(father(father(father

(father(father(father(father(father(father(father(father(father

(father(father(father(father(father(father(father(father(father

(father(father(father(father(father(father(father(father(father

(father(father(father(father(father(father(father(father(father

2.1. Matching 23

Prolog is desperately trying to match these terms, but it won’t succeed. That strange
variable X, which occurs as an argument to a functor on the left hand side, and on its
own on the right hand side, makes matching impossible.

To be fair, what Prolog is trying to do here is reasonably intelligent. Intuitively, the
only way the two terms could be made to match would be if X was instantiated to
‘a term containing an infinitely long string of father functors’, so that the effect of
the extra father functor on the left hand side was canceled out. But terms are finite
entities. There is no such thing as a ‘term containing an infinitely long string of father
functors’. Prolog’s search for a suitable term is doomed to failure, and it learns this the
hard way when it runs out of memory.

Now, current Prolog implementations have found a way of coping with this problem.
Try to pose the query father(X) = X to SICStus Prolor or SWI. The answer will be
something like:

X = father(father(father(father(father(father(...))))))))))

The dots are indicating that there is an infinite nesting of father functors. So, newer
versions of Prolog can detect cycles in terms without running our of memory and have
a finite internal representation of such infinite terms.

Still, a standard unification algorithm works differently. If we gave such an algorithm
the same example, it would look at it and tell us that the two terms don’t unify. How
does it do this? By carrying out the occurs check. Standard unification algorithms
always peek inside the structure of the terms they are asked to unify, looking for strange
variables (like the X in our example) that would cause problems.

To put it another way, standard unification algorithms are pessimistic. They first look
for strange variables (using the occurs check) and only when they are sure that the two
terms are ‘safe’ do they go ahead and try and match them. So a standard unification
algorithm will never get locked into a situation where it is endlessly trying to match
two unmatchable terms.

Prolog, on the other hand, is optimistic. It assumes that you are not going to give it
anything dangerous. So it does not make an occurs check. As soon as you give it two
terms, it charges full steam ahead and tries to match them.

As Prolog is a programming language, this is an intelligent strategy. Matching is one of
the fundamental processes that makes Prolog work, so it needs to be carried out as fast
as possible. Carrying out an occurs check every time matching was called for would
slow it down considerably. Pessimism is safe, but optimism is a lot faster!

Prolog can only run into problems if you, the programmer, ask it to do something
impossible like unify X with father(X). And it is unlikely you will ever ask it to
anything like that when writing a real program.

2.1.3 Programming with matching

As we’ve said, matching is a fundamental operation in Prolog. It plays a key role in
Prolog proof search (as we shall soon learn), and this alone makes it vital. However,
as you get to know Prolog better, it will become clear that matching is interesting and
important in its own right. Indeed, sometimes you can write useful programs simply

24 Chapter 2. Matching and Proof Search

by using complex terms to define interesting concepts. Matching can then be used to
pull out the information you want.

Here’s a simple example of this, due to Ivan Bratko. The following two line knowledge
base defines two predicates, namely vertical/2 and horizontal/2, which specify
what it means for a line to be vertical or horizontal respectively.

vertical(line(point(X,Y),point(X,Z))).

horizontal(line(point(X,Y),point(Z,Y))).

Now, at first glance this knowledge base may seem too simple to be interesting: it con-
tains just two facts, and no rules. But wait a minute: the two facts are expressed using
complex terms which again have complex terms as arguments. If you look closely, you
see that there are three levels of nesting terms into terms. Moreover, the deepest level
arguments are all variables, so the concepts are being defined in a general way. Maybe
its not quite as simple as it seems. Let’s take a closer look.

Right down at the bottom level, we have a complex term with functor point and two
arguments. Its two arguments are intended to be instantiated to numbers: point(X,Y)
represents the Cartesian coordinates of a point. That is, the X indicates the horizontal
distance the point is from some fixed point, while the Y indicates the vertical distance
from that same fixed point.

Now, once we’ve specified two distinct points, we’ve specified a line, namely the
line between them. In effect, the two complex terms representing points are bundled
toghether as the two arguments of another complex term with the functor line. So,
we represent a line by a complex term which has two arguments which are complex
terms as well and represent points. We’re using Prolog’s ability to build complex terms
to work our way up a hierarchy of concepts.

To be vertical or to be horizontal are properties of lines. The predicates vertical and
horizontal therefore both take one argument which represents a line. The definition
of vertical/1 simply says: a line that goes between two points that have the same
x-coordinate is vertical. Note how we capture the effect of ‘the same x-coordinate’ in
Prolog: we simply make use of the same variable X as the first argument of the two
complex terms representing the points.

Similarly, the definition of horizontal/1 simply says: a line that goes between two
points that have the same y-coordinate is horizontal. To capture the effect of ‘the same
y-coordinate’, we use the same variable Y as the second argument of the two complex
terms representing the points.

What can we do with this knowledge base? Let’s look at some examples:

vertical(line(point(1,1),point(1,3))).

yes

This should be clear: the query matches with the definition of vertical/1 in our little
knowledge base (and in particular, the representations of the two points have the same
first argument) so Prolog says ‘yes’. Similarly we have:

2.1. Matching 25

vertical(line(point(1,1),point(3,2))).

no

This query does not match the definition of vertical/1 (the representations of the
two points have different first arguments) so Prolog says ‘no’.

But we can ask more general questions:

horizontal(line(point(1,1),point(2,Y))).

Y = 1 ;

no

Here our query is: if we want a horizontal line between a point at (1,1), and point
whose x-coordinate is 2, what should the y-coordinate of that second point be? Prolog
correctly tells us that the y-coordinate should be 2. If we then ask Prolog for a second
possibility (note the ;) it tells us that no other possibilities exist.

Now consider the following:

horizontal(line(point(2,3),P)).

P = point(_1972,3) ;

no

This query is: if we want a horizontal line between a point at (2,3), and some other
point, what other points are permissible? The answer is: any point whose y-coordinate
is 3. Note that the _1972 in the first argument of the answer is a variable, which is
Prolog’s way of telling us that any x-coordinate at all will do.

A general remark: the answer to our last query, point(_1972,3), is structured. That
is, the answer is a complex term, representing a sophisticated concept (namely ‘any
point whose y-coordinate is 3’). This structure was built using matching and nothing
else: no logical inferences (and in particular, no uses of modus ponens) were used
to produce it. Building structure by matching turns out to be a powerful idea in Pro-
log programming, far more powerful than this rather simple example might suggest.
Moreover, when a program is written that makes heavy use of matching, it is likely to
be extremely efficient. We will study a beautiful example in a later lecture when we
discuss difference lists, which are used to implement Prolog built-in grammar system
Definite Clause Grammars (DCGs).

This style of programming is particularly useful in applications where the important
concepts have a natural hierarchical structure (as they did in the simple knowledge base
above), for we can then use complex terms to represent this structure, and matching to
access it. This way of working plays an important role in computational linguistics,
because information about language has a natural hierarchical structure (think of the
way we divide sentences into noun phrases and verb phrases, and noun phrases into
determiners and nouns, and so on).

26 Chapter 2. Matching and Proof Search

2.2 Proof Search

Now that we know about matching, we are in a position to learn how Prolog actually
searches a knowledge base to see if a query is satisfied. That is, we are now able
to learn about proof search. We will introduce the basic ideas involved by working
through a simple example.

Suppose we are working with the following knowledge base

f(a).

f(b).

g(a).

g(b).

h(b).

k(X) :- f(X),g(X),h(X).

Suppose we then pose the query

k(X).

You will probably see that there is only one answer to this query, namely k(b), but
how exactly does Prolog work this out? Let’s see.

Prolog reads the knowledge base, and tries to match k(X) with either a fact, or the head
of a rule. It searches the knowledge base top to bottom, and carries out the matching,
if it can, at the first place possible. Here there is only one possibility: it must match
k(X) to the head of the rule k(X) :- f(X),g(X),h(X).

When Prolog matches the variable in a query to a variable in a fact or rule, it generates
a brand new variable to represent that the variables are now sharing. So the original
query now reads:

k(_G348)

and Prolog knows that

k(_G348) :- f(_G348),g(_G348),h(_G348).

So what do we now have? The query says: ‘I want to find an individual that has
property k’. The rule says,‘an individual has property k if it has properties f, g, and h’.
So if Prolog can find an individual with properties f, g, and h, it will have satisfied the
original query. So Prolog replaces the original query with the following list of goals:

f(_G348),g(_G348),h(_G348).

2.2. Proof Search 27

We will represent this graphically as

k(X)

f(_G348),g(_G348),h(_G348)

X = _G348

That is, our original goal is to prove k(X). When matching it with the head of the rule
in the knowledge base X and the internal variable _G348 are made equal and we are left
with the goals f(_G348),g(_G348),h(_G348).

Now, whenever it has a list of goals, Prolog tries to satisfy them one by one, working
through the list in a left to right direction. The leftmost goal is f(_G348), which reads:
‘I want an individual with property f’. Can this goal be satisfied? Prolog tries to do so
by searching through the knowledge base from top to bottom. The first thing it finds
that matches this goal is the fact f(a). This satisfies the goal f(_G348) and we are left
with two more goals to go. When matching f(_G348) to f(a), X is instantiated to a.
This applies to all occurrences of X in the list of goals. So, the list of remaining goals
is:

g(a),h(a)

and our graphical representation of the proof search looks like this:

k(X)

f(_G348),g(_G348),h(_G348)

X = _G348

g(a),h(a)

_G348 = a

The fact g(a) is in the knowledge base. So the next goal we have to prove is satisfied
too, and the goal list is now

h(a)

and the graphical representation

28 Chapter 2. Matching and Proof Search

k(X)

f(_G348),g(_G348),h(_G348)

X = _G348

g(a),h(a)

_G348 = a

h(a)

But there is no way to satisfy this goal. The only information h we have in the knowl-
edge base is h(b) and this won’t match h(a).

So Prolog decides it has made a mistake and checks whether at some point there was
another possibility for matching a goal with a fact or the head of a rule in the knowledge
base. It does this by going back up the path in the graphical representation that it was
coming down on. There is nothing else in the knowledge base that matches with g(a),
but there is another possibility for matching f(_G348). Points in the search where
there are several alternatives for matching a goal against the knowledge base are called
choice points. Prolog keeps track of choice points and the choices that it has made
there, so that if it makes a wrong choice, it can go back to the choice point and try
something else. This is called backtracking.

So, Prolog backtracks to the last choice point, where the list of goals was:

f(_G348),g(_G348),h(_G348).

Prolog has to redo all this. Prolog tries to resatisfy the first goal, by searching further
in the knowledge base. It sees that it can match the first goal with information in the
knowledge base by matching f(_G348) with f(b). This satisfies the goal f(_G348)
and instantiates X to b, so that the remaining goal list is

g(b),h(b).

But g(b) is a fact in the knowledge base, so this is satisfied too, leaving the goal list:

h(b).

And this fact too is in the knowledge base, so this goal is also satisfied. Important:
Prolog now has an empty list of goals. This means that it has proved everything it
had to to establish the original goal, namely k(X). So this query is satisfiable, and
moreover, Prolog has also discovered what it has to do to satisfy it, namely instantiate
X to b.

Representing these last steps graphically gives us

2.2. Proof Search 29

k(X)

f(_G348),g(_G348),h(_G348)

X = _G348

g(a),h(a)

_G348 = a

h(a)

g(b),h(b)

_G348 = b

h(b)

It is interesting to consider what happens if we then ask for another solution by typing:

;

This forces Prolog to backtrack to the last choice point, to try and find another possi-
bility. However, there is no other choice point, as there are no other possibilities for
matching h(b), g(b), f(_G348), or k(X) with clauses in the knowledge base. So at
this point Prolog would correctly have said ‘no’. Of course, if there had been other
rules involving k, Prolog would have gone off and tried to use them in exactly the way
we have described: that is, by searching top to bottom in the knowledge base, left to
right in goal lists, and backtracking to the previous choice point whenever it fails.

Now, look at the graphical representation that we built while searching for proofs of
k(X). It is a tree structure. The nodes of the tree say which are the goals that have to
be satisfied at a certain point during the search and at the edges we keep track of the
variable instantiations that are made when the current goal (i.e. the first one in the list
of goals) is match to a fact or the head of a rule in the knowledge base. Such trees are
called search trees and they are a nice way of visualizing the steps that are taken in
searching for a proof of some query. Leave nodes which still contain unsatisfied goals
are point where Prolog failed, because it made a wrong decision somewhere along the
path. Leave nodes with an empty goal list, correspond to a possible solution. The
information on the edges along the path from the root node to that leave tell you what
are the variable instantiations with which the query is satisfied.

Let’s have a look at another example. Suppose that we are working with the following
knowledge base:

loves(vincent,mia).

loves(marcellus,mia).

jealous(X,Y) :- loves(X,Z),loves(Y,Z).

30 Chapter 2. Matching and Proof Search

Now, we pose the query

jealous(X,Y).

The search tree for this query looks like this:

jealous(X,Y)

loves(_158,_663),loves(_178,_663)

X =
_158,
Y = _178

loves(_178,mia)

_158 = vincent,
_663 = mia

_178 = vincent
_178 = marcellus

loves(_178,mia)

_158 = marcellus,
_663 = mia

_178 = vin-
cent

_178 = marcellus

There is only one possibility of matching jealous(X,Y) against the knowledge base.
That is by using the rule

jealous(X,Y) :- loves(X,Z),loves(Y,Z).

The new goals that have to be satisfied are then

loves(_G100,_G101),loves(_G102,_G101)

Now, we have to match loves(_G100,_G101) against the knowledge base. There
are two ways of how this can be done: it can either be matched with the first fact
or with the second fact. This is why the path branches at this point. In both cases
the goal loves(_G102,mia) is left, which also has two possibilities of how it can be
satisfied, namely the same ones as above. So, we have four leave nodes with an empty
goal list, which means that there are four ways for satisfying the query. The variable
instantiation for each of them can be read off the path from the root to the leaf node.
They are

1. X = _158 = vincent and Y = _178 = vincent

2. X = _158 = vincent and Y = _178 = marcellus

3. X = _158 = marcellus and Y = _178 = vincent

4. X = _158 = marcellus and Y = _178 = marcellus

2.3. Exercises 31

2.3 Exercises

Exercise 2.1 Which of the following pairs of terms match? Where relevant, give the
variable instantiations that lead to successful matching.

1. bread = bread

2. ’Bread’ = bread

3. ’bread’ = bread

4. Bread = bread

5. bread = sausage

6. food(bread) = bread

7. food(bread) = X

8. food(X) = food(bread)

9. food(bread,X) = food(Y,sausage)

10. food(bread,X,beer) = food(Y,sausage,X)

11. food(bread,X,beer) = food(Y,kahuna_burger)

12. food(X) = X

13. meal(food(bread),drink(beer)) = meal(X,Y)

14. meal(food(bread),X) = meal(X,drink(beer))

Exercise 2.2 We are working with the following knowledge base:

house_elf(dobby).

witch(hermione).

witch(’McGonagall’).

witch(rita_skeeter).

magic(X):-house_elf(X).

magic(X):-wizard(X).

magic(X):-witch(X).

Which of the following queries are satisfied? Where relevant, give all the variable
instantiations that lead to success.

1. ?- magic(house_elf).

2. ?- wizard(harry).

3. ?- magic(wizard).

4. ?- magic(’McGonagall’).

5. ?- magic(Hermione).

32 Chapter 2. Matching and Proof Search

Draw the search tree for the fifth query magic(Hermione).

Exercise 2.3 Here is a tiny lexicon and mini grammar with only one rule which de-
fines a sentence as consisting of five words: an article, a noun, a verb, and again an
article and a noun.

word(article,a).

word(article,every).

word(noun,criminal).

word(noun,’big kahuna burger’).

word(verb,eats).

word(verb,likes).

sentence(Word1,Word2,Word3,Word4,Word5) :-

word(article,Word1),

word(noun,Word2),

word(verb,Word3),

word(article,Word4),

word(noun,Word5).

What query do you have to pose in order to find out which sentences the grammar
can generate? List all sentences that this grammar can generate in the order Prolog
will generate them. Make sure that you understand why Prolog generates them in this
order.

Exercise 2.4 Here are six English words:

abalone, abandon, anagram, connect, elegant, enhance.

They are to be arranged in a crossword puzzle like fashion in the grid given below.

The following knowledge base represents a lexicon containing these words.

word(abalone,a,b,a,l,o,n,e).

word(abandon,a,b,a,n,d,o,n).

word(enhance,e,n,h,a,n,c,e).

word(anagram,a,n,a,g,r,a,m).

word(connect,c,o,n,n,e,c,t).

word(elegant,e,l,e,g,a,n,t).

2.4. Practical Session 2 33

Write a predicate crosswd/6 that tells us how to fill the grid, i.e. the first three argu-
ments should be the vertical words from left to right and the following three arguments
the horizontal words from top to bottom.

2.4 Practical Session 2

By this stage, you should have had your first taste of running Prolog programs. The
purpose of the second practical session is to suggest two sets of keyboard exercises
which will help you get familiar with the way Prolog works. The first set has to do
with matching , the second with proof search.

First of all, start up your Prolog interpreter. That is, get a screen displaying the usual
‘I’m ready to start’ prompt, which probably looks something like:

?-

Now verify your answers to Exercise 1.1, the matching examples. You don’t need
to consult any knowledge bases, simply ask Prolog directly whether it is possible
to unify the terms by using the built-in =/2 predicate. For example, to test whether
food(bread,X) and food(Y,sausage) unify, just type in

food(bread,X) = food(Y,sausage).

and hit return.

You should also look at what happens when Prolog gets locked into an attempt to match
terms that can’t be matched because it doesn’t carry out an occurs check. For example,
see what happens when you give it the following query:

g(X,Y) = Y.

Ah yes! This is the perfect time to make sure you know how to abort a program that is
running wild!

Well, once you’ve figured that out, it’s time to move onto something new. There is an-
other important built-in Prolog predicate for answering queries about matching, namely
\=/2 (that is: a 2-place predicate \=). Roughly speaking, this works in the opposite
way to the =/2 predicate: it succeeds when its two arguments do not unify. For exam-
ple, the terms a and b do not unify, which explains the following dialogue:

a \= b

yes

Make sure you understand the way \=/2 predicate works by trying it out on (at least)
the following examples. But do this actively, not passively. That is, after you type in
an example, pause, and try to work out for yourself what Prolog is going to respond.
Only then hit return to see if you are right.

1. a \= a

34 Chapter 2. Matching and Proof Search

2. ’a’ \= a

3. A \= a

4. f(a) \= a

5. f(a) \= A

6. f(A) \= f(a)

7. g(a,B,c) \= g(A,b,C)

8. g(a,b,c) \= g(A,C)

9. f(X) \= X

Thus the \=/2 predicate is (essentially) the negation of the =/2 predicate: a query in-
volving one of these predicates will be satisfied when the corresponding query involv-
ing the other is not, and vice versa (this is the first example we have seen of a Prolog
mechanism for handling negation). But note that word ‘essentially’. Things don’t work
out quite that way, as you will realise if you think about the trickier examples you’ve
just tried out...

It’s time to move on and introduce one of the most helpful tools in Prolog: trace.
This is an built-in Prolog predicate that changes the way Prolog runs: it forces Prolog
to evaluate queries one step at a time, indicating what it is doing at each step. Prolog
waits for you to press return before it moves to the next step, so that you can see exactly
what is going on. It was really designed to be used as a debugging tool, but it’s also
really helpful when you’re learning Prolog: stepping through programs using trace is
an excellent way of learning how Prolog proof search works.

Let’s look at an example. In the lecture, we looked at the proof search involved when
we made the query k(X) to the following knowledge base:

f(a).

f(b).

g(a).

g(b).

h(b).

k(X) :- f(X),g(X),h(X).

Suppose this knowledge base is in a file proof.pl. We first consult it:

1 ?- [proof].

% proof compiled 0.00 sec, 1,524 bytes

yes

We then type ‘trace.’ and hit return:

2.4. Practical Session 2 35

2 ?- trace.

Yes

Prolog is now in trace mode, and will evaluate all queries step by step. For example,
if we pose the query k(X), and then hit return every time Prolog comes back with a ?,
we obtain (something like) the following:

[trace] 2 ?- k(X).

Call: (6) k(_G348) ?

Call: (7) f(_G348) ?

Exit: (7) f(a) ?

Call: (7) g(a) ?

Exit: (7) g(a) ?

Call: (7) h(a) ?

Fail: (7) h(a) ?

Fail: (7) g(a) ?

Redo: (7) f(_G348) ?

Exit: (7) f(b) ?

Call: (7) g(b) ?

Exit: (7) g(b) ?

Call: (7) h(b) ?

Exit: (7) h(b) ?

Exit: (6) k(b) ?

X = b

Yes

Study this carefully. That is, try doing the same thing yourself, and try to relate this
output to the discussion of the example in the text. To get you started, we’ll remark that
the third line is where the variable in the query is (wrongly) instantiated to a, and that
the line marked redo is when Prolog realizes it’s taken the wrong path, and backtracks
to instantiate the variable to b.

While learning Prolog, use trace, and use it heavily. It’s a great way to learn.

Oh yes: you also need to know how to turn trace off. Simply type ‘notrace.’ and hit
return:

notrace.

36 Chapter 2. Matching and Proof Search

3

Recursion

This lecture has two main goals:

1. To introduce recursive definitions in Prolog.

2. To show that there can be mismatches between the declarative meaning of a
Prolog program, and its procedural meaning.

3.1 Recursive definitions

Predicates can be defined recursively. Roughly speaking, a predicate is recursively
defined if one or more rules in its definition refers to itself.

3.1.1 Example 1: Eating

Consider the following knowledge base:

is_digesting(X,Y) :- just_ate(X,Y).

is_digesting(X,Y) :-

just_ate(X,Z),

is_digesting(Z,Y).

just_ate(mosquito,blood(john)).

just_ate(frog,mosquito).

just_ate(stork,frog).

At first glance this seems pretty ordinary: it’s just a knowledge base containing two
facts and two rules. But the definition of the is_digesting/2 predicate is recur-
sive. Note that is_digesting is (at least partially) defined in terms of itself, for the
is_digesting functor occurs on both the left and right hand sides of the second rule.
Crucially, however, there is an ‘escape’ from this circularity. This is provided by the
just_ate predicate, which occurs in both the first and second rules. (Significantly,
the right hand side of the first rule makes no mention of is_digesting.) Let’s now
consider both the declarative and procedural meanings of this rule.

The word declarative is used to talk about the logical meaning of Prolog knowledge
bases. That is, the declarative meaning of a Prolog knowledge base is simply ‘what

38 Chapter 3. Recursion

it says’, or ‘what it means, if we read it as a collection of logical statements’. And
the declarative meaning of this recursive definition is fairly straightforward. The first
clause (the ‘escape’ clause, the one that is not recursive, or as we shall usually call it,
the base clause), simply says that: if X has just eaten Y, then X is now digesting Y. This
is obviously a sensible definition.

So what about the second clause, the recursive clause? This says that: if X has just
eaten Z and Z is digesting Y, then X is digesting Y, too. Again, this is obviously a
sensible definition.

So now we know what this recursive definition says, but what happens when we pose
a query that actually needs to use this definition? That is, what does this definition
actually do? To use the normal Prolog terminology, what is its procedural meaning?

This is also reasonably straightforward. The base rule is like all the earlier rules we’ve
seen. That is, if we ask whether X is digesting Y, Prolog can use this rule to ask instead
the question: has X just eaten Y?

What about the recursive clause? This gives Prolog another strategy for determining
whether X is digesting Y: it can try to find some Z such that X has just eaten Z, and
Z is digesting Y. That is, this rule lets Prolog break the task apart into two subtasks.
Hopefully, doing so will eventually lead to simple problems which can be solved by
simply looking up the answers in the knowledge base. The following picture sums up
the situation:

X Y X Z Y

just_ate

is_digesting is_digesting

just_ate is_digesting

Let’s see how this works. If we pose the query:

?- is_digesting(stork,mosquito).

then Prolog goes to work as follows. First, it tries to make use of the first rule listed
concerning is_digesting; that is, the base rule. This tells it that X is digesting Y if
X just ate Y, By unifying X with stork and Y with mosquito it obtains the following
goal:

just_ate(stork,mosquito).

But the knowledge base doesn’t contain the information that the stork just ate the
mosquito, so this attempt fails. So Prolog next tries to make use of the second rule.
By unifying X with stork and Y with mosquito it obtains the following goals:

just_ate(stork,Z),

is_digesting(Z,mosquito).

That is, to show is_digesting(stork,mosquitp)}, Prolog needs to find a value for
Z such that, firstly,

just_ate(stork,Z).

3.1. Recursive definitions 39

and secondly,

is_digesting(Z,mosquito).

And there is such a value for Z, namely frog. It is immediate that

just_ate(stork,frog).

will succeed, for this fact is listed in the knowledge base. And deducing

is_digesting(frog,mosquito).

is almost as simple, for the first clause of is_digesting/2 reduces this goal to deduc-
ing

just_ate(frog,mosquito).

and this is a fact listed in the knowledge base.

Well, that’s our first example of a recursive rule definition. We’re going to learn a lot
more about them in the next few weeks, but one very practical remark should be made
right away. Hopefully it’s clear that when you write a recursive predicate, it should
always have at least two clauses: a base clause (the clause that stops the recursion
at some point), and one that contains the recursion. If you don’t do this, Prolog can
spiral off into an unending sequence of useless computations. For example, here’s an
extremely simple example of a recursive rule definition:

p :- p.

That’s it. Nothing else. It’s beautiful in its simplicity. And from a declarative perspec-
tive it’s an extremely sensible (if rather boring) definition: it says ‘if property p holds,
then property p holds’. You can’t argue with that.

But from a procedural perspective, this is a wildly dangerous rule. In fact, we have here
the ultimate in dangerous recursive rules: exactly the same thing on both sides, and no
base clause to let us escape. For consider what happens when we pose the following
query:

?- p.

Prolog asks itself: how do I prove p? And it realizes, ‘Hey, I’ve got a rule for that! To
prove p I just need to prove p!’. So it asks itself (again): how do I prove p? And it
realizes, ‘Hey, I’ve got a rule for that! To prove p I just need to prove p!’. So it asks
itself (yet again): how do I prove p? And it realizes, ‘Hey, I’ve got a rule for that! To
prove p I just need to prove p!” So then it asks itself (for the fourth time): how do I
prove p? And it realizes that...

If you make this query, Prolog won’t answer you: it will head off, looping desperately
away in an unending search. That is, it won’t terminate, and you’ll have to interrupt it.
Of course, if you use trace, you can step through one step at a time, until you get sick
of watching Prolog loop.

40 Chapter 3. Recursion

3.1.2 Example 2: Descendant

Now that we know something about what recursion in Prolog involves, it is time to ask
why it is so important. Actually, this is a question that can be answered on a number
of levels, but for now, let’s keep things fairly practical. So: when it comes to writing
useful Prolog programs, are recursive definitions really so important? And if so, why?

Let’s consider an example. Suppose we have a knowledge base recording facts about
the child relation:

child(charlotte,caroline).

child(caroline,laura).

That is, Caroline is a child of Charlotte, and Laura is a child of Caroline. Now suppose
we wished to define the descendant relation; that is, the relation of being a child of, or
a child of a child of, or a child of a child of a child of, or.... Here’s a first attempt to do
this. We could add the following two non-recursive rules to the knowledge base:

descend(X,Y) :- child(X,Y).

descend(X,Y) :- child(X,Z),

child(Z,Y).

Now, fairly obviously these definitions work up to a point, but they are clearly ex-
tremely limited: they only define the concept of descendant-of for two generations or
less. That’s ok for the above knowledge base, but suppose we get some more informa-
tion about the child-of relation and we expand our list of child-of facts to this:

child(martha,charlotte).

child(charlotte,caroline).

child(caroline,laura).

child(laura,rose).

Now our two rules are inadequate. For example, if we pose the queries

?- descend(martha,laura).

or

?- descend(charlotte,rose).

we get the answer ‘No!’, which is not what we want. Sure, we could ‘fix’ this by
adding the following two rules:

descend(X,Y) :- child(X,Z_1),

child(Z_1,Z_2),

child(Z_2,Y).

descend(X,Y) :- child(X,Z_1),

child(Z_1,Z_2),

child(Z_2,Z_3),

child(Z_3,Y).

3.1. Recursive definitions 41

But, let’s face it, this is clumsy and hard to read. Moreover, if we add further child-of
facts, we could easily find ourselves having to add more and more rules as our list of
child-of facts grow, rules like:

descend(X,Y) :- child(X,Z_1),

child(Z_1,Z_2),

child(Z_2,Z_3),

.

.

.

child(Z_17,Z_18).

child(Z_18,Z_19).

child(Z_19,Y).

This is not a particularly pleasant (or sensible) way to go!

But we don’t need to do this at all. We can avoid having to use ever longer rules
entirely. The following recursive rule fixes everything exactly the way we want:

descend(X,Y) :- child(X,Y).

descend(X,Y) :- child(X,Z),

descend(Z,Y).

What does this say? The declarative meaning of the base clause is: if Y is a child of Y,
then Y is a descendant of X. Obviously sensible.

So what about the recursive clause? It’s declarative meaning is: if Z is a child of X, and
Y is a descendant of Z, then Y is a descendant of X. Again, this is obviously true.

So let’s now look at the procedural meaning of this recursive predicate, by stepping
through an example. What happens when we pose the query:

descend(martha,laura)

Prolog first tries the first rule. The variable X in the head of the rule is unified with
martha and Y with laura and the next goal Prolog tries to prove is

child(martha,laura)

This attempt fails, however, since the knowledge base neither contains the fact child(martha,laura)
nor any rules that would allow to infer it. So Prolog backtracks and looks for an al-
ternative way of proving descend(martha,laura). It finds the second rule in the
knowledge base and now has the following subgoals:

child(martha,_633),

descend(_633,laura).

Prolog takes the first subgoal and tries to match it onto something in the knowledge
base. It finds the fact child(martha,charlotte) and the Variable _633 gets instan-
tiated to charlotte. Now that the first subgoal is satisfied, Prolog moves to the second
subgoal. It has to prove

42 Chapter 3. Recursion

descend(charlotte,laura)

This is the recursive call of the predicate descend/2. As before, Prolog starts with the
first rule, but fails, because the goal

child(charlotte,laura)

cannot be proved. Backtracking, Prolog finds that there is a second possibility to be
checked for descend(charlotte,laura), viz. the second rule, which again gives
Prolog two new subgoals:

child(charlotte,_1785),

descend(_1785,laura).

The first subgoal can be unified with the fact child(charlotte,caroline) of the
knowledge base, so that the variable _1785 is instantiated with caroline. Next Prolog
tries to prove

descend(caroline,laura).

This is the second recursive call of predicate descend/2. As before, it tries the first
rule first, obtaining the following new goal:

child(caroline,laura)

This time Prolog succeeds, since child(caroline,laura) is a fact in the database.
Prolog has found a proof for the goal descend(caroline,laura) (the second recur-
sive call). But this means that child(charlotte,laura) (the first recursive call) is
also true, which means that our original query descend(martha,laura) is true as
well.

Here is the search tree for the query descend(martha,laura). Make sure that you
understand how it relates to the discussion in the text; i.e. how Prolog traverses this
search tree when trying to prove this query.

3.1. Recursive definitions 43

descend(martha,laura)

child(martha, laura)
child(martha,_G490),
descend(_G490,laura)

descend(charlotte,laura)

_G490 = charlotte

child(charlotte,laura)
child(charlotte,_G494),
descend(_G494,
laura)

descend(caroline,laura)

_G494 = caroline

child(caroline,laura)

It should be obvious from this example that no matter how many generations of chil-
dren we add, we will always be able to work out the descendant relation. That is, the
recursive definition is both general and compact: it contains all the information in the
previous rules, and much more besides. In particular, the previous lists of non-recursive
rules only defined the descendant concept up to some fixed number of generations: we
would need to write down infinitely many non-recursive rules if we wanted to capture
this concept fully, and of course that’s impossible. But, in effect, that’s what the recur-
sive rule does for us: it bundles up all this information into just three lines of code.

Recursive rules are really important. They enable to pack an enormous amount of
information into a compact form and to define predicates in a natural way. Most of the
work you will do as a Prolog programmer will involve writing recursive rules.

3.1.3 Example 3: Successor

In the previous lectures we remarked that building structure through matching is a key
idea in Prolog programming. Now that we know about recursion, we can give more
interesting illustrations of this.

Nowadays, when human beings write numerals, they usually use decimal notation (0,
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, and so on) but as you probably know, there are
many other notations. For example, because computer hardware is generally based
on digital circuits, computers usually use binary notation to represent numerals (0, 1,
10, 11, 100, 101, 110, 111, 1000, and so on), for the 0 can be implemented as as
switch being off, the 1 as a switch being on. Other cultures use different systems. For
example, the ancient Babylonians used a base 64 system, while the ancient Romans
used a rather ad-hoc system (I, II, III, IV, V, VI, VII, VIII, IX, X). This last example

44 Chapter 3. Recursion

shows that notational issues can be important. If you don’t believe this, try figuring out
a systematic way of doing long-division in Roman notation. As you’ll discover, it’s a
frustrating task. In fact, the Romans had a group of professionals (analogs of modern
accountants) who specialized in this.

Well, here’s yet another way of writing numerals, which is sometimes used in mathe-
matical logic. It makes use of just four symbols: 0, succ, and the left and right brackets.
This style of numeral is defined by the following inductive definition:

1. 0 is a numeral.

2. If X is a numeral, then so is succ(X).

As is probably clear, succ can be read as short for successor. That is, succ(X) repre-
sents the number obtained by adding one to the number represented by X. So this is
a very simple notation: it simply says that 0 is a numeral, and that all other numerals
are built by stacking succ symbols in front. (In fact, it’s used in mathematical logic
because of this simplicity. Although it wouldn’t be pleasant to do household accounts
in this notation, it is a very easy notation to prove things about.) Now, by this stage it
should be clear that we can turn this definition into a Prolog program. The following
knowledge base does this:

numeral(0).

numeral(succ(X)) :- numeral(X).

So if we pose queries like

numeral(succ(succ(succ(0)))).

we get the answer ‘yes’. But we can do some more interesting things. Consider what
happens when we pose the following query:

numeral(X).

That is, we’re saying ‘Ok, show me some numerals’. Then we can have the following
dialogue with Prolog:

X = 0 ;

X = succ(0) ;

X = succ(succ(0)) ;

X = succ(succ(succ(0))) ;

X = succ(succ(succ(succ(0)))) ;

X = succ(succ(succ(succ(succ(0))))) ;

3.1. Recursive definitions 45

X = succ(succ(succ(succ(succ(succ(0)))))) ;

X = succ(succ(succ(succ(succ(succ(succ(0))))))) ;

X = succ(succ(succ(succ(succ(succ(succ(succ(0)))))))) ;

X = succ(succ(succ(succ(succ(succ(succ(succ(succ(0))))))))) ;

X = succ(succ(succ(succ(succ(succ(succ(succ(succ(succ(0))))))))))

yes

Yes, Prolog is counting: but what’s really important is how it’s doing this. Quite simply,
it’s backtracking through the recursive definition, and actually building numerals using
matching. This is an instructive example, and it is important that you understand it.
The best way to do so is to sit down and try it out, with trace turned on.

Building and binding. Recursion, matching, and proof search. These are ideas that lie
at the heart of Prolog programming. Whenever we have to generate or analyze recur-
sively structured objects (such as these numerals) the interplay of these ideas makes
Prolog a powerful tool. For example, in the next lecture we introduce lists, an ex-
tremely important recursive data structure, and we will see that Prolog is a natural list
processing language. Many applications (computational linguistics is a prime example)
make heavy use of recursively structured objects, such as trees and feature structures.
So it’s not particularly surprising that Prolog has proved useful in such applications.

3.1.4 Example 3: Addition

As a final example, let’s see whether we can use the representation of numerals that
we introduced in the previous section for doing simple arithmetic. Let’s try to define
addition. That is, we want to define a predicate add/3 which when given two numer-
als as the first and second argument returns the result of adding them up as its third
argument. E.g.

?- add(succ(succ(0)),succ(succ(0)),succ(succ(succ(succ(0))))).

yes

?- add(succ(succ(0)),succ(0),Y).

Y = succ(succ(succ(0)))

There are two things which are important to notice:

1. Whenever the first argument is 0, the third argument has to be the same as the
second argument:

?- add(0,succ(succ(0)),Y).

Y = succ(succ(0))

?- add(0,0,Y).

Y = 0

This is the case that we want to use for the base clause.

46 Chapter 3. Recursion

2. Assume that we want to add the two numerals X and Y (e.g. succ(succ(succ(0)))
and succ(succ(0))) and that X is not 0. Now, if X’ is the numeral that has one
succ functor less than X (i.e. succ(succ(0)) in our example) and if we know
the result – let’s call it Z – of adding X’ and Y (namely succ(succ(succ(succ(0))))),
then it is very easy to compute the result of adding X and Y: we just have to add
one succ-functor to Z. This is what we want to express with the recursive clause.

Here is the predicate definition that expresses exactly what we just said:

add(0,Y,Y).

add(succ(X),Y,succ(Z)) :-

add(X,Y,Z).

So, what happens, if we give Prolog this predicate definition and then ask:

add(succ(succ(succ(0))), succ(succ(0)), R)

Let’s go through the way Prolog processes this query step by step. The trace and the
search tree are given below.

The first argument is not 0 which means that only the second clause for add matches.
This leads to a recursive call of add. The outermost succ functor is stripped off the
first argument of the original query, and the result becomes the first argument of the
recursive query. The second argument is just passed on to the recursive query, and the
third argument of the recursive query is a variable, the internal variable _G648 in the
trace given below. _G648 is not instantiated, yet. However, it is related to R (which
is the variable that we had as third argument in the original query), because R was
instantiated to succ(_G648), when the query was matched to the head of the second
clause. But that means that R is not a completely uninstantiated variable anymore. It is
now a complex term, that has a (uninstantiated) variable as its argument.

The next two steps are essentially the same. With every step the first argument be-
comes one level smaller. The trace and the search tree show this nicely. At the
same time one succ functor is added to R with every step, but always leaving the
argument of the innermost variable uninstantiated. After the first recursive call R is
succ(_G648), in the second recursive call _G648 is instantiated with succ(_G650),
so that R is succ(succ(_G650), in the third recursive call _G650 is instantiated with
succ(_G652) and R therefore becomes succ(succ(succ(_G652))). The search tree
shows this step by step instantiation.

At some point all succ functors have been stripped off the first argument and we have
reached the base clause. Here, the third argument is equated with the second argument,
so that "the hole" in the complex term R is finally filled.

This is a trace for the query add(succ(succ(succ(0))), succ(succ(0)), R):

Call: (6) add(succ(succ(succ(0))), succ(succ(0)), R)

Call: (7) add(succ(succ(0)), succ(succ(0)), _G648)

Call: (8) add(succ(0), succ(succ(0)), _G650)

3.2. Clause ordering, goal ordering, and termination 47

Call: (9) add(0, succ(succ(0)), _G652)

Exit: (9) add(0, succ(succ(0)), succ(succ(0)))

Exit: (8) add(succ(0), succ(succ(0)), succ(succ(succ(0))))

Exit: (7) add(succ(succ(0)), succ(succ(0)), succ(succ(succ(succ(0)))))

Exit: (6) add(succ(succ(succ(0))), succ(succ(0)), succ(succ(succ(succ(succ(0)))

And here is the search tree for this query:

add(succ(succ(succ(0))), succ(succ(0)), R)

add(succ(succ(0)), succ(succ(0)), _G648)

R = succ(_G648)

add(succ(0), succ(succ(0)), _G650)

_G648 = succ(_G650)

add(0, succ(succ(0)), _G652)

_G650 = succ(_G652)

_G652 = succ(succ(0))

3.2 Clause ordering, goal ordering, and termination

Prolog was the first reasonably successful attempt to make a logic programming lan-
guage. Underlying logic programming is a simple (and seductive) vision: the task of
the programmer is simply to describe problems. The programmer should write down
(in the language of logic) a declarative specification (that is: a knowledge base), which
describes the situation of interest. The programmer shouldn’t have to tell the computer
what to do. To get information, he or she simply asks the questions. It’s up to the logic
programming system to figure out how to get the answer.

Well, that’s the idea, and it should be clear that Prolog has taken some interesting steps
in this direction. But Prolog is not, repeat not, a full logic programming language.
If you only think about the declarative meaning of a Prolog program, you are in for
a very tough time. As we learned in the previous lecture, Prolog has a very specific
way of working out the answer to queries: it searches the knowledge base from top to
bottom, clauses from left to right, and uses backtracking to recover from bad choices.
These procedural aspects have an important influence on what actually happens when

48 Chapter 3. Recursion

you make a query. We have already seen a dramatic example of a mismatch between
procedural and declarative meaning of a knowledge base (remember the p:- p pro-
gram?), and as we shall now see, it is easy to define knowledge bases with the same
declarative meaning, but very different procedural meanings.

Recall our earlier descendant program (let’s call it descend1.pl):

child(martha,charlotte).

child(charlotte,caroline).

child(caroline,laura).

child(laura,rose).

descend(X,Y) :- child(X,Y).

descend(X,Y) :- child(X,Z),

descend(Z,Y).

We’ll make two changes to it, and call the result descend2.pl:

child(martha,charlotte).

child(charlotte,caroline).

child(caroline,laura).

child(laura,rose).

descend(X,Y) :- descend(Z,Y),

child(X,Z).

descend(X,Y) :- child(X,Y).

From a declarative perspective, what we have done is very simple: we have merely
reversed the order of the two rules, and reversed the order of the two goals in the
recursive clause. So, viewed as a purely logical definition, nothing has changed. We
have not changed the declarative meaning of the program.

But the procedural meaning has changed dramatically. For example, if you pose the
query

descend(martha,rose).

you will get an error message (‘out of local stack’, or something similar). Prolog is
looping. Why? Well, to satisfy the query descend(martha,rose). Prolog uses the
first rule. This means that its next goal will be to satisfy the query

descend(W1,rose)

for some new variable W1. But to satisfy this new goal, Prolog again has to use the first
rule, and this means that its next goal is going to be

descend(W2,rose)

3.3. Exercises 49

for some new variable W2. And of course, this in turn means that its next goal is going
to be descend(W3,rose) and then descend(W4,rose), and so on.

In short, descend1.pl and descend2.pl are Prolog knowledge bases with the same
declarative meaning but different procedural meanings: from a purely logical perspec-
tive they are identical, but they behave very differently.

Let’s look at another example. Recall out earlier successor program (let’s call it
numeral1.pl):

numeral(0).

numeral(succ(X)) :- numeral(X).

Let’s simply swap the order of the two clauses, and call the result numeral2.pl:

numeral(succ(X)) :- numeral(X).

numeral(0).

Clearly the declarative, or logical, content of this program is exactly the same as the
earlier version. But what about its behavior?

Ok, if we pose a query about specific numerals, numeral2.pl will terminate with the
answer we expect. For example, if we ask:

numeral(succ(succ(succ(0)))).

we will get the answer ‘yes’. But if we try to generate numerals, that is, if we give it
the query

numeral(X).

the program won’t halt. Make sure you understand why not. Once again, we have two
knowledge bases with the same declarative meaning but different procedural meanings.

Because the declarative and procedural meanings of a Prolog program can differ, when
writing Prolog programs you need to bear both aspects in mind. Often you can get the
overall idea (‘the big picture’) of how to write the program by thinking declaratively,
that is, by thinking simply in terms of describing the problem accurately. But then you
need to think about how Prolog will actually evaluate queries. Are the rule orderings
sensible? How will the program actually run? Learning to flip back and forth between
procedural and declarative questions is an important part of learning to program in
Prolog.

3.3 Exercises

Exercise 3.1 Do you know these wooden Russian dolls, where smaller ones are con-
tained in bigger ones? Here is schematic picture of such dolls.

50 Chapter 3. Recursion

Define a predicate in/2, that tells us which doll is (directly or indirectly) contained
in which other doll. E.g. the query in(katarina,natasha) should evaluate to true,
while in(olga, katarina) should fail.

Exercise 3.2 Define a predicate greater_than/2 that takes two numerals in the no-
tation that we introduced in this lecture (i.e. 0, succ(0), succ(succ(0)) ...) as arguments
and decides whether the first one is greater than the second one. E.g:

?- greater_than(succ(succ(succ(0))),succ(0)).

yes

?- greater_than(succ(succ(0)),succ(succ(succ(0)))).

no

Exercise 3.3 We have the following knowledge base:

directTrain(forbach,saarbruecken).

directTrain(freyming,forbach).

directTrain(fahlquemont,stAvold).

directTrain(stAvold,forbach).

directTrain(saarbruecken,dudweiler).

directTrain(metz,fahlquemont).

directTrain(nancy,metz).

That is, this knowledge base holds facts about towns it is possible to travel between by
taking a direct train. But of course, we can travel further by ‘chaining together’ direct
train journeys. Write a recursive predicate travelBetween/2 that tells us when we
can travel by train between two towns. For example, when given the query

travelBetween(nancy,saarbruecken).

3.4. Practical Session 3 51

it should reply ‘yes’.

It is, furthermore, plausible to assume that whenever it is possible to take a direct train
from A to B, it is also possible to take a direct train from B to A. Can you encode this
in Prolog? You program should e.g. answer ‘yes’ to the following query:

travelBetween(saarbruecken,nancy).

Do you see any problems you program may run into?

3.4 Practical Session 3

By now, you should feel more at home with writing and runnning basic Prolog pro-
grams. The purpose of Practical Session 3 is twofold. First we suggest a series of
keyboard exercises, involving trace, which will help you get familiar with recursive
definitions in Prolog. We then give a number of programming problems for you to
solve.

First the keyboard exercises. As recursive programming is so fundamental to Prolog, it
is important that you have a firm grasp of what it involves. In particular, it is important
that you understand the process of variable instantiation when recursive definitions
are used, and that you understand why both the order of the clauses in a recursive
definition, and the order of goals in rules, can make the difference between a knowledge
base that is useful and one that does not work at all. So:

1. Load descend1.pl, turn on trace, and pose the query descend(martha,laura).
This is the query that was discussed in the notes. Step through the trace, and re-
late what you see on the screen to the discussion in the text.

2. Still with trace on, pose the query descend(martha,rose) and count how
many steps it takes Prolog to work out the answer (that is, how many times
do you have to hit the return key). Now turn trace off and pose the query
descend(X,Y). How many answers are there?

3. Load descend2.pl. This, remember, is the variant of descend1.pl in which
the order of both clauses is switched, and in addition, the order of the two goals
in the recursive goals is switched too. Because of this, even for such simple
queries as descend(martha,laura), Prolog will not terminate. Step through
an example, using trace, to confirm this.

4. But wait! There are two more variants of descend1.pl that we have not consid-
ered. For a start, we could have written the recursive clause as follows:

descend(X,Y) :- child(X,Y).

descend(X,Y) :- descend(Z,Y),

child(X,Z).

Let us call this variant descend3.pl. And one further possibility remains: we
could have written the recursive definition as follows:

52 Chapter 3. Recursion

descend(X,Y) :- child(X,Z),

descend(Z,Y).

descend(X,Y) :- child(X,Y).

Let us call this variant descend4.pl.

Create (or download from the internet) the files descend3.pl and descend4.pl.
How do they compare to descend1.pl and descend2.pl? Can they handle the
query descend(martha,rose)? Can they handle queries involving variables?
How many steps do they need to find an answer? Are they slower or faster than
descend1.pl?

Draw the search trees for descend2.pl, descend3.pl and descend4.pl (the
one for descend1.pl was given in the text) and compare them. Make sure you
understand why the programs behave the way they do.

5. Finally, load the file numeral1.pl. Turn on trace, and make sure that you un-
derstand how Prolog handles both specific queries (such as numeral(succ(succ(0))))
and queries involving variables (such as numeral(X)).

Now for some programming. We are now at the end of the third session, which means
we have covered about a quarter of the material we are going to. Moreover, the material
we have covered so far is the basis for everything that follows, so it is vital that you
understand it properly. And the only way to really get to grips with Prolog is to write
programs (lots of them!), run them, fix them when they don’t work, and then write some
more. Learning a programming language is a lot like learning a foreign language: you
have to get out there and actually use it if you want to make genuine progress.

So here are three exercises for you to try your hand on.

1. We are given the following knowledge base of travel information:

byCar(auckland,hamilton).

byCar(hamilton,raglan).

byCar(valmont,saarbruecken).

byCar(valmont,metz).

byTrain(metz,frankfurt).

byTrain(saarbruecken,frankfurt).

byTrain(metz,paris).

byTrain(saarbruecken,paris).

byPlane(frankfurt,bangkok).

byPlane(frankfurt,singapore).

byPlane(paris,losAngeles).

byPlane(bangkok,auckland).

byPlane(losAngeles,auckland).

Write a predicate travel/2 which determines whether it is possible to travel
from one place to another by ‘chaining together’ car, train, and plane journeys.
For example, your program should answer ‘yes’ to the query travel(valmont,raglan).

3.4. Practical Session 3 53

2. So, by using travel/2 to query the above database, you can find out that it is
possible to go from Vamont to Raglan. In case you are planning a travel, that’s
already very good information, but what you would then really want to know is
how exactly to get from Valmont to Raglan. Write a predicate travel/3 which
tells you how to travel from one place to another. The program should, e.g., an-
swer ‘yes’ to the query travel(valmont,paris,go(valmont,metz,go(metz,paris)))

and X = go(valmont,metz,go(metz,paris,go(paris,losAngeles))) to the
query travel(valmont,losAngeles,X).

3. Extend the predicate travel/3 so that it not only tells you via which other cities
you have to go to get from one place to another, but also how, i.e. by car, train,
or plane, you get from one city to the next.

54 Chapter 3. Recursion

4

Lists

This lecture has two main goals:

1. To introduce lists, an important recursive data structure widely used in compu-
tational linguistics.

2. To define member, a fundamental Prolog tool for manipulating lists, and to in-
troduce the idea of recursing down lists.

4.1 Lists

As its name suggests, a list is just a plain old list of items. Slightly more precisely, it is
a finite sequence of elements. Here are some examples of lists in Prolog:

[mia, vincent, jules, yolanda]

[mia, robber(honey_bunny), X, 2, mia]

[]

[mia, [vincent, jules], [butch, girlfriend(butch)]]

[[], dead(zed), [2, [b, chopper]], [], Z, [2, [b, chopper]]]

We can learn some important things from these examples.

1. We can specify lists in Prolog by enclosing the elements of the list in square
brackets (that is, the symbols [and]). The elements are separated by commas.
For example, our first example [mia, vincent, jules, yolanda] is a list
with four elements, namely mia, vincent, jules, and yolanda. The length of
a list is the number of elements it has, so our first example is a list of length four.

2. From our second example, [mia,robber(honey_bunny),X,2,mia], we learn
that all sorts of Prolog objects can be elements of a list. The first element of this
list is mia, an atom; the second element is robber(honey_bunny), a complex
term; the third element is X, a variable; the fourth element is 2, a number. More-
over, we also learn that the same item may occur more than once in the same
list: for example, the fifth element of this list is mia, which is same as the first
element.

56 Chapter 4. Lists

3. The third example shows that there is a very special list, the empty list. The
empty list (as its name suggests) is the list that contains no elements. What is the
length of the empty list? Zero, of course (for the length of a list is the number of
members it contains, and the empty list contains nothing).

4. The fourth example teaches us something extremely important: lists can contain
other lists as elements. For example, the second element of

[mia, [vincent, jules], [butch,girlfriend(butch)]

is the list [vincent,jules], and the third element is [butch,girlfriend(butch)]].
In short, lists are examples of recursive data structures: lists can be made out
of lists. What is the length of the fourth list? The answer is: three. If you
thought it was five (or indeed, anything else) you’re not thinking about lists in
the right way. The elements of the list are the things between the outermost
square brackets separated by commas. So this list contains three elements: the
first element is mia, the second element is [vincent, jules], and the third
element is [butch, girlfriend(butch)].

5. The last example mixes all these ideas together. We have here a list which con-
tains the empty list (in fact, it contains it twice), the complex term dead(zed),
two copies of the list [2, [b, chopper]], and the variable Z. Note that the
third (and the last) elements are lists which themselves contain lists (namely
[b, chopper]).

Now for a very important point. Any non-empty list can be thought of as consisting
of two parts: the head and the tail. The head is simply the first item in the list; the tail
is everything else. Or more precisely, the tail is the list that remains when we take the
first element away, i.e. the tail of a list is always a list again. For example, the head of

[mia, vincent, jules, yolanda]

is mia and the tail is [vincent, jules, yolanda]. Similarly, the head of

[[], dead(zed), [2, [b, chopper]], [], Z, [2, [b, chopper]]]

is [], and the tail is [dead(zed), [2,[b,chopper]],[],Z,[2,[b, chopper]]].
And what are the head and the tail of the list [dead(zed)]? Well, the head is the first
element of the list, which is dead(zed), and the tail is the list that remains if we take
the head away, which, in this case, is the empty list [].

Note that only non-empty lists have heads and tails. That is, the empty list contains no
internal structure. For Prolog, the empty list [] is a special, particularly simple, list.

Prolog has a special inbuilt operator | which can be used to decompose a list into its
head and tail. It is very important to get to know how to use |, for it is a key tool for
writing Prolog list manipulation programs.

The most obvious use of | is to extract information from lists. We do this by using | to-
gether with matching. For example, to get hold of the head and tail of [mia,vincent,
jules,yolanda] we can pose the following query:

4.1. Lists 57

?- [Head| Tail] = [mia, vincent, jules, yolanda].

Head = mia

Tail = [vincent,jules,yolanda]

yes

That is, the head of the list has become bound to Head and the tail of the list has become
bound to Tail. Note that there is nothing special about Head and Tail, they are simply
variables. We could just as well have posed the query:

?- [X|Y] = [mia, vincent, jules, yolanda].

X = mia

Y = [vincent,jules,yolanda]

yes

As we mentioned above, only non-empty lists have heads and tails. If we try to use |

to pull [] apart, Prolog will fail:

?- [X|Y] = [].

no

That is, Prolog treats [] as a special list. This observation is very important. We’ll see
why later.

Let’s look at some other examples. We can extract the head and tail of the following
list just as we saw above:

?- [X|Y] = [[], dead(zed), [2, [b, chopper]], [], Z].

X = []

Y = [dead(zed),[2,[b,chopper]],[],_7800]

Z = _7800

yes

That is: the head of the list is bound to X, the tail is bound to Y. (We also get the
information that Prolog has bound Z to the internal variable _7800.)

But we can can do a lot more with |; it really is a very flexible tool. For example,
suppose we wanted to know what the first two elements of the list were, and also the
remainder of the list after the second element. Then we’d pose the following query:

?- [X,Y | W] = [[], dead(zed), [2, [b, chopper]], [], Z].

X = []

Y = dead(zed)

W = [[2,[b,chopper]],[],_8327]

Z = _8327

yes

58 Chapter 4. Lists

That is: the head of the list is bound to X, the second element is bound to Y, and the
remainder of the list after the second element is bound to W. W is the list that remains
when we take away the first two elements. So, | can not only be used to split a list into
its head and its tail, but we can in fact use it to split a list at any point. Left of the |, we
just have to enumerate how many elements we want to take away from the beginning
of the list, and right of the | we will then get what remains of the list. In this example,
we also get the information that Prolog has bound Z to the internal variable _8327.

This is a good time to introduce the anonymous variable. Suppose we were interested
in getting hold of the second and fourth elements of the list:

[[], dead(zed), [2, [b, chopper]], [], Z].

Now, we could find out like this:

?- [X1,X2,X3,X4 | Tail] = [[], dead(zed), [2, [b, chopper]], [], Z].

X1 = []

X2 = dead(zed)

X3 = [2,[b,chopper]]

X4 = []

Tail = [_8910]

Z = _8910

yes

OK, we have got the information we wanted: the values we are interested in are bound
to the variables X2 and X4. But we’ve got a lot of other information too (namely the
values bound to X1, X3 and Tail). And perhaps we’re not interested in all this other
stuff. If so, it’s a bit silly having to explicitly introduce variables X1, X3 and Tail to
deal with it. And in fact, there is a simpler way to obtain only the information we want:
we can pose the following query instead:

?- [_,X,_,Y|_] = [[], dead(zed), [2, [b, chopper]], [], Z].

X = dead(zed)

Y = []

Z = _9593

yes

The _ symbol (that is, underscore) is the anonymous variable. We use it when we
need to use a variable, but we’re not interested in what Prolog instantiates it to. As
you can see in the above example, Prolog didn’t bother telling us what _ was bound
to. Moreover, note that each occurrence of _ is independent: each is bound to some-
thing different. This couldn’t happen with an ordinary variable of course, but then the
anonymous variable isn’t meant to be ordinary. It’s simply a way of telling Prolog to
bind something to a given position, completely independently of any other bindings.

Let’s look at one last example. The third element of our working example is a list
(namely [2, [b, chopper]]). Suppose we wanted to extract the tail of this internal
list, and that we are not interested in any other information. How could we do this? As
follows:

4.2. Member 59

?- [_,_,[_|X]|_] =

[[], dead(zed), [2, [b, chopper]], [], Z, [2, [b, chopper]]].

X = [[b,chopper]]

Z = _10087

yes

4.2 Member

It’s time to look at our first example of a Prolog program for manipulating lists. One of
the most basic things we would like to know is whether something is an element of a
list or not. So let’s write a program that, when given as inputs an arbitrary object X and
a list L, tells us whether or not X belongs to L. The program that does this is usually
called member, and it is the simplest example of a Prolog program that exploits the
recursive structure of lists. Here it is:

member(X,[X|T]).

member(X,[H|T]) :- member(X,T).

That’s all there is to it: one fact (namely member(X,[X|T])) and one rule (namely
member(X,[H|T]) :- member(X,T)). But note that the rule is recursive (after all,
the functor member occurs in both the rule’s head and tail) and it is this that explains
why such a short program is all that is required. Let’s take a closer look.

We’ll start by reading the program declaratively. And read this way, it is obviously
sensible. The first clause (the fact) simply says: an object X is a member of a list if it
is the head of that list. Note that we used the inbuilt | operator to state this (simple but
important) principle about lists.

What about the second clause, the recursive rule? This says: an object X is member of
a list if it is a member of the tail of the list. Again, note that we used the | operator to
state this principle.

Now, clearly this definition makes good declarative sense. But does this program ac-
tually do what it is supposed to do? That is, will it really tell us whether an object X
belongs to a list L? And if so, how exactly does it do this? To answer such questions,
we need to think about its procedural meaning. Let’s work our way through a few
examples.

Suppose we posed the following query:

?- member(yolanda,[yolanda,trudy,vincent,jules]).

Prolog will immediately answer ‘Yes’. Why? Because it can unify yolanda with
both occurrences of X in the first clause (the fact) in the definition of member/2, so it
succeeds immediately.

Now consider the following query:

?- member(vincent,[yolanda,trudy,vincent,jules]).

60 Chapter 4. Lists

Now the first rule won’t help (vincent and yolanda are distinct atoms) so Prolog goes
to the second clause, the recursive rule. This gives Prolog a new goal: it now has to see
if

member(vincent,[trudy,vincent,jules]).

Now, once again the first clause won’t help, so Prolog goes (again) to the recursive
rule. This gives it a new goal, namely

member(vincent,[vincent,jules]).

This time, the first clause does help, and the query succeeds.

So far so good, but we need to ask an important question. What happens when we pose
a query that fails? For example, what happens if we pose the query

member(zed,[yolanda,trudy,vincent,jules]).

Now, this should obviously fail (after all, zed is not on the list). So how does Prolog
handle this? In particular, how can we be sure that Prolog really will stop, and say no,
instead going into an endless recursive loop?

Let’s think this through systematically. Once again, the first clause cannot help, so
Prolog uses the recursive rule, which gives it a new goal

member(zed,[trudy,vincent,jules]).

Again, the first clause doesn’t help, so Prolog reuses the recursive rule and tries to show
that

member(zed,[vincent,jules]).

Similarly, the first rule doesn’t help, so Prolog reuses the second rule yet again and
tries the goal

member(zed,[jules]).

Again the first clause doesn’t help, so Prolog uses the second rule, which gives it the
goal

member(zed,[])

And this is where things get interesting. Obviously the first clause can’t help here. But
note: the recursive rule can’t do anything more either. Why not? Simple: the recursive
rule relies on splitting the list into a head and a tail, but as we have already seen, the
empty list can’t be split up in this way. So the recursive rule cannot be applied either,
and Prolog stops searching for more solutions and announces ‘No’. That is, it tells us
that zed does not belong to the list, which is, of course, what it ought to do.

4.3. Recursing down lists 61

We could summarize the member/2 predicate as follows. It is a recursive predicate,
which systematically searches down the length of the list for the required item. It does
this by stepwise breaking down the list into smaller lists, and looking at the first item
of each smaller list. This mechanism that drives this search is recursion, and the reason
that this recursion is safe (that is, the reason it does not go on forever) is that at the end
of the line Prolog has to ask a question about the empty list. The empty list cannot be
broken down into smaller parts, and this allows a way out of the recursion.

Well, we’ve now seen why member/2 works, but in fact it’s far more useful than the
previous example might suggest. Up till now we’ve only been using it to answer yes/no
questions. But we can also pose questions containing variables. For example, we can
have the following dialog with Prolog:

member(X,[yolanda,trudy,vincent,jules]).

X = yolanda ;

X = trudy ;

X = vincent ;

X = jules ;

no

That is, Prolog has told us what every member of a list is. This is a very common use of
member/2. In effect, by using the variable we are saying to Prolog: ‘Quick! Give me
some element of the list!’. In many applications we need to be able to extract members
of a list, and this is the way it is typically done.

One final remark. The way we defined member/2 above is certainly correct, but in one
respect it is a little messy.

Think about it. The first clause is there to deal with the head of the list. But although
the tail is irrelevant to the first clause, we named the tail using the variable T. Similarly,
the recursive rule is there to deal with the tail of the list. But although the head is
irrelevant here, we named it using the variable H. These unnecessary variable names
are distracting: it’s better to write predicates in a way that focuses attention on what
is really important in each clause, and the anonymous variable gives us a nice way of
doing this. That is, we can rewrite member/2 as follows:

member(X,[X|_]).

member(X,[_|T]) :- member(X,T).

This version is exactly the same, both declaratively and procedurally. But it’s just that
little bit clearer: when you read it, you are forced to concentrate on what is essential.

4.3 Recursing down lists

Member works by recursively working down a list, doing something to the head, and
then recursively doing the same thing to the tail. Recursing down a list (or indeed,

62 Chapter 4. Lists

several lists) in this way is extremely common in Prolog: so common, in fact, that it
is important that you really master the idea. So let’s look at another example of the
technique at work.

When working with lists, we often want to compare one list with another, or to copy
bits of one list into another, or to translate the contents of one list into another, or
something similar. Here’s an example. Let’s suppose we need a predicate a2b/2 that
takes two lists as arguments, and succeeds if the first argument is a list of as, and the
second argument is a list of bs of exactly the same length. For example, if we pose the
following query

a2b([a,a,a,a],[b,b,b,b]).

we want Prolog to say ‘yes’. On the other hand, if we pose the query

a2b([a,a,a,a],[b,b,b]).

or the query

a2b([a,c,a,a],[b,b,5,4]).

we want Prolog to say ‘no’.

When faced with such tasks, often the best way to set about solving them is to start
by thinking about the simplest possible case. Now, when working with lists, ‘thinking
about the simplest case’ often means ‘thinking about the empty list’, and it certainly
means this here. After all: what is the shortest possible list of as? Why, the empty list:
it contains no as at all! And what is the shortest possible list of bs? Again, the empty
list: no bs whatsoever in that! So the most basic information our definition needs to
contain is

a2b([],[]).

This records the obvious fact that the empty list contains exactly as many as as bs. But
although obvious, this fact turns out to play a very important role in our program, as
we shall see.

So far so good: but how do we proceed? Here’s the idea: for longer lists, think recur-
sively. So: when should a2b/2 decide that two non-empty lists are a list of as and a
list of bs of exactly the same length? Simple: when the head of the first list is an a,
and the head of the second list is a b, and a2b/2 decides that the two tails are lists of
as and bs of exactly the same length! This immediately gives us the following rule:

a2b([a|Ta],[b|Tb]) :- a2b(Ta,Tb).

This says: the a2b/2 predicate should succeed if its first argument is a list with head a,
its second argument is a list with head b, and a2b/2 succeeds on the two tails.

Now, this definition make good sense declaratively. It is a simple and natural recursive
predicate, the base clause dealing with the empty list, the recursive clause dealing with
non-empty lists. But how does it work in practice? That is, what is its procedural
meaning? For example, if we pose the query

4.3. Recursing down lists 63

a2b([a,a,a],[b,b,b]).

Prolog will say ‘yes’, which is what we want, by why exactly does this happen?

Let’s work the example through. In this query, neither list is empty, so the fact does
not help. Thus Prolog goes on to try the recursive rule. Now, the query does match the
rule (after all, the head of the first list is a and the head of the second in b) so Prolog
now has a new goal, namely

a2b([a,a],[b,b]).

Once again, the fact does not help with this, but the recursive rule can be used again,
leading to the following goal:

a2b([a],[b]).

Yet again the fact does not help, but the recursive rule does, so we get the following
goal:

a2b([],[]).

At last we can use the fact: this tells us that, yes, we really do have two lists here that
contain exactly the same number of as and bs (namely, none at all). And because this
goal succeeds, this means that the goal

a2b([a],[b]).

succeeds too. This in turn means that the goal

a2b([a,a],[b,b]).

succeeds, and thus that the original goal

a2b([a,a,a],[b,b,b]).

is satisfied.

We could summarize this process as follows. Prolog started with two lists. It peeled
the head off each of them, and checked that they were an a and a b as required. It
then recursively analyzed the tails of both lists. That is, it worked down both tails
simultaneously, checking that at each stage the tails were headed by an a and a b. Why
did the process stop? Because at each recursive step we had to work with shorter lists
(namely the tails of the lists examined at the previous step) and eventually we ended
up with empty lists. At this point, our rather trivial looking fact was able to play a
vital role: it said ‘yes!’. This halted the recursion, and ensured that the original query
succeeded.

It’s is also important to think about what happens with queries that fail. For example,
if we pose the query

64 Chapter 4. Lists

a2b([a,a,a,a],[b,b,b]).

Prolog will correctly say ‘no’. Why? because after carrying out the ‘peel off the head
and recursively examine the tail’ process three times, it will be left with the query

a2b([a],[]).

But this goal cannot be satisfied. And if we pose the query

a2b([a,c,a,a],[b,b,5,4]).

after carrying out the ‘peel off the head and recursively examine the tail’ process once,
Prolog will have the goal

a2b([c,a,a],[b,5,4]).

and again, this cannot be satisfied.

Well, that’s how a2b/2 works in simple cases, but we haven’t exhausted its possibilities
yet. As always with Prolog, it’s a good idea to investigate what happens when variables
as used as input. And with a2b/2 something interesting happens: it acts as a translator,
translating lists of as to lists of bs, and vice versa. For example the query

a2b([a,a,a,a],X).

yields the response

X = [b,b,b,b].

That is, the list of as has been translated to a list of bs. Similarly, by using a variable
in the first argument position, we can use it to translate lists of bs to lists of as:

a2b(X,[b,b,b,b]).

X = [a,a,a,a]

And of course, we can use variables in both argument positions:

a2b(X,Y).

Can you work out what happens in this case?

To sum up: a2b/2 is an extremely simple example of a program that works by re-
cursing its way down a pair of lists. But don’t be fooled by its simplicity: the kind of
programming it illustrates is fundamental to Prolog. Both its declarative form (a base
clause dealing with the empty list, a recursive clause dealing with non-empty lists) and
the procedural idea it trades on (do something to the heads, and then recursively do the
same thing to the tails) come up again and again in Prolog programming. In fact, in the
course of your Prolog career, you’ll find that you’ll write what is essentially the a2b/2
predicate, or a more complex variant of it, many times over in many different guises.

4.4. Exercises 65

4.4 Exercises

Exercise 4.1 How does Prolog respond to the following queries?

1. [a,b,c,d] = [a,[b,c,d]].

2. [a,b,c,d] = [a|[b,c,d]].

3. [a,b,c,d] = [a,b,[c,d]].

4. [a,b,c,d] = [a,b|[c,d]].

5. [a,b,c,d] = [a,b,c,[d]].

6. [a,b,c,d] = [a,b,c|[d]].

7. [a,b,c,d] = [a,b,c,d,[]].

8. [a,b,c,d] = [a,b,c,d|[]].

9. [] = _.

10. [] = [_].

11. [] = [_|[]].

Exercise 4.2 Suppose we are given a knowledge base with the following facts:

tran(eins,one).

tran(zwei,two).

tran(drei,three).

tran(vier,four).

tran(fuenf,five).

tran(sechs,six).

tran(sieben,seven).

tran(acht,eight).

tran(neun,nine).

Write a predicate listtran(G,E) which translates a list of German number words to
the corresponding list of English number words. For example:

listtran([eins,neun,zwei],X).

should give:

X = [one,nine,two].

Your program should also work in the other direction. For example, if you give it the
query

listtran(X,[one,seven,six,two]).

66 Chapter 4. Lists

it should return:

X = [eins,sieben,sechs,zwei].

Hint: to answer this question, first ask yourself ‘How do I translate the empty list of
number words?’. That’s the base case. For non-empty lists, first translate the head of
the list, then use recursion to translate the tail.

Exercise 4.3 Write a predicate twice(In,Out) whose left argument is a list, and
whose right argument is a list consisting of every element in the left list written twice.
For example, the query

twice([a,4,buggle],X).

should return

X = [a,a,4,4,buggle,buggle]).

And the query

twice([1,2,1,1],X).

should return

X = [1,1,2,2,1,1,1,1].

Hint: to answer this question, first ask yourself ‘What should happen when the first
argument is the empty list?’. That’s the base case. For non-empty lists, think about
what you should do with the head, and use recursion to handle the tail.

Exercise 4.4 Draw the search trees for the following three queries:

?- member(a,[c,b,a,y]).

?- member(x,[a,b,c]).

?- member(X,[a,b,c]).

4.5 Practical Session 4

The purpose of Practical Session 4 is to help you get familiar with the idea of recursing
down lists. We first suggest some traces for you to carry out, and then some program-
ming exercises.

First, systematically carry out a number of traces on a2b/2 to make sure you fully
understand how it works. In particular:

1. Trace some examples, not involving variables, that succeed. E.g., trace the query
a2b([a,a,a,a],[b,b,b,b]) and relate the output to the discussion in the text.

4.5. Practical Session 4 67

2. Trace some simple examples that fail. Try examples involving lists of different
lengths (such as a2b([a,a,a,a],[b,b,b])) and examples involving symbols
other than a and b (such as a2b([a,c,a,a],[b,b,5,4])).

3. Trace some examples involving variables. For example, try tracing a2b([a,a,a,a],X)

and a2b(X,[b,b,b,b]).

4. Make sure you understand what happens when both arguments in the query are
variables. For example, carry out a trace on the query a2b(X,Y).

5. Carry out a series of similar traces involving member. That is, carry out traces
involving simple queries that succeed (such as member(a,[1,2,a,b])), sim-
ple queries that fail (such as member(z,[1,2,a,b])), and queries involving
variables (such as member(X,[1,2,a,b])). In all cases, make sure that you
understand why the recursion halts.

Having done this, try the following.

1. Write a 3-place predicate combine1 which takes three lists as arguments and
combines the elements of the first two lists into the third as follows:

?- combine1([a,b,c],[1,2,3],X).

X = [a,1,b,2,c,3]

?- combine1([foo,bar,yip,yup],[glub,glab,glib,glob],Result).

Result = [foo,glub,bar,glab,yip,glib,yup,glob]

2. Now write a 3-place predicate combine2 which takes three lists as arguments
and combines the elements of the first two lists into the third as follows:

?- combine2([a,b,c],[1,2,3],X).

X = [[a,1],[b,2],[c,3]]

?- combine2([foo,bar,yip,yup],[glub,glab,glib,glob],Result).

Result = [[foo,glub],[bar,glab],[yip,glib],[yup,glob]]

3. Finally, write a 3-place predicate combine3 which takes three lists as arguments
and combines the elements of the first two lists into the third as follows:

?- combine3([a,b,c],[1,2,3],X).

X = [join(a,1),join(b,2),join(c,3)]

?- combine3([foo,bar,yip,yup],[glub,glab,glib,glob],R).

R = [join(foo,glub),join(bar,glab),join(yip,glib),join(yup,glob)]

68 Chapter 4. Lists

All three programs are pretty much the same as a2b/2 (though of course they manip-
ulate three lists, not two). That is, all three can be written by recursing down the lists,
doing something to the heads, and then recursively doing the same thing to the tails.
Indeed, once you have written combine1, you just need to change the ‘something’ you
do to the heads to get combine2 and combine3.

Now, you should have a pretty good idea of what the basic pattern of predicates for
processing lists looks like. Here are a couple of list processing exercises that are a bit
more interesting. Hint: you can of course use predicates that we defined earlier, like
e.g. member/2 in your predicate definition.

1. Write a predicate mysubset/2 that takes two lists (of constants) as arguments and
checks, whether the first list is a subset of the second.

2. Write a predicate mysuperset/2 that takes two lists as arguments and checks,
whether the first list is a superset of the second.

5

Arithmetic

This lecture has two main goals:

1. To introduce Prolog’s inbuilt abilities for performing arithmetic, and

2. To apply them to simple list processing problems, using accumulators.

5.1 Arithmetic in Prolog

Prolog provides a number of basic arithmetic tools for manipulating integers (that is,
numbers of the form ...-3, -2, -1, 0, 1, 2, 3, 4...). Most Prolog implementation also
provide tools for handling real numbers (or floating point numbers) such as 1.53 or
6�35� 105, but we’re not going to discuss these, for they are not particularly useful
for the symbolic processing tasks discussed in this course. Integers, on the other hand,
are useful for various tasks (such as finding the length of a list), so it is important to
understand how to work with them. We’ll start by looking at how Prolog handles the
four basic operations of addition, multiplication, subtraction, and division.

Arithmetic examples Prolog Notation
6�2 � 8 8 is 6+2.

6�2 � 12 12 is 6*2.

6�2 � 4 4 is 6-2.

6�8 ��2 -2 is 6-8.

6�2 � 3 3 is 6/2.

7�2 � 3 3 is 7/2.

1 is the remainder when 7 is divided by 2 1 is mod(7,2).

(Note that as we are working with integers, division gives us back an integer answer.
Thus 7�2 gives 3 as an answer, leaving a reminder of 1.)

Posing the following queries yields the following responses:

?- 8 is 6+2.

yes

?- 12 is 6*2.

yes

70 Chapter 5. Arithmetic

?- -2 is 6-8.

yes

?- 3 is 6/2.

yes

?- 1 is mod(7,2).

yes

More importantly, we can work out the answers to arithmetic questions by using vari-
ables. For example:

?- X is 6+2.

X = 8

?- X is 6*2.

X = 12

?- R is mod(7,2).

R = 1

Moreover, we can use arithmetic operations when we define predicates. Here’s a simple
example. Let’s define a predicate add_3_and_double2/ whose arguments are both
integers. This predicate takes its first argument, adds three to it, doubles the result,
and returns the number obtained as the second argument. We define this predicate as
follows:

add_3_and_double(X,Y) :- Y is (X+3)*2.

And indeed, this works:

?- add_3_and_double(1,X).

X = 8

?- add_3_and_double(2,X).

X = 10

One other thing. Prolog understands the usual conventions we use for disambiguating
arithmetical expressions. For example, when we write 3� 2� 4 we mean 3��2� 4�
and not �3�2��4, and Prolog knows this convention:

?- X is 3+2*4.

X = 11

5.2. A closer look 71

5.2 A closer look

That’s the basics, but we need to know more. The most important to grasp is this: +,
*, -, � and mod do not carry out any arithmetic. In fact, expressions such as 3+2, 3-2
and 3*2 are simply terms. The functors of these terms are +, - and * respectively,
and the arguments are 3 and 2. Apart from the fact that the functors go between their
arguments (instead of in front of them) these are ordinary Prolog terms, and unless we
do something special, Prolog will not actually do any arithmetic. In particular, if we
pose the query

?- X = 3+2

we don’t get back the answer X=5. Instead we get back

X = 3+2

yes

That is, Prolog has simply bound the variable X to the complex term 3+2. It has not car-
ried out any arithmetic. It has simply done what it usually does: performed unification
Similarly, if we pose the query

?- 3+2*5 = X

we get the response

X = 3+2*5

yes

Again, Prolog has simply bound the variable X to the complex term 3+2*5. It did
not evaluate this expression to 13. To force Prolog to actually evaluate arithmetic
expressions we have to use

is

just as we did in our in our earlier examples. In fact, is does something very special:
it sends a signal to Prolog that says ‘Hey! Don’t treat this expression as an ordinary
complex term! Call up your inbuilt arithmetic capabilities and carry out the calcula-
tions!’

In short, is forces Prolog to act in an unusual way. Normally Prolog is quite happy just
unifying variables to structures: that’s its job, after all. Arithmetic is something extra
that has been bolted on to the basic Prolog engine because it is useful. Unsurprisingly,
there are some restrictions on this extra ability, and we need to know what they are.

For a start, the arithmetic expressions to be evaluated must be on the right hand side of
is. In our earlier examples we carefully posed the query

?- X is 6+2.

X = 8

72 Chapter 5. Arithmetic

which is the right way to do it. If instead we had asked

6+2 is X.

we would have got an error message saying instantiation_error, or something
similar.

Moreover, although we are free to use variables on the right hand side of is, when
we actually carry out evaluation, the variable must already have been instantiated
to an integer. If the variable is uninstantiated, or if it is instantiated to something
other than an integer, we will get some sort of instantiation_error message. And
this makes perfect sense. Arithmetic isn’t performed using Prolog usual unification
and knowledge base search mechanisms: it’s done by calling up a special ‘black box’
which knows about integer arithmetic. If we hand the black box the wrong kind of
data, naturally its going to complain.

Here’s an example. Recall our ‘add 3 and double it’ predicate.

add_3_and_double(X,Y) :- Y is (X+3)*2.

When we described this predicate, we carefully said that it added 3 to its first argument,
doubled the result, and returned the answer in its second argument. For example,
add_3_and_double(3,X) returns X = 12. We didn’t say anything about using this
predicate in the reverse direction. For example, we might hope that posing the query

add_3_and_double(X,12).

would return the answer X=3. But it doesn’t! Instead we get the instantiation_error
message. Why? Well, when we pose the query this way round, we are asking Prolog
to evaluate 12 is (X+3)*2, which it can’t do as X is not instantiated.

Two final remarks. As we’ve already mentioned, for Prolog 3 + 2 is just a term. In
fact, for Prolog, it really is the term +(3,2). The expression 3 + 2 is just a user-
friendly notation that’s nicer for us to use. This means that if you really want to, you
can give Prolog queries like

X is +(3,2)

and Prolog will correctly reply

X = 5

Actually, you can even given Prolog the query

is(X,+(3,2))

and Prolog will respond

X = 5

5.3. Arithmetic and lists 73

This is because, for Prolog, the expression X is +(3,2) is the term is(X,+(3,2)).
The expression X is +(3,2) is just user friendly notation. Underneath, as always,
Prolog is just working away with terms.

Summing up, arithmetic in Prolog is easy to use. Pretty much all you have to remember
is to use is to force evaluation, that stuff to be evaluated must goes to the right of is,
and to take care that any variables are correctly instantiated. But there is a deeper lesson
that is worth reflecting on. By ‘bolting on’ the extra capability to do arithmetic we have
further widened the distance between the procedural and declarative interpretation of
Prolog processing.

5.3 Arithmetic and lists

Probably the most important use of arithmetic in this course is to tell us useful facts
about data-structures, such as lists. For example, it can be useful to know how long a
list is. We’ll give some examples of using lists together with arithmetic capabilities.

How long is a list? Here’s a recursive definition.

1. The empty list has length zero.

2. A non-empty list has length 1 + len(T), where len(T) is the length of its tail.

This definition is practically a Prolog program already. Here’s the code we need:

len([],0).

len([_|T],N) :- len(T,X), N is X+1.

This predicate works in the expected way. For example:

?- len([a,b,c,d,e,[a,b],g],X).

X = 7

Now, this is quite a good program: it’s easy to understand and efficient. But there
is another method of finding the length of a list. We’ll now look at this alternative,
because it introduces the idea of accumulators, a standard Prolog technique we will be
seeing lots more of.

If you’re used to other programming languages, you’re probably used to the idea of
using variables to hold intermediate results. An accumulator is the Prolog analog of
this idea.

Here’s how to use an accumulator to calculate the length of a list. We shall define a
predicate accLen3/ which takes the following arguments.

accLen(List,Acc,Length)

74 Chapter 5. Arithmetic

Here List is the list whose length we want to find, and Length is its length (an integer).
What about Acc? This is a variable we will use to keep track of intermediate values for
length (so it will also be an integer). Here’s what we do. When we call this predicate,
we are going to give Acc an initial value of 0. We then recursively work our way down
the list, adding 1 to Acc each time we find a head element, until we reach the empty
list. When we do reach the empty set, Acc will contain the length of the list. Here’s the
code:

accLen([_|T],A,L) :- Anew is A+1, accLen(T,Anew,L).

accLen([],A,A).

The base case of the definition, unifies the second and third arguments. Why? There
are actually two reasons. The first is because when we reach the end of the list, the
accumulator (the second variable) contains the length of the list. So we give this value
(via unification) to the length variable (the third variable). The second is that this trivial
unification gives a nice way of stopping the recursion when we reach the empty list.
Here’s an example trace:

?- accLen([a,b,c],0,L).

Call: (6) accLen([a, b, c], 0, _G449) ?

Call: (7) _G518 is 0+1 ?

Exit: (7) 1 is 0+1 ?

Call: (7) accLen([b, c], 1, _G449) ?

Call: (8) _G521 is 1+1 ?

Exit: (8) 2 is 1+1 ?

Call: (8) accLen([c], 2, _G449) ?

Call: (9) _G524 is 2+1 ?

Exit: (9) 3 is 2+1 ?

Call: (9) accLen([], 3, _G449) ?

Exit: (9) accLen([], 3, 3) ?

Exit: (8) accLen([c], 2, 3) ?

Exit: (7) accLen([b, c], 1, 3) ?

Exit: (6) accLen([a, b, c], 0, 3) ?

As a final step, we’ll define a predicate which calls accLen for us, and gives it the
initial value of 0:

leng(List,Length) :- accLen(List,0,Length).

So now we can pose queries like this:

leng([a,b,c,d,e,[a,b],g],X).

Accumulators are extremely common in Prolog programs. (We’ll see another accumu-
lator based program later in this lecture. And many more in the rest of the course.)
But why is this? In what way is accLen better than len? After all, it looks more dif-
ficult. The answer is that accLen is tail recursive while len is not. In tail recursive
programs the result is all calculated once we reached the bottom of the recursion and
just has to be passed up. In recursive programs which are not tail recursive there are

5.4. Comparing integers 75

goals in one level of recursion which have to wait for the answer of a lower level of
recursion before they can be evaluated. To understand this, compare the traces for the
queries accLen([a,b,c],0,L) (see above) and len([a,b,c],0,L) (given below).
In the first case the result is built while going into the recursion – once the bottom
is reached at accLen([],3,_G449) the result is there and only has to be passed up.
In the second case the result is built while coming out of the recursion – the result of
len([b,c], _G481), for instance, is only computed after the recursive call of len has
been completed and the result of len([c], _G489) is known.

?- len([a,b,c],L).

Call: (6) len([a, b, c], _G418) ?

Call: (7) len([b, c], _G481) ?

Call: (8) len([c], _G486) ?

Call: (9) len([], _G489) ?

Exit: (9) len([], 0) ?

Call: (9) _G486 is 0+1 ?

Exit: (9) 1 is 0+1 ?

Exit: (8) len([c], 1) ?

Call: (8) _G481 is 1+1 ?

Exit: (8) 2 is 1+1 ?

Exit: (7) len([b, c], 2) ?

Call: (7) _G418 is 2+1 ?

Exit: (7) 3 is 2+1 ?

Exit: (6) len([a, b, c], 3) ?

5.4 Comparing integers

Some Prolog arithmetic predicates actually do carry out arithmetic all by themselves
(that is, without the assistance of is). These are the operators that compare integers.

Arithmetic examples Prolog Notation
x � y X < Y.

x � y X =< Y.

x � y X =:= Y.

x �� y X =\= Y.

x � y X >= Y

x � y X > Y

These operators have the obvious meaning:

2 < 4.

yes

2 =< 4.

yes

4 =< 4.

yes

76 Chapter 5. Arithmetic

4=:=4.

yes

4=\=5.

yes

4=\=4.

no

4 >= 4.

yes

4 > 2.

yes

Moreover, they force both their right-hand and left-hand arguments to be evaluated:

2 < 4+1.

yes

2+1 < 4.

yes

2+1 < 3+2.

yes

Note that =:= really is different from =, as the following examples show:

4=4.

yes

2+2 =4.

no

2+2 =:= 4.

yes

That is, = tries to unify its arguments; it does not force arithmetic evaluation. That’s
=:=’s job.

Whenever we use these operators, we have to take care that any variables are instanti-
ated. For example, all the following queries lead to instantiation errors.

X < 3.

3 < Y.

X =:= X.

5.4. Comparing integers 77

Moreover, variables have to be instantiated to integers. The query

X = 3, X < 4.

succeeds. But the query

X = b, X < 4.

fails.

OK, let’s now look at an example which puts Prolog’s abilities to compare numbers
to work. We’re going to define a predicate which takes takes a list of non-negative
integers as its first argument, and returns the maximum integer in the list as its last
argument. Again, we’ll use an accumulator. As we work our way down the list, the
accumulator will keep track of the highest integer found so far. If we find a higher
value, the accumulator will be updated to this new value. When we call the program,
we set accumulator to an initial value of 0. Here’s the code. Note that there are two
recursive clauses:

accMax([H|T],A,Max) :-

H > A,

accMax(T,H,Max).

accMax([H|T],A,Max) :-

H =< A,

accMax(T,A,Max).

accMax([],A,A).

The first clause tests if the head of the list is larger than the largest value found so far.
If it is, we set the accumulator to this new value, and then recursively work through
the tail of the list. The second clause applies when the head is less than or equal to
the accumulator; in this case we recursively work through the tail of the list using the
old accumulator value. Finally, the base clause unifies the second and third arguments;
it gives the highest value we found while going through the list to the last argument.
Here’s how it works:

accMax([1,0,5,4],0,_5810)

accMax([0,5,4],1,_5810)

accMax([5,4],1,_5810)

accMax([4],5,_5810)

accMax([],5,_5810)

accMax([],5,5)

78 Chapter 5. Arithmetic

Again, it’s nice to define a predicate which calls this, and initializes the accumulator.
But wait: what should we initialize the accumulator too? If you say 0, this means you
are assuming that all the numbers in the list are positive. But suppose we give a list of
negative integers as input. Then we would have

accMax([-11,-2,-7,-4,-12],0,Max).

Max = 0

yes

This is not what we want: the biggest number on the list is -2. Our use of 0 as the initial
value of the accumulator has ruined everything, because it’s bigger than any number
on the list.

There’s an easy way around this: since our input list will always be a list of integers,
simply initialize the accumulator to the head of the list. That way we guarantee that
the accumulator is initialized to a number on the list. The following predicate does this
for us:

max(List,Max) :-

List = [H|_],

accMax(List,H,Max).

So we can simply say:

max([1,2,46,53,0],X).

X = 53

yes

And furthermore we have:

max([-11,-2,-7,-4,-12],X).

X = -2

yes

5.5 Exercises

Exercise 5.1 How does Prolog respond to the following queries?

1. X = 3*4.

2. X is 3*4.

3. 4 is X.

4. X = Y.

5. 3 is 1+2.

5.6. Practical Session 5 79

6. 3 is +(1,2).

7. 3 is X+2.

8. X is 1+2.

9. 1+2 is 1+2.

10. is(X,+(1,2)).

11. 3+2 = +(3,2).

12. *(7,5) = 7*5.

13. *(7,+(3,2)) = 7*(3+2).

14. *(7,(3+2)) = 7*(3+2).

15. *(7,(3+2)) = 7*(+(3,2)).

Exercise 5.2 1. Define a 2-place predicate increment that holds only when its
second argument is an integer one larger than its first argument. For example,
increment(4,5) should hold, but increment(4,6) should not.

2. Define a 3-place predicate sum that holds only when its third argument is the
sum of the first two arguments. For example, sum(4,5,9) should hold, but
sum(4,6,12)should not.

Exercise 5.3 Write a predicate addone2/ whose first argument is a list of integers,
and whose second argument is the list of integers obtained by adding 1 to each integer
in the first list. For example, the query

addone([1,2,7,2],X).

should give

X = [2,3,8,3].

5.6 Practical Session 5

The purpose of Practical Session 5 is to help you get familiar with Prolog’s arithmetic
capabilities, and to give you some further practice in list manipulation. To this end, we
suggest the following programming exercises:

1. In the text we discussed the 3-place predicate accMax which which returned the
maximum of a list of integers. By changing the code slightly, turn this into a
3-place predicate accMin which returns the minimum of a list of integers.

80 Chapter 5. Arithmetic

2. In mathematics, an n-dimensional vector is a list of numbers of length n. For
example, [2,5,12] is a 3-dimensional vector, and [45,27,3,-4,6] is a 5-
dimensional vector. One of the basic operations on vectors is scalar multipli-
cation. In this operation, every element of a vector is multiplied by some num-
ber. For example, if we scalar multiply the 3-dimensional vector [2,7,4] by
3 the result is the 3-dimensional vector [6,21,12]. Write a 3-place predicate
scalarMult whose first argument is an integer, whose second argument is a
list of integers, and whose third argument is the result of scalar multiplying the
second argument by the first. For example, the query

scalarMult(3,[2,7,4],Result).

should yield

Result = [6,21,12]

3. Another fundamental operation on vectors is the dot product. This operation
combines two vectors of the same dimension and yields a number as a result.
The operation is carried out as follows: the corresponding elements of the two
vectors are multiplied, and the results added. For example, the dot product of
[2,5,6] and [3,4,1] is 6+20+6, that is, 32. Write a 3-place predicate dot

whose first argument is a list of integers, whose second argument is a list of
integers of the same length as the first, and whose third argument is the dot
product of the first argument with the second. For example, the query

dot([2,5,6],[3,4,1],Result).

should yield

Result = 32

6

More Lists

This lecture has two main goals:

1. To define append, a predicate for concatenating two lists, and illustrate what can
be done with it.

2. To discuss two ways of reversing a list: a naive method using append, and a more
efficient method using accumulators.

6.1 Append

We shall define an important predicate append/3 whose arguments are all lists. Viewed
declaratively, append(L1,L2,L3) will hold when the list L3 is the result of concate-
nating the lists L1 and L2 together (‘concatenating’ means ‘joining the lists together,
end to end’). For example, if we pose the query

?- append([a,b,c],[1,2,3],[a,b,c,1,2,3]).

or the query

?- append([a,[foo,gibble],c],[1,2,[[],b]],

[a,[foo,gibble],c,1,2,[1,2,[[],b]]).

we will get the response ‘yes’. On the other hand, if we pose the query

?- append([a,b,c],[1,2,3],[a,b,c,1,2]).

or the query

?- append([a,b,c],[1,2,3],[1,2,3,a,b,c]).

we will get the answer ‘no’.

From a procedural perspective, the most obvious use of append is to concatenate two
lists together. We can do this simply by using a variable as the third argument: the
query

82 Chapter 6. More Lists

?- append([a,b,c],[1,2,3],L3).

yields the response

L3 = [a,b,c,1,2,3]

yes

But (as we shall soon see) we can also use append to split up a list. In fact, append is
a real workhorse. There’s lots we can do with it, and studying it is a good way to gain
a better understanding of list processing in Prolog.

6.1.1 Defining append

Here’s how append/3 is defined:

append([],L,L).

append([H|T],L2,[H|L3]) :- append(T,L2,L3).

This is a recursive definition. The base case simply says that appending the empty list
to any list whatsoever yields that same list, which is obviously true.

But what about the recursive step? This says that when we concatenate a non-empty
list [H|T] with a list L2, we end up with the list whose head is H and whose tail is
the result of concatenating T with L2. It may be useful to think about this definition
pictorially:

But what is the procedural meaning of this definition? What actually goes on when we
use append to glue two lists together? Let’s take a detailed look at what happens when
we pose the query append([a,b,c],[1,2,3],X).

When we pose this query, Prolog will match this query to the head of the recursive
rule, generating a new internal variable (say _G518) in the process. If we carried out a
trace on what happens next, we would get something like the following:

append([a, b, c], [1, 2, 3], _G518)

append([b, c], [1, 2, 3], _G587)

append([c], [1, 2, 3], _G590)

append([], [1, 2, 3], _G593)

append([], [1, 2, 3], [1, 2, 3])

append([c], [1, 2, 3], [c, 1, 2, 3])

6.1. Append 83

append([b, c], [1, 2, 3], [b, c, 1, 2, 3])

append([a, b, c], [1, 2, 3], [a, b, c, 1, 2, 3])

X = [a, b, c, 1, 2, 3]

yes

The basic pattern should be clear: in the first four lines we see that Prolog recurses its
way down the list in its first argument until it can apply the base case of the recursive
definition. Then, as the next four lines show, it then stepwise ‘fills in’ the result. How is
this ‘filling in’ process carried out? By successively instantiating the variables _G593,
_G590, _G587, and _G518. But while it’s important to grasp this basic pattern, it doesn’t
tell us all we need to know about the way append works, so let’s dig deeper. Here is the
search tree for the query append([a,b,c],[1,2,3],X) and then we’ll work carefully
through the steps in the trace, making a careful note of what our goals are, and what
the variables are instantiated to. Try to relate this to the search tree.

append([a,b,c],[1,2,3],_G518)

append([b,c],[1,2,3],_G587)

_G518 = [a|_G587]

append([c],[1,2,3],_G590)

_G587 = [b|_G590]

append([],[1,2,3],_G593)

_G590 = [c|_G593]

_G593 = []

1. Goal 1: append([a,b,c],[1,2,3],_G518). Prolog matches this to the head of
the recursive rule (that is, append([H|T],L2,[H|L3])). Thus _G518 is matched
to [a|L3], and Prolog has the new goal append([b,c],[1,2,3],L3). It gen-
erates a new variable _G587 for L3, thus we have that _G518 = [a|_G587].

2. Goal 2: append([b,c],[1,2,3],_G587). Prolog matches this to the head of
the recursive rule, thus _G587 is matched to [b|L3], and Prolog has the new
goal append([c],[1,2,3],L3). It generates the internal variable _G590 for
L3, thus we have that _G587 = [b|_G590].

3. Goal 3: append([c],[1,2,3],_G590). Prolog matches this to the head of the
recursive rule, thus _G590 is matched to [c|L3], and Prolog has the new goal
append([],[1,2,3],L3). It generates the internal variable _G593 for L3, thus
we have that _G590 = [c|_G593].

84 Chapter 6. More Lists

4. Goal 4: append([],[1,2,3],_G593). At last: Prolog can use the base clause
(that is, append([],L,L)). And in the four successive matching steps, Prolog
will obtain answers to Goal 4, Goal 3, Goal 2, and Goal 1. Here’s how.

5. Answer to Goal 4: append([],[1,2,3],[1,2,3]). This is because when we
match Goal 4 (that is, append([],[1,2,3],_G593) to the base clause, _G593
is matched to [1,2,3].

6. Answer to Goal 3: append([c],[1,2,3],[c,1,2,3]). Why? Because Goal
3 is append([c],[1,2,3],_G590]), and _G590 = [c|_G593], and we have
just matched _G593 to [1,2,3]. So _G590 is matched to [c,1,2,3].

7. Answer to Goal 2: append([b,c],[1,2,3],[b,c,1,2,3]). Why? Because
Goal 2 is append([b,c],[1,2,3],_G587]), and _G587 = [b|_G590], and
we have just matched _G590 to [c,1,2,3]. So _G587 is matched to [b,c,1,2,3].

8. Answer to Goal 1: append([a,b,c],[1,2,3],[b,c,1,2,3]). Why? Be-
cause Goal 2 is append([a,b,c],[1,2,3],_G518]), _G518 = [a|_G587],
and we have just matched _G587 to [b,c,1,2,3]. So _G518 is matched to
[a,b,c,1,2,3].

9. Thus Prolog now knows how to instantiate X, the original query variable. It tells
us that X = [a,b,c,1,2,3], which is what we want.

Work through this example carefully, and make sure you fully understand the pattern
of variable instantiations, namely:

_G518 = [a|_G587]

= [a|[b|_G590]]

= [a|[b|[c|_G593]]]

For a start, this type of pattern lies at the heart of the way append works. Moreover, it
illustrates a more general theme: the use of matching to build structure. In a nutshell,
the recursive calls to append build up this nested pattern of variables which code up
the required answer. When Prolog finally instantiates the innermost variable _G593 to
[1, 2, 3], the answer crystallizes out, like a snowflake forming around a grain of
dust. But it is matching, not magic, that produces the result.

6.1.2 Using append

Now that we understand how append works, let’s see how we can put it to work.

One important use of append is to split up a list into two consecutive lists. For example:

append(X,Y,[a,b,c,d]).

X = []

Y = [a,b,c,d] ;

X = [a]

Y = [b,c,d] ;

6.1. Append 85

X = [a,b]

Y = [c,d] ;

X = [a,b,c]

Y = [d] ;

X = [a,b,c,d]

Y = [] ;

no

That is, we give the list we want to split up (here[a,b,c,d]) to append as the third ar-
gument, and we use variables for the first two arguments. Prolog then searches for ways
of instantiating the variables to two lists that concatenate to give the third argument,
thus splitting up the list in two. Moreover, as this example shows, by backtracking,
Prolog can find all possible ways of splitting up a list into two consecutive lists.

This ability means it is easy to define some useful predicates with append. Let’s con-
sider some examples. First, we can define a program which finds prefixes of lists. For
example, the prefixes of [a,b,c,d] are [], [a], [a,b], [a,b,c], and [a,b,c,d].
With the help of append it is straightforward to define a program prefix/2, whose ar-
guments are both lists, such that prefix(P,L) will hold when P is a prefix of L. Here’s
how:

prefix(P,L) :- append(P,_,L).

This says that list P is a prefix of list L when there is some list such that L is the result
of concatenating P with that list. (We use the anonymous variable since we don’t care
what that other list is: we only care that there some such list or other.) This predicate
successfully finds prefixes of lists, and moreover, via backtracking, finds them all:

prefix(X,[a,b,c,d]).

X = [] ;

X = [a] ;

X = [a,b] ;

X = [a,b,c] ;

X = [a,b,c,d] ;

no

In a similar fashion, we can define a program which finds suffixes of lists. For example,
the suffixes of [a,b,c,d] are [], [d], [c,d], [b,c,d], and [a,b,c,d]. Again, using
append it is easy to define suffix/2, a predicate whose arguments are both lists, such
that suffix(S,L) will hold when S is a suffix of L:

86 Chapter 6. More Lists

suffix(S,L) :- append(_,S,L).

That is, list S is a suffix of list L if there is some list such that L is the result of concate-
nating that list with S. This predicate successfully finds suffixes of lists, and moreover,
via backtracking, finds them all:

suffix(X,[a,b,c,d]).

X = [a,b,c,d] ;

X = [b,c,d] ;

X = [c,d] ;

X = [d] ;

X = [] ;

no

Make sure you understand why the results come out in this order.

And now it’s very easy to define a program that finds sublists of lists. The sublists
of [a,b,c,d] are [], [a], [b], [c], [d], [a,b], [b,c], [c,d], [d,e], [a,b,c],
[b,c,d], and [a,b,c,d]. Now, a little thought reveals that the sublists of a list L are
simply the prefixes of suffixes of L. Think about it pictorially:

And of course, we have both the predicates we need to pin this ideas down: we simply
define

sublist(SubL,L) :- suffix(S,L),prefix(SubL,S).

That is, SubL is a sublist of L if there is some suffix S of L of which SubL is a prefix.
This program doesn’t explicitly use append, but of course, under the surface, that’s
what’s doing the work for us, as both prefix and suffix are defined using append.

6.2. Reversing a list 87

6.2 Reversing a list

Append is a useful predicate, and it is important to know how to use it. But it is just as
important to know that it can be a source of inefficiency, and that you probably don’t
want to use it all the time.

Why is append a source of inefficiency? If you think about the way it works, you’ll
notice a weakness: append doesn’t join two lists in one simple action. Rather, it needs
to work its way down its first argument until it finds the end of the list, and only then
can it carry out the concatenation.

Now, often this causes no problems. For example, if we have two lists and we just want
to concatenate them, it’s probably not too bad. Sure, Prolog will need to work down
the length of the first list, but if the list is not too long, that’s probably not too high a
price to pay for the ease of working with append.

But matters may be very different if the first two arguments are given as variables. As
we’ve just seen, it can be very useful to give append variables in its first two arguments,
for this lets Prolog search for ways of splitting up the lists. But there is a price to pay:
a lot of search is going on, and this can lead to very inefficient programs.

To illustrate this, we shall examine the problem of reversing a list. That is, we will ex-
amine the problem of defining a predicate which takes a list (say [a,b,c,d]) as input
and returns a list containing the same elements in the reverse order (here [d,c,b,a]).

Now, a reverse predicate is a useful predicate to have around. As you will have
realized by now, lists in Prolog are far easier to access from the front than from the
back. For example, to pull out the head of a list L, all we have to do is perform the
unification [H|_] = L; this results in H being instantiated to the head of L. But pulling
out the last element of an arbitrary list is harder: we can’t do it simply using unification.
On the other hand, if we had a predicate which reversed lists, we could first reverse the
input list, and then pull out the head of the reversed list, as this would give us the last
element of the original list. So a reverse predicate could be a useful tool. However,
as we may have to reverse large lists, we would like this tool to be efficient. So we
need to think about the problem carefully.

And that’s what we’re going to do now. We will define two reverse predicates: a naive
one, defined with the help of append, and a more efficient (and indeed, more natural)
one defined using accumulators.

6.2.1 Naive reverse using append

Here’s a recursive definition of what is involved in reversing a list:

1. If we reverse the empty list, we obtain the empty list.

2. If we reverse the list [H|T], we end up with the list obtained by reversing T and
concatenating with [H].

To see that the recursive clause is correct, consider the list [a,b,c,d]. If we reverse
the tail of this list we obtain [d,c,b]. Concatenating this with [a] yields [d,c,b,a],
which is the reverse of [a,b,c,d].

With the help of append it is easy to turn this recursive definition into Prolog:

88 Chapter 6. More Lists

naiverev([],[]).

naiverev([H|T],R) :- naiverev(T,RevT),append(RevT,[H],R).

Now, this definition is correct, but it is does an awful lot of work. It is very instructive
to look at a trace of this program. This shows that the program is spending a lot of
time carrying out appends. This shouldn’t be too surprising: after, all, we are calling
append recursively. The result is very inefficient (if you run a trace, you will find that
it takes about 90 steps to reverse an eight element list) and hard to understand (the
predicate spends most of it time in the recursive calls to append, making it very hard
to see what is going on).

Not nice. And as we shall now see, there is a better way.

6.2.2 Reverse using an accumulator

The better way is to use an accumulator. The underlying idea is simple and natural.
Our accumulator will be a list, and when we start it will be empty. Suppose we want
to reverse [a,b,c,d]. At the start, our accumulator will be []. So we simply take the
head of the list we are trying to reverse and add it as the head of the accumulator. We
then carry on processing the tail, thus we are faced with the task of reversing [b,c,d],
and our accumulator is [a]. Again we take the head of the list we are trying to reverse
and add it as the head of the accumulator (thus our new accumulator is [b,a]) and carry
on trying to reverse [c,d]. Again we use the same idea, so we get a new accumulator
[c,b,a], and try to reverse [d]. Needless to say, the next step yields an accumulator
[d,c,b,a] and the new goal of trying to reverse []. This is where the process stops:
and our accumulator contains the reversed list we want. To summarize: the idea is
simply to work our way through the list we want to reverse, and push each element in
turn onto the head of the accumulator, like this:

List: [a,b,c,d] Accumulator: []

List: [b,c,d] Accumulator: [a]

List: [c,d] Accumulator: [b,a]

List: [d] Accumulator: [c,b,a]

List: [] Accumulator: [d,c,b,a]

This will be efficient because we simply blast our way through the list once: we don’t
have to waste time carrying out concatenation or other irrelevant work.

It’s also easy to put this idea in Prolog. Here’s the accumulator code:

accRev([H|T],A,R) :- accRev(T,[H|A],R).

accRev([],A,A).

This is classic accumulator code: it follows the same pattern as the arithmetic examples
we examined in the previous lecture. The recursive clause is responsible for chopping
of the head of the input list, and pushing it onto the accumulator. The base case halts
the program, and copies the accumulator to the final argument.

As is usual with accumulator code, it’s a good idea to write a predicate which carries
out the required initialization of the accumulator for us:

6.3. Exercises 89

rev(L,R) :- accRev(L,[],R).

Again, it is instructive to run some traces on this program and compare it with naiverev.
The accumulator based version is clearly better. For example, it takes about 20 steps
to reverse an eight element list, as opposed to 90 for the naive version. Moreover,
the trace is far easier to follow. The idea underlying the accumulator based version is
simpler and more natural than the recursive calls to append.

Summing up, append is a useful program, and you certainly should not be scared of
using it. However you also need to be aware that it is a source of inefficiency, so when
you use it, ask yourself whether there is a better way. And often there are. The use of
accumulators is often better, and (as the reverse example show) accumulators can be
a natural way of handling list processing tasks. Moreover, as we shall learn later in the
course, there are more sophisticated ways of thinking about lists (namely by viewing
them as difference lists) which can also lead to dramatic improvements in performance.

6.3 Exercises

Exercise 6.1 Let’s call a list doubled if it is made of two consecutive blocks of ele-
ments that are exactly the same. For example, [a,b,c,a,b,c] is doubled (it’s made
up of [a,b,c]followed by [a,b,c]) and so is [foo,gubble,foo,gubble]. On the
other hand, [foo,gubble,foo] is not doubled. Write a predicate doubled(List)

which succeeds when List is a doubled list.

Exercise 6.2 A palindrome is a word or phrase that spells the same forwards and
backwards. For example, ‘rotator’, ‘eve’, and ‘nurses run’ are all palindromes. Write
a predicate palindrome(List), which checks whether List is a palindrome. For
example, to the queries

?- palindrome([r,o,t,a,t,o,r]).

and

?- palindrome([n,u,r,s,e,s,r,u,n]).

Prolog should respond ‘yes’, but to the query

?- palindrome([n,o,t,h,i,s]).

Prolog should respond ‘no’.

Exercise 6.3 1. Write a predicate second(X,List) which checks whether X is
the second element of List.

2. Write a predicate swap12(List1,List2) which checks whether List1 is iden-
tical to List2, except that the first two elements are exchanged.

3. Write a predicate final(X,List) which checks whether X is the last element of
List.

90 Chapter 6. More Lists

4. Write a predicate toptail(InList,Outlist) which says ‘no’ if inlist is a
list containing fewer than 2 elements, and which deletes the first and the last
elements of Inlist and returns the result as Outlist, when Inlist is a list
containing at least 2 elements. For example:

toptail([a],T).

no

toptail([a,b],T).

T=[]

toptail([a,b,c],T).

T=[b]

Hint: here’s where append comes in useful.

5. Write a predicate swapfl(List1,List2) which checks whether List1 is iden-
tical to List2, except that the first and last elements are exchanged. Hint: here’s
where append comes in useful again.

Exercise 6.4 And here is an exercise for those of you who, like me, like logic puzzles.

There is a street with three neighboring houses that all have a different color. They are
red, blue, and green. People of different nationalities live in the different houses and
they all have a different pet. Here are some more facts about them:

� The Englishman lives in the red house.

� The jaguar is the pet of the Spanish family.

� The Japanese lives to the right of the snail keeper.

� The snail keeper lives to the left of the blue house.

Who keeps the zebra?

Define a predicate zebra/1 that tells you the nationality of the owner of the zebra.

Hint: Think of a representation for the houses and the street. Code the four constraints
in Prolog. member and sublist might be useful predicates.

6.4 Practical Session 6

The purpose of Practical Session 6 is to help you get more experience with list manip-
ulation. We first suggest some traces for you to carry out, and then some programming
exercises.

The following traces will help you get to grips with the predicates discussed in the text:

1. Carry out traces of append with the first two arguments instantiated, and the third
argument uninstantiated. For example, append([a,b,c],[[],[2,3],b],X)

Make sure the basic pattern is clear.

6.4. Practical Session 6 91

2. Next, carry out traces on append as used to split up a list, that is, with the first two
arguments given as variables, and the last argument instantiated. For example,
append(L,R,[foo,wee,blup]).

3. Carry out some traces on prefix and suffix. Why does prefix find shorter
lists first, and suffix longer lists first?

4. Carry out some traces on sublist. As we said in the text, via backtracking this
predicate generates all possible sublists, but as you’ll see, it generates several
sublists more than once. Do you understand why?

5. Carry out traces on both naiverev and rev, and compare their behavior.

Now for some programming work:

1. It is possible to write a one line definition of the member predicate by making use
of append. Do so. How does this new version of member compare in efficiency
with the standard one?

2. Write a predicate set(InList,OutList) which takes as input an arbitrary list,
and returns a list in which each element of the input list appears only once. For
example, the query

set([2,2,foo,1,foo, [],[]],X).

should yield the result

X = [2,foo,1,[]].

Hint: use the member predicate to test for repetitions of items you have already
found.

3. We ‘flatten’ a list by removing all the square brackets around any lists it contains
as elements, and around any lists that its elements contain as element, and so on
for all nested lists. For example, when we flatten the list

[a,b,[c,d],[[1,2]],foo]

we get the list

[a,b,c,d,1,2,foo]

and when we flatten the list

[a,b,[[[[[[[c,d]]]]]]],[[1,2]],foo,[]]

we also get

[a,b,c,d,1,2,foo].

Write a predicate flatten(List,Flat) that holds when the first argument List
flattens to the second argument Flat. This exercise can be done without making
use of append.

92 Chapter 6. More Lists

7

Definite Clause Grammars

This lecture has two main goals:

1. To introduce context free grammars (CFGs) and some related concepts.

2. To introduce definite clause grammars (DCGs), an in-built Prolog mechanism
for working with context free grammars (and other kinds of grammar too).

7.1 Context free grammars

Prolog has been used for many purposes, but its inventor, Alain Colmerauer, was a
computational linguist, and computational linguistics remains a classic application for
the language. Moreover, Prolog offers a number of tools which make life easier for
computational linguists, and today we are going to start learning about one of the most
useful of these: Definite Clauses Grammars, or DCGs as they are usually called.

DCGs are a special notation for defining grammars. So, before we go any further, we’d
better learn what a grammar is. We shall do so by discussing context free grammars
(or CFGs). The basic idea of context free grammars is simple to understand, but don’t
be fooled into thinking that CFGs are toys. They’re not. While CFGs aren’t powerful
enough to cope with the syntactic structure of all natural languages (that is, the kind of
languages that human beings use), they can certainly handle most aspects of the syntax
of many natural languages (for example, English, German, and French) in a reasonably
natural way.

So what is a context free grammar? In essence, a finite collection of rules which tell
us that certain sentences are grammatical (that is, syntactically correct) and what their
grammatical structure actually is. Here’s a simple context free grammar for a small
fragment of English:

s -> np vp

np -> det n

vp -> v np

vp -> v

det -> a
det -> the
n -> woman
n -> man
v -> shoots

94 Chapter 7. Definite Clause Grammars

What are the ingredients of this little grammar? Well, first note that it contains three
types of symbol. There’s ->, which is used to define the rules. Then there are the
symbols written like this: s, np, vp, det, n, v. These symbols are called non-terminal
symbols; we’ll soon learn why. Each of these symbols has a traditional meaning in
linguistics: s is short for sentence, np is short for noun phrase, vp is short for verb
phrase, and det is short for determiner. That is, each of these symbols is shorthand for
a grammatical category. Finally there are the symbols in italics: a, the, woman, man,
and shoots. A computer scientist would probably call these terminal symbols (or: the
alphabet), and linguists would probably call them lexical items. We’ll use these terms
occasionally, but often we’ll make life easy for ourselves and just call them words.

Now, this grammar contains nine rules. A context free rule consists of a single non-
terminal symbol, followed by ->, followed by a finite sequence made up of terminal
and/or non-terminal symbols. All nine items listed above have this form, so they are
all legitimate context free rules. What do these rules mean? They tell us how different
grammatical categories can be built up. Read -> as can consist of, or can be built out
of. For example, the first rule tells us that a sentence can consist of a noun phrase
followed by a verb phrase. The third rule tells us that a verb phrase can consist of a
verb followed by a noun phrase, while the fourth rule tells us that there is another way
to build a verb phrase: simply use a verb. The last five rules tell us that a and the are
determiners, that man and woman are nouns, and that shoots is a verb.

Now, consider the string of words a woman shoots a man. Is this grammatical accord-
ing to our little grammar? And if it is, what structure does it have? The following tree
answers both questions:

Right at the top we have a node marked s. This node has two daughters, one marked
np, and one marked vp. Note that this part of the diagram agrees with the first rule of
the grammar, which says that an s can be built out of an np and a vp. (A linguist would
say that this part of the tree is licensed by the first rule.) In fact, as you can see, every
part of the tree is licensed by one of our rules. For example, the two nodes marked np

are licensed by the rule that says that an np can consist of a det followed by an n. And,
right at the bottom of the diagram, all the words in a woman shoots a man are licensed
by a rule. Incidentally, note that the terminal symbols only decorate the nodes right at
the bottom of the tree (the terminal nodes) while non-terminal symbols only decorate
nodes that are higher up in the tree (the non-terminal nodes).

7.1. Context free grammars 95

Such a tree is called a parse tree, and it gives us two sorts of information: information
about strings and information about structure. This is an important distinction to grasp,
so let’s have a closer look, and learn some important terminology while we are doing
so.

First, if we are given a string of words, and a grammar, and it turns out that we can build
a parse tree like the one above (that is, a tree that has s at the top node, and every node
in the tree is licensed by the grammar, and the string of words we were given is listed
in the correct order along the terminal nodes) then we say that the string is grammatical
(according to the given grammar). For example, the string a woman shoots a man is
grammatical according to our little grammar (and indeed, any reasonable grammar of
English would classify it as grammatical). On the other hand, if there isn’t any such
tree, the string is ungrammatical (according to the given grammar). For example, the
string woman a woman man a shoots is ungrammatical according to our little grammar
(and any reasonable grammar of English would classify it as ungrammatical). The
language generated by a grammar consists of all the strings that the grammar classifies
as grammatical. For example, a woman shoots a man also belongs to the language
generated by our little grammar, and so does a man shoots the woman. A context free
recognizer is a program which correctly tells us whether or not a string belongs to the
language generated by a context free grammar. To put it another way, a recognizer is a
program that correctly classifies strings as grammatical or ungrammatical (relative to
some grammar).

But often, in both linguistics and computer science, we are not merely interested in
whether a string is grammatical or not, we want to know why it is grammatical. More
precisely, we often want to know what its structure is, and this is exactly the informa-
tion a parse tree gives us. For example, the above parse tree shows us how the words
in a woman shoots a man fit together, piece by piece, to form the sentence. This kind
of information would be important if we were using this sentence in some application
and needed to say what it actually meant (that is, if we wanted to do semantics). A
context free parser is a program which correctly decides whether a string belongs to
the language generated by a context free grammar and also tells us hat its structure is.
That is, whereas a recognizer merely says ‘Yes, grammatical’ or ‘No, ungrammatical’
to each string, a parser actually builds the associated parse tree and gives it to us.

It remains to explain one final concept, namely what a context free language is. (Don’t
get confused: we’ve told you what a context free grammar is, but not what a con-
text free language is.) Quite simply, a context free language is a language that can be
generated by a context free grammar. Some languages are context free, and some are
not. For example, it seems plausible that English is a context free language. That is,
it is probably possible to write a context free grammar that generates all (and only)
the sentences that native speakers find acceptable. On the other hand, some dialects
of Swiss-German are not context free. It can be proved mathematically that no con-
text free grammar can generate all (and only) the sentences that native speakers find
acceptable. So if you wanted to write a grammar for such dialects, you would have to
employ additional grammatical mechanisms, not merely context free rules.

7.1.1 CFG recognition using append

That’s the theory, but how do we work with context free grammars in Prolog? To make
things concrete: suppose we are given a context free grammar. How can we write a

96 Chapter 7. Definite Clause Grammars

recognizer for it? And how can we write a parser for it? This week we’ll look at the
first question in detail. We’ll first show how (rather naive) recognizers can be written in
Prolog, and then show how more sophisticated recognizers can be written with the help
of difference lists. This discussion will lead us to definite clause grammars, Prolog’s
inbuilt grammar tool. Next week we’ll look at definite clause grammars in more detail,
and learn (among other things) how to use them to define parsers.

So: given a context free grammar, how do we define a recognizer in Prolog? In fact,
Prolog offers a very direct answer to this question: we can simply write down Prolog
clauses that correspond, in an obvious way, to the grammar rules. That is, we can
simply ‘turn the grammar into Prolog’.

Here’s a simple (though as we shall learn, inefficient) way of doing this. We shall
use lists to represent strings. For example, the string a woman shoots a man will be
represented by the list [a,woman,shoots,a,man]. Now, we have already said that
the -> symbol used in context free grammars means can consist of, or can be built out
of, and this idea is easily modeled using lists. For example, the rule s -> np vp can
be thought of as saying: a list of words is an s list if it is the result of concatenating
an np list with a vp list. As we know how to concatenate lists in Prolog (we can use
append), it should be easy to turn these kinds of rules into Prolog. And what about
the rules that tell us about individual words? Even easier: we can simply view n ->

woman as saying that the list [woman] is an n list.

If we turn these ideas into Prolog, this is what we get:

s(Z) :- np(X), vp(Y), append(X,Y,Z).

np(Z) :- det(X), n(Y), append(X,Y,Z).

vp(Z) :- v(X), np(Y), append(X,Y,Z).

vp(Z) :- v(Z).

det([the]).

det([a]).

n([woman]).

n([man]).

v([shoots]).

The correspondence between the CFG rules and the Prolog should be clear. And to use
this program as a recognizer, we simply pose the obvious queries. For example:

s([a,woman,shoots,a,man]).

yes

In fact, because this is a simple declarative Prolog program, we can do more than
this: we can also generate all the sentences this grammar produces. In fact, our little
grammar generates 20 sentences. Here are the first five:

7.1. Context free grammars 97

s(X).

X = [the,woman,shoots,the,woman] ;

X = [the,woman,shoots,the,man] ;

X = [the,woman,shoots,a,woman] ;

X = [the,woman,shoots,a,man] ;

X = [the,woman,shoots]

Moreover, we’re not restricted to posing questions about sentences: we can ask about
other grammatical categories. For example:

np([a,woman]).

yes

And we can generate noun phrases with the following query.

np(X).

Now this is rather nice. We have a simple, easy to understand program which corre-
sponds with our CFG in an obvious way. Moreover, if we added more rules to our
CFG, it would be easy to alter the program to cope with the new rules.

But there is a problem: the program doesn’t use the input sentence to guide the search.
Make a trace for the query s([a,man,shoots]) and you will see that the program
‘guesses’ noun phrases and verb phrases and then afterwards checks whether these can
be combined to form the sentence [a,man,shoots]. Prolog will find that [the,woman]
is a noun phrase and [shoots,the,woman] a verb phrase and then it will check
whether concatenating these two lists happens to yield [a,man,shoots], which of
course fails. So, Prolog starts to backtrack and the next thing it will try is whether
concatenating the noun phrase [the,woman] and the verb phrase [shoots,the,man]

happens to yield [a,man,shoots]. It will go on like this until it finally produces the
noun phrase [the,man] and the verb phrase [shoots]. The problem obviously is, that
the goals np(X) and vp(Y) are called with uninstantiated variables as arguments.

So, how about changing the rules in such a way that append becomes the first goal:

s(Z) :- append(X,Y,Z), np(X), vp(Y).

np(Z) :- append(X,Y,Z), det(X), n(Y).

vp(Z) :- append(X,Y,Z), v(X), np(Y).

vp(Z) :- v(Z).

det([the]).

det([a]).

98 Chapter 7. Definite Clause Grammars

n([woman]).

n([man]).

v([shoots]).

Now, we first use append to split up the input list. This instantiates the varibales X

and Y, so that the other goals are all called with instantiated arguments. However, the
program is still not perfect: it uses append a lot and, even worse, it uses append with
uninstantiated variables in the first two arguments. We saw in the previous chapter that
that is a source of inefficiency. And indeed, the performance of this recognizer is very
bad. It is revealing to trace through what actually happens when this program analyses
a sentence such as a woman shoots a man. As you will see, relatively few of the steps
are devoted to the real task of recognizing the sentences: most are devoted to using
append to decompose lists. This isn’t much of a problem for our little grammar, but
it certainly would be if we were working with a more realistic grammar capable of
generating a large number of sentences. We need to do something about this.

7.1.2 CFG recognition using difference lists

A more efficient implementation can be obtained by making use of difference lists.
This is a sophisticated (and, once you’ve understood it, beautiful) Prolog technique
that can be used for a variety of purposes. We won’t discuss the idea of difference lists
in any depth: we’ll simply show how they can be used to rewrite our recognizer more
efficiently.

The key idea underlying difference lists is to represent the information about grammat-
ical categories not as a single list, but as the difference between two lists. For example,
instead of representing a woman shoots a man as [a,woman,shoots,a,man] we might
represent it as the pair of lists

[a,woman,shoots,a,man] [].

Think of the first list as what needs to be consumed (or if you prefer: the input list),
and the second list as what we should leave behind (or: the output list). Viewed from
this (rather procedural) perspective the difference list

[a,woman,shoots,a,man] [].

represents the sentence a woman shoots a man because it says: If I consume all the
symbols on the left, and leave behind the symbols on the right, I have the sentence I am
interested in.

That is: the sentence we are interested in is the difference between the contents of these
two lists.

Difference representations are not unique. In fact, we could represent a woman shoots
a man in infinitely many ways. For example, we could also represent it as

[a,woman,shoots,a,man,ploggle,woggle] [ploggle,woggle].

7.1. Context free grammars 99

Again the point is: if we consume all the symbols on the left, and leave behind the
symbols on the right, we have the sentence we are interested in.

That’s all we need to know about difference lists to rewrite our recognizer. If we bear
the idea of ‘consuming something, and leaving something behind’ in mind’, we obtain
the following recognizer:

s(X,Z) :- np(X,Y), vp(Y,Z).

np(X,Z) :- det(X,Y), n(Y,Z).

vp(X,Z) :- v(X,Y), np(Y,Z).

vp(X,Z) :- v(X,Z).

det([the|W],W).

det([a|W],W).

n([woman|W],W).

n([man|W],W).

v([shoots|W],W).

The s rule says: I know that the pair of lists X and Z represents a sentence if (1) I can
consume X and leave behind a Y, and the pair X and Y represents a noun phrase, and
(2) I can then go on to consume Y leaving Z behind, and the pair Y Z represents a verb
phrase.

The idea underlying the way we handle the words is similar. The code

n([man|W],W).

means we are handling man as the difference between [man|W] and W. Intuitively, the
difference between what I consume and what I leave behind is precisely the word man.

Now, at first this is probably harder to grasp than our previous recognizer. But we have
gained something important: we haven’t used append. In the difference list based
recognizer, they simply aren’t needed, and as we shall see, this makes a big difference.

How do we use such grammars? Here’s how to recognize sentences:

s([a,woman,shoots,a,man],[]).

yes

This asks whether we can get an s by consuming the symbols in [a,woman,shoots,a,man],
leaving nothing behind.

Similarly, to generate all the sentences in the grammar, we ask

s(X,[]).

100 Chapter 7. Definite Clause Grammars

This asks: what values can you give to X, such that we get an s by consuming the
symbols in X, leaving nothing behind?

The queries for other grammatical categories also work the same way. For example, to
find out if a woman is a noun phrase we ask:

np([a,woman],[]).

And we generate all the noun phrases in the grammar as follows:

np(X,[]).

You should trace what happens when this program analyses a sentence such as a woman
shoots a man. As you will see, it is a lot more efficient than our append based program.
Moreover, as no use is made of append, the trace is a lot easier to grasp. So we have
made a big step forward.

On the other hand, it has to be admitted that the second recognizer is not as easy to
understand, at least at first, and it’s a pain having to keep track of all those difference
list variables. If only it were possible to have a recognizer as simple as the first and as
efficient as the second. And in fact, it is possible: this is where DCGs come in.

7.2 Definite clause grammars

So, what are DCGs? Quite simply, a nice notation for writing grammars that hides the
underlying difference list variables. Let’s look at three examples.

7.2.1 A first example

As our first example, here’s our little grammar written as a DCG:

s --> np,vp.

np --> det,n.

vp --> v,np.

vp --> v.

det --> [the].

det --> [a].

n --> [woman].

n --> [man].

v --> [shoots].

The link with the original context free grammar should be utterly clear: this is definitely
the most user friendly notation we have used yet. But how do we use this DCG? In
fact, we use it in exactly the same way as we used our difference list recognizer. For
example, to find out whether a woman shoots a man is a sentence, we pose the query:

7.2. Definite clause grammars 101

s([a,woman,shoots,a,man],[]).

That is, just as in the difference list recognizer, we ask whether we can get an s by
consuming the symbols in [a,woman,shoots,a,man], leaving nothing behind.

Similarly, to generate all the sentences in the grammar, we pose the query:

s(X,[]).

This asks what values we can give to X, such that we get an s by consuming the symbols
in X, leaving nothing behind.

Moreover, the queries for other grammatical categories also work the same way. For
example, to find out if a woman is a noun phrase we pose the query:

np([a,woman],[]).

And we generate all the noun phrases in the grammar as follows:

np(X,[]).

What’s going on? Quite simply, this DCG is our difference list recognizer! That is,
DCG notation is essentially syntactic sugar: user friendly notation that lets us write
grammars in a natural way. But Prolog translates this notation into the kinds of differ-
ence lists discussed before. So we have the best of both worlds: a nice simple notation
for working with, and the efficiency of difference lists.

There is an easy way to actually see what Prolog translates DCG rules into. Suppose
you are working with this DCG (that is, Prolog has already consulted the rules). Then
if you pose the query:

listing(s)

you will get the response

s(A,B) :-

np(A,C),

vp(C,B).

This is what Prolog has translated s -> np,vp into. Note that (apart from the choice
of variables) this is exactly the difference list rule we used in our second recognizer.

Similarly, if you pose the query

listing(np)

you will get

np(A,B) :-

det(A,C),

n(C,B).

102 Chapter 7. Definite Clause Grammars

This is what Prolog has translated np -> det,n into. Again (apart from the choice of
variables) this is the difference list rule we used in our second recognizer.

To get a complete listing of the translations of all the rules, simply type

listing.

There is one thing you may observe. Some Prolog implementations translate rules such
as

det --> [the].

not into

det([the|W],W).

which was the form we used in our difference list recognizer, but into

det(A,B) :-

’C’(A,the,B).

Although the notation is different, the idea is the same. Basically, this says you can get
a B from an A by consuming a the. Note that ’C’ is an atom.

7.2.2 Adding recursive rules

Our original context free grammar generated only 20 sentences. However it is easy to
write context free grammars that generate infinitely many sentences: we need simply
use recursive rules. Here’s an example. Let’s add the following rules to our little
grammar:

s -> s conj s

conj -> and
conj -> or
conj -> but

This rule allows us to join as many sentences together as we like using the words and,
but and or. So this grammar classifies sentences such as The woman shoots the man or
the man shoots the woman as grammatical.

It is easy to turn this grammar into DCG rules. In fact, we just need to add the rules

s --> s,conj,s.

conj --> [and].

conj --> [or].

conj --> [but].

7.2. Definite clause grammars 103

But what does Prolog do with a DCG like this? Let’s have a look.

First, let’s add the rules at the beginning of the knowledge base before the rule s -> np,vp.
What happens if we then pose the query s([a,woman,shoots],[])? Prolog gets into
an infinte loop.

Can you see why? The point is this. Prolog translates DCG rules into ordinary Prolog
rules. If we place the recursive rule s -> s,conj,s in the knowledge base before
the non-recursive rule s -> np,vp then the knowledge base will contain the following
two Prolog rules, in this order:

s(A, B) :-

s(A, C),

conj(C, D),

s(D, B).

s(A, B) :-

np(A, C),

vp(C, B).

Now, from a declarative perspective this is fine, but from a procedural perspective this
is fatal. When it tries to use the first rule, Prolog immediately encounters the goal
s(A,C), which it then tries to satisfy using the first rule, whereupon it immediately en-
counters the goal s(A, C), which it then tries to satisfy using the first rule, whereupon
it immediately encounters the goal s(A, C)... In short, it goes into infinite loop and
does no useful work.

Second, let’s add the recursive rule s -> s,conj,s at the end of the knowledge base,
so that Prolog always ecounters the translation of the non-recursive rule first. What
happens now, when we pose the query s([a,woman,shoots],[])? Well, Prolog
seems to be able to handle it and gives an anwer. But what happens when we pose
the query s([woman,shoot],[]), i.e. an ungrammatical sentence that is not accepted
by our grammar? Prolog again gets into an infinite loop. Since, it is impossible to rec-
ognize [woman,shoot] as a sentence consisting of a noun phrase and a verb phrase,
Prolog tries to analyse it with the rule s -> s,conj,s and ends up in the same loop
as before.

Notice, that we are having the same problems that we had when we were changing the
order of the rules and goals in the definition of descend in the chapter on recursion.
In that case, the trick was to change the goals of the recursive rule so that the recursive
goal was not the first one in the body of the rule. In the case of our recursive DCG,
however, this is not a possible solution. Since the order of the goals determines the
order of the words in the sentence, we cannot change it just like that. It does make
a difference, for example, whether our grammar accepts the woman shoots the man
and the man shoots the woman (s -> s,conj,s) or whether it accepts and the woman
shoots the man the man shoots the woman (s -> conj,s,s).

So, by just reordering clauses or goals, we won’t solve the problem. The only possible
solution is to introduce a new nonterminal symbol. We could for example use the
category simple_s for sentences without embedded sentences. Our grammar would
then look like this:

104 Chapter 7. Definite Clause Grammars

s --> simple_s.

s --> simple_s conj s.

simple_s --> np,vp.

np --> det,n.

vp --> v,np.

vp --> v.

det --> [the].

det --> [a].

n --> [woman].

n --> [man].

v --> [shoots].

conj --> [and].

conj --> [or].

conj --> [but].

Make sure that you understand why Prolog doesn’t get into infinite loops with this
grammar as it did with the previous version.

The moral is: DCGs aren’t magic. They are a nice notation, but you can’t always
expect just to ‘write down the grammar as a DCG’ and have it work. DCG rules are
really ordinary Prolog rules in disguise, and this means that you must pay attention to
what your Prolog interpreter does with them.

7.2.3 A DCG for a simple formal language

As our last example, we shall define a DCG for the formal language anbn. What is this
language? And what is a formal language anyway?

A formal language is simply a set of strings. The term ‘formal language’ is intended to
contrast with the term ‘natural language’: whereas natural languages are languages that
human beings actually use, fomal languages are mathematical objects that computer
scientists, logicians, and mathematicians define and study for various purpose.

A simple example of a formal language is anbn. There are only two ‘words’ in this
language: the symbol a and the symbol b. The language anbn consist of all strings
made up from these two symbols that have the following form: the string must consist
of an unbroken block of as of length n, followed by an unbroken block of bs of length
n, and nothing else. So the strings ab, aabb, aaabbb and aaaabbbb all belong to anbn.
(Note that the empty string belongs to anbn too: after all, the empty string consists of a
block of as of length zero followed by a block of bs of length zero.) On the other hand,
aaabb and aaabbba do not belong to anbn.

Now, it is easy to write a context free grammar that generates this language:

s -> ε
s -> l s r

l -> a

r -> b

The first rule says that an s can be realized as nothing at all. The second rule says that
an s can be made up of an l (for left) element, followed by an s, followed by an r (for

7.3. Exercises 105

right) element. The last two rules say that l elements and r elements can be realized as
as and bs respectively. It should be clear that this grammar really does generate all and
only the elements of anbn, including the empty string.

Moreover, it is trivial to turn this grammar into DCG. We can do so as follows:

s --> [].

s --> l,s,r.

l --> [a].

r --> [b].

And this DCG works exactly as we would hope. For example, to the query

s([a,a,a,b,b,b],[]).

we get the answer ‘yes’, while to the query

s([a,a,a,b,b,b,b],[]).

we get the answer ‘no’. And the query

s(X,[]).

enumerates the strings in the language, starting from [].

7.3 Exercises

Exercise 7.1 Suppose we are working with the following DCG:

s --> foo,bar,wiggle.

foo --> [choo].

foo --> foo,foo.

bar --> mar,zar.

mar --> me,my.

me --> [i].

my --> [am].

zar --> blar,car.

blar --> [a].

car --> [train].

wiggle --> [toot].

wiggle --> wiggle,wiggle.

Write down the ordinary Prolog rules that correspond to these DCG rules. What are
the first three responses that Prolog gives to the query s(X,[])?

Exercise 7.2 The formal language anbn�	ε
 consists of all the strings in anbn ex-
cept the empty string. Write a DCG that generates this language.

Exercise 7.3 Let anb2n be the formal language which contains all strings of the fol-
lowing form: an unbroken block of as of length n followed by an unbroken block of bs
of length 2n, and nothing else. For example, abb, aabbbb, and aaabbbbbb belong to
anb2n, and so does the empty string. Write a DCG that generates this language.

106 Chapter 7. Definite Clause Grammars

7.4 Practical Session 7

The purpose of Practical Session 7 is to help you get familiar with the DCGs, differ-
ence lists, and the relation between them, and to give you some experience in writing
basic DCGs. As you will learn next week, there is more to DCGs than the ideas just
discussed. Nonetheless, what you have learned so far is certainly the core, and it is
important that you are comfortable with the basic ideas before moving on.

First some keyboard exercises:

1. First, type in or download the simple append based recognizer discussed in the
text, and then run some traces. As you will see, we were not exaggerating when
we said that the performance of the append based grammar was very poor. Even
for such simple sentences as The woman shot a man you will see that the trace
is very long, and very difficult to follow.

2. Next, type in or download our second recognizer, the one based on difference
lists, and run more traces. As you will see, there is a dramatic gain in efficiency.
Moreover, even if you find the idea of difference lists a bit hard to follow, you
will see that the traces are very simple to understand, especially when compared
with the monsters produced by the append based implementation!

3. Next, type in or download the DCG discussed in the text. Type listing so that
you can see what Prolog translates the rules to. How does your system translate
rules of the form Det -> [the]? That is, does it translate them to rules like
det([the|X],X), or does is make use of rules containing the ’C’predicate?

4. Now run some traces. Apart from variable names, the traces you observe here
should be very similar to the traces you observed when running the difference
list recognizer. In fact, you will only observe any real differences if your version
of Prolog uses a ’C’ based translation.

And now it’s time to write some DCGs:

1. The formal language aEven is very simple: it consists of all strings containing
an even number of as, and nothing else. Note that the empty string ε belongs to
aEven. Write a DCG that generates aEven.

2. The formal language anb2mc2mdn consists of all strings of the following form:
an unbroken block of as followed by an unbroken block of bs followed by an
unbroken block of cs followed by an unbroken block of ds, such that the a and
d blocks are exactly the same length, and the c and d blocks are also exactly the
same length and furthermore consist of an even number of cs and ds respectively.
For example, ε, abbccd, and aaabbbbccccddd all belong to anb2mc2mdn. Write a
DCG that generates this language.

3. The language that logicians call ‘propositional logic over the propositional sym-
bols p, q, and r’ can be defined by the following context free grammar:

7.4. Practical Session 7 107

prop -> p

prop -> q

prop -> r

prop -> � prop

prop -> (prop � prop)

prop -> (prop
 prop)

prop -> (prop � prop)

Write a DCG that generates this language. Actually, because we don’t know
about Prolog operators yet, you will have to make a few rather clumsy looking
compromises. For example, instead of getting it to recognize

�(p � q)

you will have to get it recognize things like

[not, ’(’, p, implies, q, ’)’]

instead. But we will learn later how to make the output nicer, so write the DCG
that accepts a clumsy looking version of this language. Use or for
, and and
for �.

108 Chapter 7. Definite Clause Grammars

8

More Definite Clause Grammars

This lecture has two main goals:

1. To examine two important capabilities offered by DCG notation: extra argu-
ments and extra tests.

2. To discuss the status and limitations of DCGs.

8.1 Extra arguments

In the previous lecture we only scratched the surface of DCG notation: it actually
offers a lot more than we’ve seen so far. For a start, DCGs allow us to specify extra
arguments. Extra arguments can be used for many purposes; we’ll examine three.

8.1.1 Context free grammars with features

As a first example, let’s see how extra arguments can be used to add features to context-
free grammars.

Here’s the DCG we worked with last week:

s --> np,vp.

np --> det,n.

vp --> v,np.

vp --> v.

det --> [the].

det --> [a].

n --> [woman].

n --> [man].

v --> [shoots].

Suppose we wanted to deal with sentences like “She shoots him”, and “He shoots her”.
What should we do? Well, obviously we should add rules saying that “he”, “she”,
“him”, and “her” are pronouns:

110 Chapter 8. More Definite Clause Grammars

pro --> [he].

pro --> [she].

pro --> [him].

pro --> [her].

Furthermore, we should add a rule saying that noun phrases can be pronouns:

np--> pro.

Up to a point, this new DCG works. For example:

s([she,shoots,him],[]).

yes

But there’s an obvious problem. The DCG will also accept a lot of sentences that are
clearly wrong, such as “A woman shoots she”, “Her shoots a man”, and “Her shoots
she”:

s([a,woman,shoots,she],[]).

yes

s([her,shoots,a,man],[]).

yes

s([her,shoots,she],[]).

yes

That is, the grammar doesn’t know that “she” and “he” are subject pronouns and cannot
be used in object position; thus “A woman shoots she” is bad because it violates this
basic fact about English. Moreover, the grammar doesn’t know that “her” and “him”
are object pronouns and cannot be used in subject position; thus “Her shoots a man”
is bad because it violates this constraint. As for “Her shoots she”, this manages to get
both matters wrong at once.

Now, it’s pretty obvious what we have to do to put this right: we need to extend the
DCG with information about which pronouns can occur in subject position and which
in object position. The interesting question: how exactly are we to do this? First let’s
look at a naive way of correcting this, namely adding new rules:

s --> np_subject,vp.

np_subject --> det,n.

np_object --> det,n.

np_subject --> pro_subject.

np_object --> pro_object.

vp --> v,np_object.

vp --> v.

8.1. Extra arguments 111

det --> [the].

det --> [a].

n --> [woman].

n --> [man].

pro_subject --> [he].

pro_subject --> [she].

pro_object --> [him].

pro_object --> [her].

v --> [shoots].

Now this solution “works”. For example,

?- s([her,shoots,she],[]).

no

But neither computer scientists nor linguists would consider this a good solution. The
trouble is, a small addition to the lexicon has led to quite a big change in the DCG.
Let’s face it: “she” and “her” (and “he” and “him”) are the same in a lot of respects.
But to deal with the property in which they differ (namely, in which position in the
sentence they can occur) we’ve had to make big changes to the grammar: in particular,
we’ve doubled the number of noun phrase rules. If we had to make further changes
(for example, to cope with plural noun phrases) things would get even worse. What
we really need is a more delicate programming mechanism that allows us to cope with
such facts without being forced to add rules all the time. And here’s where the extra
arguments come into play. Look at the following grammar:

s --> np(subject),vp.

np(_) --> det,n.

np(X) --> pro(X).

vp --> v,np(object).

vp --> v.

det --> [the].

det --> [a].

n --> [woman].

n --> [man].

pro(subject) --> [he].

pro(subject) --> [she].

pro(object) --> [him].

pro(object) --> [her].

v --> [shoots].

112 Chapter 8. More Definite Clause Grammars

The key thing to note is that this new grammar contains no new rules. It is exactly the
same as the first grammar that we wrote above, except that the symbol np is associated
with a new argument, either (subject), (object), (_) and (X). A linguist would
say that we’ve added a feature to distinguish various kinds of noun phrase. In particular,
note the four rules for the pronouns. Here we’ve used the extra argument to state
which pronouns can occur in subject position, and which occur in object position.
Thus these rules are the most fundamental, for they give us the basic facts about how
these pronouns can be used.

So what do the other rules do? Well, intuitively, the rule

np(X) --> pro(X).

uses the extra argument (the variable X) to pass these basic facts about pronouns up to
noun phrases built out of them: because the variable X is used as the extra argument
for both the np and the pronoun, Prolog unification will guarantee that they will be
given the same value. In particular, if the pronoun we use is “she” (in which case
X=subject), then the np wil, through its extra argument (X=subject), also be marked
as being a subject np. On the other hand, if the pronoun we use is “her” (in which case
X=object), then the extra argument np will be marked X=object too. And this, of
course, is exactly the behaviour we want.

On the other hand, although noun phrases built using the rule

np(_) --> det,n.

also have an extra argument, we’ve used the anonymous variable as its value. Essen-
tially this means can be either, which is correct, for expressions built using this rule
(such as “the man” and “a woman”) can be used in both subject and object position.

Now consider the rule

vp --> v,np(object).

This says that to apply this rule we need to use an noun phrase whose extra argument
unifies with object. This can be either noun phrases built from object pronouns or
noun phrases such as “the man” and “a woman” which have the anonymous variable
as the value of the extra argument. Crucially, pronouns marked has having subject

as the value of the extra argument can’t be used here: the atoms object and subject

don’t unify. Note that the rule

s --> np(subject),vp.

works in an analogous fashion to prevent noun phrases made of object pronouns from
ending up in subject position.

This works. You can check it out by posing the query:

?- s(X,[]).

8.1. Extra arguments 113

As you step through the responses, you’ll see that only acceptable English is generated.

But while the intuitive explanation just given is correct, what’s really going on? The
key thing to remember is that DCG rules are really are just a convenient abbreviation.
For example, the rule

s --> np,vp.

is really syntactic sugar for

s(A,B) :-

np(A,C),

vp(C,B).

That is, as we learned in the previous lecture, the DCG notation is a way of hiding
the two arguments responsible for the difference list representation, so that we don’t
have to think about them. We work with the nice user friendly notation, and Prolog
translates it into the clauses just given.

Ok, so we obviously need to ask what

s --> np(subject),vp.

translates into. Here’s the answer:

s(A,B) :-

np(subject,A,C),

vp(C,B).

As should now be clear, the name “extra argument” is a good one: as this translation
makes clear, the (subject) symbol really is just one more argument in an ordinary
Prolog rule! Similarly, our noun phrase DCG rules translate into

np(A,B,C) :-

det(B,D),

n(D,C).

np(A,B,C) :-

pro(A,B,C).

Note that both rules have three arguments. The first, A, is the extra argument, and the
last two are the ordinary, hidden DCG arguments (the two hidden arguments are always
the last two arguments).

Incidentally, how do you think we would use the grammar to list the grammatical noun
phrases? Well, if we had been working with the DCG rule np -> det,n (that is, a rule
with no extra arguments) we would have made the query

np(NP,[]).

So it’s not too surprising that we need to pose the query

114 Chapter 8. More Definite Clause Grammars

np(X,NP,[]).

when working with our new DCG. Here’s what the response would be.

X = _2625

NP = [the,woman] ;

X = _2625

NP = [the,man] ;

X = _2625

NP = [a,woman] ;

X = _2625

NP = [a,man] ;

X = subject

NP = [he] ;

X = subject

NP = [she] ;

X = object

NP = [him] ;

X = object

NP = [her] ;

no

One final remark: don’t be misled by this simplicity of our example. Extra arguments
can be used to cope with some complex syntactic problems. DCGs are no longer the
state-of-art grammar development tools they once were, but they’re not toys either.
Once you know about writing DCGs with extra arguments, you can write some fairly
sophisticated grammars.

8.1.2 Building parse trees

So far, the programs we have discussed have been able to recognize grammatical struc-
ture (that is, they could correctly answer “yes” or “no” when asked whether the input
was a sentence, a noun phrase, and so on) and to generate grammatical output. This
is pleasant, but we would also like to be able to parse. That is, we would like our
programs not only to tell us which sentences are grammatical, but also to give us an
analysis of their structure. In particular, we would like to see the trees the grammar
assigns to sentences.

Well, using only standard Prolog tool we can’t actually draw nice pictures of trees,
but we can build data structures which describe trees in a clear way. For example,
corresponding to the tree

8.1. Extra arguments 115

we could have the following term:

s(np(det(a),n(woman)),vp(v(shoots))).

Sure: it doesn’t look as nice, but all the information in the picture is there. And, with
the aid of a decent graphics package, it would be easy to turn this term into a picture.

But how do we get DCGs to build such terms? Actually, it’s pretty easy. After all, in
effect a DCG has to work out what the tree structure is when recognizing a sentence.
So we just need to find a way of keeping track of the structure that the DCG finds. We
do this by adding extra arguments. Here’s how:

s(s(NP,VP)) --> np(NP),vp(VP).

np(np(DET,N)) --> det(DET),n(N).

vp(vp(V,NP)) --> v(V),np(NP).

vp(vp(V)) --> v(V).

det(det(the)) --> [the].

det(det(a)) --> [a].

n(n(woman)) --> [woman].

n(n(man)) --> [man].

v(v(shoots)) --> [shoots].

What’s going on here? Essentially we are building the parse trees for the syntactic cate-
gories on the left-hand side of the rules out of the parse trees for the syntactic categories
on the right-hand side of the rules. Consider the rule vp(vp(V,NP)) -> v(V),np(NP).
When we make a query using this DCG, the V in v(V) and the NP in np(NP) will be in-
stantiated to terms representing parse trees. For example, perhaps V will be instantiated
to

v(shoots)

and NP will be instantiated to

np(det(a),n(woman)).

116 Chapter 8. More Definite Clause Grammars

What is the term corresponding to a vp made out of these two structures? Obviously it
should be this:

vp(v(shoots),np(det(a),n(woman))).

And this is precisely what the extra argument vp(V,NP) in the rule vp(vp(V,NP)) ->

v(V),np(NP) gives us: it forms a term whose functor is vp, and whose first and second
arguments are the values of V and NP respectively. To put it informally: it plugs the V

and the NP terms together under a vp functor.

To parse the sentence “A woman shoots” we pose the query:

s(T,[a,woman,shoots],[]).

That is, we ask for the extra argument T to be instantiated to a parse tree for the sen-
tence. And we get:

T = s(np(det(a),n(woman)),vp(v(shoots)))

yes

Furthermore, we can generate all parse trees by making the following query:

s(T,S,[]).

The first three responses are:

T = s(np(det(the),n(woman)),vp(v(shoots),np(det(the),n(woman))))

S = [the,woman,shoots,the,woman] ;

T = s(np(det(the),n(woman)),vp(v(shoots),np(det(the),n(man))))

S = [the,woman,shoots,the,man] ;

T = s(np(det(the),n(woman)),vp(v(shoots),np(det(a),n(woman))))

S = [the,woman,shoots,a,woman]

This code should be studied closely: it’s a classic example of building structure using
unification.

Extra arguments can also be used to build semantic representations. We did not say
anything about what the words in our little DCG mean. In fact, nowadays a lot is known
about the semantics of natural languages, and it is surprisingly easy to build semantic
representations which partially capture the meaning of sentences or entire discourses.
Such representations are usually expressions of some formal language (for example
first-order logic, discourse representation structures, or a database query language)
and they are usually built up compositionally. That is, the meaning of each word is
expressed in the formal language; this meaning is given as an extra argument in the
DCG entries for the individual words. Then, for each rule in the grammar, an extra
argument shows how to combine the meaning of the two subcomponents. For example,
to the rule s -> np, vp we would add an extra argument stating how to combine the
np meaning and the vp meaning to form the s meaning. Although somewhat more
complex, the semantic construction process is quite like the way we built up the parse
tree for the sentence from the parse tree of its subparts.

8.1. Extra arguments 117

8.1.3 Beyond context free languages

In the previous lecture we introduced DCGs as a useful Prolog tool for representing
and working with context free grammars. Now, this is certainly a good way of thinking
about DCGs, but it’s not the whole story. For the fact of the matter is: DCGs can
deal with a lot more than just context free languages. The extra arguments we have
been discussing (and indeed, the extra tests we shall introduce shortly) give us the
tools for coping with any computable language whatsoever. We shall illustrate this by
presenting a simple DCG for the formal language anbncn. %%-�	�epsilon�
/.

The formal language anbncn %%-�	�epsilon�
/ consists of all non-null strings made
up of as, bs, and cs which consist of an unbroken block of as, followed by an unbroken
block of bs, followed by an unbroken block of cs, all three blocks having the same
length. For example, abc, and aabbcc and aaabbbccc all belong to anbncn. %%-
�	�epsilon�
/. Furthermore, ε belongs to anbncn.

The interesting thing about this language is that it is not context free. Try whatever you
like, you will not succeed in writing a context free grammar that generates precisely
these strings. Proving this would take us too far afield, but the proof is not particularly
difficult, and you can find it in many books on formal language theory.

On the other hand, as we shall now see, it is very easy to write a DCG that generates
this language. Just as we did in the previous lecture, we shall represent strings as lists;
for example, the string abc will be represented using the list [a,b,c]. Given this
convention, here’s the DCG we need:

s --> ablock(Count),bblock(Count),cblock(Count).

ablock(0) --> [].

ablock(succ(Count)) --> [a],ablock(Count).

bblock(0) --> [].

bblock(succ(Count)) --> [b],bblock(Count).

cblock(0) --> [].

cblock(succ(Count)) --> [c],cblock(Count).

The idea underlying this DCG is fairly simple: we use an extra argument to keep track
of the length of the blocks. The s rule simply says that we want a block of as followed
by a block of bs followed by block of cs, and all three blocks are to have the same
length, namely Count.

But what should the values of Count be? The obvious answer is: 1, 2, 3, 4,..., and
so on. But as yet we don’t know how to mix DCGs and arithmetic, so this isn’t very
helpful. Fortunately there’s an easier (and more elegant) way. Represent the number
0 by 0, the number 1 by succ(0), the number 2 by succ(succ(0)), the number 3 by
succ(succ(succ(0))),..., and so on, just as we did it in Chapter 3. (You can read
succ as “successor of”.) Using this simple notation we can “count using matching”.

This is precisely what the above DCG does, and it works very neatly. For example,
suppose we pose the following query:

s(Count,L,[]).

118 Chapter 8. More Definite Clause Grammars

which asks Prolog to generate the lists L of symbols that belong to this language, and
to give the value of Count needed to produce each item. Then the first three responses
are:

Count = 0

L = [] ;

Count = succ(0)

L = [a, b, c] ;

Count = succ(succ(0))

L = [a, a, b, b, c, c] ;

Count = succ(succ(succ(0)))

L = [a, a, a, b, b, b, c, c, c]

The value of Count clearly corresponds to the length of the blocks.

So: DCGs are not just a tool for working with context free grammars. They are strictly
more powerful than that, and (as we’ve just seen) part of the extra power comes from
the use of extra arguments.

8.2 Extra goals

Any DCG rule is really syntactic sugar for an ordinary Prolog rule. So it’s not really too
surprising that we’re allowed to make use of extra arguments. Similarly, it shouldn’t
come as too much of a surprise that we can also add calls to any Prolog predicate
whatsoever to the right hand side of a DCG rule.

The DCG of the previous section can, for example, be adapted to work with Prolog
numbers instead of the successor representation of numbers by using calls to Prolog’s
built-in arithmetic functionality to add up how many as, bs, and cs have already been
generated. Here is the code:

s --> ablock(Count),bblock(Count),cblock(Count).

ablock(0) --> [].

ablock(NewCount) --> [a],ablock(Count), {NewCount is Count + 1}.

bblock(0) --> [].

bblock(NewCount) --> [b],bblock(Count), {NewCount is Count + 1}.

cblock(0) --> [].

cblock(NewCount) --> [c],cblock(Count), {NewCount is Count + 1}.

These extra goals can be written anywhere on the right side of a DCG rule, but must
stand between curly brackets. When Prolog encounters such curly brackets while
translating a DCG into its internal representation, it just takes the extra goals speci-
fied between the curly brackets over into the translation. So, the second rule for the
non-terminal ablock above would be translated as follows:

8.2. Extra goals 119

ablock(NewCount,A,B) :-

’C’(A, a, C),

ablock(Count, C, B),

NewCount is Count + 1.

This possibility of adding arbitrary Prolog goals to the right hand side of DCG rules,
makes DCGs very very powerful (in fact, we can do anything that we can do in Prolog)
and is not used much. There is, however, one interesting application for extra goals in
computational linguistics; namely that with the help of extra goals, we can seperate the
rules of a grammar from lexical information.

8.2.1 Separating rules and lexicon

By ‘separating rules and lexicon’ we mean that we want to eliminate all mentioning of
individual words in our DCGs and instead record all the information about individual
words separately in a lexicon. �!- To see what is meant by this, let’s return to our basic
grammar, namely:

np - - > det,n.

vp - - > v,np.

vp - - > v.

det - - > [the].

det - - > [a].

n - - > [woman].

n - - > [man].

v - - > [shoots].

We are going to separate the rules form the lexicon. That is, we are going to write a
DCG that generates exactly the same language, but in which no rule mentions any in-
dividual word. All the information about individual words will be recorded separately.
–�

Here is an example of a (very simple) lexicon. Lexical entries are encoded by using
a predicate lex/2 whose first argument is a word, and whose second argument is a
syntactic category.

lex(the,det).

lex(a,det).

lex(woman,n).

lex(man,n).

lex(shoots,v).

And here is a simple grammar that could go with this lexicon. Note that it is very
similar to our basic DCG of the previous chapter. In fact, both grammars generate
exactly the same language. The only rules that have changed are those, that mentioned
specific words, i.e. the det, n, and v rules.

120 Chapter 8. More Definite Clause Grammars

det --> [Word],{lex(Word,det)}.

n --> [Word],{lex(Word,n)}.

v --> [Word],{lex(Word,v)}.

Consider the new det rule. This rule part says “a det can consist of a list containing a
single element Word” (note that Word is a variable). Then the extra test adds the crucial
stipulation: “so long as Word matches with something that is listed in the lexicon as a
determiner”. With our present lexicon, this means that Word must be matched either
with the word “a” or “the”. So this single rule replaces the two previous DCG rules for
det.

This explains the “how” of separating rules from lexicon, but it doesn’t explain the
“why”. Is it really so important? Is this new way of writing DCGs really that much
better?

The answer is an unequivocal “yes”! It’s much better, and for at least two reasons.

The first reason is theoretical. Arguably rules should not mention specific lexical items.
The purpose of rules is to list general syntactic facts, such as the fact that sentence can
be made up of a noun phrase followed by a verb phrase. The rules for s, np, and
vp describe such general syntactic facts, but the old rules for det, n, and v don’t.
Instead, the old rules simply list particular facts: that “a” is a determiner, that “the” is
a determiner, and so on. From theoretical perspective it is much neater to have a single
rule that says “anything is a determiner (or a noun, or a verb,...) if it is listed as such in
the lexicon”. And this, of course, is precisely what our new DCG rules say.

The second reason is more practical. One of the key lessons computational linguists
have learnt over the last twenty or so years is that the lexicon is by far the most inter-
esting, important (and expensive!) repository of linguistic knowledge. Bluntly, if you
want to get to grips with natural language from a computational perspective, you need
to know a lot of words, and you need to know a lot about them.

Now, our little lexicon, with its simple two-place lex entries, is a toy. But a real lex-
icon is (most emphatically!) not. A real lexicon is likely to be very large (it may
contain hundreds of thousands, or even millions, of words) and moreover, the informa-
tion associated with each word is likely to be very rich. Our lex entries give only the
syntactical category of each word, but a real lexicon will give much more, such as in-
formation about its phonological, morphological, semantic, and pragmatic properties.

Because real lexicons are big and complex, from a software engineering perspective it
is best to write simple grammars that have a simple, well-defined way, of pulling out
the information they need from vast lexicons. That is, grammar should be thought of
as separate entities which can access the information contained in lexicons. We can
then use specialized mechanisms for efficiently storing the lexicon and retrieving data
from it.

Our new DCG rules, though simple, illustrate the basic idea. The new rules really do
just list general syntactic facts, and the extra tests act as an interface to our (admittedly
simple) lexicon that lets the rules find exactly the information they need. Furthermore,
we now take advantage of Prolog’s first argument indexing which makes looking up a
word in the lexicon more efficient. First argument indexing is a technique for making
Prolog’s knowledge base access more efficient. If in the query the first argument is
instantiated it allows Prolog to ignore all clauses, where the first argument’s functor

8.3. Concluding remarks 121

and arity is different. This means that we can get all the possible categories of e.g.
man immediately without having to even look at the lexicon entries for all the other
hundreds or thousands of words that we might have in our lexicon.

8.3 Concluding remarks

We now have a fairly useful picture of what DCGs are and what they can do for us. To
conclude, let’s think about them from a somewhat higher level, from both a formal and
a linguistic perspective.

First the formal remarks. For the most part, we have presented DCGs as a simple tool
for encoding context free grammars (or context free grammars enriched with features
such as subject and object). But DCGs go beyond this. We saw that it was possible to
write a DCG that generated a non context free language. In fact, any program what-
soever can be written in DCG notation. That is, DCGs are full-fledged programming
language in their own right (they are Turing-complete, to use the proper terminology).
And although DCGs are usually associated with linguistic applications, they can be
useful for other purposes.

So how good are DCGs from a linguistic perspective? Well, mixed. At one stage
(in the early 1980s) they were pretty much state of the art. They made it possible to
code complex grammars in a clear way, and to explore the interplay of syntactic and
semantic ideas. Certainly any history of parsing in computational linguistics would
give DCGs an honorable mention.

Nonetheless, DCGs have drawbacks. For a start, their tendency to loop when the goal
ordering is wrong (we saw an example in the last lecture when we added a rule for
conjunctions) is annoying; we don’t want to think about such issues when writing
serious grammars. Furthermore, while the ability to add extra arguments is useful,
if we need to use lots of them (and for big grammars we will) it is a rather clumsy
mechanism.

It is important to notice, however, that these problems come up because of the way Pro-
log interprets DCG rules. They are not inherent to the DCG notation. Any of you who
have done a course on parsing algorithms probably know that all top-down parsers loop
on left-cursive grammars. So, it is not surprising that Prolog, which interprets DCGs
in a top-down fashion, loops on the left-recursive grammar rule s -> s conj s. If
we used a different strategy to interpret DCGs, a bottom-up strategy e.g., we would not
run into the same problem. Similarly, if we didn’t use Prolog’s built in interpretation
of DCGs, we could use the extra arguments for a more sophisticated specification of
feature structures, that would facilitate the use of large feature structures.

DCGs as we saw them in this chapter, a nice notation for context free grammars en-
hanced with some features that comes with a free parser/recognizer, are probably best
viewed as a convenient tool for testing new grammatical ideas, or for implementing
reasonably complex grammars for particular applications. DCGs are not perfect, but
they are very useful. Even if you have never programmed before, simply using what
you have learned so far you are ready to start experimenting with reasonably sophisti-
cated grammar writing. With a conventional programming language (such as C++ or
Java) it simply wouldn’t be possible to reach this stage so soon. Things would be eas-
ier in functional languages (such as LISP, SML, or Haskell), but even so, it is doubtful
whether beginners could do so much so early.

122 Chapter 8. More Definite Clause Grammars

8.4 Exercises

Exercise 8.1 Here’s our basic DCG.

s --> np,vp.

np --> det,n.

vp --> v,np.

vp --> v.

det --> [the].

det --> [a].

n --> [woman].

n --> [man].

v --> [shoots].

Suppose we add the noun “men” (which is plural) and the verb “shoot”. Then we
would want a DCG which says that “The men shoot” is ok, ‘The man shoots” is ok,
“The men shoots” is not ok, and “The man shoot” is not ok. Change the DCG so
that it correctly handles these sentences. Use an extra argument to cope with the
singular/plural distinction.

Exercise 8.2 Translate the following DCG rule into the form Prolog uses:

kanga(V,R,Q) --> roo(V,R),jumps(Q,Q),{marsupial(V,R,Q)}.

8.5 Practical Session 8

The purpose of Practical Session 8 is to help you get familiar with DCGs that make
use of additional arguments and tests.

First some keyboard exercises:

1. Trace some examples using the DCG which uses extra arguments to handle the
subject/object distinct, the DCG which produces parses, and the DCG which
uses extra tests to separate lexicon and rules. Make sure you fully understand
the way all three DCGs work.

2. Carry out traces on the DCG for anbncn that was given in the text (that is, the
DCG that gave the Count variable the values 0, succ(0), succ(succ(0)), and
so on). Try cases where the three blocks of as, bs, and cs are indeed of the same
length as well as queries where this is not the case.

Now for some programming. We suggest two exercises.

8.5. Practical Session 8 123

1. First, bring together all the things we have learned about DCGs for English into
one DCG. In particular, today we say how to use extra arguments to deal with
the subject/object distinction, and in the exercises you were asked to use addi-
tional arguments to deal with the singular/plural distinction. Write a DCG which
handles both. Moreover, write the DCG in such a way that it will produce parse
trees, and makes use of a separate lexicon.

2. Once you have done this, extend the DCG so that noun phrases can be modified
by adjectives and simple prepositional phrases (that is, it should be able to handle
noun phrases such as “the small frightened woman on the table” or “the big fat
cow under the shower”). Then, further extend it so that the distinction between
first, second, and third person pronouns is correctly handled (both in subject and
object form).

124 Chapter 8. More Definite Clause Grammars

9

A Closer Look at Terms

This lecture has three main goals:

1. To introduce the == predicate.

2. To take a closer look at term structure.

3. To introduce operators.

9.1 Comparing terms

Prolog contains an important predicate for comparing terms, namely ==. This tests
whether two terms are identical. It does not instantiate variables, thus it is not the same
as the unification predicate =.

Let’s look at some examples:

?= a == a.

yes

?- a == b.

no

?- a == ’a’.

yes

These answers Prolog gives here should be obvious, though pay attention to the last
one. It tells us that, as far as Prolog is concerned, a and ’a’ are literally the same
object.

Now let’s look at examples involving variables, and explicitly compare == with the
unification predicate =.

?- X==Y.

no

?- X=Y.

X = _2808

Y = _2808

yes

126 Chapter 9. A Closer Look at Terms

In these queries, X and Y are uninstantiated variables; we haven’t given them any value.
Thus the first answer is correct: X and Y are not identical objects, so the == test fails.
On the other hand, the use of = succeeds, for X and Y can be unified.

Let’s now look at queries involving instantiated variables:

?- a=X, a==X.

X = a

yes

The first conjunct, a=X, binds X to a. Thus when a==X is evaluated, the left-hand side
and right-hand sides are exactly the same Prolog object, and a==X succeeds.

A similar thing happens in the following query:

?- X=Y, X==Y.

X = _4500

Y = _4500

yes

The conjunct X=Y first unifies the variables X and Y. Thus when the second conjunct
X==Y is evaluated, the two variables are exactly the same Prolog object, and the second
conjunct succeeds as well.

It should now be clear that = and == are very different, nonetheless there is an important
relation between them. Namely this: == can be viewed as a stronger test for equality
between terms than =. That is, if term1 and term are Prolog terms, and the query
term1 == term2 succeeds, then the query term1 = term2 will succeed too.

Another predicate worth knowing about is \==. This predicate is defined so that it
succeeds precisely in those case where == fails. That is, it succeeds whenever two
terms are not identical, and fails otherwise. For example:

?- a \== a.

no

a \== b.

yes

a \== ’a’.

no

These should be clear; they are simply the opposite of the answers we got above when
we used ==. Now consider:

?- X\==a.

X = _3719

yes

9.2. Terms with a special notation 127

Why this response? Well, we know from above that the query X==a fails (recall the
way == treats uninstantiated variables). Thus X\==a should succeed, and it does.

Similarly:

?- X\==Y.

X = _798

Y = _799

yes

Again, we know from above that the query X==Y fails, thus X\==Y succeeds

9.2 Terms with a special notation

Sometimes terms look different to us, but Prolog regards them as identical. For exam-
ple, when we compare a and ’a’, we see two distinct strings of symbols, but Prolog
treats them as identical. And in fact there are many other cases where Prolog regards
two strings as being exactly the same term. Why? Because it makes programming
more pleasant. Sometimes the notation Prolog likes isn’t as natural, as the notation we
would like. So it is nice to be able to to write programs in the notation we like, and to
let Prolog run them in the notation it finds natural.

9.2.1 Arithmetic terms

The arithmetic predicates introduced earlier are a good example of this. As was men-
tioned in Chapter 5, /, -, *, and \ are functors, and arithmetic expressions such as

2+3 are terms. And this is not an analogy. Apart from the fact that we can eval-
uate them with the help of is, for Prolog strings of symbols such as 2+3 really are
identical with ordinary complex terms:

?- 2+3 == +(2,3).

yes

?- +(2,3) == 2+3.

yes

?- 2-3 == -(2,3).

yes

?- *(2,3) == 2*3.

yes

?- 2*(7+2) == *(2,+(7,2)).

yes

In short, the familiar arithmetic notation is there for our convenience. Prolog doesn’t
regard it as different from the usual term notation.

Similar remarks to the arithmetic comparison predicates <, =<, =:=, =\=, > and >=:

128 Chapter 9. A Closer Look at Terms

?- (2 < 3) == <(2,3).

yes

?- (2 =< 3) == =<(2,3).

yes

?- (2 =:= 3) == =:=(2,3).

yes

?- (2 =\= 3) == =\=(2,3).

yes

?- (2 > 3) == >(2,3).

yes

?- (2 >= 3) == >=(2,3).

yes

Two remarks. First these example show why it’s nice to have the user friendly notation
(would you want to have to work with expressions like =:=(2,3)?). Second, note that
we enclosed the left hand argument in brackets. For example, we didn’t ask

2 =:= 3 == =:=(2,3).

we asked

(2 =:= 3) == =:=(2,3).

Why? Well, Prolog finds the query 2 =:= 3 == =:=(2,3) confusing (and can you
blame it?). It’s not sure whether to bracket the expressions as (2 =:= 3) == =:=(2,3)

(which is what we want), or 2 =:= (3 == =:=(2,3)). So we need to indicate the
grouping explicitly.

One final remark. We have now introduced three rather similar looking symbols,
namely =, ==, and =:= (and indeed, there’s also \=, \==, and =\=). Here’s a summary:

= The unification predicate.
Succeeds if it can unify its arguments, fails otherwise.

\= The negation of the unification predicate.
Succeeds if = fails, and vice-versa.

== The identity predicate.
Succeeds if its arguments are identical, fails otherwise.

\== The negation of the identity predicate.
Succeeds if == fails, and vice-versa.

=:= The arithmetic equality predicate.
Succeeds if its arguments evaluate to the same integer.

=\= The arithmetic inequality predicate.
Succeeds if its arguments evaluate to different integers.

9.2. Terms with a special notation 129

9.2.2 Lists as terms

Lists are another good example where Prolog works with one internal representation,
and gives us another more user friendly notation to work with. Let’s start with a quick
look at the user friendly notation (that is, the use of the square bracket [and]). In
fact, because Prolog also offers the | constructor, there are are many ways of writing
the same list, even at the user friendly level:

?- [a,b,c,d] == [a |[b,c,d]].

yes

?- [a,b,c,d] == [a,b |[c,d]].

yes

?- [a,b,c,d] == [a,b,c |[d]].

yes

?- [a,b,c,d] == [a,b,c,d |[]].

yes

But how does Prolog view lists? In fact, Prolog sees lists as terms which are built out of
two special terms, namely [], which represents the empty list, and ., a functor of arity
2 which is used to build non-empty list (the terms [] and . are called list constructors).

Here’s how these constructors are used to build lists. Needless to say, the definition is
recursive:

� The empty list is the term []. The empty list has length 0.

� A non-empty list is any term of the form .(term,list), where term can be any
Prolog term, and list is any list. If list has length n, then .(term,list) has
length n�1.

?- .(a,[]) == [a].

yes

?- .(f(d,e),[]) == [f(d,e)].

yes

?- .(a,.(b,[])) == [a,b].

yes

?- .(a,.(b,.(f(d,e),[]))) == [a,b,f(d,e)].

yes

?- .(.(a,[]),[]) == [[a]].

yes

?- .(.(.(a,[]),[]),[]) == [[[a]]].

yes

130 Chapter 9. A Closer Look at Terms

?- .(.(a,.(b,[])),[]) == [[a,b]].

yes

?- .(.(a,.(b,[])),.(c,[])) == [[a,b],c].

yes

?- .(.(a,[]),.(b,.(c,[]))) == [[a],b,c].

yes

?- .(.(a,[]),.(.(b,.(c,[])),[])) == [[a],[b,c]].

yes

Again, it is clear that Prolog’s internal notation for lists is not as user friendly as the
use of the square bracket notation. But actually, it’s not as bad as it seems at first sight.
It is very similar to the | notation. It represents a list in two parts: its first element
or head, and a list representing the rest of the list. The trick is to read these terms as
trees. The internal nodes of this tree are labeled with . and all have two daughter
nodes. The subtree under the left daughter is representing the first element of the list
and the subtree under the right daughter the rest of the list. So, the tree representation
of .(a,.(.(b,.(c,[])),.(d,[]))), i.e. [a, [b,c], d], looks like this:

One final remark. Prolog is very polite. Not only are you free to talk to it in your own
user friendly notation, it will reply in the same way.

?- .(f(d,e),[]) = Y.

Y = [f(d,e)]

yes

?- .(a,.(b,[])) = X, Z= .(.(c,[]),[]), W = [1,2,X,Z].

X = [a,b]

Z = [[c]]

W = [1,2,[a,b],[[c]]]

yes

9.3. Examining Terms 131

9.3 Examining Terms

In this section, we will learn about a couple of built-in predicates that let us examine
terms more closely. First, we will look at predicates that test whether their arguments
are terms of a certain type, whether they are, for instance, an atom or a number. Then,
we will see predicates that tell us something about the structure of complex terms.

9.3.1 Types of Terms

Remember what we said about terms in Prolog in the very first lecture. We saw that
there are different kinds of terms, namely variables, atoms, numbers and complex terms
and what they look like. Furthermore, we said that atoms and numbers are grouped
together under the name constants and constants and variables constitute the simple
terms. The following picture summarizes this:

Sometimes it is useful to know of which type a given term is. You might, for instance,
want to write a predicate that has to deal with different kinds of terms, but has to treat
them in different ways. Prolog provides a couple of built-in predicates that test whether
a given term is of a certain type. Here they are:

atom/1 Tests whether the argument is an atom.
integer/1 Tests whether the argument is an integer, such as 4, 10, or -6.
float/1 Tests whether the argument is a floating point number, such as 1.3 or 5.0.
number/1 Tests whether the argument is a number, i.e. an integer or a float
atomic/1 Tests whether the argument is a constant.
var/1 Tests whether the argument is uninstantiated.
nonvar/1 Tests whether the argument is instantiated.

So, let’s see how they behave.

?- atom(a).

yes

?- atom(7).

no

?- atom(loves(vincent,mia)).

no

132 Chapter 9. A Closer Look at Terms

These three examples for the behavior of atom/1 is pretty much what one would expect
of a predicate for testing whether a term is an atom. But what happens, when we call
atom/1 with a variable as argument?

?- atom(X).

no

This makes sense, since an uninstantiated variable is not an atom. If we, however,
instantiate X with an atom first and then ask atom(X), Prolog answers ‘yes’.

?- X = a, atom(X).

X = a

yes

But it is important that the instantiation is done before the test:

?- atom(X), X = a.

no

number/1, integer/1, and float/1 behave analogously. Try it!

atomic/1 tests whether a given term is a constant, i.e. whether it is either an atom
or a number. So atomic/1 will evaluate to true whenever either atom/1 or number/1
evaluate to true and it fails when both of them fail.

?- atomic(mia).

yes

?- atomic(8).

yes

?- atomic(loves(vincent,mia)).

no

?- atomic(X)

no

Finally there are two predicates to test whether the argument is an uninstantiated or
instantiated variable. So:

?- var(X)

yes

?- var(loves(vincent,mia)).

no

?- nonvar(loves(vincent,mia)).

yes

?- nonvar(X).

no

Note that a complex term which contains uninstantiated variables, is of course not an
uninstantiated variable itself (but a complex term). Therefore:

9.3. Examining Terms 133

?- var(loves(_,mia)).

no

?- nonvar(loves(_,mia)).

yes

And again, when the variable X gets instantiated var(X) and nonvar(X) behave dif-
ferently depending on whether they are called before or after the instantiation.

?- X = a, var(X).

no

?- var(X), X = a.

X = a

yes

9.3.2 The Structure of Terms

Given a complex term of which you don’t know what it looks like, what kind of infor-
mation would be interesting to get? Probably, what’s the functor, what’s the arity and
what do the arguments look like. Prolog provides built-in predicates that answer these
questions. The first two are answered by the predicate functor/3. Given a complex
term functor/3 will tell us what the functor and the arity of this term are.

?- functor(f(a,b),F,A).

A = 2

F = f

yes

?- functor(a,F,A).

A = 0

F = a

yes

?- functor([a,b,c],X,Y).

X = ’.’

Y = 2

yes

So, we can use the predicate functor to find out the functor and the arity of a term,
but we can also use it to construct terms, by specifying the second and third argument
and leaving the first undetermined. The query

?- functor(T,f,8).

for example, returns the following answer:

T = f(_G286, _G287, _G288, _G289, _G290, _G291, _G292, _G293)

yes

Note, that either the first argument or the second and third argument have to be instanti-
ated. So, Prolog would answer with an error message to the query functor(T,f,N). If
you think about what the query means, Prolog is reacting in a sensible way. The query

134 Chapter 9. A Closer Look at Terms

is asking Prolog to construct a complex term without telling it how many arguments to
provide and that is something Prolog can just not do.

In the previous section, we saw built-in predicates for testing whether something is
an atom, a number, a constant, or a variable. So, to make the list complete, we were
actually missing a predicate for testing whether something is a complex term. Now,
we can define such a predicate by making use of the predicate functor. All we have
to do is to check that the term is instantiated and that it has arguments, i.e. that its arity
is greater than zero. Here is the predicate definition.

complexterm(X) :-

nonvar(X),

functor(X,_,A),

A > 0.

In addition to the predicate functor there is the predicate arg/3 which tells us about
arguments of complex terms. It takes a number N and a complex term T and returns
the Nth argument of T in its third argument. It can be used to access the value of an
argument

?- arg(2,loves(vincent,mia),X).

X = mia

yes

or to instantiate an argument.

?- arg(2,loves(vincent,X),mia).

X = mia

yes

Trying to access an argument which doesn’t exist, of course fails.

?- arg(2,happy(yolanda),X).

no

The third useful built-in predicate for analyzing term structure is ’=..’/2. It takes a
complex term and returns a list that contains the functor as first element and then all
the arguments. So, when asked the query ’=..’(loves(vincent,mia),X) Prolog
will answer X = [loves,vincent,mia]. This predicate is also called univ and can
be used as an infix operator. Here are a couple of examples.

?- cause(vincent,dead(zed)) =.. X.

X = [cause, vincent, dead(zed)]

Yes

?- X =.. [a,b(c),d].

X = a(b(c), d)

Yes

?- footmassage(Y,mia) =.. X.

Y = _G303

X = [footmassage, _G303, mia]

Yes

9.3. Examining Terms 135

Univ (’=..’) is always useful when something has to be done to all arguments
of a complex term. Since it returns the arguments as a list, normal list processing
strategies can be used to traverse the arguments. As an example, let’s define a pred-
icate called copy_term which makes a copy of a term replacing variables that occur
in the original term by new variables in the copy. The copy of dead(zed) should
be dead(zed), for instance. And the copy of jeallou(marcellus,X) should be
jeallous(marcellus,_G235); i.e. the variable X in the original term has been re-
places by some new variable.

So, the predicate copy_term has two arguments. It takes any Prolog term in the first
argument and returns a copy of this Prolog term in the second argument. In case the
input argument is an atom or a number, the copying is simple: the same term should
be returned.

copy_term(X,X) :- atomic(X).

In case the input term is a variable, the copy should be a new variable.

copy_term(X,_) :- var(X).

With these two clauses we have defined how to copy simple terms. What about com-
plex terms? Well, copy_term should return a complex term with the same functor and
arity and all arguments of this new complex term should be copies of the correspond-
ing arguments in the input term. That means, we have to look at all arguments of the
input term and copy them with recursive calls to copy_term. Here is the Prolog code
for this third clause:

copy_term(X,Y) :-

nonvar(X),

functor(X,F,A),

A > 0,

functor(Y,F,A),

X =.. [F|ArgsX],

Y =.. [F|ArgsY],

copy_terms_in_list(ArgsX,ArgsY).

copy_terms_in_list([],[]).

copy_terms_in_list([HIn|TIn],[HOut|TOut]) :-

copy_term(HIn,Hout),

copy_terms_in_list(TIn,TOut).

So, we first check whether the input term is a complex term: it is not a variable and
its arity is greater than 0. We then request that the copy should have the same functor
and arity. Finally, we have to copy all arguments of the input term. To do so, we use
univ to collect the arguments into a list and then use a simple list processing predicate
copy_terms_in_list to one by one copy the elements of this list.

Here is the whole code for copy_term:

136 Chapter 9. A Closer Look at Terms

copy_term(X,_) :- var(X).

copy_term(X,X) :- atomic(X).

copy_term(X,Y) :-

nonvar(X),

functor(X,F,A),

functor(Y,F,A),

A > 0,

X =.. [F|ArgsX],

Y =.. [F|ArgsY],

copy_terms_in_list(ArgsX,ArgsY).

copy_terms_in_list([],[]).

copy_terms_in_list([HIn|TIn],[HOut|TOut]) :-

copy_term(HIn,Hout),

copy_terms_in_list(TIn,TOut).

9.4 Operators

9.4.1 Properties of operators

By now, we have seen several times already that, in certain cases, Prolog let’s us
use a more user friendly notation than what it will use as its internal representation.
The notation for arithmetic operators was an example. Internally, Prolog will use
is(11,+(2,*(3,3))), but we can write 11 is 2 + 3 * 3. Such functors that can
be written in between their arguments are called infix operators. Other infix operators
in Prolog are for example :-, ->, ;, ’,’, =, =.., == and so on. Infix operators are
called infix operators, because they are written between their arguments. There are also
prefix operators that are written before their argument, and postfix operators which are
written after their argument. ?- for example is a prefix operator, and so is the one-place
- which is used to represent negative numbers as in 1 is 3 + -2.

When we learned about arithmetic in Prolog, we saw that Prolog knows about the con-
ventions for disambiguating arithmetic expressions. So, when we write 2 + 3 * 3

for example, Prolog knows that we mean 2 + (3 * 3) and not (2 + 3) * 3. But
how does Prolog know this? Every operator has a certain precedence. The prece-
dence of + is greater than the precedence of *. That’s why + is taken to be the
main functor of the expression 2 + 3 * 3. (Note that Prolog’s internal representa-
tion +(2,*(3,3)) is not ambiguous.) Similarly, the precedence of is is higher than
the precedence of +, so that 11 is 2 + 3 * 3 is interpreted as is(11,+(2,*(3,3)))
and not as +(is(11,2),*(3,3)) (which wouldn’t make any sense, by the way). In
Prolog precedence is expressed by numbers. The higher this number, the greater the
precedence.

But what happens when there are several operators with the same precedence in one ex-
pression? We said that above that Prolog finds the query 2 =:= 3 == =:=(2,3) con-
fusing, because it doesn’t know how to bracket the expression (is it =:=(2,==(3,=:=(2,3)))

9.4. Operators 137

or is it ==(=:=(2,3),=:=(2,3))?). The reason for why Prolog is not able to decide
which is the correct bracketing is of course that == and =:= have the same precedence.

What about the following query, though?

?- X is 2 + 3 + 4.

Does Prolog find it confusing? No, Prolog correctly answers X = 9. So, which brack-
eting did Prolog choose: is(X,+(2,+(3,4))) or is(X,+(+(2,3),4))? It chose the
second one as can be tested with the following queries.

?- 2 + 3 + 4 = +(2,+(3,4)).

No

?- 2 + 3 + 4 = +(+(2,3),4).

Yes

Prolog uses information about the associativity of + here to disambiguate the expres-
sions. + is left associative, which means that the expression to the right of + must have
a lower precedence than + itself, whereas the expression on the left may have the same
precedence as +. The precedence of an expression is simply the precedence of its main
operator or 0, if it is enclosed in brackets. The main operator of 3 + 4 is +, so that
interpreting 2 + 3 + 4 as +(2,+(3,4)) would mean that the expression to the right
of the first + has the same precedence as + itself, which is illegal. It has to be lower.

The operators ==, =:=, and is are defined to be non-associative which means that both
of their arguments must have a lower precedence. Therefore, 2 =:= 3 == =:=(2,3)

is illegal, since no matter how you bracket it, you’ll get a conflict: 2 =:= 3 has the
same precedence as ==, and 3 == =:=(2,3) has the same precedence as =:=.

The type of an operator (infix, prefix, or postfix), its precedence, and its associativity
are the three things that Prolog needs to know to be able to translate the user friendly,
but potentially ambiguous operator notation into Prolog’s internal representation.

9.4.2 Defining operators

In addition to providing a user friendly operator notation for certain functors, Prolog
also let’s you define your own operators. So you could for example define a postfix
operator is_dead and then Prolog would allow you to write zed is_dead as a fact in
your database instead of is_dead(zed).

Operator definitions in Prolog look like this:

:- op(Precedence, Type, Name).

Precedence is a number between 0 and 1200. The precedence of =, for instance, is 700,
the precedence of + is 500, and the precedence of * 400. Type is an atom specifying the
type and associativity of the operator. In the case of + this atom is yfx, which says that
+ is an infix operator f represents the operator and x and y the arguments. Furthermore,
x stands for an argument which has a precedence which is lower than the precedence
of + and y stands for an argument which has a precedence which lower or equal to the
precedence of +. There are the following possibilities for what Type may look like:

138 Chapter 9. A Closer Look at Terms

infix xfx, xfy, yfx
prefix fx, fy
suffix xf, yf

So, your operator definition for is_dead could look as follows:

:- op(500, xf, is_dead).

Here are the definitions for some of the built-in operators. You can see that operators
with the same properties can be specified in one statement by giving a list of their
names instead of a single name as third argument of op.

:- op(1200, xfx, [:-, ->]).

:- op(1200, fx, [:-, ?-]).

:- op(1100, xfy, [;]).

:- op(1000, xfy, [’,’]).

:- op(700, xfx, [=, is, =.., ==, \==,

=:=, =\=, <, >, =<, >=]).

:- op(500, yfx, [+, -]).

:- op(500, fx, [+, -]).

:- op(300, xfx, [mod]).

:- op(200, xfy, [^]).

One final thing to note is, that operator definitions don’t specify the meaning of an
operator, but only describe how it can be used syntactically. An operator definition
doesn’t say anything about when a query involving this operator will evaluate to true.
It is only a definition extending the syntax of Prolog. So, if the operator is_dead is
defined as above and you ask the query zed is_dead, Prolog won’t complain about
illegal syntax (as it would without this definition), but it will try to prove the goal
is_dead(zed), which is Prolog’s internal representation of zed is_dead. And this
is what operator definitions do. They just tell Prolog how to translate a user friendly
notation into real Prolog notation. So, what would be Prolog’s answer to the query
zed is_dead? It would be no, because Prolog would try to prove is_dead(zed), but
not find any matching clause in the database. Unless, of course, your database would
look like this, for instance:

:- op(500, xf, is_dead).

kill(marsellus,zed).

is_dead(X) :- kill(_,X).

In this case, Prolog would answer yes to the query zed is_dead.

9.5 Exercises

Exercise 9.1 Which of the following queries succeed, and which fail?

9.5. Exercises 139

?- 12 is 2*6

?- 14 =\= 2*6

?- 14 = 2*7

?- 14 == 2*7

?- 14 \== 2*7

?- 14 =:= 2*7

?- [1,2,3|[d,e]] == [1,2,3,d,e]

?- 2+3 == 3+2

?- 2+3 =:= 3+2

?- 7-2 =\= 9-2

?- p == ’p’

?- p =\= ’p’

?- vincent == VAR

?- vincent=VAR,VAR==vincent

Exercise 9.2 How does Prolog respond to the following queries?

?- .(a,.(b,.(c,[]))) = [a,b,c]

?- .(a,.(b,.(c,[]))) = [a,b|[c]]

?- .(.(a,[]),.(.(b,[]),.(.(c,[]),[]))) = X

?- .(a,.(b,.(.(c,[]),[]))) = [a,b|[c]]

Exercise 9.3 Write a two-place predicate termtype(+Term,?Type) that takes a
term and gives back the type(s) of that term (atom, number, constant, variable etc.).
The types should be given back in the order of their generality. The predicate should,
e.g., behave in the following way.

?- termtype(Vincent,variable).

yes

?- termtype(mia,X).

X = atom ;

X = constant ;

X = simple_term ;

140 Chapter 9. A Closer Look at Terms

X = term ;

no

?- termtype(dead(zed),X).

X = complex_term ;

X = term ;

no

Exercise 9.4 Write a program that defines the predicate groundterm(+Term) which
tests whether Term is a ground term. Ground terms are terms that don’t contain vari-
ables. Here are examples of how the predicate should behave:

?- groundterm(X).

no

?- groundterm(french(bic_mac,le_bic_mac)).

yes

?- groundterm(french(whopper,X)).

no

Exercise 9.5 Assume that we have the following operator definitions.

:- op(300, xfx, [are, is_a]).

:- op(300, fx, likes).

:- op(200, xfy, and).

:- op(100, fy, famous).

Which of the following is a wellformed term? What is the main operator? Give the
bracketing.

?- X is_a witch.

?- harry and ron and hermione are friends.

?- harry is_a wizard and likes quidditch.

?- dumbledore is_a famous famous wizard.

9.6 Practical Session

In this practical session, we want to introduce some built-in predicates for printing
terms onto the screen. The first predicate we want to look at is display/1, which
takes a term and prints it onto the screen.

?- display(loves(vincent,mia)).

loves(vincent, mia)

Yes

?- display(’jules eats a big kahuna burger’).

jules eats a big kahuna burger

Yes

More strictly speaking, display prints Prolog’s internal representation of terms.

9.6. Practical Session 141

?- display(2+3+4).

+(+(2, 3), 4)

Yes

In fact, this property of display makes it a very useful tool for learning how operators
work in Prolog. So, before going on to learn more about how to write things onto the
screen, try the following queries. Make sure you understand why Prolog answers the
way it does.

?- display([a,b,c]).

?- display(3 is 4 + 5 / 3).

?- display(3 is (4 + 5) / 3).

?- display((a:-b,c,d)).

?- display(a:-b,c,d).

So, display is nice to look at the internal representation of terms in operator nota-
tion, but usually we would probably prefer to print the user friendly notation instead.
Especially when printing lists, it would be much nicer to get [a,b,c], instead of
.(a.(b.(c,[]))). This is what the built-in predicate write/1 does. It takes a term
and prints it to the screen in the user friendly notation.

?- write(2+3+4).

2+3+4

Yes

?- write(+(2,3)).

2+3

Yes

?- write([a,b,c]).

[a, b, c]

Yes

?- write(.(a,.(b,[]))).

[a, b]

Yes

And here is what happens, when the term that is to be written contains variables.

?- write(X).

_G204

X = _G204

yes

?- X = a, write(X).

a

X = a

Yes

142 Chapter 9. A Closer Look at Terms

The following example shows what happens when you put two write commands one
after the other.

?- write(a),write(b).

ab

Yes

Prolog just executes one after the other without putting any space in between the output
of the different write commands. Of course, you can tell Prolog to print spaces by
telling it to write the term ’ ’.

?- write(a),write(’ ’),write(b).

a b

Yes

And if you want more than one space, for example five blanks, you can tell Prolog to
write ’ ’.

?- write(a),write(’ ’),write(b).

a b

Yes

Another way of printing spaces is by using the predicate tab/1. tab takes a number
as argument and then prints as many spaces as specified by that number.

?- write(a),tab(5),write(b).

a b

Yes

Another predicate useful for formatting is nl. nl tells Prolog to make a linebreak and
to go on printing on the next line.

?- write(a),nl,write(b).

a

b

Yes

Here is an exercise, where you can apply what you just learned.

In the last lecture, we saw how extra arguments in DCGs can be used to build a parse
tree. For example, to the query s(T,[a,man,shoots,a,woman],[]) Prolog would
answer s(np(det(a),n(man)),vp(v(shoots),np(det(a),n(woman)))). This is
a representation of the parse tree. It is not a very readable representation, though.
Wouldn’t it be nicer if Prolog printed something like

9.6. Practical Session 143

s(

np(

det(a)

n(man))

vp(

v(shoots)

np(

det(a)

n(woman))))

for example?

Write a predicate pptree/1 that takes a complex term representing a tree, such as
s(np(det(a),n(man)),vp(v(shoots),np(det(a),n(woman)))), as its argument
and prints a nice and readable output for this tree.

Finally, here is an exercise to practice writing operator definitions.

In the practical session of Chapter 7, you were asked to write a DCG generating propo-
sitional logic formulas. The input you had to use was a bit awkward though. The for-
mula ��p � q� had to be represented as [not, ’(’, p, implies, q, ’)’]. Now,
that you know about operators, you can do something a lot nicer. Write the opera-
tor definitions for the operators not, and, or, implies, so that Prolog accepts (and
correctly brackets) propositional logic formulas. For example:

?- display(not(p implies q)).

not(implies(p,q)).

Yes

?- display(not p implies q).

implies(not(p),q)

Yes

144 Chapter 9. A Closer Look at Terms

10

Cuts and Negation

This lecture has two main goals:

1. To explain how to control Prolog’s backtracking behavior with the help of the
cut predicate.

2. To explain how cut can be packaged into more structured forms, notably negation
as failure.

10.1 The cut

Automatic backtracking is one of the most characteristic features of Prolog. But back-
tracking can lead to inefficiency. Sometimes Prolog can waste time exploring possi-
bilities that lead nowhere. It would be pleasant to have some control over this aspect
of its behaviour, but so far we have only seen two (rather crude) ways of doing this:
changing the order of rules, and changing the order of conjuncts in the body of rules.
But there is another way. There is an inbuilt Prolog predicate !, called cut, which offers
a more direct way of exercising control over the way Prolog looks for solutions.

What exactly is cut, and what does it do? It’s simply a special atom that we can use
when writing clauses. For example,

p(X) :- b(X),c(X),!,d(X),e(X).

is a perfectly good Prolog rule. As for what cut does, first of all, it is a goal that always
succeeds. Second, and more importantly, it has a side effect. Suppose that some goal
makes use of this clause (we call this goal the parent goal). Then the cut commits
Prolog to any choices that were made since the parent goal was unified with the left
hand side of the rule (including, importantly, the choice of using that particular clause).
Let’s look at an example to see what this means.

Let’s first consider the following piece of cut-free code:

p(X) :- a(X).

p(X) :- b(X),c(X),d(X),e(X).

p(X) :- f(X).

146 Chapter 10. Cuts and Negation

a(1).

b(1).

c(1).

b(2).

c(2).

d(2).

e(2).

f(3).

If we pose the query p(X) we will get the following responses:

X = 1 ;

X = 2 ;

X = 3 ;

no

Here is the search tree that explains how Prolog finds these three solutions. Note, that
it has to backtrack once, namely when it enteres the second clause for p/1 and decides
to match the first goal with b(1) instead of b(2).

p(X)

a(_G111)

X = _G111

_G111 = 1

b(_G112),c(_G112),d(_G112),e(_G112)

X = _G112

c(1),d(1),e(1)

_G112 = 1

d(1),e(1)

c(2),d(2),e(2)

_G112 = 2

d(2),e(2)

e(2)

f(_G113)

X = _G113

_G113 = 3

But now supppose we insert a cut in the second clause:

p(X) :- b(X),c(X),!,d(X),e(X).

If we now pose the query p(X) we will get the following responses:

X = 1 ;

no

10.1. The cut 147

What’s going on here? Lets consider.

1. p(X) is first matched with the first rule, so we get a new goal a(X). By instantiat-
ing X to 1, Prolog matches a(X) with the fact a(1) and we have found a solution.
So far, this is exactly what happened in the first version of the program.

2. We then go on and look for a second solution. p(X) is matched with the sec-
ond rule, so we get the new goals b(X),c(X),!,d(X),e(X). By instantiating
X to 1, Prolog matches b(X) with the fact b(1), so we now have the goals
c(1),!,d(1),e(1). But c(1) is in the database so this simplifies to !,d(1),e(1).

3. Now for the big change. The ! goal succeeds (as it always does) and commits us
to all the choices we have made so far. In particular, we are committed to having
X = 1, and we are also committed to using the second rule.

4. But d(1) fails. And there’s no way we can resatisfy the goal p(X). Sure, if we
were allowed to try the value X=2 we could use the second rule to generate a
solution (that’s what happened in the original version of the program). But we
can’t do this: the cut has committed us to the choice X=1. And sure, if we were
allowed to try the third rule, we could generate the solution X=3. But we can’t
do this: the cut has committed us to using the second rule.

Looking at the search tree this means that search stops when the goal d(1) cannot be
shown as going up the tree doesn’t lead us to any node where an alternative choice is
available. The red nodes in the tree are all blocked for backtracking because of the cut.

p(X)

a(_G111)

X = _G111

_G111 = 1

b(_G112),c(_G112), !, d(_G112),e(_G112)

X = _G112

c(1), !, d(1),e(1)

_G112 = 1

!, d(1),e(1)

d(1),e(1)

One point is worth emphasizing: the cut only commits us to choices made since the
parent goal was unified with the left hand side of the clause containing the cut. For
example, in a rule of the form

q :- p1,...,pn,!,r1,...,rm

once we reach the the cut, it commits us to using this particular clause for q and it
commits us to the choices made when evalauting p1,...,pn. However, we are free to
backtrack among the r1,...,rm and we are also free to backtrack among alternatives
for choices that were made before reaching the goal q. Concrete examples will make
this clear.

First consider the following cut-free program:

148 Chapter 10. Cuts and Negation

s(X,Y) :- q(X,Y).

s(0,0).

q(X,Y) :- i(X),j(Y).

i(1).

i(2).

j(1).

j(2).

j(3).

Here’s how it behaves:

?- s(X,Y).

X = 1

Y = 1 ;

X = 1

Y = 2 ;

X = 1

Y = 3 ;

X = 2

Y = 1 ;

X = 2

Y = 2 ;

X = 2

Y = 3 ;

X = 0

Y = 0;

no

Suppose we add a cut to the clause defining q/2:

q(X,Y) :- i(X),!,j(Y).

Now the program behaves as follows:

?- s(X,Y).

X = 1

Y = 1 ;

X = 1

10.1. The cut 149

Y = 2 ;

X = 1

Y = 3 ;

X = 0

Y = 0;

no

Let’s see why.

1. s(X,Y) is first matched with the first rule, which gives us a new goal q(X,Y).

2. q(X,Y) is then matched with the third rule, so we get the new goals i(X),!,j(Y).
By instantiating X to 1, Prolog matches i(X) with the fact i(1). This leaves
us with the goal !,j(Y). The cut, of course, succeeds, and commits us to the
choices so far made.

3. But what are these choices? These: that X = 1, and that we are using this clause.
But note: we have not yet chosen a value for Y.

4. Prolog then goes on, and by instantiating Y to 1, Prolog matches j(Y) with the
fact j(1). So we have found a solution.

5. But we can find more. Prolog is free to try another value for Y. So it backtracks
and sets Y to 2, thus finding a second solution. And in fact it can find another
solution: on backtracking again, it sets Y to 3, thus finding a third solution.

6. But those are all alternatives for j(X). Backtracking to the left of the cut is not
allowed, so it can’t reset X to 2, so it won’t find the next three solutions that
the cut-free program found. Backtracking over goals that were reached before
q(X,Y) is allowed however, so that Prolog will find the second clause for s/2.

Looking at it in terms of the search tree, this means that all nodes above the cut up to
the one containing the goal that led to the selection of the clause containing the cut are
blocked.

s(X,Y)

q(_G111,_G112)

X=_G111, Y=_G112

i(_G111),!,j(_G112)

!,j(_G112)

_G111=1

j(_G112)

_G112=1
_G112=2

_G112=3

X=0,Y=0

Well, we now know what cut is. But how do we use it in practice, and why is it
so useful? As a first example, let’s define a (cut-free) predicate max/3 which takes

150 Chapter 10. Cuts and Negation

integers as arguments and succeeds if the third argument is the maximum of the first
two. For example, the queries

max(2,3,3)

and

max(3,2,3)

and

max(3,3,3)

should succeed, and the queries

max(2,3,2)

and

max(2,3,5)

should fail. And of course, we also want the program to work when the third argument
is a variable. That is, we want the program to be able to find the maximum of the first
two arguments for us:

?- max(2,3,Max).

Max = 3

Yes

?- max(2,1,Max).

Max = 2

Yes

Now, it is easy to write a program that does this. Here’s a first attempt:

max(X,Y,Y) :- X =< Y.

max(X,Y,X) :- X>Y.

This is a perfectly correct program, and we might be tempted simply to stop here.
But we shouldn’t: it’s not good enough. What’s the problem? There is a potential
inefficiency. Suppose this definition is used as part of a larger program, and somewhere
along the way max(3,4,Y) is called. The program will correctly set Y=4. But now
consider what happens if at some stage backtracking is forced. The program will try
to resatisfy max(3,4,Y) using the second clause. And of course, this is completely
pointless: the maximum of 3 and 4 is 4 and that’s that. There is no second solution
to find. To put it another way: the two clauses in the above program are mutually
exclusive: if the first succeeds, the second must fail and vice versa. So attempting to
resatisfy this clause is a complete waste of time.

With the help of cut, this is easy to fix. We need to insist that Prolog should never try
both clauses, and the following code does this:

10.1. The cut 151

max(X,Y,Y) :- X =< Y,!.

max(X,Y,X) :- X>Y.

Note how this works. Prolog will reach the cut if max(X,Y,Y) is called and X =< Y

succeeds. In this case, the second argument is the maximum, and that’s that, and the
cut commits us to this choice. On the other hand, if X =< Y fails, then Prolog goes
onto the second clause instead.

Note that this cut does not change the meaning of the program. Our new code gives
exactly the same answers as the old one, it’s just a bit more efficient. In fact, the
program is exactly the same as the previous version, except for the cut, and this is a
pretty good sign that the cut is a sensible one. Cuts like this, which don’t change the
meaning of a program, have a special name: they’re called green cuts.

But there is another kind of cut: cuts which do change the meaning of a program.
These are called red cuts, and are usually best avoided. Here’s an example of a red cut.
Yet another way to write the max predicate is as follows:

max(X,Y,Y) :- X =< Y,!.

max(X,Y,X).

This is the same as our earlier green cut max, except that we have got rid of the > test
in the second clause. This is bad sign: it suggests that we’re changing the underyling
logic of the program. And indeed we are: this program ‘works’ by relying on cut. How
good is it?

Well, for some kinds of query it’s fine. In particular, it answers correctly when we pose
queries in which the third argument is a variable. For example:

?- max(100,101,X).

X = 101

Yes

and

?- max(3,2,X).

X = 3

Yes

Nonetheless, it’s not the same as the green cut program: the meaning of max has
changed. Consider what happens when all three arguments are instantiated. For exam-
ple, consider the query

max(2,3,2).

Obviously this query should fail. But in the red cut version, it will succeed! Why?
Well, this query simply won’t match the head of the first clause, so Prolog goes straight
to the second clause. And the query will match with the second clause, and (trivially)
the query succeeds! Oops! Getting rid of that > test wasn’t quite so smart after all...

152 Chapter 10. Cuts and Negation

This program is a classic red cut. It does not truly define the max predicate, rather it
changes it’s meaning and only gets things right for certain types of queries.

A sensible way of using cut is to try and get a good, clear, cut free program working,
and only then try to improve its efficiency using cuts. It’s not always possible to work
this way, but it’s a good ideal to aim for.

10.2 If-then-else

Although our second try in using a cut in the max predicate to make it more efficient
went wrong, the argument that we used when placing the cut in the first clause and then
deleting the test X>Y from the second clause seems sensible: if we have already tested
whether X is smaller or equal to Y and we have found out that it is not, we don’t have
to test whether X is greater than Y as well (we already know this).

There is a built-in predicate construction in Prolog which allows you to express exactly
such conditions: the if-then-else construct. In Prolog, if A then B else C is written as
(A -> B ; C). To Prolog this means: try A. If you can prove it, go on to prove B and
ignore C. If A fails, however, go on to prove C ignoring B. The max predicate using the
if-then-else construct looks as follows:

max(X,Y,Z) :-

(X =< Y

-> Z = Y

; Z = X

).

10.3 Negation as failure

One of Prolog’s most useful features is the simple way it lets us state generalizations.
To say that Vincent enjoys burgers we just write:

enjoys(vincent,X) :- burger(X).

But in real life rules have exceptions. Perhaps Vincent doesn’t like Big Kahuna burgers.
That is, perhaps the correct rule is really: Vincent enjoys burgers, except Big Kahuna
burgers. Fine. But how do we state this in Prolog?

As a first step, let’s introduce another built in predicate fail/0. As its name suggests,
fail is a special symbol that will immediately fail when Prolog encounters it as a goal.
That may not sound too useful, but remember: when Prolog fails, it tries to backtrack.
Thus fail can be viewed as an instruction to force backtracking. And when used
in combination with cut, which blocks backtracking, fail enables us to write some
interesting programs, and in particular, it lets us define exceptions to general rules.

Consider the following code:

enjoys(vincent,X) :- big_kahuna_burger(X),!,fail.

enjoys(vincent,X) :- burger(X).

10.3. Negation as failure 153

burger(X) :- big_mac(X).

burger(X) :- big_kahuna_burger(X).

burger(X) :- whopper(X).

big_mac(a).

big_kahuna_burger(b).

big_mac(c).

whopper(d).

The first two lines describe Vincent’s preferences. The last six lines describe a world
containing four burgers, a, b, c, and d. We’re also given information about what kinds
of burgers they are. Given that the first two lines really do describe Vincent’s prefer-
ences (that is, that he likes all burgers except Big Kahuna burgers) then he should enjoy
burgers a, c and d, but not b. And indeed, this is what happens:

?- enjoys(vincent,a).

yes

?- enjoys(vincent,b).

no

?- enjoys(vincent,c).

yes

?- enjoys(vincent,d).

yes

How does this work? The key is the combination of ! and fail in the first line
(this even has a name: its called the cut-fail combination). When we pose the query
enjoys(vincent,b), the first rule applies, and we reach the cut. This commits us to
the choices we have made, and in particular, blocks access to the second rule. But then
we hit fail. This tries to force backtracking, but the cut blocks it, and so our query
fails.

This is interesting, but it’s not ideal. For a start, note that the ordering of the rules is
crucial: if we reverse the first two lines, we don’t get the behavior we want. Similarly,
the cut is crucial: if we remove it, the program doesn’t behave in the same way (so this
is a red cut). In short, we’ve got two mutually dependent clauses that make intrinsic
use of the procedural aspects of Prolog. Something useful is clearly going on here, but
it would be better if we could extract the useful part and package it in a more robust
way.

And we can. The crucial observation is that the first clause is essentially a way of
saying that Vincent does not enjoy X if X is a Big Kahuna burger. That is, the cut-fail
combination seems to be offering us some form of negation. And indeed, this is the
crucial generalization: the cut-fail combination lets us define a form of negation called
negation as failure. Here’s how:

neg(Goal) :- Goal,!,fail.

neg(Goal).

154 Chapter 10. Cuts and Negation

For any Prolog goal, neg(Goal) will succeed precisely if Goal does not succeed.

Using our new neg predicate, we can describe Vincent’s preferences in a much clearer
way:

enjoys(vincent,X) :- burger(X), neg(big_kahuna_burger(X)).

That is, Vincent enjoys X if X is a burger and X is not a Big Kahuna burger. This
is quite close to our original statement: Vincent enjoys burgers, except Big Kahuna
burgers.

Negation as failure is an important tool. Not only does it offer useful expressivity
(notably, the ability to describe exceptions) it also offers it in a relatively safe form. By
working with negation as failure (instead of with the lower level cut-fail combination)
we have a better chance of avoiding the programming errors that often accompany the
use of red cuts. In fact, negation as failure is so useful, that it comes built in Standard
Prolog, we don’t have to define it at all. In Standard Prolog the operator \+ means
negation as failure, so we could define Vincent’s preferences as follows:

enjoys(vincent,X) :- burger(X), \+ big_kahuna_burger(X).

Nonetheless, a couple of words of warning are in order: don’t make the mistake of
thinking that negation as failure works just like logical negation. It doesn’t. Consider
again our burger world:

burger(X) :- big_mac(X).

burger(X) :- big_kahuna_burger(X).

burger(X) :- whopper(X).

big_mac(c).

big_kahuna_burger(b).

big_mac(c).

whopper(d).

If we pose the query enjoys(vincent,X) we get the correct sequence of responses:

X = a ;

X = c ;

X = d ;

no

But now suppose we rewrite the first line as follows:

enjoys(vincent,X) :- \+ big_kahuna_burger(X), burger(X).

10.3. Negation as failure 155

Note that from a declarative point of view, this should make no difference: after
all, burger(x) and not big kahuna burger(x) is logically equivalent to not big kahuna
burger(x) and burger(x). That is, no matter what the variable x denotes, it impossible
for one of these expressions to be true, and the other expression to be false. Nonethe-
less, here’s what happens when we pose the same query:

enjoys(vincent,X)

no

What’s going on? Well, in the modified database, the first thing that Prolog has to
check is whether \+ big_kahuna_burger(X) holds, which means that it must check
whether big_kahuna_burger(X) fails. But this succeeds. After all, the database con-
tains the information big_kahuna_burger(b). So the query \+ big_kahuna_burger(X)

fails, and hence the original query does too. In a nutshell, the crucial difference be-
tween the two programs is that in the original version (the one that works right) we
use \+ only after we have instantiated the variable X. In the new version (which goes
wrong) we use \+ before we have done this. The difference is crucial.

Summing up, we have seen that negation as failure is not logical negation, and that
it has a procedural dimension that must be mastered. Nonetheless, it is an important
programming construct: it is generally a better idea to try use negation as failure than
to write code containing heavy use of red cuts. Nonetheless, “generally” does not mean
“always”. There are times when it is better to use red cuts.

For example, suppose that we need to write code to capture the following condition: p
holds if a and b hold, or if a does not hold and c holds too. This can be captured with
the help of negation as failure very directly:

p :- a,b.

p :- \+ a, c.

But suppose that a is a very complicated goal, a goal that takes a lot of time to com-
pute. Programming it this way means we may have to compute a twice, and this may
mean that we have unacceptably slow performance. If so, it would be better to use the
following program:

p :- a,!,b.

p :- c.

Note that this is a red cut: removing it changes the meaning of the program. Do you
see why?

When all’s said and done, there are no universal guidelines that will cover all the situ-
ations you are likely to run across. Programming is as much an art as a science: that’s
what makes it so interesting. You need to know as much as possible about the lan-
guage you are working with (whether it’s Prolog, Java, Perl, or whatever) understand
the problem you are trying to solve, and know what counts as an acceptable solution.
And then: go ahead and try your best!

156 Chapter 10. Cuts and Negation

10.4 Exercises

Exercise 10.1 Suppose we have the following database:

p(1).

p(2) :- !.

p(3).

Write all of Prolog’s answers to the following queries:

?- p(X).

?- p(X),p(Y).

?- p(X),!,p(Y).

Exercise 10.2 First, explain what the following program does:

class(Number,positive) :- Number > 0.

class(0,zero).

class(Number, negative) :- Number < 0.

Second, improve it by adding green cuts.

Exercise 10.3 Without using cut, write a predicate split/3 that splits a list of in-
tegers into two lists: one containing the positive ones (and zero), the other containing
the negative ones. For example:

split([3,4,-5,-1,0,4,-9],P,N)

should return:

P = [3,4,0,4]

N = [-5,-1,-9].

Then improve this program, without changing its meaning, with the help of cut.

10.5 Practical Session 10

The purpose of Practical Session 10 is to help you get familiar with cuts and negation
as failure.

First some keyboard exercises:

1. First of all, try out all three versions of the max/3 predicate defined in the text:
the cut-free version, the green cut version, and the red cut version. As usual, “try
out” means “run traces on”, and you should make sure that you trace queries
in which all three arguments are instantiated to integers, and queries where the
third argument is given as a variable.

10.5. Practical Session 10 157

2. OK, time for a burger. Try out all the methods discussed in the text for cop-
ing with Vincent’s preferences. That is, try out the program that uses a cut-fail
combination, the program that uses negation as failure correctly, and also the
program that gets it wrong by using negation in the wrong place.

Now for some programming:

1. Define a predicate nu/2 ("not unifiable") which takes two terms as arguments
and succeeds if the two terms do not unify. For example:

nu(foo,foo).

no

nu (foo,blob).

yes

nu(foo,X).

no

You should define this predicate in three different ways:

(a) First (and easiest) write it with the help of = and \+.

(b) Second write it with the help of =, but don’t use \+.

(c) Third, write it using a cut-fail combination. Don’t use = and don’t use �+.

2. Define a predicate unifiable(List1,Term,List2) where List2 is the list of
all members of List1 that match Term , but are not instantiated by the matching.
For example,

unifiable([X,b,t(Y)],t(a),List]

should yield

List = [X,t(Y)].

Note that X and Y are still not instantiated. So the tricky part is: how do we check
that they match with t(a) without instantiating them? (Hint: consider using the
test \+ (term1 = term2). Why? Think about it. You might also like to think
about the test \+(\+ (term1 = term2)).)

158 Chapter 10. Cuts and Negation

11

Database Manipulation and Collecting
Solutions

This lecture has two main goals:

1. To discuss database manipulation in Prolog.

2. To discuss inbuilt predicates that let us collect all solutions to a problem into a
single list.

11.1 Database manipulation

Prolog has four database manipulation commands: assert, retract, asserta, and assertz.
Let’s see how these are used. Suppose we start with an empty database. So if we give
the command:

listing.

we simply get a yes; the listing (of course) is empty.

Suppose we now give this command:

assert(happy(mia)).

It succeeds (assert commands always succeed). But what is important is not that it
succeeds, but the side-effect it has on the database. If we now give the command:

listing.

we get the listing:

happy(mia).

That is, the database is no longer empty: it now contains the fact we asserted.

Suppose we then made four more assert commands:

160 Chapter 11. Database Manipulation and Collecting Solutions

assert(happy(vincent)).

yes

assert(happy(marcellus)).

yes

assert(happy(butch)).

yes

assert(happy(vincent)).

yes

Suppose we then ask for a listing:

listing.

happy(mia).

happy(vincent).

happy(marcellus).

happy(butch).

happy(vincent).

yes

All the facts we asserted are now in the knowledge base. Note that happy(vincent)
is in the knowledge base twice. As we asserted it twice, this seems sensible.

So far, we have only asserted facts into the database, but we can assert new rules as
well. Suppose we want to assert the rule that everyone who is happy is naive. That is,
suppose we want to assert that:

naive(X) :- happy(X).

We can do this as follows:

assert((naive(X) :- happy(X))).

Note the syntax of this command: the rule we are asserting is enclosed in a pair of
brackets. If we now ask for a listing we get:

happy(mia).

happy(vincent).

happy(marcellus).

happy(butch).

happy(vincent).

naive(A) :-

happy(A).

11.1. Database manipulation 161

Now that we know how to assert new information into the database, we need to know
how to remove things form the database when we no longer need them. There is an
inverse predicate to assert, namely retract. For example, if we go straight on and
give the command:

retract(happy(marcellus)).

and then list the database we get:

happy(mia).

happy(vincent).

happy(butch).

happy(vincent).

naive(A) :-

happy(A).

That is, the fact happy(marcellus) has been removed. Suppose we go on further, and
say

retract(happy(vincent)).

and then ask for a listing. We get:

happy(mia).

happy(butch).

happy(vincent).

naive(A) :-

happy(A).

Note that the first occurrence of happy(vincent) (and only the first occurrence) was
removed.

To remove all of our assertions we can use a variable:

retract(happy(X)).

X = mia ;

X = butch ;

X = vincent ;

no

A listing reveals that the database is now empty:

listing.

yes

162 Chapter 11. Database Manipulation and Collecting Solutions

If we want more control over where the asserted material is placed, there are two
variants of assert, namely:

1. assertz. Places asserted material at the end of the database.

2. asserta. Places asserted material at the beginning of the database.

For example, suppose we start with an empty database, and then we give the following
command:

assert(p(b)), assertz(p(c)), asserta(p(a)).

Then a listing reveals that we now have the following database:

p(a).

p(b).

p(c).

yes

Database manipulation is a useful technique. It is especially useful for storing the
results to computations, so that if we need to ask the same question in future, we don’t
need to redo the work: we just look up the asserted fact. This technique is called
‘memoization’, or ‘caching’.

Here’s a simple example. We create an addition table for adding digits by using
database manipulation.

additiontable(A) :-

member(B,A),

member(C,A),

D is B+C,

assert(sum(B,C,D)),

fail.

(Here member/2 is the standard membership predicate which tests for membership in
a list.)

What does this program do? It takes a list of numbers A, uses member to select two
numbers B and C of this list, and then adds B and C together calling the result D. Now
for the important bit. It then asserts the fact that it has discovered (namely that D is
the sum of A and B), and then fails. Why do we want it to fail? Because we want to
force backtracking! Because it has failed, Prolog will backtrack to member(C,A) and
choose a new value for C, add this new C to B two create a new D, and then assert
this new fact. it will then fail again. This repeated failure will force Prolog to find all
values for member(B,A) and member(C,A), and add together and assert all possible
combinations.

For example, when we give Prolog the command

additiontable([0,1,2,3,4,5,6,7,8,9])

11.1. Database manipulation 163

It will come back and say No. But it’s not this response that interests us, its the side-
effect on the database that’s important. If we now ask for a listing we see that the
database now contains

sum(0,0,0).

sum(0,1,1).

sum(0,2,2).

sum(0,3,3).

sum(0,4,4).

sum(0,5,5).

sum(0,6,6).

sum(0,7,7).

sum(0,8,8).

sum(0,9,9).

sum(1,0,1).

sum(1,1,2).

sum(1,2,3).

sum(1,3,4).

sum(1,4,5).

sum(1,5,6).

sum(1,6,7).

sum(1,7,8).

sum(1,8,9).

sum(1,9,10).

.

.

.

.

.

Question: how do we remove all these new facts when we no longer want them? After
all, if we simply give the command

retract(sum(X,Y,Z)).

Prolog is going to go through all 100 facts and ask us whether we want to remove them!
But there’s a much simpler way. Use the command

retract(sum(_,_,_)),fail.

Again, the purpose of the fail is to force backtracking. Prolog removes the first fact
about sum in the database, and then fails. So it backtracks and removes the next fact
about sum. So it backtracks again, removes the third, and so on. Eventually (after it
has removed all 100 items) it will fail completely, and say No. But we’re not interested
in what Prolog says, we’re interested in what it does. All we care about is that the
database now contains no facts about sum.

To conclude our discussion of database manipulation, a word of warning. Although it
can be a useful technique, database manipulation can lead to dirty, hard to understand,
code. If you use it heavily in a program with lots of backtracking, understanding what
is going on can be a nightmare. It is a non-declarative, non logical, feature of Prolog
that should be used cautiously.

164 Chapter 11. Database Manipulation and Collecting Solutions

11.2 Collecting solutions

There may be many solutions to a query. For example, suppose we are working with
the database

child(martha,charlotte).

child(charlotte,caroline).

child(caroline,laura).

child(laura,rose).

descend(X,Y) :- child(X,Y).

descend(X,Y) :- child(X,Z),

descend(Z,Y).

Then if we pose the query

descend(martha,X).

there are four solutions (namely X=charlotte, X=caroline, X=laura, and X=rose).

However Prolog generates these solutions one by one. Sometimes we would like to
have all the solutions to a query, and we would like them handed to us in a neat,
usable, form. Prolog has three built-in predicates that do this: findall, bagof, and setof.
Basically these predicates collect all the solutions to a query and put them in a list, but
there are important differences between them, as we shall see.

11.2.1 findall/3

The query

findall(Object,Goal,List).

produces a list List of all the objects Object that satisfy the goal Goal. Often Object

is simply a variable, in which case the query can be read as: Give me a list containing
all the instantiations of Object which satisfy Goal.

Here’s an example. Suppose we’re working with the above database (that is, with the
information about child and the definition of descend). Then if we pose the query

findall(X,descend(martha,X),Z).

we are asking for a list Z containing all the values of X that satisfy descend(martha,X).
Prolog will respond

X = _7489

Z = [charlotte,caroline,laura,rose]

But Object doesn’t have to be a variable, it may just contain a variable that is in Goal.
For example, we might decide that we want to build a new predicate fromMartha/1

that is true only of descendants of Martha. We could do this with the query:

11.2. Collecting solutions 165

findall(fromMartha(X),descend(martha,X),Z).

That is, we are asking for a list Z containing all the values of fromMartha(X) that
satisfy the goal descend(martha,X). Prolog will respond

X = _7616

Z = [fromMartha(charlotte),fromMartha(caroline),

fromMartha(laura),fromMartha(rose)]

Now, what happens, if we ask the following query?

findall(X,descend(mary,X),Z).

There are no solutions for the goal descend(mary,X) in the knowledge base. So
findall returns an empty list.

Note that the first two arguments of findall typically have (at least) one variable in
common. When using findall, we normally want to know what solutions Prolog
finds for certain variables in the goal, and we tell Prolog which variables in Goal we
are interested in by building them into the first argument of findall.

You might encounter situations, however, where findall does useful work although
the first two arguments don’t share any variables. For example, if you are not interested
in who exactly is a descendant of Martha, but only in how many descendants Martha
has, you can use the follwing query to find out:

?- findall(Y,descend(martha,X),Z), length(Z,N).

11.2.2 bagof/3

The findall/3 predicate is useful, but in certain respects it is rather crude. For exam-
ple, suppose we pose the query

findall(Child,descend(Mother,Child),List).

We get the response

Child = _6947

Mother = _6951

List = [charlotte,caroline,laura,rose,caroline,laura,rose,laura,rose,rose]

Now, this is correct, but sometimes it would be useful if we had a separate list for each
of the different instantiations of Mother.

This is what bagof lets us do. If we pose the query

bagof(Child,descend(Mother,Child),List).

we get the response

166 Chapter 11. Database Manipulation and Collecting Solutions

Child = _7736

Mother = caroline

List = [laura,rose] ;

Child = _7736

Mother = charlotte

List = [caroline,laura,rose] ;

Child = _7736

Mother = laura

List = [rose] ;

Child = _7736

Mother = martha

List = [charlotte,caroline,laura,rose] ;

no

That is, bagof is more finegrained than findall, it gives us the opportunity to extract
the information we want in a more structured way. Moreover, bagof can also do the
same job as findall, with the help of a special piece of syntax. If we pose the query

bagof(Child,Mother ^ descend(Mother,Child),List).

This says: give me a list of all the values of Child such that descend(Mother,Child),
and put the result in a list, but don’t worry about generating a separate list for each
value of Mother. So posing this query yields:

Child = _7870

Mother = _7874

List = [charlotte,caroline,laura,rose,caroline,laura,rose,laura,rose,rose]

Note that this is exactly the response that findall would have given us. Still, if this
is the kind of query you want to make (and it often is) it’s simpler to use findall,
because then you don’t have to bother explicitly write down the conditions using ^.

Further, there is one important difference between findall and bagof, and that is that
bagof fails if the goal that’s specified in its second argument is not satisfied (remember,
that findall returns the empty list in such a case). So the query bagof(X,descend(mary,X),Z)

yields no.

One final remark. Consider again the query

bagof(Child,descend(Mother,Child),List).

As we saw above, this has four solutions. But, once again, Prolog generates them one
by one. Wouldn’t it be nice if we could collect them all into one list?

And, of course, we can. The simplest way is to use findall. The query

findall(List,bagof(Child,descend(Mother,Child),List),Z).

11.2. Collecting solutions 167

collects all of bagof’s responses into one list:

List = _8293

Child = _8297

Mother = _8301

Z = [[laura,rose],[caroline,laura,rose],[rose],

[charlotte,caroline,laura,rose]]

Another way to do it is with bagof:

bagof(List,Child ^ Mother ^ bagof(Child,descend(Mother,Child),List),Z).

List = _2648

Child = _2652

Mother = _2655

Z = [[laura,rose],[caroline,laura,rose],[rose],

[charlotte,caroline,laura,rose]]

Now, this may not be the sort of thing you need to do very often, but it does show the
flexibility and power offered by these predicates.

11.2.3 setof/3

The setof/3 predicate is basically the same as bagof, but with one useful difference:
the lists it contains are ordered and contain no redundancies (that is, each item appears
in the list only once).

For example, suppose we have the following database

age(harry,13).

age(draco,14).

age(ron,13).

age(hermione,13).

age(dumbledore,60).

age(hagrid,30).

Now suppose we want a list of everyone whose age is recorded in the database. We
can do this with the query:

findall(X,age(X,Y),Out).

X = _8443

Y = _8448

Out = [harry,draco,ron,hermione,dumbledore,hagrid]

But maybe we would like the list to be ordered. We can achieve this with the following
query:

setof(X,Y ^ age(X,Y),Out).

168 Chapter 11. Database Manipulation and Collecting Solutions

(Note that, just like withbagof, we have to tell setof not to generate separate lists for
each value of Y, and again we do this with the ^ symbol.)

This query yields:

X = _8711

Y = _8715

Out = [draco,dumbledore,hagrid,harry,hermione,ron]

Note that the list is alphabetically ordered.

Now suppose we are interested in collecting together all the ages which are recorded
in the database. Of course, we can do this with the following query:

findall(Y,age(X,Y),Out).

Y = _8847

X = _8851

Out = [13,14,13,13,60,30]

But this output is rather messy. It is unordered and contains repetitions. By using
setof we get the same information in a nicer form:

setof(Y,X ^ age(X,Y),Out).

Y = _8981

X = _8985

Out = [13,14,30,60]

Between them, these three predicates offer us a lot of flexibility. For many purposes,
all we need is findall. But if we need more, bagof and setof are there waiting to
help us out.

11.3 Exercises

Exercise 11.1 Suppose we start with an empty database. We then give the command:

assert(q(a,b)), assertz(q(1,2)), asserta(q(foo,blug)).

What does the database now contain?

We then give the command:

retract(q(1,2)), assertz((p(X) :- h(X))).

What does the database now contain?

We then give the command:

retract(q(_,_)),fail.

11.3. Exercises 169

What does the database now contain?

Exercise 11.2 Suppose we have the following database:

q(blob,blug).

q(blob,blag).

q(blob,blig).

q(blaf,blag).

q(dang,dong).

q(dang,blug).

q(flab,blob).

What is Prolog’s response to the queries:

1. findall(X,q(blob,X),List).

2. findall(X,q(X,blug),List).

3. findall(X,q(X,Y),List).

4. bagof(X,q(X,Y),List).

5. setof(X,Y ^q(X,Y),List).

Exercise 11.3 Write a predicate sigma/2 that takes an integer n � 0 and calculates
the sum of all intergers from 1 to n. E.g.

?- sigma(3,X).

X = 6

yes

?- sigma(5,X).

X = 15

yes

Write the predicate such that results are stored in the database (of course there should
always be no more than one result entry in the database for each value) and reused
whenever possible. So, for example:

?- sigma(2,X).

X = 3

yes

?- listing.

sigmares(2,3).

When we then ask the query

?- sigma(3,X).

Prolog will not calculate everything new, but will get the result for sigma(2,3) from
the database and only add 3 to that. Prolog will answer:

X = 6

yes

?- listing.

sigmares(2,3).

sigmares(3,6).

170 Chapter 11. Database Manipulation and Collecting Solutions

11.4 Practical Session 11

Here are some programming exercises:

1. Sets can be thought of as lists that don’t contain any repeated elements. For ex-
ample, [a,4,6] is a set, but [a,4,6,a] is not (as it contains two occurrences
of a). Write a Prolog program subset/2 that is satisfied when the first argu-
ment is a subset of the second argument (that is, when every element of the first
argument is a member of the second argument). For example:

subset([a,b],[a,b,c])

yes

subset([c,b],[a,b,c])

yes

subset([],[a,b,c])

yes.

Your program should be capable of generating all subsets of an input set by
bactracking. For example, if you give it as input

subset(X,[a,b,c])

it should succesively generate all eight subsets of [a,b,c].

2. Using the subset predicate you have just written, and findall, write a predi-
cate powerset/2 that takes a set as its first argument, and returns the powerset
of this set as the second argument. (The powerset of a set is the set of all its
subsets.) For example:

powerset([a,b,c],P)

should return

P = [[],[a],[b],[c],[a,b],[a,c],[b,c],[a,b,c]]

it doesn’t matter if the sets are returned in some other order. For example,

P = [[a],[b],[c],[a,b,c],[],[a,b],[a,c],[b,c]]

is fine too.

12

Working With Files

This lecture is concerned with different aspect of file handling. We will see

1. how predicate definitions can be spread across different files

2. how to write results to files and how to read input from files

12.1 Splitting Programs Over Files

By now, you have seen and you had to write lots of programs that use the predicates
append and member. What you probably did each time you needed one of them was
to go back to the definition and copy it over into the file where you wanted to use it.
And maybe, after having done that a couple of times, you started thinking that it was
actually quite annoying that you had to copy the same predicate definitions over and
over again and that it would be a lot nicer if you could define them somewhere once and
for all and then just access that definition whenever you needed it. Well, that sounds
like a pretty sensible thing to ask for and, of course, Prolog offers you ways of doing
it.

12.1.1 Reading in Programs

In fact, you already know a way of telling Prolog to read in predicate definitions that
are stored in a file. Right! [FileName1,FileName2]. You have been using queries of
that form all the time to tell Prolog to consult files. By putting

:- [FileName1,FileName2].

at the top of a file, you can tell Prolog to consult the files in the square brackets before
reading in the rest of the file.

So, suppose that you keep all predicate definitions that have to do with basic list pro-
cessing, such as append, member, reverse etc., in a file called listpredicates.pl.
If you want to use them, you just put

:- [listpredicates].

172 Chapter 12. Working With Files

at the top of the file you want to use them in. Prolog will consult listpredicates,
when reading in that file, so that all predicate definitions in listpredicates become
available.

On encountering something of the form :- [file,anotherfile], Prolog just goes
ahead and consults the files without checking whether the file really needs to be con-
sulted. If, for example, the predicate definitions provided by one of the files are already
available, because it already was consulted once, Prolog still consults it again, overwrit-
ing the definitions in the database. The inbuilt predicate ensure_loaded/1 behaves a
bit more clever in this case and it is what you should usually use to load predicate def-
initions given in some other file into your program. ensure_loaded basically works
as follows: On encountering the following directive

:- ensure_loaded([listpredicates]).

Prolog checks whether the file listpredicates.pl has already been loaded. If not,
Prolog loads it. If it already is loaded in, Prolog checks whether it has changed since
last loading it and if that is the case, Prolog loads it, if not, it doesn’t do anything and
goes on processing the program.

12.1.2 Modules

Now, imagine that you are writing a program that needs two predicates, let’s say
pred1/2 and pred2/2. You have a definition for pred1 in the file preds1.pl and
a definition of pred2 in the file preds2.pl. No problem, you think, I’ll just load them
into my program by putting

:- [preds1, preds2].

at the top of the file. Unfortunately, there seem to be problems this time. You get a
message that looks something like the following:

{consulting /a/troll/export/home/MP/kris/preds1.pl...}

{/a/troll/export/home/MP/kris/preds1.pl consulted, 10 msec 296 bytes}

{consulting /a/troll/export/home/MP/kris/preds2.pl...}

The procedure helperpred/2 is being redefined.

Old file: /a/troll/export/home/MP/kris/preds1.pl

New file: /a/troll/export/home/MP/kris/preds2.pl

Do you really want to redefine it? (y, n, p, or ?)

So what has happened? Well, it looks as if both files preds1.pl and preds2.pl

are defining the predicate helperpred. And what’s worse, you can’t be sure that the
predicate is defined in the same way in both files. So, you can’t just say "yes, override",
since pred1 depends on the definition of helperpred given in file preds1.pl and
pred2 depends on the definition given in file preds2.pl. Furthermore, note that you
are not really interested in the definition of helperpred at all. You don’t want to use
it. The predicates that you are interested in, that you want to use are pred1 and pred2.
They need definitions of helperpred, but the rest of your program doesn’t.

12.1. Splitting Programs Over Files 173

A solution to this problem is to turn preds1.pl and preds2.pl into modules. Here is
what this means and how it works:

Modules essentially allow you to hide predicate definitions. You are allowed to decide
which predicates should be public, i.e. callable from other parts of the program, and
which predicates should be private, i.e. callable only from within the module. You will
not be able to call private predicates from outside the module in which they are defined,
but there will also be no conflicts if two modules internally define the same predicate.
In our example. helperpred is a good candidate for becoming a private predicate,
since it is only used as a helper predicate in the definition of pred1 and pred2.

You can turn a file into a module by putting a module declaration at the top of that file.
Module declarations are of the form

:- module(ModuleName,List_of_Predicates_to_be_Exported)

They specify the name of the module and the list of public predicates. That is, the
list of predicates that one wants to export. These will be the only predicates that are
accessible from outside the module.

So, by putting

:- module(preds1,[pred1/2]).

at the top of file preds1.pl you can define the module preds1 which exports the
predicate pred1/2. And similarly, you can define the module preds2 exporting the
predicate pred2/2 by putting

:- module(preds2,[pred2/3]).

at the top of file preds2.pl. helperpred is now hidden in the modules preds1 and
preds2, so that there is no clash when loading both modules at the same time.

Modules can be loaded with the inbuilt predicate use_module/1. Putting :- use_module(preds1).

at the top of a file will import all predicates that were defined as public by the module.
That means, all public predicates will be accessible.

If you don’t need all public predicates of a module, but only some of them, you can
use the two-place version of use_module, which takes the list of predicates that you
want to import as its second argument. So, by putting

:- use_module(preds1,[pred1/2]),

use_module(preds2,[pred2/3]).

at the top of your file, you will be able to use pred1 and pred2. Of course, you can
only import predicates that are also exported by the relevant module.

174 Chapter 12. Working With Files

12.1.3 Libraries

Many of the very common predicates are actually predefined in most Prolog imple-
mentations in one way or another. If you have been using SWI Prolog, for example,
you will probably have noticed that things like append and member are built in. That’s
a specialty of SWI, however. Other Prolog implementations, like Sicstus for exam-
ple, don’t have them built in. But they usually come with a set of libraries, i.e.
modules defining common predicates. These libraries can be loaded using the normal
commands for importing modules. When specifying the name of the library that you
want to use, you have to tell Prolog that this module is a library, so that Prolog knows
where to look for it (namely, not in the directory where your other code is, but at the
place where Prolog keeps its libraries). Putting

:- use_module(library(lists)).

at the top of your file, for instance, tells Prolog to load a library called lists. In
Sicstus, this library provides basic list processing predicates.

So, libraries can be pretty useful and they can safe you a lot of work. Note, how-
ever, that the way libraries are organized and the inventory of predicates provided by
libraries are by no means standardized across different Prolog implementations. In
fact, the library systems may differ quite a bit. So, if you want your program to run
with different Prolog implementations, it might be easier and faster to define your own
library modules (using the techniques that we saw in the last section) than to try to
work around all the incompatibilities between the library systems of different Prolog
implementations.

12.2 Writing To and Reading From Files

Now, that we have learned how to load programs from different files, we want to look
at writing results to files and reading in input from files in this section.

Before we can do any reading of or writing to the file, we have to open it and associate
a stream with it. You can think of streams as connections to files. Streams have names
that look like this, for instance: ’$stream’(183368). You need these names, when
specifying which stream to write to or read from. Luckily, you never really have to
worry about the exact names of streams. Prolog assigns them these names and you
usually just bind them to a variable and then pass this variable around. We’ll see an
example soon.

The inbuilt predicate open/3 opens a file and connects it to a stream.

open(+FileName,+Mode,-Stream)

The first argument of open is the name of the file, and in the last argument, Prolog
returns the name that it assigns to the stream. Mode is one of read, write, append.
read means that the file is opened for reading, and write and append both open the
file for writing. In both cases, the file is created, if it doesn’t exist, yet. If it does exist,
however, write will cause the file to be overwritten, while append appends everything
at the end of the file.

12.2. Writing To and Reading From Files 175

When you are finished with the file, you should close it again. That is done with the
following predicate, where Stream is the name of a Stream as assigned by Prolog.

close(Stream)

So, programs that are writing to or reading from files will typically have the following
structure:

open(myfile,write,Stream),

...

do something

...

close(Stream),

The predicates for actually writing things to a stream are almost the same as the ones
we saw in Chapter 9 for writing to the screen. We have write, tab, and nl. The only
thing that’s different is that we always give the stream that we want to write to as the
first argument.

Here is a piece of code that opens a file for writing, writes something to it, and closes
it again.

?- open(hogwarts,write,OS),

tab(OS,7),write(OS,gryffindor),nl(OS),

write(OS,hufflepuff),tab(OS,5),write(OS,ravenclaw),nl(OS),

tab(OS,7),write(OS,slytherin),

close(OS).

The file hogwarts should afterwards look like this:

gryffindor

hufflepuff ravenclaw

slytherin

Finally, there is a two-place predicate for reading in terms from a stream. read always
looks for the next term on the stream and reads it in.

read(+Stream,+Term)

The inbuilt predicate at_end_of_stream checks whether the end of a stream has
been reached. at_end_of_stream(Stream) will evaluate to true, when the end of
the stream Stream is reached, i.e. when all terms in the corresponding file have been
read.

Note, that read only reads in Prolog terms. If you want to read in arbitrary input, things
become a bit more ugly. You have to read it character by character. The predicate
that you need is get0(+Stream,-Char). It reads the next character from the stream
+Stream. Char is the integer code of the character. That means that get0 returns 97,
if the next character is a, for instance.

Usually, we are not interested in these integer codes, but in the characters or rather
the atoms that are made up of a list of characters. Well, you can use the predicate
atom_chars/2 to convert a list of integers into the corresponding atom. The first ar-
gument of atom_chars/2 is the atom and the second the list of integers. For example:

176 Chapter 12. Working With Files

?- atom_chars(W,[113,117,105,100,100,105,116,99,104]).

W = quidditch

Here is the code for reading in a word from a stream. It reads in a character and then
checks whether this character is a blank, a carriage return or the end of the stream. In
any of these cases a complete word has been read, otherwise the next character is read.

readWord(InStream,W) :-

get0(InStream,Char),

checkCharAndReadRest(Char,Chars,InStream),

atom_chars(W,Chars).

checkCharAndReadRest(10,[],_) :- !. % Return

checkCharAndReadRest(32,[],_) :- !. % Space

checkCharAndReadRest(-1,[],_) :- !. % End of Stream

checkCharAndReadRest(end_of_file,[],_) :- !.

checkCharAndReadRest(Char,[Char|Chars],InStream) :-

get0(InStream,NextChar),

checkCharAndReadRest(NextChar,Chars,InStream).

12.3 Practical Session

In this practical session, we want to combine what we learned today with some bits and
pieces that we met earlier in the course. The goal is to write a program for running a
DCG grammar on a testsuite, so that the performance of the grammar can be checked.
A testsuite is a file that contains lots of possible inputs for a program, in our case a file
that contains lots of lists representing grammatical or ungrammatical sentences, such as
[the,woman,shoots,the,cow,under,the,shower] or [him,shoots,woman]. The
test program should take this file, run the grammar on each of the sentences and store
the results in another file. We can then look at the output file to check whether the
grammar answered everywhere the way it should. When developing grammars, test-
suites like this are extremely useful to make sure that the changes we make to the
grammar don’t have any unwanted effects.

12.3.1 Step 1

Take the DCG that you built in the practical session of Chapter 8 and turn it into a
module, exporting the predicate s/3, i.e. the predicate that lets you parse sentences
and returns the parse tree in its first argument.

12.3.2 Step 2

In the practical session of Chapter 9, you had to write a program for pretty printing
parse trees onto the screen. Turn that into a module as well.

12.3.3 Step 3

Now, modify the program, so that it prints the tree not to the screen but to a given
stream. That means that the predicate pptree should now be a two-place predicate
taking the Prolog representation of a parse tree and a stream as arguments.

12.3. Practical Session 177

12.3.4 Step 4

Import both modules into a file and define a two-place predicate test which takes a list
representing a sentence (such as [a,woman,shoots]), parses it and writes the result
to the file specified by the second argument of test. Check that everything is working
as it should.

12.3.5 Step 5

Finally, modify test/2, so that it takes a filename instead of a sentence as its first
argument and then reads in the sentences given in the file one by one, parses them and
writes the sentence as well as the parsing result into the output file. If, e.g, your input
file looked like this:

[the,cow,under,the,table,shoots].

[a,dead,woman,likes,he].

the output file should look similar to this:

[the, cow, under, the, table, shoots]

s(

np(

det(the)

nbar(

n(cow))

pp(

prep(under)

np(

det(the)

nbar(

n(table)))))

vp(

v(shoots)))

[a, dead, woman, likes, he]

no

12.3.6 Step 6

Now, if you are in for some real Prolog hacking, try to write a module that reads in
sentences terminated by a full stop or a line break from a file, so that you can give your
testsuite as

the cow under the table shoots .

a dead woman likes he .

178 Chapter 12. Working With Files

instead of

[the,cow,under,the,table,shoots].

[a,dead,woman,likes,he].

