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Facts, Rules, and Queries

Thisintroductory lecture has two main goals.

1. To give some simple examples of Prolog programs. Thiswill introduce usto the
three basic constructs in Prolog: facts, rules, and queries. It will aso introduce
us to a number of other themes, like the role of logic in Prolog, and the idea of
performing matching with the aid of variables.

2. To begin the systematic study of Prolog by defining terms, atoms, variables and
other syntactic concepts.

1.1 Some simple examples

There are only three basic constructs in Prolog: facts, rules, and queries. A collection
of facts and rules is called a knowledge base (or a database) and Prolog programming
is all about writing knowledge bases. That is, Prolog programs simply are knowledge
bases, collections of facts and rules which describe some collection of relationships
that we find interesting. So how do we use a Prolog program? By posing queries. That
is, by asking questions about the information stored in the knowledge base. Now this
probably sounds rather strange. It’'s certainly not obvious that it has much to do with
programming at all — after al, isn't programming all about telling the computer what
to do? But as we shall see, the Prolog way of programming makes a lot of sense, at
least for certain kinds of applications (computational linguistics being one of the most
important examples). But instead of saying more about Prolog in general terms, let’'s
jump right in and start writing some simple knowledge bases; this is not just the best
way of learning Prolog, it's the only way ...

1.1.1 Knowledge Base 1

Knowledge Base 1 (KB1) issimply acollection of facts. Facts are used to state things
that are unconditionally true of the domain of interest. For example, we can state that
Mia, Jody, and Yolanda are women, and that Jody plays air guitar, using the following
four facts:

woman( m a) .

woman(j ody) .
woman(yol anda) .

pl aysAir Gui tar (jody).
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This collection of factsis KB1. It isour first example of a Prolog program. Note that
the names ni a, j ody, and yol anda, and the properties woman and pl aysAi r Gui t ar ,
have been written so that the first letter isin lower-case. Thisisimportant; we will see
why alittle later.

How can we use KB1? By posing queries. That is, by asking questions about the
information KB1 contains. Here are some examples. We can ask Prolog whether Mia
isawoman by posing the query:

?- wonan(m a).
Prolog will answer
yes

for the obvious reason that this is one of the facts explicitly recorded in KB1. Inci-
dentally, we don’t type in the ?-. This symbol (or something like it, depending on the
implementation of Prolog you are using) is the prompt symbol that the Prolog inter-
preter displays when it is waiting to evaluate a query. We just type in the actua query
(for example wonan( ni a) ) followed by . (afull stop).

Similarly, we can ask whether Jody plays air guitar by posing the following query:
?- playsAirQuitar(jody).

Prolog will again answer “yes’, because this is one of the facts in KB1. However,
suppose we ask whether Mia plays air guitar:

?- playsAirQuitar(ma).
We will get the answer

no

Why? Well, first of al, thisis not afact in KB1. Moreover, KB1 is extremely simple,
and contains no other information (such as the rules we will learn about shortly) which
might help Prolog try to infer (that is, deduce whether Mia plays air guitar. So Prolog
correctly concludes that pl aysAi r Gui t ar (ni a) does not follow from KB1.

Here are two important examples. Suppose we pose the query:
?- playsAirQuitar(vincent).

Again Prolog answers “no”. Why? Well, this query is about a person (Vincent) that it
has no information about, so it concludes that pl aysAi r Gui t ar (vi ncent) cannot be
deduced from the information in KB1.

Similarly, suppose we pose the query:
?- tatooed(jody).
Again Prolog will answer “no”. Why? Well, this query is about a property (being

tatooed) that it has no information about, so once again it concludes that the query
cannot be deduced from the information in KB1.
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1.1.2 Knowledge Base 2

Hereis KB2, our second knowledge base:

i stensToMusi c(m a).

happy(yol anda) .

playsAirGuitar(ma) :- listensToMusic(m a).

pl aysAirGuitar(yol anda) :- |istensToMisic(yol anda).
| i stensToMusi c(yol anda) : - happy(yol anda) .

KB2 containstwo facts, | i st ensToMusi ¢(ni a) and happy(yol anda) . Thelast three
items arerules.

Rules state information that is conditionally true of the domain of interest. For exam-
ple, thefirst rule says that Mia plays air guitar if she listens to music, and the last rule
says that Yolanda listens to music if she if happy. More generaly, the : - should be
read as “if”, or “isimplied by”. The part on the left hand side of the : - is called the
head of the rule, the part on the right hand side is called the body. So in genera rules
say: if the body of the rule is true, then the head of the rule is true too. And now for
the key point: if a knowledge base contains arule head : - body, and Prolog knows
that body follows from the information in the knowledge base, then Prolog can infer
head.

This fundamental deduction step is what logicians call modus ponens.

Let’s consider an example. We will ask Prolog whether Miaplays air guitar:
?- playsAirGuitar(ma).

Prolog will respond “yes’. Why? Well, although pl aysAi r Gui tar (ni a) isnot afact
explicitly recorded in KB2, KB2 does contain the rule

playsAirGQuitar(ma) :- listensToMusic(ma).

Moreover, KB2 also contains the fact | i st ensToMusi ¢c(mi a) . Hence Prolog can use
modus ponens to deduce that pl aysAi r Gui t ar (ni a) .

Our next example showsthat Prolog can chain together uses of modus ponens. Suppose
we ask:

?- playsAirQuitar(yol anda) .
Prolog would respond “yes’. Why? Well, using the fact happy(yol anda) and the rule
| i stensToMusi c(yol anda) : - happy(yol anda),
Prolog can deduce the new fact | i st ensToMusi c(yol anda) . This new fact is not
explicitly recorded in the knowledge base — it is only implicitly present (it isinferred

knowledge). Nonetheless, Prolog can then use it just like an explicitly recorded fact.
Thus, together with the rule
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pl aysAirGuitar(yol anda) :- |istensToMisic(yol anda)

it can deduce that pl aysAi r Gui t ar (yol anda) , which is what we asked it. Summing
up: any fact produced by an application of modus ponens can be used asinput to further
rules. By chaining together applications of modus ponens in this way, Prolog is able
to retrieve information that logically follows from the rules and facts recorded in the
knowledge base.

The facts and rules contained in a knowledge base are called clauses. Thus KB2 con-
tains five clauses, namely three rules and two facts. Another way of looking at KB2 is
to say that it consists of three predicates (or procedures). The three predicates are:

i stensToMusi ¢

happy
pl aysAirGuitar

The happy predicate is defined using a single clause (afact). ThelistensToMisic
and pl aysAi r Gui t ar predicates are each defined using two clauses (in both cases, two
rules). It isagood ideato think about Prolog programs in terms of the predicates they
contain. In essence, the predicates are the concepts we find important, and the various
clauses we write down concerning them are our attempts to pin down what they mean
and how they are inter-related.

One final remark. We can view a fact as a rule with an empty body. That is, we
can think of facts as “conditionals that do not have any antecedent conditions’, or
“degenerate rules’.

1.1.3 Knowledge Base 3

KB3, our third knowledge base, consists of five clauses:

happy(vi ncent) .

| i stensToMusi c(butch).

pl aysAirGuitar(vincent): -
i stensToMusi c(vincent),
happy(vi ncent).

pl aysAirGuitar(butch):-
happy(but ch).

pl aysAirGuitar(butch):-
| i stensToMusi c(butch).

There are two facts, namely happy(vi ncent) and |i stensToMisi c(but ch), and
three rules.

K B3 defines the same three predicates as KB2 (namely happy, | i st ensToMusi ¢, and
pl aysAi rQui tar) but it defines them differently. In particular, the three rules that
define the pl aysAi r Gui t ar predicate introduce some new ideas. First, note that the
rule
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pl aysAirGuitar(vincent): -
i stensToMusi c(vincent),
happy(vi ncent).

has two items in its body, or (to use the standard terminology) two goals. What does
this rule mean? The important thing to note is the comma, that separates the goal
l'ist ensToI\/US| C(V| ncent) and thegoal happy(vi ncent) intherule’'sbody. Thisis

‘ 3 : (that is, the comma means and). So
this rulewys “Vlncent plays air gwtar if helistens to music and heis happy”.

Thus, if we posed the query
?- playsAirCuitar(vincent).

Prolog would answer “no”. Thisis because while KB3 contains happy( vi ncent), it
does not explicitly contain the information | i st ensToMusi c(vi ncent ), and this fact
cannot be deduced either. So KB3 only fulfils one of the two preconditions needed to
establish pl aysAi r Gui tar (vi ncent ), and our query fails.

Incidentally, the spacing used in this rule is irrelevant. For example, we could have
written it as

pl aysAirGuitar(vincent):- happy(vincent),listensToMisic(vincent).

and it would have meant exactly the same thing. Prolog offers us alot of freedom in
the way we set out knowledge bases, and we can take advantage of this to keep our
code readable.

Next, note that KB3 contains two rules with exactly the same head, namely:

pl aysAirGuitar(butch):-
happy(but ch).

pl aysAirGuitar(butch):-
|i stensToMusi c(butch).

Thisis away of stating that Butch plays air guitar if either he listens to music, or if
he is happy. That is, listing multiple rules with the same head is a way of expressing
logical digunction (that is, it isaway of saying or). So if we posed the query

?- playsAirCuitar(butch).

Prolog would answer “yes’. For although the first of these rules will not help (KB3
doesnot alow Prolog to conclude that happy( but ch) ), KB3doescontain| i st ensToMusi ¢( but ch)
and this means Prolog can apply modus ponens using the rule

pl aysAir Guitar(butch):-
| i stensToMusi c(butch).
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to conclude that pl aysAi r Gui t ar (but ch) .

There is another way of expressing disjunction in Prolog. We could replace the pair of
rules given above by the single rule

pl aysAirGuitar(butch):-
happy(but ch);
I'i stensToMusi c(butch).

That is, the semicolon ; isthe Prolog symbol for or, so this single rule means exactly
the same thing as the previous pair of rules. But Prolog programmers usualy write
multiple rules, as extensive use of semicolon can make Prolog code hard to read.

It should now be clear that Prolog has something do with logic: after al, the: - means
implication, the, means conjunction, and the; means digunction. (What about nega-
tion? That isawhole other story. We'll be discussing it later in the course.) Moreover,
we have seen that a standard logical proof rule (modus ponens) plays an important role
in Prolog programming. And in fact “Prolog” is short for “Programming in logic”.

1.1.4 Knowledge Base 4

Hereis KB4, our fourth knowledge base:

wonman(m a) .
woman(j ody) .
woman(yol anda) .

| oves(vincent, ma).

| oves(marcel | us, m a)

| oves( punpki n, honey_bunny) .
| oves( honey_bunny, punpki n) .

Now, thisis a pretty boring knowledge base. There are no rules, only a collection of
facts. Ok, we are seeing a relation that has two names as arguments for the first time
(namely thel oves relation), but, let’s face it, that’s arather predictable idea.

No, the novelty this time lies not in the knowledge base, it lies in the queries we are
going to pose. In particular, for the first time we're going to make use of variables.
Here's an example:

?- wonman( X) .

The X isavariable (in fact, any word beginning with an upper-case letter is a Prolog
variable, which iswhy we had to be careful to use lower-case initial lettersin our earlier
examples). Now a variable isn’'t a name, rather it's a “placeholder” for information.
That is, this query essentially asks Prolog: tell me which of the individuals you know
about is awoman.

Prolog answers this query by working its way through KB4, from top to bottom, trying
to match (or unify) the expression wonan( X) with the information KB4 contains. Now
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the first item in the knowledge base is woman(ni a). So, Prolog matches X to ni a,
thus making the query agree perfectly with this first item. (Incidentaly, there's a lot
of different terminology for this process: we can also say that Prolog instantiates X to
mi a, or that it binds X to ni a.) Prolog then reports back to us as follows:

X =ma

That is, it not only says that there is information about at least one woman in KB4,
it actualy tells us who sheis. It didn't just say “yes’, it actually gave us the variable
binding, or instantiation that led to success.

But that’s not the end of the story. The whole point of variables — and not just in
Prolog either — is that they can “stand for” or “match with” different things. And
there is information about other women in the knowledge base. We can access this
information by typing the following simple query

2.

Remember that ; means or, so this query means. are there any more women? So
Prolog begins working through the knowledge base again (it remembers where it got
up to last time and starts from there) and sees that if it matches X with j ody, then the
query agrees perfectly with the second entry in the knowledge base. So it responds:

X = jody

It'stelling usthat there isinformation about a second woman in KB4, and (once again)
it actually gives us the value that led to success. And of course, if we press; asecond
time, Prolog returns the answer

X = yol anda

But what happens if we press; athird time? Prolog responds “no”. No other matches
are possible. There are no other facts starting with the symbol wonan. The last four
entries in the knowledge base concern the | ove relation, and there is no way that such
entries can match a query of the form of the form woman(x) .

Let’stry amore complicated query, namely
| oves(marcel | us, X), woman( X) .

Now, remember that , means and, so this query says: is there any individual X such
that Marcellus loves X and X isawoman? If you look at the knowledge base you'll see
that there is. Miais awoman (fact 1) and Marcellus loves Mia (fact 5). And in fact,
Prolog is capable of working this out. That is, it can search through the knowledge
base and work out that if it matches X with Mia, then both conjuncts of the query are
satisfied (we'll learn in later lectures exactly how Prolog does this). So Prolog returns
the answer

X =ma

This business of matching variables to information in the knowledge base is the heart
of Prolog. For sure, Prolog has many other interesting aspects — but when you get
right down to it, it's Prolog’s ability to perform matching and return the values of the
variable binding to usthat is crucial.
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1.1.5 Knowledge Base 5

WEell, we've introduced variables, but so far we've only used them in queries. In fact,
variables not only can be used in knowledge bases, it's only when we start to do so that
we can write truly interesting programs. Here's a simple example, the knowledge base
KB5:

| oves(vincent, ma).

| oves(marcel lus, m a).

| oves( punpki n, honey_bunny) .
| oves( honey_bunny, punpki n) .

jealous(X Y) :- loves(X 2),loves(Y,2).

KB5 contains four facts about the | oves relation and one rule. (Incidentally, the blank
line between the facts and the rule has no meaning: it's simply there to increase the
readability. Aswe said earlier, Prolog gives us a great deal of freedom in the way we
format knowledge bases.) But thisrule is by far the most interesting one we have seen
so far: it contains three variables (note that X, Y, and z are al upper-case letters). What
doesit say?

In effect, it isdefining aconcept of jealousy. It says that an individual X will be jealous
of an individual Y if there is some individua z that X loves, and Y loves that same
individual z too. (Ok, so jealoudly isn't as straightforward as this in the real world ...)
The key thing to noteis that thisisageneral statement: it is not stated in terms of ni a,
or punpki n, or anyone in particular — it's a conditional statement about everybody in
our little world.

Suppose we pose the query:
?- jealous(marcellus, W.

This query asks. can you find an individual wsuch that Marcellus is jealous of W?
Vincent is such an individual. If you check the definition of jealousy, you'll see that
Marcellus must be jealous of Vincent, because they both love the same woman, namely
Mia. So Prolog will return the value

W = vi ncent

Now some questions for you, First, are there any other jealous people in KB5? Fur-
thermore, suppose we wanted Prolog to tell us about all the jealous people: what query
would we pose? Do any of the answers surprise you? Do any seem silly?

1.2 Prolog Syntax

Now that we've got some idea of what Prolog does, it'stimeto go back to the beginning
and work through the details more carefully. Let’s start by asking avery basic question:
we've seen al kinds of expressions (for example j ody, pl aysAi r Gui t ar (ni a), and
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X) in our Prolog programs, but these have just been examples. Exactly what are facts,
rules, and queries built out of ?

The answer is terms, and there are four kinds of terms in Prolog: atoms, numbers,
variables, and complex terms (or structures). Atoms and numbers are lumped together
under the heading constants, and constants and variables together make up the smple
terms of Prolog.

Let's take a closer look. To make things crystal clear, let’s first get clear about the
basic characters (or symbols) at our disposal. The upper-case lettersare A, B, ..., Z; the
lower-case letters are a, b, ..., z; the digits are 1, 2, ..., 9; and the special characters
ae+, -,*,/,< > =:,.,& ~ and . The character is called underscore. The
blank space is also a character, but arather unusual one, being invisible. A string isan
unbroken sequence of characters.

1.2.1 Atoms

An atom is either:

1. A string of characters made up of upper-case letters, lower-case letters, digits,
and the underscore character, that begins with a lower-case letter. For example:
but ch, bi g_kahuna_bur ger, and m nonr oe2.

2. Anarbitrary sequence of character enclosed in single quotes. For example’Vi ncent ',

"The G np’, 'Five_Dol | ar_Shake’, '8 9%#@ &', and’ '. The character be-
tween the single quotes is called the atom name. Note that we are allowed to use
spaces in such atoms — in fact, a common reason for using single quotes is so

we can do precisely that.

3. A string of special characters. For example: @ and ====> and ; and : - are
al atoms. As we have seen, some of these atoms, such as; and : - have a
pre-defined meaning.

1.2.2 Numbers

Real numbers aren’t particularly important in typical Prolog applications. So although
most Prolog implementations do support floating point numbers or floats (that is, rep-
resentations of real numbers such as 1657.3087 or 1) we are not going to discuss them
in this course.

But integers (that is: ... -2, -1, 0, 1, 2, 3, ...) are useful for such tasks as counting the
elements of alist, and we'll discuss how to manipulate them in a later lecture. Their
Prolog syntax is the obvious one: 23, 1001, 0, - 365, and so on.

1.2.3 \Variables

A variable is a string of upper-case letters, lower-case letters, digits and underscore
characters that starts either with an upper-case letter or with underscore. For example,
X, Y, Vari abl e, _tag, X 526, and Li st, Li st 24, head, Tai |, _i nput and Qut put
are al Prolog variables.

The variable _ (that is, a single underscore character) is rather special. It's called the
anonymous variable, and we discuss it in alater lecture.
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1.2.4 Complex terms

Constants, numbers, and variables are the building blocks: now we need to know how
to fit them together to make complex terms. Recall that complex terms are often called
structures.

Complex terms are build out of a functor followed by a sequence of arguments. The
arguments are put in ordinary brackets, separated by commas, and placed after the
functor. The functor must be an atom. That is, variables cannot be used as functors.
On the other hand, arguments can be any kind of term.

Now, we've already seen lots of examples of complex terms when we looked at KB1
— KB5. For example, pl aysAi rQuitar (jody) is acomplex term: its functor is
pl aysAi r Gui t ar anditsargument isj ody. Other examplesarel oves(vi ncent, m a)
and, to give an example containing avariable, j eal ous(narcel | us, W .

But note that the definition allows far more complex terms than this. In fact, it allows
us to to keep nesting complex terms inside complex terms indefinitely (that is, it isa
recursive definition). For example

hi de( X, fat her(father(father(butch))))

isaperfectly ok complex term. Its functor ishi de, and it has two arguments: the vari-
able X, and the complex termf at her (f at her (f at her (but ch))). Thiscomplex term
hasf at her asitsfunctor, and another complex term, namely f at her (f at her (but ch))
asits sole argument. And the argument of this complex term, namely f at her ( but ch)
isalso complex. But then the nesting “bottoms out”, for the argument here is the con-
Stant but ch.

As we shall see, such nested (or recursively structured) terms enable us to represent
many problems naturally. In fact the interplay between recursive term structure and
variable matching is the source of much of Prolog’s power.

The number of arguments that a complex term has is called its arity. For instance,
wonan( m a) isacomplex termwith arity 1, whilel oves(vi ncent, ni a) isacomplex
term with arity 2.

Arity is important to Prolog. Prolog would be quite happy for us to define two pred-
icates with the same functor but with a different number of arguments. For example,
we are free to define a knowledge base that defines a two place predicate | ove (this
might contain such facts as| ove(vi ncent, mi a) ), and also athree place | ove predi-
cate (which might contain such factsas| ove(vi ncent, mar cel | us, i a) ). However,
if wedid this, Prolog would treat the two place | ove and the three place | ove as com-
pletely different predicates.

When we need to talk about predicates and how we intend to use them (for example,
in documentation) it is usual to use a suffix / followed by a number to indicate the
predicate’s arity. To return to KB2, instead of saying that it defines predicates

i stensToMusi ¢

happy
pl aysAirGuitar
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we should really say that it defines predicates

|istensToMusic/ 1
happy/ 1
playsAirGQuitar/1

And Prolog can't get confused about a knowledge base containing the two different
love predicates, for it regards the | ove/ 2 predicate and the | ove/ 3 predicate as com-
pletely distinct.

1.3 Exercises

Exercise 1.1 Which of the following sequences of characters are atoms, which are
variables, and which are neither?

vI NCENT
. Foot massage
. variabl e23

. Vari abl e2000

1

2

3

4

5. bi g_kahuna_bur ger
6. ' bi g kahuna burger’
7. bi g kahuna burger
8. ' Jules

9

. Jules

10. © Jules

Exercise 1.2 Which of the following sequences of characters are atoms, which are
variables, which are complex terms, and which are not terms at all? Give the functor
and arity of each complex term.

. loves(Vincent, m a)
. "loves(Vincent,ma)’

. But ch(boxer)

. and( bi g(burger), kahuna(burger))

1
2
3
4. boxer (But ch)
5
6. and(bi g(X), kahuna( X))
7

. _and(bi g( X), kahuna( X))



Chapter 1. Facts, Rules, and Queries

8. (Butch kills Vincent)
9. kills(Butch Vincent)

10. ki | I s(Butch, Vi ncent

Exercise 1.3 How many facts, rules, clauses, and predicates are there in the follow-
ing knowledge base? What are the heads of the rules, and what are the goals they
contain?

wonman(vi ncent) .

wonman(m a) .

man(j ul es).

person(X) :- man(X); woman(X).
loves(X Y) :- knows(Y, X).
father(Y,2) :- man(Y), son(ZY).

father(Y,2) :- man(Y), daughter(ZY).
Exercise 1.4 Represent the following in Prolog:

Butch isakiller.

Mia and Marcellus are married.

Zed is dead.

Marcellus kills everyone who gives Mia a footmassage.

Mia loves everyone who is a good dancer.

© g & w NP

Jules eats anything that is nutritious or tasty.

Exercise 1.5 Suppose we are working with the following knowledge base:

wi zard(ron).

hasWand(harry).

qui ddi t chPl ayer (harry).

wi zard(X) :- hasBroon(X), has\Wand( X) .
hasBroon( X) :- quidditchPlayer(X).

How does Prolog respond to the following queries?

wi zard(ron).
. witch(ron).

. wi zard(herm one).

. wi zard(harry).

1

2

3

4. witch(hermone).
5

6. wizard(Y).

7

. witch(Y).
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1.4 Practical Session 1

Don’t be fooled by the fact that the descriptions of the practical sessions are much
shorter than the text you have just read — the practical part of the course is definitely
the most important. Yes, you need to read the text and do the exercises, but that’s not
enough to become a Prolog programmer. To really master the language you need to sit
down in front of acomputer and play with Prolog — alot!

The goal of the first practical session is for you to become familiar with the basics of
how to create and run simple Prolog programs. Now, because there are many different
implementations of Prolog, and many different operating systems you can run them
under, we can't be too specific here. Rather, what we'll do is describe in very gen-
eral terms what isinvolved in running Prolog, list the practical skills you will need to
master, and make some suggestions for things to do.

The simplest way to run a Prolog program is as follows. You have a file with your
Prolog program in it (for example, you may have afile kb2. pl which contains the
knowledge base KB2). You then start Prolog running. Prolog will display its prompt,
something like

which indicates that it is ready to accept a query.

Now, at this stage, Prolog knows absolutely nothing about KB2 (or indeed anything
else). To see this, type in the command |i sti ng, followed by a full stop, and hit
return. That is, type

?- listing.

and press the return key.

Now, thel i sti ng command is a specia in-built Prolog predicate that instructs Prolog
to display the contents of the current knowledge base. But we haven't yet told Prolog
about any knowledge bases, so it will just say

yes

This is a correct answer: as yet Prolog knows nothing — so it correctly displays all
this nothing and says yes. Actually, with more sophisticated Prolog implementations
you may get alittle more (for example, the names of libraries that have been loaded)
but, one way or another, you will receive what is essentially an “1 know nothing about
any knowledge bases!” answer.

So let’s tell Prolog about KB2. Assuming you've stored KB2 in the file kb2. pl , and
that thisfile isin the same directory where you're running Prolog, al you have to type
is

?- [kb2].
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Thistells Prolog to consult thefilekb2. pl , and load the contents asits new knowledge
base. Assuming that the kb2. pl contains no typos, Prolog will read it in, maybe print
out amessage saying that it is consulting the file kb2. pl , and then answer:

yes

Incidentally, it is quite common to store Prolog code in files with a. pl suffix. It'sa
useful indication of what the file contains (namely Prolog code) and with many Prolog
implementations you don’t actually have to typein the . pl suffix when you consult a
file.

Ok, so Prolog should now know about all the KB2 predicates. And we can check
whether it does by using thel i sti ng command again:

?- listing.
If you do this, Prolog will list (something like) the following on the screen:

i stensToMusi c(m a).
happy(yol anda) .
playsAirQuitar(ma) :-
i stensToMusi c(ni a).
pl aysAi r Gui t ar (yol anda)
I'i stensToMusi c(yol anda) .
| i stensToMusi c(yol anda) : -
happy(yol anda) .

yes

That is, it will list the facts and rules that make up KB2, and then say yes. Once again,
you may get alittle more than this, such as the locations of various libraries that have
been loaded.

Incidentally, | i sti ng can be used in other ways. For example, typing
?- listing(playsAirCGuitar).

simply listsall theinformation in the knowledge base about the pl aysAi r Gui t ar pred-
icate. So in this case Prolog will display

playsAirGuitar(ma) :-
i stensToMusi c(mi a).
pl aysAi r Gui t ar (yol anda)
Ii stensToMusi c(yol anda) .

yes
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Well — now you're ready to go. KB2 isloaded and Prolog is running, so you can (and
should!) start making exactly the sort of inquiries we discussed in the text ...

But let’s back up alittle, and summarize afew of the practical skills you will need to
master to get this far:

e You will need to know some basic facts about the operating system you are using,
such as the directory structure it uses. After all, you will need to know how to
save the files containing programs where you want them.

e You will need to know how to use some sort of text editor, in order to write and
modify programs. Some Prolog implementations come with in-built text editors,
but if you aready know atext editor (such as Emacs) it is probably a better idea
to use this to write your Prolog code.

e You may want to take example Prolog programs from the internet. So make sure
you know how to use a browser to find what you want, and to store the code
where you want it.

e Make sure you know how to start Prolog, and consult files from it.

The sooner you pick up these skills, the better. With them out of the way (which
shouldn’t take long) you can start concentrating on mastering Prolog (which will take
alot longer).

But assuming you have mastered these skills, what next? Quite simply, play with Pro-
log! Consult the various knowledge bases discussed today, and check that the queries
discussed really do work the way we said they did. In particular, take alook at KB5
and make sure you understand why you get those peculiar “jealousy” relations. Try
posing new queries. Experiment with the | i sti ng predicate (it's a useful tool). Type
in the knowledge base used in Exercise 5, and check whether your answers are correct.
Best of al, think of some simple domain that interests you, and create a brand-new
knowledge base from scratch ...
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Matching and Proof Search

Today’s lecture has two main goals:

1. To discuss the idea of matching in Prolog, and to explain how Prolog matching
differs from standard unification. Along the way, we'll introduce =, the built-in
Prolog predicate for matching.

2. To explain the search strategy Prolog uses when it tries to prove something.

2.1 Matching

When working with knowledge base KB4 in the previous chapter, we introduced the
term matching. We said, e.g. that Prolog matcheswoman( X) withwoman(ni a) , thereby
instantiating the variable X to ni a. We will now have a close look at what matching
means.

Recall that there are three types of term:

1. Constants. These can either be atoms (such as vi ncent) or numbers (such as
24).

2. Variables.

3. Complex terms. These have the form: functor(term1, ..., termn).

We are now going to define when two terms match. The basic ideaisthis:

Two terms match, if they are equal or if they contain variables that can be
instantiated in such away that the resulting terms are equal.

That means that the terms ni a and i a match, because they are the same atom. Sim-
ilarly, the terms 42 and 42 match, because they are the same number, the terms X
and X match, because they are the same variable, and the terms worman(ni a) and
woman( mi a) match, because they are the same complex term. The termswonan( i a)
and worman( vi ncent ) , however, do not match, as they are not the same (and neither of
them contains a variable that could be instantiated to make them the same).

Now, what about the terms mi a and X? They are not the same. However, the variable X
can beinstantiated to m a which makesthem equal. So, by the second part of the above
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definition, mi a and X match. Similarly, the terms woman(X) and worman( ni a) match,
because they can be made equal by instantiating X to ni a. How about | oves(vi ncent, X)
and | oves( X, ni a)? Itisimpossible to find an instantiation of X that makes the two
terms equal, and therefore they don’t match. Do you see why? Instantiating X to
vi ncent would give ustheterms| oves(vi ncent, vi ncent) andl oves(vi ncent, mi a),
which are obviously not equal. However, instantiating X to mia, would yield the terms

| oves(vincent, ma) and|l oves(ni a, ni a), which aren't equal either.

Usually, we are not only interested in the fact that two terms match, but we also want
to know in what way the variables have to be instantiated to make them equal. And
Prolog gives us this information. In fact, when Prolog matches two terms it performs
al the necessary instantiations, so that the terms really are equal afterwards. This
functionality together with the fact that we are allowed to build complex terms (that is,
recursively structured terms) makes matching a quite powerful mechanism. And aswe
said in the previous chapter: matching is one of the fundamental ideas in Prolog.

Here's a more precise definition for matching which not only tells us when two terms
match, but one which also tells us what we have to do to the variables to make the
terms equal.

1 Ifterml and t er n2 are constants, then t er nil and t er n2 match if and only if
they are the same atom, or the same number.

2. If terml isavariable and tern2 is any type of term, then terni and t er n2
match, and ternt is instantiated to tern2. Similarly, if tern2 is a variable
and ternd is any type of term, then ternl and tern2 match, and tern? is
instantiated to t er L. (So if they are both variables, they're both instantiated to
each other, and we say that they share values.)

3. If terml andt er n2 are complex terms, then they match if and only if:

(& They have the same functor and arity.
(b) All their corresponding arguments match

(c) and the variable instantiations are compatible. (l.e. it is not possible to
instantiate variable X to ni a, when matching one pair of arguments, and to
then instantiate X to vi ncent , when matching another pair of arguments.)

4. Two terms match if and only if it follows from the previous three clauses that
they match.

Note the form of this definition. The first clause tells us when two constants match.
The second term clause tells us when two terms, one of which is a variable, match:
such terms will always match (variables match with anything). Just as importantly,
this clause also tells what instantiations we have to perform to make the two terms the
same. Finally, the third clause tells us when two complex terms match.

Thefourth clauseisalso very important: it tells usthat thefirst three clauses completely
define when two terms match. If two terms can’t be shown to match using Clauses 1-3,
then they don’'t match. For example, bat man does not match with daught er (i nk) .
Why not? Well, the first term is a constant, the second is a complex term. But none
of the first three clauses tell us how to match two such terms, hence (by clause 4) they
don’'t match.
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2.1.1 Examples

We'll now look at lots of examples to make this definition clear. In these examples
we' [l make use of an important built-in Prolog predicate, the =/ 2 predicate (recall that
the/ 2 at the end isto indicate that this predicate takes two arguments).

Quite simply, the =/ 2 predicate tests whether its two arguments match. For example,
if we pose the query

=(ma,ma).
Prolog will respond ‘yes', and if we pose the query
=(m a, vincent).

Prolog will respond ‘no’.

But we usually wouldn’'t pose these queries in quite thisway. Let’sfaceit, the notation
=(m a, ni a) israther unnatural. It would be much nicer if we could use infix notation
(that is, put the = functor between its arguments) and write things like:

And in fact, Prolog lets us do this. So in the examples that follow we'll use the (much
nicer) infix notation.

Let'sreturn to this example:

ma = ma.
yes

Why does Prolog say ‘yes ? This may seem like a silly question: surely it's obvious
that the terms match! That's true, but how does this follow from the definition given
above? It is very important that you learn to think systematically about matching (it is
utterly fundamental to Prolog), and ‘ thinking systematically’ means relating the exam-
ples to the definition of matching given above. So let’s think this example through.

The definition has three clauses. Clause 2 is for when one argument is a variable,
and clause 3 is for when both arguments are complex terms, so these are no use here.
However clause 1 is relevant to our example. This tells us that two constants unify if
and only if they are are exactly the same object. Asni a and ni a are the same atom,
matching succeeds.

A similar argument explains the following responses:

ma = vincent.
no
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Once again, clause 1 isrelevant here (after al, 2, ni a, and vi ncent are all constants).
And as 2 isthe same number as 2, and as ni a is not the same atom asvi ncent , Prolog
responds ‘yes' to the first query and ‘no’ to the second.

However clause 1 does hold one small surprise for us. Consider the following query:
‘ma = ma.
yes
What's going here? Why do these two terms match? Well, as far as Prolog is con-
cerned, ' nia’ and nmi a are the same atom. In fact, for Prolog, any atom of the form

"synbol s’ is considered the same entity as the atom of the form synbol s. This can
be a useful feature in certain kinds of programs, so don't forget it.

On the other hand, to the the query
' = 2.

Prolog will respond ‘no’. And if you think about the definitions given in Lecture 1,
you will seethat this has to be the way things work. After all, 2 isanumber, but’ 2’ is
an atom. They simply cannot be the same.

Let’stry an example with avariable:

ma = X
X =ma
yes

Again, thisin an easy example: clearly the variable X can be matched with the constant
m a, and Prolog does so, and tells us that it has made this matching. Fine, but how does
this follow from our definition?

Therelevant clause hereisclause 2. Thistells uswhat happens when at least one of the
argumentsisavariable. In our exampleit is the second term which isthe variable. The
definition tells us unification is possible, and also says that the variable is instantiated
to the first argument, namely ni a. And this, of course, is exactly what Prolog does.

Now for an important example: what happens with the following query?
X =Y.
WEell, depending on your Prolog implementation, you may just get back the output
X =Y.
yes
Prolog is simply agreeing that the two terms unify (after all, variables unify with any-
thing, so certainly with each other) and making a note that from now on, X and Y denote

the same object. That is, if ever X isinstantiated, Y will be instantiated too, and to the
same thing.

On the other hand, you may get the following output:
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X
Y

5071
5071

Here, both arguments are variables. What does this mean?

WEell, thefirst thing to realize isthat the symbol _5071 isavariable (recall from Lecture
1 that strings of |etters and numbersthat start witha_ arevariables). Now look at clause
2 of the definition. Thistells usthat when two variables are matched, they share values.
So what Prolog is doing here is to create a new variable (namely _5071 ) and saying
that, from now on, both X and Y share the value of this variable. That is, in effect,
Prolog is creating a common variable name for the two original variables. Incidentally,
there's nothing magic about the number 5071. Prolog just needs to generate a brand
new variable name, and using numbers is a handy way to do this. It might just as well
generate 5075, or _6189, or whatever.

Here is another example involving only atoms and variables. How do you think will
Prolog respond?

X = ma, X = vincent.

Prolog will respond 'no’. This query involves two goals, X = mia and X = vi ncent.
Taken seperately, Prolog would succeed for both of them, instantiating X to mi a in the
first case and to vi ncent in the second. And that's exactly the problem here: once
Prolog has worked through the first query, X is instantiated, and therefore equal, to
mi a, SO that that it doesn’t match with vi ncent anymore and the second goal fails.

Now, let’'slook at an example involving complex terms:

kill (shoot(gun),Y) = kill (X stab(knife)).

X = shoot (gun)
Y = stab(knife)
yes

Clearly the two complex terms match if the stated variable instantiations are carried
out. But how does this follow from the definition? Well, first of all, Clause 3 has to
be used here because we are trying to match two complex terms. So the first thing we
need to do is check that both complex terms have the same functor (that is: they use
the same atom as the functor name and have the same number of arguments). And they
do. Clause 3 also tells us that we have to match the corresponding arguments in each
complex term. So do thefirst arguments, shoot (gun) and X, match? By Clause 2, yes,
and weinstantiate X to shoot ( gun) . So do the second arguments, Y and st ab(kni f e) ,
match? Again by Clause 2, yes, and we instantiate Y to ki | | (st ab) .

Here's another example with complex terms:

kill (shoot(gun), stab(knife)) = kill (X stab(Y)).

X = shoot (gun)
Y = knife
yes
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It should be clear that the two terms match if these instantiations are carried out. But
can you explain, step by step, how this relates to the definition?

Hereisalast example:
loves(X, X) = loves(nmarcellus,na).

Do these terms match? No, they don’t. They are both complex terms and have the same
functor and arity. So, up to thereit’s ok. But then, Clause 3 of the definition says that
al corresponding arguments have to match and that the variable instantiations have
to be compatible, and that is not the case here. Matching the first arguments would
instantiate X with nar cel | us and matching the second arguments would instantiate X
with ni a.

2.1.2 The occurs check

Instead of saying that Prolog matches terms, you'll find that many books say that Pro-
log unifiesterms. Thisisvery common terminology, and we will often useit ourselves.
But while it does not really matter whether you call what Prolog does * unification’ or
‘matching’, there is one thing you do need to know: Prolog does not use a standard uni-
fication algorithm when it performs unification/matching. Instead, it takes a shortcut.
You need to know about this shortcut.

Consider the following query:
father(X) = X

Do you think these terms match or not?

A standard unification algorithm would say: No, they don’'t. Do you see why? Pick
any term and instantiate X to the term you picked. For example, if you instantiate X to

fat her (fat her (butch)), theleft hand side becomesf at her (f at her (f at her (but ch))),

and the right hand side becomes f at her (f at her (but ch)). Obviously these don’t
match. Moreover, it makes no difference what you instantiate X to. No matter what
you choose, the two terms cannot possibly be made the same, for the term on the left
will always be one symbol longer than the term on the right (the functor f at her on the
left will always give it that one extralevel). The two terms simply don’t match.

But now, let’'s see what Prolog would answer to the above query. With old Prolog
implementations you would get a message like:

Not enough nmenory to conplete query!
and along string of symbols like:

X = father(father(father(father(father(father(father(father

(father(father(father(father(father(father(father(father(father
(father(father(father(father(father(father(father(father(father
(father(father(father(father(father(father(father(father(father
(father(father(father(father(father(father(father(father(father
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Prolog is desperately trying to match these terms, but it won’t succeed. That strange
variable X, which occurs as an argument to a functor on the left hand side, and on its
own on the right hand side, makes matching impossible.

To be fair, what Prolog is trying to do here is reasonably intelligent. Intuitively, the
only way the two terms could be made to match would be if X was instantiated to
‘aterm containing an infinitely long string of f at her functors', so that the effect of
the extraf at her functor on the left hand side was canceled out. But terms are finite
entities. Thereisno such thing asa‘term containing an infinitely long string of f at her

functors'. Prolog’'s search for a suitable term is doomed to failure, and it learns this the
hard way when it runs out of memory.

Now, current Prolog implementations have found a way of coping with this problem.
Try to pose the query f at her (X) = X to SICStus Prolor or SWI. The answer will be
something like:

X = father(father(father(father(father(father(...))))))))))

The dots are indicating that there is an infinite nesting of f at her functors. So, newer
versions of Prolog can detect cycles in terms without running our of memory and have
afinite internal representation of such infinite terms.

Still, a standard unification algorithm works differently. 1f we gave such an algorithm
the same example, it would look at it and tell us that the two terms don’t unify. How
does it do this? By carrying out the occurs check. Standard unification algorithms
aways peek inside the structure of the termsthey are asked to unify, looking for strange
variables (like the X in our example) that would cause problems.

To put it another way, standard unification algorithms are pessimistic. They first look
for strange variables (using the occurs check) and only when they are sure that the two
terms are ‘safe€’ do they go ahead and try and match them. So a standard unification
algorithm will never get locked into a situation where it is endlessly trying to match
two unmatchable terms.

Prolog, on the other hand, is optimistic. It assumes that you are not going to give it
anything dangerous. So it does not make an occurs check. Assoon as you give it two
terms, it charges full steam ahead and tries to match them.

AsProlog isaprogramming language, thisisan intelligent strategy. Matching is one of
the fundamental processes that makes Prolog work, so it needs to be carried out as fast
as possible. Carrying out an occurs check every time matching was called for would
slow it down considerably. Pessimism is safe, but optimism isalot faster!

Prolog can only run into problems if you, the programmer, ask it to do something
impossible like unify X with f at her (X). And it is unlikely you will ever ask it to
anything like that when writing areal program.

2.1.3 Programming with matching

As we've said, matching is a fundamental operation in Prolog. It plays akey role in
Prolog proof search (as we shall soon learn), and this alone makes it vital. However,
as you get to know Prolog better, it will become clear that matching is interesting and
important in its own right. Indeed, sometimes you can write useful programs simply
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by using complex terms to define interesting concepts. Matching can then be used to
pull out the information you want.

Here’'s asimple example of this, dueto Ivan Bratko. The following two line knowledge
base defines two predicates, namely vertical /2 and hori zont al / 2, which specify
what it means for aline to be vertical or horizontal respectively.

vertical (Iine(point(XY),point(X 2))).
hori zontal (Iine(point(X Y),point(ZY))).

Now, at first glance this knowledge base may seem too simple to be interesting: it con-
tains just two facts, and no rules. But wait a minute: the two facts are expressed using
complex terms which again have complex terms as arguments. If you look closely, you
see that there are three levels of nesting terms into terms. Moreover, the deepest level
arguments are all variables, so the concepts are being defined in ageneral way. Maybe
its not quite assimple as it seems. Let’s take a closer 10ok.

Right down at the bottom level, we have a complex term with functor poi nt and two
arguments. Its two arguments are intended to be instantiated to numbers. poi nt (X, Y)

represents the Cartesian coordinates of a point. That is, the X indicates the horizontal
distance the point is from some fixed point, while the Y indicates the vertical distance
from that same fixed point.

Now, once we've specified two distinct points, we've specified a line, namely the
line between them. In effect, the two complex terms representing points are bundled
toghether as the two arguments of another complex term with the functor | i ne. So,
we represent a line by a complex term which has two arguments which are complex
terms as well and represent points. We're using Prolog’s ability to build complex terms
to work our way up a hierarchy of concepts.

To be vertical or to be horizontal are properties of lines. The predicatesverti cal and
hori zont al therefore both take one argument which represents aline. The definition
of vertical /1 simply says. aline that goes between two points that have the same
x-coordinate is vertical. Note how we capture the effect of ‘the same x-coordinate’ in
Prolog: we simply make use of the same variable X as the first argument of the two
complex terms representing the points.

Similarly, the definition of hori zont al / 1 simply says. aline that goes between two
points that have the same y-coordinate is horizontal. To capture the effect of ‘the same
y-coordinate’, we use the same variable Y as the second argument of the two complex
terms representing the points.

What can we do with this knowledge base? Let’s |ook at some examples:

vertical (Iine(point(1,1),point(1,3))).
yes

This should be clear: the query matches with the definition of ver ti cal / 1 inour little
knowledge base (and in particular, the representations of the two points have the same
first argument) so Prolog says ‘yes' . Similarly we have:
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vertical (Iine(point(1,1),point(3,2))).
no

This query does not match the definition of vertical /1 (the representations of the
two points have different first arguments) so Prolog says ‘no’.

But we can ask more genera questions:
hori zontal (l1ine(point(1,1),point(2,Y))).
Y =1;
no

Here our query is. if we want a horizontal line between a point at (1,1), and point
whose x-coordinate is 2, what should the y-coordinate of that second point be? Prolog
correctly tells us that the y-coordinate should be 2. If we then ask Prolog for a second
possibility (notethe; ) it tells us that no other possibilities exist.

Now consider the following:
hori zontal (Iine(point(2,3),P)).
P = point(_1972, 3)
no

This query is: if we want a horizontal line between a point at (2,3), and some other
point, what other points are permissible? The answer is: any point whose y-coordinate
is 3. Note that the _1972 in the first argument of the answer is a variable, which is
Prolog’'s way of telling us that any x-coordinate at all will do.

A genera remark: the answer to our last query, poi nt (_1972, 3), isstructured. That
is, the answer is a complex term, representing a sophisticated concept (namely ‘any
point whose y-coordinate is 3'). This structure was built using matching and nothing
else: no logica inferences (and in particular, no uses of modus ponens) were used
to produce it. Building structure by matching turns out to be a powerful idea in Pro-
log programming, far more powerful than this rather simple example might suggest.
Moreover, when a program is written that makes heavy use of matching, it islikely to
be extremely efficient. We will study a beautiful example in a later lecture when we
discuss difference lists, which are used to implement Prolog built-in grammar system
Definite Clause Grammars (DCGS).

This style of programming is particularly useful in applications where the important
concepts have anatural hierarchical structure (asthey did in the simple knowledge base
above), for we can then use complex terms to represent this structure, and matching to
access it. This way of working plays an important role in computational linguistics,
because information about language has a natural hierarchical structure (think of the
way we divide sentences into noun phrases and verb phrases, and noun phrases into
determiners and nouns, and so on).
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2.2 Proof Search

Now that we know about matching, we are in a position to learn how Prolog actually
searches a knowledge base to see if a query is satisfied. That is, we are now able
to learn about proof search. We will introduce the basic ideas involved by working
through a simple example.

Suppose we are working with the following knowledge base

f(a).
f(b).

9(a).
9(b).

h(b) .
k(X) - £(X),9(X),h(X).
Suppose we then pose the query
k(X) .
You will probably see that there is only one answer to this query, namely k(b), but

how exactly does Prolog work thisout? Let’s see.

Prolog reads the knowledge base, and tries to match k( X) with either afact, or the head
of arule. It searches the knowledge base top to bottom, and carries out the matching,
if it can, at the first place possible. Here there is only one possibility: it must match
k(X) tothehead of therulek(X) :- f(X),g(X),h(X).

When Prolog matches the variable in aquery to avariable in afact or rule, it generates
a brand new variable to represent that the variables are now sharing. So the origina
query now reads:

k(_G348)
and Prolog knows that

k(_G348) :- f(_G348),g(_G348),h(_G348).
So what do we now have? The query says. ‘I want to find an individual that has
property k’. Therule says,'an individual has property k if it has propertiesf, g, and h'.
So if Prolog can find an individual with propertiesf, g, and h, it will have satisfied the
original query. So Prolog replaces the original query with the following list of goals:

f(_G348), g(_G348), h(_G348) .
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We will represent this graphically as

X = _(348

< f(_G348),9(_G348),h(_GB48) >

That is, our original goal isto prove k( X) . When matching it with the head of the rule
in the knowledge base X and the internal variable _G348 are made equal and we are left
with the goalsf (_G348), g(_G348), h(_G348).

Now, whenever it has a list of goals, Prolog tries to satisfy them one by one, working
through the list in aleft to right direction. The leftmost goal isf (_G348) , which reads:
‘I want an individual with property f’. Can this goal be satisfied? Prolog tries to do so
by searching through the knowledge base from top to bottom. The first thing it finds
that matchesthisgoal isthefact f (a) . Thissatisfiesthe goal f (_G348) and we are left
with two more goals to go. When matching f (_G348) tof (a), X isinstantiated to a.
This applies to al occurrences of X in the list of goals. So, the list of remaining goals
is.

9(a), h(a)

and our graphical representation of the proof search looks like this:

D

X = _G348
< f(_G348),9(_G348),h(_G348) >
3348 = a

g(a), h(a)

Thefact g(a) isin the knowledge base. So the next goal we have to prove is satisfied
too, and the goal list is now

h(a)

and the graphical representation



28

Chapter 2. Matching and Proof Search

D

X = _G348
< f(_G348),9(_G348),h(_GB48) >
3348 = a

D>

But there is no way to satisfy this goal. The only information h we have in the knowl-
edge baseish(b) and thiswon't match h( a) .

So Prolog decides it has made a mistake and checks whether at some point there was
another possibility for matching agoal with afact or the head of arulein the knowledge
base. It does this by going back up the path in the graphical representation that it was
coming down on. Thereis nothing else in the knowledge base that matches with g( a) ,
but there is another possibility for matching f (_G348) . Points in the search where
there are several aternatives for matching a goal against the knowledge base are called
choice points. Prolog keeps track of choice points and the choices that it has made
there, so that if it makes a wrong choice, it can go back to the choice point and try
something else. Thisiscalled backt r acki ng.

So, Prolog backtracks to the last choice point, where the list of goals was:
f(_G348), g(_G348), h(_G348).

Prolog has to redo all this. Prolog tries to resatisfy the first goal, by searching further
in the knowledge base. It sees that it can match the first goal with information in the
knowledge base by matching f (_G348) with f (b). This satisfies the goal f (_G348)
and instantiates X to b, so that the remaining goal list is

g(b), h(b).
But g(b) isafact in the knowledge base, so thisis satisfied too, leaving the goal list:
h(b).

And this fact too is in the knowledge base, so this goal is aso satisfied. Important:
Prolog now has an empty list of goals. This means that it has proved everything it
had to to establish the original goal, namely k(X). So this query is satisfiable, and
moreover, Prolog has also discovered what it has to do to satisfy it, namely instantiate
Xtohb.

Representing these last steps graphically gives us
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X = G348
< T(_G348), g(_G348), h(_G348) >
_(B48 = a (3848 = b

g(a), h(a) g(b), h(b) >

@D @D
O

It isinteresting to consider what happens if we then ask for another solution by typing:

This forces Prolog to backtrack to the last choice point, to try and find another possi-
bility. However, there is no other choice point, as there are no other possibilities for
matching h(b), g(b), f (_G348), or k(X) with clauses in the knowledge base. So at
this point Prolog would correctly have said ‘no’. Of course, if there had been other
rules involving k, Prolog would have gone off and tried to use them in exactly the way
we have described: that is, by searching top to bottom in the knowledge base, left to
right in goal lists, and backtracking to the previous choice point whenever it fails.

Now, look at the graphical representation that we built while searching for proofs of
k(X) . It isatree structure. The nodes of the tree say which are the goals that have to
be satisfied at a certain point during the search and at the edges we keep track of the
variable instantiations that are made when the current goal (i.e. the first onein the list
of goals) is match to afact or the head of arule in the knowledge base. Such trees are
called search trees and they are a nice way of visualizing the steps that are taken in
searching for a proof of some query. Leave nodes which still contain unsatisfied goals
are point where Prolog failed, because it made a wrong decision somewhere aong the
path. Leave nodes with an empty goal list, correspond to a possible solution. The
information on the edges along the path from the root node to that |eave tell you what
are the variable instantiations with which the query is satisfied.

Let's have alook at another example. Suppose that we are working with the following
knowledge base:

| oves(vincent, m a).
| oves(narcel lus, n a).

jealous(X,Y) :- loves(X 2),!loves(Y,Z2).
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178

Now, we pose the query
j eal ous(X,Y).

The search tree for this query looks like this:

X =

158,

Y = 178
< loves(_158,_663),loves(_178,_663)
158 = vincent, 158 = marcel |l us,
663 = m a 663 = ma

| oves(_178, m a)

= vi ncent 178 = ﬁ%gelzl Vn-

_178 = marcel |l us

Thereis only one possibility of matching j eal ous( X, Y) against the knowledge base.
That is by using the rule

jealous(X,Y) :- loves(X 2),!loves(Y,Z2).
The new goals that have to be satisfied are then
| oves(_G100, Gl101), | oves(_Gl02, Gl101)

Now, we have to match | oves(_GL00, _Gl101) against the knowledge base. There
are two ways of how this can be done: it can either be matched with the first fact
or with the second fact. This is why the path branches at this point. In both cases
the goal | oves(_GL02, ni a) isleft, which also has two possibilities of how it can be
satisfied, namely the same ones as above. So, we have four leave nodes with an empty
goal list, which means that there are four ways for satisfying the query. The variable
instantiation for each of them can be read off the path from the root to the leaf node.
They are

1. X =\ _158 = vincent andY =\ _178 = vincent

2. X =\_158 = vincent andY = \_178 = narcel |l us
3. X =\_158 = marcellusandyY = \_178 = vi ncent
4, X =\ _158 = marcellusandyY = \_178 = marcel | us
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2.3 Exercises

Exercise 2.1 Which of the following pairs of terms match? Where relevant, give the
variable instantiations that lead to successful matching.

. bread = bread
. "Bread’ = bread
. "bread’ = bread

. Bread = bread

. food(bread) = bread

. food(bread)

1

2

3

4

5. bread = sausage
6

7 X

8. food(X) = food(bread)

9. food(bread, X) = food(Y, sausage)

10. food(bread, X, beer) = food(Y, sausage, X)

11. food(bread, X, beer) = food(Y, kahuna_bur ger)
12. food(X) = X

13. neal (food(bread), dri nk(beer)) = neal (X, Y)

14. neal (food(bread), X) = neal (X, drink(beer))

Exercise 2.2 We are working with the following knowledge base:

house_el f (dobby).

wi t ch(herm one).

wi tch(’ McGonagal | ).
witch(rita_skeeter).
magi c( X) : - house_el f ( X).
magi c(X): -w zard(X).
magi c(X):-witch(X).

Which of the following queries are satisfied? Where relevant, give all the variable
instantiations that lead to success.

?- magi c(house_el f).

?- w zard(harry).

1
2.
3. ?- magi c(wi zard).
4. ?- magi c(’ McGonagal | 7).
5.

?- nmgi c(Herm one).
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Draw the search tree for the fifth query magi c( Her i one) .

Exercise 2.3 Hereisatiny lexicon and mini grammar with only one rule which de-
fines a sentence as consisting of five words: an article, a noun, a verb, and again an
article and a noun.

word(article,a).
word(article,every).

wor d( noun, cri m nal ).

wor d( noun, ' bi g kahuna burger’).
wor d(ver b, eats) .

wor d(verb, l'i kes).

sent ence(Wor d1, Wor d2, Wor d3, Wor d4, Wor d5)
word(article, Wrdl),
wor d( noun, Wr d2)
wor d( ver b, Wor d3)
word(article, Wrd4),
wor d( noun, Wr d5)

What query do you have to pose in order to find out which sentences the grammar
can generate? List all sentences that this grammar can generate in the order Prolog
will generate them. Make sure that you understand why Prolog generates themin this
order.

Exercise 2.4 Hereare six English words:

abalone, abandon, anagram, connect, elegant, enhance.

They are to be arranged in a crossword puzzle like fashion in the grid given below.

W1 W2 W3

H1

H3

The following knowledge base represents a lexicon containing these words.

wor d( abal one, a,b,a,l,0,n,e).
wor d( abandon, a, b, a, n, d, o, n).
wor d( enhance, e, n, h a, nc,e).
word(anagrama, n,a,g,r,a, m.
wor d(connect, c,o0,n,n, e, c,t).
wor d( el egant,e,l,e,g,a, n,t).
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Write a predicate cr osswd/ 6 that tells us how to fill the grid, i.e. the first three argu-
ments should be the vertical words from left to right and the following three arguments
the horizontal words from top to bottom.

2.4 Practical Session 2

By this stage, you should have had your first taste of running Prolog programs. The
purpose of the second practical session is to suggest two sets of keyboard exercises
which will help you get familiar with the way Prolog works. The first set has to do
with matching , the second with proof search.

First of all, start up your Prolog interpreter. That is, get a screen displaying the usual
‘I'm ready to start’ prompt, which probably looks something like:

?2-

Now verify your answers to Exercise 1.1, the matching examples. You don’'t need
to consult any knowledge bases, simply ask Prolog directly whether it is possible
to unify the terms by using the built-in =/ 2 predicate. For example, to test whether
f ood(bread, X) andf ood(Y, sausage) unify, just typein

food(bread, X) = food(Y, sausage).

and hit return.

You should a'so look at what happens when Prolog gets locked into an attempt to match
termsthat can’'t be matched because it doesn’t carry out an occurs check. For example,
see what happens when you give it the following query:

g(xX YY) = V.

Ahyes! Thisisthe perfect timeto make sure you know how to abort a program that is
running wild!

Well, once you've figured that out, it’s time to move onto something new. Thereis an-
other important built-in Prolog predicate for answering queries about matching, namely
\=/ 2 (that is. a 2-place predicate \ =). Roughly speaking, this works in the opposite
way to the =/ 2 predicate: it succeeds when its two arguments do not unify. For exam-
ple, the terms a and b do not unify, which explains the following dialogue:

a\=b

yes
Make sure you understand the way \ =/ 2 predicate works by trying it out on (at least)
the following examples. But do this actively, not passively. That is, after you type in
an example, pause, and try to work out for yourself what Prolog is going to respond.

Only then hit return to seeif you are right.

l. a\=a
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2.7a \=a

3. A\=a

4. f(a) \= a

5. f(a) \= A

6. f(A) \= f(a)

7. g(a,B,c) \= g(Ab,C
8. g(a, b,c) \= g(A QO
9. f(X) \= X

Thusthe\ =/ 2 predicate is (essentially) the negation of the =/ 2 predicate: a query in-
volving one of these predicates will be satisfied when the corresponding query involv-
ing the other is not, and vice versa (this is the first example we have seen of a Prolog
mechanism for handling negation). But note that word ‘essentially’. Things don’'t work
out quite that way, as you will realise if you think about the trickier examples you've
just tried out...

It's time to move on and introduce one of the most helpful tools in Prolog: trace.
Thisis an built-in Prolog predicate that changes the way Prolog runs: it forces Prolog
to evaluate queries one step at atime, indicating what it is doing at each step. Prolog
waits for you to press return before it moves to the next step, so that you can see exactly
what is going on. It was really designed to be used as a debugging tool, but it's also
really helpful when you're learning Prolog: stepping through programsusing t r ace is
an excellent way of learning how Prolog proof search works.

Let'slook at an example. In the lecture, we looked at the proof search involved when
we made the query k( X) to the following knowledge base:

f(a).
f(b).

9(a).
9(b).

h(b) .
k(X) - £(X),9(X),h(X).
Suppose this knowledge base isin afile pr oof . pl . Wefirst consult it:

1 ?- [proof].
% proof conpiled 0.00 sec, 1,524 bytes

yes

We then type ‘trace.’” and hit return:
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2 ?- trace.
Yes

Prolog is now in trace mode, and will evaluate all queries step by step. For example,
if we pose the query k( X), and then hit return every time Prolog comes back with a2,
we obtain (something like) the following:

[trace] 2 ?- k(X).
Call: (6) k(_G348) 2
Call: (7) f(_&348) 2
Exit: (7) f(a) ?
Call: (7) g(a)
Exit: (7) g(a)
Call: (7) h(a)
Fail: (7) h(a)
Fail: (7) g(a) ?
Redo: (7) f(_G348) 2
Exit: (7) f(b) ?
Call: (7) g(b)
Exit: (7) g(b)
Call: (7) h(b)
Exit: (7) h(b)
Exit: (6) k(b)

NN NN

NN ) ) N

X=Db
Yes

Study this carefully. That is, try doing the same thing yourself, and try to relate this
output to the discussion of the example in the text. To get you started, we'll remark that
the third line is where the variable in the query is (wrongly) instantiated to a, and that
the line marked r edo iswhen Prolog realizes it's taken the wrong path, and backtracks
to instantiate the variable to b.

While learning Prolog, use trace, and use it heavily. It's agreat way to learn.

Oh yes: you also need to know how to turn trace off. Simply type ‘notrace. and hit
return:

notrace.
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Recursion

This lecture has two main goals:

1. Tointroduce recursive definitions in Prolog.

2. To show that there can be mismatches between the declarative meaning of a
Prolog program, and its procedural meaning.

3.1 Recursive definitions

Predicates can be defined recursively. Roughly speaking, a predicate is recursively
defined if one or more rules in its definition refers to itself.

3.1.1 Example 1: Eating

Consider the following knowledge base:

is_digesting(X V) :- just_ate(XVY)
is_digesting(X)
just _ate(X 2),
is_digesting(ZY)

just_ate(nosquito, bl ood(john)).
just _ate(frog, nosquito).
just _ate(stork, frog).

At first glance this seems pretty ordinary: it's just a knowledge base containing two
facts and two rules. But the definition of the i s_di gesting/ 2 predicate is recur-
sive. Notethat i s_di gesting is (at least partially) defined in terms of itself, for the
i s_di gesti ng functor occurs on baoth the left and right hand sides of the second rule.
Crucialy, however, there is an ‘escape’ from this circularity. Thisis provided by the
j ust _at e predicate, which occurs in both the first and second rules. (Significantly,
the right hand side of the first rule makes no mention of i s_di gesting.) Let's how
consider both the declarative and procedural meanings of thisrule.

The word declarative is used to talk about the logical meaning of Prolog knowledge
bases. That is, the declarative meaning of a Prolog knowledge base is ssmply ‘what
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it says', or ‘what it means, if we read it as a collection of logical statements’. And
the declarative meaning of this recursive definition is fairly straightforward. The first
clause (the ‘escape’ clause, the one that is not recursive, or as we shall usualy call it,
the base clause), simply saysthat: if X hasjust eaten v, then X is now digesting Y. This
is obviously asensible definition.

So what about the second clause, the recursive clause? This says that: if X has just
eaten z and z is digesting Y, then X is digesting Y, too. Again, this is obviously a
sensible definition.

So now we know what this recursive definition says, but what happens when we pose
a query that actually needs to use this definition? That is, what does this definition
actually do? To use the normal Prolog terminology, what isits procedural meaning?

Thisis also reasonably straightforward. The baseruleislike al the earlier ruleswe've
seen. That is, if we ask whether X isdigesting Y, Prolog can use this rule to ask instead
the question: has X just eaten Y?

What about the recursive clause? This gives Prolog another strategy for determining
whether X is digesting VY: it can try to find some z such that X has just eaten z, and
Z isdigesting Y. That is, this rule lets Prolog break the task apart into two subtasks.
Hopefully, doing so will eventually lead to simple problems which can be solved by
simply looking up the answers in the knowledge base. The following picture sums up
the situation:

just_ate just_ate is digesting
x_ Ny x_ TzT Ty
is digesting is digesting

Let’s see how thisworks. If we pose the query:

?- is_digesting(stork, nosquito).
then Prolog goes to work as follows. Firgt, it tries to make use of the first rule listed
concerning i s_di gest i ng; that is, the base rule. Thistells it that X is digesting Vv if
X just ate Y, By unifying X with st or k and Y with nosqui t o it obtains the following
goal:

just _ate(stork, mosquito).
But the knowledge base doesn’t contain the information that the stork just ate the
mosquito, so this attempt fails. So Prolog next tries to make use of the second rule.

By unifying X with st or k and Y with nosqui t o it obtains the following goals:

just _ate(stork, 2),
i s_digesting(Z nosquito).

That is, to show i s_di gesti ng(stork, mosquitp)}, Prolog needsto find avalue for
z such that, firstly,

just _ate(stork, 2).
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and secondly,
i s_digesting(Z nosquito).

And there issuch avalue for z, namely f r og. Itisimmediate that
just _ate(stork, frog).

will succeed, for this fact islisted in the knowledge base. And deducing
i s_digesting(frog, nosquito).

isalmost assimple, for thefirst clause of i s_di gesti ng/ 2 reduces thisgoal to deduc-
ing

just _ate(frog, nosquito).

and thisisafact listed in the knowledge base.

WEell, that's our first example of arecursive rule definition. We're going to learn a lot
more about them in the next few weeks, but one very practical remark should be made
right away. Hopefully it's clear that when you write a recursive predicate, it should
aways have at least two clauses. a base clause (the clause that stops the recursion
at some point), and one that contains the recursion. If you don’t do this, Prolog can
spira off into an unending sequence of useless computations. For example, here’'s an
extremely simple example of arecursive rule definition:

p - p

That’sit. Nothing else. It's beautiful inits simplicity. And from a declarative perspec-
tiveit's an extremely sensible (if rather boring) definition: it says ‘if property p holds,
then property p holds'. You can’t argue with that.

But from aprocedural perspective, thisisawildly dangerous rule. In fact, we have here
the ultimate in dangerous recursive rules. exactly the same thing on both sides, and no
base clause to let us escape. For consider what happens when we pose the following

query:
?- p.

Prolog asksitself: how do | prove p? And it realizes, ‘Hey, I've got arule for that! To
prove p | just need to prove p!’. So it asks itself (again): how do | prove p? And it
realizes, ‘Hey, I've got arule for that! To prove p | just need to prove p!’. So it asks
itself (yet again): how do | prove p? And it realizes, ‘Hey, I've got arule for that! To
prove p | just need to prove p!” So then it asks itself (for the fourth time): how do |
prove p? And it realizes that...

If you make this query, Prolog won’t answer you: it will head off, looping desperately
away in an unending search. That is, it won’t terminate, and you'll have to interrupt it.
Of course, if you uset r ace, you can step through one step at atime, until you get sick
of watching Prolog loop.
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3.1.2 Example 2: Descendant

Now that we know something about what recursion in Prolog involves, it istime to ask
why it is so important. Actually, thisis a question that can be answered on a number
of levels, but for now, let’'s keep things fairly practical. So: when it comes to writing
useful Prolog programs, are recursive definitions really so important? And if so, why?

Let’s consider an example. Suppose we have a knowledge base recording facts about
the child relation:

child(charlotte, caroline).
child(caroline,laura).

That is, Carolineisachild of Charlotte, and Lauraisachild of Caroline. Now suppose
we wished to define the descendant relation; that is, the relation of being a child of, or
achild of achild of, or achild of achild of achild of, or.... Here's afirst attempt to do
this. We could add the following two non-recursive rules to the knowledge base:

descend(X,Y) :- child(XY).

descend(X,Y) :- child(X 2),
child(zY).

Now, fairly obviously these definitions work up to a point, but they are clearly ex-
tremely limited: they only define the concept of descendant-of for two generations or
less. That's ok for the above knowledge base, but suppose we get some more informa-
tion about the child-of relation and we expand our list of child-of facts to this:

child(martha, charlotte).
child(charlotte, caroline).
child(caroline,laura).
chil d(l aura, rose).

Now our two rules are inadequate. For example, if we pose the queries
?- descend(martha, |l aura).

or
?- descend(charlotte, rose).

we get the answer ‘No!’, which is not what we want. Sure, we could ‘fix’ this by
adding the following two rules:

descend(X,Y) :- child(X 2z 1),
child(z_1,2z_2),
child(z_2,Y).

descend(X,Y) :- child(X 2Z_1),
child(z_1,2z_2),
child(z 2,7 3),
child(Zz_3,Y).



3.1. Recursive definitions 41

But, let's face it, thisis clumsy and hard to read. Moreover, if we add further child-of
facts, we could easily find ourselves having to add more and more rules as our list of
child-of facts grow, ruleslike:

descend(X,Y) :- child(X Z_1),
child(z 1,z_2),
child(z_ 2,z_3),

child(z 17,7 18).
child(Z_18,Z_19).
child(Z_19,Y).

Thisis not aparticularly pleasant (or sensible) way to go!

But we don’'t need to do this at all. We can avoid having to use ever longer rules
entirely. The following recursive rule fixes everything exactly the way we want:

descend(X,Y) :- child(XY).

descend(X,Y) :- child(X 2),
descend(Z,Y).

What does this say? The declarative meaning of the base clauseis: if Yisachild of v,
then v is a descendant of X. Obviously sensible.

So what about the recursive clause? It's declarative meaning is. if z isachild of X, and
Y isadescendant of z, then Y is a descendant of X. Again, thisis obviously true.

So let’s now ook at the procedural meaning of this recursive predicate, by stepping
through an example. What happens when we pose the query:

descend(martha, | aura)

Prolog first tries the first rule. The variable X in the head of the rule is unified with
mar t ha and Y with laura and the next goal Prolog triesto proveis

child(martha, | aura)

Thisattempt fails, however, since the knowledge base neither containsthefact chi | d(mart ha, | aur a)
nor any rules that would allow to infer it. So Prolog backtracks and looks for an al-

ternative way of proving descend(nartha, | aura). It finds the second rule in the

knowledge base and now has the following subgoals:

child(martha, 633),
descend(_633, | aura).

Prolog takes the first subgoal and tries to match it onto something in the knowledge
base. It findsthe fact chi | d(mart ha, char | ot te) and the Variable 633 gets instan-
tiated tochar | ot t e. Now that thefirst subgoal is satisfied, Prolog moves to the second
subgoal. It hasto prove
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descend(charlotte, | aura)

Thisisthe recursive call of the predicate descend/ 2. Asbefore, Prolog starts with the
first rule, but fails, because the goal

child(charlotte, | aura)

cannot be proved. Backtracking, Prolog finds that there is a second possibility to be
checked for descend(charlotte, | aura), viz. the second rule, which again gives
Prolog two new subgoals:

child(charlotte, 1785),
descend(_1785, 1 aura).

The first subgoal can be unified with the fact chi | d(charlotte, carol i ne) of the
knowledge base, so that the variable 1785 isinstantiated with car ol i ne. Next Prolog
triesto prove

descend(caroline, | aura).

This is the second recursive call of predicate descend/ 2. As before, it tries the first
rule first, obtaining the following new goal:

child(caroline,laura)

This time Prolog succeeds, since chi | d(carol i ne, | aura) isafact in the database.
Prolog has found a proof for the goal descend(carol i ne, | aura) (the second recur-
sive cal). But this means that chi | d(charl otte, | aura) (the first recursive cal) is
aso true, which means that our original query descend(nartha, | aura) is true as
well.

Here is the search tree for the query descend(mart ha, | aura). Make sure that you
understand how it relates to the discussion in the text; i.e. how Prolog traverses this
search tree when trying to prove this query.
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It should be obvious from this example that no matter how many generations of chil-
dren we add, we will always be able to work out the descendant relation. That is, the
recursive definition is both general and compact: it contains all the information in the
previous rules, and much more besides. In particular, the previous lists of non-recursive
rules only defined the descendant concept up to some fixed number of generations: we
would need to write down infinitely many non-recursive rules if we wanted to capture
this concept fully, and of course that’s impossible. But, in effect, that’s what the recur-
sive rule does for us: it bundles up all thisinformation into just three lines of code.

Recursive rules are really important. They enable to pack an enormous amount of
information into a compact form and to define predicates in a natural way. Most of the
work you will do as a Prolog programmer will involve writing recursive rules.

3.1.3 Example 3: Successor

In the previous lectures we remarked that building structure through matching is a key
ideain Prolog programming. Now that we know about recursion, we can give more
interesting illustrations of this.

Nowadays, when human beings write numerals, they usually use decimal notation (O,
1,23 4,5/6,7, 8,9, 10, 11, 12, and so on) but as you probably know, there are
many other notations. For example, because computer hardware is generally based
on digital circuits, computers usually use binary notation to represent numerals (0, 1,
10, 11, 100, 101, 110, 111, 1000, and so on), for the O can be implemented as as
switch being off, the 1 as a switch being on. Other cultures use different systems. For
example, the ancient Babylonians used a base 64 system, while the ancient Romans
used a rather ad-hoc system (I, I1, I11, 1V, V, VI, VII, VIII, IX, X). This last example
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shows that notational issues can beimportant. If you don't believe this, try figuring out
a systematic way of doing long-division in Roman notation. Asyou'll discover, it'sa
frustrating task. In fact, the Romans had a group of professionals (analogs of modern
accountants) who specialized in this.

WEell, here's yet another way of writing numerals, which is sometimes used in mathe-
matical logic. It makes use of just four symbols: 0, succ, and theleft and right brackets.
This style of numeral is defined by the following inductive definition:

1. Oisanumerdl.

2. If Xiisanumeral, then so is succ(X).

As s probably clear, succ can be read as short for successor. That is, succ(X) repre-
sents the number obtained by adding one to the number represented by X. So this is
avery simple notation: it simply says that O is a numeral, and that all other numerals
are built by stacking succ symbols in front. (In fact, it's used in mathematical logic
because of this simplicity. Although it wouldn’t be pleasant to do household accounts
in this notation, it is avery easy notation to prove things about.) Now, by this stage it
should be clear that we can turn this definition into a Prolog program. The following
knowledge base does this:

nuner al (0).

nuneral (succ(X)) :- numeral (X).
So if we pose queries like

nuner al (succ(succ(succ(0)))).

we get the answer ‘yes'. But we can do some more interesting things. Consider what
happens when we pose the following query:

numer al ( X) .

That is, we're saying ‘ Ok, show me some numerals’. Then we can have the following
dialogue with Prolog:

X=0;

X = succ(0) ;

X = succ(succ(0))

X = succ(succ(succ(0)))

X = succ(succ(succ(succ(0))))

X = succ(succ(succ(succ(succ(0)))))
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X = succ(succ(succ(succ(succ(succ(0))))))

X = succ(succ(succ(succ(succ(succ(succ(0)))))))

X = succ(succ(succ(succ(succ(succ(succ(succ(0))))))))

X = succ(succ(succ(succ(succ(succ(succ(succ(succ(0)))))))))

X = succ(succ(succ(succ(succ(succ(succ(succ(succ(succ(0))))))))))
yes

Yes, Prologiscounting: but what'sreally important ishow it’s doing this. Quite simply,
it's backtracking through the recursive definition, and actually building numerals using
matching. Thisis an instructive example, and it is important that you understand it.
The best way to do so isto sit down and try it out, with t r ace turned on.

Building and binding. Recursion, matching, and proof search. These are ideas that lie
at the heart of Prolog programming. Whenever we have to generate or analyze recur-
sively structured objects (such as these numerals) the interplay of these ideas makes
Prolog a powerful tool. For example, in the next lecture we introduce lists, an ex-
tremely important recursive data structure, and we will see that Prolog is a natural list
processing language. Many applications (computational linguisticsisaprime example)
make heavy use of recursively structured objects, such as trees and feature structures.
So it’s not particularly surprising that Prolog has proved useful in such applications.

3.1.4 Example 3: Addition

As afinal example, let’'s see whether we can use the representation of numerals that
we introduced in the previous section for doing ssimple arithmetic. Let's try to define
addition. That is, we want to define a predicate add/ 3 which when given two numer-
as as the first and second argument returns the result of adding them up as its third
argument. E.g.

?- add(succ(succ(0)), succ(succ(0)), succ(succ(succ(succ(0))))).
yes

?- add(succ(succ(0)), succ(0),YVY).

Y = succ(succ(succ(0)))

There are two things which are important to notice:

1. Whenever the first argument is 0, the third argument has to be the same as the
second argument:

?- add(0, succ(succ(0)),YV).
Y = succ(succ(0))

?- add(0,0,YV).

Y=0

Thisisthe case that we want to use for the base clause.
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2. Assumethat wewant to add the two numerals Xand Y (e.g. succ(succ(succ(0)))
and succ(succ(0))) and that Xisnot 0. Now, if X isthe numeral that has one
succ functor less than X (i.e. succ(succ(0)) in our example) and if we know
theresult —let'scall it z—of adding X and Y (hamely succ(succ(succ(succ(0))))),
then it is very easy to compute the result of adding X and Y: we just have to add
one succ-functor to z. Thisiswhat we want to express with the recursive clause.

Hereis the predicate definition that expresses exactly what we just said:

add(0,YV,Y).
add(succ(X), Y, succ(2))
add( X Y, 2).

So, what happens, if we give Prolog this predicate definition and then ask:
add(succ(succ(succ(0))), succ(succ(0)), R

Let’s go through the way Prolog processes this query step by step. The trace and the
search tree are given below.

The first argument is not 0 which means that only the second clause for add matches.
This leads to arecursive call of add. The outermost succ functor is stripped off the
first argument of the origina query, and the result becomes the first argument of the
recursive query. The second argument is just passed on to the recursive query, and the
third argument of the recursive query is a variable, the internal variable G548 in the
trace given below. G548 is not instantiated, yet. However, it is related to R (which
is the variable that we had as third argument in the original query), because R was
instantiated to succ(_G648) , when the query was matched to the head of the second
clause. But that means that Ris not a completely uninstantiated variable anymore. It is
now a complex term, that has a (uninstantiated) variable as its argument.

The next two steps are essentially the same. With every step the first argument be-
comes one level smaller. The trace and the search tree show this nicely. At the
same time one succ functor is added to R with every step, but always leaving the
argument of the innermost variable uninstantiated. After the first recursive call R is
succ(_G648), in the second recursive call G648 is instantiated with succ(_G550)
so that Rissucc(succ(_G850), in the third recursive call G550 is instantiated with
succ(_G652) and Rtherefore becomes succ(succ(succ(_G652))) . The search tree
shows this step by step instantiation.

At some point al succ functors have been stripped off the first argument and we have
reached the base clause. Here, the third argument is equated with the second argument,
so that "the hole" in the complex term Risfinally filled.

Thisisatrace for the query add( succ(succ(succ(0))), succ(succ(0)), R):
Call: (6) add(succ(succ(succ(0))), succ(succ(0)), R
Call: (7) add(succ(succ(0)), succ(succ(0)), _G648)

Call: (8) add(succ(0), succ(succ(0)), _G650)
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Call: (9) add(0, succ(succ(0)), _G652)

Exit: (9) add(0, succ(succ(0)), succ(succ(0)))

Exit: (8) add(succ(0), succ(succ(0)), succ(succ(succ(0))))

Exit: (7) add(succ(succ(0)), succ(succ(0)), succ(succ(succ(succ(0)))))

Exit: (6) add(succ(succ(succ(0))), succ(succ(0)), succ(succ(succ(succ(succ(0))’

And here is the search tree for this query:

< add(succ(succ(succ(0))), succ(succ(0)), R ——————

R = succ(_G648)
A

Qd(_ §,uc,c(--s-uc~c‘("65 ), succ(succ(0)), _G648) ——>

v
_ (648 = succ(_G650)
A

@l(suee-(-ﬂ)“f s ucc(succ(0)), _GB50)

v
_ G650 = succ(_G652)
A

add{-0;- S"Géc(succ(O)), _(652)

v
652 = succ(succ(0))

©)

3.2 Clause ordering, goal ordering, and termination

Prolog was the first reasonably successful attempt to make a logic programming lan-
guage. Underlying logic programming is a simple (and seductive) vision: the task of
the programmer is simply to describe problems. The programmer should write down
(in the language of logic) a declarative specification (that is. a knowledge base), which
describes the situation of interest. The programmer shouldn’t have to tell the computer
what to do. To get information, he or she simply asks the questions. It's up to the logic
programming system to figure out how to get the answer.

WEell, that’s the idea, and it should be clear that Prolog has taken some interesting steps
in this direction. But Prolog is not, repeat not, a full logic programming language.
If you only think about the declarative meaning of a Prolog program, you are in for
avery tough time. Aswe learned in the previous lecture, Prolog has a very specific
way of working out the answer to queries: it searches the knowledge base from top to
bottom, clauses from left to right, and uses backtracking to recover from bad choices.
These procedural aspects have an important influence on what actually happens when
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you make a query. We have already seen a dramatic example of a mismatch between
procedural and declarative meaning of a knowledge base (remember the p: - p pro-
gram?), and as we shall now seeg, it is easy to define knowledge bases with the same
declarative meaning, but very different procedural meanings.

Recall our earlier descendant program (let’s call it descend1. pl ):

child(martha, charlotte).
child(charlotte, caroline).
child(caroline,laura).
chil d(l aura, rose).

descend(X,Y) :- child(XY).

descend(X,Y) :- child(X 2),
descend(Z, V).

WEe' Il make two changes to it, and call the result descend2. pl :

child(martha, charlotte).
child(charlotte, caroline).
child(caroline,laura).
chil d(l aura, rose).

descend(X,Y) :- descend(ZY),
child(X 2).

descend(X,Y) :- child(XY).

From a declarative perspective, what we have done is very simple: we have merely
reversed the order of the two rules, and reversed the order of the two goals in the
recursive clause. So, viewed as a purely logical definition, nothing has changed. We
have not changed the declarative meaning of the program.

But the procedural meaning has changed dramatically. For example, if you pose the
query

descend(mart ha, rose).
you will get an error message (‘out of local stack’, or something similar). Prolog is
looping. Why? Well, to satisfy the query descend(mart ha, rose). Prolog uses the
first rule. This means that its next goa will be to satisfy the query

descend( W, r ose)

for some new variable Wt. But to satisfy this new goal, Prolog again has to use the first
rule, and this means that its next goal is going to be

descend( W2, r ose)
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for some new variable 2. And of course, thisin turn means that its next goal is going
to be descend( W8, rose) and then descend(W, rose), and so on.

In short, descend1. pl and descend2. pl are Prolog knowledge bases with the same
declarative meaning but different procedural meanings. from apurely logical perspec-
tive they areidentical, but they behave very differently.

Let's look at another example. Recall out earlier successor program (let’'s call it
nurer al 1. pl ):

nuneral (0).
nuner al (succ(X)) :- numeral (X).

Let’'s simply swap the order of the two clauses, and call the result nuner al 2. pl :

nuneral (succ(X)) :- numeral (X).
nuneral (0).

Clearly the declarative, or logical, content of this program is exactly the same as the
earlier version. But what about its behavior?

Ok, if we pose a query about specific numerals, nurrer al 2. pl will terminate with the
answer we expect. For example, if we ask:

nuner al (succ(succ(succ(0)))).

we will get the answer ‘yes'. But if we try to generate numerals, that is, if we give it
the query

nuner al ( X) .

the program won't halt. Make sure you understand why not. Once again, we have two
knowledge bases with the same declarative meaning but different procedural meanings.

Because the declarative and procedural meanings of a Prolog program can differ, when
writing Prolog programs you need to bear both aspects in mind. Often you can get the
overall idea (‘the big picture’) of how to write the program by thinking declaratively,
that is, by thinking simply in terms of describing the problem accurately. But then you
need to think about how Prolog will actually evaluate queries. Are the rule orderings
sensible? How will the program actually run? Learning to flip back and forth between
procedural and declarative questions is an important part of learning to program in
Prolog.

3.3 Exercises

Exercise 3.1 Do you know these wooden Russian dolls, where smaller ones are con-
tained in bigger ones? Here is schematic picture of such dolls.
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katarina

olga
natsha

irina

Define a predicate i n/ 2, that tells us which doll is (directly or indirectly) contained
in which other doll. E.g. the query i n(kat ari na, nat asha) should evaluate to true,
whilein(ol ga, katarina) should fail.

Exercise 3.2 Defineapredicate gr eat er _t han/ 2 that takes two numeralsin the no-
tation that we introduced in this lecture (i.e. 0, succ(0), succ(succ(0)) ...) asarguments
and decides whether the first one is greater than the second one. E.g:

?- greater_than(succ(succ(succ(0))),succ(0)).

yes

?- greater_than(succ(succ(0)), succ(succ(succ(0)))).
no

Exercise 3.3 We have the following knowledge base:

di rect Trai n(forbach, saar br uecken).
di rect Trai n(freym ng, f or bach) .

di rect Trai n(f ahl quenont, st Avol d) .

di rect Trai n(st Avol d, f or bach) .

di rect Trai n(saar bruecken, dudwei | er) .
di rect Trai n(net z, f ahl quenont) .

di rect Trai n( nancy, net z) .

That is, this knowledge base holds facts about townsit is possible to travel between by
taking a direct train. But of course, we can travel further by ‘chaining together’ direct
train journeys. Write a recursive predicate t r avel Bet ween/ 2 that tells us when we
can travel by train between two towns. For example, when given the query

travel Bet ween( nancy, saar br uecken).
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it should reply ‘yes'.

Itis, furthermore, plausible to assume that whenever it is possible to take a direct train
from Ato B, it is also possible to take a direct train from B to A. Can you encode this
in Prolog? You program should e.g. answer ‘yes' to the following query:

travel Bet ween( saar br uecken, nancy) .

Do you see any problems you program may run into?

3.4 Practical Session 3

By now, you should feel more at home with writing and runnning basic Prolog pro-
grams. The purpose of Practical Session 3 is twofold. First we suggest a series of
keyboard exercises, involving t r ace, which will help you get familiar with recursive
definitions in Prolog. We then give a number of programming problems for you to
solve.

First the keyboard exercises. Asrecursive programming is so fundamental to Prolog, it
isimportant that you have afirm grasp of what it involves. In particular, it isimportant
that you understand the process of variable instantiation when recursive definitions
are used, and that you understand why both the order of the clauses in a recursive
definition, and the order of goalsin rules, can make the difference between aknowledge
base that is useful and one that does not work at all. So:

1. Loaddescendl. pl , turnont r ace, and posethe query descend(mart ha, | aur a) .
Thisisthe query that was discussed in the notes. Step through the trace, and re-
late what you see on the screen to the discussion in the text.

2. Still with trace on, pose the query descend(nart ha, rose) and count how
many steps it takes Prolog to work out the answer (that is, how many times
do you have to hit the return key). Now turn trace off and pose the query
descend( X, Y) . How many answers are there?

3. Load descend2. pl . This, remember, is the variant of descendl. pl in which
the order of both clauses is switched, and in addition, the order of the two goals
in the recursive goals is switched too. Because of this, even for such smple
queries as descend( nart ha, | aur a), Prolog will not terminate. Step through
an example, using t r ace, to confirm this.

4, But wait! There aretwo more variants of descendi. pl that we have not consid-
ered. For a start, we could have written the recursive clause as follows:

descend(X,Y) :- child(XY).

descend( X, Y) :- descend(ZY),
child(X 2).

Let us call this variant descend3. pl . And one further possibility remains. we
could have written the recursive definition as follows:
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descend(X,Y) :- child(X 2)
descend(Z,Y).

descend(X,Y) :- child(XY)

Let uscall thisvariant descend4. pl .

Create (or download from theinternet) thefilesdescend3. pl anddescend4. pl .
How do they compareto descendl. pl and descend2. pl ? Can they handle the
guery descend(mart ha, rose) ? Can they handle queries involving variables?
How many steps do they need to find an answer? Are they slower or faster than
descendl. pl ?

Draw the search trees for descend2. pl , descend3. pl and descend4. pl (the
one for descendl. pl was given in the text) and compare them. Make sure you
understand why the programs behave the way they do.

5. Finaly, load the filenumer al 1. pl . Turn ontrace, and make sure that you un-
derstand how Prolog handles both specific queries (such asnuner al (succ(succ(0))))
and queries involving variables (such as numer al ( X)).

Now for some programming. We are now at the end of the third session, which means
we have covered about a quarter of the material we are going to. Moreover, the material
we have covered so far is the basis for everything that follows, so it is vital that you
understand it properly. And the only way to really get to grips with Prolog is to write
programs (lots of them!), run them, fix them when they don’t work, and then write some
more. Learning a programming language is alot like learning aforeign language: you
have to get out there and actually use it if you want to make genuine progress.

So here are three exercises for you to try your hand on.

1. We are given the following knowledge base of travel information:

byCar (auckl and, hami | t on) .
byCar (ham | t on, r agl an)
byCar (val nont , saar br uecken)
byCar (val nont, net z) .

byTrai n(metz, frankfurt).

byTr ai n( saar bruecken, frankfurt).
byTrai n(metz, paris).

byTr ai n( saar bruecken, pari s)

byPl ane(frankfurt, bangkok) .
byPl ane(frankfurt, si ngapore).
byPl ane(pari s, | osAngel es) .
byPl ane( bangkok, auckl and) .
byPl ane(| osAngel es, auckl and) .

Write a predicate t ravel / 2 which determines whether it is possible to travel
from one place to another by ‘chaining together’ car, train, and plane journeys.
For example, your program should answer ‘yes tothequery t r avel (val nont, ragl an) .
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2. So, by using t ravel / 2 to query the above database, you can find out that it is
possible to go from Vamont to Raglan. In case you are planning atravel, that's
aready very good information, but what you would then really want to know is
how exactly to get from Valmont to Raglan. Write apredicate t r avel / 3 which
tells you how to travel from one place to another. The program should, e.g., an-
swer ‘yes tothequery travel (val nont, pari s, go(val nont, met z, go( met z, pari s)))
and X = go(val nont, netz, go(netz, pari s, go(paris, | osAngel es))) tothe
query travel (val nont, | osAngel es, X) .

3. Extend the predicatet ravel / 3 so that it not only tells you viawhich other cities
you have to go to get from one place to another, but also how, i.e. by car, train,
or plane, you get from one city to the next.
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Lists

This lecture has two main goals:

1. To introduce lists, an important recursive data structure widely used in compu-
tational linguistics.

2. To define member, a fundamental Prolog tool for manipulating lists, and to in-
troduce the idea of recursing down lists.

4.1 Lists

Asitsname suggests, alistisjust aplain old list of items. Slightly more precisely, itis
afinite sequence of elements. Here are some examples of listsin Prolog:

[ma, vincent, jules, yol anda]
[ma, robber(honey bunny), X 2, ma]

[]

[ma, [vincent, jules], [butch, girlfriend(butch)]]

[[], dead(zed), [2, [b, chopper]], [], Z, [2, [b, chopper]]]
We can learn some important things from these examples.

1. We can specify lists in Prolog by enclosing the elements of the list in square
brackets (that is, the symbols|[ and]). The elements are separated by commeas.
For example, our first example [mi a, vincent, jules, yol anda] is alist
with four elements, namely mi a, vi ncent, j ul es, and yol anda. The length of
alist isthe number of elementsit has, so our first exampleisalist of length four.

2. From our second example, [ i a, r obber (honey_bunny), X, 2, mi a] , we learn
that al sorts of Prolog objects can be elements of alist. Thefirst element of this
list ismi a, an atom; the second element isr obber (honey_bunny), a complex
term; the third element is X, avariable; the fourth element is 2, anumber. More-
over, we also learn that the same item may occur more than once in the same
list: for example, the fifth element of this list is i a, which is same as the first
element.
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3. The third example shows that there is a very specia list, the empty list. The
empty list (asits name suggests) isthelist that contains no elements. What isthe
length of the empty list? Zero, of course (for the length of alist is the number of
members it contains, and the empty list contains nothing).

4. Thefourth example teaches us something extremely important: lists can contain
other lists as elements. For example, the second element of

[ma, [vincent, jules], [butch,girlfriend(butch)]

isthelist[ vi ncent, j ul es], and thethird elementis[ but ch, girl friend(butch)]].

In short, lists are examples of recursive data structures: lists can be made out
of lists. What is the length of the fourth list? The answer is. three. If you
thought it was five (or indeed, anything else) you're not thinking about lists in
the right way. The elements of the list are the things between the outermost
square brackets separated by commas. So this list contains three elements: the
first element is mi a, the second element is[vi ncent, jul es], and the third
element is[ butch, girlfriend(butch)].

5. The last example mixes all these ideas together. We have here a list which con-
tains the empty list (in fact, it contains it twice), the complex term dead( zed) ,
two copies of the list [2, [b, chopper]], and the variable z. Note that the
third (and the last) elements are lists which themselves contain lists (namely
[b, chopper]).

Now for a very important point. Any non-empty list can be thought of as consisting
of two parts. the head and the tail. The head is simply the first item in the list; the tail
is everything else. Or more precisely, the tail is the list that remains when we take the
first element away, i.e. the tail of alist isalways alist again. For example, the head of

[ma, vincent, jules, yolanda]
ismi a and thetail is [vincent, jules, yolanda]. Similarly, the head of
[[], dead(zed), [2, [b, chopper]], [], Z, [2, [b, chopper]]]

is[], and the tail is[dead(zed), [2,[b, chopper]],[].,Z[2,[b, chopper]]].
And what are the head and the tail of thelist [ dead(zed)] ? Wéll, the head is the first
element of thelist, which isdead( zed) , and the tail isthe list that remains if we take
the head away, which, in this case, isthe empty list[] .

Note that only non-empty lists have heads and tails. That is, the empty list contains no
internal structure. For Prolog, the empty list [] isaspecial, particularly simple, list.

Prolog has a specia inbuilt operator | which can be used to decompose alist into its
head and tail. It is very important to get to know how to use | , for it is a key tool for
writing Prolog list manipulation programs.

Themost obvious use of | isto extract information from lists. We do thisby using| to-
gether with matching. For example, to get hold of the head and tail of [ ni a, vi ncent,
j ul es, yol anda] we can pose the following query:
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?- [Head| Tail] = [ma, vincent, jules, yolanda].
Head = m a
Tail = [vincent,jules,yol anda]

yes

That is, the head of thelist has become bound to Head and thetail of thelist has become
bound to Tai | . Notethat there is nothing special about Head and Tai | , they are simply
variables. We could just as well have posed the query:

?- [XY] =[ma, vincent, jules, yolanda].
X =ma

Y = [vincent, jul es, yol anda]
yes

As we mentioned above, only non-empty lists have heads and tails. If we try to use |
topull [] apart, Prolog will fail:

2 (XY =[]
no

That is, Prolog treats [ | asaspecial list. Thisobservation is very important. We'll see
why later.

Let's look at some other examples. We can extract the head and tail of the following
list just as we saw above:

?- [X|Y] =[[], dead(zed), [2, [b, chopper]], [], Z].

X =1l

Y = [dead(zed),[2,[b, chopper]],[],_7800]
Z = 7800

yes

That is: the head of the list is bound to X, the tail is bound to Y. (We also get the
information that Prolog has bound z to the internal variable _7800.)

But we can can do alot more with | ; it redly is a very flexible tool. For example,
suppose we wanted to know what the first two elements of the list were, and also the
remainder of the list after the second element. Then we'd pose the following query:

?2- [ XY| W =[[], dead(zed), [2, [b, chopper]], [], Z].

[]
dead( zed)

[[2,[b,chopper]],[],_8327]
8327

N s < X
I

yes
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That is: the head of the list is bound to X, the second element is bound to Y, and the
remainder of the list after the second element is bound to W wis the list that remains
when we take away the first two elements. So, | can not only be used to split alist into
its head and its tail, but we can in fact useit to split alist at any point. Left of the| , we
just have to enumerate how many elements we want to take away from the beginning
of thelist, and right of the| we will then get what remains of the list. In this example,
we also get the information that Prolog has bound z to the internal variable _8327.

Thisis agood time to introduce the anonymous variable. Suppose we were interested
in getting hold of the second and fourth elements of the list:

[[]1, dead(zed), [2, [b, chopper]], []. Z].

Now, we could find out like this;

?- [ XL, X2, X3, X4 | Tail] =[[], dead(zed), [2, [b, chopper]], [1,
X1 =11

X2 = dead(zed)

X3 = [2,[b, chopper]]

X4 =11

Tail = [_8910]

Z = _8910

yes

OK, we have got the information we wanted: the values we are interested in are bound
to the variables X2 and x4. But we've got alot of other information too (namely the
values bound to X1, X3 and Tai | ). And perhaps we're not interested in all this other
stuff. If so, it’s a bit silly having to explicitly introduce variables X1, X3 and Tai | to
deal withit. And in fact, there isasimpler way to obtain only the information we want:
we can pose the following query instead:

?2- [ X_, Y] =1[[], dead(zed), [2, [b, chopper]], [], Z].
X = dead(zed)

Y =[]

Z = 9593

yes

The _ symbol (that is, underscore) is the anonymous variable. We use it when we
need to use a variable, but we're not interested in what Prolog instantiates it to. As
you can see in the above example, Prolog didn’t bother telling us what _ was bound
to. Moreover, note that each occurrence of _ is independent: each is bound to some-
thing different. This couldn’t happen with an ordinary variable of course, but then the
anonymous variable isn't meant to be ordinary. It's ssimply away of telling Prolog to
bind something to a given position, completely independently of any other bindings.

Let's look at one last example. The third element of our working example is a list
(namely [ 2, [b, chopper]]). Suppose we wanted to extract the tail of this internal
list, and that we are not interested in any other information. How could we do this? As
follows:

7].



4.2. Member 59

?- [ 0ZX1 2 =
[[], dead(zed), [2, [b, chopper]], [], Z, [2, [b, chopper]]].

X = [[b, chopper]]
Z = 10087
yes

4.2 Member

It'stimeto look at our first example of a Prolog program for manipulating lists. One of
the most basic things we would like to know is whether something is an element of a
list or not. So let’s write a program that, when given asinputs an arbitrary object X and
alist L, tells us whether or not X belongs to L. The program that does this is usualy
called member, and it is the simplest example of a Prolog program that exploits the
recursive structure of lists. Hereit is:

menber (X, [ X| T]) .
menber (X, [H T]) :- nmenber (X T).

That's all there is to it: one fact (namely menber (X, [ X| T])) and one rule (namely
menmber (X, [H T]) :- member (X T)). But note that the rule is recursive (after all,
the functor menmber occurs in both the rule’s head and tail) and it is this that explains
why such a short program is all that isrequired. Let's take a closer [ook.

We'll start by reading the program declaratively. And read this way, it is obviously
sensible. The first clause (the fact) simply says. an object X is a member of alist if it
isthe head of that list. Note that we used the inbuilt | operator to state this (ssmple but
important) principle about lists.

What about the second clause, the recursive rule? This says. an object X is member of
alistif it isamember of thetail of the list. Again, note that we used the | operator to
state this principle.

Now, clearly this definition makes good declarative sense. But does this program ac-
tually do what it is supposed to do? That is, will it really tell us whether an object X
belongs to alist L? And if so, how exactly does it do this? To answer such questions,
we need to think about its procedural meaning. Let's work our way through a few
examples.

Suppose we posed the following query:
?- menber (yol anda, [ yol anda, trudy, vi ncent, jul es]).
Prolog will immediately answer ‘Yes'. Why? Because it can unify yol anda with

both occurrences of X in the first clause (the fact) in the definition of nenber/ 2, so it
succeeds immediately.

Now consider the following query:

?- menber (vi ncent, [ yol anda, trudy, vi ncent, jul es]).
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Now thefirst rulewon’'t help (vi ncent andyol anda are distinct atoms) so Prolog goes
to the second clause, the recursive rule. Thisgives Prolog anew goal: it now hasto see
if

nmenber (vi ncent, [trudy, vincent,jules]).

Now, once again the first clause won't help, so Prolog goes (again) to the recursive
rule. This givesit anew goal, namely

menber (vi ncent, [vi ncent, jul es]).

Thistime, the first clause does help, and the query succeeds.

So far so good, but we need to ask an important question. What happens when we pose
aquery that fails? For example, what happens if we pose the query

menber (zed, [ yol anda, t rudy, vi ncent, j ul es]).

Now, this should obvioudly fail (after al, zed is not on the list). So how does Prolog
handle this? In particular, how can we be sure that Prolog really will stop, and say no,
instead going into an endless recursive loop?

Let's think this through systematically. Once again, the first clause cannot help, so
Prolog uses the recursive rule, which gives it a new goal

nmenber (zed, [ trudy, vi ncent, jul es]).

Again, thefirst clause doesn’t help, so Prolog reuses the recursive rule and tries to show
that

nmenber (zed, [ vi ncent, jul es]).

Similarly, the first rule doesn’'t help, so Prolog reuses the second rule yet again and
tries the goal

menber (zed, [jul es]).

Again the first clause doesn’t help, so Prolog uses the second rule, which gives it the
goal

menber (zed, [])

And thisiswherethings get interesting. Obviously thefirst clause can’t help here. But
note: the recursive rule can’'t do anything more either. Why not? Simple: the recursive
rule relies on splitting the list into a head and a tail, but as we have already seen, the
empty list can’t be split up in this way. So the recursive rule cannot be applied either,
and Prolog stops searching for more solutions and announces ‘No’. That is, it tells us
that zed does not belong to the list, which is, of course, what it ought to do.
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We could summarize the menber / 2 predicate as follows. It is a recursive predicate,
which systematically searches down the length of thelist for the required item. It does
this by stepwise breaking down the list into smaller lists, and looking at the first item
of each smaller list. This mechanism that drives this search isrecursion, and the reason
that thisrecursion is safe (that is, the reason it does not go on forever) isthat at the end
of the line Prolog has to ask a question about the empty list. The empty list cannot be
broken down into smaller parts, and this allows away out of the recursion.

Well, we've now seen why nenber / 2 works, but in fact it's far more useful than the
previous example might suggest. Up till now we've only been using it to answer yes/no
questions. But we can also pose questions containing variables. For example, we can
have the following dialog with Prolog:

menber ( X, [ yol anda, t rudy, vi ncent, jul es]).

X = yol anda ;
X = trudy ;
X = vincent ;
X = jules ;
no

That is, Prolog hastold us what every member of alistis. Thisisavery common use of
menber / 2. In effect, by using the variable we are saying to Prolog: ‘Quick! Give me
some element of thelist!’. In many applications we need to be able to extract members
of alist, and thisisthe way it istypically done.

One final remark. The way we defined nenber / 2 above is certainly correct, but in one
respect it is alittle messy.

Think about it. The first clause is there to deal with the head of the list. But athough
thetail isirrelevant to the first clause, we named thetail using the variable T. Similarly,
the recursive rule is there to deal with the tail of the list. But athough the head is
irrelevant here, we named it using the variable H. These unnecessary variable names
are distracting: it's better to write predicates in a way that focuses attention on what
is realy important in each clause, and the anonymous variable gives us a nice way of
doing this. That is, we can rewrite nenber / 2 asfollows:

menber (X, [ X _]).
menber (X, [ _| T]) :- menber (X T).

Thisversion is exactly the same, both declaratively and procedurally. But it’s just that
little bit clearer: when you read it, you are forced to concentrate on what is essential.

4.3 Recursing down lists

Member works by recursively working down alist, doing something to the head, and
then recursively doing the same thing to the tail. Recursing down a list (or indeed,
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several lists) in this way is extremely common in Prolog: so common, in fact, that it
is important that you really master the idea. So let’s look at another example of the
technique at work.

When working with lists, we often want to compare one list with another, or to copy
bits of one list into another, or to trandate the contents of one list into another, or
something similar. Here's an example. Let’s suppose we need a predicate a2b/ 2 that
takes two lists as arguments, and succeeds if the first argument is alist of as, and the
second argument is alist of bs of exactly the same length. For example, if we pose the
following query

a2b([a,a,a,a],[b,b,b,b]).

we want Prolog to say ‘yes'. On the other hand, if we pose the query
a2b([a,a,a,a],[b,b,b]).

or the query
a2b([a,c,a,a],[b,b,5, 4]).

we want Prolog to say ‘no’.

When faced with such tasks, often the best way to set about solving them is to start
by thinking about the simplest possible case. Now, when working with lists, ‘thinking
about the simplest case’ often means ‘thinking about the empty list’, and it certainly
means this here. After al: what is the shortest possible list of as? Why, the empty list:
it contains no as at all! And what is the shortest possible list of bs? Again, the empty
list: no bs whatsoever in that! So the most basic information our definition needs to
contain is

azb([].[1)-

This records the obvious fact that the empty list contains exactly as many asasbs. But
although obvious, this fact turns out to play a very important role in our program, as
we shall see.

So far so good: but how do we proceed? Here's the idea: for longer lists, think recur-
sively. So: when should a2b/ 2 decide that two non-empty lists are alist of asand a
list of bs of exactly the same length? Simple: when the head of the first list is an a,
and the head of the second list isab, and a2b/ 2 decides that the two tails are lists of
asand bs of exactly the same length! Thisimmediately gives us the following rule:

az2b([al] Ta],[b] Tb]) :- a2b(Ta, Th).

Thissays: thea2b/ 2 predicate should succeed if itsfirst argument isalist with head a,
its second argument is alist with head b, and a2b/ 2 succeeds on the two tails.

Now, this definition make good sense declaratively. It isasimple and natural recursive
predicate, the base clause dealing with the empty list, the recursive clause dealing with
non-empty lists. But how does it work in practice? That is, what is its procedural
meaning? For example, if we pose the query
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a2b([a,a,a],[b,b,b]).

Prolog will say ‘yes’, which is what we want, by why exactly does this happen?

Let's work the example through. In this query, neither list is empty, so the fact does
not help. Thus Prolog goes on to try the recursive rule. Now, the query does match the
rule (after all, the head of the first list is a and the head of the second in b) so Prolog
now has anew goal, namely

a2b([a,a],[b,Db]).

Once again, the fact does not help with this, but the recursive rule can be used again,
leading to the following goal:

azb([a],[b]).

Yet again the fact does not help, but the recursive rule does, so we get the following
god:

azb([].[1)-

At last we can use the fact: thistells us that, yes, we really do have two lists here that
contain exactly the same number of as and bs (namely, none at all). And because this
goal succeeds, this means that the goal

az2b([a],[b]).

succeeds too. Thisin turn means that the goal
a2b([a,a],[b,b]).

succeeds, and thus that the original goal
a2b([a,a,a],[b,b,b]).

is satisfied.

We could summarize this process as follows. Prolog started with two lists. It peeled
the head off each of them, and checked that they were an a and a b as required. It
then recursively analyzed the tails of both lists. That is, it worked down both tails
simultaneously, checking that at each stage the tails were headed by ana and ab. Why
did the process stop? Because at each recursive step we had to work with shorter lists
(namely the tails of the lists examined at the previous step) and eventually we ended
up with empty lists. At this point, our rather trivial looking fact was able to play a
vital role: it said ‘yes!’. This halted the recursion, and ensured that the original query
succeeded.

It'sis also important to think about what happens with queries that fail. For example,
if we pose the query
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a2b([a,a,a,a],[b,b,b]).

Prolog will correctly say ‘no’. Why? because after carrying out the ‘peel off the head
and recursively examine the tail’ process three times, it will be left with the query

azb([a],[])-
But this goal cannot be satisfied. And if we pose the query
a2b([a,c,a,a],[b,b,5,4]).

after carrying out the ‘ peel off the head and recursively examine the tail’ process once,
Prolog will have the goal

a2b([c,a,a],[b,5,4]).

and again, this cannot be satisfied.

WEell, that’s how a2b/ 2 worksin simple cases, but we haven't exhausted its possibilities
yet. Asalwayswith Prolog, it'sagood ideato investigate what happens when variables
asused asinput. And with a2b/ 2 something interesting happens: it acts asatrandator,
trandating lists of asto lists of bs, and vice versa. For example the query

a2b([a, a, a, a], X).
yields the response
X = [b, b, b, b].

That is, the list of as has been trandated to alist of bs. Similarly, by using a variable
in the first argument position, we can use it to trandlate lists of bsto lists of as:

a2b(X, [b, b, b, b]).
X =[a,a a,al

And of course, we can use variables in both argument positions:
a2b(X V).

Can you work out what happens in this case?

To sum up: a2b/ 2 is an extremely simple example of a program that works by re-
cursing its way down a pair of lists. But don’t be fooled by its simplicity: the kind of
programming it illustrates is fundamental to Prolog. Both its declarative form (a base
clause dealing with the empty list, arecursive clause dealing with non-empty lists) and
the procedural ideait trades on (do something to the heads, and then recursively do the
same thing to the tails) come up again and again in Prolog programming. In fact, in the
course of your Prolog career, you'll find that you'll write what is essentially the a2b/ 2
predicate, or amore complex variant of it, many times over in many different guises.
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4.4 Exercises

Exercise 4.1 How does Prolog respond to the following queries?

1. [a/b,c,d] =[a [b,c, d]].
2. [a,b,c,d =[al[bc, d]].
3. [a,b,c,d]l =[ab,[c,d].
4. [ab,c,d =[ab|[c d]].
5. [ab,c,d =[ab,c,[d]].
6. [a,b,c,d] =T[ab,c|[d]].
7. [a,b,c,d =[ab,cd[]].
8. [a,b,c,d =T[ab,c,d[]].
9.[] = .

10. [1 =11

1L 11 = [_I117.

Exercise 4.2 Suppose we are given a knowledge base with the following facts:

tran(eins, one).
tran(zwei, two).
tran(drei,three).
tran(vier, four).
tran(fuenf, five).
tran(sechs, six).
tran(si eben, seven).
tran(acht, ei ght).
tran(neun, ni ne).

Write apredicate | i sttran(G E) whichtransates alist of German number words to
the corresponding list of English number words. For example:

listtran([eins,neun,zwei], X).
should give:
X = [one, ni ne, two] .

Your program should also work in the other direction. For example, if you give it the
query

listtran(X [one, seven, six, two]).
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it should return:
X = [eins, sieben, sechs, zwei].
Hint: to answer this question, first ask yourself ‘How do | translate the empty list of

number words?’'. That's the base case. For non-empty lists, first translate the head of
the list, then use recursion to trandate the tail.

Exercise 4.3 Wkite a predicate t wi ce( I n, Qut) whose left argument is a list, and
whose right argument is a list consisting of every element in the left list written twice.
For example, the query
twi ce([a, 4, buggl e], X).
should return
X = [a,a,4,4,buggl e, buggle]).
And the query
twice([1,2,1,1],X).
should return
X=10112,21,1,1,1].
Hint: to answer this question, first ask yourself ‘What should happen when the first

argument is the empty list?’. That's the base case. For non-empty lists, think about
what you should do with the head, and use recursion to handle the tail.

Exercise 4.4 Draw the search trees for the following three queries:
?- menber(a,[c,b,a,y]).
?- nmenber(x,[a, b, c]).

?- menber (X, [a, b, c]).

45 Practical Session 4

The purpose of Practical Session 4 isto help you get familiar with the idea of recursing
down lists. We first suggest some traces for you to carry out, and then some program-
ming exercises.

First, systematically carry out a number of traces on a2b/ 2 to make sure you fully
understand how it works. In particular:

1. Trace some examples, not involving variables, that succeed. E.g., trace the query
a2b([a, a, a, al,[b, b, b, b]) and relate the output to the discussion in the text.
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2. Trace some simple examples that fail. Try examples involving lists of different
lengths (such as a2b([ a, a, a, a], [ b, b, b])) and examples involving symbols
other than a and b (such asa2b([a, c,a,a],[b, b, 5,4])).

3. Trace some examplesinvolving variables. For example, try tracing a2b([ a, a, a, a] , X)
and a2b( X, [b, b, b, b]).

4. Make sure you understand what happens when both arguments in the query are
variables. For example, carry out atrace on the query a2b( X, V) .

5. Carry out a series of similar traces involving mermber . That is, carry out traces
involving simple queries that succeed (such as nenber (a, [ 1, 2, a,b])), Sim-
ple queries that fail (such as nenber(z,[1, 2, a, b])), and queries involving
variables (such as nenber (X, [1, 2, a,b])). Inal cases, make sure that you
understand why the recursion halts.

Having done this, try the following.

1. Write a 3-place predicate combi nel which takes three lists as arguments and
combines the elements of the first two listsinto the third as follows:

?- conbinel([a,b,c],[1,2,3],X).
X =1Tla,1,b,2c,3]
?- conbi nel([foo, bar,yip, yup],[glub,glab,glib,glob], Result).

Result = [foo, gl ub, bar, gl ab, yip, glib, yup, gl ob]

2. Now write a 3-place predicate conbi ne2 which takes three lists as arguments
and combines the elements of the first two lists into the third as follows:

?- conbine2([a,b,c],[1,2,3],X).
X =[[a1],[b,2],[c,3]]
?- conbi ne2([foo, bar, yip, yup],[gl ub, gl ab, glib, gl ob], Resul t).

Result = [[foo, glub],[bar,glab],[yip,glib],[yup,glob]]

3. Finally, write a 3-place predicate conbi ne3 which takes three lists as arguments
and combines the elements of the first two lists into the third as follows:

?- conbine3([a,b,c],[1,2,3],X).
X =[join(a,1l),join(b,2),join(c,3)]
?- conbi ne3([foo, bar, yip, yup],[glub,glab,glib,glob], R).

R = [join(foo, glub),join(bar,glab),join(yip,glib),join(yup,glob)]
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All three programs are pretty much the same as a2b/ 2 (though of course they manip-
ulate three lists, not two). That is, al three can be written by recursing down the lists,
doing something to the heads, and then recursively doing the same thing to the tails.
Indeed, once you have written conbi nel, you just need to change the * something’ you
do to the heads to get conbi ne2 and conbi ne3.

Now, you should have a pretty good idea of what the basic pattern of predicates for
processing lists looks like. Here are a couple of list processing exercises that are a bit
more interesting. Hint: you can of course use predicates that we defined earlier, like
e.g. nenber/ 2 inyour predicate definition.

1. Write apredicate mysubset/2 that takes two lists (of constants) as arguments and
checks, whether thefirst list is a subset of the second.

2. Write a predicate mysuperset/2 that takes two lists as arguments and checks,
whether the first list is a superset of the second.



Arithmetic

This lecture has two main goals:

1. Tointroduce Prolog's inbuilt abilities for performing arithmetic, and

2. To apply them to simple list processing problems, using accumulators.

5.1 Arithmetic in Prolog

Prolog provides a number of basic arithmetic tools for manipulating integers (that is,
numbers of the form ...-3, -2, -1, 0, 1, 2, 3, 4...). Most Prolog implementation also
provide tools for handling real numbers (or floating point numbers) such as 1.53 or
6.35 x 10°, but we're not going to discuss these, for they are not particularly useful
for the symbolic processing tasks discussed in this course. Integers, on the other hand,
are useful for various tasks (such as finding the length of alist), so it is important to
understand how to work with them. We'll start by looking at how Prolog handles the
four basic operations of addition, multiplication, subtraction, and division.

Arithmetic examples Prolog Notation
6+2=8 8 is 6+2.
6x2=12 12 is 6*2.
6—-2=4 4 is 6-2.
6-8=-2 -2 is 6-8.
6+-2=3 3is 6/2.
7-2=3 3is 7/2.

listheremainder when 7 isdividedby 2 1 is nod(7,2).

(Note that as we are working with integers, division gives us back an integer answer.
Thus 7+ 2 gives 3 as an answer, leaving areminder of 1.)

Posing the following queries yields the following responses.

?- 8 is 6+2.
yes

?- 12 is 6*2.
yes
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?- -2 1is 6-8.
yes

?- 3 is 6/2.
yes

?- 1is nod(7,2).
yes

More importantly, we can work out the answers to arithmetic questions by using vari-
ables. For example:

?- Xis 6+2.

?- Ris nod(7,2).

R=1
M oreover, we can use arithmetic operations when we define predicates. Here'sasimple
example. Let's define a predicate add_3_and_doubl e2/ whose arguments are both
integers. This predicate takes its first argument, adds three to it, doubles the result,

and returns the number obtained as the second argument. We define this predicate as
follows:

add_3_and_doubl e(X,Y) :- Y is (X+3)*2.
And indeed, this works:

?- add_3_and_doubl e( 1, X).

X =28

?- add_3_and_doubl e( 2, X).

X = 10
One other thing. Prolog understands the usual conventions we use for disambiguating
arithmetical expressions. For example, when we write 3+ 2 x 4 we mean 3+ (2 x 4)
and not (3+ 2) x 4, and Prolog knows this convention:

?- Xis 3+2%4.

X =11
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5.2 A closer look

That’s the basics, but we need to know more. The most important to grasp is this. +,
* -, +and nod do not carry out any arithmetic. In fact, expressions such as 3+2, 3- 2
and 3*2 are simply terms. The functors of these terms are +, - and * respectively,
and the arguments are 3 and 2. Apart from the fact that the functors go between their
arguments (instead of in front of them) these are ordinary Prolog terms, and unless we
do something special, Prolog will not actually do any arithmetic. In particular, if we
pose the query

?- X = 3+2
we don’t get back the answer X=5. Instead we get back

X = 3+2
yes

That is, Prolog has simply bound the variable X to the complex term 3+2. It has not car-
ried out any arithmetic. It has smply done what it usually does: performed unification
Similarly, if we pose the query

?- 342*5 = X
we get the response

X = 3+2*5
yes

Again, Prolog has simply bound the variable X to the complex term 3+2*5. It did
not evaluate this expression to 13. To force Prolog to actually evaluate arithmetic
expressions we have to use

is

just aswedid in our in our earlier examples. In fact, i s does something very special:
it sends a signal to Prolog that says ‘Hey! Don't treat this expression as an ordinary
complex term! Call up your inbuilt arithmetic capabilities and carry out the calcula-
tiong!’

Inshort, i s forces Prolog to act in an unusual way. Normally Prolog is quite happy just
unifying variables to structures: that’s its job, after all. Arithmetic is something extra
that has been bolted on to the basic Prolog engine because it is useful. Unsurprisingly,
there are some restrictions on this extra ability, and we need to know what they are.

For a start, the arithmetic expressions to be evaluated must be on the right hand side of
i s. Inour earlier examples we carefully posed the query

?- Xis 6+2.

X =28
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which isthe right way to do it. If instead we had asked
6+2 is X

we would have got an error message saying i nstanti ati on_error, or something
similar.

Moreover, although we are free to use variables on the right hand side of i s, when
we actually carry out evaluation, the variable must already have been instantiated
to an integer. If the variable is uninstantiated, or if it is instantiated to something
other than an integer, we will get some sort of i nstanti ati on_error message. And
this makes perfect sense. Arithmetic isn't performed using Prolog usual unification
and knowledge base search mechanisms: it’s done by calling up a special ‘black box’
which knows about integer arithmetic. If we hand the black box the wrong kind of
data, naturally its going to complain.

Here's an example. Recall our *add 3 and double it’ predicate.
add_3_and_doubl e(X,Y) :- Y is (X+3)*2.
When we described this predicate, we carefully said that it added 3 to itsfirst argument,
doubled the result, and returned the answer in its second argument. For example,
add_3_and_doubl e(3, X) returns X = 12. We didn’'t say anything about using this
predicate in the reverse direction. For example, we might hope that posing the query
add_3_and_doubl e( X, 12).
would return the answer X=3. But it doesn’t! Instead weget thei nst anti ati on_error

message. Why? Well, when we pose the query this way round, we are asking Prolog
toevaluate 12 is (X+3)*2, whichit can't do as X is not instantiated.

Two final remarks. Aswe've already mentioned, for Prolog 3 + 2 isjust aterm. In
fact, for Prolog, it really istheterm +(3,2). The expression 3 + 2 isjust a user-
friendly notation that’s nicer for us to use. This means that if you really want to, you
can give Prolog queries like

Xis +(3,2)
and Prolog will correctly reply

X =5
Actually, you can even given Prolog the query

is(X +(3,2))

and Prolog will respond

X=5
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This is because, for Prolog, the expression X i s +(3,2) isthetermis(X, +(3,2)).
The expression X is +(3,2) isjust user friendly notation. Underneath, as always,
Prolog isjust working away with terms.

Summing up, arithmetic in Prolog is easy to use. Pretty much all you have to remember
istousei s to force evaluation, that stuff to be evaluated must goes to the right of i s,
and to take care that any variables are correctly instantiated. But thereisadeeper lesson
that isworth reflecting on. By *bolting on’ the extra capability to do arithmetic we have
further widened the distance between the procedural and declarative interpretation of
Prolog processing.

5.3 Arithmetic and lists

Probably the most important use of arithmetic in this course is to tell us useful facts
about data-structures, such as lists. For example, it can be useful to know how long a
list is. We'll give some examples of using lists together with arithmetic capabilities.

How long isalist? Here's arecursive definition.

1. Theempty list has length zero.

2. A non-empty list has length 1 + len(T), where len(T) is the length of its tail.
This definition is practically a Prolog program aready. Here's the code we need:

len([],0).
len([_|TI,N) :- len(T,X), Nis X+1.

This predicate works in the expected way. For example:
?- len([a,b,c,d,e,[a, b],g], X).
X =17

Now, this is quite a good program: it's easy to understand and efficient. But there
is another method of finding the length of alist. We'll now look at this alternative,
because it introduces the idea of accumulators, a standard Prolog technique we will be
seeing lots more of.

If you're used to other programming languages, you're probably used to the idea of
using variables to hold intermediate results. An accumulator is the Prolog analog of
thisidea

Here's how to use an accumulator to calculate the length of alist. We shall define a
predicate accLen3/ which takes the following arguments.

accLen(Li st, Acc, Lengt h)
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HerelLi st isthelist whose length wewant to find, and Lengt h isitslength (an integer).
What about Acc? Thisisavariable wewill use to keep track of intermediate values for
length (so it will also be an integer). Here's what we do. When we call this predicate,
we are going to give Acc an initial value of 0. We then recursively work our way down
the list, adding 1 to Acc each time we find a head element, until we reach the empty
list. When we do reach the empty set, Acc will contain the length of the list. Here'sthe
code:

accLen([_|T],A L) :- Anewis A+l, acclLen(T, Anew, L)
accLen([],A A .

The base case of the definition, unifies the second and third arguments. Why? There
are actually two reasons. The first is because when we reach the end of the list, the
accumulator (the second variable) contains the length of the list. So we give this value
(viaunification) to the length variable (the third variable). The second isthat thistrivial
unification gives a nice way of stopping the recursion when we reach the empty list.
Here's an example trace:

?- acclLen([a, b,c],0,L).
Call: (6) accLen([a, b, c], 0, _(449) ?
Call: (7) _Gb18 is 0+1 ?
Exit: (7) 1is O0+1 ?
Call: (7) accLen([b, c], 1, _(449) 2
Call: (8) _Gb21 is 1+1 7
Exit: (8) 2is 1+1 ?
Call: (8) accLen([c], 2, _(449) ?
Call: (9) _Gh24 is 2+1 ?
Exit: (9) 3is 2+1 ?
Call: (9) accLen([], 3, _449) ?
Exit: (9) accLen([], 3, 3) ?
Exit: (8) acclLen([c], 2, 3) ?
Exit: (7) accLen([b, c], 1, 3) ?
Exit: (6) accLen([a, b, c], 0, 3) ?

As afinal step, we'll define a predicate which calls accLen for us, and gives it the
initial value of O:

| eng(List,Length) :- accLen(List, 0, Length)
So now we can pose queries like this:
leng([a,b,c,d,e,[a b],g],X).

Accumulators are extremely common in Prolog programs. (We'll see another accumu-
lator based program later in this lecture. And many more in the rest of the course.)
But why isthis? In what way is accLen better than | en? After all, it looks more dif-
ficult. The answer isthat accLen istail recursive while | en is not. In tail recursive
programs the result is all calculated once we reached the bottom of the recursion and
just has to be passed up. In recursive programs which are not tail recursive there are
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goals in one level of recursion which have to wait for the answer of alower level of
recursion before they can be evaluated. To understand this, compare the traces for the
queries accLen([a, b, c], 0, L) (see above) and | en([a, b, c],0,L) (given below).
In the first case the result is built while going into the recursion — once the bottom
isreached at acclLen([], 3, _449) the result is there and only has to be passed up.
In the second case the result is built while coming out of the recursion — the result of
len([b,c], _&81),forinstance, isonly computed after the recursive call of | en has
been completed and theresult of | en([c], _&489) isknown.

?- len([a,b,c],L).
Call: (6) len([a, b, c], _418) ?
Call: (7) len([b, c], _&481) ?
Call: (8) len([c], _(486) ?
Call: (9) len([], _(489) 2
Exit: (9) len([], 0) ?
Call: (9) _486 is 0+1 ?
Exit: (9) 1is 0+1 ?
Exit: (8) len([c], 1) ?
Call: (8) _(481 is 1+1 ?
Exit: (8) 2is 1+1 ?
Exit: (7) len([b, c], 2) ?
Call: (7) _418 is 2+1 ?
Exit: (7) 3 is 2+1 ?
Exit: (6) len([a, b, c], 3) ?

5.4 Comparing integers

Some Prolog arithmetic predicates actually do carry out arithmetic al by themselves
(that is, without the assistance of i s). These are the operators that compare integers.

Arithmetic examples Prolog Notation

X<y X <Y.
X<y X =<Y.
X=Yy X ==Y.
X#£Y X==Y.
X>y X >=Y
X>y X>Y

These operators have the obvious meaning:

2 < 4.
yes

2 =< 4.
yes

4 =< 4.
yes
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4=: =4,
yes

4=\ =5,
yes

4=\ =4,
no

4 >= 4,
yes

4 > 2.
yes

Moreover, they force both their right-hand and left-hand arguments to be eval uated:

2 < 4+1.
yes

2+1 < 4.
yes

2+1 < 3+2.
yes

Notethat =: = really is different from =, as the following examples show:

4=4,
yes

2+2 =4,
no

2+2 =:= 4,
yes

That is, = tries to unify its arguments; it does not force arithmetic evaluation. That's
= ='sjob.

Whenever we use these operators, we have to take care that any variables are instanti-
ated. For example, all the following queries lead to instantiation errors.
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Moreover, variables have to be instantiated to integers. The query
X =3, X<A4

succeeds. But the query
X = b, X < 4.

fails.

OK, let's now look at an example which puts Prolog’s abilities to compare numbers
to work. We're going to define a predicate which takes takes a list of non-negative
integers as its first argument, and returns the maximum integer in the list as its last
argument. Again, we'll use an accumulator. As we work our way down the list, the
accumulator will keep track of the highest integer found so far. If we find a higher
value, the accumulator will be updated to this new value. When we call the program,
we set accumulator to an initial value of 0. Here's the code. Note that there are two
recursive clauses:

accMax([H T], A Max)
H> A
accMax( T, H, Max) .

accMax([H T], A Max)
H =< A
accMax(T, A Max) .
accMax([], A A .
Thefirst clause tests if the head of the list is larger than the largest value found so far.
If it is, we set the accumulator to this new value, and then recursively work through
the tail of the list. The second clause applies when the head is less than or equal to
the accumulator; in this case we recursively work through the tail of the list using the
old accumulator value. Finally, the base clause unifies the second and third arguments;

it gives the highest value we found while going through the list to the last argument.
Here's how it works:

accMax([1,0,5,4],0, _5810)
accMax([ 0,5, 4],1, 5810)
accMax([5,4],1, _5810)
accMax([4],5,_5810)
accMax([],5, _5810)

accMax([],5,5)
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Again, it's nice to define a predicate which calls this, and initializes the accumulator.
But wait: what should we initialize the accumulator too? If you say 0, this means you
are assuming that all the numbersin the list are positive. But suppose we give alist of
negative integers as input. Then we would have

accMax([-11,-2,-7,-4,-12], 0, Max) .

Thisis not what wewant: the biggest number onthelistis-2. Our use of O astheinitial
value of the accumulator has ruined everything, because it’s bigger than any number
on thelist.

There's an easy way around this. since our input list will always be a list of integers,
simply initialize the accumulator to the head of the list. That way we guarantee that
the accumulator isinitialized to anumber on the list. The following predicate does this
for us:
max( Li st, Max)
List = [H_],
accMax(List, H, Max) .
So we can simply say:
max([1, 2, 46,53,0], X).

X = 53
yes

And furthermore we have:
max([-11,-2,-7,-4,-12], X).

X =-2
yes

5.5 Exercises

Exercise 5.1 How does Prolog respond to the following queries?

1. X = 3*4,
2. X is 3*4,
3. 4is X
4. X =Y.

5 3 is 1+2.
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6. 3is +(1,2).

7.3 is X+2.

8. Xis 1+2.

9. 1+2 is 1+2.

10. i s(X +(1,2))

11. 3+2 = +(3,2).

12. *(7,5) = 7*5.

13. *(7,+(3,2)) = 7*(3+2).

14. *(7, (3+2))

7% (3+2) .

15. *(7, (3+2))

7(+(3,2)).

Exercise 5.2 1. Define a 2-place predicate increment that holds only when its
second argument is an integer one larger than its first argument. For example,
i ncrenment (4, 5) should hold, but i ncrenent (4, 6) should not.

2. Define a 3-place predicate sum that holds only when its third argument is the
sum of the first two arguments. For example, sun(4, 5, 9) should hold, but
sum( 4, 6, 12) should not.

Exercise 5.3 Write a predicate addone2/ whose first argument is a list of integers,
and whose second argument is the list of integers obtained by adding 1 to each integer
in thefirst list. For example, the query

addone([1,2,7,2],X).

should give

X =1[23,83].

5.6 Practical Session 5

The purpose of Practical Session 5 isto help you get familiar with Prolog's arithmetic
capabilities, and to give you some further practice in list manipulation. To this end, we
suggest the following programming exercises:

1. Inthe text we discussed the 3-place predicate accMax which which returned the
maximum of a list of integers. By changing the code dlightly, turn this into a
3-place predicate accM n which returns the minimum of alist of integers.
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2. In mathematics, an n-dimensional vector is a list of numbers of length n. For

example, [ 2,5, 12] is a 3-dimensiona vector, and [ 45, 27, 3, -4, 6] isab5-
dimensional vector. One of the basic operations on vectors is scalar multipli-
cation. In this operation, every element of avector is multiplied by some num-
ber. For example, if we scalar multiply the 3-dimensional vector [ 2, 7, 4] by
3 the result is the 3-dimensional vector [ 6, 21, 12] . Write a 3-place predicate
scal ar Mul t whose first argument is an integer, whose second argument is a
list of integers, and whose third argument is the result of scalar multiplying the
second argument by the first. For example, the query

scalarMult (3,[2,7,4],Result).
should yield

Result = [6, 21, 12]

. Another fundamental operation on vectors is the dot product. This operation

combines two vectors of the same dimension and yields a number as a result.
The operation is carried out as follows: the corresponding elements of the two
vectors are multiplied, and the results added. For example, the dot product of
[2,5,6] and [3,4,1] is6+20+6, that is, 32. Write a 3-place predicate dot
whose first argument is a list of integers, whose second argument is a list of
integers of the same length as the first, and whose third argument is the dot
product of the first argument with the second. For example, the query

dot ([ 2,5,6],[3,4,1], Resul t).
should yield

Result = 32



More Lists

This lecture has two main goals:

1. To define append, a predicate for concatenating two lists, and illustrate what can
be done with it.

2. Todiscusstwo ways of reversing alist: anaive method using append, and amore
efficient method using accumulators.

6.1 Append

We shall define animportant predicate append/ 3 whose arguments areall lists. Viewed
declaratively, append(L1, L2, L3) will hold when the list L3 is the result of concate-
nating the lists L1 and L2 together (‘concatenating’ means ‘joining the lists together,
end to end’). For example, if we pose the query

?- append([a,b,c],[21,2,3],[a,b,c, 1,2 3]).

or the query

?- append([a, [foo,gibble],c],[1,2,[[],b]],
[a,[foo,qgibble],c,1,2,[1,2,[[],b]]).

we will get the response ‘yes'. On the other hand, if we pose the query
?- append([a,b,c],[1,2,3],[a, b,c,1,2]).

or the query
?- append([a,b,c],[1,2,3],[1,2,3,a,b,c]).

we will get the answer ‘no’.

From a procedural perspective, the most obvious use of append is to concatenate two
lists together. We can do this simply by using a variable as the third argument: the

query
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?- append([a,b,c],[1,2,3],L3).
yields the response

L3 =[a,b,c, 1,2, 3]
yes

But (as we shall soon see) we can also use append to split up alist. In fact, append is
area workhorse. There'slots we can do with it, and studying it is a good way to gain
a better understanding of list processing in Prolog.

6.1.1 Defining append

Here's how append/ 3 is defined:

append([],L,L).
append([H T],L2,[H L3]) :- append(T,L2,L3).

Thisis arecursive definition. The base case simply says that appending the empty list
to any list whatsoever yields that same list, which is obviously true.

But what about the recursive step? This says that when we concatenate a non-empty
list [H T] with alist L2, we end up with the list whose head is H and whose tail is
the result of concatenating T with L2. It may be useful to think about this definition
pictorially:

tnput: [ I - SN
what L3 [ S
Resutt: [ S

But what is the procedural meaning of this definition? What actually goes on when we
use append to glue two lists together? Let's take a detailed look at what happens when
we pose the query append([a, b, c],[1, 2, 3], X).

When we pose this query, Prolog will match this query to the head of the recursive
rule, generating a new internal variable (say _G518) in the process. If we carried out a
trace on what happens next, we would get something like the following:

append([a, b, c], [1, 2, 3], _GB1Y)
append([b, c], [1, 2, 3], _Gbh87)
append([c], [1, 2, 3], _GB9O)
append([], [1, 2, 3], _G593)
append([], [1, 2, 3], [1, 2, 3])
append([c], [1, 2, 3], [c, 1, 2, 3])
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append([b, c], [1, 2, 3], [b, c, 1, 2, 3])
append([a, b, c], [21, 2, 3], [a, b, c, 1, 2, 3])

X=1l]a, b, c, 1, 2, 3]
yes

The basic pattern should be clear: in the first four lines we see that Prolog recurses its
way down the list in its first argument until it can apply the base case of the recursive
definition. Then, asthe next four lines show, it then stepwise ‘fillsin’ the result. How is
this ‘filling in’ process carried out? By successively instantiating the variables G593,
_ (590, _G587,and_G518. But whileit’simportant to grasp thisbasic pattern, it doesn’t
tell usall we need to know about the way append works, so let’s dig deeper. Hereisthe
search tree for the query append([ a, b, c], [ 1, 2, 3], X) and then we'll work carefully
through the steps in the trace, making a careful note of what our goals are, and what
the variables are instantiated to. Try to relate this to the search tree.

< append([a,b,c],[1,2, 3],_G518)

G518 = [a| _G587]

< append([b,c],[1,2, 3], _G587)

G587 = [b| _G590]

<__append([c],[1,2,3], _GB90) >

G590 = [c| _G593]

< append([1.[1.2,3], %93 >

_&693 =[]

@)

1. Goal 1: append([a, b,c],[1,2,3],_G518). Prolog matchesthisto the head of
therecursiverule (that is, append([ H T], L2, [ H L3])). Thus_G518 ismatched
to[ a| L3], and Prolog has the new goal append([b,c],[1,2,3],L3). It gen-
erates anew variable G587 for L3, thuswehavethat G518 = [a] _G587].

2. Goa 2: append([b,c],[1,2,3],_G587). Prolog matches this to the head of
the recursive rule, thus _G587 is matched to [ b| L3], and Prolog has the new
goa append([c],[1,2,3],L3). It generates the interna variable _G590 for
L3, thuswehavethat G587 = [b| _G590].

3. Goa 3: append([c],[1,2,3],_G590). Prolog matches this to the head of the
recursive rule, thus G590 is matched to [ ¢| L3], and Prolog has the new goal
append([],[1,2,3],L3). It generates the internal variable G593 for L3, thus
we havethat G590 = [c| G593].
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. Goa 4: append([],[1,2,3],_G593). At last: Prolog can use the base clause

(that is, append([], L, L)). And in the four successive matching steps, Prolog
will obtain answers to Goal 4, Goal 3, Goal 2, and Goal 1. Here's how.

. Answer to Goal 4: append([],[1,2,3],[1,2,3]). Thisis because when we

match Goal 4 (that is, append([],[1,2,3],_G593) to the base clause, _G593
ismatchedto[ 1, 2, 3] .

. Answer to Goal 3. append([c],[1,2,3],[c,1,2,3]). Why? Because Goal

3isappend([c],[1,2,3], _G590]), and G590 = [c|_G593], and we have
just matched _G593to[ 1, 2,3]. S0_G590 ismatchedto[c, 1, 2, 3].

. Answer to Goal 2: append([b,c],[1,2,3],[b,c, 1,2, 3]). Why? Because

Goal 2 is append([b,c],[1,2,3], G587]), and G587 = [b| _G590], and
wehavejust matched _G590to[c, 1, 2, 3] . So_G587 ismatchedto[ b, c, 1, 2, 3].

. Answer to Goa 1. append([a,b,c],[1,2,3],[b,c,1,2,3]). Why? Be

cause Goal 2 is append([a, b,c],[1,2,3], G518]), G518 = [a] GB87],
and we have just matched G587 to [b,c, 1,2,3]. SO0 _G518 is matched to
[a,b,c, 1,2, 3].

. Thus Prolog now knows how to instantiate X, the origina query variable. It tells

usthat X = [a, b, c, 1, 2, 3], which is what we want.

Work through this example carefully, and make sure you fully understand the pattern
of variable instantiations, namely:

518

[a] _G587]
[al [b] _G690] ]
[al[b][c] _G693]]]

For a start, this type of pattern lies at the heart of the way append works. Moreover, it
illustrates a more general theme: the use of matching to build structure. In a nutshell,
the recursive calls to append build up this nested pattern of variables which code up
the required answer. When Prolog finally instantiates the innermost variable _G593 to
[1, 2, 3], the answer crystallizes out, like a snowflake forming around a grain of
dust. But it is matching, not magic, that produces the resuilt.

6.1.2 Using append

Now that we understand how append works, let’s see how we can put it to work.

Oneimportant use of append isto split up alist into two consecutive lists. For example:

append(X,Y,[a, b,c,d]).

X =]

Y = [a,b,c,d]
X =1[a]

Y = [b,c,d]
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X =1[a,b]

Y = [c,d]

X =[a,b,c]
Y = [d]

X =[a,b,c,d]
Y =11

no

That is, we give the list we want to split up (heref a, b, ¢, d] ) to append asthe third ar-
gument, and we use variables for the first two arguments. Prolog then searches for ways
of instantiating the variables to two lists that concatenate to give the third argument,
thus splitting up the list in two. Moreover, as this example shows, by backtracking,
Prolog can find al possible ways of splitting up alist into two consecutive lists.

This ability meansiit is easy to define some useful predicates with append. Let’s con-
sider some examples. First, we can define a program which finds prefixes of lists. For
example, the prefixes of [a, b, c,d] are[],[a],[a,b],[a, b, c],and[a,b,c,d].
With the help of append it is straightforward to define aprogram pr ef i x/ 2, whose ar-
guments are both lists, such that prefi x( P, L) will hold when Pisaprefix of L. Here's
how:

prefix(P, L) :- append(P,_,L).
Thissaysthat list P isaprefix of list L when there is some list such that L is the result
of concatenating P with that list. (We use the anonymous variable since we don’t care
what that other list is: we only care that there some such list or other.) This predicate

successfully finds prefixes of lists, and moreover, via backtracking, finds them all:

prefix(X [a,b,c,d]).

X =11

X = [a]

X = [a,b]

X = [a, b, c]
X = [a, b, c,d
no

In asimilar fashion, we can define a program which finds suffixes of lists. For example,
the suffixesof [ a, b, ¢, d] are[],[d],[c,d],[b,c,d],and[a,b,c,d].Agan, using
append itiseasy to define suf fi x/ 2, a predicate whose arguments are both lists, such
that suf fi x(S, L) will hold when s isasuffix of L:
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suffix(S,L) :- append(_,SL).
That is, list Sisasuffix of list L if thereissomelist such that L isthe result of concate-
nating that list with S. This predicate successfully finds suffixes of lists, and moreover,
via backtracking, findsthem all:

suffix(X,[a,b,c,d]).

X = [a,b,c,d
X = [b,c,d]
X = [c,d]

X = [d]

X =11

no

Make sure you understand why the results come out in this order.

And now it's very easy to define a program that finds sublists of lists. The sublists
of [a,b,c,d] ae[],[a],[b],[c],[d],[ab],[b,c],[c,d],[de],[ab,c],
[b,c,d],and[a,b,c,d] . Now, alittle thought reveals that the sublists of alist L are
simply the prefixes of suffixes of L. Think about it pictorially:

s [
rake st |
Takeprefix toget subist: | [N
And of course, we have both the predicates we need to pin this ideas down: we simply
define

sublist(SubL,L) :- suffix(S,L),prefix(SubL,S).

That is, SubL isasublist of L if there is some suffix S of L of which SubL is a prefix.
This program doesn’t explicitly use append, but of course, under the surface, that's
what's doing the work for us, as both pref i x and suf fi x are defined using append.
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6.2 Reversing a list

Append isauseful predicate, and it isimportant to know how to useit. But itisjust as
important to know that it can be a source of inefficiency, and that you probably don’t
want to use it all the time.

Why is append a source of inefficiency? If you think about the way it works, you'll
notice aweakness. append doesn’t join two lists in one simple action. Rather, it needs
to work its way down its first argument until it finds the end of the list, and only then
can it carry out the concatenation.

Now, often this causes no problems. For example, if we have two lists and we just want
to concatenate them, it’'s probably not too bad. Sure, Prolog will need to work down
the length of the first list, but if the list is not too long, that’s probably not too high a
price to pay for the ease of working with append.

But matters may be very different if the first two arguments are given as variables. As
we'vejust seen, it can be very useful to give append variablesinitsfirst two arguments,
for this lets Prolog search for ways of splitting up the lists. But there is a price to pay:
alot of search isgoing on, and this can lead to very inefficient programs.

Toillustrate this, we shall examine the problem of reversing alist. That is, we will ex-
amine the problem of defining a predicate which takes alist (say [ a, b, c, d] ) asinput
and returns alist containing the same elements in the reverse order (here [ d, c, b, a] ).

Now, areverse predicate is a useful predicate to have around. As you will have
realized by now, lists in Prolog are far easier to access from the front than from the
back. For example, to pull out the head of alist L, al we have to do is perform the
unification [ H _] = L; thisresultsin Hbeing instantiated to the head of L. But pulling
out the last element of an arbitrary list isharder: wecan’t do it simply using unification.
On the other hand, if we had a predicate which reversed lists, we could first reverse the
input list, and then pull out the head of the reversed list, as this would give us the last
element of the original list. So arever se predicate could be a useful tool. However,
as we may have to reverse large lists, we would like this tool to be efficient. So we
need to think about the problem carefully.

And that’s what we're going to do now. We will define two reverse predicates: anaive
one, defined with the help of append, and a more efficient (and indeed, more natural)
one defined using accumulators.

6.2.1 Naive reverse using append
Here's arecursive definition of what isinvolved in reversing alist:

1. If wereverse the empty list, we obtain the empty list.

2. If wereversethelist [ H T], we end up with the list obtained by reversing T and
concatenating with [ H] .

To see that the recursive clause is correct, consider the list [ a, b, ¢, d] . |f we reverse
thetail of thislist weobtain [ d, c, b] . Concatenating thiswith [ a] yields[d, c, b, a] ,
whichisthereverseof [ a, b, ¢, d] .

With the help of append it is easy to turn this recursive definition into Prolog:
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nai verev([],[]).
nai verev([H T],R) :- naiverev(T, RevT), append(RevT,[H ,R).

Now, this definition is correct, but it is does an awful lot of work. It is very instructive
to look at atrace of this program. This shows that the program is spending a lot of
time carrying out appends. This shouldn’t be too surprising: after, al, we are calling
append recursively. Theresult isvery inefficient (if you run atrace, you will find that
it takes about 90 steps to reverse an eight element list) and hard to understand (the
predicate spends most of it time in the recursive calls to append, making it very hard
to see what is going on).

Not nice. And as we shall now see, there is a better way.

6.2.2 Reverse using an accumulator

The better way is to use an accumulator. The underlying idea is simple and natural.
Our accumulator will be alist, and when we start it will be empty. Suppose we want
toreverse[ a, b, c, d] . At the start, our accumulator will be[]. So we simply take the
head of the list we are trying to reverse and add it as the head of the accumulator. We
then carry on processing thetail, thus we are faced with the task of reversing [ b, c, d],
and our accumulator is[ a] . Again we take the head of the list we are trying to reverse
and add it as the head of the accumulator (thus our new accumulator is[b,a]) and carry
ontrying toreverse[ c, d] . Again we use the same idea, so we get a new accumulator
[c, b, a],andtry toreverse[ d] . Needless to say, the next step yields an accumulator
[d, c, b,a] andthe new goal of trying to reverse[]. Thisis where the process stops:
and our accumulator contains the reversed list we want. To summarize: the ideais
simply to work our way through the list we want to reverse, and push each element in
turn onto the head of the accumulator, like this:

List: [a,b,c,d] Accurulator: []

List: [b,c,d] Accunul ator: [a]

List: [c,d] Accunul ator: [b, a]
List: [d] Accumul ator: [c, b, a]
List: [] Accunul ator: [d,c, b, a]

Thiswill be efficient because we simply blast our way through the list once: we don’t
have to waste time carrying out concatenation or other irrelevant work.

It's also easy to put thisideain Prolog. Here's the accumulator code:

accRev([H T],A R :- accRev(T,[HA],R.
accRev([], A A.

Thisisclassic accumulator code: it follows the same pattern as the arithmetic examples
we examined in the previous lecture. The recursive clause is responsible for chopping
of the head of the input list, and pushing it onto the accumulator. The base case halts
the program, and copies the accumulator to the final argument.

Asis usua with accumulator code, it’s a good idea to write a predicate which carries
out the required initialization of the accumulator for us:
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rev(L,R) :- accRev(L,[],R.

Again, itisinstructive to run some traces on this program and compare it with nai ver ev.
The accumulator based version is clearly better. For example, it takes about 20 steps
to reverse an eight element list, as opposed to 90 for the naive version. Moreover,

the trace is far easier to follow. The idea underlying the accumulator based version is
simpler and more natural than the recursive calls to append.

Summing up, append is a useful program, and you certainly should not be scared of
using it. However you also need to be aware that it is a source of inefficiency, so when
you use it, ask yourself whether there is a better way. And often there are. The use of
accumulators is often better, and (asther ever se example show) accumulators can be
anatural way of handling list processing tasks. Moreover, as we shall learn later in the
course, there are more sophisticated ways of thinking about lists (namely by viewing
them as difference lists) which can also lead to dramatic improvements in performance.

6.3 Exercises

Exercise 6.1 Let'scall alist doubled if it is made of two consecutive blocks of ele-
ments that are exactly the same. For example, [ a, b, c, a, b, c] is doubled (it's made
up of [ a, b, c] followed by [ a, b, c] ) and s0 is [ f oo, gubbl e, f 0o, gubbl e] . On the
other hand, [ f oo, gubbl e, foo] is not doubled. Write a predicate doubl ed( Li st)

which succeeds when Li st isa doubled list.

Exercise 6.2 A palindrome is a word or phrase that spells the same forwards and
backwards. For example, ‘rotator’, ‘eve’, and ‘nurses run’ are all palindromes. Write
a predicate pal i ndrone(Li st), which checks whether Li st is a palindrome. For
example, to the queries

?- palindronme([r,o,t,a,t,o,r]).
and

?- palindrome([n,u,r,s,e,s,r,u,n]).
Prolog should respond ‘yes', but to the query

?- palindrome([n,o,t,h,i,s]).

Prolog should respond ‘no’.

Exercise 6.3 1. Write a predicate second( X, Li st) which checks whether X is
the second element of Li st .

2. Write a predicate swap12( Li st 1, Li st 2) which checks whether Li st 1 isiden-
tical to Li st 2, except that the first two elements are exchanged.

3. Writea predicatefi nal (X, Li st) which checks whether X isthe last element of
Li st.
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4. Write a predicate t opt ai | (I nList, Qutlist) which says ‘no’ ifinlist isa
list containing fewer than 2 elements, and which deletes the first and the last
elements of I nl i st and returns the result as cut i st, when I nlist isalist
containing at least 2 elements. For example:

toptail ([a], T).
no

toptail ([a,b],T).
T=[]

toptail ([a,b,c],T).
T=[b]
Hint: here's where append comes in useful.

5. Write a predicate swapf | (Li st 1, Li st 2) which checks whether Li st 1 isiden-
tical to Li st 2, except that the first and last elements are exchanged. Hint: here’s
where append comes in useful again.

Exercise 6.4 And hereisan exercise for those of you who, like me, like logic puzzes.

Thereis a street with three neighboring houses that all have a different color. They are
red, blue, and green. People of different nationalities live in the different houses and
they all have a different pet. Here are some more facts about them:

The Englishman livesin the red house.

The jaguar isthe pet of the Spanish family.

The Japanese lives to the right of the snail keeper.

The snail keeper lives to the left of the blue house.

Who keeps the zebra?
Define a predicate zebr a/ 1 that tells you the nationality of the owner of the zebra.

Hint: Think of a representation for the houses and the street. Code the four constraints
in Prolog. menber and subl i st might be useful predicates.

6.4 Practical Session 6

The purpose of Practical Session 6 isto help you get more experience with list manip-
ulation. Wefirst suggest some traces for you to carry out, and then some programming
EXercises.

Thefollowing traces will help you get to grips with the predicates discussed in the text:

1. Carry out traces of append with thefirst two arguments instantiated, and the third
argument uninstantiated. For example, append([a, b, c],[[].[2,3],b], X
Make sure the basic pattern is clear.
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2. Next, carry out traces on append asused to split up alist, that is, with thefirst two
arguments given as variables, and the last argument instantiated. For example,
append(L, R [foo, wee, bl up]) .

3. Carry out some traces on prefix and suf fi x. Why does prefi x find shorter
listsfirst, and suf fi x longer lists first?

4. Carry out sometraces on subl i st . Aswe said in the text, via backtracking this
predicate generates all possible sublists, but as you'll see, it generates several
sublists more than once. Do you understand why?

5. Carry out traces on both nai ver ev and r ev, and compare their behavior.
Now for some programming work:

1. Itispossible to write aone line definition of the nenber predicate by making use
of append. Do so. How does this hew version of nenber compare in efficiency
with the standard one?

2. Write apredicate set (I nLi st, Qut Li st) which takes asinput an arbitrary list,
and returns a list in which each element of the input list appears only once. For
example, the query

set([2,2,foo0,1,foo, [].,[]11,X%).

should yield the result

X=1[2,fo0,1,[]].

Hint: use the menber predicate to test for repetitions of items you have aready
found.

3. We*flatten’ alist by removing all the square brackets around any listsit contains
as elements, and around any lists that its elements contain as element, and so on
for all nested lists. For example, when we flatten the list

[a, b, [c,d],[[1,2]],fo0]
we get the list

[a, b, c d 1,2 foo]
and when we flatten the list

[a, b, [[[[[[[c,dl11]1111.[[1,2]],foo,[]]
we also get

[a,b,c,d 1,2 fo0].

Writeapredicatef | att en( Li st, Fl at) that holdswhen thefirst argument Li st
flattens to the second argument Fl at . This exercise can be done without making
use of append.
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Definite Clause Grammars

This lecture has two main goals:

1. Tointroduce context free grammars (CFGs) and some related concepts.

2. To introduce definite clause grammars (DCGs), an in-built Prolog mechanism
for working with context free grammars (and other kinds of grammar too).

7.1 Context free grammars

Prolog has been used for many purposes, but its inventor, Alain Colmerauer, was a
computational linguist, and computational linguistics remains a classic application for
the language. Moreover, Prolog offers a number of tools which make life easier for
computational linguists, and today we are going to start learning about one of the most
useful of these: Definite Clauses Grammars, or DCGs as they are usually called.

DCGsare a special notation for defining grammars. So, before we go any further, we'd
better learn what a grammar is. We shall do so by discussing context free grammars
(or CFGs). The basic idea of context free grammars is simple to understand, but don’t
be fooled into thinking that CFGs are toys. They’re not. While CFGs aren’t powerful
enough to cope with the syntactic structure of all natural languages (that is, the kind of
languages that human beings use), they can certainly handle most aspects of the syntax
of many natural languages (for example, English, German, and French) in areasonably
natural way.

So what is a context free grammar? In essence, a finite collection of rules which tell
us that certain sentences are grammatical (that is, syntactically correct) and what their
grammatical structure actually is. Here's a ssimple context free grammar for a small
fragment of English:

S ->np vp
np -> det n
vVp -> VvV np
vp -> Vv
det ->a
det ->the
n ->woman
n ->man

v -> shoots
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What are the ingredients of this little grammar? Well, first note that it contains three
types of symbol. There's - >, which is used to define the rules. Then there are the
symbols written like this: s, np, vp, det, n, v. These symbols are called non-terminal
symbols; we'll soon learn why. Each of these symbols has a traditional meaning in
linguistics: s is short for sentence, np is short for noun phrase, vp is short for verb
phrase, and det isshort for determiner. That is, each of these symbols is shorthand for
agrammatical category. Finaly there are the symbolsin italics: a, the, woman, man,
and shoots. A computer scientist would probably call these terminal symbols (or: the
aphabet), and linguists would probably call them lexical items. We'll use these terms
occasionaly, but often we'll make life easy for ourselves and just call them words.

Now, this grammar contains nine rules. A context free rule consists of a single non-
termina symbol, followed by - >, followed by a finite sequence made up of terminal
and/or non-terminal symbols. All nine items listed above have this form, so they are
all legitimate context free rules. What do these rules mean? They tell us how different
grammatical categories can be built up. Read - > as can consist of, or can be built out
of. For example, the first rule tells us that a sentence can consist of a noun phrase
followed by a verb phrase. The third rule tells us that a verb phrase can consist of a
verb followed by a noun phrase, while the fourth rule tells us that there is another way
to build a verb phrase: simply use averb. The last five rules tell us that a and the are
determiners, that man and woman are nouns, and that shoots is a verb.

Now, consider the string of words a woman shoots a man. Isthis grammatical accord-
ing to our little grammar? And if it is, what structure does it have? The following tree
answers both questions:

=

N

np ¥p

~N ST

det n ¥ np

/\

g  waman shoaofr  det n

r) MR

Right at the top we have a node marked s. This node has two daughters, one marked
np, and one marked vp. Note that this part of the diagram agrees with the first rule of
the grammar, which saysthat an s can be built out of an np and avp. (A linguist would
say that this part of the treeis licensed by the first rule)) In fact, as you can see, every
part of the treeis licensed by one of our rules. For example, the two nodes marked np
are licensed by the rule that saysthat an np can consist of adet followed by ann. And,
right at the bottom of the diagram, all the words in a woman shoots a man are licensed
by arule. Incidentally, note that the terminal symbols only decorate the nodes right at
the bottom of the tree (the terminal nodes) while non-terminal symbols only decorate
nodes that are higher up in the tree (the non-terminal nodes).
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Such atreeis called a parse tree, and it gives us two sorts of information: information
about strings and information about structure. Thisisan important distinction to grasp,
S0 let’s have a closer look, and learn some important terminology while we are doing
0.

First, if we are given astring of words, and agrammar, and it turns out that we can build
aparse tree like the one above (that is, atree that has's at the top node, and every node
in the tree is licensed by the grammar, and the string of words we were given is listed
inthe correct order along the terminal nodes) then we say that the string is grammatical
(according to the given grammar). For example, the string a woman shoots a man is
grammatical according to our little grammar (and indeed, any reasonable grammar of
English would classify it as grammatical). On the other hand, if there isn’t any such
tree, the string is ungrammatical (according to the given grammar). For example, the
string woman a woman man a shoots is ungrammeatical according to our little grammar
(and any reasonable grammar of English would classify it as ungrammatical). The
language generated by a grammar consists of all the strings that the grammar classifies
as grammatical. For example, a woman shoots a man also belongs to the language
generated by our little grammar, and so does a man shoots the woman. A context free
recognizer is a program which correctly tells us whether or not a string belongs to the
language generated by a context free grammar. To put it another way, arecognizer isa
program that correctly classifies strings as grammatical or ungrammatical (relative to
some grammar).

But often, in both linguistics and computer science, we are not merely interested in
whether a string is grammatical or not, we want to know why it is grammatical. More
precisely, we often want to know what its structure is, and this is exactly the informa-
tion a parse tree gives us. For example, the above parse tree shows us how the words
in a woman shoots a man fit together, piece by piece, to form the sentence. This kind
of information would be important if we were using this sentence in some application
and needed to say what it actually meant (that is, if we wanted to do semantics). A
context free parser is a program which correctly decides whether a string belongs to
the language generated by a context free grammar and also tells us hat its structureiis.
That is, whereas arecognizer merely says ‘ Yes, grammatical’ or ‘No, ungrammeatical’
to each string, a parser actually builds the associated parse tree and givesit to us.

It remains to explain one final concept, namely what a context free language is. (Don't
get confused: we've told you what a context free grammar is, but not what a con-
text free language is.) Quite simply, a context free language is a language that can be
generated by a context free grammar. Some languages are context free, and some are
not. For example, it seems plausible that English is a context free language. That is,
it is probably possible to write a context free grammar that generates all (and only)
the sentences that native speakers find acceptable. On the other hand, some dialects
of Swiss-German are not context free. It can be proved mathematically that no con-
text free grammar can generate al (and only) the sentences that native speakers find
acceptable. So if you wanted to write a grammar for such dialects, you would have to
employ additional grammatical mechanisms, not merely context free rules.

7.1.1 CFG recognition using append

That's the theory, but how do we work with context free grammarsin Prolog? To make
things concrete: suppose we are given a context free grammar. How can we write a
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recognizer for it? And how can we write a parser for it? This week we'll look at the
first question in detail. We'll first show how (rather naive) recognizers can be written in
Prolog, and then show how more sophisticated recognizers can be written with the help
of difference lists. This discussion will lead us to definite clause grammars, Prolog's
inbuilt grammar tool. Next week we'll ook at definite clause grammars in more detail,
and learn (among other things) how to use them to define parsers.

So: given a context free grammar, how do we define a recognizer in Prolog? In fact,
Prolog offers a very direct answer to this question: we can simply write down Prolog
clauses that correspond, in an obvious way, to the grammar rules. That is, we can
simply ‘turn the grammar into Prolog’.

Here's a simple (though as we shall learn, inefficient) way of doing this. We shall
use lists to represent strings. For example, the string a woman shoots a man will be
represented by the list [ a, worman, shoot s, a, man] . Now, we have aready said that
the - > symbol used in context free grammars means can consist of, or can be built out
of, and thisidea is easily modeled using lists. For example, therules -> np vp can
be thought of as saying: alist of wordsis an s list if it is the result of concatenating
annp list with avp list. Aswe know how to concatenate lists in Prolog (we can use
append), it should be easy to turn these kinds of rules into Prolog. And what about
the rules that tell us about individual words? Even easier: we can simply view n - >
woman as saying that the list [ wonan] isann list.

If we turn these ideas into Prolog, thisis what we get:
s(2) - np(X), vp(Y), append(XY,Z2).
np(2) :- det(X), n(Y), append(X Y, Z).
vp(2) - v(X), np(Y), append(XY,2).
vp(2) - v(2).

det ([the]).
det([a]).

n([ worman] ) .
n([man]).

v([shoots]).

The correspondence between the CFG rules and the Prolog should be clear. And to use
this program as a recognizer, we simply pose the obvious queries. For example:

s([ a, wonman, shoot s, a, man] ).
yes

In fact, because this is a simple declarative Prolog program, we can do more than
this. we can also generate all the sentences this grammar produces. In fact, our little
grammar generates 20 sentences. Here are the first five:
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s(X)

X = [t he, wonan, shoot s, t he, worman]
X = [the, wonan, shoot s, t he, man]
X = [t he, wonan, shoot s, a, woman]
X = [the, wonan, shoot s, a, man]

X = [t he, wonman, shoot s]

Moreover, we're not restricted to posing questions about sentences. we can ask about
other grammatical categories. For example:

np([a, woman] ).
yes

And we can generate houn phrases with the following query.

np(X) .

Now this is rather nice. We have a simple, easy to understand program which corre-
sponds with our CFG in an obvious way. Moreover, if we added more rules to our
CFG, it would be easy to alter the program to cope with the new rules.,

But there isa problem: the program doesn’t use the input sentence to guide the search.
Make a trace for the query s([ a, man, shoot s]) and you will see that the program
‘guesses’ noun phrases and verb phrases and then afterwards checks whether these can
be combined to form the sentence| a, man, shoot s] . Prologwill findthat [ t he, woran]
is a noun phrase and [ shoot s, t he, woran] a verb phrase and then it will check
whether concatenating these two lists happens to yield [ a, man, shoot s], which of
course fails. So, Prolog starts to backtrack and the next thing it will try is whether
concatenating the noun phrase [ t he, wonan] and the verb phrase [ shoot s, t he, man]
happens to yield [ a, man, shoot s] . It will go on like this until it finally produces the
noun phrase[ t he, man] and the verb phrase[ shoot s] . The problem obviously is, that
the goasnp(X) and vp(Y) are called with uninstantiated variables as arguments.

So, how about changing the rules in such away that append becomes the first goal:

s(Z) :- append(X Y,2), np(X), vp(Y).
np(2) :- append(X Y,2), det(X), n(Y).
vp(2) :- append(X Y, 2), v(X), np(Y).
vp(2) - v(2).

det ([the]).
det([a]).
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n([ worman] ).
n([man]).

v([shoots]).

Now, we first use append to split up the input list. This instantiates the varibales X
and Y, so that the other goals are all called with instantiated arguments. However, the
program is still not perfect: it uses append alot and, even worse, it uses append with
uninstantiated variables in the first two arguments. We saw in the previous chapter that
that is a source of inefficiency. And indeed, the performance of this recognizer is very
bad. It isrevealing to trace through what actually happens when this program analyses
a sentence such as a woman shoots a man. Asyou will see, relatively few of the steps
are devoted to the real task of recognizing the sentences. most are devoted to using
append to decompose lists. Thisisn't much of a problem for our little grammar, but
it certainly would be if we were working with a more realistic grammar capable of
generating alarge number of sentences. We need to do something about this.

7.1.2 CFG recognition using difference lists

A more efficient implementation can be obtained by making use of difference lists.
This is a sophisticated (and, once you've understood it, beautiful) Prolog technique
that can be used for avariety of purposes. We won't discuss the idea of difference lists
in any depth: we'll simply show how they can be used to rewrite our recognizer more
efficiently.

The key ideaunderlying difference listsisto represent the information about grammat-
ical categories not asasinglelist, but as the difference between two lists. For example,
instead of representing awoman shootsaman as| a, woman, shoot s, a, man] wemight
represent it as the pair of lists

[ a, worman, shoot s, a, man] [].

Think of the first list as what needs to be consumed (or if you prefer: the input list),
and the second list as what we should leave behind (or: the output list). Viewed from
this (rather procedural) perspective the difference list

[ a, worman, shoot s, a, man] [].

represents the sentence a woman shoots a man because it says. If | consume all the
symbols on the left, and |eave behind the symbols on the right, | have the sentence | am
interested in.

That is: the sentence we are interested in is the difference between the contents of these
two lists.

Difference representations are not unique. In fact, we could represent a woman shoots
aman in infinitely many ways. For example, we could also represent it as

[ a, worman, shoot s, a, man, pl oggl e, woggl e] [ pl oggl e, woggl €] .
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Again the point is: if we consume al the symbols on the left, and leave behind the
symbols on the right, we have the sentence we are interested in.

That's al we need to know about difference lists to rewrite our recognizer. |f we bear
the idea of ‘ consuming something, and leaving something behind’ in mind’, we obtain
the following recognizer:

s(X,2) - np(XY), vp(Y,2).
np(X, 2) :- det(X V), n(Y,2).
vp(X,2) - v(XY), np(Y,2).
vp(X, 2) - V(X 2).

det([the|W,W.
det([a|W,W.

n([woman| W, W.
n([man| W, W.

v([shoots|W,W.

The s rule says. | know that the pair of lists X and z represents a sentence if (1) | can
consume X and leave behind a v, and the pair X and Y represents a noun phrase, and
(2) | can then go on to consume Y leaving Z behind, and the pair Y z represents a verb
phrase.

The idea underlying the way we handle the words is similar. The code

n([man| W, W.
means we are handling man as the difference between [ nan| W and W Intuitively, the
difference between what | consume and what | leave behind is precisely the word man.

Now, at first thisis probably harder to grasp than our previous recognizer. But we have
gained something important: we haven't used append. In the difference list based
recognizer, they simply aren’t needed, and as we shall see, this makes a big difference.

How do we use such grammars? Here's how to recognize sentences:

s([ a, woman, shoot s, a, man],[]) .
yes

Thisaskswhether we can get an's by consuming the symbolsin| a, woman, shoot s, a, man] ,
leaving nothing behind.

Similarly, to generate all the sentences in the grammar, we ask

s(X [1).
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This asks. what values can you give to X, such that we get an s by consuming the
symbolsin X, leaving nothing behind?

The queries for other grammatical categories also work the same way. For example, to
find out if a woman is a noun phrase we ask:

np([a, wonman], []).
And we generate al the noun phrases in the grammar as follows:

np( X [1)-

You should trace what happens when this program anal yses a sentence such asa woman
shoots a man. Asyou will see, itisalot more efficient than our append based program.
Moreover, as no use is made of append, the trace is alot easier to grasp. So we have
made a big step forward.

On the other hand, it has to be admitted that the second recognizer is not as easy to
understand, at least at first, and it's a pain having to keep track of all those difference
list variables. If only it were possible to have a recognizer as simple as the first and as
efficient as the second. And in fact, it is possible: thisiswhere DCGs comein.

7.2 Definite clause grammars

So, what are DCGs? Quite simply, a nice notation for writing grammars that hides the
underlying difference list variables. Let’s ook at three examples.

7.2.1 Afirst example
Asour first example, here's our little grammar written as a DCG:
S --> np,vp.
np --> det,n.

vp --> Vv, np.
vp --> V.

det --> [the].
det -->[a].

n --> [wonan].
n-->[mn].

v --> [shoots].

Thelink withthe original context free grammar should be utterly clear: thisisdefinitely
the most user friendly notation we have used yet. But how do we use this DCG? In
fact, we use it in exactly the same way as we used our difference list recognizer. For
example, to find out whether a woman shoots a man is a sentence, we pose the query:
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s([ a, wonman, shoot s, a, man],[]).
That is, just as in the difference list recognizer, we ask whether we can get an s by
consuming the symbolsin [ a, wonman, shoot s, a, man] , leaving nothing behind.

Similarly, to generate all the sentences in the grammar, we pose the query:

s(X[1).
Thisaskswhat values we can giveto X, such that we get an s by consuming the symbols
in X, leaving nothing behind.

Moreover, the queries for other grammatical categories also work the same way. For
example, to find out if a woman is anoun phrase we pose the query:

np([a, wonman], []).
And we generate all the noun phrases in the grammar as follows:

np(X [1)-

What's going on? Quite simply, this DCG is our difference list recognizer! That is,
DCG notation is essentially syntactic sugar: user friendly notation that lets us write
grammars in anatural way. But Prolog translates this notation into the kinds of differ-
ence lists discussed before. So we have the best of both worlds: a nice simple notation
for working with, and the efficiency of difference lists.

There is an easy way to actually see what Prolog translates DCG rules into. Suppose
you are working with this DCG (that is, Prolog has already consulted the rules). Then
if you pose the query:

I'isting(s)
you will get the response
s(A B) :-
np(A Q),

vp(C, B).

Thisiswhat Prolog has translated s - > np, vp into. Note that (apart from the choice
of variables) thisis exactly the difference list rule we used in our second recognizer.

Similarly, if you pose the query
I'isting(np)

you will get
np(A B) :-

det (A O,
n(C B).
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Thisiswhat Prolog hastranglated np -> det, n into. Again (apart from the choice of
variables) thisisthe difference list rule we used in our second recognizer.

To get acomplete listing of the translations of all the rules, smply type
l'isting.

Thereisonething you may observe. Some Prolog implementations translate rules such
as

det --> [the].
not into
det([the|W,W.
which was the form we used in our difference list recognizer, but into

det (A B)
' C (A the, B).

Although the notation is different, the idea is the same. Basically, this says you can get
aBfrom an A by consuming at he. Notethat ' C isan atom.

7.2.2 Adding recursive rules

Our original context free grammar generated only 20 sentences. However it is easy to
write context free grammars that generate infinitely many sentences. we need simply
use recursive rules, Here's an example. Let's add the following rules to our little
grammar:

S ->s conj s

conj ->and
conj ->o0r
conj -> but

Thisrule alows us to join as many sentences together as we like using the words and,
but and or. So this grammar classifies sentences such as The woman shoots the man or
the man shoots the woman as grammatical .

It is easy to turn this grammar into DCG rules. In fact, we just need to add the rules
s --> s,conj,s.
conj --> [and].

conj --> [or].
conj --> [but].
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But what does Prolog do with aDCG like this? Let’s have alook.

First, let’sadd therules at the beginning of the knowledge base beforetherules -> np, vp.
What happens if we then pose the query s([ a, wonan, shoot s], []) ? Prolog getsinto
an infinte loop.

Can you see why? The point isthis. Prolog translates DCG rules into ordinary Prolog
rules. If we place the recursive rule s -> s, conj, s in the knowledge base before
the non-recursiverules - > np, vp then the knowledge base will contain the following
two Prolog rules, in this order:

s(A, B) :-
s(A O,
conj (C, D),
s(D, B).

s(A, B) :-
np(A, Q),
vp(C, B).

Now, from a declarative perspective thisisfine, but from aprocedural perspective this
is fatal. When it tries to use the first rule, Prolog immediately encounters the goal
s(A, O, which it then tries to satisfy using the first rule, whereupon it immediately en-
countersthegoal s(A, ©),which it then tries to satisfy using thefirst rule, whereupon
it immediately encounters the goa s(A, ©) ... In short, it goes into infinite loop and
does no useful work.

Second, let’s add therecursiverules -> s, conj, s at the end of the knowledge base,
so that Prolog always ecounters the trandlation of the non-recursive rule first. What
happens now, when we pose the query s([ a, woman, shoots],[])? Well, Prolog
seems to be able to handle it and gives an anwer. But what happens when we pose
the query s([ wonan, shoot], []), i.e. an ungrammatical sentence that is not accepted
by our grammar? Prolog again gets into an infinite loop. Since, it isimpossible to rec-
ognize [ wonan, shoot] as a sentence consisting of a noun phrase and a verb phrase,
Prolog tries to analyse it withtherules -> s, conj, s and ends up in the same loop
as before.

Notice, that we are having the same problems that we had when we were changing the
order of the rules and goals in the definition of descend in the chapter on recursion.
In that case, the trick was to change the goals of the recursive rule so that the recursive
goal was not the first one in the body of the rule. In the case of our recursive DCG,
however, this is not a possible solution. Since the order of the goals determines the
order of the words in the sentence, we cannot change it just like that. It does make
a difference, for example, whether our grammar accepts the woman shoots the man
and the man shootsthewoman (s - > s, conj, s) or whether it accepts and the woman
shoots the man the man shoots the woman (s -> conj, s, s).

So, by just reordering clauses or goals, we won’t solve the problem. The only possible
solution is to introduce a new nonterminal symbol. We could for example use the
category si npl e_s for sentences without embedded sentences. Our grammar would
then look like this:
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s --> sinple_s.

s --> sinple_s conj s.
sinmple_s --> np, vp.
np --> det,n.

vp --> v, np.

vp --> V.

det --> [the].

det -->[a].

n --> [woman].
n-->[mn].

v --> [shoots].

conj --> [and].
conj --> Jor].
conj --> [but].

Make sure that you understand why Prolog doesn’t get into infinite loops with this
grammar asit did with the previous version.

The moral is. DCGs aren’'t magic. They are a nice notation, but you can’'t always
expect just to ‘write down the grammar as a DCG’ and have it work. DCG rules are
really ordinary Prolog rulesin disguise, and this means that you must pay attention to
what your Prolog interpreter does with them.

7.2.3 A DCG for a simple formal language

Asour last example, we shall define aDCG for the formal language d'b". What isthis
language? And what is aformal language anyway?

A formal language issimply aset of strings. Theterm ‘formal language’ isintended to
contrast with theterm * natural language’: whereas natural languages are languages that
human beings actualy use, fomal languages are mathematical objects that computer
scientists, logicians, and mathematicians define and study for various purpose.

A simple example of a formal language is d'b". There are only two ‘words' in this
language: the symbol a and the symbol b. The language d'b" consist of all strings
made up from these two symbols that have the following form: the string must consist
of an unbroken block of as of length n, followed by an unbroken block of bs of length
n, and nothing else. So the strings ab, aabb, aaabbb and aaaabbbb all belong to &b".
(Note that the empty string belongs to d'b" too: after all, the empty string consists of a
block of as of length zero followed by ablock of bs of length zero.) On the other hand,
aaabb and aaabbba do not belong to d'b".

Now, it is easy to write a context free grammar that generates this language:

S -> &
s ->1| s
| -> a
r ->b

Thefirst rule says that an s can be realized as nothing at all. The second rule says that
an s can be made up of an | (for left) element, followed by an s, followed by an r (for
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right) element. The last two rules say that | elements and r elements can be realized as
as and bs respectively. It should be clear that this grammar really does generate all and
only the elements of a'b", including the empty string.

Moreover, it istrivia to turn this grammar into DCG. We can do so as follows:

s -->1].
s -->1,s,r.

| -->[a].
r -->1[b].

And this DCG works exactly as we would hope. For example, to the query
s([a,a,a,b,b,b],[]).

we get the answer ‘yes', while to the query
s([a,a,a,b,b,b,b],[]).

we get the answer ‘no’. And the query
s(X[1)-

enumerates the strings in the language, starting from[].

7.3 Exercises

Exercise 7.1 Suppose we are working with the following DCG:

s --> foo, bar, w ggl e.
foo --> [choo].

foo --> foo, foo.

bar --> mar, zar.

mar --> ne, ny.

ne -->[i].

ny --> [anj.

zar --> blar,car.
blar --> [a].

car --> [train].
wiggle --> [toot].
wi ggle --> wggle,w ggle.

Write down the ordinary Prolog rules that correspond to these DCG rules. What are
the first three responses that Prolog givesto the query s(X, [1) ?

Exercise 7.2 The formal language a"b" — {€} consists of all the strings in d'b" ex-
cept the empty string. Write a DCG that generates this language.

Exercise 7.3 Let a"b® be the formal language which contains all strings of the fol-
lowing form: an unbroken block of as of length n followed by an unbroken block of bs
of length 2n, and nothing else. For example, abb, aabbbb, and aaabbbbbb belong to
a"b?", and so does the empty string. Write a DCG that generates this language.
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7.4 Practical Session 7

The purpose of Practical Session 7 is to help you get familiar with the DCGs, differ-
ence lists, and the relation between them, and to give you some experience in writing
basic DCGs. As you will learn next week, there is more to DCGs than the ideas just
discussed. Nonetheless, what you have learned so far is certainly the core, and it is
important that you are comfortable with the basic ideas before moving on.

First some keyboard exercises:

1. First, type in or download the simple append based recognizer discussed in the

text, and then run some traces. Asyou will see, we were not exaggerating when
we said that the performance of the append based grammar was very poor. Even
for such simple sentences as The woman shot a man you will see that the trace
isvery long, and very difficult to follow.

. Next, type in or download our second recognizer, the one based on difference

lists, and run more traces. Asyou will see, there is adramatic gain in efficiency.
Moreover, even if you find the idea of difference lists a bit hard to follow, you
will see that the traces are very simple to understand, especially when compared
with the monsters produced by the append based implementation!

. Next, type in or download the DCG discussed in the text. Typel i sti ng so that

you can see what Prolog translates the rules to. How does your system translate
rules of the form Det -> [the] ? That is, does it trandate them to rules like
det ([the| X], X), or does is make use of rules containing the’ C predicate?

. Now run some traces. Apart from variable names, the traces you observe here

should be very similar to the traces you observed when running the difference
list recognizer. Infact, you will only observe any real differences if your version
of Prolog usesa’ C based trand ation.

And now it's time to write some DCGs:

1. The formal language aEven is very simple: it consists of al strings containing

an even number of as, and nothing else. Note that the empty string € belongs to
aEven. Write a DCG that generates aEven.

2. The formal language a'b?™c®™d" consists of al strings of the following form:

an unbroken block of as followed by an unbroken block of bs followed by an
unbroken block of cs followed by an unbroken block of ds, such that the a and
d blocks are exactly the same length, and the ¢ and d blocks are also exactly the
same length and furthermore consist of an even number of csand ds respectively.
For example, €, abbced, and aaabbbbeceeddd all belong to d'b?Mc?™d". Write a
DCG that generates this language.

3. Thelanguage that logicians call ‘ propositional logic over the propositional sym-

bolsp, g, and r’ can be defined by the following context free grammar:
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prop ->p

prop -> ¢

prop ->r

prop ->— prop

prop ->(prop A prop)
prop ->(prop V prop)
prop ->(prop — prop)

Write a DCG that generates this language. Actualy, because we don't know
about Prolog operators yet, you will have to make a few rather clumsy looking
compromises. For example, instead of getting it to recognize

—(p — q)
you will have to get it recognize things like
[not, "(', p, inplies, q, ")’']

instead. But we will learn later how to make the output nicer, so write the DCG
that accepts a clumsy looking version of this language. Use or for v, and and
for A.
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More Definite Clause Grammars

This lecture has two main goals:

1. To examine two important capabilities offered by DCG notation: extra argu-
ments and extra tests.

2. To discuss the status and limitations of DCGs.

8.1 Extraarguments

In the previous lecture we only scratched the surface of DCG notation: it actually
offers alot more than we've seen so far. For a start, DCGs allow us to specify extra
arguments. Extra arguments can be used for many purposes; we'll examine three.

8.1.1 Context free grammars with features

Asalfirst example, let's see how extra arguments can be used to add features to context-
free grammars.

Here's the DCG we worked with last week:
S --> np, vp.
np --> det,n.

vp --> Vv, np.
vp --> V.

det --> [the].
det -->[a].

n --> [wonan].
n-->[mn].

v --> [shoots].

Suppose we wanted to deal with sentences like “ She shoots him”, and “He shoots her”.
What should we do? Well, obviously we should add rules saying that “he’, “she”,
“him”, and “her” are pronouns:
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pro --> [he].
pro --> [she].
pro --> [hin].
pro --> [her].

Furthermore, we should add a rule saying that noun phrases can be pronouns:
np--> pro.
Up to a point, this new DCG works. For example:

s([she,shoots,hinm,[]).
yes

But there’s an obvious problem. The DCG will also accept alot of sentences that are

clearly wrong, such as “A woman shoots she”, “Her shoots a man”, and “Her shoots
she’:

s([ a, woman, shoot s, she], []) .
yes

s([ her, shoots, a,man],[]).
yes

s([ her, shoots, she],[]).
yes

That is, the grammar doesn’t know that “she” and “he” are subject pronouns and cannot
be used in object position; thus “A woman shoots she” is bad because it violates this
basic fact about English. Moreover, the grammar doesn’'t know that “her” and “him”
are object pronouns and cannot be used in subject position; thus “Her shoots a man”
is bad because it violates this constraint. Asfor “Her shoots she”, this manages to get
both matters wrong at once.

Now, it's pretty obvious what we have to do to put this right: we need to extend the
DCG with information about which pronouns can occur in subject position and which
in object position. The interesting question: how exactly are we to do this? First let’'s
look at a naive way of correcting this, namely adding new rules:

s --> np_subject, vp.

np_subj ect --> det,n.

np_object --> det,n.
np_subj ect --> pro_subject.
np_object --> pro_object.

vp --> v, np_object.
vp --> V.
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det --> [the].
det -->[a].

n --> [wonan].
n-->[mn].

pro_subject --> [he].
pro_subject --> [she].
pro_object --> [hin.
pro_object --> [her].

v --> [shoots].
Now this solution “works’. For example,

?- s([her,shoots,she],[]).
no

But neither computer scientists nor linguists would consider this a good solution. The
trouble is, a small addition to the lexicon has led to quite a big change in the DCG.
Let'sfaceit: “she” and “her” (and “he” and “him”) are the same in alot of respects.
But to deal with the property in which they differ (namely, in which position in the
sentence they can occur) we've had to make big changes to the grammar: in particular,
we've doubled the number of noun phrase rules. If we had to make further changes
(for example, to cope with plural noun phrases) things would get even worse. What
we really need is amore delicate programming mechanism that allows us to cope with
such facts without being forced to add rules all the time. And here's where the extra
arguments come into play. Look at the following grammar:

s --> np(subject), vp.

np(_) --> det,n.
np(X) --> pro(X)

vp --> v, np(object).
vp --> V.

det --> [the].
det -->[a].

n --> [wonan].
n-->[mn].

pro(subject) --> [he].
pro(subject) --> [she].
pro(object) --> [hin].
pro(object) --> [her].

v --> [shoots].
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The key thing to note is that this new grammar contains no new rules. It is exactly the
same as the first grammar that we wrote above, except that the symbol np is associated
with a new argument, either (subj ect), (object), (_) and (X). A linguist would
say that we've added afeature to distinguish various kinds of noun phrase. In particular,
note the four rules for the pronouns. Here we've used the extra argument to state
which pronouns can occur in subject position, and which occur in object position.
Thus these rules are the most fundamental, for they give us the basic facts about how
these pronouns can be used.

So what do the other rules do? Well, intuitively, therule

np(X) --> pro(X).

uses the extra argument (the variable X) to pass these basic facts about pronouns up to
noun phrases built out of them: because the variable X is used as the extra argument
for both the np and the pronoun, Prolog unification will guarantee that they will be
given the same value. In particular, if the pronoun we use is “she” (in which case
X=subj ect ), then the np wil, through its extra argument (X=subj ect ), also be marked
as being a subject np. On the other hand, if the pronoun we useis“her” (in which case
X=obj ect ), then the extra argument np will be marked X=obj ect too. And this, of
course, is exactly the behaviour we want.

On the other hand, although noun phrases built using the rule
np(_) --> det,n.

also have an extra argument, we've used the anonymous variable as its value. Essen-
tialy this means can be either, which is correct, for expressions built using this rule
(such as “the man” and “awoman”) can be used in both subject and object position.

Now consider the rule
vp --> v, np(object).

This says that to apply this rule we need to use an noun phrase whose extra argument
unifies with obj ect . This can be either noun phrases built from object pronouns or
noun phrases such as “the man” and “a woman” which have the anonymous variable
as the value of the extra argument. Crucially, pronouns marked has having subj ect
as the value of the extra argument can’t be used here: the atoms obj ect and subj ect
don’'t unify. Note that the rule

s --> np(subject), vp.

works in an analogous fashion to prevent noun phrases made of object pronouns from
ending up in subject position.

Thisworks. You can check it out by posing the query:

?- s(X[1)-
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Asyou step through the responses, you'll seethat only acceptable English is generated.

But while the intuitive explanation just given is correct, what's really going on? The
key thing to remember is that DCG rules are really are just a convenient abbreviation.
For example, the rule

s --> np, vp.
isreally syntactic sugar for

s(A B) :-
np(A Q,
vp(C, B).

That is, as we learned in the previous lecture, the DCG notation is a way of hiding
the two arguments responsible for the difference list representation, so that we don’'t
have to think about them. We work with the nice user friendly notation, and Prolog
trandates it into the clauses just given.

Ok, so we obviously need to ask what
s --> np(subject), vp.
trandates into. Here's the answer:

s(A B) :-
np(subj ect, A Q),
vp(C, B).

As should now be clear, the name “extra argument” is a good one: as this translation
makes clear, the (subj ect) symbol really is just one more argument in an ordinary
Prolog rule! Similarly, our noun phrase DCG rules translate into

np(A B O :-
det (B, D),
n(b, O .

np(A B O :-
pro(A B, C.

Note that both rules have three arguments. The first, A, is the extra argument, and the
last two arethe ordinary, hidden DCG arguments (the two hidden arguments are always
the last two arguments).

Incidentally, how do you think we would use the grammar to list the grammatical houn
phrases? Well, if we had been working withthe DCG rulenp -> det, n (that is, arule
with no extra arguments) we would have made the query

np(NP, [1).

So it’s not too surprising that we need to pose the query
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np(X, NP, []).

when working with our new DCG. Here's what the response would be.

X = 2625
NP = [t he, worman]
X = 2625

NP = [t he, nan]

X = 2625

NP = [a, wonan]
X = 2625

NP = [a, man]

X = subj ect
NP = [ he]

X = subj ect

NP = [she]
X = obj ect
NP = [ hinj
X = obj ect
NP = [ her]
no

One final remark: don’t be misled by this simplicity of our example. Extra arguments
can be used to cope with some complex syntactic problems. DCGs are no longer the
state-of-art grammar development tools they once were, but they’re not toys either.
Once you know about writing DCGs with extra arguments, you can write some fairly
sophisticated grammars.

8.1.2 Building parse trees

So far, the programs we have discussed have been able to recognize grammatical struc-
ture (that is, they could correctly answer “yes’ or “no” when asked whether the input
was a sentence, a houn phrase, and so on) and to generate grammatical output. This
is pleasant, but we would also like to be able to parse. That is, we would like our
programs not only to tell us which sentences are grammatical, but also to give us an
analysis of their structure. In particular, we would like to see the trees the grammar
assigns to sentences.

WEell, using only standard Prolog tool we can’'t actually draw nice pictures of trees,
but we can build data structures which describe trees in a clear way. For example,
corresponding to the tree
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we could have the following term:
s(np(det(a), n(wonman)), vp(v(shoots))).

Sure: it doesn’t look as nice, but al the information in the picture is there. And, with
the aid of a decent graphics package, it would be easy to turn this term into a picture.

But how do we get DCGs to build such terms? Actualy, it's pretty easy. After dl, in
effect a DCG has to work out what the tree structure is when recognizing a sentence.
So we just need to find away of keeping track of the structure that the DCG finds. We
do this by adding extra arguments. Here's how:

s(S(NP,VP)) --> np(NP), vp(VP).
np(np(DET,N)) --> det(DET), n(N).

vp(vp(V,NP)) --> v(V), np(NP).
vp(vp(V)) -->Vv(V).

det (det(the)) --> [the].
det (det (a)) -->[a].

n(n(woman)) --> [wonan].
n(n(man)) --> [man].

v(v(shoots)) --> [shoots].
What's going on here? Essentially we are building the parse trees for the syntactic cate-
gorieson theleft-hand side of the rules out of the parse treesfor the syntactic categories
ontheright-hand side of therules. Consider therulevp(vp(V, NP)) -> v(V), np(NP).
When we make a query using this DCG, theVvinv(V) andtheNPinnp(NP) will bein-
stantiated to terms representing parse trees. For example, perhaps v will be instantiated
to

v(shoot s)

and NP will be instantiated to

np(det (a), n(wonan)).
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What is the term corresponding to avp made out of these two structures? Obvioudly it
should be this:

vp(v(shoots), np(det(a), n(wonan))).

And thisis precisely what the extraargument vp(V, NP) intherulevp(vp(V, NP)) ->
v(V), np(NP) givesus:. it formsaterm whose functor isvp, and whose first and second
arguments are the values of v and NP respectively. To put it informally: it plugs the v
and the NP terms together under avp functor.

To parse the sentence “A woman shoots’ we pose the query:
s(T,[a, wonman, shoots],[]).

That is, we ask for the extra argument T to be instantiated to a parse tree for the sen-
tence. And we get:

T = s(np(det(a), n(worman)), vp(v(shoots)))
yes

Furthermore, we can generate all parse trees by making the following query:
s(T,S,[1).

Thefirst three responses are:

T = s(np(det (the), n(woman)), vp(v(shoots), np(det(the), n(wonman))))
S = [the, worman, shoot s, t he, woman]

T = s(np(det (the), n(woman)), vp(v(shoots), np(det(the),n(man))))
S = [t he, wonan, shoot s, t he, man]

T = s(np(det (the), n(wonman)), vp(v(shoots), np(det(a), n(worman))))
S = [t he, wonan, shoot s, a, wonan]

This code should be studied closely: it's a classic example of building structure using
unification.

Extra arguments can also be used to build semantic representations. We did not say
anything about what the wordsin our little DCG mean. Infact, nowadays alot isknown
about the semantics of natural languages, and it is surprisingly easy to build semantic
representations which partially capture the meaning of sentences or entire discourses.
Such representations are usually expressions of some formal language (for example
first-order logic, discourse representation structures, or a database query language)
and they are usually built up compositionally. That is, the meaning of each word is
expressed in the formal language; this meaning is given as an extra argument in the
DCG entries for the individual words. Then, for each rule in the grammar, an extra
argument shows how to combine the meaning of the two subcomponents. For example,
totherules -> np, vp wewould add an extra argument stating how to combine the
np meaning and the vp meaning to form the s meaning. Although somewhat more
complex, the semantic construction process is quite like the way we built up the parse
tree for the sentence from the parse tree of its subparts.
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8.1.3 Beyond context free languages

In the previous lecture we introduced DCGs as a useful Prolog tool for representing
and working with context free grammars. Now, thisis certainly agood way of thinking
about DCGs, but it's not the whole story. For the fact of the matter is. DCGs can
deal with alot more than just context free languages. The extra arguments we have
been discussing (and indeed, the extra tests we shall introduce shortly) give us the
tools for coping with any computable language whatsoever. We shall illustrate this by
presenting asimple DCG for the formal language d'b"c". %%-\ {\epsilon\ }/.

The formal language a'b"c" %%-\{\epsilon\}/ consists of al non-null strings made
up of as, bs, and cswhich consist of an unbroken block of as, followed by an unbroken
block of bs, followed by an unbroken block of cs, all three blocks having the same
length. For example, abc, and aabbcc and aaabbbccc al belong to d'b"c". %%-
\{\epsilon\}/. Furthermore, € belongs to &'b"c".

Theinteresting thing about thislanguage isthat it isnot context free. Try whatever you
like, you will not succeed in writing a context free grammar that generates precisely
these strings. Proving this would take us too far afield, but the proof is not particularly
difficult, and you can find it in many books on formal language theory.

On the other hand, as we shall now seg, it is very easy to write a DCG that generates
this language. Just aswe did in the previous lecture, we shall represent strings as lists;
for example, the string abc will be represented using the list [ a, b, ¢]. Given this
convention, here's the DCG we need:

s --> abl ock(Count), bbl ock( Count), cbl ock( Count).

abl ock(0) -->[].
abl ock(succ(Count)) --> [a], abl ock(Count).

bbl ock(0) -->[].
bbl ock(succ(Count)) --> [b], bbl ock(Count).

cblock(0) -->[].
cbl ock(succ(Count)) --> [c], cbl ock(Count).

Theidea underlying this DCG isfairly smple: we use an extra argument to keep track
of the length of the blocks. The s rule simply says that we want ablock of as followed
by a block of bs followed by block of cs, and al three blocks are to have the same
length, namely Count .

But what should the values of Count be? The obvious answer is: 1, 2, 3, 4,..., and
so on. But as yet we don’t know how to mix DCGs and arithmetic, so thisisn’t very
helpful. Fortunately there's an easier (and more elegant) way. Represent the number
0 by 0, the number 1 by succ(0), the number 2 by succ(succ(0)), the number 3 by
succ(succ(succ(0))),..., and so on, just as we did it in Chapter 3. (You can read
succ as “successor of”.) Using this simple notation we can “count using matching”.

Thisis precisely what the above DCG does, and it works very neatly. For example,
suppose we pose the following query:

s(Count, L,[]).
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which asks Prolog to generate the lists L of symbols that belong to this language, and
to give the value of Count needed to produce each item. Then the first three responses
are:

Count =0
L =[]

Count = succ(0)
L =1[a b, c]

Count = succ(succ(0))
L=1[a a b, b, c, c]

Count = succ(succ(succ(0)))
L=1Ja a a, b, b, b, ¢, c, c]

Thevalue of Count clearly corresponds to the length of the blocks.

So: DCGsare not just atool for working with context free grammars. They are strictly
more powerful than that, and (as we've just seen) part of the extra power comes from
the use of extra arguments.

8.2 Extragoals

Any DCGruleisreally syntactic sugar for an ordinary Prolog rule. Soit’snot really too
surprising that we're allowed to make use of extra arguments. Similarly, it shouldn’t
come as too much of a surprise that we can also add calls to any Prolog predicate
whatsoever to the right hand side of aDCG rule.

The DCG of the previous section can, for example, be adapted to work with Prolog
numbers instead of the successor representation of numbers by using calls to Prolog’s
built-in arithmetic functionality to add up how many as, bs, and cs have already been
generated. Hereisthe code:

s --> abl ock(Count), bbl ock( Count), cbl ock(Count).

abl ock(0) -->[].
abl ock(NewCount) --> [a], abl ock(Count), {NewCount is Count + 1}.

bbl ock(0) -->[].
bbl ock( NewCount) --> [b], bbl ock(Count), {NewCount is Count + 1}.

cbl ock(0) -->1].
cbl ock(NewCount) --> [c],cblock(Count), {NewCount is Count + 1}.

These extra goals can be written anywhere on the right side of a DCG rule, but must
stand between curly brackets. When Prolog encounters such curly brackets while
trandlating a DCG into its internal representation, it just takes the extra goals speci-
fied between the curly brackets over into the trandation. So, the second rule for the
non-terminal abl ock above would be translated as follows:
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abl ock( NewCount , A, B) : -
"C (A a, O
abl ock(Count, C, B)
NewCount is Count + 1.

This possibility of adding arbitrary Prolog goals to the right hand side of DCG rules,
makes DCGsvery very powerful (in fact, we can do anything that we can do in Prolog)
and is not used much. Thereis, however, one interesting application for extra goalsin
computational linguistics; namely that with the help of extra goals, we can seperate the
rules of agrammar from lexical information.

8.2.1 Separating rules and lexicon

By ‘separating rules and lexicon’ we mean that we want to eliminate all mentioning of
individual words in our DCGs and instead record all the information about individual
words separately in alexicon. <!- To seewhat ismeant by this, let’s return to our basic
grammar, namely:

np - - > det,n.
vp - - > v,np.

vp - - > V.

det - - > [the].
det - - >[a].
n- - > [wnmn].
n- - >/[mn].

v - - > [shoots].

We are going to separate the rules form the lexicon. That is, we are going to write a
DCG that generates exactly the same language, but in which no rule mentions any in-
dividua word. All the information about individual words will be recorded separately.
-

Here is an example of a (very simple) lexicon. Lexical entries are encoded by using
a predicate | ex/ 2 whose first argument is a word, and whose second argument is a
syntactic category.

| ex(the, det).
| ex(a, det).

| ex(wonan, n) .
| ex(man, n).

| ex(shoots, v).

And here is a simple grammar that could go with this lexicon. Note that it is very
similar to our basic DCG of the previous chapter. In fact, both grammars generate
exactly the same language. The only rules that have changed are those, that mentioned
specific words, i.e. the det , n, and v rules.
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det --> [Word], {Il ex(Word, det)}.
n -->[Wrd], {lex(Wrd,n)}.
v --> [Word], {l ex(Word, v)}.

Consider the new det rule. Thisrule part says“adet can consist of alist containing a
single element Wor d” (note that Wor d isavariable). Then the extratest adds the crucia
stipulation: “so long as Wr d matches with something that islisted in the lexicon as a
determiner”. With our present lexicon, this means that or d must be matched either
with theword “a’ or “the”’. So this single rule replaces the two previous DCG rules for
det .

This explains the “how” of separating rules from lexicon, but it doesn’'t explain the
“why”. Isit redly so important? Is this new way of writing DCGs really that much
better?

The answer is an unequivoca “yes’! It's much better, and for at least two reasons.

Thefirst reason istheoretical. Arguably rules should not mention specific lexical items.
The purpose of rulesisto list general syntactic facts, such as the fact that sentence can
be made up of a noun phrase followed by a verb phrase. The rules for s, np, and
vp describe such general syntactic facts, but the old rules for det, n, and v don't.
Instead, the old rules simply list particular facts: that “a’ is a determiner, that “the” is
adeterminer, and so on. From theoretical perspective it is much neater to have asingle
rule that says “anything is adeterminer (or anoun, or averb,...) if itislisted assuchin
thelexicon”. And this, of course, is precisely what our new DCG rules say.

The second reason is more practical. One of the key lessons computational linguists
have learnt over the last twenty or so years is that the lexicon is by far the most inter-
esting, important (and expensive!) repository of linguistic knowledge. Bluntly, if you
want to get to grips with natural language from a computational perspective, you need
to know alot of words, and you need to know alot about them.

Now, our little lexicon, with its simple two-place | ex entries, isatoy. But area lex-
icon is (most emphatically!) not. A real lexicon is likely to be very large (it may
contain hundreds of thousands, or even millions, of words) and moreover, the informa-
tion associated with each word is likely to be very rich. Our | ex entries give only the
syntactical category of each word, but areal lexicon will give much more, such asin-
formation about its phonological, morphological, semantic, and pragmatic properties.

Because real lexicons are big and complex, from a software engineering perspective it
is best to write simple grammars that have a simple, well-defined way, of pulling out
the information they need from vast lexicons. That is, grammar should be thought of
as separate entities which can access the information contained in lexicons. We can
then use specialized mechanisms for efficiently storing the lexicon and retrieving data
fromit.

Our new DCG rules, though simple, illustrate the basic idea. The new rules really do
just list general syntactic facts, and the extra tests act as an interface to our (admittedly
simple) lexicon that lets the rules find exactly the information they need. Furthermore,
we now take advantage of Prolog’s first argument indexing which makes looking up a
word in the lexicon more efficient. First argument indexing is a technique for making
Prolog’'s knowledge base access more efficient. If in the query the first argument is
instantiated it allows Prolog to ignore all clauses, where the first argument’s functor
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and arity is different. This means that we can get al the possible categories of e.g.
man immediately without having to even look at the lexicon entries for all the other
hundreds or thousands of words that we might have in our lexicon.

8.3 Concluding remarks

We now have afairly useful picture of what DCGs are and what they can do for us. To
conclude, let’s think about them from a somewhat higher level, from both aformal and
alinguistic perspective.

First the formal remarks. For the most part, we have presented DCGs as a simple tool
for encoding context free grammars (or context free grammars enriched with features
such as subject and object). But DCGs go beyond this. We saw that it was possible to
write a DCG that generated a non context free language. In fact, any program what-
soever can be written in DCG notation. That is, DCGs are full-fledged programming
language in their own right (they are Turing-complete, to use the proper terminology).
And athough DCGs are usually associated with linguistic applications, they can be
useful for other purposes.

So how good are DCGs from a linguistic perspective? Well, mixed. At one stage
(in the early 1980s) they were pretty much state of the art. They made it possible to
code complex grammars in a clear way, and to explore the interplay of syntactic and
semantic ideas. Certainly any history of parsing in computational linguistics would
give DCGs an honorable mention.

Nonetheless, DCGs have drawbacks. For a start, their tendency to loop when the goal
ordering is wrong (we saw an example in the last lecture when we added a rule for
conjunctions) is annoying; we don’t want to think about such issues when writing
serious grammars. Furthermore, while the ability to add extra arguments is useful,
if we need to use lots of them (and for big grammars we will) it is a rather clumsy
mechanism.

It isimportant to notice, however, that these problems come up because of the way Pro-
log interprets DCG rules. They are not inherent to the DCG notation. Any of you who
have done a course on parsing a gorithms probably know that all top-down parsers|oop
on left-cursive grammars. S0, it is not surprising that Prolog, which interprets DCGs
in a top-down fashion, loops on the left-recursive grammar rules -> s conj s. If
we used adifferent strategy to interpret DCGs, a bottom-up strategy e.g., we would not
run into the same problem. Similarly, if we didn’t use Prolog’s built in interpretation
of DCGs, we could use the extra arguments for a more sophisticated specification of
feature structures, that would facilitate the use of large feature structures.

DCGs as we saw them in this chapter, a nice notation for context free grammars en-
hanced with some features that comes with a free parser/recognizer, are probably best
viewed as a convenient tool for testing new grammatical ideas, or for implementing
reasonably complex grammars for particular applications. DCGs are not perfect, but
they are very useful. Even if you have never programmed before, simply using what
you have learned so far you are ready to start experimenting with reasonably sophisti-
cated grammar writing. With a conventional programming language (such as C++ or
Java) it simply wouldn’t be possible to reach this stage so soon. Things would be eas-
ier in functional languages (such as LISP, SML, or Haskell), but even so, it is doubtful
whether beginners could do so much so early.
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8.4 Exercises
Exercise 8.1 Here'sour basic DCG.
S --> np, vp.
np --> det,n.

vp --> Vv, np.
vp --> V.

det --> [the].
det -->[a].

n --> [wonan].
n-->[mn].

v --> [shoots].

Suppose we add the noun “men” (which is plural) and the verb “ shoot”. Then we
would want a DCG which says that “ The men shoot” is ok, ‘ The man shoots’ is ok,
“The men shoots’ is not ok, and “ The man shoot” is not ok. Change the DCG so
that it correctly handles these sentences. Use an extra argument to cope with the
singular/plural distinction.

Exercise 8.2 Trandate the following DCG rule into the form Prolog uses:

kanga(V,R Q -->ro0o(V,R),jumps(Q Q,{rmarsupial (VR Q}.

8.5 Practical Session 8

The purpose of Practical Session 8 is to help you get familiar with DCGs that make
use of additional arguments and tests.

First some keyboard exercises:

1. Trace some examples using the DCG which uses extra arguments to handle the
subject/object distinct, the DCG which produces parses, and the DCG which
uses extra tests to separate lexicon and rules. Make sure you fully understand
the way all three DCGs work.

2. Carry out traces on the DCG for a'b"c" that was given in the text (that is, the
DCG that gave the Count variable the values 0, succ(0), succ(succ(0)), and
so on). Try cases where the three blocks of as, bs, and cs are indeed of the same
length as well as queries where this is not the case.

Now for some programming. We suggest two exercises.
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1. First, bring together all the things we have learned about DCGs for English into
one DCG. In particular, today we say how to use extra arguments to deal with
the subject/object distinction, and in the exercises you were asked to use addi-
tional arguments to deal with the singular/plural distinction. Write aDCG which
handles both. Moreover, write the DCG in such away that it will produce parse
trees, and makes use of a separate lexicon.

2. Once you have done this, extend the DCG so that noun phrases can be modified
by adjectives and simple prepositiona phrases (that is, it should be able to handle
noun phrases such as “the small frightened woman on the table” or “the big fat
cow under the shower”). Then, further extend it so that the distinction between
first, second, and third person pronounsis correctly handled (both in subject and
object form).
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A Closer Look at Terms

This lecture has three main goals:

1. Tointroduce the == predicate.
2. Totake acloser look at term structure.

3. Tointroduce operators.

9.1 Comparing terms

Prolog contains an important predicate for comparing terms, namely ==. This tests
whether two terms are identical. It does not instantiate variables, thusit is not the same
asthe unification predicate =.

Let'slook at some examples:

?= a == a.
yes

?- a == h.
no

yes

These answers Prolog gives here should be obvious, though pay attention to the last
one. It tells us that, as far as Prolog is concerned, a and ’ a’ are literaly the same
object.

Now let’'s look at examples involving variables, and explicitly compare == with the
unification predicate =.

?- X==Y.
no

2. X=Y.
2808
2808

< X
I

yes
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In these queries, X and Y are uninstantiated variables, we haven’t given them any value.
Thus the first answer is correct: X and Y are not identical objects, so the == test fails.
On the other hand, the use of = succeeds, for X and Y can be unified.

Let’'snow look at queries involving instantiated variables:

?- a=X, a==X

X =a

Thefirst conjunct, a=X, binds X to a. Thus when a==X is evaluated, the left-hand side
and right-hand sides are exactly the same Prolog object, and a==X succeeds.

A similar thing happens in the following query:

2. X=Y, X==V.
X = _4500

Y = 4500
yes

The conjunct X=Y first unifies the variables X and Y. Thus when the second conjunct
X==Y is evaluated, the two variables are exactly the same Prolog object, and the second
conjunct succeeds as well.

It should now be clear that = and == are very different, nonethel ess there is an important
relation between them. Namely this. == can be viewed as a stronger test for equality
between terms than =. That is, if ternl and t er mare Prolog terms, and the query
terml == tern® succeeds, thenthequery terni = tern2 will succeed too.

Ancther predicate worth knowing about is\ ==. This predicate is defined so that it
succeeds precisely in those case where == fails. That is, it succeeds whenever two
terms are not identical, and fails otherwise. For example:

?- a\== a.
no

a \== bh.
yes

These should be clear; they are simply the opposite of the answers we got above when
we used ==. Now consider:

?- X\ ==a.

X = 3719
yes



9.2. Terms with a special notation 127

Why this response? Well, we know from above that the query X==a fails (recall the
way == treats uninstantiated variables). Thus X\ ==a should succeed, and it does.

Similarly:
?- X\ ==V.
X = _798
Y = _799
yes

Again, we know from above that the query X==Y fails, thus X\ ==Y succeeds

9.2 Terms with a special notation

Sometimes terms look different to us, but Prolog regards them as identical. For exam-
ple, when we compare a and * a’ , we see two distinct strings of symbols, but Prolog
treats them as identical. And in fact there are many other cases where Prolog regards
two strings as being exactly the same term. Why? Because it makes programming
more pleasant. Sometimes the notation Prolog likesisn't as natural, as the notation we
would like. So it is nice to be able to to write programs in the notation we like, and to
let Prolog run them in the notation it finds natural.

9.2.1 Arithmetic terms

The arithmetic predicates introduced earlier are a good example of this. Aswas men-
tioned in Chapter 5, /, -, *, and \ are functors, and arithmetic expressions such as

2+3 are terms. And thisis not an analogy. Apart from the fact that we can eval-
uate them with the help of i s, for Prolog strings of symbols such as 2+3 really are
i denti cal with ordinary complex terms.

?- 243 == +(2,3).
yes

2. +(2,3) == 2+3.

yes
?- 2-3 == -(2,3).
yes
?- *(2,3) == 2*3,
yes

2. 2%(7+2) == *(2,+(7,2)).
yes

In short, the familiar arithmetic notation is there for our convenience. Prolog doesn’'t
regard it as different from the usual term notation.

Similar remarks to the arithmetic comparison predicates <, =<, =: =, =\ =, > and >=:
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?- (2 <3) == <(2,3).

2. (2 =< 3) == =<(2,3).

?- (2 ===3) == =2=52,3).

?- (2 =\=3) == =2\=(2,3).

?2- (2 > 3) == >(2,3).

2- (2 >= 3) == >=(2,3).

Two remarks. First these example show why it's nice to have the user friendly notation
(would you want to have to work with expressions like =: =( 2, 3) ?). Second, note that
we enclosed the left hand argument in brackets. For example, we didn’t ask

2 == 3 == =:=(2,3).
we asked

(2 == 3) == =:=(2,3).
Why? Well, Prolog finds the query 2 =:= 3 == =:=(2, 3) confusing (and can you
blameit?). It'snot sure whether to bracket theexpressionsas(2 =:= 3) == =:=(2, 3)
(which is what we want), or 2 == (3 == =:=(2,3)). So we need to indicate the

grouping explicitly.

One final remark. We have now introduced three rather similar looking symbols,
namely =, ==, and =: = (and indeed, there’'saso\ =, \ ==, and =\ =). Here'sasummary:

= The unification predicate.

Succeeds if it can unify its arguments, fails otherwise.
\=  Thenegation of the unification predicate.

Succeeds if = fails, and vice-versa.
== Theidentity predicate.

Succeeds if its arguments are identical, fails otherwise.
\ == The negation of the identity predicate.

Succeeds if == fails, and vice-versa.
=: = Thearithmetic equality predicate.

Succeeds if its arguments eval uate to the same integer.
=\= Thearithmetic inequality predicate.

Succeeds if its arguments evaluate to different integers.
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9.2.2 Lists as terms

Lists are another good example where Prolog works with one internal representation,
and gives us another more user friendly notation to work with. Let’s start with a quick
look at the user friendly notation (that is, the use of the square bracket [ and ]). In
fact, because Prolog also offers the | constructor, there are are many ways of writing
the same list, even at the user friendly level:

?- [a,b,c,d] ==[a |[b,c, d]].

2- [ab,c,d] ==[ab |[c, d]].

?- [a,b,c,d] ==[a,b,c |[d]].

?- [a,b,c,d] == [a,b,c,d |[]].

But how does Prolog view lists? In fact, Prolog sees lists as terms which are built out of
two special terms, namely [ ], which represents the empty list, and . , afunctor of arity
2 which isused to build non-empty list (theterms[] and. arecalled list constructors).

Here's how these constructors are used to build lists. Needless to say, the definition is
recursive:

e Theempty lististheterm[]. The empty list has length O.

e A non-empty listisany term of theform. (term|i st), wheret er mcan be any
Prologterm, and | i st isany list. If I i st haslength n, then. (term list) has
length n+ 1.

?- (a[]) ==1[4a].

yes

?- . (f(d,e),[]) ==[f(d,e)].

yes

?- .(a,.(b,[])) ==1[aDb].
yes

2. .(a, .(b,.(f(d,e),[1))) ==[ab,f(d e)].
yes

?- .(.(all]),[1) ==[la]l].

yes

- .G (a D). [, 1) == [[lall].

yes
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?- . (.(a . (b [])),[1) == [lab]].

yes

?- .(.(a,.(b,[]1))..(c,[1)) == [la b],c].

yes

?- . (.(a[]),.(b,.(c,[1))) == [[a],b,c].

yes

?- .(.(all), . (.(b,.(c,[1)),[1)) ==1[[a],[b,c]].

yes

Again, it is clear that Prolog’s internal notation for lists is not as user friendly as the
use of the sgquare bracket notation. But actualy, it's not as bad asit seems at first sight.
It is very similar to the | notation. It represents alist in two parts; its first element
or head, and a list representing the rest of the list. The trick is to read these terms as
trees. The internal nodes of this tree are labeled with . and all have two daughter
nodes. The subtree under the left daughter is representing the first element of the list
and the subtree under the right daughter the rest of the list. So, the tree representation
of . (a,.(.(b,.(c,[1)),.(d,[1))),i.e[a, [b,c], d],lookslikethis:

-7 S, el 1 AL 1)

T T

F | '-—. o _Ih-(-(hi ‘(Ei[ ].}.}i .l:d._.[]ﬂ
(b i1y T . e 4d, )
Pt ,x’“"‘-f]
1?'. d
FON | PN
¢ I

Onefinal remark. Prolog is very polite. Not only are you free to talk to it in your own
user friendly notation, it will reply in the same way.

?- . (f(d,e),[]) =Y.

Y = [f(d, e)]

yes

?- . (a.(b,[])) =X Z= .(.(c,[1).[]), W=1[1,2X7Z].
X = [a, b]

Z =[[c]]
W= 1[1,2,[ab],[[c]]]
yes
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9.3 Examining Terms

In this section, we will learn about a couple of built-in predicates that let us examine
terms more closely. First, we will look at predicates that test whether their arguments
are terms of a certain type, whether they are, for instance, an atom or a number. Then,
we will see predicates that tell us something about the structure of complex terms.

9.3.1 Types of Terms

Remember what we said about terms in Prolog in the very first lecture. We saw that
there are different kinds of terms, namely variables, atoms, numbers and complex terms
and what they look like. Furthermore, we said that atoms and numbers are grouped
together under the name constants and constants and variables constitute the simple
terms. The following picture summarizes this:

terms

TN

stmple terms comiplex terms

N

variahles constoants

2N

atomns nmmibers

Sometimes it is useful to know of which type agiven termis. You might, for instance,
want to write a predicate that has to deal with different kinds of terms, but has to treat
them in different ways. Prolog provides a couple of built-in predicates that test whether
agiven termis of acertain type. Herethey are:

atom 1 Tests whether the argument is an atom.

integer/1 Testswhether the argument is an integer, such as 4, 10, or - 6.

float/1 Tests whether the argument is a floating point number, such as1. 3 or 5. 0.
nunber/1  Tests whether the argument is a number, i.e. an integer or afloat
atomc/1  Testswhether the argument is a constant.

var/ 1 Tests whether the argument is uninstantiated.

nonvar/1  Testswhether the argument isinstantiated.

So, let’s see how they behave.

?- atoma).

yes

?- atom(7).

no

?- atom(l oves(vincent,ma)).
no
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These three examplesfor the behavior of at ont 1 ispretty much what one would expect
of a predicate for testing whether aterm is an atom. But what happens, when we call
at onl 1 with avariable as argument?

?- atom X).

no

This makes sense, since an uninstantiated variable is not an atom. If we, however,
instantiate X with an atom first and then ask at on( X) , Prolog answers ‘yes'.

?- X = a, atom(X).
X = a
yes

But it isimportant that the instantiation is done before the test:

?- atom X), X = a.
no

nunmber/ 1, integer/ 1, andfl oat/ 1 behave analogoudly. Try it!

atomi c/ 1 tests whether a given term is a constant, i.e. whether it is either an atom
or anumber. So at omi ¢/ 1 will evaluate to true whenever either at onf 1 or nunber/ 1
evaluate to true and it fails when both of them fail.

?- atomc(ma).

yes

?- atomc(8).

yes

?- atom c(l oves(vincent,nia)).
no

?- atom c(X)

no

Finaly there are two predicates to test whether the argument is an uninstantiated or
instantiated variable. So:

?- var (X)

yes

?- var(loves(vincent, ma)).

no

?- nonvar (l oves(vincent,nmia)).
yes

?- nonvar (X).

no

Note that a complex term which contains uninstantiated variables, is of course not an
uninstantiated variable itself (but a complex term). Therefore:
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?- var(loves(_,ma)).

no

?- nonvar (loves(_,ma)).
yes

And again, when the variable X gets instantiated var (X) and nonvar (X) behave dif-
ferently depending on whether they are called before or after the instantiation.

?- X = a, var(X).
no

?- var(X), X = a.
X =a

yes

9.3.2 The Structure of Terms

Given a complex term of which you don’t know what it looks like, what kind of infor-
mation would be interesting to get? Probably, what's the functor, what's the arity and
what do the arguments look like. Prolog provides built-in predicates that answer these
questions. The first two are answered by the predicate f unct or/ 3. Given a complex
term f unct or/ 3 will tell uswhat the functor and the arity of thisterm are.

?- functor(f(a,b),F A).

A=2

F=f

yes

?- functor(a, F, A .
A=0

F=a

yes

?- functor([a,b,c],XY).
X ="

Y =2

yes

So, we can use the predicate f unct or to find out the functor and the arity of aterm,
but we can also use it to construct terms, by specifying the second and third argument
and leaving the first undetermined. The query

?- functor(T,f,8).
for example, returns the following answer:

T = f(_G286, _(287, (288, _(289, (90, (291, (92, _(293)
yes

Note, that either thefirst argument or the second and third argument have to be instanti-
ated. So, Prolog would answer with an error message to the query f unct or (T, f, N) . If
you think about what the query means, Prolog is reacting in a sensible way. The query
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is asking Prolog to construct a complex term without telling it how many arguments to
provide and that is something Prolog can just not do.

In the previous section, we saw built-in predicates for testing whether something is
an atom, a number, a constant, or a variable. So, to make the list complete, we were
actually missing a predicate for testing whether something is a complex term. Now,
we can define such a predicate by making use of the predicate f unct or . All we have
to do isto check that the term isinstantiated and that it has arguments, i.e. that its arity
is greater than zero. Hereis the predicate definition.

conpl exterm(X) :-
nonvar ( X),
functor (X _, A,
A > 0.

In addition to the predicate f unct or there isthe predicate ar g/ 3 which tells us about
arguments of complex terms. It takes a number N and a complex term T and returns
the Nth argument of T in its third argument. It can be used to access the value of an
argument

?- arg(2,loves(vincent, ma), X).
X =ma
yes

or to instantiate an argument.

?- arg(2,loves(vincent, X), m a).
X =ma
yes

Trying to access an argument which doesn’t exist, of course fails.

?- arg(2, happy(yol anda), X) .
no

The third useful built-in predicate for analyzing term structureis’ =. .’ /2. It takes a
complex term and returns a list that contains the functor as first element and then all
the arguments. So, when asked the query * =. .’ (1 oves(vi ncent, ni a), X) Prolog
will answer X = [l oves, vi ncent, ni a]. This predicate is also called univ and can
be used as an infix operator. Here are a couple of examples.

?- cause(vincent, dead(zed)) =.. X
X = [cause, vincent, dead(zed)]
Yes

?- X =. [a,b(c),d].

X = a(b(c), d)

Yes

?- footmassage(Y,ma) =.. X

Y = _&303

X = [footmassage, _G303, m a]
Yes
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Univ (" =..") is aways useful when something has to be done to all arguments
of a complex term. Since it returns the arguments as a list, normal list processing
strategies can be used to traverse the arguments. As an example, let’s define a pred-
icate called copy_t er mwhich makes a copy of aterm replacing variables that occur
in the original term by new variables in the copy. The copy of dead(zed) should
be dead(zed), for instance. And the copy of jeal | ou(narcel | us, X) should be
jeal l ous(nmarcel | us, _@&35); i.e. the variable X in the origina term has been re-
places by some new variable.

So, the predicate copy_t er mhas two arguments. It takes any Prolog term in the first
argument and returns a copy of this Prolog term in the second argument. In case the
input argument is an atom or a number, the copying is simple: the same term should
be returned.

copy_term(X, X) :- atom c(X).
In case the input term is avariable, the copy should be anew variable.

copy_term(X,_) :- var(X).

With these two clauses we have defined how to copy simple terms. What about com-
plex terms? Well, copy_t er mshould return a complex term with the same functor and
arity and all arguments of this new complex term should be copies of the correspond-
ing arguments in the input term. That means, we have to look at all arguments of the
input term and copy them with recursive cals to copy_t er m Hereis the Prolog code
for this third clause:

copy_term( X, Y) :-
nonvar ( X),
functor (X F, A),
A > 0,
functor (Y, F, A,
X =. [FlArgsX],
Y [Fl ArgsY],
copy_terns_in_list(ArgsX ArgsY).

copy_terms_in_list([],[])-

copy_terms_in_list([H n|TIn],[HCut| TOQut])
copy_term H n, Hout),
copy_ternms_in_list(TIn, TOut).

So, we first check whether the input term is a complex term: it is not a variable and
its arity is greater than 0. We then request that the copy should have the same functor
and arity. Finaly, we have to copy al arguments of the input term. To do so, we use
univ to collect the arguments into alist and then use asimple list processing predicate
copy_terns_in_list toonehby one copy the elements of thislist.

Here isthe whole code for copy _t ermi
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copy_term( X, _) :- var(X).
copy_term(X, X) :- atom c(X).

copy_term( X, Y) :-
nonvar ( X),
functor (X F, A,
functor (Y, F, A,

A > 0,
X =.. [F|ArgsX],
Y =.. [F|ArgsY],

copy_terns_in_list(ArgsX ArgsY).

copy_terms_in_list([],[])-

copy_terms_in_list([H n|TIn],[HCut| TOQut])
copy_term(H n, Hout),
copy_ternms_in_list(TIn, TOut).

9.4 Operators

9.4.1 Properties of operators

By now, we have seen severa times already that, in certain cases, Prolog let’s us
use a more user friendly notation than what it will use as its internal representation.
The notation for arithmetic operators was an example. Internally, Prolog will use
is(11,+(2,%(3,3))), but wecanwrite11 is 2 + 3 * 3. Such functors that can
be written in between their arguments are called infix operators. Other infix operators
in Prolog are for example : -, ->,;,’,’, =, = ., == and so on. Infix operators are
called infix operators, because they are written between their arguments. There are also
prefix operators that are written before their argument, and postfix operators which are
written after their argument. ?- for exampleisaprefix operator, and so isthe one-place
- which is used to represent negative numbersasinl is 3 + -2.

When we learned about arithmetic in Prolog, we saw that Prolog knows about the con-
ventions for disambiguating arithmetic expressions. So, when we write 2 + 3 * 3
for example, Prolog knows that wemean 2 + (3 * 3) andnot (2 + 3) * 3. But
how does Prolog know this? Every operator has a certain precedence. The prece-
dence of + is greater than the precedence of *. That's why + is taken to be the
main functor of the expression 2 + 3 * 3. (Note that Prolog's internal representa-
tion +(2, *(3, 3)) isnot ambiguous.) Similarly, the precedence of i s is higher than
the precedenceof +,sothat11 is 2 + 3 * 3isinterpreted asi s(11, +(2,*(3,3)))

and not as +(is(11,2),*(3,3)) (which wouldn't make any sense, by the way). In
Prolog precedence is expressed by numbers. The higher this number, the greater the
precedence.

But what happens when there are several operators with the same precedence in one ex-
pression? We said that above that Prolog findsthe query 2 =:= 3 == =:=(2, 3) con-
fusing, because it doesn’t know how to bracket the expression (isit=: =(2, ==(3, =:=(2, 3)))
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orisit==(=:=(2,3),=:=(2,3))7). Thereason for why Prolog is not able to decide
which isthe correct bracketing is of course that == and =: = have the same precedence.

What about the following query, though?
?- Xis 2+ 3 + 4.
Does Prolog find it confusing? No, Prolog correctly answers X = 9. So, which brack-

eting did Prolog choose: i s( X, +(2, +(3,4))) oris(X, +(+(2,3),4))? It chose the
second one as can be tested with the following queries.

?- 2+ 3+ 4 =+(2,+%3,4)).
No
?- 2+ 3+ 4 =+(+(2,3),4).
Yes

Prolog uses information about the associativity of + here to disambiguate the expres-
sions. + is left associative, which means that the expression to the right of + must have
alower precedence than + itself, whereas the expression on the left may have the same
precedence as +. The precedence of an expression is simply the precedence of its main
operator or O, if it is enclosed in brackets. The main operator of 3 + 4 is +, so that
interpreting 2 + 3 + 4 as+(2, +(3, 4)) would mean that the expression to the right
of thefirst + has the same precedence as + itself, which isillegal. It hasto be lower.

The operators ==, =: =, and i s are defined to be non-associative which means that both
of their arguments must have a lower precedence. Therefore, 2 == 3 == =:=(2, 3)
isillegal, since no matter how you bracket it, you'll get a conflict: 2 =: = 3 has the
same precedence as==, and 3 == =: =(2, 3) hasthe same precedence as=: =.

The type of an operator (infix, prefix, or postfix), its precedence, and its associativity
are the three things that Prolog needs to know to be able to translate the user friendly,
but potentially ambiguous operator notation into Prolog's internal representation.

9.4.2 Defining operators

In addition to providing a user friendly operator notation for certain functors, Prolog
also let’'s you define your own operators. So you could for example define a postfix
operator i s_dead and then Prolog would allow you to write zed i s_dead asafact in
your database instead of i s_dead( zed) .

Operator definitions in Prolog look like this:
.- op(Precedence, Type, Nane).

Precedence is anumber between 0 and 1200. The precedence of =, for instance, is 700,
the precedence of + is 500, and the precedence of * 400. Typeis an atom specifying the
type and associativity of the operator. In the case of + thisatom isyf x, which says that
+isaninfix operator f represents the operator and x and y the arguments. Furthermore,
x stands for an argument which has a precedence which is lower than the precedence
of + and y stands for an argument which has a precedence which lower or equal to the
precedence of +. There are the following possibilities for what Type may look like:
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infix  xfx,xfy,yfx
prefix fx,fy
suffix — xf, yf

So, your operator definition for i s_dead could look asfollows:
;- op(500, xf, is_dead).

Here are the definitions for some of the built-in operators. You can see that operators
with the same properties can be specified in one statement by giving a list of their
names instead of a single name as third argument of op.

;- op( 1200, xfx, [
:- op( 1200, fx, [
;- op( 1100, xfy, [ ; 1).
:- op( 1000, xfy, [
- op( 700, xfx, [

= is, = ==, \==
== =\= < > =<, >=1])
:- op( 500, yfx, [ + -]).
:- op( 500, fx, [ + -1]).
- op( 300, xfx, [ nod ])
[

.- op( 200, xfy,

One final thing to note is, that operator definitions don't specify the meaning of an
operator, but only describe how it can be used syntactically. An operator definition
doesn’t say anything about when a query involving this operator will evaluate to true.
It is only a definition extending the syntax of Prolog. So, if the operator i s_dead is
defined as above and you ask the query zed i s_dead, Prolog won't complain about
illegal syntax (as it would without this definition), but it will try to prove the goal
i s_dead(zed), which is Prolog's internal representation of zed i s_dead. And this
is what operator definitions do. They just tell Prolog how to trandate a user friendly
notation into real Prolog notation. So, what would be Prolog’s answer to the query
zed is_dead? It would be no, because Prolog would try to provei s_dead( zed) , but
not find any matching clause in the database. Unless, of course, your database would
look like this, for instance:

;- op(500, xf, is_dead).

kill(marsellus, zed).

is_dead(X) :- kill(_, X).

In this case, Prolog would answer yes to the query zed i s_dead.

9.5 Exercises

Exercise 9.1 Which of the following queries succeed, and which fail?
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?- 14 \== 2*7
?- 14 == 2*7
?- [1,2,3/[d,e]] == [1,2 3,d, €]

2. 243 == 342

2- 243 == 3+2

- p == p
?- p=\="p
?- vincent == VAR

?- vincent =VAR, VAR==vi ncent

Exercise 9.2 How does Prolog respond to the following queries?

?- (a,(b,(c,[]))) [a,b,C]

?- .(a,.(b,.(c,[]))) =T[abl[c]]
?2- .C(a D), . (.(b[1),.C.(c, [1),[1))) =X

?- .(a,.(b,.(.(c,[1),[1))) =T[abl[c]]

Exercise 9.3 Write a two-place predicate t er nt ype(+Term ?Type) that takes a
term and gives back the type(s) of that term (atom, number, constant, variable etc.).
The types should be given back in the order of their generality. The predicate should,
e.g., behave in the following way.

?- terntype(Vincent,variable).

yes
?- terntype(m a, X).
X = atom;

X = constant ;

X = sinmple_term;
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X = term;

no

?- terntype(dead(zed), X).
X = conplex_term;

X = term;

no

Exercise 9.4 Wkite a program that defines the predicate gr oundt er n{ +Ter n) which
tests whether Ter mis a ground term. Ground terms are terms that don’t contain vari-
ables. Here are examples of how the predicate should behave:

?- groundtern(X).

no
?- groundtern(french(bic_mac,le_bic_mac)).
yes

?- groundtern(french(whopper, X)) .

no

Exercise 9.5 Assume that we have the following operator definitions.

;- op(300, xfx, [are, is_a]).
:- op(300, fx, likes).

;- op(200, xfy, and).

;- op(100, fy, fanous).

Which of the following is a wellformed term? What is the main operator? Give the
bracketing.

?- Xis_a wtch.

?- harry and ron and hernione are friends.
?- harry is_a wi zard and |ikes quidditch.
?- dunbl edore is_a fanous fanous w zard.

9.6 Practical Session

In this practical session, we want to introduce some built-in predicates for printing
terms onto the screen. The first predicate we want to look at is di spl ay/ 1, which
takes aterm and prints it onto the screen.

?- display(loves(vincent,ma)).
| oves(vincent, na)

Yes
?- display(’jules eats a big kahuna burger’).

jules eats a big kahuna burger

Yes

More strictly speaking, di spl ay prints Prolog’s internal representation of terms.
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?- display(2+3+4).
+(+(2, 3), 4)

Yes

In fact, this property of di spl ay makesit avery useful tool for learning how operators
work in Prolog. So, before going on to learn more about how to write things onto the
screen, try the following queries. Make sure you understand why Prolog answers the
way it does.

?- display([a,b,c]).

?- display(3is 4 +5/ 3).
?- display(3is (4 +5) / 3).
?- display((a:-b,c,d)).

?- display(a:-b,c,d).

So, display is nice to look at the internal representation of terms in operator nota-
tion, but usually we would probably prefer to print the user friendly notation instead.
Especially when printing lists, it would be much nicer to get [ a, b, c], instead of
.(a.(b.(c,[1))). Thisiswhat the built-in predicate wri t e/ 1 does. It takes aterm
and prints it to the screen in the user friendly notation.

?- wite(2+3+4).
2+3+4

Yes
?- wite(+(2,3)).
2+3

Yes
?2- wite([a, b, c]).
[a, b, c]

Yes
?- wite(.(a,.(b,[1))).
[a, b]

Yes

And here is what happens, when the term that is to be written contains variables.

?- wite(X).

_Q04

X = _X04

yes

?- X =a wite(X).
a

X =a
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The following example shows what happens when you put two write commands one
after the other.

?- wite(a),wite(b).
ab

Yes
Prolog just executes one after the other without putting any space in between the output
of the different write commands. Of course, you can tell Prolog to print spaces by
telling it to write the term’

?- wite(a),wite(’ '),wite(b).
ab

Yes

And if you want more than one space, for example five blanks, you can tell Prolog to
write’

?- wite(a),wite(’ ), wite(b).
a b
Yes

Anacther way of printing spaces is by using the predicate t ab/ 1. t ab takes a number
as argument and then prints as many spaces as specified by that number.

?- wite(a),tab(5),wite(b).
a b

Yes

Ancther predicate useful for formatting isnl . nl tells Prolog to make a linebreak and
to go on printing on the next line.

?- wite(a),nl,wite(b).
a

b

Yes

Here is an exercise, where you can apply what you just learned.

In the last lecture, we saw how extra arguments in DCGs can be used to build a parse
tree. For example, to the query s(T, [ a, man, shoot s, a, woman] , []) Prolog would
answer s(np(det(a), n(man)), vp(v(shoots), np(det(a), n(woman)))). Thisis
a representation of the parse tree. It is not a very readable representation, though.
Wouldn't it be nicer if Prolog printed something like
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s(
np(
det (a)
n( man))
vp(
v(shoot s)
np(
det (a)
n(wonan))))

for example?

Write a predicate ppt ree/ 1 that takes a complex term representing a tree, such as
s(np(det(a), n(man)), vp(v(shoots), np(det(a), n(woman)))), as its argument
and prints a nice and readable output for this tree.

Finally, here is an exercise to practice writing operator definitions.

In the practical session of Chapter 7, you were asked to write a DCG generating propo-
sitional logic formulas. The input you had to use was a bit awvkward though. The for-
mula—(p — q) had to be represented as[not, ' (', p, inplies, q, ')’ ]. Now,
that you know about operators, you can do something a lot nicer. Write the opera
tor definitions for the operators not , and, or, i nplies, so that Prolog accepts (and
correctly brackets) propositional logic formulas. For example:

?- display(not(p inplies q)).
not (i nplies(p,q)).

Yes
?- display(not p inplies q).
i mplies(not(p),Qq)

Yes
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10

Cuts and Negation

This lecture has two main goals:

1. To explain how to control Prolog’s backtracking behavior with the help of the
cut predicate.

2. Toexplain how cut can be packaged into more structured forms, notably negation
asfailure.

10.1 The cut

Automatic backtracking is one of the most characteristic features of Prolog. But back-
tracking can lead to inefficiency. Sometimes Prolog can waste time exploring possi-
bilities that lead nowhere. It would be pleasant to have some control over this aspect
of its behaviour, but so far we have only seen two (rather crude) ways of doing this:
changing the order of rules, and changing the order of conjuncts in the body of rules.
But there isanother way. Thereisaninbuilt Prolog predicate! , called cut, which offers
amore direct way of exercising control over the way Prolog looks for solutions.

What exactly is cut, and what does it do? It's simply a special atom that we can use
when writing clauses. For example,

P(X) - b(X),c(X),!,d(X),e(X).

isaperfectly good Prolog rule. Asfor what cut does, first of al, itisagoal that always
succeeds. Second, and more importantly, it has a side effect. Suppose that some goal
makes use of this clause (we call this goa the parent goal). Then the cut commits
Prolog to any choices that were made since the parent goal was unified with the left
hand side of therule (including, importantly, the choice of using that particular clause).
Let’slook at an example to see what this means.

Let’sfirst consider the following piece of cut-free code:
pP(X) - a(Xx).
P(X) - b(X),c(X),d(X),e(X).

p(x) - f(X.
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a(l).
b(1).
c(l).

b(2).
c(2).
d(2).
e(2).
f(3).

If we pose the query p(X) we will get the following responses:

X=1:;
X =2
X =3 ;
no

Here is the search tree that explains how Prolog finds these three solutions. Note, that
it has to backtrack once, namely when it enteres the second clause for p/ 1 and decides
to match the first goal with b( 1) instead of b(2) .

X = Gl11

Ca(_Gl11) > < b(_Gl12),¢(_Gl12),d(_Gl12),e(_Gl12) >

Gl12 = 1

_Gl13 = 3

"Gl12 = 2

c(1),d(1),e(1)

But now supppose we insert acut in the second clause:
pP(X) - b(X),c(X),!,d(X),e(X).

If we now pose the query p(X) wewill get the following responses:
X=1;

no
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What's going on here? Lets consider.

1. p(X) isfirst matched with thefirst rule, so we get anew goal a( X) . By instantiat-
ing Xto 1, Prolog matches a( X) withthefact a( 1) and we have found asolution.
So far, thisis exactly what happened in the first version of the program.

2. We then go on and look for a second solution. p(X) is matched with the sec-
ond rule, so we get the new goals b(X), c(X), !, d(X), e(X). By instantiating
X to 1, Prolog matches b(X) with the fact b(1), so we now have the goals
c(1),!,d(1),e(1). Butc(1) isinthedatabase sothissimplifiesto!, d(1), e(1).

3. Now for the big change. The! goal succeeds (asit always does) and commits us
to all the choices we have made so far. In particular, we are committed to having
X = 1, and we are also committed to using the second rule.

4. But d(1) fails. And there’s no way we can resatisfy the goal p(X) . Sure, if we
were alowed to try the value X=2 we could use the second rule to generate a
solution (that's what happened in the original version of the program). But we
can't do this: the cut has committed us to the choice X=1. And sure, if we were
allowed to try the third rule, we could generate the solution X=3. But we can't
do this: the cut has committed us to using the second rule.

Looking at the search tree this means that search stops when the goal d(1) cannot be
shown as going up the tree doesn’t lead us to any node where an aternative choice is
available. Thered nodesin the tree are al blocked for backtracking because of the cut.

One point is worth emphasizing: the cut only commits us to choices made since the
parent goal was unified with the left hand side of the clause containing the cut. For
example, in arule of the form

once we reach the the cut, it commits us to using this particular clause for q and it
commits us to the choices made when evalauting p1, . . ., pn. However, we are free to
backtrack among ther 1, . . ., rmand we are also free to backtrack among alternatives
for choices that were made before reaching the goal g. Concrete examples will make
this clear.

First consider the following cut-free program:
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s(XY) :-
s(0,0).

q(X1Y) i

i(1).
i(2).
j(1).
j(2).
j(3).

a(x.y).

(X, 0 (Y).

Here's how it behaves:

?- s(XY).

X=1
Y =
X=1
Y =
X=1
Y =3
X =2
Y =
X =2
Y =
X =2
Y =
X=0
Y = 0;
no

Suppose we add a cut to the clause defining g/ 2:
q( Xv Y) i
Now the program behaves as follows:

?- s(XY).

X =
Y =

1

1

1

(), 1)
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Y =2
X=1
Y =
X=0
Y=0
no

Let's see why.

. s(X,Y) isfirst matched with the first rule, which gives usanew goal q( X, Y) .

. q(X,Y) isthen matched with thethird rule, so we get thenew goalsi (X),!,j (V).

By instantiating X to 1, Prolog matches i ( X) with the fact i (1). This leaves
us with the goal !, j (Y). The cut, of course, succeeds, and commits us to the
choices so far made.

. But what are these choices? These: that X = 1, and that we are using this clause.

But note: we have not yet chosen avalue for v.

. Prolog then goes on, and by instantiating Y to 1, Prolog matchesj (Y) with the

factj (1). Sowe have found a solution.

. But we can find more. Prolog isfree to try another value for Y. So it backtracks

and sets Y to 2, thus finding a second solution. And in fact it can find another
solution: on backtracking again, it sets Y to 3, thus finding a third solution.

. But those are al alternatives for j ( X) . Backtracking to the left of the cut is not

adlowed, so it can't reset X to 2, so it won't find the next three solutions that
the cut-free program found. Backtracking over goals that were reached before
q( X, Y) isalowed however, so that Prolog will find the second clause for s/ 2.

Looking at it in terms of the search tree, this means that all nodes above the cut up to
the one containing the goal that led to the selection of the clause containing the cut are
blocked.

X=_Gl11, Y=_Gl12 X=0, Y=0

Well, we now know what cut is. But how do we use it in practice, and why is it
so useful? As a first example, let’'s define a (cut-free) predicate max/ 3 which takes
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integers as arguments and succeeds if the third argument is the maximum of the first
two. For example, the queries

max( 2, 3, 3)
and

max(3, 2, 3)
and

max(3, 3, 3)

should succeed, and the queries
max(2, 3, 2)

and
max(2, 3, 5)

should fail. And of course, we also want the program to work when the third argument
isavariable. That is, we want the program to be able to find the maximum of the first
two arguments for us:

?- max(2, 3, Max).

Now, it is easy to write a program that does this. Here's afirst attempt:

max(X,Y,Y) - X =<Y.
max(X, Y, X) - X>V.

This is a perfectly correct program, and we might be tempted simply to stop here.
But we shouldn’t: it's not good enough. What's the problem? There is a potential
inefficiency. Suppose this definition is used as part of alarger program, and somewhere
aong the way max( 3, 4, Y) iscaled. The program will correctly set Y=4. But now
consider what happens if at some stage backtracking is forced. The program will try
to resatisfy max( 3, 4, Y) using the second clause. And of course, this is completely
pointless. the maximum of 3 and 4 is 4 and that's that. There is no second solution
to find. To put it another way: the two clauses in the above program are mutually
exclusive: if the first succeeds, the second must fail and vice versa. So attempting to
resatisfy this clause is a complete waste of time.

With the help of cut, thisis easy to fix. We need to insist that Prolog should never try
both clauses, and the following code does this:
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max(X,Y,Y) :- X =<Y,1!.
max(X, Y, X) :- X>V.

Note how this works. Prolog will reach the cut if max(X, Y, Y) iscaled and X =< Y
succeeds. In this case, the second argument is the maximum, and that’s that, and the
cut commits us to this choice. On the other hand, if X =< Y fails, then Prolog goes
onto the second clause instead.

Note that this cut does not change the meaning of the program. Our new code gives
exactly the same answers as the old one, it's just a bit more efficient. In fact, the
program is exactly the same as the previous version, except for the cut, and thisis a
pretty good sign that the cut is a sensible one. Cuits like this, which don’t change the
meaning of a program, have a special name: they’re called green cuts.

But there is another kind of cut: cuts which do change the meaning of a program.
These are called red cuts, and are usually best avoided. Here's an example of ared cut.
Yet another way to write the nax predicate is as follows:

max(X,Y,Y) - X =<Y,1!.
max( X, Y, X) .

Thisisthe same as our earlier green cut max, except that we have got rid of the > test
in the second clause. Thisis bad sign: it suggests that we're changing the underyling
logic of the program. And indeed we are; this program ‘works' by relying on cut. How
goodisit?

WEell, for some kinds of query it'sfine. In particular, it answers correctly when we pose
queries in which the third argument is a variable. For example:

2- max(100, 101, X) .

X = 101
Yes

and
?- max(3, 2, X).

X =3
Yes

Nonetheless, it's not the same as the green cut program: the meaning of max has
changed. Consider what happens when al three arguments are instantiated. For exam-
ple, consider the query

max(2, 3, 2).

Obviously this query should fail. But in the red cut version, it will succeed! Why?
Well, this query ssmply won't match the head of thefirst clause, so Prolog goes straight
to the second clause. And the query will match with the second clause, and (trivially)
the query succeeds! Oops! Getting rid of that > test wasn't quite so smart after all...
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This program is a classic red cut. It does not truly define the max predicate, rather it
changes it’'s meaning and only gets things right for certain types of queries.

A sensible way of using cut is to try and get a good, clear, cut free program working,
and only then try to improve its efficiency using cuts. It's not always possible to work
thisway, but it'sagood ideal to aim for.

10.2 If-then-else

Although our second try in using a cut in the max predicate to make it more efficient
went wrong, the argument that we used when placing the cut in thefirst clause and then
deleting the test X>Y from the second clause seems sensible: if we have already tested
whether X is smaller or equal to Y and we have found out that it is not, we don't have
to test whether X is greater than Y aswell (we already know this).

Thereisabuilt-in predicate construction in Prolog which allows you to express exactly
such conditions: the if-then-else construct. In Prolog, if A then B else C is written as
( A->B; C.ToPrologthismeans: try A. If you can proveit, go on to prove B and
ignore C. If A fails, however, go on to prove Cignoring B. The nax predicate using the
if-then-else construct looks as follows:

max(X,Y,2) :-
( X=<Y
->Z=Y

Z =X

10.3 Negation as failure

One of Prolog’s most useful features isthe simple way it lets us state generalizations.
To say that Vincent enjoys burgers we just write:

enj oys(vincent, X) :- burger(X).

Butinreal liferuleshave exceptions. Perhaps Vincent doesn't like Big Kahuna burgers.
That is, perhaps the correct rule is really: Vincent enjoys burgers, except Big Kahuna
burgers. Fine. But how do we state thisin Prolog?

As afirst step, let’s introduce another built in predicate f ai | / 0. Asits name suggests,
fai |l isaspecia symbol that will immediately fail when Prolog encountersit asagoal.
That may not sound too useful, but remember: when Prolog fails, it tries to backtrack.
Thus fai | can be viewed as an instruction to force backtracking. And when used
in combination with cut, which blocks backtracking, fai | enables us to write some
interesting programs, and in particular, it lets us define exceptions to general rules.

Consider the following code:

enj oys(vincent, X) :- big_kahuna_burger(X),!,fail.
enj oys(vincent, X) :- burger(X).
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burger(X) :- big_mac(X).
burger(X) :- big_kahuna_burger(X).

burger (X) :- whopper(X).

bi g_mac(a).
bi g_kahuna_bur ger (b).
bi g_mac(c).
whopper (d) .

The first two lines describe Vincent's preferences. The last six lines describe a world
containing four burgers, a, b, ¢, and d. We're also given information about what kinds
of burgers they are. Given that the first two lines really do describe Vincent's prefer-
ences (that is, that helikes all burgers except Big Kahuna burgers) then he should enjoy
burgers a, ¢ and d, but not b. And indeed, this iswhat happens:

?- enjoys(vincent,a).
yes

?- enjoys(vincent,b).
no

?- enjoys(vincent,c).
yes

?- enjoys(vincent,d).
yes

How does this work? The key is the combination of ! and fail in the first line
(this even has a name: its called the cut-fail combination). When we pose the query
enj oys(vi ncent, b), thefirst rule applies, and we reach the cut. This commits us to
the choices we have made, and in particular, blocks access to the second rule. But then
we hit fai | . Thistries to force backtracking, but the cut blocks it, and so our query
fails.

Thisisinteresting, but it's not ideal. For a start, note that the ordering of the rulesis
crucial: if we reverse the first two lines, we don't get the behavior we want. Similarly,
thecut iscrucial: if weremove it, the program doesn’t behave in the same way (so this
isared cut). In short, we've got two mutually dependent clauses that make intrinsic
use of the procedural aspects of Prolog. Something useful is clearly going on here, but
it would be better if we could extract the useful part and package it in a more robust
way.

And we can. The crucial observation is that the first clause is essentialy a way of
saying that Vincent does not enjoy X if X isaBig Kahuna burger. That is, the cut-fail
combination seems to be offering us some form of negation. And indeed, this is the
crucial generalization: the cut-fail combination lets us define aform of negation called
negation as failure. Here's how:

neg(Coal) :- Coal,!,fail.
neg( CGoal ).
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For any Prolog goal, neg( Goal ) will succeed precisely if Goal does not succeed.

Using our new neg predicate, we can describe Vincent’'s preferences in amuch clearer
way:

enjoys(vincent, X) :- burger(X), neg(big_kahuna_burger(X)).

That is, Vincent enjoys X if X isaburger and X is not a Big Kahuna burger. This
is quite close to our original statement: Vincent enjoys burgers, except Big Kahuna
burgers.

Negation as failure is an important tool. Not only does it offer useful expressivity
(notably, the ability to describe exceptions) it also offersit in arelatively safe form. By
working with negation as failure (instead of with the lower level cut-fail combination)
we have a better chance of avoiding the programming errors that often accompany the
use of red cuts. In fact, negation as failure is so useful, that it comes built in Standard
Prolog, we don't have to define it at all. In Standard Prolog the operator \ + means
negation as failure, so we could define Vincent's preferences as follows:

enjoys(vincent, X) :- burger(X), \+ big_kahuna_burger (X).

Nonetheless, a couple of words of warning are in order: don't make the mistake of
thinking that negation as failure works just like logical negation. It doesn’t. Consider
again our burger world:

burger(X) :- big_mac(X).
burger (X) :- big_kahuna_burger(X).
burger (X) :- whopper(X).

bi g_mac(c).
bi g_kahuna_bur ger (b).
bi g_mac(c).
whopper (d) .

If we pose the query enj oys(vi ncent, X) we get the correct sequence of responses.

X =a,;
X=c,;
X=d;
no

But now suppose we rewrite the first line as follows:

enjoys(vincent, X) :- \+ big_kahuna_burger(X), burger(X).
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Note that from a declarative point of view, this should make no difference: after
al, burger(x) and not big kahuna burger(x) is logically equivalent to not big kahuna
burger(x) and burger(x). That is, no matter what the variable x denotes, it impossible
for one of these expressions to be true, and the other expression to be false. Nonethe-
less, here’'s what happens when we pose the same query:

enj oys(vi ncent, X)
no

What's going on? Well, in the modified database, the first thing that Prolog has to
check iswhether \ + bi g_kahuna_bur ger ( X) holds, which means that it must check
whether bi g_kahuna_bur ger ( X) fails. But this succeeds. After all, the database con-
tainstheinformation bi g_kahuna_bur ger (b) . Sothequery\ + bi g_kahuna_bur ger ( X)
fails, and hence the original query does too. In a nutshell, the crucial difference be-
tween the two programs is that in the original version (the one that works right) we
use\ + only after we have instantiated the variable X. In the new version (which goes
wrong) we use\ + before we have done this. The difference is crucial.

Summing up, we have seen that negation as failure is not logical negation, and that
it has a procedural dimension that must be mastered. Nonetheless, it is an important
programming construct: it is generally a better ideato try use negation as failure than
to write code containing heavy use of red cuts. Nonetheless, “generally” does not mean
“always’. There aretimes when it is better to use red cuts.

For example, suppose that we need to write code to capture the following condition: p
holds if a and b hold, or if a does not hold and ¢ holds too. This can be captured with
the help of negation as failure very directly:

p:- ab.
p:-\+a c.

But suppose that a is avery complicated goal, a goa that takes alot of time to com-
pute. Programming it this way means we may have to compute a twice, and this may
mean that we have unacceptably slow performance. If so, it would be better to use the
following program:

Note that thisisared cut: removing it changes the meaning of the program. Do you
see why?

When al’s said and done, there are no universal guidelines that will cover all the situ-
ations you are likely to run across. Programming is as much an art as a science; that's
what makes it so interesting. You need to know as much as possible about the lan-
guage you are working with (whether it's Prolog, Java, Perl, or whatever) understand
the problem you are trying to solve, and know what counts as an acceptable solution.
And then: go ahead and try your best!
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10.4 Exercises
Exercise 10.1 Suppose we have the following database:

p(1).
p(2) :- 1.
p(3).

Write all of Prolog’s answers to the following queries:

?- p(X).
?- p(X), p(Y).
?- p(X),I,p(Y)

Exercise 10.2 First, explain what the following program does.

cl ass(Nunber, positive) :- Nunber > 0.
cl ass(0, zero).
cl ass(Nunmber, negative) :- Nunber < 0.

Second, improve it by adding green cuts.

Exercise 10.3 Without using cut, write a predicate spl i t/ 3 that splits a list of in-
tegers into two lists: one containing the positive ones (and zero), the other containing
the negative ones. For example:

split([3,4,-5,-1,0,4,-9],P,N)

should return:
P =13 40,4]
N=1[-5-1,-9].

Then improve this program, without changing its meaning, with the help of cut.

10.5 Practical Session 10

The purpose of Practical Session 10 isto help you get familiar with cuts and negation
asfailure.

First some keyboard exercises:

1. First of al, try out all three versions of the nax/ 3 predicate defined in the text:
the cut-free version, the green cut version, and the red cut version. Asusual, “try
out” means “run traces on”, and you should make sure that you trace queries
in which all three arguments are instantiated to integers, and queries where the
third argument is given as avariable.
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2. OK, time for a burger. Try out al the methods discussed in the text for cop-
ing with Vincent's preferences. That is, try out the program that uses a cut-fail
combination, the program that uses negation as failure correctly, and aso the
program that gets it wrong by using negation in the wrong place.

Now for some programming:
1. Define a predicate nu/ 2 ("not unifiable") which takes two terms as arguments
and succeeds if the two terms do not unify. For example:

nu( f oo, f 00) .
no

nu (foo, bl ob).
yes

nu( f oo, X).
no

You should define this predicate in three different ways:

(a) First (and easiest) write it with the help of = and \ +.

(b) Second writeit with the help of =, but don’'t use\ +.

(c) Third, writeit using a cut-fail combination. Don’t use = and don’t use \ +.
2. Define apredicate uni fi abl e(Li st 1, Term Li st 2) whereLi st 2 isthelist of

al membersof Li st 1 that match Ter m , but are not instantiated by the matching.
For example,

unifiable([X, b,t(Y)],t(a), List]
should yield
List = [Xt(Y)].

Notethat X and Y are still not instantiated. So thetricky part is: how do we check
that they match witht (a) without instantiating them? (Hint: consider using the
test\+ (ternml = tern®). Why? Think about it. You might also like to think
about thetest\ +(\+ (terml = ternR)).)
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11

Database Manipulation and Collecting
Solutions

This lecture has two main goals:

1. To discuss database manipulation in Prolog.
2. To discuss inbuilt predicates that let us collect al solutions to a problem into a
singlelist.
11.1 Database manipulation
Prolog has four database manipulation commands: assert, retract, asserta, and assertz.
Let’s see how these are used. Suppose we start with an empty database. So if we give
the command:

l'isting.

we simply get ayes; the listing (of course) is empty.

Suppose we now give this command:
assert (happy(m a)).

It succeeds (assert commands always succeed). But what is important is not that it
succeeds, but the side-effect it has on the database. If we now give the command:

l'isting.
we get the listing:
happy(m a) .

That is, the database is no longer empty: it now contains the fact we asserted.

Suppose we then made four more assert commands:
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assert (happy(vincent)).
yes

assert (happy(nmarcel | us)).
yes

assert (happy(butch)).
yes

assert (happy(vincent)).
yes

Suppose we then ask for alisting:
l'isting.

happy(ni a) .
happy(vi ncent) .
happy(marcel | us).
happy(but ch) .
happy(vi ncent) .
yes

All the facts we asserted are now in the knowledge base. Note that happy(vi ncent)
isin the knowledge base twice. Aswe asserted it twice, this seems sensible.

So far, we have only asserted facts into the database, but we can assert new rules as
well. Suppose we want to assert the rule that everyone who is happy is naive. That is,
suppose we want to assert that:

nai ve(X) :- happy(X)

We can do this as follows:

assert( (naive(X) :- happy(X)) ).

Note the syntax of this command: the rule we are asserting is enclosed in a pair of
brackets. If we now ask for alisting we get:

happy(ni a) .
happy(vi ncent) .
happy(marcel | us).
happy(but ch) .
happy(vi ncent) .

nai ve( A)
happy(A) .
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Now that we know how to assert new information into the database, we need to know
how to remove things form the database when we no longer need them. There is an
inverse predicate to assert, namely retract . For example, if we go straight on and
give the command:

retract (happy(marcel | us)).

and then list the database we get:

happy(m a) .
happy(vi ncent) .
happy(but ch) .
happy(vi ncent) .

nai ve( A)
happy(A) .

That is, thefact happy( mar cel | us) has been removed. Suppose we go on further, and
say

retract (happy(vincent)).

and then ask for alisting. We get:

happy(m a) .
happy(but ch) .
happy(vi ncent) .

nai ve( A)
happy(A) .

Note that the first occurrence of happy(vi ncent) (and only the first occurrence) was
removed.

To remove all of our assertions we can use a variable:

retract (happy(X)).

X =ma ;
X = butch ;
X = vincent
no

A listing reveals that the database is now empty:

l'isting.
yes
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If we want more control over where the asserted material is placed, there are two
variants of assert, namely:

1. assertz. Places asserted material at the end of the database.

2. asserta. Places asserted material at the beginning of the database.

For example, suppose we start with an empty database, and then we give the following
command:

assert( p(b) ), assertz( p(c) ), asserta( p(a) ).

Then alisting reveal s that we now have the following database:

p(a).
p(b).
p(c).
yes

Database manipulation is a useful technique. It is especially useful for storing the
results to computations, so that if we need to ask the same question in future, we don’t
need to redo the work: we just look up the asserted fact. This technique is caled
‘memoization’, or ‘caching’.

Here's a simple example. We create an addition table for adding digits by using
database manipulation.

addi tiontabl e(A) :-
menber (B, A),
menber (C, A),
Dis B+C
assert(sumB,C D)),
fail.

(Here member / 2 is the standard membership predicate which tests for membership in
alist.)

What does this program do? It takes a list of numbers A, uses nenber to select two
numbers B and C of thislist, and then adds B and C together calling the result D. Now
for the important bit. It then asserts the fact that it has discovered (namely that D is
the sum of A and B), and then fails. Why do we want it to fail? Because we want to
force backtracking! Because it has failed, Prolog will backtrack to nenber (C, A) and
choose a new vaue for C, add this new C to B two create a new D, and then assert
this new fact. it will then fail again. This repeated failure will force Prolog to find all
values for nenber (B, A) and nenber (C, A), and add together and assert all possible
combinations.

For example, when we give Prolog the command

addi tiontable([0,1,2,3,4,5,6,7,8,9])
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It will come back and say No. But it’s not this response that interests us, its the side-
effect on the database that’s important. If we now ask for a listing we see that the
database now contains

sum(0, 0, 0).
sun(0,1,1).
sun( 0, 2, 2).
sun( 0, 3, 3).
sun( 0, 4, 4).
sun( 0, 5, 5).
sum(0, 6, 6) .
sun(0,7,7).
sum(0, 8, 8).
sun( 0,9, 9).
sun(1,0,1).
sun(1, 1, 2).
sun(1, 2, 3).
sun(1, 3, 4).
sun(1, 4,5).
sum(1,5,6).
sun(1, 6, 7).
sun(1, 7, 8).
sun(1,8,9).
sun(1, 9, 10).

Question: how do we remove al these new facts when we no longer want them? After
all, if wesimply give the command

retract (sum(X, Y, 2)).

Prolog isgoing to go through al 100 facts and ask us whether we want to remove them!
But there's amuch simpler way. Use the command

retract(sunm(_, , )),fail.

Again, the purpose of thef ai | isto force backtracking. Prolog removes the first fact
about sumin the database, and then fails. So it backtracks and removes the next fact
about sum. So it backtracks again, removes the third, and so on. Eventualy (after it
has removed all 100 items) it will fail completely, and say No. But we're not interested
in what Prolog says, we're interested in what it does. All we care about is that the
database now contains no facts about sum

To conclude our discussion of database manipulation, aword of warning. Although it
can be a useful technique, database manipulation can lead to dirty, hard to understand,
code. If you useit heavily in a program with lots of backtracking, understanding what
is going on can be a nightmare. It is a non-declarative, non logical, feature of Prolog
that should be used cautiously.
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11.2 Collecting solutions

There may be many solutions to a query. For example, suppose we are working with
the database

child(martha, charlotte).
child(charlotte, caroline).
child(caroline,laura).
chil d(l aura, rose).

descend(X,Y) :- child(XY).

descend(X,Y) :- child(X 2),
descend(Z,Y).

Then if we pose the query
descend(mart ha, X) .

there are four solutions (namely X=char | ot t e, X=car ol i ne, X=I aur a, and X=r ose).

However Prolog generates these solutions one by one. Sometimes we would like to
have all the solutions to a query, and we would like them handed to us in a neat,
usable, form. Prolog has three built-in predicates that do this: findall, bagof, and setof.
Basically these predicates collect all the solutions to a query and put them in alist, but
there are important differences between them, as we shall see.

11.2.1 findall/3
The query
findall (Qbject, Goal, List).
produces alist Li st of all the objects Qbj ect that satisfy the goal Goal . Often Obj ect

issimply avariable, in which case the query can be read as. Give me a list containing
all theinstantiations of Obj ect which satisfy Goal .

Here's an example. Suppose we're working with the above database (that is, with the
information about chi | d and the definition of descend). Then if we pose the query

findall (X descend(nmartha, X), Z).

weareasking for alist z containing all the values of X that satisfy descend( mar t ha, X) .
Prolog will respond

X
4

7489
[charlotte, caroline, | aura,rose]

But Obj ect doesn’t haveto be avariable, it may just contain avariable that isin Goal .
For example, we might decide that we want to build a new predicate f r omivar t ha/ 1
that is true only of descendants of Martha. We could do this with the query:
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findall (fromvartha(X), descend(martha, X), Z).

That is, we are asking for a list z containing all the values of fromvart ha(X) that
satisfy the goal descend(mart ha, X) . Prolog will respond

X
4

_7616
[fromvartha(charlotte), fromvart ha(caroline),
fromvartha(l aura), fromvart ha(rose)]

Now, what happens, if we ask the following query?
findall (X descend(mary, X), Z2).

There are no solutions for the goal descend(nary, X) in the knowledge base. So
findal | returnsan empty list.

Note that the first two arguments of fi ndal | typically have (at least) one variable in
common. When using fi ndal | , we normally want to know what solutions Prolog
finds for certain variables in the goal, and we tell Prolog which variables in Goa we
are interested in by building them into the first argument of fi ndal | .

You might encounter situations, however, where fi ndal | does useful work athough
the first two arguments don’t share any variables. For example, if you are not interested
in who exactly is a descendant of Martha, but only in how many descendants Martha
has, you can use the follwing query to find out:
?- findall (Y, descend(martha, X),Z), length(Z N).
11.2.2 bagof/3

Thefindal | /3 predicate isuseful, but in certain respects it is rather crude. For exam-
ple, suppose we pose the query

findall (Child, descend( Mot her, Child), List).
We get the response

Child = _6947

Mot her = 6951

List = [charlotte,caroline,laura,rose,caroline,laura,rose, !l aura,rose,rose]

Now, thisis correct, but sometimes it would be useful if we had a separate list for each
of the different instantiations of Mot her .

Thisiswhat bagof letsusdo. If we pose the query
bagof (Chi | d, descend( Mot her, Chi |l d), Li st).

we get the response
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Child = _7736
Mot her = caroline
List = [laura,rose]

Child = _7736
Mot her = charlotte
List = [caroline,laura,rose]

Child = _7736
Mot her = laura
Li st = [rose]

Child = 7736
Mot her = mart ha
List = [charlotte, caroline,laura,rose]

no

That is, bagof ismore finegrained than f i ndal | , it gives us the opportunity to extract
the information we want in a more structured way. Moreover, bagof can aso do the
samejob asfi ndal | , with the help of aspecia piece of syntax. If we pose the query

bagof (Chi | d, Mot her ~ descend( Mot her, Child), List).

Thissays: givemealist of all thevaluesof chi | d suchthat descend( Mot her, Chil d),
and put the result in a list, but don’t worry about generating a separate list for each
value of Mot her. So posing this query yields:

Child = _7870
Mot her = 7874
List = [charlotte,caroline,laura,rose,caroline,laura,rose, !l aura,rose,rose]

Note that this is exactly the response that fi ndal | would have given us. Still, if this
is the kind of query you want to make (and it often is) it's simpler to use fi ndal | ,
because then you don’t have to bother explicitly write down the conditions using ».

Further, there is one important difference between f i ndal I and bagof , and that is that

bagof failsif thegoal that's specified in its second argument is not satisfied (remember,

that fi ndal I returnstheempty listin such acase). Sothe query bagof ( X, descend(mary, X), Z)
yields no.

Onefinal remark. Consider again the query
bagof (Chi | d, descend( Mot her, Chi l d), List).

Aswe saw above, this has four solutions. But, once again, Prolog generates them one
by one. Wouldn't it be nice if we could collect them all into one list?

And, of course, we can. The simplest way isto usefi ndal | . The query

findall (List, bagof (Chil d, descend( Mot her, Child), List), Z).
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collects al of bagof 's responses into one list:

List = 8293

Child = _8297

Mot her = 8301

Z = [[laura,rose],[caroline,laura,rose],[rose],
[charlotte, caroline,laura,rose]]

Another way to do it iswith bagof :
bagof (List,Child » Mdther ~ bagof(Child, descend(Mther, Child), List), 2).

List = 2648

Child = _2652

Mot her = 2655

Z = [[laura,rose],[caroline,laura,rose],[rose],
[charlotte, caroline,laura,rose]]

Now, this may not be the sort of thing you need to do very often, but it does show the
flexibility and power offered by these predicates.

11.2.3 setof/3

Theset of / 3 predicate is basically the same as bagof , but with one useful difference:
thelistsit contains are ordered and contain no redundancies (that is, each item appears
in the list only once).

For example, suppose we have the following database

age(harry, 13).
age(draco, 14).
age(ron, 13).
age(herm one, 13).
age(dunbl edor e, 60).
age(hagrid, 30).

Now suppose we want a list of everyone whose age is recorded in the database. We
can do this with the query:

findall (X age(X YY), Qut).
X = _8443

Y = 8448
Qut = [harry, draco, ron, herni one, dunbl edor e, hagri d]

But maybe we would like the list to be ordered. We can achieve this with the following
query:

setof (X, Y ~ age(X Y), Qut).
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(Note that, just like withbagof , we have to tell set of not to generate separate lists for
each value of Y, and again we do this with the» symbol.)

This query yields:
X = _8711
Y = _8715

Qut = [draco, dunbl edor e, hagri d, harry, herm one, ron]

Note that the list is alphabetically ordered.
Now suppose we are interested in collecting together al the ages which are recorded
in the database. Of course, we can do this with the following query:

findall (Y,age(XY), Qut).

Y = 8847
X = 8851
out = [13, 14, 13, 13, 60, 30]

But this output is rather messy. It is unordered and contains repetitions. By using
set of we get the same information in a nicer form:

setof (Y, X ~ age(X Y), Qut).
Y = _8981

X = 8985
out = [13, 14, 30, 60]

Between them, these three predicates offer us a lot of flexibility. For many purposes,
al weneed isfindal | . But if we need more, bagof and set of are there waiting to
help us out.

11.3 Exercises

Exercise 11.1 Suppose we start with an empty database. We then give the command:
assert(qg(a, b)), assertz(q(l1,2)), asserta(q(foo,blug)).

What does the database now contain?

e then give the command:

retract(q(l,2)), assertz( (p(X) :- h(X)) ).

What does the database now contain?

e then give the command:

retract(q(_,_)),fail.
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What does the database now contain?
Exercise 11.2 Suppose we have the following database:

q( bl ob, bl ug) .
q( bl ob, bl ag) .
q( bl ob, blig).
q( bl af , bl ag) .
g(dang, dong) .

g(dang, bl ug) .
q(fl ab, bl ob) .

What is Prolog's response to the queries:
. findall (X,q(blob,X),List).

2. findall(X,q(X,blug),List).

3. findall(X,q(X,Y),List).

4. bagof(X,q(X,Y),List).

5. setof(X,Y Ag(X,Y),List).

=

Exercise 11.3 Writea predicate si gna/ 2 that takes an integer n > 0 and calculates
the sum of all intergers from 1 to n. E.g.

?- sigma(3, X).
X =6

yes

?- sigma(5, X).
X = 15

yes

Write the predicate such that results are stored in the database (of course there should
always be no more than one result entry in the database for each value) and reused
whenever possible. So, for example:

?- sigma(2, X).
X =3

yes

?- listing.
sigmares(2, 3).

When we then ask the query
?- sigma(3, X).

Prolog will not calculate everything new, but will get the result for si gnma(2, 3) from
the database and only add 3 to that. Prolog will answer:

X =6

yes

?- listing.
sigmares(2, 3).
si gmares(3,6).
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11.4 Practical Session 11

Here are some programming exercises.

1. Sets can be thought of aslists that don’t contain any repeated elements. For ex-

ample, [a, 4, 6] isaset, but [a, 4, 6,a] isnhot (asit contains two occurrences
of a). Write a Prolog program subset / 2 that is satisfied when the first argu-
ment is a subset of the second argument (that is, when every element of the first
argument is amember of the second argument). For example:

subset ([a, b],[a, b, c])
yes

subset ([c,b],[a, b, c])
yes

subset ([],[a, b, c])
yes.

Your program should be capable of generating all subsets of an input set by
bactracking. For example, if you give it asinput

subset (X, [a, b, c])

it should succesively generate al eight subsets of [ a, b, c] .

. Using the subset predicate you have just written, and f i ndal | , write a predi-

cate power set / 2 that takes a set as its first argument, and returns the powerset
of this set as the second argument. (The powerset of a set is the set of dl its
subsets.) For example:

powerset([a, b, c], P)

should return
P =1[[1.[al,[b],[c].[a b],[ac],[b,c] [a b, c]]

it doesn’'t matter if the sets are returned in some other order. For example,
P =1[[a].,[b],[c].[a b,c].[].[a D], [ac], [b, c]]

is fine too.
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Working With Files

Thislecture is concerned with different aspect of file handling. We will see

1. how predicate definitions can be spread across different files

2. how to write results to files and how to read input from files

12.1 Splitting Programs Over Files

By now, you have seen and you had to write lots of programs that use the predicates
append and menber . What you probably did each time you needed one of them was
to go back to the definition and copy it over into the file where you wanted to use it.
And maybe, after having done that a couple of times, you started thinking that it was
actually quite annoying that you had to copy the same predicate definitions over and
over again and that it would be alot nicer if you could define them somewhere once and
for al and then just access that definition whenever you needed it. Well, that sounds
like a pretty sensible thing to ask for and, of course, Prolog offers you ways of doing
it.

12.1.1 Reading in Programs

In fact, you aready know a way of telling Prolog to read in predicate definitions that
arestored in afile. Right! [ Fi | eNanel, Fi | eNane2] . You have been using queries of
that form all the timeto tell Prolog to consult files. By putting

:- [ FileNanel, Fil eNane2] .

at the top of afile, you can tell Prolog to consult the files in the square brackets before
reading in the rest of thefile.

So, suppose that you keep al predicate definitions that have to do with basic list pro-
cessing, such as append, nenber, reverse etc., in afilecalled | i st predi cat es. pl .
If you want to use them, you just put

:- [listpredicates].
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at the top of the file you want to use them in. Prolog will consult | i st predi cat es,
when reading in that file, so that all predicate definitionsin | i st predi cat es become
available.

On encountering something of the form: - [file, anotherfile], Prolog just goes
ahead and consults the files without checking whether the file really needs to be con-
sulted. If, for example, the predicate definitions provided by one of the files are already
available, because it aready was consulted once, Prolog still consultsit again, overwrit-
ing the definitions in the database. The inbuilt predicate ensur e_| oaded/ 1 behaves a
bit more clever in this case and it is what you should usually useto load predicate def-
initions given in some other file into your program. ensur e_| oaded basically works
asfollows: On encountering the following directive

:- ensure_| oaded([|istpredicates]).

Prolog checks whether the file | i st predi cat es. pl has already been loaded. If not,
Prolog loads it. If it aready isloaded in, Prolog checks whether it has changed since
last loading it and if that is the case, Prolog loads it, if not, it doesn’t do anything and
goes on processing the program.

12.1.2 Modules

Now, imagine that you are writing a program that needs two predicates, let's say
predl/ 2 and pred2/2. You have a definition for pred1 in the file preds1. pI and
adefinition of pred2 inthefilepreds2. pl . No problem, you think, I’ll just load them
into my program by putting

:- [predsl, preds?].

at the top of the file. Unfortunately, there seem to be problems this time. You get a
message that looks something like the following:

{consulting /al/troll/export/home/ MP/ kris/predsl.pl...}
{laltroll/export/honme/ MP/kris/predsl.pl consulted, 10 nsec 296 bytes}
{consulting /al/troll/export/home/ MP/ kris/preds2.pl...}
The procedure hel perpred/2 is being redefined.

ad file: /altroll/export/home/ MP/ kri s/ predsl. pl

New file: /altroll/export/home/ MP/ kris/preds2. pl
Do you really want to redefine it? (y, n, p, or ?)

So what has happened? Well, it looks as if both files predsi1. pl and preds2. pl
are defining the predicate hel per pred. And what's worse, you can’t be sure that the
predicate is defined in the sameway in both files. So, you can’t just say "yes, override”,
since predl depends on the definition of hel perpred given in file preds1. pl and
pr ed2 depends on the definition given in file preds2. pl . Furthermore, note that you
are not really interested in the definition of hel per pred at al. You don’'t want to use
it. The predicates that you are interested in, that you want to use are pr ed1 and pr ed2.
They need definitions of hel per pr ed, but the rest of your program doesn’t.
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A solution to this problemisto turn preds1. pl and preds2. pl into modules. Hereis
what this means and how it works:

Modules essentially allow you to hide predicate definitions. You are allowed to decide
which predicates should be public, i.e. callable from other parts of the program, and
which predicates should be private, i.e. callable only from within the module. You will
not be able to call private predicates from outside the module in which they are defined,
but there will also be no conflicts if two modules internally define the same predicate.
In our example. hel perpred is agood candidate for becoming a private predicate,
sinceit isonly used as a helper predicate in the definition of pred1 and pred2.

You can turn afile into amodule by putting a module declaration at the top of that file.
Module declarations are of the form

;- nodul e( Mbdul eNane, Li st_of _Predi cat es_t o_be_Expor t ed)

They specify the name of the module and the list of public predicates. That is, the
list of predicates that one wants to export. These will be the only predicates that are
accessi ble from outside the module.

So, by putting
;- nodul e(predsl, [predl/2]).

at the top of file preds1. pl you can define the module preds1 which exports the
predicate pred1/ 2. And similarly, you can define the module preds2 exporting the
predicate pr ed2/ 2 by putting

:- nodul e(preds2, [ pred2/3]).

at the top of file preds2. pl . hel perpred isnow hidden in the modules preds1 and
preds2, so that there is no clash when loading both modules at the same time.

Modules can be loaded with the inbuilt predicate use_nodul e/ 1. Putting: - use_nodul e(predsl).
at the top of afilewill import al predicates that were defined as public by the module.
That means, al public predicates will be accessible.

If you don't need all public predicates of a module, but only some of them, you can
use the two-place version of use_nodul e, which takes the list of predicates that you
want to import as its second argument. So, by putting

:- use_nodul e(predsl, [predl/2]),
use_nodul e(preds2, [ pred2/ 3]).

at the top of your file, you will be able to use pred1 and pred2. Of course, you can
only import predicates that are also exported by the relevant module.
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12.1.3 Libraries

Many of the very common predicates are actually predefined in most Prolog imple-
mentations in one way or another. If you have been using SWI Prolog, for example,
you will probably have noticed that things like append and nenber are built in. That's
a speciaty of SWI, however. Other Prolog implementations, like Sicstus for exam-
ple, don’'t have them built in. But they usually come with a set of i braries, i.e
modules defining common predicates. These libraries can be loaded using the normal
commands for importing modules. When specifying the name of the library that you
want to use, you have to tell Prolog that this module is alibrary, so that Prolog knows
where to look for it (namely, not in the directory where your other code is, but at the
place where Prolog keeps its libraries). Putting

;- use_nodul e(library(lists)).

at the top of your file, for instance, tells Prolog to load a library called i sts. In
Sicstus, this library provides basic list processing predicates.

So, libraries can be pretty useful and they can safe you a lot of work. Note, how-
ever, that the way libraries are organized and the inventory of predicates provided by
libraries are by no means standardized across different Prolog implementations. In
fact, the library systems may differ quite a bit. So, if you want your program to run
with different Prolog implementations, it might be easier and faster to define your own
library modules (using the techniques that we saw in the last section) than to try to
work around all the incompatibilities between the library systems of different Prolog
implementations.

12.2 Writing To and Reading From Files

Now, that we have learned how to load programs from different files, we want to look
at writing results to files and reading in input from filesin this section.

Before we can do any reading of or writing to the file, we have to open it and associate
astreamwithit. You can think of streams as connections to files. Streams have names
that look like this, for instance: * $streani (183368). You need these names, when
specifying which stream to write to or read from. Luckily, you never really have to
worry about the exact names of streams. Prolog assigns them these names and you
usually just bind them to a variable and then pass this variable around. We'll see an
example soon.

Theinbuilt predicate open/ 3 opens afile and connects it to a stream.
open( +Fi | eNane, +Mbde, - St r ean)

The first argument of open is the name of the file, and in the last argument, Prolog
returns the name that it assigns to the stream. Mode is one of read, wri t e, append.
r ead means that the file is opened for reading, and wri t e and append both open the
filefor writing. In both cases, the file is created, if it doesn’t exist, yet. If it does exist,
however, wr i t e will cause the fileto be overwritten, while append appends everything
at the end of thefile.
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When you are finished with the file, you should close it again. That is done with the
following predicate, where Sream is the name of a Stream as assigned by Prolog.

cl ose( Strean)

So, programs that are writing to or reading from files will typically have the following
structure:

open(nyfile,wite, Strean),
do sonet hi ng

cl ose(Stream,

The predicates for actually writing things to a stream are almost the same as the ones
we saw in Chapter 9 for writing to the screen. We havewri t e, t ab, and nl . The only
thing that’s different is that we always give the stream that we want to write to as the
first argument.

Here is a piece of code that opens afile for writing, writes something to it, and closes
it again.

?- open(hogwarts,wite, OS),
tab(Cs,7),wite(Cs, gryffindor),nl (0S),
wite(CS hufflepuff),tab(Cs,5),wite(Cs, ravencl aw), nl (0S),
tab(Cs,7), wite(Cs, slytherin),
cl ose(0sS).

Thefile hogwar t s should afterwards look like this:

gryffindor
huf f | epuf f ravencl aw
slytherin

Finally, there is atwo-place predicate for reading in terms from a stream. r ead aways
looks for the next term on the stream and reads it in.

read(+Stream +Term

The inbuilt predicate at _end_of _stream checks whether the end of a stream has
been reached. at _end_of strean(Stream) will evaluate to true, when the end of
the stream St r eamis reached, i.e. when all terms in the corresponding file have been
read.

Note, that r ead only readsin Prolog terms. If you want to read in arbitrary input, things
become a bit more ugly. You have to read it character by character. The predicate
that you need is get O( +St r eam - Char) . It reads the next character from the stream
+Stream Char istheinteger code of the character. That means that get 0 returns 97,
if the next character is a, for instance.

Usually, we are not interested in these integer codes, but in the characters or rather
the atoms that are made up of alist of characters. Well, you can use the predicate
at om chars/ 2 to convert alist of integers into the corresponding atom. The first ar-
gument of at om char s/ 2 isthe atom and the second the list of integers. For example:
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?- atom._chars(W][ 113,117, 105, 100, 100, 105, 116, 99, 104]).
W = quidditch

Here is the code for reading in aword from a stream. It reads in a character and then
checks whether this character is a blank, a carriage return or the end of the stream. In
any of these cases a complete word has been read, otherwise the next character is read.

readWwrd(l nStream W -
get O(I nStream Char),
checkChar AndReadRest ( Char, Chars, | nStrean),
atom chars(W Chars).

checkChar AndReadRest (10,[],_) :- !. %Return
checkChar AndReadRest (32,[],_) :- !. % Space
checkChar AndReadRest (-1,[],_) :- !'. %End of Stream

checkChar AndReadRest (end_of file,[],_) :- !.

checkChar AndReadRest ( Char, [ Char | Chars], I nStream : -
get O(I nSt r eam Next Char),
checkChar AndReadRest ( Next Char, Chars, I nStrean).

12.3 Practical Session

In this practical session, we want to combine what we learned today with some bits and
pieces that we met earlier in the course. The goal is to write a program for running a
DCG grammar on atestsuite, so that the performance of the grammar can be checked.
A testsuite is afile that contains lots of possible inputs for a program, in our case afile
that contains lots of lists representing grammeatical or ungrammatical sentences, such as
[t he, wonman, shoot s, t he, cow, under, t he, shower] oOr[ hi m shoot s, worman] . The
test program should take this file, run the grammar on each of the sentences and store
the results in another file. We can then look at the output file to check whether the
grammar answered everywhere the way it should. When developing grammars, test-
suites like this are extremely useful to make sure that the changes we make to the
grammar don’t have any unwanted effects.

12.3.1 Step 1

Take the DCG that you built in the practical session of Chapter 8 and turn it into a
module, exporting the predicate s/ 3, i.e. the predicate that lets you parse sentences
and returns the parse tree in its first argument.

12.3.2 Step 2

In the practical session of Chapter 9, you had to write a program for pretty printing
parse trees onto the screen. Turn that into a module as well.

12.3.3 Step 3

Now, modify the program, so that it prints the tree not to the screen but to a given
stream. That means that the predicate ppt ree should now be a two-place predicate
taking the Prolog representation of a parse tree and a stream as arguments.



12.3. Practical Session 177

12.3.4 Step 4

Import both modulesinto afile and define atwo-place predicatet est which takesalist
representing a sentence (such as [ a, worman, shoot s] ), parses it and writes the result
to the file specified by the second argument of t est . Check that everything is working
asit should.

12.3.5 Step 5

Finally, modify test/ 2, so that it takes a filename instead of a sentence as its first
argument and then reads in the sentences given in the file one by one, parses them and
writes the sentence as well as the parsing result into the output file. If, e.g, your input
file looked like this:

[the, cow, under, t he, t abl e, shoot s] .
[ a, dead, wonan, | i kes, he] .
the output file should look similar to this:

[the, cow, under, the, table, shoots]

s(
np(
det (t he)
nbar (
n(cow))
pp(
prep(under)

np(
det (t he)

nbar (
n(table)))))
vp(

v(shoots)))
[a, dead, wonan, |ikes, he]
no

12.3.6 Step 6

Now, if you are in for some real Prolog hacking, try to write a module that reads in
sentences terminated by afull stop or aline break from afile, so that you can give your
testsuite as

the cow under the table shoots .

a dead woman |ikes he
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instead of

[the, cow, under, t he, tabl e, shoot s] .

[ a, dead, woman, | i kes, he] .



