http://www.amzi.com/Adventurel nProl og/advfrtop.htm

Adventurein Prolog

Cont ent s

Pr ef ace
Pr ef ace

Cetting Started

Where to Find a Prol og

Cetting Started
Junping In
Logi ¢ _Progranm ng

Nani
Exer ci ses

Si npl e Queri es
Sinple Queries
How Queries Whrk

Exerci ses

Built-in Predicates

Exerci ses

How Rul es Wor k

Usi ng Rul es
Exerci ses

Arithnmetic
Arithmetic
Exerci ses

Managi ng Dat a
Managi ng Dat a
Exerci ses

Recur si on
Recur si on

How Recur si on Wor ks

Adventure in Prolog™ Boolk

Available in PaperbacK. Shipped Anywhere.

Adventure in Prolog

Preface

Where to Find a Prolog

1 Getting Started

Jumping In
Logic Programming

Jargon

2 Facts

Nani Search
Exercises

3 Simple Queries

How Queries Work
Exercises

4 Compound Queries

Built-in Predicates
Exercises

5 Rules

How Rules Work

Using Rules
Exercises

6 Arithmetic
Exercises

7 Managing Data

http://www.amzi.com/Adventurel nProl og/advfrtop.htm (1 of 2)11/3/2006 7:01:37 PM

9 Data Structures
Exercises

10 Unification
Exercises
11 Lists

Using the List Utilities
Exercises

12 Operators

Exercises

13 Cut

Using the Cut
Exercises

14 Control Structures

Recursive Control Loop
Tail Recursion
Exercises

15 Natura Language

Difference Lists

Natural Language Front
End

Definite Clause Grammar
Reading Sentences
Exercises

http://www.amzi.com/connect/adventure_book.htm

http://www.amzi.com/Adventurel nProl og/advfrtop.htm

Pragmatics
Exerci ses

Data Structures
Data Structures

Exerci ses

Uni fication
Uni fication
Exerci ses

Exer ci ses

Oper at ors

Qperators

Exer ci ses

Cut
Cut

Using the Cut
Exerci ses

Control Structures
Control Structures

Recursive Control Loop
Tai |l Recursion

Exer ci ses

Nat ural Language
Nat ural Language
D fference Lists

Nat ural Language Front End
Definite d ause G ammar

Readi ng Sent ences
Exerci ses

Appendi X
Appendi x

Nani Sear ch

Fam |y
Custord
Bi r ds

Exercises Appendix

8 Recursion Nam—Search

Family
How Recursion Works M
) Birds

Pragmatics -
Exercises
= [ndex

Published by:

Amzi! inc.

5861 Greentree Road

Lebanon, OH 45036 U.S.A.

phone +1-513-425-8050
fax +1-513-425-8025
e-mail info@amzi.com
web www.amzi.com

Copyright ©1990,1996-1997, 2004 by Amzi! inc. All Rights Reserved.

This document ("Work") is protected by copyright laws and international
copyright treaties, as well as other intellectual property laws and treaties. Y ou may
use and distribute digital copies of this Work provided each copy of the Work isa
true and compl ete copy, including all copyright and trademark notices, and each
copy is accompanied by acopy of this notice. Y ou may not distribute printed
copies of thisWork. Y ou may not distribute copies of this Work for profit either
on astandalone basis or included as part of your own product or work without
written permission from Amzi! Y ou may not charge any fees, including ones for
media or download. Y ou may not include this Work as part of your own works.

Y ou may not rename, edit or create any derivative works from this Work. Contact
Amzi! for additional licensing arrangements.

Amzi! isaregistered trademark and Logic Server, Active Prolog Tutor, Adventure
in Prolog and the flying squirrel logo are trademarks of Amazi! inc.

Last Updated: March 2004

Copyright ©1990,1996-97, 2004 Amz! inc. All Rights Reserved

http://www.amzi.com/Adventurel nProl og/advfrtop.htm (2 of 2)11/3/2006 7:01:37 PM

mailto:info@amzi.com
http://www.amzi.com/

Contents

Adventure in Prolog™ Book

Available in Paperback. Shipped Anywhere.

Adventure in Prolog

Preface

Where to Find a Prolog

1 Getting Started

Jumping In
L ogic Programming
Jargon

2 Facts
Nani Search
Exercises

3 Simple Queries
How Queries Work
Exercises

4 Compound Queries
Built-in Predicates
Exercises

5 Rules
How Rules Work

Using Rules
Exercises

9 Data Structures
Exercises

10 Unification
Exercises

11 Lists
Using the List Utilities
Exercises

12 Operators
Exercises

13 Cut
Using the Cut
Exercises

14 Control Structures
Recursive Control Loop
Tail Recursion
Exercises

15 Natural Language
Difference Lists
Natural Language Front End
Definite Clause Grammar
Reading Sentences

http://www.amzi.com/Adventurel nProl og/advtop.htm (1 of 3)11/3/2006 7:04:26 PM

http://www.amzi.com/connect/adventure_book.htm

Contents

Lebanon, OH 45036 U.S.A.

phone +1-513-425-8050
fax +1-513-425-8025
e-mall info@amzi.com

web www.amzi.com

Copyright ©1990,1996-1997, 2004 by Amzi! inc. All Rights Reserved.

This document ("Work") is protected by copyright laws and international copyright treaties, aswell as
other intellectual property laws and treaties. Y ou may use and distribute digital copies of this Work
provided each copy of the Work is atrue and complete copy, including all copyright and trademark
notices, and each copy is accompanied by a copy of this notice. Y ou may not distribute printed copies of
thisWork. Y ou may not distribute copies of this Work for profit either on a standalone basis or included
as part of your own product or work without written permission from Amzi! Y ou may not charge any
fees, including ones for media or download. Y ou may not include this Work as part of your own works.
Y ou may not rename, edit or create any derivative works from this Work. Contact Amzi! for additional

licensing arrangements.

Amzi! isaregistered trademark and Logic Server, Active Prolog Tutor, Adventurein Prolog and the

6 Arithmetic Exercises

Exercises
Appendix

7 Managing Data Nani Search

Exercises Family
Custord

8 Recursion Birds
How Recursion Works -
Pragmatics | ndex
Exercises -

Published by:

Amazi! inc.

5861 Greentree Road

flying squirrel logo are trademarks of Amzi! inc.

Last Updated: March 2004

http://www.amzi.com/Adventurel nProl og/advtop.htm (2 of 3)11/3/2006 7:04:26 PM

mailto:info@amzi.com
http://www.amzi.com/

Contents

Copyright ©1990,1996-97, 2004 Amzi! inc. All Rights Reserved

http://www.amzi.com/Adventurel nProl og/advtop.htm (3 of 3)11/3/2006 7:04:26 PM

Preface

AI—The art and science of making
_[Newsletter computers do interesting things

that are not in their nature.

| was working for an aerospace company in the 1970s when someone got a copy of the original
Adventure game (a simulated world the player explores, at that time purely text-based, with natural
language) and installed it on our mainframe computer. For the next month my lunch hours, evenings and
weekends, as well as normal work hours, were consumed with fighting the fierce green dragon and
escaping from the twisty little passages. Finally, with afew hints about the plover's egg and dynamite, |
had proudly earned al the pointsin the game.

My elation turned to terror as | realized it was time for my performance review. My boss was a stern
man, who was more comfortable with machines than with people. He opened up alarge computer
printout containing a log of the hours each of his programmers spent on the mainframe computer. He
said he noticed that recently | had been working evenings and weekends and that he admired that type of
dedication in his employees. He gave me the maximum raise and told me to keep up the good work.

Ever since I've had awarm spot in my heart for adventure games. Y ears later, when | got my first home
computer, | immediately started to write my own adventure gamein 'C'. First came the tools, asimple
dynamic database to keep track of the game state and pattern matching functions to search that database.
Then came a natural language parser for the front end. Functions implemented the various rules of the
game.

At around the sametime | joined the Boston Computer Society and attended a lecture of the newly
formed Artificial Intelligence group. The lecture was about Prolog. | was amazed--here was a language
that included all of the tools needed for building adventure games and more.

It had a much richer dynamic database and more powerful pattern matcher than the one | had written,
plusits syntax was rules, which are much more natural for coding the specification of the game. It had a
built-in search engine and, to top it all off, had tools for natural language processing.

| learned Prolog from the classic Clocksin and Mellish text and started writing adventure games anew.

| went on to use Prolog for a number of expert system applications at my then current job, including a
mai nframe database performance tuning system and installation expert. This got othersinterested in the
language and | began teaching it as well.

While the applications we were using Prolog for were serious and performed akey role in improving

http://www.amzi.com/Adventurel nProl og/apreface.htm (1 of 2)11/3/2006 7:04:32 PM

http://www.ainewsletter.com/

Preface

technical support for the growing company, | still found the adventure game to be an excellent showcase
for teaching the language.

This book isthe result of that work. It takes a pragmatic, rather than theoretical, approach to the

language and is designed for programmers interested in adding this powerful language to their bag of
tools.

| offer my thanks to Will Crowther and Don Woods for writing the first (and in my opinion still the best)
adventure game and to the Boston Computer Society for testing the ideas in the book. Thanks also to

Ray Reeves, who speaks fluent Prolog, and Nancy Wilson, who speaks fluent English, for their careful
reading of the text.

Dennis Merritt
Stow, Massachusetts, April 1996

Copyright ©1990,1996-97, 2004 Amz! inc. All Rights Reserved

http://www.amzi.com/Adventurel nProl og/apreface.htm (2 of 2)11/3/2006 7:04:32 PM

Getting Started

Anmzi® Explore Logic °rogramming

® Free Download. Click Here.

Amzi! offers both free and commercial Prolog development tools. This tutorial text refersto the Amzi!®
Eclipse IDE. Amzi! runs under all forms of Windows, and many forms of Unix including Linux and
Solaris. You can download a copy from our web site:

WWW.amzi.com

Y ou can find other freely available Prolog tools for Windows and other plat-formsin the Prolog FAQ
and on various Prolog and Al repositories. Our web site contains up-to-date pointers to these sites.

Y ou will also find numerous articles on our web site about:

. Learning and using Prolog,

« Building expert systems, agents and intelligent components in Prolog,

. Embedding Prolog modulesin C/C++, Java, Delphi, Visual Basic and other applications,
. Using intelligent components on the Internet, and

. Many other topics

Our web site a'so contains pointers to:
. Books,
. Prolog source code repositories,
. Papersand FAQs,
. Other Prolog, Al and expert systems sites, and
. Newsgroups.

We invite you to visit!

Copyright ©1990,1996-97, 2004 Amz! inc. All Rights Reserved

http://www.amzi.com/Adventurel nProl og/aprol og.htm11/3/2006 7:04:57 PM

http://www.amzi.com/connect/adventure_software.htm
http://www.amzi.com/

Getting Started

Amzi® Explore Logic [Programming

free Download. Click Here.

Prolog stands for PROgramming in LOGic. It was developed from afoundation of logical theorem proving and originally used
for research in natural language processing. Although its popularity has sprung up mainly in the artificial intelligence (Al)
community, where it has been used for applications such as expert systems, natural language, and intelligent databases, it isalso
useful for more conventional types of applications. It allows for more rapid development and prototyping than most languages
because it is semantically close to the logical specification of a program. As such, it approaches the ideal of executable program
specifications.

Programming in Prolog is significantly different from conventional procedural programming and requires a readjustment in the
way one thinks about programming. Logical relationships are asserted, and Prolog is used to determine whether or not certain
statements are true, and if true, what variable bindings make them true. Thisleadsto avery declarative style of programming.

In fact, the term program does not accurately describe a Prolog collection of executable facts, rules and logical relationships, so
you will often see term logicbase used in this book as well.

While Prolog is afascinating language from a purely theoretical viewpoint, this book will stress Prolog as a practical tool for
application devel opment.

Much of the book will be built around the writing of a short adventure game. The adventure game is a good example since it
contains mundane programming constructs, symbolic reasoning, natural language, data, and logic.

Through exercises you will also build asimple expert system, an intelligent genealogical logicbase, and a mundane customer
order entry application.

Y ou should create a source file for the game, and enter the examples from the book as you go. Y ou should also create source files
for the other three programs covered in the exercises. Sample source code for each of the programs isincluded in the appendix.

The adventure gameis called Nani Search. Y our persona as the adventurer isthat of athree year old girl. The lost treasure with
magical powersisyour nani (security blanket). The terrifying obstacle between you and successis a dark room. It is getting late
and you're tired, but you can't go to slegp without your nani. Y our mission is to find the nani.

Nani Search is composed of

. A read and execute command loop

. A natural language input parser

. Dynamic facts/data describing the current environment
. Commands that manipulate the environment

. Puzzlesthat must be solved

Y ou control the game by using simple English commands (at the angle bracket (>) prompt) expressing the action you wish to
take. Y ou can go to other rooms, look at your surroundings, ook in things, take things, drop things, eat things, inventory the
things you have, and turn things on and off.

http://www.amzi.com/AdventurelnProlog/alstart.htm (1 of 7)11/3/2006 7:05:02 PM

http://www.amzi.com/connect/adventure_software.htm

Getting Started

Figure 1.1 shows arun of acompleted version of Nani Search. Asyou develop your own version you can of course change the
game to reflect your own ideas of adventure.

The game will be implemented from the bottom up, because that fits better with the order in which the topics will be introduced.
Prolog is equally adept at supporting top-down or inside-out program development.

A Prolog logichase exists in the listener's workspace as a collection of small modular units, called predicates. They are similar to
subroutines in conventional languages, but on a smaller scale.

The predicates can be added and tested separately in a Prolog program, which makes it possible to incrementally develop the
applications described in the book. Each chapter will call for the addition of more and more predicates to the game. Similarly, the
exercises will ask you to add predicates to each of the other applications.

We will start with the Nani Search logicbase and quickly move into the commands that examine that logicbase. Then we will
implement the commands that manipul ate the logicbase.

Along the way there will be diversions where the same commands are rewritten using a different approach for comparison.
Occasionally atopic will be covered that is critical to Prolog but has little application in Nani Search.

One of thefinal tasks will be putting together the top-level command processor. We will finish with the natural language
interface.

You are in the kitchen.

You can see: apple, table, broccoli

You can go to: cellar, office, dining room
> go to the cellar

You can't go to the cellar because it's dark in the cellar, and you're afraid of the
dar k.

> turn on the |ight
You can't reach the switch and there's nothing to stand on.
> go to the office
You are in the office.
You can see the follow ng things: desk
You can go to the follow ng roons: hall, Kkitchen
> open desk
The desk contai ns:
fl ashli ght
crackers

> take the flashlight

You now have the flashlight

http://www.amzi.com/Adventurel nProl og/alstart.htm (2 of 7)11/3/2006 7:05:02 PM

Getting Started

> ki tchen
You are in the kitchen
> turn on the |ight

flashlight turned on.

Figure 1.1. A sample run of Nani Search
The goal of thisbook isto make you feel comfortable with

. TheProlog logicbase of facts and rules

. The built-in theorem prover that allows Prolog to answer questions about the logicbase (backtracking search)
. How logical variables are used (They are different from the variables in most languages.)

. Unification, the built in pattern matcher

. Extra-logical features (like read and write that make the language practical)

. How to control Prolog's execution behavior

Jumping In

Aswith any language, the best way to learn Prolog isto useit. This book is designed to be used with a Prolog listener, and will
guide you through the building of four applications.

. Adventure game

. Intelligent genealogical logicbase

. Expert system

. Customer order entry business application

The adventure game will be covered in detail in the main body of the text, and the others you will build yourself based on the
exercises at the end of each chapter.

There will be two types of example code throughout the book. One is code, meant to be entered in a source file, and the other is
interactions with the listener. The listener interactions are distinguished by the presence of the question mark and dash (?-)
listener prompt.

Here is atwo-line program, meant to help you learn the mechanics of the editor and your listener.

nortal (X) :- person(X).
per son(socrat es).

Inthe Amzi! Eclipse IDE, first create a project for your source files. Select File | New | Project on the main menu, then click on
'Prolog’ and 'Project’, and enter the name of your project, 'adventure’. Next, create a new source file. Select File | New | File, and
enter the name of your file, 'mortal.pro’. Enter the pro-gram in the edit window, paying careful attention to upper and lowercase
letters and punctuation. Then select File | Save from the menu.

Next, start the Prolog listener by selecting Run | Run As | Interpreted Project. Loading the source code in the Listener is called
consulting. Y ou should see a message indicating that your source file, ‘mortal.pro’, was consulted. This message is followed by
the typical listener prompt.

http://www.amzi.com/Adventurel nProl og/alstart.htm (3 of 7)11/3/2006 7:05:02 PM

Getting Started
?-

Entering the source code in the Listener is called consulting. Select Listener/Consult from the main menu, and select 'mortal.pro’
from the file menu. Y ou can also consult a Prolog source file directly from the listener prompt like this.

?- consult(nortal).
yes

See the documentation and/or online help for details on the Amzi! listener and Eclipse IDE.

In al the listener examplesin this book, you enter the text after the prompt (?-), the rest is provided by Prolog. When working
with Prolog, it isimportant to remember to include the final period and to press the 'return’ key. If you forget the period (and you
probably will), you can enter it on the next line with a 'return.’

Once you've loaded the program, try the following Prolog queries.
?- nortal (socrates).
yes
?- nortal (X).
X = socrates.
Now let's change the program. First type 'quit.’ to end the listener. Go back to the edit window and add the line
per son(pl at o).
after the person(socrates) line.

Select Run | Run As| Interpreted Project to start the listener again with your updated source file. And test it.

?- nortal (plato).
yes

One more test. Enter this query in the listener.
?- wite('Hello Wrld).
Hell o Worl d
yes

Y ou are now ready to learn Prolog.

Logic Programming

Let'slook at the simple example in more detail. In classical logic we might say "All people are mortal,” or, rephrased for Prolog,
"For al X, X ismortal if X isaperson.”

nortal (X) :- person(X).
Similarly, we can assert the simple fact that Socrates is a person.
per son(socrates).

http://www.amzi.com/Adventurel nProl og/alstart.htm (4 of 7)11/3/2006 7:05:02 PM

Getting Started

From these two logical assertions, Prolog can now prove whether or not Socratesis mortal.
?- nortal (socrates).
The listener responds
yes
We could also ask "Who is mortal ?* like this
?- nortal (X).
and receive the response
X = socrates

This declarative style of programming is one of Prolog's major strengths. It leads to code that is easier to write and easier to
maintain. For the most part, the programmer is freed from having to worry about control structures and transfer of control
mechanisms. This is done automatically by Prolog.

By itself, however, alogical theorem prover is not a practical programming tool. A programmer needs to do things that have
nothing to do with logic, such as read and write terms. A programmer also needs to manipulate the built-in control structure of
Prolog in order for the program to execute as desired.

The following exampleillustrates a Prolog program that prints areport of all the known mortals. It is a mixture of pure logic
from before, extra-logical 1/0, and forced control of the Prolog execution behavior. The exampleisillustrative only, and the
conceptsinvolved will be explained in later chapters.

First add some more philosophers to the ‘mortal’ source in order to make the report more interesting. Place them after ‘person
(plato).'

person(zeno).
person(aristotle).

Next add the report-writing code, again being careful with punctuation and upper- and lowercase. Note that the format of this
program is the same as that used for the logical assertions.

nortal report: -
wite('Known nortals are:'),nl,
nmort al (X),
wite(X),nl,
fail.

Figure 1.2 contains the full program, with some optional comments, indicated by the percent sign (%) at the beginning of aline.
Load the program in the listener and try it. Note that the syntax of calling the report code is the same as the syntax used for
posing the purely logical queries.

?- nortal _report.
Known nortals are:
socr at es

http://www.amzi.com/Adventurel nProl og/alstart.htm (5 of 7)11/3/2006 7:05:02 PM

Getting Started

pl ato
aristotle
no

Thefinal 'no' isfrom Prolog, and will be explained later.

% This is the syntax for comments.
% MORTAL - The first illustrative Prolog program

nortal (X) :- person(X).

per son(socrat es).
person(pl at o).
person(aristotle).

nortal _report: -
wite(' Known nortals are:'),nl,
nortal (X),
wite(X),nl,
fail.

Figure 1.2. Sample program
Y ou should now be able to create and edit source files for Prolog, and be able to load and use them from a Prolog listener.

Y ou have had your first glimpse of Prolog and should understand that it is fundamentally different from most languages, but can
be used to accomplish the same goals and more.

Jargon

With any field of knowledge, the critical concepts of the field are embedded in the definitions of its technical terms. Prolog is no
exception. When you understand terms such as predicate, clause, backtracking, and unification you will have a good grasp of
Prolog. This section defines the terms used to describe Prolog programs, such as predicate and clause. Execution-related terms,
such as backtracking and unification will be introduced as needed throughout the rest of the text.

Prolog jargon is a mixture of programming terms, database terms, and logic terms. Y ou have probably heard most of the terms
before, but in Prolog they don't necessarily mean what you think they mean.

In Prolog the normally clear distinction between data and procedure becomes blurred. Thisis evident in the vocabulary of
Prolog. Almost every concept in Prolog can be referred to by synonymous terms. One of the terms has a procedural flavor, and
the other a dataflavor.

We canillustrate this at the highest level. A Prolog program isaProlog logicbase. As we introduce the vocabulary of Prolog,
synonyms (from Prolog or other computer science areas) for aterm will follow in parentheses. For example, at the highest level
we have a Prolog program (logicbase).

The Prolog program is composed of predicates (procedures, record types, relations). Each is defined by its name and a number
called arity. The arity isthe fixed number of arguments (attributes, fields) the predicate has. Two predicates with the same
name and different arity are considered to be different predicates.

http://www.amzi.com/Adventurel nProl og/alstart.htm (6 of 7)11/3/2006 7:05:02 PM

Getting Started

In our sample program we saw three examples of predicates. They are: person/1, mortal_report/O, and mortal/1. Each of these
three predicates has a distinctly different flavor.

person/1

looks like multiple data records with one datafield for each.
mortal_report/0

looks like a procedure with no arguments.
mortal/1

alogical assertion or rule that is somewhere in between data and procedure.

Each predicate in a program is defined by the existence of one or more clauses in the logicbase. In the example program, the
predicate person/1 has four clauses. The other predicates have only one clause.

A clause can be either afact or arule. The three clauses of the person/1 predicate are all facts. The single clauses of
mortal_report/0 and mortal/1 are both rules.

Copyright ©1990,1996-97, 2004 Amz! inc. All Rights Reserved

http://www.amzi.com/AdventurelnProl og/alstart.htm (7 of 7)11/3/2006 7:05:02 PM

Facts

AI—The art and science of making
INEWEIE'ttEI’ computers do interesting things

that are not in their nature.

This chapter describes the basic Prolog facts. They are the simplest form of Prolog predicates, and are
similar to records in arelational database. Aswe will see in the next chapter they can be queried like
database records.

The syntax for afact is
pred(argl, arg2, ... argN).

where

The name of the predicate
The arguments
The arity

The syntactic end of all Prolog clauses
A predicate of arity 0 issmply
pred.
The arguments can be any legal Prolog term. The basic Prolog terms are
integer
A positive or negative number whose absolute value is less than some implementation-specific
power of 2
atom

A text constant beginning with alowercase letter
variable

http://www.amzi.com/Adventurel nProl og/a2facts.htm (1 of 8)11/3/2006 7:05:05 PM

http://www.ainewsletter.com/

Facts

Begins with an uppercase letter or underscore ()
structure
Complex terms, which will be covered in chapter 9

Various Prolog implementations enhance this basic list with other data types, such as floating point
numbers, or strings.

The Prolog character set is made up of

. Uppercase letters, A-Z

. Lowercase letters, a-z

. Digits, 0-9

. Symbols, +-*/\", . ~: . ?2@#%$&

Integers are made from digits. Other numerical types are allowed in some Prolog implementations.
Atoms are usually made from letters and digits with the first character being alowercase letter, such as

hel |l o
t woWbr dsToget her
x14

For readability, the underscore (), but not the hyphen (-), can be used as a separator in longer names. So
the following are legal.

a_| ong_at om nane
z 23

The following are not legal atoms.

no- enbedded- hyphens
123nodi gi t sat begi nni ng
_nounder scorefirst
Nocapsfirst

Use single quotes to make any character combination alegal atom as follows.
"this-hyphen-is-ok'

" Upper Case'
"enmbedded bl anks'

http://www.amzi.com/Adventurel nProl og/a2facts.htm (2 of 8)11/3/2006 7:05:05 PM

Facts

Do not use double quotes (") to build atoms. Thisis a special syntax that causes the character string to
be treated as alist of ASCII character codes.

Atoms can also be legally made from symbols, as follows.

-->
++

Variables are similar to atoms, but are distinguished by beginning with either an uppercase letter or the
underscore ().

X

| nput _Li st
_4t h_ar gunent
Z56

Using these building blocks, we can start to code facts. The predicate name follows the rules for atoms.
The arguments can be any Prolog terms.

Facts are often used to store the data a program is using. For example, a business application might have
customer/3.

custoner (' John Jones', boston, good credit).
custoner('Sally Smth', chicago, good credit).

The single quotes are needed around the names because they begin with uppercase letters and because
they have embedded blanks.

Another example is awindowing system that uses facts to store data about the various windows. In this
example the arguments give the window name and coordinates of the upper left and lower right corners.

wi ndow(nmain, 2, 2, 20, 72).
wi ndow errors, 15, 40, 20, 78).

A medical diagnostic expert system might have disease/2.
di sease(pl ague, infectious).

A Prolog listener provides the means for dynamically recording facts and rules in the logicbase, as well
as the meansto query (call) them. The logicbase is updated by 'consult'ing or 'reconsult'ing program
source. Predicates can also be typed directly into the listener, but they are not saved between sessions.

http://www.amzi.com/Adventurel nProl og/a2facts.htm (3 of 8)11/3/2006 7:05:05 PM

Facts

Nani Search

We will now begin to develop Nani Search by defining the basic facts that are meaningful for the game.
These include

. Theroomsand their connections

. Thethings and their locations

. The properties of various things

. Wherethe player is at the beginning of the game

Office

Hall

Dining Roam / H‘

Figure 2.1. The rooms of Nani Search

Open anew source file and save it as 'myadven.pro’, or whatever name you feel is appropriate. Y ou will
make your changes to the program in that source file. (A completed version of nanisrch.proisin the
Prolog samples directory, samples/prolog/misc_one file.)

First we define the rooms with the predicate room/1, which has five clauses, al of which are facts. They
are based on the game map in figure 2.1.

roon(ki t chen).
roon(office).
room(hal I).

roon(' di ni ng rooni).
roon(cel lar).

We define the locations of things with atwo-argument predicate location/2. The first argument will
mean the thing and the second will mean its location. To begin with, we will add the following things.

| ocati on(desk, office).
| ocati on(apple, kitchen).
| ocati on(fl ashlight, desk).

http://www.amzi.com/Adventurel nProl og/a2facts.htm (4 of 8)11/3/2006 7:05:05 PM

Facts

| ocati on(' washi ng nmachine', cellar).
| ocati on(nani, 'washing nmachine').

| ocati on(broccoli, kitchen).

| ocati on(crackers, Kkitchen).

| ocati on(conputer, office).

The symbols we have chosen, such as kitchen and desk have meaning to us, but none to Prolog. The
relationship between the arguments should also accurately reflect our meaning.

For example, the meaning we attach to location/2 is " The first argument is located in the second
argument.” Fortunately Prolog considers location(sink, kitchen) and location(kitchen, sink) to be
different. Therefore, aslong as we are consistent in our use of arguments, we can accurately represent
our meaning and avoid the potentially ambiguous interpretation of the kitchen being in the sink.

We are not as lucky when we try to represent the connections between rooms. Let's start, however, with
door/2, which will contain facts such as

door (office, hall).

We would like thisto mean "There is a connection from the office to the hall, or from the hall to the
office."

Unfortunately, Prolog considers door(office, hall) to be different from door(hall, office). If we want to
accurately represent atwo-way connection, we would have to define door/2 twice for each connection.

door (office, hall).
door (hall, office).

The strictness about order serves our purpose well for location, but it creates this problem for
connections between rooms. If the office is connected to the hall, then we would like the reverse to be
true as well.

For now, we will just add one-way doors to the program; we will address the symmetry problem againin
the next chapter and resolve it in chapter 5.

door (office, hall).
door (ki tchen, office).

door (hall, 'dining room).
door (ki tchen, cellar).
door (' dining room, kitchen).

Here are some other facts about properties of things the game player might try to eat.

http://www.amzi.com/Adventurel nProl og/a2facts.htm (5 of 8)11/3/2006 7:05:05 PM

Facts

edi bl e(appl e) .
edi bl e(crackers).

t ast es_yucky(broccoli).

Finally we define the initial status of the flashlight, and the player's location at the beginning of the
game.

turned _of f(flashlight).
her e(ki tchen).

We have now seen how to use basic facts to represent data in a Prolog program.

Exercises

During the course of completing the exercises you will develop three Prolog applications in addition to
Nani Search. The exercises from each chapter will build on the work of previous chapters. Suggested
solutions to the exercises are contained in the Prolog source files listed in the appendix, and are also
included in samples/prolog/misc_one file. Thefilesare

gene

A genealogical intelligent logicbase
custord

A customer order entry application
birds

An expert system that identifies birds

Not all applications will be covered in each chapter. For example, the expert system requires an
understanding of rules and will not be started until the end of chapter 5.

Genealogical Logicbase

1- First create a source file for the geneal ogical |ogicbase application. Start by adding afew members of
your family tree. It isimportant to be accurate, since we will be exploring family relationships. Y our
own knowledge of who your relatives are will verify the correctness of your Prolog programs.

Start by recording the gender of the individuals. Use two separate predicates, male/1 and female/1. For
example

mal e(denni s) .

http://www.amzi.com/Adventurel nProl og/a2facts.htm (6 of 8)11/3/2006 7:05:05 PM

Facts

mal e(m chael).
femal e(di ana) .

Remember, if you want to include uppercase characters or embedded blanks you must enclose the name
in single (not double) quotes. For example

mal e(' Ghenghi s Khan') .

2- Enter atwo-argument predicate that records the parent-child relationship. One argument represents
the parent, and the other the child. It doesn't matter in which order you enter the arguments, aslong as
you are consistent. Often Prolog programmers adopt the convention that parent(A,B) is interpreted "A is
the parent of B". For example

parent (denni s, m chael).
parent (denni s, diana).

Customer Order Entry

3- Create a source file for the customer order entry program. We will begin it with three record types
(predicates). Thefirst is customer/3 where the three arguments are

argl
Customer name
arg2
City
arg3
Credit rating (aaa, bbb, etc)

Add as many customers as you see fit.

4- Next add clauses that define the items that are for sale. It should also have three arguments

argl

[tem identification number
arg2

I[tem name
arg3

The reorder point for inventory (when at or below thislevel, reorder)

5- Next add an inventory record for each item. It has two arguments.

http://www.amzi.com/Adventurel nProl og/a2facts.htm (7 of 8)11/3/2006 7:05:05 PM

Item identification number (same asin the item record)
arg2
Amount in stock

Copyright ©1990,1996-97, 2004 Amz! inc. All Rights Reserved

http://www.amzi.com/Adventurel nProl og/a2facts.htm (8 of 8)11/3/2006 7:05:05 PM

Simple Queries

Adventure in Prolog™ Boolke

Available in Paperback. Shipped Anywhere.

Now that we have some factsin our Prolog program, we can consult the program in the listener and
guery, or cal, the facts. This chapter, and the next, will assume the Prolog program contains only facts.
Queries against programs with rules will be covered in alater chapter.

Prolog queries work by pattern matching. The query patternis called agoal. If thereis afact that
matches the goal, then the query succeeds and the listener responds with 'yes." If there is no matching
fact, then the query fails and the listener responds with 'no.'

Prolog's pattern matching is called unification. In the case where the logicbase contains only facts,
unification succeeds if the following three conditions hold.

. The predicate named in the goal and logicbase are the same.
. Both predicates have the same arity.
. All of the arguments are the same.

Before proceeding, review figure 3.1, which has alisting of the program so far.

Thefirst query we will look at asksif the officeisaroom in the game. To pose this, we would enter that
goal followed by a period at the listener prompt.

?- roonm(office).
yes

Prolog will respond with a'yes' if a match was found. If we wanted to know if the attic was aroom, we
would enter that goal.

?- room(attic).
no

http://www.amzi.com/Adventurel nProl og/a3simple.htm (1 of 10)11/3/2006 7:05:10 PM

http://www.amzi.com/connect/adventure_book.htm

Simple Queries

roon(ki tchen).
roon(office).
roon(hal I').
roon(' di ni ng room).
roon(cellar).

door(office, hall).
door (ki tchen, office).

door (hall, 'dining room).
door (ki tchen, cellar).
door (' dining room , Kkitchen).

| ocati on(desk, office).

| ocati on(appl e, kitchen).

| ocation(flashlight, desk).

| ocati on(' washi ng machine', cellar).
| ocati on(nani, 'washing machine').

| ocati on(broccoli, kitchen).

| ocati on(crackers, kitchen).

| ocati on(conputer, office).

edi bl e(appl e) .
edi bl e(crackers).

tastes_yucky(broccoli).

here(kitchen).

Figure 3.1. Thelisting of Nani Search entered at this point

Prolog will respond with a'no’ if no match was found. Likewise, we can ask about the locations of
things.

?- location(apple, kitchen).
yes

?- location(kitchen, apple).
no

Prolog responds to our location query patterns in a manner that makes sense to us. That is, the kitchen is
not located in the apple.

http://www.amzi.com/Adventurel nProl og/a3simple.htm (2 of 10)11/3/2006 7:05:10 PM

Simple Queries

However, here is the problem with the one-way doors, which we still haven't fixed. It is mentioned again
to stress the importance of the order of the arguments.

?- door(office, hall).
yes

?- door(hall, office).
no

Goals can be generalized by the use of Prolog variables. They do not behave like the variables in other
languages, and are better called logical variables (although Prolog does not precisely correspond to
logic). The logical variables replace one or more of the arguments in the goal.

Logical variables add a new dimension to unification. As before, the predicate names and arity must be
the same for unification to succeed. However, when the corresponding arguments are compared, a
variable will successfully match any term.

After successful unification, the logical variable takes on the value of the term it was matched with. This
Is called binding the variable. When a goal with a variable successfully unifies with afact in the
logicbase, Prolog returns the value of the newly bound variable.

Since there may be more than one value a variable can be bound to and still satisfy the goal, Prolog
provides the means for you to ask for alternate values. After an answer you can enter a semicolon (;). It
causes Prolog to look for alternative bindings for the variables. Entering anything else at the prompt
ends the query.

For example, we can use alogical variableto find al of the rooms.

?- room X).

X = kitchen ;

X = office ;

X = hall ;

X = '"dining room ;
X = cellar ;

no

The last 'no’' means there are no more answers.
Here's how to find all the things in the kitchen. (Remember, variables begin with uppercase letters.)
?- location(Thing, kitchen).

http://www.amzi.com/Adventurel nProl og/a3simple.htm (3 of 10)11/3/2006 7:05:10 PM

Simple Queries

Thing = apple ;
Thing = broccoli ;
Thing = crackers ;
no

We can use two variables to see everything in every place.

?- location(Thing, Place).

Thi ng = desk

Pl ace = office ;
Thing = appl e

Pl ace = kitchen ;
Thing = flashlight
Pl ace = desk ;

no

Other applications might have the following queries.
What customerslive in Boston, and what is their credit rating?
?- custoner (X, boston, Y).
What is the title of chapter 2?
?- chapter(2,Title).
What are the coordinates of window main?
?- w ndow(mai n, Rowl, Col 1, Row2, Col 2).
How Queries Work

When Prolog tries to satisfy a goal about a predicate, such as location/2, it searches through the clauses
defining location/2. When it finds a match for its variables, it marks the particular clause that was used
to satisfy the goal. Then, if the user asks for more answers, it resumes its search of the clauses at that
place marker.

http://www.amzi.com/Adventurel nProl og/a3simple.htm (4 of 10)11/3/2006 7:05:10 PM

Simple Queries

Referring to the list of clausesin figure 3.1, let'slook closer at this process with the query location(X,
kitchen). First, unification is attempted between the query pattern and the first clause of location/2.

Pattern Cl ause #1
| ocati on(X, Kkitchen) | ocati on(desk, office)

This unification fails. The predicate names are the same, the number of arguments is the same, but the
second argument in the pattern, kitchen, is different from the second argument in the clause, office.

Next, unification is attempted between the pattern and the second clause of |ocation/2.
Pattern Cl ause #2
| ocati on(X, Kkitchen) | ocati on(appl e, kitchen)
This unification succeeds. The predicate names, arity (number of arguments), and second arguments are

the same. The first arguments can be made the same if the variable X in the pattern takes the value
‘apple.’

Now that unification succeeds, the Prolog listener reports its success, and the binding of the variable X.

?- location(X, kitchen).
X = appl e

If the user presses a key other than the semicolon (;) at this point, the listener responds with 'yes
indicating the query ended successfully.

If the user presses the semicolon (;) key, the listener looks for other solutions. First it unbinds the
variable X. Next it resumes the search using the clause following the one that had just satisfied the
guery. Thisis called backtracking. In the example that would be the third clause.

Pattern Cl ause #3

| ocati on(X, Kkitchen) | ocati on(flashlight, desk)
Thisfails, and the search continues. Eventually the sixth clause succeeds.

Pattern Cl ause #6

| ocati on(X, Kkitchen) | ocati on(broccoli, kitchen)

http://www.amzi.com/Adventurel nProl og/a3simple.htm (5 of 10)11/3/2006 7:05:10 PM

Simple Queries
Asaresult, the variable X is now rebound to broccoli, and the listener responds

X = broccoli ;

Again, entering a semicolon (;) causes X to be unbound and the search to continue with the seventh
clause, which also succeeds.

X = crackers ;

As before, entering anything except a semicolon (;) causes the listener to respond 'yes,' indicating
success. A semicolon (;) causes the unbinding of X and the search to continue. But now, there are no
more clauses that successfully unify with the pattern, so the listener responds with 'no' indicating the
final attempt has failed.

no

The best way to understand Prolog execution isto trace its execution in the debugger. But first it is
necessary to have a deeper understanding of goals.

A Prolog goal has four ports representing the flow of control through the goal: call, exit, redo, and fail.
First the goal iscalled. If successful it isexited. If not it fails. If the goal is retried, by entering a
semicolon (;) the redo port is entered. Figure 3.2 shows the goal and its ports.

call — & L et

goal

redo

fail =—j -

Figure 3.2. The ports of a Prolog goal

The behaviors at each port are

call
Begins searching for clauses that unify with the goal
exit
Indicates the goal is satisfied, sets a place marker at the clause and binds the variables
appropriately
redo
Retries the goal, unbinds the variables and resumes search at the place marker
fail

http://www.amzi.com/Adventurel nProl og/a3simple.htm (6 of 10)11/3/2006 7:05:10 PM

Simple Queries
Indicates no more clauses match the goal
Prolog debuggers use these ports to describe the state of a query. Figure 3.3 shows atrace of the location

(X, kitchen) query. Study it carefully because it is the key to your understanding of Prolog. The number
in parentheses indicates the current clause.

?- location(X, kitchen).

CALL: - location(X, kitchen)
EXIT: (2) |ocation(apple, kitchen)
X = appl e ;

REDG: | ocation(X, Kkitchen)

EXIT: (6) location(broccoli, kitchen)
X = broccoli ;

REDG. | ocation(X, Kkitchen)

EXIT: (7) location(crackers, kitchen)
X = crackers ;

FAIL - location(X kitchen)
no

Figure 3.3. Prolog trace of location(X, kitchen)

Because the trace information presented in this book is designed to teach Prolog rather than debug it, the
format is alittle different from that used in the actual debugger. Run the Amzi! Source Code Debugger
on these queries to see how they work for real.

To start the Amazi! Debugger, highlight your project name or edit a source file in your project, then
select Run | Debug As | Interpreted Project from the main menu.

Y ou will see a separate perspective with multiple views that contain trace information. Enter the query
'location(X, kitchen)' in the Debug Listener view. Y ou will see the trace start in the debugger view.

Use the 'Step Over' button in the debugger to creep from port to port. When output appearsin the listener
view, enter semicolons (;) to continue the search. See the help files for more details on the debugger.

Unification between goals and facts is actually more general than has been presented. Variables can also
occur in the facts of the Prolog logicbase as well.

For example, the following fact could be added to the Prolog program. It might mean everyone sleeps.
sl eeps(X).

http://www.amzi.com/Adventurel nProl og/a3simple.htm (7 of 10)11/3/2006 7:05:10 PM

Simple Queries

You can add it directly in the listener, to experiment with, like this.

?- assert(sleeps(X)).
yes

Queries against alogicbase with this fact give the following results.

?- sl eeps(jane).
yes

?- sleeps(tom.
yes

Notice that the listener does not return the variable bindings of "X=jane' and 'X=tom.' While they are
surely bound that way, the listener only lists variables mentioned in the query, not those used in the
program.

Prolog can also bind variables to variables.

?- sl eeps(2).
Z = H116

?- sl eeps(X).
X = H247

When two unbound variables match, they are both bound, but not to avalue! They are bound together,
so that if either one takes a value, the other takes the same value. Thisis usually implemented by binding
both variables to acommon internal variable. In the first query above, both Z in the query and X in the
fact are bound to internal variable 'H116." In this way Prolog remembers they have the same value. If
either one is bound to avalue later on, both automatically bind to that value. This feature of Prolog
distinguishes it from other languages and, as we will discover later, gives Prolog much of its power.

The two queries above are the same, even though one uses the same character X that is used in the fact
sleeps(X). The variable in the fact is considered different from the one in the query.

Exercises

The exercise sections will often contain nonsense Prolog questions. These are queries against a
meaningless logicbase to strengthen your understanding of Prolog without the benefit of meaningful
semantics. Y ou are to predict the answers to the query and then try them in Prolog to seeif you are
correct. If you are not, trace the queries to better understand them.

http://www.amzi.com/Adventurel nProl og/a3simple.htm (8 of 10)11/3/2006 7:05:10 PM

Simple Queries

Nonsense Prolog
1- Consider the following Prolog logicbase

easy(1).
easy(2).
easy(3).

gi zno(a, 1).
gi znmo(b, 3).
gi zno(a, 2).
gi zno(d, 5).
gi zno(c, 3).
gi zno(a, 3).
gi zno(c, 4).

and predict the answers to the queries below, including al alternatives when the semicolon (;) is entered
after an answer.

?- easy(2).
?- easy(X).

?- gizno(a, X).
?- gizno(X, 3).
?- gizno(d,Y).
?- gizno(X, X).

2- Consider this logicbase,

harder(a, 1).
har der (c, X).
har der (b, 4).
har der (d, 2).

and predict the answers to these queries.
?- harder(a, X).
?- harder(c, X).

?- harder (X 1).
?- harder (X 4).

http://www.amzi.com/Adventurel nProl og/a3simple.htm (9 of 10)11/3/2006 7:05:10 PM

Simple Queries

Adventure Game

3- Enter the listener and reproduce some of the example queries you have seen against location/2. List or
print location/2 for reference if you need it. Remember to respond with a semicolon (;) for multiple
answers. Trace the query.

Genealogical Logicbase
4- Pose queries against the genealogical logichase that:

. Confirm a parent relationship such as parent(dennis, diana)
« Find someone's parent such as parent(X, diana)

. Find someone's children such as parent(dennis, X)

. List al parent-children such as parent(X,Y)

5- If parent/2 seems to be working, you can add additional family membersto get alarger logicbase.
Remember to include the corresponding male/1 or female/1 predicate for each individual added.

Customer Order Entry
6- Pose queries against the customer order entry logicbase that

. find customersin agiven city

. find customers with a given credit rating

. confirm agiven customer's credit rating

. find the customersin agiven city with agiven credit rating
. find the reorder quantity for a given item

. find the item number for a given item name

. find the inventory level for a given item number

Copyright ©1990,1996-97, 2004 Amz! inc. All Rights Reserved

http://www.amzi.com/Adventurel nProl og/a3simple.htm (10 of 10)11/3/2006 7:05:10 PM

Compound Queries

Amzi® Explore Logic Programming

® free Download. Click Here.

Simple goals can be combined to form compound queries. For example, we might want to know if there is anything good
to eat in the kitchen. In Prolog we might ask

?- location(X, kitchen), edible(X).

Whereas a smple query had a single goal, the compound query has a conjunction of goals. The comma separating the
goasisread as"and."

Logically (declaratively) the example means "Is there an X such that X islocated in the kitchen and X is edible?' If the
same variable name appears more than once in a query, it must have the same value in all placesit appears. The query in
the above example will only succeed if thereisasingle value of X that can satisfy both goals.

However, the variable name has no significance to any other query, or clause in the logicbase. If X appears in other queries
or clauses, that query or clause gets its own copy of the variable. We say the scope of alogical variableisaquery.

Trying the sample query we get

?- location(X, kitchen), edible(X).

X = appl e ;
X = crackers ;
no

The 'broccoli' does not show up as an answer because we did not include it in the edible/1 predicate.

Thislogical query can also be interpreted procedurally, using an understanding of Prolog's execution strategy. The
procedural interpretation is. "First find an X located in the kitchen, and then test to seeiif it isedible. If it isnot, go back
and find another X in the kitchen and test it. Repeat until successful, or until there are no more Xsin the kitchen."

To understand the execution of a compound query, think of the goals as being arranged from left to right. Also think of a
separate table which is kept for the current variable bindings. The flow of control moves back and forth through the goals
as Prolog attempts to find variable bindings that satisfy the query.

Each goal can be entered from either the left or the right, and can be Ieft from either the left or the right. These are the ports
of the goal as seenin the last chapter.

A compound query begins by calling the first goal on the left. If it succeeds, the next goal is called with the variable
bindings as set from the previous goal. If the query finishes viathe exit port of the rightmost goal, it succeeds, and the
listener prints the valuesin the variable table.

http://www.amzi.com/Adventurel nProlog/adcomary.htm (1 of 9)11/3/2006 7:05:16 PM

http://www.amzi.com/connect/adventure_software.htm

Compound Queries

If the user types semicolon (;) after an answer, the query is re-entered at the redo port of the rightmost goal. Only the
variable bindings that were set in that goal are undone.

If the query finishes viathe fail port of the leftmost goal, the query fails. Figure 4.1 shows a compound query with the
listener interaction on the ending ports.

query - variahles
out

Figure 4.1. Compound queries

Figure 4.2 contains the annotated trace of the sample query. Make sure you understand it before proceeding.

?- location(X, kitchen), edible(X).

The trace has a new feature, which is a number in the first column that indicates the goal being worked on.

First the goal location(X, kitchen) is called, and the trace indicates that pattern matches the second clause of location.
1 CALL location(X, kitchen)

It succeeds, and resultsin the binding of X to apple.

1 EXIT (2)1 ocation(apple, Kkitchen)

Next, the second goal edible(X) is called. However, X isnow bound to apple, so it is called as edible(apple).

2 CALL edi bl e(apple)

It succeeds on the first clause of edible/1, thus exiting the query successfully.

2 EXIT (1) edible(apple)
X = appl e ;

Entering semicolon (;) causes the listener to backtrack into the rightmost goal of the query.
2 REDO edi bl e(appl e)

There are no other clauses that match this pattern, so it fails.

2 FAIL edible(apple)

Leaving the fail port of the second goal causes the listener to enter the redo port of the first goal. In so doing, the
variable binding that was established by that goal is undone, leaving X unbound.

http://www.amzi.com/Adventurel nProlog/adcomary.htm (2 of 9)11/3/2006 7:05:16 PM

Compound Queries

1 REDO | ocation(X, kitchen)
It now succeeds at the sixth clause, rebinding X to broccoli.
1 EXIT (6) location(broccoli, kitchen)

The second goal is called again with the new variable binding. Thisisafresh cal, just as the first one was, and causes
the search for a match to begin at the first clause

2 CALL edi bl e(broccoli)

There is no clause for edible(broccoli), so it fails.

2 FAIL edible(broccoli)

The first goal isthen re-entered at the redo port, undoing the variable binding.
1 REDO | ocation(X, kitchen)

It succeeds with a new variable binding.

1 EXIT (7) location(crackers, Kkitchen)

This leads to the second solution to the query.

2 CALL edi bl e(crackers)
2 EXIT (2) edible(crackers)
X = crackers ;

Typing semicolon (;) initiates backtracking again, which fails through both goals and |eads to the ultimate failure of the
query.

2 REDO edi bl e(crackers)

2 FAIL edible(crackers)

1 REDO | ocation(X, kitchen)

1 FAIL location(X, kitchen)
no

Figure 4.2. Annotated trace of compound query

In this example we had a single variable, which was bound (given avalue) by the first goal and tested in the second goal.
We will now look at a more general example with two variables. It is attempting to ask for al the things located in rooms
adjacent to the kitchen.

Inlogical terms, the query says "Find aT and R such that there is adoor from the kitchento Rand T islocated in R." In
procedural termsit says "First find an R with a door from the kitchen to R. Use that value of R to look for a T located in
R."

http://www.amzi.com/Adventurel nProlog/adcomary.htm (3 of 9)11/3/2006 7:05:16 PM

Compound Queries

?- door(kitchen, R), location(T,R).

R = office

T = desk ;

R = office

T = conputer ;

R = cellar

T = "washi ng machi ne' ;
no

In this query, the backtracking is more complex. Figure 4.3 showsiits trace.

Notice that the variable R is bound by the first goal and T is bound by the second. Likewise, the two variables are unbound
by entering the redo port of the goal that bound them. After R isfirst bound to office, that binding sticks during
backtracking through the second goal. Only when the listener backtracks into the first goal does R get unbound.

Goal : door(kitchen, R), location(T,R)

CALL door (kitchen, R
EXIT (2) door(kitchen, office)
CALL location(T, office)
EXIT (1) location(desk, office)
R = office
T = desk ;
2 REDO | ocation(T, office)
2 EXIT (8) location(conputer, office)
R = office
T = conputer ;

NN PP P

2 REDO | ocation(T, office)

2 FAIL |ocation(T, office)

1 REDO door (kitchen, R

1 EXIT (4) door(kitchen, cellar)

2 CALL | ocation(T, cellar)

2 EXIT (4) location('washing machine', cellar)
R = cellar
T = "washi ng machi ne' ;

REDO | ocation(T, cellar)
FAIL | ocation(T, cellar)
REDO door (ki tchen, R)
FAI L door (kitchen, R)

no

PP DNDN

Figure 4.3. Trace of a compound query

Built-in Predicates

http://www.amzi.com/Adventurel nProlog/adcomary.htm (4 of 9)11/3/2006 7:05:16 PM

Compound Queries

Up to this point we have been satisfied with the format Prolog uses to give us answers. We will now see how to generate
output that is customized to our needs. The example will be aquery that lists all of the itemsin the kitchen. This will
require performing I/O and forcing the listener to automatically backtrack to find all solutions.

To do this, we need to understand the concept of the built-in (evaluable) predicate. A built-in predicate is predefined by
Prolog. There are no clauses in the logicbase for built-in predicates. When the listener encounters agoal that matches a
built-in predicate, it calls a predefined procedure.

Built-in predicates are usually written in the language used to implement the listener. They can perform functions that have
nothing to do with logical theorem proving, such aswriting to the console. For this reason they are sometimes called extra-
logical predicates.

However, since they appear as Prolog goals they must be able to respond to either acall from the left or aredo from the
right. Its response in the redo case isreferred to as its behavior on backtracking.

We will introduce specific built-in predicates as we need them. Here are the 1/0 predicates that will let us control the
output of our query.

write/1
This predicate always succeeds when called, and has the side effect of writing its argument to the console.It always
fails on backtracking. Backtracking does not undo the side effect.

nl/0
Succeeds, and starts anew line. Like write, it always succeeds when called, and fails on backtracking.

tab/1
It expects the argument to be an integer and tabs that number of spaces. It succeeds when called and failson
backtracking.

Figure 4.4 isa stylized picture of agoal showing itsinternal control structure. We will compare this with the internal flow
of control of various built-in predicates.

call w EXit

r
3

fail = = = redo

Figure 4.4. Internal flow of control through a normal goal

In figure 4.4, the upper left diamond represents the decision point after a call. Starting with the first clause of a predicate,
unification is attempted between the query pattern and each clause, until either unification succeeds or there are no more
clausesto try. If unification succeeded, branch to exit, marking the clause that successfully unified, if it failed, branch to
fail.

The lower right diamond represents the decision point after aredo. Starting with the most recent clause found in the
predicate, unification is again attempted between the query pattern and remaining clauses. If it succeeds, branch to exit, if
not, branch to fail.

The 1/0 built-in predicates differ from normal goalsin that they never change the direction of the flow of control. If they
get control from the left, they pass control to the right. If they get control from the right, they pass control to the left as
shown in figure 4.5.

http://www.amzi.com/Adventurel nProlog/adcomary.htm (5 of 9)11/3/2006 7:05:16 PM

Compound Queries

call w |I0 w Exit

fail = redo

Figure 4.5. Internal flow of control through an 1/0O predicate

The output /O predicates do not affect the variable table; however, they may output values from it. They ssimply leave
their mark at the console each time control passes through them from left to right.

There are built-in predicates that do affect backtracking, and we have need of one of them for the first example. It isfail/0,
and, asitsnameimplies, it alwaysfails.

If fail/O gets control from the left, it immediately passes control back to the redo port of the goal on the left. It will never
get control from the right, since it never allows control to passto itsright. Figure 4.6 shows itsinternal control structure.

call

fail =

Figure 4.6. Internal flow of control through the fail/O predicate

Previously we relied on the listener to display variable bindings for us, and used the semicolon (;) response to generate all
of the possible solutions. We can now use the I/O built-in predicates to display the variable bindings, and the fail/O
predicate to force backtracking so all solutions are displayed.

Here then isthe query that lists everything in the kitchen.

?- location(X, kitchen), wite(X) ,nl, fail.

appl e
broccol i

crackers
no

Thefina 'no’ means the query failed, asit was destined to, due to the fail/0.
Figure 4.7 shows the control flow through this query.

call
— " — [» [»

LA ,

fail

location wtite hl fail

Figure 4.7. Flow of control through query with built-in predicates

http://www.amzi.com/Adventurel nProlog/adcomary.htm (6 of 9)11/3/2006 7:05:16 PM

Compound Queries

Figure 4.8 shows a trace of the query.

Goal : location(X, kitchen), wite(X),

1 CALL | ocation(X, Kkitchen)
1 EXIT (2) location(apple, kitchen)
2 CALL write(apple)
appl e
EXIT wite(apple)
CALL nl

W N

EXIT nl

CALL fail

FAIL fail

REDO nl

FAI L nl

REDO writ e(appl e)

FAIL wite(apple)

REDO | ocati on(X, Kkitchen)

EXIT (6) location(broccoli, kitchen)

CALL wite(broccoli)
broccol i

EXIT wite(broccoli)

CALL nl

NFEFEFEPNMNNOWOWSD®W

W N

EXIT nl

CALL fail

FAIL fail

REDO nl

FAI L nl

REDO write(broccoli)

FAIL wite(broccoli)

REDO | ocati on(X, kitchen)

EXIT (7) location(crackers, Kkitchen)

CALL write(crackers)
crackers

EXIT wite(crackers)

CALL nl

NFEFEPNMNNWWEADMM®

w N

EXIT nl

CALL fail

FAIL fail

REDO nl

FAI L nl

REDO write(crackers)

FAIL wite(crackers)

REDO | ocati on(X, Kkitchen)

FAIL | ocation(X, kitchen)
no

P RPNNOWWDSDMW

http://www.amzi.com/Adventurel nProlog/adcomary.htm (7 of 9)11/3/2006 7:05:16 PM

nl,

fail.

Compound Queries

Figure 4.8. Trace of query with built-in predicates

Exercises
Nonsense Prolog
1- Consider the following Prolog logicbase.

easy(1l).
easy(2).
easy(3).

gi zno(a, 1).
gi znmo(b, 3).
gi zno(a, 2).
gi zno(d, 5).
gi zno(c, 3).
gi zno(a, 3).
gi zno(c, 4).
harder(a, 1).
har der (¢, X)

har der (b, 4).
har der (d, 2).

Predict the results of the following queries. Then try them and trace them to see if you were correct.

?- gizno(a, X), easy(X).
?- gizmo(c, X), easy(X).
?- giznmo(d, 2), easy(2).
?- easy(Y),gizno(XY).
?- wite('report'), nl, easy(T), wite(T), gizmo(MT), tab(2), wite(M, fail.
?- wite('buggy'), nl, easy(2), wite(X), gizno(Z X), tab(2), wite(2), fail.

?- easy(X), harder (Y, X).
?- harder (Y, X), easy(X).

Adventure Game
2- Experiment with the queries you have seen in this chapter.
3- Predict the results of this query before you executeit. Then try it. Traceit if you were wrong.

?- door(kitchen, R}, wite(R), nl, location(T,R), tab(3), wite(T), nl, fail.

http://www.amzi.com/Adventurel nProlog/adcomary.htm (8 of 9)11/3/2006 7:05:16 PM

Compound Queries

Genealogical Logicbase

4- Compound queries can be used to find family relationships in the genealogical logicbase. For example, find someone's
mother with

?- parent (X, soneone), femal e(X).

Write similar queries for fathers, sons, and daughters. Trace these queries to understand their behavior (or misbehavior if
they are not working right for you).

5- Experiment with the ordering of the goals. In particular, contrast the queries.

?- parent (X, soneone), fenal e(X).
?- femal e(X), parent(X, soneone).

Do they both give the same answer? Trace both queries and see which takes more steps.

6- The same predicate can be used multiple times in the same query. For example, we can find grandparents
?- parent (X, soneone), parent(GP, X).

7- Write queries which find grandmothers, grandfathers, and great-great grandparents.

Customer Order Entry

8- Write aquery against the item and inventory records that returns the inventory level for an item when you only know
the item name.

Copyright ©1990,1996-97, 2004 Amz! inc. All Rights Reserved

http://www.amzi.com/Adventurel nProlog/adcomary.htm (9 of 9)11/3/2006 7:05:16 PM

Rules

AI—The art and science of making
INEWEIE'ttEI’ computers do interesting things

that are not in their nature.

We said earlier apredicate is defined by clauses, which may be facts or rules. A ruleis no more than a
stored query. Itssyntax is

head :- body.
where

head
apredicate definition (just like afact)

the neck symbol, sometimes read as "if"

body
one or more goals (a query)

For example, the compound query that finds out where the good things to eat are can be stored asarule
with the predicate name where_food/2.

where food(X Y) .-
| ocation(XY),
edi bl e(X) .
It states "Thereis something X to eat inroom Y if X islocated in Y, and X isedible.”

We can now use the new rule directly in aquery to find thingsto eat in aroom. As before, the semicolon
(;) after an answer is used to find all the answers.

?- where_food(X, kitchen).

X = apple ;
X = crackers ;
no

http://www.amzi.com/Adventurel nProlog/asrules.htm (1 of 14)11/3/2006 7:05:20 PM

http://www.ainewsletter.com/

Rules

?- where_food(Thing, "dining room).
no

Or it can check on specific things.

?- where_food(apple, kitchen).
yes

Or it can tell us everything.

?- where_food(Thi ng, Room.
Thing = appl e
Room = ki tchen ;

Thing = crackers
Room = ki tchen ;
no

Just as we had multiple facts defining a predicate, we can have multiple rules for a predicate. For
example, we might want to have the broccoli included in where food/2. (Prolog doesn't have an opinion
on whether or not broccoli islegitimate food. It just matches patterns.) To do this we add another

where _food/2 clause for things that 'taste_yucky.'

where food(X,Y) :-
| ocati on(X,Y),
edi bl e(X) .

where food(X,Y) :-
| ocati on(X,Y),
tastes_yucky(X).

Now the broccoli shows up when we use the semicolon (;) to ask for everything.

?- where_food(X, kitchen).

X = apple ;

X = crackers ;
X = broccoli ;
no

Until this point, when we have seen Prolog try to satisfy goals by searching the clauses of a predicate, all
of the clauses have been facts.

How Rules Work

http://www.amzi.com/Adventurel nProlog/asrules.htm (2 of 14)11/3/2006 7:05:20 PM

Rules

With rules, Prolog unifies the goal pattern with the head of the clause. If unification succeeds, then
Prolog initiates a new query using the goalsin the body of the clause.

Rules, in effect, give us multiple levels of queries. Thefirst level is composed of the original goals. The
next level isanew query composed of goals found in the body of a clause from thefirst level.

Each level can create even deeper levels. Theoreticaly, this could continue forever. In practice it can
continue until the listener runs out of space.

Figure 5.1 shows the control flow after the head of arule has been matched. Notice how backtracking
from the third goal of the first level now goesinto the second level.

Figure 5.1. Control flow with rules

In this example, the middle goal on the first level succeeds or failsif its body succeeds or fails. When
entered from the right (redo) the goal reentersits body query from the right (redo). When the query fails,
the next clause of the first-level goal istried, and if the next clause is also arule, the processis repeated
with the second clause's body.

As always with Prolog, these relationships become clearer by studying atrace. Figure 5.2 contains the
annotated trace of the where food/2 query. Notice the appearance of atwo-part number. The first part of
the number indicates the query level. The second part indicates the number of the goal within the query,
as before. The parenthetical number is the clause number. For example

2-1 EXIT (7) location(crackers, kitchen)

means the exit occurred at the second level, first goal using clause number seven.

http://www.amzi.com/Adventurel nProlog/asrules.htm (3 of 14)11/3/2006 7:05:20 PM

Rules

The query is

?- where _food(X, kitchen).

First the clauses of where food/2 are searched.
1-1 CALL where_food(X, kitchen)

The pattern matches the head of the first clause, and whileit isnot at a port, the trace could inform us
of the clause it isworking on.

1-1 try (1) where_food(X, kitchen)
The body of thefirst clause is then set up as a query, and the trace continues.
2-1 CALL | ocation(X, kitchen)
From this point the trace proceeds exactly asit did for the compound query in the previous chapter.

2-1 EXIT (2) location(apple, kitchen)
2-2 CALL edi bl e(appl e)
2-2 EXIT (1) edible(apple)

Since the body has succeeded, the goal from the previous (first) level succeeds.

1-1 EXIT (1) where_food(appl e, kitchen)
X = apple ;

Backtracking goes from the first-level goal, into the second level, proceeding as before.

1-1 REDO where food(X, kitchen)
2-2 REDO edi bl e(appl e)
FAI L edi bl e(appl e)
REDO | ocati on(X, kitchen)
EXIT (6) location(broccoli, kitchen)
CALL edi bl e(broccoli)
FAI L edi bl e(broccoli)
REDO | ocati on(X, kitchen)
EXIT (7) location(crackers, kitchen)
CALL edi bl e(crackers)
EXIT (2) edible(crackers)

NNNN[I\)NNNN
NNEFPEFEPNMNNEFEPEPDN

http://www.amzi.com/Adventurel nProlog/asrules.htm (4 of 14)11/3/2006 7:05:20 PM

Rules

1-1 EXIT (1) where food(crackers, kitchen)
X = crackers ;

Now any attempt to backtrack into the query will result in no more answers, and the query will fail.

2 REDO edi bl e(crackers)
2 FAIL edi bl e(crackers)
1 REDO | ocation(X, kitchen)
1

2-
2-
2-
2-1 FAIL location(X, kitchen)

This causes the listener to ook for other clauses whose heads match the query pattern. In our
example, the second clause of where food/2 also matches the query pattern.

1-1 REDO where_food(X, kitchen)

Again, athough traces usually don't tell us so, it is building a query from the body of the second
clause.

1-1 try (2) where_food(X, kitchen)

Now the second query proceeds as normal, finding the broccoli, which tastes yucky.

CALL I ocation(X, kitchen)

EXIT (2) location(apple, kitchen)
CALL tastes_yucky(apple)

FAI L tastes _yucky(apple)

REDO | ocati on(X, kitchen)

EXIT (6) location(broccoli, kitchen)
CALL tastes_yucky(broccoli)

EXIT (1) tastes_yucky(broccoli)

(2) where_food(broccoli, kitchen)
= broccoli ;

w
[EEN
Egr\)r\)rl\)rl\)r\)r\)r\)r\)
ANNRPRRERPNNERPRE

< =

Backtracking brings us to the ultimate no, as there are no more where food/2 clausesto try.

REDO t ast es_yucky(broccoli)

FAI L tastes yucky(broccoli)

REDO | ocati on(X, ki t chen)

EXIT (7) location(crackers, kitchen)
CALL tastes_yucky(crackers)

FAI L tastes _yucky(crackers)

REDO | ocati on(X, kitchen)

I\)I\)I\)II\)I\)I\)I\)
NDNNEFEEFEPDNDN

http://www.amzi.com/Adventurel nProlog/asrules.htm (5 of 14)11/3/2006 7:05:20 PM

Rules

2-2 FAIL | ocation(X, kitchen)
1-1 REDO where_ food(X, kitchen)
1-1 FAIL where food(X, kitchen)
no

Figure 5.2. Trace of aquery with rules

It isimportant to understand the relationship between the first-level and second-level variablesin this
guery. These are independent variables, that is, the X in the query is not the same as the X that shows up
in the body of the where food/2 clauses, values for both happen to be equal due to unification.

To better understand the relationship, we will slowly step through the process of transferring control.
Subscripts identify the variable levels.

The goal inthe query is
?- where_food(X1, kitchen)
The head of thefirst clauseis
wher e food(X2, Y2)

Remember the 'dlegps example in chapter 3 where a query with a variable was unified with afact with a
variable? Both variables were set to be equal to each other. Thisis exactly what happens here. This
might be implemented by setting both variables to a common internal variable. If either one takes on a
new value, both take on a new value.

So, after unification between the goal and the head, the variable bindings are

X1 = 01
X2 = 01
Y2 = kitchen

The second-level query is built from the body of the clause, using these bindings.
| ocati on(_01, kitchen), edible(_01).

When internal variable 01 takes on avalue, such as 'apple,' both X's then take on the same value. This
is fundamentally different from the assignment statements that set variable values in most computer
languages.

http://www.amzi.com/Adventurel nProlog/asrules.htm (6 of 14)11/3/2006 7:05:20 PM

Rules

Using Rules

Using rules, we can solve the problem of the one-way doors. We can define a new two-way predicate
with two clauses, called connect/2.

connect (X, Y) :- door(XY).
connect (X, Y) :- door(Y, X).

It says "Room X is connected to aroom Y if thereisadoor from X to Y, or if thereisadoor from Y to
X." Note the implied 'or' between clauses. Now connect/2 behaves the way we would like.

?- connect (kitchen, office).
yes

?- connect (office, kitchen).
yes

We can list all the connections (which is twice the number of doors) with ageneral query.

?- connect (X Y).

X = office

Y = hall ;

X = kitchen

Y = office ;
X = hall

Y = office ;
X = office

Y = kitchen ;

With our current understanding of rules and built-in predicates we can now add more rules to Nani
Search. We will start with look/O, which will tell the game player where he or sheis, what thingsarein
the room, and which rooms are adjacent.

To begin with, we will write list_things/1, which lists the things in aroom. It uses the technique
developed at the end of chapter 4 to loop through al the pertinent facts.

l'ist_things(Place) :-

http://www.amzi.com/Adventurel nProlog/asrules.htm (7 of 14)11/3/2006 7:05:20 PM

Rules

| ocati on(X, Pl ace),
tab(2),

wite(X),

nl,

fail.

Weuseit likethis.

?- list_things(kitchen).
appl e
broccol i
crackers

no

Thereisone small problem with list_things/1. It gives usthe list, but it awaysfails. Thisisall right if
we call it by itself, but we won't be able to use it in conjunction with other rules that follow it (to the
right asillustrated in our diagrams). We can fix this problem by adding a second list_things/1 clause
which always succeeds.

list_things(Place) :-
| ocation(X, Place),
tab(2),
wite(X),
nl,
fail.
list_things(AnyPl ace) .

Now when the first clause fails (because there are no more location/2s to try) the second list_things/1
clause will betried. Sinceits argument is avariable it will successfully match with anything, causing
list_things/1 to always succeed and |eave through the 'exit’ port.

Aswith the second clause of list_things/1, it is often the case that we do not care what the value of a
variableis, it issimply a place marker. For these situations thereis a specia variable called the
anonymous variable, represented as an underscore (_). For example

list _things(_).

Next we will write list_connections/1, which lists connecting rooms. Since rules can refer to other rules,
aswell asto facts, we can write list_connections/1 just like list_things/1 by using the connection/2 rule.

list _connections(Pl ace) : -
connect (Pl ace, X),

http://www.amzi.com/Adventurel nProlog/asrules.htm (8 of 14)11/3/2006 7:05:20 PM

Rules

tab(2),
wite(X),
nl,
fail.
| i st _connections(_).

Trying it gives us

?- list_connections(hall).
di ni ng room
of fice

yes

Now we are ready to write look/0. The single fact here(kitchen) tells us where we are in the game. (In
chapter 7 we will see how to move about the game by dynamically changing here/1.) We can use it with
the two list predicates to write the full look/O.

| ook : -
her e(Pl ace),
wite('You are in the "), wite(Place), nl,
wite('You can see:'), nl,
list _things(Place),
wite('You can go to:'), nl,
i st _connections(Pl ace).

Given we are in the kitchen, thisis how it works.

?- | ook.

You are in the kitchen

You can see:
appl e
broccol i
crackers

You can go to:
of fice
cel |l ar
di ni ng room

yes

We now have an understanding of the fundamentals of Prolog, and it is worth summarizing what we
have learned so far. We have seen the following about rulesin Prolog.

http://www.amzi.com/Adventurel nProlog/asrules.htm (9 of 14)11/3/2006 7:05:20 PM

. A Prolog program is alogicbase of interrelated facts and rules.

« The rules communicate with each other through unification, Prolog's built-in pattern matcher.
« The rules communicate with the user through built-in predicates such as write/1.

« Therules can be queried (called) individually from the listener.

We have seen the following about Prolog's control flow.

. The execution behavior of the rulesis controlled by Prolog's built-in backtracking search
mechanism.

. We can force backtracking with the built-in predicate fail.

. We can force success of a predicate by adding afina clause with dummy variables as arguments
and no body.

We now understand the following aspects of Prolog programming.

. Factsinthe logichase (locations, doors, etc.) replace conventional data definition.

. The backtracking search (list_things/1) replaces the coding of many looping constructs.

« Passing of control through pattern matching (connect/2) replaces conditional test and branch
structures.

. Therules can be tested individually, encouraging modular program devel opment.

. Rulesthat call rules encourage the programming practices of procedure abstraction and data
abstraction. (For example, 100k/0 doesn't know how list_things/1 works, or how the location data
Is stored.)

With thislevel of understanding, we can make alot of progress on the exercise applications. Take some
time to work with the programs to consolidate your understanding before moving on to the following
chapters.

Exercises

Nonsense Prolog

1- Consider the following Prolog logicbase.
a(al, 1).

a(A 2).
a(a3, N).

b(1, bl).

b(2, B).
b(N, b3).

http://www.amzi.com/Adventurel nProl og/a5rules.htm (10 of 14)11/3/2006 7:05:20 PM

Rules

c(XY) :- a(X N, b(NY).

d(X,Y) :- a(X N, b(Y,N).
d(X,Y) :- a(N,X), b(N,Y).

Predict the answers to the following queries, then check them with Prolog, tracing.
?- a(X 2).

?- b(X, kal anmazoo).

?- c(X b3).
?- ¢(XY).
?- d(XY).

Adventure Game
2- Experiment with the various rules that were developed during this chapter, tracing them all.

3- Writelook_in/1 for Nani Search. It should list the things located in its argument. For example, look_in
(desk) should list the contents of the desk.

Genealogical Logicbase

4- Build rules for the various family relationships that were developed as queries in the last chapter. For
example

not her(M O) : -
parent (M O,
femal e(M.

5- Build arulefor siblings. Y ou will probably find your rule lists an individual as his’her own sibling.
Use trace to figure out why.

6- We can fix the problem of individuals being their own siblings by using the built-in predicate that
succeeds if two values are unequal, and failsif they are the same. The predicate is\=(X,Y). Jumping
ahead a bit (to operator definitionsin chapter 12), we can also writeitintheform X \=Y.

7- Usethe sibling predicate to define additional rules for brothers, sisters, uncles, aunts, and cousins.

8- If we want to represent marriages in the family logicbase, we run into the two-way door problem we

http://www.amzi.com/Adventurel nProlog/asrules.htm (11 of 14)11/3/2006 7:05:20 PM

Rules

encountered in Nani Search. Unlike parent/2, which has two arguments with distinct meanings,
married/2 can have the arguments reversed without changing the meaning.

Using the Nani Search door/2 predicate as an example, add some basic family data with a spouse/2
predicate. Then write the predicate married/2 using connect/2 as amodel.

9- Use the new married predicate to add rules for uncles and aunts that get uncles and aunts by marriage
aswell as by blood. Y ou should have two rules for each of these relationships, one for the blood case
and one for the marriage case. Use trace to follow their behavior.

10- Explore other relationships, such as those between in-laws.
11- Write a predicate for grandparent/2. Use it to find both a grandparent and a grandchild.

gr andpar ent (soneone, X).
gr andparent (X, soneone).

Trace its behavior for both uses. Depending on how you wrote it, one use will require many more steps
than the other. Write two predicates, one called grandparent/2 and one called grandchild/2. Order the
goalsin each so that they are efficient for their intended uses.

Customer Order Entry

12- Write arule item_quantity/2 that is used to find the inventory level of a named item. This shields the
user of this predicate from having to deal with the item numbers.

13- Write arule that produces an inventory report using the item_quantity/2 predicate. It should display
the name of the item and the quantity on hand. It should also always succeed. It will be similar to
list_things/2.

14- Write arule which defines a good customer. Y ou might want to identify different cases of a good
customer.

Expert Systems

Expert systems are often called rule-based systems. The rules are "rules of thumb" used by experts to
solve certain problems. The expert system includes an infer ence engine, which knows how to use the
rules,

There are many kinds of inference engines and knowledge representation techniques that are used in
expert systems. Prolog is an excellent language for building any kind of expert system. However, certain

http://www.amzi.com/Adventurel nProl og/a5rules.htm (12 of 14)11/3/2006 7:05:20 PM

Rules

types of expert systems can be built directly using Prolog's native rules. These systems are called
structured selection systems.

The code listing for 'birds' in the appendix contains a sample system that can be used to identify birds.
Y ou will be asked to build asimilar system in the exercises. It can identify anything, from animalsto
cars to diseases.

15- Decide what kind of expert system you would like to build, and add afew initial identification rules.
For example, a system to identify house pets might have these rules.

pet (dog):- size(nedium, noise(woof).
pet (cat):- size(nedium, noise(neow).
pet (nmouse): - size(small), noise(squeak).

16- For now, we can use these rules by putting the known facts in the logicbase. For example, if we add
size(medium) and noise(meow) and then pose the query pet(X) we will find X=cat.

Many Prologs allow clauses to be entered directly at the listener prompt, which makes using this expert
system alittle easier. The presence of the neck symbol (:-) signalsto the listener that the input is a clause
to be added. So to add facts directly to the listener workspace, they must be made into rules, as follows.

?- size(nmedium :- true.
recor ded
?- noi se(nmeow) :- true.
recor ded

Jumping ahead, you can also use assert/1 like this

?- assert(size(nmedium).
yes

?- assert(noi se(nmeow)).
yes

These examples use the predicates in the general form attribute(value). In this simple example, the pet
attribute is deduced. The size and noise attributes must be given.

17- Improve the expert system by having it ask for the attribute/valuesit can't deduce. We do this by
first adding the rules

size(X):- ask(size, X).
noi se(X):- ask(noise, X).

http://www.amzi.com/Adventurel nProl og/a5rules.htm (13 of 14)11/3/2006 7:05:20 PM

Rules

For now, ask/2 will simply check with the user to seeif an attribute/value pair istrue or false. It will use
the built-in predicate read/1 which reads a Prolog term (ending in a period of course).

ask(Attr, Val):-
wite(Attr),tab(l),wite(Val),
tab(1l),wite(' (yes/no)'), wite(?),
read(X),
X = yes.
Thelast goal, X = yes, attemptsto unify X and yes. If yes was read, then it succeeds, otherwisg, it fails.

Copyright ©1990,1996-97, 2004 Amz! inc. All Rights Reserved

http://www.amzi.com/Adventurel nProl og/asrules.htm (14 of 14)11/3/2006 7:05:20 PM

Arithmetic

Adventure in Prolog™ Boolke

Available in Paperback. Shipped Anywhere.

Prolog must be able to handle arithmetic in order to be a useful general purpose programming language.
However, arithmetic does not fit nicely into the logical scheme of things.

That is, the concept of evaluating an arithmetic expression isin contrast to the straight pattern matching
we have seen so far. For this reason, Prolog provides the built-in predicate 'is that evaluates arithmetic
expressions. Its syntax calls for the use of operators, which will be described in more detail in chapter
12.

X is <arithnetic expression>
The variable X is set to the value of the arithmetic expression. On backtracking it is unassigned.
The arithmetic expression looks like an arithmetic expression in any other programming language.
Hereis how to use Prolog as a calculator.

?- Xis 2 + 2.
X=4

?- Xis 3 * 4 + 2.
X =14

Parentheses clarify precedence.

?2- Xis 3* (4 +2).
X = 18

- Xis (81 4) | 2.
X =1

In addition to 'is,' Prolog provides a number of operators that compare two numbers. These include

http://www.amzi.com/Adventurel nProlog/abarith.htm (1 of 3)11/3/2006 7:05:23 PM

http://www.amzi.com/connect/adventure_book.htm

Arithmetic

‘greater than', 'less than', 'greater or equal than', and 'less or equal than.' They behave more logically, and
succeed or fail according to whether the comparison istrue or false. Notice the order of the symbolsin
the greater or equal than and less than or equal operators. They are specifically constructed not to look
like an arrow, so that you can use arrow symbolsin your programs without confusion.

X>Y
X<Y
X>=Y
X ==Y

Here are afew examples of their use.

?- 4 > 3.
yes

?- 4 < 3.
no

?2- Xis 2+ 2, X> 3.
X = 4

?- Xis 2+ 2, 3> X
no

?- 3+4 > 3*2.
yes

They can be used in rules as well. Here are two example predicates. One converts centigrade
temperatures to Fahrenheit, the other checksif atemperature is below freezing.

c to f(CF) :-
FisC* 9/ 5 + 32.

freezing(F) :-
F =< 32.

Here are some examples of their use.
?- c_to f(100, X).

X = 212
yes

http://www.amzi.com/Adventurel nProl og/abarith.htm (2 of 3)11/3/2006 7:05:23 PM

Arithmetic

?- freezing(1l5).
yes

?- freezing(45).
no

Exercises
Customer Order Entry

1- Write apredicate valid_order/3 that checks whether a customer order isvalid. The arguments should
be customer, item, and quantity. The predicate should succeed only if the customer isavalid customer
with a good credit rating, the item is in stock, and the quantity ordered isless than the quantity in stock.

2- Write areorder/1 predicate which checks inventory levelsin the inventory record against the reorder
guantity in the item record. It should write a message indicating whether or not it's time to reorder.

Copyright ©1990,1996-97, 2004 Amz! inc. All Rights Reserved

http://www.amzi.com/Adventurel nProl og/abarith.htm (3 of 3)11/3/2006 7:05:23 PM

Managing Data

Anmzi® Explore Logic °rogramming

® Free Download. Click Here.

We have seen that a Prolog program is alogicbase of predicates, and so far we have entered clauses for
those predicates directly in our programs. Prolog aso alows us to manipulate the logicbase directly and
provides built-in predicates to perform this function. The main ones are

asserta(X)
Adds the clause X asthefirst clause for its predicate. Like the other 1/O predicates, it alwaysfails
on backtracking and does not undo its work.

assertz(X)
Same as asserta/l, only it adds the clause X asthe last clause for its predicate.

retract(X)
Removes the clause X from the logicbase, again with a permanent effect that is not undone on
backtracking.

The ability to manipulate the logicbase is obviousy an important feature for Nani Search. With it we can
dynamically change the location of the player, aswell as the stuff that has been picked up and moved.

We will first develop goto/1, which moves the player from one room to another. It will be devel oped
from the top down, in contrast to 10ok/0O which was developed from the bottom up.

When the player enters the command goto, we first check if they can go to the place and if so move
them so they can look around the new place. Starting from this description of goto/1, we can write the
main predicate.

got o(Pl ace): -
can_go(Pl ace),

nmove(Pl ace) ,
| ook.

Next wefill in the details. We can go to aroom if it connects to where we are.
can_go(Pl ace) : -

http://www.amzi.com/Adventurel nProl og/a7manage.htm (1 of 6)11/3/2006 7:05:29 PM

http://www.amzi.com/connect/adventure_software.htm

Managing Data

here(X),
connect (X, Pl ace).

We can test can_go/1 immediately (assuming we are in the kitchen).

?- can_go(office).
yes

?- can_go(hall).
no

Now, can_go/1 succeeds and fails as we want it to, but it would be niceif it gave us a message when it
failed. By adding a second clause, which istried if the first one fails, we can cause can_go/1 to write an
error message. Since we want can_go/1 to fail in this situation we also need to add afail to the second
clause.

can_go(Pl ace) : -
here(X),
connect (X, Pl ace).
can_go(Pl ace) : -
wite('You can''t get there fromhere."'), nl,
fail.

Thisversion of can_go/1 behaves as we want.

?- can_go(hall).
You can't get there from here.
no

Next we develop move/1, which does the work of dynamically updating the logicbase to reflect the new
location of the player. It retracts the old clause for here/1 and replaces it with a new one. Thisway there
will always be only one here/1 clause representing the current place. Because goto/1 calls can_go/1
before move/1, the new here/1 will always be alegal place in the game.

nove(Pl ace) : -
retract (here(X)),
asserta(here(Place)).

We can now use goto/1 to explore the game environment. The output it generates is from look/0, which
we developed in chapter 5.

?- goto(office).

http://www.amzi.com/Adventurel nProl og/a7manage.htm (2 of 6)11/3/2006 7:05:29 PM

Managing Data

You are in the office
You can see:
desk
conmput er
You can go to:
hal |
kit chen
yes

?- goto(hall).
You are in the hal
You can see:
You can go to:
di ni ng room
of fice
yes

?- goto(kitchen).
You can't get there from here.
no

We will also need 'asserta and 'retract’ to implement ‘take' and ‘put’ commands in the game.

Hereistake/l. For it we will define anew predicate, have/1, which has one clause for each thing the
game player has. Initially, have/l is not defined because the player is not carrying anything.

take(X): -
can_t ake(X),
t ake_obj ect (X).

can_take/l isanalogousto can_go/1.

can_take(Thing) :-
here(Pl ace),
| ocati on(Thi ng, Place).
can_take(Thing) :-
wite(' There is no '), wite(Thing),
wite(' here.'),
nl, fail.

take object/1 isanalogous to move/l. It retracts a location/2 clause and asserts a have/l clause,
reflecting the movement of the object from the place to the player.

http://www.amzi.com/Adventurel nProl og/a7manage.htm (3 of 6)11/3/2006 7:05:29 PM

Managing Data

take_object(X): -
retract (location(X,)),
asserta(have(X)),
wite('taken'), nl.

Aswe have seen, the variablesin a clause are local to that clause. There are no global variablesin
Prolog, as there are in many other languages. The Prolog logicbase serves that purpose. It alows all
clauses to share information on awider basis, replacing the need for global variables. ‘asserts and
'retracts are the tools used to manipulate this global data.

As with any programming language, global data can be a powerful concept, easily overused. They
should be used with care, since they hide the communication of information between clauses. The same
code will behave differently if the global datais changed. This can lead to hard-to-find bugs.

Eliminating global data and the ‘assert’' and 'retract’ capabilities of Prolog isagoal of many logic
programmers. It is possible to write Prolog programs without dynamically modifying the logicbase, thus
eliminating the problem of global variables. Thisis done by carrying the information as arguments to the
predicates. In the case of an adventure game, the complete state of the game could be represented as
predicate arguments, with each command called with the current state and returning a new modified
state. This approach will be discussed in more detail in chapter 14.

Although the database-like approach presented here may not be the purest method from alogical
standpoint, it does allow for a very natural representation of this game application.

Various Prologs provide varying degrees of richnessin the area of logicbase manipulation. The built-in
versions are usually unaffected by backtracking. That is, like the other 1/O predicates, they perform their
function when called and do nothing when entered from the redo port.

Sometimesit is desirable to have a predicate retract its assertions when the redo port is entered. It is easy
to write versions of 'assert' and 'retract’ that undo their work on backtracking.

backt racki ng_assert (X): -
asserta(X).

backt racki ng_assert (X): -
retract(X),fail.

Thefirst time through, the first clause is executed. If alater goal fails, backtracking will cause the
second clause to be tried. It will undo the work of the first and fail, thus giving the desired effect.

Exercises

http://www.amzi.com/Adventurel nProl og/a7manage.htm (4 of 6)11/3/2006 7:05:29 PM

Managing Data

Adventure Game
1- Write put/1 which retracts ahave/1 clause and asserts alocation/2 clause in the current room.
2- Write inventory/0 which lists the have/1 things.

3- Use goto/1, take/1, put/1, look/0, and inventory/O to move about and examine the game environment
so far.

4- Write the predicates turn_on/1 and turn_off/1 for Nani Search. They will be used to turn the flashlight
on or off.

5- Add an open/closed status for each of the doors. Write open and closepredicates that do the obvious.
Fix can_go/1 to check whether a door is open and write the appropriate error message if its not.

Customer Order Entry

6- In the order entry application, write a predicate update_inventory/2 that takes an item name and
guantity asinput. Have it retract the old inventory amount, perform the necessary arithmetic and assert
the new inventory amount.

NOTE: retract(inventory(item_id,Q)) binds Q to the old value, thus aleviating the need for a separate
goal to get the old value of the inventory.

7- We can now use the various predicates developed for the customer order entry system to write a
predicate that prompts the user for order information and generates the order. The predicate can be
simply order/0.

order/0 should first prompt the user for the customer name, the item name and the quantity. For example
wite(' Enter custoner nane:'),read(Q,

It should then use the rules for good customer and valid_order to verify that thisisavalid order. If so, it
should assert a new type of record, order/3, which records the order information. It can then
update_inventory and check whether its time to reorder.

The customer order entry application has been designed from the bottom up, since that is the way the
material has been presented for learning. The order predicate should suggest that Prolog is an excellent
tool for top-down development as well.

One could start with the concept that processing an order means reading the date, checking the order,

http://www.amzi.com/Adventurel nProl og/a7manage.htm (5 of 6)11/3/2006 7:05:29 PM

Managing Data

updating inventory, and reordering if necessary. The necessary details of implementing these predicates
could be left for later.

Expert System

8- The expert system currently asks for the same information over and over again. We can use the
logicbase to remember the answers to questions so that ask/2 doesn't re-ask something.

When ask/2 gets ayes or no answer to a question about an attribute-value pair, assert afact in the form
known(Attri bute, Value, YesNo).

Add afirst clause to ask/2 that checks whether the answer is already known and, if so, succeeds. Add a
second clause that checks if the answer is known to be false and, if so, fails.

The third clause makes sure the answer is not already known, and then asks the user as before. To do
this, the built-in predicate not/1 is used. It failsif its argument succeeds.

not (known(Attr, Val, Answer))

Copyright ©1990,1996-97, 2004 Amz! inc. All Rights Reserved

http://www.amzi.com/Adventurel nProl og/a7manage.htm (6 of 6)11/3/2006 7:05:29 PM

Recursion

AI—The art and science of making
_[Newsletter computers do interesting things

that are not in their nature.

Recursion in any language is the ability for a unit of code to call itself, repeatedly, if necessary.
Recursion is often avery powerful and convenient way of representing certain programming constructs.

In Prolog, recursion occurs when a predicate contains a goal that refers to itself.

Aswe have seen in earlier chapters, every time aruleis called, Prolog uses the body of the ruleto create
anew query with new variables. Since the query is anew copy each time, it makes no difference
whether arule calls another rule or itself.

A recursive definition (in any language, not just Prolog) always has at least two parts, a boundary
condition and a recursive case.

The boundary condition defines a simple case that we know to be true. The recursive case simplifies the
problem by first removing alayer of complexity, and then calling itself. At each level, the boundary
condition is checked. If it is reached the recursion ends. If not, the recursion continues.

We will illustrate recursion by writing a predicate that can detect things which are nested within other
things.

Currently our location/2 predicate tells us the flashlight is in the desk and the desk is in the office, but it
does not indicate that the flashlight isin the office.

?- location(flashlight, office).
no

Using recursion, we will write anew predicate, is_contained_in/2, which will dig through layers of
nested things, so that it will answer 'yes if asked if the flashlight isin the office.

To make the problem more interesting, we will first add some more nested items to the game. We will
continue to use the location predicate to put things in the desk, which in turn can have other things inside

them.

http://www.amzi.com/Adventurel nProlog/a8recurs.htm (1 of 8)11/3/2006 7:05:35 PM

http://www.ainewsletter.com/

Recursion

| ocati on(envel ope, desk).
| ocati on(stanp, envel ope).
| ocati on(key, envel ope).

To list all of thingsin the office, we would first have to list those things that are directly in the office,
like the desk. We would then list the things in the desk, and the things inside the things in the desk.

If we generalize aroom into being just another thing, we can state a two-part rule which can be used to
deduce whether something is contained in (nested in) something else.

. Athing, T1, is contained in another thing, T2, if T1isdirectly located in T2. (Thisisthe
boundary condition.)

. Athing, T1, is contained in another thing, T2, if some intermediate thing, X, islocated in T2 and
Tliscontained in X. (Thisiswhere we simplify and recurse.)

We will now expressthisin Prolog. Thefirst rule tranglates into Prolog in a straightforward manner.

Is_contained_in(T1,T2) :-
| ocation(T1, T2).

Therecursiveruleis aso straightforward. Notice that it refersto itself.
Is_contained_in(T1,T2) :-
| ocation(X, T2),

Is_contained_in(T1, X).

Now we are ready to try it.

N
1

Is_contained_in(X, office).
desk ;

conputer ;

flashlight ;

envel ope ;

stanp ;
key ;

XX X X X X
L1 e B U A B

-]
o

?- Is_contained_in(envel ope, office).
yes

?- Is_contained_in(apple, office).

http://www.amzi.com/Adventurel nProl og/a8recurs.htm (2 of 8)11/3/2006 7:05:35 PM

Recursion

no

How Recursion Works

Asinall calsto rules, the variables in arule are unique, or scoped, to the rule. In the recursive case, this
means each call to therule, at each level, hasits own unique set of variables. So the values of X, T1, and
T2 at thefirst level of recursion are different from those at the second level.

However, unification between a goal and the head of a clause forces a relationship between the variables

of different levels. Using subscripts to distinguish the variables, and internal Prolog variables, we can
trace the relationships for a couple of levels of recursion.

First, the query goal is
?- is_contained in(XQ office).
The clause with variables for the first level of recursionis
Is_contained in(T11, T21) :-
| ocati on(X1, T21),

Is_contained in(T11, X1).

When the query is unified with the head of the clause, the variables become bound. The bindings are

XQ = 01
T11 = 01
T21 = office
X1 = 02

Note particularly that XQ in the query becomes bound to T11 in the clause, so when avalue of 01 is
found, both variables are found.

With these bindings, the clause can be rewritten as
Is_contained in(_01, office) :-
| ocation(_02, office),
Is_contained_in(_01, 02).

When the location/2 goal is satisfied, with _02 = desk, the recursive call becomes

Is_contained_ in(_01, desk)

http://www.amzi.com/Adventurel nProl og/a8recurs.htm (3 of 8)11/3/2006 7:05:35 PM

Recursion

That goal unifies with the head of a new copy of the clause, at the next level of the recursion. After that
unification the variables are

XQ = 01 T11 = 01 T12 = 01
T21 = office T22 = desk
X1 = desk X2 = 03

When the recursion finds a solution, such as 'envelope,’ al of the T1s and X0 immediately take on that
value. Figure 8.1 contains a full annotated trace of the query.

The query is
?- Iis_contained_in(X, office).

Each level of the recursion will have its own unique variables, but asin al callsto rules, the variables
at acalled level will be bound in some relationship to the variables at the calling level. In the
following trace, we will use Prolog internal variables, so we can see which variables are bound
together and which are not. The items directly in the office are found easily, asthe variable _Ois
bound to X inthe query and T1 in therule.

1-1 CALL is_contained in(_0O, office)
1-1 try (1) is_contained_in(_0O, office)
2-1 CALL | ocation(_0, office)
2-1 EXIT | ocation(desk, office)
1-1 EXIT is_contai ned _in(desk, office)
X = desk ;
2-1 REDO | ocation(_0, office)
2-1 EXIT | ocati on(conputer, office)
1-1 EXIT is_contai ned_in(conputer, office)
X = conputer ;
2-1 REDO | ocation(_0, office)
2-1 FAIL location(_0O,office)

When there are no more location(X, office) clauses, the first clause of is_contained in/2 fails, and the
second clause istried. Notice that the call to location does not have its first argument bound to the
same variable. It was X intherule, and it getsanew internal value, 4. T1 stays bound to 0.

1-1 REDO is_contained in(_0, office)
1-1 try (2) is_contained in(_0, office)
2-1 CALL location(_4, office)
2-1 EXIT | ocati on(desk, office)

http://www.amzi.com/Adventurel nProl og/a8recurs.htm (4 of 8)11/3/2006 7:05:35 PM

Recursion

When it initiatesanew call tois_contained in/2, it behaves exactly asif we had performed the query
Is_contained_in(X, desk) at the listener prompt. It is, in effect, a completely new copy of
Is_contained_in/2. This call will find all of the thingsin the desk, just asthe first level found all things
in the office.

CALL is _contained in(_0, desk)

try (1) is_contained_ in(_0, desk)
3-1 CALL | ocation(_0, desk)

3-1 EXIT location(flashlight, desk)

2-2
2-2

Having found the flashlight at the second-level is_contained_in/2, the answer propagates back up to
thefirst level copy of is_contained in/2.

2-2 EXIT is_contained_in(flashlight, desk)
1-1 EXIT is_contained in(flashlight, office)
X = flashlight ;

Similarly, it finds the envelope at the second level of recursion.

3-1 REDO | ocation(_0, desk)
3-1 EXIT | ocation(envel ope, desk)
2-2 EXIT is_contained_in(envel ope, desk)
1-1 EXIT is_contai ned_i n(envel ope, office)
X = envel ope ;

Having exhausted the things located in the desk, it next beginsto look for things within things located
in the desk.

3-1 REDO | ocation(_0, desk)

3-1 FAIL Il ocation(_0, desk)

REDO i s_contai ned_in(_0, desk)

ry (2) is_contained_in(_0, desk)

1 CALL location(_7, desk)

1 EXIT location(flashlight, desk)

2-2
2-2 t
3-
3-
First, is there something in the flashlight? Both clauses of is_contained in/2 fail because thereis
nothing located in the flashlight.

3-2 CALL is_contained _in(_0, flashlight)

4-1 CALL location(_0, flashlight)
4-1 FAIL location(_0, flashlight)

http://www.amzi.com/Adventurel nProl og/a8recurs.htm (5 of 8)11/3/2006 7:05:35 PM

Recursion

3-2 REDO is_contained_in(_0, flashlight)

3-2try (2) is_contained in(_0, flashlight)

4-1 CALL location(_11, flashlight)
4-1 FAIL location(_11, flashlight)
3-2 FAIL is_contained _in(_0, flashlight)

Next, it tries to find things in the envelope and comes up with the stamp.

REDO | ocati on(_7, desk)
EXIT | ocati on(envel ope, desk)
CALL is _contained_ in(_0, envel ope)
4-1 CALL |l ocation(_0, envel ope)
4-1 EXIT | ocation(stanp, envel ope)
3-2 EXIT is_contained_in(stanp, envel ope)
2-2 EXIT is_contai ned_in(stanp, desk)
1-1 EXIT is_contai ned_in(stanp, office)
X = stanp ;

3-
3-
3-

N R

And then the key.

4-1 REDO | ocation(_0, envel ope)
4-1 EXIT | ocation(key, envel ope)
3-2 EXIT is_contained_i n(key, envel ope)
2-2 EXIT is_contai ned_in(key, desk)
1-1 EXIT is_contai ned_in(key, office)
X = key ;

And then it failsits way back to the beginning.

3-2 REDO i s_contained_in(_0, envel ope)
3-2 try (2) is_contained_in(_0, envel ope)
4-1 CALL location(_11, envel ope)

1 EXIT | ocation(stanp, envel ope)

2 CALL is_contained_ in(_0, stanp)
5-1 CALL |l ocation(_0, stanp)

5-1 FAIL location(_0, stanp)
REDO i s_contai ned_in(_0, stanp)
try(2) is_contained_in(_0, stanp)
5-1 CALL | ocation(_14, stanp)

5-1 FAIL |l ocation(_14, stanp)
REDO | ocati on(_11, envel ope)

EXIT | ocati on(key, envel ope)

4-
4-

S D
N DN

N
N

http://www.amzi.com/Adventurel nProl og/a8recurs.htm (6 of 8)11/3/2006 7:05:35 PM

Recursion

4-2 CALL is _contained in(_0, key)
4-2 try (1) is_contained in(_0, key)
5-1 CALL | ocation(_0, key)
5-1 FAIL location(_0, key)
4-2 REDO i s _contained in(_0, key)
4-2 try (2) is_contained in(_0, key)

5-1 CALL | ocation(_14, key)
5-1 FAIL location(_14, key)
4-1 REDO | ocation(_7, desk)
4-1 FAIL location(_7, desk)
REDO | ocation(_4, office)
EXIT | ocati on(conputer, office)
CALL is _contained_ in(_0, conputer)
4-1 CALL |l ocation(_0, conputer)
4-1 FAIL location(_0O, conputer)
3-2 REDO i s_contained_in(_0, conputer)
4-1 CALL location(_7, conputer)
4-1 FAIL location(_7, conputer)
REDO | ocation(_4, office)
FAIL | ocation(_4, office)

W w w
N

Figure 8.1. Trace of arecursive query

When writing arecursive predicate, it is essential to ensure that the boundary condition is checked at
each level . Otherwise, the program might recurse forever.

The simplest way to do thisis by always defining the boundary condition first, ensuring that it is always
tried first and that the recursive caseisonly tried if the boundary condition fails.

Pragmatics

We now come to some of the pragmatics of Prolog programming. First consider that the goal location(X,
Y) will be satisfied by every clause of location/2. On the other hand, the goals location(X, office) or
location(envelope, X) will be satisfied by fewer clauses.

Let'slook again at the second rulefor is_contained in/2, and an equally valid alternate coding.

Is_contained_in(T1,T2): -
| ocation(X, T2),
Is_contained_in(T1, X).

http://www.amzi.com/Adventurel nProl og/a8recurs.htm (7 of 8)11/3/2006 7:05:35 PM

Recursion

Is _contained in(T1,T2): -
| ocation(T1, X),
Is_contained_in(X T2).

Both will give correct answers, but the performance of each will depend on the query. The query
Is_contained_in(X, office) will execute faster with the first version. That is because T2 is bound, making
the search for location(X, T2) easier than if both variables were unbound. Similarly, the second version
is faster for queries such asis_contained _in(key, X).

Exercises

Adventure Game

1- Trace the two versions of is_contained in/2 presented at the end of the chapter to understand the
performance differences between them.

2- Currently, the can_take/1 predicate only allows the player to take things which are directly located in
aroom. Modify it so it usestherecursiveis_contained in/2 so that a player can take anything in aroom.

Genealogical Logicbase
3- Userecursion to write an ancestor/2 predicate. Then trace it to understand its behavior. It is possible
to write endless loops with recursive predicates. The trace facility will help you debug ancestor/2 if itis

not working correctly.

4- Use ancestor/2 for finding all of a person's ancestors and all of a person's descendants. Based on your
experience with grandparent/2 and grandchild/2, write a descendant/2 predicate optimized for
descendants, as opposed to ancestor/2, which is optimized for ancestors.

Copyright ©1990,1996-97, 2004 Amzi! inc. All Rights Reserved

http://www.amzi.com/Adventurel nProl og/a8recurs.htm (8 of 8)11/3/2006 7:05:35 PM

Data Structures

Adventure in Prolog™ Boolke

Available in Paperback. Shipped Anywhere.

So far we have worked with facts, queries, and rules that use simple data structures. The arguments to
our predicates have al been atoms or integers, the basic building blocks of Prolog. Examples of atoms
we've used are

of fice, apple, flashlight, nani

These primitive data types can be combined to form arbitrarily complex datatypes called structures. A
structure is composed of afunctor and a fixed number of arguments. Itsform isjust like that of the goals
and facts we've seen already (for good reason, we'll discover).

functor(argl,arg2,...)

Each of the structure's arguments can be either a primitive data type or another structure. For example,
the things in the game are currently represented using atoms, such as 'desk’ or "apple,' but we can use
structures to create aricher representation of these things. The following structures describe the object
and its color, size, and weight.

object(candle, red, small, 1).
obj ect (apple, red, small, 1).
obj ect (apple, green, small, 1).

obj ect (tabl e, blue, big, 50).

These structures could be used directly in the second argument of location/2, but for experimentation we
will instead create a new predicate, location_s/2. Note that even though the structures describing the
objects in the game are complex, they still take up only one argument in location_s/2.

| ocation_s(object(candle, red, small, 1), kitchen).
| ocati on_s(object(apple, red, small, 1), kitchen).
| ocati on_s(object(apple, green, small, 1), kitchen).

| ocati on_s(object(table, blue, big, 50), kitchen).

http://www.amzi.com/Adventurel nProlog/adstruct.htm (1 of 5)11/3/2006 7:05:41 PM

http://www.amzi.com/connect/adventure_book.htm

Data Structures

Prolog variables are typel ess, and can be bound as easily to structures asto atoms. In fact, an atomis just
asimple structure with afunctor and no arguments. So we can ask

?- location_s(X, kitchen).

X = object(candle, red, small, 1) ;
X = object(apple, red, small, 1) ;

X = object(apple, green, small, 1) ;
X = object(table, blue, big, 50) ;
no

We can also pick apart the structure with variables. We can now find al the red thingsin the kitchen.

?- location_s(object(X, red, S, W, kitchen).
X = candl e

S = snal |

W=1;

X = appl e

S = snal |

W=1;

no

If we didn't care about the size and weight we could replace the size, S, and weight, W, variables with
the anonymous variable ().

?- location_s(object(X, red, ,), kitchen).
X = candl e ;

X = apple ;

no

We can use these structures to add more realism to the game. For example, we can modify our
can_take/1 predicate, developed in chapter 7, so that we can only take small objects.

can_take s(Thing) :-
her e(Room ,
| ocation_s(object(Thing, _, small,), Roon).

We can also change the error messages to reflect the two reasons why athing cannot be taken. To ensure
that backtracking does not cause both errors to be displayed, we will construct each clause so its
message is displayed only when its unique conditions are met. To do this, the built-in predicate not/1 is
used. Itsargument isagoal, and it succeedsiif its argument fails, and failsif its argument succeeds. For
example

http://www.amzi.com/Adventurel nProlog/adstruct.htm (2 of 5)11/3/2006 7:05:41 PM

Data Structures

?- not(roon(office)).
no

?- not(location(cabbage, 'living room))
yes

Note that semantically, not in Prolog means the goal cannot be successfully solved with current
logicbase of facts and rules. Here is how we use not/1 in our new version, can_take /1.

can_take s(Thing) :-<

her e(Room ,

| ocation_s(object(Thing, , small,), Room.
can_take s(Thing) :-

her e(Room ,

| ocation_s(object(Thing, _, big,), Roonm,

wite('The "), wite(Thing),
wite(' is too bigto carry.'), nl,

fail.
can_take s(Thing) :-
her e(Room ,
not (location_s(object(Thing, , ,), Room),
wite(' There is no '), wite(Thing), wite(' here."), nl,
fail.

We can now try it, assuming we are in the kitchen.

?- can_take_s(candl e).
yes

?- can_take _s(table).
The table is too big to carry.
no

?- can_t ake_s(desk).

There is no desk here.
no

Thelist_things/1 predicate can be modified to give a description of the thingsin aroom.
list _things_s(Place) :-
| ocati on_s(object(Thing, Color, Size, Wight), Place),
wite('A'),wite(Size),tab(1),

http://www.amzi.com/Adventurel nProlog/adstruct.htm (3 of 5)11/3/2006 7:05:41 PM

Data Structures

wite(Color),tab(l),
wite(Thing), wite(', weighing '),
wite(Weight), wite(' pounds'), nl,
fail.

list things_s(_).

Requesting it now gives a more detailed list.

?- list_things_s(kitchen).

A small red candl e, weighing 1 pounds
A small red apple, weighing 1 pounds
A smal |l green apple, weighing 1 pounds
A big blue table, weighing 50 pounds
yes

If you are bothered by the grammatically incorrect '1 pounds, you can fix it by adding another rule to
write the weight, which would replace the direct 'writes' now used.

wite weight(1) :-
wite('1l pound').
wite weight(W :-
W> 1,
wite(W, wite(' pounds').

Testing it shows it works as desired.

?- wite weight(4).
4 pounds
yes

?- wite weight(1).
1 pound
yes\

Notice that we did not need to put atest, such as'W = 1," in thefirst clause. By putting the 1 directly in
the argument at the head of the clause we ensure that that clause will only be fired when the query goal
iswrite_weight(1). All other queries will go to the second clause because the goal pattern will fail to
unify with the head of the first clause.

It isimportant, however, to put the test 'W > 1' in the second rule. Otherwise both rules would work for a
weight of 1. The first time the predicate was called would not be a problem, but on backtracking we
would get two answers if we had not included the test.

http://www.amzi.com/Adventurel nProl og/adstruct.htm (4 of 5)11/3/2006 7:05:41 PM

Data Structures

Structures can be arbitrarily complex, so if we wanted to get fancy about things in the game we could
keep their dimensions (length, width, height) instead of their size as part of their description.

obj ect (desk, brown, dinension(6,3,3), 90).
We can also use embedded structures for clarity.

obj ect (desk, col or(brown), size(large), weight(90))
A query using these structures is more readable.

| ocation_s(object(X, _, size(large),), office).

Notice that the position of the arguments is important. The place-holding anonymous variables are
essential for getting the correct results.

Exercises

Adventure Game

1- Incorporate the new location into the game. Note that due to data and procedure abstraction, we need
only change the low level predicates that deal directly with location. The higher level predicates, such as
look/0 and take/1 are unaffected by the change.

Customer Order Entry

2- Use structures to enhance the customer order entry application. For example, include a structure for
each customers address.

Copyright ©1990,1996-97, 2004 Amz! inc. All Rights Reserved

http://www.amzi.com/Adventurel nProlog/adstruct.htm (5 of 5)11/3/2006 7:05:41 PM

Unification

Aomzi® Explore Logic [Programming

® free Download. Click Here.

One of Prolog's most powerful featuresisits built-in pattern-matching algorithm, unification. For all of the
examples we have seen so far, unification has been relatively ssimple. We will now examine unification more
closely.

The full definition of unification is similar to the one given in chapter 3, with the addition of arecursive definition
to handle data structures. This following table summarizes the unification process.

o lable The variable will unify with and is bound to
any term any term, including another variable.

g' mitive Two primitive terms (atoms or integers)
primitive unify only if they are identical.

structure Two structures unify if they have the same
& functor and arity and if each pair of
structure corresponding arguments unify.

In order to experiment with unification we will introduce the built-in predicate =/2, which succeeds if itstwo
arguments unify and failsif they do not. It can be written in operator syntax as follows.

argl = arg2
which is equivalent to
=(argl, arg2)

WARNING: The equal sign (=) does not cause assignment as in most programming languages, nor does it cause
arithmetic evaluation. It causes Prolog unification. (Despite thiswarning, if you are like most mortal programmers,
you will be tripped up by this difference more than once.)

Unification between two sides of an equal sign (=) is exactly the same as the unification that occurs when Prolog
tries to match goals with the heads of clauses. On backtracking, the variable bindings are undone, just asthey are
when Prolog backtracks through clauses.

http://www.amzi.com/Adventurel nProlog/alOunif.htm (1 of 5)11/3/2006 7:05:45 PM

http://www.amzi.com/connect/adventure_software.htm

Unification

The simplest form of unification occurs between two structures with no variables. In this case, either they are
identical and unification succeeds, or they are not, and unification fails.

?- a = a.
yes
?- a=0>b
no

?- location(apple, kitchen)
| ocati on(appl e, kitchen).
yes

?- location(apple, kitchen)
| ocati on(pear, kitchen).
no

?- a(b, c(d, e(f,9)))
yes

a(b,c(d, e(f,g))).

?- a(b, c(d, e(f,9)))
no

a(b,c(d,e(g,f))).

Another simple form of unification occurs between a variable and a primitive. The variable takes on avalue that
causes unification to succeed.

?- X =a

X = a

?- 4 =Y

Y = 4

?- location(apple, kitchen) = location(apple, X).
X = ki tchen

In other cases multiple variables are simultaneously bound to values.

?- location(X Y) = location(apple, kitchen).
X = appl e

Y = kitchen

?- location(apple, X) = location(Y, kitchen).
X = ki tchen

Y = apple

Variables can also unify with each other. Each instance of avariable has a unique interna Prolog value. When two

http://www.amzi.com/Adventurel nProlog/alOunif.htm (2 of 5)11/3/2006 7:05:45 PM

Unification

variables are unified to each other, Prolog notes that they must have the same value. In the following example, it is

assumed Prolog uses'_nn,' where'n' isadigit, to represent unbound variables.

?- X =Y.

X = _01

Y = 01

?- location(X, kitchen) = location(Y, kitchen).
X = _01

Y = 01

Prolog remembers the fact that the variables are bound together and will reflect thisif either islater bound.

?- X =Y, Y = hello.

X = hello
Y = hello
?- X=Y, a(2 = a(yY), X = hello.
X = hello
Y = hello
Z = hello

The last example is critical to agood understanding of Prolog and illustrates a major difference between unification
with Prolog variables and assignment with variables found in most other languages. Note carefully the behavior of

the following queries.
?2- X=Y, Y =3, wite(X).

3
3

?- X =Y, tastes_yucky(X), wite(Y).

broccol i
X = broccoli
Y = broccoli

When two structures with variables are unified with each other, the variabl es take on values that make the two

structures identical. Note that a structure bound to avariable can itself contain variables.

?- X = a(b,c).
X = a(b,c)

?- a(b,X) = a(b,c(d,e)).
X = ¢(d,e)

?- a(b,X) = a(b,c(Y,e)).
X =1c¢(_01,e)

http://www.amzi.com/Adventurel nProlog/alOunif.htm (3 of 5)11/3/2006 7:05:45 PM

Unification
Y = 01

Even in these more complex examples, the relationships between variables are remembered and updated as new
variable bindings occur.

?- a(b,X) = a(b,c(Y,e)), Y = hello.
X = c(hello, e)
Y = hello

?- food(X, Y) =2, wite(2), nl, tastes_yucky(X), edible(Y), wite(2).

food(_01, 02)

food(broccoli, apple)

X = broccoli

Y = apple

Z = food(broccoli, apple)

If anew value assigned to avariable in later goals conflicts with the pattern set earlier, the goal fails.

?- a(b,X) = a(b,c(Y,e)), X = hello.
no

The second goal failed since thereisno value of Y that will allow hello to unify with c(Y,e). The following will
succeed.

?- a(b,X) = a(b,c(Y,e)), X =c(hello, e).
X = c(hello, e)
Y = hello

If there is no possible value the variable can take on, then unification fails.

?- a(X) = a(b,c).
no

?- a(b,c,d) = a(X X d).
no

The last exampl e failed because the pattern asks that the first two arguments be the same, and they aren't.

?- a(c, X, X) = a(v,VY,b).
no

Did you understand why this example fails? Matching the first argument binds Y to c. The second argument causes
X and Y to have the same value, in this case c. The third argument asks that X bind to b, but it is already bound to
c. Novalueof X and Y will alow these two structures to unify.

http://www.amzi.com/Adventurel nProlog/alOunif.htm (4 of 5)11/3/2006 7:05:45 PM

Unification

The anonymous variable () isawild variable, and does not bind to values. Multiple occurrences of it do not imply

equal values.

?- a(c, X, X) =a(_, _,b).
X=b

Unification occurs explicitly when the equal (=) built-in predicate is used, and implicitly when Prolog searches for

the head of a clause that matches a goal pattern.
Exercises
Nonsense Prolog
Predict the results of these unification queries.
?- a(b,c) = a(XxY).
?- a(Xc(d, X)) = a(2,c(d, Y)).
?- a(X YY) = a(b(c,VY), 2.

?- tree(left, root, Right) =

tree(left,

Copyright ©1990,1996-97, 2004 Amz! inc. All Rights Reserved

http://www.amzi.com/Adventurel nProlog/alOunif.htm (5 of 5)11/3/2006 7:05:45 PM

root,

tree(a, b,

tree(c,

d:

e))).

Lists

AI—The art and science of making
INEWEIE'ttEI’ computers do interesting things

that are not in their nature.

Lists are powerful data structures for holding and manipulating groups of things.

In Prolog, alist issimply a collection of terms. The terms can be any Prolog data types, including
structures and other lists. Syntactically, alist is denoted by square brackets with the terms separated by
commas. For example, alist of thingsin the kitchen is represented as

[appl e, broccoli, refrigerator]

This gives us an alternative way of representing the locations of things. Rather than having separate
location predicates for each thing, we can have one location predicate per container, with alist of things
in the container.

|l oc_list([apple, broccoli, crackers], kitchen).
|l oc_list([desk, conputer], office).

loc list([flashlight, envel ope], desk).
loc_list([stanp, key], envel ope).

loc_list([' washing machine'], cellar).

loc list([nani], 'washing machine').

Thereisaspecia list, called the empty list, which is represented by a set of empty brackets ([]). Itisaso
referred to as nil. It can describe the lack of contents of a place or thing.

loc_list([], hall)

Unification works on lists just as it works on other data structures. With what we now know about lists
we can ask

?- loc_list(X, kitchen).
X = [appl e, broccoli, crackers]

?- [, X, _] = [apples, broccoli, crackers].

http://www.amzi.com/Adventurel nProlog/alilists.htm (1 of 14)11/3/2006 7:05:48 PM

http://www.ainewsletter.com/

Lists

X = broccol i

Thislast example is an impractical method of getting at list elements, since the patterns won't unify
unless both lists have the same number of elements.

For lists to be useful, there must be easy ways to access, add, and delete list elements. Moreover, we
should not have to concern ourselves about the number of list items, or their order.

Two Prolog features enable us to accomplish this easy access. One is a special notation that allows
reference to the first element of alist and the list of remaining elements, and the other is recursion.

These two features allow usto write list utility predicates, such as member/2, which finds members of a
list, and append/3, which joins two lists together. List predicates al follow asimilar strategy--try
something with the first element of alist, then recursively repeat the process on the rest of the list.

First, the specia notation for list structures.

[X] Y]

When this structure is unified with alist, X is bound to the first element of thelist, called the head. Y is
bound to the list of remaining elements, called the tail.

We will now look at some examples of unification using lists. The following example successfully
unifies because the two structures are syntactically equivalent. Note that thetail isalist.

?- [a|[b,c,d]] = [a,b,c,d].
yes

This next example fails because of misuse of the bar () symbol. What follows the bar must be asingle

term, which for all practical purposes must be alist. The example incorrectly has three terms after the
bar.

?- [a]lb,c,d] =[a,b,c,d].
no

Here are some more examples.

?- [HT] = [apple, broccoli, refrigerator].
H = appl e
T = [broccoli, refrigerator]

http://www.amzi.com/Adventurel nProlog/alilists.htm (2 of 14)11/3/2006 7:05:48 PM

Lists
H
H=a
T=1[b, c, d, €]
?- [HT] = [appl es, bananas].

H = appl es
T = [bananas]

In the previous and following examples, the tail isalist with one element.

?2- [HT] =[a, [b,c,d]].
H
T

a
[[b, c, d]]
In the next case, the tail isthe empty list.

?- [HT] = [apples].
H = appl es

T = 1]

The empty list does not unify with the standard list syntax because it has no head.

?- [HT =[]
no

NOTE: Thislast failureisimportant, because it is often used to test for the boundary conditionin a
recursive routine. That is, aslong as there are elementsin the list, a unification with the [X|Y] pattern
will succeed. When there are no elementsin the list, that unification fails, indicating that the boundary
condition applies.

We can specify more than just the first element before the bar (]). In fact, the only rule is that what
followsit should be alist.

?- [One, Two | T] = [apple, sprouts, fridge, mlKk].
One = apple

Two = sprouts

T = [fridge, mlK]

Notice in the next examples how each of the variables is bound to a structure that shows the
relationships between the variables. The internal variable numbers indicate how the variables are related.
In the first example Z, the tail of the right-hand list, is unified with [Y[T]. In the second example T, the
tail of the left-hand list is unified with [Z]. In both cases, Prolog looks for the most general way to relate

http://www.amzi.com/Adventurel nProlog/alilists.htm (3 of 14)11/3/2006 7:05:48 PM

Lists

or bind the variables.

- [XY|T] =[alZ].
a

01

03

[01| 03]

N - < X

)

- [HT] = [apple, Z].
appl e

[_01]

01

N - T
i1

Study these last two examples carefully, because list unification is critical in building list utility
predicates.

A list can be thought of asahead and atail list, whose head is the second element and whose tail isalist
whose head is the third element, and so on.

?- [al[b[[c|[d][]]]]] =T[a, b,c,d].
yes

We have said alist isa special kind of structure. In asenseit is, but in another senseit isjust like any
other Prolog term. The last example gives us some insight into the true nature of thelist. It isrealy an
ordinary two-argument predicate. The first argument is the head and the second isthe tail. If we called it
dot/2, then the list [a,b,c,d] would be

dot (a, dot (b, dot (¢, dot(d,[]))))

In fact, the predicate does exist, at least conceptually, and it is called dot, but it is represented by a
period (.) instead of dot.

To see the dot notation, we use the built-in predicate display/1, which is similar to write/1, except it
always uses the dot syntax for lists when it writes to the console.

?- X=1]a,b,c,d], wite(X), nl, display(X), nl.
[a, b, c,d]
.(a,.(b,.(c,.d(,[]1))))

?- X =[Head| Tail], wite(X), nl, display(X), nl.

[01, 02]
.(_01, 02)

http://www.amzi.com/Adventurel nProlog/alilists.htm (4 of 14)11/3/2006 7:05:48 PM

Lists

?- X=1[a,b,[c,d],e], wite(X), nl, display(X), nl.
[a,b,[c,d], €]
(a,.(b,.(.(c,.(d, [1)),.(e,[1))))
From these examples it should be clear why thereis a different syntax for lists. The easier syntax makes

for easier reading, but sometimes obscures the behavior of the predicate. It helpsto keep this "real"
structure of lists in mind when working with predicates that manipul ate lists.

This structure of listsiswell-suited for the writing of recursive routines. The first one we will look at is
member/2, which determines whether or not aterm is amember of alist.

Aswith most recursive predicates, we will start with the boundary condition, or the simple case. An
element isamember of alistif it isthe head of thelist.

menber (H, [H T]).
This clause also illustrates how afact with variable arguments actsas arule.

The second clause of member/2 isthe recursive rule. It says an element isamember of alistif itisa
member of the tail of thelist.

menmber (X, [H T]) :- menber(X T).
Thefull predicateis

menber (H, [H T]) .
menber (X, [H T]) :- menber(X T).

Note that both clauses of member/2 expect alist as the second argument. Since T in [H|T] in the second
clauseisitself alist, the recursive call to member/2 works.

?- menber (appl e, [apple, broccoli, crackers]).
yes

?- menber (broccoli, [apple, broccoli, crackers]).
yes

?- menber (banana, [apple, broccoli, crackers]).
no

Figure 11.1 has afull annotated trace of member/2.

http://www.amzi.com/Adventurel nProlog/alilists.htm (5 of 14)11/3/2006 7:05:48 PM

Lists

Thequery is
?- menber(b, [a,b,c]).
1-1 CALL nenber(b,[a,b,c])

The goal pattern fails to unify with the head of the first clause of member/2, because the pattern in the
head of the first clause calls for the head of the list and first argument to be identical. The goal pattern
can unify with the head of the second clause.

1-1 try (2) nmenber(b,[a,b,c])

The second clause recursively calls another copy of member/2.
2-1 CALL nmenber(b,[b,c])

It succeeds because the call pattern unifies with the head of the first clause.
2-1 EXIT (1) nmenber(b,[b,c])

The success ripples back to the outer level.

1-1 EXIT (2) nenber(b,[a,b,c])
yes

Figure 11.1. Trace of member/2

Aswith many Prolog predicates, member/2 can be used in multiple ways. If the first argument isa
variable, member/2 will, on backtracking, generate all of thetermsin agiven list.

?- menber (X, [apple, broccoli, crackers]).
X = apple ;

X = broccoli ;

X = crackers ;

no

We will now trace this use of member/2 using the internal variables. Remember that each level hasits
own unigue variables, but that they are tied together based on the unification patterns between the goal

http://www.amzi.com/Adventurel nProlog/alilists.htm (6 of 14)11/3/2006 7:05:48 PM

Lists
at one level and the head of the clause on the next level.
In this case the pattern is ssmple in the recursive clause of member. The head of the clause unifies X
with the first argument of the original goal, represented by 0 in the following trace. The body has a call

to member/2 in which the first argument is also X, therefore causing the next level to unify with the
same 0.

Figure 11.2 has the trace.

Thequery is

?- menber (X, [a,b,c]).

The goal succeeds by unification with the head of thefirst clause, if X = a
CALL nmenber(_0,[a, b, c])

EXIT (1) nenber(a,[a,b,c])
X = a;

1-1
1-1

Backtracking unbinds the variable and the second clauseistried.

1-1 REDO nenber(_0,[a, b, c])
1-1 try (2) nmenber(_O,[a, b, c])

It succeeds on the second level, just as on thefirst level.

2-1 CALL nenber(_0O,[b,c])

2-1 EXIT (1) nmenber(b,[Db,c])
1-1 EXIT nenber(b,[a,b,c])

X =Db;

Backtracking continues onto the third level, with similar results.

2-1 REDO nenber(_0,[b, c])
2-1 try (2) nmenber(_0O,[b,c])
3-1 CALL nenber(_0,[c])
3-1 EXIT (1) nenber(c,[c])
2-1 EXIT (2) nmenber(c,[b,c])
1-1 EXIT (2) nenber(c,[a,b,c])
X =c,;

http://www.amzi.com/Adventurel nProlog/alilists.htm (7 of 14)11/3/2006 7:05:48 PM

Lists

Further backtracking causes an attempt to find a member of the empty list. The empty list does not
unify with either of the list patternsin the member/2 clauses, so the query fails back to the beginning.

3-1 REDO nenber(_0,[c])
3-1try (2) nmenber(_0,[c])
4-1 CALL nenber(_0O,[])
4-1 FAIL nmenber(_0O,[])
3-1 FAIL nenber(_0O,[c])
2-1 FAIL nmenber(_0O,[Db, c])
1-1 FAIL nenber(_0,[a, b, c])
no

Figure 11.2. Trace of member/2 generating elements of alist
Another very useful list predicate builds lists from other lists or alternatively splits lists into separate

pieces. This predicate is usually called append/3. In this predicate the second argument is appended to
the first argument to yield the third argument. For example

?- append([a,b,c],[d, e, f], X).
X =1[a,b,c,d,e,f]

It isalittle more difficult to follow, since the basic strategy of working from the head of the list does not
fit nicely with the problem of adding something to the end of alist. append/3 solves this problem by
reducing thefirst list recursively.

The boundary condition states that if alist X is appended to the empty list, the resulting list isalso X.

append([], X, X).

The recursive condition states that if list X is appended to list [H|T1], then the head of the new list isaso
H, and the tail of the new list isthe result of appending X to thetail of thefirst list.

append([H T1], X, [H T2]) :-
append(T1, X, T2).

The full predicateis
append([], X, X).

append([H T1], X, [H T2]) :-
append(T1, X, T2).

http://www.amzi.com/Adventurel nProlog/alilists.htm (8 of 14)11/3/2006 7:05:48 PM

Lists

Real Prolog magic is at work here, which the trace alone does not reveal. At each level, new variable
bindings are built, that are unified with the variables of the previous level. Specifically, the third
argument in the recursive call to append/3 isthetail of the third argument in the head of the clause.
These variable relationships are included at each step in the annotated trace shown in Figure 11.3.

The query is
?- append([a,b,c],[d, e, f],X).

1-1 CALL append([a, b,c],[d,e, f], _0)

X=_0
2-1 CALL append([b,c],[d, e, f],_5)
_0 =[a| _5]
3-1 CALL append([c],[d,e, f],_9)
_5 = [b]_9]
4-1 CALL append([],[d, e, f], _14)
_9 = [c|_14]

By making all the substitutions of the variable relationships, we can see that at this point X is bound
as follows (thinking in terms of the dot notation for lists might make append/3 easier to understand).

X = [al[b][c|_14]]]

We are about to hit the boundary condition, as the first argument has been reduced to the empty list.
Unifying with the first clause of append/3 will bind _14 to avalue, namely [d,e,f], thus giving us the
desired result for X, aswell as all the other intermediate variables. Notice the bound third arguments
at each level, and compare them to the variablesin the call ports above.

4-1 EXIT (1) append([],[d,e,f],[d, e, f])
3-1 EXIT (2) append([c],[d,e,f],[c,d,e, f])
2-1 EXIT (2) append([b,c],[d,e,f],[b,c,d,e, f])
1-1 EXIT (2)append([a, b,c],[d,e,f],[a,b,c,d,e, f])
X =1[]ab,c,d,e,f]

Figure 11.3. Trace of append/3
Like member/2, append/3 can also be used in other ways, for example, to break lists apart as follows.

?- append(X Y,[a, b,c]).

http://www.amzi.com/Adventurel nProlog/alilists.htm (9 of 14)11/3/2006 7:05:48 PM

Lists

[]

Y [a, b, c] ;
X = [4a]

Y = [b,c] ;
X =[a,b]

Y = [c] ;

X =[a,b,c]
Y =[]

no

Using the List Utilities

Now that we have tools for manipulating lists, we can use them. For example, if we choose to use
loc_list/2 instead of location/2 for storing things, we can write a new location/2 that behaves exactly like
the old one, except that it computes the answer rather than looking it up. Thisillustrates the sometimes
fuzzy line between data and procedure. The rest of the program cannot tell how location/2 getsits
results, whether as data or by computation. In either case it behaves the same, even on backtracking.

| ocation(X Y): -
loc_list(List, Y),
menber (X, List).

In the game, it will be necessary to add things to the loc_lists whenever something is put downin a
room. We can write add_thing/3 which uses append/3. If we call it with NewThing and Container, it will
provide us with the NewL.ist.
add_t hi ng(NewThi ng, Contai ner, New.ist): -
|l oc_lIist(dAdList, Container),
append([NewThi ng], A dLi st, NewList).
Testing it gives

?- add_thing(plum Kkitchen, X).
X = [plum apple, broccoli, crackers]

However, thisis a case where the same effect can be achieved through unification and the [Head|Tail]
list notation.

add_t hi ng2(NewThi ng, Contai ner, NewList): -

http://www.amzi.com/Adventurel nProlog/alllists.htm (10 of 14)11/3/2006 7:05:48 PM

Lists

|l oc_list(AdList, Container),
NewLi st = [NewThing | O dList].

It works the same as the other one.

?- add_t hing2(plum kitchen, X).
X = [plum apple, broccoli, crackers]

We can ssimplify it one step further by removing the explicit unification, and using the implicit
unification that occurs at the head of a clause, which isthe preferred form for this type of predicate.

add_t hi ng3(NewTh, Cont ai ner, [NewTh| A dList]) :-
|l oc_lIist(dAdList, Container).

It also works the same.

?- add_thing3(plum kitchen, X).
X = [plum apple, broccoli, crackers]

In practice, we might write put_thing/2 directly without using the separate add thing/3 predicate to build
anew list for us,

put _thi ng(Thi ng, Pl ace) : -
retract(loc_list(List, Place)),
asserta(loc_list([Thing|List], Place)).

Whether you use multiple logicbase entries or lists for situations, such as we have with locations of
things, is largely a matter of style. Y our experience will lead you to one or the other in different
situations. Sometimes backtracking over multiple predicates is a more natural solution to a problem and
sometimes recursively dealing with alist is more natural.

Y ou might find that some parts of a particular application fit better with multiple facts in the logicbase
and other partsfit better with lists. In these cases it is useful to know how to go from one format to the
other.

Going from alist to multiple factsis simple. Y ou write arecursive routine that continually asserts the
head of thelist. In this example we create individual facts in the predicate stuff/1.

break out ([]).

break out([Head | Tail]):-
assertz(stuff(Head)),
break out(Tail).

http://www.amzi.com/AdventurelnProlog/alllists.htm (11 of 14)11/3/2006 7:05:48 PM

Lists

Here's how it works.

?- break _out ([pencil, cookie, snow]).
yes

?- stuff(X).
pencil ;
cooki e ;
SNOwW ;

X
X
X
no

Transforming multiple factsinto alist is more difficult. For this reason most Prologs provide built-in
predicates that do the job. The most common oneisfindall/3. The arguments are

argl

A pattern for the termsin the resulting list
arg2

A goal pattern
arg3

Theresulting list

findall/3 automatically does a full backtracking search of the goal pattern and stores each result in the
list. It can recover our stuff/1 back into alist.

?- findall (X, stuff(X), L).
L = [pencil, cookie, snow

Fancier patterns are available. Thisis how to get alist of all the rooms connecting to the kitchen.

?- findall (X, connect(kitchen, X), L).
L =[office, cellar, "dining roomn]

The pattern in the first argument can be even fancier and the second argument can be a conjunction of
goals. Parentheses are used to group the conjunction of goalsin the second argument, thus avoiding the
potential ambiguity. Here findall/3 builds alist of structures that locates the edible things.

?- findall (foodat (X, Y), (location(X Y) , edible(X)), L).
L = [foodat (appl e, kitchen), foodat(crackers, kitchen)]

Exercises

http://www.amzi.com/Adventurel nProlog/alllists.htm (12 of 14)11/3/2006 7:05:48 PM

Lists
List Utilities
1- Write list utilities that perform the following functions.

. Remove agiven element from alist

. Find the element after a given element

. Splitalistinto two lists at a given element (Hint - append/3 is close.)

. Get thelast element of alist

. Count the elementsin alist (Hint - the length of the empty list is 0, the length anon-empty list is
1 + the length of itstail.)

2- Because write/1 only takes a single argument, multiple 'writes' are necessary for writing a mixed
string of text and variables. Write alist utility respond/1 which takes asits single argument a list of
terms to be written. This can be used in the game to communicate with the player. For example

respond([' You can''t get to the', Room 'fromhere'])

3- Listswith avariable tail are called open lists. They have some interesting properties. For example,
member/2 can be used to add items to an open list. Experiment with and trace the following queries.

?- menber(a, X).

?- menber (b, [a,b,c|X]).

?- menber(d, [a, b, c|X]).

?- OQpenL = [a, b, c|X], nmenber(d, OpenL), wite(OpenlL).

Nonsense Prolog

4- Predict the results of the following queries.

?- [a,b,c,d] =[HT].
?- [a,[b,c,d]] =[HT].
- [=[HT.

?- [a] = [HT].

?- [appl e, 3, X,"Wat?'] =[A

?- [[a,b,c],[d, e f], [gh|]]

?- [a(X c(d,Y)), b(2,3), c(d,
Genealogical Logicbase

5- Consider the following Prolog program

http://www.amzi.com/Adventurel nProlog/alllists.htm (13 of 14)11/3/2006 7:05:48 PM

Lists

parent (pl, p2).
parent (p2, p3).
par ent (p3, p4).
par ent (p4, p5).

ancestor (A D, [A]) :- parent(A D).
ancestor (A D, [X Z]) :-
parent (X, D),
ancestor (A X 2).
6- What is the purpose of the third argument to ancestor?
7- Predict the response to the following queries. Check by tracing in Prolog.
?- ancestor (a2, a3, X).
?- ancestor(al, a5, X).
?- ancestor (a5, al, X).
?- ancestor (X ab, 2).
Expert System
8- Lists provide a convenient way to provide a ssmple menu capability to our expert system. We can
replace the ‘ask' predicate with menuask/3 where appropriate. menuask/3 will ask the player to select an
item from amenu. Theformat is
menuask(Attri bute, Value, List_of_ Choices).
For example
size(X):- nmenuask(size, X, [large, nedium small]).
This requires two intermediate predicates, menu_display/2 and menu_select/2. The first writes each
choice on a separate line preceded by a unique number. The second uses a number entered by the user to

return the "nth" e ement of the list.

Copyright ©1990,1996-97, 2004 Amz! inc. All Rights Reserved

http://www.amzi.com/Adventurel nProlog/alllists.htm (14 of 14)11/3/2006 7:05:48 PM

Operators

Adventure in Prolog™ Boolke

Available in Paperback. Shipped Anywhere.

We have seen that the form of a Prolog data structureis
functor(argl,arg2,...,argN).
Thisisthe ONLY data structure in Prolog. However, Prolog alows for other ways to syntactically

represent the same data structure. These other representations are sometimes called syntactic sugaring.
The equivalence between list syntax and the dot (.) functor is one example. Operator syntax is another.

Chapter 6 introduced arithmetic operators. In this chapter we will equate them to the standard Prolog
data structures, and learn how to define any functor to be an operator.

Each arithmetic operator is an ordinary Prolog functor, such as-/2, +/2, and -/1. The display/1 predicate
can be used to see the standard syntax.

?- display(2 + 2).
+(2, 2)

?- display(3 * 4 + 6).
+(*(3,4),6)

?- display(3 * (4 + 6)).
*(3,+(4,6))

Y ou can define any functor to be an operator, in which case the Prolog listener will be able to read the
structure in a different format. For example, if location/2 was an operator we could write

appl e | ocation kitchen.
instead of

| ocati on(appl e, kitchen).

http://www.amzi.com/Adventurel nProlog/al2oper.htm (1 of 8)11/3/2006 7:05:52 PM

http://www.amzi.com/connect/adventure_book.htm

Operators

NOTE: The fact that location is an operator is of NO significance to Prolog's pattern matching. It ssmply
means there is an aternative way of writing the same term.

Operators are of three types.
infix

Example: 3+ 4
prefix

Example: -7
postfix

Example: 8 factorial

They have a number representing precedence which runs from 1 to 1200. When aterm with multiple
operatorsis converted to pure syntax, the operators with higher precedences are converted first. A high
precedence isindicated by alow number.

Operators are defined with the built-in predicate op/3, whose three arguments are precedence,
associativity, and the operator name.

Associativity in the second argument is represented by a pattern that defines the type of operator. The
first example we will see isthe definition of an infix operator which uses the associativity pattern 'xfx.'
The'f" indicates the position of the operator in respect to its arguments. We will see other patterns aswe
proceed.

For our current purposes, we will again rework the location/2 predicate and renameit is_in/2 to go with
its new look, and we will represent rooms in the structure room/1.

I's_in(apple, roon(kitchen)).

We will now makeis in/2 an infix operator of arbitrary precedence 35.
?- op(35,xfx,is_in).

Now we can ask

?- apple is_in X
X = roon(ki tchen)

or

http://www.amzi.com/Adventurel nProlog/al2oper.htm (2 of 8)11/3/2006 7:05:52 PM

Operators

?- X is_in room(kitchen).
X = appl e

We can add facts to the program in operator syntax.
banana is_in roon(kitchen).
To verify that Prolog treats both syntaxes the same we can attempt to unify them.

?- iIs_in(banana, room(kitchen)) = banana is_in roon(kitchen).
yes

And we can use display/1 to ook at the new syntax.

?- di splay(banana is_in roon(kitchen)).
I s_i n(banana, roon(kitchen))

Let's now make room/1 a prefix operator. Note that in this case the associativity pattern fx is used to
indicate the functor comes before the argument. Also we chose a precedence (33) higher (higher

precedence has lower number) than that used for is_in (35) in order to nest the room structure inside the
IS _in structure.

?- op(33,fx,roon.
Now room/1 is displayed in operator syntax.

?- room ki tchen = roon(kitchen).
yes

?- apple is_in X
X = room ki t chen\

The operator syntax can be used to add facts to the program.

pear is_in roomKkitchen.

?- is_in(pear, room kitchen)) = pear is_in roomkitchen.
yes

?- display(pear is_in roomkitchen).
I s_in(pear, roon(kitchen))

http://www.amzi.com/Adventurel nProlog/al2oper.htm (3 of 8)11/3/2006 7:05:52 PM

Operators

CAUTION: If you mix up the precedence (easy to do) you will get strange bugs. If room/1 had alower
precedence (higher number) than is_in/2, then the structure would be

roon(i s_in(appl e, kitchen))
Not only doesn't this capture the information as intended, it also will not unify the way we want.

For completeness, an example of a candidate for a postfix operator would be turned_on. Again note that
the 'xf' pattern says that the functor comes after the argument.

?- op(33, xf,turned_on).
We can now say

flashlight turned on.
and

?- turned_on(flashlight) = flashlight turned_on.
yes

Operators are useful for making more readable data structuresin a program and for making quick and
easy user interfaces.

In our command-driven Nani Search, we use a simple natural language front end, which will be
described in the last chapter. We could have alternatively made the commands operators so that

goto(kitchen)

becomes goto kitchen.
turn_on(flashlight)

becomes turn_on flashlight.

take(apple)
becomes take apple.

It's not natural language, but it's alot better than parentheses and commas.

We have seen how the precedence of operators affects their translation into structures. When operators
are of equal precedence, the Prolog reader must decide whether to work from left to right, or right to left.
Thisisthe difference between right and |eft associativity.

An operator can aso be non-associative, which means an error is generated if you try to string two

http://www.amzi.com/Adventurel nProlog/al2oper.htm (4 of 8)11/3/2006 7:05:52 PM

Operators

together.

The same pattern used for precedence is used for associativity with the additional character y. The
options are

Infix:
xfXx non-associative
xfy right to left
yfx left to right
Prefix

fx non-associative

fy left to right
Postfix:

xf non-associative

yf right to left

Theis_in/2 predicate is currently non-associative so this gets an error.
key is_in desk is_in office.
To represent nesting, we would want thisto be evaluated from right to |eft.

?- op(35,xfy,is_in).
yes

?- display(key is in desk is _in office).
Is_in(key, is_in(desk, office))

If we set it left to right the arguments would be different.

?- op(35,yfx,is_in).
yes

?- display(key is_in desk is_in office).
Is_in(is_in(key, desk), office)

We can override operator associativity and precedence with parentheses. Thus we can get our left to
right is_in to behave right to left like so.

?- display(key is_in (desk is_in office)).
Is_in(key, is_in(desk, office))

http://www.amzi.com/Adventurel nProlog/al2oper.htm (5 of 8)11/3/2006 7:05:52 PM

Operators

Many built-in predicates are actually defined as infix operators. That means that rather than following
the standard predicate(argl,arg2) format, the predicate can appear between the arguments as

argl predicate arg2.

The arithmetic operators we have seen already illustrate this. For example +, -, *, and / are used as you
would expect. However, it isimportant to understand that these arithmetic structures are just structures
like any others, and do not imply arithmetic evaluation. 3 + 4 is not the same as 7 any more than plus
(3,4) isor likes(3,4). It isjust +(3,4).

Only specia built-in predicates, like is/2, actualy perform an arithmetic evaluation of an arithmetic

expression. Aswe have seen, is/2 causes the right side to be evaluated and the left side is unified with
the evaluated result.

Thisisin contrast to the unification (=) predicate, which just unifies terms without evaluating them.

?2- Xis 3 + 4
X =7

?- X =3 + 4.
X=3+4

?- 10 is 5 * 2,
yes

?- 10 = 5 * 2.
no

Arithmetic expressions can be as arbitrarily complex as other structures.

?2- Xis 3* 4+ (6/ 2).
X = 15

Even if they are not evaluated.

- X=3*4+(6/ 2).
X=3*4+(6/ 2)

The operator predicates can also be written in standard notation.

?- Xis +(*(3,4) , /(6,2)).
X =15

http://www.amzi.com/Adventurel nProlog/al2oper.htm (6 of 8)11/3/2006 7:05:52 PM

Operators

2- 3% 4+ (6/ 2) = +(*(3,4),/(6,2)).
yes

To underscore that these arithmetic operators are really ordinary predicates with no special meaning
unless being evaluated by is/2, consider

?- X=3* 4 + |likes(john, 6/2).
X =3* 4 + likes(john, 6/2).

?- Xis 3 * 4 + |ikes(john, 6/2).
error

We have seen that Prolog programs are composed of clauses. These clauses are ssmply Prolog data
structures written with operator syntax. The functor is the neck (:-) which is defined as an infix operator.
There are two arguments.

: - (Head, Body).
The body is a data structure with the functor ‘and' represented by acomma (,). The body looks like
, (goal 1, , (goal 2,, goal 3))

Note the ambiguous use of the comma (,) as a conjunctive operator and as a separator of argumentsin a
Prolog structure. This can cause confusion in Prolog programs that manipulate Prolog clauses. It might
have been clearer if an ampersand (&) was used instead of a commafor separating goals. Then the
above pattern would be

&(goal 1, &(goal 2, & goal 3))
and the following would be equivalent.

head :- goall & goal 2 & goal 3.
. -(head, &(goall, &(goal2, & goal3))).

But that is not how it was done, so the two forms are

head :- goall , goal 2 , goal 3.
:-(head, ,(goall, ,(goal?2, , goal3))).

Every other comma has a different meaning.

http://www.amzi.com/Adventurel nProlog/al2oper.htm (7 of 8)11/3/2006 7:05:52 PM

Operators

The arithmetic operators are often used by Prolog programmers to syntactically join related terms. For
example, the write/1 predicate takes only one argument, but operators give an easy way around this
restriction.

?- X =o0ne, Y=tw, wite(XY).
one - two

The slash (/) can be used the same way. In addition, some Prologs define the colon (:) as an operator just
for this purpose. It can improve readability by removing some parentheses. For example, the complex
structures for defining things in the game can be syntactically represented with the colon as well.

obj ect (appl e, size:small, color:red, weight:1).

A query looking for small things would be expressed

?- object(X, size:small, color:C, weight:W.
X = appl e

C=red

w=1

The pattern matching is the same as always, but instead of size(small) we use the pattern size:small,
which isreally :(size,small).

Exercises

Adventure Game

1- Define al of the Nani Search commands as operators so the current version of the game can be played
without parentheses or commas.

Genealogical Logicbase
2- Define the various relationships in the geneal ogical |ogicbase as operators.

Copyright ©1990,1996-97, 2004 Amz! inc. All Rights Reserved

http://www.amzi.com/Adventurel nProlog/al2oper.htm (8 of 8)11/3/2006 7:05:52 PM

Cut

Anmzi® Explore Logic °rogramming

® Free Download. Click Here.

Up to this point, we have worked with Prolog's backtracking execution behavior. We have seen how to
use that behavior to write compact predicates.

Sometimesit is desirable to selectively turn off backtracking. Prolog provides a predicate that performs
thisfunction. It is called the cut, represented by an exclamation point (!).

The cut effectively tells Prolog to freeze all the decisions made so far in this predicate. That is, if
required to backtrack, it will automatically fail without trying other alternatives.

We will first examine the effects of the cut and then look at some practical reasonsto useit.

—l—

Figure 13.1. The effect of the cut on flow of control

When the cut is encountered, it re-routes backtracking, as shown in figure 13.1. It short-circuits
backtracking in the goalsto itsleft on itslevel, and in the level above, which contained the cut. That is,
both the parent goal (middle goal of top level) and the goals of the particular rule being executed
(second level) are affected by the cut. The effect is undone if a new route is taken into the parent goal.
Contrast figure 13.1 with figure 5.1.

We will write some simple predicates that illustrate the behavior of the cut, first adding some datato

http://www.amzi.com/Adventurel nProl og/al3cut.htm (1 of 6)11/3/2006 7:05:55 PM

http://www.amzi.com/connect/adventure_software.htm

Cut

backtrack over.

dat a(one) .
dat a(t wo) .
dat a(t hree).

Hereisthefirst test case. It has no cut and will be used for comparison purposes.

cut test _a(Xx) -
dat a(X) .
cut test _a('last clause').

Thisisthe control case, which exhibits the normal behavior.

?- cut_test _a(X), wite(X), nl, fail.
one

two

t hree

| ast cl ause

no

Next, we put acut at the end of the first clause.

cut _test b(X) :-
dat a(X),
|

cut test b('last clause').
Note that it stops backtracking through both the data/1 subgoal (left), and the cut_test b parent (above).

?- cut _test b(X), wite(X), nl, fail.
one
no

Next we put a cut in the middle of two subgoals.

cut _test c(XY) :-
dat a(X),
|

data(y).
cut _test c('last clause').

http://www.amzi.com/Adventurel nProl og/al3cut.htm (2 of 6)11/3/2006 7:05:55 PM

Cut

Note that the cut inhibits backtracking in the parent cut_test c and in the goals to the left of (before) the
cut (first data/1). The second data/1 to the right of (after) the cut is still free to backtrack.

?- cut _test c(X Y), wite(X-Y), nl, fail.

one - one
one - two
one - three
no

Performance is the main reason to use the cut. This separates the logical purists from the pragmatists.
Various arguments can also be made as to its effect on code readability and maintainability. It is often
called the 'goto’ of logic programming.

Y ou will most often use the cut when you know that at a certain point in agiven predicate, Prolog has
either found the only answer, or if it hasn't, there is no answer. In this case you insert acut in the
predicate at that point.

Similarly, you will use it when you want to force a predicate to fail in a certain situation, and you don't
want it to look any further.

Using the Cut

We will now introduce to the game the little puzzles that make adventure games fun to play. We will put
them in a predicate called puzzle/1. The argument to puzzle/1 will be one of the game commands, and
puzzle/1 will determine whether or not there are special constraints on that command, reacting
accordingly.

We will see examples of both uses of the cut in the puzzle/1 predicate. The behavior we want is

. If thereisapuzzle, and the constraints are met, quietly succeed.
. If thereisapuzzle, and the constraints are not met, noisily falil.
. If thereisno puzzle, quietly succeed.

The puzzle in Nani Search isthat in order to get to the cellar, the game player needs to both have the
flashlight and turn it on. If these criteria are met we know there is no need to ever backtrack through
puzzle/1 looking for other clausesto try. For this reason we include the cui.

puzzl e(goto(cellar)):-
have(fl ashlight),

turned_on(fl ashlight),
I,

http://www.amzi.com/Adventurel nProl og/al3cut.htm (3 of 6)11/3/2006 7:05:55 PM

Cut

If the puzzle constraints are not met, then let the player know there is a specia problem. In this case we
also want to force the calling predicate to fail, and we don't want it to succeed by moving to other
clauses of puzzle/l. Therefore we use the cut to stop backtracking, and we follow it with falil.

puzzl e(goto(cellar)):-
wite('lt''s dark and you are afraid of the dark."),
1, fail.

Thefina clauseisacatchall for those commands that have no special puzzles associated with them.
They will always succeed in acall to puzzle/1.

puzzle().

For logical purity, it is aways possible to rewrite the predicates without the cut. Thisis done with the
built-in predicate not/1. Some claim this provides for clearer code, but often the explicit and liberal use
of 'not’ clutters up the code, rather than clarifying it.

When using the cut, the order of the rules becomes important. Our second clause for puzzle/1 safely
prints an error message, because we know the only way to get there is by the first clause failing before it
reached the cut.

The third clause is completely general, because we know the earlier clauses have caught the special
cases.

If the cuts were removed from the clauses, the second two clauses would have to be rewritten.

puzzl e(goto(cellar)):-
not (have(fl ashlight)),
not (turned_on(flashlight)),
wite('Scared of dark nessage'),
fail.

puzzl e(X): -
not (X = goto(cellar)).

In this case the order of the clauses would not matter.

It isinteresting to note that not/1 is defined using the cut. It also uses call/1, another built-in predicate
that calls a predicate.

not(X) :- call(X), !, fail.
not (X) .

http://www.amzi.com/Adventurel nProl og/al3cut.htm (4 of 6)11/3/2006 7:05:55 PM

Cut

In the next chapter we will see how to add a command loop to the game. Until then we can test the
puzzle predicate by including acall to it in each individual command. For example

goto(Pl ace) : -
puzzl e(got o(Pl ace)),
can_go(Pl ace),

nove(Pl ace),
| ook.

Assuming the player isin the kitchen, an attempt to go to the cellar will fail.
?- goto(cellar).

It's dark and you are afraid of the dark.
no

?- goto(office).
You are in the office...

Then if the player takes the flashlight, turnsit on, and return to the kitchen, all goes well.

?- goto(cellar).
You are in the cellar...

Exercises
Adventure Game

1- Test the puzzle/1 predicate by setting up various game situations and seeing how it responds. When
testing predicates with cuts you should always use the semicolon (;) after each answer to make sure it
behaves correctly on backtracking. In our case puzzle/1 should always give one response and fail on
backtracking.

2- Add your own puzzles for different situations and commands.

Expert System

3- Modify the ask and menuask predicates to use cut to replace the use of not.
Customer Order Entry

4- Modify the good_customer rules to use cut to prevent the search of other cases once we know one has

http://www.amzi.com/Adventurel nProl og/al3cut.htm (5 of 6)11/3/2006 7:05:55 PM

Cut

been found.

Copyright ©1990,1996-97, 2004 Amz! inc. All Rights Reserved

http://www.amzi.com/Adventurel nProl og/al3cut.htm (6 of 6)11/3/2006 7:05:55 PM

Control Structures

AI—The art and science of making
_[Newsletter computers do interesting things

that are not in their nature.

We have examined the manner in which Prolog interprets goals and have also seen examples of how to
mani pulate Prolog's execution behavior.

In this chapter we will further explore the control structures you can implement in Prolog and draw
parallels between them and the control structures found in more conventional programming languages.

Y ou have already used the combination of fail and write/1 to generate lists of things for the game. This
control structure is similar to 'do while' found in most languages.

We will now introduce another built-in predicate that allows us to capitalize on failure. It is repeat/0. It
always succeeds thefirst timeit is called, and it always succeeds on backtracking. In other words, you
can not backtrack through arepeat/0. It always restarts forward execution.<

call - v Bt

fail =— = tedo

Figure 14.1. Flow of control in the repeat/O built-in predicate

A clause body with arepeat/O followed by fail/O will go back and forth forever. Thisis one way to write
an endless |oop in Prolog.

A repeat/0O followed by some intermediate goals followed by atest condition will loop until the test
condition is satisfied. It is equivalent to a'do until' in other languages. Thisis exactly the behavior we
want for the highest command loop in Nani Search.

Our first version of command_loop/0 will ssimply read commands and echo them until end is entered.
The built-in predicate read/1 reads a Prolog term from the console. The term must be followed by a
period.

http://www.amzi.com/Adventurel nProlog/al4cntrl.htm (1 of 11)11/3/2006 7:06:01 PM

http://www.ainewsletter.com/

Control Structures

command_| oop: -

repeat,

wite(' Enter command (end to exit): '),
read(X),

wite(X), nl,

X = end.

The last goal will fail unless end is entered. The repeat/0 always succeeds on backtracking and causes
the intermediate goals to be re-executed.

We can execute it by entering this query.
?- command_| oop.
Now that the control structureisin place, we can have it execute the command, rather than just repeat it.

We will write anew predicate called do/1, which executes only the commands we allow. Many other
languages have 'do case' control structures that perform this kind of function. Multiple clausesin a
Prolog predicate behave similarly to a'do case.'

Hereisdo/1. Notice that it allows us to define synonyms for commands, that is, the player can enter
either goto(X) or go(X) to cause the goto/1 predicate to be executed.

do(goto(X)):-goto(X),!.
do(go(X)):-goto(X),!.

do(i nventory):-inventory,!.
do(l ook): -1 ook, !.

NOTE: The cut serves two purposes. Firgt, it says once we have found a'do’ clause to execute, don't
bother looking for anymore. Second, it prevents the backtracking initiated at the end of command_loop
from entering the other command predicates.

Here are some more do/1's. If do(end) did not always succeed, we would never get to the' X = end' test
and would fail forever. Thelast do/1 allows usto tell the user there was something wrong with the
command.

do(take(X)) :- take(X), !
do(end).
do() :-

wite('lnvalid conmand').

http://www.amzi.com/Adventurel nProlog/al4cntrl.htm (2 of 11)11/3/2006 7:06:01 PM

Control Structures

We can now rewrite command_loop/0 to use the new do/1 and incorporate puzzle/1 in the command
loop. We will also replace the old simple test for end with anew predicate, end _condition/1, that will
determine if the game is over.

conmmand_| oop: -
wite('Wlcone to Nani Search'), nl,
r epeat,
wite('>nani> "),
read(X),
puzzl e(X),
do(X), nl,
end _condi tion(X).

Two conditions might end the game. Thefirst isif the player types 'end.' The second isiif the player has
successfully taken the Nani.

end condition(end).
end_condition(_) :-
have(nani),
write(' Congratul ations').
The game can now be played from the top.

?- command_| oop.

Wel cone to ...

Recursive Control Loop

As hinted at in chapter 7, the purity of logic programming is undermined by the asserts and retracts of
the logicbase. Just like global datain any language, predicates that are dynamically asserted and
retracted can make for unpredictable code. That is, code in one part of the system that uses a dynamic
predicate is affected by code in an entirely different part that changes that dynamic predicate.

For example, puzzle(goto(cellar)) succeeds or fails based on the existence of turned_on(flashlight)
which is asserted by the turn_on/1 predicate. A bug in turn_on/1 will cause puzzle/1 to behave
incorrectly.

The entire game can be reconstructed using arguments and no global data. To do this, it helps to think of
the game as a sequence of state transformations.

In the current implementation, the state of the game is defined by the dynamic predicates location/2,

http://www.amzi.com/Adventurel nProlog/al4cntrl.htm (3 of 11)11/3/2006 7:06:01 PM

Control Structures

here/1, have/l, and turned_on/1 or turned_off/1 for the flashlight. These predicates define an initial state
which is dynamically changed, using assert and retract, as the player moves through the game toward the
winning state, which is defined by the existence of have(nani).

We can get the same effect by defining a complex structure to hold the state, implementing game
commands that access that state as an argument, rather than from dynamic facts in the logicbase.

Because logical variables cannot have their values changed by assignment, the commands must take two
arguments representing the old state and the new state. The repeat-fail control structure will not let us
repeatedly change the state in this manner, so we need to write arecursive control structure that
recursively sends the new state to itself. The boundary condition is reaching the ending state of the
game. This control structure is shown in figure 14.1, which contains an abbreviated version of Nani
Search.

The state is represented by alist of structures holding different types of state information, as seen in
initial_state/1. The various commands in this type of game need to access and manipulate that state
structure. Rather than require each predicate that accesses the state to understand its complex structure,
the utility predicates get_state/3, add state/4, and del_state/4 are written to access it. This way any
program changes to the state structure only require changes to the utility predicates.

This style of Prolog programming islogically purer, and lends itself to certain types of applications. It
also avoids the difficulties often associated with global data. On the other hand, it requires more
complexity in dealing with state information in arguments, and the multiple lists and recursive routines
can be confusing to debug. Y ou will have to decide which approach to use for each application you
write.

[* a nonassertive version of nani search */
nani -

wite('Welcone to Nani Search'),

nl,

initial _state(State),
control | oop(State).

control | oop(State) :-
end_condition(State).
control | oop(State) :-
repeat,
wite('>"),
read(X),
constraint(State, X),
do(State, NewState, X),

http://www.amzi.com/Adventurel nProlog/al4cntrl.htm (4 of 11)11/3/2006 7:06:01 PM

Control Structures

control | oop(NewSt at e) .
/* initial dynamc state */

initial _state([
her e(ki t chen),
have([]),
| ocation(]
ki t chen/ appl e,
ki t chen/ broccol i,
of fi ce/ desk,
of ficel/flashlight,
cellar/nani]),
status([
flashlight/off,
ganme/on])).

/* static state */
roons([office, kitchen, cellar]).
doors([office/kitchen, cellar/kitchen]).
connect (X, Y) :-

door s(Door Li st),

menber (X/'Y, DoorlList).
connect (X, Y) :-

door s(Door Li st),

menber (Y/ X, DoorlList).

[* list utilities */

menber (X, [X Y]) .
menber (X, [Y| Z]) :- menber(X 2).

delete(X, [], []).
delete(X, [XT], T).
delete(X, [HT], [HZ]) :- delete(X, T, 2).

/* state manipulation utilities */

get state(State, here, X) :-
menber (here(X), State).

http://www.amzi.com/Adventurel nProlog/al4cntrl.htm (5 of 11)11/3/2006 7:06:01 PM

Control Structures

get state(State, have, X) :-
nmenber (have(Haves), State),
menber (X, Haves).

get state(State, location, Loc/X) :-
menber (| ocati on(Locs), State),
menber (Loc/ X, Locs).

get state(State, status, Thing/Stat) :-
menber (status(Stats), State),
menber (Thi ng/ Stat, Stats).

del state(d dState, [l ocation(NewLocs) | Tenp], location, Loc/X):-
del ete(l ocati on(Locs), A dState, Tenp),
del et e(Loc/ X, Locs, NewlLocs).

add state(A dState, [here(X)| Tenp], here, X) :-
del ete(here(_), A dState, Tenp).
add_state(d dState, [have([X| Haves])| Tenp], have, X) :-
del et e(have(Haves), O dState, Tenp).
add state(O dState, [status([Thing/ Stat]| TenpStats])| Tenp],
status, Thing/Stat) :-
del ete(status(Stats), A dState, Tenp),
del ete(Thing/ , Stats, TenpStats).

/* end condition */

end condition(State) :-
get state(State, have, nani),
wite('You win').

end condition(State) :-
get _state(State, status, gane/off),
wite('quitter').

/* constraints and puzzl es together */

constraint(State, goto(cellar)) :-
', can_go cellar(State).
constraint(State, goto(X)) :-
', can_go(State, X).
constraint(State, take(X)) :-
I, can_take(State, X).
constraint(State, turn_on(X)) :-
I, can_turn_on(State, X).
constraint(_,).

http://www.amzi.com/Adventurel nProlog/al4cntrl.htm (6 of 11)11/3/2006 7:06:01 PM

Control Structures

can_go(State, X) : -
get _state(State, here, H),
connect (X, H) .
can_go(_, X) :-
wite('You can''t get there fromhere'),
nl, fail.

can_go cellar(State) :-
can_go(State, cellar),
I, cellar _puzzle(State).

cellar _puzzle(State) :-

get _state(State, have, flashlight),

get state(State, status, flashlight/on).
cellar _puzzle() :-

wite('lt'"s dark in the cellar'),

nl, fail.

can_take(State, X) :-

get _state(State, here, H),

get _state(State, location, H X).
can_take(State, X) :-

wite('it is not here'),

nl, fail.

can_turn_on(State, X) :-
get _state(State, have, X).
can_turn_on(_, X) :-
wite('You don''t have it'),
nl, fail.

/[* commands */

do(Ad, New, goto(X)) :- goto(dd, New, X), !.
do(A d, New, take(X)) :- take(dAd, New, X), !.
do(Ad, New, turn_on(X)) :- turn_on(dd, New, X), !.
do(State, State, look) :- look(State), !.
do(Ad, New, quit) :- quit(dd, New.
do(State, State,) :-

wite('illegal conmand'), nl.

| ook(State) : -

http://www.amzi.com/Adventurel nProlog/al4cntrl.htm (7 of 11)11/3/2006 7:06:01 PM

Control Structures

get _state(State, here, H),
wite('You are in '), wite(H),
nl,

list things(State, H), nl.

list things(State, H) :-
get state(State, location, H X),
tab(2), wite(X),
fail.

list things(_,).

goto(A d, New, X) :-
add _state(d d, New, here, X),
| ook (New) .

take(d d, New, X) :-
get _state(dA d, here, H),
del state(d d, Tenp, location, H X),
add_stat e(Tenp, New, have, X).

turn_on(dAd, New, X) :-
add _state(d d, New, status, X on).

quit(dAd, New) :-
add _state(d d, New, status, gane/off).

Figure 14.1. Nani Search without a dynamic facts

There could be serious performance problems with this approach to the game. Prolog uses a stack to
keep track of the levels of predicate calls. In the case of arecursive predicate, the stack grows at each
recursive call. In this example, with its complex arguments, the stack could easily be consumed in a
shortperiod of time by the recursive control structure.

Fortunately, there is a performance feature built into Prolog that makes this example program, and ones
similar to it, behave efficiently.

Tail Recursion

There are actually two kinds of recursive routines. In atrue recursive routine, each level must wait for
the information from the lower levelsin order to return an answer. This means that Prolog must build a
stack with anew entry for each level.

http://www.amzi.com/Adventurel nProlog/al4cntrl.htm (8 of 11)11/3/2006 7:06:01 PM

Control Structures

Thisisin contrast to iteration, which is more common in conventional languages. Each pass through the
iteration updates the variables and there is no need for building a stack.

Thereisatype of recursion called tail recursion that, while written recursively, behaves iteratively. In
generd, if the recursive call isthelast call, and there are no computations based on the information from
the lower levels, then agood Prolog can implement the predicate iteratively, without growing the stack.

One classic example of tail recursion is the factorial predicate. First we'll write it using normal recursion.
Note that the variable FF, which is returned from the lower level, is used in the top level.

factorial 1(1,1).
factorial 1(N, F):-

N> 1,
NN |S N - ll
factorial 1(NN, FF),
Fis N* FF.

It works as expected.

?- factorial _1(5, X).
X = 120

By introducing a new second argument to keep track of the result so far, we can rewrite factorial/3 tail-
recursively. The new argument isinitially set to 1. Each recursive call builds on the second argument.
When the boundary condition is reached, the third argument is bound to the second argument.

factorial _2(1,F F).
factorial 2(N, T, F):-

N> 1,
TTis N* T,
NNis N- 1,

factorial _2(NN, TT, F).

It gives the same results as the previous version, but because the recursive call isthelast cal in the
second clause, its arguments are not needed at each level.

?- factorial _2(5,1,X).
X =120

Another classic example of tail recursion isthe predicate to reverse alist. The straightforward definition
of 'reverse’ would be

http://www.amzi.com/Adventurel nProlog/al4cntrl.htm (9 of 11)11/3/2006 7:06:01 PM

Control Structures

nai ve_reverse([],[1]).

nai ve_reverse([H T], Rev): -
nai ve_reverse(T, TR,
append(TR, [H , Rev) .

Theinefficiency of this definition is a feature taken advantage of in Prolog benchmarks. It is called the
naive rever se, and published performance statistics often list the time required to reverse alist of a
certain size.

The result of the recursive call to naive reverse/2 isused inthe last goal, so it is not tail recursive, but it
gives the right answers.

?- naive_reverse([ants, mce, zebras], X).
X = [zebras, mce, ants]

By again introducing a new second argument which will accumulate the partial answer through levels of
recursion, we can rewrite 'reverse.’ It turns out that the partial answer is already reversed when it reaches
the boundary condition.

reverse([], Rev, Rev).
reverse([H T], Tenp, Rev) :-
reverse(T, [H Tenp], Rev).

We can now try the second reverse.

?- reverse([ants, mce, zebras], [], X.
X = [zebras, mce, ants]

Exercises

1- Trace both versions of reverse to understand the performance differences.

2- Write atail recursive predicate that will compute the sum of the numbers between two given
numbers. Trace its behavior to seeif it istail recursive.

Adventure Game
3- Add the remaining command predicates to do/1 so the game can be fully played.

4- Add the concept of time to the game by putting a counter in the command loop. Use an out-of-time

http://www.amzi.com/Adventurel nProlog/al4cntrl.htm (10 of 11)11/3/2006 7:06:01 PM

Control Structures

condition as one way to end the game. Also add a‘wait' command, which just waits for one time
Increment.

5- Add other individuals or creatures that move automatically through the game rooms. Each cycle of
the command loop will update their locations based on whatever algorithm you choose.

Customer Order Entry

6- Write a command loop for the order entry inventory system. Write a variation on menuask/3 that will
present the user with a menu of choices, one of which isto exit the system. Use this in the command
loop instead of just prompting for acommand. Have each command prompt for the required input, if
any.

Expert System

7- Make anew version of the expert system that maintains the 'known' information in arguments rather
than in the logicbase.

Copyright ©1990,1996-97, 2004 Amz! inc. All Rights Reserved

http://www.amzi.com/Adventurel nProlog/al4cntrl.htm (11 of 11)11/3/2006 7:06:01 PM

Natural Language

Adventure in Prolog™ Boolke

Available in Paperback. Shipped Anywhere.

Prolog is especially well-suited for developing natural language systems. In this chapter we will create
an English front end for Nani Search.

But before moving to Nani Search, we will develop a natural language parser for a simple subset of
English. Once that is understood, we will use the same technology for Nani Search.

The simple subset of English will include sentences such as

. Thedog ate the bone.
. The big brown mouse chases alazy cat.

This grammar can be described with the following grammar rules. (The first rule says a sentence is made
up of anoun phrase followed by averb phrase. The last rule says an adjective is either 'big’, or 'brown’,
or 'lazy.' The'| means'or.")

sentence :

nounphrase, verbphrase.
nounphrase :

determiner, nounexpression.
nounphrase :

nounexpression.
nounexpression :

noun.
nounexpression :

adjective, nounexpression.
verbphrase :

verb, nounphrase.
determiner :

the|a
noun :

dog | bone | mouse | cat.

http://www.amzi.com/Adventurel nProl og/al5nlang.htm (1 of 13)11/3/2006 7:06:07 PM

http://www.amzi.com/connect/adventure_book.htm

Natural Language

verb:

ate | chases.
adjective:

big | brown | lazy.

To begin with, we will simply determine if a sentence is alegal sentence. In other words, we will write a
predicate sentence/1, which will determine if its argument is a sentence.

The sentence will be represented as alist of words. Our two examples are

[t he, dog, at e, t he, bone]
[t he, bi g, brown, nouse, chases, a, | azy, cat]

There are two basic strategies for solving a parsing problem like this. Thefirst is a generate-and-test
strategy, where the list to be parsed is split in different ways, with the splittings tested to see if they are
components of alegal sentence. We have already seen that we can use append/3 to generate the
splittings of alist. With this approach, the top-level rule would be

sentence(L) :-
append(NP, VP, L),
nounphr ase(NP) ,
ver bphrase(VP).

The append/3 predicate will generate possible values for the variables NP and VP, by splitting the
original list L. The next two goals test each of the portions of the list to seeif they are grammatically
correct. If not, backtracking into append/3 causes another possible splitting to be generated.

The clauses for nounphrase/1 and verbphrase/1 are similar to sentence/1, and call further predicates that
deal with smaller units of a sentence, until the word definitions are met, such as

verb([ate]).
ver b([chases]).

noun([nouse]) .
noun([dog]) .

Difference Lists

The above strategy, however, is extremely slow because of the constant generation and testing of trial
solutions that do not work. Furthermore, the generating and testing is happening at multiple levels.

The more efficient strategy isto skip the generation step and pass the entire list to the lower level

http://www.amzi.com/Adventurel nProl og/al5nlang.htm (2 of 13)11/3/2006 7:06:07 PM

Natural Language

predicates, which in turn will take the grammatical portion of the sentence they are looking for from the
front of the list and return the remainder of thelist.

To do this, we use a structure called a difference list.It istwo related lists, in which the first list is the
full list and the second list isthe remainder. The two lists can be two arguments in a predicate, but they
are more readable if represented as a single argument with the minus sign (-) operator, like X-Y.

Herethen isthe first grammar rule using difference lists. A list Sis a sentence if we can extract a
nounphrase from the beginning of it, with aremainder list of S1, and if we can extract averb phrase
from S1 with the empty list as the remainder.

sentence(S) :-
nounphrase(S-Sl1),
ver bphrase(S1-[]).

Before filling in nounphrase/1 and verbphrase/1, we will jump to the lowest level predicates that define
the actual words. They too must be difference lists. They are simple. If the head of the first list isthe
word, the remainder list issimply thetail.

noun([dog| X] - X) .
noun([cat| X - X).
noun([nouse| X] - X) .

verb([ate| X]-X).
ver b([chases| X] - X) .

adj ective([big| X -X).
adj ective([brown| X] - X).
adj ective([lazy| X -X).

determ ner([the| X]-X).
determ ner([al X] - X).

Testing shows how the difference lists work.

?- noun([dog, ate, t he, bone] - X).
X = [ate,the, bone]

?- verb([dog, ate, t he, bone] - X).
no

Continuing with the new grammar rules we have

http://www.amzi.com/Adventurel nProl og/al5nlang.htm (3 of 13)11/3/2006 7:06:07 PM

Natural Language

nounphr ase(NP- X) : -
det er mi ner (NP- S1),
nounexpr essi on(S1- X) .
nounphr ase(NP- X) : -
nounexpr essi on(NP- X) .

nounexpr essi on(NE- X) : -
noun(NE- X) .

nounexpr essi on(NE- X) : -
adj ective(NE-S1),
nounexpr essi on(S1- X) .

ver bphrase(VP- X) : -
ver b(VP- S1),
nounphr ase(S1- X).

NOTE: The recursive cal in the definition of nounexpression/1. It allows sentences to have any number
of adjectives before a noun.

These rules can now be used to test sentences.

?- sentence([the,lazy, nouse, ate, a, dog]).
yes

?- sentence([the, dog, ate]).
no

?- sentence([a, bi g, brown, cat, chases, a, | azy, br own, dog]) .
yes

?- sentence([the,cat,junps,the, nouse]).
no

Figure 15.1 contains a trace of the sentence/1 predicate for a simple sentence.

http://www.amzi.com/Adventurel nProl og/al5nlang.htm (4 of 13)11/3/2006 7:06:07 PM

Natural Language

The query is
?- sentence([dog, chases, cat]).

1-1 CALL sentence([dog, chases, cat])
2-1 CALL nounphrase([dog, chases, cat]-_0)
3-1 CALL determ ner([dog, chases,cat]-_0)
3-1 FAIL determ ner([dog, chases, cat]-_0)
2-1 REDO nounphrase([dog, chases, cat]-_0)
3-1 CALL nounexpression([dog, chases,cat]- _0)
4-1 CALL noun([dog, chases, cat]-_0)
4-1 EXIT noun([dog, chases, cat] -
[chases, cat])

Notice how the binding of the variable representing the remainder list has been deferred until the
lowest level is called. Each level unifiesits remainder with the level beforeit, so when the vocabulary
level isreached, the binding of the remainder to the tail of the list is propagated back up through the
nested calls.

3-1 EXIT nounexpression([dog, chases, cat] -
[chases, cat])
2-1 EXIT nounphrase([dog, chases, cat] -
[chases, cat])

Now that we have the noun phrase, we can seeif the remainder is averb phrase.

2-2 CALL verbphrase([chases,cat]-[])
3-1 CALL verb([chases,cat]-_4)
3-1 EXIT verb([chases,cat]-[cat])

Finding the verb was easy, now for the final noun phrase.

3-2 CALL nounphrase([cat]-[])
4-1 CALL determ ner([cat]
4-1 FAIL determ ner([cat]
3-2 REDO nounphrase([cat]-[])
4-1 CALL nounexpression([cat]-[])
5-1 CALL noun([cat]-[])
5-1 EXIT noun([cat]-[])
4-1 EXIT nounexpression([cat]-[])
3-2 EXIT nounphrase([cat]-[])
2-2 EXIT verbphrase([chases,cat]-[])

-11)
-[1)

http://www.amzi.com/Adventurel nProl og/al5nlang.htm (5 of 13)11/3/2006 7:06:07 PM

Natural Language

1-1 EXIT sentence([dog, chases, cat])
yes

Figure 15.1. Trace of sentence/l

Natural Language Front End

We will now use this sentence-parsing technique to build a simple English language front end for Nani
Search.

For the time being we will make two assumptions. The first is that we can get the user's input sentence
in list form. The second is that we can represent our commandsin list form. For example, we can
express goto(office) as [goto, office], and look as [Iook].

With these assumptions, the task of our natural language front end isto translate a user's natural sentence
list into an acceptable command list. For example, we would want to translate [go,to,the,office] into
[goto, office].

We will write a high-level predicate, called command/2, that performs this translation. Its format will be
command(Qut put Li st, | nputlList).

The simplest commands are the ones that are made up of a verb with no object, such as ook,
list_possessions, and end. We can define this situation as follows.

command([V], InList):- verb(V, InList-[]).

We will define verbs asin the earlier example, only this time we will include an extra argument, which
identifies the command for use in building the output list. We can also allow as many different ways of
expressing a command as we feel like as in the two ways to say 'look' and the three ways to say ‘end.’

ver b(l ook, [l ook]| X]-X).

ver b(l ook, [1 ook, around| X] - X).

verb(li st _possessions, [inventory]| X]-X).
verb(end, [end| X]-X).

verb(end, [quit] X]-X).

ver b(end, [good, bye| X]-X).

We can now test what we've got.

http://www.amzi.com/Adventurel nProl og/al5nlang.htm (6 of 13)11/3/2006 7:06:07 PM

Natural Language

?- command(X, [| ook]).
X = [l 00K]

?- command(X, [| ook, around]) .
X = [l 00K]

?- command(X, [i nventory]).
X = [list_possessions]

?- command(X, [good, bye]) .
X = [end]

We now move to the more complicated case of a command composed of averb and an object. Using the
grammatical constructs we saw in the beginning of this chapter, we could easily construct this grammar.
However, we would like to have our interface recognize the semantics of the sentence aswell asthe
formal grammar.

For example, we would like to make sure that 'goto’ verbs have a place as an object, and that the other
verbs have athing as an object. We can include this knowledge in our natural language routine with
another argument.

Here is how the extra argument is used to ensure the object type required by the verb matches the object
type of the noun.

command([V,Q, InList) :-
ver b(Object _Type, V, InList-S1),
obj ect (Obj ect _Type, O S1-[]).

Hereis how we specify the new verbs.

ver b(pl ace, goto, [go,to] X]-X).
ver b(pl ace, goto, [go]| X]-X).
ver b(pl ace, goto, [nove,to| X]-X).

We can even recognize the case where the 'goto’ verb wasimplied, that isif the user just typed in aroom
name without a preceding verb. In this case the list and its remainder are the same. The existing room/1
predicate is used to check if the list element is aroom except when the room name is made up of two
words.

Therule states "If we are looking for a verb at the beginning of alist, and the list begins with aroom,
then assume a 'goto’ verb was found and return the full list for processing as the object of the ‘goto’
verb."

http://www.amzi.com/Adventurel nProl og/al5nlang.htm (7 of 13)11/3/2006 7:06:07 PM

Natural Language

verb(place, goto, [XlY]-[XlY]):- room(X).
ver b(pl ace, goto, [dining,roonY]-[dining,roomY]).

Some of the verbsfor things are

verb(thing, take, [take| X]-X).
verb(thing, drop, [drop| X]-X).
verb(thing, drop, [put] X -X).
verb(thing, turn_on, [turn,on]|X]-X).

Optionally, an 'object’ may be preceded by a determiner. Here are the two rules for 'object,’ which cover
both cases.

obj ect (Type, N, S1-S3) :-
det (S1- S2),
noun(Type, N, S2-S3).
obj ect (Type, N, S1-S2) :-
noun(Type, N, S1-S2).

Since we are just going to throw the determiner away, we don't need to carry extra arguments.

det ([the| X]- X).
det ([a| X] - X) .
det ([an| X] - X) .

We define nouns like verbs, but use their occurrence in the game to define most of them. Only those
names that are made up of two or more words require special treatment. Nouns of place are defined in
the game as rooms.

noun(place, R, [R X]-X):- roomR).
noun(place, 'dining room, [dining,roomX]-X).

Things are distinguished by appearing in a'location’ or 'have' predicate. Again, we make exceptions for
cases where the thing name has two words.

noun(thing, T, [T|X]-X):- location(T,).
noun(thing, T, [T|X]-X):- have(T).
noun(thing, 'washing machine', [washing, machi ne| X]-X).

We can build into the grammar an awareness of the current game situation, and have the parser respond
accordingly. For example, we might provide a command that allows the player to turn the room lights on

http://www.amzi.com/Adventurel nProl og/al5nlang.htm (8 of 13)11/3/2006 7:06:07 PM

Natural Language

or off. This command might be turn_on(light) as opposed to turn_on(flashlight). If the user typesin 'turn
on the light' we would like to determine which light was meant.

We can assume the room light was always meant, unless the player has the flashlight. In that case we
will assume the flashlight was meant.

noun(thing, flashlight, [light|X, X):- have(flashlight).
noun(thing, light, [light|X], X).

We can now try it out.

?- command(X, [go,to,the,of fice]).
X = [goto, office]

?- command(X, [go, di ni ng, roon).
X = [goto, 'dining room]

?- command(X, [ki tchen]).
X = [goto, kitchen]

?- command(X, [t ake, t he, appl e]).
X = [take, apple]

?- command(X, [turn,on,the,light]).
X = [turn_on, |ight]

?- asserta(have(flashlight)), command(X [turn,on,the,light]).
X = [turn_on, flashlight]

It should fail in the following situations that don't conform to our grammar or semantics.

?- command(X, [go, to, the, desk]).
no

?- command(X, [go, attic]).
no

?- command(X, [drop, an, of fice]).
no

Definite Clause Grammar

http://www.amzi.com/Adventurel nProl og/al5nlang.htm (9 of 13)11/3/2006 7:06:07 PM

Natural Language

The use of difference lists for parsing is so common in Prolog, that most Prologs contain additional
syntactic sugaring that simplifies the syntax by hiding the difference lists from view. This syntax is
called Definite Clause Grammar (DCG), and looks like normal Prolog, only the neck symbol (:-) is
replaced with an arrow (-->). The DCG representation is parsed and translated to normal Prolog with
difference lists.

Using DCG, the 'sentence’ predicate developed earlier would be phrased
sentence --> nounphrase, verbphrase.

Thiswould be translated into normal Prolog, with difference lists, but represented as separate arguments
rather than as single arguments separated by a minus (-) as we implemented them. The above example
would be trandlated into the following equivalent Prolog.

sentence(Sl, S2): -
nounphr ase(S1, S3),
ver bphrase(S3, S2).

Thus, if we define 'sentence’ using DCG we still must call it with two arguments, even though the
arguments were not explicitly stated in the DCG representation.

?- sentence([dog, chases,cat], []).
The DCG vocabulary is represented by ssimplelists.

noun --> [dog].
verb --> [chases].

These are tranglated into Prolog as difference lists.

noun([dog| X, X).
ver b([chases| X], X).

Aswith the natural language front end for Nani Search, we often want to mix pure Prolog with the
grammar and include extra arguments to carry semantic information. The arguments are ssimply added as
normal arguments and the pure Prolog is enclosed in curly brackets ({}) to prevent the DCG parser from
trandating it. Some of the complex rulesin our game grammar would then be

command([V, Q) -->

ver b(OGbj ect _Type, V),
obj ect (Obj ect _Type, O.

http://www.amzi.com/Adventurel nProlog/al5nlang.htm (10 of 13)11/3/2006 7:06:07 PM

Natural Language

ver b(pl ace, goto) --> [go, to].
verb(thing, take) --> [take].

obj ect (Type, N) --> det, noun(Type, N).
obj ect (Type, N) --> noun(Type, N).

det --> [the].
det --> [a].

noun(place, X) -->[X, {room X)}.
noun(pl ace, ' dining room) --> [dining, roon.
noun(thing, X) -->[X], {location(X,)}.

Because the DCG automatically takes off the first argument, we cannot examine it and send it along as
we did in testing for a'goto’ verb when only the room name was given in the command. We can
recognize this case with an additional ‘command' clause.

command([goto, Place]) --> noun(place, Place).

Reading Sentences

Now for the missing pieces. We must include a predicate that reads a normal sentence from the user and
putsitinto alist. Figure 15.2 contains a program to perform the task. It is composed of two parts. The
first part reads aline of ASCII characters from the user, using the built-in predicate get0/1, which reads
asingle ASCII character. Thelineis assumed terminated by an ASCII 13, which is a carriage return.
The second part uses DCG to parse the list of charactersinto alist of words, using another built-in
predicate name/2, which converts alist of ASCII charactersinto an atom.

%read a line of words fromthe user

read list(L) :-
wite('> "),
read |ine(CL),
wordlist(L,CL,[]), !.

read line(L) :-
get 0(Q),
buildlist(CL).

bui ldlist(13,[]) :- !.
buildlist(C[CX) :-
get 0(C2),

http://www.amzi.com/Adventurel nProl og/al5nlang.htm (11 of 13)11/3/2006 7:06:07 PM

Natural Language

bui l dlist(C2, X).
wordlist([X]Y]) --> word(X), whitespace, wordlist(Y).
wordlist([X]) --> whitespace, wordlist(X).
wordlist([X]) --> word(X).
wordlist([X]) --> word(X), whitespace.
word(W --> charlist(X), {name(W X)}.

charlist([X Y]) --> chr(X), charlist(Y).
charlist([X]) --> chr(X).

chr(X) --> [X],{X>=48}.

whi t espace --> whsp, whitespace.
whi t espace --> whsp.

whsp --> [X], {X<48}.

Figure 15.2. Program to read input sentences

The other missing piece converts acommand in the format [goto,office] to a normal-looking command
goto(office). Thisis done with a standard built-in predicate called 'univ', which is represented by an
egual sign and two periods (=..). It trandlates a predicate and its arguments into alist whose first element
Is the predicate name and whose remaining elements are the arguments. It works in reverse as well,

which is how we will want to useit. For example

?- pred(argl,arg2) =.. X
X = [pred, argl, arg2?]

?- pred =.. X

X = [pred]

?- X =.. [pred,argl, argl].
X = pred(argl, arg2)

?- X =. [pred].

X = pred

We can now use these two predicates, along with command/2 to write get_command/1, which reads a

sentence from the user and returns a command to command_|oop/O.

http://www.amzi.com/Adventurel nProl og/al5nlang.htm (12 of 13)11/3/2006 7:06:07 PM

Natural Language

get _command(C) : -

read |ist(L),
command(CL, L),
c=. @4, !.

get _command() : -
wite('l don''t understand'), nl, fail.

We have now gone from writing the simple facts in the early chaptersto afull adventure game with a
natural language front end. Y ou have also written an expert system, an intelligent geneal ogical |ogicbase
and a standard business application. Use these as a basis for continued learning by experimentation.

Exercises
Adventure Game
1- Expand the natural language capabilities to handle al of the commands of Nani Search.

2- Expand the natural language front end to allow for compound sentences, such as "go to the kitchen
and take the apple," or "take the apple and the broccoli."

3- Expand the natural language to allow for pronouns. To do this the 'noun’ predicate must save the last
noun and its type. When the word 'it' is encountered pick up that last noun. Then ‘take the apple
followed by 'eat it will work. (Y ou will probably have to go directly to the difference list notation to
make sentences such as "turn it on" work.)

Genealogical Logicbase

4- Build anatural language query system that responds to queries such as "Who are dennis' children?"
and "How many nephews does jay have?' Assuming you write a predicate get_query/1 that returns a
Prolog query, you can call the Prolog query with the call/1 built-in predicate. For example,

mai n_| oop : -
repeat,
get _query(X),
call (X),
X = end.

Copyright ©1990,1996-97, 2004 Amzi! inc. All Rights Reserved

http://www.amzi.com/Adventurel nProlog/al5nlang.htm (13 of 13)11/3/2006 7:06:07 PM

Appendix

Adventure in Prolog™ Boole

Available in PaperbacK. Shipped Anywhere.

This appendix contains sample versions of the four programs described in the book. These are the adventure game
(Nani Search), the intelligent genealogical logicbase (Family), the customer order entry system (Custord), and the
expert system (Birds).

Nani Search

% NANI SEARCH - A sanpl e adventure gane

% Copyright (C 1990-1995 Anzi! inc.
% Al rights reserved

% Nani Search is designed to illustrate Prolog programmng. It
%is an inplenentation of the principle exanple used in
%this tutorial.

mai n: - nani _search. % main entry point

nani _search: -
I nit_dynam c_facts, % predi cates which are not conpil ed

wite(' NANI SEARCH - A Sanpl e Adventure Gane'), nl,

wite(' Copyright (C Anzi! inc. 1990-1995'),nl,

wite('No rights reserved, use it as you wish'),nl,

nl,

write(' Nani Search is designed to illustrate Prolog programmng.'), nl,
wite('As such, it mght be the sinplest adventure gane. The gane'),nl,
wite('is the primary exanple used in this tutorial."),nl,

wite('Full source is included as well."),nl,

nl,

write(' Your persona as the adventurer is that of a three year'),nl,
wite('old. The Nani is your security blanket. It is getting),nl,
wite('late and you''re tired, but you can''t go to sleep'),nl,
wite('w thout your Nani. Your mssion is to find the Nani."),nl,
nl,

wite(' You control the gane by using sinple English commands'), nl,
wite('expressing the action you wish to take. You can go to'),nl,
wite(' other roons, |ook at your surroundings, |ook in things'),nl,
wite('take things, drop things, eat things, inventory the'),nl,

http://www.amzi.com/Adventurel nProl og/appendix.htm (1 of 27)11/3/2006 7:06:15 PM

http://www.amzi.com/connect/adventure_book.htm

Appendix

wite('things you have, and turn things on and off."),nl,
nl,

wite('Ht any key to continue.'),get0(_),

wite(' Type "help" if you need nore help on nechanics.'),nl,
wite(' Type "hint" if you want a big hint."),nl,

wite(' Type "quit" if you give up.'),nl

nl,

wite('Enjoy the hunt.'),nl,

| ook, % give a | ook before starting the gane
command_| oop.

% conmmand_| oop - repeats until either the nani is found or the
% pl ayer types quit

comrand_| oop: -
repeat,
get _conmmand(X),

do(X),

(nani found; X == quit).

% do - matches the input command with the predicate which carries out

% the command. Mbre general approaches which mght work in the

% | i stener are not supported in the conpiler. This approach

% al so gives tighter control over the all owabl e commands.

% The cuts prevent the forced failure at the end of "conmand | oop”
% from backtracking into the command predi cates.

do(goto(X)):-goto(X),!
do(nshel p):-nshel p,!.
do(hint):-hint,!.

do(i nventory):-inventory,!.
do(take(X)):-take(X),!.
do(drop(X)):-drop(X),!
do(eat(X)):-eat(X),!

do(1 ook): -1 ook, !
do(turn_on(X)):-turn_on(X),!.
do(turn_off(X)):-turn_off(X),!.
do(look_in(X)):-look_ in(X),!.
do(quit):-quit,!.

% These are the predicates which control exit fromthe gane. |If
% the player has taken the nani, then the call to "have(nani)" wll
% succeed and the command [oop wll conplete. Oherwise it fails

% and command | oop will repeat.

http://www.amzi.com/Adventurel nProl og/appendix.htm (2 of 27)11/3/2006 7:06:15 PM

Appendix

nani f ound: -
have(nani),
write(' Congratul ati ons, you saved the Nani."),nl,
wite(' Now you can rest secure.'),nl,nl.

quit:-
wite('"Gving up? It''s going to be a scary night'),nl,
wite('and when you get the Nani it''s not going'),nl,
wite('to snell right."),nl,nl.

% The hel p command
nshel p: -

wite('Use sinple English sentences to enter conmands.'),nl,
wite(' The conmands can cause you to:'),nl,

nl,

wite(' go to a room (ex. go to the office)'),nl,
wite(' | ook ar ound (ex. look)"),nl,

wite(' | ook in sonething (ex. look in the desk)'),nl,
wite(' t ake sonet hi ng (ex. take the apple)'),nl,
wite(' drop sonet hi ng (ex. drop the apple)'),nl,
wite(' eat sonet hi ng (ex. eat the apple)'),nl
wite(' turn somet hi ng on (ex. turn on the light)"'),nl,
wite(' i nventory your things (ex. inventory)'),nl,

nl,

wite(' The exanpl es are verbose, terser commands and synonyns'), nl,
wite('are usually accepted.'),nl,nl,
wite('H t any key to continue.'),nl,

get 0(_),
| ook.

hi nt: -
wite('You need to get to the cellar, and you can''t unless'),nl,
wite('you get sone light. You can''t turn on the cellar'),nl,
wite('light, but there is a flash light in the desk in the'),nl,
wite('office you maght use.'"),nl,nl,
| ook.

%Initial facts describing the world. Rooms and doors do not change,
% so they are conpil ed.

roon(office).
room(ki t chen).
roon("' dining room).
roon(hal I').
roonm(cel |l ar).

http://lwww.amzi.com/Adventurel nProl og/appendix.htm (3 of 27)11/3/2006 7:06:15 PM

Appendix

door (office, hall).

door (hall, " dining room).
door (' di ning room , kitchen).
door (ki tchen, cell ar).

door (ki tchen, office).

connect (X Y): -
door (X, Y).

connect (X, Y): -
door (Y, X).

% These facts are all subject to change during the gane, so rather
% t han being conpiled, they are "asserted” to the |istener at
%run tinme. This predicate is called when "nanisrch" starts up.

I nit_dynam c_facts: -
assertz(l ocation(desk,office)),
assertz(l ocation(appl e, kitchen)),
assertz(location(flashlight, desk)),
assertz(location('washing nmachine',cellar)),
assertz(l ocation(nani,'washing nmachine')),
assertz(l ocation(table, kitchen)),
assertz(l ocation(crackers, desk)),
assertz(l ocation(broccoli, kitchen)),
assertz(here(kitchen)),
assertz(turned_off(flashlight)).

furniture(desk).
furniture(' washi ng machi ne').
furniture(table).

edi bl e(appl e).
edi bl e(crackers).

tastes _yuchy(broccoli).

% got 0 noves the player fromroomto room

got o(Room : -
can_go(Room, % check for |egal nove
puzzl e(got o(Roon)), % check for special conditions
novet o(Room , % go there and tell the player
| ook.

goto(_):- | ook.

http://www.amzi.com/Adventurel nProl og/appendix.htm (4 of 27)11/3/2006 7:06:15 PM

Appendix

can_go(Roon) : - %if there is a connection it
here(Her e), %is a |l egal nove.
connect (Her e, Roonm) , !

can_go(Room) : -
respond([' You can''t get to

,Room"' fromhere']),fail.

novet o(Room : - % update the | ogi cbase with the
retract (here(_)), % new room
asserta(here(Room).

%look lists the things in a room and the connections

| ook: -
here(Her e),
respond([' You are in the ', Here]),
wite(' You can see the following things:'),nl,
list_things(Here),
wite('You can go to the follow ng roons:'), nl
| i st _connections(Here).

list_things(Place):-
| ocati on(X, Pl ace),
tab(2),wite(X),nl,
fail.

list _things(_).

| i st _connections(Pl ace): -
connect (Pl ace, X),
tab(2),wite(X),nl,
fail.

i st _connections(_).

%l ook in allows the player to | ook inside a thing which m ght
% cont ai n other things

| ook _i n(Thing): -
| ocation(_, Thing), % make sure there's at | east one
wite('The "), wite(Thing),wite(' contains:'),nl,
l'ist_things(Thing).

| ook _i n(Thing): -
respond([' There is nothing in the ', Thing]).

% take allows the player to take sonething. As long as the thing is
% contained in the roomit can be taken, even if the adventurer hasn't
% | ooked in the the container which contains it. Also the thing

% nmust not be furniture.

http://www.amzi.com/Adventurel nProl og/appendix.htm (5 of 27)11/3/2006 7:06:15 PM

Appendix

t ake(Thi ng): -
i s_here(Thing),
i s_takabl e(Thi ng),
nove(Thi ng, have),
respond([' You now have the ', Thing]).

i s_here(Thing):-

here(Here),

contai ns(Thing, Here), !. % don't backtrack
I s_here(Thing):-

respond([' There is no ', Thing,' here']),

fail.
contai ns(Thi ng, Here) : - % recursive definitionto find
| ocati on(Thi ng, Here). %t hings contained in things etc.

contai ns(Thi ng, Here) : -
| ocati on(Thi ng, X),
cont ai ns(X, Here).

I s_takabl e(Thing): - % you can't take the furniture
furniture(Thing),
respond([' You can''t pick up a ', Thing]),
I,fail.

I s_takable(). % not furniture, ok to take

nove(Thi ng, have) : -
retract (l ocation(Thing,)), %take it fromits old place
asserta(have(Thing)). % and add to your possessions

% drop - allows the player to transfer a possession to a room

drop(Thi ng): -
have(Thi ng), % you nust have the thing to drop it
her e(Her e) , % where are we
retract (have(Thing)),
asserta(l ocation(Thing, Here)).
drop(Thi ng): -
respond([' You don''t have the ', Thing]).

% eat, because every adventure gane lets you eat stuff.

eat (Thing): -
have(Thi ng),
eat 2(Thi ng) .
eat (Thing): -
respond([' You don''t have the ', Thing]).

http://lwww.amzi.com/Adventurel nProl og/appendix.htm (6 of 27)11/3/2006 7:06:15 PM

Appendix

eat 2(Thi ng): -

edi bl e(Thi ng),

retract (have(Thing)),

respond([' That ', Thing,' was good']).
eat 2(Thi ng): -

tast es_yuchy(Thi ng),

respond([' Three year olds don''t eat ', Thing]).
eat 2(Thi ng): -

respond(['You can''t eat a ', Thing]).

% inventory |ist your possesions

I nventory: -
have(X), % make sure you have at |east one thing
wite(' You have: '),nl,
| i st_possessi ons.
I nventory: -
wite(' You have nothing'), nl.

| i st_possessions: -
have(X),
tab(2),wite(X),nl,
fail.

| i st _possessi ons.

% turn_on recogni zes two cases. |If the player tries to sinply turn
%on the light, it is assunmed this is the roomlight, and the

% appropriate error nessage is issued. Oherwse turn_on has to
%refer to an object which is turned off.

turn_on(light):-

respond([' You can''t reach the switch and there''s nothing to stand on']).
turn_on(Thing): -

have(Thi ng),

turn_on2(Thi ng).
turn_on(Thing): -

respond([' You don''t have the ', Thing]).

turn_on2(Thing): -

turned_on(Thi ng),

respond([Thing,' is already on']).
turn_on2(Thing): -

turned_of f (Thi ng),

retract (turned_off(Thing)),

asserta(turned_on(Thing)),

respond([Thing,' turned on']).
turn_on2(Thing): -

http://www.amzi.com/Adventurel nProl og/appendix.htm (7 of 27)11/3/2006 7:06:15 PM

Appendix

respond(['You can''t turn a ', Thing,' on']).
%turn_off - | didn't feel like inplenenting turn_off

turn_of f(Thing): -
respond(['l |ied about being able to turn things off']).

% The only special puzzle in Nani Search has to do with going to the
%cellar. Puzzle is only called fromgoto for this reason. O her
% puzzles pertaining to other commands coul d easily be added.

puzzl e(goto(cellar)):-
have(fl ashlight),
turned_on(flashlight),!.
puzzl e(goto(cellar)): -
wite('You can''t go to the cellar because it''s dark in the'),nl,
wite('cellar, and you' 're afraid of the dark.'),nl
Iyfail.
puzzle().

% respond sinplifies witing a mxture of literals and vari abl es

respond([]):-
wite('."),nl,nl.

respond([H T]): -
wite(H),
respond(T).

% Sinpl e English command listener. |t does sone semantic checking
% and allows for various synonyns. Wthin a restricted subset of

% Engl i sh, a conmand can be phrased many ways. Al so non granmatica
% constructs are understood, for exanple just giving a room nane
%is interpreted as the command to goto that room

% Sone interpretation is based on the situation. Notice that when

% the player says turn on the light it is anmbiguous. It could nean
% the roomlight (which can't be turned on in the gane) or the
%flash light. |If the player has the flash light it is interpreted

%as flash light, otherwise it is interpreted as roomlight.

get _command(C): -

readlist(L), % reads a sentence and puts [it,in,list,form
command(X, L,[]), % call the grammar for comand
C=.X1!. % make the command |ist a structure

get _command(_): -
respond(['l don''t understand, try again or type help']),fail.

http://www.amzi.com/Adventurel nProl og/appendix.htm (8 of 27)11/3/2006 7:06:15 PM

Appendix

% The grammar doesn't have to be real English. There are two
% types of commands in Nani Search, those with and w thout a

% single argunent. A special case is also nmade for the comuand
% got 0o which can be activated by sinply giving a room nane.

command([Pred, Arg]) --> verb(Type, Pred), nounphrase(Type, Arg).
command([Pred]) --> verb(intran, Pred).
command([goto, Arg]) --> noun(go_pl ace, Arg).

% Recogni ze three types of verbs. Each verb corresponds to a comrand,
% but there are many synonyns all owed. For exanple the command
%turn_on wll be triggered by either "turn on" or "switch on".

verb(go_pl ace,goto) --> go_verb.
verb(thing,V) --> tran_verb(V).
verb(intran,V) -->intran_verb(V).

go _verb --> [go].
go_verb --> [go,to0].
go_verb -->[q].

tran_verb(take) --> [take].
tran_verb(take) --> [pick,up].
tran_verb(drop) --> [drop].
tran_verb(drop) --> [put].
tran_verb(drop) --> [put, down].
tran_verb(eat) --> [eat].
tran_verb(turn_on) --> [turn,on].
tran_verb(turn_on) --> [switch,on].
tran_verb(turn_off) --> [turn,off].
tran_verb(look in) --> [look,in].
tran_verb(l ook _in) --> [loo0K].
tran_verb(l ook _in) --> [open].

intran_verb(inventory) --> [inventory].
I ntran_verb(inventory) -->1i].

I ntran_verb(l ook) --> [l o0k].

I ntran_verb(l ook) --> [l ook, around].
intran_verb(look) -->11].
Intran_verb(quit) -->[quit].
intran_verb(quit) --> [exit].
Intran_verb(quit) --> [end].
intran_verb(quit) --> [bye].

I ntran_verb(nshel p) --> [hel p].
intran_verb(hint) --> [hint].

% a noun phrase is just a noun with an optional determner in front.

http://lwww.amzi.com/Adventurel nProl og/appendix.htm (9 of 27)11/3/2006 7:06:15 PM

Appendix

nounphr ase(Type, Noun) --> det, noun(Type, Noun).
nounphr ase(Type, Noun) --> noun(Type, Noun).

det --> [the].
det -->[a].

% Nouns are defined as roons, or things |ocated sonewhere. W define
% speci al cases for those things represented in Nani Search by two
% words. W can't expect the user to type the nane in quotes.

noun(go_place,R) -->[R], {room R }.
noun(go_pl ace, ' dining room) --> [dining,roon.

noun(thing, T) -->[T], {location(T,)}.
noun(thing, T) --> [T], {have(T)}.
noun(thing,flashlight) --> [flash,light].
noun(thi ng, ' washi ng machi ne') --> [washi ng, machi ne].
noun(thing, ' dirty clothes') --> [dirty,clothes].

%If the player has just typed light, it can be interpreted three ways.
%If a roomnane is before it, it nust be a roomlight. If the

% pl ayer has the flash light, assune it neans the flash light. Oherw se
% assune it is the roomlight.

noun(thing,light) --> [X light], {room(X)}.
noun(thing,flashlight) --> [light], {have(flashlight)}.
noun(thing,light) --> [light].

%readlist - read a list of words, based on a Clocksin & Mellish
% exanpl e.

readlist(L): -
wite('> "),
read word list(L).

read word list([WW]) :-

get 0(Q),

readword(C, W C1), % Read word starting with C, Cl is first new

restsent (C1, W), !. % character - use it to get rest of sentence
restsent(C[]) :- lastword(C), !. % Nothing left if hit |ast-word marker
restsent (C [W | Ws]) -

readword(C, W, C1) , % El se read next word and rest of sentence

restsent (C1,).

readword(C, WC1) : - % Some words are single characters

http://www.amzi.com/Adventurel nProl og/appendix.htm (10 of 27)11/3/2006 7:06:15 PM

Appendix

single_char (0O,

L,

name(W [C]),

get0(Cl).
readword(C, W Cl1) :-

is_ num C,

|

nunber _word(C, W Ci,

readword(C, WC2) : -
in_wrd(C, NewC,
get0(Cl),
restword(Ci, Cs, C2),
name(W [NewC| Cs]).

readword(C, WC2) : -
get0(Cl),
readwor d(C1, W C2).

restword(C, [NewC Cs],
in_word(C, NewC),
get0(Cl),

% i.e. punctuation

% get as an atom

%if we have a nunber --

). %convert it to a genuine nunber
% ot herwi se if character does not
% del i neate end of word - keep
% accunul ati ng themuntil
% we have all the word
% then nmake it an atom
% ot herw se

% start a new word

c2) -

restword(C1, GCs, C2).

rest wor d(C,

[1. O.

single _char(,)
single_char(;
single_char(:
single_char (!
single_char(.

)
)
)
)

in_wrd(C, C :- C>=
in_ wrd(C, L) :- C>=
in_word(', ").
in_word(-, -).

% Have character C (known integer) -
we hit a non-integer.

% up the nunmber until

% and return the conputed nunber

nunber _word(C, W Ci1,
is_ num C),
I
get 0(C2),
nunmber _word(C2, W,
PowlO is P10 * 10,
Wis integer(((C -

.single_char(?).

"a, C =< z.
A, C=< "Z, Lis C+ 32.

Return this in C1,
in W

Powl0) : -

Cl, P10),

“0) * Powl0) + W.).

http://www.amzi.com/Adventurel nProl og/appendix.htm (11 of 27)11/3/2006 7:06:15 PM

keep reading integers and build

Appendix

nunmber _word(C, 0, C, 0.1).

Is_ numC :-
C =<9,
C>= 0.

% These synbol s delineate end of sentence

| ast wor d(10) . %end if newline entered
| astword(.).
| astword(" !).
| astword(" ?).

Family

% GENE. PRO - geneal ogi cal relationships

%

% Copyright (c) 1987-1995 Anzi! inc.

%Al rights reserved

%

% A Prol og dat abase of relations derived from basic information about
% individuals. The relations ships can all be read as 'relationship

% of', so for exanple, parent(P,C) neans P is parent of C

%

% When there is a performance trade-of in the inplenentation of a rule,
%it is assuned that in general the second argunent of a relation wll
% nost |ikely be bound. See for exanple full _sibling/2, which wll

% have a smaller search for full _sibling(X joe), than full _sibling(joe,X).
%

% This code is used as an exanple of an enbedded Prol og application.

% One is a C++ application and the other Visual Basic.

%

% To use this code fromProlog, consult it in the |istener and use the
% follow ng predicates:

%

% open(F) - opens a file of famly relationships, ex. open('england.fam).
% open/1 just does a consult, so you can use consult instead.
%close - retracts all the persons currently defined

% save(F) - saves the persons in the naned file

% add_person(Nane, Mther, Father, Gender, Spouse) - adds a person

% fact with the specified attributes, checking semantics as it does
% Rel ati onshi p(P1, P2) - any relationship query, such as child(XY).
%relation(R, P1, P2) - can be used to find the relationship between

% I ndi vidual s as well as pose relationship queries.

parent (P, C -

http://www.amzi.com/Adventurel nProl og/appendix.htm (12 of 27)11/3/2006 7:06:15 PM

Appendix

(mot her (P, C) ; father(P, Q).

child(C P) :- parent(P,C).

son(C, P) :- parent(P,C, male(C.
daughter(C, P) :- parent(P,C, female(C.

wfe(WP) :-
spouse(W P),
femal e(W.

husband(H, P) : -
spouse(H, P),
mal e(H) .

ancestor (A P) -
parent (A, P).

ancestor (A P) -
parent (X, P),
ancestor (A X).

descendent (D, P) : -
parent (P, D).

descendent (D, P) : -
parent (P, X),
descendent (D, X) .

full _sibling(S1, S2) :-
not her (M S2) ,
not her (M S1),
S1 \= S2,
fat her (F, S1),
father(F, S2).

hal f _si bling(S1, S2) :-
not her (M S2) ,
not her (M S1),
S1 \= S2,
fat her(F1, S1),
fat her (F2, S2),
F1 \= F2.
hal f _sibling(S1, S2) :-
fat her (F, S2),
fat her (F, S1),
S1 \= 82,
not her (ML, S1),

http://www.amzi.com/Adventurel nProl og/appendix.htm (13 of 27)11/3/2006 7:06:15 PM

Appendix

not her (M2, S2) ,
ML \ = M.

sibling(S1, S2) :-
full _sibling(S1, S2).
sibling(S1, S2) :-
hal f _si bl ing(S1, S2).

sister(S,P) :-
sibling(s, P),
femal e(S).

brot her (B, P) : -
si bling(B, P),
mal e(B) .

step_sibling(S1, S2) :-
parent (P2, S2),
spouse(M2, P2),
parent (M2, S1),
not (parent (M2, S2)),

not (hal f _si bl i ng(S1, S2)).

uncl e(U, X) : -
parent (P, X),
br ot her (U, P).

aunt (A X) -
parent (P, X),
sister(A P).

step_parent (P2,0C : -
parent (P, C),
spouse(P2, P),
not (parent (P2, Q).

step_nmother(MC) :- step_parent(MQ),
step father(F,C :- step_parent(F, O,
step_child(C2,P) :- step_parent (P, C2).
st ep_daughter(D,P) :- step_child(D, P),

step_son(S,P) :- step_child(S, P),

nephew(N, X) : -

femal e(M.

mal e(F) .

femal e(D).

mal e(S) .

http://www.amzi.com/Adventurel nProl og/appendix.htm (14 of 27)11/3/2006 7:06:15 PM

Appendix

sibling(s, X),
parent (S, N),

mal e(N) .

ni ece(N, X) :-
sibling(S, X,
parent (S, N),
femal e(N).

cousin(X,Y) :-
parent (P,Y),
sibling(s, P),
parent (S, X).

gr andnot her (G X) : -
parent (P, X),
not her (GM P).

gr andf at her (GF, X) : -
parent (P, X),
fat her (G-, P).

grandparent (GP, X) : -
parent (P, X), parent(G> P).

grandson(GS, X) -
grandchi | d(GS, X),
mal e(GS) .

gr anddaughter (GD, X) : -
grandchi | d(GD, X),
femal e(QD).

grandchi Il d(GC, X) : -
parent (X, C),
parent (C, GO).

%relation/3 - used to find rel ati onshi ps between individuals
%

rel ati ons([parent, w fe, husband, ancestor, descendent, full _sibling,
hal f _sibling, sibling, sister, brother, step_sibling, uncle,
aunt, nother, father, child, son, daughter, step_parent,
step_child, step nother, step_father, step_son, step_daughter,
nephew, ni ece, cousin, grandnother, grandfather, grandparent,
grandson, granddaughter, grandchild]).

http://www.amzi.com/Adventurel nProl og/appendix.htm (15 of 27)11/3/2006 7:06:15 PM

Appendix

relation(R X, Y) :-
relations(Rs),
menber (R, Rs),
Q=. [RXY],
call (Q.

% person obj ect

%

% These predicates define the interface to a person. Al of the
% geneal ogi cal rules are based on these predicates, which are

% based on the basic representation of a person. These are the
% only rules which need to be changed if the representation of

% a person i s changed.

%

% The current representation is flat database relations of the form
% person(Nane, Gender, Mbdther, Father, Spouse).

%

add(Nane, Gender, Mot her, Fat her, Spouse) : -

assert (person(Name, Gender, Mot her, Fat her, Spouse)) .
add(Nane, , , ,) :-

del et e(Nane) ,

fail.

open(Fi | eNane) : -
consul t (Fi | eNane) .

cl ose : -
retractall (person(_, , , ,)).

save(Fi | eNanme) : -
tell (Fil eNane),
l'isting(person),
t ol d.

delete(X) :-
retract (person(X, , , ,)).

person(X) :-
person(X, , , ,).

mal e(X) -
person(X, male, , ,).

http://www.amzi.com/Adventurel nProl og/appendix.htm (16 of 27)11/3/2006 7:06:15 PM

Appendix

femal e(Y) :-
person(Y,female, , ,).

nother(M C) : -
person(C, ., M ,).

father(F, Q) :-

person(C, _, ,F,).
spouse(S, P) : -
person(P, , , ,9),
S \= single.
% ___
% Senmantic Integrity Checks on Update
%

add_per son(Nane, Gender , Mot her, Fat her, Spouse) : -
retractal |l (nmessage()),
dup_check(Nane),
add(Nane, Gender, Mot her, Fat her, Spouse),
ancest or _check(Nane) ,
not her _check(Nane, Gender, Mbther),
f at her _check(Nane, Gender, Father),
spouse_check(Nanme, Spouse).

dup_check(Nane) : -
per son(Nane),
assert (nmessage($Person is already in database$)),
L, fail.

dup_check().

ancest or _check(Nane) : -
ancest or (Nane, Nane) ,
assert (nessage($Person is their own ancestor/descendent$)),
t, fail.

ancestor _check().

not her _check(_, _, Modther) :- not(person(Mther)), !.
not her _check(_, _, Mother) :-

mal e(Mot her),

assert (nmessage($Person's nother is a man$)),

I, fail.

not her _check(Nane, male,) :-
not her (Nane, X),
assert (nessage($Person, a nale, is soneone's nother$)),
I, fail.

http://www.amzi.com/Adventurel nProl og/appendix.htm (17 of 27)11/3/2006 7:06:15 PM

Appendix

not her _check(, ,).
father_check(_, _, Father) :- not(person(Father)), !.
father _check(_, _, Father) :-

f emal e(Fat her),
assert (nmessage($Person's father is a man$)),
I, fail.
fat her _check(Nanme, female,) :-
f at her (Nanme, X),
assert (nessage($Person, a female, is soneone's father$)),
I, fail.
father_check(_, ,).

spouse_check(Nanme, Spouse) : -
spouse(Nane, X),
X \'= Spouse,
assert (nessage($Person is already someone el se's spouse$)),
I, fail.
spouse_check(Nane, Spouse) : -
bl ood_rel ati ve(Nane, Spouse),
assert (nessage($Person is a blood relative of spouse$)),
I, fail.
spouse_check(_,).

bl ood relative(X Y) :- (ancestor(X Y); ancestor(Y,X)).
bl ood_relative(X Y) :- sibling(XY).

bl ood_relative(X Y) :- cousin(XY).

bl ood_relative(X Y) :- (uncle(X Y); uncle(Y,X)).

bl ood relative(X Y) :- (aunt(X Y); aunt(Y,X)).

Custord

% CUSTORD

% Copyright (c) 1990-1995 Anzi! inc.
%Al rights reserved

% This is a sanple Prolog program which inplenents a portion

% of a custoner order inventory application. It is not intended to

% be conplete, and only illustrates the concept of witing a database
% application in Prol og.

% Thi s exanpl e extends the concept of an intelligent database to include
% a full database application. It is really a rule based approach to

% transaction processing. In fact a |arge percentage of the procedural
% code normally witten in database applications has to do with

% enforcing semantic integrity rules involving nultiple records.

http://www.amzi.com/Adventurel nProl og/appendix.htm (18 of 27)11/3/2006 7:06:15 PM

Appendix

% The distinction between data and process is thoroughly blurred. Both
% reside together in the sane | ogi cbase.

% There is pure data as it mght be defined in a relational database

% (custoner, item inventory, order); there are rules which really

% represent data views (itemqquant); there are rules which add
%intelligence to the |ogicbase (good custoner, valid order); and there
% are rules which are processes (order, report _inventory).

main :- order.
% cust oner (Nane, Town, Credit-rating).

cust oner (denni s, w nchester, XxX).
cust oner (dave, | exington, aaa).
custoner(ron, |exington, bbb).
custoner(julie, w nchester, aaa).
custoner (j awai d, canbri dge, aaa).
custoner(tom newton, ccc).

% itemNunber, Name, Reorder-quantity).

I tem pl, thing, 10).

I tem p2, stuff, 10).
Item(p3,article,10).

i tem(p4, obj ect, 10).

I t em(p5, subst ance, 10).
I tem(p6, pi ece, 10).
Item(p7, matter, 10).

% i nventory(Nunber, Quantity).

I nventory(pl, 10).
i nventory(p2, 10).
I nvent ory(p3, 10).
I nvent ory(p4, 78).
I nvent ory(p5, 23).
i nventory(p6, 14).
I nvent ory(p7, 8).

%iteminv view or join
Itemquant (Item Quantity): -

itemPartno, Item),
I nventory(Partno, Quantity).

http://www.amzi.com/Adventurel nProl og/appendix.htm (19 of 27)11/3/2006 7:06:15 PM

Appendix

% reorder if inventory bel ow reorder point

reorder(ltem: -
itemPartno, Item Reorder_point),
I nventory(Partno, Quantity),
Quantity < Reorder_point,
wite('Time to reorder '),
wite(ltem, nl.

reorder(lten): -
wite('lnventory level ok for '),
wite(ltem, nl.

% a good custoner has a credit rating of aaa

%or lives in w nchester
% or has ordered sonet hi ng

good_custoner (Cust): -

custoner (Cust, _, aaa).
good_custoner (Cust): -

cust oner (Cust, w nchester,).
good_custoner (Cust): -

order(Cust, _,).

% process order

order: -
wite(' Custoner: '),
read(Cust oner),
wite('ltem '),
read(ltem,
wite(' Quantity: '),
read(Quantity),
val i d_order (Custoner,ltem Quantity),
asserta(order(Custoner,ltem Quantity)),
update_inventory(ltem Quantity),
reorder(ltem.

% an order is valid if
% it doesn't go below zero inventory and
% the custoner is a good custoner

valid_order(C, 1, Q:-
itemPartno, |,),
I nvent ory(Partno, Onhand),
Q =< Onhand,
good _cust oner (C).

valid_ order(C, I, Q:-

http://www.amzi.com/Adventurel nProl og/appendix.htm (20 of 27)11/3/2006 7:06:15 PM

Appendix

wite(' Bad order'),
nl,
fail.

% update the inventory

updat e_i nventory(l,Q: -
item(Pn, I,),
i nvent ory(Pn, Anount),
NewQ i s Amount - Q
retract (i nventory(Pn, Anount)),
asserta(inventory(Pn, NewQ).

% i nventory report

report _inventory: -
itemquant (1, Q,
wite(l), tab(1),
wite(Q, nl,
fail.

report _inventory:-true.

Birds

% BI RDS

% Copyright (c) 1990-1995 Anzi! inc.
%Al rights reserved

% This is a sanple of a classification expert systemfor identification
% of certain kinds of birds. The rules are rough excerpts from"Birds of
% North America" by Robbins, Bruum Zim and Singer.

% This type of expert systemcan easily use Prolog's built in inferencing
% system Wile trying to satisfy the goal "bird" it tries to satisfy

% vari ous subgoals, sone of which will ask for information fromthe

% user .

% The information is all stored as attribute-value pairs. The attribute
%is represented as a predicate, and the value as the argunent to the
% predi cate. For exanple, the attribute-value pair "col or-brown" is

% stored "col or(brown)".

% "identify" is the high level goal that starts the program The

% predi cate "known/ 3" is used to renenber answers to questions, so it
%is cleared at the begi nning of the run.

http://www.amzi.com/Adventurel nProl og/appendix.htm (21 of 27)11/3/2006 7:06:15 PM

Appendix

% The rules of identification are the bulk of the code. They break up
% the probleminto identifying orders and fam|ies before identifying
% t he actual birds.

% The end of the code lists those attri bute-val ue pairs which need
%to be asked for, and defines the predicate "ask" and "nenuask"
% whi ch are used to get information fromthe user, and renenber it.

main - identify.

identify: -
retractall (known(_, ,)), % cl ear stored information
bi rd(X)
wite('The birdis a '), wite(X),nl.

identify: -

wite('l can''t identify that bird), nl

order (tubenose): -
nostril s(external _tubular),
live(at _sea),
bi I I (hooked) .
order(waterfow): -
f eet (webbed),
bill(flat).
order(fal coniforns): -
eat s(neat),
feet(curved tal ons),
bill (sharp_hooked).
or der (passerfornes): -
feet (one_| ong_backward_toe).

fam | y(al batross): -
order (t ubenose),
si ze(l arge),
wi ngs(| ong_narrow) .
fam |l y(swan): -
order (waterfow),
neck(| ong),
color(white),
flight(ponderous).
fam | y(goose): -
order (waterfow),
si ze(pl unp),
flight(powerful).
fam | y(duck): -
order (waterfow),
feed(on_wat er _surface),

http://www.amzi.com/Adventurel nProl og/appendix.htm (22 of 27)11/3/2006 7:06:15 PM

Appendix

flight(agile).
famly(vulture): -

order (fal coniforns),

f eed(scavange),

wi ngs(br oad) .
famly(fal con): -

order (fal coniforns),

wi ngs(| ong_poi nted),

head(| arge),

tail (narrow_ at _tip).
fam ly(flycatcher): -

or der (passerfornes),

bill(flat),

eat s(flying_insects).
fam ly(swal | ow): -

or der (passerfornes),

wi ngs(| ong_poi nted),

tail (forked),

bill (short).

bird(l aysan_al batross): -
fam | y(al batross),
color(white).

bi rd(bl ack_f oot ed_al batross): -
fam | y(al batross),
col or (dark).

bird(ful mar): -
order (t ubenose),
si ze(medi unm,
flight(flap_glide).

bi rd(whi stling_swan): -
fam | y(swan),
voi ce(rmuffl ed_nusical _whistle).

bi rd(trunpeter_swan): -
fam | y(swan),
voi ce(l oud_trunpeting).

bi r d(canada_goose): -
fam | y(goose),

season(w nter), % rul es can be further broken down
country(united_states), % to include regions and m gration
head(bl ack), % patterns

cheek(white).

bi r d(canada_goose): -
fam | y(goose),
season(summer),
count ry(canada),
head(bl ack),

http://www.amzi.com/Adventurel nProl og/appendix.htm (23 of 27)11/3/2006 7:06:15 PM

Appendix

cheek(white).
bi rd(snow_goose) : -
fam | y(goose),
color(white).
bird(mal I ard): -

fam | y(duck), %different rules for male
voi ce(quack),
head(green).
bird(mal I ard): -
fam | y(duck), % and femal e

voi ce(quack),
color(nottl ed _brown).
bird(pintail):-
fam | y(duck),
voi ce(short _whistle).
bird(turkey vulture): -
famly(vulture),
flight_profile(v_shaped).
bi rd(california_condor): -
famly(vulture),
flight _profile(flat).
rd(sparrow_hawk): -
fam |l y(fal con),
eat s(i nsects).
rd(peregrine_falcon): -
fam |l y(fal con),
eat s(birds).
rd(great _crested flycatcher):-
famly(flycatcher),
tail (long_rusty).
rd(ash_throated flycatcher): -
famly(flycatcher),
throat (white).
rd(barn_swal | ow) : -
fam | y(swal | ow),
tail (forked).
rd(cliff_swallow): -
fam |l y(swal | ow),
tail (square).
rd(purple_martin):-
fam |l y(swall ow),
col or (dark).

bi

bi

bi

bi

bi

bi

bi

country(uni ted_states):
country(uni ted_states):
country(united_states):
country(uni ted states):

regi on(new_engl and) .
regi on(sout h_east).
region(md_west).

regi on(sout h_west).

http://www.amzi.com/Adventurel nProl og/appendix.htm (24 of 27)11/3/2006 7:06:15 PM

Appendix

country(uni ted states):
country(uni ted states):

regi on(north _west).
region(md_atlantic).

country(canada):- province(ontario).
country(canada): - province(quebec).
country(canada):- province(etc).

regi on(new_engl and) : -

state(X),

menber (X, [massachusetts, vernont, etc]).
regi on(south _east): -

state(X),

menber (X, [florida, mssissippi, etc]).

regi on(canada) : -
provi nce(X),
menber (X, [ontari o, quebec,etc]).

nostrils(X):- ask(nostrils, X).
live(X):- ask(live, X).

bill(X):- ask(bill,X).
si ze(X): - nmenuask(size, X, [l arge, pl unp, nedi um snal l]).
eats(X):- ask(eats, X).
feet(X):- ask(feet, X).

w ngs(X):- ask(w ngs, X).

neck(X): - ask(neck, X).

col or(X):- ask(color, X).

flight(X):- nmenuask(flight, X [ponderous, powerful ,agile,flap_glide,other]).
feed(X):- ask(feed, X).

head(X): - ask(head, X).

tail (X):- nmenuask(tail, X [narrow at tip,forked,|ong rusty, square,other]).
voi ce(X):- ask(voice, X).

season(X): - nenuask(season, X,[w nter, sumer]).

cheek(X):- ask(cheek, X).

flight_profile(X):- menuask(flight _profile, X,[flat,v_shaped, other]).
throat (X):- ask(throat, X).

state(X):- nmenuask(state, X, [massachusetts, vernont, fl orida, m ssissippi,etc]).
provi nce(X):- menuask(province, X, [ontari o, quebec, etc]).

% "ask" is responsible for getting information fromthe user, and renenbering
% the users response. If it doesn't already know the answer to a question
%it will ask the user. It then asserts the answer. It recogni zes two

% cases of know edge: 1) the attribute-value is known to be true,

% 2) the attribute-value is known to be false.

% This neans an attribute m ght have nultiple values. Athird test to
% see if the attri bute has another value could be used to enforce

http://www.amzi.com/Adventurel nProl og/appendix.htm (25 of 27)11/3/2006 7:06:15 PM

Appendix

% single valued attributes. (This test is commented out bel ow)

% For this systemthe nenuask is used for attributes which are single
% val ued

% "ask"™ only deals with sinple yes or no answers. a "yes" is the only

% yes val ue. any other response is considered a "no".

ask(Attribute, Val ue): -
known(yes, Attri bute, Val ue), % succeed if we know its true
I, % and dont | ook any further
ask(Attribute, Val ue) : -
known(_, Attri bute, Val ue), %fail if we knowits fal se
I, fail.

ask(Attribute,):-

known(yes, Attribute,), %fail if we knowits sone other val ue.

I, fail. % the cut in clause #1 ensures that if
% we get here the value is wong.

ask(A V). -

wite(AV), %if we get here, we need to ask.

wite('? (yes or no): "),

read(y), % get the answer

asserta(known(Y, A V)), % remenber it so we dont ask agai n.

Y = yes. % succeed or fail based on answer.

% "menuask” is like ask, only it gives the user a nenu to to choose
%fromrather than a yes on no answer. In this case there is no

% need to check for a negative since "nenuask"” ensures there wll

% be sone positive answer.

menuask(Attri bute, Value,): -

known(yes, Attri bute, Val ue), % succeed i f we know
I,
menuask(Attribute, ,):-
known(yes, Attribute,), %fail if its some other val ue
I, fail.

menuask(Attri but e, AskVal ue, Menu) : -
nl,wite('Wat is the value for "), wite(Attribute),wite('?"),nl,
di spl ay_nmenu(Menu) ,
wite(' Enter the nunber of choice> '),
read(Num, nl,
pi ck_nmenu(Num Answer Val ue, Menu) ,
asserta(known(yes, Attri bute, Answer Val ue)),
AskVal ue = Answer Val ue. % succeed or fail based on answer

http://www.amzi.com/Adventurel nProl og/appendix.htm (26 of 27)11/3/2006 7:06:15 PM

Appendix

di spl ay_rnmenu(Menu) : -
di sp_nmenu(1, Menu), !.

di sp_nmenu(_,[]).

di sp_nmenu(N,[Item |
wite(N),wite('
NNis N+ 1,

di sp_nmenu(NN, Rest).

Rest]): -
Y,wite(ltem,

pi ck_menu(N, Val , Menu) : -
i nteger(N),
pi c_nmenu(l, N, val , Menu), !.
pi ck_nmenu(Val , Val,).

pi c_nmenu(_, ,none_of the_above,[]).
pic_nmenu(N,N, Item [ltem]).

pic_nmenu(Cr,N, Val, [_|Rest]):-
NextCtr is CGr + 1,
pi c_nmenu(NextCtr, N, Val, Rest).

% make sure we fail on backtracking

%recursively wite the head of
nl, %the list and disp_nenu the tail

% make sure they gave a nunber
% start at one

%if they didn't enter a nunber,
% what they entered as the val ue

use

%if we've exhausted the |1 st
% t he counter matches the nunber

%try the next one

Copyright ©1990,1996-97, 2004 Amz! inc. All Rights Reserved

http://www.amzi.com/Adventurel nProl og/appendix.htm (27 of 27)11/3/2006 7:06:15 PM

http://www.amzi.com/Adventurel nProl og/advidx.htm

Adventurein Prolog

Contents

=
Uni fication
Li sts

=/ 2, affect on backtracking

A

add_t hi ng/ 3
add_t hi ng2/ 3

Anonynous vari abl es
Unification

Data Structures

Rul es: Using Rul es
append/ 3
append/ 3, exanple trace of
Ar gunent s
Arithmetic, affect on backtracking
Arithnetic, expressions
Arithnetic, operators
Ar i t
assert/1, and backtracking
assertal/l
assertz/1
Associativity
Associ ativity, overriding

http://www.amzi.com/Adventurel nProlog/advidx.htm (1 of 9)11/3/2006 7:06:23 PM

http://www.amzi.com/AdventureInProlog/advtoc.htm

At ons
At ons, synt ax of

Backt r acki ng

http://www.amzi.com/Adventurel nProl og/advidx.htm

Control Structures

Conpound Queri es

Backtracki ng, and repeat/0

Backt racki ng, cut

Backtracki ng, ve

rsus recursion

Boundary condi tion

Boundary, condit

I on

break out/1

Built-in predicates

Built-in predicates, as operators

Built-in predicates, exanple trace of

C

can_go/1
can_take _s/1
Char acter set

Cl auses
Rul es

Getting Started: Jargon

Cl auses, nunber
command_| oop/ 0
Conpound queri es

Conpound query,

exanpl e trace of

Conj uncti on
connect/ 2
consult/1

Cut
Cut

http://www.amzi.com/Adventurel nProlog/advidx.htm (2 of 9)11/3/2006 7:06:23 PM

http://www.amzi.com/Adventurel nProl og/advidx.htm

Cut: Using the Cut
Cut, and fail/0

Cut, exanpl es of

Cut, performance considerations

DCG (Definite C ause G anmar)
Difference lists
Difference lists, exanple trace of
di spl ay/ 1
Li sts
OQperators
do/ 1
door/ 2
Conpound Queri es
Facts: Nani Search
dot/ 2

edi bl e/ 1
Conpound Queri es
Facts: Nani Search

Fact s
Fact s

Getting Started: Jargon
Facts: Nani Search
fail/0
fail/0, affect on backtracking
fail/0, and cut

http://www.amzi.com/Adventurel nProl og/advidx.htm (3 of 9)11/3/2006 7:06:23 PM

http://www.amzi.com/Adventurel nProl og/advidx.htm

findall/3
Funct or s
Functors, as operators

G

Goal s
Goal s, conbi ni ng
Goal s, ports of
CGoal s, variables in
goto/ 1

Managi ng Dat a

Cut: Using the Cut
G anmar

| / O predicates
| /O predicates, affect on backtracking

| nt eger s
I s/ 2
Qperators
Arithnetic
I s_contained in/2
Recur si on
Recur si on: How Recursion Wrks
s _in/2

|ist things/1

list things_s/1
Lists

Lists, and recursion

http://www.amzi.com/Adventurel nProl og/advidx.htm (4 of 9)11/3/2006 7:06:23 PM

http://www.amzi.com/Adventurel nProl og/advidx.htm

Li sts, character

Lists, converting to facts
Lists, difference

Lists, dot notation

Lists, enpty

Li sts, head

Li sts, syntax

Lists, tail

loc list/2

| ocation/2
Conmpound Queries: Built-in Predicates

Sinple Queries
Conmpound Queri es
Recur si on
Sinple Queries: How Queries Wrk
Facts: Nani Search
Lists: Using the List Utilities
| ocation_s/2
Logi cal vari abl es
| ook/ 0
Loops
Loops, endl ess
Loops, recursive

\Y

menber/ 2
nmenber/ 2, exanple trace of
nortal /1
Getting Started: Junping In
Getting Started: Logic Progranm ng
nortal report

http://www.amzi.com/Adventurel nProlog/advidx.htm (5 of 9)11/3/2006 7:06:23 PM

http://www.amzi.com/Adventurel nProl og/advidx.htm

nai ve_reverse/?2

Nani Search gane

Nani Search gane, exanple run of
Nani Search gane, generally

Nat ural | anguage
Neck synbol

nl /0

not/0, instead of

not/1
Data Structures

Cut: Using the Cut

O
obj ect/ 4
o] JAK]
Operators

Qperators

Arithmetic
Qperators, associativity
Qperators, infix
Operat ors, nonassoci ati ve
Qperators, postfix
Operators, precedence
Qperators, prefix

P
person/ 1

Getting Started: Junping In

Getting Started: Logic Progranm ng
Ports
Ports, redo
Pr ecedence
Pr ecedence,

overridi ng

http://www.amzi.com/Adventurel nProl og/advidx.htm (6 of 9)11/3/2006 7:06:23 PM

http://www.amzi.com/Adventurel nProl og/advidx.htm

Pr ecedence,

Pr edi cat es
Getting Started

Getting Started: Jargon
Predi cates, arity
Predi cates, arity of O
Predi cates, built-in
Predi cates, nane of
Pr ol og
Prol og data vs. procedure

Prol og |i stener
Fact s

Getting Started: Junping In
Prol og, flow of control
Control Structures

Rul es: Using Rul es
Prol og, origins of

problens with

Q

Queri es
Queries, conpound
Queries, sinple exanpl es of

Recur si on
Recur si on, exanple, trace of

Recur si on, performance consi derations
Recursion: Pragnatics

Control Structures: Recursive Control Loop
Recur si on, versus backtracking
Recur si ve case
repeat/0
retract/1
room 1

http://www.amzi.com/Adventurel nProlog/advidx.htm (7 of 9)11/3/2006 7:06:23 PM

http://www.amzi.com/Adventurel nProl og/advidx.htm

Si npl e Queries
Facts: Nani Search

Rul es
Rul es

Getting Started: Jargon
Rul es, exanple, trace of
Rules, nmultiple
Rules, unification

sl eeps/ 1

Sour ce code | oadi ng
Structures

St ructures, conpl ex
Structures, unification

tab/ 1
t ake/ 1
t ake _object/1
t astes_yucky/1
Terns

unbound vari abl es

Uni fication
Uni fication

Si npl e Queries
Sinple Queries: How Queries Wrk
Unification, during recursion

http://www.amzi.com/Adventurel nProl og/advidx.htm (8 of 9)11/3/2006 7:06:23 PM

http://www.amzi.com/Adventurel nProl og/advidx.htm

Unification, explicit
Unification, inplicit
Unification, lists
Unification, operators
Unification, rules

Uni fication, structures
Uni fication

Dat a Structures

\Var i abl es

Vari abl es, anonynobus
Var i abl es, bi ndi ng

Var i abl es, gl obal

\Vari abl es, global, elimnating
Vari ables, in goals

Var i abl es, scope

Managi ng Dat a

Recur si on: How Recursion Wrks
Vari abl es, synt ax of

Var i abl es, unbound

W

wher e food/ 2
Rul es

Rul es: How Rul es Wbrk
wite/ll

http://www.amzi.com/Adventurel nProl og/advidx.htm (9 of 9)11/3/2006 7:06:23 PM

	amzi.com
	http://www.amzi.com/AdventureInProlog/advfrtop.htm
	Contents
	Preface
	Getting Started
	Getting Started
	Facts
	Simple Queries
	Compound Queries
	Rules
	Arithmetic
	Managing Data
	Recursion
	Data Structures
	Unification
	Lists
	Operators
	Cut
	Control Structures
	Natural Language
	Appendix
	http://www.amzi.com/AdventureInProlog/advidx.htm

