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Preface

Preface

I was working for an aerospace company in the 1970s when someone got a copy of the original 
Adventure game (a simulated world the player explores, at that time purely text-based, with natural 
language) and installed it on our mainframe computer. For the next month my lunch hours, evenings and 
weekends, as well as normal work hours, were consumed with fighting the fierce green dragon and 
escaping from the twisty little passages. Finally, with a few hints about the plover's egg and dynamite, I 
had proudly earned all the points in the game. 

My elation turned to terror as I realized it was time for my performance review. My boss was a stern 
man, who was more comfortable with machines than with people. He opened up a large computer 
printout containing a log of the hours each of his programmers spent on the mainframe computer. He 
said he noticed that recently I had been working evenings and weekends and that he admired that type of 
dedication in his employees. He gave me the maximum raise and told me to keep up the good work. 

Ever since I've had a warm spot in my heart for adventure games. Years later, when I got my first home 
computer, I immediately started to write my own adventure game in 'C'. First came the tools, a simple 
dynamic database to keep track of the game state and pattern matching functions to search that database. 
Then came a natural language parser for the front end. Functions implemented the various rules of the 
game. 

At around the same time I joined the Boston Computer Society and attended a lecture of the newly 
formed Artificial Intelligence group. The lecture was about Prolog. I was amazed--here was a language 
that included all of the tools needed for building adventure games and more. 

It had a much richer dynamic database and more powerful pattern matcher than the one I had written, 
plus its syntax was rules, which are much more natural for coding the specification of the game. It had a 
built-in search engine and, to top it all off, had tools for natural language processing. 

I learned Prolog from the classic Clocksin and Mellish text and started writing adventure games anew. 

I went on to use Prolog for a number of expert system applications at my then current job, including a 
mainframe database performance tuning system and installation expert. This got others interested in the 
language and I began teaching it as well. 

While the applications we were using Prolog for were serious and performed a key role in improving 
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technical support for the growing company, I still found the adventure game to be an excellent showcase 
for teaching the language. 

This book is the result of that work. It takes a pragmatic, rather than theoretical, approach to the 
language and is designed for programmers interested in adding this powerful language to their bag of 
tools. 

I offer my thanks to Will Crowther and Don Woods for writing the first (and in my opinion still the best) 
adventure game and to the Boston Computer Society for testing the ideas in the book. Thanks also to 
Ray Reeves, who speaks fluent Prolog, and Nancy Wilson, who speaks fluent English, for their careful 
reading of the text. 

Dennis Merritt 
Stow, Massachusetts, April 1996 
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Getting Started

Where to Find a Prolog

Amzi! offers both free and commercial Prolog development tools. This tutorial text refers to the Amzi!® 
Eclipse IDE. Amzi! runs under all forms of Windows, and many forms of Unix including Linux and 
Solaris. You can download a copy from our web site:

www.amzi.com

You can find other freely available Prolog tools for Windows and other plat-forms in the Prolog FAQ 
and on various Prolog and AI repositories. Our web site contains up-to-date pointers to these sites. 

You will also find numerous articles on our web site about:

●     Learning and using Prolog, 
●     Building expert systems, agents and intelligent components in Prolog, 
●     Embedding Prolog modules in C/C++, Java, Delphi, Visual Basic and other applications,
●     Using intelligent components on the Internet, and
●     Many other topics

Our web site also contains pointers to:

●     Books,
●     Prolog source code repositories,
●     Papers and FAQs,
●     Other Prolog, AI and expert systems sites, and
●     Newsgroups.

We invite you to visit!

Copyright ©1990,1996-97, 2004 Amzi! inc. All Rights Reserved
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Getting Started

1 

Getting Started

Prolog stands for PROgramming in LOGic. It was developed from a foundation of logical theorem proving and originally used 
for research in natural language processing. Although its popularity has sprung up mainly in the artificial intelligence (AI) 
community, where it has been used for applications such as expert systems, natural language, and intelligent databases, it is also 
useful for more conventional types of applications. It allows for more rapid development and prototyping than most languages 
because it is semantically close to the logical specification of a program. As such, it approaches the ideal of executable program 
specifications. 

Programming in Prolog is significantly different from conventional procedural programming and requires a readjustment in the 
way one thinks about programming. Logical relationships are asserted, and Prolog is used to determine whether or not certain 
statements are true, and if true, what variable bindings make them true. This leads to a very declarative style of programming.

In fact, the term program does not accurately describe a Prolog collection of executable facts, rules and logical relationships, so 
you will often see term logicbase used in this book as well.

While Prolog is a fascinating language from a purely theoretical viewpoint, this book will stress Prolog as a practical tool for 
application development. 

Much of the book will be built around the writing of a short adventure game. The adventure game is a good example since it 
contains mundane programming constructs, symbolic reasoning, natural language, data, and logic. 

Through exercises you will also build a simple expert system, an intelligent genealogical logicbase, and a mundane customer 
order entry application. 

You should create a source file for the game, and enter the examples from the book as you go. You should also create source files 
for the other three programs covered in the exercises. Sample source code for each of the programs is included in the appendix. 

The adventure game is called Nani Search. Your persona as the adventurer is that of a three year old girl. The lost treasure with 
magical powers is your nani (security blanket). The terrifying obstacle between you and success is a dark room. It is getting late 
and you're tired, but you can't go to sleep without your nani. Your mission is to find the nani. 

Nani Search is composed of 

●     A read and execute command loop 
●     A natural language input parser 
●     Dynamic facts/data describing the current environment 
●     Commands that manipulate the environment 
●     Puzzles that must be solved 

You control the game by using simple English commands (at the angle bracket (>) prompt) expressing the action you wish to 
take. You can go to other rooms, look at your surroundings, look in things, take things, drop things, eat things, inventory the 
things you have, and turn things on and off. 
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Figure 1.1 shows a run of a completed version of Nani Search. As you develop your own version you can of course change the 
game to reflect your own ideas of adventure. 

The game will be implemented from the bottom up, because that fits better with the order in which the topics will be introduced. 
Prolog is equally adept at supporting top-down or inside-out program development. 

A Prolog logicbase exists in the listener's workspace as a collection of small modular units, called predicates. They are similar to 
subroutines in conventional languages, but on a smaller scale. 

The predicates can be added and tested separately in a Prolog program, which makes it possible to incrementally develop the 
applications described in the book. Each chapter will call for the addition of more and more predicates to the game. Similarly, the 
exercises will ask you to add predicates to each of the other applications. 

We will start with the Nani Search logicbase and quickly move into the commands that examine that logicbase. Then we will 
implement the commands that manipulate the logicbase. 

Along the way there will be diversions where the same commands are rewritten using a different approach for comparison. 
Occasionally a topic will be covered that is critical to Prolog but has little application in Nani Search. 

One of the final tasks will be putting together the top-level command processor. We will finish with the natural language 
interface. 

You are in the kitchen.
You can see: apple, table, broccoli
You can go to: cellar, office, dining room

> go to the cellar

You can't go to the cellar because it's dark in the cellar, and you're afraid of the 
dark.

> turn on the light

You can't reach the switch and there's nothing to stand on.

> go to the office

You are in the office.
You can see the following things: desk
You can go to the following rooms: hall, kitchen

> open desk

The desk contains:
  flashlight
  crackers

> take the flashlight

You now have the flashlight
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Getting Started

> kitchen

You are in the kitchen

> turn on the light

flashlight turned on.
...

Figure 1.1. A sample run of Nani Search 

The goal of this book is to make you feel comfortable with 

●     The Prolog logicbase of facts and rules 
●     The built-in theorem prover that allows Prolog to answer questions about the logicbase (backtracking search) 
●     How logical variables are used (They are different from the variables in most languages.) 
●     Unification, the built in pattern matcher 
●     Extra-logical features (like read and write that make the language practical) 
●     How to control Prolog's execution behavior 

Jumping In 

As with any language, the best way to learn Prolog is to use it. This book is designed to be used with a Prolog listener, and will 
guide you through the building of four applications. 

●     Adventure game 
●     Intelligent genealogical logicbase 
●     Expert system 
●     Customer order entry business application 

The adventure game will be covered in detail in the main body of the text, and the others you will build yourself based on the 
exercises at the end of each chapter. 

There will be two types of example code throughout the book. One is code, meant to be entered in a source file, and the other is 
interactions with the listener. The listener interactions are distinguished by the presence of the question mark and dash (?-) 
listener prompt. 

Here is a two-line program, meant to help you learn the mechanics of the editor and your listener. 

mortal(X) :- person(X).
person(socrates).

In the Amzi! Eclipse IDE, first create a project for your source files. Select File | New | Project on the main menu, then click on 
'Prolog' and 'Project', and enter the name of your project, 'adventure'. Next, create a new source file. Select File | New | File, and 
enter the name of your file, 'mortal.pro'. Enter the pro-gram in the edit window, paying careful attention to upper and lowercase 
letters and punctuation. Then select File | Save from the menu.

Next, start the Prolog listener by selecting Run | Run As | Interpreted Project. Loading the source code in the Listener is called 
consulting. You should see a message indicating that your source file, 'mortal.pro', was consulted. This message is followed by 
the typical listener prompt.
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?-

Entering the source code in the Listener is called consulting. Select Listener/Consult from the main menu, and select 'mortal.pro' 
from the file menu. You can also consult a Prolog source file directly from the listener prompt like this. 

?- consult(mortal).
yes

See the documentation and/or online help for details on the Amzi! listener and Eclipse IDE. 

In all the listener examples in this book, you enter the text after the prompt (?­), the rest is provided by Prolog. When working 
with Prolog, it is important to remember to include the final period and to press the 'return' key. If you forget the period (and you 
probably will), you can enter it on the next line with a 'return.' 

Once you've loaded the program, try the following Prolog queries. 

?- mortal(socrates).
yes
?- mortal(X).
X = socrates.

Now let's change the program. First type 'quit.' to end the listener. Go back to the edit window and add the line

person(plato).

after the person(socrates) line. 

Select Run | Run As | Interpreted Project to start the listener again with your updated source file. And test it.

?- mortal(plato).
yes

One more test. Enter this query in the listener. 

?- write('Hello World').
Hello World
yes

You are now ready to learn Prolog. 

Logic Programming 

Let's look at the simple example in more detail. In classical logic we might say "All people are mortal," or, rephrased for Prolog, 
"For all X, X is mortal if X is a person." 

mortal(X) :- person(X).

Similarly, we can assert the simple fact that Socrates is a person. 

person(socrates).
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From these two logical assertions, Prolog can now prove whether or not Socrates is mortal. 

?- mortal(socrates).

The listener responds 

yes

We could also ask "Who is mortal?" like this 

?- mortal(X).

and receive the response 

X = socrates

This declarative style of programming is one of Prolog's major strengths. It leads to code that is easier to write and easier to 
maintain. For the most part, the programmer is freed from having to worry about control structures and transfer of control 
mechanisms. This is done automatically by Prolog. 

By itself, however, a logical theorem prover is not a practical programming tool. A programmer needs to do things that have 
nothing to do with logic, such as read and write terms. A programmer also needs to manipulate the built-in control structure of 
Prolog in order for the program to execute as desired. 

The following example illustrates a Prolog program that prints a report of all the known mortals. It is a mixture of pure logic 
from before, extra-logical I/O, and forced control of the Prolog execution behavior. The example is illustrative only, and the 
concepts involved will be explained in later chapters. 

First add some more philosophers to the 'mortal' source in order to make the report more interesting. Place them after 'person
(plato).' 

person(zeno).
person(aristotle).

Next add the report-writing code, again being careful with punctuation and upper- and lowercase. Note that the format of this 
program is the same as that used for the logical assertions. 

mortal_report:-  
  write('Known mortals are:'),nl,
  mortal(X),
  write(X),nl,
  fail.

Figure 1.2 contains the full program, with some optional comments, indicated by the percent sign (%) at the beginning of a line. 
Load the program in the listener and try it. Note that the syntax of calling the report code is the same as the syntax used for 
posing the purely logical queries. 

?- mortal_report.
Known mortals are:
socrates
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plato
aristotle
no

The final 'no' is from Prolog, and will be explained later. 

% This is the syntax for comments.
% MORTAL - The first illustrative Prolog program

mortal(X) :- person(X).

person(socrates).
person(plato).
person(aristotle).

mortal_report:-
  write('Known mortals are:'),nl,
  mortal(X),
  write(X),nl,
  fail.

Figure 1.2. Sample program 

You should now be able to create and edit source files for Prolog, and be able to load and use them from a Prolog listener. 

You have had your first glimpse of Prolog and should understand that it is fundamentally different from most languages, but can 
be used to accomplish the same goals and more. 

Jargon

With any field of knowledge, the critical concepts of the field are embedded in the definitions of its technical terms. Prolog is no 
exception. When you understand terms such as predicate, clause, backtracking, and unification you will have a good grasp of 
Prolog. This section defines the terms used to describe Prolog programs, such as predicate and clause. Execution-related terms, 
such as backtracking and unification will be introduced as needed throughout the rest of the text. 

Prolog jargon is a mixture of programming terms, database terms, and logic terms. You have probably heard most of the terms 
before, but in Prolog they don't necessarily mean what you think they mean. 

In Prolog the normally clear distinction between data and procedure becomes blurred. This is evident in the vocabulary of 
Prolog. Almost every concept in Prolog can be referred to by synonymous terms. One of the terms has a procedural flavor, and 
the other a data flavor. 

We can illustrate this at the highest level. A Prolog program is a Prolog logicbase. As we introduce the vocabulary of Prolog, 
synonyms (from Prolog or other computer science areas) for a term will follow in parentheses. For example, at the highest level 
we have a Prolog program (logicbase). 

The Prolog program is composed of predicates (procedures, record types, relations). Each is defined by its name and a number 
called arity. The arity is the fixed number of arguments (attributes, fields) the predicate has. Two predicates with the same 
name and different arity are considered to be different predicates. 
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In our sample program we saw three examples of predicates. They are: person/1, mortal_report/0, and mortal/1. Each of these 
three predicates has a distinctly different flavor. 

person/1
looks like multiple data records with one data field for each. 

mortal_report/0
looks like a procedure with no arguments. 

mortal/1 
a logical assertion or rule that is somewhere in between data and procedure. 

Each predicate in a program is defined by the existence of one or more clauses in the logicbase. In the example program, the 
predicate person/1 has four clauses. The other predicates have only one clause. 

A clause can be either a fact or a rule. The three clauses of the person/1 predicate are all facts. The single clauses of 
mortal_report/0 and mortal/1 are both rules. 

Copyright ©1990,1996-97, 2004 Amzi! inc. All Rights Reserved
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2 

Facts

This chapter describes the basic Prolog facts. They are the simplest form of Prolog predicates, and are 
similar to records in a relational database. As we will see in the next chapter they can be queried like 
database records. 

The syntax for a fact is 

pred(arg1, arg2, ...  argN).

where 

pred 
The name of the predicate 

arg1, ...
The arguments 

N 
The arity 

. 
The syntactic end of all Prolog clauses 

A predicate of arity 0 is simply 

pred.

The arguments can be any legal Prolog term. The basic Prolog terms are 

integer 
A positive or negative number whose absolute value is less than some implementation-specific 
power of 2 

atom 
A text constant beginning with a lowercase letter 

variable 
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Begins with an uppercase letter or underscore (_) 
structure 

Complex terms, which will be covered in chapter 9 

Various Prolog implementations enhance this basic list with other data types, such as floating point 
numbers, or strings. 

The Prolog character set is made up of 

●     Uppercase letters, A-Z 
●     Lowercase letters, a-z 
●     Digits, 0-9 
●     Symbols, + - * / \ ^ , . ~ : . ? @ # $ & 

Integers are made from digits. Other numerical types are allowed in some Prolog implementations. 

Atoms are usually made from letters and digits with the first character being a lowercase letter, such as 

hello
twoWordsTogether
x14

For readability, the underscore (_), but not the hyphen (-), can be used as a separator in longer names. So 
the following are legal. 

a_long_atom_name
z_23

The following are not legal atoms. 

no-embedded-hyphens
123nodigitsatbeginning
_nounderscorefirst
Nocapsfirst

Use single quotes to make any character combination a legal atom as follows. 

'this-hyphen-is-ok'
'UpperCase'
'embedded blanks'
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Do not use double quotes ("") to build atoms. This is a special syntax that causes the character string to 
be treated as a list of ASCII character codes. 

Atoms can also be legally made from symbols, as follows. 

-->
++

Variables are similar to atoms, but are distinguished by beginning with either an uppercase letter or the 
underscore (_). 

X
Input_List
_4th_argument
Z56

Using these building blocks, we can start to code facts. The predicate name follows the rules for atoms. 
The arguments can be any Prolog terms. 

Facts are often used to store the data a program is using. For example, a business application might have 
customer/3. 

customer('John Jones', boston, good_credit).
customer('Sally Smith', chicago, good_credit).

The single quotes are needed around the names because they begin with uppercase letters and because 
they have embedded blanks. 

Another example is a windowing system that uses facts to store data about the various windows. In this 
example the arguments give the window name and coordinates of the upper left and lower right corners. 

window(main, 2, 2, 20, 72).
window(errors, 15, 40, 20, 78).

A medical diagnostic expert system might have disease/2. 

disease(plague, infectious).

A Prolog listener provides the means for dynamically recording facts and rules in the logicbase, as well 
as the means to query (call) them. The logicbase is updated by 'consult'ing or 'reconsult'ing program 
source. Predicates can also be typed directly into the listener, but they are not saved between sessions. 
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Nani Search 

We will now begin to develop Nani Search by defining the basic facts that are meaningful for the game. 
These include 

●     The rooms and their connections 
●     The things and their locations 
●     The properties of various things 
●     Where the player is at the beginning of the game 

Figure 2.1. The rooms of Nani Search 

Open a new source file and save it as 'myadven.pro', or whatever name you feel is appropriate. You will 
make your changes to the program in that source file. (A completed version of nanisrch.pro is in the 
Prolog samples directory, samples/prolog/misc_one_file.) 

First we define the rooms with the predicate room/1, which has five clauses, all of which are facts. They 
are based on the game map in figure 2.1. 

room(kitchen).
room(office).
room(hall).
room('dining room').
room(cellar).

We define the locations of things with a two-argument predicate location/2. The first argument will 
mean the thing and the second will mean its location. To begin with, we will add the following things. 

location(desk, office).
location(apple, kitchen).
location(flashlight, desk).

http://www.amzi.com/AdventureInProlog/a2facts.htm (4 of 8)11/3/2006 7:05:05 PM



Facts

location('washing machine', cellar).
location(nani, 'washing machine').
location(broccoli, kitchen).
location(crackers, kitchen).
location(computer, office).

The symbols we have chosen, such as kitchen and desk have meaning to us, but none to Prolog. The 
relationship between the arguments should also accurately reflect our meaning. 

For example, the meaning we attach to location/2 is "The first argument is located in the second 
argument." Fortunately Prolog considers location(sink, kitchen) and location(kitchen, sink) to be 
different. Therefore, as long as we are consistent in our use of arguments, we can accurately represent 
our meaning and avoid the potentially ambiguous interpretation of the kitchen being in the sink. 

We are not as lucky when we try to represent the connections between rooms. Let's start, however, with 
door/2, which will contain facts such as 

door(office, hall).

We would like this to mean "There is a connection from the office to the hall, or from the hall to the 
office." 

Unfortunately, Prolog considers door(office, hall) to be different from door(hall, office). If we want to 
accurately represent a two-way connection, we would have to define door/2 twice for each connection. 

door(office, hall).
door(hall, office).

The strictness about order serves our purpose well for location, but it creates this problem for 
connections between rooms. If the office is connected to the hall, then we would like the reverse to be 
true as well. 

For now, we will just add one-way doors to the program; we will address the symmetry problem again in 
the next chapter and resolve it in chapter 5. 

door(office, hall).
door(kitchen, office).
door(hall, 'dining room').
door(kitchen, cellar).
door('dining room', kitchen).

Here are some other facts about properties of things the game player might try to eat. 
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edible(apple).
edible(crackers).

tastes_yucky(broccoli).

Finally we define the initial status of the flashlight, and the player's location at the beginning of the 
game. 

turned_off(flashlight).
here(kitchen).

We have now seen how to use basic facts to represent data in a Prolog program. 

Exercises 

During the course of completing the exercises you will develop three Prolog applications in addition to 
Nani Search. The exercises from each chapter will build on the work of previous chapters. Suggested 
solutions to the exercises are contained in the Prolog source files listed in the appendix, and are also 
included in samples/prolog/misc_one_file. The files are 

gene
A genealogical intelligent logicbase 

custord
A customer order entry application 

birds 
An expert system that identifies birds 

Not all applications will be covered in each chapter. For example, the expert system requires an 
understanding of rules and will not be started until the end of chapter 5. 

Genealogical Logicbase

1- First create a source file for the genealogical logicbase application. Start by adding a few members of 
your family tree. It is important to be accurate, since we will be exploring family relationships. Your 
own knowledge of who your relatives are will verify the correctness of your Prolog programs. 

Start by recording the gender of the individuals. Use two separate predicates, male/1 and female/1. For 
example

male(dennis).
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male(michael).

female(diana).

Remember, if you want to include uppercase characters or embedded blanks you must enclose the name 
in single (not double) quotes. For example 

male('Ghenghis Khan').

2- Enter a two-argument predicate that records the parent-child relationship. One argument represents 
the parent, and the other the child. It doesn't matter in which order you enter the arguments, as long as 
you are consistent. Often Prolog programmers adopt the convention that parent(A,B) is interpreted "A is 
the parent of B". For example 

parent(dennis, michael).
parent(dennis, diana).

Customer Order Entry

3- Create a source file for the customer order entry program. We will begin it with three record types 
(predicates). The first is customer/3 where the three arguments are 

arg1 
Customer name 

arg2 
City 

arg3 
Credit rating (aaa, bbb, etc) 

Add as many customers as you see fit. 

4- Next add clauses that define the items that are for sale. It should also have three arguments 

arg1 
Item identification number 

arg2 
Item name 

arg3 
The reorder point for inventory (when at or below this level, reorder) 

5- Next add an inventory record for each item. It has two arguments. 
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arg1 
Item identification number (same as in the item record) 

arg2 
Amount in stock 

Copyright ©1990,1996-97, 2004 Amzi! inc. All Rights Reserved
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3 

Simple Queries

Now that we have some facts in our Prolog program, we can consult the program in the listener and 
query, or call, the facts. This chapter, and the next, will assume the Prolog program contains only facts. 
Queries against programs with rules will be covered in a later chapter. 

Prolog queries work by pattern matching. The query pattern is called a goal. If there is a fact that 
matches the goal, then the query succeeds and the listener responds with 'yes.' If there is no matching 
fact, then the query fails and the listener responds with 'no.' 

Prolog's pattern matching is called unification. In the case where the logicbase contains only facts, 
unification succeeds if the following three conditions hold. 

●     The predicate named in the goal and logicbase are the same. 
●     Both predicates have the same arity. 
●     All of the arguments are the same. 

Before proceeding, review figure 3.1, which has a listing of the program so far. 

The first query we will look at asks if the office is a room in the game. To pose this, we would enter that 
goal followed by a period at the listener prompt. 

?- room(office).
yes

Prolog will respond with a 'yes' if a match was found. If we wanted to know if the attic was a room, we 
would enter that goal. 

?- room(attic).
no
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room(kitchen).
room(office).
room(hall).
room('dining room').
room(cellar).

door(office, hall).
door(kitchen, office).
door(hall, 'dining room').
door(kitchen, cellar).
door('dining room', kitchen).

location(desk, office).
location(apple, kitchen).
location(flashlight, desk).
location('washing machine', cellar).
location(nani, 'washing machine').
location(broccoli, kitchen).
location(crackers, kitchen).
location(computer, office).

edible(apple).
edible(crackers).

tastes_yucky(broccoli).

here(kitchen).

Figure 3.1. The listing of Nani Search entered at this point 

Prolog will respond with a 'no' if no match was found. Likewise, we can ask about the locations of 
things. 

?- location(apple, kitchen).
yes

?- location(kitchen, apple).
no

Prolog responds to our location query patterns in a manner that makes sense to us. That is, the kitchen is 
not located in the apple. 
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However, here is the problem with the one-way doors, which we still haven't fixed. It is mentioned again 
to stress the importance of the order of the arguments. 

?- door(office, hall).
yes

?- door(hall, office).
no

Goals can be generalized by the use of Prolog variables. They do not behave like the variables in other 
languages, and are better called logical variables (although Prolog does not precisely correspond to 
logic). The logical variables replace one or more of the arguments in the goal. 

Logical variables add a new dimension to unification. As before, the predicate names and arity must be 
the same for unification to succeed. However, when the corresponding arguments are compared, a 
variable will successfully match any term. 

After successful unification, the logical variable takes on the value of the term it was matched with. This 
is called binding the variable. When a goal with a variable successfully unifies with a fact in the 
logicbase, Prolog returns the value of the newly bound variable. 

Since there may be more than one value a variable can be bound to and still satisfy the goal, Prolog 
provides the means for you to ask for alternate values. After an answer you can enter a semicolon (;). It 
causes Prolog to look for alternative bindings for the variables. Entering anything else at the prompt 
ends the query. 

For example, we can use a logical variable to find all of the rooms. 

?- room(X).
X = kitchen ;
X = office ;
X = hall ;
X = 'dining room' ;
X = cellar ;
no

The last 'no' means there are no more answers. 

Here's how to find all the things in the kitchen. (Remember, variables begin with uppercase letters.) 

?- location(Thing, kitchen).
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Thing = apple ;
Thing = broccoli ;
Thing = crackers ;
no

We can use two variables to see everything in every place. 

?- location(Thing, Place).
Thing = desk
Place = office ;

Thing = apple
Place = kitchen ;

Thing = flashlight
Place = desk ;

...
no

Other applications might have the following queries. 

What customers live in Boston, and what is their credit rating? 

?- customer(X, boston, Y).

What is the title of chapter 2? 

?- chapter(2,Title).

What are the coordinates of window main? 

?- window(main,Row1,Col1,Row2,Col2).

How Queries Work 

When Prolog tries to satisfy a goal about a predicate, such as location/2, it searches through the clauses 
defining location/2. When it finds a match for its variables, it marks the particular clause that was used 
to satisfy the goal. Then, if the user asks for more answers, it resumes its search of the clauses at that 
place marker. 
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Referring to the list of clauses in figure 3.1, let's look closer at this process with the query location(X, 
kitchen). First, unification is attempted between the query pattern and the first clause of location/2. 

Pattern                           Clause #1 

location(X, kitchen)              location(desk, office) 

This unification fails. The predicate names are the same, the number of arguments is the same, but the 
second argument in the pattern, kitchen, is different from the second argument in the clause, office. 

Next, unification is attempted between the pattern and the second clause of location/2. 

Pattern                           Clause #2 

location(X, kitchen)              location(apple, kitchen) 

This unification succeeds. The predicate names, arity (number of arguments), and second arguments are 
the same. The first arguments can be made the same if the variable X in the pattern takes the value 
'apple.' 

Now that unification succeeds, the Prolog listener reports its success, and the binding of the variable X. 

?- location(X, kitchen).
X = apple

If the user presses a key other than the semicolon (;) at this point, the listener responds with 'yes' 
indicating the query ended successfully. 

If the user presses the semicolon (;) key, the listener looks for other solutions. First it unbinds the 
variable X. Next it resumes the search using the clause following the one that had just satisfied the 
query. This is called backtracking. In the example that would be the third clause. 

Pattern                           Clause #3 

location(X, kitchen)              location(flashlight, desk) 

This fails, and the search continues. Eventually the sixth clause succeeds. 

Pattern                           Clause #6 

location(X, kitchen)              location(broccoli, kitchen) 
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As a result, the variable X is now rebound to broccoli, and the listener responds 

X = broccoli ;

Again, entering a semicolon (;) causes X to be unbound and the search to continue with the seventh 
clause, which also succeeds. 

X = crackers ;

As before, entering anything except a semicolon (;) causes the listener to respond 'yes,' indicating 
success. A semicolon (;) causes the unbinding of X and the search to continue. But now, there are no 
more clauses that successfully unify with the pattern, so the listener responds with 'no' indicating the 
final attempt has failed. 

no 

The best way to understand Prolog execution is to trace its execution in the debugger. But first it is 
necessary to have a deeper understanding of goals. 

A Prolog goal has four ports representing the flow of control through the goal: call, exit, redo, and fail. 
First the goal is called. If successful it is exited. If not it fails. If the goal is retried, by entering a 
semicolon (;) the redo port is entered. Figure 3.2 shows the goal and its ports.

Figure 3.2. The ports of a Prolog goal 

The behaviors at each port are 

call 
Begins searching for clauses that unify with the goal 

exit
Indicates the goal is satisfied, sets a place marker at the clause and binds the variables 
appropriately 

redo 
Retries the goal, unbinds the variables and resumes search at the place marker 

fail 
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Indicates no more clauses match the goal 

Prolog debuggers use these ports to describe the state of a query. Figure 3.3 shows a trace of the location
(X, kitchen) query. Study it carefully because it is the key to your understanding of Prolog. The number 
in parentheses indicates the current clause.

?- location(X, kitchen).
CALL: - location(X, kitchen)
EXIT:(2) location(apple, kitchen)
  X = apple ;
REDO: location(X, kitchen)
EXIT:(6) location(broccoli, kitchen)
  X = broccoli ;
REDO: location(X, kitchen)
EXIT:(7) location(crackers, kitchen)
  X = crackers ;
FAIL - location(X, kitchen)
  no

Figure 3.3. Prolog trace of location(X, kitchen) 

Because the trace information presented in this book is designed to teach Prolog rather than debug it, the 
format is a little different from that used in the actual debugger. Run the Amzi! Source Code Debugger 
on these queries to see how they work for real.

To start the Amzi! Debugger, highlight your project name or edit a source file in your project, then 
select Run | Debug As | Interpreted Project from the main menu.

You will see a separate perspective with multiple views that contain trace information. Enter the query 
'location(X, kitchen)' in the Debug Listener view. You will see the trace start in the debugger view. 

Use the 'Step Over' button in the debugger to creep from port to port. When output appears in the listener 
view, enter semicolons (;) to continue the search. See the help files for more details on the debugger.

Unification between goals and facts is actually more general than has been presented. Variables can also 
occur in the facts of the Prolog logicbase as well. 

For example, the following fact could be added to the Prolog program. It might mean everyone sleeps. 

sleeps(X).
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You can add it directly in the listener, to experiment with, like this. 

?- assert(sleeps(X)).
yes

Queries against a logicbase with this fact give the following results. 

?- sleeps(jane).
yes

?- sleeps(tom).
yes

Notice that the listener does not return the variable bindings of 'X=jane' and 'X=tom.' While they are 
surely bound that way, the listener only lists variables mentioned in the query, not those used in the 
program. 

Prolog can also bind variables to variables. 

?- sleeps(Z).
Z = H116

?- sleeps(X).
X = H247

When two unbound variables match, they are both bound, but not to a value! They are bound together, 
so that if either one takes a value, the other takes the same value. This is usually implemented by binding 
both variables to a common internal variable. In the first query above, both Z in the query and X in the 
fact are bound to internal variable 'H116.' In this way Prolog remembers they have the same value. If 
either one is bound to a value later on, both automatically bind to that value. This feature of Prolog 
distinguishes it from other languages and, as we will discover later, gives Prolog much of its power. 

The two queries above are the same, even though one uses the same character X that is used in the fact 
sleeps(X). The variable in the fact is considered different from the one in the query. 

Exercises 

The exercise sections will often contain nonsense Prolog questions. These are queries against a 
meaningless logicbase to strengthen your understanding of Prolog without the benefit of meaningful 
semantics. You are to predict the answers to the query and then try them in Prolog to see if you are 
correct. If you are not, trace the queries to better understand them. 
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Nonsense Prolog

1- Consider the following Prolog logicbase 

easy(1).
easy(2).
easy(3).

gizmo(a,1).
gizmo(b,3).
gizmo(a,2).
gizmo(d,5).
gizmo(c,3).
gizmo(a,3).
gizmo(c,4).

and predict the answers to the queries below, including all alternatives when the semicolon (;) is entered 
after an answer. 

?- easy(2).
?- easy(X).

?- gizmo(a,X).
?- gizmo(X,3).
?- gizmo(d,Y).
?- gizmo(X,X).

2- Consider this logicbase, 

harder(a,1).
harder(c,X).
harder(b,4).
harder(d,2).

and predict the answers to these queries. 

?- harder(a,X).
?- harder(c,X).
?- harder(X,1).
?- harder(X,4).
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Adventure Game

3- Enter the listener and reproduce some of the example queries you have seen against location/2. List or 
print location/2 for reference if you need it. Remember to respond with a semicolon (;) for multiple 
answers. Trace the query. 

Genealogical Logicbase

4- Pose queries against the genealogical logicbase that: 

●     Confirm a parent relationship such as parent(dennis, diana) 
●     Find someone's parent such as parent(X, diana) 
●     Find someone's children such as parent(dennis, X) 
●     List all parent-children such as parent(X,Y) 

5- If parent/2 seems to be working, you can add additional family members to get a larger logicbase. 
Remember to include the corresponding male/1 or female/1 predicate for each individual added. 

Customer Order Entry

6- Pose queries against the customer order entry logicbase that 

●     find customers in a given city 
●     find customers with a given credit rating 
●     confirm a given customer's credit rating 
●     find the customers in a given city with a given credit rating 
●     find the reorder quantity for a given item 
●     find the item number for a given item name 
●     find the inventory level for a given item number 

Copyright ©1990,1996-97, 2004 Amzi! inc. All Rights Reserved

http://www.amzi.com/AdventureInProlog/a3simple.htm (10 of 10)11/3/2006 7:05:10 PM



Compound Queries

4 

Compound Queries

Simple goals can be combined to form compound queries. For example, we might want to know if there is anything good 
to eat in the kitchen. In Prolog we might ask 

?- location(X, kitchen), edible(X).

Whereas a simple query had a single goal, the compound query has a conjunction of goals. The comma separating the 
goals is read as "and." 

Logically (declaratively) the example means "Is there an X such that X is located in the kitchen and X is edible?" If the 
same variable name appears more than once in a query, it must have the same value in all places it appears. The query in 
the above example will only succeed if there is a single value of X that can satisfy both goals. 

However, the variable name has no significance to any other query, or clause in the logicbase. If X appears in other queries 
or clauses, that query or clause gets its own copy of the variable. We say the scope of a logical variable is a query. 

Trying the sample query we get 

?- location(X, kitchen), edible(X).
X = apple ;
X = crackers ;
no

The 'broccoli' does not show up as an answer because we did not include it in the edible/1 predicate. 

This logical query can also be interpreted procedurally, using an understanding of Prolog's execution strategy. The 
procedural interpretation is: "First find an X located in the kitchen, and then test to see if it is edible. If it is not, go back 
and find another X in the kitchen and test it. Repeat until successful, or until there are no more Xs in the kitchen." 

To understand the execution of a compound query, think of the goals as being arranged from left to right. Also think of a 
separate table which is kept for the current variable bindings. The flow of control moves back and forth through the goals 
as Prolog attempts to find variable bindings that satisfy the query. 

Each goal can be entered from either the left or the right, and can be left from either the left or the right. These are the ports 
of the goal as seen in the last chapter. 

A compound query begins by calling the first goal on the left. If it succeeds, the next goal is called with the variable 
bindings as set from the previous goal. If the query finishes via the exit port of the rightmost goal, it succeeds, and the 
listener prints the values in the variable table. 
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If the user types semicolon (;) after an answer, the query is re-entered at the redo port of the rightmost goal. Only the 
variable bindings that were set in that goal are undone. 

If the query finishes via the fail port of the leftmost goal, the query fails. Figure 4.1 shows a compound query with the 
listener interaction on the ending ports.

Figure 4.1. Compound queries 

Figure 4.2 contains the annotated trace of the sample query. Make sure you understand it before proceeding. 

?- location(X, kitchen), edible(X).

The trace has a new feature, which is a number in the first column that indicates the goal being worked on.

First the goal location(X, kitchen) is called, and the trace indicates that pattern matches the second clause of location.

1 CALL location(X, kitchen)

It succeeds, and results in the binding of X to apple.

1 EXIT (2)location(apple, kitchen)

Next, the second goal edible(X) is called. However, X is now bound to apple, so it is called as edible(apple).

2 CALL edible(apple)

It succeeds on the first clause of edible/1, thus exiting the query successfully.

2 EXIT (1) edible(apple)
    X = apple ;

Entering semicolon (;) causes the listener to backtrack into the rightmost goal of the query.

2 REDO edible(apple)

There are no other clauses that match this pattern, so it fails.

2 FAIL edible(apple)

Leaving the fail port of the second goal causes the listener to enter the redo port of the first goal. In so doing, the 
variable binding that was established by that goal is undone, leaving X unbound.

http://www.amzi.com/AdventureInProlog/a4comqry.htm (2 of 9)11/3/2006 7:05:16 PM



Compound Queries

1 REDO location(X, kitchen)

It now succeeds at the sixth clause, rebinding X to broccoli.

1 EXIT (6) location(broccoli, kitchen)

The second goal is called again with the new variable binding. This is a fresh call, just as the first one was, and causes 
the search for a match to begin at the first clause

2 CALL edible(broccoli)

There is no clause for edible(broccoli), so it fails.

2 FAIL edible(broccoli)

The first goal is then re-entered at the redo port, undoing the variable binding.

1 REDO location(X, kitchen)

It succeeds with a new variable binding.

1 EXIT (7) location(crackers, kitchen)

This leads to the second solution to the query.

2 CALL edible(crackers)
2 EXIT (2) edible(crackers)
    X = crackers ;

Typing semicolon (;) initiates backtracking again, which fails through both goals and leads to the ultimate failure of the 
query.

2 REDO edible(crackers)
2 FAIL edible(crackers)
1 REDO location(X, kitchen)
1 FAIL location(X, kitchen)
     no

Figure 4.2. Annotated trace of compound query 

In this example we had a single variable, which was bound (given a value) by the first goal and tested in the second goal. 
We will now look at a more general example with two variables. It is attempting to ask for all the things located in rooms 
adjacent to the kitchen. 

In logical terms, the query says "Find a T and R such that there is a door from the kitchen to R and T is located in R." In 
procedural terms it says "First find an R with a door from the kitchen to R. Use that value of R to look for a T located in 
R." 
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?- door(kitchen, R), location(T,R).
R = office
T = desk ;

R = office
T = computer ;

R = cellar
T = 'washing machine' ;
no

In this query, the backtracking is more complex. Figure 4.3 shows its trace. 

Notice that the variable R is bound by the first goal and T is bound by the second. Likewise, the two variables are unbound 
by entering the redo port of the goal that bound them. After R is first bound to office, that binding sticks during 
backtracking through the second goal. Only when the listener backtracks into the first goal does R get unbound. 

Goal: door(kitchen, R), location(T,R)

1 CALL door(kitchen, R)
1 EXIT (2) door(kitchen, office)
2 CALL location(T, office)
2 EXIT (1) location(desk, office)
    R = office
    T = desk ;
2 REDO location(T, office)
2 EXIT (8) location(computer, office)
    R = office
    T = computer ;
2 REDO location(T, office)
2 FAIL location(T, office)
1 REDO door(kitchen, R)
1 EXIT (4) door(kitchen, cellar)
2 CALL location(T, cellar)
2 EXIT (4) location('washing machine', cellar)
    R = cellar
    T = 'washing machine' ;
2 REDO location(T, cellar)
2 FAIL location(T, cellar)
1 REDO door(kitchen, R)
1 FAIL door(kitchen, R)
     no

Figure 4.3. Trace of a compound query 

Built-in Predicates 
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Up to this point we have been satisfied with the format Prolog uses to give us answers. We will now see how to generate 
output that is customized to our needs. The example will be a query that lists all of the items in the kitchen. This will 
require performing I/O and forcing the listener to automatically backtrack to find all solutions. 

To do this, we need to understand the concept of the built-in (evaluable) predicate. A built-in predicate is predefined by 
Prolog. There are no clauses in the logicbase for built-in predicates. When the listener encounters a goal that matches a 
built-in predicate, it calls a predefined procedure. 

Built-in predicates are usually written in the language used to implement the listener. They can perform functions that have 
nothing to do with logical theorem proving, such as writing to the console. For this reason they are sometimes called extra-
logical predicates. 

However, since they appear as Prolog goals they must be able to respond to either a call from the left or a redo from the 
right. Its response in the redo case is referred to as its behavior on backtracking. 

We will introduce specific built-in predicates as we need them. Here are the I/O predicates that will let us control the 
output of our query. 

write/1 
This predicate always succeeds when called, and has the side effect of writing its argument to the console.It always 
fails on backtracking. Backtracking does not undo the side effect. 

nl/0 
Succeeds, and starts a new line. Like write, it always succeeds when called, and fails on backtracking. 

tab/1 
It expects the argument to be an integer and tabs that number of spaces. It succeeds when called and fails on 
backtracking. 

Figure 4.4 is a stylized picture of a goal showing its internal control structure. We will compare this with the internal flow 
of control of various built-in predicates.

Figure 4.4. Internal flow of control through a normal goal 

In figure 4.4, the upper left diamond represents the decision point after a call. Starting with the first clause of a predicate, 
unification is attempted between the query pattern and each clause, until either unification succeeds or there are no more 
clauses to try. If unification succeeded, branch to exit, marking the clause that successfully unified, if it failed, branch to 
fail. 

The lower right diamond represents the decision point after a redo. Starting with the most recent clause found in the 
predicate, unification is again attempted between the query pattern and remaining clauses. If it succeeds, branch to exit, if 
not, branch to fail. 

The I/O built-in predicates differ from normal goals in that they never change the direction of the flow of control. If they 
get control from the left, they pass control to the right. If they get control from the right, they pass control to the left as 
shown in figure 4.5.
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Figure 4.5. Internal flow of control through an I/O predicate 

The output I/O predicates do not affect the variable table; however, they may output values from it. They simply leave 
their mark at the console each time control passes through them from left to right. 

There are built-in predicates that do affect backtracking, and we have need of one of them for the first example. It is fail/0, 
and, as its name implies, it always fails. 

If fail/0 gets control from the left, it immediately passes control back to the redo port of the goal on the left. It will never 
get control from the right, since it never allows control to pass to its right. Figure 4.6 shows its internal control structure.

Figure 4.6. Internal flow of control through the fail/0 predicate 

Previously we relied on the listener to display variable bindings for us, and used the semicolon (;) response to generate all 
of the possible solutions. We can now use the I/O built-in predicates to display the variable bindings, and the fail/0 
predicate to force backtracking so all solutions are displayed. 

Here then is the query that lists everything in the kitchen. 

?- location(X, kitchen), write(X) ,nl, fail.
apple
broccoli
crackers
no

The final 'no' means the query failed, as it was destined to, due to the fail/0. 

Figure 4.7 shows the control flow through this query. 

Figure 4.7. Flow of control through query with built-in predicates 
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Figure 4.8 shows a trace of the query. 

Goal: location(X, kitchen), write(X), nl, fail.

1 CALL location(X, kitchen)
1 EXIT (2) location(apple, kitchen)
2 CALL write(apple)
    apple
2 EXIT write(apple)
3 CALL nl

3 EXIT nl
4 CALL fail
4 FAIL fail
3 REDO nl
3 FAIL nl
2 REDO write(apple)
2 FAIL write(apple)
1 REDO location(X, kitchen)
1 EXIT (6) location(broccoli, kitchen)
2 CALL write(broccoli)
    broccoli
2 EXIT write(broccoli)
3 CALL nl

3 EXIT nl
4 CALL fail
4 FAIL fail
3 REDO nl
3 FAIL nl
2 REDO write(broccoli)
2 FAIL write(broccoli)
1 REDO location(X, kitchen)
1 EXIT (7) location(crackers, kitchen)
2 CALL write(crackers)
    crackers
2 EXIT write(crackers)
3 CALL nl

3 EXIT nl
4 CALL fail
4 FAIL fail
3 REDO nl
3 FAIL nl
2 REDO write(crackers)
2 FAIL write(crackers)
1 REDO location(X, kitchen)
1 FAIL location(X, kitchen)
    no
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Figure 4.8. Trace of query with built-in predicates 

Exercises 

Nonsense Prolog

1- Consider the following Prolog logicbase. 

easy(1).
easy(2).
easy(3).

gizmo(a,1).
gizmo(b,3).
gizmo(a,2).
gizmo(d,5).
gizmo(c,3).
gizmo(a,3).
gizmo(c,4).

harder(a,1).
harder(c,X).
harder(b,4).
harder(d,2).

Predict the results of the following queries. Then try them and trace them to see if you were correct. 

?- gizmo(a,X),easy(X).
?- gizmo(c,X),easy(X).
?- gizmo(d,Z),easy(Z).

?- easy(Y),gizmo(X,Y).

?- write('report'), nl, easy(T), write(T), gizmo(M,T), tab(2), write(M), fail.

?- write('buggy'), nl, easy(Z), write(X), gizmo(Z,X), tab(2), write(Z), fail.

?- easy(X),harder(Y,X).
?- harder(Y,X),easy(X).

Adventure Game

2- Experiment with the queries you have seen in this chapter. 

3- Predict the results of this query before you execute it. Then try it. Trace it if you were wrong. 

?- door(kitchen, R), write(R), nl, location(T,R), tab(3), write(T), nl, fail.
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Genealogical Logicbase

4- Compound queries can be used to find family relationships in the genealogical logicbase. For example, find someone's 
mother with 

?- parent(X, someone), female(X).

Write similar queries for fathers, sons, and daughters. Trace these queries to understand their behavior (or misbehavior if 
they are not working right for you). 

5- Experiment with the ordering of the goals. In particular, contrast the queries. 

?- parent(X, someone), female(X).
?- female(X), parent(X, someone).

Do they both give the same answer? Trace both queries and see which takes more steps. 

6- The same predicate can be used multiple times in the same query. For example, we can find grandparents 

?- parent(X, someone), parent(GP, X).

7- Write queries which find grandmothers, grandfathers, and great-great grandparents. 

Customer Order Entry

8- Write a query against the item and inventory records that returns the inventory level for an item when you only know 
the item name. 

Copyright ©1990,1996-97, 2004 Amzi! inc. All Rights Reserved
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5 

Rules

We said earlier a predicate is defined by clauses, which may be facts or rules. A rule is no more than a 
stored query. Its syntax is 

head :- body.

where 

head 
a predicate definition (just like a fact) 

:- 
the neck symbol, sometimes read as "if" 

body 
one or more goals (a query) 

For example, the compound query that finds out where the good things to eat are can be stored as a rule 
with the predicate name where_food/2. 

where_food(X,Y) :-  
  location(X,Y),
  edible(X).

It states "There is something X to eat in room Y if X is located in Y, and X is edible." 

We can now use the new rule directly in a query to find things to eat in a room. As before, the semicolon 
(;) after an answer is used to find all the answers. 

?- where_food(X, kitchen).
X = apple ;
X = crackers ;
no
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?- where_food(Thing, 'dining room').
no

Or it can check on specific things. 

?- where_food(apple, kitchen).
yes

Or it can tell us everything. 

?- where_food(Thing, Room).
Thing = apple
Room = kitchen ;

Thing = crackers
Room = kitchen ;
no

Just as we had multiple facts defining a predicate, we can have multiple rules for a predicate. For 
example, we might want to have the broccoli included in where_food/2. (Prolog doesn't have an opinion 
on whether or not broccoli is legitimate food. It just matches patterns.) To do this we add another 
where_food/2 clause for things that 'taste_yucky.' 

where_food(X,Y) :-
  location(X,Y),
  edible(X).
where_food(X,Y) :-
  location(X,Y),
  tastes_yucky(X).

Now the broccoli shows up when we use the semicolon (;) to ask for everything. 

?- where_food(X, kitchen).
X = apple ;
X = crackers ;
X = broccoli ;
no

Until this point, when we have seen Prolog try to satisfy goals by searching the clauses of a predicate, all 
of the clauses have been facts. 

How Rules Work 
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With rules, Prolog unifies the goal pattern with the head of the clause. If unification succeeds, then 
Prolog initiates a new query using the goals in the body of the clause. 

Rules, in effect, give us multiple levels of queries. The first level is composed of the original goals. The 
next level is a new query composed of goals found in the body of a clause from the first level. 

Each level can create even deeper levels. Theoretically, this could continue forever. In practice it can 
continue until the listener runs out of space. 

Figure 5.1 shows the control flow after the head of a rule has been matched. Notice how backtracking 
from the third goal of the first level now goes into the second level. 

Figure 5.1. Control flow with rules 

In this example, the middle goal on the first level succeeds or fails if its body succeeds or fails. When 
entered from the right (redo) the goal reenters its body query from the right (redo). When the query fails, 
the next clause of the first-level goal is tried, and if the next clause is also a rule, the process is repeated 
with the second clause's body. 

As always with Prolog, these relationships become clearer by studying a trace. Figure 5.2 contains the 
annotated trace of the where_food/2 query. Notice the appearance of a two-part number. The first part of 
the number indicates the query level. The second part indicates the number of the goal within the query, 
as before. The parenthetical number is the clause number. For example 

2-1 EXIT (7) location(crackers, kitchen)

means the exit occurred at the second level, first goal using clause number seven. 
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The query is 

?- where_food(X, kitchen).

First the clauses of where_food/2 are searched.

1-1 CALL where_food(X, kitchen)

The pattern matches the head of the first clause, and while it is not at a port, the trace could inform us 
of the clause it is working on.

1-1 try (1) where_food(X, kitchen)

The body of the first clause is then set up as a query, and the trace continues.

    2-1 CALL location(X, kitchen)

From this point the trace proceeds exactly as it did for the compound query in the previous chapter.

    2-1 EXIT (2) location(apple, kitchen)
    2-2 CALL edible(apple)
    2-2 EXIT (1) edible(apple)

Since the body has succeeded, the goal from the previous (first) level succeeds.

1-1 EXIT (1) where_food(apple, kitchen)
      X = apple ;

Backtracking goes from the first-level goal, into the second level, proceeding as before.

1-1 REDO where_food(X, kitchen)
    2-2 REDO edible(apple)
    2-2 FAIL edible(apple)
    2-1 REDO location(X, kitchen)
    2-1 EXIT (6) location(broccoli, kitchen)
    2-2 CALL edible(broccoli)
    2-2 FAIL edible(broccoli)
    2-1 REDO location(X, kitchen)
    2-1 EXIT (7) location(crackers, kitchen)
    2-2 CALL edible(crackers)
    2-2 EXIT (2) edible(crackers)
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1-1 EXIT (1) where_food(crackers, kitchen)
      X = crackers ;

Now any attempt to backtrack into the query will result in no more answers, and the query will fail.

    2-2 REDO edible(crackers)
    2-2 FAIL edible(crackers)
    2-1 REDO location(X, kitchen)
    2-1 FAIL location(X, kitchen)

This causes the listener to look for other clauses whose heads match the query pattern. In our 
example, the second clause of where_food/2 also matches the query pattern.

1-1 REDO where_food(X, kitchen)

Again, although traces usually don't tell us so, it is building a query from the body of the second 
clause.

1-1 try (2) where_food(X, kitchen)

Now the second query proceeds as normal, finding the broccoli, which tastes_yucky.

     2-1 CALL location(X, kitchen)
     2-1 EXIT (2) location(apple, kitchen)
     2-2 CALL tastes_yucky(apple)
     2-2 FAIL tastes_yucky(apple)
     2-1 REDO location(X, kitchen)
     2-1 EXIT (6) location(broccoli, kitchen)
     2-2 CALL tastes_yucky(broccoli)
     2-2 EXIT (1) tastes_yucky(broccoli)
1-1 EXIT (2) where_food(broccoli, kitchen)
      X = broccoli ;

Backtracking brings us to the ultimate no, as there are no more where_food/2 clauses to try.

     2-2 REDO tastes_yucky(broccoli)
     2-2 FAIL tastes_yucky(broccoli)
     2-1 REDO location(X,kitchen)
     2-1 EXIT (7) location(crackers, kitchen)
     2-2 CALL tastes_yucky(crackers)
     2-2 FAIL tastes_yucky(crackers)
     2-2 REDO location(X, kitchen)
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     2-2 FAIL location(X, kitchen)
1-1 REDO where_food(X, kitchen)
1-1 FAIL where_food(X, kitchen)
      no

Figure 5.2. Trace of a query with rules 

It is important to understand the relationship between the first-level and second-level variables in this 
query. These are independent variables, that is, the X in the query is not the same as the X that shows up 
in the body of the where_food/2 clauses, values for both happen to be equal due to unification. 

To better understand the relationship, we will slowly step through the process of transferring control. 
Subscripts identify the variable levels. 

The goal in the query is 

?- where_food(X1, kitchen)

The head of the first clause is 

where_food(X2, Y2)

Remember the 'sleeps' example in chapter 3 where a query with a variable was unified with a fact with a 
variable? Both variables were set to be equal to each other. This is exactly what happens here. This 
might be implemented by setting both variables to a common internal variable. If either one takes on a 
new value, both take on a new value. 

So, after unification between the goal and the head, the variable bindings are 

X1 = _01
X2 = _01
Y2 = kitchen

The second-level query is built from the body of the clause, using these bindings. 

location(_01, kitchen), edible(_01).

When internal variable _01 takes on a value, such as 'apple,' both X's then take on the same value. This 
is fundamentally different from the assignment statements that set variable values in most computer 
languages. 
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Using Rules 

Using rules, we can solve the problem of the one-way doors. We can define a new two-way predicate 
with two clauses, called connect/2. 

connect(X,Y) :- door(X,Y).
connect(X,Y) :- door(Y,X).

It says "Room X is connected to a room Y if there is a door from X to Y, or if there is a door from Y to 
X." Note the implied 'or' between clauses. Now connect/2 behaves the way we would like. 

?- connect(kitchen, office).
yes

?- connect(office, kitchen).
yes

We can list all the connections (which is twice the number of doors) with a general query. 

?- connect(X,Y).
X = office
Y = hall ;

X = kitchen
Y = office ;
...
X = hall
Y = office ;

X = office
Y = kitchen ;
...

With our current understanding of rules and built-in predicates we can now add more rules to Nani 
Search. We will start with look/0, which will tell the game player where he or she is, what things are in 
the room, and which rooms are adjacent. 

To begin with, we will write list_things/1, which lists the things in a room. It uses the technique 
developed at the end of chapter 4 to loop through all the pertinent facts. 

list_things(Place) :-  
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  location(X, Place),
  tab(2),
  write(X),
  nl,
  fail.

We use it like this. 

?- list_things(kitchen).
  apple
  broccoli
  crackers
no

There is one small problem with list_things/1. It gives us the list, but it always fails. This is all right if 
we call it by itself, but we won't be able to use it in conjunction with other rules that follow it (to the 
right as illustrated in our diagrams). We can fix this problem by adding a second list_things/1 clause 
which always succeeds. 

list_things(Place) :-
  location(X, Place),
  tab(2),
  write(X),
  nl,
  fail.
list_things(AnyPlace).

Now when the first clause fails (because there are no more location/2s to try) the second list_things/1 
clause will be tried. Since its argument is a variable it will successfully match with anything, causing 
list_things/1 to always succeed and leave through the 'exit' port. 

As with the second clause of list_things/1, it is often the case that we do not care what the value of a 
variable is, it is simply a place marker. For these situations there is a special variable called the 
anonymous variable, represented as an underscore (_). For example 

list_things(_).

Next we will write list_connections/1, which lists connecting rooms. Since rules can refer to other rules, 
as well as to facts, we can write list_connections/1 just like list_things/1 by using the connection/2 rule. 

list_connections(Place) :-
  connect(Place, X),
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  tab(2),
  write(X),
  nl,
  fail.
list_connections(_).

Trying it gives us 

?- list_connections(hall).
  dining room
  office
yes

Now we are ready to write look/0. The single fact here(kitchen) tells us where we are in the game. (In 
chapter 7 we will see how to move about the game by dynamically changing here/1.) We can use it with 
the two list predicates to write the full look/0. 

look :-
  here(Place),
  write('You are in the '), write(Place), nl,
  write('You can see:'), nl,
  list_things(Place),
  write('You can go to:'), nl,
  list_connections(Place).

Given we are in the kitchen, this is how it works. 

?- look.
You are in the kitchen
You can see:
  apple
  broccoli
  crackers
You can go to:
  office
  cellar
  dining room
yes

We now have an understanding of the fundamentals of Prolog, and it is worth summarizing what we 
have learned so far. We have seen the following about rules in Prolog. 
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●     A Prolog program is a logicbase of interrelated facts and rules. 
●     The rules communicate with each other through unification, Prolog's built-in pattern matcher. 
●     The rules communicate with the user through built-in predicates such as write/1. 
●     The rules can be queried (called) individually from the listener. 

We have seen the following about Prolog's control flow. 

●     The execution behavior of the rules is controlled by Prolog's built-in backtracking search 
mechanism. 

●     We can force backtracking with the built-in predicate fail. 
●     We can force success of a predicate by adding a final clause with dummy variables as arguments 

and no body. 

We now understand the following aspects of Prolog programming. 

●     Facts in the logicbase (locations, doors, etc.) replace conventional data definition. 
●     The backtracking search (list_things/1) replaces the coding of many looping constructs. 
●     Passing of control through pattern matching (connect/2) replaces conditional test and branch 

structures. 
●     The rules can be tested individually, encouraging modular program development. 
●     Rules that call rules encourage the programming practices of procedure abstraction and data 

abstraction. (For example, look/0 doesn't know how list_things/1 works, or how the location data 
is stored.) 

With this level of understanding, we can make a lot of progress on the exercise applications. Take some 
time to work with the programs to consolidate your understanding before moving on to the following 
chapters. 

Exercises 

Nonsense Prolog

1- Consider the following Prolog logicbase. 

a(a1,1).
a(A,2).
a(a3,N).        

b(1,b1).
b(2,B).
b(N,b3).
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c(X,Y) :- a(X,N), b(N,Y).

d(X,Y) :- a(X,N), b(Y,N).
d(X,Y) :- a(N,X), b(N,Y).

Predict the answers to the following queries, then check them with Prolog, tracing. 

?- a(X,2).

?- b(X,kalamazoo).

?- c(X,b3).
?- c(X,Y).

?- d(X,Y).

Adventure Game

2- Experiment with the various rules that were developed during this chapter, tracing them all. 

3- Write look_in/1 for Nani Search. It should list the things located in its argument. For example, look_in
(desk) should list the contents of the desk. 

Genealogical Logicbase

4- Build rules for the various family relationships that were developed as queries in the last chapter. For 
example 

mother(M,C):-
  parent(M,C),
  female(M).

5- Build a rule for siblings. You will probably find your rule lists an individual as his/her own sibling. 
Use trace to figure out why. 

6- We can fix the problem of individuals being their own siblings by using the built-in predicate that 
succeeds if two values are unequal, and fails if they are the same. The predicate is \=(X,Y). Jumping 
ahead a bit (to operator definitions in chapter 12), we can also write it in the form X \= Y. 

7- Use the sibling predicate to define additional rules for brothers, sisters, uncles, aunts, and cousins. 

8- If we want to represent marriages in the family logicbase, we run into the two-way door problem we 
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encountered in Nani Search. Unlike parent/2, which has two arguments with distinct meanings, 
married/2 can have the arguments reversed without changing the meaning. 

Using the Nani Search door/2 predicate as an example, add some basic family data with a spouse/2 
predicate. Then write the predicate married/2 using connect/2 as a model. 

9- Use the new married predicate to add rules for uncles and aunts that get uncles and aunts by marriage 
as well as by blood. You should have two rules for each of these relationships, one for the blood case 
and one for the marriage case. Use trace to follow their behavior. 

10- Explore other relationships, such as those between in-laws. 

11- Write a predicate for grandparent/2. Use it to find both a grandparent and a grandchild. 

grandparent(someone, X).
grandparent(X, someone).

Trace its behavior for both uses. Depending on how you wrote it, one use will require many more steps 
than the other. Write two predicates, one called grandparent/2 and one called grandchild/2. Order the 
goals in each so that they are efficient for their intended uses. 

Customer Order Entry

12- Write a rule item_quantity/2 that is used to find the inventory level of a named item. This shields the 
user of this predicate from having to deal with the item numbers. 

13- Write a rule that produces an inventory report using the item_quantity/2 predicate. It should display 
the name of the item and the quantity on hand. It should also always succeed. It will be similar to 
list_things/2. 

14- Write a rule which defines a good customer. You might want to identify different cases of a good 
customer. 

Expert Systems

Expert systems are often called rule-based systems. The rules are "rules of thumb" used by experts to 
solve certain problems. The expert system includes an inference engine, which knows how to use the 
rules. 

There are many kinds of inference engines and knowledge representation techniques that are used in 
expert systems. Prolog is an excellent language for building any kind of expert system. However, certain 
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types of expert systems can be built directly using Prolog's native rules. These systems are called 
structured selection systems. 

The code listing for 'birds' in the appendix contains a sample system that can be used to identify birds. 
You will be asked to build a similar system in the exercises. It can identify anything, from animals to 
cars to diseases. 

15- Decide what kind of expert system you would like to build, and add a few initial identification rules. 
For example, a system to identify house pets might have these rules. 

pet(dog):- size(medium), noise(woof).
pet(cat):- size(medium), noise(meow).
pet(mouse):- size(small), noise(squeak).

16- For now, we can use these rules by putting the known facts in the logicbase. For example, if we add 
size(medium) and noise(meow) and then pose the query pet(X) we will find X=cat. 

Many Prologs allow clauses to be entered directly at the listener prompt, which makes using this expert 
system a little easier. The presence of the neck symbol (:-) signals to the listener that the input is a clause 
to be added. So to add facts directly to the listener workspace, they must be made into rules, as follows. 

?- size(medium) :- true.
recorded

?- noise(meow) :- true.
recorded

Jumping ahead, you can also use assert/1 like this 

?- assert(size(medium)).
yes
?- assert(noise(meow)).
yes

These examples use the predicates in the general form attribute(value). In this simple example, the pet 
attribute is deduced. The size and noise attributes must be given. 

17- Improve the expert system by having it ask for the attribute/values it can't deduce. We do this by 
first adding the rules 

size(X):- ask(size, X).
noise(X):- ask(noise, X).
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For now, ask/2 will simply check with the user to see if an attribute/value pair is true or false. It will use 
the built-in predicate read/1 which reads a Prolog term (ending in a period of course). 

ask(Attr, Val):-
  write(Attr),tab(1),write(Val),
  tab(1),write('(yes/no)'),write(?),
  read(X),
  X = yes.

The last goal, X = yes, attempts to unify X and yes. If yes was read, then it succeeds, otherwise, it fails. 
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6 

Arithmetic

Prolog must be able to handle arithmetic in order to be a useful general purpose programming language. 
However, arithmetic does not fit nicely into the logical scheme of things. 

That is, the concept of evaluating an arithmetic expression is in contrast to the straight pattern matching 
we have seen so far. For this reason, Prolog provides the built-in predicate 'is' that evaluates arithmetic 
expressions. Its syntax calls for the use of operators, which will be described in more detail in chapter 
12. 

X is <arithmetic expression>

The variable X is set to the value of the arithmetic expression. On backtracking it is unassigned. 

The arithmetic expression looks like an arithmetic expression in any other programming language. 

Here is how to use Prolog as a calculator. 

?- X is 2 + 2.
X = 4

?- X is 3 * 4 + 2.
X = 14

Parentheses clarify precedence. 

?- X is 3 * (4 + 2).
X = 18

?- X is (8 / 4) / 2.
X = 1

In addition to 'is,' Prolog provides a number of operators that compare two numbers. These include 
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'greater than', 'less than', 'greater or equal than', and 'less or equal than.' They behave more logically, and 
succeed or fail according to whether the comparison is true or false. Notice the order of the symbols in 
the greater or equal than and less than or equal operators. They are specifically constructed not to look 
like an arrow, so that you can use arrow symbols in your programs without confusion. 

X > Y
X < Y
X >= Y
X =< Y

Here are a few examples of their use. 

?- 4 > 3.
yes

?- 4 < 3.
no

?- X is 2 + 2, X > 3.
X = 4

?- X is 2 + 2, 3 >= X.
no

?- 3+4 > 3*2.
yes

They can be used in rules as well. Here are two example predicates. One converts centigrade 
temperatures to Fahrenheit, the other checks if a temperature is below freezing. 

c_to_f(C,F) :-
  F is C * 9 / 5 + 32.

freezing(F) :-
  F =< 32.

Here are some examples of their use. 

?- c_to_f(100,X).
X = 212
yes
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?- freezing(15).
yes

?- freezing(45).
no

Exercises 

Customer Order Entry

1- Write a predicate valid_order/3 that checks whether a customer order is valid. The arguments should 
be customer, item, and quantity. The predicate should succeed only if the customer is a valid customer 
with a good credit rating, the item is in stock, and the quantity ordered is less than the quantity in stock. 

2- Write a reorder/1 predicate which checks inventory levels in the inventory record against the reorder 
quantity in the item record. It should write a message indicating whether or not it's time to reorder. 
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7 

Managing Data

We have seen that a Prolog program is a logicbase of predicates, and so far we have entered clauses for 
those predicates directly in our programs. Prolog also allows us to manipulate the logicbase directly and 
provides built-in predicates to perform this function. The main ones are 

asserta(X) 
Adds the clause X as the first clause for its predicate. Like the other I/O predicates, it always fails 
on backtracking and does not undo its work. 

assertz(X) 
Same as asserta/1, only it adds the clause X as the last clause for its predicate. 

retract(X) 
Removes the clause X from the logicbase, again with a permanent effect that is not undone on 
backtracking. 

The ability to manipulate the logicbase is obviously an important feature for Nani Search. With it we can 
dynamically change the location of the player, as well as the stuff that has been picked up and moved. 

We will first develop goto/1, which moves the player from one room to another. It will be developed 
from the top down, in contrast to look/0 which was developed from the bottom up. 

When the player enters the command goto, we first check if they can go to the place and if so move 
them so they can look around the new place. Starting from this description of goto/1, we can write the 
main predicate. 

goto(Place):-  
  can_go(Place),
  move(Place),
  look.

Next we fill in the details. We can go to a room if it connects to where we are. 

can_go(Place):- 
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  here(X),
  connect(X, Place).

We can test can_go/1 immediately (assuming we are in the kitchen). 

?- can_go(office).
yes

?- can_go(hall).
no

Now, can_go/1 succeeds and fails as we want it to, but it would be nice if it gave us a message when it 
failed. By adding a second clause, which is tried if the first one fails, we can cause can_go/1 to write an 
error message. Since we want can_go/1 to fail in this situation we also need to add a fail to the second 
clause. 

can_go(Place):-
  here(X),
  connect(X, Place).
can_go(Place):-
  write('You can''t get there from here.'), nl,
  fail.

This version of can_go/1 behaves as we want. 

?- can_go(hall).
You can't get there from here.
no

Next we develop move/1, which does the work of dynamically updating the logicbase to reflect the new 
location of the player. It retracts the old clause for here/1 and replaces it with a new one. This way there 
will always be only one here/1 clause representing the current place. Because goto/1 calls can_go/1 
before move/1, the new here/1 will always be a legal place in the game. 

move(Place):-
  retract(here(X)),
  asserta(here(Place)).

We can now use goto/1 to explore the game environment. The output it generates is from look/0, which 
we developed in chapter 5. 

?- goto(office).
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You are in the office
You can see:
  desk
  computer
You can go to:
  hall
  kitchen
yes

?- goto(hall).
You are in the hall
You can see:
You can go to:
  dining room
  office
yes

?- goto(kitchen).
You can't get there from here.
no

We will also need 'asserta' and 'retract' to implement 'take' and 'put' commands in the game. 

Here is take/1. For it we will define a new predicate, have/1, which has one clause for each thing the 
game player has. Initially, have/1 is not defined because the player is not carrying anything. 

take(X):-  
  can_take(X),
  take_object(X).

can_take/1 is analogous to can_go/1. 

can_take(Thing) :-
  here(Place),
  location(Thing, Place).
can_take(Thing) :-
  write('There is no '), write(Thing),
  write(' here.'),
  nl, fail.

take_object/1 is analogous to move/1. It retracts a location/2 clause and asserts a have/1 clause, 
reflecting the movement of the object from the place to the player. 
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take_object(X):-  
  retract(location(X,_)),
  asserta(have(X)),
  write('taken'), nl.

As we have seen, the variables in a clause are local to that clause. There are no global variables in 
Prolog, as there are in many other languages. The Prolog logicbase serves that purpose. It allows all 
clauses to share information on a wider basis, replacing the need for global variables. 'asserts' and 
'retracts' are the tools used to manipulate this global data. 

As with any programming language, global data can be a powerful concept, easily overused. They 
should be used with care, since they hide the communication of information between clauses. The same 
code will behave differently if the global data is changed. This can lead to hard-to-find bugs. 

Eliminating global data and the 'assert' and 'retract' capabilities of Prolog is a goal of many logic 
programmers. It is possible to write Prolog programs without dynamically modifying the logicbase, thus 
eliminating the problem of global variables. This is done by carrying the information as arguments to the 
predicates. In the case of an adventure game, the complete state of the game could be represented as 
predicate arguments, with each command called with the current state and returning a new modified 
state. This approach will be discussed in more detail in chapter 14. 

Although the database-like approach presented here may not be the purest method from a logical 
standpoint, it does allow for a very natural representation of this game application. 

Various Prologs provide varying degrees of richness in the area of logicbase manipulation. The built-in 
versions are usually unaffected by backtracking. That is, like the other I/O predicates, they perform their 
function when called and do nothing when entered from the redo port. 

Sometimes it is desirable to have a predicate retract its assertions when the redo port is entered. It is easy 
to write versions of 'assert' and 'retract' that undo their work on backtracking. 

backtracking_assert(X):-  
  asserta(X).
backtracking_assert(X):-
  retract(X),fail.

The first time through, the first clause is executed. If a later goal fails, backtracking will cause the 
second clause to be tried. It will undo the work of the first and fail, thus giving the desired effect. 

Exercises 
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Adventure Game

1- Write put/1 which retracts a have/1 clause and asserts a location/2 clause in the current room. 

2- Write inventory/0 which lists the have/1 things. 

3- Use goto/1, take/1, put/1, look/0, and inventory/0 to move about and examine the game environment 
so far. 

4- Write the predicates turn_on/1 and turn_off/1 for Nani Search. They will be used to turn the flashlight 
on or off. 

5- Add an open/closed status for each of the doors. Write open and closepredicates that do the obvious. 
Fix can_go/1 to check whether a door is open and write the appropriate error message if its not. 

Customer Order Entry

6- In the order entry application, write a predicate update_inventory/2 that takes an item name and 
quantity as input. Have it retract the old inventory amount, perform the necessary arithmetic and assert 
the new inventory amount. 

NOTE: retract(inventory(item_id,Q)) binds Q to the old value, thus alleviating the need for a separate 
goal to get the old value of the inventory. 

7- We can now use the various predicates developed for the customer order entry system to write a 
predicate that prompts the user for order information and generates the order. The predicate can be 
simply order/0. 

order/0 should first prompt the user for the customer name, the item name and the quantity. For example 

write('Enter customer name:'),read(C),

It should then use the rules for good_customer and valid_order to verify that this is a valid order. If so, it 
should assert a new type of record, order/3, which records the order information. It can then 
update_inventory and check whether its time to reorder. 

The customer order entry application has been designed from the bottom up, since that is the way the 
material has been presented for learning. The order predicate should suggest that Prolog is an excellent 
tool for top-down development as well. 

One could start with the concept that processing an order means reading the date, checking the order, 
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updating inventory, and reordering if necessary. The necessary details of implementing these predicates 
could be left for later. 

Expert System

8- The expert system currently asks for the same information over and over again. We can use the 
logicbase to remember the answers to questions so that ask/2 doesn't re-ask something. 

When ask/2 gets a yes or no answer to a question about an attribute-value pair, assert a fact in the form 

known(Attribute, Value, YesNo).

Add a first clause to ask/2 that checks whether the answer is already known and, if so, succeeds. Add a 
second clause that checks if the answer is known to be false and, if so, fails. 

The third clause makes sure the answer is not already known, and then asks the user as before. To do 
this, the built-in predicate not/1 is used. It fails if its argument succeeds. 

not (known(Attr, Val, Answer))
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Recursion

Recursion in any language is the ability for a unit of code to call itself, repeatedly, if necessary. 
Recursion is often a very powerful and convenient way of representing certain programming constructs. 

In Prolog, recursion occurs when a predicate contains a goal that refers to itself. 

As we have seen in earlier chapters, every time a rule is called, Prolog uses the body of the rule to create 
a new query with new variables. Since the query is a new copy each time, it makes no difference 
whether a rule calls another rule or itself. 

A recursive definition (in any language, not just Prolog) always has at least two parts, a boundary 
condition and a recursive case. 

The boundary condition defines a simple case that we know to be true. The recursive case simplifies the 
problem by first removing a layer of complexity, and then calling itself. At each level, the boundary 
condition is checked. If it is reached the recursion ends. If not, the recursion continues. 

We will illustrate recursion by writing a predicate that can detect things which are nested within other 
things. 

Currently our location/2 predicate tells us the flashlight is in the desk and the desk is in the office, but it 
does not indicate that the flashlight is in the office. 

?- location(flashlight, office).
no

Using recursion, we will write a new predicate, is_contained_in/2, which will dig through layers of 
nested things, so that it will answer 'yes' if asked if the flashlight is in the office. 

To make the problem more interesting, we will first add some more nested items to the game. We will 
continue to use the location predicate to put things in the desk, which in turn can have other things inside 
them. 
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location(envelope, desk).
location(stamp, envelope).
location(key, envelope).

To list all of things in the office, we would first have to list those things that are directly in the office, 
like the desk. We would then list the things in the desk, and the things inside the things in the desk. 

If we generalize a room into being just another thing, we can state a two-part rule which can be used to 
deduce whether something is contained in (nested in) something else. 

●     A thing, T1, is contained in another thing, T2, if T1 is directly located in T2. (This is the 
boundary condition.) 

●     A thing, T1, is contained in another thing, T2, if some intermediate thing, X, is located in T2 and 
T1 is contained in X. (This is where we simplify and recurse.) 

We will now express this in Prolog. The first rule translates into Prolog in a straightforward manner. 

is_contained_in(T1,T2) :-  
  location(T1,T2).

The recursive rule is also straightforward. Notice that it refers to itself. 

is_contained_in(T1,T2) :-
  location(X,T2),
  is_contained_in(T1,X).

Now we are ready to try it. 

?- is_contained_in(X, office).
X = desk ;
X = computer ;
X = flashlight ;
X = envelope ;
X = stamp ;
X = key ;
no

?- is_contained_in(envelope, office).
yes

?- is_contained_in(apple, office).
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no

How Recursion Works 

As in all calls to rules, the variables in a rule are unique, or scoped, to the rule. In the recursive case, this 
means each call to the rule, at each level, has its own unique set of variables. So the values of X, T1, and 
T2 at the first level of recursion are different from those at the second level. 

However, unification between a goal and the head of a clause forces a relationship between the variables 
of different levels. Using subscripts to distinguish the variables, and internal Prolog variables, we can 
trace the relationships for a couple of levels of recursion. 

First, the query goal is 

?- is_contained_in(XQ, office).

The clause with variables for the first level of recursion is 

is_contained_in(T11, T21) :-
  location(X1, T21),
  is_contained_in(T11, X1).

When the query is unified with the head of the clause, the variables become bound. The bindings are 

XQ = _01
T11 = _01
T21 = office
X1 = _02

Note particularly that XQ in the query becomes bound to T11 in the clause, so when a value of _01 is 
found, both variables are found. 

With these bindings, the clause can be rewritten as 

is_contained_in(_01, office) :-
  location(_02, office),
  is_contained_in(_01, _02).

When the location/2 goal is satisfied, with _02 = desk, the recursive call becomes 

is_contained_in(_01, desk)
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That goal unifies with the head of a new copy of the clause, at the next level of the recursion. After that 
unification the variables are 

XQ = _01        T11 = _01       T12 = _01
                T21 = office    T22 = desk
                X1 = desk       X2 = _03

When the recursion finds a solution, such as 'envelope,' all of the T1s and X0 immediately take on that 
value. Figure 8.1 contains a full annotated trace of the query.

The query is 

?- is_contained_in(X, office).

Each level of the recursion will have its own unique variables, but as in all calls to rules, the variables 
at a called level will be bound in some relationship to the variables at the calling level. In the 
following trace, we will use Prolog internal variables, so we can see which variables are bound 
together and which are not. The items directly in the office are found easily, as the variable _0 is 
bound to X in the query and T1 in the rule.

1-1 CALL is_contained_in(_0, office) 
1-1 try (1) is_contained_in(_0, office)
    2-1 CALL location(_0, office) 
    2-1 EXIT location(desk, office) 
1-1 EXIT is_contained_in(desk, office) 
      X = desk ;
    2-1 REDO location(_0, office) 
    2-1 EXIT location(computer, office) 
1-1 EXIT is_contained_in(computer, office) 
      X = computer ;
    2-1 REDO location(_0,office) 
    2-1 FAIL location(_0,office) 

When there are no more location(X, office) clauses, the first clause of is_contained_in/2 fails, and the 
second clause is tried. Notice that the call to location does not have its first argument bound to the 
same variable. It was X in the rule, and it gets a new internal value, _4. T1 stays bound to _0.

1-1 REDO is_contained_in(_0, office) 
1-1 try (2) is_contained_in(_0, office)
    2-1 CALL location(_4, office) 
    2-1 EXIT location(desk, office) 
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When it initiates a new call to is_contained_in/2, it behaves exactly as if we had performed the query 
is_contained_in(X, desk) at the listener prompt. It is, in effect, a completely new copy of 
is_contained_in/2. This call will find all of the things in the desk, just as the first level found all things 
in the office.

    2-2 CALL is_contained_in(_0, desk) 
    2-2 try (1) is_contained_in(_0, desk)
        3-1 CALL location(_0, desk) 
        3-1 EXIT location(flashlight, desk) 

Having found the flashlight at the second-level is_contained_in/2, the answer propagates back up to 
the first level copy of is_contained_in/2.

    2-2 EXIT is_contained_in(flashlight, desk) 
1-1 EXIT is_contained_in(flashlight, office) 
      X = flashlight ;

Similarly, it finds the envelope at the second level of recursion.

        3-1 REDO location(_0, desk) 
        3-1 EXIT location(envelope, desk) 
    2-2 EXIT is_contained_in(envelope, desk) 
1-1 EXIT is_contained_in(envelope, office) 
      X = envelope ;

Having exhausted the things located in the desk, it next begins to look for things within things located 
in the desk.

        3-1 REDO location(_0, desk) 
        3-1 FAIL location(_0, desk) 
    2-2 REDO is_contained_in(_0, desk) 
    2-2 try (2) is_contained_in(_0, desk)
        3-1 CALL location(_7, desk) 
        3-1 EXIT location(flashlight, desk) 

First, is there something in the flashlight? Both clauses of is_contained_in/2 fail because there is 
nothing located in the flashlight.

        3-2 CALL is_contained_in(_0, flashlight) 
            4-1 CALL location(_0, flashlight) 
            4-1 FAIL location(_0, flashlight) 
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        3-2 REDO is_contained_in(_0, flashlight) 
        3-2 try (2) is_contained_in(_0, flashlight)
            4-1 CALL location(_11, flashlight) 
            4-1 FAIL location(_11, flashlight) 
        3-2 FAIL is_contained_in(_0, flashlight)

Next, it tries to find things in the envelope and comes up with the stamp.

        3-1 REDO location(_7, desk) 
        3-1 EXIT location(envelope, desk) 
        3-2 CALL is_contained_in(_0, envelope) 
            4-1 CALL location(_0, envelope) 
            4-1 EXIT location(stamp, envelope) 
        3-2 EXIT is_contained_in(stamp, envelope) 
    2-2 EXIT is_contained_in(stamp, desk) 
1-1 EXIT is_contained_in(stamp, office) 
      X = stamp ;

And then the key.

            4-1 REDO location(_0,envelope) 
            4-1 EXIT location(key, envelope) 
        3-2 EXIT is_contained_in(key, envelope) 
    2-2 EXIT is_contained_in(key, desk) 
1-1 EXIT is_contained_in(key, office) 
      X = key ;

And then it fails its way back to the beginning.

        3-2 REDO is_contained_in(_0, envelope) 
        3-2 try (2) is_contained_in(_0, envelope)
            4-1 CALL location(_11, envelope) 
            4-1 EXIT location(stamp, envelope) 
            4-2 CALL is_contained_in(_0, stamp) 
                5-1 CALL location(_0, stamp) 
                5-1 FAIL location(_0, stamp) 
            4-2 REDO is_contained_in(_0, stamp) 
            4-2 try(2) is_contained_in(_0, stamp)
                5-1 CALL location(_14, stamp) 
                5-1 FAIL location(_14, stamp) 
            4-1 REDO location(_11, envelope) 
            4-1 EXIT location(key, envelope) 
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            4-2 CALL is_contained_in(_0, key) 
            4-2 try (1) is_contained_in(_0, key)
                5-1 CALL location(_0, key) 
                5-1 FAIL location(_0, key) 
            4-2 REDO is_contained_in(_0, key) 
            4-2 try (2) is_contained_in(_0, key)
                5-1 CALL location(_14, key) 
                5-1 FAIL location(_14, key) 
            4-1 REDO location(_7, desk) 
            4-1 FAIL location(_7, desk) 
        3-1 REDO location(_4, office) 
        3-1 EXIT location(computer, office) 
        3-2 CALL is_contained_in(_0, computer) 
            4-1 CALL location(_0, computer) 
            4-1 FAIL location(_0, computer) 
        3-2 REDO is_contained_in(_0, computer) 
            4-1 CALL location(_7, computer) 
            4-1 FAIL location(_7, computer) 
        3-1 REDO location(_4, office) 
        3-1 FAIL location(_4, office) 
       no

Figure 8.1. Trace of a recursive query 

When writing a recursive predicate, it is essential to ensure that the boundary condition is checked at 
each level . Otherwise, the program might recurse forever. 

The simplest way to do this is by always defining the boundary condition first, ensuring that it is always 
tried first and that the recursive case is only tried if the boundary condition fails. 

Pragmatics 

We now come to some of the pragmatics of Prolog programming. First consider that the goal location(X,
Y) will be satisfied by every clause of location/2. On the other hand, the goals location(X, office) or 
location(envelope, X) will be satisfied by fewer clauses. 

Let's look again at the second rule for is_contained_in/2, and an equally valid alternate coding. 

is_contained_in(T1,T2):-
  location(X,T2),
  is_contained_in(T1,X).
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is_contained_in(T1,T2):-
  location(T1,X),
  is_contained_in(X,T2).

Both will give correct answers, but the performance of each will depend on the query. The query 
is_contained_in(X, office) will execute faster with the first version. That is because T2 is bound, making 
the search for location(X, T2) easier than if both variables were unbound. Similarly, the second version 
is faster for queries such as is_contained_in(key, X). 

Exercises 

Adventure Game

1- Trace the two versions of is_contained_in/2 presented at the end of the chapter to understand the 
performance differences between them. 

2- Currently, the can_take/1 predicate only allows the player to take things which are directly located in 
a room. Modify it so it uses the recursive is_contained_in/2 so that a player can take anything in a room. 

Genealogical Logicbase

3- Use recursion to write an ancestor/2 predicate. Then trace it to understand its behavior. It is possible 
to write endless loops with recursive predicates. The trace facility will help you debug ancestor/2 if it is 
not working correctly. 

4- Use ancestor/2 for finding all of a person's ancestors and all of a person's descendants. Based on your 
experience with grandparent/2 and grandchild/2, write a descendant/2 predicate optimized for 
descendants, as opposed to ancestor/2, which is optimized for ancestors. 
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9 

Data Structures

So far we have worked with facts, queries, and rules that use simple data structures. The arguments to 
our predicates have all been atoms or integers, the basic building blocks of Prolog. Examples of atoms 
we've used are 

office, apple, flashlight, nani

These primitive data types can be combined to form arbitrarily complex data types called structures. A 
structure is composed of a functor and a fixed number of arguments. Its form is just like that of the goals 
and facts we've seen already (for good reason, we'll discover). 

functor(arg1,arg2,...)

Each of the structure's arguments can be either a primitive data type or another structure. For example, 
the things in the game are currently represented using atoms, such as 'desk' or 'apple,' but we can use 
structures to create a richer representation of these things. The following structures describe the object 
and its color, size, and weight. 

object(candle, red, small, 1).
object(apple, red, small, 1).
object(apple, green, small, 1).
object(table, blue, big, 50).

These structures could be used directly in the second argument of location/2, but for experimentation we 
will instead create a new predicate, location_s/2. Note that even though the structures describing the 
objects in the game are complex, they still take up only one argument in location_s/2. 

location_s(object(candle, red, small, 1), kitchen).
location_s(object(apple, red, small, 1), kitchen).
location_s(object(apple, green, small, 1), kitchen).
location_s(object(table, blue, big, 50), kitchen).
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Prolog variables are typeless, and can be bound as easily to structures as to atoms. In fact, an atom is just 
a simple structure with a functor and no arguments. So we can ask 

?- location_s(X, kitchen).
X = object(candle, red, small, 1) ;
X = object(apple, red, small, 1) ;
X = object(apple, green, small, 1) ;
X = object(table, blue, big, 50) ;
no

We can also pick apart the structure with variables. We can now find all the red things in the kitchen. 

?- location_s(object(X, red, S, W), kitchen).
X = candle
S = small
W = 1 ;

X = apple
S = small
W = 1 ;
no

If we didn't care about the size and weight we could replace the size, S, and weight, W, variables with 
the anonymous variable (_). 

?- location_s(object(X, red, _, _), kitchen).
X = candle ;
X = apple ;
no

We can use these structures to add more realism to the game. For example, we can modify our 
can_take/1 predicate, developed in chapter 7, so that we can only take small objects. 

can_take_s(Thing) :-
  here(Room),
  location_s(object(Thing, _, small,_), Room).

We can also change the error messages to reflect the two reasons why a thing cannot be taken. To ensure 
that backtracking does not cause both errors to be displayed, we will construct each clause so its 
message is displayed only when its unique conditions are met. To do this, the built-in predicate not/1 is 
used. Its argument is a goal, and it succeeds if its argument fails, and fails if its argument succeeds. For 
example 
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?- not( room(office) ).
no

?- not( location(cabbage, 'living room') )
yes

Note that semantically, not in Prolog means the goal cannot be successfully solved with current 
logicbase of facts and rules. Here is how we use not/1 in our new version, can_take_s/1. 

can_take_s(Thing) :-< 
  here(Room),
  location_s(object(Thing, _, small, _), Room).
can_take_s(Thing) :-
  here(Room),
  location_s(object(Thing, _, big, _), Room),
  write('The '), write(Thing), 
  write(' is too big to carry.'), nl,
  fail.
can_take_s(Thing) :-
  here(Room),
  not (location_s(object(Thing, _, _, _), Room)),
  write('There is no '), write(Thing), write(' here.'), nl,
  fail.

We can now try it, assuming we are in the kitchen. 

?- can_take_s(candle).
yes

?- can_take_s(table).
The table is too big to carry.
no

?- can_take_s(desk).
There is no desk here.
no

The list_things/1 predicate can be modified to give a description of the things in a room. 

list_things_s(Place) :-  
  location_s(object(Thing, Color, Size, Weight),Place),
  write('A '),write(Size),tab(1),
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  write(Color),tab(1),
  write(Thing), write(', weighing '),
  write(Weight), write(' pounds'), nl,
  fail.
list_things_s(_).

Requesting it now gives a more detailed list. 

?- list_things_s(kitchen).
A small red candle, weighing 1 pounds
A small red apple, weighing 1 pounds
A small green apple, weighing 1 pounds
A big blue table, weighing 50 pounds
yes

If you are bothered by the grammatically incorrect '1 pounds', you can fix it by adding another rule to 
write the weight, which would replace the direct 'writes' now used. 

write_weight(1) :-
  write('1 pound').
write_weight(W) :-
  W > 1,
  write(W), write(' pounds').

Testing it shows it works as desired. 

?- write_weight(4).
4 pounds
yes

?- write_weight(1).
1 pound
yes\

Notice that we did not need to put a test, such as 'W = 1,' in the first clause. By putting the 1 directly in 
the argument at the head of the clause we ensure that that clause will only be fired when the query goal 
is write_weight(1). All other queries will go to the second clause because the goal pattern will fail to 
unify with the head of the first clause. 

It is important, however, to put the test 'W > 1' in the second rule. Otherwise both rules would work for a 
weight of 1. The first time the predicate was called would not be a problem, but on backtracking we 
would get two answers if we had not included the test. 
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Structures can be arbitrarily complex, so if we wanted to get fancy about things in the game we could 
keep their dimensions (length, width, height) instead of their size as part of their description. 

object(desk, brown, dimension(6,3,3), 90).

We can also use embedded structures for clarity. 

object(desk, color(brown), size(large), weight(90))

A query using these structures is more readable. 

location_s(object(X, _, size(large), _), office).

Notice that the position of the arguments is important. The place-holding anonymous variables are 
essential for getting the correct results. 

Exercises 

Adventure Game

1- Incorporate the new location into the game. Note that due to data and procedure abstraction, we need 
only change the low level predicates that deal directly with location. The higher level predicates, such as 
look/0 and take/1 are unaffected by the change. 

Customer Order Entry

2- Use structures to enhance the customer order entry application. For example, include a structure for 
each customers address. 

Copyright ©1990,1996-97, 2004 Amzi! inc. All Rights Reserved
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Unification

One of Prolog's most powerful features is its built-in pattern-matching algorithm, unification. For all of the 
examples we have seen so far, unification has been relatively simple. We will now examine unification more 
closely. 

The full definition of unification is similar to the one given in chapter 3, with the addition of a recursive definition 
to handle data structures. This following table summarizes the unification process. 

variable 
& 
any term 

The variable will unify with and is bound to 
any term, including another variable. 

primitive 
& 
primitive 

Two primitive terms (atoms or integers) 
unify only if they are identical. 

structure 
& 
structure 

Two structures unify if they have the same 
functor and arity and if each pair of 
corresponding arguments unify. 

In order to experiment with unification we will introduce the built-in predicate =/2, which succeeds if its two 
arguments unify and fails if they do not. It can be written in operator syntax as follows. 

arg1 = arg2

which is equivalent to 

=(arg1, arg2)

WARNING: The equal sign (=) does not cause assignment as in most programming languages, nor does it cause 
arithmetic evaluation. It causes Prolog unification. (Despite this warning, if you are like most mortal programmers, 
you will be tripped up by this difference more than once.) 

Unification between two sides of an equal sign (=) is exactly the same as the unification that occurs when Prolog 
tries to match goals with the heads of clauses. On backtracking, the variable bindings are undone, just as they are 
when Prolog backtracks through clauses. 
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The simplest form of unification occurs between two structures with no variables. In this case, either they are 
identical and unification succeeds, or they are not, and unification fails. 

?- a = a.
yes

?- a = b.
no

?- location(apple, kitchen) = 
location(apple, kitchen).
yes

?- location(apple, kitchen) = 
location(pear, kitchen).
no

?- a(b,c(d,e(f,g))) = a(b,c(d,e(f,g))).
yes

?- a(b,c(d,e(f,g))) = a(b,c(d,e(g,f))).
no

Another simple form of unification occurs between a variable and a primitive. The variable takes on a value that 
causes unification to succeed. 

?- X = a.
X = a 

?- 4 = Y.
Y = 4 

?- location(apple, kitchen) = location(apple, X).
X = kitchen 

In other cases multiple variables are simultaneously bound to values. 

?- location(X,Y) = location(apple, kitchen).
X = apple
Y = kitchen 

?- location(apple, X) = location(Y, kitchen).
X = kitchen
Y = apple 

Variables can also unify with each other. Each instance of a variable has a unique internal Prolog value. When two 
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variables are unified to each other, Prolog notes that they must have the same value. In the following example, it is 
assumed Prolog uses '_nn,' where 'n' is a digit, to represent unbound variables. 

?- X = Y.
X = _01
Y = _01 

?- location(X, kitchen) = location(Y, kitchen).
X = _01
Y = _01 

Prolog remembers the fact that the variables are bound together and will reflect this if either is later bound. 

?- X = Y, Y = hello.
X = hello
Y = hello 

?- X = Y, a(Z) = a(Y), X = hello.
X = hello
Y = hello
Z = hello 

The last example is critical to a good understanding of Prolog and illustrates a major difference between unification 
with Prolog variables and assignment with variables found in most other languages. Note carefully the behavior of 
the following queries. 

?- X = Y, Y = 3, write(X).
3
X = 3
Y = 3 

?- X = Y, tastes_yucky(X), write(Y).
broccoli
X = broccoli
Y = broccoli 

When two structures with variables are unified with each other, the variables take on values that make the two 
structures identical. Note that a structure bound to a variable can itself contain variables. 

?- X = a(b,c).
X = a(b,c) 

?- a(b,X) = a(b,c(d,e)).
X = c(d,e) 

?- a(b,X) = a(b,c(Y,e)).
X = c(_01,e)
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Y = _01 

Even in these more complex examples, the relationships between variables are remembered and updated as new 
variable bindings occur. 

?- a(b,X) = a(b,c(Y,e)), Y = hello.
X = c(hello, e)
Y = hello

?- food(X,Y) = Z, write(Z), nl, tastes_yucky(X), edible(Y), write(Z).

food(_01,_02)
food(broccoli, apple)
X = broccoli
Y = apple
Z = food(broccoli, apple) 

If a new value assigned to a variable in later goals conflicts with the pattern set earlier, the goal fails. 

?- a(b,X) = a(b,c(Y,e)), X = hello.
no

The second goal failed since there is no value of Y that will allow hello to unify with c(Y,e). The following will 
succeed. 

?- a(b,X) = a(b,c(Y,e)), X = c(hello, e).
X = c(hello, e)
Y = hello 

If there is no possible value the variable can take on, then unification fails. 

?- a(X) = a(b,c).
no

?- a(b,c,d) = a(X,X,d).
no

The last example failed because the pattern asks that the first two arguments be the same, and they aren't. 

?- a(c,X,X) = a(Y,Y,b).
no

Did you understand why this example fails? Matching the first argument binds Y to c. The second argument causes 
X and Y to have the same value, in this case c. The third argument asks that X bind to b, but it is already bound to 
c. No value of X and Y will allow these two structures to unify. 
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The anonymous variable (_) is a wild variable, and does not bind to values. Multiple occurrences of it do not imply 
equal values. 

?- a(c,X,X) = a(_,_,b).
X = b 

Unification occurs explicitly when the equal (=) built-in predicate is used, and implicitly when Prolog searches for 
the head of a clause that matches a goal pattern. 

Exercises 

Nonsense Prolog

Predict the results of these unification queries. 

?- a(b,c) = a(X,Y).

?- a(X,c(d,X)) = a(2,c(d,Y)).

?- a(X,Y) = a(b(c,Y),Z).

?- tree(left, root, Right) = tree(left, root, tree(a, b, tree(c, d, e))).

Copyright ©1990,1996-97, 2004 Amzi! inc. All Rights Reserved
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Lists

Lists are powerful data structures for holding and manipulating groups of things. 

In Prolog, a list is simply a collection of terms. The terms can be any Prolog data types, including 
structures and other lists. Syntactically, a list is denoted by square brackets with the terms separated by 
commas. For example, a list of things in the kitchen is represented as 

 [apple, broccoli, refrigerator]

This gives us an alternative way of representing the locations of things. Rather than having separate 
location predicates for each thing, we can have one location predicate per container, with a list of things 
in the container. 

loc_list([apple, broccoli, crackers], kitchen).
loc_list([desk, computer], office).
loc_list([flashlight, envelope], desk).
loc_list([stamp, key], envelope).
loc_list(['washing machine'], cellar).
loc_list([nani], 'washing machine').

There is a special list, called the empty list, which is represented by a set of empty brackets ([]). It is also 
referred to as nil. It can describe the lack of contents of a place or thing. 

loc_list([], hall)

Unification works on lists just as it works on other data structures. With what we now know about lists 
we can ask 

?- loc_list(X, kitchen).
X = [apple, broccoli, crackers] 

?- [_,X,_] = [apples, broccoli, crackers].
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X = broccoli 

This last example is an impractical method of getting at list elements, since the patterns won't unify 
unless both lists have the same number of elements. 

For lists to be useful, there must be easy ways to access, add, and delete list elements. Moreover, we 
should not have to concern ourselves about the number of list items, or their order. 

Two Prolog features enable us to accomplish this easy access. One is a special notation that allows 
reference to the first element of a list and the list of remaining elements, and the other is recursion. 

These two features allow us to write list utility predicates, such as member/2, which finds members of a 
list, and append/3, which joins two lists together. List predicates all follow a similar strategy--try 
something with the first element of a list, then recursively repeat the process on the rest of the list. 

First, the special notation for list structures. 

 [X | Y]

When this structure is unified with a list, X is bound to the first element of the list, called the head. Y is 
bound to the list of remaining elements, called the tail. 

We will now look at some examples of unification using lists. The following example successfully 
unifies because the two structures are syntactically equivalent. Note that the tail is a list. 

?- [a|[b,c,d]] = [a,b,c,d].
yes

This next example fails because of misuse of the bar (|) symbol. What follows the bar must be a single 
term, which for all practical purposes must be a list. The example incorrectly has three terms after the 
bar. 

?- [a|b,c,d] = [a,b,c,d].
no

Here are some more examples. 

?- [H|T] = [apple, broccoli, refrigerator].
H = apple
T = [broccoli, refrigerator] 
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?- [H|T] = [a, b, c, d, e].
H = a
T = [b, c, d, e] 

?- [H|T] = [apples, bananas].
H = apples
T = [bananas] 

In the previous and following examples, the tail is a list with one element. 

?- [H|T] = [a, [b,c,d]].
H = a
T = [[b, c, d]] 

In the next case, the tail is the empty list. 

?- [H|T] = [apples].
H = apples
T = [] 

The empty list does not unify with the standard list syntax because it has no head. 

?- [H|T] = [].
no

NOTE: This last failure is important, because it is often used to test for the boundary condition in a 
recursive routine. That is, as long as there are elements in the list, a unification with the [X|Y] pattern 
will succeed. When there are no elements in the list, that unification fails, indicating that the boundary 
condition applies. 

We can specify more than just the first element before the bar (|). In fact, the only rule is that what 
follows it should be a list. 

?- [One, Two | T] = [apple, sprouts, fridge, milk].
One = apple
Two = sprouts
T = [fridge, milk] 

Notice in the next examples how each of the variables is bound to a structure that shows the 
relationships between the variables. The internal variable numbers indicate how the variables are related. 
In the first example Z, the tail of the right-hand list, is unified with [Y|T]. In the second example T, the 
tail of the left-hand list is unified with [Z]. In both cases, Prolog looks for the most general way to relate 
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or bind the variables. 

?- [X,Y|T] = [a|Z].
X = a
Y = _01
T = _03
Z = [_01 | _03] 

?- [H|T] = [apple, Z].
H = apple
T = [_01]
Z = _01 

Study these last two examples carefully, because list unification is critical in building list utility 
predicates. 

A list can be thought of as a head and a tail list, whose head is the second element and whose tail is a list 
whose head is the third element, and so on. 

?- [a|[b|[c|[d|[]]]]] = [a,b,c,d].
yes

We have said a list is a special kind of structure. In a sense it is, but in another sense it is just like any 
other Prolog term. The last example gives us some insight into the true nature of the list. It is really an 
ordinary two-argument predicate. The first argument is the head and the second is the tail. If we called it 
dot/2, then the list [a,b,c,d] would be 

dot(a,dot(b,dot(c,dot(d,[]))))

In fact, the predicate does exist, at least conceptually, and it is called dot, but it is represented by a 
period (.) instead of dot. 

To see the dot notation, we use the built-in predicate display/1, which is similar to write/1, except it 
always uses the dot syntax for lists when it writes to the console. 

?- X = [a,b,c,d], write(X), nl, display(X), nl.
 [a,b,c,d]
.(a,.(b,.(c,.d(,[]))))

?- X = [Head|Tail], write(X), nl, display(X), nl.
 [_01, _02]
.(_01,_02)
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?- X = [a,b,[c,d],e], write(X), nl, display(X), nl.
 [a,b,[c,d],e]
.(a,.(b,.(.(c,.(d,[])),.(e,[]))))

From these examples it should be clear why there is a different syntax for lists. The easier syntax makes 
for easier reading, but sometimes obscures the behavior of the predicate. It helps to keep this "real" 
structure of lists in mind when working with predicates that manipulate lists. 

This structure of lists is well-suited for the writing of recursive routines. The first one we will look at is 
member/2, which determines whether or not a term is a member of a list. 

As with most recursive predicates, we will start with the boundary condition, or the simple case. An 
element is a member of a list if it is the head of the list. 

member(H,[H|T]).

This clause also illustrates how a fact with variable arguments acts as a rule. 

The second clause of member/2 is the recursive rule. It says an element is a member of a list if it is a 
member of the tail of the list. 

member(X,[H|T]) :- member(X,T).

The full predicate is 

member(H,[H|T]).
member(X,[H|T]) :- member(X,T).

Note that both clauses of member/2 expect a list as the second argument. Since T in [H|T] in the second 
clause is itself a list, the recursive call to member/2 works. 

?- member(apple, [apple, broccoli, crackers]).
yes

?- member(broccoli, [apple, broccoli, crackers]).
yes

?- member(banana, [apple, broccoli, crackers]).
no

Figure 11.1 has a full annotated trace of member/2. 
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The query is 

?- member(b, [a,b,c]).

1-1 CALL member(b,[a,b,c])

The goal pattern fails to unify with the head of the first clause of member/2, because the pattern in the 
head of the first clause calls for the head of the list and first argument to be identical. The goal pattern 
can unify with the head of the second clause.

1-1 try (2) member(b,[a,b,c])

The second clause recursively calls another copy of member/2.

    2-1 CALL member(b,[b,c])

It succeeds because the call pattern unifies with the head of the first clause.

    2-1 EXIT (1) member(b,[b,c]) 

The success ripples back to the outer level.

1-1 EXIT (2) member(b,[a,b,c]) 
     yes

Figure 11.1. Trace of member/2 

As with many Prolog predicates, member/2 can be used in multiple ways. If the first argument is a 
variable, member/2 will, on backtracking, generate all of the terms in a given list. 

?- member(X, [apple, broccoli, crackers]).
X = apple ;
X = broccoli ;
X = crackers ;
no

We will now trace this use of member/2 using the internal variables. Remember that each level has its 
own unique variables, but that they are tied together based on the unification patterns between the goal 

http://www.amzi.com/AdventureInProlog/a11lists.htm (6 of 14)11/3/2006 7:05:48 PM



Lists

at one level and the head of the clause on the next level. 

In this case the pattern is simple in the recursive clause of member. The head of the clause unifies X 
with the first argument of the original goal, represented by _0 in the following trace. The body has a call 
to member/2 in which the first argument is also X, therefore causing the next level to unify with the 
same _0. 

Figure 11.2 has the trace. 

The query is 

?- member(X,[a,b,c]).

The goal succeeds by unification with the head of the first clause, if X = a.

1-1 CALL member(_0,[a,b,c]) 
1-1 EXIT (1) member(a,[a,b,c]) 
    X = a ;

Backtracking unbinds the variable and the second clause is tried.

1-1 REDO member(_0,[a,b,c]) 
1-1 try (2) member(_0,[a,b,c])

It succeeds on the second level, just as on the first level.

    2-1 CALL member(_0,[b,c]) 
    2-1 EXIT (1) member(b,[b,c]) 
1-1 EXIT  member(b,[a,b,c]) 
    X = b ;

Backtracking continues onto the third level, with similar results.

    2-1 REDO member(_0,[b,c]) 
    2-1 try (2) member(_0,[b,c])
        3-1 CALL member(_0,[c]) 
        3-1 EXIT (1) member(c,[c]) 
    2-1 EXIT (2) member(c,[b,c]) 
1-1 EXIT (2) member(c,[a,b,c]) 
    X = c ;
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Further backtracking causes an attempt to find a member of the empty list. The empty list does not 
unify with either of the list patterns in the member/2 clauses, so the query fails back to the beginning.

        3-1 REDO member(_0,[c]) 
        3-1 try (2) member(_0,[c])
            4-1 CALL member(_0,[])
            4-1 FAIL member(_0,[])
        3-1 FAIL member(_0,[c])
    2-1 FAIL member(_0,[b,c])
1-1 FAIL member(_0,[a,b,c])
     no

Figure 11.2. Trace of member/2 generating elements of a list 

Another very useful list predicate builds lists from other lists or alternatively splits lists into separate 
pieces. This predicate is usually called append/3. In this predicate the second argument is appended to 
the first argument to yield the third argument. For example 

?- append([a,b,c],[d,e,f],X).
X = [a,b,c,d,e,f]

It is a little more difficult to follow, since the basic strategy of working from the head of the list does not 
fit nicely with the problem of adding something to the end of a list. append/3 solves this problem by 
reducing the first list recursively. 

The boundary condition states that if a list X is appended to the empty list, the resulting list is also X. 

append([],X,X).

The recursive condition states that if list X is appended to list [H|T1], then the head of the new list is also 
H, and the tail of the new list is the result of appending X to the tail of the first list. 

append([H|T1],X,[H|T2]) :-
  append(T1,X,T2).

The full predicate is 

append([],X,X).
append([H|T1],X,[H|T2]) :-
  append(T1,X,T2).
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Real Prolog magic is at work here, which the trace alone does not reveal. At each level, new variable 
bindings are built, that are unified with the variables of the previous level. Specifically, the third 
argument in the recursive call to append/3 is the tail of the third argument in the head of the clause. 
These variable relationships are included at each step in the annotated trace shown in Figure 11.3. 

The query is 

?- append([a,b,c],[d,e,f],X).

1-1 CALL append([a,b,c],[d,e,f],_0)
    X = _0
    2-1 CALL append([b,c],[d,e,f],_5)
        _0 = [a|_5]
        3-1 CALL append([c],[d,e,f],_9)
            _5 = [b|_9]
            4-1 CALL append([],[d,e,f],_14)
                _9 = [c|_14]

By making all the substitutions of the variable relationships, we can see that at this point X is bound 
as follows (thinking in terms of the dot notation for lists might make append/3 easier to understand).

X = [a|[b|[c|_14]]]

We are about to hit the boundary condition, as the first argument has been reduced to the empty list. 
Unifying with the first clause of append/3 will bind _14 to a value, namely [d,e,f], thus giving us the 
desired result for X, as well as all the other intermediate variables. Notice the bound third arguments 
at each level, and compare them to the variables in the call ports above.

            4-1 EXIT (1) append([],[d,e,f],[d,e,f])
        3-1 EXIT (2) append([c],[d,e,f],[c,d,e,f])
    2-1 EXIT (2) append([b,c],[d,e,f],[b,c,d,e,f])
1-1 EXIT (2)append([a,b,c],[d,e,f],[a,b,c,d,e,f])
    X = [a,b,c,d,e,f] 

Figure 11.3. Trace of append/3 

Like member/2, append/3 can also be used in other ways, for example, to break lists apart as follows. 

?- append(X,Y,[a,b,c]).
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X = []
Y = [a,b,c] ;

X = [a]
Y = [b,c] ;

X = [a,b]
Y = [c] ;

X = [a,b,c]
Y = [] ;
no

Using the List Utilities 

Now that we have tools for manipulating lists, we can use them. For example, if we choose to use 
loc_list/2 instead of location/2 for storing things, we can write a new location/2 that behaves exactly like 
the old one, except that it computes the answer rather than looking it up. This illustrates the sometimes 
fuzzy line between data and procedure. The rest of the program cannot tell how location/2 gets its 
results, whether as data or by computation. In either case it behaves the same, even on backtracking. 

location(X,Y):-  
  loc_list(List, Y),
  member(X, List).

In the game, it will be necessary to add things to the loc_lists whenever something is put down in a 
room. We can write add_thing/3 which uses append/3. If we call it with NewThing and Container, it will 
provide us with the NewList. 

add_thing(NewThing, Container, NewList):-  
  loc_list(OldList, Container),
  append([NewThing],OldList, NewList).

Testing it gives 

?- add_thing(plum, kitchen, X).
X = [plum, apple, broccoli, crackers]

However, this is a case where the same effect can be achieved through unification and the [Head|Tail] 
list notation. 

add_thing2(NewThing, Container, NewList):- 
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  loc_list(OldList, Container),
  NewList = [NewThing | OldList].

It works the same as the other one. 

?- add_thing2(plum, kitchen, X).
X = [plum, apple, broccoli, crackers]

We can simplify it one step further by removing the explicit unification, and using the implicit 
unification that occurs at the head of a clause, which is the preferred form for this type of predicate. 

add_thing3(NewTh, Container,[NewTh|OldList]) :-
  loc_list(OldList, Container).

It also works the same. 

?- add_thing3(plum, kitchen, X).
X = [plum, apple, broccoli, crackers]

In practice, we might write put_thing/2 directly without using the separate add_thing/3 predicate to build 
a new list for us. 

put_thing(Thing,Place) :-
  retract(loc_list(List, Place)),
  asserta(loc_list([Thing|List],Place)).

Whether you use multiple logicbase entries or lists for situations, such as we have with locations of 
things, is largely a matter of style. Your experience will lead you to one or the other in different 
situations. Sometimes backtracking over multiple predicates is a more natural solution to a problem and 
sometimes recursively dealing with a list is more natural. 

You might find that some parts of a particular application fit better with multiple facts in the logicbase 
and other parts fit better with lists. In these cases it is useful to know how to go from one format to the 
other. 

Going from a list to multiple facts is simple. You write a recursive routine that continually asserts the 
head of the list. In this example we create individual facts in the predicate stuff/1. 

break_out([]).
break_out([Head | Tail]):-
  assertz(stuff(Head)),
  break_out(Tail).
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Here's how it works. 

?- break_out([pencil, cookie, snow]).
yes

?- stuff(X).
X = pencil ;
X = cookie ;
X = snow ;
no

Transforming multiple facts into a list is more difficult. For this reason most Prologs provide built-in 
predicates that do the job. The most common one is findall/3. The arguments are 

arg1 
A pattern for the terms in the resulting list 

arg2
A goal pattern 

arg3 
The resulting list 

findall/3 automatically does a full backtracking search of the goal pattern and stores each result in the 
list. It can recover our stuff/1 back into a list. 

?- findall(X, stuff(X), L).
L = [pencil, cookie, snow]

Fancier patterns are available. This is how to get a list of all the rooms connecting to the kitchen. 

?- findall(X, connect(kitchen, X), L).
L = [office, cellar, 'dining room']

The pattern in the first argument can be even fancier and the second argument can be a conjunction of 
goals. Parentheses are used to group the conjunction of goals in the second argument, thus avoiding the 
potential ambiguity. Here findall/3 builds a list of structures that locates the edible things. 

?- findall(foodat(X,Y), (location(X,Y) , edible(X)), L).
L = [foodat(apple, kitchen), foodat(crackers, kitchen)]

Exercises 
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List Utilities

1- Write list utilities that perform the following functions. 

●     Remove a given element from a list 
●     Find the element after a given element 
●     Split a list into two lists at a given element (Hint - append/3 is close.) 
●     Get the last element of a list 
●     Count the elements in a list (Hint - the length of the empty list is 0, the length a non-empty list is 

1 + the length of its tail.) 

2- Because write/1 only takes a single argument, multiple 'writes' are necessary for writing a mixed 
string of text and variables. Write a list utility respond/1 which takes as its single argument a list of 
terms to be written. This can be used in the game to communicate with the player. For example 

respond(['You can''t get to the', Room, 'from here'])

3- Lists with a variable tail are called open lists. They have some interesting properties. For example, 
member/2 can be used to add items to an open list. Experiment with and trace the following queries. 

?- member(a,X).
?- member(b, [a,b,c|X]).
?- member(d, [a,b,c|X]).
?- OpenL = [a,b,c|X], member(d, OpenL), write(OpenL).

Nonsense Prolog

4- Predict the results of the following queries. 

?- [a,b,c,d] = [H|T].
?- [a,[b,c,d]] = [H|T].
?- [] = [H|T].
?- [a] = [H|T].
?- [apple,3,X,'What?'] = [A,B|Z].
?- [[a,b,c],[d,e,f],[g,h,i]] = [H|T].
?- [a(X,c(d,Y)), b(2,3), c(d,Y)] = [H|T].

Genealogical Logicbase

5- Consider the following Prolog program 
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parent(p1,p2).
parent(p2,p3).
parent(p3,p4).
parent(p4,p5).

ancestor(A,D,[A]) :- parent(A,D).
ancestor(A,D,[X|Z]) :-
        parent(X,D),
        ancestor(A,X,Z).

6- What is the purpose of the third argument to ancestor? 

7- Predict the response to the following queries. Check by tracing in Prolog. 

?- ancestor(a2,a3,X).
?- ancestor(a1,a5,X).
?- ancestor(a5,a1,X).
?- ancestor(X,a5,Z).

Expert System

8- Lists provide a convenient way to provide a simple menu capability to our expert system. We can 
replace the 'ask' predicate with menuask/3 where appropriate. menuask/3 will ask the player to select an 
item from a menu. The format is 

menuask(Attribute, Value, List_of_Choices).

For example 

size(X):- menuask(size, X, [large, medium, small]).

This requires two intermediate predicates, menu_display/2 and menu_select/2. The first writes each 
choice on a separate line preceded by a unique number. The second uses a number entered by the user to 
return the "nth" element of the list. 

Copyright ©1990,1996-97, 2004 Amzi! inc. All Rights Reserved
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Operators

We have seen that the form of a Prolog data structure is 

functor(arg1,arg2,...,argN).

This is the ONLY data structure in Prolog. However, Prolog allows for other ways to syntactically 
represent the same data structure. These other representations are sometimes called syntactic sugaring. 
The equivalence between list syntax and the dot (.) functor is one example. Operator syntax is another. 

Chapter 6 introduced arithmetic operators. In this chapter we will equate them to the standard Prolog 
data structures, and learn how to define any functor to be an operator. 

Each arithmetic operator is an ordinary Prolog functor, such as -/2, +/2, and -/1. The display/1 predicate 
can be used to see the standard syntax. 

?- display(2 + 2).
+(2,2)

?- display(3 * 4 + 6).
+(*(3,4),6)

?- display(3 * (4 + 6)).
*(3,+(4,6))

You can define any functor to be an operator, in which case the Prolog listener will be able to read the 
structure in a different format. For example, if location/2 was an operator we could write 

apple location kitchen.

instead of 

location(apple, kitchen).
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NOTE: The fact that location is an operator is of NO significance to Prolog's pattern matching. It simply 
means there is an alternative way of writing the same term. 

Operators are of three types. 

infix 
Example: 3 + 4 

prefix 
Example: -7 

postfix 
Example: 8 factorial 

They have a number representing precedence which runs from 1 to 1200. When a term with multiple 
operators is converted to pure syntax, the operators with higher precedences are converted first. A high 
precedence is indicated by a low number. 

Operators are defined with the built-in predicate op/3, whose three arguments are precedence, 
associativity, and the operator name. 

Associativity in the second argument is represented by a pattern that defines the type of operator. The 
first example we will see is the definition of an infix operator which uses the associativity pattern 'xfx.' 
The 'f' indicates the position of the operator in respect to its arguments. We will see other patterns as we 
proceed. 

For our current purposes, we will again rework the location/2 predicate and rename it is_in/2 to go with 
its new look, and we will represent rooms in the structure room/1. 

is_in(apple, room(kitchen)).

We will now make is_in/2 an infix operator of arbitrary precedence 35. 

?- op(35,xfx,is_in).

Now we can ask 

?- apple is_in X.
X = room(kitchen)

or 
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?- X is_in room(kitchen).
X = apple

We can add facts to the program in operator syntax. 

banana is_in room(kitchen).

To verify that Prolog treats both syntaxes the same we can attempt to unify them. 

?- is_in(banana, room(kitchen)) = banana is_in room(kitchen).
yes

And we can use display/1 to look at the new syntax. 

?- display(banana is_in room(kitchen)).
is_in(banana, room(kitchen))

Let's now make room/1 a prefix operator. Note that in this case the associativity pattern fx is used to 
indicate the functor comes before the argument. Also we chose a precedence (33) higher (higher 
precedence has lower number) than that used for is_in (35) in order to nest the room structure inside the 
is_in structure. 

?- op(33,fx,room).

Now room/1 is displayed in operator syntax. 

?- room kitchen = room(kitchen).
yes

?- apple is_in X.
X = room kitchen\

The operator syntax can be used to add facts to the program. 

pear is_in room kitchen.

?- is_in(pear, room(kitchen)) = pear is_in room kitchen.
yes

?- display(pear is_in room kitchen).
is_in(pear, room(kitchen))
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CAUTION: If you mix up the precedence (easy to do) you will get strange bugs. If room/1 had a lower 
precedence (higher number) than is_in/2, then the structure would be 

room(is_in(apple, kitchen))

Not only doesn't this capture the information as intended, it also will not unify the way we want. 

For completeness, an example of a candidate for a postfix operator would be turned_on. Again note that 
the 'xf' pattern says that the functor comes after the argument. 

?- op(33,xf,turned_on).

We can now say 

flashlight turned_on.

and 

?- turned_on(flashlight) = flashlight turned_on.
yes

Operators are useful for making more readable data structures in a program and for making quick and 
easy user interfaces. 

In our command-driven Nani Search, we use a simple natural language front end, which will be 
described in the last chapter. We could have alternatively made the commands operators so that 

goto(kitchen) 
becomes goto kitchen. 

turn_on(flashlight) 
becomes turn_on flashlight. 

take(apple) 
becomes take apple. 

It's not natural language, but it's a lot better than parentheses and commas. 

We have seen how the precedence of operators affects their translation into structures. When operators 
are of equal precedence, the Prolog reader must decide whether to work from left to right, or right to left. 
This is the difference between right and left associativity. 

An operator can also be non-associative, which means an error is generated if you try to string two 
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together. 

The same pattern used for precedence is used for associativity with the additional character y. The 
options are 

Infix: 
xfx non-associative
xfy right to left
yfx left to right 

Prefix 
fx non-associative
fy left to right 

Postfix: 
xf non-associative
yf right to left 

The is_in/2 predicate is currently non-associative so this gets an error. 

key is_in desk is_in office.

To represent nesting, we would want this to be evaluated from right to left. 

?- op(35,xfy,is_in).
yes

?- display(key is_in desk is_in office).
is_in(key, is_in(desk, office))

If we set it left to right the arguments would be different. 

?- op(35,yfx,is_in).
yes

?- display(key is_in desk is_in office).
is_in(is_in(key, desk), office)

We can override operator associativity and precedence with parentheses. Thus we can get our left to 
right is_in to behave right to left like so. 

?- display(key is_in (desk is_in office)).
is_in(key, is_in(desk, office))
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Many built-in predicates are actually defined as infix operators. That means that rather than following 
the standard predicate(arg1,arg2) format, the predicate can appear between the arguments as 

arg1 predicate arg2.

The arithmetic operators we have seen already illustrate this. For example +, -, *, and / are used as you 
would expect. However, it is important to understand that these arithmetic structures are just structures 
like any others, and do not imply arithmetic evaluation. 3 + 4 is not the same as 7 any more than plus
(3,4) is or likes(3,4). It is just +(3,4). 

Only special built-in predicates, like is/2, actually perform an arithmetic evaluation of an arithmetic 
expression. As we have seen, is/2 causes the right side to be evaluated and the left side is unified with 
the evaluated result. 

This is in contrast to the unification (=) predicate, which just unifies terms without evaluating them. 

?- X is 3 + 4.
X = 7

?- X = 3 + 4.
X = 3 + 4

?- 10 is 5 * 2.
yes

?- 10 = 5 * 2.
no

Arithmetic expressions can be as arbitrarily complex as other structures. 

?- X is 3 * 4 + (6 / 2).
X = 15

Even if they are not evaluated. 

?- X = 3 * 4 + (6 / 2).
X = 3 * 4 + (6 / 2)

The operator predicates can also be written in standard notation. 

?- X is +(*(3,4) , /(6,2)).
X = 15
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?- 3 * 4 + (6 / 2) = +(*(3,4),/(6,2)).
yes

To underscore that these arithmetic operators are really ordinary predicates with no special meaning 
unless being evaluated by is/2, consider 

?- X = 3 * 4 + likes(john, 6/2).
X = 3 * 4 + likes(john, 6/2).

?- X is 3 * 4 + likes(john, 6/2).
error

We have seen that Prolog programs are composed of clauses. These clauses are simply Prolog data 
structures written with operator syntax. The functor is the neck (:-) which is defined as an infix operator. 
There are two arguments. 

:-(Head, Body).

The body is a data structure with the functor 'and' represented by a comma (,). The body looks like 

,(goal1, ,(goal2,,goal3))

Note the ambiguous use of the comma (,) as a conjunctive operator and as a separator of arguments in a 
Prolog structure. This can cause confusion in Prolog programs that manipulate Prolog clauses. It might 
have been clearer if an ampersand (&) was used instead of a comma for separating goals. Then the 
above pattern would be 

&(goal1, &(goal2, & goal3))

and the following would be equivalent. 

head :- goal1 & goal2 & goal3.
:-(head, &(goal1, &(goal2, & goal3))).

But that is not how it was done, so the two forms are 

head :- goal1 , goal2 , goal3.
:-(head, ,(goal1, ,(goal2, , goal3))).

Every other comma has a different meaning. 

http://www.amzi.com/AdventureInProlog/a12oper.htm (7 of 8)11/3/2006 7:05:52 PM



Operators

The arithmetic operators are often used by Prolog programmers to syntactically join related terms. For 
example, the write/1 predicate takes only one argument, but operators give an easy way around this 
restriction. 

?- X = one, Y = two, write(X-Y).
one - two 

The slash (/) can be used the same way. In addition, some Prologs define the colon (:) as an operator just 
for this purpose. It can improve readability by removing some parentheses. For example, the complex 
structures for defining things in the game can be syntactically represented with the colon as well. 

object(apple, size:small, color:red, weight:1).

A query looking for small things would be expressed 

?- object(X, size:small, color:C, weight:W).
X = apple
C = red
W = 1 

The pattern matching is the same as always, but instead of size(small) we use the pattern size:small, 
which is really :(size,small). 

Exercises 

Adventure Game

1- Define all of the Nani Search commands as operators so the current version of the game can be played 
without parentheses or commas. 

Genealogical Logicbase

2- Define the various relationships in the genealogical logicbase as operators. 
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Cut

Up to this point, we have worked with Prolog's backtracking execution behavior. We have seen how to 
use that behavior to write compact predicates. 

Sometimes it is desirable to selectively turn off backtracking. Prolog provides a predicate that performs 
this function. It is called the cut, represented by an exclamation point (!). 

The cut effectively tells Prolog to freeze all the decisions made so far in this predicate. That is, if 
required to backtrack, it will automatically fail without trying other alternatives. 

We will first examine the effects of the cut and then look at some practical reasons to use it. 

Figure 13.1. The effect of the cut on flow of control 

When the cut is encountered, it re-routes backtracking, as shown in figure 13.1. It short-circuits 
backtracking in the goals to its left on its level, and in the level above, which contained the cut. That is, 
both the parent goal (middle goal of top level) and the goals of the particular rule being executed 
(second level) are affected by the cut. The effect is undone if a new route is taken into the parent goal. 
Contrast figure 13.1 with figure 5.1. 

We will write some simple predicates that illustrate the behavior of the cut, first adding some data to 
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backtrack over. 

data(one).
data(two).
data(three).

Here is the first test case. It has no cut and will be used for comparison purposes. 

cut_test_a(X) :-
  data(X).
cut_test_a('last clause').

This is the control case, which exhibits the normal behavior. 

?- cut_test_a(X), write(X), nl, fail.
one
two
three
last clause
no

Next, we put a cut at the end of the first clause. 

cut_test_b(X) :-
  data(X),
  !.
cut_test_b('last clause').

Note that it stops backtracking through both the data/1 subgoal (left), and the cut_test_b parent (above). 

?- cut_test_b(X), write(X), nl, fail.
one
no

Next we put a cut in the middle of two subgoals. 

cut_test_c(X,Y) :-
  data(X),
  !,
  data(Y).
cut_test_c('last clause').
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Note that the cut inhibits backtracking in the parent cut_test_c and in the goals to the left of (before) the 
cut (first data/1). The second data/1 to the right of (after) the cut is still free to backtrack. 

?- cut_test_c(X,Y), write(X-Y), nl, fail.
one - one
one - two
one - three
no

Performance is the main reason to use the cut. This separates the logical purists from the pragmatists. 
Various arguments can also be made as to its effect on code readability and maintainability. It is often 
called the 'goto' of logic programming. 

You will most often use the cut when you know that at a certain point in a given predicate, Prolog has 
either found the only answer, or if it hasn't, there is no answer. In this case you insert a cut in the 
predicate at that point. 

Similarly, you will use it when you want to force a predicate to fail in a certain situation, and you don't 
want it to look any further. 

Using the Cut 

We will now introduce to the game the little puzzles that make adventure games fun to play. We will put 
them in a predicate called puzzle/1. The argument to puzzle/1 will be one of the game commands, and 
puzzle/1 will determine whether or not there are special constraints on that command, reacting 
accordingly. 

We will see examples of both uses of the cut in the puzzle/1 predicate. The behavior we want is 

●     If there is a puzzle, and the constraints are met, quietly succeed. 
●     If there is a puzzle, and the constraints are not met, noisily fail. 
●     If there is no puzzle, quietly succeed. 

The puzzle in Nani Search is that in order to get to the cellar, the game player needs to both have the 
flashlight and turn it on. If these criteria are met we know there is no need to ever backtrack through 
puzzle/1 looking for other clauses to try. For this reason we include the cut. 

puzzle(goto(cellar)):-
  have(flashlight),
  turned_on(flashlight),
  !.
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If the puzzle constraints are not met, then let the player know there is a special problem. In this case we 
also want to force the calling predicate to fail, and we don't want it to succeed by moving to other 
clauses of puzzle/1. Therefore we use the cut to stop backtracking, and we follow it with fail. 

puzzle(goto(cellar)):-
  write('It''s dark and you are afraid of the dark.'),
  !, fail.

The final clause is a catchall for those commands that have no special puzzles associated with them. 
They will always succeed in a call to puzzle/1. 

puzzle(_).

For logical purity, it is always possible to rewrite the predicates without the cut. This is done with the 
built-in predicate not/1. Some claim this provides for clearer code, but often the explicit and liberal use 
of 'not' clutters up the code, rather than clarifying it. 

When using the cut, the order of the rules becomes important. Our second clause for puzzle/1 safely 
prints an error message, because we know the only way to get there is by the first clause failing before it 
reached the cut. 

The third clause is completely general, because we know the earlier clauses have caught the special 
cases. 

If the cuts were removed from the clauses, the second two clauses would have to be rewritten. 

puzzle(goto(cellar)):-
  not(have(flashlight)),
  not(turned_on(flashlight)),
  write('Scared of dark message'),
  fail.
puzzle(X):-
  not(X = goto(cellar)).

In this case the order of the clauses would not matter. 

It is interesting to note that not/1 is defined using the cut. It also uses call/1, another built-in predicate 
that calls a predicate. 

not(X) :- call(X), !, fail.
not(X).
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In the next chapter we will see how to add a command loop to the game. Until then we can test the 
puzzle predicate by including a call to it in each individual command. For example 

goto(Place) :- 
  puzzle(goto(Place)),
  can_go(Place),
  move(Place),
  look.

Assuming the player is in the kitchen, an attempt to go to the cellar will fail. 

?- goto(cellar).
It's dark and you are afraid of the dark.
no

?- goto(office).
You are in the office...

Then if the player takes the flashlight, turns it on, and return to the kitchen, all goes well. 

?- goto(cellar).
You are in the cellar... 

Exercises 

Adventure Game

1- Test the puzzle/1 predicate by setting up various game situations and seeing how it responds. When 
testing predicates with cuts you should always use the semicolon (;) after each answer to make sure it 
behaves correctly on backtracking. In our case puzzle/1 should always give one response and fail on 
backtracking. 

2- Add your own puzzles for different situations and commands. 

Expert System

3- Modify the ask and menuask predicates to use cut to replace the use of not. 

Customer Order Entry

4- Modify the good_customer rules to use cut to prevent the search of other cases once we know one has 
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been found. 
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14 

Control Structures

We have examined the manner in which Prolog interprets goals and have also seen examples of how to 
manipulate Prolog's execution behavior. 

In this chapter we will further explore the control structures you can implement in Prolog and draw 
parallels between them and the control structures found in more conventional programming languages. 

You have already used the combination of fail and write/1 to generate lists of things for the game. This 
control structure is similar to 'do while' found in most languages. 

We will now introduce another built-in predicate that allows us to capitalize on failure. It is repeat/0. It 
always succeeds the first time it is called, and it always succeeds on backtracking. In other words, you 
can not backtrack through a repeat/0. It always restarts forward execution.< 

Figure 14.1. Flow of control in the repeat/0 built-in predicate 

A clause body with a repeat/0 followed by fail/0 will go back and forth forever. This is one way to write 
an endless loop in Prolog. 

A repeat/0 followed by some intermediate goals followed by a test condition will loop until the test 
condition is satisfied. It is equivalent to a 'do until' in other languages. This is exactly the behavior we 
want for the highest command loop in Nani Search. 

Our first version of command_loop/0 will simply read commands and echo them until end is entered. 
The built-in predicate read/1 reads a Prolog term from the console. The term must be followed by a 
period. 
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command_loop:-  
  repeat,
  write('Enter command (end to exit): '),
  read(X),
  write(X), nl,
  X = end.

The last goal will fail unless end is entered. The repeat/0 always succeeds on backtracking and causes 
the intermediate goals to be re-executed. 

We can execute it by entering this query. 

?- command_loop.

Now that the control structure is in place, we can have it execute the command, rather than just repeat it. 

We will write a new predicate called do/1, which executes only the commands we allow. Many other 
languages have 'do case' control structures that perform this kind of function. Multiple clauses in a 
Prolog predicate behave similarly to a 'do case.' 

Here is do/1. Notice that it allows us to define synonyms for commands, that is, the player can enter 
either goto(X) or go(X) to cause the goto/1 predicate to be executed. 

do(goto(X)):-goto(X),!.
do(go(X)):-goto(X),!.
do(inventory):-inventory,!.
do(look):-look,!.

NOTE: The cut serves two purposes. First, it says once we have found a 'do' clause to execute, don't 
bother looking for anymore. Second, it prevents the backtracking initiated at the end of command_loop 
from entering the other command predicates. 

Here are some more do/1's. If do(end) did not always succeed, we would never get to the' X = end' test 
and would fail forever. The last do/1 allows us to tell the user there was something wrong with the 
command. 

do(take(X)) :- take(X), !.
do(end).
do(_) :-
  write('Invalid command').
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We can now rewrite command_loop/0 to use the new do/1 and incorporate puzzle/1 in the command 
loop. We will also replace the old simple test for end with a new predicate, end_condition/1, that will 
determine if the game is over. 

command_loop:- 
  write('Welcome to Nani Search'), nl,
  repeat,
  write('>nani> '),
  read(X),
  puzzle(X),
  do(X), nl,
  end_condition(X).

Two conditions might end the game. The first is if the player types 'end.' The second is if the player has 
successfully taken the Nani. 

end_condition(end).
end_condition(_) :-
  have(nani),
  write('Congratulations').

The game can now be played from the top. 

?- command_loop.

Welcome to ...

Recursive Control Loop 

As hinted at in chapter 7, the purity of logic programming is undermined by the asserts and retracts of 
the logicbase. Just like global data in any language, predicates that are dynamically asserted and 
retracted can make for unpredictable code. That is, code in one part of the system that uses a dynamic 
predicate is affected by code in an entirely different part that changes that dynamic predicate. 

For example, puzzle(goto(cellar)) succeeds or fails based on the existence of turned_on(flashlight) 
which is asserted by the turn_on/1 predicate. A bug in turn_on/1 will cause puzzle/1 to behave 
incorrectly. 

The entire game can be reconstructed using arguments and no global data. To do this, it helps to think of 
the game as a sequence of state transformations. 

In the current implementation, the state of the game is defined by the dynamic predicates location/2, 
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here/1, have/1, and turned_on/1 or turned_off/1 for the flashlight. These predicates define an initial state 
which is dynamically changed, using assert and retract, as the player moves through the game toward the 
winning state, which is defined by the existence of have(nani). 

We can get the same effect by defining a complex structure to hold the state, implementing game 
commands that access that state as an argument, rather than from dynamic facts in the logicbase. 

Because logical variables cannot have their values changed by assignment, the commands must take two 
arguments representing the old state and the new state. The repeat-fail control structure will not let us 
repeatedly change the state in this manner, so we need to write a recursive control structure that 
recursively sends the new state to itself. The boundary condition is reaching the ending state of the 
game. This control structure is shown in figure 14.1, which contains an abbreviated version of Nani 
Search. 

The state is represented by a list of structures holding different types of state information, as seen in 
initial_state/1. The various commands in this type of game need to access and manipulate that state 
structure. Rather than require each predicate that accesses the state to understand its complex structure, 
the utility predicates get_state/3, add_state/4, and del_state/4 are written to access it. This way any 
program changes to the state structure only require changes to the utility predicates. 

This style of Prolog programming is logically purer, and lends itself to certain types of applications. It 
also avoids the difficulties often associated with global data. On the other hand, it requires more 
complexity in dealing with state information in arguments, and the multiple lists and recursive routines 
can be confusing to debug. You will have to decide which approach to use for each application you 
write. 

/*      a nonassertive version of nani search */

nani :-
  write('Welcome to Nani Search'),
  nl,
  initial_state(State),
  control_loop(State).

control_loop(State) :-
  end_condition(State).
control_loop(State) :-
  repeat,
  write('> '),
  read(X),
  constraint(State, X),
  do(State, NewState, X),
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  control_loop(NewState).

/* initial dynamic state */

initial_state([
here(kitchen),
have([]),
location([
        kitchen/apple,
        kitchen/broccoli,
        office/desk,
        office/flashlight,
        cellar/nani ]),
status([
        flashlight/off,
        game/on]) ]).

/* static state */

rooms([office, kitchen, cellar]).

doors([office/kitchen, cellar/kitchen]).

connect(X,Y) :-
  doors(DoorList),
  member(X/Y, DoorList).
connect(X,Y) :-
  doors(DoorList),
  member(Y/X, DoorList).

/* list utilities */

member(X,[X|Y]).
member(X,[Y|Z]) :- member(X,Z).

delete(X, [], []).
delete(X, [X|T], T).
delete(X, [H|T], [H|Z]) :- delete(X, T, Z).

/* state manipulation utilities */

get_state(State, here, X) :-
  member(here(X), State).
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get_state(State, have, X) :-
  member(have(Haves), State),
  member(X, Haves).
get_state(State, location, Loc/X) :-
  member(location(Locs), State),
  member(Loc/X, Locs).
get_state(State, status, Thing/Stat) :-
  member(status(Stats), State),
  member(Thing/Stat, Stats).

del_state(OldState, [location(NewLocs) | Temp], location, Loc/X):-
  delete(location(Locs), OldState, Temp),
  delete(Loc/X, Locs, NewLocs).

add_state(OldState, [here(X)|Temp], here, X) :-
  delete(here(_), OldState, Temp).
add_state(OldState, [have([X|Haves])|Temp], have, X) :-
  delete(have(Haves), OldState, Temp).
add_state(OldState, [status([Thing/Stat|TempStats])|Temp],
status, Thing/Stat) :-
  delete(status(Stats), OldState, Temp),
  delete(Thing/_, Stats, TempStats).

/* end condition */

end_condition(State) :-
  get_state(State, have, nani),
  write('You win').
end_condition(State) :-
  get_state(State, status, game/off),
  write('quitter').

/* constraints and puzzles together */

constraint(State, goto(cellar)) :-
  !, can_go_cellar(State).
constraint(State, goto(X)) :-
  !, can_go(State, X).
constraint(State, take(X)) :-
  !, can_take(State, X).
constraint(State, turn_on(X)) :-
  !, can_turn_on(State, X).
constraint(_, _).
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can_go(State,X) :-
  get_state(State, here, H),
  connect(X,H).
can_go(_, X) :-
  write('You can''t get there from here'),
  nl, fail.

can_go_cellar(State) :-
  can_go(State, cellar),
  !, cellar_puzzle(State).

cellar_puzzle(State) :-
  get_state(State, have, flashlight),
  get_state(State, status, flashlight/on).
cellar_puzzle(_) :-
  write('It''s dark in the cellar'),
  nl, fail.

can_take(State, X) :-
  get_state(State, here, H),
  get_state(State, location, H/X).
can_take(State, X) :-
  write('it is not here'),
  nl, fail.

can_turn_on(State, X) :-
  get_state(State, have, X).
can_turn_on(_, X) :-
  write('You don''t have it'),
  nl, fail.

/* commands */ 

do(Old, New, goto(X)) :- goto(Old, New, X), !.
do(Old, New, take(X)) :- take(Old, New, X), !.
do(Old, New, turn_on(X)) :- turn_on(Old, New, X), !.
do(State, State, look) :- look(State), !.
do(Old, New, quit) :- quit(Old, New).
do(State, State, _) :-
  write('illegal command'), nl.

look(State) :-

http://www.amzi.com/AdventureInProlog/a14cntrl.htm (7 of 11)11/3/2006 7:06:01 PM



Control Structures

  get_state(State, here, H),
  write('You are in '), write(H),
  nl,
  list_things(State, H), nl.

list_things(State, H) :-
  get_state(State, location, H/X),
  tab(2), write(X),
  fail.
list_things(_, _).

goto(Old, New, X) :-
  add_state(Old, New, here, X),
  look(New).

take(Old, New, X) :-
  get_state(Old, here, H),
  del_state(Old, Temp, location, H/X),
  add_state(Temp, New, have, X).

turn_on(Old, New, X) :-
  add_state(Old, New, status, X/on).

quit(Old, New) :-
  add_state(Old, New, status, game/off).

Figure 14.1. Nani Search without a dynamic facts 

There could be serious performance problems with this approach to the game. Prolog uses a stack to 
keep track of the levels of predicate calls. In the case of a recursive predicate, the stack grows at each 
recursive call. In this example, with its complex arguments, the stack could easily be consumed in a 
shortperiod of time by the recursive control structure. 

Fortunately, there is a performance feature built into Prolog that makes this example program, and ones 
similar to it, behave efficiently. 

Tail Recursion

There are actually two kinds of recursive routines. In a true recursive routine, each level must wait for 
the information from the lower levels in order to return an answer. This means that Prolog must build a 
stack with a new entry for each level. 
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This is in contrast to iteration, which is more common in conventional languages. Each pass through the 
iteration updates the variables and there is no need for building a stack. 

There is a type of recursion called tail recursion that, while written recursively, behaves iteratively. In 
general, if the recursive call is the last call, and there are no computations based on the information from 
the lower levels, then a good Prolog can implement the predicate iteratively, without growing the stack. 

One classic example of tail recursion is the factorial predicate. First we'll write it using normal recursion. 
Note that the variable FF, which is returned from the lower level, is used in the top level. 

factorial_1(1,1).
factorial_1(N,F):-
  N > 1,
  NN is N - 1,
  factorial_1(NN,FF),
  F is N * FF.

It works as expected. 

?- factorial_1(5,X).
X = 120

By introducing a new second argument to keep track of the result so far, we can rewrite factorial/3 tail-
recursively. The new argument is initially set to 1. Each recursive call builds on the second argument. 
When the boundary condition is reached, the third argument is bound to the second argument. 

factorial_2(1,F,F).
factorial_2(N,T,F):-
  N > 1,
  TT is N * T,
  NN is N - 1,
  factorial_2(NN,TT,F).

It gives the same results as the previous version, but because the recursive call is the last call in the 
second clause, its arguments are not needed at each level. 

?- factorial_2(5,1,X).
X = 120

Another classic example of tail recursion is the predicate to reverse a list. The straightforward definition 
of 'reverse' would be 
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naive_reverse([],[]).
naive_reverse([H|T],Rev):-
  naive_reverse(T,TR),
  append(TR,[H],Rev).

The inefficiency of this definition is a feature taken advantage of in Prolog benchmarks. It is called the 
naive reverse, and published performance statistics often list the time required to reverse a list of a 
certain size. 

The result of the recursive call to naive_reverse/2 is used in the last goal, so it is not tail recursive, but it 
gives the right answers. 

?- naive_reverse([ants, mice, zebras], X).
X = [zebras, mice, ants]

By again introducing a new second argument which will accumulate the partial answer through levels of 
recursion, we can rewrite 'reverse.' It turns out that the partial answer is already reversed when it reaches 
the boundary condition. 

reverse([], Rev, Rev).
reverse([H|T], Temp, Rev) :-
  reverse(T, [H|Temp], Rev).

We can now try the second reverse. 

?- reverse([ants, mice, zebras], [], X).
X = [zebras, mice, ants]

Exercises 

1- Trace both versions of reverse to understand the performance differences. 

2- Write a tail recursive predicate that will compute the sum of the numbers between two given 
numbers. Trace its behavior to see if it is tail recursive. 

Adventure Game

3- Add the remaining command predicates to do/1 so the game can be fully played. 

4- Add the concept of time to the game by putting a counter in the command loop. Use an out-of-time 
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condition as one way to end the game. Also add a 'wait' command, which just waits for one time 
increment. 

5- Add other individuals or creatures that move automatically through the game rooms. Each cycle of 
the command loop will update their locations based on whatever algorithm you choose. 

Customer Order Entry

6- Write a command loop for the order entry inventory system. Write a variation on menuask/3 that will 
present the user with a menu of choices, one of which is to exit the system. Use this in the command 
loop instead of just prompting for a command. Have each command prompt for the required input, if 
any. 

Expert System

7- Make a new version of the expert system that maintains the 'known' information in arguments rather 
than in the logicbase. 

Copyright ©1990,1996-97, 2004 Amzi! inc. All Rights Reserved
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15 

Natural Language

Prolog is especially well-suited for developing natural language systems. In this chapter we will create 
an English front end for Nani Search. 

But before moving to Nani Search, we will develop a natural language parser for a simple subset of 
English. Once that is understood, we will use the same technology for Nani Search. 

The simple subset of English will include sentences such as 

●     The dog ate the bone. 
●     The big brown mouse chases a lazy cat. 

This grammar can be described with the following grammar rules. (The first rule says a sentence is made 
up of a noun phrase followed by a verb phrase. The last rule says an adjective is either 'big', or 'brown', 
or 'lazy.' The '|' means 'or.') 

sentence :
nounphrase, verbphrase. 

nounphrase : 
determiner, nounexpression. 

nounphrase : 
nounexpression. 

nounexpression : 
noun. 

nounexpression :
adjective, nounexpression. 

verbphrase :
verb, nounphrase. 

determiner : 
the | a. 

noun : 
dog | bone | mouse | cat. 
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verb : 
ate | chases. 

adjective :
big | brown | lazy. 

To begin with, we will simply determine if a sentence is a legal sentence. In other words, we will write a 
predicate sentence/1, which will determine if its argument is a sentence. 

The sentence will be represented as a list of words. Our two examples are 

[the,dog,ate,the,bone]
[the,big,brown,mouse,chases,a,lazy,cat]

There are two basic strategies for solving a parsing problem like this. The first is a generate-and-test 
strategy, where the list to be parsed is split in different ways, with the splittings tested to see if they are 
components of a legal sentence. We have already seen that we can use append/3 to generate the 
splittings of a list. With this approach, the top-level rule would be 

sentence(L) :-
  append(NP, VP, L),
  nounphrase(NP),
  verbphrase(VP).

The append/3 predicate will generate possible values for the variables NP and VP, by splitting the 
original list L. The next two goals test each of the portions of the list to see if they are grammatically 
correct. If not, backtracking into append/3 causes another possible splitting to be generated. 

The clauses for nounphrase/1 and verbphrase/1 are similar to sentence/1, and call further predicates that 
deal with smaller units of a sentence, until the word definitions are met, such as 

verb([ate]).
verb([chases]).

noun([mouse]).
noun([dog]).

Difference Lists 

The above strategy, however, is extremely slow because of the constant generation and testing of trial 
solutions that do not work. Furthermore, the generating and testing is happening at multiple levels. 

The more efficient strategy is to skip the generation step and pass the entire list to the lower level 
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predicates, which in turn will take the grammatical portion of the sentence they are looking for from the 
front of the list and return the remainder of the list. 

To do this, we use a structure called a difference list.It is two related lists, in which the first list is the 
full list and the second list is the remainder. The two lists can be two arguments in a predicate, but they 
are more readable if represented as a single argument with the minus sign (-) operator, like X-Y. 

Here then is the first grammar rule using difference lists. A list S is a sentence if we can extract a 
nounphrase from the beginning of it, with a remainder list of S1, and if we can extract a verb phrase 
from S1 with the empty list as the remainder. 

sentence(S) :-
  nounphrase(S-S1),
  verbphrase(S1-[]).

Before filling in nounphrase/1 and verbphrase/1, we will jump to the lowest level predicates that define 
the actual words. They too must be difference lists. They are simple. If the head of the first list is the 
word, the remainder list is simply the tail. 

noun([dog|X]-X).
noun([cat|X]-X).
noun([mouse|X]-X).

verb([ate|X]-X).
verb([chases|X]-X).

adjective([big|X]-X).
adjective([brown|X]-X).
adjective([lazy|X]-X).

determiner([the|X]-X).
determiner([a|X]-X).

Testing shows how the difference lists work. 

?- noun([dog,ate,the,bone]-X).
X = [ate,the,bone] 

?- verb([dog,ate,the,bone]-X).
no

Continuing with the new grammar rules we have 
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nounphrase(NP-X):-
  determiner(NP-S1),
  nounexpression(S1-X).
nounphrase(NP-X):-
  nounexpression(NP-X).

nounexpression(NE-X):-
  noun(NE-X).
nounexpression(NE-X):-
  adjective(NE-S1),
  nounexpression(S1-X).

verbphrase(VP-X):-
  verb(VP-S1),
  nounphrase(S1-X).

NOTE: The recursive call in the definition of nounexpression/1. It allows sentences to have any number 
of adjectives before a noun. 

These rules can now be used to test sentences. 

?- sentence([the,lazy,mouse,ate,a,dog]).
yes

?- sentence([the,dog,ate]).
no

?- sentence([a,big,brown,cat,chases,a,lazy,brown,dog]).
yes

?- sentence([the,cat,jumps,the,mouse]).
no

Figure 15.1 contains a trace of the sentence/1 predicate for a simple sentence. 
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The query is 

?- sentence([dog,chases,cat]).

1-1 CALL sentence([dog,chases,cat])
    2-1 CALL nounphrase([dog,chases,cat]-_0)
        3-1 CALL determiner([dog,chases,cat]-_0)
        3-1 FAIL determiner([dog,chases,cat]-_0)
    2-1 REDO nounphrase([dog,chases,cat]-_0)
        3-1 CALL nounexpression([dog,chases,cat]- _0)
            4-1 CALL noun([dog,chases,cat]-_0)
            4-1 EXIT noun([dog,chases,cat]-  
            [chases,cat])

Notice how the binding of the variable representing the remainder list has been deferred until the 
lowest level is called. Each level unifies its remainder with the level before it, so when the vocabulary 
level is reached, the binding of the remainder to the tail of the list is propagated back up through the 
nested calls. 

        3-1 EXIT nounexpression([dog,chases,cat]-
                        [chases,cat])
    2-1 EXIT nounphrase([dog,chases,cat]-
                    [chases,cat])

Now that we have the noun phrase, we can see if the remainder is a verb phrase.

    2-2 CALL verbphrase([chases,cat]-[])
        3-1 CALL verb([chases,cat]-_4)
        3-1 EXIT verb([chases,cat]-[cat])

Finding the verb was easy, now for the final noun phrase.

        3-2 CALL nounphrase([cat]-[])
            4-1 CALL determiner([cat]-[])
            4-1 FAIL determiner([cat]-[])
        3-2 REDO nounphrase([cat]-[])
            4-1 CALL nounexpression([cat]-[])
                5-1 CALL noun([cat]-[])
                5-1 EXIT noun([cat]-[])
            4-1 EXIT nounexpression([cat]-[])
        3-2 EXIT nounphrase([cat]-[])
    2-2 EXIT verbphrase([chases,cat]-[])
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1-1 EXIT sentence([dog,chases,cat])
      yes

Figure 15.1. Trace of sentence/1 

Natural Language Front End

We will now use this sentence-parsing technique to build a simple English language front end for Nani 
Search. 

For the time being we will make two assumptions. The first is that we can get the user's input sentence 
in list form. The second is that we can represent our commands in list form. For example, we can 
express goto(office) as [goto, office], and look as [look]. 

With these assumptions, the task of our natural language front end is to translate a user's natural sentence 
list into an acceptable command list. For example, we would want to translate [go,to,the,office] into 
[goto, office]. 

We will write a high-level predicate, called command/2, that performs this translation. Its format will be 

command(OutputList, InputList).

The simplest commands are the ones that are made up of a verb with no object, such as look, 
list_possessions, and end. We can define this situation as follows. 

command([V], InList):- verb(V, InList-[]).

We will define verbs as in the earlier example, only this time we will include an extra argument, which 
identifies the command for use in building the output list. We can also allow as many different ways of 
expressing a command as we feel like as in the two ways to say 'look' and the three ways to say 'end.' 

verb(look, [look|X]-X).
verb(look, [look,around|X]-X).
verb(list_possessions, [inventory|X]-X).
verb(end, [end|X]-X).
verb(end, [quit|X]-X).
verb(end, [good,bye|X]-X).

We can now test what we've got. 
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?- command(X,[look]).
X = [look]

?- command(X,[look,around]).
X = [look]

?- command(X,[inventory]).
X = [list_possessions]

?- command(X,[good,bye]).
X = [end]

We now move to the more complicated case of a command composed of a verb and an object. Using the 
grammatical constructs we saw in the beginning of this chapter, we could easily construct this grammar. 
However, we would like to have our interface recognize the semantics of the sentence as well as the 
formal grammar. 

For example, we would like to make sure that 'goto' verbs have a place as an object, and that the other 
verbs have a thing as an object. We can include this knowledge in our natural language routine with 
another argument. 

Here is how the extra argument is used to ensure the object type required by the verb matches the object 
type of the noun. 

command([V,O], InList) :-
  verb(Object_Type, V, InList-S1),
  object(Object_Type, O, S1-[]).

Here is how we specify the new verbs. 

verb(place, goto, [go,to|X]-X).
verb(place, goto, [go|X]-X).
verb(place, goto, [move,to|X]-X).

We can even recognize the case where the 'goto' verb was implied, that is if the user just typed in a room 
name without a preceding verb. In this case the list and its remainder are the same. The existing room/1 
predicate is used to check if the list element is a room except when the room name is made up of two 
words. 

The rule states "If we are looking for a verb at the beginning of a list, and the list begins with a room, 
then assume a 'goto' verb was found and return the full list for processing as the object of the 'goto' 
verb." 
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verb(place, goto, [X|Y]-[X|Y]):- room(X).
verb(place, goto, [dining,room|Y]-[dining,room|Y]).

Some of the verbs for things are 

verb(thing, take, [take|X]-X).
verb(thing, drop, [drop|X]-X).
verb(thing, drop, [put|X]-X).
verb(thing, turn_on, [turn,on|X]-X).

Optionally, an 'object' may be preceded by a determiner. Here are the two rules for 'object,' which cover 
both cases. 

object(Type, N, S1-S3) :-
  det(S1-S2),
  noun(Type, N, S2-S3).
object(Type, N, S1-S2) :-
  noun(Type, N, S1-S2).

Since we are just going to throw the determiner away, we don't need to carry extra arguments. 

det([the|X]- X).
det([a|X]-X).
det([an|X]-X).

We define nouns like verbs, but use their occurrence in the game to define most of them. Only those 
names that are made up of two or more words require special treatment. Nouns of place are defined in 
the game as rooms. 

noun(place, R, [R|X]-X):- room(R).
noun(place, 'dining room', [dining,room|X]-X).

Things are distinguished by appearing in a 'location' or 'have' predicate. Again, we make exceptions for 
cases where the thing name has two words. 

noun(thing, T, [T|X]-X):- location(T,_).
noun(thing, T, [T|X]-X):- have(T).
noun(thing, 'washing machine', [washing,machine|X]-X).

We can build into the grammar an awareness of the current game situation, and have the parser respond 
accordingly. For example, we might provide a command that allows the player to turn the room lights on 
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or off. This command might be turn_on(light) as opposed to turn_on(flashlight). If the user types in 'turn 
on the light' we would like to determine which light was meant. 

We can assume the room light was always meant, unless the player has the flashlight. In that case we 
will assume the flashlight was meant. 

noun(thing, flashlight, [light|X], X):- have(flashlight).
noun(thing, light, [light|X], X).

We can now try it out. 

?- command(X,[go,to,the,office]).
X = [goto, office]

?- command(X,[go,dining,room]).
X = [goto, 'dining room']

?- command(X,[kitchen]).
X = [goto, kitchen]

?- command(X,[take,the,apple]).
X = [take, apple]

?- command(X,[turn,on,the,light]).
X = [turn_on, light]

?- asserta(have(flashlight)), command(X,[turn,on,the,light]).
X = [turn_on, flashlight]

It should fail in the following situations that don't conform to our grammar or semantics. 

?- command(X,[go,to,the,desk]).
no

?- command(X,[go,attic]).
no

?- command(X,[drop,an,office]).
no

Definite Clause Grammar 
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The use of difference lists for parsing is so common in Prolog, that most Prologs contain additional 
syntactic sugaring that simplifies the syntax by hiding the difference lists from view. This syntax is 
called Definite Clause Grammar (DCG), and looks like normal Prolog, only the neck symbol (:-) is 
replaced with an arrow (-->). The DCG representation is parsed and translated to normal Prolog with 
difference lists. 

Using DCG, the 'sentence' predicate developed earlier would be phrased 

sentence --> nounphrase, verbphrase.

This would be translated into normal Prolog, with difference lists, but represented as separate arguments 
rather than as single arguments separated by a minus (-) as we implemented them. The above example 
would be translated into the following equivalent Prolog. 

sentence(S1, S2):-
  nounphrase(S1, S3),
  verbphrase(S3, S2).

Thus, if we define 'sentence' using DCG we still must call it with two arguments, even though the 
arguments were not explicitly stated in the DCG representation. 

?- sentence([dog,chases,cat], []).

The DCG vocabulary is represented by simple lists. 

noun --> [dog].
verb --> [chases].

These are translated into Prolog as difference lists. 

noun([dog|X], X).
verb([chases|X], X).

As with the natural language front end for Nani Search, we often want to mix pure Prolog with the 
grammar and include extra arguments to carry semantic information. The arguments are simply added as 
normal arguments and the pure Prolog is enclosed in curly brackets ({}) to prevent the DCG parser from 
translating it. Some of the complex rules in our game grammar would then be 

command([V,O]) --> 
  verb(Object_Type, V), 
  object(Object_Type, O).
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verb(place, goto) --> [go, to].
verb(thing, take) --> [take].

object(Type, N) --> det, noun(Type, N).
object(Type, N) --> noun(Type, N).

det --> [the].
det --> [a].

noun(place,X) --> [X], {room(X)}.
noun(place,'dining room') --> [dining, room].
noun(thing,X) --> [X], {location(X,_)}.

Because the DCG automatically takes off the first argument, we cannot examine it and send it along as 
we did in testing for a 'goto' verb when only the room name was given in the command. We can 
recognize this case with an additional 'command' clause. 

command([goto, Place]) --> noun(place, Place).

Reading Sentences 

Now for the missing pieces. We must include a predicate that reads a normal sentence from the user and 
puts it into a list. Figure 15.2 contains a program to perform the task. It is composed of two parts. The 
first part reads a line of ASCII characters from the user, using the built-in predicate get0/1, which reads 
a single ASCII character. The line is assumed terminated by an ASCII 13, which is a carriage return. 
The second part uses DCG to parse the list of characters into a list of words, using another built-in 
predicate name/2, which converts a list of ASCII characters into an atom. 

% read a line of words from the user

read_list(L) :-
  write('> '),
  read_line(CL),
  wordlist(L,CL,[]), !.

read_line(L) :-
  get0(C),
  buildlist(C,L).

buildlist(13,[]) :- !.
buildlist(C,[C|X]) :-
  get0(C2),
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  buildlist(C2,X).
 
wordlist([X|Y]) --> word(X), whitespace, wordlist(Y).
wordlist([X]) --> whitespace, wordlist(X).
wordlist([X]) --> word(X).
wordlist([X]) --> word(X), whitespace.

word(W) --> charlist(X), {name(W,X)}.

charlist([X|Y]) --> chr(X), charlist(Y).
charlist([X]) --> chr(X).

chr(X) --> [X],{X>=48}.

whitespace --> whsp, whitespace.
whitespace --> whsp.

whsp --> [X], {X<48}.

Figure 15.2. Program to read input sentences 

The other missing piece converts a command in the format [goto,office] to a normal-looking command 
goto(office). This is done with a standard built-in predicate called 'univ', which is represented by an 
equal sign and two periods (=..). It translates a predicate and its arguments into a list whose first element 
is the predicate name and whose remaining elements are the arguments. It works in reverse as well, 
which is how we will want to use it. For example 

?- pred(arg1,arg2) =..  X.
X = [pred, arg1, arg2] 

?- pred =..  X.
X = [pred] 

?- X =..  [pred,arg1,arg1].
X = pred(arg1, arg2) 

?- X =..  [pred].
X = pred 

We can now use these two predicates, along with command/2 to write get_command/1, which reads a 
sentence from the user and returns a command to command_loop/0. 
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get_command(C) :-
  read_list(L),
  command(CL,L),
  C =..  CL, !.
get_command(_) :-
  write('I don''t understand'), nl, fail.

We have now gone from writing the simple facts in the early chapters to a full adventure game with a 
natural language front end. You have also written an expert system, an intelligent genealogical logicbase 
and a standard business application. Use these as a basis for continued learning by experimentation. 

Exercises 

Adventure Game

1- Expand the natural language capabilities to handle all of the commands of Nani Search. 

2- Expand the natural language front end to allow for compound sentences, such as "go to the kitchen 
and take the apple," or "take the apple and the broccoli." 

3- Expand the natural language to allow for pronouns. To do this the 'noun' predicate must save the last 
noun and its type. When the word 'it' is encountered pick up that last noun. Then 'take the apple' 
followed by 'eat it' will work. (You will probably have to go directly to the difference list notation to 
make sentences such as "turn it on" work.) 

Genealogical Logicbase

4- Build a natural language query system that responds to queries such as "Who are dennis' children?" 
and "How many nephews does jay have?" Assuming you write a predicate get_query/1 that returns a 
Prolog query, you can call the Prolog query with the call/1 built-in predicate. For example, 

main_loop :-
  repeat,
  get_query(X),
  call(X),
  X = end.

Copyright ©1990,1996-97, 2004 Amzi! inc. All Rights Reserved
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Appendix

This appendix contains sample versions of the four programs described in the book. These are the adventure game 
(Nani Search), the intelligent genealogical logicbase (Family), the customer order entry system (Custord), and the 
expert system (Birds). 

Nani Search 

% NANI SEARCH - A sample adventure game

% Copyright (C) 1990-1995 Amzi! inc.
% All rights reserved

% Nani Search is designed to illustrate Prolog programming.  It
% is an implementation of the principle example used in
% this tutorial.

main:- nani_search.       % main entry point

nani_search:-
  init_dynamic_facts,     % predicates which are not compiled

  write('NANI SEARCH - A Sample Adventure Game'),nl,
  write('Copyright (C) Amzi! inc. 1990-1995'),nl,
  write('No rights reserved, use it as you wish'),nl,
  nl,
  write('Nani Search is designed to illustrate Prolog programming.'),nl,
  write('As such, it might be the simplest adventure game.  The game'),nl,
  write('is the primary example used in this tutorial.'),nl,
  write('Full source is included as well.'),nl,
  nl,
  write('Your persona as the adventurer is that of a three year'),nl,
  write('old.  The Nani is your security blanket.  It is getting'),nl,
  write('late and you''re tired, but you can''t go to sleep'),nl,
  write('without your Nani.  Your mission is to find the Nani.'),nl,
  nl,
  write('You control the game by using simple English commands'),nl,
  write('expressing the action you wish to take.  You can go to'),nl,
  write('other rooms, look at your surroundings, look in things'),nl,
  write('take things, drop things, eat things, inventory the'),nl,
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  write('things you have, and turn things on and off.'),nl,
  nl,
  write('Hit any key to continue.'),get0(_),
  write('Type "help" if you need more help on mechanics.'),nl,
  write('Type "hint" if you want a big hint.'),nl,
  write('Type "quit" if you give up.'),nl,
  nl,
  write('Enjoy the hunt.'),nl,

  look,                   % give a look before starting the game
  command_loop.

% command_loop - repeats until either the nani is found or the
%     player types quit

command_loop:-
  repeat,
  get_command(X),
  do(X),
  (nanifound; X == quit).

% do - matches the input command with the predicate which carries out
%     the command.  More general approaches which might work in the
%     listener are not supported in the compiler.  This approach
%     also gives tighter control over the allowable commands.

%     The cuts prevent the forced failure at the end of "command_loop"
%     from backtracking into the command predicates.

do(goto(X)):-goto(X),!.
do(nshelp):-nshelp,!.
do(hint):-hint,!.
do(inventory):-inventory,!.
do(take(X)):-take(X),!.
do(drop(X)):-drop(X),!.
do(eat(X)):-eat(X),!.
do(look):-look,!.
do(turn_on(X)):-turn_on(X),!.
do(turn_off(X)):-turn_off(X),!.
do(look_in(X)):-look_in(X),!.
do(quit):-quit,!.

% These are the predicates which control exit from the game.  If
% the player has taken the nani, then the call to "have(nani)" will
% succeed and the command_loop will complete.  Otherwise it fails
% and command_loop will repeat.
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nanifound:-
  have(nani),        
  write('Congratulations, you saved the Nani.'),nl,
  write('Now you can rest secure.'),nl,nl.

quit:-
  write('Giving up?  It''s going to be a scary night'),nl,
  write('and when you get the Nani it''s not going'),nl,
  write('to smell right.'),nl,nl.

% The help command

nshelp:-
  write('Use simple English sentences to enter commands.'),nl,
  write('The commands can cause you to:'),nl,
  nl,
  write('   go to a room          (ex. go to the office)'),nl,
  write('   look around           (ex. look)'),nl,
  write('   look in something     (ex. look in the desk)'),nl,
  write('   take something        (ex. take the apple)'),nl,
  write('   drop something        (ex. drop the apple)'),nl,
  write('   eat something         (ex. eat the apple)'),nl,
  write('   turn something on     (ex. turn on the light)'),nl,
  write('   inventory your things (ex. inventory)'),nl,
  nl,
  write('The examples are verbose, terser commands and synonyms'),nl,
  write('are usually accepted.'),nl,nl,
  write('Hit any key to continue.'),nl,
  get0(_),
  look.

hint:-
  write('You need to get to the cellar, and you can''t unless'),nl,
  write('you get some light.  You can''t turn on the cellar'),nl,
  write('light, but there is a flash light in the desk in the'),nl,
  write('office you might use.'),nl,nl,
  look.

% Initial facts describing the world.  Rooms and doors do not change,
% so they are compiled.

room(office).
room(kitchen).
room('dining room').
room(hall).
room(cellar).
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door(office,hall).
door(hall,'dining room').
door('dining room',kitchen).
door(kitchen,cellar).
door(kitchen,office).

connect(X,Y):-
  door(X,Y).
connect(X,Y):-
  door(Y,X).

% These facts are all subject to change during the game, so rather
% than being compiled, they are "asserted" to the listener at
% run time.  This predicate is called when "nanisrch" starts up.

init_dynamic_facts:-
  assertz(location(desk,office)),
  assertz(location(apple,kitchen)),
  assertz(location(flashlight,desk)),
  assertz(location('washing machine',cellar)),
  assertz(location(nani,'washing machine')),
  assertz(location(table,kitchen)),
  assertz(location(crackers,desk)),
  assertz(location(broccoli,kitchen)),
  assertz(here(kitchen)),
  assertz(turned_off(flashlight)).

furniture(desk).
furniture('washing machine').
furniture(table).

edible(apple).
edible(crackers).

tastes_yuchy(broccoli).

%%%%%%%% COMMANDS %%%%%%%%%%%%%%%%%%%%%%%%%%

% goto moves the player from room to room.

goto(Room):-
  can_go(Room),                 % check for legal move
  puzzle(goto(Room)),           % check for special conditions
  moveto(Room),                 % go there and tell the player
  look.
goto(_):- look.

http://www.amzi.com/AdventureInProlog/appendix.htm (4 of 27)11/3/2006 7:06:15 PM



Appendix

can_go(Room):-                  % if there is a connection it 
  here(Here),                   % is a legal move.
  connect(Here,Room),!.
can_go(Room):-
  respond(['You can''t get to ',Room,' from here']),fail.

moveto(Room):-                  % update the logicbase with the
  retract(here(_)),             % new room
  asserta(here(Room)).

% look lists the things in a room, and the connections

look:-
  here(Here),
  respond(['You are in the ',Here]),
  write('You can see the following things:'),nl,
  list_things(Here),
  write('You can go to the following rooms:'),nl,
  list_connections(Here).

list_things(Place):-
  location(X,Place),
  tab(2),write(X),nl,
  fail.
list_things(_).

list_connections(Place):-
  connect(Place,X),
  tab(2),write(X),nl,
  fail.
list_connections(_).

% look_in allows the player to look inside a thing which might
% contain other things

look_in(Thing):-
  location(_,Thing),               % make sure there's at least one
  write('The '),write(Thing),write(' contains:'),nl,
  list_things(Thing).
look_in(Thing):-
  respond(['There is nothing in the ',Thing]).

% take allows the player to take something.  As long as the thing is
% contained in the room it can be taken, even if the adventurer hasn't
% looked in the the container which contains it.  Also the thing
% must not be furniture.
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take(Thing):-
  is_here(Thing),
  is_takable(Thing),
  move(Thing,have),
  respond(['You now have the ',Thing]).

is_here(Thing):-
  here(Here),
  contains(Thing,Here),!.          % don't backtrack
is_here(Thing):-
  respond(['There is no ',Thing,' here']),
  fail.

contains(Thing,Here):-             % recursive definition to find
  location(Thing,Here).            % things contained in things etc.
contains(Thing,Here):-
  location(Thing,X),
  contains(X,Here).

is_takable(Thing):-                % you can't take the furniture
  furniture(Thing),
  respond(['You can''t pick up a ',Thing]),
  !,fail.
is_takable(_).                     % not furniture, ok to take

move(Thing,have):-
  retract(location(Thing,_)),      % take it from its old place
  asserta(have(Thing)).            % and add to your possessions

% drop - allows the player to transfer a possession to a room

drop(Thing):-
  have(Thing),                     % you must have the thing to drop it
  here(Here),                      % where are we
  retract(have(Thing)),
  asserta(location(Thing,Here)).
drop(Thing):-
  respond(['You don''t have the ',Thing]).

% eat, because every adventure game lets you eat stuff.

eat(Thing):-
  have(Thing),
  eat2(Thing).
eat(Thing):-
  respond(['You don''t have the ',Thing]).
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eat2(Thing):-
  edible(Thing),
  retract(have(Thing)),
  respond(['That ',Thing,' was good']).
eat2(Thing):-
  tastes_yuchy(Thing),
  respond(['Three year olds don''t eat ',Thing]).
eat2(Thing):-
  respond(['You can''t eat a ',Thing]).

% inventory list your possesions

inventory:-
  have(X),                         % make sure you have at least one thing
  write('You have: '),nl,
  list_possessions.
inventory:-
  write('You have nothing'),nl.

list_possessions:-
  have(X),
  tab(2),write(X),nl,
  fail.
list_possessions.

% turn_on recognizes two cases.  If the player tries to simply turn
% on the light, it is assumed this is the room light, and the
% appropriate error message is issued.  Otherwise turn_on has to
% refer to an object which is turned_off.

turn_on(light):-
  respond(['You can''t reach the switch and there''s nothing to stand on']).
turn_on(Thing):-
  have(Thing),
  turn_on2(Thing).
turn_on(Thing):-
  respond(['You don''t have the ',Thing]).

turn_on2(Thing):-
  turned_on(Thing),
  respond([Thing,' is already on']).
turn_on2(Thing):-
  turned_off(Thing),
  retract(turned_off(Thing)),
  asserta(turned_on(Thing)),
  respond([Thing,' turned on']).
turn_on2(Thing):-
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  respond(['You can''t turn a ',Thing,' on']).

% turn_off - I didn't feel like implementing turn_off

turn_off(Thing):-
  respond(['I lied about being able to turn things off']).

% The only special puzzle in Nani Search has to do with going to the
% cellar.  Puzzle is only called from goto for this reason.  Other
% puzzles pertaining to other commands could easily be added.

puzzle(goto(cellar)):-
  have(flashlight),
  turned_on(flashlight),!.
puzzle(goto(cellar)):-
  write('You can''t go to the cellar because it''s dark in the'),nl,
  write('cellar, and you''re afraid of the dark.'),nl,
  !,fail.
puzzle(_).

% respond simplifies writing a mixture of literals and variables
 
respond([]):-
  write('.'),nl,nl.
respond([H|T]):-
  write(H),
  respond(T).

% Simple English command listener.  It does some semantic checking
% and allows for various synonyms.  Within a restricted subset of
% English, a command can be phrased many ways.  Also non grammatical
% constructs are understood, for example just giving a room name
% is interpreted as the command to goto that room.

% Some interpretation is based on the situation.  Notice that when
% the player says turn on the light it is ambiguous.  It could mean
% the room light (which can't be turned on in the game) or the
% flash light.  If the player has the flash light it is interpreted
% as flash light, otherwise it is interpreted as room light.

get_command(C):-
  readlist(L),        % reads a sentence and puts [it,in,list,form]
  command(X,L,[]),    % call the grammar for command
  C =.. X,!.          % make the command list a structure
get_command(_):-
  respond(['I don''t understand, try again or type help']),fail.
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% The grammar doesn't have to be real English.  There are two
% types of commands in Nani Search, those with and without a 
% single argument.  A special case is also made for the command
% goto which can be activated by simply giving a room name.

command([Pred,Arg]) --> verb(Type,Pred),nounphrase(Type,Arg).
command([Pred]) --> verb(intran,Pred).
command([goto,Arg]) --> noun(go_place,Arg).

% Recognize three types of verbs.  Each verb corresponds to a command,
% but there are many synonyms allowed.  For example the command
% turn_on will be triggered by either "turn on" or "switch on".

verb(go_place,goto) --> go_verb.
verb(thing,V) --> tran_verb(V).
verb(intran,V) --> intran_verb(V).

go_verb --> [go].
go_verb --> [go,to].
go_verb --> [g].

tran_verb(take) --> [take].
tran_verb(take) --> [pick,up].
tran_verb(drop) --> [drop].
tran_verb(drop) --> [put].
tran_verb(drop) --> [put,down].
tran_verb(eat) --> [eat].
tran_verb(turn_on) --> [turn,on].
tran_verb(turn_on) --> [switch,on].
tran_verb(turn_off) --> [turn,off].
tran_verb(look_in) --> [look,in].
tran_verb(look_in) --> [look].
tran_verb(look_in) --> [open].

intran_verb(inventory) --> [inventory].
intran_verb(inventory) --> [i].
intran_verb(look) --> [look].
intran_verb(look) --> [look,around].
intran_verb(look) --> [l].
intran_verb(quit) --> [quit].
intran_verb(quit) --> [exit].
intran_verb(quit) --> [end].
intran_verb(quit) --> [bye].
intran_verb(nshelp) --> [help].
intran_verb(hint) --> [hint].

% a noun phrase is just a noun with an optional determiner in front.

http://www.amzi.com/AdventureInProlog/appendix.htm (9 of 27)11/3/2006 7:06:15 PM



Appendix

nounphrase(Type,Noun) --> det,noun(Type,Noun).
nounphrase(Type,Noun) --> noun(Type,Noun).

det --> [the].
det --> [a].

% Nouns are defined as rooms, or things located somewhere.  We define
% special cases for those things represented in Nani Search by two
% words.  We can't expect the user to type the name in quotes.

noun(go_place,R) --> [R], {room(R)}.
noun(go_place,'dining room') --> [dining,room].

noun(thing,T) --> [T], {location(T,_)}.
noun(thing,T) --> [T], {have(T)}.
noun(thing,flashlight) --> [flash,light].
noun(thing,'washing machine') --> [washing,machine].
noun(thing,'dirty clothes') --> [dirty,clothes].

% If the player has just typed light, it can be interpreted three ways.
% If a room name is before it, it must be a room light.  If the
% player has the flash light, assume it means the flash light.  Otherwise
% assume it is the room light.

noun(thing,light) --> [X,light], {room(X)}.
noun(thing,flashlight) --> [light], {have(flashlight)}.
noun(thing,light) --> [light].

% readlist - read a list of words, based on a Clocksin & Mellish
% example.

readlist(L):-
  write('> '),
  read_word_list(L).

read_word_list([W|Ws]) :-
  get0(C),
  readword(C, W, C1),       % Read word starting with C, C1 is first new
  restsent(C1, Ws), !.      % character - use it to get rest of sentence

restsent(C,[]) :- lastword(C), !. % Nothing left if hit last-word marker
restsent(C,[W1|Ws]) :-
  readword(C,W1,C1),        % Else read next word and rest of sentence
  restsent(C1,Ws).

readword(C,W,C1) :-         % Some words are single characters
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  single_char(C),           % i.e. punctuation
  !, 
  name(W, [C]),             % get as an atom
  get0(C1).
readword(C, W, C1) :-
  is_num(C),                % if we have a number --
  !,
  number_word(C, W, C1, _). % convert it to a genuine number
readword(C,W,C2) :-         % otherwise if character does not
  in_word(C, NewC),         % delineate end of word - keep
  get0(C1),                 % accumulating them until 
  restword(C1,Cs,C2),       % we have all the word     
  name(W, [NewC|Cs]).       % then make it an atom
readword(C,W,C2) :-         % otherwise
  get0(C1),       
  readword(C1,W,C2).        % start a new word

restword(C, [NewC|Cs], C2) :-
  in_word(C, NewC),
  get0(C1),
  restword(C1, Cs, C2).
restword(C, [], C).

single_char(`,).
single_char(`;).
single_char(`:).single_char(`?).
single_char(`!).
single_char(`.).

in_word(C, C) :- C >= `a, C =< `z.
in_word(C, L) :- C >= `A, C =< `Z, L is C + 32.
in_word(`',`').
in_word(`-,`-).

% Have character C (known integer) - keep reading integers and build
% up the number until we hit a non-integer. Return this in C1,
% and return the computed number in W.

number_word(C, W, C1, Pow10) :- 
  is_num(C),
  !,
  get0(C2),
  number_word(C2, W1, C1, P10),
  Pow10 is P10 * 10,
  W is integer(((C - `0) * Pow10) + W1).
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number_word(C, 0, C, 0.1).

is_num(C) :-
  C =< `9,
  C >= `0.

% These symbols delineate end of sentence

lastword(10).   % end if new line entered
lastword(`.).
lastword(`!).
lastword(`?).

Family 

% GENE.PRO - genealogical relationships
%
% Copyright (c) 1987-1995 Amzi! inc.
% All rights reserved
%
% A Prolog database of relations derived from basic information about
% individuals.  The relations ships can all be read as 'relationship
% of', so for example, parent(P,C) means P is parent of C.
%
% When there is a performance trade-of in the implementation of a rule,
% it is assumed that in general the second argument of a relation will
% most likely be bound.  See for example full_sibling/2, which will
% have a smaller search for full_sibling(X,joe), than full_sibling(joe,X).
%
% This code is used as an example of an embedded Prolog application.
% One is a C++ application and the other Visual Basic.
%
% To use this code from Prolog, consult it in the listener and use the
% following predicates:
%
% open(F) - opens a file of family relationships, ex. open('england.fam').
%    open/1 just does a consult, so you can use consult instead.
% close - retracts all the persons currently defined
% save(F) - saves the persons in the named file
% add_person(Name, Mother, Father, Gender, Spouse) - adds a person
%     fact with the specified attributes, checking semantics as it does
% Relationship(P1, P2) - any relationship query, such as child(X,Y).
% relation(R, P1, P2) - can be used to find the relationship between
%     individuals as well as pose relationship queries. 

parent(P,C) :-
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 (mother(P,C) ; father(P,C)).

child(C,P) :- parent(P,C).

son(C,P) :- parent(P,C), male(C).

daughter(C,P) :- parent(P,C), female(C).

wife(W,P) :-
  spouse(W,P),
  female(W).

husband(H,P) :-
  spouse(H,P),
  male(H).

ancestor(A,P) :-
  parent(A,P).
ancestor(A,P) :-
  parent(X,P),
  ancestor(A,X).

descendent(D,P) :-
  parent(P,D).
descendent(D,P) :-
  parent(P,X),
  descendent(D,X).

full_sibling(S1, S2) :-
  mother(M,S2),
  mother(M,S1),
  S1 \= S2,
  father(F,S1),
  father(F,S2).

half_sibling(S1, S2) :-
  mother(M,S2),
  mother(M,S1),
  S1 \= S2,
  father(F1,S1),
  father(F2,S2),
  F1 \= F2.
half_sibling(S1, S2) :-
  father(F,S2),
  father(F,S1),
  S1 \= S2,
  mother(M1,S1),
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  mother(M2,S2),
  M1 \= M2.

sibling(S1, S2) :-
  full_sibling(S1,S2).
sibling(S1, S2) :-
  half_sibling(S1,S2).

sister(S,P) :-
  sibling(S,P),
  female(S).

brother(B,P) :-
  sibling(B,P),
  male(B).

step_sibling(S1, S2) :-
  parent(P2, S2),
  spouse(M2, P2),
  parent(M2, S1),
  not(parent(M2,S2)),
  not(half_sibling(S1,S2)).
  
uncle(U,X) :-
  parent(P,X),
  brother(U,P).

aunt(A,X) :-
  parent(P,X),
  sister(A,P).

step_parent(P2,C) :-
  parent(P,C),
  spouse(P2,P),
  not(parent(P2,C)).

step_mother(M,C) :- step_parent(M,C), female(M).

step_father(F,C) :- step_parent(F,C), male(F).

step_child(C2,P) :- step_parent(P,C2).

step_daughter(D,P) :- step_child(D,P), female(D).

step_son(S,P) :- step_child(S,P), male(S).

nephew(N,X) :-
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  sibling(S,X),
  parent(S,N),
  male(N).

niece(N,X) :-
  sibling(S,X),
  parent(S,N),
  female(N).

cousin(X,Y) :-
  parent(P,Y),
  sibling(S,P),
  parent(S,X).

grandmother(GM,X) :-
  parent(P,X),
  mother(GM,P).

grandfather(GF,X) :-
  parent(P,X),
  father(GF,P).

grandparent(GP,X) :-
  parent(P,X),  parent(GP,P).

grandson(GS,X) :-
  grandchild(GS,X),
  male(GS).

granddaughter(GD,X) :-
  grandchild(GD,X),
  female(GD).

grandchild(GC,X) :-
  parent(X,C),
  parent(C,GC).

%----------------------------------------------------------------------
% relation/3 - used to find relationships between individuals
%

relations([parent, wife, husband, ancestor, descendent, full_sibling,
    half_sibling, sibling, sister, brother, step_sibling, uncle,
    aunt, mother, father, child, son, daughter, step_parent,
    step_child, step_mother, step_father, step_son, step_daughter,
    nephew, niece, cousin, grandmother, grandfather, grandparent,
    grandson, granddaughter, grandchild]).
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relation(R, X, Y) :-
  relations(Rs),
  member(R,Rs),
  Q =.. [R,X,Y],
  call(Q).

%----------------------------------------------------------------------
% person object
%
% These predicates define the interface to a person.  All of the
% genealogical rules are based on these predicates, which are
% based on the basic representation of a person.  These are the
% only rules which need to be changed if the representation of
% a person is changed.
%
% The current representation is flat database relations of the form:
%   person(Name, Gender, Mother, Father, Spouse).
%

add(Name,Gender,Mother,Father,Spouse) :-
  assert(person(Name,Gender,Mother,Father,Spouse)).
add(Name,_,_,_,_) :-
  delete(Name),
  fail.

open(FileName) :-
  consult(FileName).

close :-
  retractall(person(_,_,_,_,_)).

save(FileName) :-
  tell(FileName),
  listing(person),
  told.

delete(X) :-
  retract(person(X,_,_,_,_)).

person(X) :-
  person(X,_,_,_,_).

male(X) :-
  person(X,male,_,_,_).
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female(Y) :-
  person(Y,female,_,_,_).

mother(M,C) :-
  person(C,_,M,_,_).

father(F,C) :-
  person(C,_,_,F,_).

spouse(S,P) :-
  person(P,_,_,_,S),
  S \= single.

%----------------------------------------------------------------------
% Semantic Integrity Checks on Update
%

add_person(Name,Gender,Mother,Father,Spouse) :-
  retractall(message(_)),
  dup_check(Name),
  add(Name,Gender,Mother,Father,Spouse),
  ancestor_check(Name),
  mother_check(Name, Gender, Mother),
  father_check(Name, Gender, Father),
  spouse_check(Name, Spouse).

dup_check(Name) :-
  person(Name),
  assert(message($Person is already in database$)),
  !, fail.
dup_check(_).
  
ancestor_check(Name) :-
  ancestor(Name,Name),
  assert(message($Person is their own ancestor/descendent$)),
  !, fail.
ancestor_check(_).

mother_check(_, _, Mother) :- not(person(Mother)), !.
mother_check(_, _, Mother) :-
  male(Mother),
  assert(message($Person's mother is a man$)),
  !, fail.
mother_check(Name, male, _) :-
  mother(Name, X),
  assert(message($Person, a male, is someone's mother$)),
  !, fail.
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mother_check(_,_,_).

father_check(_, _, Father) :- not(person(Father)), !.
father_check(_, _, Father) :-
  female(Father),
  assert(message($Person's father is a man$)),
  !, fail.
father_check(Name, female, _) :-
  father(Name, X),
  assert(message($Person, a female, is someone's father$)),
  !, fail.
father_check(_,_,_).

spouse_check(Name, Spouse) :-
  spouse(Name, X),
  X \= Spouse,
  assert(message($Person is already someone else's spouse$)),
  !, fail.
spouse_check(Name, Spouse) :-
  blood_relative(Name, Spouse),
  assert(message($Person is a blood relative of spouse$)),
  !, fail.
spouse_check(_,_).
  
blood_relative(X,Y) :- (ancestor(X,Y); ancestor(Y,X)).
blood_relative(X,Y) :- sibling(X,Y).
blood_relative(X,Y) :- cousin(X,Y).
blood_relative(X,Y) :- (uncle(X,Y); uncle(Y,X)).
blood_relative(X,Y) :- (aunt(X,Y); aunt(Y,X)).

Custord 

% CUSTORD 

% Copyright (c) 1990-1995 Amzi! inc.
% All rights reserved

% This is a sample Prolog program which implements a portion
% of a customer order inventory application.  It is not intended to
% be complete, and only illustrates the concept of writing a database
% application in Prolog.

% This example extends the concept of an intelligent database to include
% a full database application.  It is really a rule based approach to
% transaction processing.  In fact a large percentage of the procedural
% code normally written in database applications has to do with
% enforcing semantic integrity rules involving multiple records.

http://www.amzi.com/AdventureInProlog/appendix.htm (18 of 27)11/3/2006 7:06:15 PM



Appendix

% The distinction between data and process is thoroughly blurred.  Both
% reside together in the same logicbase.

% There is pure data as it might be defined in a relational database
% (customer, item, inventory, order); there are rules which really
% represent data views (item_quant); there are rules which add
% intelligence to the logicbase (good_customer, valid_order); and there
% are rules which are processes (order, report_inventory).  

main :- order.

% customer(Name, Town, Credit-rating).

customer(dennis, winchester, xxx).
customer(dave, lexington, aaa).
customer(ron, lexington, bbb).
customer(julie, winchester, aaa).
customer(jawaid, cambridge, aaa).
customer(tom, newton, ccc).

% item(Number, Name, Reorder-quantity).

item(p1,thing,10).
item(p2,stuff,10).
item(p3,article,10).
item(p4,object,10).
item(p5,substance,10).
item(p6,piece,10).
item(p7,matter,10).

% inventory(Number, Quantity).

inventory(p1,10).
inventory(p2,10).
inventory(p3,10).
inventory(p4,78).
inventory(p5,23).
inventory(p6,14).
inventory(p7,8).

% item-inv view or join

item_quant(Item, Quantity):-
  item(Partno, Item, _),
  inventory(Partno, Quantity).
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% reorder if inventory below reorder point

reorder(Item):-
  item(Partno, Item, Reorder_point),
  inventory(Partno, Quantity),
  Quantity < Reorder_point,
  write('Time to reorder '),
  write(Item), nl.
reorder(Item):-
  write('Inventory level ok for '),
  write(Item), nl.

% a good customer has a credit rating of aaa 
% or lives in winchester
% or has ordered something

good_customer(Cust):-
  customer(Cust, _, aaa).
good_customer(Cust):-
  customer(Cust, winchester, _).
good_customer(Cust):-
  order(Cust, _, _).

% process order

order:-
  write('Customer: '),
  read(Customer),
  write('Item: '),
  read(Item),
  write('Quantity: '),
  read(Quantity),
  valid_order(Customer,Item,Quantity),
  asserta(order(Customer,Item,Quantity)),
  update_inventory(Item,Quantity),
  reorder(Item).

% an order is valid if
% it doesn't go below zero inventory and
% the customer is a good customer

valid_order(C, I, Q):-
  item(Partno, I, _),
  inventory(Partno, Onhand),
  Q =< Onhand,
  good_customer(C).
valid_order(C, I, Q):-
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  write('Bad order'),
  nl,
  fail.

% update the inventory

update_inventory(I,Q):-
  item(Pn, I, _),
  inventory(Pn, Amount),
  NewQ is Amount - Q,
  retract(inventory(Pn, Amount)),
  asserta(inventory(Pn, NewQ)).

% inventory report

report_inventory:-
  item_quant(I, Q),
  write(I), tab(1),
  write(Q), nl,
  fail.
report_inventory:-true.  

Birds 

% BIRDS

% Copyright (c) 1990-1995 Amzi! inc.
% All rights reserved

% This is a sample of a classification expert system for identification
% of certain kinds of birds. The rules are rough excerpts from "Birds of
% North America" by Robbins, Bruum, Zim, and Singer.

% This type of expert system can easily use Prolog's built in inferencing
% system. While trying to satisfy the goal "bird" it tries to satisfy
% various subgoals, some of which will ask for information from the
% user.

% The information is all stored as attribute-value pairs. The attribute
% is represented as a predicate, and the value as the argument to the
% predicate. For example, the attribute-value pair "color-brown" is
% stored "color(brown)".

% "identify" is the high level goal that starts the program. The
% predicate "known/3" is used to remember answers to questions, so it
% is cleared at the beginning of the run.
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% The rules of identification are the bulk of the code. They break up
% the problem into identifying orders and families before identifying
% the actual birds.

% The end of the code lists those attribute-value pairs which need
% to be asked for, and defines the predicate "ask" and "menuask"
% which are used to get information from the user, and remember it.

main :- identify.

identify:-
  retractall(known(_,_,_)),         % clear stored information
  bird(X),
  write('The bird is a '),write(X),nl.
identify:-
  write('I can''t identify that bird'),nl.

order(tubenose):-
  nostrils(external_tubular),
  live(at_sea),
  bill(hooked).
order(waterfowl):-
  feet(webbed),
  bill(flat).
order(falconiforms):-
  eats(meat),
  feet(curved_talons),
  bill(sharp_hooked).
order(passerformes):-
  feet(one_long_backward_toe).

family(albatross):-
  order(tubenose),
  size(large),
  wings(long_narrow).
family(swan):-
  order(waterfowl),
  neck(long),
  color(white),
  flight(ponderous).
family(goose):-
  order(waterfowl),
  size(plump),
  flight(powerful).
family(duck):-
  order(waterfowl),
  feed(on_water_surface),
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  flight(agile).
family(vulture):-
  order(falconiforms),
  feed(scavange),
  wings(broad).
family(falcon):-
  order(falconiforms),
  wings(long_pointed),
  head(large),
  tail(narrow_at_tip).
family(flycatcher):-
  order(passerformes),
  bill(flat),
  eats(flying_insects).
family(swallow):-
  order(passerformes),
  wings(long_pointed),
  tail(forked),
  bill(short).

bird(laysan_albatross):-
  family(albatross),
  color(white).
bird(black_footed_albatross):-
  family(albatross),
  color(dark).
bird(fulmar):-
  order(tubenose),
  size(medium),
  flight(flap_glide).
bird(whistling_swan):-
  family(swan),
  voice(muffled_musical_whistle).
bird(trumpeter_swan):-
  family(swan),
  voice(loud_trumpeting).
bird(canada_goose):-
  family(goose),
  season(winter),                % rules can be further broken down
  country(united_states),        % to include regions and migration
  head(black),                   % patterns
  cheek(white).
bird(canada_goose):-
  family(goose),
  season(summer),
  country(canada),
  head(black), 
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  cheek(white).
bird(snow_goose):-
  family(goose),
  color(white).
bird(mallard):-
  family(duck),                  % different rules for male
  voice(quack),
  head(green).
bird(mallard):-
  family(duck),                  % and female
  voice(quack),
  color(mottled_brown).
bird(pintail):-
  family(duck),
  voice(short_whistle).
bird(turkey_vulture):-
  family(vulture),
  flight_profile(v_shaped).
bird(california_condor):-
  family(vulture),
  flight_profile(flat).
bird(sparrow_hawk):-
  family(falcon),
  eats(insects).
bird(peregrine_falcon):-
  family(falcon),
  eats(birds).
bird(great_crested_flycatcher):-
  family(flycatcher),
  tail(long_rusty).
bird(ash_throated_flycatcher):-
  family(flycatcher),
  throat(white).
bird(barn_swallow):-
  family(swallow),
  tail(forked).
bird(cliff_swallow):-
  family(swallow),
  tail(square).
bird(purple_martin):-
  family(swallow),
  color(dark).

country(united_states):- region(new_england).
country(united_states):- region(south_east).
country(united_states):- region(mid_west).
country(united_states):- region(south_west).
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country(united_states):- region(north_west).
country(united_states):- region(mid_atlantic).

country(canada):- province(ontario).
country(canada):- province(quebec).
country(canada):- province(etc).

region(new_england):-
  state(X),
  member(X, [massachusetts, vermont, etc]).
region(south_east):-
  state(X),
  member(X, [florida, mississippi, etc]).

region(canada):-
  province(X),
  member(X, [ontario,quebec,etc]).

nostrils(X):- ask(nostrils,X).
live(X):- ask(live,X).
bill(X):- ask(bill,X).
size(X):- menuask(size,X,[large,plump,medium,small]).
eats(X):- ask(eats,X).
feet(X):- ask(feet,X).
wings(X):- ask(wings,X).
neck(X):- ask(neck,X).
color(X):- ask(color,X).
flight(X):- menuask(flight,X,[ponderous,powerful,agile,flap_glide,other]).
feed(X):- ask(feed,X).
head(X):- ask(head,X).
tail(X):- menuask(tail,X,[narrow_at_tip,forked,long_rusty,square,other]).
voice(X):- ask(voice,X).
season(X):- menuask(season,X,[winter,summer]).
cheek(X):- ask(cheek,X).
flight_profile(X):- menuask(flight_profile,X,[flat,v_shaped,other]).
throat(X):- ask(throat,X).
state(X):- menuask(state,X,[massachusetts,vermont,florida,mississippi,etc]).
province(X):- menuask(province,X,[ontario,quebec,etc]).

% "ask" is responsible for getting information from the user, and remembering
% the users response. If it doesn't already know the answer to a question
% it will ask the user. It then asserts the answer. It recognizes two
% cases of knowledge: 1) the attribute-value is known to be true,
% 2) the attribute-value is known to be false.

% This means an attribute might have multiple values. A third test to
% see if the attribute has another value could be used to enforce
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% single valued attributes. (This test is commented out below)

% For this system the menuask is used for attributes which are single
% valued

% "ask" only deals with simple yes or no answers. a "yes" is the only
% yes value. any other response is considered a "no".

ask(Attribute,Value):-
  known(yes,Attribute,Value),       % succeed if we know its true
  !.                                % and dont look any further
ask(Attribute,Value):-
  known(_,Attribute,Value),         % fail if we know its false
  !, fail.

ask(Attribute,_):-
  known(yes,Attribute,_),           % fail if we know its some other value.
  !, fail.                          % the cut in clause #1 ensures that if
                                    % we get here the value is wrong.
ask(A,V):-
  write(A:V),                       % if we get here, we need to ask.
  write('? (yes or no): '),
  read(Y),                          % get the answer
  asserta(known(Y,A,V)),            % remember it so we dont ask again.
  Y = yes.                          % succeed or fail based on answer.

% "menuask" is like ask, only it gives the user a menu to to choose
% from rather than a yes on no answer. In this case there is no
% need to check for a negative since "menuask" ensures there will
% be some positive answer.

menuask(Attribute,Value,_):-
  known(yes,Attribute,Value),       % succeed if we know
  !.
menuask(Attribute,_,_):-
  known(yes,Attribute,_),           % fail if its some other value
  !, fail.

menuask(Attribute,AskValue,Menu):-
  nl,write('What is the value for '),write(Attribute),write('?'),nl,
  display_menu(Menu),
  write('Enter the number of choice> '),
  read(Num),nl,
  pick_menu(Num,AnswerValue,Menu),
  asserta(known(yes,Attribute,AnswerValue)),
  AskValue = AnswerValue.           % succeed or fail based on answer
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display_menu(Menu):-
  disp_menu(1,Menu), !.             % make sure we fail on backtracking

disp_menu(_,[]).
disp_menu(N,[Item | Rest]):-        % recursively write the head of
  write(N),write(' : '),write(Item),nl, % the list and disp_menu the tail
  NN is N + 1,
  disp_menu(NN,Rest).

pick_menu(N,Val,Menu):-
  integer(N),                       % make sure they gave a number
  pic_menu(1,N,Val,Menu), !.        % start at one
  pick_menu(Val,Val,_).             % if they didn't enter a number, use
                                    % what they entered as the value

pic_menu(_,_,none_of_the_above,[]). % if we've exhausted the list
pic_menu(N,N, Item, [Item|_]).      % the counter matches the number
pic_menu(Ctr,N, Val, [_|Rest]):-
  NextCtr is Ctr + 1,               % try the next one
  pic_menu(NextCtr, N, Val, Rest).
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